
HAL Id: tel-00459443
https://theses.hal.science/tel-00459443

Submitted on 24 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some Visualization Models applied to the Analysis of
Parallel Applications

Lucas Schnorr

To cite this version:
Lucas Schnorr. Some Visualization Models applied to the Analysis of Parallel Applications. Network-
ing and Internet Architecture [cs.NI]. Institut National Polytechnique de Grenoble - INPG; Universi-
dade Federal do Rio Grande do Sul - UFRGS, 2009. English. �NNT : �. �tel-00459443�

https://theses.hal.science/tel-00459443
https://hal.archives-ouvertes.fr

INSTITUT POLYTECHNIQUE DE GRENOBLE

No attribué par la bibliothèque

THÈSE EN COTUTELLE INTERNATIONALE

pour obtenir le grade deDOCTEUR DE L’Institut polytechnique de Grenoble

Spécialité : Informatique

et del’Université Federale du Rio Grande do Sul

préparée au Laboratoire d’Informatique de Grenoble dans le cadre del’École Doctorale
Mathématiques, Sciences et Technologies de l’Information, Informatique et au Laboratoire

de Parallelisme et Distribution dans le cadre duProgramme de Doctorat en Informatique

préparée et soutenue publiquement par

Lucas MELLO SCHNORR

le 26 octobre 2009

Titre :

Some Visualization Models applied to
the Analysis of Parallel Applications

sous la direction de Denis Trystram, Guillaume Huard et Philippe O. A. Navaux

JURY

Jean-François MÉHAUT, Président
Eddy CARON, Rapporteur
Siang SONG, Rapporteur
Nicolas MAILLARD , Examinateur
Denis TRYSTRAM, Directeur administratif
Guillaume HUARD, Directeur de thèse
Philippe O. A. NAVAUX , Directeur de thèse

2

Acknowledgments

A thesis demands a continuous effort and dedication for a long period of timeand space. It is
with great happiness that I write these words to thank the many people who made this french-
brazilian thesis possible.

In the first place, I would like to thank my advisor Dr. Philippe O. A. Navaux,for accepting
me as his Ph.D student back in 2005, for giving me the opportunity to prepareand write this
thesis within an international environment, for motivating me during all this time to publish my
work and go present them in the conferences, and also for putting me in contact with several
different people from the parallel application area in Brazil, France andabroad.

I also would like to thank my second advisor Dr. Guillaume Huard, for his comments,
suggestions, and ideas that inspired me to prepare this thesis. Together, we defined the first
sketches of this thesis during the beginning of my stay in France, which enabled the creation of
good ideas and experiments. I also thank him for his patience during my firstmonths in France,
when my french was not that good yet.

I am also grateful to Dr. Denis Trystram, for accepting me as his student in the Grenoble INP,
and his availability to guide me every year towards the accomplishment of this thesis.

I would like to thanks the members of my jury: Eddy Caron, Jean-François Méhaut, Nicolas
Maillard, and Siang Song for their comments on my text that allowed me to improve theclarity
and the quality of this manuscript. Their suggestions for future work also inspire me to continue
with my research within the performance visualization area.

This french-brazilian thesis would not have been possible without the financial support of
scholarships from CAPES, CAPES/Cofecub, and CNPq. I am also grateful for the different
projects in France and Brazil for financing my trips to the different conferences I attended.

I would like to thank all my friends, colleagues from the GPPD group in Braziland the LIG
in France, and family, for their presence and support during all this thesis. Each of you is part of
thesis through the several discussions and ideas we had together.

Lastly, and most importantly, I wish to thank my wife, Fabiane P. Basso. I simply do not
have words to thank you for loving me all these years. The force of our love is marked in every
word of this text, especially during the time when we were apart because of the international
nature of my thesis. I will be grateful to you all my life.

Obrigado! Merci!

3

4

Contents

1 Introduction 1

2 Visualization of Parallel Applications 5
2.1 Historical Evolution . 5
2.2 Some Performance Visualization Tools . 9

2.2.1 ParaGraph . 9
2.2.2 TraceView . 11
2.2.3 Pablo . 11
2.2.4 Paradyn . 12
2.2.5 Vampir . 13
2.2.6 Virtue . 15
2.2.7 Jumpshot . 15
2.2.8 ParaProf . 16
2.2.9 Pajé . 17

2.3 Summary of Visualization Techniques . 18
2.3.1 Behavioral . 19
2.3.2 Structural . 21
2.3.3 Statistical . 23

2.4 Summary . 24

3 The Three-dimensional Model 27
3.1 Visual Conception . 29
3.2 Model Overview . 30
3.3 The Trace Reader . 31
3.4 The Extractor . 33
3.5 The Entity Matcher . 34

3.5.1 Case 1: Parallel Application’s Communication Pattern 35
3.5.2 Case 2: Network Topology combined with Communication Pattern . . 36
3.5.3 Case 3: Logical Organization and the Communication Pattern 37

3.6 The Visualization . 38
3.6.1 Rendering the Visualization Base . 39
3.6.2 Interaction Mechanisms . 41

3.7 Summary . 42

5

6 CONTENTS

4 Visual Aggregation Model 45
4.1 Hierarchical Organization of Monitoring Data46
4.2 The Time-Slice Algorithm . 48

4.2.1 States . 49
4.2.2 Variables . 50
4.2.3 Links . 51
4.2.4 Events . 52
4.2.5 More statistics . 53
4.2.6 Example . 53

4.3 The Aggregation Model . 55
4.3.1 Aggregation Functions . 56

4.4 Visualization of the Approach . 57
4.4.1 Treemaps Basic Concepts . 57
4.4.2 The Scalability Issue . 58
4.4.3 Using Treemap in the Example . 60

4.5 Summary . 62

5 Triva Prototype Implementation 63
5.1 Using the Generic Visualization Tool Pajé . 63

5.1.1 Type Hierarchy and Pajé Objects . 65
5.1.2 Simulator Performance Evaluation . 66
5.1.3 Analyzing Pajé’s Adoption . 67

5.2 Triva Prototype Architecture and Overview 68
5.3 DIMVisualReader . 69
5.4 TrivaView . 71

5.4.1 External Libraries: Ogre3D and GraphViz 71
5.4.2 Base Configuration . 72
5.4.3 Rendering the 3D Scene . 76

5.5 TimeSliceView . 80
5.5.1 Creating the Hierarchy . 80
5.5.2 Drawing with the wxWidgets library 83

5.6 Summary . 84

6 Results and Evaluation 85
6.1 Traces Description . 85

6.1.1 Synthetic Traces . 86
6.1.2 KAAPI Traces . 89
6.1.3 MPI Traces . 91

6.2 3D Visualizations . 91
6.2.1 Description of the Visualization . 92
6.2.2 Communication Patterns Analysis . 94
6.2.3 KAAPI and the Grid’5000 Topology 96

6.3 Treemap Visualizations . 101
6.3.1 Description of the Visualization . 103

CONTENTS 7

6.3.2 Large-Scale Visualizations . 105
6.3.3 KAAPI Work Stealing Analysis . 106
6.3.4 MPI Operations Analysis . 111

7 Conclusion and Future Work 113
7.1 Publications . 114
7.2 Implications and Perspectives . 115

A Extended Abstract in Portuguese 117
A.1 Introdução . 118
A.2 O Modelo Tri-dimensional . 121

A.2.1 Concepção Visual . 121
A.2.2 Modelo de Componentes . 122

A.3 O Modelo Visual de Agregação . 124
A.3.1 Algoritmo de Fatia de Tempo . 124
A.3.2 Agregação Visual . 125

A.4 O Protótipo Triva . 127
A.4.1 TrivaView . 128
A.4.2 TimeSliceView . 128

A.5 Resultados e Avaliação . 130
A.5.1 Tri-Dimensional . 130
A.5.2 Agregação . 132

A.6 Conclusão e Trabalhos Futuros .135

B Extended Abstract in French 137
B.1 Introduction . 138
B.2 Le Modèle Tridimensionnel . 141

B.2.1 Conception Visuelle . 141
B.2.2 Modèle de Composants . 142

B.3 Le Modèle Visuelle d’agrégation . 144
B.3.1 L’algorithme de Tranche de Temps . 144
B.3.2 Agrégation Visuelle . 145

B.4 L’implementation du Prototype Triva . 147
B.4.1 TrivaView . 148
B.4.2 TimeSliceView . 148

B.5 Résultats Obtenus et Évaluation . 150
B.5.1 Trois Dimensions . 150
B.5.2 Agrégation . 152

B.6 Conclusion . 155

8 CONTENTS

Chapter 1

Introduction

Distributed systems are related to hardware and software that contain more than one single
processor entity [19]. In such systems, processors are interconnected and communicate over
a network. The computer programs that execute in these systems are split intomultiple parts
and must deal with different levels of parallelism and with communication paradigms, such
as message-passing and shared memory. A kind of distributed systems is grids [30]. They
are often structured in virtual organizations [29], possibly composed bythousands of machines
distributed geographically. Two examples of this type of system are the french Grid’5000 [12]
and the american TeraGrid [16].

Characteristics shared by almost all grid platforms are dynamism, heterogeneity of resources
and software, and presence of multiple administrative domains. Dynamism means that the re-
sources that participate in the grid can be unavailable at any time, without anyprior notification
of that. Parallel applications must deal with that in the application-level or through a middle-
ware capable of handling resources fluctuations. The heterogeneity means that different con-
figurations of resources can be present in the same grid infrastructure. This is also valid for
software libraries and middlewares. A grid can be scattered through multiple administrative do-
mains, each part handled independently by their administrators. Besides these characteristics,
a grid might also have a complex network interconnection and be easily extensible in terms of
resources.

The interconnection among resources of a grid can be composed of different types of net-
works. They include Ethernet, Myrinet, Infiniband, or optical fiber technologies. A model of a
grid with several types of interconnection is a desktop grid [48], like the projects BOINC [1] and
Seti@home [2], where the network is the internet. Another example for the presence of multiple
types of interconnection is a lightweight grid, where a strong hierarchy is used to interconnect a
set of homogeneous clusters of computers [12]. The presence of several interconnections come
from the natural heterogeneity and geographic distribution characteristics of grids. These as-
pects impose a higher network complexity, greater number of hops to providecommunication
among applications processes, and increasing differences in network latencies and bandwidth.

Grid platforms are also easily extensible. New resources can be indefinitelyadded just by
connecting them to the existing participants. Usually, these additions bring moreheterogeneity
to the grid and increment the network complexity. As of today, there are global grids that are

1

2 CHAPTER 1. INTRODUCTION

composed of several thousands of computers, such as the example of BOINC. Another example
of how easy it is to add new resources to a grid is the case of Grid’5000, where new clusters
and sites can be added to the main backbone of the infrastructure. The extensibility of these grid
platforms is a good characteristic from the point of view of parallel applications, which need an
increasing amount of resources to complete their execution faster.

All these grid characteristics influence directly the behavior of the parallelapplications dur-
ing their development and execution. Because of this, it is important for the developer to under-
stand the impact of the distributed system on the application. An example of this type of analysis
is the observation of application monitoring data with information from the networktopology.
The application can have a better or worse performance, depending on which resources are cho-
sen and the interconnection among them. This influence is even more evident when network
aspects are considered, such as latency or bandwidth, on network-bound parallel applications.
The grid extensibility is another aspect that influences directly the behaviorof applications, be-
cause turning available new resources for the application might not always result in a better
performance.

Considering these situations, we can notice that it is important to analyze the parallel ap-
plication behavior along with information about the grid resources. This analysis can help the
developer to understand the impact of the network topology on the applicationbehavior. Com-
paring, for instance, the communication pattern of the application with the network topology can
give hints to the developer to adapt the application in order to better exploit theinterconnection.
Moreover, if the network is hierarchically organized, the applications canfollow the hierarchy to
avoid bottlenecks.A good analysis must also lead to conclusions about all processes of parallel
applications, including global and local patterns that can appear among them. If the number of
processes is large, the analysis must also scale.

Visualization is a way to perform the analysis of parallel applications. It has been extensively
used through the last 30 years to understand and observe applications that are developed with
different levels of parallelism. The most traditional way of visualizing application behavior
is through an adaptation of Gantt charts [79], also known as space-time graphics. They list the
components of the application vertically and their evolution over time is placed on the horizontal
axis. Examples that provide this kind of visualization are Pajé [22], Vampir [60] and many
others [5, 46, 63]. This visualization is already widely used in existing architectures, such as
clusters, where data is simpler and uniform.

Many of these tools were adapted to observe the behavior of applications of highly dis-
tributed systems like grids. Generally, they keep on using the same visualizationtechniques.
Considering only the space-time representation, the first issue that arisesis that they cannot
represent, together with the application data, the complex network topology ofgrid systems.
As discussed, the impact of the network cannot be excluded from an application analysis when
a complicated interconnection is present among the resources. The second problem is the vi-
sualization scalability of the space-time approach. Using such representations, the number of
components of the application that can be visualized in a screen is limited to the vertical resolu-
tion of the screen.

This thesis tries to overcome the issues encountered on traditional visualization techniques
for parallel applications. The main idea behind our efforts is to explore techniques from the

3

information visualization research area and to apply them in the context of parallel applications
analysis. Based on this main idea, the thesis proposes two visualization models:the three-
dimensional and the visual aggregation model. The former might be used to analyze parallel
applications taking into account the network topology of the resources. The visualization itself
is composed of three dimensions, where two of them are used to render the topology and the
third is used to represent time. The later model can be used to analyze parallel applications
composed of several thousands of processes. It uses hierarchical organization of monitoring
data and an information visualization technique called Treemap [74] to represent that hierarchy.
Both models represent a novel way to visualize the behavior of parallel applications, since they
are conceived considering large-scale and complex distributed systems,such as grids.

The implications of this thesis are directly related to the analysis and understanding of par-
allel applications executed in distributed systems. It enhances the comprehension of patterns
in communication among processes and improves the possibility of matching them with real
network topology of grids. Although we extensively use the network topology example, the
approach could be adapted with almost no changes to the interconnection provided by a middle-
ware of a logical interconnection. With our scalable visualization technique,developers are able
to look for patterns and observe the behavior of large-scale applications.

In this work, we are considering parallel applications that intend to obtain high performance
in grid environments. Additionally, these applications must be composed of processes that inter-
communicate during the execution of the application, either as point-to-point communications or
collective operations. Each process is composed of functions related to calculations or to com-
municate with other processes. Besides this, we also consider that the number of processes of the
same application can scale up to a large number. To analyze these applications, we consider that
traces can be generated during application execution. A trace is divided intimestamped events,
each one identified by a type and additional information according to this type.Several types of
events might be registered, for instance, the start and end of functions,the communications, and
so on.

The text of the thesis is composed of six chapters, as follows:

Chapter 2: Visualization of Parallel Applications
This Chapter presents works related to this thesis. It starts with a historical presentation
of tools since their first use to analyze computer programs, then goes to the description of
some of them. The Chapter ends with a summary of visualization techniques, classified
according to three types according to the information they represent.

Chapter 3: The Three-Dimensional Model
This Chapter presents the three dimensional model. We first describe its visual conception,
detailing the components and concepts of the 3D visualization. Afterwards, we describe
the abstract model that is conceived to generate these visualizations. During this descrip-
tion, we detail three different cases that can be rendered with the approach to help the
performance analysis of parallel applications.

Chapter 4: Visual Aggregation Model
The fourth Chapter presents the visual aggregation model, proposed in this thesis to be

4 CHAPTER 1. INTRODUCTION

combined with the treemap representation so the analysis of parallel applications can be
done with a large number of components. The Chapter first details how monitoring data
can be hierarchically organized, then it goes through the description of the proposed Time-
Slice algorithm and the aggregation model. The Chapter ends with the use of thetreemap
technique to visualize the hierarchies created by the proposed algorithms.

Chapter 5: Triva Prototype Implementation
The fifth Chapter presents Triva, a prototype that includes the implementationof the three-
dimensional and the visual aggregation model. A performance evaluation ofsome Pajé
components is included in the beginning of this Chapter, in order to introduce the use of
these components inside Triva. The rest of the Chapter presents the implementation de-
cisions and the description of the several modules, such as the DIMVisualReader, to read
traces, the TrivaView, to the 3D views, and the TimeSliceView, related to the aggregation
model.

Chapter 6: Results and Evaluation
The sixth Chapter presents the results obtained with the Triva prototype andits evaluation,
through a set of synthetic and real scenarios that lists the main benefits of the proposed
approaches. A traces description is given in the beginning, detailing the synthetic, KAAPI
and MPI traces used in the experiments and how they were obtained. Then,we present
the resulting 3D visualizations rendered by the prototype and finish the Chapter with the
presentation of several treemaps whose hierarchies were created by the Time-Slice and
aggregation algorithm.

Chapter 7: Conclusion
The main contributions of this thesis are reminded and the perspectives that are opened by
its concepts are detailed.

Chapter 2

Visualization of Parallel Applications

The main objective of the performance analysis of programs is to improve the behavior of appli-
cations. This analysis is more complex in a parallel or distributed execution environment, since
there is a large number of variables that influence the execution of the applications. Common
problems are network contentions, bottlenecks, dead-locks, and so on.

The performance visualization of parallel applications is an alternative to perform the analy-
sis. It explores graphical representations and techniques to represent the application behavior. A
lot of efforts have been applied in the development of new visualization schemes and techniques
in the last 25 years. Most of this development is focused in the adaptation ofthe visualization
techniques to new programming paradigms and libraries for parallel applications. An example
of that is the appearance of the MPI Standard, in the middle 90’s, and the development of large-
scale clusters. In this Chapter we present the techniques and tools that contribute to the area of
performance visualization of parallel applications.

The Chapter is organized as follows. We start by describing the evolution of performance
visualization tools in Section 2.1, including a correlation between the tools and their creators.
In Section 2.2, we detail a representative set of these tools, based on theinnovative visualiza-
tions they provided when they were published. The Chapter ends with a classification of the
visualization techniques, in Section 2.3, and a summary of the Chapter.

2.1 Historical Evolution

The history of visualization tools for program analysis is closely related to thefirst successful
appearance of graphical user interfaces in 1984, with the release of the Macintosh, by Apple.
With a wider availability, graphical interfaces have begun to be explored bya series of projects
in the United States, almost at the same time. Figure 2.1 depicts a timeline view of a selected set
of visualization tools for parallel program analysis. The timeline covers almost25 years, from
1985 up to now. The year associated with each visualization tool is only an approximation based
on publications and technical reports.

The first known project that discusses the possibility of using graphicalanalysis for the
comprehension of parallel programs is the Programming and Instrumentation Environment for
Parallel Processing – PIE [71], developed at the University Carnegie-Mellon. Although the

5

6 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

project has started in 1985, first results showing a complete use of visualization techniques of
PIE have appeared only in 1989 [51]. The IPS [58, 82] proposes, in1987, a hierarchical model
for constructing parallel applications. Its second generation [56] features an interactive user in-
terface with graphics showing resources metrics that were registered during program execution.
On top of the hierarchical model proposed by IPS, the second generation presents graphics with
different hierarchy levels, such as machines, processes and threads.

Figure 2.1 – Timeline of significant visualization tools for parallel program analysis.

ParaGraph [38], initially developed at the University of Illinois, is a software that provides
a detailed, dynamic, graphical animation of the behavior of message-passing parallel programs
and graphical summaries of their performance. At least 25 different types of views are available
for the developer to understand the application behavior. Their authors were the first to use the
term “simulation” to mean graphical animation, stating that there is nothing artificialabout the
analysis, but that the behavior of the application is reconstructed with a simulation based on
real trace data. Its implementation uses the Portable Instrumented Communication Library –
PICL [36] as data source. Because of this dependence on PICL, the tool was considered limited
since it was not possible to analyze other types of parallel applications, such as the ones with
multiple threads or a combination of message-passing and threads.

The first effort in direction of a more general-purpose tool appears inTraceView [53]. The
notion of a general-purpose tool was developed to avoid a particular trace format, a specific
execution paradigm or execution system. According to the authors of TraceView, the architecture
of the tool is flexible enough to select different analysis and display alternatives, but rigid enough
to combine these alternatives based on the resources of the tool.

The evolution of parallel computer systems and larger applications presented new challenges
in terms of performance visualization. The first tool to address this issue is Pablo [66]. The tool is
built as a series of interconnected components. As trace data moves through these components,
it is transformed in a way to provide different views. The development of the tool brings the
proposal of SDDF [6], a self-describing trace format.

AIMS, for Automated Instrumentation and Monitoring System, is a toolkit developed at
NASA in 1994 to facilitate the performance evaluation of parallel applications via measure-
ment and visualization of execution traces [81]. It has four main components: a source-code
instrumentor; a run-time performance monitoring library; two tracefile analysistools and a trace
post-processor to compensate the intrusion caused by the tool in the application execution.

2.1. HISTORICAL EVOLUTION 7

The main characteristic of Paradyn [57] is the Performance’s Consultantthat helps the de-
veloper to dynamically set instrumentation points in the parallel programs. By doing this, the
authors argue to improve scalability by reducing intrusion problems during application execu-
tion. Paraver [63] also appears in 1995 and offers the possibility to choose different filters to
select what is going to be displayed.

Vampir [60], by Pallas GmbH, is a commercial visualization tool for the analysis of parallel
applications following the MPI standard. It offers to the developers a widerange of graphical
views, such as state diagrams, activity charts, timeline displays and so on. Italso has flexible
filter operations to reduce the amount of information displayed. The tool hasbeen improved
with techniques such as the hierarchical visualization in time-space diagrams [14] to handle
large applications.

Annai [18] is an integrated environment for performance visualization ofapplications devel-
oped with High Performance Fortran and with MPI.

In 1999, Virtue [72] brings to the performance visualization new conceptswhere human
sensory capabilities are explored with a 3D immersive visualization. At the sametime, the
development of MPI results in the first Jumpshot visualization tool [83], developed in Java.
Jumpshot is the evolution of the first MPI analysis tool of the same team. The new version con-
tains a number of enhancements in order to make it suitable for large-scale analysis. Jumpshot
is still in development and is now in its fourth version. The general purposevisualization tool
Pajé [76], presented in 2000, proposes a file format without semantic andstrongly related to
visual objects. The tool is extensible, interactive and scalable, being capable to visualize any
kind of monitoring data that can be described in its format. Kojak [59] appears in 2003 and is
developed by the Julich Supercomputing Center in Germany. It supports programming models
such as MPI, OpenMP, Shared memory and combinations of them. Its main idea isthe auto-
matic search of event traces that indicate inefficient behavior. The results are presented with a
graphical user interface. Also in 2003, the ParaProf [10] is presented as a portable, extensible
and scalable tool for parallel performance profile analysis. The idea ofParaprof is to gather in
the same tool the best capabilities from all previous performance analysis tools. The Projections
tool [44], introduced as a preliminary study in 1992, but only available around 2005, is devel-
oped to visualize the behavior of Charm++ [45] parallel applications. It has multiple views and
techniques to reduce the amount of trace data.

More recently, in 2007, the TuningFork [7] proposes visualization techniques to analyze
large-scale real-time systems. Although not directly related to the analysis of parallel applica-
tions, many of the problems faced by TunningFork are the same of traditional parallel appli-
cations. Examples of these problems are trace collection, very large tracesanalysis, vertical
integration of data, and so on. Another tool is StreamSight [25], a tool developed to understand
the dynamic behavior of streaming applications. It has the ability to visualize applications with
thousands of nodes and interconnections.

As a conclusion, we can notice that the first tools were mainly focused in the way appli-
cations should be instrumented. Dynamic and automatic instrumentation techniqueswere also
proposed. Then, the focus moved to more general and modular tools that are extensible to other
programming paradigms. The visualization techniques evolved rapidly in the beginning and
are continuously explored till today. Recent tools try to solve the problem ofvisualizing enor-

8 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

mous amount of data, acting directly with reducing and aggregation mechanismsor with new
visualization schemes that support more data to be represented.

Mapping Tools to Authors

The timeline evolution of performance visualization tools, together with their respective authors,
can be used to analyze how the research area has evolved in the last 25 years. Figure 2.2 shows a
mapping between performance visualization tools and their authors. Some authors created more
than one tool over time, improving the area of performance visualization analysis. An example is
Barton P. Miller, who has worked in the IPS project and is active today working in the same area,
with the Paradyn tool. Another author that is still active in the research areais Allen D. Malony,
who in 1991 proposed TraceView and currently is working in the TAU’s ParaProf performance
visualization tool.

Figure 2.2 – A mapping between performance visualization tools and their authors.

Another possible analysis of Figure 2.2 is to check where the tools and their ideas have been
proposed. Up to 1995, all performance tools of the Figure came from two places: the University
of Wisconsin, Madison (as it is the case of Barton P. Miller, after finishing his Ph.D. at the
University of California, Berkeley) and the University of Illinois at Urbana-Champaign (Michael
T. Heath, Allen D. Malony and Daniel A. Reed). After 1994, with the definition of the MPI
Standard at the Argonne National Laboratory (ANL), the area of performance visualization starts
to be explored in other places: Vampir in 1996 and Kojak in 2003, in the Julich Supercomputing
Center in Germany; Jumpshot in 1999, at the Argonne National Laboratory in the United States;
Pajé in 2000, in the ID Laboratory, France and at the Federal University of Santa Maria, Brazil,
for example.

2.2. SOME PERFORMANCE VISUALIZATION TOOLS 9

2.2 Some Performance Visualization Tools

A lot of efforts have already been made in the performance visualization area by different re-
search projects. These efforts resulted in a considerable amount of visualization techniques,
from specific tools attached to a programming paradigm, to more generic or evolutive tools that
have been adapting to new challenges and evolutions of the high performance domain.

The positive side of specific tools is the number of users that increases rapidly, since they
do not need to learn too much to use them. Their main drawback, however, is that they might
become obsolete shortly. This is usually caused by a new parallel programming paradigm that
cannot be represented in the tool, or by scalability issues, when the tool is no longer able to
handle an increasing amount of monitored entities for instance. On the other side, generic or
evolutive tools live longer, but their use stays limited because users must continuously learn to
keep up with their changes, or must spend more initial effort in learning howto use them.

We present here some performance visualization tools that were developed by different per-
formance research groups. Although the list of tools we describe here isnot exhaustive, we think
that they represent well the state of the art of the area of performance visualization. Some of
them are no longer supported, such as ParaGraph, TraceView and Pablo. Some are still under
development and available for the community. For all of them, we present the more relevant
ideas, especially the ones related to visualization techniques.

2.2.1 ParaGraph

ParaGraph [38] was initially developed at the Oak Ridge National Laboratory, in Tennessee,
United States. Afterwards, ParaGraph started to be hosted and developed at the Center for
Simulation of Advanced Rockets, at Urbana-Champaign.

The tool is the first to use the term simulation during the creation of a visual representation
of trace data. The term is used because the tool has to re-create the behavior of the application
based on real events collected during the parallel application execution. This behavior is then
visualized through different visualization techniques, some of them illustrated in Figure 2.3.
The first implementation of ParaGraph was able to visualize only message-passing parallel pro-
grams developed with the PICL [36] communication library, through the use ofspecific functions
that exchange messages among processes. In the beginning, this coupling between ParaGraph
and PICL was seen as positive, because the cycle of development, execution and analysis was
straightforward. However, as new communication libraries have started to appear with better
performance, the coupling between ParaGraph and PICL became a limitation,because they were
attached to a specific communication library. After the appearance of the Message-Passing In-
terface (MPI) specification [37], around 1994, the PICL evolved with anew trace format and it is
renamed to MPICL, addressing parallel applications developed following the MPI specification.

The architecture of ParaGraph is based on events. The visual representations are updated as
new events are read from the trace files. The tool is also considered as an interactive interface,
the user has access to more than 25 displays, categorized in three families: utilization, communi-
cation and tasks. If the user decides to visualize more than one display at thesame time, they are
kept synchronized. Besides that, the limit for visualization of most displays is512 processors.

10 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

Figure 2.3 – Four different visualizations of ParaGraph.

The utilization family is composed by 7 displays: the utilization count, showing the total
number of processes in each of three states (busy, overhead and idle); the Gantt Chart, showing
the activity of individual processors through time; the Kiviat Diagram, thatgives a geometric
representation of the utilization of individual processors and the load balance across all pro-
cessors; the Streak, showing insights of patterns in parallel programs orimbalances among the
processors; the Utilization Summary, showing the cumulative percentage of timethat each pro-
cessor spent in each of the three states; the Utilization Meter, that shows thesame information
as the utilization count, but saving screen space; and the Concurrency Profile, showing the per-
centage of time that a set of processors remained in the same state.

Thecommunication family of displays has 10 different views. The Communication Traf-
fic, showing the total traffic in the communication system as a function of time. TheSpacetime
Diagram, showing the interactions among processors as a function of time. Message Queues,
which is a graph showing the evolution of number of buffer messages through time. Commu-
nication Matrix is a two-dimensional array where rows and columns represent processors and
each position in the matrix represents a communication between two processors. The Commu-
nication Meter uses a vertical bar that indicates the amount of communications intransit (sent
but not received). The Animation display shows a graph where the nodes are the processors and
the arcs are the communication among them. The nodes can be arranged in preor user-defined
configurations. Hypercube is another display that looks like the animation display, but focused
on hypercubes. The Network display shows the path that each message takes to go from one pro-
cessor to another, including routing through intermediate nodes. This display needs a topology
description to be rendered. Node Data presents statistical data in graphical form, such as given
variable of the application in function of time. The last one is the Color Code display, helping

2.2. SOME PERFORMANCE VISUALIZATION TOOLS 11

to define colors that are used through the other displays. The Animation andNetwork display
of ParaGraph are limited to 128 processors, because of their higher detail level. Hypercube is
limited to 16 processors and the Node Data is limited to 256 processors.

Summarizing, ParaGraph’s utilization and communication displays only show information
about the processors used by the parallel application. Thetask family of displays intend to
give developers more insights about the reason behind those behaviors, showing application
details. The events shown by these displays must be generated by parallelapplication devel-
opers, through instrumentation of parallel programs. Among the available displays, users have
the count, gantt, status, summary displays. They use the same visualization techniques of the
communication family of displays, but showing application-level traces.

Besides these three types of displays, ParaGraph has also another setof views that does not
fit in one of these types, or fit in more than one type. Among them, there is the Critical Path
display, which is a variant of the spacetime display, showing a different color coding to highlight
the longest serial thread in the parallel computation. ParaGraph architecture has also the ability
to receive new displays to represent in different ways the traces.

The main contribution of ParaGraph is the large set of visualization techniques that could be
applied to the same set of traces. Even if applied in a low scale up to 512 processors with some
techniques, the visualizations developed in the tool have inspired subsequent tools.

2.2.2 TraceView

TraceView [53] is a trace visualization tool developed at the Center for Supercomputing Re-
search and Development, at Urbana-Champaign, United States. The main idea behind Trace-
View is to be a general-purpose trace-visualization system. To achieve that,the tool uses the
concept of visualization session, defined as a hierarchical structure with three levels: the trace
files, the views and the displays. There is also a session management component that helps users
to define the specific hierarchical structure needed for the analysis of given set of trace files.
TraceView avoids semantic interpretation of the actions registered in the events, meaning that
the tool can adapt to different types of traces. In terms of visualization, TraceView offers two
types of display, both based on gantt-charts: the Gantt Chart Widget andthe Rates Display. The
former creates a visualization focused on state transitions of processes;the latter displays the
number of times a given state is entered.

As conclusion, TraceView was the first to mention the general-purpose idea in trace visual-
ization systems. The term “general” was used by its authors to mean the way trace files, views
and displays should be organized, to build an analysis environment.

2.2.3 Pablo

Pablo [64, 65] is a performance analysis environment designed to provide performance data
capture, analysis, and presentation. It is developed at the Department of Computer Science in
the University of Illinois at Urbana-Champaign. The tool is conceived to support portability,
scalability and extensibility.

The tool is composed of different modules that can be interconnected as agraph. The mod-
ules are responsible for data transformations that generate performance metrics for the analysis.

12 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

There are modules for operations like selection, arithmetical and logarithm operations, statistical
functions and so on. Besides them, Pablo comes with components to read and write trace files.
The user of Pablo is then responsible for visually arranging a graph of these modules in order to
analyze the traces. All modules developed for Pablo have no semantics, working with any data
that is available by the reading modules, independent of what they mean.

Input files of Pablo must conform to the SDDF format [6]. The format is also used internally
by the tool. With that, the user can attach to any module an output trace file writer that will write
in files the results obtained in the middle of a performance analysis.

In terms of visualization, Pablo offers different techniques to represent the performance data
generated by the graph of modules. Basic charts like bar graphs, bubble, strip, and pie charts,
contour and interval plots are available for the user by attaching them to the output of a module.
Other visual representations, some of them already present in tools suchas ParaGraph (see
Section 2.2.1), like matrix displays and kiviat diagrams, can also be used. A notable visualization
technique, presented at the time of its creation, is the 3-dimensional scatter plot: the technique
is used to show, at the same time, three different performance metrics.

Pablo’s main contributions are the use of trace files in the SDDF format, and its internal
organization in modules, allowing extensions to be made. Its drawback, however, is related to
the way these extensions must be developed, since all modules must be integrated in the same
binary to make the tool work.

2.2.4 Paradyn

Paradyn [57] is a tool to measure the performance of large-scale parallel applications. It is de-
veloped at the University of Wisconsin, Madison, in the United States. The main idea of the tool
is to support the dynamic instrumentation of parallel applications in order to be less intrusive
and to avoid generating trace data for regions of parallel code that are not under analysis. Para-
dyn also aims to be scalable, to provide well-defined data abstraction, to support heterogeneous
environments and to offer open interfaces for visualization and new data sources.

Perhaps the more interesting idea of Paradyn is the dynamic instrumentation of parallel
programs. It works by inserting instrumentation points to detect general high-level performance
problems. If a problem is found, Paradyn increases the instrumentation level in those areas
that are presenting performance issues. The benefit of this technique of instrumentation is that
it decreases the intrusion caused by unnecessary code insertions, withthe drawback of being
tightly related to the parallel programming paradigm used. This technique is implemented within
Paradyn through its Performance Consultant, an implementation of the W3 Search Model [40].

In terms of visualization, Paradyn has a set of pre-defined standard visualizations, like time
histograms, and bar graphs. Some examples of these standard views are inFigure 2.4. Accord-
ing to Paradyn’s authors, the process of adding new visualizations to the tool is easy because
of a special mechanism dedicated to that. The controller of the visualizations runs as a sepa-
rate process. It can contact Paradyn’s main processes to collect data, which is stored in a data
structure called a time histogram. Another feature of its visualization system is that Paradyn can
incorporate displays from other tools such as ParaGraph and Pablo.

The time histogram visualization of Paradyn plots performance data for metric over time.
The horizontal axis represents time and the vertical axis represent the metric that is currently be-

2.2. SOME PERFORMANCE VISUALIZATION TOOLS 13

Figure 2.4 – Two visualizations of Paradyn, including the 3D histogram (at right).

ing observed. Several metrics can be analyzed at the same time, and in this case, the vertical axis
receives different scales to represent each of them. The number of metrics displayed at the same
time is limited to eleven. Panning and zooming within time histograms are possible throughthe
use of scroll bars and buttons in the graphical user interface. With that, users can navigate over
time to see the evolution of each metric. The barchart visualization enables the visualization of
data in real-time and it is designed to view a considerable amount of metrics. Thedrawback
of this view is that it has no historical representation. The display has as horizontal axis the
different metrics being analyzed and in the vertical axis the different components of the parallel
application, for example. The third standard display of Paradyn is the TableVisualization. The
view actually shows the data textually: columns are metrics and rows are parts of the application,
typically source files or a specific function. The data in the table is updated in real-time. The
fourth display of Paradyn is the 3D “Terrain” visualization. It allows the performance data to be
analyzed using a surface rather than curves, as in the time histogram, or bars, like the barchart
visualization. The three dimensions allow the visualization of two different metrics at the same
time and their evolution over time.

The Paradyn visualization tool is still developed at the Paradyn Parallel Tools Project, with
publications in 2008. New developments of the tool include STAT – Stack Trace Analysis
Tool [4] and challenges to petascale tool development [50]. Paradyn’s main contribution is
the dynamic instrumentation of parallel applications. This idea was materialized through the
W3 Search Model. Besides that, it is important to notice that the tool is available for at least 14
years, since its conception in 1995.

2.2.5 Vampir

Vampir [60] was initially developed at the Julich Research Center in Germany,but later on trans-
formed in a commercially available tool managed by Pallas GmbH. The tool appears after the
definition of the MPI standard, being one of the first tools to be able to visualize the behavior of
MPI parallel applications over time. After its creation, Vampir development goes toward scal-
able analysis of parallel applications [14] and to analyze hybrid OpenMP/MPI applications [80].
Some of the visualizations provided by the tool are depicted in Figure 2.5.

14 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

Figure 2.5 – Visualizations of Vampir, using the matrix technique (top left and topright) to
summarize communications and its Gantt-chart (bottom).

Vampir has a set of flexible filter operations, which are used to reduce the amount of in-
formation displayed and to help its users to spot more easily performance problems. Another
feature of Vampir is the possibility to read trace data that is distributed across many computers,
in a cluster or grid-like environment.

In its efforts to turn the tool more scalable, the Vampir team developed a hierarchical visu-
alization based on Gantt charts [14]. In this view, users navigate throughdata in different levels
of abstraction such as cluster, machine, process and thread. The technique they propose attacks
a major problem of Gantt charts, where the vertical size of the screen is a limitto the number of
entities that can be analyzed at the same time. Without this technique, Vampir is ableto analyze
up to 200 independent objects at the same time. When applied, it allows the visualization of at
least 10000 processing entities, even if only 200 are shown on the screen at the same time. The
hierarchical structure of their model allows up to 3 layers. This hierarchical visualization works
for timelines and statistical displays of Vampir.

The performance visualization available in Vampir can be divided in different categories:
single time system snapshots, when data for a point of time is shown graphically; animation,
giving the users the possibility to analyze step-by-step the dynamic behaviorof the application
under analysis; statistics, that are able to summarize system behavior for theinterval of time
under investigation; and a time-line system view, showing detailed system activities with a time
axis. The visualization techniques applied include matrix chart, summary chart,Gantt-charts,

2.2. SOME PERFORMANCE VISUALIZATION TOOLS 15

summary timeline and counter timeline.
Vampir is the tool available commercially. It uses a specific trace format and a set of pro-

grams that can be converted from other formats to the one used by the tool. Its space-time view
attacks the scalability problem by proposing a data aggregation mechanism to reduce the amount
of data that is visualized at one time.

2.2.6 Virtue

Virtue [72] is developed at the University of Illinois at Urbana-Champaign. The main objective
of the tool is to offer an immersive visualization environment for the analysis of performance
data from parallel applications. It is the first attempt to use virtual reality in theperformance
analysis domain. The tool connects to Autopilot [67] to receive its monitoring data and helps
the performance analysis by trying to enhance rendering with human sensory capabilities.

As visualizations, Virtue offers three types of 3D visualization, depicted in Figure 2.6. The
first is the wide-area geographic display, where nodes are placed following their geographic
location. The second is the time-tunnel display, showing a cylinder where theinternal part
of the cylinder is used to represent processors state evolution over time and chords illustrate
cross-process interactions. The last is the call-graph display, which forshows in a 3D space the
functions that were executed and the call procedures among them.

Figure 2.6 – Virtue’s 3D visualizations, from left to right, the wide-area, thetime-tunnel and the
call-graph displays.

Although not further explored, Virtue is the first to try to use virtual reality combined with
3D graphical representations in the analysis of parallel applications. It was developed by the
same team that created Pablo (see Section 2.2.3).

2.2.7 Jumpshot

Jumpshot [83] is developed at the Mathematics and Computer Science Divisionat the Argonne
National Laboratory, in the United States. Its authors have participated in thedevelopment of
the MPI specification and the release of the first draft. Currently, the development of the tool
is attached to the MPICH implementation of MPI. The tool is written using Java, designed to
receive a file format with time-stamped events. Initially, the file format to be usedwas called

16 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

CLOG. With the evolution of parallel and distributed systems, especially relatedto scalability
issues, the file format also evolved to SLOG, and now SLOG-2 [17]. Jumpshot is now in its
fourth version, providing accumulative enhancements such as previewsto increase detail as
needed in the timeline window.

Jumpshot offers the traditional package of visual graphs, such as histograms, accumulative
state durations and series of zoomable and scrollable timelines. Two examples are available at
Figure 2.7. A more specific type of visualization is called the "mountain range" view, showing
the aggregate number of processes in each state at each time.

Figure 2.7 – Histogram and Gantt-chart view of Jumpshot.

Probably the most evident contribution of the Jumpshot series tools is that it istightly cou-
pled with a MPI implementation. This facilitates its use for MPI users, since a small period of
time is needed to understand the way the tool works.

2.2.8 ParaProf

ParaProf [10] is a portable, extensible and scalable tool for parallel performance profile anal-
ysis. It attempts to unite, as its authors say, the “best of breed” capabilities already proposed
in other tools. The tool was initially focused on profiling techniques, rather than using tracing
techniques as other tools did. Today, the tool is able to deal with traces gathered from parallel
application executions. The group that develops ParaProf has also proposed a framework for
data mining [41]. ParaProf is integrated in a bigger project named TAU – Tuning and Analy-
sis Utilities, that is being developed jointly by the University of Oregon, Los Alamos National
Laboratory, in the United States, and Julich Research Center, Germany.

The architecture of ParaProf has four key components: the Data Source System (DSS), the
Data Management System (DMS), the Event System (ES), and the Visualization System (VS).
Well-defined interfaces are used for each component so they can interact with each other at the
same time they run separately. This organization allows the tool to be extensible and flexible,
enabling the evolution of the tool to other programming paradigms and new techniques.

The visualization system component of ParaProf’s architecture is responsible for creating
visual representations of the data. They are based on Java2D, but 3Dvisualizations are also

2.2. SOME PERFORMANCE VISUALIZATION TOOLS 17

present to represent profile data. There are four categories of visualization in the tool: 3D-
visualization, thread based displays, function based displays, and phase based displays. The
3D visualizations are rendered using OpenGL hardware acceleration techniques. Each window
has rotation, translation and zooming capabilities. There are three types of visualization in this
category: the Triangle Mesh Plot, that shows two metrics for all functions and all threads. The
height represents one metric and the color another. The resulting visualization creates a surface
where data is represented; the 3D Bar Plot, that works like the mesh, but using bars; and the 3D
Scatter Plot, that uses points instead of mesh or bars. The other category isthe Thread Based,
with a series of graphs that show statistics of the application and also a call graph, all related
to the threads of the parallel application. The third category is the function based displays,
composed of two views that show statistical data: a function bar chart and afunction histogram.
The fourth category is the Phase Based displays, focused on showing statistical data from pre-
defines phases of the parallel application. Examples of the views generated by ParaProf are
available in Figure 2.8.

Figure 2.8 – The call-graph and the 3D bar plot of ParaProf.

ParaProf has a modern design in its software implementation, through separate components
that interact with a defined programming interface. Besides that, it providesan extensive set of
visualization techniques, and it is tied to the TAU project.

2.2.9 Pajé

Pajé [24, 47, 76] is a generic visualization tool designed to be interactive,scalable and extensible.
The tool was initially developed at the LIG Laboratory (former ID Laboratory), in Grenoble,
France, but is now developed at the Federal University of Santa Maria– UFSM, Brazil. The
interactive part of Pajé means that the user is able to interrogate monitored entities, through its
time-space visualization window. The scalable feature of Pajé is related to the possibility to
cope with a large number of program entities, such as threads and processes, and the details

18 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

about each of them. The extensibility of the tool relates to the easy addition of new features,
new types of traces, new graphical displays, new programming models to adapt the tool to the
evolution of parallel programming interfaces and visualization techniques.

The Pajé file format is also part of the visualization tool. The format is textual and without
semantic, where events describe the behavior of a set of monitored entities.The basic types that
can be used in the format are container, state, event, link and variable. Containers can be used to
group other types, creating a hierarchical definition of types. Virtually any kind of monitoring
system or trace generation tool can use these types to describe the behavior of monitored entities,
from parallel applications to distributed resources of a parallel system. This level of flexibility
in the description of monitored entities behavior is not found on related work.If the trace file
has information about source-code correlation in events, the user will beable to click-back to
see which part of the source code caused the creation of a visual object rendered in the graphical
displays of Pajé.

The architecture of Pajé is composed of modules that are connected through a graph that is
usually fixed, but can be changed to adapt the tool to new types of components. The components
can be any self-contained part that behaves following a certain protocol and operates over the
events that are read from trace files. The traditional set of Pajé components includes a trace
file reader, a event decoder, a simulator, a storage controller, aggregation, reduce and ordering
filters, for example. Despite the number of components, the three classical components of Pajé
are the controller, trace readers and the simulator.

Pajé offers to its users two types of visualization techniques to represent graphically contain-
ers, state, events, variables and links. The first and most used is the space-time window, which
actually draws a Gantt-chart display improved with arrows to represent interactions among pro-
cesses. The second type of display is used to dynamically show statistical information about
a selected slice of time in the space-time window. These two techniques are represented in
Figure 2.9.

Probably the main feature of Pajé is its flexibility. The tool was originally used to visual-
ize traces from Athapascan applications [32], but it evolved to visualize traces obtained with
Java applications [20, 62], message-passing parallel applications, thread-based applications and
hybrid approaches. It was also used to see related monitoring information with a multi-level ap-
proach [70] as, for example, traces from application-level (MPI) andtraces from resources and
operating systems. Pajé’s simulation component, the core of the tool implementation, and the
aggregation filter, are able to handle a big amount of trace data spread in long periods of time.

2.3 Summary of Visualization Techniques

The last two sections addressed the historical evolution of the performancevisualization area
and the description of a representative set of visualization tools for parallel applications. The
objective of this Section is to try to summarize the visualization techniques used. We divide
the techniques in three types: behavioral, structural and statistical. When possible, we make
reference to the tools that implement these techniques.

2.3. SUMMARY OF VISUALIZATION TECHNIQUES 19

mandelbrot.3+1.16.256.a.trace — ~/Pajex/Traces

 5673.750

Thread State Activity State Communication

Event Link

5650 5660 5670 5680 5690 5700 5710 5720 5730

3

2

1

0

ms

Statistics

Node Activity

Pie Chart

Values

Percent

Node 0

13.8%
1 active thread

 86.2%
Inactive

Node 1

 82.8%
Inactive

17.2%
1 active thread

Node 2

 6.9% 4 active threads
 8.3%

3 active threads

 57.2%
2 active threads

27.5%

1 active thread

Node 3

30.7%

1 active thread

 38.9%2 active threads

30.1%

Inactive

0.025000 sSelection duration:

Figure 2.9 – The two visualizations of Pajé, including its space-time view and the pie-chart
statistical view.

2.3.1 Behavioral

This Section presents the visualization techniques that have a timeline and showthe behavior
evolution of metrics and components through time.

Gantt-Charts

Gantt-chart [79] is a visualization technique created more than 100 years ago. Initially, it was
used to organize and schedule the tasks of projects. It was one of the first techniques to be
used to analyze parallel applications. Figure 2.10 shows a simple Gantt-chart with the behavior
evolution of a set of entities. These entities can be anything related to the parallel application or
the execution environment. For each of them, the rectangles represent a state that has a duration
in the timeline. Arrows can be used to illustrate an interaction between two entities. This type
of visualization can also be used to show the user the critical path of the parallel application.
ParaGraph, for instance, has a special feature about that.

Almost all tools that show performance visualization implement a Gantt-chart liketechnique.
In some of them, this type of representation is called “Spacetime”. Although very useful to
represent the behavior of a set of processes from a parallel application, the common issue with
Gantt-charts is related to scalability. Computer screens are limited in terms of vertical resolution,
and this is reflected in the technique. Some tools such as Pajé and Vampir implementhierarchical
grouping mechanisms that allow the observation of a larger number of processes.

20 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

Figure 2.10 – A simple Gantt-Chart showing the behavior evolution of an application with 5
processes: the bars indicate different states and arrows indicate interactions between processes.

Variables in two and three dimensions

This type of display is a graph where one of the axis represents time. Figure2.11 shows an ex-
ample with two metrics being displayed. The vertical axis represents the valuesthat the variable
can reach over the period of time being analyzed. Observing a significantmetric can give hints
about the CPU or memory utilization of a machine during the execution of a parallel application.
Almost all performance visualization tools also provide some sort of representation of variables
behavior through time. Examples are the “variables” visual object of Pajé,the “Communication
Traffic” and the “Utilization Count” displays of ParaGraph, and the “Performance Counters”
representation of Vampir.

Two cases that are similar to this 2D approach is the “Time Histogram” of Paradyn, where
performance data for metric/focus pairs are represent with a time axis (focus is a piece of code of
a parallel application); and the “Node Statistics” technique of ParaGraph,when a specific metric
is shown for one node with a timeline.

Figure 2.11 – Showing the evolution of two different metrics over time.

Another visualization technique extends the 2D approach by combining two related metrics
and representing them with a timeline. This 3D approach can in fact show moreinformation to
the users. The technique is named as “3D Terrain Visualization” and is present in Paradyn.

Time-Tunnel

The only occurrence of the time-tunnel display is on Virtue. The technique works under 3
dimensions, where two of them are used to place processes, in a circle, and the third dimension
represents time. The observation point is placed in the middle of the circle. Theinteractions
among the processes are placed within this 3D environment, taking into account the position of

2.3. SUMMARY OF VISUALIZATION TECHNIQUES 21

processes and the time of occurrence. The resulting visualization looks likea cylinder, where
the user observes arrows crossing the interior of the cylinder. Figure 2.6, of previous Section,
illustrates the approach.

Phase Portraits

Phase portraits are the result of a technique commonly used in other areas of science, such as
physics. They show the evolution in time of two related variables, or metrics. Figure 2.12 shows
the resulting visualization. The performance data is collected through a period of time, between
regular intervals. The idea is to create points in the graphical representation and connect these
points following the order in time among them. ParaGraph is again the only tool to implement
this technique.

Figure 2.12 – A phase portrait showing the relation among two metrics.

2.3.2 Structural

This Section presents the visualization techniques that try to visually represent the structure of
applications. By structure, we mean the different types of relations that connect the components
of parallel applications, such as processes and threads.

Call Graphs

Call graphs are used to give to the user a representation where the interactions among the appli-
cation’s components are shown. Figure 2.13 is an example of that. Nodes can represent functions
or methods, and the arrows between them represent a function call or method call. This method
of visualization is especially useful in the analysis of parallel applications that are organized as
a data-flow graph.

Some tools implement this technique, such as ParaProf and Virtue. The latter implements
call graph within a 3D environment, giving the user different forms of interaction to highlight
parts of the graph with additional information, such as the name of the node, associated values
and so on. This was implemented to avoid the representation of all data for large graphs.

22 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

Figure 2.13 – The call graph displays showing the function call of two regions of a given pro-
gram.

Matrix

The matrix of communication is a technique where a two dimensional representation is orga-
nized with one of the axis showing the senders processes, and the other axis, the receivers. For
a point in time, the matrix shows different pairs sender/receiver by coloring the matrix. Colors
can also be used to show additional information, such as the type of the communication, if it is
collective or not, or the size of the data transmitted. The left image of Figure 2.14 depicts this
technique.

Figure 2.14 – Matrix of communications among processes and also the grouping technique.

ParaGraph was the first to propose this technique, with a limited number of processes in-
volved. The scalability of this approach is related directly with the number of processes. Vampir
tries to solve this problem by grouping processes according to their numberof other character-
istics. This is shown in the right image of Figure 2.14.

Graph with Communications

A graph is used in the ParaGraph tool to represent the communications amonga set of processes
in a given time. The Figure 2.15 illustrates the approach, with the communication pattern among
three processes. ParaGraph has also a set of pre-defined hardware interconnections, such as the
Hypercube, and allows the observation of which links are used by the application at a specific
point in time. Different layouts for the hypercube representation were possible, such as the linear
view. The problem of the approach of ParaGraph is that no additional information about the

2.3. SUMMARY OF VISUALIZATION TECHNIQUES 23

links were provided to the user. The technique was used only to show whena certain interaction
happened during the application execution.

Figure 2.15 – Communication pattern with three processes for a given time.

2.3.3 Statistical

This Section presents the visualization techniques used to represent statistical data based on the
traces available for the analysis.

Bar and Pie Charts

Bar and Pie charts are a traditional way to show the values of a certain metric for a number of
processes. For example, they can be used to show how many messages a process has received,
or the amount of memory used in a machine. Figure 2.16 shows an example of a barchart and
another example of a piechart.

Figure 2.16 – Barchart and Piechart displays.

These types of charts have been available since ParaGraph. Other toolshave also imple-
mented them using different metrics and techniques. Paradyn, for example, implements horizon-
tal barcharts with more than one metric, each of them with one different scalein the horizontal
axis. Pajé’s piechart implements the technique to quantify, in a given period of time, how much
time a certain process spent in different states. The user can then compare two processes to look
for performance problems.

Kiviat Diagrams

Kiviat diagrams, also known as radar map, are a chart that consists of asequence of equally
distributed spokes, each one representing one of the monitored entities. Inthe area of perfor-
mance visualization, the spokes are used to represent processes, andeach process has a scale

24 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

of value for its spoke. Then, for a given metric about one process, a point is chosen in the
spoke. Connecting these points form a geometric figure that can be used todetect irregularities
among processes, if a similar value is expected for all of them (load balancing, for example).
Figure 2.17 shows a schematic example of the technique, with 3 metrics shown for 4 processes.

Figure 2.17 – The Kiviat Diagram for 4 processes with 3 different metrics.

ParaGraph has been the only tool to implement the technique. This type of display also
has scalability issues when the number of processes or related metrics increases. After its first
appearance in ParaGraph, no further development to solve this scalabilityissue has been present
in other tools.

Statistical 3D representations

3D representations without a time axis are already present in the literature. The idea is to plot in
a tri-dimensional space drawings that are generated using three different metrics. The ParaProf
tool has three displays that follow this design: “Triangle Mesh Plot”, “Triangle Bar Plot” and the
“Triangle Scatter Plot”. The first connects the points using a mesh, resultingin a visualization
like a terrain with elevations in some points. The second represents data as vertical bars and the
last just draw the points in the 3D space.

2.4 Summary

Several visualization techniques exist today for the analysis of parallel applications. These tech-
niques help the developer to obtain a better performance and also provide away to understand
the behavior of programs in a given execution environment. A possible classification of the
visualization techniques is the division in three types:behavior, such as the space/time and
phase-portrait views, showing the evolution of entities over time;structural , focused in the
observation of communications, such as the techniques matrix, communication graph and call
graph; and finallystatistical, which summarizes trace data.

The two next Chapters present the visualization techniques proposed in this thesis. In the
beginning of each Chapter, we show that existing visualization tools are notfully suitable for
the analysis of grid parallel applications. The first Chapter deals with the lack of support from
visualization tools to the analysis of parallel applications mixed with network topology. The

2.4. SUMMARY 25

second Chapter proposes a visualization scheme that achieves visualization scalability and can
be used to analyze parallel applications composed by thousands of processes.

26 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

Chapter 3

The Three-dimensional Model

The previous Chapter has listed tools and techniques that can be used to analyze the behavior
of parallel applications. The presented tools were detailed in terms of features and capabili-
ties, including which visualization techniques are implemented. At the end of the Chapter, we
presented a classification of the techniques in three types: structural, behavioral and statistical.
Generally, most tools were built to handle precise environments, such as clusters, where the dy-
namics of the resources are not felt by applications since usually the access to the resources is
made exclusively. This Chapter goes through the grid characteristics to show that the traditional
visualization schemes are not able to fully help the developer to analyze parallel applications,
particularly when network characteristics must be taken into account.

The performance of grid parallel applications is directly related to the characteristics of the
network interconnection [49]. When the grid resources have a strong hierarchy among them, as
in the case of a lightweight grid, the choice of resources given to an application can be decisive
for its performance and later understanding of its behavior. For instance, if two sets of processes
perform more communications between them and are placed in two distinct locations of a grid
that does not offer the lowest latency, the application can suffer a loss inperformance. Some-
times, the analyst is not able to make the link between application and network characteristics.
The decisions taken from a traditional analysis may lead to wrong conclusions about the bad
performance. In this case, if we were able to analyze the application behavior together with the
network characteristics, we would see more clearly the reason of the application behavior.

This example can be more explicit if we consider that each parallel applicationhas a com-
munication pattern. These patterns are defined when the application is implemented, through
the use of paradigms such as master-slave, divide-and-conquer and so on. During an application
analysis, it would be interesting to visualize this pattern together with the networktopology.
With this, it would be possible to optimize the match between the network interconnection and
the application’s communications. If this optimization is not possible, the analysis could be used
to help the developer to adapt the application in order to better explore the network characteris-
tics.

Looking at the tools presented in last Chapter, we can notice that most of thetechniques
they present are not able to handle an analysis that takes into account thenetwork intercon-
nection. ParaGraph (see Section 2.2.1) is the only tool that has the notion ofinterconnection

27

28 CHAPTER 3. THE THREE-DIMENSIONAL MODEL

in its visualization techniques, although providing only hypercube visualizations and program
communication patterns, separately. In fact, ParaGraph was not designed to analyze large-scale
applications, with thousands of processing entities. Other techniques, such as the space-time
visualizations or graph-based views, present in almost all visualization tools, are also not able to
depict the network interconnection together with the communications of parallelapplications. In
this case, the limitation is related to the way resources and components of application are drawn,
which is made on a linear space. As the architecture gets larger and more complex, highlight-
ing its topology becomes impractical. And even if some sort of simple topology organization
can be represented using one of the axis, labeling the platform representation with additional
characteristics like throughput and latency usually degrades the readabilityof the whole picture.

Our proposition to make a link between application analysis and network topology is based
on a visualization scheme composed of three dimensions. One of the dimensionsis the timeline,
where the components of application can be analyzed using a behavioral view. The other two
dimensions are used to draw either a structural or statistical representation. In the context of
the problem being addressed, these two dimensions are used to draw a visual representation of
the network topology. Broadly speaking, our proposal combines at different levels the three
types of visualization techniques we discussed in Section 2.3, resulting in a mixed behavioral-
structural/statistical representation.

Some visualization tools for parallel application analysis already have 3D visualizations.
ParaGraph, for instance, has a 3D representation for a Torus Network Topology, but its focus is
in the instantaneous analysis of the interconnection utilization, with no axis reserved to work as
timeline. Another example is Paradyn, that contains its 3D Terrain Visualization being able to
show the relation between two metrics and their evolutions over time. Since the two dimensions
of the 3D Terrain are not conceived to draw graphs, Paradyn is not able to visualize the network
topology and application evolution at the same time. The third example of tool that uses 3D
visualizations is Virtue. Among its visualization techniques, the time-tunnel is the only one
that seems like our approach, but it is fundamentally different, since it wasnot developed to
show the network topology or parallel application communications pattern. Virtue only places
the processes of an application in a circular manner in two of the dimensions, letting the third
dimension act as timeline. The view of the developer is always pointing to the center of the
circle. Communications and interactions are drawn inside that circle, in a 3D space. TAU’s
ParaProf also has its 3D visualization, but focused on the analysis of statistical data. This means
that ParaProf is able to visualize three types of related events in the same visualization, using
the three dimensions. However, ParaProf is not able to use one of these dimensions as timeline
and it is incapable of drawing graphs in the two remaining dimensions. In summary, we can see
that there are tools that already provide some sort of 3D visualization, butnone of them have the
same approach as we have, merging network topology to the application analysis.

The rest of the Chapter is organized as follows. We start by describing the visual conception
of the 3D approach, detailing its visual objects and how application traces are mapped into the
3D view. In Section 3.2, we explain the abstract model that deals with the monitoring data
and generates the 3D visualizations, followed by a series of sections, each one describing the
components of the model: the trace reader, the extractor, the entity matcher and the visualization
component. During the description of the entity matcher, we detail three configurations that can

3.1. VISUAL CONCEPTION 29

be used inside the 3D approach.

3.1 Visual Conception

The visual conception of our model consists in the combination of visualizationtechniques that
show the behavior of the application with techniques that show the structure or statistical data.
If a structural data is used in combination with the behavior representation technique, the user
can observe the evolution of monitored component through time and considerthe structural or-
ganization. This is the case when users have to analyze the parallel application with the network
topology, for instance. If statistical data is used instead, the user can summarize in quantitative
terms the behavior of the application, using different time scales and slices. In a more practical
way, these combinations allow the representation of the notion of gantt-chartscombined with
graphs and summaries.

The result of this visual conception is the three-dimensional model. The model has two
dimensions reserved for the representation of a structural or statistical view. We named these
two dimensions the visualization base of the 3D model. The third dimension is the timeline.
Figure 3.1(a) shows an example of the 3D approach to represent application data. The states
of the processes are represented in the 3D visualization as vertical bars. They are placed on
top of the visualization base. The different states along the time axis of a certain process are
represented by different colors. Each state representation is placed vertically following the start
and end timestamps. Communications can be represented as arrows or links withinthe 3D
environment, connecting two or more processes that communicate. The Figure 3.1(b) shows a
different point of view, located on top of the visual objects. This vision allows the observation
of the communication pattern of the application.

(a) Visual conception of the 3D approach. (b) Top-view of the same scene.

Figure 3.1 – The visual conception of the 3D approach with application traces represented by
vertical bars showing processes behavior through time.

The visualization base of the model is composed of two dimensions. They are used to depict

30 CHAPTER 3. THE THREE-DIMENSIONAL MODEL

either structural or statistical representation techniques. Structural representations, as presented
in Section 2.3, can be mainly graphs and matrices or any other technique usedto organize the
components of the application. Statistical techniques can be used to summarize aparticular part
of the behavior of the components being visualized.

Lots of configurations are possible for the visualization base. For instance, it can be used to
illustrate the communication pattern of the parallel application, but also the network topology
involved in the execution of a parallel application. In our model, we proposethree types of con-
figurations for the visualization base (see Section 3.5). Two of them are structure-based, showing
interconnection graphs. The other is an information visualization technique called Treemap [42],
used to represent hierarchical information data. Additional techniques can be easily adapted to
our model to work as the visualization base.

The third dimension of our model is the timeline. It is usually represented as the vertical axis
of the 3D approach, as can be noticed in Figure 3.1(a). The timeline axis is used to show the
component’s behavior evolution through time. In the case where the components are processes,
the vertical bars that represent them might have different colors to represent states and arrows
to represent point-to-point or collective communications. These representations characteristics
are similar to the ones present in space-time views, but here in three dimensions. The timeline
is configurable to offer the users different time scales that can be dynamically changed.

When using graphical visualizations, users are interested in interaction mechanisms, like
zooming, online information updates and so on. They improve the user perception of specific
parts of the information, enabling a deep application and platform behavior analysis. Anima-
tions can also be applied to dynamically change the graphical visualization. Resizing rectangles
and changing their colors to reflect the platform state in given time intervals are some examples.
In this case, changes are caused by continuous information updates coming from the moni-
toring system. Another type of graphical interaction mechanism is constituted by distortion
techniques [15], which magnify only specific parts of the representation.The fish-eye tech-
nique [69] is a good example of such technique. It helps the user to obtain details about a picture
area without losing its context (as opposed to a simple zoom).

Besides these interaction mechanisms, we have a set of possible interactionswith the 3D
approach. An example of that is the notion of observation point. In this context, the view that
the user is staring at any time is generated by a camera. This camera can be moved inside the
3D space with rotation, translation and approximation techniques. This allows multiple views
of the same data, from different angles.

3.2 Model Overview

In order to create a 3D visualization, the trace data collected from the application execution must
pass through a series of transformations. We define here an abstract component model, in which
these transformations are detailed. Figure 3.2 depicts the overall organization of the model. As
input, the model uses two types of information: the trace files from the monitoredapplication
and a configuration file that holds the resource description of the execution environment used by
the parallel application.

The visualization base is configured by the entity matcher module (C). We haveimplemented

3.3. THE TRACE READER 31

Figure 3.2 – Abstract Component Model of the 3D approach, with the threedifferent configura-
tions for the visualization base (represented by C.1, C.2, and C.3).

three different configurations for it (they are detailed in Section 3.5): one that shows the commu-
nication pattern of the application; another that shows this pattern combined withthe network
topology of the execution environment and the last one is the combination of application data
with a logical organization of the resources. The entity matcher chooses one of these configura-
tions based on the resource description defined by the user.

Among the three alternatives modeled in the Entity Matcher, the one that considers the net-
work topology (C.2) directly addresses the problem regarding the influence of the network in-
terconnection in the application. The additional two alternatives are presented to show other
structural information (the communication pattern) and statistical representation together with
behavior details through time.

We consider in the model that the trace data is available as trace files, under the form of a
flow of events that traverses the components of the Figure 3.2 from left to right. Nevertheless,
even if we take trace files as input, the components are described independently of how trace
data is offered to the model. Therefore, the model is able to deal with an onlinegeneration of
events in case the flow of these events is not so bandwidth intensive. Notifications can also occur
from the visualization component to the others, in a right-to-left fashion, in order to propagate
configurations and behavior changes triggered by user commands.

Next sections detail the components of Figure 3.2. We start by explaining theTrace Reader
(A), including the mapping from the trace events to the objects used by the model. Section 3.4
shows the Extractor (B), followed by the description of the Entity Matcher (C), considered as
the main component of the model. We end the description of the model with the Visualization
(D) component.

3.3 The Trace Reader

The generation of traces during runtime is a classical technique to record the behavior of par-
allel applications. If applied carefully with large memory buffers and a selected set of events,
it can be used without disturbing too much the natural application behavior. In large-scale par-
allel applications, it is common to generate one trace file per process. After the end of the
application execution, the different files are gathered and merged with different transformation
techniques. This is modeled by DIMVisual [70], which is a data integration model for visu-

32 CHAPTER 3. THE THREE-DIMENSIONAL MODEL

alization of parallel applications. The model uses the synchronization technique developed by
Maillet and Tron [52].

One trace file is usually composed of events. An event has a type, a timestamp and additional
information that goes with its type. They can be used to trace a high number of information in
parallel applications. The classical points where trace events are generated are the beginning
and the end of both communication and processing functions. Point-to-pointand collective are
commonly traced with events, registering the exact point in time that a message is sent and
received. Although most of tracing mechanisms generate timestamped events,this association
with time is not a requirement. Events can be used to simply count the number of timesa
certain behavior occurs, for example, without the need to know when it happened. Another
characteristic of the events of one trace file is that their timestamps might not be synchronized
with the events from other files. This happens because they are generated in different machines,
with different clocks.

The trace reader component is the only part of our model that deals directly with application
traces and events. Its responsibility consists in reading, synchronizing and transforming them
into high-level visual objects. Although these objects represent the content of traces, they have
no semantic data and can be managed in a generic way. This allows the rest ofour model to
be independent from the trace file format. The high-level representations are mainly composed
of entities, states and links. An entity can be a process, a thread, or a machine. Generally
speaking, an entity can be anything that is observed during a period of time and is related to
the application analysis. States and links are always related to one or more entities. A state
is defined as the behavior a certain entity may have during a period of time. A linkis used to
represent an interaction among two or more entities in a time interval.

Figure 3.3 shows the behavior of the component. The trace data is represented in the left
of the Figure, showing the events that are in different trace files. In this example, we list the
beginning of the behavior of two processes, through 8 events already ordered. Process 1 starts,
then sends a message; and process 2 starts and blocks to receive the message from 1. The trace
reader transforms these events into the visual objects depicted at the rightof the Figure. In
the example, they were transformed into two entities, P1 and P2, to representprocesses; two
states, Send (created withsend_startandsend_end) and Receive (based onreceive_startand
receive_end); and one link, represented by the arrow based onmsg_sendandmsg_receive. The
flow of visual objects in the output is ordered by the object’s end time.

Figure 3.3 – The Trace Reader component transforms trace files, on the left, to a visual objects
representation, on the right.

This component makes the rest of the model independent from the input fileformat. In the

3.4. THE EXTRACTOR 33

case a new format is available as input, only this component should be changed or replaced, the
rest of the model will continue to work in the same way as long as the output generated by the
trace reader is composed of the generic entities we explained above. The trace reader sends the
output to the extractor module, which is detailed in the next Section.

3.4 The Extractor

The main purpose of the extractor component is to select, from the flow of visual objects sent by
the trace reader, the objects that the entity matcher component needs to work. The entity matcher
is focused on the set of entities and the interactions among these entities. This means in a more
practical way that it wants to know about the processes, threads and other execution flows that
should be analyzed and the message exchanges, remote procedure callsand notifications that
happen among them.

Taking the entity matcher’s needs into account, the extractor works by observing the flow of
visual objects and by selecting entities and links. Figure 3.4 depicts the behavior of the extractor
with its two outputs, on the right of the Figure, considering as input the data that came from
the trace reader, at left. The first output of the component, composed ofthe flow of visual
objects received by the TraceReader, is sent to the visualization component. This enables the
visualization component to be able to take into account all the data that should be used to create a
visual 3D representation. The selected visual objects are sent to the EntityMatcher component,
composed of the entities and links that are encountered in the flow of the input.There are 10
processes, fromP0 to P9, in the example of the Figure. We have as input a flow of events with
three communications (P8 → P5, P0 → P3, P4 → P2), and six states, three send (processes
P0, P4 andP8) and three receive (processesP2, P5 andP3). The output to the entity matcher
is composed by the links and the processes entities, without the states.

Figure 3.4 – The Extractor component selects from the flow of visual objects the entities and the
links among them.

The extractor processes events and works whenever new data is available in its input. A dif-
ferent configurable behavior is also possible: instead of acting on a per-input basis, the extractor
works on a given time interval. When this happens, the component acts by treating only the
events that are present in the given time interval. This increases analysis possibilities by user
interactions technique, such as zoom for a given time interval with increased details on trace
data. This also influences the behavior of the entity matcher, giving the modelmore control in

34 CHAPTER 3. THE THREE-DIMENSIONAL MODEL

terms of which part of the execution period will be analyzed by the user.
The extractor component is also responsible for attributing the entities with the locations

where they were executed. In some cases, the entity matcher component needs this type of in-
formation for each entity. The information is necessary, for instance, when the visualization base
of the 3D approach is configured to show the network topology. On this occasion, the informa-
tion of where processes executed is important to correctly place them in the visualization base.
For the cases where location attributes are necessary, the extractor mustfind such information
somehow. Usually, the extractor obtains this information from the trace reader, through a spe-
cific event of the trace file format. If this location data is unavailable in the flow of objects and
their attributes, though, additional input should be used, probably in the form of a configuration
file.

3.5 The Entity Matcher

The entity matcher component is in charge of the visualization base configuration. It does that
by taking as input the resource description set by the user and the selected visual objects with
application data. The resource description is given to the component in oneof two possible for-
mats: either as a hierarchical structure describing the logical organizationof the computational
system, or as a graph describing the network topology of the execution environment. With the
application traces and these resources descriptions, we have developed three possible configura-
tions for the visualization base. Figure 3.5 depicts the overall organization of the entity matcher
and its sub-components that implement the three different cases that are later represented in the
visualization base.

Figure 3.5 – The Entity Matcher component send its input to one of the visualization base con-
figurations, depending on user actions.

An important aspect of the entity matcher is its extensibility. Although we have devel-
oped three different modules that illustrate the possibilities of the approach,the entity matcher
could be extended to other types of organizations based on the entities and the communications
representation. An example of that could be a statistical module that could group the entities
according to some specification. Other types of visual representations could also be supported
by the module, such as Cushion Treemaps [78] and Voronoi Treemaps [9].

3.5. THE ENTITY MATCHER 35

The three cases we detail in the next sub-sections cover two types of visualizations for par-
allel program analysis (as defined in Chapter 2): structural representations, as in the cases 1 and
2; and statistical representations, as in the case 3. With these cases, we are able to combine a be-
havioral representation (with the timeline), and a structural/statistical representation, increasing
the possibles analysis offered to the users.

3.5.1 Case 1: Parallel Application’s Communication Pattern

The first configuration for the visualization base of the 3D approach shows the communication
pattern of the application. The extractor component (see Figure 3.4), selects from the flow of
visual objects the monitored entities and the communications among them. This selection is
represented in the left most part of the Figure 3.6. The entity matcher acts bymerging this
information into a graph that represents the communication pattern for the selected objects. The
graph creation is dynamic and based solely on the arrival of new monitoringdata through the
flow of events. This graph can highlight particular performance issues of the application, like
bottlenecks or unbalance. Besides, it can help the developer to develop itsapplication which
uses a particular communication pattern, such as master/slave or divide-and-conquer models.
Another advantage is that the application developer can see if some part ofthe application is
overloaded with too many communications in a small period of time, increasing bottlenecks
effects. The graph is then sent to the visualization component, which drawsthe graph in the
visualization base and the evolution of the application’s components in the vertical axis of the
3D environment.

Figure 3.6 – Entity matcher configured to generate the communication pattern of the application,
based on the processes and the communications.

The example of Figure 3.6 illustrates the generation of the communication pattern.The
component has as input 10 processes, from P0 to P9, and a set of communications among them.
As output, we can see a ring-like communication, among the processes from P5 to P9, an all-to-
one communication among processes from P0 to P4 and a one-to-one communication between
P4 and P5. This communication pattern can change dynamically depending on the which visual
objects are selected by the Extractor module and sent to the Entity Matcher component. As
previously discussed, the communication pattern can reflect the application for a given time
interval.

36 CHAPTER 3. THE THREE-DIMENSIONAL MODEL

3.5.2 Case 2: Network Topology combined with CommunicationPattern

The second case for the visualization base is the combination of the network topology and the
communication pattern of the application. Figure 3.7 depicts this situation, where the entity
matcher receives as input the network topology (bottom part of the Figure) and the application
data selected by the extractor. The application processes must have location information that
defines where they were executed. This information comes with the visual objects selected by
the extractor. This is necessary because the matcher needs to combine themwith the resource
description. As output, the component generates two graphs: one that represents the network
topology itself, and another that is rendered on top of the first, showing thecommunications
among the processes for the selected objects.

Figure 3.7 – Entity matcher can receive the network topology as resource description, creating
as output the communication pattern over the network interconnection.

Figure 3.7 shows the same example as Figure 3.6, but with the network topologydescription
as an additional input for the entity matcher. Each process has a resource associated with it, from
R0 to R4. The network topology connecting the resources is on the bottom part of the Figure.
The right part of the Figure shows a visual representation of the output, composed of network
topology representation, with straight lines representing the interconnections, and processes on
top of the resources they used during the execution. Communications among processes are
represented by the arrows with dashed lines. This output is sent to the visualization module
to be rendered in the visualization base of the 3D scene. The position of the processes in the
visualization base will then be used by the visualization module to render timestamped events in
the vertical axis. Through this combination, we are able to understand the application behavior
taking into account the network interconnection of the execution system.

The developer can benefit from this configuration in the visualization by seeing the match
between the communication pattern of the application and a specific network interconnection.
With this match, the application can benefit more from the network, avoid concurrent commu-
nications and improving the number of parallel communications that can happenat the same
time. Moreover, if the network topology has bandwidth and latency information, the developer
is able, with our approach, to adapt the application in a way it obtains the highest bandwidth
for the processes that communicate more data and the smallest latency for the processes that
exchange messages more intensively.

3.5. THE ENTITY MATCHER 37

3.5.3 Case 3: Logical Organization and the Communication Pattern

The third configuration is a combination of the communication pattern of the application and a
logical organization of the resources. The input to the sub-component of the entity matcher in
this case is the same as case 2. But for the resources, we use a hierarchical description instead of
using a graph. Figure 3.8 shows the same previous example, but having asinput a hierarchical
structure where the resources are grouped by their location. In the Figure, the resources R0 to
R4 have been grouped according to a hypothetical organization by clusters C0 and C1 and then
by grid. This structure can be customized in the model to represent other types of organization,
such as administrative domains or middleware dependent structures.

Figure 3.8 – Entity matcher configured with a hierarchical structure of the resources, generating
as output a squarified treemap customized with application components.

There are many ways to visually represent a hierarchical organization.In this work, we have
used the treemap concept [42] to represent them. This technique works by using recursively
nested rectangles to represent tree-structured data. On the right of Figure 3.8, we show an exam-
ple of treemap created using the hypothetical hierarchical structure given to the entity matcher
module. Each rectangle represents a resource and its size is directly related to the amount of
processes it contains. The dashed arrows are the communications rendered in the space-time
part of the 3D space and reflect the communication pattern of the application. This output is
sent to the visualization component, which is responsible for drawing in the visualization base
of the 3D scene the treemap created by the entity matcher. An important characteristic of this
configuration is that the entity matcher can be adapted to configure the treemapusing other char-
acteristics of the application data, such as the number of communications, the time spent by the
monitored application executing a certain function, and so on.

The visualizations obtained with this technique in the visualization base can highlight im-
portant parts of the application in contrast with the resources. For example, it can be used to see
resources usage and the load balancing of the application by configuringthe treemap to show the
time spent in the functions that do the processing part of the application. Thesame situation can
be applied in order to observe which processes communicate more or stay blocked more time
due to message-passing.

38 CHAPTER 3. THE THREE-DIMENSIONAL MODEL

3.6 The Visualization

The main goal of the visualization component is to create the 3D visual representation. It does
that based on the flow of time-ordered visual objects and the base configuration chosen by the
user. As previously explained, the flow of visual objects is composed of entities, states and links.
Since there are three different configurations for the base, the visualization component can create
three different 3D representations. Figure 3.9 illustrates the component behavior, where the base
configurations are at bottom, the visual objects at left and the three different visualizations on
the right.

Figure 3.9 – The Visualization component receives the flow of visual objects and one of the
configurations from the entity matcher, creating a 3D scene.

The timeline composes one of the characteristics of the 3D scene. It is usuallyrendered in the
scene as a vertical line with labeled tics. The initial timestamp, usually0, means the beginning
of the application traces. It is placed right on top of the visualization base. Although this is the
normal behavior for rendering the timeline, an offset can be applied if the user is interested in
other parts in time of the application traces. In this case, the labeled tic that is placed just on top
of the visualization base will have the time defined by the user.

An important part of the visualization component is how it handles the representation of
states and links. Every state object has two timestamps, one for the start and other for the end, a
value that indicates which of the possible states it represents and a referring general entity. Links
have the same information as states, but have additional information to indicate the source entity
and the destination entity. A special case of links might be considered when there are several
destinations (to represent a broadcast, for instance), but this can be also defined as a set of links
objects with the same origin but different destinations.

Figure 3.10 shows a schematic representation of how the visualization component handles
states and links to create them in the representation. In this Figure, there aretwo entities that
were placed in the visualization base. Based on the referring entities of stateand link visual
objects, the visualization component defines their position in the visualization base. In the ex-
ample, we have two states and one link. The link represents a communication between them.
After defining the position in the visualization base, the component obtains the timestamps of

3.6. THE VISUALIZATION 39

the visual objects to define their size in the timeline.

Figure 3.10 – Representation of State and Link Visual Objects in the 3D scene.

Another characteristic of the 3D scene is the visualization base. As previously discussed,
we created three different configurations that are rendered in the base. Next Section details how
the three different cases generated by the entity matcher are rendered inthe 3D scene. The
Section 3.6.2 presents the possible interaction mechanisms that can be applied inthe 3D scene.

3.6.1 Rendering the Visualization Base

Figure 3.11 shows how the communication pattern is rendered in the visualizationbase. As
input, the visualization component (D) has on its left the visual objects, whichare composed
of links and entities in this example, and on its bottom the communication pattern generated by
the entity matcher. On the right of the Figure, the scheme shows how the visualization of the
communication pattern on the base is rendered. The vertical bars are the states of the processes
through time.

Figure 3.11 – The representation of the communication pattern in the 3D Scene.

Still on Figure 3.11, we can notice that the links among the processes are undirected. In
real situations, the trace data can have information about the origin and destination of a certain
communication. This data, together with the set of other communications may enablea more
complete representation of the communication pattern. The visualization component is able to

40 CHAPTER 3. THE THREE-DIMENSIONAL MODEL

enhance the definition of the positions for every process trying to avoid crossing links, improving
the perception and understanding of the communication pattern. Another possibility appears
when there are several communications between two processes for a given interval of time.
The visualization component, in these cases, can generate a visualization where the width of a
connection in the visualization base will be larger for pairs that communicate more.

Figure 3.12 shows the second configuration of the entity matcher, composedof the network
topology and the communication pattern. The component has as input the flow of visual objects,
on the left, and the network topology (represented by the darker and larger lines) on the bottom.
The 3D scene is on the right, with the visualization base holding the network topology and
the communication pattern. The states represented in the timeline are in the Figure only for
information purposes. The links were not drawn in the schematic 3D scene.

Figure 3.12 – The representation of the network topology and the communication pattern in the
3D Scene.

The second configuration for the visualization base (Figure 3.12) is especially important
when network-bounded parallel applications are analyzed. In these cases, the representation can
be improved with additional information such as the bandwidth and latency for each link. This
combination of characteristics from the network may help the detection of possible communica-
tion bottlenecks caused by extreme utilization of one network link, for instance. The represen-
tation in the base can be altered to show larger width for network links with higherbandwidth,
and different colors to represent latency information in a given time. If routing information is
also present, the user may observe which path the messages took during theexecution, enabling
the analyst to view if an alternative deployment of process would result in benefits in terms of
execution performance.

The representation of the third configuration of the base is depicted in Figure 3.13. The
logical organization of the components, generated as a hierarchy and represented with a treemap
by the entity matcher, is drawn on the base by the visualization component. The resulting scene
appears on the right of the Figure. As previous configurations, the representation includes the
states representation in the timeline just to show a view of what the 3D scene would look like.
Links in the visualization base were removed from the example in order to focus on the treemap
generated by the entity matcher. This representation serves mostly as statistical summaries of the
application that are rendered in the same scene that detailed behavioral events. The rectangles in
the base, that normally represent resources, can be calculated following several characteristics of

3.6. THE VISUALIZATION 41

the application behavior, such as the number of communications, their size, theamount of time in
a given state and combinations of these. The work of customizing this representation to different
needs must be done through a cooperation between the entity matcher and thevisualization
component, since the former has hierarchical information about the organization of the resources
and the latter has timestamped visual objects, such as states.

Figure 3.13 – The representation of the hierarchical logical organizationin the 3D Scene.

The rendering of the treemap in the visualization base has some peculiarities that must be
taken into account. The first one is related to the size of the main square usedin the repre-
sentation. This size is usually defined by the user, but in cases where an increasing number of
resources is present, it would be interesting to see the size of the main square increasing auto-
matically. Considering that the 3D space is unlimited, this size could become too big togenerate
an easy understanding of the representation. To solve this situation, aggregation and reduction
mechanisms should be used to downscale the quantity of data that is drawn. The aggregation
mechanism that is presented in next Chapter could be applied here.

Another characteristic of the treemap visualization base is when the squaresrepresent ma-
chines, for instance. If there are too many processes in the same machine,the visualization will
result in a larger number of processes that must “fit” in a given square.If the square is too small,
the resulting alternatives are either to aggregate the processes in one entity, or to increase the
size of the main square of the treemap. Both alternatives have their drawbacks and benefits and
must be balanced to provide an aesthetic visualization to the end user of the 3Drepresentation.

3.6.2 Interaction Mechanisms

The 3D visualization also comes with a number of different interaction mechanisms. Some of
these mechanisms were already discussed in Section 3.1. Here, we investigate a step further
by giving more details and exploring some examples. First of all, we must firstremind of the
notion of camera inside the scope of the 3D representation. The visual conception of the 3D
approach, described in this Chapter, expects the presence of a camera. This artifact must be
present because it is from this viewpoint that the visualizations are created.

Different mechanisms can act on the camera. The first and more relevantis translation
operations inside the 3D space. The translation of the camera position allows the camera to go
forward and backward through time, for instance. Besides, the camera can also be rotated in the

42 CHAPTER 3. THE THREE-DIMENSIONAL MODEL

three axis to give the analyst other viewing angles. Figure 3.14 shows howthese mechanisms
act to provide different points of view. The first image at left is a replica of the image depicted
in Figure 3.12. Subsequent images to the right show the point-of-view fromdifferent angles of
the same scene.

Figure 3.14 – Different points of view of a 3D scene, generated with camera translation.

Other possible interaction mechanisms of the 3D approach is the use of animations and
replays. Animations can be used to give the analyst the possibility to analyze the chain of
events step by step, viewing the representation of every event one at a time. The dynamic of the
animation can also help the observation of repeating patterns during the events evolution. These
animations can be combined with the replay technique, showing again specific intervals of time.

Classical interaction mechanisms already present in other visualization tools can also be
applied in the 3D approach. Zoom, for example, can be applied by changingthe time scale
rendering in the timeline, allowing a more detailed analysis when zoomed, and general views
of the whole scene when the user has a more significant time slice rendered inthe scene. The
changes in the time scale can also lead to performance improvements in the way thevisual
objects are stored. In general views, much of the details that are rendered could be discarded
without losing the major understanding of the events.

3.7 Summary

The Chapter has presented the visual conception of the 3D model, explaining the meaning of
the three dimensions and the definition of the visualization base and timeline. The proposed
model tries to solve the lack of a visualization technique that is able to show application behav-
ior together with network characteristics. We made a step further through a general approach
that can show two combinations of representation techniques. The first is the mix betweenbe-
havioral andstructural representations, that solves the previously cited problem of analysis of
application behavior with the network topology. In the context of our 3D approach, the behav-
ioral representation consists in the visual objects rendered along the time axis, and the structural
representations are the communication pattern and the network topology rendered in the visual-
ization base. The second combination is between abehavioral and astatistical representation,
the later being the treemap shown on the visualization base. We also have presented the abstract
component model that is able to generate a 3D representation. The subsequent Sections are
dedicated to the description of each component of the model: the trace reader, the extractor, the

3.7. SUMMARY 43

entity matcher with its three sub-components, and the visualization component. We believe that
the proposal of the 3D approach can be a viable solution to enable the performance visualization
of parallel applications that takes into account the network influence during the execution. The
Triva prototype, that implements the 3D model, is presented in Chapter 5. Results obtained with
the prototype are described in Chapter 6.

The next Chapter describes the visual aggregation model that is developed in this thesis to
obtain visualization scalability in the parallel application analysis. One of the main ideas behind
this approach is the use of the treemap technique for the representation of aggregated monitoring
data. This is in part inspired by the development of the third configuration ofthe base, which
also uses treemaps.

44 CHAPTER 3. THE THREE-DIMENSIONAL MODEL

Chapter 4

Visual Aggregation Model

The previous Chapter has presented our proposal to handle the performance visualization of
parallel applications that take into account the network topology. As explained, our solution
deals with a three dimensional visualization that is able to show the network topology and the
behavior evolution of application components.

Another issue related to grid applications is that they can be composed of a large number
of processes. Some analysis is already possible with applications composedby thousands of
processes [50], but in clusters. Several issues arise in grid environments when analyzing large-
scale applications. A first one is the huge quantity of monitoring data that can be generated
by grid applications, depending on two factors: the number of monitored entities and the detail
of behavior collected for each of those entities. Another issue in the analysis of large-scale
parallel applications is the visual scalability [26], which is about the quantity of data that can be
displayed in the screen without losing the ability to understand what is represented.

The fact is that the representations provided by visualization tools must alsoscale in order to
analyze big parallel applications. If we consider only the number of monitored entities, we must
be able to represent at least a few thousands of processes in the same visualization. A certain
amount of details about each of these entities over time have to be present in the visualization
in order to analyze the processes. An example of the lack of scalability in the visualization is
the space-time representation, where the amount of data that can be represented is limited by the
vertical space available in computer screens.

Among the visualization tools reviewed in Chapter 2, Vampir (Section 2.2.5) offers in its
space-time view a hierarchical visualization that increases the amount of processes that can be
visualized at once. The technique works by aggregating processes’sbehavior according to a
hierarchical representation. The problem of the approach is that the information shown in each
level is represented differently, turning out to be difficult the analysis ofthe Vampir’s aggregated
views. Other tools, such as Pajé and Jumpshot, for instance, use scrollingmechanisms to deal
with the big number of monitored entities. This has a potential negative impact in theanalysis
since not all entities’s behavior are shown at the same time.

Our approach uses time intervals to dynamically create an annotated hierarchical structure
that represents the application behavior for that period of time. We also present an aggregation
mechanism that can be applied when there are too many monitoring entities to be analyzed in

45

46 CHAPTER 4. VISUAL AGGREGATION MODEL

the same screen. We employ the treemap technique [42] to create a visual representation of the
hierarchies. The combination of the Time-Slice technique, the aggregation model and treemaps
increases the number of monitored entities that can be visualized at the same time,and allows a
direct comparison among their behavior.

The treemap visualization is already used to observe monitoring data from distributed envi-
ronments. CoVisualize [68], for instance, is a grid visualization tool developed for PlanetLab.
The tool uses values such as CPU, Memory and Bandwidth of nodes to render the treemaps. Be-
sides, it can be configured to show also efficiency images, based on CPUand memory, and usage
images, based on slices, slivers and nodes according to the terminology ofPlanetLab platform.
Another example is the visualization of workloads [39], where the values ofthe represented hi-
erarchies are calculated based on the workloads applied to resources.In both approaches, the
time variable is not used and only the visualization of resources state is represented.

This Chapter is organized as follows. We begin with a description that showsthat monitoring
data can be hierarchically organized. We present then the Time-Slice algorithm responsible for
creating an annotated hierarchical structure that represents the program behavior for a given
interval of time. The aggregation model is presented, working by merging data by similarity
and moving it to upper levels of hierarchical structures. We then presentthe basic concepts of
the treemap visualization, a technique proposed in 1991 to solve the problem of visualization
scalability for hierarchical structures, and its application to visualize the output of the Time-Slice
technique and the aggregation model.

4.1 Hierarchical Organization of Monitoring Data

Traditional monitoring systems for distributed environments periodically gatherdata about the
behavior of a pre-defined set of entities. This set can contain resources of the computing system,
such as processors and memory, and components from parallel applications, like processes and
threads. For each entity, several other types of information are also registered, like events for
functions calls, or changes in the value of a variable associated with the entity. An example is
Ganglia [55], able to collect monitoring data from several computers and for each of them, the
level of CPU utilization, input/output, and memory. For Ganglia, the entity is the computer.
Other cases, more focused on the application level, are tracing libraries such as JRastro [20], or
the VampirTrace tool. In this later case, it results in application traces that register the behavior
of processes and threads, which can be identified as the monitored entities.The states for the
processes and threads, their events, are the information associated with them.

An important characteristic of monitored entities is that they can be organized as a hierarchy.
This organization lists the observed entities as bottom-level nodes, or leaves, leaving interme-
diary nodes of the hierarchy to group them based on logical or location characteristics. In the
example shown in Figure 4.1, the monitoring system collected data from processes and threads.
A possible hierarchical organization of these entities is to group the threadsby processes and
the processes by machines. If the application were executed in a grid environment composed by
clusters, the machines could be also grouped by cluster. Additional information about the pro-
cesses and threads can also be present in the hierarchy, such as the statesBlocked andRunning
below theProcess entity,Created andJoin belowThread.

4.1. HIERARCHICAL ORGANIZATION OF MONITORING DATA 47

Figure 4.1 – Hierarchy of Entity Types.

Usually, the nodes of Figure 4.1 are types of the monitored entities. The hierarchical struc-
ture serves as a guideline to organize the monitoring data collected by a tool that provides such
information. During the collection of events about processes and threads, the monitoring system
creates instances of these types. Figure 4.2 shows an instantiation of the hierarchical organiza-
tion, where the application is composed byNp processes (each with one thread), grouped by
Nm machines,Nc clusters, finally all belonging to the same grid.

Figure 4.2 – Hierarchy of instances of the entity types.

The types of a hierarchical structure can be related to any kind of entity that can be moni-
tored. If, for example, we are monitoring an object-oriented application, theresulting collected
data would be composed by traces from the objects that were instantiated andthe methods ex-
ecuted. Another level of the hierarchy is composed of packages that hold the classes. The
resulting hierarchical organization would be a tree having as root a typePackage, with a single
child of typeClasswith a child of typeMethod.

The notion of type hierarchy was implemented and validated in the visualization tool Pajé [22].
Its format is considered generic since it can be adapted to represent virtually any kind of moni-
toring data. It was applied to the visualization of Java Applications [20], MPIapplications and

48 CHAPTER 4. VISUAL AGGREGATION MODEL

multi-level analysis of parallel applications executed in clusters [70]. One of the reasons for the
generic capability of Pajé is the use of a hierarchical definition of the data, being able to adapt
to a broad range of monitoring systems, from the ones focused in the analysis of resources to
systems used to trace parallel applications.

The type hierarchy of Pajé is enhanced with four additional basic types to describe an entity
behavior. They are states, events, variables and links. A state of an entitymeans that the entity
spent an interval of time in that state. An event has just one timestamp and can be used to
describe singular events in time. A variable is used to visually describe the evolution of a certain
metric over time and a link is used to describe an interaction between two entities. Because
these types can describe a broad range of application behavior, we decided to adapt them in the
development of the Time-Slice algorithm. This adaptation is described in the nextSection.

4.2 The Time-Slice Algorithm

The objective of the Time-Slice algorithm consists in creating a hierarchical structure that re-
flects the program behavior for a given interval of time. For that, the nodes of the hierarchy must
receive values that are calculated based on two factors: the definition ofa time interval and a
summary of the events for each monitored entity on that time interval.

Different configurations to define the time interval are possible. For example, its length
can be changed dynamically in order to find visual patterns from the data being analyzed. This
allows the detection of patterns that might appear in a small slices of time but not inlarger
ones. The user can also move the slice of time being analyzed, allowing the observation of the
evolution of the entities through time at a small time scale.

The summary of events is done by taking into account the interval of time specified and
additional information about an entity, which is present in the monitoring data. The objective is
to find a numerical value that represents the behavior of each entity. There are different ways
to define the numerical value for each entity. We can consider, for instance, that this number is
the amount of time, or the number of times an event happens, or any other information that can
be counted somehow. Before getting into the details of how each of these methods is used to
calculate the numerical value, let us proceed to an overview of the variables terminology used in
next sections.

Figure 4.3 shows an example where there are two processes,A andB, that have been exe-
cuted in the machineM , which was part of clusterC and the gridG (hierarchy shown on left
of the Figure). The time slice defined for the algorithm begins atTi and goes toTf (represented
by the two vertical lines). Singular events are denoted byXE1, whereX is the identifier for the
entity andE the type of the event. The number next toE is a counter to identify uniquely that
event. States are defined byXS1ti andXS1tf , whereX denotes the entity,S the type of the
state and a number to uniquely identify that state instance. Links have their beginning denoted
by XYL1ti and end byXYL1tf , whereX is the origin of the link andY is the destination.
Variables are represented by a series of timestamped events that hold the current value for that
variable. The resulting visual representation is denoted by the variableV in the Figure.

In the example of the Figure 4.3, there is one state for the entityA (AS1ti to AS1tf) and
two for the entityB (BS1ti to BS1tf andBS2ti to BS2tf). There are two singular events in the

4.2. THE TIME-SLICE ALGORITHM 49

entity A, denoted byAE1 andAE2, and one link (BAL1ti to BAL1tf). There is one variable
for the entityM , denoted by the letterV . We must also define a variableXval that will hold the
calculated numerical value for a givenX entity.

Figure 4.3 – Example showing the mathematical variables used in the algorithm.

The next subsections detail how the algorithm works in the presence of states, variables,
links and events. The general principle is to separately sum the values forthe each type of state,
variable, link and event, and then intersect the obtained value with the time slice used. This
Section ends with a complete example of the algorithm.

4.2.1 States

A state is defined by a value and two timestamps, one for its beginning and another for its end.
An entity can have states with different values through time. Figure 4.4 showsfive entities,
from A to E, grouped by location in machinesM1 to M3, and by clustersC1 andC2. In this
example, we use only one value for the state, represented by the darker tone rectangles in the
horizontal axis.

For the example of this Figure, theXval values for the entities will hold the amount of time
each one stayed in the state in question. There are five different ways to calculateXval for the
entities fromA to E. These cases are divided taking into account how the state is positioned
in time in relation to the selected time slice (Ti up toTf). The first case is represented in the
behavior of entityA (see Figure 4.4), where the value for the entityAval is defined byTf−AS1ti,
because the end of the state is after the end of the time slice. The second caseof entity for entity
B, the value will be defined byBS2tf − BS2ti, without considering the amount of time entity
B spent in stateBS1, since this state is out of the selected time slice. The third case is the
entity C, where the state starts before the beginning of the timeline, resulting in the formula
CS1tf − Ti. Entity D has no state inside the selected time slice, so its value is simply zero.
Entity E has two states within the time slice, we must then consider both to findEval, with the
formula(ES1tf − ES1ti) + (ES2tf − ES2ti).

Considering all these situations and normalizing to the time slice, we obtain:

50 CHAPTER 4. VISUAL AGGREGATION MODEL

Figure 4.4 – Time-Slice algorithm working to summarize states using amount of time.

Xval =

∑n
z=0

(min (Tf , XSztf) − max (Ti, XSzti))

Tf − Ti

(4.1)

During the execution of an entity (e.g. process, thread), it is common to find more than one
type of state. When this happens, their values must be calculated separatelywith the formula.
Taking as example the hierarchy of Figure 4.1 with theProcess entity, there are two types of
states:Blocked andRunning. The calculation for their values results inProcessval−blocked

andProcessval−running. These values are stored in the entityProcess like a vector.

4.2.2 Variables

Observation tools gather information about different metrics during the monitoring of a system.
Examples of these metrics are the bytes per second transferred by the network card, CPU or
memory utilization. They are often collected as events, with different gathering mechanisms.
In an ideal situation, monitoring tools must sample metrics using very small time intervals,
improving the accuracy of the values collected. The metricMemory in the top part of Figure 4.5
shows how the drawing of the collected values for this metric are in this ideal situation.

Figure 4.5 – Approximation measurement caused by the frequency of collection mechanisms;
the Time-Slice algorithm works using the discrete values collected.

4.2. THE TIME-SLICE ALGORITHM 51

For the ideal situation depicted on top of Figure 4.5, the Time-Slice algorithm performs the
integration of the function that defines the value for the metric for that periodof time. Consider-
ing theMemory variable and the time slice of the Figure, the equation is:

Xval =

∫ Tf

Ti
mem(x)dx

Tf − Ti

(4.2)

wheremem(x) is the function that defines the value of the variable andTi to Tf is the time
slice. In the example of the Figure, the final value forMval is the area ofmem(x) limited by
the interval of time.

The accuracy brought by the ideal situation in the collection of a performance metric is
hard to obtain in the real world. If the gathering system collects the metric valuetoo often,
the intrusion caused may lead to a different behavior of the observed system. This behavior
might be significantly different from the normal behavior of the system. Thiscan result in the
lack of meaning of the monitoring data, since the normal behavior (without observation) is too
much affected. To alleviate this problem, and at the same time obtaining a good accuracy of
metric’s value, monitoring tools use periodic samples between fixed or variables intervals of
time. Another perspective for this situation that may solve the problem is an agreement between
the collection mechanism and who demands the monitoring data. The agreement can specify
the amount of intrusion allowed, or the amount of intrusion obtained when a set of metrics are
configured to be collected.

The bottom part of Figure 4.5 shows the metricMemory2 and its measured values, inside
the time slice, denoted fromMeV 1 to MeV 13. Each variable is valid between a defined interval
of time: MeV 1ti to MeV 1tf , for instance. ConsideringMemory2, the Time-Slice algorithm
operates by adding the area of the rectangles. Therefore, the equationused by the algorithm for
a more real situation of measurement of metrics is:

Xval =

∑n
z=0

(Metricztf − Metriczti) × MetricV aluez

Tf − Ti

(4.3)

whereMetricV aluez is the value of the metric betweenMetriczti andMetricztf , with n
samples collected inside the time slice (Ti to Tf).

4.2.3 Links

Links are used to represent interactions among different entities. Figure4.6 shows an example
where five processes, fromA to E, have some interactions among them. A link is denoted by
XYLn, whereX is the origin andY is the destination. If there is more than one link fromX to
Y , the subscripted number is used to differentiate them. A link can also have a value associated,
which is represented by the variable itself. The value can be, for example,the quantity of data
transferred. Besides this, a link also has a start time, represented byti appended to the variable,
and an end time, represented bytf . As before,Ti andTf are used to define the time slice.

The way the Time-Slice algorithm works to summarize links is different from states and
variables. Instead of simply associating a unique value to the entity, the links are used to create
two values. One of them is created when the entity is the origin of the links, and theother

52 CHAPTER 4. VISUAL AGGREGATION MODEL

Figure 4.6 – Time-Slice algorithm treating links presence in the time slice using amount of time
versus data transferred.

appears when the entity is the destination. Therefore, for an entityX, we define in the following
equationsXval−as−origin andXval−as−destination:

Xval−as−origin =

∑n
z=0

(XYLztf − XYLzti) × XYLz

Tf − Ti

for any entity X (4.4)

Xval−as−destination =

∑n
z=0

(Y XLztf − Y XLzti) × Y XLz

Tf − Ti

for any entity Y (4.5)

whereXYLz is the value of the linkz of a given entityX, andY XLz is the value of the linkz
of a given entityY . It is important to notice that links that cross the time slice boundaries are
not considered here.

Adaptations to these equations are possible in different situations. If we want to view only
the amount of time spent by a link between two entities, we can ignore the value attribute of the
link in the equation. Another perspective is when we want to view the performance of each link,
by dividing the quantity of data transferred by the time it consumed to do the transfer. With this
calculation, the value for a given entity matches the performance of the entity’s communication
either as origin or destination of the links. A third situation happens when we need to know only
the amount of data transferred by a single entity. In this case, we ignore the variables of time in
the equation. Several other combinations are possible depending on the additional data available
in each link, such as overhead for creating the packets and emitting or receiving them and so on.

A special case for summarization of links is to count the destinations, for example, for a
given origin. For the entityB of Figure 4.6, for instance, it results in three links with destination
A and one link with destinationC. This adaptation of the algorithm enables the observation of
groups that communicate more intensively in a parallel application.

4.2.4 Events

Events are singular points in the time axis that indicate when something happens for a given
entity. They can represent the act of changing the value of a variable, or the reception of a

4.2. THE TIME-SLICE ALGORITHM 53

message. To summarize their existence in the behavior of a given entity, the easiest way is
to count them by their type. The resulting value for the entities can be composed of these
counts: number of times a variable changed, how many message receptions occurred, and so on.
Different adaptations are also possible if additional data is available in eachsingular event.

4.2.5 More statistics

In previous subsections, states, variables, links and events were detailed separately. In the con-
text of states, we presented the algorithm working with only one state at a time. Additional
meaningful statistics can also be extracted when we consider more than one state for a given
entity. This situation depends on what the meaning of the states is and how they can be com-
bined. An example for that is the combination of states that mean actual processing and states
that mean communication. Their combination can give the analyst a view of the ratio computa-
tion/communication for all the entities of the parallel application.

The same techniques also apply to other types of monitoring data, variables, links and events.
These combinations depend on what is the nature of the summarized value. Upto now, we have
seen that these values can be related to the amount of time (in the states case),accumulated value
of a metric (variables case), quantity of data in bytes (links case), simple counts (events case).
Additional information that might be present in the monitoring data can also increase the range
of possible summarization values. Table 4.1 gives an overview of possible combinations that
can be used to obtain more statistics from the basic types of monitoring data.

Table 4.1 – Non-exhaustive set of combinations to obtain more statistics from traces.
Combination Unity Application

Bytes per second Quantity/Time Communications Performance
Computation vs. Communication Time/Time Efficiency of processes

Blocked State vs. Number of Links Time/Count Mean time blocked per link
Computing State vs. CPU Utilization Time/Value Efficiency

4.2.6 Example

Figure 4.7 shows an example with five monitored entities, fromA to E, grouped by their execu-
tion machines, represented by the rectanglesM1, M2 andM3. The machines are grouped by
their clustersC1 andC2, which are part of the gridG. The selected interval of time is 9 sec-
onds, limited by the two vertical bars (small vertical bars mean intervals of onesecond). In this
example, we intend to summarize three different information: the amount of time ofthe states
Blocked (darker rectangles),Executing (light gray rectangles), and the bytes per second of the
links Communication (represented by the non-dashed arrows in the middle of the time slice).
The numbers in the beginning of the communications represents the quantity of data transferred,
in bytes. The link summary is attributed in this example to the origin entity.

Considering the case shown in Figure 4.7 with two states represented, Table4.2 lists the
values of the entities for the three summaries. The first column shows the five entities; the

54 CHAPTER 4. VISUAL AGGREGATION MODEL

Figure 4.7 – Complete example showing different aspects of the Time-Slice algorithm.

second column shows the time in seconds each entity stayed in theBlocked state within the
time slice; the third column shows the time in seconds for each entity in theExecuting state;
and the fourth column shows the bytes per second associated with each origin entity of the
link Communication. For instance, to summarize the amount of time of theBlocked state of
the entityA, we sum up its duration of 5 seconds that is within the time slice. To summarize
the links, we use the bytes transferred divided by the time the origin processtook to the trans-
fer. For entityA, theCommunication summary must be the sum of10bytes/2seconds and
40bytes/2seconds, resulting in25bytes/second.

Table 4.2 – Summaries for the three different aspects analyzed in Figure 4.7, considering the
time slice of 9 seconds.
Entity Blocked (Time in sec.) Executing (Time in sec.) Link (Bytes per second)

A 5 4 10/2 + 40/2 = 25

B 2 7 36/2 = 18

C 6 3 10/1 = 10

D 0 9 5/1 + 45/3 = 20

E 5 4 30/2 = 15

Figure 4.8 shows three hierarchical organizations of the example of Figure 4.7, considering
the three summaries presented in Table 4.2. These hierarchies are the result of the Time-Slice
algorithm, representing the behavior of different aspects of the parallelapplication inside the
selected interval of time. The values of the leaves of the structure are defined based on the
calculated summaries in a per process fashion.

When different types of events are present in the interval of time selectedby the user (as the
example of Figure 4.7, with two different states and links), the Time-Slice algorithm creates as
output a single hierarchy where the leaves have the calculated values forthose types. Figure 4.9
shows the output for the current example, where each leaf node has three values that show the
blocked state, executing state and communication link, respectively. These values are the same
found on the leaves of the three hierarchies of Figure 4.8.

4.3. THE AGGREGATION MODEL 55

Figure 4.8 – Hierarchical summaries generated by the Time-Slice algorithm considering the
three aspects presented in Table 4.2.

Figure 4.9 – Single hierarchy, based on the ones of Figure 4.8, with multiple summaries on the
leaves, generated by the Time-Slice Algorithm.

4.3 The Aggregation Model

Depending on the number of monitored entities present in the traces, the hierarchy generated as
output by the Time-Slice algorithm can become too large. If we take as example an application
composed by one thousand processes, each one with four threads, theresulting hierarchy in this
case will have four thousand leaves. The aggregation model presentedhere intends to explore
the hierarchical organization of the monitoring data in order to provide aggregated values for
intermediary levels of the hierarchy.

Figure 4.9 shows the output of the Time-Slice algorithm, represented by a hierarchy with a
vector of summary values on the leaves. Considering only the first two values of the leaves’s
vectors, we obtain the leftmost hierarchy of Figure 4.10. This left hierarchy shows on the leaves
the summary value for theBlocked and theExecuting states. The Figure also shows three
modifications in the hierarchy, caused by the aggregation model. In the example, there are three
intermediate levels: Process (P), Machine (M) and Cluster (C). The main goal of the aggrega-

56 CHAPTER 4. VISUAL AGGREGATION MODEL

tion model is to group the summary values of a level to the level immediately higher. Therefore,
after the first aggregation, the values of the processes in the same machineare added and at-
tributed to the machine node. The algorithm can be applied again to pursue the aggregation, up
to the root level, as shown with the second and third aggregation steps of theFigure.

Figure 4.10 – Three aggregations to decrease the hierarchy depth and improve the final visual-
ization with treemaps.

After applying the aggregation model, the intermediary nodes up to the root node have values
that were calculated based on the leaves of the tree. The resulting aggregated tree, shown on the
right of Figure 4.10, enables a per-level analysis of the data. Since the summary values of the
nodes of this tree are theBlocked andExecuting states, an analysis in the cluster level, by
observing nodesC1 andC2, enables the conclusion that for the considered interval of time,
the clusterC1 stayed 7 seconds in theBlocked state and 11 seconds in theExecuting state.
The same conclusion can be made for the clusterC2 and to other intermediary nodes, such as
the ones of the Machine level. When there are too many leaf nodes, the analyst can choose
to observe only up to a level, avoiding too many details and still being able to understand the
overall behavior of the parallel application for the considered time slice.

4.3.1 Aggregation Functions

Besides the traditional addition operation (shown in Figure 4.10), the aggregation model can be
applied with other functions to aggregate values, such as max, min, and average. Their direct
application depends on what type of value is attributed to the leaf nodes of theoriginal hierarchy
and can highlight particular characteristics when aggregating data.

The search for low-throughput communication links, bad transfer rates among processes,
small amount of time spent with calculus, for example, can be eased by using amin function
when aggregating data. The application of this function can highlight, duringthe aggregation,
the part of the machine that contains the worst communication links, or transfer rates, for in-
stance. On the other hand, a max function can be applied in the aggregation ifthe user searches
for highest values, such as bigger amounts of time spent to calculations, ortransferred data.

4.4. VISUALIZATION OF THE APPROACH 57

4.4 Visualization of the Approach

The previous Sections have detailed the Time-Slice technique and the aggregation model. Tak-
ing into account an interval of time, the Time-Slice technique works by summarizing different
aspects of the monitoring data and creating a hierarchical structure that represents the behav-
ior of the parallel application for that time slice. The aggregation model worksby calculating
values for intermediary nodes of the hierarchies generated by the time slice.There are several
ways of creating a visual representation of a hierarchical structure. This is what the node-link
representation does to create Figures 4.8 and 4.9.

Instead of using these classical node-link representations for the output of the Time-Slice
algorithm, the work presented here explores the Treemap technique [74] inorder to visually
represent the created hierarchical structures. The main benefits of thistechnique are its scalabil-
ity to show large and deep hierarchies, and the fact that all the screen space is dedicated to its
representation.

The next subsection details the basic concepts of these hierarchical representations, explor-
ing more extensively why we have decided to use the Treemap technique. After this, we discuss
the scalability issues related to the treemap representation and how the aggregation model can be
used to improve the work on this matter. We end the Section showing how the treemap is used
to create a visual representation of the hierarchies created in the example of previous Section.

4.4.1 Treemaps Basic Concepts

The traditional way of displaying hierarchical data is to use node-link diagrams [61]. This
representation is depicted in the leftmost part of the Figure 4.11. These diagrams are easy to
understand by explicitly showing the relation among the nodes. The problem with this approach
appears when we try to visualize large scale trees with thousands of nodes. This happens mostly
because they do not exploit well the screen space [74].

The treemap technique was proposed in order to solve the scalability problemof hierarchical
representations [74]. Instead of drawing nodes and links between them,it uses the whole screen
space with a space-filling algorithm. This algorithm recursively divides the space dedicated
to draw the hierarchy, following the tree organization. The right-part of Figure 4.11 shows
an example of the steps performed by the treemap algorithm to create a representation of the
hierarchy shown on the left. For this example, we consider that each leaf node has a value of
one, so their sizes are the same in the final Figure. The parent nodesA, B andC have their
values, 6, 3 and 2 respectively, defined based on their children. The algorithm starts by the root
nodeA, represented in the middle of the Figure as a big square. The algorithm recursion goes
to the second level, dividing the space of nodeA among their childrenB, C, andD. Then, the
third level is considered, dividing the space ofB among its children:E, F , andG; and the space
of C, betweenH andI. The final representation is depicted on the right square of the Figure.
In this simple example, the hierarchy is highlighted with the use of margins betweeninner and
outer rectangles in the representation. The presence of these margins depends on the importance
of the hierarchy during the analysis. Sometimes they are not present to avoid the loss of pixels
of the screen that can be better used to show real data. Figure 4.11 shows a peculiar example. In
the general case, the sizes of leaves are not always the same.

58 CHAPTER 4. VISUAL AGGREGATION MODEL

Figure 4.11 – Two types of representation of hierarchical data: the classic node-link diagram
and the corresponding treemap technique applied to the same hierarchy.

The treemap algorithm has passed through several evolutions since its creation. One of
them is called the Cushion Treemaps [78], a technique that works with the association to each
rectangle of an intuitive shading that improves the user perception of whatis being shown. An-
other work based on the original technique is called Squarified Treemaps [13]. It manages to
keep the rectangles shapes as close as possible to squares, making the visualization of the in-
formation easier by avoiding rectangles with a big width/height ratio. Another proposal called
Ordered Treemaps [73] tries to keep nodes proximity when zooming at different levels. Voronoi
Treemaps [9] is a different approach to visualize hierarchical data thatuses polygons to repre-
sent nodes, instead of the traditional rectangles or squares. The polygons are constructed from
median lines between pairs of points.

Examples of treemaps utilization include network security [54], grid resource monitoring
visualization [68], visual analysis of stock market [77] possibly applied toa million of items [28].
These multiple applications of the treemap technique, including the possibility of showing big
hierarchies, motivate us to use it in the analysis of parallel applications. Theprincipal advantage
of the treemap representation is the good use of screen space, correlating screen space with the
values of the nodes of large-scale hierarchies, and outlining the repartition of this space. On the
other side, the drawback is that the hierarchy is less apparent and easyto detect, turning out to
be difficult when first analyzed. The benefits of the treemap, however,are more evident than
its drawbacks, since the representation can be interactive to allow an easyhighlighting of the
hierarchy when necessary.

4.4.2 The Scalability Issue

The main advantage of the treemap technique is its ability to draw in an understandable way
large-scale hierarchies. This is possible because it involves a space-filling algorithm that uses all
the screen space available. If we compare treemap abilities to traditional node-link representa-
tions, the scalability of the approach is even more obvious.

Although scalable, the traditional treemap technique is limited by the size of the screen
space dedicated to its representation. If the hierarchy being represented is composed by a large
number of nodes, the space-filling algorithm may generate squares that are too small. If we
consider a computer screen with a resolution of 1024 pixels in the horizontaldimension and
768 pixels in the vertical dimension, we end up with a total of 786432 pixels to be used by the

4.4. VISUALIZATION OF THE APPROACH 59

treemap algorithm. Considering that each square size reasonably occupies at least 100 pixels
(10x10 square), the maximum number of leaf nodes of the hierarchy beingrepresented is 7864.
Furthermore, if we want to represent at least 2 different states (executing and blocked) at same
time, we end up with a drawing that may deal at most with 3932 processes. Today, it is not
difficult to find parallel applications larger than that, especially if we want a visualization of
threads along with processes behavior.

The visualization scalability can be achieved with the treemap technique by letting the al-
gorithm work only up to a certain level. Therefore, if the hierarchy is composed of many leaf
nodes, they are ignored in the representation. This solution is also recursive, starting from the
root level, and making it possible to limit the representation depending only on desired depth.

The problem with this approach is that some part of the information that is on theleaves is
lost. An example of this is depicted on Figure 4.12, which takes as input the hierarchy generated
by the Time-Slice algorithm present in Figure 4.9, only with the summary values for theBlocked
andExecuting states. Since this hierarchy did not pass through the aggregating model, the
intermediary nodes do not have aggregated data about the states. They only have the added
value of the nodes below it For instance,P1 has a value of 9, which is the sum of 5 and 4;M1
has a value of 18, which is a sum of the values ofP1 andP2; and so on up to the root node.
This information is necessary to the treemap algorithm, since it expects for each node of the
tree an associated value that indicates how much space of the screen that node will take during
the representation. The vectors of the leaves represent the amount of timeeach process, from
P1 to P5, stayed in theBlocked andExecuting states. The right part of the Figure shows
different treemaps for which rendering was limited to a given level of the hierarchy. The right-
most treemap, on the bottom, actually shows the states for all the processes. It may have on
this level squares that are too small in situations with a large number of nodes involved. If this
happens, the treemap algorithm may be stopped in a higher level of the tree. The Figure shows,
through the others treemaps, that information is lost if this happens. The lostinformation in the
example is the partition of time between each state for each process.

Figure 4.12 – Limiting the treemap representation up to a certain level of the hierarchy to obtain
visualization scalability.

The aggregation model proposed in previous Section tries to achieve visualization scalability

60 CHAPTER 4. VISUAL AGGREGATION MODEL

through the use of treemaps without losing information that may be on leaves ofthe represented
hierarchies. As presented, the model works by merging data from one level of the hierarchy
and moving the resulted merged data towards the root of the tree. The next subsection describes
treemap representations generated with hierarchies created with the Time-Slice algorithm and
the aggregation model.

4.4.3 Using Treemap in the Example

First, let us proceed to treemap representations of the hierarchies created with the Time-Slice
algorithm, without any aggregation. The hierarchical structures of Figure 4.8 are sent to the
treemap algorithm. Its drawing procedures take into account the values foreach of the nodes in
order to generate the maximum utilization of the screen space dedicated to represent the struc-
ture. The results of these drawings are depicted on the three different treemaps of Figure 4.13.
The left-most treemap was constructed taking into account the hierarchy that defines the behav-
ior for theBlocked state of the processes fromA to E. The area of each rectangle represents the
amount of time in seconds that each process stayed on that state. Below the main treemap draw-
ing at the left of the Figure, there are three smaller representations that show the summarized
view for each level of the hierarchy. We can also use these representations to make higher-level
comparisons among the resources that contributed to the application execution.

Figure 4.13 – Treemap representations for the hierarchies depicted on Figure 4.8.

The center treemap of Figure 4.13 shows the behavior of the processes for theExecuting
state. It was built based on the center hierarchy of Figure 4.8. We can see through this represen-
tation that processB andD stayed more than others processes on the executing state. Taking
into account the smaller treemaps below, we can see also that machineM2 contributed more to
the execution, when compared to machinesM1 andM3.

The last treemap, on the right-most part of Figure 4.13, shows the representation for the
bytes transmitted per second among processes on the selected time slice. The analysis of this

4.4. VISUALIZATION OF THE APPROACH 61

Figure enables the observation of which process obtained a higher throughput.

Generally speaking, the Time-Slice technique presents quantitative data in a more synthetic
way. This means that the user can visually and almost instantaneously compare the size of all
rectangles. Analyzing the treemaps of Figure 4.13, we can easily see whichprocess has spent
more time than others on each particular state. If this representation is used to analyze parallel
applications behavior and the state is a blocking operation, the visualization willshow which
processes spent more time blocked than actually executing. Other types of states and events
from the application can be taken into account and combined in the same visualization.

Another characteristic of the representations of Figure 4.13 is to draw the treemap using only
available values up to a certain level of the hierarchy. This is depicted in the smaller treemaps at
bottom, showing the representation of levelGrid, Cluster andMachine for each case. These
per-level views allow an analysis with less details when a considerable amount of data is present
in the deepest level of the hierarchy, maintaining the representation understandable even with a
higher number of processes to analyze.

Aggregated hierarchies generated by our aggregation model can also be represented with
treemaps. Figure 4.14 shows the treemap visualizations that are generated based on the hierar-
chies of Figure 4.10. The left most treemap shows the visualization of the original hierarchy,
with Blocked (represented by the letterB in gray areas) andExecuting (represented byE in
white areas) squares being grouped according to the processes. Thedashed circle shows the
area that corresponds to processP3. In this first treemap, the rendering is performed taking into
account the values of the Process level of the hierarchical structure.The size of the areas marked
by B and E are based on the vector values of the nodes. The aggregationalgorithm group these
values according to the machines, cluster and the grid. The second treemapof the Figure shows
in a comparable way the B and E values for each machine. These values arecalculated based
on the ones defined for the processes of each machine. The dashed circle in this case highlights
the area for machineM2. The other two treemaps to the right shows the aggregated view of the
values according to the cluster level and the root level.

Figure 4.14 – Treemap visualizations based on the original and aggregatedhierarchies presented
in Figure 4.10.

62 CHAPTER 4. VISUAL AGGREGATION MODEL

4.5 Summary

Large-scale parallel applications that run on parallel and distributed architectures exist today,
being composed of thousands of processes. These applications need tobe analyzed in terms
of performance and resources utilization. The lack of visualization tools that can adapt to the
large-scale characteristics of these applications motivated the visual aggregation model.

The Chapter has started with a description of the hierarchical organizationof monitoring
data, a pre-requisite to the model itself. Then, we have presented the Time-Slice technique,
which works by summarizing the behavior of a parallel application in a time interval. The
output of this technique consists in an annotated hierarchical structure, that serves as input to
the aggregation model. Basic concepts of the treemap representation have also been presented,
together with its application to visualize the hierarchies generated by the Time-Slice technique
and modified by the aggregation model.

The next Chapter details the implementation of this technique, and the three-dimensional
model described in the previous Chapter, in the Triva prototype.

Chapter 5

Triva Prototype Implementation

The last two Chapters have presented the visualization models developed in this thesis: the 3D
visualization, focused on the highlight of the network topology in contrast with parallel appli-
cation’s processes; and the Time-Slice algorithm with its aggregation model and the treemap
visualization. Those Chapters described the models from a theoretical point of view.

This Chapter describes the developed prototype in order to implement the visualization mod-
els proposed. The description here details the software decisions taken during the development
and the internal algorithms of the implementation. The prototype is named Triva, tostand for
ThRee dimensional Interactive and Visual Analysis.

One of the main guidelines to implement the prototype Triva is to build it on top of existing
tools and libraries, mainly to avoid the re-implementation of already validated implementations.
The first decision following this guideline is the adoption of some parts of the visualization tool
Pajé. The main reasons that motivated its adoption are listed in the next Section.This includes
a description of the most important components regarding Triva and a performance evaluation
of the Pajé Simulator. Other decisions considering software re-use appear in other parts of the
Triva prototype. They relate to the input data, the file format used to describe resources, the
rendering calculation of graphs of network topology, and so on.

The rest of this Chapter is organized as follows. After the description of Pajé, we present
the Triva architecture and how the implementation components are organized.Details about the
architecture are presented in three parts: input, the 3D-based and the treemap-based visualiza-
tion. There is one Section to describe each one of these categories. We end the Chapter with a
summary that lists the main decisions about the implementations of the Triva prototype.

5.1 Using the Generic Visualization Tool Pajé

Pajé is a generic visualization tool that has characteristics such as extensibility, interactivity
and scalability. The architecture of the tool, depicted in Figure 5.1, is composed of a set of
interconnected modules and filters. There are modules that deal directly withthe arrival of
trace data from trace files, shown on the left of the Figure. These are theFileReader and the
EventDecoder. Their responsibility is to convert the events in the Pajé file format to internal
objects used by the tool. The trace data, after this transformation, follows thepath through

63

64 CHAPTER 5. TRIVA PROTOTYPE IMPLEMENTATION

the PajeSimulator up to the StorageController, where it is stored in memory in scalable data
structures.

The PajeSimulator is the main part of the tool, since it simulates the behavior of the traced
parallel application with real traces. As result, it generates high-level, generic and abstract
objects that are called Pajé objects, detailed in the next subsection. The Figure 5.1 also shows
the set of possible filters that can alter the flow of Pajé objects towards the twovisualization
modules on the right: the SpaceTimeViewer and the StatViewer. More details about Pajé’s
visualization techniques are reviewed in Chapter 2.

One of the main filters of Pajé is the AggregatingFilter. The filter is responsible for reducing
the amount of information in a given container based on the level of zoom currently being used
by the analyst. The filter, when used, can increase dramatically the scalabilityand interactivity
of the tool by giving fast response to the queries of the visualization components. Another
component that is important in Pajé architecture is the PajeTraceController, depicted on the
bottom of the Figure 5.1. It controls the initialization of the modules and the appearance of the
menu with several options offered to the parallel application analyst.

Figure 5.1 – Pajé Architecture.

The components of Pajé use a protocol, composed of notifications, commandsand queries.
As depicted in Figure 5.1, notifications go from the StorageController through the filters to the
visualization modules. These notifications mainly announce changes in trace data, such as mod-
ifications in the trace structure or the presence of new information. Commandsand queries go
from the visualization components to the StorageController. Commands are forwarded to filters
to change their behavior and are generally triggered by user interaction,such as the configuration
of a given filter by Pajé’s graphical interface. Queries, on the other hand, are responses to noti-
fications and are generated by visualization components to obtain information about the traces.
A typical query is the request for events information for a given time frame,that is eventually
drawn in the visualization window of Pajé. The queries and their respectiveresponses navigate
through the set of filters. If a filter is properly configured, it can act onthe data changing its
information content that will be returned to the query’s origin.

The next subsection presents notions related to the type hierarchy and thePajé objects. Af-
terwards, we present a performance simulation experiment with Pajé to test the scalability of the
tool. An analysis of the obtained results with the main advantages and disadvantages of Pajé
adoption in the Triva prototype are presented in subsection 5.1.3.

5.1. USING THE GENERIC VISUALIZATION TOOL PAJÉ 65

5.1.1 Type Hierarchy and Pajé Objects

As stated in previous Section, Pajé is a generic visualization tool. This means that it can be used
to perform analysis of a wide spectrum of situations. Initially conceived to visualize parallel and
distributed applications, the generic capability of Pajé is achieved by using abstract types that
can be adapted to any kind of data. There are five types in Pajé: container, state, variable, links
and events.

A container type is the only type that contain other types, including another container type.
It has an identifier and a name, and usually a start and an end timestamp. All other types must
be enclosed within a container. A state type may be used to represent that a given container type
can remain in a given state for an amount of time. A variable type usually represents a metric
which value changes through time. A link type is used to represent interactions between two
container types; and an event type is to mark something that happens in a pointin time.

Besides the events produced by the monitored system, a Pajé trace file [23] must also have
the definition of the type hierarchy for that file. A type hierarchy is a hierarchy formed by
the definition of containers, states and so on. An example for that might be a type hierarchy
that reflects the monitoring of parallel applications composed by processesand threads. In this
example, the type hierarchy has a container typeprocess, that has a state type to indicate the
state for that process, and a sub-container typethread, also with a state type to indicate the
possible states related to that thread. Other information can be defined usingthe event, variable
and link types to reflect the behavior for that application. The terminology ofPajé types is used
in next Sections extensively.

Considering the presence of a type hierarchy in a Pajé trace file, the subsequent events must
instantiate the defined types, with the creation of containers and the attribution of values to states,
links, variables and events that might be present on the type hierarchy previously defined. When
treated by the Pajé Simulator component, these events are transformed Pajé Objects, which are
generic representations of the events present in the trace file. These objects can be generically
treated by the filters and components that are connected at the output of thePajé Simulator.

The overall organization of a Pajé trace file is composed of three parts: thedeclaration of
events used in the file; the type hierarchy and the timestamped events. In the first part, all
the events that can be found in the trace file must be declarated. The lines starting with % of
listing 5.1 shows the declaration of the eventPajeCreateContainer, with its unique identifier
– 4; and the rest of its fields: Time, Alias, Type, Container and Name. The other lines show an
example of use of this event, appearing usually in the third part of the Pajé trace file, after the
declaration of the type hierarchy. The first of these lines indicates that in time0.1, a container of
name “Site Nancy” is created with the aliasNancy. The other two lines indicate that in times
0.2 and 0.3, two containers are created:Grelon andGrillon, both inside the containerNancy.
More details about the Pajé trace file, including all other events, can be found in [23].

Listing 5.1 – Declaration of the PajeCreateContainer event.
%EventDef P a j e C r e a t e C o n t a i n e r 4
% Time d a t e
% A l i a s s t r i n g
% Type s t r i n g
% C o n t a i n e r s t r i n g
% Name s t r i n g

66 CHAPTER 5. TRIVA PROTOTYPE IMPLEMENTATION

%EndEventDef

4 0 .1 Nancy 0 0 " S i t e Nancy "
4 0 .2 Gre lon 1 Nancy " C l u s t e r Gre lon "
4 0 .3 G r i l l o n 1 Nancy " C l u s t e r G r i l l o n "

5.1.2 Simulator Performance Evaluation

As stated, the Pajé components transform the trace data into higher-level objects. Among the
components, the one that plays a key-role in this transformation is the PajeSimulator and the
StorageController. We perform a set of performance tests in order to assess the scalability of
these components when the number of entities present in trace files increases. This performance
evaluation has been performed both in terms of execution time and memory use.

A measurement tool was implemented to conduct this performance evaluation. Figure 5.2
shows the overall organization of the tool, where the white components are from Pajé and the
gray rectangle indicates the implemented module. The FileReader component ofPajé has the
definition of the chunk size, which gives the amount of data that will be readat once by the com-
ponent. For our performance tests, Pajé was configured to have a chunk size of 500 megabytes.
This was necessary to avoid multi-chunk file read overhead that might influence a part of the ob-
tained results. Since the largest trace file we generated for the tests is less than 500 megabytes,
all measurements are conducted with the same software behavior.

Figure 5.2 – Organization of Performance Tests developed with Pajé components.

We decided to remove the filters that depend on user interactions, since we are measuring
only the performance of the core Pajé components. Figure 5.2 shows the configurations without
these filters. The only filter we left is the AggregatingFilter, in charge of the scalability of the
answers to the queries by the performance measurement component, and that does not require
configuration by the user.

The basic algorithm for the performance measurements is to read the whole trace file and,
after its completion, navigate through all objects in the memory. The Figure 5.2 also illustrates
both steps with the dashed lines. Time measurements of both steps have been taken and the
memory utilization is obtained at the end of program execution, just before therelease of all
objects stored in memory.

Synthetic generated traces were used as input for the tool. Since Pajé’s AggregatingFilter
solves the scalability problem caused by the amount of data per container, the generated trace
files vary in their number of containers. As mentioned in previous Section, containers can be
used to represent processes, threads, so changing their number in different inputs is reasonable
enough to evaluate the simulator. The hierarchy used in the trace files is flat, meaning that all
containers defined in the trace file are children of the same root container node. The different

5.1. USING THE GENERIC VISUALIZATION TOOL PAJÉ 67

traces range from 10 containers to 9 millions containers. We stopped the testsat 9 millions
because of memory limitations of the machine used to run the tests. The containersof these
inputs also have one thousand events that change their state through time.

In order to execute the performance evaluation, we used the nodes of theclusterxiru of the
Parallel and Distributed Processing Group of the Federal University ofRio Grande do Sul. Each
node has 8 Intel Xeon E5310 (1.60 GHz) processors with 16 gigabytes of main memory. The
number of executions for a given trace file depends on the size of the file.For smaller files, we
executed at least 100 times, but for largest files, at least 10 times. For allmeasurements for a
given trace file, we removed 20% of the results (the 10% best and the 10% worst results) to keep
the obtained results within a confidence interval. The remaining 80% of the results are used to
create the average value, and then analyzed.

Figure 5.3 shows the results we obtained with the execution. The left graph depicts the
execution time for both steps (step 1: Read and step 2: processing) of Figure 5.2. The x-axis of
this graph shows the number of millions of containers, ranging from 1 to 15 millions. The y-axis
is the time in seconds. The points indicate the measured values, up to 9 millions containers. The
lines depict the linear regression technique generated with the measured points. We can clearly
see that the evolution of execution times are linear, with the read step being more costly in terms
of time than the processing.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
in

 s
ec

on
ds

Number of Containers (x 1000000)

Measured execution time and their corresponding linear regressions

Read Linear Regression
Processing Linear Regression

Measured reading time
Measured processing time

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
em

or
y

U
til

iz
at

io
n

in
 g

ig
ab

yt
es

Number of Containers (x 1000000)

Measured memory utilization and linear regression

Measured memory utilization
Linear regression with the measured points

Figure 5.3 – Execution time and memory utilization obtained during performance experiments
with Pajé.

The right graph of Figure 5.3 shows the memory utilization for the same experiment. Hori-
zontal dimension indicates the number of millions of containers and the vertical dimension is the
memory utilization in gigabytes. Points are measured and the line indicates the linearregression
defined with the measured points. We can also observe a linear behavior in memory utilization
required by the Pajé components.

5.1.3 Analyzing Pajé’s Adoption

The advantages of using Pajé come from the software reuse, the scalabilityof the tool and the
fact that Pajé deals with generic objects. The software reuse enables a fast development of
additional components, the scalability has been shown through the performance evaluation tests

68 CHAPTER 5. TRIVA PROTOTYPE IMPLEMENTATION

presented in the previous Section (results in Figure 5.3). We have been able to see that Pajé has
a linear behavior in response times to queries and also in memory utilization. In thetests, we
extrapolated the number of containers to see if Pajé can handle bigger quantities of containers
in reasonable time. For one million containers, Pajé can read the trace file in about 25 seconds
and return the data to the visualization components in about 3 seconds. Considering that each
container is a process of a parallel application, we can argue that Pajé can manage trace files of
parallel applications with one million processes in reasonable time.

The disadvantages of Pajé’s adoption could be that a specific language and environment
must be adapted to reuse its components. Furthermore, in terms of implementation,the tool that
uses the components of Pajé must also have a GNUstep loop. Depending on which development
environment is used, this means that another tool based on Pajé componentsmust have at least
two internal loops that must work together.

Considering advantages and disadvantages, we decided to adopt Pajé’s components in the
Triva prototype. The main reason behind this adoption is the possibility to handle generic ob-
jects, allowing the Triva implementation to be also generic, and the fact that Pajéis highly
scalable. Next Section starts the Triva prototype description.

5.2 Triva Prototype Architecture and Overview

Figure 5.4 depicts the overall organization of the prototype, composed of modules that transform
the trace data into Pajé objects, and then into the two types of visualizations: the 3D and the
Time-Slice with treemaps. Because of the use of generic objects, the only trace-dependent part of
the prototype is the one represented on the left of the Figure, denoted mainlyby the DIMVisual
Integrator and its sub-components specific to particular trace file formats. The white rectangles
are existing libraries and tools that were re-used with minor adaptations; gray rectangles were
implemented to be part of Triva prototype. This convention is used through the rest of this
Chapter.

Figure 5.4 – Triva Architecture and Implementation Layout.

The TrivaController, written in C++ language, is in charge of the initialization of all the
components and connecting them following the architecture presented in Figure 5.4. It also
presents to the user a graphical interface, created using the wxWidgets library, under the form
of a main window, with configuration options, menus and interaction mechanisms.The three
dimensional scene and the treemap rendering is also initially configured and rendered.

5.3. DIMVISUALREADER 69

The Pajé filters, represented by the dashed rectangle of the Figure 5.4, are the same as the
ones used by the Pajé Visualization Tool [21]. Their implementation takes into account several
issues like scalability and low response time to requests from the user interface. The first of the
filters, PajeEventDecoder, handles the input generated by the DIMVisualReader and prepares it
for the next module. The PajeSimulator transforms the events into visual objects. This transfor-
mation consists in the creation of a hierarchical structure of traces, using the basic types of Pajé.
This structure, which represents the same information as in the trace files, is optimized for the
visualization, and stored in the StorageController.

In the right most part of Figure 5.4, the interactions among the modules work ina two-
way fashion. The interactions from right to left are the requests for newdata. They are mostly
triggered by user commands or changes in the configurations given as resource description. The
interactions from left to right are the responses for the requests generated by the visualization.

To give a better description of the prototype, we split the explanation in threeparts: one that
details how the input is managed by the DIMVisualReader, another that explains the TrivaView
and how the 3D visualization model is implemented, and the third named TimeSliceView,which
explains the implementation of the second visualization model proposed in this thesis. Next
sections detail these three parts in this order.

5.3 DIMVisualReader

The existing DIMVisual Integrator [70] is a software library to integrate traces from different
data sources into a common format. As of today, the integrator is capable of generating a flow
of events in the Pajé file format. The trace-dependent part of DIMVisualmust be implemented
to cope with specific formats. During this thesis, we implemented two trace-dependent mod-
ules: a KAAPI trace file reader and a MPI reader capable of reading traces generated by MPI
applications.

Each sub-component of the DIMVisual Integrator is called a bundle, instantiated using the
GNUstep library. A bundle means a self-contained binary object that can be dynamically loaded
and linked during runtime within another program. After the initialization of Trivaprototype,
the user can configure the bundle it loads through the graphical interface. This interface acts
through a configuration protocol, implemented in the DIMVisualReader module. Listing 5.2
shows the five methods of the protocol. The first three methods are used to check the bundles
available, if a bundle with a certain name is already loaded and to load a specificbundle based
on its name, respectively. The last two methods are used to configure a bundle that has been
loaded. First, the function to get the configuration options is executed, returning a hierarchical
structure with the options that must be defined to configure the bundle. These options are defined
by the user through the graphical interface of the prototype. After this definition, the method
setConfiguration is used to configure the bundle. A typical configuration holds information
about trace files location in the file system, possible synchronization file and the kind of events
that must be read by the module. Other options are also possible but are bundle-specific.

Listing 5.2 – Bundle Protocol Configuration.
− (NSArray ∗) d i m v i s u a l B u n d l e s A v a i l a b l e ;
− (BOOL) isDIMVisualBundleLoaded : (NSSt r ing∗) name ;

70 CHAPTER 5. TRIVA PROTOTYPE IMPLEMENTATION

− (BOOL) loadDIMVisualBundle : (NSSt r ing∗) name ;

− (NSDic t ionary ∗) ge tCon f igu ra t i onOpt ionsFromDIMVisua lBund le : (NSSt r ing ∗) name ;
− (BOOL) s e t C o n f i g u r a t i o n : (NSDic t ionary∗) con f forDIMVisua lBundle : (NSSt r ing ∗) name ;

Figure 5.5 depicts the behavior of the DIMVisualReader and related components. The
DIMVisual Integrator generates as output a flow of timestamped objects thatrepresents the ap-
plication behavior. These objects are a high-level representation of traces, composed of Pajé
events. The flow is received by the DIMVisualReader module, which implementation follows
the internal protocol of Pajé [22]. The responsibility of the DIMVisualReader is to transform
the flow of objects in textual representations using the Pajé file format. Theserepresentations
are sent to the existing PajeEventDecoder filter and transformed to subsequent Pajé components.
The DIMVisualReader does not send the objects directly to the PajeSimulator or the Storage-
Controller because the data generated by DIMVisual is different from the one used internally in
Pajé.

Figure 5.5 – DIMVisualReader Implementation and interactions with TrivaController.

The PajeEventDecoder is the first of the chain of re-used Pajé filters. The flow of textual
events sent by the DIMVisualReader is received by this filter and transformed into a Pajé internal
representation. As can be seen in Figure 5.4, the next filter in the chain of Pajé filters is the
simulator. The simulator receives the decoded events and creates high-level objects based on
the events. This high-level representation is basically an instantiation of the type hierarchy
with timestamped objects, such as states, events and links. It is then stored in memory by the
StorageController.

The main flow of information inside this part of the prototype comes from the trace files,
depicted on the left part of Figures 5.5 and 5.4, to the Pajé filters, depicted inthe dash rectangle
of Figure 5.4. This flow of information, transformed in different ways by each component, stops
in the StorageController. There, it is stored in memory and made available to the visualization
parts of the Triva prototype. The flow is triggered periodically by the main loop of the prototype,
handled by the TrivaController. More often than each half second, the controller sends a message
to the DIMVisualReader to check if there is new data available. If this is the case, the new
trace data is read and sent to the chain of filters up to the StorageController,where the flow of
information stops.

Although the Triva prototype was mainly conceived to work with trace files, the implemen-
tation is also capable of handling events in an online fashion. For that, the DIMVisual Integrator
must be attached to a source of events during the observation time of an application. Even if

5.4. TRIVAVIEW 71

possible, no tests have been performed to evaluate the online use of the prototype. The reason
behind this decision is based on the amount of data generated in an online observation and the
typical centralization of the analysis. We also intend with our approach to avoid the cost caused
by the gathering and collection of data that is potentially distributed.

5.4 TrivaView

The 3D visualization model, presented in Chapter 3, is implemented in the Triva prototype
through the TrivaView and related components. Figure 5.6 presents the overall organization of
these components. The TrivaView module implements the Extractor part of the 3D model, re-
trieving from the flow of Pajé objects the containers and links, and redirecting the flow to the
DrawManager component. The Entity Matcher part of the 3D model is implemented in three
components of the prototype: TrivaApplicationGraph, TrivaResourcesGraph and TrivaTreemap-
Squarified. They receive the containers and links from TrivaView, and the resource description
in files. The Visualization part of the 3D model, shown through the dashed lineon the right
of Figure 5.6, is implemented with four components: the Triva3DFrame, which holds the 3D
scene, and the three managers that change this frame, the DrawManager, the AmbientManager
and the CameraManager.

Figure 5.6 – TrivaView Implementation Layout

The details of the components related to the implementation of the 3D model are presented
in next subsections. We start the description by presenting the two main libraries that are used
in the implementation: the Ogre3D and GraphViz libraries. GraphViz is mainly usedin the
implementation of the visualization base, which description comes next with the algorithms and
file format used as resources description. We end the details with the presentation of the 3D
rendering scene.

5.4.1 External Libraries: Ogre3D and GraphViz

Two external libraries were used for the implementation of the 3D visualization model. The first
one is called OGRE - Object-oriented Graphics Rendering Engine, which is ascene-oriented
and flexible 3D rendering engine [43]. It is written in C++, designed to abstract the details of
using libraries like OpenGL, and is released under the terms of GNU LesserGeneral Public
License. Since Ogre3D is scene-oriented, it requires the creation of a hierarchical structure of
scene nodes, attached to the Root Scene Node. Everything that is attached to this root node is
supposed to be rendered.

72 CHAPTER 5. TRIVA PROTOTYPE IMPLEMENTATION

When creating a scene, the scene nodes do not appear. The objectiveof scene node is to
hold information about the position and scale in the 3D space. The objects thatare rendered in
the 3D space, such as cubes, cylinders, planes, and so on, must be attached to a scene node. All
position and size operations that must be performed on a certain object should happen to a scene
node in which this object is attached. Typical operations applied to scene nodes are rotations,
translations, roll and pitch. If one of these operations is performed on a given scene node, all
the objects that are attached to its descendants also receives the update. This hierarchical prop-
agation of operations is especially useful since complex hierarchical structures can be changed
by applying the operation to a single scene node. Besides, it is possible to remove one of these
structures simply by removing the scene node that attaches it to the hierarchyheaded by the root
scene node. If the developer wants to make the structure visible again, it only has to attach it to
the main hierarchy.

A scene is also composed by lights and camera. The Ogre rendering engineis able to manage
ambient light and other types of lights, such as point, directional and spotlight. A scene must
have at least one light to make objects appear, otherwise it is completely black. The developer
must attach a camera to the scene in order to be able to observe in a computer what is rendered in
the 3D scene. A camera is usually attached to a scene node where traditionalposition operations
are performed. This way, the camera can rotate and move through the 3D space. The image that
is usually seen in a computer screen window is what is visualized by the camera.

The second library used in the implementation of the 3D model is GraphViz [27, 34].
GraphViz is an open source graph visualization software. It gathers different graph drawing
algorithms in the same tool. The basic usage of the tool is the generation of graphical im-
ages from the definition of graphs in a textual file format. Besides this traditional basic usage,
GraphViz also works as a library that can be incorporated in other computer programs.

GraphViz, in its library form, is used extensively in the different base configurations of
the 3D model, especially for the implementation of the application and the network/application
graph combinations. The main functions of the library areagnode, to create a node, andagedge,
to create an arc between two nodes. After the definition of the graph with these functions,
the developer must call the functiongvLayout, passing as parameter the name of the algorithm
to position and render the graphical representation. At this moment, we can have access to
several information regarding the graph, including for example the positionof the nodes in a bi-
dimensional space, the size of the nodes representation, the bezier curved lines that represented
the arcs of the graph, and so on. It is this information that is used in the Triva prototype,
especially the part related to the position information.

The GraphViz library is integrated in the prototype as described in the next Section, and
the OGRE concepts are used in the description of the 3D rendering of the Triva prototype, in
Section 5.4.3.

5.4.2 Base Configuration

Three types of base configuration were proposed in the 3D visualization model, back in Chap-
ter 3. This Section explains how they were implemented, using as input the visual objects se-
lected by the TrivaView module. Among the three visualizations, two of them mustuse graphs
in their implementations: the application communication pattern and the combination of the

5.4. TRIVAVIEW 73

network topology and communication pattern. We use the GraphViz library to implement them.
The other base configuration that consists in the treemap algorithm has beenimplemented from
scratch.

Graph of the Application Communication Pattern

The application communication pattern, represented in Figure 5.6 by the component TrivaAp-
plicationGraph, receives as input two types of Pajé objects: containers and links. As previously
discussed in Section 5.1.1, containers may represent processes, threads, machines and so on,
while a link is used to represent an interaction between two containers. For this part of the
implementation, the relevant information present in container and link objects is the container
identifiers. A container object has one identifier; and a link has two containers identifiers, one for
the sender and another for the receiver. The algorithm that creates thegraph using the GraphViz
library is composed by two functions:updateGraphData()andupdateGraphLayout(). Their
simplified behavior are shown in listing 5.3.

Listing 5.3 – Algorithm to create the Application Communication Pattern based on containers
and links.
g r a p h _ t ∗updateGraphData (g r a p h _ t∗graph , l i s t c o n t a i n e r s , l i s t l i n k s)

f o r c o n t a i n e r i n c o n t a i n e r s
agnode (graph , c o n t a i n e r . i d e n t i f i e r) ;

f o r l i n k i n l i n k s
agedge (graph , l i n k . s e n d _ i d e n t i f i e r , l i n k . r e c v _ i d e n t i fi e r) ;

r e t u r n graph ;

GVC_t ∗updateGraphLayout (GVC_t∗ l a you t , g r a p h _ t ∗graph , s t r i n g a l g o r i t h m)
gvFreeLayout (l a y o u t) ;
gvLayout (l ayou t , graph , a l g o r i t h m) ;
r e t u r n l a y o u t ;

The component responsible for the algorithm to create the communication pattern does not
control how many information arrives. It is the responsibility of the TrivaView, in its controller
form, to consider specific time intervals based on user choices. This means that if the user
wants to see the communication pattern of the application occurring in a given time interval, the
TrivaView must reset the graph already created by the TrivaApplicationGraph component and
send it only containers and links present in that time frame. This has been implemented in the
prototype by letting the user choose which time frame to analyze.

The functionupdateGraphLayout(), shown in Figure 5.3, defines the graphical layout of the
graph. After calling GraphViz’sgvLayout()function, there is enough information available to
actually draw an image file with the visual representation of the graph. Among allthis informa-
tion, the Triva prototype uses only the bi-dimensional position of each nodeand the list of the
arcs among them. So, after executing the function to update the graph layoutbased on the nodes
and edges, the TrivaApplicationGraph sends the bi-dimensional position (x,y) of each container
to the DrawManager. This manager is responsible for creating and positioning the visual objects
that represent the graph in the visualization base of the 3D scene.

The user can also customize the layout by choosing which GraphViz’s algorithm will be
used to define the positions. As of today, there are five options:dot, neato, fdp, twopi, circo.

74 CHAPTER 5. TRIVA PROTOTYPE IMPLEMENTATION

These options are extensively documented in the “Drawing graphs with GraphViz” documenta-
tion [33].

Graph of the Network Topology

The second type of base configuration is the mixing of the network topology and the application
communication pattern. The implementation of this configuration is done in the TrivaResources-
Graph component. It is based on the resource description file provided tothe component, as
shown in Figure 5.6, and containers and links selected by the TrivaView component.

The resource description file matches dot’s GraphViz format [27]. An example of such file is
shown in listing 5.4, below. This simple example shows a list of machines that are interconnected
by a switch. The component receives a configuration file like this and use the GraphViz’s layout
function to define the position of each node in the visualization base. As in the previous base
configuration, only the bi-dimensional data defined by one the GraphViz’salgorithm is used and
passed along to the DrawManager component.

Listing 5.4 – Example of resources description showing the network topology, used to configure
the TrivaResourcesGraph component.
graph G {

" x i ru −0. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −1. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −2. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −3. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −4. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −5. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −6. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −7. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −8. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;
" x i ru −9. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r "−− " s w i t c h " ;

}

The second input given to the TrivaResourcesGraph is made of the containers and links, that
come from the parallel application trace file. Since the component is pre-configured with the
resource description file, the objective is to act upon the reception of containers by searching on
which node of the network topology each container from the application trace should be placed.
It is necessary to associate to each container from the trace to a location onthe network topology,
enabling the simultaneous analysis of both information.

There are several limitations to provide a successful association of containers from the trace
to the nodes in the network topology. Usually, the only information present in the resources
description file is the name of the machine. To provide a successful association with containers
from the application trace files, the containers must hold some kind of location data. This data
must come from trace events, registered by the monitoring system. In the Triva prototype, we
used traces from KAAPI and MPI applications. For KAAPI, there are events that register the
name of the machine where processes execute. Our tracing mechanism forMPI applications
also registers the name of the machines involved in the execution.

When the association of containers to nodes of the network topology is successful, the
TrivaResourcesGraph component sends to the DrawManager the position in the base for ev-
ery node of the network topology and the position of every container insidea given node. By

5.4. TRIVAVIEW 75

doing this, the DrawManager has all the information necessary to place the visual objects in the
visualization base of the 3D scene. The position of application containers inside a node of the
network topology is also defined by a graph and implemented inside the TrivaResourcesGraph
component.

Logical representation using Treemaps

The third base configuration is a logical representation of the resourcesusing treemaps. For the
Triva implementation, we decided to use the squarified version of treemaps [13], since it provides
a better width/height ratio in the nodes representation. We implemented it in the component
named TrivaSquarifiedTreemap, receiving as input two types of data: aresource description file
and the containers of the application trace.

The format used for the resource description file that has to be providedto the component is
in the Property List Format [3]. Figure 5.5 shows an example of this file. Theexample defines a
hierarchical organization of machines, that are grouped by cluster, then by site which composes
a grid. For each node of the hierarchy in the description file, there must bean attribute named
type that indicates the type of the node on that level.

Listing 5.5 – Example of resources description showing the logical organization of resources,
used to configure the TrivaTreemapSquarified component.
{

name = Grid5000 ;
t ype = g r i d ;
c h i l d r e n = (

{
name = p o r t o a l e g r e ;
t ype = s i t e ;
c h i l d r e n = (

{
name = x i r u ;
t ype = c l u s t e r ;
c h i l d r e n = (

x i ru −0. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −1. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −2. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −3. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −4. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −5. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −6. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −7. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −8. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
x i ru −9. p o r t o a l e g r e . g r e n o b l e . g r i d5000 . f r ,
) ;

} ,
) ;
} ,

) ;
}

The treemap algorithm is a space-filling technique that occupies all the spaceavailable for
its drawing. The user defines, through the prototype graphical interface, the area in the visual-
ization base that will be used to render the treemap. This information is passedto the algorithm
implementation which starts a top-down and recursive traversal through theinput hierarchy that

76 CHAPTER 5. TRIVA PROTOTYPE IMPLEMENTATION

came from the description file. After the execution, all the nodes have their rectangles and their
position defined in the bi-dimensional space of the visualization base.

The other type of input for the component is composed of containers fromthe parallel ap-
plication trace. This second input is necessary because the TrivaSquarifiedTreemap must also
define the position in the visualization base for every container of the application trace. This
information will be used later by the DrawManager to place the containers on top of the ar-
eas reserved for a certain machines. The same association between resource and application
container, present in the previous visualization base configuration, must be made here.

We have also implemented in the prototype the possibility of relating the size of eachrect-
angle that represents a machine on the visualization base with the trace characteristics. This
calculation is made depending on the options that the user chooses. Up to now, it is possible to
use the number of containers in a given machine, the count of a specific states that appear in con-
tainers, and the amount of time of a given state in a container. After defining which metric will
be used as squares size in the visualization base, the values for the leaf nodes of the hierarchy
are defined and the treemap is computed. This can be performed at any time during an analysis.

As output, the TrivaSquarifiedTreemap send to the DrawManager the computed treemap
data structure, that contains the position of each node and container.

5.4.3 Rendering the 3D Scene

The rendering of the 3D scene is controlled by three different managers: AmbientManager,
CameraManager and DrawManager. The AmbientManager is responsiblefor creating the initial
static drawings of the 3D scene and to manage the dynamic time scale rendered inthe vertical
axis. The static drawings do not change during the visualization of a trace file, but the timescale
changes depending on interaction with the user. Figure 5.7 shows the scene nodes and entities
organization created by the manager. The black circles represent scene nodes and gray squares
represent entities that appear in the 3D scene. The static part is on the leftof the vertical dashed
line, and is composed of the Origin, and the three axis scene nodes, the ground plane and the
three lines to show the three dimensions in the scene.

The dynamic time scale managed by the AmbientManager is depicted on the right ofFig-
ure 5.7, withN scene nodes and the same number of textual entities to indicate the timestamps
that are rendered along the vertical axis of the scene. Whenever the time scale is changed by the
user, all the objects on the right are freed and a new scale drawing is placed. The scene nodes
of the time scale are attached to the YAxis scene node, but they are placed in the vertical axis
according to the time scale currently in use.

Figure 5.7 – Ogre3D’s scene node and entities created by the AmbientManager to maintain the
static part of the 3D scene and the time scale.

5.4. TRIVAVIEW 77

The CameraManager is another component that helps to manage the 3D scene. Its responsi-
bility is to create and track the camera entity. Figure 5.8 depicts the Ogre3D’s components used
to manage the camera: there is a CameraNode, child of the root scene node,and two entities
attached to it, the camera itself and a light that always point to the direction where the camera is
looking at.

Figure 5.8 – Ogre3D’s scene node created by the CameraManager to keep the camera entity of
the 3D scene.

Configured by the TrivaController, the CameraManager also tracks the mouse and some
keys of the keyboard to move the camera through the 3D scene. The implementation receives as
input the arrow keys of the keyboard and transforms them into operationsthat are applied to the
CameraNode. Every time the user uses one of the arrows, the prototype calculates a vector to
move the camera. This vector is then applied to the CameraNode through a translation operation
that also considers the orientation of the node in the 3D space. The manageralso tracks the
moves made by the user with the mouse. Based on them, the prototype determines two angles,
one relative to theX plane and another relative to theY plane, to be applied to the camera node
through the operations yaw and pitch, respectively. This allows the camerato point to other
directions based on mouse movements.

Rendering and Placement of the Visualization Base

The DrawManager is the main component that renders the 3D scene. It receives as input the con-
figuration of the base already calculated by previous components, the positions of the containers
in the base, and the timestamped Pajé objects to be placed in the vertical dimension according
to their containers. The DrawManager takes these inputs and start the creation of a hierarchical
structure of Ogre3D’s scene nodes and entities. This structure is then rendered by the Ogre3D
library in the Triva3DFrame of the Triva prototype.

Figure 5.9 shows the hierarchical structure that is created by the DrawManager to place the
objects in the visualization base according to the input. As in previous Figures, the black circles
indicate scene nodes, and the gray squares mean entities. On the left of theFigure, there is
the scene node CurrentVisu, child of the root scene node. The use of this scene node enables
the possibility of drawing more than one trace visualization on the same 3D scene. At this
time, the prototype has only one of such node. The CurrentVisu scene node has two children:
the ContainerPosition and the VisualizationBase. As the name indicates, the container position
scene node contains a list of scene nodes (C1, C2, ...) that holds the position in the base of each
container that comes as input to the DrawManager component. Each of these scene nodes has a
sub-hierarchy composed by the visual representation and a 3D text (Draw and Text scene nodes).
Each container scene node is used latter when the timestamped objects are attached to the scene.
The other child of the CurrentVisu is the VisualizationBase scene node. It keeps the structure

78 CHAPTER 5. TRIVA PROTOTYPE IMPLEMENTATION

for the current visualization base. In the Figure, the ResourcesGraphand the SquarifiedTreemap
structures are depicted. The first one is the structure used for the drawing of the network topology
and application graph. The second is the one that shows the treemap as base.

Figure 5.9 – Ogre3D’s scene nodes created by the DrawManager to render the 3D scene for the
visualization model.

The ResourcesGraph of Figure 5.9 maintains a dynamic list of scene nodesto represent the
resources (R0, R1, ...). The resources are the ones sent by the TrivaResourcesGraphcomponent
as part of the network topology read from the configuration file in GraphViz’s format. Besides
the information about the resources, there is also a list of edges (E1, E2, ...) that are children
from the ResourcesGraph scene node and represent the lines that interconnect the resources’s
square in the base. The scene nodesR0 ... Rn are positioned in the bi-dimensional visualization
base according to the positions calculated by the TrivaResourcesGraphcomponent. The position
of the edges are then calculated based on who they connect.

The SquarifiedTreemap scene node of Figure 5.9 and its sub-hierarchy(L0, L1 − 0, L1 −

1, L1 − 2, ...) are created dynamically based on the configuration sent by the TrivaSquari-
fiedTreemap component of the Triva prototype. The sub-hierarchy reflects the hierarchy that
comes from the logical organization of the configuration file. Each scene node has a square
drawing attached to an auxiliary scene node to maintain scale and positioning.

Besides the two types for base configuration already described, there isalso the application
communication graph. This configuration, generated by the TrivaApplicationGraph component,
is always present in the visualization. The scene nodes, the lines and possible arrows of its
representation remain attached to the CurrentVisu scene node directly. Thisattachment can be
controlled through the graphical interface, allowing the user to enable or disable to appearance
of the communication graph of the application being analyzed.

As stated earlier, each Ogre3D scene node must have a defined position inthe 3D space. This
position is represented using the 3 coordinates: x, z and y. In Figure 5.9,all the scene nodes (the
black circles) have the y coordinate set to zero. This places all scene nodes on the visualization
base, as defined in the 3D visualization model Chapter. The other two coordinates (x and z) of
all scene nodes of Figure 5.9 are defined by one of the three components that implement the

5.4. TRIVAVIEW 79

entity matcher (TrivaApplicationGraph, TrivaResourcesGraph and TrivaSquarifiedTreemap).

Rendering Timestamped Pajé Objects

The DrawManager also receives as input a flow of timestamped Pajé objectsto be rendered in
the 3D scene. In Section 5.1.1, we detailed that time-related objects are states,links, variables
and singular events. Among these objects, we implemented only the 3D representation for states
and links. These two types of objects can describe the behavior of several types of applications,
since they can represent the execution of a function or a piece of code and also interactions
among application’s components.

Figure 5.10 shows the structure made by the DrawManager when drawing states and links
into a 3D scene. The states are attached to the scene nodes of containers (from C0 to Cn). In the
example of the Figure, each container holdsn states, fromS0, C0 to Sn, C0. The main reason
for attaching the states to the containers scene nodes is that by doing so the states are placed
exactly on top of the representation of containers in the visualization base. The only position
information that must be computed by the DrawManager is the vertical position inthe time axis.
This computation for each state allows the correct placement of a visual representation of the
state. This representation is a cube, and the color of the cube is associatedto the value for
that state. By doing this, all states of the same type will have the same color, facilitating their
identification. The color scheme in fact is the same as the one used in traditionalspace-time
visualizations.

Figure 5.10 – Ogre3D’s scene nodes created by the DrawManager to render the timestamped
Pajé objects in the 3D scene.

The second type of timestamped-objects rendered is the links. When received by the Draw-
Manager, links are transformed into a scene node that is attached to the CurrentVisu scene node.
Figure 5.10 shows an example for that with the linksLink0 to LinkN scene nodes. Each
link scene node has also a visual representation that is a line. The position of this line in the
base dimensions are calculated based on the origin and destination of the links.For that, the
DrawManager component obtains the x and z position of the containers involved (since a link is
always between two containers) and creates the line between these two points in the base. After
this, the DrawManager attributes the y coordinate of the beginning and end of the line by using

80 CHAPTER 5. TRIVA PROTOTYPE IMPLEMENTATION

its two timestamps: one that indicate the beginning of the link and another the end. With the
three dimensions defined for each extremity of the line, it is finally rendered inthe 3D scene.

5.5 TimeSliceView

Previous Section described all the aspects of the implementation of the 3D visualization model.
Most of these aspects are related to the TrivaView prototype component. Now, we present the
implementation of the visual aggregation model proposed in this thesis. The main component
of this implementation is the TimeSliceView, as can be seen in Figure 5.11. Another component
of this part of the Triva prototype is Triva2DFrame, which responsibility isto draw the treemap
in the visualization window of the prototype.

Figure 5.11 – TimeSliceView Implementation Layout with Notifications.

Figure 5.11 also details the interactions and notifications that happen during the TimeSlice-
View execution. The arrival of objects from the Pajé simulator (see Figure5.4 for details) is
depicted on the left of the Figure. The user interaction with the prototype cancause three dif-
ferent types of notifications that go from the Triva2DFrame to the TimeSlice:the change of the
window size, a new aggregation level and the change of the time slice. All these notifications
trigger the same chain of execution in the TimeSliceView component: creation of the behavior
hierarchy, possible application of the aggregation operators and re-computation of the treemap.
The resulting treemap configuration is sent as a response to the notificationsand then rendered
by the Triva2DFrame component.

Next Section presents the implementation that creates the behavior hierarchy. Afterwards,
we present some information regarding the drawing procedures using thewxWidgets library
functions.

5.5.1 Creating the Hierarchy

The Pajé objects and the type hierarchy of a trace in the Pajé format were described in Sec-
tion 5.1.1. We observed that there are five different types of objects: container, state, link, event
and variable. Besides, there is also a definition of a type hierarchy for each trace file in the
Pajé file format. This definition enables, for a given trace file, to say that a process of a parallel
application is of type container, and its behavior is of type state, for instance.

Figure 5.11 shows the implementation layout of the TimeSliceView and related compo-
nents. The TimeSlice component is responsible for creating the behavior hierarchy that will be

5.5. TIMESLICEVIEW 81

shown in the visualization window through the Triva2DFrame component. In order to calculate
the behavior hierarchy, the TimeSlice uses a set of methods from the Pajé filter protocol. The
listing 5.6 shows the five methods (in the Objective-C language) of the protocol used by the
TimeSlice component. The first is used to navigate through the type hierarchy, mainly through
the containers, returning an array of containers type that are children of another container type.
The second method is just used to confirm if a type is a container type (it can be of another kind,
such as state, link, etc.). The third method is used to retrieve the Pajé type of aninstance (con-
tainer, state, link, event or variable). The fourth method returns an enumerator for all containers
of the given type inside the given container instance. The last method returns an enumerator of
the entities of the given type inside the given container between two timestamps.

Listing 5.6 – The five methods of the Pajé protocol used by the TimeSlice component to create
the behavior hierarchy.
− (NSArray ∗) con ta i nedTypesFo rCon ta i ne rType : (P a j e E n t i t y T y p e∗) c o n t a i n e r T y p e ;

− (BOOL) i s C o n t a i n e r E n t i t y T y p e : (P a j e E n t i t y T y p e∗) e n t i t y T y p e ;

− (P a j e E n t i t y T y p e ∗) e n t i t y T y p e F o r E n t i t y : (id < P a j e E n t i t y >) e n t i t y ;

− (NSEnumerator ∗) enumera to rO fCon ta ine rsTyped : (P a j e E n t i t y T y p e∗) e n t i t y T y p e
i n C o n t a i n e r : (P a j e C o n t a i n e r∗) c o n t a i n e r ;

− (NSEnumerator ∗) e n u m e r a t o r O f E n t i t i e s T y p e d : (P a j e E n t i t y T y p e∗) e n t i t y T y p e
i n C o n t a i n e r : (P a j e C o n t a i n e r∗) c o n t a i n e r

fromTime : (NSDate ∗) s t a r t
toTime : (NSDate ∗) end

minDura t ion : (doub le) minDura t ion ;

The TimeSlice component creates the behavior hierarchy using the methods above. The
containers become the nodes of the hierarchical structure. The values of leaf nodes are calcu-
lated based on instances of the state type. At this moment, the implementation does not handle
links, events and variables. Listing 5.7 shows the implemented algorithm to createthe behavior
hierarchy. Each time the methodcreateBehaviorHierarchyis called, a node in the hierarchy is
created. After the recursive call we can notice in the listing, the created nodes are attached to the
parent node. The last line of the listing is executed when no further recursion is necessary, since
the container does not have any sub-container. Being a leaf node of thebehavior hierarchy, the
node must find itself a value by calling thetimeSliceAtmethod informing the container and its
type.

Listing 5.7 – The implementation that creates the hierarchical structure based on the containers
of the trace file.
− c r e a t e B e h a v i o r H i e r a r c h y : c o n t a i n e r I n s t a n c e

c o n t a i n e r T y p e = [f i l t e r e n t i t y T y p e F o r E n t i t y : c o n t a i n e r In s t a n c e] ;
l i s t O f T y p e s = [f i l t e r con ta i nedTypesFo rCon ta i ne rType : co n t a i n e r T y p e

i n C o n t a i n e r : c o n t a i n e r I n s t a n c e] ;
f o r e a c h type i n l i s t O f T y p e s

i f [f i l t e r i s C o n t a i n e r E n t i t y T y p e : t ype]
/∗ R e c u r s i v e c a l l t o c r e a t e sub−nodes ∗ /
l i s t O f C o n t a i n e r s = [f i l t e r enumera to rO fCon ta ine rsTyped: t ype

i n C o n t a i n e r : c o n t a i n e r I n s t a n c e] ;
f o r e a c h c o n t a i n e r i n l i s t O f C o n t a i n e r s

82 CHAPTER 5. TRIVA PROTOTYPE IMPLEMENTATION

c r e a t e B e h a v i o r H i e r a r c h y : c o n t a i n e r
e l s e

/∗ C a l l t h e Time−S l i c e i m p l e m e n t a t i o n ∗ /
t i m e S l i c e A t : c o n t a i n e r I n s t a n c e ofType : t ype

The implementation of the methodtimeSliceAtis detailed in listing 5.8. The method receives
as parameter the container and the state type that must be used to compute the values. The
enumerator method, as previously stated, returns all the instances of that state type for the period
of time betweensliceStartTimeandsliceEndTime. After receiving the list of state instances, the
algorithm iterates through each of them, adding its value for each possible state name. This
happens in the last method of listing 5.8. For example, considering a processas a container
with a state: this state may have different names in an execution (blocked, running, barrier and
so on). The last method of thetimeSliceAtimplementation will attribute the value for each of
these names that corresponds to the intersection of the time slice and the duration of the state. If
multiple occurrences appear in the same slice of time, the values are accumulated.

After the execution of implementations listed in 5.7 and 5.8, the containers and states will
be reflected in the hierarchy as nodes and leaves, respectively. The leaves, which are created
based on state Pajé instances, have values associated to them. The next step in the algorithm is
to define the values for the intermediary nodes. This is implemented with a bottom-upalgorithm
that define the values of a node based on a sum of the values of its children.

Listing 5.8 – The implementation that returns a value for a given containers based on the states
instances for that container.
− t i m e S l i c e A t : c o n t a i n e r I n s t a n c e ofType : t ype

l i s t O f S t a t e s = [f i l t e r e n u m e r a t o r O f E n t i t i e s T y p e d : t ype
i n C o n t a i n e r : c o n t a i n e r I n s t a n c e
fromTime : s l i c e S t a r t T i m e
endTime : s l i ceEndT ime]

wh i le s t a t e i n l i s t O f S t a t e s
s ta teName = [s t a t e name]

s t a r t T i m e = [s t a t e s t a r t T i m e]
endTime = [s t a t e endTime]

l a t e r S t a r t = [s t a r t T i m e l a t e r D a t e : s l i c e S t a r t T i m e]
e a r l i e r E n d = [endTime e a r l i e r D a t e : s l i ceEndT ime]

addValue : [e a r l i e r E n d t i m e I n t e r v a l S i n c e D a t e : l a t e r S t a rt]
forName : s ta teName

The previous algorithms, one to create the hierarchical structure and the other to define the
value for leaf nodes, are sufficient to apply the squarified treemap visualization. The result of
these algorithms is a hierarchical organization of objects, following the object-oriented pattern.
The squarified treemap algorithm is implemented in the class that defines this hierarchical or-
ganization. This implementation is called just before sending the result to the Triva2DFrame
component, which finally renders the treemap in the window.

In Chapter 4, we also presented the aggregation algorithm that is applied to simplify the
behavior hierarchy created by the Time-Slice algorithm. The aggregation model is also im-
plemented inside the TrivaView component, through a method namedlimitHierarchy which
receives as parameter the hierarchy to be simplified and the new depth of thetree. The imple-

5.5. TIMESLICEVIEW 83

mentation of this method is shown in listing 5.9. The method is basically divided in two parts,
one that does the aggregation, and another to do the recursion in the hierarchical structure. The
first part, where the aggregation takes place, is implemented by obtaining all the children for
a given node, then removing these nodes from the original structure. The obtained nodes are
summarized based on the similar attributes. For example, if an instance of machinecontainer
has multiple process containers as children, which in their turn have two typesof states (each
one with a value); the aggregation algorithm will sum all the values of the same state type, re-
move all the nodes process and create a new node that is child of machine withthe resulting
aggregated value.

Listing 5.9 – Recursive implementation of the visual aggregation technique, applied to simplify
a hierarchical structure generated by the Time-Slice algorithm.
− l i m i t H i e r a r c h y : h ie ra rchyNode toDepth : dep th

i f [h i e ra rchyNode dep th] == dep th &&
[h ie ra rchyNode dep th] != [h ie ra rchyNode maxDepth]

/∗ C r e a t e a summary o f t h e c h i l d r e n a t t h i s dep th∗ /
c h i l d r e n = [h ie ra rchyNode c h i l d r e n] ;
[h i e ra rchyNode removeA l lCh i l d ren]
summary = [h ie ra rchyNode summarize : c h i l d r e n]

/∗ I n s e r t i n g summary nodes back t o t h e t r e e∗ /
f o r e a c h sum i n summary

[h ie ra rchyNode addCh i ld : sum]
e l s e

/∗ r e c u r s e ∗ /
f o r e a c h c h i l d i n [h ie ra rchyNode c h i l d r e n]

[s e l f l i m i t H i e r a r c h y : c h i l d toDepth : dep th]

In the implementation of the aggregation method, we used only the sum function to do the
aggregation. This, however, can be easily changed in the implementation or even transformed
in an option of the user. The possible operators for the aggregation can be any of the operators
discussed in Section 4.3.1.

5.5.2 Drawing with the wxWidgets library

After the creation of the behavior hierarchy, in its original or aggregatedform, the responsibility
of the Triva2DFrame component is to actually draw the rectangles, lines andtextual represen-
tations. As previously stated, the component receives from the TrivaView a hierarchical object-
oriented structure composed of nodes with treemap information already defined, based on the
values defined by the Time-Slice algorithm and the visual aggregation technique.

The Triva2DFrame receives as input this hierarchical structure and goes through it obtaining
information during drawing procedures. Some functions from the wxWidgets library [75] are
used to draw in the visualization window:DrawRectangle, DrawLineandDrawText. The first
function is used to draw the rectangle that represents a given node of thehierarchy. The in-
formation passed as parameter to this function are the width, the height and thebi-dimensional
position in the visualization window. TheDrawLine function is used to draw the timeline in
the bottom of the visualization window. It appears only when the user moves the mouse pointer
close to the bottom region of the window. TheDrawTextfunction is used when the user click
into a rectangle: additional information about what that rectangle represents is drawn.

84 CHAPTER 5. TRIVA PROTOTYPE IMPLEMENTATION

5.6 Summary

This Chapter has presented the implementation of the two visualization models proposed in this
thesis. The first one deals with the three-dimensional representation of application traces to
help developers visualize program behavior together with resources organization. The second is
about the visualization scalability problem through a technique called Time-Slicethat describes
the program behavior in a hierarchy for a given time interval. This secondtechnique is comple-
mented by an aggregation model that, combined with a treemap representation, achieves scalable
visualizations.

The two techniques are implemented in the Triva prototype, which is composed of several
existing libraries and tools, such as the Pajé, GraphViz, Ogre3D, wxWidgets and others. The first
part of the Chapter evaluates the advantages and disadvantages of using some Pajé components,
especially its simulator component. Through a set of performance experiments, we shown that
the current implementation of the tool is scalable enough to most existing parallelapplications.

The second part of the Chapter presents the Triva prototype architecture and its components.
We present the implemented DIMVisualReader module, capable of attaching theDIMVisual into
the Pajé components directly, without passing through a file in its file format. Then, we present
the details of the implementation of the three-dimensional visualization model, givingspecial
attention to the description of the base configuration and how the 3D rendering is implemented.
We end the Chapter with the implementation description of the Time-Slice technique and the
aggregation model.

The next Chapter presents the results obtained with the Triva prototype in different scenarios.
The scenarios range from real experiments in the Grid’5000 platform to the use of synthetic
traces to show the resulting visualizations obtained with the prototype.

Chapter 6

Results and Evaluation

The last Chapter has presented the Triva prototype. It implements the two visualization models
proposed in the thesis: the three-dimensional and the visual aggregation model. The Chapter de-
tails the general architecture of the tool, the implementation of the components andthe external
libraries used to support the handling of graphs and the three-dimensional scene.

The current Chapter shows the results we obtained with the prototype through the visual-
ization of different traces, some of them generated synthetically, and others obtained with real
executions of applications in a distributed and parallel platform. The results are composed of
the visualizations generated by the prototype when the traces are used as input. The main objec-
tive is to verify if the 3D visualizations enable a better understanding of the traces considering
the network topology and if the treemap visualizations computed by the proposed models allow
large-scale analysis. For that, the results are divided in two parts: one that shows the three-
dimensional visualizations, with the representation of the network topology; and the other part
is composed of treemap views, trying to solve the visualization scalability problemof program
analysis. Before diving into the description of the results, we detail in nextSection the different
traces used as input to the prototype.

6.1 Traces Description

As previously described in Chapter 5, the prototype must receive as input a flow of events in the
Pajé format. The flow of events can be generated by using the DIMVisualReader component, or
a file containing all the events. The visualizations offered to the user are always the same, no
matter which of these options are used to enter trace data in the prototype.

This Section explains how the traces used in the prototype were generated or collected. By
generation we mean that a set of traces used in the validation of the tool weresynthetically
created. The synthetic traces are necessary to facilitate the analysis of theprototype and the
visualizations it creates. An example to justify the use of synthetic traces is the complexity of
finding real traces to large-scale situations. The generation of such traces that reflects the be-
havior of applications running in many thousands of nodes is only possible ifa large amount of
resources is available, which is not the case. For these reasons, we implemented two tools to gen-
erate synthetic traces. One of them generates large-scale traces for thevisual aggregation model

85

86 CHAPTER 6. RESULTS AND EVALUATION

implementation, and the other complex topologies for the three-dimensional visualization.
Other set of traces were collected during the execution of parallel applications in distributed

and parallel platforms. KAAPI and MPI applications were used in this case,the former being
executed in the french Grid’5000 platform and the later in a cluster of the Federal University of
Rio Grande do Sul, in Brazil. MPI applications are used for the sake of demonstrating how the
prototype can handle traces from different types of communication libraries.

We believe that these two types of traces – synthetic and collected – illustrate common
problems that are faced by parallel application developers in different situations. Next sub-
sections detail how these traces were obtained.

6.1.1 Synthetic Traces

Section 5.1.1 detailed that a Pajé trace file is composed by three sections: the header, the type
hierarchy and the timestamped events. The header is the only static part of file, where events are
defined with their particular fields. The type hierarchy defines the types that will be present –
such as cluster, machine, processor, processes, functions – and thehierarchy among them. The
type hierarchy must be followed through the rest of the file in the timestamped events region.

Large-Scale Hierarchies

The first synthetic trace generator tool was created targeting the visual aggregation model. The
tool is written in the Python language and receives as parameter a hierarchical structure that
configures the generation of the trace. Listing 6.1 shows an example of configuration file that
is passed as parameter to the tool. The file is organized hierarchically to reflect the type hier-
archy that is generated as output. Each level (eg, Site, Cluster, Machineand Processor) has an
attributecontainerthat indicates the number of instances of that type that must be created by
the tool. In the example, the configuration tells the tool to create 5 different sites, each one with
3 clusters, each cluster with 100 machines and each machine being composedof 4 processors.
The attributesaliasandnameare used by the tool to comply with a trace generation required by
the Pajé format.

Listing 6.1 – Example of configuration file for the large-scale trace generation tool.
c o n f i g = {

’ c o n t a i n e r ’ : 5 , ’ name ’ : " S i t e " , ’ a l i a s ’ : "S " ,
’ c h i l d ’ : {

’ c o n t a i n e r ’ : 3 , ’ name ’ : " C l u s t e r " , ’ a l i a s ’ : "C" ,
’ c h i l d ’ : {

’ c o n t a i n e r ’ : 100 , ’name ’ : " Machine " , ’ a l i a s ’ : "M" ,
’ c h i l d ’ : {

’ c o n t a i n e r ’ : 4 ,
’ name ’ : " P r o c e s s o r " ,
’ a l i a s ’ : "P " ,
’ s t a t e a l i a s ’ : "S " ,
’ s ta tename ’ : " S t a t e " ,

}
}

} ,
’ a p p d u r a t i o n ’ : 20 ,
’ cos ine−max−x−ax is−va lue ’ : 7 . 5 ,

6.1. TRACES DESCRIPTION 87

}

Still on Figure 6.1, the last level of the structure – Processor in the example –receives
additional configurations:statealiasand statenameindicating the presence of a state on the
containers created in that level. The time duration of the synthetic trace is configured through
theappduration. The parametercosine-max-x-axis-valuecontrols the distribution of state values
for the instances of containers in the last level. Its value is used to configure the cosine function
from the interval0 to the configured value. The tool maps the containers instances of the last
level to thex axis of the cosine to find the amount of time – in percentage from 0 to 1 in the
y axis of the function – a given container stays in one of two possible states. The remaining
percentage is used to set the amount of time to the other state.

The graph of Figure 6.1 is configured using the data of the example in listing 6.1. The
graph is used to define the duration of each of the two states available for every leaf instance
container of the hierarchy. Using the configurations, the cosine functionvaries within thex
interval[0, 7.5]. There are 6000 processors (result of the multiplication of allcontainerattributes
value:4 × 100 × 3 × 5). The Figure also shows the definition of duration for the two states for
the container number 4000. The value of the correspondingx value in the lower scale is 5. The
cosine of 5 is 0.28. Since the values of cosine vary between -1 and 1 in the y-axis, we consider
that this value of 0.28 represents 64% of the interval[−1, 1]. So, this percentage is used to define
the amount of time of the State-0 for the container 4000, which is 12.8 secondsconsidering the
total application duration of 20 seconds. The rest (7.2 seconds) is left tothe State-1 of container
4000.

 0 1 2 3 4 5 6 7

 0 1000 2000 3000 4000 5000 6000

value for cosine equation

number of leaf container

State-0 State-0

State-1

State-1

Division for container 4000:
64% for State-0, 36% for State-1

Figure 6.1 – State distribution among leaf containers using the cosine function.

88 CHAPTER 6. RESULTS AND EVALUATION

Although the tool is implemented using the cosine function, it could be easily adapted to
use other trigonometric functions. The way the state generation is implemented limit the study
of different time intervals, as defined by the visual aggregation model. The positive side of
the implementation is that it allows the fast generation of traces composed of hierarchies with
thousands of nodes. The implemented trace generation tool takes less than 3seconds to generate
a hierarchy with more than 150 thousands leaf containers in a four-level hierarchy. A random
state value generation was considered to implementation, but initial tests have shown that the
execution time for large-scale hierarchies is too big when using a random number generator.

Typical Communication Patterns and Complex Topologies

The second synthetic trace generator tool targets the three dimensional approach. The main ob-
jective is to generate trace files with traditional communication patterns, such asthe ones used
by master-slave or divide and conquer parallel applications. Listing 6.2 shows the configuration
file used by this tool. It earns the basic configurations from the previous script, letting the user
configure a hierarchical organization of containers if necessary. Weimplemented four types
of communication patterns: ring, fully connected, star and hierarchical star. The user config-
ures the type of pattern used through the optionapppattern. If the user uses the hierarchical
star communication pattern, an additional option callednchildrenis necessary to configure the
number of children in the communications. For example, if thenchildrenparameter is set to
2, every container will communicate with other 2 containers. Each one of these two containers
will communication with other 2 containers, and so on, forming a hierarchical communication
pattern. The last options in the bottom of the listing are related to the Pajé links configuration.
The optionslinkalias and linknameare used to configure the type hierarchy for the Pajé trace
file, and thelinksourceandlinkdestindicate which types of container can be used by these links.

Listing 6.2 – Example of configuration file for the synthetic communication pattern trace gener-
ation.
c o n f i g = {

h i e r a r c h i c a l d e f i n i t i o n s e c t i o n
’ c o n t a i n e r ’ : 20 , ’name ’ : " Machine " , ’ a l i a s ’ : "M" ,
’ s t a t e a l i a s ’ : "E " , ’ s ta tename ’ : " S t a t e " ,
’ a p p d u r a t i o n ’ : 20 , ’ cos ine−max−x−ax is−va lue ’ : 7 . 5 ,
’ c h i l d ’ : {} # h i e r a r c h y wi th on ly one l e v e l i n t h i s example

communicat ion p a t t e r n s s e c t i o n
’ a p p p a t t e r n ’ : " r i n g " , # r i ng , o r f u l l , o r s t a r , o r h i e r a r c h ic a l−s t a r

p a r a m e t e r s t o " h i e r a r c h i c a l−s t a r " a p p p a t t e r n
’ n c h i l d r e n ’ : 2 , #number o f c h i l d r e n per node

l i n k s c o n f i g u r a t i o n
’ l i n k a l i a s ’ : "P " , ’ l inkname ’ : " L ink " ,
’ l i n k s o u r c e ’ : "M" , ’ l i n k d e s t ’ : "M" ,

}

As previously stated, the four types of communication pattern that can be generated by the
tool are the ring, the fully connected, the star and the hierarchical star. In the ring pattern, each
container communicates exactly with other two containers, forming a single and continuous

6.1. TRACES DESCRIPTION 89

pattern among all nodes. Figure 6.2(a) is an example of this pattern when there are 6 containers
participating of the communications.

(a) Ring (b) Fully connected (c) Star (d) Hierarchical Star

Figure 6.2 – Different communication patterns generated by the second synthetic trace genera-
tion tool.

Figure 6.2(b) shows the fully-connected communication pattern, where all containers com-
municate with all other containers. Figure 6.2(c) shows the star pattern, where all nodes com-
municate with only one node. This type of pattern is typically found in master-slave parallel
applications. The last communication pattern, represented in Figure 6.2(d),is a modified ver-
sion of the star pattern, but with a hierarchical organization where each node has communica-
tions with other two nodes. In the example of Figure 6.2(d), the hierarchy is binary, but other
configurations are also possible.

6.1.2 KAAPI Traces

KAAPI [35] stands for Kernel for Adaptative, Asynchronous Parallel and Interactive program-
ming. It is a library that can be used by C++ developers to create parallel applications. The
applications are composed of tasks and the data dependencies among them. In the beginning of
the application execution, the KAAPI kernel spreads the tasks among the computing resources
available. Afterward, during application execution, the kernel performsload balancing through
work stealing algorithms.

Each KAAPI process executes the tasks defined by the programmer. When the tasks given
to a certain process are finished, the process tries to “steal” the tasks from other processes of
the application. The target process that suffers a steal is chosen randomly by the originating
process. By doing this random steal, KAAPI guarantees good load balancing for the application
at a small cost.

The KAAPI library is internally organized in levels. Common levels of the implementa-
tion include the generic kernel work stealing of threads (Kernel), data flow graph management
(DFG), remote work stealing (WS), network (NET), static scheduling (ST)and the fault tolerant
(FT) levels. Every level implements a sub-set of KAAPI functionalities. TheFT level [11], for
instance, is responsible for dealing with resources outage, such as the loss of processes and tasks
during runtime.

Each level is instrumented in the implementation so its behavior can be traced during appli-
cation runtime. In our work, we have used the events generated in the generic kernel (KERNEL)
and work stealing (WS) levels. These events register the remote work stealing activities of

90 CHAPTER 6. RESULTS AND EVALUATION

KAAPI library, such as the stealing attempts when a given process remains without any task
to execute. Figure 6.3 shows the KAAPI events that are considered in ourwork and how their
combination define the states of a KAAPI process. The eventsCore_Idle_0andCore_Idle_1
are registered in the Kernel level and define the period on which a givenprocess is not execut-
ing tasks defined by the programmer. The eventsCore_RstealandCore_RetRstealdefine the
moment where the KAAPI library is trying to steal a task from another process. Additional in-
formation if the steal was successful or not, and the target process, are also registered. All these
events are registered by theK-Processorthreads of the application, which are responsible for
executing tasks during runtime.

Figure 6.3 – KAAPI Events to monitor the remote work stealing activities of the library.

Still on Figure 6.3, the combination of the KAAPI events allows the definition of three
possible states for a K-Processor: IDLE, RSTEAL and RUN. The IDLEstate is defined as the
time where the processor is not executing tasks. During the IDLE state, the K-Processor can
execute a number of remote work stealing requests, which defines the RSTEAL state. The RUN
state is defined by the period where a given K-Processor is not in the IDLE state.

The traces of KAAPI applications have been obtained in the Grid’5000 platform. For every
execution, the processes register on which machines they were executed, the beginning times-
tamp, and the global KAAPI identifier. This information is registered by another level of the
KAAPI stack, named Util. The registered data is used to properly convert the information to
Pajé traces after the execution.

Considering the Grid’5000 platform as execution environment, KAAPI registers the name
of the machines used in an application execution. The name of the machines, asobtained by
the Domain Name Server (DNS) of Grid’5000, allow the definition of a type hierarchy with the
following levels: Grid, Site, Cluster, and Machine. All this information is obtained from the
machine names. For instance, during a KAAPI execution, each process registers the name of
the machine where it executes. Considering a Sophia-Antipolis machine with thenameazur-
7.sophia.grid5000.fr. From this name, it is possible to obtain the machine –azur-7, the cluster
– azur, and the Grid’5000 site –sophia. The rest of the hierarchy is composed of the global
KAAPI identifier and the instance of K-processor. Therefore, the resulting Pajé hierarchy for
the KAAPI traces is the following: Grid, Site, Cluster, Machine, Process, K-Processor. The
hierarchy is completed with the three possible states for a K-Processor (IDLE, RSTEAL and
RUN).

The conversion of KAAPI traces to the Pajé file format happens with the helpof DIMVisual.
The input modules are able to read the KAAPI trace format and convert them to common Pajé
events, such asPajeSetState, PajePushStateandPajePopState, to handle the definition of the
three states of the K-Processors. Other Pajé events, such asPajeCreateContainer, are used to
create the containers of the type hierarchy of KAAPI traces.

6.2. 3D VISUALIZATIONS 91

6.1.3 MPI Traces

One of the main benefits of using the Pajé file format as input for the Triva prototype is related
to the generic use of the tool. In order to show a different example, we used trace files generated
during the execution of MPI [37] parallel applications. The different applications were the ones
available in the NAS Parallel Benchmark (NPB) [8], which contains a numberof applications
to handle numerical aerodynamic simulations. Since the benchmark includes some applications
developed in Fortran, we considered for the traces only the applications implemented with the
MPI specification and in the C language.

The traces of NAS applications were obtained through the instrumentation of the Mpich
library, using a wrapper for each MPI operation [31]. The wrapper can be enabled through
the presence of the MPE – Multi-Processing Environment, when compiled together with the
Mpich library. All MPI operations are registered using this instrumentation tool. Additional
information in point-to-point and collective functions are also registered, such as the origin and
destination of the messages. As of result of an execution, a single trace filein the Pajé format is
created.

The top part of Figure 6.4 shows some events that are registered by the instrumentation.
For every MPI function, the instrumentation registers the moment it began andwhen it re-
turned. These events are transformed into the Pajé format mainly by using thePajeSetState
event. The stateRUN is used to indicate that no MPI function is currently in execution. Others
states for MPI processes are directly mapped from the names of the MPI operations, giving,
for instance, a stateMPI_BCASTfor a MPI_Bcast operation. The operations that are related to
message-passing, such as point-to-point or collective operations also generatePajeStartLinkand
PajeEndLinkevents.

Figure 6.4 – Events registered during the execution of an MPI application (all MPI operations
are registered).

Since the objective of the MPI traces is to show only that it is possible to handlethis type of
data in the prototype, only small-scale executions were performed in a clusterlocated in Porto
Alegre, Brazil. The NAS benchmark executions used at most 16 machines of the cluster.

6.2 3D Visualizations

The 3D visualizations of the Triva prototype are created by the TrivaView(see Section 5.4 for
details). This component manages the base configuration and the rendering of timestamped
objects in the 3D space. This Section presents the 3D visualizations obtained with the use of

92 CHAPTER 6. RESULTS AND EVALUATION

synthetic and real trace data. The main objective is to observe the capabilitiesof the 3D approach
in the visual detection of communication patterns, and the mapping with the networktopology.

We start with a general description of the 3D visualization generated by the prototype, in
next sub-section. Then, we show the visualization of known communication patterns and finish
the Section with the use of KAAPI traces and topological representations ofGrid’5000 platform.

6.2.1 Description of the Visualization

The basic three dimensional visualization generated by the Triva prototypecan be observed in
Figure 6.5. It shows two processes, A and B, that interact with each other. Different tonalities
of gray represent the possible states in which a process can remain through a period of time. In
the Figure, the light gray represents the Blocked state, and the dark grayrepresents Executing.
RGB Colors are extensively used in the prototype but were removed fromthe representations in
this text. The communication between two processes is represented by a line connecting them.

Figure 6.5 – Simple 3D visualization created by Triva with two processes.

Every state in the visualization can be clicked with the mouse to obtain more information
about it. The related information includes the start and end timestamps for that state instance,
which monitored entity it belongs and the name of the state. The lines that interconnect the
processes can also be clicked to obtain more information.

Figure 6.6 shows another configuration on the visualization base. In the screenshot, we
can notice the presence of two machines representation, X and Y, and a lineto represent the
interconnection among them. The application components, represented by processes from A to
F, are placed according to the location in which they were executed. Processes A, B and C on top
of machine X, the rest on top of machine Y. The lines interconnecting these processes represent
the communications among the processes. In the example, there are inter and intra-machine
communications.

When interacting with the visualization of Figure 6.6, the user is able to obtain information
about every machine and the characteristics of the interconnection in the visualization base. This
information is given to the user if it is available in the resource description file used to configure
the prototype.

The Figure 6.7 depicts the visualization window of the Triva prototype. The graphical in-
terface is managed with the help of the wxWidgets, including the menu, the status bar and the
scrolling bar on the right. The 3D scene is rendered in the middle of the window, as depicted.
All the messages towards the user, such as the information about a state, a process or a link, are
shown through the status bar in the bottom part of the window. Through the menu, the user is

6.2. 3D VISUALIZATIONS 93

Figure 6.6 – Processes representation with network interconnection amongtwo machines.

able to configure the visualization base, the time slice of the current analysis and the options
regarding the movements of the camera inside the 3D space. The menu also enables the config-
uration of the trace files, through the customization of how KAAPI trace files will be read into
the prototype.

The user 3D interactions are implemented directly in the 3D scene, through keyboard events
or mouse movements. The user can, for instance, type the Ctrl key and the left mouse button to
move one of the process representations in the visualization base. Other combinations of keys
enable the selection of more than one process representation to move them together, and so on.
Additional combinations can be easily implemented in the prototype.

Figure 6.7 – The visualization window of the Triva prototype.

94 CHAPTER 6. RESULTS AND EVALUATION

6.2.2 Communication Patterns Analysis

One of the first benefits obtained with the 3D approach is the observation ofcommunication
patterns. These patterns, when visualized through traditional space-time representations, are
hard to analyze since only one dimension is available to depict the way processes interact among
them. Using the synthetic trace generation tool, explained in previous Sections,we generated
simple and known patterns. They include a ring, a fully-connected and a star communication
pattern. Figure 6.8 depicts these three patterns, created using the Triva prototype with three
different traces generated by the automatic trace generation tool.

Figure 6.8 – A ring, a fully-connected, and a star communication pattern visualized with the
Triva prototype.

The leftmost 3D view of Figure 6.8 shows a ring communication pattern, composed of five
processes from A to E. The communication starts in the process A and goes through processes
B, C, D, E and it finally comes back to the origin. We can observe in the vertical dimension that
the beginning of a communication between the process D and E, happens after the reception of a
communication in process D, indicating a sequential ring pattern. This identification, brought by
the 3D approach, enables the user to see the difference in cases that thecommunication occurs
in parallel. The center 3D view of Figure 6.8 shows a fully-connected communication pattern
among the five processes. Observing the vertical axis, we can notice thatthe communications
from one process to others starts in the beginning, close to the visualization base. The third
communication pattern is on the rightmost part of the Figure, showing a star pattern with a
central process. This pattern is commonly used in master-slave parallel applications. The star
view shows an example of master-slave where process A is the master and theothers, from B to
E, are the slaves.

In order to compare the 3D with the traditional space-time visualization, we usedPajé to
visualize the fully connected trace. The final 2D representation is shown on Figure 6.9 with five
processes listed vertically, along with their states in the x-axis. Links are represented by the
arrows. Comparing these views, we can notice some of the benefits of the 3Dapproach, where
the communication pattern is more clearly observed.

The synthetic trace generator is also capable of generating a hierarchical star pattern. Using
a trace generated with this tool in the Triva prototype, we obtain the visualization of Figure 6.10.

6.2. 3D VISUALIZATIONS 95

Figure 6.9 – A fully-connected communication pattern with five processes represented in the
SpaceTimeView of Pajé.

The view shows seven processes with a first level master, the process A, that communicates
with the second level masters, processes B and C. The others processes are connected to the
second level masters and behave as slaves. This communication pattern canbe observed in the
beginning of applications built based on divide-and-conquer algorithms.They show in a first
phase the divisions of work like a hierarchy.

Figure 6.10 – A hierarchy star communication pattern, commonly used in divide-and-conquer
algorithms, with a visualization of Triva.

The analysis of these communication patterns enables the observation of possible problems
in the development of parallel applications. Suppose a developer decidesto create a divide-
and-conquer algorithm. After the implementation, the Triva prototype can be used to analyze
if the communication pattern of the implementation is correct. The developer can also guess
if a different number of levels could improve the performance of the algorithm, by analyzing
the time a certain configuration take to execute. Another benefit of the Trivaprototype is when
the communication pattern of an application is unknown to the developer. In this case, the only
thing to do is to execute the application once and visualize it in the prototype to understand the

96 CHAPTER 6. RESULTS AND EVALUATION

possible patterns of the application under investigation. This is faster and easy to understand
when compared to a traditional code analysis spread in several source files of the application
(assuming it is even available).

6.2.3 KAAPI and the Grid’5000 Topology

This Section describes the results obtained with real application traces gathered from different
experiments with KAAPI applications on the Grid’5000 platform. We selected sixdifferent sce-
narios to present these results, which consider as network interconnection the topology present
in the Grid’5000.

Scenario A: 26 processes, two sites, two clusters

The first scenario is a KAAPI application composed of 26 processes. Each process is assigned
to one distinct machine, resulting in an allocation of 26 machines. Half of them are allocated in
the clusterxiru, atportoalegre, and the other half in the clustergrelon, atnancysite. Figure 6.11
depicts the 3D visualization generated by the Triva prototype of the application trace. The
visualization base is configured to hold the network topology that interconnects both sites. In
this example, we are using a hypothetical topology just to illustrate the analysis.The actual
interconnection betweenportoalegresite and the rest of the Grid’5000 is a VPN, with several
physical hops through the internet.

Figure 6.11 – A side-view generated by Triva with traces from 26 processes.

The first thing to be noticed on Figure 6.11 is the vertical bars representingthe processes
of the KAAPI application. The light gray represents the stateRunand the dark gray represents
the stateStealof a given process, as indicated in the leftmost part of the Figure. We canalso
observe in this Figure the horizontal lines connecting the processes fromdifferent sites. They
represent the work stealing requests performed among the processes of the application. When
the user is interacting with such visualization, it is possible to obtain information for every state
and link represented. If a resource description with additional data about the interconnections
is provided to the prototype, the user is capable to obtain such data through the visualization,
by pointing the mouse to the squares and lines in the base. We can also notice in the Figure the
distribution of steal requests in time.

6.2. 3D VISUALIZATIONS 97

Scenario B: 60 processes, two sites, three clusters

The second scenario is a KAAPI application composed of 60 processes,one per machine, that
are executed in two sites of the Grid’5000. The sitenancycontributes to the execution with
30 machines from the clustergrelon, at the same time that the siterenneshas an allocation of
25 machines from clusterparamountand 5 machines from clusterparaquad. We consider in
this case a topology where every site has its own router, where all clustersfrom that site are
connected to. The routers of the two sites have a direct connection. Therefore, in this example
when a message is sent from a cluster in one site to a cluster in other site, it hasto go through
the two sites routers.

Figure 6.12 shows two screenshots of the Triva Prototype generated during the visualization
of the trace file for this scenario. The text and dashed lines were manually inserted to improve
the understanding of the example. The imageA of this Figure shows the total execution time
with a small time scale, making all objects close to the visualization base. The dashed line on
this image depicts the site separation betweenrenneswith two clusters andnancy, with only
one cluster. We can observe in this time scale that a large number of work stealing requests
occur betweengrelonandparaquadclusters, mostly because of the higher number of processes
executed on them. Analyzing these requests with the network topology, the Triva prototype
allows the user to view that all the requests from these clusters must go through two routers
of the interconnection. Such situation might lead to performance issues. A hierarchical work
stealing is under investigation by the KAAPI team in order to overcome these problems.

Figure 6.12 – Two screenshots of the prototype Triva during the visualization of an application
composed of 60 processes, with different time scales.

The prototype also allows the dynamic change of the time scale, using the mouse wheel. The
imageB of Figure 6.12 shows the total execution time for the traces of this scenario, but with a
larger time scale. Through this image, it is possible to see differences in the work stealing be-
havior in different intervals of time of the execution. It can be noticed that inthe beginning there
is less work stealing requests when compared to the end. It is during the endof the execution
that less tasks are available for execution and processes start to try to steal more. This behavior

98 CHAPTER 6. RESULTS AND EVALUATION

is expected considering the current implementation of KAAPI, where random steal requests are
performed when processes are idle.

Scenario C: 100 processes, three sites, four clusters

The third scenario is an application composed by 100 processes, one permachine, allocated in
four clusters that are in three different sites of Grid’5000. The allocation is as follows: clus-
ter grelon with 30 machines atnancysite; pastelwith 40 at toulouse; and 25 machines from
paramountand 5 fromparaquadat rennessite. The network interconnection here is constructed
as in the previous example. In this scenario, we consider that the three routers are fully con-
nected.

In previous scenarios, we observed screenshots where all the execution time is represented,
sometimes with different time scales. The Figure 6.13 shows two screenshots where only a
part of the execution time is drawn. This is possible in the prototype through an interactive
configuration where the user specifies which time slice is rendered. The image A of the Figure
shows the work stealing requests at the beginning of the application. The dashed lines separates
the three different sites. As on previous cases, each cluster name has anumber which indicates
how many processes are executed on that cluster. We can clearly observe that in the beginning
the number of stealing requests is considerably lower compared to the end ofexecution, shown
on the imageB.

Figure 6.13 – Two visualizations with different time slices of an application composed of 100
processes.

The imageB of Figure 6.13 also shows, through the dashed arrow, the path that all work
stealing requests must follow from the clusterpastelto the clustergrelon and vice-versa. We
can see with the rendering of the network topology that these requests mustgo through two
routers in order to arrive in the destination. The visualization in this case may suggest that big
cluster allocations for this particular execution should be placed in the same site, avoiding two
hops for stealing requests. Small allocations could then be placed on other sites, because of the
smaller number of steal requests generated by these small allocations.

6.2. 3D VISUALIZATIONS 99

Scenario D: 200 processes, 200 machines, two sites, five clusters

The KAAPI application of scenario D is composed of 200 processes, in 200 machines. The
machine allocation is divided in two sites:rennesandnancy. The number of machines allocated
in each site is equal, but inside each site the allocation differs in number of machines per cluster.
The imageA of Figure 6.14 shows the number of machines for each cluster allocated andalso
the network topology that interconnects the two sites. As in previous scenarios, the dashed
line is used to separate the sites. In order to illustrate another benefit of ourvisualization, we
consider for this scenario additional information regarding the network interconnection between
the routers and three clusters. We consider here that the bandwidth available betweenparavent
andgrillon clusters, through the two routers, is of 100 megabits. The link between thegrelon
cluster and its router is of 1 megabit, as depicted in imageA of the Figure.

Figure 6.14 – Two top-views with a network topology annotated with bandwidth limitations,
showing the benefits brought by the 3D approach.

In this scenario, there are 87 processes running ongrelon, and 61 onparaventcluster. Let us
consider only the work stealing requests between these two clusters, as depicted by the dashed
circle of the right image of Figure 6.14. The dashed arrow of the same image indicates that
these requests must pass through the 1 megabit link. The visualization suggests that a smaller
number of processes should be placed in a cluster with such a slow bandwidth. If, for instance,
the processes of clustergrelonwere executed on clustergrillon instead, the execution could have
a better performance.

Through the example of this scenario, we can notice the importance of analyzing the ap-
plication performance together with a topological representation. If this typeof visualization,
such as the one present in imageB of Figure 6.14, is not present, the analyst could obtain wrong
conclusions about the performance of its application.

100 CHAPTER 6. RESULTS AND EVALUATION

Scenario E: 648 processes, two sites, five clusters

The KAAPI library has a random work stealing mechanism. It means that whenever a process
has no further tasks to process, it selects randomly another process to perform a stealing request.
This random behavior is an easy and simple way to perform load balancing,being a distributed
solution that scales well. The scenario E intends to show the resulting communication pattern
caused by the KAAPI work stealing implementation in a large-scale situation with topological
data. The network topology configuration is the same of scenario D, and thesame number of
machines is used to the execution of the application. The only difference here is that a higher
number of processes is launched, resulting in 648 processes.

Figure 6.15 shows a screenshot of the Triva prototype when configured to show the behavior
of all the execution time on top of the network topology. We can see the processes distribution
among the clusters, which square size in the base is directly related to the number of processes
in the cluster. Considering the five clusters of this execution and the randomwork stealing
mechanism, it is expected to find steal requests from all clusters to all others. The four arrows,
drawn manually on the view, put in evidence this behavior for the clustergrelon. We can see
that other clusters also perform steal requests the same way, having as targets processes from all
other clusters.

Scenario F: 2900 processes, four sites, thirteen clusters

The last scenario is an application composed of 2900 processes, executed in 310 machines that
were allocated in clusters of four Grid’5000 sites. The machine allocation is as follows: 60
machines fromlille site (41 -chinqchint, 10 -chti, 3 - chuque, 6 - chicon); 100 fromrennes(61
- paravent, 6 - paramount, 33 -paraquad); 50 frombordeaux(5 - bordereau, 22 - bordeplage,
23 - bordermer); and 100 fromsophiasite (48 -azur, 42 - sol, 10 - helios). The objective of
this scenario is to illustrate different work stealing patterns that arise in different intervals of
time during the execution of a large-scale application. The interconnection topology follows the
same policies as before: each site with a router, all the clusters of a site connected to the site
router. The imageA of Figure 6.16 shows the overall organization of the network topology,
with dashed lines dividing the sites and each cluster representation with its respective name and
number of processes allocated to it.

The total execution time of this application is 74 seconds. The imageA of Figure 6.16 shows
the work stealing requests that happened from the sixth to the sixteenth second of execution.
In this time slice, most of the requests are performed between theparaquadand paramount
clusters. The imageB shows the time slice between the seconds 16 and 26, showing a higher
number of steal requests inside therennessite. The imageC shows another time slice, from the
seconds 26 and 36, with even more steal requests among the clusters and imageD shows the time
slice from the second 36 to 50. This last image has too many steal requests, causing problems in
the perception of the network topology in the visualization base. This problemcan be alleviated
in the prototype by changing the transparency configuration of the links representation. Even
so, the example shows an expected behavior from the KAAPI library, with more steal requests
to the end of the application execution.

6.3. TREEMAP VISUALIZATIONS 101

Figure 6.15 – Top-View generated by Triva showing the random work steal communication
pattern of KAAPI.

6.3 Treemap Visualizations

The implementation of the Triva prototype included the development of the TimeSliceView and
the Triva2DFrame (see Section 5.5 for details). As discussed, the 2D frame is developed to draw
the treemap according to the execution of the Time-Slice algorithm and also the aggregation
model implementation. A number of interaction mechanisms were also implemented in the
prototype to facilitate the analysis. Examples are the use of the mouse wheel to navigate through
the levels of the aggregated hierarchies; the use of two mouse buttons to select one or more states
to analyze them separately; and the selection of the time slice on-the-fly.

An additional and important feature of the treemap rendering implementation is theuse of
the mouse pointer to highlight the hierarchy of a given leaf-node. The highlighting works by
drawing a line in the border of the the leaf-node under the mouse pointer, complemented by
rectangles in the parent nodes up to the root level. This drawings enable the identification of the
hierarchy for a given leaf-node. Moreover, the prototype shows in the status bar of the window
numerical information regarding the node under investigation and also the identifications of the

102 CHAPTER 6. RESULTS AND EVALUATION

Figure 6.16 – Four top-views of an application executed in four Grid’5000sites.

parents. Such interactive capabilities of the Triva prototype can be observed in the large treemap
of Figure 6.17, with the dashed lines highlighting the hierarchical structure of a given leaf node.

This Section presents the results obtained with the treemap visualizations of synthetic and
real trace data using the Triva Prototype. The treemaps presented in this Section were generated
by the prototype and automatically exported to encapsulated postscript files.The main objective
is to evaluate the potential of the proposed technique and to detect if the implementation is
capable of reaching visualization scalability in large-scale situations.

6.3. TREEMAP VISUALIZATIONS 103

We start with a general description of the treemap visualizations generated by the prototype,
in the next sub-section. Afterwards, we present the visualization of a large-scale scenario created
using synthetic trace files; and the analysis of different real-world scenarios using the KAAPI
library and an example of visualization created with a MPI trace file.

6.3.1 Description of the Visualization

To describe the treemap visualizations created by the prototype, let us proceed to synthetic ex-
amples generated with the scripts described in the beginning of this Chapter. The first example
is a hierarchy with three levels: Site – Cluster – Machine. There are two sites,each one with
three clusters, each cluster with five machines. Therefore, the total number of machines is 30.
Each machine can be in the Executing or Blocked state. Figure 6.17 depicts three treemaps that
were generated with different properties. The two smaller treemaps on the left show only the
Executing or the Blocked state, separately. Treemaps separated according to the state enable a
direct comparison of which machines spent more time in a given state.

On the right side of Figure 6.17, the treemap shows in the same visualization the two states
(Executing and Blocked) for all the machines. The inner dashed rectangle indicates the area
reserved to one of the machines. The other dashed rectangles indicate thearea that corresponds
to the cluster that contains the machine and the site that cluster belongs to (the outermost dashed
rectangle). These dashed rectangles were added manually to the treemap of the Figure since the
method used in the prototype to highlight the hierarchy is not good for printing.

Moreover, we can notice that the visualization of more than one state (treemapon the right
of Figure 6.17) enables a direct comparison among the machines but also therelationship among
the states. This relationship is only correct if all the data being visualized is calculated based
on the same metric. In this example, both Executing and Blocked states are calculated based on
the amount of time in the time slice. Since both metrics are time-based, we can comparethem.
In terms of interactivity, the user of the prototype can go from the treemap onthe right to the
treemaps on the left just by clicking the state to be analyzed separately. The user can go back to
the previous view with all the states with another click of the mouse.

The second example illustrates the treemap visualization in different levels considering ag-
gregated values. The example is depicted on Figure 6.18 with four treemaps.The top-left
treemap is the same of Figure 6.17, having the same hierarchy and the same numbers of ma-
chines, clusters and sites. This treemap is rendered in themachinelevel. As before, the Blocked
and Executing states are always represented. The treemap on the top-right shows the aggregated
values in thecluster level, the arrow between the top treemaps indicates that the area indicated
on the left (the machine level) is summarized to the area on the right (the cluster level). In the
middle of the top-left treemap there is a bold line that separates the two sites. Thesecond ar-
row indicates the aggregation from the cluster level to thesite level, shown on the bottom-left
treemap. We can see on this treemap the two sites separation and the aggregated values of Ex-
ecuting and Blocked for each site. The last treemap on the bottom-right is generated using the
maximum aggregation possible, where only the Executing and Blocked states are represented,
considering all sites, clusters and machines below in the hierarchy.

The aggregated treemaps of Figure 6.18 enable the analysis of the states in different levels
of the tree, showing their values for all the nodes. The top-right treemap of the Figure shows,

104 CHAPTER 6. RESULTS AND EVALUATION

Figure 6.17 – Two squarified treemaps showing the statesBlockedandExecutingseparately on
the left, and on the same treemap on the right.

for instance, the Executing and Blocked state for the six clusters of the example (as indicated by
the rounded dashed rectangles). We can clearly see the three clusters per site and the two sites.
The values for the states for a cluster are calculated by the aggregation algorithm considering
the Blocked and Executing states for the machines belonging to that cluster.

Figure 6.18 – Four treemaps to show the per-level aggregation ofBlockedandExecutingstates.

Next sub-sections make extensive use of these representations, especially the aggregated

6.3. TREEMAP VISUALIZATIONS 105

treemaps. For each of the scenarios, we explain the hierarchy used andthe number of items per
level. Most of the following examples use only one or two states for each of the leaves. The only
exception for that is the MPI visualization, where the amount of time for three MPI operation is
also represented.

6.3.2 Large-Scale Visualizations

One of the main benefits of the visual aggregation model, proposed in this thesis, is to easily ana-
lyze a large number of monitored entities on the same screen. In order to assess the visualization
scalability of the approach, we generated a series of large-scale hierarchies using the synthetic
trace generator. The objective is to show how the aggregation model behaves when dealing with
so much information, and how the generated treemaps turn the data more understandable. A
hierarchy composed by 100 thousand processors is analyzed in this Section. Figure 6.19 depicts
the analysis of the chosen hierarchy, composed of four levels: Site, Cluster, Machine, and Pro-
cessor. The hierarchy has 10 sites, each one with 10 clusters, each cluster with 10 machines, and
each machine with 100 processors. Each processor can be in two possible states, represented in
the Figure by the dark and light tonalities of gray.

The large-scale analysis using the prototype starts with the top-right treemapA of the Fig-
ure 6.19, in theprocessorlevel. In this treemap, there are 200 thousand rectangles: 100 thousand
processors times the number of possible states, which is two. We can observe that some regions
of this treemap are darker than others, allowing some analysis. However, any precise conclu-
sion is hard to obtain with such treemap. The main reason is that treemapA has rectangles
that are too small, turning out to be difficult to observe differences in sizesamong two states of
one single processor. The example is shown to present the limitation of the traditional treemap
representation.

The white rectangle drawn manually in the treemapA of Figure 6.19 represents the space
dedicated to one machine. Although it is hard to notice, there are 200 rectangles to represent
the states of 100 processors inside this small area. Because of the fact that is hard to understand
clearly the pattern of states to all 100 thousand processors, the user caninteract with the pro-
totype with the mouse wheel and show aggregated values for themachine level, as depicted in
treemapB of the Figure. This treemap shows for each machine the two possible states. In this
view, it is already possible to visually analyze major differences among the machines: some of
them are significantly more often in one state than other, in the time slice considered to compute
these treemaps. The highlighted area on the left of treemapB, shown through a zoom drawn
manually, corresponds to the area highlighted through the white rectangle oftreemap A.

Subsequent aggregations enable the user to visualize the traces in thecluster level, as de-
picted on treemapC of Figure 6.19, and in thesite level, in treemapD. Treemap C shows the
100 clusters (10 per site). On the left part of this treemap, the black rectangle shows 10 clusters
in the area dedicated for one site. The arrow beginning on this rectangle points to the aggregated
values for that site, on treemap D. The maximum aggregation possible, shownon treemapE,
enables a per state view of the available information, indicating that the state represented by the
light gray color appears more than the other for the selected time slice.

Observing the example of Figure 6.19, we can see the benefits brought bythe aggregation
algorithm. Its implementation in the Triva prototype enables the visualization of several thou-

106 CHAPTER 6. RESULTS AND EVALUATION

Figure 6.19 – Normal (A) and four aggregated treemap visualizations (B – E) of two states for
100 thousand processors (based on synthetic trace).

sands monitored entities, possibly with the presence of a number of states. The example also
illustrates that the performed aggregations enable a better understanding of the behavior of en-
tities in different levels, by interactively grouping the states in the hierarchy. Moreover, we
can also observe that even among the aggregated treemaps, the same general behavior can be
visualized, with a much simpler representation.

6.3.3 KAAPI Work Stealing Analysis

This Section presents the treemap visualizations of the Triva prototype using as input trace files
generated by the KAAPI library. As stated, these traces register the behavior of the work steal-
ing activities of the library to provide load balancing to the parallel applications. The traces
were obtained during the execution of KAAPI applications in the Grid’5000 platform. We se-
lected four different scenarios to explain the possible analysis that can be performed with the
prototype Triva. Each scenario has a different configuration of resource allocation to execute the
applications, and a different number of KAAPI processes involved. For all the treemaps of this
Section, the light gray color of rectangles indicates the RUN state, and the darker gray indicates
the RSTEAL state, for every K-Process of a KAAPI application, or for every level when an
aggregated treemap is presented.

6.3. TREEMAP VISUALIZATIONS 107

Scenario A: 200 processes, 200 machines, two sites

The first scenario is the execution of a KAAPI application composed of 200processes. Each
process is allocated to one machine of the Grid’5000 platform, resulting in an allocation of 200
machines divided equally in two sites of the grid:rennesandnancy. The former site allocation
is the following: 61 machines from clusterparavent, 33 fromparaquad, and 6 fromparamount;
the later is: 86 fromgrelon, and 14 fromgrillon. The treemaps depicted on Figure 6.20 illustrate
the behavior that the application showed during the execution on that allocation, in three different
time slices.

Figure 6.20 – KAAPI Scenario A with an application composed of 200 processes.

The treemapA of the Figure 6.20 is computed using a time slice that corresponds to the
beginning of the application. During this period, we can observe that most of the K-Process
are actually running and not spending time trying to steal tasks. Since the application was
launched in thenancysite, we can observe that the K-Processes belonging to this site occupy
more space when compared to the space occupied by therennessite. TreemapB is computed
based on a time slice of the end of the execution. We can observe that in the end of execution,
the K-Processes spent more time trying to steal tasks from others processes. This is a normal
situation, since when the program approaches the end, new tasks to execute become rare. The
treemapC is computed considering all the execution time for the application. By doing this
broad analysis with a large time slice, we can observe global patterns that might arise for a set
of K-Processes. This actually happens in this example, since this treemap shows that most of
K-Processes maintain the same relation between time spent in Run and RSteal states. This is
observed through the sizes of each state for the processes.

Another thing that is possible to conclude analyzing treemap C of Figure 6.20 isthe load
balancing between the two sites. Since this treemap is computed using the total execution time
and each site has an equal number of allocated machines, we can argue that an ideal situation
for this scenario will be that the area occupied by each of the site in the visualization should
be the same. This will indicate that an ideal load balancing is achieved by the KAAPI work
stealing algorithm. The treemap C indicates that the area for thenancysite is slightly bigger
than the area for therennessite, letting us conclude that an ideal load balancing is not achieved.
The explanation for such behavior can be that the application is launched inone machine of
the nancysite, allowing the K-Processes of this site to start the execution of tasks before the
processes of therennessite. Even so, considering that the areas for each site in the treemap are
only slightly different, we can argue that the load balancing achieved by thework stealing is of

108 CHAPTER 6. RESULTS AND EVALUATION

good quality.

Scenario B: 400 processes, 50 machines, one site

The second scenario with KAAPI traces is an application composed of 400 processes executed
in 50 machines of thebordeauxsite of Grid’5000. In the experiment, the allocation is composed
of 23 machines from thebordemercluster, 22 from thebordeplageand 5 from thebordereau.
The two treemaps of Figure 6.21 are computed using the traces from this scenario. The bold
lines in both treemaps separate the three clusters involved in the execution.

The treemapA of Figure 6.21 shows all the processes with the Run and RSteal states. We
can notice in this treemap that there are some K-Processes that spent an unusual amount of time
in the RSteal state when compared to the others processes. This might indicatea problem in the
machines that execute those processes, since each machine received eight K-Processes to exe-
cute. The treemapB, on the right, is computed using as parameter the same time slice but only
the RSteal state. Treemap B also shows the amount of seconds for the larger areas, indicating
that processes with unusual behavior spent around 40 seconds trying to steal tasks from others.
Since only one Grid’5000 site was used and the allocated clusters are interconnected with local
networks, the probable cause of these anomalies should not be attributed tothe network. The
only remaining explanation for such behavior is related to the amount of K-Processes executed
per each machine.

Thebordemerandbordeplageclusters have machines with 2 CPUs. Thebordereaucluster
has machines with 4 CPUs. As stated, there is 400 processes and 50 machines on this scenario,
resulting in 8 processes per machine. We can observe in the Figure 6.21 that only K-Processes
in clusters with 2 CPUs ended with an unusual behavior. A possible explanation is the overload
of processes on those machines when compared to the machines of thebordereaucluster, with
4 CPUs each, that did not show the odd behavior.

Figure 6.21 – KAAPI Scenario B with an application composed of 400 processes.

6.3. TREEMAP VISUALIZATIONS 109

Scenario C: 2900 processes, 310 processors, four sites

The third scenario is a KAAPI application with 2900 processes, executed in310 machines that
were allocated in clusters of four Grid’5000 sites. The machine allocation is as follows: 60
machines fromlille site (41 -chinqchint, 10 -chti, 3 - chuque, 6 - chicon); 100 fromrennes(61
- paravent, 6 - paramount, 33 -paraquad); 50 frombordeaux(5 - bordereau, 22 - bordeplage,
23 -bordermer); and 100 fromsophiasite (48 -azur, 42 -sol, 10 -helios). The objective of this
scenario is to show that the prototype is able to deal with large trace files with events from an
application executed in a real platform. As stated, there are two possible states for each of the
2900 processes. This results in a treemap that must draw 5800 rectangles. Figure 6.22 illustrates,
in treemapA, all these rectangles that together represent the behavior of 2900 K-Processes. Bold
lines indicate Grid’5000 cluster division.

The treemapA of Figure 6.22 shows the Run and RSteal states for all the processes. The time
slice used to compute the treemap is the total execution time of the application. We can notice
in this scenario that the amount of time spent with work stealing requests is verysmall. In the
treemapA, it is difficult to perceive the rectangles that represent the state RSteal. The treemap
B, on the top-right, depicts only the Run state for all the processes. Analyzing the screenshot,
it is possible to conclude that almost all K-Processes spent the same amountof time executing
tasks. The only exception is the K-Processes located in thechti cluster, in the bottom-middle
region of treemapB. They have smaller rectangles indicating less time in the Run state.

The treemapC of Figure 6.22 shows, on the other hand, only the RSteal state for all K-
Processes. Differently from the Run state, here we can notice different rectangle sizes indicating
that some processes spent more time stealing tasks than others. This might indicate for example
which processes are executed on faster machines, finishing their tasks more frequently; or can
indicate processes that execute more unsuccessful steal requests when idle. The treemapD of the
same Figure shows the RSteal state, but now aggregated by machine. Analyzing this treemap,
we are able to detect instantaneously which machines spent more stealing. The white rectangles
on treemap C and D indicate an example of aggregation of the RSteal states of ten K-Processes to
the machine where they executed. A possible reason for such behavior isthe work propagation
at the beggining of the execution.

Scenario D: 188 processes, 188 machines, five sites

The fourth scenario is an application of 188 processes, executed in 188machines, distributed
in five sites of Grid’5000 including the cluster from Porto Alegre, Brazil. There are 13 ma-
chines allocated from the clusterxiru, atportoalegresite; 2 frombordereau, 17 frombordemer,
and 6 frombordeplage, at bordeauxsite; 45 frompastel, 5 from violette, at toulouse; 14 from
paramount, 36 fromparaquad, at rennes; and finally 50 fromgreloncluster atnancysite. The
Figure 6.23 shows two treemaps calculated with the traces generated by the application of this
scenario.

The treemapA shows the Run and RSteal states for all the 188 processes. Almost all pro-
cesses show the same behavior, with a bigger Run state (the light gray areas) compared to the
RSteal state (the dark gray areas). The only exception appears in the K-processes executed in
the portoalegresite, highlighted manually with the dashed circle. Observing this treemap, we

110 CHAPTER 6. RESULTS AND EVALUATION

Figure 6.22 – KAAPI Scenario C with an application of 2900 processes.

notice that these processes spent more time stealing tasks than the processes from other sites.
The treemapB, on the right, shows the same time slice and the same processes, but only the
RSteal state. Here, the difference in the time spent stealing tasks become even more evident.
We believe that the main reason behind this behavior comes from the interconnection of the
sites. Theportoalegresite is located in Brazil, and its connection with the Grid’5000 is made
through a Virtual Private Network (VPN) that is maintained through the internet. The latency of
this interconnection compared to the general latency among Grid’5000 sites located in France
is significant. The traditional work stealing algorithm inside KAAPI do not differentiate from
which processes a given process will try to steal. This, in a heterogeneous interconnection en-
vironment, may lead to more time spent trying to steal, as indicated by the treemap computed
with our Time-Slice technique.

Generally speaking, the Time-Slice algorithm combined with the aggregation model of this
thesis enables an easy identification of performance issues when comparing the behavior of
processes of a parallel application. The aggregation model brings theseadvantages to large-scale
situations, no matter how many processes are involved in the analysis. The only step necessary
to make both proposals work well in large-scale environments is to set a proper hierarchy with at
least some levels. The hierarchies used through out the KAAPI scenarios have five levels, which
already allows the analysis of several thousands of processes.

6.3. TREEMAP VISUALIZATIONS 111

Figure 6.23 – KAAPI Scenario D with an application composed of 188 processes.

6.3.4 MPI Operations Analysis

The experiment described here uses traces generated during the execution of a MPI application.
The traces were described in the beginning of the Chapter, recording theexecution of MPI
operations. The objective here is to show that the Triva prototype is also capable of analyzing
MPI applications, because of the use of the generic Pajé file format as input.

The scenario for the MPI experiment is as follows. We executed the EP application, part
of the NAS benchmark, using 32 processes in a cluster where each nodehas 8 processors. The
tracing mechanisms registered the following MPI operations during the execution of the MPI
application:MPI_Init, MPI_Barrier andMPI_AllReduce. For each of these operations, there is
one state of the same name. We use the state Running to indicate the time spent outside of MPI
operations. The hierarchy defined in the traces is flat, only with the MPI process level.

The analysis of the scenario is depicted on the treemaps of Figure 6.24. ThetreemapA
shows the amount of time spent in each of the states. We can notice that there are some dif-
ferences among the processes, as illustrated by the dashed rectangles of two MPI processes.
The square on the right of the treemap A shows a zoom to the MPI Process rank 21, where the
correspondence of gray tonalities and the states are noted. On the Figure, the treemapB shows
the amount of time all the processes spent in theMPI_Init state. The numbers in the rectangles
indicate the amount of time for the process, an information that can be obtainedby pointing the
mouse to that region of the window in the Triva prototype. We can notice significant differences
of time spent on the init state. TreemapC has the same single state rendering, but here using the
time of theMPI_Barrier operation. We can observe that the behavior of the init and barrier state
are very similar, possibly indicating that the implementation of the MPI init operationis close to
the implementation of a barrier. On the bottom of the Figure, the treemap shows themaximum
aggregation considering all the 32 processes. Analyzing this aggregated view, it is possible to
observe that the time spent in MPI operations is greater than the Running state, where the code
of the application is probably placed.

112 CHAPTER 6. RESULTS AND EVALUATION

Figure 6.24 – Behavior of the EP application of the NAS Benchmark using treemaps and the
aggregation technique.

Chapter 7

Conclusion and Future Work

Traditional visualization schemes for the analysis of parallel applications are designed to handle
monitoring data collected at small scale and in regular environments. The necessity of visual-
ization techniques for the analysis of parallel applications on highly distributed systems, such as
grids, motivated this work. Two particular problems of the traditional analysisof applications
have been identified in this thesis.

The first one is the impact of the network interconnection on the execution ofparallel appli-
cations. This impact must be outlined in the analysis in order to better understand and improve
the application performance. Traditional visualization techniques, such asthe space-time repre-
sentation, are widely used for the analysis of applications. These techniques, however, cannot
show in the same screen the network topology and the monitoring data from the application.
This might lead to wrong conclusions during the detection of performance issues of applica-
tions. The second problem is the visualization scalability of traditional techniques. Usually, the
number of monitored entities that can be analyzed on the same screen is often limited to the
vertical size of computer screens. Space-time representations are a clear example of this matter,
being not well suited to grid applications composed of thousands of processes.

The main idea behind this thesis is to explore information visualization techniques that can
be used to visualize parallel applications. Our first approach is the three dimensional visualiza-
tion, where the base of this visualization is used to detail the resource/application organization,
and the third axis to show the evolution of the application through time. We have implemented
three different base configurations within the 3D approach: the representation of the network
interconnection with application behavior; the representation of the applicationcommunication
pattern and another to observe processes balance on the resources.

The second approach is the visual aggregation model, where the scalabilityproblems of
traditional visualization tools are solved through a combination of the treemap technique and
the Time-Slice algorithm. This algorithm takes into account intervals of time to generate values
and inject them in a hierarchical organization of the application being analyzed. This structure
is then passed out to the treemap technique that renders the visualization. The visualization
scalability is achieved through the aggregation model, where the levels of the hierarchy are
explored to create intermediary information that can be used to help the analysis from the most
detailed view to the most general one.

113

114 CHAPTER 7. CONCLUSION AND FUTURE WORK

Both approaches are implemented in a prototype called Triva, developed using a 3D render-
ing engine called Ogre, GraphViz, some of the Pajé components, and an implementation of the
squarified treemaps from scratch. The prototype has a reading mechanism that links it with the
DIMVisual integration library, capable of integrating monitoring data from different sensors and
formats. Synthetic traces, but also real trace data from KAAPI and MPI applications are used to
validate the approaches and the implementation. KAAPI traces used in this thesiswere collected
in the Grid’5000 platform. Although the prototype validation is attached to these traces, the use
of the generic Pajé file format allows the extension of the benefits brought by the implementa-
tion to other fields and applications, from resource visualization to other types of communication
libraries.

The obtained results are promising. The three-dimensional visualization, analyzed in the
results Chapter, allows a better understanding of applications communicationsin contrast with
the network topology. We were able to show in different time slices that the work stealing could
benefit from more locality, since the current implementation of KAAPI do not take into account
network information to perform work stealing requests. On the other hand,the results obtained
with the visual aggregation model implementation allowed the visualization of the states of 100
thousand processors, generated synthetically. The treemaps defined by the Time-Slice algorithm
were also generated using real trace data from KAAPI and MPI applications. We were able to
identify in KAAPI traces different aspects, such as a different behavior in stealing mechanisms
presented by some processes, load-balancing efficiency consideringall the execution time, and
the analysis of a large-scale KAAPI application, composed of almost 3 thousand processes in
Grid’5000.

In summary, the main achievements of this thesis are the proposal of the 3D approach, the
visual aggregation model combined with the Time-Slice technique and the Trivaprototype im-
plementation. Other achievements include the interaction between KAAPI and theprototype,
allowing the analysis of KAAPI work stealing activities.

Next Section presents the publications that came from this thesis. Section 7.2 discusses the
perspectives and implications of this thesis.

7.1 Publications

Some results of the thesis were published in the following papers:

• Visual Mapping of Program Components to Resources Representation: a 3D Analy-
sis of Grid Parallel Applications. The 21st Symposium on Computer Architecture and
High Performance Computing, SBAC-PAD. 2009. IEEE Press. Sao Paulo, Brazil.

– This paper presents the use of the three-dimensional approach to map parallel ap-
plications components on top of a resource representation. The paper describes the
abstract model that generate this 3D configuration, showing at the end some exam-
ples of KAAPI parallel applications visualized together with the Grid’5000 network
topology.

7.2. IMPLICATIONS AND PERSPECTIVES 115

• Visualization of Parallel Applications: Results of an International Collaboration .
Colloque d’Informatique: Brésil / INRIA, Coopérations, Avancées etDéfis. Colibri 2009.
Bento Goncalves, Brazil.

– This 4-page paper presents the overall proposal of this thesis, including the two
visualization models. The paper is also focused on presenting the international col-
laboration between UFRGS and INPG, through the co-advising agreementof the
student.

• Towards Visualization Scalability through Time Intervals and Hierarchical Organi-
zation of Monitoring Data . The 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID, 2009. Shanghai, China.

– This paper presents the Time-Slice algorithm when used to summarize states of a
parallel application. The paper also presents basic concepts of the treemap represen-
tation and how they are used to provide a visualization for the hierarchies generated
with the Time-Slice algorithm. The hypothesis of the paper is validated with the
visualization of KAAPI traces composed of almost three thousands processes.

• 3D Approach to the Visualization of Parallel Applications and Grid Monitoring In-
formation . The 9th IEEE/ACM International Conference on Grid Computing, GRID,
2008. Tsukuba, Japan.

– The paper presents the overall view and general structure of the 3D approach. Be-
sides presenting the generic abstract model to create such representations, the paper
also detail the visualization of synthetic and well-known communication patterns,
but also the visualization of KAAPI traces.

• Triva: Interactive 3D Visualization for Performance Analysis of Parallel Applica-
tions. Accepted in the Future Generation Computer Systems Journal, of Elsevier.

– This 24-page journal paper presents the 3D approach, the abstract component model
and results. It is strongly based on Chapter 3 of this thesis, with some three-dimensional
visualizations obtained with the prototype as presented in Chapter 6.

7.2 Implications and Perspectives

There are several perspectives considering the two visualization modelsproposed in this thesis.
The three-dimensional model, today, shows every detail about all the monitoring entities. A pos-
sible evolution of this behavior is the view of aggregated data. Therefore,instead of showing all
the links in a time interval, the program would show just one link that representsthe aggregated
information. Visually, the link could be rendered according to the information itrepresents: big-
ger when more information is contained within, smaller otherwise. Such representation could
also be extended to the states of a monitored entity.

Many other types of information for the Time-Slice algorithm still need to be studied. We
basically analyzed only states in our results, because most of our traces are composed by states

116 CHAPTER 7. CONCLUSION AND FUTURE WORK

for the processes. Other information, such as links, variables, events,must also be studied
and explored. Particular investigation should be conducted in the case of the links, where we
left open in our model to which node attribute a summary value: the origin or the destination.
Depending on the type of information being evaluated, a situation may be better than another.

The evolution of the aggregation model with other aggregation functions is also possible.
Although we discussed briefly the use of other functions, we used in our results only the addition
aggregation. Functions such as max, min, mean must be studied, particularly when other type
of summary data is generated by the Time-Slice technique. User defined aggregation functions,
based on the available monitoring data must also be analyzed.

For the 3D approach, a possible perspective is to improve the visual mapping between the
network topology and the communication pattern of the application, through the use of curved
lines to represent communications. Besides the matching that is already modeledin the 3D
approach, the abstract treatment of data should also consider other types of information, such
as the size of links and nodes. This should be reflected directly in the visualrepresentation.
Generally speaking, this perspective means that a graph must serve as abase to the rendering
of another graph. The representation could also be guided according torouting rules of the
interconnection, when they are available from the execution environment. The 3D approach
might also be used to the visualization of parallel applications in many-core chips, where a
network-on-chip is present inside the processor.

A third possible evolution is the merging of the hierarchical organization of monitoring data
with a graph representation. This could be explored in the visual aggregation model by defining
in every level of the hierarchy, a graph to represent interactions. Thelinks of this graph could be
annotated with aggregated data, as we already do in the Time-Slice technique.An example of
application for such evolution is the merging of processes of a parallel application.

Perhaps the most significant implication of this work is the study of information visualiza-
tion techniques applied to the parallel application analysis. Since we used a study like this as
inspiration for the thesis, we think that it can be continuously faced as motivation for new work.

Appendix A

Extended Abstract in Portuguese

The Portuguese title for this thesis is“Alguns Modelos de Visualização aplicados para a Análise
de Aplicações Paralelas”. The extended Portuguese abstract is presented here to fulfill the
requirements established in theco-tutelleagreement of the author.

The abstract of this appendix is basically a Portuguese translation of the moreimportant parts
of the English version of this thesis, especially the introduction of the chapters and main concepts
of the proposed visualization models. Two experimental scenarios of the maindocument were
selected for the sake of demonstrating some results in this extended abstract.

117

118 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

A.1 Introdução

Sistemas distribuídos consistem basicamente em hardware e software que contêm mais de uma
única unidade de processamento [19]. Nestes sistemas, os processadores são interconectados e
comunicam através de uma rede. Os programas de computador são quebrados em várias partes e
devem lidar com diferentes níveis de paralelismo e com algoritmos de comunicação, como pas-
sagens de mensagem e memória compartilhada. Um exemplo de sistema distribuído échamado
de Grid [30]. Estes tipo de sistema é estruturado em organizações virtuais [29], possivelmente
compostas por milhares de máquinas distribuídas geograficamente. Dois exemplos de Grid são
o Grid’5000 francês [12] e o TeraGrid americano [16].

Características compartilhadas por quase todas as plataformas Grid são dinamismo, hetero-
geneidade de recursos e software, e presença de múltiplos domínios administrativos. Dinamismo
significa que os recursos que participam de um Grid pode se tornar indisponíveis a qualquer hora,
sem nenhuma notificação de que isso pode acontecer em um determinado momento. Aplicações
paralelas devem lidar com isso no nível da aplicação ou através de uma biblioteca capaz de lidar
com flutuações na quantidade de recursos disponíveis. A heterogeneidade significa que difer-
entes configurações de recursos pode estar presentes na mesma plataforma Grid. Isto também
é válido para bibliotecas de software. Um Grid pode estar espalhado por diferentes domínios
administrativos, cada parte mantida independentemente por seus administradores. Além destas
características, um Grid também pode ter uma rede de interconexão complexae ser facilmente
escalável quanto aos seus recursos.

A interconexão entre os recursos de um Grid pode ser composta por diferentes tipos de
rede. Ela pode ser composta por tecnologias Ethernet, Myrinet, Infiniband, ou fibra óptica.
Um exemplo de Grid com vários tipos de interconexão são os chamados Desktop Grids [48],
como os projetos BOINC [1] e Seti@Home [2], onde a interconexão é em geral feita através
da internet. Outro exemplo que evidencia a presença de múltiplos tipos de interconexão é um
Grid composto por clusters, onde uma hierarquia de interconexão forte é usada para conectar
clusters homogêneos [12]. A presença de vários tipos de interconexãoé um reflexo natural da
heterogeneidade e da distribuição geográfica de Grids. Estes aspectosimpõe uma rede mais
complexa, um número maior de saltos para comunicação entre processos e latência e largura de
banda variáveis e diferentes ao longo do tempo.

Plataformas Grid são também facilmente escaláveis, de uma forma que novos recursos po-
dem ser indefinidamente adicionados apenas conectando eles aos participantes existentes. Nor-
malmente, estas adições de recursos trazem mais heterogeneidade e aumentam a complexidade
da rede. Atualmente, existem Grids globais que são compostos por milhares decomputadores,
como o exemplo do projeto BOINC. Outro exemplo de quão fácil é a adição de novos recursos
a um Grid é o caso do Grid’5000, onde novos clusters são adicionados ao backbone principal da
plataforma. A escalabilidade destas plataformas é uma boa característica do ponto de vista das
aplicações paralelas, que necessitam cada vez mais de mais recursos computacionais.

Todas essas características de plataformas Grid influenciam diretamente o comportamento
das aplicações paralelas durante o seu desenvolvimento e execução. Por causa disto, é impor-
tante para o desenvolvedor entender o impacto do sistema distribuído sobre aaplicação. Um
exemplo disso é a análise de aplicações considerando a topologia da rede.A aplicação pode ter

A.1. INTRODUÇÃO 119

um melhor ou pior desempenho dependendo de quais recursos foram escolhidos e a interconexão
entre eles. Esta influência é ainda mais evidente quando os aspectos da rede são considerados,
como a latência e a largura de banda, em aplicações que são limitadas pela rede. A escalabilidade
de um Grid é outro aspecto que também influencia diretamente o comportamento das aplicações
paralelas, uma vez que a disponibilidade de novos recursos para a aplicação não indica sempre
que um melhor desempenho será alcançado.

Considerando estas situações, podemos perceber que é importante analisar o comportamento
das aplicações paralelas com informações do Grid. Esta análise pode ajudar desenvolvedores a
entender o impacto da topologia da rede na aplicação por exemplo. Contrastando o padrão de
comunicação da aplicação com a topologia da rede pode dar dicas ao desenvolvedor de como
adaptar a aplicação para melhor explorar tal interconexão. Além disso, se a rede é hierarquica-
mente organizada, as aplicações podem seguir a hierarquia da rede para evitar gargalos e outros
problemas de desempenho se a aplicação não é estruturada hierarquicamente. Uma boa análise
também deve levar a conclusões sobre todos os processos da aplicação, incluindo padrões lo-
cais e globais que podem aparecer entre eles. Se existe uma grande quantidade de processos, a
análise deve ser capaz de gerar resultados sobre todos eles.

A visualização é uma forma de realizar a análise de aplicações paralelas. Elatem sido bas-
tante utilizada nos últimos 30 anos para entender e observar aplicações quesão focadas em
diferentes níveis de paralelismo. A forma mais tradicional de visualização acontece através de
uma adaptação de gráficos Gantt [79], também conhecido como gráficos espaço-tempo. Es-
tas visualizações listam os componentes da aplicação verticalmente e sua evolução no tempo é
demonstrado no eixo horizontal. Exemplos de ferramentas que oferecem este tipo de análise são
o Pajé [22], Vampir [60] entre outras [46, 63, 5]. Gráficos espaço-tempo são bastante usados em
plataformas existentes, como clusters, onde os dados são simples e uniformes.

Muitas dessas ferramentas de visualização foram adaptadas para observar o comportamento
de aplicações em sistemas distribuídos como Grid. Geralmente elas continuam usando as mes-
mas técnicas de visualização. Considerando somente representações espaço-tempo, o primeiro
problema que surge é que elas não podem representar, juntamente com osdados da aplicação,
a complexa topologia de rede de plataformas Grid. Como discutido, o impacto dessa topologia
não pode ser excluído de uma análise de aplicação quando uma interconexão complicada existe
entre os recursos. O segundo problema é relacionado com a escalabilidade de visualização de
gráficos espaço-tempo. Usando tais representações, o número de componentes da aplicação que
podem ser visualizados uma tela de computador é limitado à resolução vertical da tela.

Esta tese tenta resolver estes problemas encontrados em técnicas de visualização tradicionais
para aplicações paralelas. A idéia principal dos esforços consiste em explorar técnicas da área
de visualização da informação e tentar aplicá-las no contexto de análise de programas paralelos.
Levando em conta isto, esta tese propõe dois modelos de visualização: o detrês dimensões e o
modelo de agregação visual. O primeiro pode ser utilizado para analisar aplicações levando-se
em conta a topologia da rede dos recursos. A visualização em si é composta por três dimensões,
onde duas são usadas para mostrar a topologia e a terceira é usada pararepresentar o tempo. O
segundo modelo pode ser usado para analisar aplicações paralelas comuma grande quantidade
de processos. Ela explora uma organização hierárquica dos dados demonitoramento e uma
técnica de visualização chamada Treemap para representar visualmente a hierarquia. Os dois

120 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

modelos representam uma nova forma de analisar aplicação paralelas visualmente, uma vez que
eles foram concebidos para larga-escala e sistemas distribuídos complexos, como Grids.

Alguns dos conceitos desta tese foram publicados e um artigo está em processo de avaliação.
Este resumo estendido está organizado em cinco seções, descritos a seguir:

Seção A.2: O Modelo Tri-Dimensional
Esta seção apresenta o primeiro modelo desta tese, composto da abordagemem três di-
mensões. Nele, descrevemos a concepção do modelo visual e uma visão geral dos com-
ponentes abstratos capaz de gerar visualizações 3D.

Seção A.3: Modelo Visual de Agregação
A seção apresenta a concepção do algoritmo de fatia de tempo para a transformação do
comportamento de uma aplicação em uma hierarquia, além do modelo de agregação usado
para se atingir escalabilidade visual no uso de representações Treemap.

Seção A.4: O Protótipo Triva
Esta seção apresenta o protótipo desenvolvido ao longo desta tese. O foco da descrição
neste resumo fica na parte da visão geral dos componentes que fazem parte da implemen-
tação.

Seção A.5: Resultados e Avaliação
A seção apresenta os resultados obtidos com o protótipo Triva na avaliação dos modelos
propostos. Dois cenários são apresentados: um relacionado ao tri-dimensional, e outro ao
modelo de agregação visual.

Seção A.6: Conclusão
Os principais resultados são relembrados e as perspectivas delineadas.

A.2. O MODELO TRI-DIMENSIONAL 121

A.2 O Modelo Tri-dimensional

O desempenho de aplicações Grid está relacionado às características da rede de interconexão
[49]. Quando os recursos tem uma forte hierarquia entre eles, a escolha dos recursos dados a
uma aplicação pode ser decisivo para o desempenho e também para o entendimento da aplicação.
Sem informações da topologia da rede, o analista pode não ser capaz de perceber que eventuais
problemas na aplicação são devido a limitações do nível da rede. As decisões tomadas por uma
visualização tradicional da aplicação, neste caso, podem levar a conclusões erradas sobre o mau
desempenho. Sendo assim, se fossemos capazes de analisar a aplicaçãolevando-se em conta
características da rede, nós veríamos mais claramente as razões do comportamento da aplicação.

A maioria das ferramentas de visualização não são capazes de efetuar umaanálise levando-
se em conta a topologia da rede. ParaGraph é a única ferramenta que apresenta uma noção de
interconexão em suas técnicas de visualização, embora provendo apenas visualização de hiper-
cubo e padrões de comunicação, separadamente. Na realidade, ParaGraph não foi concebido
para a análise de aplicações de larga-escala. Outras técnicas, como espaço-tempo ou baseadas
em grafo, usadas em outras ferramentas de visualização, também não são capazes de apresenta
a topologia da rede com as comunicações de aplicações paralelas. Neste caso, a limitação é
relacionado a forma como os recursos e componentes da aplicação são desenhados, feito em
um espaço linear. Quando a plataforma de execução se torna maior e mais complexa, mostrar a
topologia da rede em uma visualização espaço-tempo se torna impraticável.

Nossa proposta de fazer uma ligação entre a análise da aplicação e a topologia da rede é
baseada em um esquema composto de três dimensões. Uma das dimensões é o tempo, e as outras
duas dimensões são usadas para representa a topologia da rede. A próxima seção apresenta a
concepção visual do nosso modelo, e a seção seguinte apresenta o modelo de componentes
abstratos que pode ser usado para se gerar tal visualização.

A.2.1 Concepção Visual

A concepção visual do nosso modelo consiste na combinação de técnicas de visualização que
mostram o comportamento da aplicação com técnicas que mostram dados estruturais ou estatís-
ticos. Se dados estruturais são utilizados, a topologia da rede pode ser usada juntamente com
o comportamento da aplicação. Se dados estatísticos são aplicados, o usuário pode simplificar
quantitativamente o comportamento da aplicação, em diferentes escalas e fatias de tempo.

O resultado da concepção visual é o modelo tri-dimensional. O modelo tem duasdimensões
reservadas para as representações estruturais e estatísticas. Nós nomeamos estas duas dimen-
sões como a base da visualização 3D. A terceira dimensão é a linha do tempo. A Figura A.1(a)
mostra um exemplo da abordagem 3D para representação de dados da aplicação. Os estados
dos processos são representados como barras verticais que são posicionadas em cima da base
da visualização. Os diferentes estados ao longo do eixo do tempo podem ser representados
por diferentes cores. Cada representação de estado é colocada verticalmente seguindo suas mar-
cações de início e fim. Comunicações são representadas como flechas ou linhas no ambiente 3D,
conectando dois ou mais processos que se comunicam. A Figura A.1(b) mostra a visualização
de um diferente ponto de vista, localizado sobre os objetos representados. Esta visão permite a
observação do padrão de comunicação da aplicação, por exemplo.

122 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

(a) Concepção visual da abordagem 3D. (b) Visualização a partir do topo.

Figura A.1 – Concepção visual da abordagem 3D com rastros de aplicação representados por
barras verticais representando o comportamento de processos ao longo do tempo.

A.2.2 Modelo de Componentes

Para criar uma visualização 3D, os rastros coletados das aplicações devem passar por uma série
de transformações. Para tal, definimos aqui um modelo de componentes abstratos. A Figura A.2
apresenta a organização geral deste modelo. Como entrada, o modelo usadois tipos de infor-
mação: rastros de aplicações paralelas e um arquivo de configuraçãocontendo a descrição dos
recursos do ambiente de execução.

Figura A.2 – Modelo de componentes abstratos da abordagem 3D, com as três configurações
possíveis para a base da visualização.

A base da visualização é configurada pelo componenteEntity Matcher(C). Desenvolve-
mos três diferentes configurações para o mesmo: uma que mostra o padrão de comunicação da
aplicação; outro que mostra este padrão combinado com a topologia da rede; e o último é a
combinação dos dados da aplicação com uma representação lógica dos recursos. O componente
escolhe uma dessas visualizações de acordo com a escolha do usuário.

Entre as três alternativas modeladas noEntity Matcher, a que considerada topologia da rede

A.2. O MODELO TRI-DIMENSIONAL 123

(C.2) lida diretamente com o problema da influência da interconexão na aplicação. As outras
alternativas são apresentadas para mostrar outras informações estruturais (o padrão de comuni-
cação) e uma representação estatística com detalhes de comportamento ao longo do tempo.

Nós consideramos no modelo que existem arquivos de rastros disponíveispara a leitura,
os quais guardam eventos que geram um fluxo que atravessa os componentes da Figura A.2
da esquerda para a direita. Mesmo assumindo arquivos como entrada, oscomponentes podem
funcionar independentes da como os dados de rastreamento são injetadosno modelo. Sendo
assim, o modelo é capaz de lidar com uma geração online de eventos quando aquantidade dos
mesmos não é tão grande. Notificações podem também ocorrer no modelo doscomponentes de
visualização em direção aos outros componentes, para propagar configurações e mudanças no
comportamento iniciadas por comandos de usuário.

124 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

A.3 O Modelo Visual de Agregação

Outra questão relacionada a aplicações Grid é que elas podem ser compostas de uma grande
quantidade de processos. Algumas análises já são possíveis com grandes aplicações [50], mas
somente em clusters. Várias questões surgem em ambientes Grid ao analisaraplicações de
larga-escala. Uma primeira é a grande quantidade de dados de monitoramento, que dependem
de dois fatores: o número de entidades monitoradas, e a quantidade de detalhe coletada de cada
entidade. Outra questão é a escalabilidade visual [26] das técnicas de visualização, que fala sobre
a quantidade de dados que podem ser mostrados na tela sem que o usuárioperca a habilidade de
entender o que é representado.

É fato que as técnicas de visualização das ferramentas devem também ser escaláveis para
analisar aplicações paralelas grandes. Se consideramos apenas a quantidade de entidades moni-
toradas, devemos ser capazes de representar pelo menos alguns milhares de processos na mesma
tela. Uma certa quantidade de detalhes também deve estar presente na representação. Um exem-
plo de técnica de falta de escalabilidade é a representação espaço-tempo,onde a quantidade de
dados a ser representada é limitada pelo espaço vertical disponível em telas de computadores.

Entre as ferramentas de visualização existentes, Vampir tem em sua visualização espaço-
tempo uma técnica hierárquica que aumenta a quantidade de processos que podem ser visualiza-
dos ao mesmo tempo. A técnica funciona através da agregação do comportamento de processos
de acordo com a representação hierárquica. O problema da abordagem é que a informação
de cada nível é apresentada de forma diferente, tornando difícil a análise de visões agregadas.
Outras ferramentas, como Pajé e Jumpshot, usam mecanismos de rolagem para lidar com um
número grande de entidades monitoradas. Esta técnica tem um impacto negativo uma vez que o
comportamento de todas as entidades não é mostrado ao mesmo tempo.

Nossa abordagem usa intervalos de tempo para criar uma estrutura hierárquica que repre-
senta o comportamento da aplicação para o período selecionado. Nós entãousamos a técnica
Treemap [42] para criar uma representação visual da estrutura. A técnica proposta aumenta
a quantidade de entidades que podem ser representadas ao mesmo tempo, epermite uma di-
reta comparação entre as mesmas. Além disso, nós também apresentamos um mecanismo de
agregação que pode ser aplicado para mudar a visualização quando existem muitas entidades
para ser analisadas na mesma tela. A combinação destas dessas duas técnicas permite se atingir
escalabilidade visual na análise de aplicações paralelas.

A.3.1 Algoritmo de Fatia de Tempo

O objetivo do algoritmo de fatia de tempo consiste em criar uma estrutura hierárquica que reflete
o comportamento do programa para um dado intervalo de tempo. Para isso, osnós da hierarquia
devem receber valores que são calculados baseados em dois fatores: a definição do intervalo
de tempo e um sumário de eventos para cada entidade monitorada naquele intervalo. Diferente
configurações para definir o intervalo de tempo são possíveis, desde intervalos pequenos até
grandes, entre outros.

O sumário de eventos é feito levando-se em conta o intervalo de tempo especificado e in-
formações adicionais sobre uma entidade, presente nos dados de monitoramento. O objetivo
é encontrar um valor numérico que represente o comportamento de cada entidade. Existem

A.3. O MODELO VISUAL DE AGREGAÇÃO 125

diferentes jeitos de definir esses valores numéricos. Podemos considerar que esse número é a
quantidade de tempo, ou a quantidade de vezes que algo acontece, ou qualquer outra informação
que pode ser contada de algum jeito. O princípio geral do algoritmo é somar separadamente os
valores para cada um dos tipos de dados que podem ser encontrados para uma entidade, como
estado, variável, links e eventos, e então realizar uma intersecção dessasoma com a fatia de
tempo usada.

A.3.2 Agregação Visual

O uso de uma representação Treemap habilita a escalabilidade da análise. Isto significa que se
aumentamos o tamanho da hierarquia sendo visualizada, a representação permanece compreen-
sível do ponto de vista do usuário. Embora isto acontece na maioria das situações, a técnica se
mantém limitada pelo tamanho do espaço dedicado a sua representação na tela do computador.

O modelo de agregação tenta superar esta limitação através da reorganização da hierarquia
a ser visualizada. Ele age basicamente através da agregação de valoresdas folhas da árvore para
nós intermediários da mesma. Com esta abordagem, a renderização Treemappode ser parada em
qualquer nível sem perder a informação importante que foi registrada nos nós folhas da árvore.

Figura A.3 mostra três modificações na hierarquia causadas pelo modelo de agregação. A
hierarquia original é mostrada na esquerda. Cada informação nos nós folhas pode representar
uma métrica diferente, como a quantidade de vezes que algo acontece. No nosso exemplo,
existem três níveis intermediários: Processo (P), Máquina (M) e Cluster (C). O objetivo principal
da agregação é agrupar os valores de P e fazê-los subir um nível da árvore. Sendo assim, após
a primeira agregação, os valores nos vetores são somados e atribuídos aos nós M. O algoritmo
pode ser aplicado novamente para continuar a agregação até o nó raiz.

Figura A.3 – Três agregações realizadas pelo modelo de agregação.

Além da tradicional operação de soma (mostrada na Figura A.3, o modelo de agregação pode
ser aplicado usando outras funções, como máximos, mínimos, média e mediana. Aaplicação
dessas funções depende diretamente em qual o tipo de informação sendoagregada e pode ser
usado para evidenciar alguma característica particular.

O benefício trazido pelo modelo de agregação é evidente quando o mesmo é combinado
com o algoritmo de fatia de tempo. Quando uma aplicação paralela é composta pormuitos

126 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

processos, a técnica de agregação pode ser usada para melhorar a análise da visualização baseada
em treemaps.

A.4. O PROTÓTIPO TRIVA 127

A.4 O Protótipo Triva

Esta seção descreve resumidamente o protótipo desenvolvido para implementar os modelos ap-
resentados nas seções anteriores. Esta descrição mostra as decisõesde implementação tomadas.
O protótipo é chamado de Triva.

Um dos principais guias durante a implementação do protótipo é que ele deveriaser con-
struído sobre ferramentas e bibliotecas existentes, principalmente para evitar a desenvolvimento
de implementações já validadas. A primeira decisão tomada é a adoção de algumaspartes da
ferramenta Pajé. As principais razões que motivaram esta adoção é a reutilização de software e
o bom desempenho dos componentes de simulação do Pajé. Outras decisõestomadas incluem
o uso de formatos de descrição de recursos facilmente reconhecidos textualmente, a adoção da
biblioteca GraphViz, entre outros.

A Figura A.4 mostra a organização geral do protótipo, composta de módulos que transfor-
mam os dados de rastreamento em objetos Pajé, e então nos dois tipos de visualização: o 3D e
a treemap. Pelo fato da adoção de objetos genéricos, a única parte do protótipo que é depen-
dente do formato do rastro é aquela representada na esquerda da Figura, indicada pelo integrador
DIMVisual e seus sub-componentes. Os retângulos brancos são bibliotecas e ferramentas exis-
tentes que foram reutilizadas com poucas alterações; retângulos cinzasforam desenvolvidos para
fazerem parte do protótipo.

Figura A.4 – Arquitetura Triva.

O componente TrivaController, escrito na linguagem C++, fica a cargo dainicialização de
todos os componentes, conectando-os seguindo a arquitetura da FiguraA.4. Ele também ap-
resenta ao usuário a interface gráfica, criada usando a biblioteca wxWidgets, através de uma
janela, com opções de configuração e mecanismos de interação. A cena tri-dimensional e a
renderização treemap é também inicialmente configurada por esse componente.

Os filtros Pajé, representados pelos retângulos pontilhados da Figura A.4, são os mesmos
utilizados na ferramenta de visualização Pajé. Suas implementações levam em conta várias
questões ligadas a escalabilidade e baixo tempo de resposta aos comandos da interface com o
usuário. O primeiro dos filtros, PajeEventDecoder, lida com a entrada gerada pelo DIMVisual-
Reader e prepara para o próximo módulo. O PajeSimulator transforma os eventos em objetos
visuais. Esta transformação consiste em criar uma estrutura hierárquica dos rastros, usando os
tipos básicos Pajé. Esta estrutura, que representa a mesma informação encontrada nos rastros, é
otimizada para a visualização, e registrada no StorageController.

Na parte mais da direita da Figura A.4, as interações entre os módulos funcionam nos dois

128 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

sentidos. Interações da direita para a esquerda são pedidos de novosdados. Eles são lançados
por comandos de usuário ou mudanças nas configurações. As interações da esquerda para a
direita são respostas aos pedidos.

A.4.1 TrivaView

O modelo de visualização, apresentado na seção A.2, é implementado no protótipo Triva através
do componente TrivaView. A Figura A.5 apresenta sua organização geral incluindo os compo-
nentes relacionados. O módulo TrivaView implementa a parte do Extractor do modelo 3D, ob-
tendo do fluxo de objetos Pajé os containers e links, e redirecionando o fluxo para o componente
DrawManager. A parte do modelo 3D que se chama Entity Matcher é implementadaem três
components do protótipo: TrivaApplicationGraph, TrivaResourcesGraph and TrivaTreemap-
Squarified. Eles recebem como entrada os containers e links do TrivaView, e a descrição dos
recursos de arquivo. A parte Visualization do modelo 3D mostrada atravésdo cículo pontilhado
na direita da Figura A.5, é implementada com 4 componentes: o Triva3DFrame,que mantém
a cena 3D, e seus três gerenciadores que podem mudar os aspectos visuais, o DrawManager, o
AmbientManager e o CameraManager.

Figura A.5 – Layout de implementação do TrivaView.

A.4.2 TimeSliceView

O modelo de agregação e o algoritmo de fatia de tempo foram implementados no componente
TimeSliceView, como mostrado na Figura A.6. Outro componente importante desta Figura é
o Triva2DFrame, cuja responsabilidade é desenhar a treemap na janela de visualização do pro-
tótipo.

Figura A.6 – Layout de implementação do TimeSliceView.

A.4. O PROTÓTIPO TRIVA 129

A Figura A.6 também detalha as interações e notificações que acontecem durante a exe-
cução do componente. A chegada de objetos do simulador Pajé (veja FiguraA.4 para detalhes)
é representada na esquerda da Figura. As interações com o usuário podem causar três diferentes
tipos de notificações que vão do componente Triva2DFrame para o TimeSlice: a mudança do
tamanho da janela, um novo nível de agregação e a mudança da fatia de tempo. Todas estas
notificações disparam a mesma cadeia de acontecimentos no componente: criação de uma hi-
erarquia de comportamento, possível aplicação de operadores de agregação e cálculo da nova
treemap. A treemap resultante é enviada como resposta e então desenha na janela pelo compo-
nente Triva2DFrame.

130 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

A.5 Resultados e Avaliação

O principal objetivo desta parte do resumo é mostrar os dois tipos de visualizações gerados pelo
protótipo Triva, um deles tri-dimensional e outro com treemap. Em paralelo aessas visualiza-
ções, é feita uma análise considerando os rastros de execução utilizadoscomo entrada para o
protótipo.

A.5.1 Tri-Dimensional

O principal objetivo do modelo tri-dimensional é realizar o mapeamento dos componentes da
aplicação com a topologia de interconexão dos recursos. Para apresentar um dos resultados
obtidos com este tipo de visualização, selecionamos um cenário onde existem60 processos,
alocados em 2 sites diferentes do Grid’5000. O sitenancycontribui para a execução com 30
máquinas do clustergrelon, ao mesmo tempo que o siterennestem uma alocação de 25 máquinas
do clusterparamounte 5 máquinas do clusterparaquad. Consideramos neste caso que uma
topologia de rede no qual cada site contém um roteador próprio e todos osclusters de um site são
conectados no seu respectivo roteador. Os roteadores de sites diferentes estão interconectados.
Sendo assim, quando uma mensagem é enviado de um cluster de um site a um cluster de outro
site, ela deve passar através dos dois roteadores.

A Figura A.7 mostra duas capturas de tela do protótipo Triva geradas durante a visualização
do arquivo de rastro deste cenário. O texto e as linhas pontilhadas forammanualmente inseridas
para aumentar o entendimento do exemplo. A imagemA desta Figura mostra o tempo total
de execução com uma escala de tempo pequena, fazendo com que todos os objetos fiquem
perto da base da visualização. A linha pontilhada desta imagem mostra a separação entre os
sitesrennes, com dois clusters, enancy, com apenas um cluster. Nós podemos observar nesta
escala de tempo que um grande número de roubo de tarefas acontece entre os clustersgrelon
e paraquad, provavelmente devido ao maior número de processos alocados neles. Analisando
essas interações com a topologia da rede, o protótipo Triva permite que o usuário visualize que
todos os pedidos de tarefas destes clusters devem ser comunicados através dos dois roteadores
da interconexão.

O protótipo também permite a mudança dinâmica da escala do tempo, usando o mouse.
A imagemB da Figura A.7 mostra o tempo total de execução para os rastros deste cenário,
com uma maior escala de tempo. Através desta imagem, é possível observar asdiferenças do
comportamento do roubo de tarefas em diferentes intervalos de tempo da execução. Pode-se
perceber que no início há um número significativamente menor de roubos comparado com o
fim. Isto ocorre porque no fim de uma aplicação KAAPI as tarefas disponíveis para execução
se tornam mais raras. Este comportamento é esperado na atual implementação do KAAPI, onde
um roubo de tarefas aleatório é implementado.

Um segundo cenário é uma aplicação KAAPI composta por 200 processos, em 200 máquinas.
A alocação de máquinas está dividida em dois sites:rennese nancy. O número de máquinas
alocadas em cada um é igual, embora a alocação interna de cada um difereem quantidade de
máquinas por cluster. A imagemA da Figura A.8 mostra o número de máquinas para cada
cluster alocado e também a topologia da rede que interconecta os dois sites. Alinha pontilhada
é utilizada para separar os sites. Nós consideramos para este cenário informações adicionais

A.5. RESULTADOS E AVALIAÇÃO 131

Figura A.7 – Duas capturas de tela do protótipo Triva durante a visualização de uma aplicação
composta de 60 processes, em diferentes escalas de tempo.

relacionadas a interconexão entre os roteadores e os três clusters. A largura de banda disponível
entre os clustersparaventegrillon, através dos dois roteadores, é de 100 megabits. O link entre
o clustergrelone seu roteador é de 1 megabit, como mostrado na imagemA da Figura.

Figura A.8 – Duas visões de um exemplo com mais informações da topologia da rede, como as
limitações impostas pela largura de banda.

Neste cenário, existem 87 processos executando no clustergrelon, e 61 noparavent. Con-
siderando apenas os roubos de tarefas entre estes dois clusters, comomostrado no círculo pon-
tilhado da imagem à direita da Figura A.8. A flecha pontilhada da mesma imagem indicaque
estes pedidos devem passar através do link de 1 megabit. A visualização sugere que um número

132 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

menor de processos deveria ser colocado em um cluster com largura debanda limitada. Se,
por exemplo, os processos do clustergrelon fossem executados no clustergrillon, a execução
poderia obter um melhor desempenho.

Através do exemplo deste segundo cenário, nós podemos notar a importância da análise do
desempenho de uma aplicação juntamente com uma representação topológica da rede. Se este
tipo de visualização, como mostrado na imagemB da Figura A.8, não estiver presente, o analista
pode obter conclusões erradas sobre o desempenho da aplicação.

A.5.2 Agregação

Um dos principais benefícios do modelo de agregação de dados desta teseé a facilidade de
análise uma grande quantidade de entidades monitoradas na mesma tela. Para avaliar quão
escalável é a visualização, nós geramos um rastro sintético composto de 100 mil processadores,
cada um com dois estados diferentes. Segue a seguir a análise desse rastro com a técnica de fatia
de tempo e o algoritmo de agregação.

A Figura A.9 mostra a análise do rastro, cuja hierarquia tem quatro níveis: Site, Cluster,
Machine e Processor. A hierarquia tem 10 Sites, cada qual com 10 Clusters, cada cluster com
100 Machines e cada machine com 100 processors. Cada processador pode estar em um de dois
estados possíveis, representados na Figura pelas tonalidades fraca eforte de cinza.

A análise em larga-escala usando o protótipo começa com a treemapA, localizada no topo à
esquerda da Figura A.9, no nível processor. Nesta treemap, existem 200 mil retângulos: 100 mil
processadores vezes a quantidade de estados possíveis, que são 2.Nós podemos observar que
algumas regiões desta treemap são mais escuras que outras, permitindo algumtipo de conclusão.
Entretanto, qualquer conclusão precisa é difícil de obter com esta treemap. A principal razão
disso é que a treemapA tem retângulos que são muito pequenos, tornando difícil a observação
de diferenças de tamanho entre dois estados de um único processador.O exemplo é mostrado
para indicar a limitação de uma visualização treemap tradicional.

O retângulo branco da treemapA na Figura A.9 representa o espaço dedicado para uma
máquina. Embora seja difícil de notar, existem 200 retângulos nesta pequena área que repre-
sentam o estado dos 100 processadores desta máquina. Pelo fato de serdifícil de entender o
padrão de todos esses 100 processadores, o usuário pode interagircom o protótipo e mostrar
valores agregados para o nível máquina, como mostrado na treemapB da Figura. Ela mostra
para cada máquina os dois possíveis estados. Nesta visão, já é possível analisar diferenças entre
as máquinas: algumas estão significativamente mais em um estado do que em outro. A área em
evidência no lado esquerdo da treemapB, mostrada através de um zoom, corresponde a área do
retângulo branco da treemapA.

As agregações seguintes permitem o usuário de visualizar os rastros no nível de cluster,
como mostrado na treemapC da mesma Figura, e no nível de site na treemapD. A treemap
C mostra 100 clusters (10 por site). Em seu lado esquerdo, a treemap apresenta um retângulo
preto que mostra 10 clusters na área dedicada para um site. A flecha começando neste retângulo
aponta para os valores agregados para este site, na treemap D. A máxima agregação possível,
mostrada na treemapE, permite uma visão por estado das informações disponíveis, indicando
que o estado representado pela tonalidade mais clara aparece mais vezes que o outro na fatia de
tempo selecionado para este exemplo.

A.5. RESULTADOS E AVALIAÇÃO 133

Figura A.9 – Treemap Normal (A) e quatro treemaps com dados agregados(B – E) de dois
estados para 100 mil processadores (gerados sinteticamente).

Um segundo cenário para a visualização treemap é uma aplicação de 188 processos, exe-
cutada em 188 máquinas, distribuídas em cinco sites do Grid’5000 incluindo ocluster de Porto
Alegre. Existem 13 máquinas alocadas do clusterxiru, emportoalegre; 2 debordereau, 17 de
bordemer, e 6 debordeplage, em bordeaux; 45 depastel, 5 deviolette, em toulouse; 14 de
paramount, 36 deparaquad, emrennes; e finalmente 50 degrelonno sitenancy. A Figura A.10
mostra duas treemaps calculadas com os rastros gerados neste cenário.

A treemapA mostra os estados Run e RSteal para todos os 188 processos. Quase todos
os processos mostram o mesmo comportamento, com o estado Run maior (áreascom ton cinza
claro) comparado com o estado RSteal (cinza escuro). A única exceção aparece nos K-processos
executados no site deportoalegre, colocados em evidência manualmente com o círculo pontil-
hado. Observando esta treemap, nós notamos que estes processos passam mais tempo roubando
tarefas que os processos de outros sites. A treemapB, na direita, mostra a mesma fatia de tempo
e os mesmos processos, mas somente o estado RSteal. Aqui, a diferença de tempo despendida
roubando tarefas se torna ainda mais evidente. Nós acreditamos que a principal razão atrás
deste comportamento vem da interconexão entre os sites. O site deportoalegreé localizado no
Brasil, e a sua conexão com o Grid’5000 é feita través de uma Rede Privada Virtual (VPN) que
é mantida através da internet. A latência desta interconexão, comparada coma latência geral
entre os sites do Grid’5000 localizados na França, é significativa. O roubo de tarefas tradicional
implementado no KAAPI não diferencia quem será o alvo do roubo. Isto, emum ambiente de
interconexão heterogêneo, pode levar a mais tempo gasto para roubar, como indicado através da
treemap calculada através do nosso algoritmo de fatia de tempo.

134 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

Figura A.10 – Cenário KAAPI com uma aplicação composta de 188 processos.

No geral, o algoritmo de fatia de tempo combinado com o modelo de agregação desta tese
possibilita uma fácil identificação de questões de desempenho ao comparar ocomportamento de
processos de uma aplicação paralela. O modelo de agregação aporta vantagens para situações
de larga-escala, não importanto quantos processos estão envolvidos naanálise. O único passo
necessário para as duas propostas funcionarem bem nestes ambientesé a definição de uma hier-
arquia com ao menos alguns níveis. As hierarquias usadas neste cenárioKAAPI tem 5 níveis,
tornando possível a obtenção de bons resultados na visualização.

A.6. CONCLUSÃO E TRABALHOS FUTUROS 135

A.6 Conclusão e Trabalhos Futuros

Esquemas de visualização tradicionais para análise de aplicações paralelas foram concebidos
para lidar com dados de monitoramento de pequena escala e de ambientes equilibrados. A
necessidade de técnicas de visualização para a análise de aplicações para ambientes de larga-
escala, tais como Grids, motiva este trabalho. Dois problemas na análise de aplicações paralelas
através da visualização são identificados nesta tese.

O primeiro é o impacto da rede de interconexão na execução de aplicações paralelas. Este
impacto deve estar presente na análise para se melhor entender e melhorar odesempenho da
aplicação. Técnicas de visualização tradicionais, como a representaçãoespaço-tempo por exem-
plo, são largamento usadas para análise de aplicações. No entanto, estastécnicas não conseguem
mostrar na mesma tela a topologia da rede e os dados de monitoramento da aplicação. Isto pode
levar a conclusões erradas durante a detecção de problemas de desempenho das aplicações. O se-
gundo problema é a escalabilidade visual das técnicas de visualização. Normalmente, o número
de entidades monitoradas que pode ser analisado na mesma tela é limitado à resolução vertical
da tela de um computador. Representações espaço-tempo são um claro exemplo deste problema,
não sendo bem apropriadas para a análise de aplicações Grid compostaspor um número grande
de processos.

A idéia principal desta tese é a exploração de técnicas de visualização da informação que
podem ser utilizadas para analisar o comportamento de aplicações paralelas. No nosso caso,
esta exploração também considera os dois problemas que tentamos resolver. Nossa primeira
abordagem mostra a rede de interconexão juntamente com os dados da aplicação usando uma
visualização tri-dimensional, onde a base desta visualização é usada paradetalhar a interconexão
entre os recursos, e o terceiro eixo para mostrar a evolução da aplicação ao longo do tempo. Nós
melhorarmos nossa solução através da representação de padrões de comunicação, oferecendo ao
desenvolvedor a possibilidade de casar este padrão com o da topologia da rede.

A segunda abordagem é o modelo de agregação visual, onde os problemas de escalabilidade
são superados através da combinação da técnica Treemap e o algoritmo de fatia de tempo. Este
algoritmo leva em conta intervalos de tempo para gerar valores e injetá-los em uma organiza-
ção hierárquica da aplicação. Esta estrutura é então representada através da técnica Treemap.
A escalabilidade da visualização é atingida através do modelo de agregação, onde os níveis da
hierarquia são explorados para criar dados intermediários que pode ser usados para criar visual-
izações treemap por níveis com mais informações.

Ambas as abordagens foram implementadas em um protótipo chamado Triva,desenvolvido
usando um gerenciador de cena 3D chamado Ogre e uma implementação de Treemap própria.
O protótipo tem mecanismos de leitura que o ligam com a biblioteca de integração DIMVisual,
capaz de integrar dados de monitoramento de diferentes fontes e formatos.Rastros sintéticos e
reais do KAAPI e MPI foram usados para validar as abordagens e a implementação. Os rastros
KAAPI foram coletados na plataforma Grid’5000. Embora a avaliação do protótipo é ligada
aos rastros usados, o uso do formato Pajé como entrada permite a extensãodos benefícios da
ferramenta para outros campos de pesquisa e aplicação, de visualizaçãode recursos a outros
tipos de bibliotecas de comunicação.

Os resultados obtidos são promissores. A visualização tri-dimensional permite um melhor

136 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

entendimento de padrões de comunicação com a topologia da rede. Nós usamos uma simpli-
ficação da topologia do Grid’5000 e o roubo de tarefas de aplicações KAAPI. Fomos capazes
de mostrar que em diferentes fatias de tempo, o roubo de tarefas poderia se beneficiar mais da
localidade, uma vez que a implementação atual de KAAPI não leva em conta dados da rede para
realizar pedidos de roubo de tarefas. Por outro lado, os resultados obtidos com o modelo de agre-
gação permitiram a visualização dos estados de 100 mil processadores, gerados sinteticamente.
As treemaps definidas pelo algoritmo de fatia de tempo foram também definidas usando rastros
reais KAAPI e MPI. Fomos capazes de identificar nos rastros KAAPI diferentes característi-
cas, como o comportamento diferente nos mecanismos de roubo apresentados por diferentes
processos, a eficiência do balanceamento de carga considerando todoo tempo de execução das
aplicações, e a análise em larga-escala de uma aplicação KAAPI composta por quase 3 mil
processos.

Em resumo, os principais objetivos alcançados nesta tese são a propostada abordagem 3D,
o modelo de agregação visual combinado com o técnica de fatia de tempo e protótipo Triva.
Além disso, se incluem a interação entre o protótipo Triva e a biblioteca KAAPI, permitindo
uma análise das atividades de roubo de tarefas desta biblioteca.

Como perspectivas de trabalhos futuros, prevê-se a evolução da visualização 3D para a rep-
resentação de informações geradas pelo modelo de agregação; criação de representações de
grafo com a técnica de fatia de tempo e agregação; o estudo de outras funções de agregação e
outros tipos de dados para o algoritmo de fatia de tempo. Acreditamos que a implicação mais
significativa deste trabalho seja o estudo de técnicas de visualização aplicadas para a análise de
aplicações paralelas.

Appendix B

Extended Abstract in French

The French title for this thesis is“Quelques Modéles de Visualisation pour l’Analyse des Ap-
plications Paralléles”. The extended french abstract is also presented here to fulfill the require-
ments established in theco-tutelleagreement of the author. This abstract is a french translation
of previous Portuguese extended abstract.

137

138 APPENDIX B. EXTENDED ABSTRACT IN FRENCH

B.1 Introduction

Les systèmes distribués sont fondés sur du matériel et des logiciels contenant et gérant plus
d’une unité d’exécution [19]. Dans ces systèmes, les processeurs sont interconnectés et commu-
niquent via un réseau. Les programmes pour ces machines sont divisées en plusieurs catégories
et doivent interagir à différents niveaux de parallélisme, tels que le passage de messages ou la
mémoire partagée. Un exemple de système distribué est représenté par les grilles de calcul [30].
Ce type de système est structuré en organisations virtuelles [29], et peut-être composé de mil-
liers de machines distribuées géographiquement. Deux exemples de grilles sont le projet français
Grid’5000 [12] et le projet américain TeraGrid [16].

Les caractéristiques partagées par presque toutes les plates-formes detype grille sont le dy-
namisme, l’hétérogénéité des ressources et des logiciels et la présence de multiples domaines ad-
ministratifs. Le dynamisme signifie que les ressources d’une grille peuvent devenir indisponibles
à tout moment, sans aucune notification préalable. Les applications parallèlesdoivent consid-
érer ces conditions dynamiques typiquement pour faire face aux fluctuations de la quantité de
ressources disponible. L’hétérogénéité signifie que différentes configurations de ressources sont
présentes sur la même plate-forme de grille. Ceci est également valable pourles logiciels de bib-
liothèques. Une grille peut être composée par les différents domaines administratifs, où chaque
partie est maintenue indépendamment par leur administrateurs. Au-delà de ces caractéristiques,
une grille peut également être connectée par un réseau complexe et être facilement étendue par
l’ajout de nouvelles ressources.

L’interconnexion entre les ressources d’un réseau peut être composée de différents types
de réseau : Ethernet, Myrinet, InfiniBand, ou fibre optique. Un exemple de grille contenant
plusieurs types d’interconnexion est appeléDesktop Grids[48], comme les projets BOINC [1] et
Seti@Home [2], où l’interconnexion se fait généralement par le biais d’Internet. Autre exemple
qui montre la présence de plusieurs types d’interconnexions est une grille composée declusters,
où une forte hiérarchie d’interconnexion est utilisée pour connecter desclustershomogènes [12].
La présence de plusieurs types d’interconnexion est un reflet de l’hétérogénéité et la répartition
géographique de grilles. Ces aspects imposent un réseau plus complexe,un nombre plus grand
de directives de routage pour la communication entre les processus et unelatence variable dans
le temps.

Les plate-formes de type grille passent facilement à l’échelle car de nouvelles ressources
peuvent y être ajoutées indéfiniment en les reliant aux participants existants. En règle générale,
ces compléments apportent plus d’hétérogénéité et de complexité au niveaude réseau. Actuelle-
ment, il existe des grilles globales composées de milliers d’ordinateurs, comme le montre l’ex-
emple du projet BOINC. Un autre exemple qui montre comme il est facile d’ajouter de nouvelles
ressources à une grille est Grid’5000, où de nouveauxclusterssont ajoutés aubackboneprinci-
pal de la plate-forme. Le passage à l’échelle de ces plate-formes est unebonne chose pour les
applications parallèles, qui exigent de plus en plus de ressources informatiques.

Toutes ces caractéristiques de la grille influencent directement le comportement des appli-
cations parallèles au cours de leur développement et leur mise en exécution. De ce fait, il est
important que le développeur comprenne les impacts des systèmes distribués sur l’application.
L’analyse d’une application parallèle qui depend de la topologie du réseau est un exemple. L’ap-

B.1. INTRODUCTION 139

plication peut avoir un performance qui varie en fonction des ressources qui ont été sélectionnées
et l’interconnexion entre elles. Cette influence est encore plus évidente lorsque les caractéris-
tiques de réseau sont considérées, comme la latence et la bande passante, pour les applications
qui sont limitées par celui-ci. Le passage à l’échelle d’une grille est un autre aspect qui influence
directement le comportement des applications parallèles, la disponibilité de nouvelles ressources
pour l’application ne signifie pas que l’exécution aura une meilleure performance.

Compte tenu de ces éléments, nous pouvons voir qu’il est important d’analyser le comporte-
ment des applications parallèles en conjonction avec les informations de la grille. Cette analyse
peut aider les développeurs à comprendre l’impact de la topologie du réseau sur l’application,
par exemple. En visualisant la façon dont l’application communique et la topologie du réseau, il
est possible de determiner comment l’adapter afin de mieux exploiter cette interconnexion. En
outre, si le réseau est hiérarchiquement organisé, les applications peuvent suivre sa hiérarchie
pour éviter les goulets d’étranglement. Une bonne analyse doit aussi conduire à des conclusions
sur tous les processus qui sont mis en exécution, y compris sur les comportements locaux et
globaux qui peuvent apparaître entre eux. Quand il y a une grande quantité de processus, l’anal-
yse doit être en mesure de générer des résultats statistiques sur l’ensemblede ces processus.

La visualisation est une forme d’aide à l’analyse des applications parallèles. Elle a été large-
ment utilisé au cours des 30 dernières années, pour comprendre et visualiser les applications qui
sont axées sur différents niveaux de parallélisme. La façon la plus classique de construire une
visualisation consiste à utiliser une adaptation des diagrammes de Gantt [79], également connue
sous le nom de graphiques d’espace-temps. Ces visualisations disposent la liste des composants
de l’application verticalement et metent la ligne du temps sur l’axe horizontal. Des exemples
d’outils qui offrent ce type d’analyse sont l’outil de visualisation générique Pajé [22], Vam-
pir [60] et d’autres [5, 46, 63]. Ces graphiques espace-temps sontdéjà largement utilisés dans
les plates-formes existantes, tels que lesclusters, où les données sont simples et uniformes.

Beaucoup de ces outils de visualisation ont été adaptés afin d’observer lecomportement
des applications dans les systèmes distribués, comme les grilles. Habituellement, ilscontinuent
à utiliser les même techniques de visualisation. Considérant les représentations espace-temps,
le premier problème qui se pose est qu’elles ne peuvent pas représenter, avec les données de
l’application, la complexité de la topologie du réseau d’une grille. Comme nous l’avons dit,
l’impact de la la topologie ne peut pas être exclu de l’analyse quand l’interconnexion entre les
ressources est complexe. Le deuxième problème est lié au passage à l’échelle de l’affichage
graphique espace-temps. Avec l’utilisation de ces représentations, le nombre de composantes
de l’application qui peuvent être visualisés dans un écran d’ordinateurest limité à la résolution
verticale de l’écran.

Cette thèse tente de résoudre les problèmes des techniques traditionnelles dans la visuali-
sation des applications parallèles. L’idée principale est d’exploiter le domaine de la visualisa-
tion de l’information et essayer d’appliquer ses concepts dans le cadre de l’analyse des pro-
grammes parallèles. Portant de cette idée, la thèse propose deux modèles devisualisation : les
trois dimensions et le modèle d’agrégation visuelle. Le premier peut être utilisé pour analyser
les programmes parallèles en tenant compte de la topologie du réseau. L’affichage lui-même se
compose de trois dimensions, où deux sont utilisés pour indiquer la topologie et la troisième est
utilisée pour représenter le temps. Le second modèle peut être utilisé pour analyser des applica-

140 APPENDIX B. EXTENDED ABSTRACT IN FRENCH

tions parallèles comportant un très grand nombre de processsus. Ce deuxième modèle exploite
une organisation hiérarchique des données utilisée par une technique appelée Treemap pour
représenter visuellement la hiérarchie. Les deux modèles constituent unenouvelle façon d’anal-
yser visuellement les applications parallèles , car ils ont été conçus pour lessystèmes distribués
grands et complexes, tels que les grilles.

Quelques concepts proposés dans cette thèse ont été publiés et un articleest en cours d’éval-
uation.

Ce résumé étendu est organisé en cinq sections, de la façon suivante :

Section B.2 : Le Modèle Tridimensionnel
Cette section présente le premier modèle de cette thèse, constitué par l’approche en trois
dimensions. Nous décrivons la conception visuelle et une organisation générale de com-
posants pour la génération de visualisations 3D.

Section B.3 : Le Modèle d’agrégation des Données
La section présente l’algorithme de tranche de temps pour la description du comportement
d’une application sous forme d’une hiérarchie, et le modèle d’agrégationutilisé pour at-
teindre le passage à l’échelle dans la représentationsTreemap.

Section B.4 : L’implementation du Prototype Triva
Cette section présente le prototype développé pour cette thèse. Sa description dans cette
partie comprend l’organisation générale de ses composants.

Section B.5 : Résultats obtenus et Évaluation
Les résultats obtenus avec le prototype Triva sont présentés dans cettesection. Deux
études de cas y sont presentes : une par rapport au modèle tridimensionnel, l’autre liée
au modèle d’agrégation visuelle.

Section B.6 : Conclusion
Les résultats et implications de la thèse sont présentés, ainsi que les perspectives pour les
travaux futurs.

B.2. LE MODÈLE TRIDIMENSIONNEL 141

B.2 Le Modèle Tridimensionnel

La performance des applications parallèles exécutées sur une grille est liée aux caractéris-
tiques de l’interconnexion du réseau [49]. Quand les ressources ontune forte hiérarchie entre
elles, le choix de celles assignées à une application sera décisif pour sa performance mais aussi
pour sa compréhension. Sans information sur la topologie du réseau, l’analyste n’est pas en
mesure de voir que les problèmes sont dus à la mise en oeuvre des communications. Les déci-
sions prises à partir d’une vision traditionnelle dans ce cas peuvent conduire à des conclusions
erronées sur la performance. Ainsi, si nous avons été en mesure d’examiner l’exécution en ten-
ant compte des caractéristiques du réseau, nous pouvons voir plus clairement les raisons du
comportement de l’application.

La plupart des outils de visualisation ne sont pas en mesure d’effectuer une analyse en tenant
compte de la topologie du réseau. ParaGraph est le seul outil qui offre un concept de l’intercon-
nexion dans ses techniques de visualisation, mais seulement par l’affichage séparés de l’hyper-
cube et des modes de communication. En effet, ParaGraph n’a pas été conçu pour l’analyse des
applications à grande échelle. D’autres techniques telles que le graphiqueespace-temps, utilisé
dans d’autres outils de visualisation, ne sont pas capables de présenterla topologie du réseau de
communication des applications parallèles. Dans ce cas, la limitation est liée à la façon dont les
ressources et les composants de l’application sont représentés dans un espace linéaire. Lorsque
la plate-forme d’exécution devient de plus en plus complexe, montrer la topologie du réseau
dans un affichage espace-temps devient impraticable.

Notre proposition d’établir une connexion entre l’analyse de l’application et la topologie du
réseau est fondée sur un système composé de trois dimensions. Une des dimensions est la ligne
du temps, et les deux autres dimensions sont utilisés pour représenter la topologie du réseau. La
prochaine section présente la conception visuelle de notre modèle, et la section suivante présente
le modèle abstrait de composants qui peut être utilisé pour produire ce resultat.

B.2.1 Conception Visuelle

La conception visuelle de notre modèle est composée par la combinaison de techniques de
visualisation qui montrent le comportement de l’application avec les données structurelles ou
statistiques de celle-ci. Si les données structurelles sont choisies, la topologie du réseau peut
être utilisée avec le comportement de l’application. Si les données statistiques sont requises,
l’utilisateur peut simplifier quantitativement les données à tracer, à des échelles et des tranches
de temps différentes.

Le résultat de la conception visuelle est le modèle tridimensionnel. Le modèle a deux di-
mensions réservés pour la représentation des données statistiques ou structurelles. Nous avons
nommé ces deux dimensions la “base de la visualisation 3D”. La troisième dimensionest la
ligne de temps. La Figure B.1(a) montre un exemple de l’approche par représentation en 3D
avec les données d’une application. Les états des processus sont représentés par des barres verti-
cales qui sont placées au-dessus de la base. Les différents états le long de l’axe du temps peut être
représenté par des couleurs différentes. La représentation de chaque état est placée verticalement
selon ses marques de début et de fin. Les communications sont représentées par des flèches ou
des lignes dans un environnement 3D en reliant deux ou plusieurs processus qui communiquent.

142 APPENDIX B. EXTENDED ABSTRACT IN FRENCH

Figure B.1(b) montre un point de vue différent, situé au dessus des objetsreprésentés. Ce point
de vue permet l’observation de la structure de la communication de l’application, par exemple.

(a) Conception visuelle de l’approche 3D. (b) Diffèrent point de vue.

FIG. B.1 – La conception visuelle de l’approche 3D avec les traces d’une application représen-
tées par des barres verticales montrant l’évolution des processus dansle temps.

B.2.2 Modèle de Composants

Pour créer un affichage 3D, les traces collectées lors de l’execution des applications passent
à travers une série de transformations. À cette fin, nous proposons ici un modèle abstrait de
composants. Figure B.2 montre l’organisation globale de ce modèle. En entrée, le modèle utilise
deux types d’informations : des traces d’applications parallèles et un fichier de configuration
contenant la description des ressources de l’environnement d’exécution.

FIG. B.2 – Modèle abstrait de composants pour l’approche 3D, avec trois configurations possi-
bles pour la base de la visualisation.

La base de la visualisation est configuré par leEntity Matcher(C). Nous avons développé
trois configurations différentes pour celui-ci : celle qui montre le schéma de communication de
l’application, celle qui montre ce modèle combiné avec la topologie du réseau, et la denière qui

B.2. LE MODÈLE TRIDIMENSIONNEL 143

combine les données provenant de l’application avec une représentationlogique des ressources.
Le composant selectionne une de ces configurations selon le choix de l’utilisateur.

Parmi les trois alternatives duEntity Matcher, celle qui considère la topologie du réseau (C.2)
traite directement le problème de l’influence de l’interconnexion sur l’application. Les autres
variantes sont présentées pour montrer d’autres informations, comme les donnés structurelles
(le modèle decommunication de l’application) et une représentation statistique des détails de
son comportement au fil du temps.

Nous considérons dans le modèle l’existence des traces qui sont donc disponibles pour la
lecture et qui sont transformées en un flot qui traverse les éléments de laFigure B.2 de gauche
à droite. Même en supposant l’existence de ces fichiers d’entrée, les composants peuvent fonc-
tionner indépendamment de la façon dont les données sont injectées dansle modèle. Ainsi, le
modèle est capable de faire face à une génération d’événements “en ligne” lorsque leur volume
n’est pas trop gros. Des notifications peuvent également se produire dans le modèle, en direc-
tion des autres composants, et de propager les modifications de configuration correspondant aux
commandes initiées par l’utilisateur.

144 APPENDIX B. EXTENDED ABSTRACT IN FRENCH

B.3 Le Modèle Visuelle d’agrégation

Une autre préoccupation relative aux applications de la grille est qu’elles peuvent être com-
posées d’un grand nombre de processus. Quelques analyses sont déjà possibles avec des applica-
tions à grand échelle [50], mais seulement au niveau d’uncluster. Plusieurs questions se posent
dans des environnements de grille lors de l’analyse de ces applications. L’une est la grande quan-
tité de données de trace, qui dépend de deux facteurs : le nombre d’entités de l’application, et
la quantité de détails recueillis pour chaque entité. Une autre question est le passage à l’échelle
des techniques de visualisation [26], qui doivent s’adapter à la quantitéde données qui peuvent
être affichées sur l’écran sans que l’utilisateur ne perde la capacité de comprendre ce qui est
représenté.

Les techniques de visualisation des outils doivent également passer à l’échelle pour l’analyse
des applications parallèles. Si on considère seulement la quantité des entitésobservées, les outils
devraient être en mesure de représenter au moins quelques milliers de processus sur le même
écran. Un certain nombre de détails doivent également être présents dans la représentation. Un
exemple d’un manque de passage à l’échelle est la représentation espace-temps où la quantité
de données à représenter est limitée par la résolution verticale des écransd’ordinateurs.

Parmi les outils existants pour la visualisation, Vampir a une technique hiérarchique pour
sa visualisation espace-temps qui augmente la quantité de processus qui peuvent être consultés
en même temps. La technique fonctionne en agrégeant les comportements des processus en
fonction de la représentation hiérarchique. Le problème de cette approche est que chaque niveau
d’information est présenté différemment, ce qui rend difficile l’analyse del’ensemble des points
de vue. D’autres outils tels que Jumpshot et Pajé, grâce à une fenêtre dedéfilement, peuvent
faire face à un grand nombre d’entités analysées. Cette technique a un impact négatif car le
comportement de toutes les entités ne figure plus dans la même visualisation.

Notre approche utilise un intervalle de temps pour créer une structure hiérarchique qui
représente le comportement de l’application pour la période sélectionnée. Nous utilisons ensuite
la technique Treemap [42] pour créer une représentation visuelle de la structure. La technique
proposée augmente le nombre d’entités qui peuvent être représentées en même temps, et permet
une comparaison directe entre elles. En outre, nous présentons aussi un mécanisme d’agréga-
tion qui peut être appliqué pour changer la visualisation quand il y a de nombreuses entités
qui doivent être analysés dans le même écran. La combinaison de ces deux techniques permet
d’atteindre une passage à l’échelle de l’analyse visuelle des applications parallèles.

B.3.1 L’algorithme de Tranche de Temps

L’objectif de l’algorithme de tranche de temps est de créer une structure hiérarchique qui
reflète le comportement du programme pendant un temps donné. Pour ce faire, les sommets de
la hiérarchie doivent être des valeurs qui sont calculées à partir de deux facteurs : la définition
d’une tranche de temps et un résumé des événements pour chaque entité présente dans cette
période. Différents réglages pour définir l’intervalle de temps sont possibles, allant des petites
aux grandes plages.

Le résumé des événements se fait en tenant compte du temps spécifié et de l’information sur
une entité, présente dans les données de trace. Le but est de trouver une valeur numérique qui

B.3. LE MODÈLE VISUELLE D’AGRÉGATION 145

représente le comportement de chaque entité. Il existe différentes façons de définir cette valeur,
comme la quantité de temps ou le nombre de changements d’état, ou de toute autre information
qui peut être prise dans les traces. Le principe général de l’algorithme est d’ajouter séparément
les valeurs de chaque type de données qui peuvent être trouvées pour une entité, et ensuite de
réaliser une union de cette somme avec la tranche de temps utilisé.

B.3.2 Agrégation Visuelle

L’utilisation d’une représentation Treemap permet la passage à l’échelle del’analyse. Cela
signifie que si la taille de la plateforme affichée est augmentée, la représentation reste com-
préhensible du point de vue de l’utilisateur. Si ce passage à l’échelle se produit correctement dans
la plupart des situations, la technique reste limitée par la taille de l’espace dédié àla représenta-
tion sur l’écran de l’ordinateur.

Le modèle d’agrégation essaie de surmonter cette limitation par le biais de la réorganisation
de la hiérarchie à afficher. Il agit principalement par l’agrégation des valeurs des feuilles de l’ar-
bre dans les noeuds intermédiaires. Avec cette approche, le rendu Treemap peut être interrompu
à tout niveau, sans perdre l’information importante qui a été enregistrée dans les feuilles.

FIG. B.3 – Trois agrégations réalisées par le modèle.

La Figure B.3 montre trois changements dans la hiérarchie d’agrégation causés par le mod-
èle. La hiérarchie originale est indiqué sur l’extrême gauche. Chaque information dans les
feuilles peut représenter différentes métriques, telles que le nombre de fois où quelque chose
se passe. Dans notre exemple, il existe trois niveaux intermédiaires : Processus (P), Machine
(M) et Cluster (C). Le principal objectif de l’agrégation est de regrouper les valeurs de chaque
processus et de les déplacer d’un niveau plus haut dans l’arbre. Par conséquent, après la première
agrégation, les valeurs dans les vecteurs sont additionnées et stockées sur les noeuds machine.
L’algorithme peut être appliqué de nouveau jusqu’à l’agrégation dans le noeud principal.

Outre l’opération d’addition (Figure B.3), le modèle d’agrégation peut êtreappliqué en util-
isant d’autres fonctions telles que la teneur maximale, minimale, moyenne et médiane. L’appli-
cation de ces fonctions dépend directement de la nature des informations agrégées et peut être
utilisée pour mettre en évidence une caractéristique particulière.

Le bénéfice apporté par le modèle d’agrégation est évident quand il estcombiné avec l’algo-
rithme de la tranche de temps. Quand une application parallèle est composée denombreux pro-

146 APPENDIX B. EXTENDED ABSTRACT IN FRENCH

cessus, la technique de regroupement peut être utilisée pour améliorer l’analyse de l’affichage
basé sur les treemaps.

B.4. L’IMPLEMENTATION DU PROTOTYPE TRIVA 147

B.4 L’implementation du Prototype Triva

Cette section décrit brièvement le prototype mis au point pour mettre en œuvre les modèles
présentés dans les sections précédents. Cette description décrit les decisions d’implementation
prises. Le prototype est appelé Triva.

L’un des principaux guides pour la réalisation de ce prototype est qu’il doit être construit à
partir d’outils et de bibliothèques existants, en particulier afin de prévenir laré-implementation
d’outils déjà validés. La première décision est l’adoption de certaines parties de l’outil Pajé. Les
principales raisons qui ont motivé cette adoption est la réutilisation de code et la performance
de l’ensemble des composants Pajé. Les autres décisions prises sont notamment l’utilisation
de formats de description des ressources faciles à reconnaître et l’adoption de la bibliothèque
GraphViz.

La Figure B.4 montre l’organisation générale du prototype, composé de modules qui conver-
tissent les données de trace pour des objets Pajé, puis élaborent les deux types de visualisation :
la 3D et treemap. L’adoption des traces génériques a fait que la seule partie du prototype dépen-
dante du format de la trace soit DIMVisual, représenté sur la gauche de laFigure. Les rectangles
blancs sont des bibliothèques et des outils qui ont été réutilisés avec peu de changement ; rect-
angles gris ont été développés pour composer le prototype.

FIG. B.4 – L’architecture du prototype Triva.

Le composant TrivaController, écrit en langage C++, est en charge de la mise en route de
tous les composants en les reliant selon l’architecture de la Figure B.4. Elle fournit également
à l’utilisateur une interface graphique, créée en utilisant la bibliothèque wxWidgets, sous la
forme d’une fenêtre, avec des options de configuration et des mécanismes d’interaction. Les
visualisations 3D et treemap sont aussi mises en route par cette composante.

Les filtres, représentés par des rectangles en pointillés dans la Figure B.4, sont les mêmes
filtres que ceux utilisés dans Pajé. Leur implementation prend en compte plusieurs questions
liées au passage à l’échelle et au temps de réponse des commandes de l’interface utilisateur.
Le premier de ces filtres, PajeEventDecoder, traite l’entrée générée parDIMVisualReader et
la prépare pour le prochain module. Le PajeSimulator transforme les événements en objets vi-
suels. Cette transformation a comme but la creation d’une structure hiérarchique de trace, en
utilisant les types de base Pajé. Cette structure, qui représente la même information que celle
qui se trouve dans les fichiers d’entrée, est optimisée pour la visualisation, et enregistrée dans le
StorageController.

Dans la partie droite de la Figure B.4, les interactions entre les modules opèrent dans les deux

148 APPENDIX B. EXTENDED ABSTRACT IN FRENCH

directions. Les interactions de la droite vers la gauche sont les demandes de nouvelles données.
Elles sont initiées par l’utilisateur par des commandes ou par la modification de paramètres. Les
interactions de gauche à droite sont des réponses à des demandes.

B.4.1 TrivaView

Le modèle de visualisation 3D, présenté dans la section B.2, est mis en oeuvredans le pro-
totype Triva par la composante TrivaView. La Figure B.5 montre l’organisation globale de cette
composante. Le module implémente la partie Extractor du modèle. Il obtient du flotdes ob-
jets Pajé les conteneurs et les liens à envoyer au EntityMatcher, et envoie aussi le flot au com-
posant DrawManager. La partie du modèle 3D appelé EntityMatcher est miseen œuvre dans
les trois composantes du prototype : TrivaApplicationGraph, TrivaResourcesGraph et Triva-
TreemapSquarified. Ils reçoivent en plus du flot d’objects Pajé, le fichier de description des
ressources. La visualisation du modèle 3D, representée dans la droite dela Figure B.5, est mise
en œuvre avec 4 composantes : le Triva3DFrame, pour le maintien de la scène 3D, et de trois
mainteneurs qui peuvent changer les aspects visuels de la scéne, le DrawManager, le Ambient-
Manager et le CameraManager.

FIG. B.5 – Structure d’implementation du TrivaView.

B.4.2 TimeSliceView

Le modèle d’agrégation et l’algorithme de tranche de temps ont été mis en œuvredans le
composant TimeSliceView, comme le montre la Figure B.6. Une autre composante importante
de cette partie est le Triva2DFrame, dont la responsabilité est de dessiner le treemap dans la
fenêtre de visualisation du prototype.

FIG. B.6 – Structure d’implementation du TimeSliceView.

B.4. L’IMPLEMENTATION DU PROTOTYPE TRIVA 149

La Figure B.6 détaille également les interactions et les notifications qui se produisent pen-
dant l’exécution de la composante. L’arrivée d’objets du simulateur Pajé (voir Figure B.4 pour
plus de détails) est représentée sur la gauche de la Figure. Les interactions avec l’utilisateur peu-
vent provoquer des trois différents types de notifications qui partent de la composante Triva2DFrame
vers la composante TimeSlice : changer la taille de la fenêtre, changer de niveau d’agrégation
ou modifier la tranche de temps. Toutes ces notifications déclenchent la même chaîne d’événe-
ments dans le composant : la création d’une hiérarchie de comportement, l’application possible
des opérateurs d’agrégation et le calcul des nouveaux treemap. Le treemap résultant est envoyé
comme une réponse et est dessiné dans la fenêtre par le composant Triva2DFrame.

150 APPENDIX B. EXTENDED ABSTRACT IN FRENCH

B.5 Résultats Obtenus et Évaluation

L’objectif principal de cette partie du résumé est de présenter les deux types de visualisations
générées par le prototype, une en trois dimensions et l’autre sous forme de treemap. Dans le
même temps, une analyse de ces resultats est faite compte tenu des traces d’exécution utilisées
comme entrée pour le prototype.

B.5.1 Trois Dimensions

Le principal objectif du modèle 3D est de réaliser la combinaison en trois dimensions des
composants de l’application avec la topologie d’interconnexion des ressources. Dans un premier
temps, nous avons retenu un scénario comprenant 60 processus, divisés en 2 sites différents de
Grid’5000. Le sitenancycontribue à la l’exécution avec 30 machines du clustergrelon, tandis
que le siterennesa une allocation de 25 machines du clusterparamountet 5 machines du cluster
paraquad. Nous considérons ici une topologie du réseau dans laquelle chaque sitecontient un
routeur lui-même et tous lesclusterssont connectés au routeur de leur site. Les routeurs de
différents sites sont interconnectés via un backbone. Ainsi, quand un message est envoyé à un
clusterd’un site à partir d’unclusterd’un autre site, il doit passer par l’intermédiaire de deux
routeurs.

La Figure B.7 montre deux captures d’écran du prototype Triva générées lors de l’affichage
du fichier de trace de ce scénario. Le texte et les lignes en pointillés ont été ajoutés manuellement
pour accroître la compréhension de l’exemple. L’imageA montre le temps total d’exécution avec
une petite échelle de temps, de sorte que tous les objets soient dans la base dela visualisation. La
ligne pointillée montre la séparation entre les sitesrennes, avec deuxclusters, etnancy, avec un
seulcluster. Nous pouvons voir à cette échelle de temps, un grand nombre de vols de travail entre
les groupesgrelonetparaquad, probablement dû au nombre de processus qui leur sont attribués.
L’analyse de ces interactions en conjonction avec la topologie du réseau permet à l’utilisateur de
voir que toutes les demandes de travail de cesclustersdoivent passer à travers les deux routeurs
de l’interconnexion.

Le prototype permet également de changer de façon dynamique l’échelle de temps, en util-
isant la souris. L’imageB dans la Figure B.7 indique le temps d’exécution total pour les traces
de ce scénario, mais avec une plus grande échelle de temps. Grâce à cette image, il est possi-
ble d’observer des différences dans le comportement de vol de travailà différentes périodes de
temps de l’exécution. Il est ainsi possible d’apercevoir qu’au début, ily a beaucoup moins de
vols qu’à la fin. La raison de cela est qu’à la fin d’une application KAAPI,les tâches deviennent
plus rares. Ce comportement est normal, vu que le vol de travail des tâches implémenté dans la
version actuelle de la bibliothèque KAAPI est aléatoire.

Un deuxième scénario est une application KAAPI composée de 200 processus sur 200 ma-
chines. La répartition des machines est divisée en deux sites :renneset nancy. Le nombre de
machines affectées à chacun d’eux est le même, bien que la répartition interne de chacun diffère
au niveau du nombre de machines par cluster. L’imageA de la Figure B.8 indique le nombre
de machines affectées à chaqueclusterainsi que la topologie du réseau qui relie les deux sites.
La ligne pointillée est utilisé pour separer les sites distincts. Nous considérons pour ce scénario

B.5. RÉSULTATS OBTENUS ET ÉVALUATION 151

FIG. B.7 – Deux captures d’écran du prototype Triva pendant la visualisation d’une application
composé de 60 processus, à différentes échelles de temps.

l’existence d’informations complémentaires concernant l’interconnexion entre les routeurs et les
trois clusters. La bande passante disponible entre lesclusters paraventet grillon, à travers les
deux routeurs, est de 100 mégabits. Le lien entre lecluster grelonet son routeur est de 1 mégabit,
comme indiqué dans l’imageA de la Figure.

FIG. B.8 – Deux vues d’un exemple avec plus d’informations sur la topologie du réseau, telles
que les limitations imposées par la bande passante.

Dans ce scénario, il y a 87 processus en cours dans le clustergrelon, et 61 dansparavent.
Considérons seulement les vols du travail entre ces deuxclusters, indiqués dans le cercle en
pointillés de l’image sur la droite de la Figure B.8 : la flèche en pointillés dans la même image

152 APPENDIX B. EXTENDED ABSTRACT IN FRENCH

indique que ces demandes doivent passer par le lien de 1 mégabit. La visualisation permet de
déduire qu’un nombre plus restreint de processus devraient être placés dans unclusteravec une
bande passante limitée. Si, par exemple, les processus du clustergrelonpouvaient être exécutés
dans le clustergrillon, l’application pourrait atteindre une meilleure performance.

À travers l’exemple de ce deuxième scénario, nous pouvons noter l’importance d’analyser
la performance d’une application accompagnée d’une représentation topologique du réseau. Si
ce type de visualisation, illustré dans l’imageB dans la Figure B.8, n’est pas présent, l’analyste
peut obtenir des conclusions incomplétes sur les performances de l’application.

B.5.2 Agrégation

Un des principaux avantages du modèle d’agrégation de données de cettethèse est la facilité
qu’il apporte pour l’analyse d’un grand nombre d’entités dans le même écran. Pour évaluer la
façon dont la visualisation passe à l’échelle, une trace de synthèse composée de 100 milliers de
processus a été utilisé, chacun avec deux états différents. L’analyse qui suit montre l’emploi de
la technique de la tranche de temps et de l’algorithme d’agrégation.

La Figure B.9 montre l’analyse de cette trace, qui comprend une hiérarchieà quatre niveaux :
Site, Cluster, Machine et Processor. La hiérarchie contient 10 sites, chacun avec 10 clusters,
chaque cluster avec 100 machines et chaque machine avec 100 processus. Chaque processeur
peut être dans l’un des deux états possibles, représentée dans la Figure par les différentes tonal-
ités de gris.

L’analyse à grande échelle en utilisant le prototype commence avec le treemapA, situé en
haut à gauche de la Figure B.9, avec le niveau Processor. Dans ce treemap, il y a 200 mille rectan-
gles : 100 mille fois le nombre des états possibles. Nous pouvons observer que certaines régions
du treemap sont plus sombres que d’autres, permettant une sorte de conclusion concernant la
repartition des états. Toutefois, une conclusion précise est difficile à atteindre avec cette repre-
sentation. La raison principale est que le treemapA comporte des rectangles qui sont très petits,
de sorte qu’il est difficile de noter des différences de taille entre deux états d’un seul processeur.
L’exemple est montré pour illustrer la limitation de la visualisation treemap traditionnelle.

Le rectangle blanc de la treemapA dans la Figure B.9 représente l’espace dédié à une ma-
chine. Bien qu’il soit difficile de le constater, il y a 200 rectangles dans cette petite région qui
représente l’état des 100 processeurs de cette machine. Comme il est difficile de comprendre
la structure de l’ensemble de ces 100 processus, l’utilisateur peut interagir avec le prototype et
visualiser la valeur agrégée au niveau de la machine, comme montré dans le treemapB de la
Figure. Elle indique, pour chaque machine, les deux états possibles. Danscette representation,
il est possible d’examiner les différences entre les machines : certaines passent beaucoup plus
de temps dans un état que dans un autre. La zone en évidence sur le côté gauche du treemapB,
présentée par l’intermédiaire d’un zoom, est la zone du rectangle blanc dutreemapA.

Les agrégations suivantes permettent à l’utilisateur de visualiser les tracesau niveau Cluster,
comme indiqué dans le treemapC de la même Figure, et au niveau Site dans le treemapD.
Le treemap C montre 100 clusters (10 par site). Dans sa partie gauche, le treemap contient
un rectangle noir qui montre les 10 clusters dans la région dédiée à un site. La flèche dans ce
rectangle désigne les valeurs agrégés pour ce site, dans le treemap D. L’agrégation maximale
possible, le treemapE, permet d’avoir une vue des informations d’état disponibles globalement,

B.5. RÉSULTATS OBTENUS ET ÉVALUATION 153

FIG. B.9 – Visualisation treemap normale (A) and quatre agrégés (B – E) de deuxétats pour 100
mille processeurs (trace synthétique).

en indiquant que l’état représenté par le ton plus claire apparaît plus souvent que l’autre dans la
tranche de temps choisie pour cet exemple.

Un second scénario pour la visualisation treemap est une application de 188processus, réal-
isée sur 188 machines, réparties dans cinq sites du Grid’5000, dont le sitede Porto Alegre. Il y
a 13 machines affectées dans le clusterxiru, àportoalegre; 2 debordereau, 17 debordemer, et
6 debordeplage, à bordeaux; 45 depastel, 5 deviolette, à toulouse; 14 deparamount, 36 de
paraquad, à rennes; et finalement 50 degrelonà nancy. La Figure B.10 montre deux treemaps
calculés avec les traces générées dans ce scénario.

Le treemapA montre les états Run et RSteal pour les 188 processus. Presque tous les pro-
cessus exhibent le même comportement, avec plus de temps passé dans l’état Run (zones avec
un ton de gris clair) par rapport à l’état RSteal (gris foncé). La seule exception apparaît dans
le K-processus au sein du site deportoalegre, manuellement mis en evidence avec le cercle en
pointillés. Nous notons que ces processus sont restés plus de temps à voler les tâches que les
processus d’autres sites. Le treemapB, à droite, montre la même tranche de temps et les mêmes
processus, mais seulement pour l’état RSteal. Ici, la différence de temps passé à voler les tâche
devient encore plus évidente. Nous pensons que la principale raison dece comportement vient
de l’interconnexion entre les sites. Le site deportoalegrese trouve au Brésil, et son lien avec
Grid’5000 n’est fait qu’à travers d’un réseau privé virtuel (VPN)qui est maintenue grâce à Inter-
net. La latence de cette connexion, par rapport à la latence globale entre les sites Grid’5000 situés
en France, est significative. Le vol des tâches traditionnellement mis en œuvre dans KAAPI dif-
ferencie pas les cibles d’un vol. Ce choix, dans un environnement d’interconnexion hétérogène,

154 APPENDIX B. EXTENDED ABSTRACT IN FRENCH

peut conduire à passer plus de temps à voler, comme indiqué par le treemap calculé par notre
algorithme de tranche de temps.

FIG. B.10 – Scénario KAAPI avec une application composée de 188 processus.

Globalement, l’algorithme de tranche de temps combiné avec le modèle d’agrégation de
cette thèse permetent d’identifier facilement les problèmes de performance lorsqu’on compare
le comportement relatif des processus dans une application parallèle. Le modèle d’agrégation
présente des avantages pour les situations à grande échelle, peu importe lenombre de processus
impliqués dans l’analyse. La seule mesure nécessaire pour permettre l’application de nos propo-
sitions est la définition d’une hiérarchie avec au moins quelques niveaux.Le hiérarchie utilisée
dans le scénario KAAPI dispose de 5 niveaux, ce qui permet d’obtenirde bons résultats dans la
visualisation.

B.6. CONCLUSION 155

B.6 Conclusion

Les visualisations classiques pour l’analyse des applications parallèles sont conçues pour
traiter des données à petite échelle et équilibrées. Le besoin de techniquesde visualisation pour
l’analyse à grande échelle, telles que au sein de grilles de calcul, motive ce travail. Deux prob-
lèmes dans l’analyse des applications parallèles par le biais de la visualisation sont soulevés dans
cette thèse.

Le premier est l’impact de l’interconnexion des réseaux dans l’exécutiondes applications
parallèles. Cet impact devrait être pris en compte dans l’analyse pour mieux comprendre et
améliorer les performances de l’application. Les techniques traditionnelles de visualisation, tels
que les graphiques espace-temps par exemple, sont largement utilisés pour l’analyse des appli-
cations. Toutefois, ces techniques ne peuvent pas montrer, dans le même affichage, la topologie
du réseau et le suivi des données d’exécution de l’application. Cela peut conduire à des conclu-
sions erronées dans la détection des problèmes de performance des applications. Le deuxième
problème est la passage à l’échelle des techniques de visualisation. Généralement, le nombre
d’entités de suivi que l’on peut voir sur le même écran est limité à la résolution verticale de
l’écran d’un ordinateur. Les représentations espace-temps en 2D sont un exemple clair de ce
problème, elles sont mal adaptées à l’analyse des applications de grille composées d’un grand
nombre de processus.

L’idée principale de cette thèse est l’exploitation des techniques de visualisation d’informa-
tion qui peuvent être utilisées pour analyser le comportement des applications parallèles. Notre
première approche montre le réseau d’interconnexion, ainsi que des données de l’application en
utilisant une vue en trois dimensions. La base de ce point de vue est utilisée pour detailler l’in-
terconnexion entre les ressources, et le troisième axe pour montrer l’évolution de l’application
dans le temps. Cette visualisation est complétée par la représentation des communication, qui
donne la possibilité au développeur de les comparer avec la topologie du réseau.

La deuxième approche est le modèle visuel d’agrégation, où les problèmesde passage à
l’échelle sont surmontés par la combinaison de la technique du treemap et de l’algorithme de
tranche de temps. Cet algorithme prend en compte des tranches de temps pourgénérer des
valeurs et de les injecter dans une organisation hiérarchique de l’application. Cette structure est
alors représentée par la technique du treemap. Le passage à l’échelle est réalisé par le modèle
d’agrégation, où les niveaux de la hiérarchie sont utilisées pour créerdes données intermédiaires
qui peuvent être utilisés pour une représentation treemap avec plus d’informations.

Les deux approches ont été implémentées dans un prototype appelé Triva, développé en util-
isant un gestionnaire de scènes 3D appelé Ogre et une implementation de l’algorithme Treemap.
Le prototype dispose de mécanismes pour la lecture des traces fournis parla bibliothèque
DIMVisual, capable d’intégrer les données provenant de différentessources et formats. Des
traces synthétiques et réelles d’applications KAAPI et MPI ont été utiliséespour valider l’ap-
proche et l’implementation. Le traces KAAPI ont été recueillies sur la plate-forme Grid’5000.
Bien que l’évaluation du prototype est liée à l’analyse d’applications KAAPIet MPI, le format
d’entrée Pajé permet d’étendre les avantages de l’outil à d’autres domaines de recherche, pour
visualiser d’autres types de ressources dans les bibliothèques de communication.

Les résultats sont prometteurs. La visualisation en trois dimensions permet demieux com-

156 APPENDIX B. EXTENDED ABSTRACT IN FRENCH

prendre les communications en conjonction avec la topologie du réseau. En ayant recours à une
simplification de la topologie de Grid’5000, nous avons pu montrer que dans les différentes
tranches de temps, le vol de travail dans KAAPI pourrait bénéficier davantage de la localité.
En effet, l’implementation actuelle de KAAPI ne prend pas en compte le réseau pour faire les
requêtes de vol de travail. En outre, les résultats obtenus avec le modèle d’agrégation ont permis
la visualisation des états de 100 milliers de processeurs, générés de manièresynthétique. Les
treemaps définis par l’algorithme de la tranche de temps ont également été déterminés en util-
isant des traces KAAPI et MPI. Nous avons été en mesure d’identifier dans les traces KAAPI des
caractéristiques variées, telles que le comportement de différents mécanismes de vol effectuées
par des processus distincts, l’efficacité de l’équilibrage de la charge pour l’ensemble du temps
d’exécution de applications, et l’analyse d’une application KAAPI à grande échelle composée
de près de 3 mille processus.

En résumé, les principaux objectifs atteints dans cette thèse sont la proposition d’une ap-
proche tridimensionnelle, le modèle visuel d’agrégation combiné avec la tranche de temps et
le prototype Triva. En outre, il comprend l’interaction entre Triva et la bibliothèque KAAPI,
permettant une analyse des activités de vol de travail de cette bibliothèque.

Comme perspectives, il est prévu l’extension de la visualisation 3D pour la représentation de
l’information produite par le modèle d’agrégation, la création des graphes d’application réduits
avec la technique de la tranche de temps et d’agrégation, l’étude d’autresfonctions d’agréga-
tion et l’utilisation d’autres données pour l’algorithme de la tranche de temps. Nous pensons
que la plus importante contribution de ce travail est l’étude des techniques dudomaine de la
visualisation appliquées à l’analyse des applications parallèles.

Bibliography

[1] David P. Anderson. Boinc: A system for public-resource computingand storage. In
GRID’04: Proceedings of the 5th IEEE/ACM International Workshop onGrid Comput-
ing, pages 4–10, Washington, DC, USA, 2004. IEEE Computer Society.

[2] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@ home: an
experiment in public-resource computing.Communications of the ACM, 45(11):56–61,
2002.

[3] Apple. Property List Programming Guide for Cocoa: Introduction to Property Lists.
Cocoa Developer Connection, November 2008.http://developer.apple.com/
documentation/Cocoa/Conceptual/PropertyLists/PropertyLists.
pdf. Last accessed October 7, 2009.

[4] D.C. Arnold, D.H. Ahn, B.R. de Supinski, G.L. Lee, B.P. Miller, and M. Schulz. Stack
trace analysis for large scale debugging. InThe Proceedings of the IEEE International
Parallel and Distributed Processing Symposium. IPDPS 2007, March 2007.

[5] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L.Lee, Barton P. Miller,
and Martin Schulz. Stack trace analysis for large scale debugging. InIPDPS 2007:
Proceedings of the 2007 International Parallel and Distributed Processing Symposium,
page 64, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[6] R. A. Aydt. Sddf: The pablo self-describing data format. Technicalreport, Department of
Computer Science, University of Illinois, September 1993.

[7] David F. Bacon, Perry Cheng, Daniel Frampton, and David Grove.Tuningfork: Visu-
alization, analysis and debugging of complex real-time systems. Technical Report IBM
Research Report RC24162, IBM, 2007.

[8] DH Bailey, E. Barszcz, JT Barton, DS Browning, RL Carter, L. Dagum, RA Fatoohi,
PO Frederickson, TA Lasinski, RS Schreiber, et al. The nas parallel benchmarks.Interna-
tional Journal of High Performance Computing Applications, 5(3):63, 1991.

[9] Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoitreemaps for the visual-
ization of software metrics. InSoftVis ’05: Proceedings of the 2005 ACM symposium on
Software visualization, pages 165–172, New York, NY, USA, 2005. ACM Press.

157

158 BIBLIOGRAPHY

[10] R. Bell, A.D. Malony, and S. Shende. Paraprof: A portable, extensible, and scalable tool
for parallel performance profile analysis.Lecture Notes in Computer Science, pages 17–26,
2003.

[11] X. Besseron, S. Bouguerra, T. Gautier, E. Saule, and D. Trystram. Fault tolerance and
availability awarness in computational grids, chapter 5. Numerical Analysis and Scientific
Computing. Chapman and Hall/CRC Press, to appear 2009. ISBN: 978-1439803677.

[12] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou, S. Lantéri,
J. Leduc, N. Melab, G. Mornet andR. Namyst, P. Primet, B. Quetier, O. Richard, E-G.
Talbi, and I. Touche. Grid’5000: a large scale and highly reconfigurable experimental grid
testbed.International Journal of High Performance Computing Applications, 20(4):481–
494, November 2006.

[13] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. InProceedings of Joint
Eurographics and IEEE TCVG Symposium on Visualization, pages 33–42. IEEE Press,
2000.

[14] H. Brunst, H.C. Hoppe, W.E. Nagel, and M. Winkler. Performance optimization for large
scale computing: The scalable vampir approach. InProceedings of the International Con-
ference on Computational Science-Part II, pages 751–760. Springer-Verlag London, UK,
2001.

[15] M.S.T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia. Extending distortion viewing
from 2d to 3d.IEEE Computer Graphics and Applications, 17(4):42–51, 1997.

[16] Charlie Catlett. The philosophy of teragrid: Building an open, extensible, distributed teras-
cale facility. InCCGRID ’02: Proceedings of the 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid, page 8, Washington, DC, USA, 2002. IEEE Computer
Society.

[17] A. Chan, W. Gropp, and E. Lusk. An efficient format for nearlyconstant-time access to
arbitrary time intervals in large trace files.Scientific Programming, 16(2):155–165, 2008.

[18] Christian Clémençon, Akiyoshi Endo, Josef Fritscher, Andreas Müller, and Brian J. N.
Wylie. Annai scalable run-time support for interactive debugging and performance analysis
of large-scale parallel programs. In Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and
Yves Robert, editors,Euro-Par, Vol. I, volume 1123 ofLecture Notes in Computer Science,
pages 64–69. Springer, 1996.

[19] G. Coulouris, J. Dollimore, and T. Kindberg.Distributed systems: Concepts and Design.
Addison-Wesley Reading, Mass, 4th edition, 2005.

[20] Gabriela Jacques da Silva, Lucas Mello Schnorr, and Benhur Stein. Jrastro: A trace agent
for debugging multithreaded and distributed java programs. InProceedings of the 15th
Symposium on Computer Architecture and High Performance Computing, pages 46–54.
Los Alamitos: IEEE Computer Society, 2003.

BIBLIOGRAPHY 159

[21] J. Chassin de Kergommeaux and B. de Oliveira Stein. Flexible performance visualization
of parallel and distributed applications.Future Generation Computer Systems, 19(5):735–
747, 2003.

[22] J.C. de Kergommeaux, B. Stein, and PE Bernard. Pajé, an interactive visualization tool for
tuning multi-threaded parallel applications.Parallel Computing, 26(10):1253–1274, 2000.

[23] B. de Oliveira Stein, J.C. de Kergommeaux, and G. Mounié. Pajé tracefile format.
Technical report, ID-IMAG, Grenoble, France, 2002.http://www-id.imag.fr/
Logiciels/paje/publications.

[24] Benhur de Oliveira Stein.Visualisation interactive et extensible de programmes parallèles
à base de processus légers. PhD thesis, Université Joseph Fourier, 1999.

[25] Wim De Pauw, Henrique Andrade, and Lisa Amini. Streamsight: a visualization tool for
large-scale streaming applications. InSoftVis ’08: Proceedings of the 4th ACM symposium
on Software visualization, pages 125–134, New York, NY, USA, 2008. ACM.

[26] S.G. Eick and A.F. Karr. Visual scalability.Journal of Computational and Graphical
Statistics, 11(1):22–43, 2002.

[27] John Ellson, Emden Gansner, Lefteris Koutsofios, North Stephen C., and Gordon Wood-
hull. Graphviz-open source graph drawing tools.Lecture Notes in Computer Science,
2265:594–597, 2002.

[28] Jean-Daniel Fekete and Catherine Plaisant. Interactive informationvisualization of a mil-
lion items. InINFOVIS ’02: Proceedings of the IEEE Symposium on Information Visual-
ization (InfoVis’02), page 117, Washington, DC, USA, 2002. IEEE Computer Society.

[29] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable vir-
tual organizations.International Journal of High Performance Computing Applications,
15(3):200–222, 2001.

[30] Ian Foster and Carl Kesselman.The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003. ISBN 1-558-60933-4.

[31] Henrique Freitas, Marco Alves, Lucas Mello Schnorr, and PhilippeOlivier Alexandre
Navaux. Performance evaluation of noc architectures for parallel workloads. InThe 3rd
ACM/IEEE International Symposium on Networks-on-Chip, NOCS. IEEE Computer Soci-
ety, 2009.

[32] F. Galilée, J.L. Roch, G.G.H. Cavalheiro, and M. Doreille. Athapascan-1: On-line building
data flow graph in a parallel language. InProceedings of the 1998 International Conference
on Parallel Architectures and Compilation Techniques. IEEE Computer Society Washing-
ton, DC, USA, 1998.

[33] Emden R. Gansner. Drawing graphs with graphviz. Technical report, GraphViz WebSite,
April 2009. http://www.graphviz.org/pdf/libguide.pdf. Last accessed
June, 17, 2009.

160 BIBLIOGRAPHY

[34] Emden R. Gansner and Stephen C. North. An open graph visualization system and its
applications to software engineering.Software Practice Experience, 30(11):1203–1233,
2000.

[35] Thierry Gautier, Xavier Besseron, and Laurent Pigeon. Kaapi:A thread scheduling runtime
system for data flow computations on cluster of multi-processors. InProceedings of the
international workshop on Parallel symbolic computation, pages 15–23, New York, NY,
USA, 2007. ACM.

[36] GA Geist, MT Heath, BW Peyton, and PH Worley. A user’s guide to picl aportable instru-
mented communication library. Technical report, ORNL/TM-11616, Oak RidgeNational
Lab., TN (USA), 1990.

[37] William Gropp, Ewing Lusk, and Anthony Skjellum.Using MPI: portable parallel pro-
gramming with the message-passing interface. MIT Press, Cambridge, MA, USA, 1994.
ISBN 0-262-57104-8.

[38] MT Heath and JA Etheridge. Visualizing the performance of parallel programs. IEEE
software, 8(5):29–39, 1991.

[39] S. Heisig. Treemaps for workload visualization.Computer Graphics and Applications,
IEEE, 23(2):60–67, 2003.

[40] Jeffrey K. Hollingsworth. Finding Bottlenecks in Large-scale Parallel Programs. PhD
thesis, University of Wisconsin – Madison, August 1994.

[41] K.A. Huck and A.D. Malony. Perfexplorer: A performance data mining framework for
large-scale parallel computing. InProceedings of the 2005 ACM/IEEE conference on Su-
percomputing. IEEE Computer Society Washington, DC, USA, 2005.

[42] B. Johnson and B. Shneiderman.Tree-Maps: a space-filling approach to the visualization
of hierarchical information structures. IEEE Computer Society Press Los Alamitos, CA,
USA, 1991.

[43] Gregory Junker.Pro OGRE 3D Programming (Pro). Apress, Berkely, CA, USA, 2006.

[44] Laxmikant V. Kalé, Gengbin Zheng, Chee Wai Lee, and Sameer Kumar. Scaling applica-
tions to massively parallel machines using projections performance analysistool. Future
Generation Comp. Syst., 22(3):347–358, 2006.

[45] L.V. Kale and S. Krishnan. Charm++: A portable concurrent object oriented system based
on c++. InProceedings of the eighth annual conference on Object-oriented programming
systems, languages, and applications, pages 91–108. ACM New York, NY, USA, 1993.

[46] I.H. Kazi, D.P. Jose, B. Ben-Hamida, C.J. Hescott, C. Kwok, J.A. Konstan, D.J. Lilja, and
P.C. Yew. Javiz: A client/server java profiling tool.IBM Systems Journal, 39(1):96–117,
2000.

BIBLIOGRAPHY 161

[47] Jacques Chassin de Kergommeaux and Benhur de Oliveira Stein. Pajé: An extensible
environment for visualizing multi-threaded programs executions. InEuro-Par ’00: Pro-
ceedings from the 6th International Euro-Par Conference on Parallel Processing, pages
133–140, London, UK, 2000. Springer-Verlag.

[48] Derrick Kondo, Michela Taufer, Charles L. Brooks III, HenriCasanova, and Andrew A.
Chien. Characterizing and evaluating desktop grids: An empirical study.International
Parallel and Distributed Processing Symposium, 1:26b, 2004.

[49] S. Lacour, C. Pérez, and T. Priol. A network topology descriptionmodel for grid applica-
tion deployment. InProceedings of the 5th IEEE/ACM International Conference on Grid
Computing, pages 61–68. IEEE Computer Society Washington, DC, USA, 2004.

[50] Gregory L. Lee, Dong H. Ahn, Dorian C. Arnold, Bronis R. de Supinski, Matthew Leg-
endre, Barton P. Miller, Martin Schulz, and Ben Liblit. Lessons learned at208k: towards
debugging millions of cores. InSC ’08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, pages 1–9, Piscataway, NJ, USA, 2008. IEEE Press.

[51] T. Lehr, Z. Segall, D.F. Vrsalovic, E. Caplan, A.L. Chung, and C.E. Fineman. Visualizing
performance debugging.Computer, 22(10):38–51, Oct 1989.

[52] E. Maillet and C. Tron. On efficiently implementing global time for performance evaluation
on multiprocessor systems.Journal of Parallel and Distributed Computing, 28(1):84–93,
1995.

[53] AD Malony, DH Hammerslag, and DJ Jablonowski. Traceview: a tracevisualization tool.
Software, IEEE, 8(5):19–28, 1991.

[54] S. Mansmann, F.; Vinnik. Interactive exploration of data traffic with hierarchical network
maps. IEEE Transactions on Visualization and Computer Graphics, 12(6):1440–1449,
Nov-Dec 2006.

[55] Matthew L. Massie, Brent N. Chun, and David E. Culler. The gangliadistributed monitor-
ing system: Design, implementation, and experience.Parallel Computing, 30(7):817–840,
2004.

[56] B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S. S. Lim, and T. Torzewski. Ips-2:
The second generation of a parallel program measurement system.IEEE Trans. Parallel
Distrib. Syst., 1(2):206–217, 1990.

[57] Barton P. Miller, Mark D. Callaghan, Joanthan M. Cargille, JeffreyK. Hollingsworth,
R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and TiaNewhall. The
paradyn parallel performance measurement tool.IEEE Computer, 28(11):37–46, 1995.

[58] Barton P. Miller and Cui-Qing Yang. Ips: An interactive and automatic performance mea-
surement tool for parallel and distributed programs. InICDCS, pages 482–489, 1987.

162 BIBLIOGRAPHY

[59] B. Mohr and F. Wolf. Kojak-a tool set for automatic performance analysis of parallel
programs.Lecture notes in computer science, pages 1301–1304, 2003.

[60] W.E. Nagel, A. Arnold, M. Weber, H.C. Hoppe, and K. Solchenbach. Vampir: Visualiza-
tion and analysis of mpi resources.Supercomputer, 12(1):69–80, 1996.

[61] G. Nagy and S. Seth. Hierarchical representation of optically scanned documents. In
Proceedings of International Conference on Pattern Recognition, volume 1, pages 347–
349, 1984.

[62] F.G. Ottogalli, C. Labbé, V. Olive, B. de Oliveira Stein, J.C. de Kergommeaux, and J.M.
Vincent. Visualisation of distributed applications for performance debugging. In Proceed-
ings of the International Conference on Computational Science-Part II, pages 831–840.
Springer-Verlag London, UK, 2001.

[63] V. Pillet, J. Labarta, T. Cortes, and S. Girona. Paraver: A tool to visualise and analyze
parallel code. InProceedings of Transputer and occam Developments, WOTUG-18., vol-
ume 44 ofTransputer and Occam Engineering, pages 17–31, Amsterdam, 1995. [S.l.]:
IOS Press.

[64] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W.Schwartz, and L. F.
Tavera. Scalable Performance Analysis: The Pablo Performance Analysis Environment.
In Proc. Scalable Parallel Libraries Conf., pages 104–113. IEEE Computer Society, 1993.

[65] D.A. Reed, R.A. Aydt, T.M. Madhyastha, R.J. Noe, K.A. Shields, andB.W. Schwartz. An
overview of the pablo performance analysis environment. Technical report, Department of
Computer Science, University of Illinois, 1992.

[66] DA Reed, PC Roth, RA Aydt, KA Shields, LF Tavera, RJ Noe, and BWSchwartz. Scalable
performance analysis: the pablo performance analysisenvironment. InScalable Parallel
Libraries Conference, 1993., Proceedings of the, pages 104–113, 1993.

[67] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Autopilot: Adaptivecontrol of
distributed applications. InHPDC ’98: Proceedings of the The Seventh IEEE Interna-
tional Symposium on High Performance Distributed Computing, page 172, Washington,
DC, USA, 1998. IEEE Computer Society.

[68] Sratha Saengsuwarn and Vivek Pai. Covisualize - visualization of planetlab project, Febru-
ary 2009. http://codeen.cs.princeton.edu/covisualize/. Last accessed July, 28, 2009.

[69] Manojit Sarkar and Marc H. Brown. Graphical fisheye views.Commun. ACM, 37(12):73–
83, 1994.

[70] Lucas Mello Schnorr, Philippe O. A. Navaux, and Benhur de Oliveira Stein. Dimvisual:
Data integration model for visualization of parallel programs behavior. InProceedings
of the Sixth IEEE International Symposium on Cluster Computing and the Grid, pages
473–480, Washington, DC, USA, 2006. IEEE Computer Society.

BIBLIOGRAPHY 163

[71] Z. Segall and L. Rudolph. Pie: A programming and instrumentation environment for par-
allel processing.IEEE Software, 2(6):22–37, 1985.

[72] Eric Shaffer, Daniel A. Reed, Shannon Whitmore, and Benjamin Schaeffer. Virtue: Per-
formance visualization of parallel and distributed applications.Computer, 32(12):44–51,
1999.

[73] B. Shneiderman and M. Wattenberg. Ordered treemap layouts. InProceedings of the
IEEE Symposium on Information Visualization 2001 (INFOVIS’01). IEEE Computer Soci-
ety Washington, DC, USA, 2001.

[74] Ben Shneiderman. Tree visualization with tree-maps: 2-d space-fillingapproach.ACM
Trans. Graph., 11(1):92–99, 1992.

[75] J. Smart, K. Hock, and S. Csomor.Cross-Platform GUI Programming with wxWidgets
(Bruce Perens Open Source). Prentice Hall PTR Upper Saddle River, NJ, USA, 2005.

[76] Benhur Stein, Jacques Chassin de Kergommeaux, and Pierre-EricBernard. Pajé, an inter-
active visualization tool for tuning multi-threaded parallel applications.Parallel Comput-
ing, 26:1253–1274, 2000.

[77] Martin Wattenberg. Visualizing the stock market. InCHI ’99: CHI ’99 extended abstracts
on Human factors in computing systems, pages 188–189, New York, NY, USA, 1999. ACM
Press.

[78] Jarke J. Van Wijk and Huub van de Wetering. Cushion treemaps: Visualization of hi-
erarchical information. InINFOVIS ’99: Proceedings of the 1999 IEEE Symposium on
Information Visualization, page 73, Washington, DC, USA, 1999. IEEE Computer Soci-
ety.

[79] James M. Wilson. Gantt charts: A centenary appreciation.European Journal of Opera-
tional Research, 149(2):430–437, September 2003.

[80] F. Wolf and B. Mohr. Automatic performance analysis of hybrid mpi/openmp applications.
Journal of Systems Architecture, 49(10-11):421–439, 2003.

[81] J. C. Yan. Performance tuning with AIMS — an Automated Instrumentationand Monitor-
ing System for multicomputers. InProceedings of the 27th Annual Hawaii International
Conference on System Sciences, pages 625–633, 1994.

[82] Cui-Qing Yang and Barton P. Miller. Performance measurement for parallel and distributed
programs: A structured and automatic approach.IEEE Trans. Software Eng., 15(12):1615–
1629, 1989.

[83] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Towardscalable perfor-
mance visualization with jumpshot.Int. J. High Perform. Comput. Appl., 13(3):277–288,
1999.

Title: Some Visualization Models applied to the Analysis of Parallel Applications.
Abstract: This thesis tries to overcome the issues encountered on traditional visualization tech-
niques for parallel applications. The main idea behind our efforts is to explore techniques from
the information visualization research area and to apply them in the context ofparallel appli-
cations analysis. Based on this main idea, the thesis proposes two visualizationmodels: the
three-dimensional and the visual aggregation model. The former might be used to analyze par-
allel applications taking into account the network topology of the resources. The visualization
itself is composed of three dimensions, where two of them are used to renderthe topology and
the third is used to represent time. The later model can be used to analyze parallel applications
composed of several thousands of processes. It uses hierarchical organization of monitoring data
and an information visualization technique called Treemap to represent that hierarchy.
Keywords: Parallel applications, performance analysis, visualization, 3D visualization, treemap,
scalability, grid.

Título: Alguns Modelos de Visualização aplicados para a Análise de Aplicações Paralelas.
Resumo: Esta tese tenta resolver os problemas encontrados em técnicas de visualização tradi-
cionais para a análise de aplicações paralelas. A idéia principal consiste em explorar técnicas da
área de visualização da informação e aplicá-las no contexto de análise de programas paralelos.
Levando em conta isto, esta tese propõe dois modelos de visualização: o detrês dimensões e o
modelo de agregação visual. O primeiro pode ser utilizado para analisar aplicações levando-se
em conta a topologia da rede dos recursos. A visualização em si é composta por três dimensões,
onde duas são usadas para mostrar a topologia e a terceira é usada pararepresentar o tempo.
O segundo modelo pode ser usado para analisar aplicações paralelas com uma grande quanti-
dade de processos. Ela explora uma organização hierárquica dos dados de monitoramento e uma
técnica de visualização chamada Treemap para representar visualmente a hierarquia. Os dois
modelos representam uma nova forma de analisar aplicação paralelas visualmente, uma vez que
eles foram concebidos para larga-escala e sistemas distribuídos complexos, como grids.
Palavras-chave:Aplicações paralelas, análise de desempenho, visualização, visualização em
3D, treemap, escalabilidade, grid.

Titre: Quelques Modèles de Visualisation pour l’Analyse des Applications Parallèles.
Résumé:Cette thèse tente de résoudre les problèmes des techniques traditionnelles dans la vi-
sualisation du comportement des applications parallèles. L’idée principale est d’exploiter le do-
maine de la visualisation de l’information et d’appliquer ses concepts dans le cadre de l’analyse
des programmes parallèles. La thèse propose deux modèles de visualisation: les trois dimensions
et le modèle d’agrégation visuelle. Le premier peut être utilisé pour analyserles programmes
parallèles en tenant compte de la topologie du réseau. La visualisation se compose de trois di-
mensions, où deux sont utilisés pour la representation de la topologie et la troisième est utilisée
pour représenter le temps. Le second modèle peut être utilisé pour analyser des applications
parallèles comportant un très grand nombre de processus. Ce deuxième modèle exploite une
organisation hiérarchique des données et une technique appelée Treemap pour représenter vi-
suellement la hiérarchie.
Mots clés: Applications parallèles, analyse de performance, visualisation, visualisation en 3D,
treemap, passage à l’échelle, grille.

