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Chapter 1

Introduction

Distributed systems are related to hardware and software that contain morerik single
processor entity [19]. In such systems, processors are interdednaed communicate over
a network. The computer programs that execute in these systems are spiililtile parts
and must deal with different levels of parallelism and with communication pare] such
as message-passing and shared memory. A kind of distributed systemssi$3@jid They
are often structured in virtual organizations [29], possibly composetidyysands of machines
distributed geographically. Two examples of this type of system are thehfrenid’5000 [12]
and the american TeraGrid [16].

Characteristics shared by almost all grid platforms are dynamism, heteibgeiresources
and software, and presence of multiple administrative domains. Dynamisnsriiedrihe re-
sources that participate in the grid can be unavailable at any time, withopri@nyotification
of that. Parallel applications must deal with that in the application-level ougtr@a middle-
ware capable of handling resources fluctuations. The heterogeneitysries different con-
figurations of resources can be present in the same grid infrastrucliie is also valid for
software libraries and middlewares. A grid can be scattered through muldiplmestrative do-
mains, each part handled independently by their administrators. Besidesctharacteristics,
a grid might also have a complex network interconnection and be easily #téeimsterms of
resources.

The interconnection among resources of a grid can be composed oédiftgpes of net-
works. They include Ethernet, Myrinet, Infiniband, or optical fiber rexthgies. A model of a
grid with several types of interconnection is a desktop grid [48], like tbgepts BOINC [1] and
Seti@home [2], where the network is the internet. Another example for tisemee of multiple
types of interconnection is a lightweight grid, where a strong hierarchyad to interconnect a
set of homogeneous clusters of computers [12]. The presenceeshbiterconnections come
from the natural heterogeneity and geographic distribution characteradtigrids. These as-
pects impose a higher network complexity, greater number of hops to proeidmunication
among applications processes, and increasing differences in netwarkits and bandwidth.

Grid platforms are also easily extensible. New resources can be indefinitddd just by
connecting them to the existing participants. Usually, these additions bringhatéemgeneity
to the grid and increment the network complexity. As of today, there are Igflaks that are
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2 CHAPTER 1. INTRODUCTION

composed of several thousands of computers, such as the examplé&NE B&hother example
of how easy it is to add new resources to a grid is the case of Grid’5008reanew clusters
and sites can be added to the main backbone of the infrastructure. Thsikiity of these grid

platforms is a good characteristic from the point of view of parallel applinafivhich need an
increasing amount of resources to complete their execution faster.

All these grid characteristics influence directly the behavior of the pasgiglications dur-
ing their development and execution. Because of this, it is important foreedaper to under-
stand the impact of the distributed system on the application. An example of thisftgpalysis
is the observation of application monitoring data with information from the netwap&logy.
The application can have a better or worse performance, dependingicim rgsources are cho-
sen and the interconnection among them. This influence is even more evidemtetwork
aspects are considered, such as latency or bandwidth, on netwanki-parallel applications.
The grid extensibility is another aspect that influences directly the behafvagplications, be-
cause turning available new resources for the application might not slvesylt in a better
performance.

Considering these situations, we can notice that it is important to analyze riddéepap-
plication behavior along with information about the grid resources. Thilysisacan help the
developer to understand the impact of the network topology on the appli¢simavior. Com-
paring, for instance, the communication pattern of the application with the Hetemology can
give hints to the developer to adapt the application in order to better explaittdreonnection.
Moreover, if the network is hierarchically organized, the applicationdaléow the hierarchy to
avoid bottlenecks.A good analysis must also lead to conclusions aboubedigses of parallel
applications, including global and local patterns that can appear amamg thihe number of
processes is large, the analysis must also scale.

Visualization is a way to perform the analysis of parallel applications. It bas bxtensively
used through the last 30 years to understand and observe applicatibasetieveloped with
different levels of parallelism. The most traditional way of visualizing apgibcabehavior
is through an adaptation of Gantt charts [79], also known as space-taphigs. They list the
components of the application vertically and their evolution over time is placededrotizontal
axis. Examples that provide this kind of visualization are Pajé [22], Vam@} #d many
others [5, 46, 63]. This visualization is already widely used in existingictures, such as
clusters, where data is simpler and uniform.

Many of these tools were adapted to observe the behavior of applicatidrighty dis-
tributed systems like grids. Generally, they keep on using the same visualigatiomiques.
Considering only the space-time representation, the first issue that mrides they cannot
represent, together with the application data, the complex network topologsidosystems.
As discussed, the impact of the network cannot be excluded from dicatjgm analysis when
a complicated interconnection is present among the resources. Theal ggoblem is the vi-
sualization scalability of the space-time approach. Using such represastatie number of
components of the application that can be visualized in a screen is limited to tloaMmessolu-
tion of the screen.

This thesis tries to overcome the issues encountered on traditional visualiwatimiques
for parallel applications. The main idea behind our efforts is to explorentgahs from the



information visualization research area and to apply them in the contextalfgapplications
analysis. Based on this main idea, the thesis proposes two visualization mtdeltiree-
dimensional and the visual aggregation model. The former might be usedlyzamarallel
applications taking into account the network topology of the resources viEhalization itself
is composed of three dimensions, where two of them are used to rendepthegy and the
third is used to represent time. The later model can be used to analyze Ipgpalieations
composed of several thousands of processes. It uses hierdmigaaization of monitoring
data and an information visualization technique called Treemap [74] to esprémat hierarchy.
Both models represent a novel way to visualize the behavior of paraftapons, since they
are conceived considering large-scale and complex distributed systechsas grids.

The implications of this thesis are directly related to the analysis and undergjarigar-
allel applications executed in distributed systems. It enhances the comgpi@hef patterns
in communication among processes and improves the possibility of matching themeualith r
network topology of grids. Although we extensively use the network tapokxample, the
approach could be adapted with almost no changes to the interconnectategrby a middle-
ware of a logical interconnection. With our scalable visualization technagwelopers are able
to look for patterns and observe the behavior of large-scale applications

In this work, we are considering parallel applications that intend to obtamgegiormance
in grid environments. Additionally, these applications must be composed cégses that inter-
communicate during the execution of the application, either as point-to-pamrhcoications or
collective operations. Each process is composed of functions relatadttdations or to com-
municate with other processes. Besides this, we also consider that therraimimeesses of the
same application can scale up to a large number. To analyze these applicati@asider that
traces can be generated during application execution. A trace is dividiedestamped events,
each one identified by a type and additional information according to this 8geeral types of
events might be registered, for instance, the start and end of fundtienspmmunications, and
So on.

The text of the thesis is composed of six chapters, as follows:

Chapter 2: Visualization of Parallel Applications
This Chapter presents works related to this thesis. It starts with a historessngation
of tools since their first use to analyze computer programs, then goes testwpadion of
some of them. The Chapter ends with a summary of visualization techniquesfieths
according to three types according to the information they represent.

Chapter 3: The Three-Dimensional Model
This Chapter presents the three dimensional model. We first describe @saasiception,
detailing the components and concepts of the 3D visualization. Afterwamdldegcribe
the abstract model that is conceived to generate these visualizationisg Ehis descrip-
tion, we detail three different cases that can be rendered with theagtpto help the
performance analysis of parallel applications.

Chapter 4: Visual Aggregation Model
The fourth Chapter presents the visual aggregation model, proposed thekis to be
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combined with the treemap representation so the analysis of parallel applkcetinrbe
done with a large number of components. The Chapter first details how nipgittata
can be hierarchically organized, then it goes through the descriptior pftposed Time-
Slice algorithm and the aggregation model. The Chapter ends with the usetfah®p
technique to visualize the hierarchies created by the proposed algorithms.

Chapter 5: Triva Prototype Implementation

The fifth Chapter presents Triva, a prototype that includes the implementéditiom three-
dimensional and the visual aggregation model. A performance evaluatisonu Pajé
components is included in the beginning of this Chapter, in order to introdeaesth of
these components inside Triva. The rest of the Chapter presents the imfdéorede-
cisions and the description of the several modules, such as the DIMVisadéR to read
traces, the TrivaView, to the 3D views, and the TimeSliceView, related to thesggtion
model.

Chapter 6: Results and Evaluation

The sixth Chapter presents the results obtained with the Triva prototyptsawdluation,
through a set of synthetic and real scenarios that lists the main benefits pfaposed
approaches. A traces description is given in the beginning, detailing titieesic, KAAPI

and MPI traces used in the experiments and how they were obtained. Wagmesent
the resulting 3D visualizations rendered by the prototype and finish thet€haiph the

presentation of several treemaps whose hierarchies were createe Biyrta-Slice and
aggregation algorithm.

Chapter 7: Conclusion

The main contributions of this thesis are reminded and the perspectivesaiogteaned by
its concepts are detailed.



Chapter 2

Visualization of Parallel Applications

The main objective of the performance analysis of programs is to improvettator of appli-
cations. This analysis is more complex in a parallel or distributed executiGroement, since
there is a large number of variables that influence the execution of the atppie. Common
problems are network contentions, bottlenecks, dead-locks, and so on.

The performance visualization of parallel applications is an alternativerforpethe analy-
sis. It explores graphical representations and techniques to rapties@pplication behavior. A
lot of efforts have been applied in the development of new visualizaticensek and techniques
in the last 25 years. Most of this development is focused in the adaptatite efsualization
techniques to new programming paradigms and libraries for parallel apptisathkn example
of that is the appearance of the MPI Standard, in the middle 90’s, and\kbgment of large-
scale clusters. In this Chapter we present the techniques and toolsribr#tute to the area of
performance visualization of parallel applications.

The Chapter is organized as follows. We start by describing the evolutipartormance
visualization tools in Section 2.1, including a correlation between the tools aictcthators.
In Section 2.2, we detail a representative set of these tools, based mmdivative visualiza-
tions they provided when they were published. The Chapter ends with sificlaion of the
visualization techniques, in Section 2.3, and a summary of the Chapter.

2.1 Historical Evolution

The history of visualization tools for program analysis is closely related tdinttesuccessful
appearance of graphical user interfaces in 1984, with the release Mahintosh, by Apple.
With a wider availability, graphical interfaces have begun to be exploreaid®mries of projects
in the United States, almost at the same time. Figure 2.1 depicts a timeline view oftadsktc
of visualization tools for parallel program analysis. The timeline covers al@ogears, from
1985 up to now. The year associated with each visualization tool is onlypaoxamation based
on publications and technical reports.

The first known project that discusses the possibility of using graphicalysis for the
comprehension of parallel programs is the Programming and Instrumentatimofiment for
Parallel Processing — PIE [71], developed at the University Carridglion. Although the

5



6 CHAPTER 2. VISUALIZATION OF PARALLEL APPLICATIONS

project has started in 1985, first results showing a complete use of vaimiizechniques of
PIE have appeared only in 1989 [51]. The IPS [58, 82] proposel98i, a hierarchical model
for constructing parallel applications. Its second generation [56] fleatan interactive user in-
terface with graphics showing resources metrics that were registerned guogram execution.
On top of the hierarchical model proposed by IPS, the second genmepaéisents graphics with
different hierarchy levels, such as machines, processes andshread
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Figure 2.1 — Timeline of significant visualization tools for parallel prograaysis.

ParaGraph [38], initially developed at the University of lllinois, is a sofavéat provides
a detailed, dynamic, graphical animation of the behavior of message-gpassailel programs
and graphical summaries of their performance. At least 25 differeestgpviews are available
for the developer to understand the application behavior. Their autheestive first to use the
term “simulation” to mean graphical animation, stating that there is nothing artifib@t the
analysis, but that the behavior of the application is reconstructed with a siomutzased on
real trace data. Its implementation uses the Portable Instrumented Communidatiany L
PICL [36] as data source. Because of this dependence on PICL dh&de considered limited
since it was not possible to analyze other types of parallel applications,asuthe ones with
multiple threads or a combination of message-passing and threads.

The first effort in direction of a more general-purpose tool appeafsaneView [53]. The
notion of a general-purpose tool was developed to avoid a particula toamat, a specific
execution paradigm or execution system. According to the authors cfView, the architecture
of the tool is flexible enough to select different analysis and display aligas, but rigid enough
to combine these alternatives based on the resources of the tool.

The evolution of parallel computer systems and larger applications prdsewechallenges
in terms of performance visualization. The first tool to address this issadbie [56]. The tool is
built as a series of interconnected components. As trace data movesdhthihesg components,
it is transformed in a way to provide different views. The development el brings the
proposal of SDDF [6], a self-describing trace format.

AIMS, for Automated Instrumentation and Monitoring System, is a toolkit deeslogt
NASA in 1994 to facilitate the performance evaluation of parallel applicatioasneasure-
ment and visualization of execution traces [81]. It has four main compgsnansource-code
instrumentor; a run-time performance monitoring library; two tracefile analgsls and a trace
post-processor to compensate the intrusion caused by the tool in the ppleoeecution.
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The main characteristic of Paradyn [57] is the Performance’s Constifiainbelps the de-
veloper to dynamically set instrumentation points in the parallel programs. By dais, the
authors argue to improve scalability by reducing intrusion problems duriplicafion execu-
tion. Paraver [63] also appears in 1995 and offers the possibility tosehdifferent filters to
select what is going to be displayed.

Vampir [60], by Pallas GmbH, is a commercial visualization tool for the analygsuallel
applications following the MPI standard. It offers to the developers a vadge of graphical
views, such as state diagrams, activity charts, timeline displays and so @lso has flexible
filter operations to reduce the amount of information displayed. The toobé&as improved
with techniques such as the hierarchical visualization in time-space diagiahs[handle
large applications.

Annai [18] is an integrated environment for performance visualizati@ppfications devel-
oped with High Performance Fortran and with MPI.

In 1999, Virtue [72] brings to the performance visualization new concepisre human
sensory capabilities are explored with a 3D immersive visualization. At the siame the
development of MPI results in the first Jumpshot visualization tool [83}eldped in Java.
Jumpshot is the evolution of the first MPI analysis tool of the same team. Theearsion con-
tains a number of enhancements in order to make it suitable for large-sedysianJumpshot
is still in development and is now in its fourth version. The general purpissrlization tool
Pajé [76], presented in 2000, proposes a file format without semantistesryly related to
visual objects. The tool is extensible, interactive and scalable, beirablea visualize any
kind of monitoring data that can be described in its format. Kojak [59] agpi@a2003 and is
developed by the Julich Supercomputing Center in Germany. It suppogsapnming models
such as MPI, OpenMP, Shared memory and combinations of them. Its main itheaaato-
matic search of event traces that indicate inefficient behavior. Thégesa presented with a
graphical user interface. Also in 2003, the ParaProf [10] is predeade portable, extensible
and scalable tool for parallel performance profile analysis. The id€aprof is to gather in
the same tool the best capabilities from all previous performance analgkss e Projections
tool [44], introduced as a preliminary study in 1992, but only availableirad®005, is devel-
oped to visualize the behavior of Charm++ [45] parallel applications.dtrhaltiple views and
techniques to reduce the amount of trace data.

More recently, in 2007, the TuningFork [7] proposes visualization tieglas to analyze
large-scale real-time systems. Although not directly related to the analysarafgb applica-
tions, many of the problems faced by TunningFork are the same of traditianallgd appli-
cations. Examples of these problems are trace collection, very large traabsis, vertical
integration of data, and so on. Another tool is StreamSight [25], a to@ldpegd to understand
the dynamic behavior of streaming applications. It has the ability to visualideappns with
thousands of nodes and interconnections.

As a conclusion, we can notice that the first tools were mainly focused in dlyeappli-
cations should be instrumented. Dynamic and automatic instrumentation techwiengesalso
proposed. Then, the focus moved to more general and modular toolseledtansible to other
programming paradigms. The visualization techniques evolved rapidly in tjerideg and
are continuously explored till today. Recent tools try to solve the problewsatlizing enor-
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mous amount of data, acting directly with reducing and aggregation mechamismth new
visualization schemes that support more data to be represented.

Mapping Tools to Authors

The timeline evolution of performance visualization tools, together with theieasge authors,
can be used to analyze how the research area has evolved in the lasr&5RBigure 2.2 shows a
mapping between performance visualization tools and their authors. Sonoesaursated more
than one tool over time, improving the area of performance visualizationsisaln example is
Barton P. Miller, who has worked in the IPS project and is active todakiwgiin the same area,
with the Paradyn tool. Another author that is still active in the researchiafdien D. Malony,

who in 1991 proposed TraceView and currently is working in the TAUaPeof performance
visualization tool.

Barton P. Miller Wolfgang E. Nagel) ( Benhur Stein
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Figure 2.2 — A mapping between performance visualization tools and theirrautho

Another possible analysis of Figure 2.2 is to check where the tools and tba# idhve been
proposed. Up to 1995, all performance tools of the Figure came fromlages the University
of Wisconsin, Madison (as it is the case of Barton P. Miller, after finishilsgFh.D. at the
University of California, Berkeley) and the University of Illinois at UnaaChampaign (Michael
T. Heath, Allen D. Malony and Daniel A. Reed). After 1994, with the definitad the MPI
Standard at the Argonne National Laboratory (ANL), the area obperdnce visualization starts
to be explored in other places: Vampir in 1996 and Kojak in 2003, in the JulipkeiSomputing
Center in Germany; Jumpshot in 1999, at the Argonne National Labgiiattre United States;

Pajé in 2000, in the ID Laboratory, France and at the Federal Uitiy@fsSanta Maria, Brazil,
for example.
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2.2 Some Performance Visualization Tools

A lot of efforts have already been made in the performance visualizatemayr different re-
search projects. These efforts resulted in a considerable amountuafizéion techniques,
from specific tools attached to a programming paradigm, to more genericlatieedools that
have been adapting to new challenges and evolutions of the high perfmrmamain.

The positive side of specific tools is the number of users that incregsielfyraince they
do not need to learn too much to use them. Their main drawback, howeveat ihély might
become obsolete shortly. This is usually caused by a new parallel progrgrmariadigm that
cannot be represented in the tool, or by scalability issues, when the toolleger able to
handle an increasing amount of monitored entities for instance. On the adkegeneric or
evolutive tools live longer, but their use stays limited because users mMmustwausly learn to
keep up with their changes, or must spend more initial effort in learningtbase them.

We present here some performance visualization tools that were dedddppkfferent per-
formance research groups. Although the list of tools we describe heotéxhaustive, we think
that they represent well the state of the art of the area of performasgalization. Some of
them are no longer supported, such as ParaGraph, TraceView blad Bame are still under
development and available for the community. For all of them, we present the nelevant
ideas, especially the ones related to visualization techniques.

2.2.1 ParaGraph

ParaGraph [38] was initially developed at the Oak Ridge National Lahgrato Tennessee,
United States. Afterwards, ParaGraph started to be hosted and develbfiee Center for
Simulation of Advanced Rockets, at Urbana-Champaign.

The tool is the first to use the term simulation during the creation of a visuadgseptation
of trace data. The term is used because the tool has to re-create th®behthe application
based on real events collected during the parallel application executios.b&havior is then
visualized through different visualization techniques, some of them illudtiat&igure 2.3.
The first implementation of ParaGraph was able to visualize only messagiegparallel pro-
grams developed with the PICL [36] communication library, through the useetfific functions
that exchange messages among processes. In the beginning, thisgheplieen ParaGraph
and PICL was seen as positive, because the cycle of developmenifieresnd analysis was
straightforward. However, as new communication libraries have starteppeaa with better
performance, the coupling between ParaGraph and PICL became a limibetause they were
attached to a specific communication library. After the appearance of theafes?assing In-
terface (MPI) specification [37], around 1994, the PICL evolved witlkw trace format and itis
renamed to MPICL, addressing parallel applications developed followaW&l specification.

The architecture of ParaGraph is based on events. The visualeafatisns are updated as
new events are read from the trace files. The tool is also considerediatenctive interface,
the user has access to more than 25 displays, categorized in three fartilliEzgtian, communi-
cation and tasks. If the user decides to visualize more than one displaysattieeime, they are
kept synchronized. Besides that, the limit for visualization of most displaysdgprocessors.
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Figure 2.3 — Four different visualizations of ParaGraph.

The utilization family is composed by 7 displays: the utilization count, showing the total
number of processes in each of three states (busy, overhead anthiel&gantt Chart, showing
the activity of individual processors through time; the Kiviat Diagram, the¢s a geometric
representation of the utilization of individual processors and the loach¢mlacross all pro-
cessors; the Streak, showing insights of patterns in parallel programmdbalances among the
processors; the Utilization Summary, showing the cumulative percentage ahtitneach pro-
cessor spent in each of the three states; the Utilization Meter, that shosantieeinformation
as the utilization count, but saving screen space; and the Concurresfidg, Bhowing the per-
centage of time that a set of processors remained in the same state.

The communication family of displays has 10 different views. The Communication Traf-
fic, showing the total traffic in the communication system as a function of time Spaeetime
Diagram, showing the interactions among processors as a function of timesalye Queues,
which is a graph showing the evolution of number of buffer messagesghribme. Commu-
nication Matrix is a two-dimensional array where rows and columns repr@secessors and
each position in the matrix represents a communication between two proceBser€ommu-
nication Meter uses a vertical bar that indicates the amount of communicatitram&it (sent
but not received). The Animation display shows a graph where thesrayéehe processors and
the arcs are the communication among them. The nodes can be arrangedrinigeedefined
configurations. Hypercube is another display that looks like the animatiptagli$ut focused
on hypercubes. The Network display shows the path that each medsagtotgo from one pro-
cessor to another, including routing through intermediate nodes. Thisylispéals a topology
description to be rendered. Node Data presents statistical data in gtdphicasuch as given
variable of the application in function of time. The last one is the Color Coddayispelping
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to define colors that are used through the other displays. The AnimatioNetmebrk display
of ParaGraph are limited to 128 processors, because of their highérleleth Hypercube is
limited to 16 processors and the Node Data is limited to 256 processors.

Summarizing, ParaGraph’s utilization and communication displays only showriafimn
about the processors used by the parallel application. tasie family of displays intend to
give developers more insights about the reason behind those behaliorging application
details. The events shown by these displays must be generated by pavplleation devel-
opers, through instrumentation of parallel programs. Among the availalgés users have
the count, gantt, status, summary displays. They use the same visualizatioigueshof the
communication family of displays, but showing application-level traces.

Besides these three types of displays, ParaGraph has also anotbferieefs that does not
fit in one of these types, or fit in more than one type. Among them, there is itieaCPath
display, which is a variant of the spacetime display, showing a differdat coding to highlight
the longest serial thread in the parallel computation. ParaGraph architéetsialso the ability
to receive new displays to represent in different ways the traces.

The main contribution of ParaGraph is the large set of visualization tectsifjaecould be
applied to the same set of traces. Even if applied in a low scale up to 51Xpooseavith some
techniques, the visualizations developed in the tool have inspired sudrgeqals.

2.2.2 TraceView

TraceView [53] is a trace visualization tool developed at the Center fpe@omputing Re-
search and Development, at Urbana-Champaign, United States. The naivettied Trace-
View is to be a general-purpose trace-visualization system. To achievdhbagol uses the
concept of visualization session, defined as a hierarchical structtirehree levels: the trace
files, the views and the displays. There is also a session management emtribabhelps users
to define the specific hierarchical structure needed for the analysisef get of trace files.
TraceView avoids semantic interpretation of the actions registered in thésevesaning that
the tool can adapt to different types of traces. In terms of visualizatiaceView offers two
types of display, both based on gantt-charts: the Gantt Chart Widg¢hamhtes Display. The
former creates a visualization focused on state transitions of procekedafter displays the
number of times a given state is entered.

As conclusion, TraceView was the first to mention the general-purpoadrideace visual-
ization systems. The term “general” was used by its authors to mean the wayites, views
and displays should be organized, to build an analysis environment.

2.2.3 Pablo

Pablo [64, 65] is a performance analysis environment designed to prpeidormance data
capture, analysis, and presentation. It is developed at the Departif@éatnputer Science in
the University of Illinois at Urbana-Champaign. The tool is conceiveduggpsrt portability,
scalability and extensibility.

The tool is composed of different modules that can be interconnectedgrapla The mod-
ules are responsible for data transformations that generate perfarmetiics for the analysis.
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There are modules for operations like selection, arithmetical and logariteratigns, statistical
functions and so on. Besides them, Pablo comes with components to readitenimace files.
The user of Pablo is then responsible for visually arranging a graplesétimodules in order to
analyze the traces. All modules developed for Pablo have no semantigingvarith any data
that is available by the reading modules, independent of what they mean.

Input files of Pablo must conform to the SDDF format [6]. The format ie aked internally
by the tool. With that, the user can attach to any module an output trace file watavithwrite
in files the results obtained in the middle of a performance analysis.

In terms of visualization, Pablo offers different techniques to reptekerperformance data
generated by the graph of modules. Basic charts like bar graphs, bsbipge and pie charts,
contour and interval plots are available for the user by attaching them taithet@f a module.
Other visual representations, some of them already present in toolsasuehraGraph (see
Section 2.2.1), like matrix displays and kiviat diagrams, can also be useataBla visualization
technique, presented at the time of its creation, is the 3-dimensional scattehpltechnique
is used to show, at the same time, three different performance metrics.

Pablo’s main contributions are the use of trace files in the SDDF format, andetsaih
organization in modules, allowing extensions to be made. Its drawbackybogvi® related to
the way these extensions must be developed, since all modules must batedegrthe same
binary to make the tool work.

2.2.4 Paradyn

Paradyn [57] is a tool to measure the performance of large-scale paggilecations. It is de-
veloped at the University of Wisconsin, Madison, in the United States. Theidea of the tool
is to support the dynamic instrumentation of parallel applications in order tosBan&usive
and to avoid generating trace data for regions of parallel code thabatmder analysis. Para-
dyn also aims to be scalable, to provide well-defined data abstraction, torshpperogeneous
environments and to offer open interfaces for visualization and new datees.

Perhaps the more interesting idea of Paradyn is the dynamic instrumentati@madi€lp
programs. It works by inserting instrumentation points to detect genetalléngl performance
problems. If a problem is found, Paradyn increases the instrumentatiehitethose areas
that are presenting performance issues. The benefit of this techrfiqnstramentation is that
it decreases the intrusion caused by unnecessary code insertionsheviltawback of being
tightly related to the parallel programming paradigm used. This technique is impiedsithin
Paradyn through its Performance Consultant, an implementation of the Wh3éadel [40].

In terms of visualization, Paradyn has a set of pre-defined standaralizetions, like time
histograms, and bar graphs. Some examples of these standard view&ignagén2.4. Accord-
ing to Paradyn’s authors, the process of adding new visualizations todhis teasy because
of a special mechanism dedicated to that. The controller of the visualizatiossas a sepa-
rate process. It can contact Paradyn’s main processes to collecviiata is stored in a data
structure called a time histogram. Another feature of its visualization systent Bahadyn can
incorporate displays from other tools such as ParaGraph and Pablo.

The time histogram visualization of Paradyn plots performance data for megictime.
The horizontal axis represents time and the vertical axis represent the thatiis currently be-
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Figure 2.4 — Two visualizations of Paradyn, including the 3D histogramigat)r

ing observed. Several metrics can be analyzed at the same time, and is#&iheavertical axis
receives different scales to represent each of them. The numbetriésyisplayed at the same
time is limited to eleven. Panning and zooming within time histograms are possible thtmigh
use of scroll bars and buttons in the graphical user interface. With therts gan navigate over
time to see the evolution of each metric. The barchart visualization enablestiadization of
data in real-time and it is designed to view a considerable amount of metricsdratvwback
of this view is that it has no historical representation. The display has ré@ohtal axis the
different metrics being analyzed and in the vertical axis the different coemts of the parallel
application, for example. The third standard display of Paradyn is the Véhlalization. The
view actually shows the data textually: columns are metrics and rows are pidwesapplication,
typically source files or a specific function. The data in the table is updatezhlftime. The
fourth display of Paradyn is the 3D “Terrain” visualization. It allows thegenance data to be
analyzed using a surface rather than curves, as in the time histogranrsplikeathe barchart
visualization. The three dimensions allow the visualization of two different nsedtithe same
time and their evolution over time.

The Paradyn visualization tool is still developed at the Paradyn Paraths Tooject, with
publications in 2008. New developments of the tool include STAT — StackeTAamalysis
Tool [4] and challenges to petascale tool development [50]. Parsdygain contribution is
the dynamic instrumentation of parallel applications. This idea was materializegjgththe
W3 Search Model. Besides that, it is important to notice that the tool is availabée least 14
years, since its conception in 1995.

2.2.5 Vampir

Vampir [60] was initially developed at the Julich Research Center in Gerrbablater on trans-
formed in a commercially available tool managed by Pallas GmbH. The tool apafar the
definition of the MPI standard, being one of the first tools to be able to vigudiebehavior of
MPI parallel applications over time. After its creation, Vampir developmens go®ard scal-
able analysis of parallel applications [14] and to analyze hybrid OpenNPadplications [80].
Some of the visualizations provided by the tool are depicted in Figure 2.5.
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Figure 2.5 — Visualizations of Vampir, using the matrix technique (top left anditgii) to
summarize communications and its Gantt-chart (bottom).

Vampir has a set of flexible filter operations, which are used to reducentberd of in-
formation displayed and to help its users to spot more easily performanckems Another
feature of Vampir is the possibility to read trace data that is distributed acrosscoaputers,
in a cluster or grid-like environment.

In its efforts to turn the tool more scalable, the Vampir team developed a ¢tieral visu-
alization based on Gantt charts [14]. In this view, users navigate thrdatghn different levels
of abstraction such as cluster, machine, process and thread. Thigjtectirey propose attacks
a major problem of Gantt charts, where the vertical size of the screen is adith& number of
entities that can be analyzed at the same time. Without this technique, Vampir ie ahldyze
up to 200 independent objects at the same time. When applied, it allows thézataa of at
least 10000 processing entities, even if only 200 are shown on thensatréfee same time. The
hierarchical structure of their model allows up to 3 layers. This hieraathisualization works
for timelines and statistical displays of Vampir.

The performance visualization available in Vampir can be divided in diffecategories:
single time system snapshots, when data for a point of time is shown graphanailyation,
giving the users the possibility to analyze step-by-step the dynamic belwdtioe application
under analysis; statistics, that are able to summarize system behavior fatehel of time
under investigation; and a time-line system view, showing detailed systeritiastvith a time
axis. The visualization techniques applied include matrix chart, summary Geantt-charts,
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summary timeline and counter timeline.

Vampir is the tool available commercially. It uses a specific trace format aetl @ pro-
grams that can be converted from other formats to the one used by the$spate-time view
attacks the scalability problem by proposing a data aggregation mechanisdut®rthe amount
of data that is visualized at one time.

2.2.6 Virtue

Virtue [72] is developed at the University of Illinois at Urbana-Champaifime main objective
of the tool is to offer an immersive visualization environment for the analyisgeedormance
data from parallel applications. It is the first attempt to use virtual reality irpdréormance
analysis domain. The tool connects to Autopilot [67] to receive its monitoratg dnd helps
the performance analysis by trying to enhance rendering with humanrgergabilities.

As visualizations, Virtue offers three types of 3D visualization, depictedgarg 2.6. The
first is the wide-area geographic display, where nodes are placewifajdheir geographic
location. The second is the time-tunnel display, showing a cylinder wherantimal part
of the cylinder is used to represent processors state evolution over tiunehands illustrate
cross-process interactions. The last is the call-graph display, whishdws in a 3D space the
functions that were executed and the call procedures among them.

Figure 2.6 — Virtue’s 3D visualizations, from left to right, the wide-areafitne-tunnel and the
call-graph displays.

Although not further explored, Virtue is the first to try to use virtual realdyndined with
3D graphical representations in the analysis of parallel applicationsadtdeveloped by the
same team that created Pablo (see Section 2.2.3).

2.2.7 Jumpshot

Jumpshot [83] is developed at the Mathematics and Computer Science Diziglus Argonne
National Laboratory, in the United States. Its authors have participated ohetfedopment of
the MPI specification and the release of the first draft. Currently, theldement of the tool
is attached to the MPICH implementation of MPI. The tool is written using Javég ks to
receive a file format with time-stamped events. Initially, the file format to be usedcalled
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CLOG. With the evolution of parallel and distributed systems, especially retatsdalability
issues, the file format also evolved to SLOG, and now SLOG-2 [17]. Jootgs now in its
fourth version, providing accumulative enhancements such as pretieimsrease detail as
needed in the timeline window.

Jumpshot offers the traditional package of visual graphs, such tagtdasms, accumulative
state durations and series of zoomable and scrollable timelines. Two examgbsbable at
Figure 2.7. A more specific type of visualization is called the "mountain ranige’, ¥howing
the aggregate number of processes in each state at each time.
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Figure 2.7 — Histogram and Gantt-chart view of Jumpshot.

Probably the most evident contribution of the Jumpshot series tools is thaigihiky cou-
pled with a MPI implementation. This facilitates its use for MPI users, since a seradidoof
time is needed to understand the way the tool works.

2.2.8 ParaProf

ParaProf [10] is a portable, extensible and scalable tool for parali&drpgance profile anal-
ysis. It attempts to unite, as its authors say, the “best of breed” capabilitéegia proposed
in other tools. The tool was initially focused on profiling techniques, rathar tsing tracing
techniques as other tools did. Today, the tool is able to deal with tracegegtfihem parallel
application executions. The group that develops ParaProf has alsosg a framework for
data mining [41]. ParaProf is integrated in a bigger project named TAU +nguand Analy-
sis Utilities, that is being developed jointly by the University of Oregon, Logvda National
Laboratory, in the United States, and Julich Research Center, Germany.

The architecture of ParaProf has four key components: the Datae&s8ystem (DSS), the
Data Management System (DMS), the Event System (ES), and the Vigigali&ystem (VS).
Well-defined interfaces are used for each component so they carcintétta each other at the
same time they run separately. This organization allows the tool to be extensibflesible,
enabling the evolution of the tool to other programming paradigms and newideieisn

The visualization system component of ParaProf’s architecture isnstgpe for creating
visual representations of the data. They are based on Java2D, huis@dlizations are also
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present to represent profile data. There are four categories dlizistion in the tool: 3D-
visualization, thread based displays, function based displays, and phaed displays. The
3D visualizations are rendered using OpenGL hardware acceleratlomdees. Each window
has rotation, translation and zooming capabilities. There are three typesiafization in this
category: the Triangle Mesh Plot, that shows two metrics for all functiodsafinhreads. The
height represents one metric and the color another. The resulting visicalizeeates a surface
where data is represented; the 3D Bar Plot, that works like the mesh,ibgthass; and the 3D
Scatter Plot, that uses points instead of mesh or bars. The other categwyTisread Based,
with a series of graphs that show statistics of the application and also a &phi,call related
to the threads of the parallel application. The third category is the functisadbdisplays,
composed of two views that show statistical data: a function bar chart fumttgon histogram.
The fourth category is the Phase Based displays, focused on shaaiistical data from pre-
defines phases of the parallel application. Examples of the views gahdnatearaProf are
available in Figure 2.8.
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Figure 2.8 — The call-graph and the 3D bar plot of ParaProf.

ParaProf has a modern design in its software implementation, through teepamgonents
that interact with a defined programming interface. Besides that, it proaitestensive set of
visualization techniques, and it is tied to the TAU project.

2.2.9 Pajé

Pajé [24, 47, 76] is a generic visualization tool designed to be interastimtgble and extensible.
The tool was initially developed at the LIG Laboratory (former ID Labongtoin Grenoble,
France, but is now developed at the Federal University of Santa Mdd&SM, Brazil. The
interactive part of Pajé means that the user is able to interrogate monitditigbsethrough its
time-space visualization window. The scalable feature of Pajé is related tadsébitity to
cope with a large number of program entities, such as threads and sgecesid the details
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about each of them. The extensibility of the tool relates to the easy additioemofaatures,
new types of traces, new graphical displays, new programming modelsybd the tool to the
evolution of parallel programming interfaces and visualization techniques.

The Pajé file format is also part of the visualization tool. The format is textuhhathout
semantic, where events describe the behavior of a set of monitored efftiteebasic types that
can be used in the format are container, state, event, link and variabl&i@s can be used to
group other types, creating a hierarchical definition of types. Virtualjyland of monitoring
system or trace generation tool can use these types to describe thmbehawonitored entities,
from parallel applications to distributed resources of a parallel systeis.|dVel of flexibility
in the description of monitored entities behavior is not found on related wbthke trace file
has information about source-code correlation in events, the user wableeto click-back to
see which part of the source code caused the creation of a visual mjdered in the graphical
displays of Pajé.

The architecture of Pajé is composed of modules that are connectedhtaamgph that is
usually fixed, but can be changed to adapt the tool to new types of canimhe components
can be any self-contained part that behaves following a certain ptaodooperates over the
events that are read from trace files. The traditional set of Pajé comizoineludes a trace
file reader, a event decoder, a simulator, a storage controller, agigregreduce and ordering
filters, for example. Despite the number of components, the three classiopbaents of Pajé
are the controller, trace readers and the simulator.

Pajé offers to its users two types of visualization techniques to reprasgttigally contain-
ers, state, events, variables and links. The first and most used is treetgpa window, which
actually draws a Gantt-chart display improved with arrows to represemagtiiens among pro-
cesses. The second type of display is used to dynamically show statistmahation about
a selected slice of time in the space-time window. These two techniques aeseefed in
Figure 2.9.

Probably the main feature of Pajé is its flexibility. The tool was originally usedsioal
ize traces from Athapascan applications [32], but it evolved to visualaesr obtained with
Java applications [20, 62], message-passing parallel applicatioregthased applications and
hybrid approaches. It was also used to see related monitoring informatioa multi-level ap-
proach [70] as, for example, traces from application-level (MPI) taacks from resources and
operating systems. Pajé’s simulation component, the core of the tool implemenéatibthe
aggregation filter, are able to handle a big amount of trace data spreadjipddods of time.

2.3 Summary of Visualization Techniques

The last two sections addressed the historical evolution of the perfornvimedization area
and the description of a representative set of visualization tools follgampplications. The
objective of this Section is to try to summarize the visualization techniques useddiWde
the techniques in three types: behavioral, structural and statistical. Wdssible, we make
reference to the tools that implement these techniques.
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Figure 2.9 — The two visualizations of Pajé, including its space-time view andi¢hehprt
statistical view.

2.3.1 Behavioral

This Section presents the visualization techniques that have a timeline andrghbehavior
evolution of metrics and components through time.

Gantt-Charts

Gantt-chart [79] is a visualization technique created more than 100 ygardratially, it was
used to organize and schedule the tasks of projects. It was one ofgheefihniques to be
used to analyze parallel applications. Figure 2.10 shows a simple Garitiactiethe behavior
evolution of a set of entities. These entities can be anything related to tHksjpapplication or
the execution environment. For each of them, the rectangles repredatd that has a duration
in the timeline. Arrows can be used to illustrate an interaction between two entitiéstype
of visualization can also be used to show the user the critical path of thikepagplication.
ParaGraph, for instance, has a special feature about that.

Almost all tools that show performance visualization implement a Gantt-chateltkeique.
In some of them, this type of representation is called “Spacetime”. Althoughussful to
represent the behavior of a set of processes from a parallel apgpiicdne common issue with
Gantt-charts is related to scalability. Computer screens are limited in terms ofVezsolution,
and this is reflected in the technique. Some tools such as Pajé and Vampir imphésnamhical
grouping mechanisms that allow the observation of a larger number ofgzese
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Figure 2.10 — A simple Gantt-Chart showing the behavior evolution of an apiplic with 5
processes: the bars indicate different states and arrows indicateiitiesesbetween processes.

Variables in two and three dimensions

This type of display is a graph where one of the axis represents time. FEdireshows an ex-
ample with two metrics being displayed. The vertical axis represents the vhatehe variable
can reach over the period of time being analyzed. Observing a signifiegtnt can give hints
about the CPU or memory utilization of a machine during the execution of a gaatigcation.
Almost all performance visualization tools also provide some sort of reptason of variables
behavior through time. Examples are the “variables” visual object of BggéCommunication
Traffic” and the “Utilization Count” displays of ParaGraph, and the “Berfance Counters”
representation of Vampir.

Two cases that are similar to this 2D approach is the “Time Histogram” of Paradhare
performance data for metric/focus pairs are represent with a time axis(f®a piece of code of
a parallel application); and the “Node Statistics” technique of ParaGvapim a specific metric
is shown for one node with a timeline.

Metric's Value for a given process

.Metric 1
D Metric 2

PNWkr~O

>

Timeline
Figure 2.11 — Showing the evolution of two different metrics over time.

Another visualization technique extends the 2D approach by combining tatedanetrics
and representing them with a timeline. This 3D approach can in fact showinformation to
the users. The technique is named as “3D Terrain Visualization” and isririesParadyn.

Time-Tunnel

The only occurrence of the time-tunnel display is on Virtue. The technigqudxsmunder 3
dimensions, where two of them are used to place processes, in a cictlieathird dimension
represents time. The observation point is placed in the middle of the circleinféractions
among the processes are placed within this 3D environment, taking into a¢heyosition of
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processes and the time of occurrence. The resulting visualization looks &iknder, where
the user observes arrows crossing the interior of the cylinder. FigrefRprevious Section,
illustrates the approach.

Phase Portraits

Phase portraits are the result of a technique commonly used in other asgasnce, such as
physics. They show the evolution in time of two related variables, or metricard-8)12 shows

the resulting visualization. The performance data is collected through aprine, between

regular intervals. The idea is to create points in the graphical represengatibconnect these
points following the order in time among them. ParaGraph is again the only tool torimapte

this technique.

Metric 1

Figure 2.12 — A phase portrait showing the relation among two metrics.

2.3.2 Structural

This Section presents the visualization techniques that try to visually reptbsestructure of
applications. By structure, we mean the different types of relations tinaiecd the components
of parallel applications, such as processes and threads.

Call Graphs

Call graphs are used to give to the user a representation where thetiotesamong the appli-
cation’s components are shown. Figure 2.13 is an example of that. Nadesprasent functions
or methods, and the arrows between them represent a function call ardreetth This method
of visualization is especially useful in the analysis of parallel applicationsatleaorganized as
a data-flow graph.

Some tools implement this technique, such as ParaProf and Virtue. The lattemiempde
call graph within a 3D environment, giving the user different forms of axttion to highlight
parts of the graph with additional information, such as the name of the nssigciated values
and so on. This was implemented to avoid the representation of all data femglaghs.
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Figure 2.13 — The call graph displays showing the function call of two regad a given pro-
gram.

Matrix

The matrix of communication is a technique where a two dimensional represaritatoga-
nized with one of the axis showing the senders processes, and the xiheha receivers. For
a point in time, the matrix shows different pairs sender/receiver by coldhi@ matrix. Colors
can also be used to show additional information, such as the type of the cocatmm if it is
collective or not, or the size of the data transmitted. The left image of Figuded2ficts this

technique.
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Figure 2.14 — Matrix of communications among processes and also the ggdapimique.

ParaGraph was the first to propose this technique, with a limited number céga®s in-
volved. The scalability of this approach is related directly with the numberauigsses. Vampir
tries to solve this problem by grouping processes according to their nushbérer character-
istics. This is shown in the right image of Figure 2.14.

Graph with Communications

A graph is used in the ParaGraph tool to represent the communications amsengf processes
in a given time. The Figure 2.15 illustrates the approach, with the communicatienpamong
three processes. ParaGraph has also a set of pre-defined tendweconnections, such as the
Hypercube, and allows the observation of which links are used by tHeatipn at a specific
pointin time. Different layouts for the hypercube representation wessiple, such as the linear
view. The problem of the approach of ParaGraph is that no additior@iniattion about the



2.3. SUMMARY OF VISUALIZATION TECHNIQUES 23

links were provided to the user. The technique was used only to showavteain interaction
happened during the application execution.

’//_\‘

Figure 2.15 — Communication pattern with three processes for a given time.

2.3.3 Statistical

This Section presents the visualization techniques used to represent slatatiichased on the
traces available for the analysis.

Bar and Pie Charts

Bar and Pie charts are a traditional way to show the values of a certain noetdaumber of
processes. For example, they can be used to show how many messagessa pas received,
or the amount of memory used in a machine. Figure 2.16 shows an exampleuafath and
another example of a piechart.
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Figure 2.16 — Barchart and Piechart displays.

These types of charts have been available since ParaGraph. Othendwelalso imple-
mented them using different metrics and techniques. Paradyn, for examplements horizon-
tal barcharts with more than one metric, each of them with one different isctide horizontal
axis. Pajé’s piechart implements the technique to quantify, in a given pertodey how much
time a certain process spent in different states. The user can then edmparocesses to look
for performance problems.

Kiviat Diagrams

Kiviat diagrams, also known as radar map, are a chart that consistsegfuence of equally
distributed spokes, each one representing one of the monitored entitidee dnea of perfor-
mance visualization, the spokes are used to represent processescangrocess has a scale
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of value for its spoke. Then, for a given metric about one processjrd { chosen in the
spoke. Connecting these points form a geometric figure that can be udetktd irregularities
among processes, if a similar value is expected for all of them (load batgrfonexample).
Figure 2.17 shows a schematic example of the technique, with 3 metrics shodvpriacesses.

PO .
10 Metric 0

== Metric 2
Metric 3

P1 >P3

Figure 2.17 — The Kiviat Diagram for 4 processes with 3 different metrics

ParaGraph has been the only tool to implement the technique. This type tH#ydi&Epo
has scalability issues when the number of processes or related metricserrdfter its first
appearance in ParaGraph, no further development to solve this scaliabiligyhas been present
in other tools.

Statistical 3D representations

3D representations without a time axis are already present in the literahgedda is to plot in
a tri-dimensional space drawings that are generated using three nliffeet¢rics. The ParaProf
tool has three displays that follow this design: “Triangle Mesh Plot”, “TglarBar Plot” and the
“Triangle Scatter Plot”. The first connects the points using a mesh, resultmgisualization
like a terrain with elevations in some points. The second represents datdieal tars and the
last just draw the points in the 3D space.

2.4 Summary

Several visualization techniques exist today for the analysis of parpiditations. These tech-
niques help the developer to obtain a better performance and also prowvaleta understand
the behavior of programs in a given execution environment. A possiblsifitasion of the
visualization techniques is the division in three typbghavior, such as the space/time and
phase-portrait views, showing the evolution of entities over tistajctural, focused in the
observation of communications, such as the techniques matrix, communicatjam and call
graph; and finallystatistical, which summarizes trace data.

The two next Chapters present the visualization techniques proposed thehis. In the
beginning of each Chapter, we show that existing visualization tools arfilhosuitable for
the analysis of grid parallel applications. The first Chapter deals with thkeofasupport from
visualization tools to the analysis of parallel applications mixed with network tggoldhe
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second Chapter proposes a visualization scheme that achieves visualrati@bility and can
be used to analyze parallel applications composed by thousands ofggece
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Chapter 3

The Three-dimensional Model

The previous Chapter has listed tools and techniques that can be usedyzeghe behavior
of parallel applications. The presented tools were detailed in terms of ésatund capabili-
ties, including which visualization techniques are implemented. At the end oftihpté&r, we
presented a classification of the techniques in three types: structuraljibweth and statistical.
Generally, most tools were built to handle precise environments, suchstsreluvhere the dy-
namics of the resources are not felt by applications since usually thesatcthe resources is
made exclusively. This Chapter goes through the grid characteristicewotbht the traditional
visualization schemes are not able to fully help the developer to analyziéepapplications,
particularly when network characteristics must be taken into account.

The performance of grid parallel applications is directly related to the cteistics of the
network interconnection [49]. When the grid resources have a striengrohy among them, as
in the case of a lightweight grid, the choice of resources given to an agipticcan be decisive
for its performance and later understanding of its behavior. For instdima® sets of processes
perform more communications between them and are placed in two distinct lecafia grid
that does not offer the lowest latency, the application can suffer a Igesriarmance. Some-
times, the analyst is not able to make the link between application and netwodcthastics.
The decisions taken from a traditional analysis may lead to wrong conctuatoout the bad
performance. In this case, if we were able to analyze the applicationibelbayether with the
network characteristics, we would see more clearly the reason of theapplibehavior.

This example can be more explicit if we consider that each parallel applidsgi®a com-
munication pattern. These patterns are defined when the application is impldptenbeigh
the use of paradigms such as master-slave, divide-and-conquey andBuring an application
analysis, it would be interesting to visualize this pattern together with the netwpdtogy.
With this, it would be possible to optimize the match between the network intercoomead
the application’s communications. If this optimization is not possible, the analysid be used
to help the developer to adapt the application in order to better explore therkatharacteris-
tics.

Looking at the tools presented in last Chapter, we can notice that most t#dheiques
they present are not able to handle an analysis that takes into accourgtitak intercon-
nection. ParaGraph (see Section 2.2.1) is the only tool that has the nofiter@innection

27
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in its visualization techniques, although providing only hypercube visualiza@émd program
communication patterns, separately. In fact, ParaGraph was not desigaralyze large-scale
applications, with thousands of processing entities. Other techniqudsasube space-time
visualizations or graph-based views, present in almost all visualizati¢s) ave also not able to
depict the network interconnection together with the communications of paxpfétations. In
this case, the limitation is related to the way resources and components of applésa drawn,
which is made on a linear space. As the architecture gets larger and mortexphighlight-
ing its topology becomes impractical. And even if some sort of simple topologynaation
can be represented using one of the axis, labeling the platform refatserwith additional
characteristics like throughput and latency usually degrades the readabiliywhole picture.

Our proposition to make a link between application analysis and network topisltgsed
on a visualization scheme composed of three dimensions. One of the dimaesfmEmeline,
where the components of application can be analyzed using a behaveawal e other two
dimensions are used to draw either a structural or statistical representhtitme context of
the problem being addressed, these two dimensions are used to drawlaefsasentation of
the network topology. Broadly speaking, our proposal combines ardiit levels the three
types of visualization techniques we discussed in Section 2.3, resulting in d békavioral-
structural/statistical representation.

Some visualization tools for parallel application analysis already have 3[Rliaations.
ParaGraph, for instance, has a 3D representation for a Torus Netapology, but its focus is
in the instantaneous analysis of the interconnection utilization, with no axivesek® work as
timeline. Another example is Paradyn, that contains its 3D Terrain Visualizagimg lable to
show the relation between two metrics and their evolutions over time. Since thémeagions
of the 3D Terrain are not conceived to draw graphs, Paradyn isat®t@visualize the network
topology and application evolution at the same time. The third example of tool ¢skeat3D
visualizations is Virtue. Among its visualization techniques, the time-tunnel is theooe
that seems like our approach, but it is fundamentally different, since itn@asgleveloped to
show the network topology or parallel application communications pattern.evimily places
the processes of an application in a circular manner in two of the dimensitingy khe third
dimension act as timeline. The view of the developer is always pointing to therceinthe
circle. Communications and interactions are drawn inside that circle, in a 8 sprAU’s
ParaProf also has its 3D visualization, but focused on the analysis ofisttitata. This means
that ParaProf is able to visualize three types of related events in the sarabzaian, using
the three dimensions. However, ParaProf is not able to use one of ihemaestbns as timeline
and it is incapable of drawing graphs in the two remaining dimensions. In synwmacan see
that there are tools that already provide some sort of 3D visualizationpigt of them have the
same approach as we have, merging network topology to the applicatiosianaly

The rest of the Chapter is organized as follows. We start by describengghal conception
of the 3D approach, detailing its visual objects and how application traeesapped into the
3D view. In Section 3.2, we explain the abstract model that deals with the miogitdata
and generates the 3D visualizations, followed by a series of sectiorts paaadescribing the
components of the model: the trace reader, the extractor, the entity matditbeansualization
component. During the description of the entity matcher, we detail three ooatfigns that can
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be used inside the 3D approach.

3.1 Visual Conception

The visual conception of our model consists in the combination of visualizeg@miques that
show the behavior of the application with techniques that show the struatgtatistical data.
If a structural data is used in combination with the behavior representatibni¢ee, the user
can observe the evolution of monitored component through time and cottsidstructural or-
ganization. This is the case when users have to analyze the parallel tippligith the network

topology, for instance. If statistical data is used instead, the user can simminaguantitative
terms the behavior of the application, using different time scales and slicasnbre practical
way, these combinations allow the representation of the notion of gantt-cloentsined with

graphs and summaries.

The result of this visual conception is the three-dimensional model. Thelrhadgwo
dimensions reserved for the representation of a structural or statiséeal We named these
two dimensions the visualization base of the 3D model. The third dimension is the timeline
Figure 3.1(a) shows an example of the 3D approach to represent gigplidata. The states
of the processes are represented in the 3D visualization as vertical Haeyg are placed on
top of the visualization base. The different states along the time axis of ancprteess are
represented by different colors. Each state representation is pladézhily following the start
and end timestamps. Communications can be represented as arrows or linksthati3ib
environment, connecting two or more processes that communicate. The Bid(ib) shows a
different point of view, located on top of the visual objects. This visionvadlthe observation
of the communication pattern of the application.

(a) Visual conception of the 3D approach. (b) Top-view of the same scene.

Figure 3.1 — The visual conception of the 3D approach with applicationgnagresented by
vertical bars showing processes behavior through time.

The visualization base of the model is composed of two dimensions. Thegendaidepict
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either structural or statistical representation techniques. Structurakesgations, as presented
in Section 2.3, can be mainly graphs and matrices or any other techniquéousigdnize the
components of the application. Statistical techniques can be used to sumnyzaitiedar part
of the behavior of the components being visualized.

Lots of configurations are possible for the visualization base. For irstérgan be used to
illustrate the communication pattern of the parallel application, but also the rietoology
involved in the execution of a parallel application. In our model, we proffuee types of con-
figurations for the visualization base (see Section 3.5). Two of them aste-based, showing
interconnection graphs. The other is an information visualization technalieeldreemap [42],
used to represent hierarchical information data. Additional technicaurede easily adapted to
our model to work as the visualization base.

The third dimension of our model is the timeline. It is usually represented agttieal axis
of the 3D approach, as can be noticed in Figure 3.1(a). The timeline axisdstoashow the
component’s behavior evolution through time. In the case where the comigare processes,
the vertical bars that represent them might have different colors tesept states and arrows
to represent point-to-point or collective communications. These rapeggms characteristics
are similar to the ones present in space-time views, but here in three dingenslatimeline
is configurable to offer the users different time scales that can be dyallyribanged.

When using graphical visualizations, users are interested in interactiomamisms, like
zooming, online information updates and so on. They improve the usempiercef specific
parts of the information, enabling a deep application and platform behavadysas. Anima-
tions can also be applied to dynamically change the graphical visualizatigizifRerectangles
and changing their colors to reflect the platform state in given time intenalksosme examples.
In this case, changes are caused by continuous information updatesgcivarinthe moni-
toring system. Another type of graphical interaction mechanism is constitytetistortion
techniques [15], which magnify only specific parts of the representafidre fish-eye tech-
nique [69] is a good example of such technique. It helps the user to olet@ilschbout a picture
area without losing its context (as opposed to a simple zoom).

Besides these interaction mechanisms, we have a set of possible interadtfotise 3D
approach. An example of that is the notion of observation point. In this xprke view that
the user is staring at any time is generated by a camera. This camera candzkinside the
3D space with rotation, translation and approximation techniques. This alloWiplawiews
of the same data, from different angles.

3.2 Model Overview

In order to create a 3D visualization, the trace data collected from the ajliexecution must
pass through a series of transformations. We define here an abstrgmiment model, in which
these transformations are detailed. Figure 3.2 depicts the overall ortiamiabthe model. As
input, the model uses two types of information: the trace files from the moniapplication
and a configuration file that holds the resource description of the exe@rtisronment used by
the parallel application.

The visualization base is configured by the entity matcher module (C). Werhplemented
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Figure 3.2 — Abstract Component Model of the 3D approach, with the thfieeent configura-
tions for the visualization base (represented by C.1, C.2, and C.3).

three different configurations for it (they are detailed in Section 3.5:tbat shows the commu-
nication pattern of the application; another that shows this pattern combinedheitietwork
topology of the execution environment and the last one is the combinatiorpbéaion data
with a logical organization of the resources. The entity matcher choogesfonese configura-
tions based on the resource description defined by the user.

Among the three alternatives modeled in the Entity Matcher, the one that congidenet-
work topology (C.2) directly addresses the problem regarding the irdftuehthe network in-
terconnection in the application. The additional two alternatives are pisesém show other
structural information (the communication pattern) and statistical representagether with
behavior details through time.

We consider in the model that the trace data is available as trace files, uaderrthof a
flow of events that traverses the components of the Figure 3.2 from lafhb Nevertheless,
even if we take trace files as input, the components are described inéeglgrof how trace
data is offered to the model. Therefore, the model is able to deal with an @dmeration of
events in case the flow of these events is not so bandwidth intensive. Blidifi€ can also occur
from the visualization component to the others, in a right-to-left fashionrderao propagate
configurations and behavior changes triggered by user commands.

Next sections detail the components of Figure 3.2. We start by explaininiydice Reader
(A), including the mapping from the trace events to the objects used by thd.n8migion 3.4
shows the Extractor (B), followed by the description of the Entity Matchgy ¢Gnsidered as
the main component of the model. We end the description of the model with thei¥aiom
(D) component.

3.3 The Trace Reader

The generation of traces during runtime is a classical technique to reeizkttavior of par-
allel applications. If applied carefully with large memory buffers and a seteset of events,
it can be used without disturbing too much the natural application behawitarde-scale par-
allel applications, it is common to generate one trace file per process. A#ternith of the
application execution, the different files are gathered and merged widretitf transformation
techniques. This is modeled by DIMVisual [70], which is a data integrationainfmt visu-
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alization of parallel applications. The model uses the synchronizationiteehdeveloped by
Maillet and Tron [52].

One trace file is usually composed of events. An event has a type, a timestdmgditional
information that goes with its type. They can be used to trace a high numbdpohation in
parallel applications. The classical points where trace events areatethere the beginning
and the end of both communication and processing functions. Point-tograirtollective are
commonly traced with events, registering the exact point in time that a messagjet iansl
received. Although most of tracing mechanisms generate timestamped ¢hengssociation
with time is not a requirement. Events can be used to simply count the number ofaimes
certain behavior occurs, for example, without the need to know wherpjpdreed. Another
characteristic of the events of one trace file is that their timestamps might nghblersnized
with the events from other files. This happens because they are gehierdiierent machines,
with different clocks.

The trace reader component is the only part of our model that deal$lylingth application
traces and events. Its responsibility consists in reading, synchroniathgransforming them
into high-level visual objects. Although these objects represent thertarfteraces, they have
no semantic data and can be managed in a generic way. This allows the oestrobdel to
be independent from the trace file format. The high-level represensatienmainly composed
of entities, states and links. An entity can be a process, a thread, or a madhanerally
speaking, an entity can be anything that is observed during a period of tiches aelated to
the application analysis. States and links are always related to one or niieserA state
is defined as the behavior a certain entity may have during a period of time. Asluded to
represent an interaction among two or more entities in a time interval.

Figure 3.3 shows the behavior of the component. The trace data is nejectde the left
of the Figure, showing the events that are in different trace files. In g@mple, we list the
beginning of the behavior of two processes, through 8 events alreddyed. Process 1 starts,
then sends a message; and process 2 starts and blocks to receiveshgatiesn 1. The trace
reader transforms these events into the visual objects depicted at thefridgig Figure. In
the example, they were transformed into two entities, P1 and P2, to reppseasses; two
states, Send (created wislend_stariandsend_enfland Receive (based arceive_startand
receive_eny] and one link, represented by the arrow basetheg_sen@dndmsg_receiveThe
flow of visual objects in the output is ordered by the object’s end time.

Time Process OperationType
start o . .
start Monitoring Data Flow of Visual Objects

receive_start N

send_start

S A .
send_end
msg_receive

receive_end

o
~
PN = 2l

Figure 3.3 — The Trace Reader component transforms trace files, oritfhie &visual objects
representation, on the right.

This component makes the rest of the model independent from the inpiarfilat. In the
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case a new format is available as input, only this component should beathangeplaced, the
rest of the model will continue to work in the same way as long as the outpetafed by the
trace reader is composed of the generic entities we explained above ataedader sends the
output to the extractor module, which is detailed in the next Section.

3.4 The Extractor

The main purpose of the extractor component is to select, from the flowwahobjects sent by
the trace reader, the objects that the entity matcher component needs td he#eatity matcher
is focused on the set of entities and the interactions among these entities. &his ima more
practical way that it wants to know about the processes, threads amdestcution flows that
should be analyzed and the message exchanges, remote proceduaacdaligtifications that
happen among them.

Taking the entity matcher’s needs into account, the extractor works byvimgé¢he flow of
visual objects and by selecting entities and links. Figure 3.4 depicts theibebbthe extractor
with its two outputs, on the right of the Figure, considering as input the datacdmae from
the trace reader, at left. The first output of the component, compostuk dfow of visual
objects received by the TraceReader, is sent to the visualization contpdrtgs enables the
visualization component to be able to take into account all the data that sleoutetd to create a
visual 3D representation. The selected visual objects are sent to the Eatitiier component,
composed of the entities and links that are encountered in the flow of the ihpeate are 10
processes, fron?0 to P9, in the example of the Figure. We have as input a flow of events with
three communicationd8 — P5, PO — P3, P4 — P2), and six states, three send (processes
PO, P4 and P8) and three receive (processes, P5 and P3). The output to the entity matcher
is composed by the links and the processes entities, without the states.

Flow of Visual Objects Flow redirected to the Visualization (as is)

-
Receive | P5 W J
| send[P4] [ send[po] B Entities Links
Receive |P3 W B! To the Entity Matcher
e e

‘P4MP2‘ ‘ Send‘PB‘

Time-Ordered

Figure 3.4 — The Extractor component selects from the flow of visual tshijlee entities and the
links among them.

The extractor processes events and works whenever new data ibkvilas input. A dif-
ferent configurable behavior is also possible: instead of acting oniapeatrbasis, the extractor
works on a given time interval. When this happens, the component actsatngrenly the
events that are present in the given time interval. This increases anabgsibifities by user
interactions technique, such as zoom for a given time interval with inaledetails on trace
data. This also influences the behavior of the entity matcher, giving the muatel control in
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terms of which part of the execution period will be analyzed by the user.

The extractor component is also responsible for attributing the entities with ¢hédos
where they were executed. In some cases, the entity matcher comporastinisaype of in-
formation for each entity. The information is necessary, for instancen wieevisualization base
of the 3D approach is configured to show the network topology. On thisstme, the informa-
tion of where processes executed is important to correctly place them istradization base.
For the cases where location attributes are necessary, the extractdindusstch information
somehow. Usually, the extractor obtains this information from the trace nghdaugh a spe-
cific event of the trace file format. If this location data is unavailable in the flbabgects and
their attributes, though, additional input should be used, probably in thedba configuration
file.

3.5 The Entity Matcher

The entity matcher component is in charge of the visualization base coritguréi does that
by taking as input the resource description set by the user and the delestial objects with
application data. The resource description is given to the component iof dwe possible for-
mats: either as a hierarchical structure describing the logical organizdttbe computational
system, or as a graph describing the network topology of the executimomment. With the
application traces and these resources descriptions, we have deMlgeepossible configura-
tions for the visualization base. Figure 3.5 depicts the overall organizdtibie entity matcher
and its sub-components that implement the three different cases that arepgaésented in the
visualization base.

Selected Entities (@

- CA1
by the Extractor Entity Matcher -

Comm. Pattern

C.2
Network Topology

Network
Interconnection

Hierarchical — c.3 ‘ o
Organization Logical Organization ) E§ ? fiez

Figure 3.5 — The Entity Matcher component send its input to one of the vistiatizzase con-
figurations, depending on user actions.

An important aspect of the entity matcher is its extensibility. Although we haveldev
oped three different modules that illustrate the possibilities of the apprdaekentity matcher
could be extended to other types of organizations based on the entitiessazwhtmunications
representation. An example of that could be a statistical module that coulg gne entities
according to some specification. Other types of visual representatioit also be supported
by the module, such as Cushion Treemaps [78] and Voronoi Treempaps [9



3.5. THE ENTITY MATCHER 35

The three cases we detail in the next sub-sections cover two types afizégions for par-
allel program analysis (as defined in Chapter 2): structural reptagsars, as in the cases 1 and
2; and statistical representations, as in the case 3. With these cases,abéean combine a be-
havioral representation (with the timeline), and a structural/statistical esg#n, increasing
the possibles analysis offered to the users.

3.5.1 Case 1: Parallel Application’s Communication Patten

The first configuration for the visualization base of the 3D approactslioe communication
pattern of the application. The extractor component (see Figure 3.4%issélem the flow of
visual objects the monitored entities and the communications among them. This seigctio
represented in the left most part of the Figure 3.6. The entity matcher actgetging this
information into a graph that represents the communication pattern for théesktdsgects. The
graph creation is dynamic and based solely on the arrival of new monitdategthrough the
flow of events. This graph can highlight particular performance isstit®ecapplication, like
bottlenecks or unbalance. Besides, it can help the developer to deveblggplisation which
uses a particular communication pattern, such as master/slave or dividemqaer models.
Another advantage is that the application developer can see if some ghe application is
overloaded with too many communications in a small period of time, increasing lemtikien
effects. The graph is then sent to the visualization component, which dnangraph in the
visualization base and the evolution of the application’s components in thealexxis of the
3D environment.
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Figure 3.6 — Entity matcher configured to generate the communication pattemagihication,
based on the processes and the communications.

The example of Figure 3.6 illustrates the generation of the communication paftem.
component has as input 10 processes, from PO to P9, and a set of naratians among them.
As output, we can see a ring-like communication, among the processesrtorPB, an all-to-
one communication among processes from PO to P4 and a one-to-one coatioarbetween
P4 and P5. This communication pattern can change dynamically dependingwhith visual
objects are selected by the Extractor module and sent to the Entity Matchepentp As
previously discussed, the communication pattern can reflect the applicati@andiven time
interval.
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3.5.2 Case 2: Network Topology combined with CommunicatioPattern

The second case for the visualization base is the combination of the netwotkdy and the
communication pattern of the application. Figure 3.7 depicts this situation, whermnthy
matcher receives as input the network topology (bottom part of the Figarethe application
data selected by the extractor. The application processes must haverian&dionation that
defines where they were executed. This information comes with the visjgaitelselected by
the extractor. This is necessary because the matcher needs to combingitinéne resource
description. As output, the component generates two graphs: one pineseats the network
topology itself, and another that is rendered on top of the first, showingdimmunications
among the processes for the selected objects.
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Figure 3.7 — Entity matcher can receive the network topology as resoasceijgtion, creating
as output the communication pattern over the network interconnection.

Figure 3.7 shows the same example as Figure 3.6, but with the network tomtasgyption
as an additional input for the entity matcher. Each process has a resmsaciated with it, from
RO to R4. The network topology connecting the resources is on the bottdroffihe Figure.
The right part of the Figure shows a visual representation of the outpunpa@sed of network
topology representation, with straight lines representing the interconnectiad processes on
top of the resources they used during the execution. Communications anmmesses are
represented by the arrows with dashed lines. This output is sent to tredizédion module
to be rendered in the visualization base of the 3D scene. The position ofdbespes in the
visualization base will then be used by the visualization module to render timestavgas in
the vertical axis. Through this combination, we are able to understand ptieajpn behavior
taking into account the network interconnection of the execution system.

The developer can benefit from this configuration in the visualization bingghe match
between the communication pattern of the application and a specific networtombection.
With this match, the application can benefit more from the network, avoid cemwcommu-
nications and improving the number of parallel communications that can hapbka same
time. Moreover, if the network topology has bandwidth and latency informattendeveloper
is able, with our approach, to adapt the application in a way it obtains thedtighadwidth
for the processes that communicate more data and the smallest latency foothesps that
exchange messages more intensively.
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3.5.3 Case 3: Logical Organization and the Communication Pétrn

The third configuration is a combination of the communication pattern of the apiplicand a
logical organization of the resources. The input to the sub-compomnéiné @ntity matcher in
this case is the same as case 2. But for the resources, we use a idataescription instead of
using a graph. Figure 3.8 shows the same previous example, but havimguaa hierarchical
structure where the resources are grouped by their location. In theefitye resources RO to
R4 have been grouped according to a hypothetical organization byrsli@®eand C1 and then
by grid. This structure can be customized in the model to represent otlesr dyrganization,
such as administrative domains or middleware dependent structures.
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Figure 3.8 — Entity matcher configured with a hierarchical structure of dmurees, generating
as output a squarified treemap customized with application components.

There are many ways to visually represent a hierarchical organiz&titins work, we have
used the treemap concept [42] to represent them. This technique worksirty recursively
nested rectangles to represent tree-structured data. On the righticé Big§, we show an exam-
ple of treemap created using the hypothetical hierarchical structure tgihe entity matcher
module. Each rectangle represents a resource and its size is directld teldte amount of
processes it contains. The dashed arrows are the communicationsetkimdéhe space-time
part of the 3D space and reflect the communication pattern of the applicatios.olitput is
sent to the visualization component, which is responsible for drawing in thialization base
of the 3D scene the treemap created by the entity matcher. An important tehistacof this
configuration is that the entity matcher can be adapted to configure the treemggmther char-
acteristics of the application data, such as the number of communications, the&nidyg the
monitored application executing a certain function, and so on.

The visualizations obtained with this technique in the visualization base can Higinlig
portant parts of the application in contrast with the resources. For exaingda be used to see
resources usage and the load balancing of the application by configheitrgemap to show the
time spent in the functions that do the processing part of the applicatiorsarhe situation can
be applied in order to observe which processes communicate more or sthgdlmore time
due to message-passing.
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3.6 The Visualization

The main goal of the visualization component is to create the 3D visual segged®n. It does
that based on the flow of time-ordered visual objects and the base aatifiguchosen by the
user. As previously explained, the flow of visual objects is composenitibies, states and links.
Since there are three different configurations for the base, the vigtiatizomponent can create
three different 3D representations. Figure 3.9 illustrates the componatibg where the base
configurations are at bottom, the visual objects at left and the threeeatiffgisualizations on
the right.

Flow of Visual Objects

‘ Receive‘Pz‘ ‘ Receive‘Ps‘ o
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‘ Send ‘PS‘ ‘ Send‘P4‘ ‘ Send‘PO‘ » Visualization S
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Time-Ordered )‘

Case 1

Case 3

Figure 3.9 — The Visualization component receives the flow of visual thpged one of the
configurations from the entity matcher, creating a 3D scene.

The timeline composes one of the characteristics of the 3D scene. Itis usumlired in the
scene as a vertical line with labeled tics. The initial timestamp, usQalyeans the beginning
of the application traces. It is placed right on top of the visualization bakkoudgh this is the
normal behavior for rendering the timeline, an offset can be applied ifsbeig interested in
other parts in time of the application traces. In this case, the labeled tic thatésiplest on top
of the visualization base will have the time defined by the user.

An important part of the visualization component is how it handles the reptatson of
states and links. Every state object has two timestamps, one for the stathentbothe end, a
value that indicates which of the possible states it represents and agfgrneral entity. Links
have the same information as states, but have additional information to indieatauitte entity
and the destination entity. A special case of links might be considered whendhe several
destinations (to represent a broadcast, for instance), but this cdsobadedined as a set of links
objects with the same origin but different destinations.

Figure 3.10 shows a schematic representation of how the visualization centgmandles
states and links to create them in the representation. In this Figure, thewecaeatities that
were placed in the visualization base. Based on the referring entities ofasitink visual
objects, the visualization component defines their position in the visualizatamn bathe ex-
ample, we have two states and one link. The link represents a communicaticzehetvem.
After defining the position in the visualization base, the component obtains thstdimgs of
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the visual objects to define their size in the timeline.

Visual Objects

\ b

Visualization
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Figure 3.10 — Representation of State and Link Visual Objects in the 3D.scene

Another characteristic of the 3D scene is the visualization base. As psyidiscussed,
we created three different configurations that are rendered in tiee Nagt Section details how
the three different cases generated by the entity matcher are renddirexl 3D scene. The
Section 3.6.2 presents the possible interaction mechanisms that can be apihlee8inscene.

3.6.1 Rendering the Visualization Base

Figure 3.11 shows how the communication pattern is rendered in the visualibatsen As
input, the visualization component (D) has on its left the visual objects, wdnelcomposed
of links and entities in this example, and on its bottom the communication patterragghby
the entity matcher. On the right of the Figure, the scheme shows how the végicalinf the
communication pattern on the base is rendered. The vertical bars aretdseoftdne processes
through time.

-

P4 [Pa[ P2
B=

D
Visualization

Flow of Visual objects
from the Extractor

Communication Pattern
generated by the Entity Matcher

Figure 3.11 — The representation of the communication pattern in the 3D Scene.

Still on Figure 3.11, we can notice that the links among the processes areated. In
real situations, the trace data can have information about the origin atidadies of a certain
communication. This data, together with the set of other communications may enaiudee
complete representation of the communication pattern. The visualization conipsmble to



40 CHAPTER 3. THE THREE-DIMENSIONAL MODEL

enhance the definition of the positions for every process trying to avegsitig links, improving
the perception and understanding of the communication pattern. Anothgbifisappears
when there are several communications between two processes foeraigigrval of time.
The visualization component, in these cases, can generate a visualizaéontivla width of a
connection in the visualization base will be larger for pairs that communicate. mor

Figure 3.12 shows the second configuration of the entity matcher, compbternetwork
topology and the communication pattern. The component has as input the fleual objects,
on the left, and the network topology (represented by the darker aret largs) on the bottom.
The 3D scene is on the right, with the visualization base holding the networkotppand
the communication pattern. The states represented in the timeline are in the mgufero
information purposes. The links were not drawn in the schematic 3D scene.
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Figure 3.12 — The representation of the network topology and the communigatiitern in the
3D Scene.

The second configuration for the visualization base (Figure 3.12) i<iedigegmportant
when network-bounded parallel applications are analyzed. In thess,dhe representation can
be improved with additional information such as the bandwidth and latencytdr lenk. This
combination of characteristics from the network may help the detection olb@ssmmunica-
tion bottlenecks caused by extreme utilization of one network link, for instafice represen-
tation in the base can be altered to show larger width for network links with higdredwidth,
and different colors to represent latency information in a given time. ufing information is
also present, the user may observe which path the messages took dugrgahtion, enabling
the analyst to view if an alternative deployment of process would resultriefiis in terms of
execution performance.

The representation of the third configuration of the base is depicted indFgjiB. The
logical organization of the components, generated as a hierarchy@edeated with a treemap
by the entity matcher, is drawn on the base by the visualization component. Sthignge scene
appears on the right of the Figure. As previous configurations, thregeptation includes the
states representation in the timeline just to show a view of what the 3D scere ok like.
Links in the visualization base were removed from the example in order ts fmtthe treemap
generated by the entity matcher. This representation serves mostly as statisticgaries of the
application that are rendered in the same scene that detailed behaviial éhhe rectangles in
the base, that normally represent resources, can be calculated fgllesvieral characteristics of
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the application behavior, such as the number of communications, their siaepthumt of time in
a given state and combinations of these. The work of customizing this espatien to different
needs must be done through a cooperation between the entity matcher ansudization
component, since the former has hierarchical information about theipegi@n of the resources
and the latter has timestamped visual objects, such as states.
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Figure 3.13 — The representation of the hierarchical logical organiziatitre 3D Scene.

The rendering of the treemap in the visualization base has some peculiaritiesutstabe
taken into account. The first one is related to the size of the main squarenugedrepre-
sentation. This size is usually defined by the user, but in cases whereraasimg number of
resources is present, it would be interesting to see the size of the maie sger@asing auto-
matically. Considering that the 3D space is unlimited, this size could become toodagdoate
an easy understanding of the representation. To solve this situatioegagign and reduction
mechanisms should be used to downscale the quantity of data that is draemaggdiegation
mechanism that is presented in next Chapter could be applied here.

Another characteristic of the treemap visualization base is when the sqapresent ma-
chines, for instance. If there are too many processes in the same mabhinsualization will
result in a larger number of processes that must “fit” in a given sqlfshe square is too small,
the resulting alternatives are either to aggregate the processes in ongagrtttyncrease the
size of the main square of the treemap. Both alternatives have their dies\dnaat benefits and
must be balanced to provide an aesthetic visualization to the end user of tepréSentation.

3.6.2 Interaction Mechanisms

The 3D visualization also comes with a number of different interaction meahaniSome of
these mechanisms were already discussed in Section 3.1. Here, we ineestgiap further
by giving more details and exploring some examples. First of all, we mustdinsind of the
notion of camera inside the scope of the 3D representation. The visus¢mion of the 3D
approach, described in this Chapter, expects the presence of a cahimsaartifact must be
present because it is from this viewpoint that the visualizations are dreate

Different mechanisms can act on the camera. The first and more relsvaanhslation
operations inside the 3D space. The translation of the camera position allwarttera to go
forward and backward through time, for instance. Besides, the camme@so be rotated in the
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three axis to give the analyst other viewing angles. Figure 3.14 showshes& mechanisms
act to provide different points of view. The first image at left is a replitthe image depicted
in Figure 3.12. Subsequent images to the right show the point-of-viewditierent angles of

the same scene.

Perspective View Zoom View Side View Top View
i

|

Figure 3.14 — Different points of view of a 3D scene, generated with cainanslation.

Other possible interaction mechanisms of the 3D approach is the use of ansnatidn
replays. Animations can be used to give the analyst the possibility to analgzeh#in of
events step by step, viewing the representation of every event one at & timdynamic of the
animation can also help the observation of repeating patterns during ths evelution. These
animations can be combined with the replay technique, showing again speeifiais of time.

Classical interaction mechanisms already present in other visualization twolglso be
applied in the 3D approach. Zoom, for example, can be applied by chatiggntyme scale
rendering in the timeline, allowing a more detailed analysis when zoomed, aedagjgiews
of the whole scene when the user has a more significant time slice rendehedsicene. The
changes in the time scale can also lead to performance improvements in the wagutide
objects are stored. In general views, much of the details that are eshdeuld be discarded
without losing the major understanding of the events.

3.7 Summary

The Chapter has presented the visual conception of the 3D model, exgl#igirmeaning of
the three dimensions and the definition of the visualization base and timeline. rpespd
model tries to solve the lack of a visualization technique that is able to show aipmtidehav-
ior together with network characteristics. We made a step further throughera approach
that can show two combinations of representation techniques. The first isixhbetweerbe-
havioral andstructural representations, that solves the previously cited problem of analysis of
application behavior with the network topology. In the context of our 3Dr@ggh, the behav-
ioral representation consists in the visual objects rendered along the tisnamc the structural
representations are the communication pattern and the network topologyedna the visual-
ization base. The second combination is betwebatevioral and astatistical representation,
the later being the treemap shown on the visualization base. We also haestpdethe abstract
component model that is able to generate a 3D representation. The seis&gctions are
dedicated to the description of each component of the model: the trace, ridsedextractor, the
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entity matcher with its three sub-components, and the visualization componeneli&etihat
the proposal of the 3D approach can be a viable solution to enable tloerparfce visualization
of parallel applications that takes into account the network influenceglthisexecution. The
Triva prototype, that implements the 3D model, is presented in Chapter 5ltR@lstained with
the prototype are described in Chapter 6.

The next Chapter describes the visual aggregation model that is deddloghis thesis to
obtain visualization scalability in the parallel application analysis. One of the meds idehind
this approach is the use of the treemap technique for the representatggredgated monitoring
data. This is in part inspired by the development of the third configuratidheobase, which
also uses treemaps.
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Chapter 4

Visual Aggregation Model

The previous Chapter has presented our proposal to handle thenpanfe visualization of
parallel applications that take into account the network topology. As exaaiour solution
deals with a three dimensional visualization that is able to show the network ¢ppatal the
behavior evolution of application components.

Another issue related to grid applications is that they can be composed gfeanlamber
of processes. Some analysis is already possible with applications conipo#iesdusands of
processes [50], but in clusters. Several issues arise in grid emamtis when analyzing large-
scale applications. A first one is the huge quantity of monitoring data that eayeiherated
by grid applications, depending on two factors: the number of monitored sritie the detail
of behavior collected for each of those entities. Another issue in the amalf/targe-scale
parallel applications is the visual scalability [26], which is about the quantithata that can be
displayed in the screen without losing the ability to understand what is eayissbs

The fact is that the representations provided by visualization tools mustcadtmin order to
analyze big parallel applications. If we consider only the number of mouitenéties, we must
be able to represent at least a few thousands of processes in theisaalzation. A certain
amount of details about each of these entities over time have to be preseatvisuhlization
in order to analyze the processes. An example of the lack of scalability ingbelization is
the space-time representation, where the amount of data that can keergpdss limited by the
vertical space available in computer screens.

Among the visualization tools reviewed in Chapter 2, Vampir (Section 2.2.5)soiffieits
space-time view a hierarchical visualization that increases the amourmadgses that can be
visualized at once. The technique works by aggregating procedssswior according to a
hierarchical representation. The problem of the approach is that ternafion shown in each
level is represented differently, turning out to be difficult the analyste®Vampir’'s aggregated
views. Other tools, such as Pajé and Jumpshot, for instance, use scnodlaiganisms to deal
with the big number of monitored entities. This has a potential negative impact antigsis
since not all entities’s behavior are shown at the same time.

Our approach uses time intervals to dynamically create an annotated hiesthsttucture
that represents the application behavior for that period of time. We alsemiran aggregation
mechanism that can be applied when there are too many monitoring entities talpeednn

45
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the same screen. We employ the treemap technique [42] to create a viseakreption of the
hierarchies. The combination of the Time-Slice technique, the aggregatiosl aruditreemaps
increases the number of monitored entities that can be visualized at the samaniinagipws a
direct comparison among their behavior.

The treemap visualization is already used to observe monitoring data frofbwtistt envi-
ronments. CoVisualize [68], for instance, is a grid visualization tool deesldor PlanetLab.
The tool uses values such as CPU, Memory and Bandwidth of nodeder ritve treemaps. Be-
sides, it can be configured to show also efficiency images, based oma@Ptdemory, and usage
images, based on slices, slivers and nodes according to the terminolB¢pnetLab platform.
Another example is the visualization of workloads [39], where the valu#iseofepresented hi-
erarchies are calculated based on the workloads applied to resolrdesth approaches, the
time variable is not used and only the visualization of resources state iseapzd.

This Chapter is organized as follows. We begin with a description that sthatshonitoring
data can be hierarchically organized. We present then the Time-Slicélatgoesponsible for
creating an annotated hierarchical structure that represents theprdgrhavior for a given
interval of time. The aggregation model is presented, working by mergitayldasimilarity
and moving it to upper levels of hierarchical structures. We then préisertasic concepts of
the treemap visualization, a technique proposed in 1991 to solve the problésualization
scalability for hierarchical structures, and its application to visualize theubafphe Time-Slice
technique and the aggregation model.

4.1 Hierarchical Organization of Monitoring Data

Traditional monitoring systems for distributed environments periodically gathier about the
behavior of a pre-defined set of entities. This set can contain resafthe computing system,
such as processors and memory, and components from parallel appbc¢édike processes and
threads. For each entity, several other types of information are alsteregl, like events for
functions calls, or changes in the value of a variable associated with the éatitgxample is
Ganglia [55], able to collect monitoring data from several computers anebich of them, the
level of CPU utilization, input/output, and memory. For Ganglia, the entity is the atenp
Other cases, more focused on the application level, are tracing libradessuwRastro [20], or
the VampirTrace tool. In this later case, it results in application traces thiateethe behavior
of processes and threads, which can be identified as the monitored erfthestates for the
processes and threads, their events, are the information associatedewith th

An important characteristic of monitored entities is that they can be orgarézetiararchy.
This organization lists the observed entities as bottom-level nodes, or Jéeaeisg interme-
diary nodes of the hierarchy to group them based on logical or locatiaracteristics. In the
example shown in Figure 4.1, the monitoring system collected data from gexcasd threads.
A possible hierarchical organization of these entities is to group the thi®apgsocesses and
the processes by machines. If the application were executed in a gridramént composed by
clusters, the machines could be also grouped by cluster. Additional infiormrabout the pro-
cesses and threads can also be present in the hierarchy, suchtateiélscked and Running
below theProcess entity, Created andJoin belowT hread.
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Figure 4.1 — Hierarchy of Entity Types.

Usually, the nodes of Figure 4.1 are types of the monitored entities. Thedhiea struc-
ture serves as a guideline to organize the monitoring data collected by a toptdligles such
information. During the collection of events about processes and thitbadsonitoring system
creates instances of these types. Figure 4.2 shows an instantiation ofrdretiaal organiza-
tion, where the application is composed By, processes (each with one thread), grouped by
N,, machines}V, clusters, finally all belonging to the same grid.

Grid

Clusters —p

Figure 4.2 — Hierarchy of instances of the entity types.

The types of a hierarchical structure can be related to any kind of entitgdnabe moni-
tored. If, for example, we are monitoring an object-oriented applicatiorrethdting collected
data would be composed by traces from the objects that were instantiatéoeaméthods ex-
ecuted. Another level of the hierarchy is composed of packages tlthe classes. The
resulting hierarchical organization would be a tree having as root aRgpleage with a single
child of typeClasswith a child of typeMethod

The notion of type hierarchy was implemented and validated in the visualizatidpa@d22].
Its format is considered generic since it can be adapted to represesatlyiany kind of moni-
toring data. It was applied to the visualization of Java Applications [20], Miplications and
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multi-level analysis of parallel applications executed in clusters [70]. @tfeeaeasons for the
generic capability of Pajé is the use of a hierarchical definition of the dabag lable to adapt
to a broad range of monitoring systems, from the ones focused in the ianaflyssources to
systems used to trace parallel applications.

The type hierarchy of Pajé is enhanced with four additional basic typesstriie an entity
behavior. They are states, events, variables and links. A state of anrapfiys that the entity
spent an interval of time in that state. An event has just one timestamp anc:azsed to
describe singular events in time. A variable is used to visually describe theienof a certain
metric over time and a link is used to describe an interaction between two entitieaudge
these types can describe a broad range of application behavior, Wed &z adapt them in the
development of the Time-Slice algorithm. This adaptation is described in thé&netion.

4.2 The Time-Slice Algorithm

The objective of the Time-Slice algorithm consists in creating a hierarchicadtsre that re-
flects the program behavior for a given interval of time. For that, the siofihe hierarchy must
receive values that are calculated based on two factors: the definitatirog interval and a
summary of the events for each monitored entity on that time interval.

Different configurations to define the time interval are possible. For elantp length
can be changed dynamically in order to find visual patterns from the diig &ealyzed. This
allows the detection of patterns that might appear in a small slices of time but tergir
ones. The user can also move the slice of time being analyzed, allowing thevatien of the
evolution of the entities through time at a small time scale.

The summary of events is done by taking into account the interval of time szbeifid
additional information about an entity, which is present in the monitoring déia.objective is
to find a numerical value that represents the behavior of each entitye Bredifferent ways
to define the numerical value for each entity. We can consider, for irestémat this number is
the amount of time, or the number of times an event happens, or any othendtion that can
be counted somehow. Before getting into the details of how each of thesedséshased to
calculate the numerical value, let us proceed to an overview of the vagitdotainology used in
next sections.

Figure 4.3 shows an example where there are two procedsasi B, that have been exe-
cuted in the machiné@/, which was part of clustef’ and the gridG (hierarchy shown on left
of the Figure). The time slice defined for the algorithm begirig; @nd goes td’y (represented
by the two vertical lines). Singular events are denotedhy, whereX is the identifier for the
entity andE the type of the event. The number nextdds a counter to identify uniquely that
event. States are defined B{s;¢; and X5:¢¢, whereX denotes the entity§ the type of the
state and a number to uniquely identify that state instance. Links have th@&inlmgdenoted
by XY7.t; and end byXY7t;, whereX is the origin of the link andV” is the destination.
Variables are represented by a series of timestamped events that holdrére ealue for that
variable. The resulting visual representation is denoted by the vaiialsiehe Figure.

In the example of the Figure 4.3, there is one state for the entifyis,¢; to Agity) and
two for the entity3 (Bs1t; t0 Bsi1ty andBgat; to Bgot ). There are two singular events in the
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entity A, denoted byAg; and Ago, and one link BAr;t; to BAp ts). There is one variable
for the entityM, denoted by the lettdr. We must also define a variahlé,,; that will hold the
calculated numerical value for a giveén entity.

Events: A,;and A,,

Time Axis ——pp» T /) At T, At
D] ¢ P2 S
&) I |

BAL1ti BAL1tf
/\/\A—/

Figure 4.3 — Example showing the mathematical variables used in the algorithm.

The next subsections detail how the algorithm works in the presencete$, stariables,
links and events. The general principle is to separately sum the valuthefeach type of state,
variable, link and event, and then intersect the obtained value with the time skce This
Section ends with a complete example of the algorithm.

4.2.1 States

A state is defined by a value and two timestamps, one for its beginning and iaftsthe end.
An entity can have states with different values through time. Figure 4.4 sfiesventities,
from A to F, grouped by location in machindd1 to M3, and by clusterg’1 andC2. In this
example, we use only one value for the state, represented by the darkeetdangles in the
horizontal axis.

For the example of this Figure, th€,,; values for the entities will hold the amount of time
each one stayed in the state in question. There are five different wagktdate X ,,; for the
entities fromA to E. These cases are divided taking into account how the state is positioned
in time in relation to the selected time slicg; (up to7y). The first case is represented in the
behavior of entityA (see Figure 4.4), where the value for the entity, is defined byl'y — As1t;,
because the end of the state is after the end of the time slice. The seconfleaisty for entity
B, the value will be defined byBs.t; — Bgot;, without considering the amount of time entity
B spent in stateBg, since this state is out of the selected time slice. The third case is the
entity C, where the state starts before the beginning of the timeline, resulting in theléormu
Csity — T;. Entity D has no state inside the selected time slice, so its value is simply zero.
Entity £ has two states within the time slice, we must then consider both tdipd with the
formula(ESltf — ESltz') + (Esgtf — Eggti).

Considering all these situations and normalizing to the time slice, we obtain:
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Figure 4.4 — Time-Slice algorithm working to summarize states using amount of time.

> r_o(min (T, Xg.ty) — max (T3, Xg.t;))
Ty — T,

Xval = (41)

During the execution of an entity (e.g. process, thread), it is common to fimel than one
type of state. When this happens, their values must be calculated sepwiitiielye formula.
Taking as example the hierarchy of Figure 4.1 with thecess entity, there are two types of
states:Blocked and Running. The calculation for their values results rocessyai_biocked
and Processyqi—running- 1€SE values are stored in the enfityocess like a vector.

4.2.2 Variables

Observation tools gather information about different metrics during the mrorgtof a system.
Examples of these metrics are the bytes per second transferred by therkneérd, CPU or
memory utilization. They are often collected as events, with different gathemgchanisms.

In an ideal situation, monitoring tools must sample metrics using very small time ilgerva
improving the accuracy of the values collected. The métfienory in the top part of Figure 4.5
shows how the drawing of the collected values for this metric are in this ideatisitu

Time Axis ——— T, T,
B ]
o
é /\/\A_/
allc = mem(x)
&
i - il i
AUl 1 (1l e
RN
| Me,, Meyg | Meg | Mey [Mey Meyy | !
Mey, Mey, Mey, Mey Meyo MeyoMeys

Figure 4.5 — Approximation measurement caused by the frequency oftallecechanisms;
the Time-Slice algorithm works using the discrete values collected.
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For the ideal situation depicted on top of Figure 4.5, the Time-Slice algorithfarpes the
integration of the function that defines the value for the metric for that pefitiche. Consider-
ing the M emory variable and the time slice of the Figure, the equation is:

f%_f mem(z)dz

X =
val Tf — T’z

(4.2)
wheremem/(x) is the function that defines the value of the variable @hdb 77 is the time
slice. In the example of the Figure, the final value idy,; is the area ofnem(z) limited by
the interval of time.

The accuracy brought by the ideal situation in the collection of a perforenamgtric is
hard to obtain in the real world. If the gathering system collects the metric vatueften,
the intrusion caused may lead to a different behavior of the observéehsysThis behavior
might be significantly different from the normal behavior of the system. Taisresult in the
lack of meaning of the monitoring data, since the normal behavior (withowredtson) is too
much affected. To alleviate this problem, and at the same time obtaining a gaa@@cof
metric’s value, monitoring tools use periodic samples between fixed or vagiatikrvals of
time. Another perspective for this situation that may solve the problem is aemgnt between
the collection mechanism and who demands the monitoring data. The agreemeantecify
the amount of intrusion allowed, or the amount of intrusion obtained whetaf seetrics are
configured to be collected.

The bottom part of Figure 4.5 shows the mettimory2 and its measured values, inside
the time slice, denoted frod ey | to Mey 3. Each variable is valid between a defined interval
of time: Mey1t; to Meyty, for instance. Considering/emory2, the Time-Slice algorithm
operates by adding the area of the rectangles. Therefore, the equsdiiby the algorithm for
a more real situation of measurement of metrics is:

T_o (Metric.ty — Metric.t;) x MetricValue,
T; — T,

where MetricValue. is the value of the metric betweeW etric.t; and Metric.ty, with n
samples collected inside the time slidg (0 7).

Xval = (43)

4.2.3 Links

Links are used to represent interactions among different entities. Fgdishows an example
where five processes, fror to F, have some interactions among them. A link is denoted by
XY1,, whereX is the origin andy” is the destination. If there is more than one link fréfrto
Y, the subscripted number is used to differentiate them. A link can also haleesassociated,
which is represented by the variable itself. The value can be, for exathplguantity of data
transferred. Besides this, a link also has a start time, representedjnyended to the variable,
and an end time, representedy As before,T; andT’; are used to define the time slice.

The way the Time-Slice algorithm works to summarize links is different from statel
variables. Instead of simply associating a unique value to the entity, the liaksad to create
two values. One of them is created when the entity is the origin of the links, andthiee
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Figure 4.6 — Time-Slice algorithm treating links presence in the time slice using amwicime
versus data transferred.

appears when the entity is the destination. Therefore, for an etifitye define in the following
equationsxval—as—origm andXval—as—destination:

TZL:O (XYLth — XYthi) x XY,
Ty - 1T;

Xval—as—origin =

for any entity X (4.4)

Z?:O (YXLth — YXthi> X YXLZ
T;—T,

Xvalfasfdestination = fOT any entity Y (45)
whereX Y7, is the value of the link of a given entityX, andY X, is the value of the link

of a given entityY". It is important to notice that links that cross the time slice boundaries are
not considered here.

Adaptations to these equations are possible in different situations. If wetavaiew only
the amount of time spent by a link between two entities, we can ignore the vaibetatf the
link in the equation. Another perspective is when we want to view the pegoce of each link,
by dividing the quantity of data transferred by the time it consumed to do theféranVith this
calculation, the value for a given entity matches the performance of the smityimunication
either as origin or destination of the links. A third situation happens when @ tosknow only
the amount of data transferred by a single entity. In this case, we ignoraiiables of time in
the equation. Several other combinations are possible depending orditiered data available
in each link, such as overhead for creating the packets and emitting aimgakem and so on.

A special case for summarization of links is to count the destinations, fongea for a
given origin. For the entityB of Figure 4.6, for instance, it results in three links with destination
A and one link with destinatioy’. This adaptation of the algorithm enables the observation of
groups that communicate more intensively in a parallel application.

4.2.4 Events

Events are singular points in the time axis that indicate when something hagpemgif’en
entity. They can represent the act of changing the value of a variabtbeaeception of a
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message. To summarize their existence in the behavior of a given entity, dlestesay is

to count them by their type. The resulting value for the entities can be conhpdsthese

counts: number of times a variable changed, how many message receptiangd, and so on.
Different adaptations are also possible if additional data is available inséaghlar event.

4.2.5 More statistics

In previous subsections, states, variables, links and events were dstgilerately. In the con-
text of states, we presented the algorithm working with only one state at a tirdditighal
meaningful statistics can also be extracted when we consider more thatatséos a given
entity. This situation depends on what the meaning of the states is and howathég com-
bined. An example for that is the combination of states that mean actual pirgesd states
that mean communication. Their combination can give the analyst a view ofttbeoaputa-
tion/communication for all the entities of the parallel application.

The same techniques also apply to other types of monitoring data, variabtesia events.
These combinations depend on what is the nature of the summarized valtentlp, we have
seen that these values can be related to the amount of time (in the stateaaaga)lated value
of a metric (variables case), quantity of data in bytes (links case), simples(@vents case).
Additional information that might be present in the monitoring data can alsoaseréhe range
of possible summarization values. Table 4.1 gives an overview of possibibications that
can be used to obtain more statistics from the basic types of monitoring data.

Table 4.1 — Non-exhaustive set of combinations to obtain more statistics faopstr

Combination \ Unity \ Application
Bytes per second Quantity/Time| Communications Performance
Computation vs. Communication| Time/Time Efficiency of processes
Blocked State vs. Number of Links Time/Count | Mean time blocked per link
Computing State vs. CPU Utilization Time/Value Efficiency

4.2.6 Example

Figure 4.7 shows an example with five monitored entities, frbto F, grouped by their execu-
tion machines, represented by the rectanglels A2 and M 3. The machines are grouped by
their clustersC'1 andC2, which are part of the grid/. The selected interval of time is 9 sec-
onds, limited by the two vertical bars (small vertical bars mean intervals o$@c@end). In this
example, we intend to summarize three different information: the amount of tirie cftates
Blocked (darker rectanglesfxecuting (light gray rectangles), and the bytes per second of the
links Communication (represented by the non-dashed arrows in the middle of the time slice).
The numbers in the beginning of the communications represents the quantiiadfahsferred,
in bytes. The link summary is attributed in this example to the origin entity.

Considering the case shown in Figure 4.7 with two states represented,4Tabists the
values of the entities for the three summaries. The first column shows thenfities the



54 CHAPTER 4. VISUAL AGGREGATION MODEL

Blocked - 9 seconds P

Executing Communication

Figure 4.7 — Complete example showing different aspects of the Time-Slicetiaitgo

second column shows the time in seconds each entity stayed iRlth&ed state within the
time slice; the third column shows the time in seconds for each entity ifvtheuting state;

and the fourth column shows the bytes per second associated with eaichentiigy of the

link Communication. For instance, to summarize the amount of time of Hecked state of

the entity A, we sum up its duration of 5 seconds that is within the time slice. To summarize
the links, we use the bytes transferred divided by the time the origin prtmasso the trans-

fer. For entity A, the Communication summary must be the sum odbytes/2seconds and
40bytes/2seconds, resulting in25bytes/second.

Table 4.2 — Summaries for the three different aspects analyzed in Figyreofisidering the

time slice of 9 seconds.
Entity | Blocked (Time in sec.)| Executing (Time in sec.)| Link (Bytes per second)

A 5 4 10/2 + 40/2 = 25
B 2 7 36/2 = 18
C 6 3 10/1 = 10
D 0 9 5/1+45/3 = 20
E 5 4 30/2 =15

Figure 4.8 shows three hierarchical organizations of the example ofeHigidr considering
the three summaries presented in Table 4.2. These hierarchies are thefrdsi Time-Slice
algorithm, representing the behavior of different aspects of the paggf@ication inside the
selected interval of time. The values of the leaves of the structure areedidfased on the
calculated summaries in a per process fashion.

When different types of events are present in the interval of time selbgtdéte user (as the
example of Figure 4.7, with two different states and links), the Time-Slice iigoicreates as
output a single hierarchy where the leaves have the calculated valubsd$ertypes. Figure 4.9
shows the output for the current example, where each leaf node leesviilues that show the
blocked state, executing state and communication link, respectively. Takss\are the same
found on the leaves of the three hierarchies of Figure 4.8.
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Blocked State (Time in seconds) Executing State (Time in seconds) Communication Link (Bytes per second)
G G G
Clusters------------ - C1 c2 C1 c2 C1 c2
Machines----------- - M1 M2 M3 M1 M2 M3 M1 M2 M3
Processes-—— -1 - | A B C D E A B C D E A B C D E
® @ ® 0 6 @ @ ® © @ (25) (18) (10)  (20) (15)

Figure 4.8 — Hierarchical summaries generated by the Time-Slice algoritheideoimg the
three aspects presented in Table 4.2.

G Hierarchy with vectors on leaves
Indicating the summaries calculated

by the Time-Slice Algorithm

Clusters------------ . - =

‘ Leaf
o ] - M2 M3 (Blocked, Executing, Link)
Processes-------- - A > - - -

(5,4,25) (2,7,18) (6,3,10) (0,9,20) (5,4, 15)

Figure 4.9 — Single hierarchy, based on the ones of Figure 4.8, with multiplenaties on the
leaves, generated by the Time-Slice Algorithm.

4.3 The Aggregation Model

Depending on the number of monitored entities present in the traces, theehjegenerated as
output by the Time-Slice algorithm can become too large. If we take as examplgpéication
composed by one thousand processes, each one with four threagsutieg hierarchy in this
case will have four thousand leaves. The aggregation model predwrdhtends to explore
the hierarchical organization of the monitoring data in order to provideeggged values for
intermediary levels of the hierarchy.

Figure 4.9 shows the output of the Time-Slice algorithm, represented byadhgmwith a
vector of summary values on the leaves. Considering only the first twosvaluihe leaves’s
vectors, we obtain the leftmost hierarchy of Figure 4.10. This left hibygsbows on the leaves
the summary value for th&locked and theExecuting states. The Figure also shows three
modifications in the hierarchy, caused by the aggregation model. In the kxahgye are three
intermediate levels: ProcesBY, Machine (/) and Cluster’). The main goal of the aggrega-
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tion model is to group the summary values of a level to the level immediately higherefbre,
after the first aggregation, the values of the processes in the same maahiagded and at-
tributed to the machine node. The algorithm can be applied again to pursuggttegation, up
to the root level, as shown with the second and third aggregation stepskiftive.

Original Hierarchy generated Aggregated at Aggregated at Aggregated at

R ' o ’ '
by the Time-Slice Algorithm ! Agg'e‘a""" Machine Level ZW" Cluster Level 3”\99*?.3"0" Grid Level

654 27 63 09 64
+ +

(5,4) (2,7) (6,3) (0,9) (5.4)

Figure 4.10 — Three aggregations to decrease the hierarchy depth amosgtentpe final visual-
ization with treemaps.

After applying the aggregation model, the intermediary nodes up to the rdetirave values
that were calculated based on the leaves of the tree. The resulting aiggrége, shown on the
right of Figure 4.10, enables a per-level analysis of the data. Sinceithenary values of the
nodes of this tree are thBlocked and Executing states, an analysis in the cluster level, by
observing nodeg’1 and C'2, enables the conclusion that for the considered interval of time,
the clusterC'1 stayed 7 seconds in thelocked state and 11 seconds in tlh&cecuting state.
The same conclusion can be made for the cluStziand to other intermediary nodes, such as
the ones of the Machine level. When there are too many leaf nodes, thestacatychoose
to observe only up to a level, avoiding too many details and still being able tasiadd the
overall behavior of the parallel application for the considered time slice.

4.3.1 Aggregation Functions

Besides the traditional addition operation (shown in Figure 4.10), the gatipa model can be
applied with other functions to aggregate values, such as max, min, arabaverheir direct
application depends on what type of value is attributed to the leaf nodesarfigheal hierarchy
and can highlight particular characteristics when aggregating data.

The search for low-throughput communication links, bad transfer rates@ processes,
small amount of time spent with calculus, for example, can be eased by usiing fanction
when aggregating data. The application of this function can highlight, dtinegggregation,
the part of the machine that contains the worst communication links, or tranasés, for in-
stance. On the other hand, a max function can be applied in the aggregaéierugfer searches
for highest values, such as bigger amounts of time spent to calculatiansnsferred data.
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4.4 Visualization of the Approach

The previous Sections have detailed the Time-Slice technique and the aijgnegodel. Tak-
ing into account an interval of time, the Time-Slice technique works by summauriifferent
aspects of the monitoring data and creating a hierarchical structure piaseats the behav-
ior of the parallel application for that time slice. The aggregation model woyksalculating
values for intermediary nodes of the hierarchies generated by the time Blieee are several
ways of creating a visual representation of a hierarchical structuis. i what the node-link
representation does to create Figures 4.8 and 4.9.

Instead of using these classical node-link representations for thetmftphe Time-Slice
algorithm, the work presented here explores the Treemap technique [@4dién to visually
represent the created hierarchical structures. The main benefits fdhigsque are its scalabil-
ity to show large and deep hierarchies, and the fact that all the scraea spdedicated to its
representation.

The next subsection details the basic concepts of these hierarchicsdestations, explor-
ing more extensively why we have decided to use the Treemap techniqeeif$, we discuss
the scalability issues related to the treemap representation and how thesdiggregpdel can be
used to improve the work on this matter. We end the Section showing how the préeosed
to create a visual representation of the hierarchies created in the exdmppd®ious Section.

4.4.1 Treemaps Basic Concepts

The traditional way of displaying hierarchical data is to use node-link dragr[61]. This
representation is depicted in the leftmost part of the Figure 4.11. Thesaudlisgre easy to
understand by explicitly showing the relation among the nodes. The prohikbrthig approach
appears when we try to visualize large scale trees with thousands of ddesappens mostly
because they do not exploit well the screen space [74].

The treemap technique was proposed in order to solve the scalability probleenarchical
representations [74]. Instead of drawing nodes and links between ithesas the whole screen
space with a space-filling algorithm. This algorithm recursively divides faee dedicated
to draw the hierarchy, following the tree organization. The right-partigtife 4.11 shows
an example of the steps performed by the treemap algorithm to create eerdpties of the
hierarchy shown on the left. For this example, we consider that eachddafhmas a value of
one, so their sizes are the same in the final Figure. The parent Apdieand C have their
values, 6, 3 and 2 respectively, defined based on their children. |gbethm starts by the root
node A, represented in the middle of the Figure as a big square. The algorithnsimtgoes
to the second level, dividing the space of noatlamong their childre3, C, andD. Then, the
third level is considered, dividing the spacel®timong its childrenE, F', andG; and the space
of C, betweenH and!I. The final representation is depicted on the right square of the Figure.
In this simple example, the hierarchy is highlighted with the use of margins beiweenand
outer rectangles in the representation. The presence of these mapgnsisen the importance
of the hierarchy during the analysis. Sometimes they are not presentitbthgdoss of pixels
of the screen that can be better used to show real data. Figure 4.14 alpa@guliar example. In
the general case, the sizes of leaves are not always the same.
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A Recursive Treemap Algorithm
Level 1 --------mmmmmmimmemoeeee -
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Figure 4.11 — Two types of representation of hierarchical data: theiclasde-link diagram
and the corresponding treemap technigue applied to the same hierarchy.

The treemap algorithm has passed through several evolutions sinceait®mtreOne of
them is called the Cushion Treemaps [78], a technique that works with tbeiassn to each
rectangle of an intuitive shading that improves the user perception ofisshaing shown. An-
other work based on the original technique is called Squarified Treeri8psIf manages to
keep the rectangles shapes as close as possible to squares, makingdheatisn of the in-
formation easier by avoiding rectangles with a big width/height ratio. Anotrergsal called
Ordered Treemaps [73] tries to keep nodes proximity when zooming atafiffeevels. Voronoi
Treemaps [9] is a different approach to visualize hierarchical dataiiest polygons to repre-
sent nodes, instead of the traditional rectangles or squares. Thepslgge constructed from
median lines between pairs of points.

Examples of treemaps utilization include network security [54], grid regoarenitoring
visualization [68], visual analysis of stock market [77] possibly applieditollion of items [28].
These multiple applications of the treemap technique, including the possibilityoofirsty big
hierarchies, motivate us to use it in the analysis of parallel applicationsprifepal advantage
of the treemap representation is the good use of screen space, cagretaian space with the
values of the nodes of large-scale hierarchies, and outlining the repaditibis space. On the
other side, the drawback is that the hierarchy is less apparent antbedetect, turning out to
be difficult when first analyzed. The benefits of the treemap, howavermore evident than
its drawbacks, since the representation can be interactive to allow amigasighting of the
hierarchy when necessary.

4.4.2 The Scalability Issue

The main advantage of the treemap technique is its ability to draw in an undexiskaweay
large-scale hierarchies. This is possible because it involves a spiexggealigorithm that uses all
the screen space available. If we compare treemap abilities to traditionalinkdepresenta-
tions, the scalability of the approach is even more obvious.

Although scalable, the traditional treemap technique is limited by the size of teenscr
space dedicated to its representation. If the hierarchy being repreésectanposed by a large
number of nodes, the space-filling algorithm may generate squares ¢hetcasmall. If we
consider a computer screen with a resolution of 1024 pixels in the horizdim&nsion and
768 pixels in the vertical dimension, we end up with a total of 786432 pixels tebé by the
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treemap algorithm. Considering that each square size reasonably acatpgast 100 pixels
(10x10 square), the maximum number of leaf nodes of the hierarchy begingsented is 7864.
Furthermore, if we want to represent at least 2 different statesytingand blocked) at same
time, we end up with a drawing that may deal at most with 3932 processesy,Tibis not
difficult to find parallel applications larger than that, especially if we wantsaalization of
threads along with processes behavior.

The visualization scalability can be achieved with the treemap technique by letéirad-th
gorithm work only up to a certain level. Therefore, if the hierarchy is corapas many leaf
nodes, they are ignored in the representation. This solution is also ivegstarting from the
root level, and making it possible to limit the representation depending onlgsired depth.

The problem with this approach is that some part of the information that is dedkes is
lost. An example of this is depicted on Figure 4.12, which takes as input tre¢tigrgenerated
by the Time-Slice algorithm presentin Figure 4.9, only with the summary valu#isd®locked
and Executing states. Since this hierarchy did not pass through the aggregating model, the
intermediary nodes do not have aggregated data about the states. nihdyaee the added
value of the nodes below it For instand@]l has a value of 9, which is the sum of 5 and\41
has a value of 18, which is a sum of the valuesPdfand P2; and so on up to the root node.
This information is necessary to the treemap algorithm, since it expects fomeale of the
tree an associated value that indicates how much space of the screeodiatith take during
the representation. The vectors of the leaves represent the amount efatimerocess, from
P1 to P5, stayed in theBlocked and Executing states. The right part of the Figure shows
different treemaps for which rendering was limited to a given level of theatghy. The right-
most treemap, on the bottom, actually shows the states for all the processemsy have on
this level squares that are too small in situations with a large number of noadgeid. If this
happens, the treemap algorithm may be stopped in a higher level of the hie&idgure shows,
through the others treemaps, that information is lost if this happens. Theflmshation in the
example is the partition of time between each state for each process.
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Figure 4.12 — Limiting the treemap representation up to a certain level of thedhigra obtain
visualization scalability.

The aggregation model proposed in previous Section tries to achievédizédiaa scalability
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through the use of treemaps without losing information that may be on leaves #presented
hierarchies. As presented, the model works by merging data from oekdgthe hierarchy
and moving the resulted merged data towards the root of the tree. Theubegttion describes
treemap representations generated with hierarchies created with the Timed§btcithm and
the aggregation model.

4.4.3 Using Treemap in the Example

First, let us proceed to treemap representations of the hierarchiesdcvattiehe Time-Slice
algorithm, without any aggregation. The hierarchical structures of Eigu8 are sent to the
treemap algorithm. Its drawing procedures take into account the valueadbrof the nodes in
order to generate the maximum utilization of the screen space dedicateddsamfthe struc-
ture. The results of these drawings are depicted on the three diffeeentdps of Figure 4.13.
The left-most treemap was constructed taking into account the hierardhyetiirzes the behav-
ior for the Blocked state of the processes framto E. The area of each rectangle represents the
amount of time in seconds that each process stayed on that state. Belowritieegraap draw-
ing at the left of the Figure, there are three smaller representations thattisl summarized
view for each level of the hierarchy. We can also use these représastto make higher-level
comparisons among the resources that contributed to the application erecutio

Blocked State (Area is seconds) Executing State (Area is seconds) Communication Link (Area is Bytes per second)

Per Level Treemap Construction
Ct M1 Ct M1 C1 M1

G G G
c2 M2 | M3 Cc2 M2 M3 (07 M2 M3

Figure 4.13 — Treemap representations for the hierarchies depictedwe Bi§.

The center treemap of Figure 4.13 shows the behavior of the processbs Fxecuting
state. It was built based on the center hierarchy of Figure 4.8. We eghraeigh this represen-
tation that proces® and D stayed more than others processes on the executing state. Taking
into account the smaller treemaps below, we can see also that madRigentributed more to
the execution, when compared to machinés and /3.

The last treemap, on the right-most part of Figure 4.13, shows the egpation for the
bytes transmitted per second among processes on the selected time slicaalykis af this
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Figure enables the observation of which process obtained a highegtimatu

Generally speaking, the Time-Slice technique presents quantitative data ire aynthetic
way. This means that the user can visually and almost instantaneously eotheaize of all
rectangles. Analyzing the treemaps of Figure 4.13, we can easily see proiobss has spent
more time than others on each particular state. If this representation is useslytpeaparallel
applications behavior and the state is a blocking operation, the visualizatioaheill which
processes spent more time blocked than actually executing. Other typedesf and events
from the application can be taken into account and combined in the same \asioaliz

Another characteristic of the representations of Figure 4.13 is to draner@&p using only
available values up to a certain level of the hierarchy. This is depicted imtales treemaps at
bottom, showing the representation of le¢&lid, Cluster and M achine for each case. These
per-level views allow an analysis with less details when a considerable aofalata is present
in the deepest level of the hierarchy, maintaining the representationatadéable even with a
higher number of processes to analyze.

Aggregated hierarchies generated by our aggregation model canealeptesented with
treemaps. Figure 4.14 shows the treemap visualizations that are genexrseeldoin the hierar-
chies of Figure 4.10. The left most treemap shows the visualization of thimarlgerarchy,
with Blocked (represented by the letté? in gray areas) an@xecuting (represented by in
white areas) squares being grouped according to the processesladted circle shows the
area that corresponds to procéss In this first treemap, the rendering is performed taking into
account the values of the Process level of the hierarchical strudtnessize of the areas marked
by B and E are based on the vector values of the nodes. The aggregjgtioithm group these
values according to the machines, cluster and the grid. The second treéthag-igure shows
in a comparable way the B and E values for each machine. These valuesl@arated based
on the ones defined for the processes of each machine. The dasiedhdinis case highlights
the area for maching&/2. The other two treemaps to the right shows the aggregated view of the
values according to the cluster level and the root level.

Original Hierarchy Aggregated by Machine Aggregated by Cluster Aggregated by Grid

B | Elsl E B E B E
B E
B B B
E B E B E
E E E
e P3 e M2 e 2

Figure 4.14 — Treemap visualizations based on the original and aggréggtathies presented
in Figure 4.10.
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4.5 Summary

Large-scale parallel applications that run on parallel and distributddtectures exist today,
being composed of thousands of processes. These applications reednalyzed in terms
of performance and resources utilization. The lack of visualization tootsctraadapt to the
large-scale characteristics of these applications motivated the visuabagion model.

The Chapter has started with a description of the hierarchical organizaftioonitoring
data, a pre-requisite to the model itself. Then, we have presented the Tiaedeghnique,
which works by summarizing the behavior of a parallel application in a time irterVhe
output of this technique consists in an annotated hierarchical structatesetves as input to
the aggregation model. Basic concepts of the treemap representatioridmabieen presented,
together with its application to visualize the hierarchies generated by the Tineet&ticnique
and modified by the aggregation model.

The next Chapter details the implementation of this technique, and the threestbmadn
model described in the previous Chapter, in the Triva prototype.



Chapter 5

Triva Prototype Implementation

The last two Chapters have presented the visualization models develop&ithretiis: the 3D
visualization, focused on the highlight of the network topology in contratst parallel appli-
cation’s processes; and the Time-Slice algorithm with its aggregation modehartreemap
visualization. Those Chapters described the models from a theoreticabpoiaw.

This Chapter describes the developed prototype in order to implement tiadizégion mod-
els proposed. The description here details the software decisions takeg the development
and the internal algorithms of the implementation. The prototype is named Triséand for
ThRee dimensional Interactive and Visual Analysis.

One of the main guidelines to implement the prototype Triva is to build it on top dfiegis
tools and libraries, mainly to avoid the re-implementation of already validated imptatiters.
The first decision following this guideline is the adoption of some parts of thelistion tool
Pajé. The main reasons that motivated its adoption are listed in the next Sdttisincludes
a description of the most important components regarding Triva and arpenfice evaluation
of the Pajé Simulator. Other decisions considering software re-userappather parts of the
Triva prototype. They relate to the input data, the file format used to ibesmsources, the
rendering calculation of graphs of network topology, and so on.

The rest of this Chapter is organized as follows. After the descriptiorafg, Bve present
the Triva architecture and how the implementation components are orgabigtils about the
architecture are presented in three parts: input, the 3D-based andamardased visualiza-
tion. There is one Section to describe each one of these categories.dWeedbhapter with a
summary that lists the main decisions about the implementations of the Triva pmtotyp

5.1 Using the Generic Visualization Tool Pajé

Pajé is a generic visualization tool that has characteristics such as extensitiéitactivity
and scalability. The architecture of the tool, depicted in Figure 5.1, is cordpufsa set of
interconnected modules and filters. There are modules that deal directlyhsitarrival of
trace data from trace files, shown on the left of the Figure. These af€ildiReader and the
EventDecoder. Their responsibility is to convert the events in the Pajé fileatato internal
objects used by the tool. The trace data, after this transformation, followgsathethrough
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the PajeSimulator up to the StorageController, where it is stored in memory irblecdkta
structures.

The PajeSimulator is the main part of the tool, since it simulates the behavior ofitesl tr
parallel application with real traces. As result, it generates high-levelergeand abstract
objects that are called Pajé objects, detailed in the next subsection. Thie Bifjualso shows
the set of possible filters that can alter the flow of Pajé objects towards theigwalization
modules on the right: the SpaceTimeViewer and the StatViewer. More details Bh@'s
visualization techniques are reviewed in Chapter 2.

One of the main filters of Pajé is the AggregatingFilter. The filter is respongibleducing
the amount of information in a given container based on the level of zoorartly being used
by the analyst. The filter, when used, can increase dramatically the scalahtlitpteractivity
of the tool by giving fast response to the queries of the visualization coemgs. Another
component that is important in Pajé architecture is the PajeTraceContra@f@ctet on the
bottom of the Figure 5.1. It controls the initialization of the modules and the ag@peaof the
menu with several options offered to the parallel application analyst.

8_" FileReader HEventDecoder}—b

Trace data

PajeSimulator ”’StorageController%— ReductionFilter

‘ FieldFilter | | P notifications
ContainerFilter queries

-t
commands

- » Pl R4 OrderFilter
T ST Entity TypeFilter
-2/~ nitialization and Control yop pacallimeviewsr
. icationFi ingFi
PajeTraceController |—--—-—-——-- - ‘ ImbricationFilter }—}‘ Aggregating |Iter‘
W StatViewer

Figure 5.1 — Pajé Architecture.

The components of Pajé use a protocol, composed of notifications, comanashdsieries.
As depicted in Figure 5.1, notifications go from the StorageController thrtheyfilters to the
visualization modules. These notifications mainly announce changes in &&;edch as mod-
ifications in the trace structure or the presence of new information. Comnaawldgueries go
from the visualization components to the StorageController. Commands esardied to filters
to change their behavior and are generally triggered by user interagticinas the configuration
of a given filter by Pajé’s graphical interface. Queries, on the othed hare responses to noti-
fications and are generated by visualization components to obtain informatoi the traces.
A typical query is the request for events information for a given time fraira,is eventually
drawn in the visualization window of Pajé. The queries and their respaehpmnses navigate
through the set of filters. If a filter is properly configured, it can actt@data changing its
information content that will be returned to the query’s origin.

The next subsection presents notions related to the type hierarchy aRdjéhebjects. Af-
terwards, we present a performance simulation experiment with Pajé todesadability of the
tool. An analysis of the obtained results with the main advantages and disagearof Pajé
adoption in the Triva prototype are presented in subsection 5.1.3.
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5.1.1 Type Hierarchy and Pajé Objects

As stated in previous Section, Pajé is a generic visualization tool. This meaitctrabe used
to perform analysis of a wide spectrum of situations. Initially conceivedsizalize parallel and
distributed applications, the generic capability of Pajé is achieved by ussitaabtypes that
can be adapted to any kind of data. There are five types in Pajé: contater variable, links
and events.

A container type is the only type that contain other types, including anotim¢aicer type.
It has an identifier and a name, and usually a start and an end timestamp. ekltygibs must
be enclosed within a container. A state type may be used to represent thett agntainer type
can remain in a given state for an amount of time. A variable type usuallysemiea metric
which value changes through time. A link type is used to represent interadigtween two
container types; and an event type is to mark something that happens in apivird.

Besides the events produced by the monitored system, a Pajé trace file @3lsahave
the definition of the type hierarchy for that file. A type hierarchy is a h@marformed by
the definition of containers, states and so on. An example for that might heeahtgrarchy
that reflects the monitoring of parallel applications composed by procasdgdhireads. In this
example, the type hierarchy has a container fypeess that has a state type to indicate the
state for that process, and a sub-container tfypead, also with a state type to indicate the
possible states related to that thread. Other information can be definedhssienggent, variable
and link types to reflect the behavior for that application. The terminolodda@ types is used
in next Sections extensively.

Considering the presence of a type hierarchy in a Pajé trace file, theqaidrg events must
instantiate the defined types, with the creation of containers and the attribinialues to states,
links, variables and events that might be present on the type hierarebippsly defined. When
treated by the Pajé Simulator component, these events are transformed feajs,@hich are
generic representations of the events present in the trace file. Thestsatan be generically
treated by the filters and components that are connected at the outpufaiéh®imulator.

The overall organization of a Pajé trace file is composed of three partstetharation of
events used in the file; the type hierarchy and the timestamped events. Instheafi; all
the events that can be found in the trace file must be declarated. The lirtexystath % of
listing 5.1 shows the declaration of the evéhtjeCreateContainer, with its unique identifier
— 4; and the rest of its fields: Time, Alias, Type, Container and Name. Thez lities show an
example of use of this event, appearing usually in the third part of the Pagftla, after the
declaration of the type hierarchy. The first of these lines indicates that irOtitpa container of
name “Site Nancy” is created with the alidgincy. The other two lines indicate that in times
0.2 and 0.3, two containers are creatéaelon andGrillon, both inside the containéYancy.
More details about the Pajé trace file, including all other events, can bd foy23].

Listing 5.1 — Declaration of the PajeCreateContainer event.

%EventDef PajeCreateContainer 4

% Time date

% Alias string

% Type string

% Container string

% Name string
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%EndEventDef

4 0.1 Nancy 0 0 "Site Nancy"

4 0.2 Grelon 1 Nancy "Cluster Grelon"
4 0.3 Grillon 1 Nancy "Cluster Grillon"

5.1.2 Simulator Performance Evaluation

As stated, the Pajé components transform the trace data into higher-lgsetisobAmong the
components, the one that plays a key-role in this transformation is the Paje®inarid the
StorageController. We perform a set of performance tests in ordeses@ashe scalability of
these components when the number of entities present in trace files irscréhseperformance
evaluation has been performed both in terms of execution time and memory use.

A measurement tool was implemented to conduct this performance evaluatiame Bi@
shows the overall organization of the tool, where the white componentsaneHajé and the
gray rectangle indicates the implemented module. The FileReader comporteajédias the
definition of the chunk size, which gives the amount of data that will be aeadce by the com-
ponent. For our performance tests, Pajé was configured to have k sirarof 500 megabytes.
This was necessary to avoid multi-chunk file read overhead that mightrcBueepart of the ob-
tained results. Since the largest trace file we generated for the tests issle&thmegabytes,
all measurements are conducted with the same software behavior.

T T »| T T
Ej—»‘ FileReader h EventDecoderh PajeSimulator HStorageControllerH AggregatingFilter PerformanceMeasurer

Figure 5.2 — Organization of Performance Tests developed with Pajé cemison

We decided to remove the filters that depend on user interactions, since we=asuring
only the performance of the core Pajé components. Figure 5.2 showsrfigucations without
these filters. The only filter we left is the AggregatingFilter, in charge of tdadability of the
answers to the queries by the performance measurement componentatathoeth not require
configuration by the user.

The basic algorithm for the performance measurements is to read the wioadiliezand,
after its completion, navigate through all objects in the memory. The Figure ®.2laktrates
both steps with the dashed lines. Time measurements of both steps have leseandkhe
memory utilization is obtained at the end of program execution, just beforeetbase of all
objects stored in memory.

Synthetic generated traces were used as input for the tool. Since PggrsgatingFilter
solves the scalability problem caused by the amount of data per contameertlerated trace
files vary in their number of containers. As mentioned in previous Sectigriaiters can be
used to represent processes, threads, so changing their numbéerantiinputs is reasonable
enough to evaluate the simulator. The hierarchy used in the trace files is fatingehat all
containers defined in the trace file are children of the same root contaider The different
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traces range from 10 containers to 9 millions containers. We stopped thatésisillions
because of memory limitations of the machine used to run the tests. The cont#Hitleese
inputs also have one thousand events that change their state through time.

In order to execute the performance evaluation, we used the nodesabfisterxiru of the
Parallel and Distributed Processing Group of the Federal UniversiRyoGrande do Sul. Each
node has 8 Intel Xeon E5310 (1.60 GHz) processors with 16 gigabftaaia memory. The
number of executions for a given trace file depends on the size of th&ditesmaller files, we
executed at least 100 times, but for largest files, at least 10 times. Foeaflurements for a
given trace file, we removed 20% of the results (the 10% best and the b@8bresults) to keep
the obtained results within a confidence interval. The remaining 80% of thiksese used to
create the average value, and then analyzed.

Figure 5.3 shows the results we obtained with the execution. The left geypibtsl the
execution time for both steps (step 1: Read and step 2: processing) o¢ Bigu The x-axis of
this graph shows the number of millions of containers, ranging from 1 to 15 nsllibhe y-axis
is the time in seconds. The points indicate the measured values, up to 9 millionmemsitdhe
lines depict the linear regression technique generated with the measimed pde can clearly
see that the evolution of execution times are linear, with the read step being @styeic terms
of time than the processing.

Measured execution time and their corresponding linear regressions Measured memory utilization and linear regression
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Figure 5.3 — Execution time and memory utilization obtained during performaneriments
with Pajé.

The right graph of Figure 5.3 shows the memory utilization for the same expatritderi-
zontal dimension indicates the number of millions of containers and the veritisahdion is the
memory utilization in gigabytes. Points are measured and the line indicates the digesgsion
defined with the measured points. We can also observe a linear behaviomiorynetilization
required by the Pajé components.

5.1.3 Analyzing Pajé’s Adoption

The advantages of using Pajé come from the software reuse, the scalafitieytool and the
fact that Pajé deals with generic objects. The software reuse enaldas defrelopment of
additional components, the scalability has been shown through the penfcgra@aluation tests
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presented in the previous Section (results in Figure 5.3). We have blecto @lee that Pajé has
a linear behavior in response times to queries and also in memory utilization. testisewe
extrapolated the number of containers to see if Pajé can handle biggeitiqeasf containers
in reasonable time. For one million containers, Pajé can read the trace fileih2heeconds
and return the data to the visualization components in about 3 secondddélamsthat each
container is a process of a parallel application, we can argue that Pajgaceage trace files of
parallel applications with one million processes in reasonable time.

The disadvantages of Pajé’'s adoption could be that a specific langndgengironment
must be adapted to reuse its components. Furthermore, in terms of implemeiatimo| that
uses the components of Pajé must also have a GNUstep loop. Dependihgcbrdevelopment
environment is used, this means that another tool based on Pajé compuonehtsave at least
two internal loops that must work together.

Considering advantages and disadvantages, we decided to adoptd@ajyonents in the
Triva prototype. The main reason behind this adoption is the possibility todngederic ob-
jects, allowing the Triva implementation to be also generic, and the fact thatiPhjghly
scalable. Next Section starts the Triva prototype description.

5.2 Triva Prototype Architecture and Overview

Figure 5.4 depicts the overall organization of the prototype, composeddiflemthat transform
the trace data into Pajé objects, and then into the two types of visualizationsD taed3the
Time-Slice with treemaps. Because of the use of generic objects, the omydependent part of
the prototype is the one represented on the left of the Figure, denoted rogithlg DIMVisual
Integrator and its sub-components specific to particular trace file formagswiiite rectangles
are existing libraries and tools that were re-used with minor adaptationsregtangles were
implemented to be part of Triva prototype. This convention is used throughnett of this
Chapter.

Integrator

A i

PajeEventDecodeH‘ PajeSimulator }—»

TrivaController Triva3DFrame
DIMVisual ‘DIMVisuaIReader h wxWidgets TrivaView

-4----- User Interactions

StorageController

k Triva2DFrame
TimeSlice

Paje Filters

PajeFileReader

Figure 5.4 — Triva Architecture and Implementation Layout.

The TrivaController, written in C++ language, is in charge of the initializatibalbthe
components and connecting them following the architecture presented ireFgl It also
presents to the user a graphical interface, created using the wxWidgaty,linder the form
of a main window, with configuration options, menus and interaction mechanishesthree
dimensional scene and the treemap rendering is also initially configure@aaered.
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The Pajé filters, represented by the dashed rectangle of the Figuree&theasame as the
ones used by the Pajé Visualization Tool [21]. Their implementation takes intmatseveral
issues like scalability and low response time to requests from the user ietefiae first of the
filters, PajeEventDecoder, handles the input generated by the DIMRisader and prepares it
for the next module. The PajeSimulator transforms the events into visuatsbjéts transfor-
mation consists in the creation of a hierarchical structure of traces, usitgtic types of Pajé.
This structure, which represents the same information as in the trace filgginszed for the
visualization, and stored in the StorageController.

In the right most part of Figure 5.4, the interactions among the modules waakto-
way fashion. The interactions from right to left are the requests fordea. They are mostly
triggered by user commands or changes in the configurations givesamsce description. The
interactions from left to right are the responses for the requestsajeddry the visualization.

To give a better description of the prototype, we split the explanation in gakds: one that
details how the input is managed by the DIMVisualReader, another thafrexfite TrivaView
and how the 3D visualization model is implemented, and the third named TimeSlicaifigst
explains the implementation of the second visualization model proposed in this. thext
sections detail these three parts in this order.

5.3 DIMVisualReader

The existing DIMVisual Integrator [70] is a software library to integratedsafrom different
data sources into a common format. As of today, the integrator is capableefageg a flow
of events in the Pajé file format. The trace-dependent part of DIMVisuet be implemented
to cope with specific formats. During this thesis, we implemented two trace-depemod-
ules: a KAAPI trace file reader and a MPI reader capable of readingergenerated by MPI
applications.

Each sub-component of the DIMVisual Integrator is called a bundle,ritiatad using the
GNUstep library. A bundle means a self-contained binary object thatedgrimamically loaded
and linked during runtime within another program. After the initialization of Tpvatotype,
the user can configure the bundle it loads through the graphical irgerfetuis interface acts
through a configuration protocol, implemented in the DIMVisualReader moduling 5.2
shows the five methods of the protocol. The first three methods are ushddb e bundles
available, if a bundle with a certain name is already loaded and to load a sjpexitite based
on its name, respectively. The last two methods are used to configuredke libat has been
loaded. First, the function to get the configuration options is executedniegua hierarchical
structure with the options that must be defined to configure the bundlee Bpésns are defined
by the user through the graphical interface of the prototype. After tHinitlen, the method
setConfiguration is used to configure the bundle. A typical configuratadshinformation
about trace files location in the file system, possible synchronization file andrtth of events
that must be read by the module. Other options are also possible but aite4specific.

Listing 5.2 — Bundle Protocol Configuration.

— (NSArray x) dimvisualBundlesAvailable;
— (BOOL) isDIMVisualBundleLoaded: (NSStringt) name;
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— (BOOL) loadDIMVisualBundle: (NSStringx) name;

— (NSDictionary %) getConfigurationOptionsFromDIMVisualBundle: (NSSag x)name;
— (BOOL) setConfiguration: (NSDictionaryx) conf forDIMVisualBundle: (NSStringx*) name;

Figure 5.5 depicts the behavior of the DIMVisualReader and related campson The
DIMVisual Integrator generates as output a flow of timestamped objectseia@sents the ap-
plication behavior. These objects are a high-level representation efstraomposed of Pajé
events. The flow is received by the DIMVisualReader module, which impl&tien follows
the internal protocol of Pajé [22]. The responsibility of the DIMVisual&erais to transform
the flow of objects in textual representations using the Pajé file format. Thpeesentations
are sent to the existing PajeEventDecoder filter and transformed to siging&pjé components.
The DIMVisualReader does not send the objects directly to the PajeSimultatoe Storage-
Controller because the data generated by DIMVisual is different frenotle used internally in
Pajé.

TrivaController
wxWidgets

[ R User Configurations: trace files, event types

[KaARPI

ki Reader

Pajé Events

DIMVisual DIMVisualReader
Integrator

Flow of Time Ordered

Pajé Events in Textual Format
PajeEventDecoder

Replaceable Input

Figure 5.5 — DIMVisualReader Implementation and interactions with TrivaGbetr

The PajeEventDecoder is the first of the chain of re-used Pajé filters.fldW of textual
events sent by the DIMVisualReader is received by this filter and tremsfbinto a Pajé internal
representation. As can be seen in Figure 5.4, the next filter in the chaiajdfifers is the
simulator. The simulator receives the decoded events and creates teybd@cts based on
the events. This high-level representation is basically an instantiation of pleehiyrarchy
with timestamped objects, such as states, events and links. It is then stored imyngntioe
StorageController.

The main flow of information inside this part of the prototype comes from the tfites,
depicted on the left part of Figures 5.5 and 5.4, to the Pajé filters, depictied dash rectangle
of Figure 5.4. This flow of information, transformed in different ways bglecomponent, stops
in the StorageController. There, it is stored in memory and made available tostisization
parts of the Triva prototype. The flow is triggered periodically by the maip twfdhe prototype,
handled by the TrivaController. More often than each half secondpifieatler sends a message
to the DIMVisualReader to check if there is new data available. If this is the, ¢he new
trace data is read and sent to the chain of filters up to the StorageConisblére the flow of
information stops.

Although the Triva prototype was mainly conceived to work with trace filesjriplemen-
tation is also capable of handling events in an online fashion. For that, th¥iBils Integrator
must be attached to a source of events during the observation time of aratipplicEven if
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possible, no tests have been performed to evaluate the online use of thiygeo The reason
behind this decision is based on the amount of data generated in an onlergatios and the
typical centralization of the analysis. We also intend with our approach id &we cost caused
by the gathering and collection of data that is potentially distributed.

5.4 TrivaView

The 3D visualization model, presented in Chapter 3, is implemented in the Tiotatype
through the TrivaView and related components. Figure 5.6 presents ¢nallasrganization of
these components. The TrivaView module implements the Extractor part oDtimec8lel, re-
trieving from the flow of Pajé objects the containers and links, and redigetiim flow to the
DrawManager component. The Entity Matcher part of the 3D model is implechémtinree
components of the prototype: TrivaApplicationGraph, TrivaRes@@caph and TrivaTreemap-
Squarified. They receive the containers and links from TrivaView,the resource description
in files. The Visualization part of the 3D model, shown through the dashedlfinde right
of Figure 5.6, is implemented with four components: the Triva3DFrame, whatdstthe 3D
scene, and the three managers that change this frame, the DrawMahagenbientManager
and the CameraManager.

Pajé Objecti

TrivaView DrawManager

Resource
Description

TrivaApplicationGraph
TrivaResourcesGraph
rivaTreemapSquarified

o)

w.‘;\
Triva3DFrame }—‘—> Mf
: Ig:2)

‘ AmbientManager

CameraManager

! 3D Rendered

Figure 5.6 — TrivaView Implementation Layout

The details of the components related to the implementation of the 3D model aretpcese
in next subsections. We start the description by presenting the two mairidibthat are used
in the implementation: the Ogre3D and GraphViz libraries. GraphViz is mainly inséte
implementation of the visualization base, which description comes next with thetlaigs and
file format used as resources description. We end the details with thenfaise of the 3D
rendering scene.

5.4.1 External Libraries: Ogre3D and GraphViz

Two external libraries were used for the implementation of the 3D visualizati@emdhe first
one is called OGRE - Object-oriented Graphics Rendering Engine, whiclsasrae-oriented
and flexible 3D rendering engine [43]. It is written in C++, designed tdrabsthe details of
using libraries like OpenGL, and is released under the terms of GNU L&smeral Public
License. Since Ogre3D is scene-oriented, it requires the creationiefaxdhical structure of
scene nodes, attached to the Root Scene Node. Everything that is @tta¢his root node is
supposed to be rendered.
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When creating a scene, the scene nodes do not appear. The objécoene node is to
hold information about the position and scale in the 3D space. The objectr¢handered in
the 3D space, such as cubes, cylinders, planes, and so on, mustheattaa scene node. All
position and size operations that must be performed on a certain objedd $lappen to a scene
node in which this object is attached. Typical operations applied to scates rawe rotations,
translations, roll and pitch. If one of these operations is performed dvea gcene node, all
the objects that are attached to its descendants also receives the updateerfrchical prop-
agation of operations is especially useful since complex hierarchicalstes can be changed
by applying the operation to a single scene node. Besides, it is possible teerem® of these
structures simply by removing the scene node that attaches it to the hiehaatiyd by the root
scene node. If the developer wants to make the structure visible agaity, hamto attach it to
the main hierarchy.

A scene is also composed by lights and camera. The Ogre rendering srgjiteeto manage
ambient light and other types of lights, such as point, directional and spothghcene must
have at least one light to make objects appear, otherwise it is completely blaeldeveloper
must attach a camera to the scene in order to be able to observe in a compttisrmahdered in
the 3D scene. A camera is usually attached to a scene node where traghitisitiah operations
are performed. This way, the camera can rotate and move through thea8® Jihe image that
is usually seen in a computer screen window is what is visualized by the camera

The second library used in the implementation of the 3D model is GraphViz [37, 34
GraphViz is an open source graph visualization software. It gatheesetit graph drawing
algorithms in the same tool. The basic usage of the tool is the generation difiggajmn-
ages from the definition of graphs in a textual file format. Besides this traditimasic usage,
GraphViz also works as a library that can be incorporated in other compnatgrams.

GraphViz, in its library form, is used extensively in the different basefigarmations of
the 3D model, especially for the implementation of the application and the netwpliké&jon
graph combinations. The main functions of the libraryagaodeto create a node, arajedge
to create an arc between two nodes. After the definition of the graph wite foestions,
the developer must call the functigwLayout passing as parameter the name of the algorithm
to position and render the graphical representation. At this moment, weas@ndccess to
several information regarding the graph, including for example the posfitire nodes in a bi-
dimensional space, the size of the nodes representation, the bezied tines that represented
the arcs of the graph, and so on. It is this information that is used in tha pretotype,
especially the part related to the position information.

The GraphViz library is integrated in the prototype as described in the rextio8, and
the OGRE concepts are used in the description of the 3D rendering of itleepFototype, in
Section 5.4.3.

5.4.2 Base Configuration

Three types of base configuration were proposed in the 3D visualizatidelpfack in Chap-
ter 3. This Section explains how they were implemented, using as input the elfaats se-
lected by the TrivaView module. Among the three visualizations, two of them osesgraphs
in their implementations: the application communication pattern and the combination of the
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network topology and communication pattern. We use the GraphViz library to mgpiethem.
The other base configuration that consists in the treemap algorithm hasvi@emented from
scratch.

Graph of the Application Communication Pattern

The application communication pattern, represented in Figure 5.6 by the cemtptnivaAp-
plicationGraph, receives as input two types of Pajé objects: containgdin&s. As previously
discussed in Section 5.1.1, containers may represent processedsthmeehines and so on,
while a link is used to represent an interaction between two containers. iBgoétt of the
implementation, the relevant information present in container and link objects otitainer
identifiers. A container object has one identifier; and a link has two comganhentifiers, one for
the sender and another for the receiver. The algorithm that creatgsaibte using the GraphViz
library is composed by two functionsipdateGraphData(and updateGraphLayout() Their
simplified behavior are shown in listing 5.3.

Listing 5.3 — Algorithm to create the Application Communication Pattern based daioers
and links.

graph_t xupdateGraphData (graph_sgraph, list containers, list links)
for container in containers
agnode (graph, container.identifier);
for link in links
agedge (graph, link.send_identifier, link.recv_idenitf);
return graph;

GVC_t xupdateGraphLayout (GVC_klayout, graph_txgraph, string algorithm)
gvFreeLayout (layout);
gvLayout (layout, graph, algorithm);
return layout;

The component responsible for the algorithm to create the communicatiompddies not
control how many information arrives. It is the responsibility of the Triva¥/ in its controller
form, to consider specific time intervals based on user choices. This mestn$ tiie user
wants to see the communication pattern of the application occurring in a given tieneainthe
TrivaView must reset the graph already created by the TrivaApplicatiaph component and
send it only containers and links present in that time frame. This has beemetied in the
prototype by letting the user choose which time frame to analyze.

The functionupdateGraphLayout(shown in Figure 5.3, defines the graphical layout of the
graph. After calling GraphViz'gvLayout()function, there is enough information available to
actually draw an image file with the visual representation of the graph. Amotigsalhforma-
tion, the Triva prototype uses only the bi-dimensional position of each andéhe list of the
arcs among them. So, after executing the function to update the graph leasma on the nodes
and edges, the TrivaApplicationGraph sends the bi-dimensional positigrof each container
to the DrawManager. This manager is responsible for creating and pasitite visual objects
that represent the graph in the visualization base of the 3D scene.

The user can also customize the layout by choosing which GraphViz'sithigowill be
used to define the positions. As of today, there are five optidot:neatq fdp, twopi, circo.
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These options are extensively documented in the “Drawing graphs wiith@i# documenta-
tion [33].

Graph of the Network Topology

The second type of base configuration is the mixing of the network topolagd)yhee application
communication pattern. The implementation of this configuration is done in theREs@urces-
Graph component. It is based on the resource description file providib@ twomponent, as
shown in Figure 5.6, and containers and links selected by the TrivaViewpaoent.

The resource description file matches dot’s GraphViz format [27]. Aamge of such file is
shown in listing 5.4, below. This simple example shows a list of machines thatareannected
by a switch. The component receives a configuration file like this and aseréiphViz's layout
function to define the position of each node in the visualization base. As inréveops base
configuration, only the bi-dimensional data defined by one the Graphdlgdsithm is used and
passed along to the DrawManager component.

Listing 5.4 — Example of resources description showing the network topalisgd to configure
the TrivaResourcesGraph component.

graph G {

"xiru —0.portoalegre.grenoble.grid5000. fr*— "switch";
"xiru —1.portoalegre.grenoble.grid5000. fr*— "switch";
"Xiru —2.portoalegre.grenoble.grid5000. fr*— "switch";
"xiru —3.portoalegre.grenoble.grid5000. fr*— "switch";
"Xiru —4.portoalegre.grenoble.grid5000. fr*— "switch";
"xiru —5.portoalegre.grenoble.grid5000. fr*— "switch";
"Xiru —6.portoalegre.grenoble.grid5000. fr*— "switch";
"Xiru —7.portoalegre.grenoble.grid5000. fr— "switch";
"xiru —8.portoalegre.grenoble.grid5000. fr— "switch";
"xiru —9.portoalegre.grenoble.grid5000. fr*— "switch";

The second input given to the TrivaResourcesGraph is made of theers and links, that
come from the parallel application trace file. Since the component is prfegaoed with the
resource description file, the objective is to act upon the reception tdioens by searching on
which node of the network topology each container from the applicatioa slaguld be placed.
Itis necessary to associate to each container from the trace to a locatlommetwork topology,
enabling the simultaneous analysis of both information.

There are several limitations to provide a successful association ofrwerstérom the trace
to the nodes in the network topology. Usually, the only information presenteimgbources
description file is the name of the machine. To provide a successful agsoeidth containers
from the application trace files, the containers must hold some kind of locaditan @his data
must come from trace events, registered by the monitoring system. In tleepFatotype, we
used traces from KAAPI and MPI applications. For KAAPI, there arenéw that register the
name of the machine where processes execute. Our tracing mechanistRIfapplications
also registers the name of the machines involved in the execution.

When the association of containers to nodes of the network topology iessfat the
TrivaResourcesGraph component sends to the DrawManager th®mpas the base for ev-
ery node of the network topology and the position of every container irssigieen node. By
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doing this, the DrawManager has all the information necessary to placéstrad wbjects in the
visualization base of the 3D scene. The position of application containéde ias1ode of the
network topology is also defined by a graph and implemented inside the EseaiRcesGraph
component.

Logical representation using Treemaps

The third base configuration is a logical representation of the resousoss treemaps. For the
Triva implementation, we decided to use the squarified version of treem@ipsifice it provides
a better width/height ratio in the nodes representation. We implemented it in theonentp
named TrivaSquarifiedTreemap, receiving as input two types of datsoarce description file
and the containers of the application trace.

The format used for the resource description file that has to be protodad component is
in the Property List Format [3]. Figure 5.5 shows an example of this file.€khenple defines a
hierarchical organization of machines, that are grouped by clusterpthsite which composes
a grid. For each node of the hierarchy in the description file, there muest la¢tribute named
type that indicates the type of the node on that level.

Listing 5.5 — Example of resources description showing the logical org@mizaf resources,
used to configure the TrivaTreemapSquarified component.

{
name = Grid5000;
type = grid;
children = (
{
name = portoalegre;
type = site;
children = (
{ .
name = Xxiru;
type = cluster;
children = (
xiru —0.portoalegre . grenoble.grid5000. fr,
xiru —1.portoalegre.grenoble.grid5000. fr,
Xiru —2.portoalegre .grenoble.grid5000. fr,
xiru —3.portoalegre.grenoble.grid5000. fr,
xiru —4.portoalegre .grenoble.grid5000. fr,
xiru —5.portoalegre . grenoble.grid5000. fr,
xiru —6.portoalegre . grenoble.grid5000. fr,
Xxiru —7.portoalegre.grenoble.grid5000. fr,
xiru —8.portoalegre.grenoble.grid5000. fr,
xiru —9.portoalegre .grenoble.grid5000. fr,
)i

The treemap algorithm is a space-filling technique that occupies all the apaitzble for
its drawing. The user defines, through the prototype graphical interfae area in the visual-
ization base that will be used to render the treemap. This information is pasttedalgorithm
implementation which starts a top-down and recursive traversal througgirehierarchy that
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came from the description file. After the execution, all the nodes have #wangles and their
position defined in the bi-dimensional space of the visualization base.

The other type of input for the component is composed of containerstfrerparallel ap-
plication trace. This second input is necessary because the Trivéfggliaeemap must also
define the position in the visualization base for every container of the apiplidaace. This
information will be used later by the DrawManager to place the containersponftthe ar-
eas reserved for a certain machines. The same association betwaaceesud application
container, present in the previous visualization base configuration, musabte here.

We have also implemented in the prototype the possibility of relating the size ofeeteh
angle that represents a machine on the visualization base with the tracetetistias. This
calculation is made depending on the options that the user chooses. Up, tib isqgwassible to
use the number of containers in a given machine, the count of a spediis ttat appear in con-
tainers, and the amount of time of a given state in a container. After defirfirghwnetric will
be used as squares size in the visualization base, the values for thedeafaidhe hierarchy
are defined and the treemap is computed. This can be performed at any tingeatuanalysis.

As output, the TrivaSquarifiedTreemap send to the DrawManager theutechfreemap
data structure, that contains the position of each node and container.

5.4.3 Rendering the 3D Scene

The rendering of the 3D scene is controlled by three different managenbientManager,
CameraManager and DrawManager. The AmbientManager is respofmsibfeating the initial
static drawings of the 3D scene and to manage the dynamic time scale rendtéredédntical
axis. The static drawings do not change during the visualization of a ttacbut the timescale
changes depending on interaction with the user. Figure 5.7 shows the rsoges and entities
organization created by the manager. The black circles represertisodas and gray squares
represent entities that appear in the 3D scene. The static part is on thitheftvertical dashed
line, and is composed of the Origin, and the three axis scene nodes, thegiane and the
three lines to show the three dimensions in the scene.

The dynamic time scale managed by the AmbientManager is depicted on the rigjigt of
ure 5.7, with/NV scene nodes and the same number of textual entities to indicate the timestamps
that are rendered along the vertical axis of the scene. Whenever thectileeésschanged by the
user, all the objects on the right are freed and a new scale drawing edplabe scene nodes
of the time scale are attached to the YAxis scene node, but they are placedvertical axis
according to the time scale currently in use.

GroundPlane XAxis ~ XAxisLine Static. Dynamic
Hierarchy \TimeScale

""""" D \ Text-Tick-0 Text-Tick-1 Texlﬁ:krz Tex(r['l'\fkrN

ZAxis  ZAxisLine Lo L
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Figure 5.7 — Ogre3D’s scene node and entities created by the AmbientMdoagaintain the
static part of the 3D scene and the time scale.
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The CameraManager is another component that helps to manage the 8DIsezsponsi-
bility is to create and track the camera entity. Figure 5.8 depicts the Ogre3Djsaents used
to manage the camera: there is a CameraNode, child of the root sceneandd®o entities
attached to it, the camera itself and a light that always point to the directiorewteecamera is
looking at.

Light

-0

RootSceneNode CameraNode Camera

Figure 5.8 — Ogre3D’s scene node created by the CameraManageptthkesamera entity of
the 3D scene.

Configured by the TrivaController, the CameraManager also tracks thiserand some
keys of the keyboard to move the camera through the 3D scene. The impléorergaeives as
input the arrow keys of the keyboard and transforms them into operdtiahare applied to the
CameraNode. Every time the user uses one of the arrows, the prototgpkates a vector to
move the camera. This vector is then applied to the CameraNode throughlatioarngperation
that also considers the orientation of the node in the 3D space. The maisgéeracks the
moves made by the user with the mouse. Based on them, the prototype deternoiiaes) s,
one relative to theX plane and another relative to tieplane, to be applied to the camera node
through the operations yaw and pitch, respectively. This allows the camegmint to other
directions based on mouse movements.

Rendering and Placement of the Visualization Base

The DrawManager is the main component that renders the 3D sceneeiltagas input the con-
figuration of the base already calculated by previous components, tii@p®sf the containers
in the base, and the timestamped Pajé objects to be placed in the vertical dimecsiating
to their containers. The DrawManager takes these inputs and start #tecref a hierarchical
structure of Ogre3D’s scene nodes and entities. This structure is theereal by the Ogre3D
library in the Triva3DFrame of the Triva prototype.

Figure 5.9 shows the hierarchical structure that is created by the Draadéato place the
objects in the visualization base according to the input. As in previous Figheeklack circles
indicate scene nodes, and the gray squares mean entities. On the leftFaduhe, there is
the scene node CurrentVisu, child of the root scene node. The usis acne node enables
the possibility of drawing more than one trace visualization on the same 3D.sdédrthis
time, the prototype has only one of such node. The CurrentVisu scemehasdwo children:
the ContainerPosition and the VisualizationBase. As the name indicates, tageoposition
scene node contains a list of scene nodés (2, ...) that holds the position in the base of each
container that comes as input to the DrawManager component. Each esttez®e nodes has a
sub-hierarchy composed by the visual representation and a 3D text @d Text scene nodes).
Each container scene node is used latter when the timestamped objects hesldtidloe scene.
The other child of the CurrentVisu is the VisualizationBase scene nodeefiskthe structure
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for the current visualization base. In the Figure, the Resources@rapthe SquarifiedTreemap
structures are depicted. The first one is the structure used for thindrafthe network topology
and application graph. The second is the one that shows the treemagas bas
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Figure 5.9 — Ogre3D’s scene nodes created by the DrawManagerderrine 3D scene for the
visualization model.

The ResourcesGraph of Figure 5.9 maintains a dynamic list of scene twodgsesent the
resourcesR0, R1, ...). The resources are the ones sent by the TrivaResourcestarapbnent
as part of the network topology read from the configuration file in Grégé&¥ormat. Besides
the information about the resources, there is also a list of edgesH?2, ...) that are children
from the ResourcesGraph scene node and represent the lines thadrinect the resources’s
square in the base. The scene nofl@s.. Rn are positioned in the bi-dimensional visualization
base according to the positions calculated by the TrivaResourcesGraygonent. The position
of the edges are then calculated based on who they connect.

The SquarifiedTreemap scene node of Figure 5.9 and its sub-hie@ehy1 — 0, L1 —

1, L1 — 2, ...) are created dynamically based on the configuration sent by the qus&aS
fiedTreemap component of the Triva prototype. The sub-hierardlgcte the hierarchy that
comes from the logical organization of the configuration file. Each scede has a square
drawing attached to an auxiliary scene node to maintain scale and positioning.

Besides the two types for base configuration already described, thedsp ithe application
communication graph. This configuration, generated by the TrivaApplit@timph component,
is always present in the visualization. The scene nodes, the lines asihlpcasrows of its
representation remain attached to the CurrentVisu scene node directhatftusment can be
controlled through the graphical interface, allowing the user to enablesabld to appearance
of the communication graph of the application being analyzed.

As stated earlier, each Ogre3D scene node must have a defined posditieBispace. This
position is represented using the 3 coordinates: x, z and y. In FiguralB®e scene nodes (the
black circles) have the y coordinate set to zero. This places all sceles oo the visualization
base, as defined in the 3D visualization model Chapter. The other twoicatasl (x and z) of
all scene nodes of Figure 5.9 are defined by one of the three componanhisipthement the



5.4. TRIVAVIEW 79
entity matcher (TrivaApplicationGraph, TrivaResourcesGraph aivaSquarifiedTreemap).

Rendering Timestamped Pajé Objects

The DrawManager also receives as input a flow of timestamped Pajé otojdmsendered in
the 3D scene. In Section 5.1.1, we detailed that time-related objects are lst&esariables
and singular events. Among these objects, we implemented only the 3D meptasefor states
and links. These two types of objects can describe the behavior obseyses of applications,
since they can represent the execution of a function or a piece of cwbalso interactions
among application’s components.

Figure 5.10 shows the structure made by the DrawManager when drataieg and links
into a 3D scene. The states are attached to the scene nodes of confeoneés)(to C'n). In the
example of the Figure, each container haldstates, fromS0, C0 to Sn, C0. The main reason
for attaching the states to the containers scene nodes is that by doing satéisease placed
exactly on top of the representation of containers in the visualization bdse ofly position
information that must be computed by the DrawManager is the vertical posittbe time axis.
This computation for each state allows the correct placement of a visuakepgation of the
state. This representation is a cube, and the color of the cube is assdoiditedvalue for
that state. By doing this, all states of the same type will have the same colbtafiag their
identification. The color scheme in fact is the same as the one used in tradgpacd-time
visualizations.
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Figure 5.10 — Ogre3D’s scene nodes created by the DrawManagenderrthe timestamped
Pajé objects in the 3D scene.

The second type of timestamped-objects rendered is the links. Whene@ tgithe Draw-
Manager, links are transformed into a scene node that is attached to tleai¥isu scene node.
Figure 5.10 shows an example for that with the link&:k0 to LinkN scene nodes. Each
link scene node has also a visual representation that is a line. The poditius bne in the
base dimensions are calculated based on the origin and destination of theHorkihat, the
DrawManager component obtains the x and z position of the containetgaédvsince a link is
always between two containers) and creates the line between these tigipdie base. After
this, the DrawManager attributes the y coordinate of the beginning andfé¢he kine by using
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its two timestamps: one that indicate the beginning of the link and another the attdthé/
three dimensions defined for each extremity of the line, it is finally renderdekiBD scene.

5.5 TimeSliceView

Previous Section described all the aspects of the implementation of the 3Mzasoa model.

Most of these aspects are related to the TrivaView prototype component. vidopresent the
implementation of the visual aggregation model proposed in this thesis. The omapooent
of this implementation is the TimeSliceView, as can be seen in Figure 5.11. Anatim@onent

of this part of the Triva prototype is Triva2DFrame, which responsibilitpidraw the treemap
in the visualization window of the prototype.

On demand .
Pajé Objects - | | Configured Treemap
4% TimeSlice | ﬁ Triva2DFrame

/ Window Size Changed

Treemap Rendered

/ New Aggregation Level
Time Slice Changed

A A A

Figure 5.11 — TimeSliceView Implementation Layout with Notifications.

Figure 5.11 also details the interactions and notifications that happen dueiigtieSlice-
View execution. The arrival of objects from the Pajé simulator (see Figudor details) is
depicted on the left of the Figure. The user interaction with the prototypeaase three dif-
ferent types of notifications that go from the Triva2DFrame to the TimeS3tfimechange of the
window size, a new aggregation level and the change of the time slice. Ad ti@gications
trigger the same chain of execution in the TimeSliceView component: creatioe betmavior
hierarchy, possible application of the aggregation operators andmptitation of the treemap.
The resulting treemap configuration is sent as a response to the notificatidtisen rendered
by the Triva2DFrame component.

Next Section presents the implementation that creates the behavior hierAfadyvards,
we present some information regarding the drawing procedures usingxihvidgets library
functions.

5.5.1 Creating the Hierarchy

The Pajé objects and the type hierarchy of a trace in the Pajé format wsrebael in Sec-
tion 5.1.1. We observed that there are five different types of objeatdaioer, state, link, event
and variable. Besides, there is also a definition of a type hierarchy &br teace file in the
Pajé file format. This definition enables, for a given trace file, to say thed@eps of a parallel
application is of type container, and its behavior is of type state, for instance

Figure 5.11 shows the implementation layout of the TimeSliceView and related eompo
nents. The TimeSlice component is responsible for creating the behawviardhig that will be
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shown in the visualization window through the Triva2DFrame component.derdo calculate
the behavior hierarchy, the TimeSlice uses a set of methods from the Pajéritecol. The
listing 5.6 shows the five methods (in the Objective-C language) of the ptaised by the
TimeSlice component. The first is used to navigate through the type hieranalimly through
the containers, returning an array of containers type that are chilfle@mother container type.
The second method is just used to confirm if a type is a container type (iecaidmother kind,
such as state, link, etc.). The third method is used to retrieve the Pajé typénstamce (con-
tainer, state, link, event or variable). The fourth method returns an eatonéor all containers
of the given type inside the given container instance. The last methodsetarenumerator of
the entities of the given type inside the given container between two timestamps.

Listing 5.6 — The five methods of the Pajé protocol used by the TimeSlice comipmnereate
the behavior hierarchy.

— (NSArray x)containedTypesForContainerType :(PajeEntityTyp@containerType;

(BOOL)isContainerEntityType :(PajeEntityType)entityType;
— (PajeEntityType x)entityTypeForEntity :(id<PajeEntity >) entity;

— (NSEnumeratorx)enumeratorOfContainersTyped:(PajeEntityTypg entityType
inContainer:(PajeContainer)container;

— (NSEnumeratorx)enumeratorOfEntitiesTyped :(PajeEntityTyp€) entityType
inContainer:(PajeContainer)container
fromTime : (NSDate %) start
toTime :(NSDate %) end
minDuration :(double)minDuration;

The TimeSlice component creates the behavior hierarchy using the methods arhe
containers become the nodes of the hierarchical structure. The vdllees nodes are calcu-
lated based on instances of the state type. At this moment, the implementation thasdie
links, events and variables. Listing 5.7 shows the implemented algorithm to thediehavior
hierarchy. Each time the methaeteateBehaviorHierarchis called, a node in the hierarchy is
created. After the recursive call we can notice in the listing, the createbrare attached to the
parent node. The last line of the listing is executed when no furthergiecus necessary, since
the container does not have any sub-container. Being a leaf node lnéhlagior hierarchy, the
node must find itself a value by calling ttieneSliceAtmethod informing the container and its

type.

Listing 5.7 — The implementation that creates the hierarchical structure batkd oontainers
of the trace file.

— createBehaviorHierarchy: containerinstance
containerType = [filter entityTypeForEntity: containerstance];
listOfTypes = [filter containedTypesForContainerType orctainerType
inContainer: containerlnstance];
foreach type in listOfTypes
if [filter isContainerEntityType: type]
/«+ Recursive call to create swmodes %/
listOfContainers = [filter enumeratorOfContainersTypedype
inContainer: containerlnstance];
foreach container in listOfContainers
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createBehaviorHierarchy: container
else
I/« Call the Time-Slice implementationx/
timeSliceAt: containerlinstance ofType: type

The implementation of the methdicheSliceAts detailed in listing 5.8. The method receives
as parameter the container and the state type that must be used to compuledbe Vae
enumerator method, as previously stated, returns all the instances détbaype for the period
of time betweersliceStartTimendsliceEndTimeAfter receiving the list of state instances, the
algorithm iterates through each of them, adding its value for each possitdenstme. This
happens in the last method of listing 5.8. For example, considering a prasessontainer
with a state: this state may have different names in an execution (blockethgubarrier and
so on). The last method of thameSliceAimplementation will attribute the value for each of
these names that corresponds to the intersection of the time slice and therdoir &hie state. If
multiple occurrences appear in the same slice of time, the values are accumulated

After the execution of implementations listed in 5.7 and 5.8, the containers ansl wifite
be reflected in the hierarchy as nodes and leaves, respectively. aves |evhich are created
based on state Pajé instances, have values associated to them. Thepnexth&ealgorithm is
to define the values for the intermediary nodes. This is implemented with a bottahgarghm
that define the values of a node based on a sum of the values of its children

Listing 5.8 — The implementation that returns a value for a given containeesl loasthe states
instances for that container.

— timeSliceAt: containerinstance ofType: type
listOfStates = [filter enumeratorOfEntitiesTyped: type
inContainer: containerlnstance
fromTime: sliceStartTime
endTime: sliceEndTime]
while state in listOfStates

stateName = [state name]

startTime = [state startTime]

endTime = [state endTime]

laterStart startTime laterDate: sliceStartTime]

= [

earlierEnd = [endTime earlierDate: sliceEndTime]

addValue: [earlierEnd timelntervalSinceDate: laterStar
forName: stateName

The previous algorithms, one to create the hierarchical structure andhreto define the
value for leaf nodes, are sufficient to apply the squarified treemaplizigtian. The result of
these algorithms is a hierarchical organization of objects, following the Bbjemnted pattern.
The squarified treemap algorithm is implemented in the class that defines thiclhiesbor-
ganization. This implementation is called just before sending the result to tve2DiFrame
component, which finally renders the treemap in the window.

In Chapter 4, we also presented the aggregation algorithm that is appliedptifs the
behavior hierarchy created by the Time-Slice algorithm. The aggregatioelnsdlso im-
plemented inside the TrivaView component, through a method ndimétHierarchy which
receives as parameter the hierarchy to be simplified and the new depthtadh&he imple-
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mentation of this method is shown in listing 5.9. The method is basically divided in tvs, pa
one that does the aggregation, and another to do the recursion in thehigabstructure. The
first part, where the aggregation takes place, is implemented by obtaining alhildren for

a given node, then removing these nodes from the original structure.ofitained nodes are
summarized based on the similar attributes. For example, if an instance of maohiaeer
has multiple process containers as children, which in their turn have two tfstates (each
one with a value); the aggregation algorithm will sum all the values of the stateetgpe, re-
move all the nodes process and create a new node that is child of machingevigsulting
aggregated value.

Listing 5.9 — Recursive implementation of the visual aggregation techniqpbedpo simplify
a hierarchical structure generated by the Time-Slice algorithm.

— limitHierarchy: hierarchyNode toDepth: depth
if [hierarchyNode depth] == depth &
[hierarchyNode depth] != [hierarchyNode maxDepth]
/«+ Create a summary of the children at this dep#i
children = [hierarchyNode children];
[hierarchyNode removeAllChildren]
summary = [hierarchyNode summarize: children]

I/ Inserting summary nodes back to the tres
foreach sum in summary
[hierarchyNode addChild: sum]
else
/% recurse x/
foreach child in [hierarchyNode children]
[self limitHierarchy: child toDepth: depth]

In the implementation of the aggregation method, we used only the sum functionthe d
aggregation. This, however, can be easily changed in the implementatioerotransformed
in an option of the user. The possible operators for the aggregatiorecamytof the operators
discussed in Section 4.3.1.

5.5.2 Drawing with the wxWidgets library

After the creation of the behavior hierarchy, in its original or aggregfatad, the responsibility
of the Triva2DFrame component is to actually draw the rectangles, lineteandl represen-
tations. As previously stated, the component receives from the Triwed/ieierarchical object-
oriented structure composed of nodes with treemap information alreadgdefiased on the
values defined by the Time-Slice algorithm and the visual aggregation te&hniq

The Triva2DFrame receives as input this hierarchical structure easlthrough it obtaining
information during drawing procedures. Some functions from the wxV&dgerary [75] are
used to draw in the visualization windowrawRectangleDrawLine andDrawText The first
function is used to draw the rectangle that represents a given node bietfaechy. The in-
formation passed as parameter to this function are the width, the height abiddineensional
position in the visualization window. ThBrawLine function is used to draw the timeline in
the bottom of the visualization window. It appears only when the user mogaadhise pointer
close to the bottom region of the window. TBeawTextfunction is used when the user click
into a rectangle: additional information about what that rectangle repsesedrawn.
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5.6 Summary

This Chapter has presented the implementation of the two visualization modetsedap this
thesis. The first one deals with the three-dimensional representatiorplidadion traces to
help developers visualize program behavior together with resourgasieation. The second is
about the visualization scalability problem through a technique called TimeiBiteescribes
the program behavior in a hierarchy for a given time interval. This setauithique is comple-
mented by an aggregation model that, combined with a treemap representatienea scalable
visualizations.

The two techniques are implemented in the Triva prototype, which is compésedearal
existing libraries and tools, such as the Pajé, GraphViz, Ogre3D, wx\éidge others. The first
part of the Chapter evaluates the advantages and disadvantagegafamim Pajé components,
especially its simulator component. Through a set of performance expésimenshown that
the current implementation of the tool is scalable enough to most existing pagblétations.

The second part of the Chapter presents the Triva prototype architectd its components.
We present the implemented DIMVisualReader module, capable of attachibg\ivésual into
the Pajé components directly, without passing through a file in its file forman, e present
the details of the implementation of the three-dimensional visualization model, gipegial
attention to the description of the base configuration and how the 3D regdeimplemented.
We end the Chapter with the implementation description of the Time-Slice techniqué&ean
aggregation model.

The next Chapter presents the results obtained with the Triva prototyfffeiedt scenarios.
The scenarios range from real experiments in the Grid’5000 platformetaigle of synthetic
traces to show the resulting visualizations obtained with the prototype.



Chapter 6

Results and Evaluation

The last Chapter has presented the Triva prototype. It implements the walizégion models
proposed in the thesis: the three-dimensional and the visual aggregatigh mbe Chapter de-
tails the general architecture of the tool, the implementation of the componeniseaexternal
libraries used to support the handling of graphs and the three-dimehsoame.

The current Chapter shows the results we obtained with the prototypegthtba visual-
ization of different traces, some of them generated synthetically, andsatb&ained with real
executions of applications in a distributed and parallel platform. The regeltscenposed of
the visualizations generated by the prototype when the traces are uspdtag e main objec-
tive is to verify if the 3D visualizations enable a better understanding of tkegreonsidering
the network topology and if the treemap visualizations computed by the prbpuseels allow
large-scale analysis. For that, the results are divided in two parts: onshibas the three-
dimensional visualizations, with the representation of the network topologiytree other part
is composed of treemap views, trying to solve the visualization scalability protilgmogram
analysis. Before diving into the description of the results, we detail in Begtion the different
traces used as input to the prototype.

6.1 Traces Description

As previously described in Chapter 5, the prototype must receive asdrifmwv of events in the
Pajé format. The flow of events can be generated by using the DIMVisadéReomponent, or
a file containing all the events. The visualizations offered to the user weyslthe same, no
matter which of these options are used to enter trace data in the prototype.

This Section explains how the traces used in the prototype were generaigtboted. By
generation we mean that a set of traces used in the validation of the toolswmtestically
created. The synthetic traces are necessary to facilitate the analysisbtog/pe and the
visualizations it creates. An example to justify the use of synthetic traces i®thplexity of
finding real traces to large-scale situations. The generation of sudsttiaat reflects the be-
havior of applications running in many thousands of nodes is only possidlaifje amount of
resources is available, which is not the case. For these reasons, weangéel two tools to gen-
erate synthetic traces. One of them generates large-scale tracesvisutideggregation model
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implementation, and the other complex topologies for the three-dimensionalizédioan.

Other set of traces were collected during the execution of parallel applisan distributed
and parallel platforms. KAAPI and MPI applications were used in this dhseformer being
executed in the french Grid’5000 platform and the later in a cluster of tHerBeUniversity of
Rio Grande do Sul, in Brazil. MPI applications are used for the sake of dsimading how the
prototype can handle traces from different types of communication libraries

We believe that these two types of traces — synthetic and collected — illustrataao
problems that are faced by parallel application developers in diffeferations. Next sub-
sections detail how these traces were obtained.

6.1.1 Synthetic Traces

Section 5.1.1 detailed that a Pajé trace file is composed by three sectionsadieg, likee type
hierarchy and the timestamped events. The header is the only static partwhile events are
defined with their particular fields. The type hierarchy defines the typésvihde present —
such as cluster, machine, processor, processes, functions — andrdrehy among them. The
type hierarchy must be followed through the rest of the file in the timestammpedseregion.

Large-Scale Hierarchies

The first synthetic trace generator tool was created targeting the viggiagation model. The

tool is written in the Python language and receives as parameter a hieahstihucture that
configures the generation of the trace. Listing 6.1 shows an example fifwation file that

is passed as parameter to the tool. The file is organized hierarchically tct tbietype hier-
archy that is generated as output. Each level (eg, Site, Cluster, MaamihBrocessor) has an
attributecontainerthat indicates the number of instances of that type that must be created by
the tool. In the example, the configuration tells the tool to create 5 differest sieh one with

3 clusters, each cluster with 100 machines and each machine being coropdsgcessors.

The attributesliasandnameare used by the tool to comply with a trace generation required by
the Pajé format.

Listing 6.1 — Example of configuration file for the large-scale trace genertia.

config = {
‘container ': 5, 'name’: "Site", 'alias': "S",
‘child ": {
‘container ': 3, 'name’: "Cluster", ’alias': "C",
‘child ": {
‘container ': 100, 'name’: "Machine", 'alias ': "M",
"child ": {
‘container ': 4,
'name’: "Processor",
"alias ': "P",
'statealias ': "S",
‘statename ': "State",

}

ppduration ': 20,
'cosine—maxx—axis—value ': 7.5,

}
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b |

Still on Figure 6.1, the last level of the structure — Processor in the exampeeives
additional configurationsstatealiasand statenamandicating the presence of a state on the
containers created in that level. The time duration of the synthetic trace igaedithrough
theappduration The parametezosine-max-x-axis-valwmntrols the distribution of state values
for the instances of containers in the last level. Its value is used to comfigeicosine function
from the interval0 to the configured value. The tool maps the containers instances of the last
level to thex axis of the cosine to find the amount of time — in percentage from 0 to 1 in the
y axis of the function — a given container stays in one of two possible states.réemaining
percentage is used to set the amount of time to the other state.

The graph of Figure 6.1 is configured using the data of the example in listingThé
graph is used to define the duration of each of the two states availablecigr leaf instance
container of the hierarchy. Using the configurations, the cosine funetdas within thex
interval|0, 7.5]. There are 6000 processors (result of the multiplication afaitainerattributes
value:4 x 100 x 3 x 5). The Figure also shows the definition of duration for the two states for
the container number 4000. The value of the correspondivegjue in the lower scale is 5. The
cosine of 5is 0.28. Since the values of cosine vary between -1 and 1 irakis,ywe consider
that this value of 0.28 represents 64% of the intefval, 1]. So, this percentage is used to define
the amount of time of the State-0 for the container 4000, which is 12.8 secondslering the
total application duration of 20 seconds. The rest (7.2 seconds) is tbft Btate-1 of container
4000.

number of leaf container

0 1000 2000 3000 4000 5000 6000
T T

State-1

ivision for container 4000:
64% for State-0, 36% for State-1

State-1

State-0 State-0

1
0 1 2 3 4 5 6 7
value for cosine equation

Figure 6.1 — State distribution among leaf containers using the cosine function.
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Although the tool is implemented using the cosine function, it could be easilytealiap
use other trigonometric functions. The way the state generation is implemented érsiutty
of different time intervals, as defined by the visual aggregation model. ©hitiye side of
the implementation is that it allows the fast generation of traces composed afdhies with
thousands of nodes. The implemented trace generation tool takes lesstwm8s to generate
a hierarchy with more than 150 thousands leaf containers in a four-l@ralrbhy. A random
state value generation was considered to implementation, but initial tests ltave #tat the
execution time for large-scale hierarchies is too big when using a randorbargenerator.

Typical Communication Patterns and Complex Topologies

The second synthetic trace generator tool targets the three dimensiprzdep The main ob-
jective is to generate trace files with traditional communication patterns, suble ases used

by master-slave or divide and conquer parallel applications. Listing &&ssthe configuration
file used by this tool. It earns the basic configurations from the previcnys sletting the user
configure a hierarchical organization of containers if necessary.imffgiemented four types

of communication patterns: ring, fully connected, star and hierarchical $tee user config-
ures the type of pattern used through the optpppattern If the user uses the hierarchical
star communication pattern, an additional option cafiedildrenis necessary to configure the
number of children in the communications. For example, ifbkildren parameter is set to

2, every container will communicate with other 2 containers. Each one & thescontainers
will communication with other 2 containers, and so on, forming a hierarcharahtunication
pattern. The last options in the bottom of the listing are related to the Pajé linkgu@tion.
The optiondinkalias andlinknameare used to configure the type hierarchy for the Pajé trace
file, and thdinksourceandlinkdestindicate which types of container can be used by these links.

Listing 6.2 — Example of configuration file for the synthetic communication pattece yener-
ation.

config = {
# hierarchical definition section
‘container ’: 20, 'name’: "Machine", ’alias ': "M",
'statealias ': "E", 'statename’': "State",

"appduration ': 20, ’'cosinemaxx—axis—value ': 7.5,
#'child ': {} # hierarchy with only one level in this example

# communication patterns section
‘apppattern’: "ring", # ring, or full, or star, or hierarchal—-star

# parameters to "hierarchicalstar" apppattern
'nchildren ': 2, #number of children per node

# links configuration
"linkalias ': "P", ’linkname ': "Link",
"linksource ': "M", ’linkdest ': "M",

As previously stated, the four types of communication pattern that can leeaged by the
tool are the ring, the fully connected, the star and the hierarchical stérelring pattern, each
container communicates exactly with other two containers, forming a single arthaous
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pattern among all nodes. Figure 6.2(a) is an example of this pattern wheratiee containers
participating of the communications.

L0 Sl

(a) Ring (b) Fully connected (c) Star (d) Hierarchical Star

Figure 6.2 — Different communication patterns generated by the secotiteigrirace genera-
tion tool.

Figure 6.2(b) shows the fully-connected communication pattern, whererattioers com-
municate with all other containers. Figure 6.2(c) shows the star pattermeshenodes com-
municate with only one node. This type of pattern is typically found in masteeglavallel
applications. The last communication pattern, represented in Figure 82é&lmodified ver-
sion of the star pattern, but with a hierarchical organization where ezad Inas communica-
tions with other two nodes. In the example of Figure 6.2(d), the hierarchin@p but other
configurations are also possible.

6.1.2 KAAPI Traces

KAAPI [35] stands for Kernel for Adaptative, Asynchronous Riataand Interactive program-
ming. It is a library that can be used by C++ developers to create parpfitations. The
applications are composed of tasks and the data dependencies amongithierbdginning of
the application execution, the KAAPI kernel spreads the tasks among inguting resources
available. Afterward, during application execution, the kernel perfdoad balancing through
work stealing algorithms.

Each KAAPI process executes the tasks defined by the programmen téhéasks given
to a certain process are finished, the process tries to “steal” the taskofh@r processes of
the application. The target process that suffers a steal is choseombndy the originating
process. By doing this random steal, KAAPI guarantees good loaddiadgior the application
at a small cost.

The KAAPI library is internally organized in levels. Common levels of the implementa
tion include the generic kernel work stealing of threads (Kernel), dataglaph management
(DFG), remote work stealing (WS), network (NET), static scheduling &ib)the fault tolerant
(FT) levels. Every level implements a sub-set of KAAPI functionalities. Fiidevel [11], for
instance, is responsible for dealing with resources outage, such assh firocesses and tasks
during runtime.

Each level is instrumented in the implementation so its behavior can be traced dppili
cation runtime. In our work, we have used the events generated in thegjearael (KERNEL)
and work stealing (WS) levels. These events register the remote work gtealinities of
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KAAPI library, such as the stealing attempts when a given process reméimsutvany task

to execute. Figure 6.3 shows the KAAPI events that are considered iwarlerand how their
combination define the states of a KAAPI process. The eveénte_Idle_0Oand Core_Idle_1
are registered in the Kernel level and define the period on which a gimess is not execut-
ing tasks defined by the programmer. The evéluge Rsteabnd Core RetRstealefine the
moment where the KAAPI library is trying to steal a task from another psocadditional in-
formation if the steal was successful or not, and the target procesalsarregistered. All these
events are registered by tikeProcessorthreads of the application, which are responsible for
executing tasks during runtime.

Core_Id Ie_Q Core_Rsteal Core_RetRsteal Core—l dle_1
Time o, 'y v v v
RSTEAL RSTEAL
IDLE RUN

Figure 6.3 — KAAPI Events to monitor the remote work stealing activities of therlibra

Still on Figure 6.3, the combination of the KAAPI events allows the definition oéahr
possible states for a K-Processor: IDLE, RSTEAL and RUN. The IBtdte is defined as the
time where the processor is not executing tasks. During the IDLE state,-Br@d€ssor can
execute a number of remote work stealing requests, which defines the®RStdie. The RUN
state is defined by the period where a given K-Processor is not in thie Hite.

The traces of KAAPI applications have been obtained in the Grid’50000pfatfFor every
execution, the processes register on which machines they were exdbetégginning times-
tamp, and the global KAAPI identifier. This information is registered by andeéhe! of the
KAAPI stack, named Util. The registered data is used to properly converintbrmation to
Pajé traces after the execution.

Considering the Grid’5000 platform as execution environment, KAAPiIstegs the name
of the machines used in an application execution. The name of the machirdsaeed by
the Domain Name Server (DNS) of Grid’5000, allow the definition of a typeanatry with the
following levels: Grid, Site, Cluster, and Machine. All this information is obtdifrem the
machine names. For instance, during a KAAPI execution, each proegissers the name of
the machine where it executes. Considering a Sophia-Antipolis machine wittatheazur-
7.sophia.grid5000.frFrom this name, it is possible to obtain the machirezwr-7, the cluster
—azur, and the Grid’5000 site sophia The rest of the hierarchy is composed of the global
KAAPI identifier and the instance of K-processor. Therefore, thaltieg Pajé hierarchy for
the KAAPI traces is the following: Grid, Site, Cluster, Machine, Proces®récessor. The
hierarchy is completed with the three possible states for a K-ProcesddE,(IRSTEAL and
RUN).

The conversion of KAAPI traces to the Pajé file format happens with thedi@pMVisual.
The input modules are able to read the KAAPI trace format and convert thheommon Pajé
events, such aBajeSetStatePajePushStatand PajePopStateto handle the definition of the
three states of the K-Processors. Other Pajé events, sRdjeBreateContaingrare used to
create the containers of the type hierarchy of KAAPI traces.
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6.1.3 MPI Traces

One of the main benefits of using the Pajé file format as input for the Trotatype is related
to the generic use of the tool. In order to show a different example, wktresee files generated
during the execution of MPI [37] parallel applications. The differerglapations were the ones
available in the NAS Parallel Benchmark (NPB) [8], which contains a nurabapplications
to handle numerical aerodynamic simulations. Since the benchmark includesagplications
developed in Fortran, we considered for the traces only the applicatiotsnrapted with the
MPI specification and in the C language.

The traces of NAS applications were obtained through the instrumentatiore dfipich
library, using a wrapper for each MPI operation [31]. The wrapar lbe enabled through
the presence of the MPE — Multi-Processing Environment, when compilethtrgeith the
Mpich library. All MPI operations are registered using this instrumentatioh téaolditional
information in point-to-point and collective functions are also registenach as the origin and
destination of the messages. As of result of an execution, a single traicetfilePajé format is
created.

The top part of Figure 6.4 shows some events that are registered by theriestation.
For every MPI function, the instrumentation registers the moment it begarwhed it re-
turned. These events are transformed into the Pajé format mainly by usifRajéfeetState
event. The statRUN is used to indicate that no MPI function is currently in execution. Others
states for MPI processes are directly mapped from the names of the MRitioms, giving,
for instance, a statelPI_BCASTfor a MPI_Bcast operation. The operations that are related to
message-passing, such as point-to-point or collective operationssistatdPajeStartLinkand
PajeEndLinkevents.

MPIil‘nitiEnter MPIf‘IniLExit N‘IPLBCasLEmer MPIfBCasLExi‘t
Time 4, ¥ v v v
Rank 0
MPI_INIT | RUN MPI BCAST RUN |
Rank 1
MPIL_INIT RUN MPI_BCAST RUN |

Figure 6.4 — Events registered during the execution of an MPI applicatilolkl P4 operations
are registered).

Since the objective of the MPI traces is to show only that it is possible to h#mdlg/pe of
data in the prototype, only small-scale executions were performed in a disiéed in Porto
Alegre, Brazil. The NAS benchmark executions used at most 16 macHities duster.

6.2 3D Visualizations

The 3D visualizations of the Triva prototype are created by the Triva\gme Section 5.4 for
details). This component manages the base configuration and the rgndetimestamped
objects in the 3D space. This Section presents the 3D visualizations obtaithetthevuse of
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synthetic and real trace data. The main objective is to observe the capabilities3D approach
in the visual detection of communication patterns, and the mapping with the netpalogy.
We start with a general description of the 3D visualization generated byrthetype, in
next sub-section. Then, we show the visualization of known communicasitarps and finish
the Section with the use of KAAPI traces and topological representatidBs@i5000 platform.

6.2.1 Description of the Visualization

The basic three dimensional visualization generated by the Triva prototypbe observed in
Figure 6.5. It shows two processes, A and B, that interact with each dififeerent tonalities
of gray represent the possible states in which a process can remaightag@eriod of time. In
the Figure, the light gray represents the Blocked state, and the darkegnagsents Executing.
RGB Colors are extensively used in the prototype but were removedtfremepresentations in
this text. The communication between two processes is represented by alirextiog them.

Process A Process B

Executing/\ \ ;‘“f ,/ \
s//" / “-Executing
Blocked /

\
\
\ \VJ’ Communication

" <——Blocked
Figure 6.5 — Simple 3D visualization created by Triva with two processes.

Every state in the visualization can be clicked with the mouse to obtain more informatio
about it. The related information includes the start and end timestamps fotdtairstance,
which monitored entity it belongs and the name of the state. The lines that intexidime
processes can also be clicked to obtain more information.

Figure 6.6 shows another configuration on the visualization base. In thenstiot, we
can notice the presence of two machines representation, X and Y, andta liegresent the
interconnection among them. The application components, representeddegges from A to
F, are placed according to the location in which they were executed. 2excA, B and C on top
of machine X, the rest on top of machine Y. The lines interconnecting thesegses represent
the communications among the processes. In the example, there are intetrandaohine
communications.

When interacting with the visualization of Figure 6.6, the user is able to obtaimiattmon
about every machine and the characteristics of the interconnection in tiadizégion base. This
information is given to the user if it is available in the resource descriptionde to configure
the prototype.

The Figure 6.7 depicts the visualization window of the Triva prototype. Thphacal in-
terface is managed with the help of the wxWidgets, including the menu, the statasd the
scrolling bar on the right. The 3D scene is rendered in the middle of the wirakdepicted.
All the messages towards the user, such as the information about a stateesspor a link, are
shown through the status bar in the bottom part of the window. Through tha,rtee user is



6.2. 3D VISUALIZATIONS 93

Pr A Inter-Machine Intra-Machine Process E

Process B Communications Communications Process D

Process C ‘ ocess F

l-!I,
Interconnection j

Between Machines Machine Y

Figure 6.6 — Processes representation with network interconnection amongachines.

able to configure the visualization base, the time slice of the current anahgithe options
regarding the movements of the camera inside the 3D space. The menu dlss ¢ima config-
uration of the trace files, through the customization of how KAAPI trace fiide read into
the prototype.

The user 3D interactions are implemented directly in the 3D scene, througbdelevents
or mouse movements. The user can, for instance, type the Ctrl key andt th@lese button to
move one of the process representations in the visualization base. Othiginations of keys
enable the selection of more than one process representation to move tle¢inetognd so on.
Additional combinations can be easily implemented in the prototype.

) TRIVA = [o %
Application View Camera Help

Figure 6.7 — The visualization window of the Triva prototype.
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6.2.2 Communication Patterns Analysis

One of the first benefits obtained with the 3D approach is the observaticonmihunication

patterns. These patterns, when visualized through traditional spaceepresentations, are
hard to analyze since only one dimension is available to depict the way pesdeseract among
them. Using the synthetic trace generation tool, explained in previous Sedtierggnerated

simple and known patterns. They include a ring, a fully-connected and astanunication

pattern. Figure 6.8 depicts these three patterns, created using the fhOigtype with three

different traces generated by the automatic trace generation tool.

Ring Communication Pattern Fully-Connected Star

Process A Process E (Slave)

Process A Process E
- Process E Process B (Slave)

/
/
\W\ . y /
\ 7 /
Process B \\><,// Process A (Master)
\ Process D ¢ —/ };:;,\ - / \ 4 /
. — < AN /
™ TS \ ) \\i Process D (Slave)
\ - ; /
) | X —
\ ,//4 \ P
\ P ~ P
77i7¢7%/ - 4/
\/ e g
- Process D
Process C (Slave)
_~Process C

Figure 6.8 — A ring, a fully-connected, and a star communication patternlizisdavith the
Triva prototype.

The leftmost 3D view of Figure 6.8 shows a ring communication pattern, cordpidare
processes from A to E. The communication starts in the process A and goeglitprocesses
B, C, D, E and it finally comes back to the origin. We can observe in the vediiteension that
the beginning of a communication between the process D and E, happerkaftreption of a
communication in process D, indicating a sequential ring pattern. This idetitificArought by
the 3D approach, enables the user to see the difference in cases tbatenication occurs
in parallel. The center 3D view of Figure 6.8 shows a fully-connected coriwation pattern
among the five processes. Observing the vertical axis, we can noticea¢hedmmunications
from one process to others starts in the beginning, close to the visualizatsen G he third
communication pattern is on the rightmost part of the Figure, showing a starmpaiith a
central process. This pattern is commonly used in master-slave parallielaéipps. The star
view shows an example of master-slave where process A is the master atldtses from B to
E, are the slaves.

In order to compare the 3D with the traditional space-time visualization, we Ragdto
visualize the fully connected trace. The final 2D representation is shovaigoire 6.9 with five
processes listed vertically, along with their states in the x-axis. Links aresepted by the
arrows. Comparing these views, we can notice some of the benefits of tap@Dbach, where
the communication pattern is more clearly observed.

The synthetic trace generator is also capable of generating a hierdsthigaattern. Using
a trace generated with this tool in the Triva prototype, we obtain the visualizaitieigure 6.10.
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Figure 6.9 — A fully-connected communication pattern with five processesgepted in the
SpaceTimeView of Pajé.

The view shows seven processes with a first level master, the progdhatAommunicates
with the second level masters, processes B and C. The others pweaessmnnected to the
second level masters and behave as slaves. This communication pattemaiaserved in the
beginning of applications built based on divide-and-conquer algoritifhgy show in a first

phase the divisions of work like a hierarchy.

Process D

Process A
First Level Master

Process C
Second Level Master

Process B
Second Level Master

Process E Process G

Figure 6.10 — A hierarchy star communication pattern, commonly used in davidezonquer
algorithms, with a visualization of Triva.

The analysis of these communication patterns enables the observatiorsibigppsoblems
in the development of parallel applications. Suppose a developer ddoidesate a divide-
and-conquer algorithm. After the implementation, the Triva prototype carsée i analyze
if the communication pattern of the implementation is correct. The developer cagudss
if a different number of levels could improve the performance of the alguarithy analyzing
the time a certain configuration take to execute. Another benefit of the gidtatype is when
the communication pattern of an application is unknown to the developer. Inais the only
thing to do is to execute the application once and visualize it in the prototype &wstadd the
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possible patterns of the application under investigation. This is faster ayd@®anderstand
when compared to a traditional code analysis spread in several sdesceffthe application
(assuming it is even available).

6.2.3 KAAPI and the Grid’5000 Topology

This Section describes the results obtained with real application traceseghtrmm different
experiments with KAAPI applications on the Grid’5000 platform. We selectediffisrent sce-
narios to present these results, which consider as network interdmmgt topology present
in the Grid’5000.

Scenario A: 26 processes, two sites, two clusters

The first scenario is a KAAPI application composed of 26 processash pacess is assigned
to one distinct machine, resulting in an allocation of 26 machines. Half of therallacated in
the clustexiru, atportoalegre and the other half in the clustgrelon, atnancysite. Figure 6.11
depicts the 3D visualization generated by the Triva prototype of the applicadoe. The
visualization base is configured to hold the network topology that interotsibeth sites. In
this example, we are using a hypothetical topology just to illustrate the analysis.actual
interconnection betwegortoalegresite and the rest of the Grid’5000 is a VPN, with several
physical hops through the internet.

Steal

g

> Ll
Nancy Router Porto Alegre Router
Grelon Xiru

Figure 6.11 — A side-view generated by Triva with traces from 26 pgaEses

The first thing to be noticed on Figure 6.11 is the vertical bars represdiigngrocesses
of the KAAPI application. The light gray represents the sRitmand the dark gray represents
the stateStealof a given process, as indicated in the leftmost part of the Figure. Walsan
observe in this Figure the horizontal lines connecting the processeddiftarent sites. They
represent the work stealing requests performed among the procéssesapplication. When
the user is interacting with such visualization, it is possible to obtain informatioeviry state
and link represented. If a resource description with additional datat afw@uinterconnections
is provided to the prototype, the user is capable to obtain such data thraugrstialization,
by pointing the mouse to the squares and lines in the base. We can also notie&igute the
distribution of steal requests in time.
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Scenario B: 60 processes, two sites, three clusters

The second scenario is a KAAPI application composed of 60 procemseqer machine, that
are executed in two sites of the Grid’5000. The sigscycontributes to the execution with
30 machines from the clustgrelon at the same time that the sitenneshas an allocation of
25 machines from clustggaramountand 5 machines from clustgaraquad We consider in
this case a topology where every site has its own router, where all cldisiershat site are
connected to. The routers of the two sites have a direct connectionefdhasrin this example
when a message is sent from a cluster in one site to a cluster in other sitetatdmghrough
the two sites routers.

Figure 6.12 shows two screenshots of the Triva Prototype generatied the visualization
of the trace file for this scenario. The text and dashed lines were manusditéd to improve
the understanding of the example. The im&gef this Figure shows the total execution time
with a small time scale, making all objects close to the visualization base. Theddashen
this image depicts the site separation betwesameswith two clusters anghancy with only
one cluster. We can observe in this time scale that a large number of wolikgtesjuests
occur betweegrelonandparaquadclusters, mostly because of the higher number of processes
executed on them. Analyzing these requests with the network topology, itree pFototype
allows the user to view that all the requests from these clusters must gaglthtwo routers
of the interconnection. Such situation might lead to performance issues.raddfieal work
stealing is under investigation by the KAAPI team in order to overcome theddeons.

A Small Time-Scale, Application Objects on top of Network Topology B Differences in Number of
Rennes {Nancy - Work Stealing Requests
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Figure 6.12 — Two screenshots of the prototype Triva during the vistialivaf an application
composed of 60 processes, with different time scales.

The prototype also allows the dynamic change of the time scale, using the mioeiske Whe
imageB of Figure 6.12 shows the total execution time for the traces of this scenatiwjth a
larger time scale. Through this image, it is possible to see differences in testealing be-
havior in different intervals of time of the execution. It can be noticed thttérbeginning there
is less work stealing requests when compared to the end. It is during thef émel execution
that less tasks are available for execution and processes start to trgltmete. This behavior
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is expected considering the current implementation of KAAPI, where rargteal requests are
performed when processes are idle.

Scenario C: 100 processes, three sites, four clusters

The third scenario is an application composed by 100 processes, om@apkine, allocated in
four clusters that are in three different sites of Grid’5000. The allondtias follows: clus-
ter grelonwith 30 machines abhancysite; pastelwith 40 attoulouse and 25 machines from
paramountand 5 fromparaquadatrennessite. The network interconnection here is constructed
as in the previous example. In this scenario, we consider that the thriegsrawe fully con-
nected.

In previous scenarios, we observed screenshots where all thetiexetime is represented,
sometimes with different time scales. The Figure 6.13 shows two screenshets wonly a
part of the execution time is drawn. This is possible in the prototype throughtamdtive
configuration where the user specifies which time slice is rendered. The #nafjthe Figure
shows the work stealing requests at the beginning of the application. Thediines separates
the three different sites. As on previous cases, each cluster namenhasar which indicates
how many processes are executed on that cluster. We can clearlyebsarin the beginning
the number of stealing requests is considerably lower compared to the erdanition, shown
on the imageB.

A Work Stealing Requests in the Beginning of the Execution B End of the Execution
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Figure 6.13 — Two visualizations with different time slices of an application caegof 100
processes.

The imageB of Figure 6.13 also shows, through the dashed arrow, the path that /&l wo
stealing requests must follow from the clusparstelto the clustelgrelonand vice-versa. We
can see with the rendering of the network topology that these requestggmtistough two
routers in order to arrive in the destination. The visualization in this case uggest that big
cluster allocations for this particular execution should be placed in the same\sitding two
hops for stealing requests. Small allocations could then be placed on ivéisebgcause of the
smaller number of steal requests generated by these small allocations.
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Scenario D: 200 processes, 200 machines, two sites, five clusters

The KAAPI application of scenario D is composed of 200 processes, Onn2ichines. The
machine allocation is divided in two sitesnnesandnancy The number of machines allocated
in each site is equal, but inside each site the allocation differs in number ofmeagier cluster.
The imageA of Figure 6.14 shows the number of machines for each cluster allocatealsnd
the network topology that interconnects the two sites. As in previous sosné#ne dashed
line is used to separate the sites. In order to illustrate another benefit visoatization, we
consider for this scenario additional information regarding the networkcioi@ection between
the routers and three clusters. We consider here that the bandwidttbbe/bitdweerparavent
andgrillon clusters, through the two routers, is of 100 megabits. The link betweegreten
cluster and its router is of 1 megabit, as depicted in imagé the Figure.

A Initial Execution of Application with Link Properties B Interconnection becomes bottleneck, possible hints to better allocation

Paravent (61)

100 Megabit Link

100 Megabit Link

Grillon (13)

Figure 6.14 — Two top-views with a network topology annotated with bandwidth liirits,
showing the benefits brought by the 3D approach.

In this scenario, there are 87 processes runningrelon and 61 orparaventcluster. Let us
consider only the work stealing requests between these two clustergiaeddy the dashed
circle of the right image of Figure 6.14. The dashed arrow of the same imdg=ates that
these requests must pass through the 1 megabit link. The visualizatiorssutige a smaller
number of processes should be placed in a cluster with such a slow bamdifidor instance,
the processes of clustgrelonwere executed on clustgrillon instead, the execution could have
a better performance.

Through the example of this scenario, we can notice the importance of ampthe ap-
plication performance together with a topological representation. If thisdfpésualization,
such as the one present in imdgef Figure 6.14, is not present, the analyst could obtain wrong
conclusions about the performance of its application.
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Scenario E: 648 processes, two sites, five clusters

The KAAPI library has a random work stealing mechanism. It means thateviee a process
has no further tasks to process, it selects randomly another proceséaimpa stealing request.
This random behavior is an easy and simple way to perform load balamheimg a distributed
solution that scales well. The scenario E intends to show the resulting comithomipattern
caused by the KAAPI work stealing implementation in a large-scale situation withomisal
data. The network topology configuration is the same of scenario D, arghthe number of
machines is used to the execution of the application. The only differeneas#rat a higher
number of processes is launched, resulting in 648 processes.

Figure 6.15 shows a screenshot of the Triva prototype when configmushow the behavior
of all the execution time on top of the network topology. We can see the mesesstribution
among the clusters, which square size in the base is directly related to thermfrpbecesses
in the cluster. Considering the five clusters of this execution and the ramdwikn stealing
mechanism, it is expected to find steal requests from all clusters to all offteefour arrows,
drawn manually on the view, put in evidence this behavior for the clggtdon We can see
that other clusters also perform steal requests the same way, havimgeds faocesses from all
other clusters.

Scenario F: 2900 processes, four sites, thirteen clusters

The last scenario is an application composed of 2900 processestegkat310 machines that
were allocated in clusters of four Grid’5000 sites. The machine allocatioa fsllaws: 60
machines froniille site (41 -chingchint 10 -chti, 3 - chuque 6 - chicor); 100 fromrenneg(61

- paravent 6 - paramount 33 - paraquad; 50 frombordeaux(5 - bordereau 22 - bordeplage
23 - bordermej; and 100 fromsophiasite (48 -azur, 42 -sol, 10 - heliog. The objective of
this scenario is to illustrate different work stealing patterns that arise inreliffentervals of
time during the execution of a large-scale application. The interconnectiototppfollows the
same policies as before: each site with a router, all the clusters of a siteatedno the site
router. The imageé\ of Figure 6.16 shows the overall organization of the network topology,
with dashed lines dividing the sites and each cluster representation withgécties name and
number of processes allocated to it.

The total execution time of this application is 74 seconds. The imAagfg-igure 6.16 shows
the work stealing requests that happened from the sixth to the sixteentidseicexecution.
In this time slice, most of the requests are performed betweepateguadand paramount
clusters. The imagB shows the time slice between the seconds 16 and 26, showing a higher
number of steal requests inside teanessite. The imag& shows another time slice, from the
seconds 26 and 36, with even more steal requests among the clusters geD shaws the time
slice from the second 36 to 50. This last image has too many steal req@estisigcproblems in
the perception of the network topology in the visualization base. This protdenbe alleviated
in the prototype by changing the transparency configuration of the ligkgsentation. Even
so, the example shows an expected behavior from the KAAPI library, witte isteal requests
to the end of the application execution.
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Figure 6.15 — Top-View generated by Triva showing the random workl siemmunication
pattern of KAAPI.

6.3 Treemap Visualizations

The implementation of the Triva prototype included the development of the Tined&v and
the Triva2DFrame (see Section 5.5 for details). As discussed, the 22 feadeveloped to draw
the treemap according to the execution of the Time-Slice algorithm and also ghegation
model implementation. A number of interaction mechanisms were also implemented in the
prototype to facilitate the analysis. Examples are the use of the mouse whaeigate through
the levels of the aggregated hierarchies; the use of two mouse buttonstmseler more states
to analyze them separately; and the selection of the time slice on-the-fly.

An additional and important feature of the treemap rendering implementation is¢hef
the mouse pointer to highlight the hierarchy of a given leaf-node. Thdigigimg works by
drawing a line in the border of the the leaf-node under the mouse pointaplemented by
rectangles in the parent nodes up to the root level. This drawings enabtetitification of the
hierarchy for a given leaf-node. Moreover, the prototype showsdrsthtus bar of the window
numerical information regarding the node under investigation and also thificktions of the
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A Beginning of execution, from second 6 to 16 B From second 16 to 26
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Figure 6.16 — Four top-views of an application executed in four Grid’ S@3.

parents. Such interactive capabilities of the Triva prototype can beausi| the large treemap
of Figure 6.17, with the dashed lines highlighting the hierarchical strucfiagiven leaf node.

This Section presents the results obtained with the treemap visualizationstloétayand
real trace data using the Triva Prototype. The treemaps presented iecthimSvere generated
by the prototype and automatically exported to encapsulated postscripTfiesnain objective
is to evaluate the potential of the proposed technique and to detect if the impidimens
capable of reaching visualization scalability in large-scale situations.
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We start with a general description of the treemap visualizations genesated prototype,
in the next sub-section. Afterwards, we present the visualization ofe-lscale scenario created
using synthetic trace files; and the analysis of different real-worldas@@nusing the KAAPI
library and an example of visualization created with a MPI trace file.

6.3.1 Description of the Visualization

To describe the treemap visualizations created by the prototype, let weeprax synthetic ex-
amples generated with the scripts described in the beginning of this Chabéefirdt example
is a hierarchy with three levels: Site — Cluster — Machine. There are two sdeb,one with
three clusters, each cluster with five machines. Therefore, the total nahbmchines is 30.
Each machine can be in the Executing or Blocked state. Figure 6.17 depéxtsremaps that
were generated with different properties. The two smaller treemaps onftlshdey only the
Executing or the Blocked state, separately. Treemaps separatediagdorthe state enable a
direct comparison of which machines spent more time in a given state.

On the right side of Figure 6.17, the treemap shows in the same visualizationctiseties
(Executing and Blocked) for all the machines. The inner dashed rdetamtjcates the area
reserved to one of the machines. The other dashed rectangles indicateahbat corresponds
to the cluster that contains the machine and the site that cluster belongs totéimaast dashed
rectangle). These dashed rectangles were added manually to the trdehepigure since the
method used in the prototype to highlight the hierarchy is not good for printing.

Moreover, we can notice that the visualization of more than one state (tremmthp right
of Figure 6.17) enables a direct comparison among the machines but atetatf@ship among
the states. This relationship is only correct if all the data being visualizeddslated based
on the same metric. In this example, both Executing and Blocked states aratemldiased on
the amount of time in the time slice. Since both metrics are time-based, we can cdhgrare
In terms of interactivity, the user of the prototype can go from the treemapeoright to the
treemaps on the left just by clicking the state to be analyzed separatelys&hean go back to
the previous view with all the states with another click of the mouse.

The second example illustrates the treemap visualization in different levedgleoing ag-
gregated values. The example is depicted on Figure 6.18 with four treenTdyestop-left
treemap is the same of Figure 6.17, having the same hierarchy and the sanershofiba-
chines, clusters and sites. This treemap is rendered m#ohinelevel. As before, the Blocked
and Executing states are always represented. The treemap on thentoghdgs the aggregated
values in thecluster level, the arrow between the top treemaps indicates that the area indicated
on the left (the machine level) is summarized to the area on the right (the clustdr e the
middle of the top-left treemap there is a bold line that separates the two sitesedtied ar-
row indicates the aggregation from the cluster level togitelevel, shown on the bottom-left
treemap. We can see on this treemap the two sites separation and the aggralgate of Ex-
ecuting and Blocked for each site. The last treemap on the bottom-rightésajed using the
maximum aggregation possible, where only the Executing and Blocked statespaesented,
considering all sites, clusters and machines below in the hierarchy.

The aggregated treemaps of Figure 6.18 enable the analysis of the staferémievels
of the tree, showing their values for all the nodes. The top-right treerhtped-igure shows,
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Executing State Hierarchy: Site (2) - Cluster (3) - Machine (5)

Blocked State

N —

Figure 6.17 — Two squarified treemaps showing the sBlieskedandExecutingseparately on
the left, and on the same treemap on the right.

for instance, the Executing and Blocked state for the six clusters of timepdedas indicated by
the rounded dashed rectangles). We can clearly see the three clesteite and the two sites.
The values for the states for a cluster are calculated by the aggregatiwitreigconsidering

the Blocked and Executing states for the machines belonging to that cluster.

Hierarchy: Site (2) - Cluster (3) - Machine (5) Hierarchy: Site (2) - Cluster (3) - Machine (5)

Hierarchy: Site (2) - Cluster(3) - Machine (5) Hierarchy: maximum aggregation possible

Blocked

Blocked

Figure 6.18 — Four treemaps to show the per-level aggregatiBiookedandExecutingstates.

Next sub-sections make extensive use of these representationsialtggbhe aggregated
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treemaps. For each of the scenarios, we explain the hierarchy uséteamamber of items per
level. Most of the following examples use only one or two states for eacledétives. The only
exception for that is the MPI visualization, where the amount of time for threeédyeration is
also represented.

6.3.2 Large-Scale Visualizations

One of the main benefits of the visual aggregation model, proposed in this ikds easily ana-
lyze a large number of monitored entities on the same screen. In order $3 #ss@isualization
scalability of the approach, we generated a series of large-scaledhiesausing the synthetic
trace generator. The objective is to show how the aggregation modeldselvhen dealing with
so much information, and how the generated treemaps turn the data morstandable. A
hierarchy composed by 100 thousand processors is analyzed in thienS€&igure 6.19 depicts
the analysis of the chosen hierarchy, composed of four levels: Sitee€lMachine, and Pro-
cessor. The hierarchy has 10 sites, each one with 10 clusters, estdr @lith 10 machines, and
each machine with 100 processors. Each processor can be in twol@assaibs, represented in
the Figure by the dark and light tonalities of gray.

The large-scale analysis using the prototype starts with the top-right trekrofthe Fig-
ure 6.19, in th@orocessorlevel. In this treemap, there are 200 thousand rectangles: 100 thousand
processors times the number of possible states, which is two. We can@bs&rgome regions
of this treemap are darker than others, allowing some analysis. Howeyeprecise conclu-
sion is hard to obtain with such treemap. The main reason is that treAntegs rectangles
that are too small, turning out to be difficult to observe differences in simesg two states of
one single processor. The example is shown to present the limitation of thitetrakdtreemap
representation.

The white rectangle drawn manually in the treerdapf Figure 6.19 represents the space
dedicated to one machine. Although it is hard to notice, there are 200 regangepresent
the states of 100 processors inside this small area. Because of theafastitard to understand
clearly the pattern of states to all 100 thousand processors, the usieteact with the pro-
totype with the mouse wheel and show aggregated values fonélchine level, as depicted in
treemapB of the Figure. This treemap shows for each machine the two possible statbss |
view, it is already possible to visually analyze major differences among thhinesc some of
them are significantly more often in one state than other, in the time slice comstder@mpute
these treemaps. The highlighted area on the left of treeBpamown through a zoom drawn
manually, corresponds to the area highlighted through the white rectanmgé=ofap A.

Subsequent aggregations enable the user to visualize the tracescingtes level, as de-
picted on treemag of Figure 6.19, and in thsite level, in treemafD. Treemap C shows the
100 clusters (10 per site). On the left part of this treemap, the black gdetainows 10 clusters
in the area dedicated for one site. The arrow beginning on this rectarigts tmthe aggregated
values for that site, on treemap D. The maximum aggregation possible, sirotwveemayk,
enables a per state view of the available information, indicating that the sta¢éseaped by the
light gray color appears more than the other for the selected time slice.

Observing the example of Figure 6.19, we can see the benefits brougfe lggregation
algorithm. Its implementation in the Triva prototype enables the visualization efaehou-
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Figure 6.19 — Normal (A) and four aggregated treemap visualizations (Bof /0 states for
100 thousand processors (based on synthetic trace).

sands monitored entities, possibly with the presence of a number of statesexdimple also
illustrates that the performed aggregations enable a better understahttiegoehavior of en-
tities in different levels, by interactively grouping the states in the hierardigreover, we
can also observe that even among the aggregated treemaps, the saraklgdvayior can be
visualized, with a much simpler representation.

6.3.3 KAAPI Work Stealing Analysis

This Section presents the treemap visualizations of the Triva prototype ssingu trace files
generated by the KAAPI library. As stated, these traces register theibeb&the work steal-
ing activities of the library to provide load balancing to the parallel applicatiorise traces
were obtained during the execution of KAAPI applications in the Grid'50@&@m. We se-
lected four different scenarios to explain the possible analysis thategedormed with the
prototype Triva. Each scenario has a different configuration oiuree allocation to execute the
applications, and a different number of KAAPI processes involved.afkdhe treemaps of this
Section, the light gray color of rectangles indicates the RUN state, and tker dgay indicates
the RSTEAL state, for every K-Process of a KAAPI application, or feerg level when an
aggregated treemap is presented.
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Scenario A: 200 processes, 200 machines, two sites

The first scenario is the execution of a KAAPI application composed off200esses. Each
process is allocated to one machine of the Grid’5000 platform, resulting itcaaion of 200
machines divided equally in two sites of the gridnnesandnancy The former site allocation

is the following: 61 machines from clustparavent 33 fromparaquad and 6 fromparamount

the later is: 86 frongrelon and 14 fronygrillon. The treemaps depicted on Figure 6.20 illustrate
the behavior that the application showed during the execution on that allogattbree different
time slices.
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Figure 6.20 — KAAPI Scenario A with an application composed of 200 psses

The treemapA of the Figure 6.20 is computed using a time slice that corresponds to the
beginning of the application. During this period, we can observe that nidbe&K-Process
are actually running and not spending time trying to steal tasks. Since thieatiop was
launched in thenancysite, we can observe that the K-Processes belonging to this site occupy
more space when compared to the space occupied rgtinessite. TreemaB is computed
based on a time slice of the end of the execution. We can observe that indtlo¢ @xecution,
the K-Processes spent more time trying to steal tasks from others pecddss is a normal
situation, since when the program approaches the end, new tasks tieckecome rare. The
treemapC is computed considering all the execution time for the application. By doing this
broad analysis with a large time slice, we can observe global patterns thatarigghfor a set
of K-Processes. This actually happens in this example, since this treemap #tat most of
K-Processes maintain the same relation between time spent in Run and R3ésal Btas is
observed through the sizes of each state for the processes.

Another thing that is possible to conclude analyzing treemap C of Figure 61iBé isad
balancing between the two sites. Since this treemap is computed using the totdal@xéme
and each site has an equal number of allocated machines, we can atgue itheal situation
for this scenario will be that the area occupied by each of the site in thelizesti@n should
be the same. This will indicate that an ideal load balancing is achieved by tAd°Kwork
stealing algorithm. The treemap C indicates that the area fondheysite is slightly bigger
than the area for theennessite, letting us conclude that an ideal load balancing is not achieved.
The explanation for such behavior can be that the application is launchmaeimachine of
the nancysite, allowing the K-Processes of this site to start the execution of taskeeltbfo
processes of theennessite. Even so, considering that the areas for each site in the treemap are
only slightly different, we can argue that the load balancing achieved bydhle stealing is of
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good quality.

Scenario B: 400 processes, 50 machines, one site

The second scenario with KAAPI traces is an application composed of d@@gses executed
in 50 machines of thbordeaussite of Grid’5000. In the experiment, the allocation is composed
of 23 machines from thbordemercluster, 22 from thdordeplageand 5 from thebordereau
The two treemaps of Figure 6.21 are computed using the traces from thariscenhe bold
lines in both treemaps separate the three clusters involved in the execution.

The treemap of Figure 6.21 shows all the processes with the Run and RSteal states. We
can notice in this treemap that there are some K-Processes that spensaalamount of time
in the RSteal state when compared to the others processes. This might iadicabdem in the
machines that execute those processes, since each machine reighivédRrocesses to exe-
cute. The treemaP, on the right, is computed using as parameter the same time slice but only
the RSteal state. Treemap B also shows the amount of seconds for threale@s indicating
that processes with unusual behavior spent around 40 secondsgttnsteal tasks from others.
Since only one Grid’5000 site was used and the allocated clusters areomented with local
networks, the probable cause of these anomalies should not be attribtkedrntetwork. The
only remaining explanation for such behavior is related to the amount of KeBses executed
per each machine.

Thebordemerandbordeplageclusters have machines with 2 CPUs. THwdereaucluster
has machines with 4 CPUs. As stated, there is 400 processes and 50 machihis scenario,
resulting in 8 processes per machine. We can observe in the Figure 6.2hlgh&-Processes
in clusters with 2 CPUs ended with an unusual behavior. A possible exjglansthe overload
of processes on those machines when compared to the machinesofdeesaucluster, with
4 CPUs each, that did not show the odd behavior.

A Larger RSteal states, for each K-Processor B Showing only RSteal state, for each K-Processor
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Figure 6.21 — KAAPI Scenario B with an application composed of 400 psases
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Scenario C: 2900 processes, 310 processors, four sites

The third scenario is a KAAPI application with 2900 processes, executgtiinmachines that
were allocated in clusters of four Grid’5000 sites. The machine allocatioa fellws: 60
machines fronlille site (41 -chingchint 10 -chti, 3 - chuque 6 - chicon); 100 fromrenneg(61

- paravent 6 - paramount 33 - paraquad; 50 frombordeaux(5 - bordereay 22 - bordeplage
23 -borderme}; and 100 fronsophiasite (48 -azur, 42 -sol, 10 -heliog. The objective of this
scenario is to show that the prototype is able to deal with large trace files véttisefrom an
application executed in a real platform. As stated, there are two possible feiatach of the
2900 processes. This results in a treemap that must draw 5800 rectdiigies 6.22 illustrates,
intreemapA, all these rectangles that together represent the behavior of 2900d€d3es. Bold
lines indicate Grid’5000 cluster division.

The treemap of Figure 6.22 shows the Run and RSteal states for all the processesimeh
slice used to compute the treemap is the total execution time of the application. Wetican n
in this scenario that the amount of time spent with work stealing requests iswvety. In the
treemapA, it is difficult to perceive the rectangles that represent the state RStealtrdemap
B, on the top-right, depicts only the Run state for all the processes. Anglytzenscreenshot,
it is possible to conclude that almost all K-Processes spent the same aphtiumg executing
tasks. The only exception is the K-Processes located ichlieluster, in the bottom-middle
region of treemajB. They have smaller rectangles indicating less time in the Run state.

The treemapC of Figure 6.22 shows, on the other hand, only the RSteal state for all K-
Processes. Differently from the Run state, here we can notice differ@angle sizes indicating
that some processes spent more time stealing tasks than others. This migleifaliexample
which processes are executed on faster machines, finishing their taskdraetuently; or can
indicate processes that execute more unsuccessful steal requestsli@hThe treemap of the
same Figure shows the RSteal state, but now aggregated by machineziAgahis treemap,
we are able to detect instantaneously which machines spent more steaknghitéarectangles
on treemap C and D indicate an example of aggregation of the RSteal state&dPtecesses to
the machine where they executed. A possible reason for such behatieni®rk propagation
at the beggining of the execution.

Scenario D: 188 processes, 188 machines, five sites

The fourth scenario is an application of 188 processes, executed ima8@ines, distributed
in five sites of Grid’5000 including the cluster from Porto Alegre, Brazil.efighare 13 ma-
chines allocated from the clusteiru, atportoalegresite; 2 frombordereay 17 frombordemey
and 6 frombordeplage at bordeauxsite; 45 frompaste| 5 fromviolette attoulouse 14 from
paramount 36 fromparaquad atrennes and finally 50 fromgrelon cluster atnancysite. The
Figure 6.23 shows two treemaps calculated with the traces generated bylicatagn of this
scenario.

The treema shows the Run and RSteal states for all the 188 processes. Almost-all pro
cesses show the same behavior, with a bigger Run state (the light gray esagared to the
RSteal state (the dark gray areas). The only exception appears inphacksses executed in
the portoalegresite, highlighted manually with the dashed circle. Observing this treemap, we
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Figure 6.22 — KAAPI Scenario C with an application of 2900 processes.

notice that these processes spent more time stealing tasks than the préceasather sites.
The treemagB, on the right, shows the same time slice and the same processes, but only the
RSteal state. Here, the difference in the time spent stealing tasks becommene evident.
We believe that the main reason behind this behavior comes from the intentmmof the
sites. Theportoalegresite is located in Brazil, and its connection with the Grid’5000 is made
through a Virtual Private Network (VPN) that is maintained through the ieterfhe latency of
this interconnection compared to the general latency among Grid’5000 sitgedoin France

is significant. The traditional work stealing algorithm inside KAAPI do notatihtiate from
which processes a given process will try to steal. This, in a heterogsneterconnection en-
vironment, may lead to more time spent trying to steal, as indicated by the treemaptedmp
with our Time-Slice technique.

Generally speaking, the Time-Slice algorithm combined with the aggregationl witttiés
thesis enables an easy identification of performance issues when cogntieibehavior of
processes of a parallel application. The aggregation model bringsattiesistages to large-scale
situations, no matter how many processes are involved in the analysis. [f&emnecessary
to make both proposals work well in large-scale environments is to set argrigparchy with at
least some levels. The hierarchies used through out the KAAPI sceitave five levels, which
already allows the analysis of several thousands of processes.
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Figure 6.23 — KAAPI Scenario D with an application composed of 188 peases

6.3.4 MPI Operations Analysis

The experiment described here uses traces generated during théaxeta MPI application.
The traces were described in the beginning of the Chapter, recordingxéoaition of MPI
operations. The objective here is to show that the Triva prototype is afsabte of analyzing
MPI applications, because of the use of the generic Pajé file format as inpu

The scenario for the MPI experiment is as follows. We executed the ElR@jxm, part
of the NAS benchmark, using 32 processes in a cluster where eaclhasd@eprocessors. The
tracing mechanisms registered the following MPI operations during the #xeaf the MPI
application:MPI_Init, MPI_Barrier andMPI_AlIReduce For each of these operations, there is
one state of the same name. We use the state Running to indicate the time speatahudktdl
operations. The hierarchy defined in the traces is flat, only with the MREgsolevel.

The analysis of the scenario is depicted on the treemaps of Figure 6.24treEngapA
shows the amount of time spent in each of the states. We can notice that theanee dif-
ferences among the processes, as illustrated by the dashed rectdnglesMPI processes.
The square on the right of the treemap A shows a zoom to the MPI Praods21, where the
correspondence of gray tonalities and the states are noted. On the, Higuireema®B shows
the amount of time all the processes spent inNti_Init state. The numbers in the rectangles
indicate the amount of time for the process, an information that can be obtajrgainting the
mouse to that region of the window in the Triva prototype. We can notice signifdifferences
of time spent on the init state. Treem@phas the same single state rendering, but here using the
time of theMPI_Barrier operation. We can observe that the behavior of the init and barrier state
are very similar, possibly indicating that the implementation of the MPI init operéiolose to
the implementation of a barrier. On the bottom of the Figure, the treemap showski@um
aggregation considering all the 32 processes. Analyzing this aggdegate, it is possible to
observe that the time spent in MPI operations is greater than the Runningigtate the code
of the application is probably placed.
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A With States Running, MPI_Init, MPI_Barrier and MPI_AllReduce B Only MPI_INIT state
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Figure 6.24 — Behavior of the EP application of the NAS Benchmark usinghipe and the
aggregation technique.




Chapter 7

Conclusion and Future Work

Traditional visualization schemes for the analysis of parallel applicatiendesigned to handle
monitoring data collected at small scale and in regular environments. Thesitgasf visual-
ization techniques for the analysis of parallel applications on highly distdsytstems, such as
grids, motivated this work. Two particular problems of the traditional analyfsépplications
have been identified in this thesis.

The first one is the impact of the network interconnection on the executiparaflel appli-
cations. This impact must be outlined in the analysis in order to better undiestdrimprove
the application performance. Traditional visualization techniques, suttte apace-time repre-
sentation, are widely used for the analysis of applications. These teesnigowever, cannot
show in the same screen the network topology and the monitoring data fronppheation.
This might lead to wrong conclusions during the detection of performanoedssf applica-
tions. The second problem is the visualization scalability of traditional techeidusually, the
number of monitored entities that can be analyzed on the same screen is ofted tonite
vertical size of computer screens. Space-time representations are exaegle of this matter,
being not well suited to grid applications composed of thousands of meses

The main idea behind this thesis is to explore information visualization technicgtesatn
be used to visualize parallel applications. Our first approach is the thmemsional visualiza-
tion, where the base of this visualization is used to detail the resource/djgplioeganization,
and the third axis to show the evolution of the application through time. We havenrmpted
three different base configurations within the 3D approach: the repiaon of the network
interconnection with application behavior; the representation of the applicaimmunication
pattern and another to observe processes balance on the resources.

The second approach is the visual aggregation model, where the scalptoliigms of
traditional visualization tools are solved through a combination of the treemhpitgee and
the Time-Slice algorithm. This algorithm takes into account intervals of time to genealues
and inject them in a hierarchical organization of the application being agdlykhis structure
is then passed out to the treemap technique that renders the visualizatienzistiblization
scalability is achieved through the aggregation model, where the levels ofdtardny are
explored to create intermediary information that can be used to help the iarfatys the most
detailed view to the most general one.

113



114 CHAPTER 7. CONCLUSION AND FUTURE WORK

Both approaches are implemented in a prototype called Triva, developepau3D render-
ing engine called Ogre, GraphViz, some of the Pajé components, and an impd¢iore of the
squarified treemaps from scratch. The prototype has a reading meuhaaislinks it with the
DIMVisual integration library, capable of integrating monitoring data fronfedléint sensors and
formats. Synthetic traces, but also real trace data from KAAPI and Blications are used to
validate the approaches and the implementation. KAAPI traces used in thisvtleesisollected
in the Grid’5000 platform. Although the prototype validation is attached to thasedr the use
of the generic Pajé file format allows the extension of the benefits broygihiebimplementa-
tion to other fields and applications, from resource visualization to othes tffmmunication
libraries.

The obtained results are promising. The three-dimensional visualizatiatyzad in the
results Chapter, allows a better understanding of applications communicationstrast with
the network topology. We were able to show in different time slices that thk stealing could
benefit from more locality, since the current implementation of KAAPI do ria tato account
network information to perform work stealing requests. On the other lhadesults obtained
with the visual aggregation model implementation allowed the visualization of the stfat®0
thousand processors, generated synthetically. The treemaps defitedTlime-Slice algorithm
were also generated using real trace data from KAAPI and MPI applisatid/e were able to
identify in KAAPI traces different aspects, such as a different bigiaw stealing mechanisms
presented by some processes, load-balancing efficiency considérihg execution time, and
the analysis of a large-scale KAAPI application, composed of almost 3dhduysrocesses in
Grid’5000.

In summary, the main achievements of this thesis are the proposal of the 8aelppthe
visual aggregation model combined with the Time-Slice technique and thepFotatype im-
plementation. Other achievements include the interaction between KAAPI amutdtwype,
allowing the analysis of KAAPI work stealing activities.

Next Section presents the publications that came from this thesis. SectioisGugsis the
perspectives and implications of this thesis.

7.1 Publications

Some results of the thesis were published in the following papers:

¢ Visual Mapping of Program Components to Resources Representian: a 3D Analy-
sis of Grid Parallel Applications. The 21st Symposium on Computer Architecture and
High Performance Computing, SBAC-PAD. 2009. IEEE Press. Sao FRudnil.

— This paper presents the use of the three-dimensional approach to nadlpl -
plications components on top of a resource representation. The pajoeibds the
abstract model that generate this 3D configuration, showing at the emsl escam-
ples of KAAPI parallel applications visualized together with the Grid’5000voek

topology.
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e Visualization of Parallel Applications: Results of an International Cdlaboration.
Collogque d'Informatique: Brésil / INRIA, Coopérations, AvancéeBéfis. Colibri 2009.
Bento Goncalves, Brazil.

— This 4-page paper presents the overall proposal of this thesis, ingltiténtwo
visualization models. The paper is also focused on presenting the intealatidn
laboration between UFRGS and INPG, through the co-advising agreerhém
student.

e Towards Visualization Scalability through Time Intervals and Hierarchical Organi-
zation of Monitoring Data. The 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID, 2009. Shanghai, China.

— This paper presents the Time-Slice algorithm when used to summarize states of a
parallel application. The paper also presents basic concepts of the pregpnesen-
tation and how they are used to provide a visualization for the hierarchiesaged
with the Time-Slice algorithm. The hypothesis of the paper is validated with the
visualization of KAAPI traces composed of almost three thousands pexess

e 3D Approach to the Visualization of Parallel Applications and Grid Monitoring In-
formation. The 9th IEEE/ACM International Conference on Grid Computing, GRID,
2008. Tsukuba, Japan.

— The paper presents the overall view and general structure of the 3iDaah. Be-
sides presenting the generic abstract model to create such repressnthtqaper
also detail the visualization of synthetic and well-known communication patterns,
but also the visualization of KAAPI traces.

e Triva: Interactive 3D Visualization for Performance Analysis of Parallel Applica-
tions. Accepted in the Future Generation Computer Systems Journal, of Elsevier.

— This 24-page journal paper presents the 3D approach, the absinggdoent model
and results. Itis strongly based on Chapter 3 of this thesis, with somedhmessional
visualizations obtained with the prototype as presented in Chapter 6.

7.2 Implications and Perspectives

There are several perspectives considering the two visualization nardelssed in this thesis.
The three-dimensional model, today, shows every detail about all the mingitmtities. A pos-
sible evolution of this behavior is the view of aggregated data. Therefmtead of showing all
the links in a time interval, the program would show just one link that reprefiemtsggregated
information. Visually, the link could be rendered according to the informatioepitesents: big-
ger when more information is contained within, smaller otherwise. Such exgeg®on could
also be extended to the states of a monitored entity.
Many other types of information for the Time-Slice algorithm still need to be stidiée

basically analyzed only states in our results, because most of our tracesnaposed by states
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for the processes. Other information, such as links, variables, event, also be studied
and explored. Particular investigation should be conducted in the case tifikk, where we
left open in our model to which node attribute a summary value: the origin orebgndtion.

Depending on the type of information being evaluated, a situation may be beiteatiother.

The evolution of the aggregation model with other aggregation functionsaspaissible.
Although we discussed briefly the use of other functions, we used iresults only the addition
aggregation. Functions such as max, min, mean must be studied, particliamyother type
of summary data is generated by the Time-Slice technique. User definedatigngunctions,
based on the available monitoring data must also be analyzed.

For the 3D approach, a possible perspective is to improve the visual ngalppiween the
network topology and the communication pattern of the application, throughstheflcurved
lines to represent communications. Besides the matching that is already modéhed3D
approach, the abstract treatment of data should also consider othgrofyjséormation, such
as the size of links and nodes. This should be reflected directly in the vispasentation.
Generally speaking, this perspective means that a graph must senl&sas t the rendering
of another graph. The representation could also be guided accordiogittog rules of the
interconnection, when they are available from the execution environmeérg. 3D approach
might also be used to the visualization of parallel applications in many-core,chipere a
network-on-chip is present inside the processor.

A third possible evolution is the merging of the hierarchical organization ofitmidmg data
with a graph representation. This could be explored in the visual aggregaodel by defining
in every level of the hierarchy, a graph to represent interactionslifflkeeof this graph could be
annotated with aggregated data, as we already do in the Time-Slice techAigesample of
application for such evolution is the merging of processes of a parallétappn.

Perhaps the most significant implication of this work is the study of informatiamaliza-
tion techniques applied to the parallel application analysis. Since we usedyalikrithis as
inspiration for the thesis, we think that it can be continuously faced as rtiotidar new work.



Appendix A

Extended Abstract in Portuguese

The Portuguese title for this thesis'’®guns Modelos de Visualizacéo aplicados para a Anélise
de Aplicacbes Paralelas” The extended Portuguese abstract is presented here to fulfill the
requirements established in tbe-tutelleagreement of the author.

The abstract of this appendix is basically a Portuguese translation of thémupmndant parts
of the English version of this thesis, especially the introduction of the chagbtermain concepts
of the proposed visualization models. Two experimental scenarios of thedoaiment were
selected for the sake of demonstrating some results in this extended abstract.
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118 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

A.1 Introducéao

Sistemas distribuidos consistem basicamente em hardware e softwaratire omis de uma
Unica unidade de processamento [19]. Nestes sistemas, 0s processadointerconectados e
comunicam através de uma rede. Os programas de computador saaqaemavarias partes e
devem lidar com diferentes niveis de paralelismo e com algoritmos de comamjicagno pas-
sagens de mensagem e memoria compartilhada. Um exemplo de sistema distridnsddmédo
de Grid [30]. Estes tipo de sistema é estruturado em organizacfes vigBhipdssivelmente
compostas por milhares de maquinas distribuidas geograficamente. Doidexdm@rid sdo
0 Grid’5000 francés [12] e o TeraGrid americano [16].

Caracteristicas compartilhadas por quase todas as plataformas Gridas&dsdin, hetero-
geneidade de recursos e software, e presenca de multiplos dominios &rdthiogs Dinamismo
significa que os recursos que participam de um Grid pode se tornardndisfs a qualquer hora,
sem nenhuma notificacdo de que isso pode acontecer em um determinaduondpkcacoes
paralelas devem lidar com isso no nivel da aplicagéo ou através de uméeb#bapaz de lidar
com flutuacbes na quantidade de recursos disponiveis. A hetercggmaidnifica que difer-
entes configuragfes de recursos pode estar presentes na mesrmanpda@rfid. Isto também
€ valido para bibliotecas de software. Um Grid pode estar espalhaddf@ntes dominios
administrativos, cada parte mantida independentemente por seus admirgstradém destas
caracteristicas, um Grid também pode ter uma rede de interconexdo comgkextacilmente
escalavel quanto aos seus recursos.

A interconexao entre os recursos de um Grid pode ser composta pantife tipos de
rede. Ela pode ser composta por tecnologias Ethernet, Myrinet, Infthilmanfibra optica.
Um exemplo de Grid com vérios tipos de interconexdo sdo os chamadowp&xkds [48],
como os projetos BOINC [1] e Seti@Home [2], onde a interconexdo é eah fgéa atraves
da internet. Outro exemplo que evidencia a presenca de multiplos tipos demsedio € um
Grid composto por clusters, onde uma hierarquia de interconexdo fosada para conectar
clusters homogéneos [12]. A presenca de varios tipos de intercorax@iareflexo natural da
heterogeneidade e da distribuicdo geogréfica de Grids. Estes aspgmbasuma rede mais
complexa, um nimero maior de saltos para comunicacao entre processoeiala largura de
banda variaveis e diferentes ao longo do tempo.

Plataformas Grid sdo também facilmente escalaveis, de uma forma que NMUEH$EO-
dem ser indefinidamente adicionados apenas conectando eles aosgraescgxistentes. Nor-
malmente, estas adi¢cdes de recursos trazem mais heterogeneidade erawarcamtglexidade
da rede. Atualmente, existem Grids globais que sdo compostos por milharenpetadores,
como o exemplo do projeto BOINC. Outro exemplo de quéo facil é a adicdowis mecursos
a um Grid é o caso do Grid’5000, onde novos clusters séo adicionad@ekbone principal da
plataforma. A escalabilidade destas plataformas € uma boa caracteristicatda@ vista das
aplicagOes paralelas, que necessitam cada vez mais de mais recursoRc@mnais.

Todas essas caracteristicas de plataformas Grid influenciam diretamemtgortamento
das aplicacdes paralelas durante o seu desenvolvimento e execugc&aus$odisto, € impor-
tante para o desenvolvedor entender o impacto do sistema distribuido salieagdo. Um
exemplo disso é a analise de aplica¢gBes considerando a topologia dA egdieacdo pode ter
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um melhor ou pior desempenho dependendo de quais recursos fa@hidess e a interconexao
entre eles. Esta influéncia é ainda mais evidente quando os aspectos dacewnsiderados,
como a laténcia e a largura de banda, em aplicacdes que séo limitadas @efagsdalabilidade
de um Grid € outro aspecto que também influencia diretamente o comportameamidactes
paralelas, uma vez que a disponibilidade de novos recursos para &&plico indica sempre
gue um melhor desempenho sera alcancado.

Considerando estas situacdes, podemaos perceber que é importanée aralisportamento
das aplicagbes paralelas com informagfes do Grid. Esta analise podedgsdnvolvedores a
entender o impacto da topologia da rede na aplicacdo por exemplo. Cordoastpadrao de
comunicacdo da aplicacdo com a topologia da rede pode dar dicas avalesdor de como
adaptar a aplicagcdo para melhor explorar tal interconexao. Além diesaaesie é hierarquica-
mente organizada, as aplicacdes podem seguir a hierarquia da redeipargargalos e outros
problemas de desempenho se a aplicagdo ndo é estruturada hierargtécdsmea boa analise
também deve levar a conclusdes sobre todos o0s processos da aplicelcérndo padrdes lo-
cais e globais que podem aparecer entre eles. Se existe uma graniigagi@ashe processos, a
analise deve ser capaz de gerar resultados sobre todos eles.

A visualizacdo é uma forma de realizar a analise de aplicacdes paraleléasmBEalo bas-
tante utilizada nos ultimos 30 anos para entender e observar aplicacéedaferadas em
diferentes niveis de paralelismo. A forma mais tradicional de visualizacieaeoatravés de
uma adaptacdo de gréaficos Gantt [79], também conhecido como grasgagoegtempo. Es-
tas visualizacdes listam os componentes da aplicacdo verticalmente e sga@valitempo é
demonstrado no eixo horizontal. Exemplos de ferramentas que oferstetipe de andlise séo
o Pajé [22], Vampir [60] entre outras [46, 63, 5]. Graficos espaggptesdo bastante usados em
plataformas existentes, como clusters, onde os dados sdo simples e uniforme

Muitas dessas ferramentas de visualizacdo foram adaptadas pasapbssmmportamento
de aplicacdes em sistemas distribuidos como Grid. Geralmente elas contirarato as mes-
mas técnicas de visualiza¢do. Considerando somente representggigstempo, o primeiro
problema que surge € que elas ndo podem representar, juntamente dado®sla aplicacao,
a complexa topologia de rede de plataformas Grid. Como discutido, o impast tdpslogia
nao pode ser excluido de uma anélise de aplicagdo quando uma inteccoosydicada existe
entre os recursos. O segundo problema é relacionado com a escalebilelaisualizacdo de
gréficos espacgo-tempo. Usando tais representacdes, o nimero dmeaites da aplicagdo que
podem ser visualizados uma tela de computador é limitado a resolucao veatield.d

Esta tese tenta resolver estes problemas encontrados em técnicaslidmg@Butradicionais
para aplicagfes paralelas. A idéia principal dos esfor¢os consistgonag técnicas da area
de visualizacdo da informacao e tentar aplica-las no contexto de analissgdarpas paralelos.
Levando em conta isto, esta tese prop8e dois modelos de visualizacdtés dienensdes e o
modelo de agregacéao visual. O primeiro pode ser utilizado para analisacégléclevando-se
em conta a topologia da rede dos recursos. A visualizacdo em si € darpposrés dimensdes,
onde duas sdo usadas para mostrar a topologia e a terceira é usag@esentar o tempo. O
segundo modelo pode ser usado para analisar aplicacdes paralelasiaaiande quantidade
de processos. Ela explora uma organizacdo hierarquica dos dadesniteramento e uma
técnica de visualizagdo chamada Treemap para representar visualméraqguia. Os dois
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modelos representam uma nova forma de analisar aplicacdo paralelémeiteauma vez que
eles foram concebidos para larga-escala e sistemas distribuidos cosnptaxo Grids.
Alguns dos conceitos desta tese foram publicados e um artigo esta esagwae avaliagao.
Este resumo estendido esta organizado em cinco sec¢des, descritos:a seg

Secdo A.2: O Modelo Tri-Dimensional

Esta secdo apresenta o primeiro modelo desta tese, composto da aboedagés di-
mensdes. Nele, descrevemos a concepcéo do modelo visual e uma vaangeom-
ponentes abstratos capaz de gerar visualiza¢des 3D.

Secao A.3: Modelo Visual de Agregacao

A secdo apresenta a concepcao do algoritmo de fatia de tempo para ertnagsio do
comportamento de uma aplicacdo em uma hierarquia, além do modelo de agnesgao
para se atingir escalabilidade visual no uso de representacdes Treemap

Secao A.4: O Prototipo Triva

Esta secao apresenta o protdtipo desenvolvido ao longo desta teseo dafdescricdo

neste resumo fica na parte da visdo geral dos componentes que fadapmplemen-
tacao.

Secao A.5: Resultados e Avaliacao
A secdo apresenta os resultados obtidos com o protétipo Triva na aeatlas modelos

propostos. Dois cenarios sdo apresentados: um relacionado ao tnis¢bmed, e outro ao
modelo de agregac&o visual.

Secéao A.6: Concluséo
Os principais resultados sdo relembrados e as perspectivas delineadas.
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A.2 O Modelo Tri-dimensional

O desempenho de aplicacbes Grid esta relacionado as caracteristiede die interconexao
[49]. Quando os recursos tem uma forte hierarquia entre eles, a stmdhrecursos dados a
uma aplicacao pode ser decisivo para o desempenho e também paraloegrémda aplicacao.
Sem informacdes da topologia da rede, o analista pode ndo ser capazeleep que eventuais
problemas na aplicagéo séo devido a limitacdes do nivel da rede. As dacist@las por uma
visualizacao tradicional da aplicacéo, neste caso, podem levar a sbeskrradas sobre 0 mau
desempenho. Sendo assim, se fossemos capazes de analisar a algheagise em conta
caracteristicas da rede, nés veriamos mais claramente as razdes ddaarapiar da aplicacao.

A maioria das ferramentas de visualizacao ndo séo capazes de efetuaralisa levando-
se em conta a topologia da rede. ParaGraph € a Unica ferramenta esengéguma nogdo de
interconexao em suas técnicas de visualizacdo, embora provends ajmralizacéo de hiper-
cubo e padrdes de comunicacdo, separadamente. Na realidadesaPhra&o foi concebido
para a analise de aplicacdes de larga-escala. Outras técnicas, cago-&sppo ou baseadas
em grafo, usadas em outras ferramentas de visualizacdo, tambénorcapades de apresenta
a topologia da rede com as comunicacdes de aplicacdes paralelas. dsta imitacdo é
relacionado a forma como 0s recursos e componentes da aplicacdcssabatios, feito em
um espaco linear. Quando a plataforma de execucao se torna maior e mplexa mostrar a
topologia da rede em uma visualizacdo espac¢o-tempo se torna impraticavel.

Nossa proposta de fazer uma ligacéo entre a andlise da aplicacdo e gitopaloede é
baseada em um esquema composto de trés dimensfes. Uma das dimengfips feete outras
duas dimensdes sdo usadas para representa a topologia da redeinfa@Ecdo apresenta a
concepcgao visual do nosso modelo, e a secdo seguinte apresentalo dedemponentes
abstratos que pode ser usado para se gerar tal visualizacao.

A.2.1 Concepcéo Visual

A concepcao visual do nosso modelo consiste na combinacao de téamiessiaizacdo que
mostram o comportamento da aplicagdo com técnicas que mostram dadosagstoutestatis-
ticos. Se dados estruturais sao utilizados, a topologia da rede podederjuistamente com
0 comportamento da aplicacdo. Se dados estatisticos sao aplicados,io® psdérsimplificar

guantitativamente o comportamento da aplicacdo, em diferentes escalas ddddmpo.

O resultado da concepcao visual € o modelo tri-dimensional. O modelo terdichessbes
reservadas para as representacdes estruturais e estatisticas.ne¢asns estas duas dimen-
sBes como a base da visualizagdo 3D. A terceira dimenséo € a linha do temigoradA:1(a)
mostra um exemplo da abordagem 3D para representacdo de daddealziiap Os estados
dos processos sdo representados como barras verticais que isfanpdas em cima da base
da visualizacdo. Os diferentes estados ao longo do eixo do tempo podeeprEsentados
por diferentes cores. Cada representagdo de estado é colodaztdndente seguindo suas mar-
cacdes de inicio e fim. Comunicac¢des séo representadas como flechassndirambiente 3D,
conectando dois ou mais processos que se comunicam. A Figura A.1(ba metdualizacdo
de um diferente ponto de vista, localizado sobre os objetos represenksta visdo permite a
observacéo do padréo de comunicacao da aplicagéo, por exemplo.
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(a) Concepcao visual da abordagem 3D. (b) Visualizacao a partir do topo.

Figura A.1 — Concepcdo visual da abordagem 3D com rastros de @gdlicagresentados por
barras verticais representando o comportamento de processos aodaegupo.

A.2.2 Modelo de Componentes

Para criar uma visualizagdo 3D, os rastros coletados das aplicac@es passar por uma série
de transformac0fes. Para tal, definimos aqui um modelo de componeritatosb\ Figura A.2
apresenta a organizagao geral deste modelo. Como entrada, 0 modeétisutiaos de infor-
macao: rastros de aplicacdes paralelas e um arquivo de confige@t@ado a descricdo dos
recursos do ambiente de execucao.

Monitoring Dat A B D \
Trace Reader Extractor Visualization \ ﬁ(‘

» U

( \,,,/'/

C e
Resources Description Comm. Pattern
C c.2
Entity Matcher Network Topology

C3
Logical Organization

Figura A.2 — Modelo de componentes abstratos da abordagem 3D, coés asmfiguracdes
possiveis para a base da visualizagéo.

A base da visualizagdo é configurada pelo componEntidy Matcher(C). Desenvolve-
mos trés diferentes configuracdes para 0 mesmo: uma que mostra o paddouhicacao da
aplicacdo; outro que mostra este padrao combinado com a topologia da redétimo € a
combinacao dos dados da aplicacdo com uma representacao logicautssseO componente
escolhe uma dessas visualizactes de acordo com a escolha do usuario.

Entre as trés alternativas modeladasemtity Matcher a que considerada topologia da rede
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(C.2) lida diretamente com o problema da influéncia da interconex&o na dplicAg outras
alternativas sdo apresentadas para mostrar outras informacoegaist(otpadrdao de comuni-
cacgdo) e uma representacao estatistica com detalhes de comportamengo ao ftempo.

Nés consideramos no modelo que existem arquivos de rastros dispgrdvaia leitura,
0S quais guardam eventos que geram um fluxo que atravessa os eomtgsoda Figura A.2
da esquerda para a direita. Mesmo assumindo arquivos como entragen@snentes podem
funcionar independentes da como os dados de rastreamento séo injeiadoslelo. Sendo
assim, o modelo é capaz de lidar com uma geragao online de eventos quguatdidade dos
mesmos nao é tao grande. Notificacbes podem também ocorrer no modetorgamentes de
visualizacdo em dire¢do aos outros componentes, para propag@gucagies e mudangas no
comportamento iniciadas por comandos de usuario.
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A.3 O Modelo Visual de Agregacéo

Outra questéo relacionada a aplicacées Grid € que elas podem ser mEW@smMa grande
quantidade de processos. Algumas analises ja sao possiveis consgplick;des [50], mas
somente em clusters. Varias questdes surgem em ambientes Grid ao apditsaydes de

larga-escala. Uma primeira é a grande quantidade de dados de monitoraaquendependem

de dois fatores: o numero de entidades monitoradas, e a quantidadelde defietada de cada
entidade. Outra questéo é a escalabilidade visual [26] das técnicagalizaigdo, que fala sobre
a quantidade de dados que podem ser mostrados na tela sem que opesgarahabilidade de
entender o que é representado.

E fato que as técnicas de visualizacdo das ferramentas devem també&uatévess para
analisar aplicagcbes paralelas grandes. Se consideramos apenasdadaale entidades moni-
toradas, devemos ser capazes de representar pelo menos algunsmél@ameessos na mesma
tela. Uma certa quantidade de detalhes também deve estar presentesentapé®. Um exem-
plo de técnica de falta de escalabilidade é a representacdo espacodadga,quantidade de
dados a ser representada é limitada pelo espaco vertical disponivel eatetetamputadores.

Entre as ferramentas de visualizacdo existentes, Vampir tem em sua visi@lespaco-
tempo uma técnica hierarquica que aumenta a quantidade de processodeespr visualiza-
dos ao mesmo tempo. A técnica funciona através da agregacao do comptotdeprocessos
de acordo com a representacao hierarquica. O problema da aboréagee a informagéo
de cada nivel é apresentada de forma diferente, tornando dificil aeadélissdes agregadas.
Outras ferramentas, como Pajé e Jumpshot, usam mecanismos de rolagdigiapaiom um
ndamero grande de entidades monitoradas. Esta técnica tem um impactomegetivez que o
comportamento de todas as entidades ndo é mostrado ao mesmo tempo.

Nossa abordagem usa intervalos de tempo para criar uma estruturguicrague repre-
senta 0 comportamento da aplicagdo para o periodo selecionado. Nosigat#ms a técnica
Treemap [42] para criar uma representacao visual da estrutura. kagmoposta aumenta
a quantidade de entidades que podem ser representadas ao mesmo tparputecuma di-
reta comparacao entre as mesmas. Além disso, ndés também apresentamosanisnmoede
agregacao que pode ser aplicado para mudar a visualizacdo quastémexuitas entidades
para ser analisadas na mesma tela. A combinagéo destas dessas dusspgécomite se atingir
escalabilidade visual na analise de aplicacdes paralelas.

A.3.1 Algoritmo de Fatia de Tempo

O objetivo do algoritmo de fatia de tempo consiste em criar uma estrutura hiegcye reflete
0 comportamento do programa para um dado intervalo de tempo. Para isés,dshierarquia
devem receber valores que sdo calculados baseados em dois. fatdieffnicdo do intervalo
de tempo e um sumario de eventos para cada entidade monitorada naquedéoiniiferente
configuracBes para definir o intervalo de tempo sao possiveis, desdalimgepequenos até
grandes, entre outros.

O sumario de eventos é feito levando-se em conta o intervalo de tempo eslecdiin-
formacdes adicionais sobre uma entidade, presente nos dados de momitora@ebjetivo
€ encontrar um valor numérico que represente 0 comportamento de datialen Existem
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diferentes jeitos de definir esses valores numéricos. Podemos consjderasse numero é a
guantidade de tempo, ou a quantidade de vezes que algo acontecdgoeigoiatra informacao

que pode ser contada de algum jeito. O principio geral do algoritmo é sopsaadamente 0s
valores para cada um dos tipos de dados que podem ser encontealosna entidade, como
estado, variavel, links e eventos, e entdo realizar uma interseccdosdessaom a fatia de

tempo usada.

A.3.2 Agregacao Visual

O uso de uma representacao Treemap habilita a escalabilidade da ant@isgnifica que se
aumentamos o tamanho da hierarquia sendo visualizada, a represegtagaogce compreen-
sivel do ponto de vista do usuéario. Embora isto acontece na maioria da$sgpagécnica se
mantém limitada pelo tamanho do espaco dedicado a sua representacao aaaeidtador.

O modelo de agregacao tenta superar esta limitacdo através da reod@@nizdgerarquia
a ser visualizada. Ele age basicamente através da agregacao dedadddsas da arvore para
noés intermediarios da mesma. Com esta abordagem, a renderizacéo Tpeemaper parada em
gualquer nivel sem perder a informacao importante que foi registradadsdfolhas da arvore.

Figura A.3 mostra trés modificacdes na hierarquia causadas pelo modejoedagio. A
hierarquia original € mostrada na esquerda. Cada informacao noslhas pode representar
uma métrica diferente, como a quantidade de vezes que algo acontece.s$doexemplo,
existem trés niveis intermediarios: Processo (P), Maquina (M) e Clugted @bjetivo principal
da agregacéo € agrupar os valores de P e fazé-los subir um nivebda &endo assim, apos
a primeira agregacao, os valores nos vetores sdo somados e atrimscds aM. O algoritmo
pode ser aplicado novamente para continuar a agregagao até o no raiz.

Original Hierarchy generated . Aggregated at o A ’ Aggregated at ) Aggregated at
by the Time-Slice Algorithm ! Aggreﬁm" Machine Level ﬂmﬁm Cluster Level 3 Agg’eg.a""” Grid Level

(5.4) (2,7) (6,3) (0,9) (5,4)
+ +

Figura A.3 — Trés agregacdes realizadas pelo modelo de agregacao.

Além da tradicional operacdo de soma (mostrada na Figura A.3, 0 modejoad@edo pode
ser aplicado usando outras fungdes, como maximos, minimos, média e mediapbca&ao
dessas fun¢Bes depende diretamente em qual o tipo de informacacageagada e pode ser
usado para evidenciar alguma caracteristica particular.

O beneficio trazido pelo modelo de agregacéo é evidente quando o mesmibi@aabo
com o algoritmo de fatia de tempo. Quando uma aplicagéo paralela € compostelifms



126 APPENDIX A. EXTENDED ABSTRACT IN PORTUGUESE

processos, a técnica de agregacéao pode ser usada para melhdiesda visualizagédo baseada
em treemaps.
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A.4 O Protdtipo Triva

Esta secdo descreve resumidamente o prototipo desenvolvido para implersentadelos ap-
resentados nas secdes anteriores. Esta descricdo mostra as diecisfi@ementacao tomadas.
O protétipo é chamado de Triva.

Um dos principais guias durante a implementacao do protétipo é que ele destedan-
struido sobre ferramentas e bibliotecas existentes, principalmente paraelgsenvolvimento
de implementacdes ja validadas. A primeira decisdo tomada é a adoc¢éo de glguessia
ferramenta Pajé. As principais raz6es que motivaram esta adocaotéizagio de software e
0 bom desempenho dos componentes de simulacdo do Pajé. Outras decisks incluem
o uso de formatos de descricdo de recursos facilmente reconheciti@rtente, a adocéo da
biblioteca GraphViz, entre outros.

A Figura A.4 mostra a organizacéo geral do prototipo, composta de modwddsamsfor-
mam os dados de rastreamento em objetos Pajé, e entdo nos dois tipos ldmgénao 3D e
a treemap. Pelo fato da adogao de objetos genéricos, a Unica partadiporgue é depen-
dente do formato do rastro é aquela representada na esquerda daifdjoada pelo integrador
DIMVisual e seus sub-componentes. Os retangulos brancos sdo liasiaderramentas exis-
tentes que foram reutilizadas com poucas alteragdes; retangulosfoirarasiesenvolvidos para
fazerem parte do protétipo.

Triva3DFrame

TrivaVie

Integrator

TrivaController
DiMVisual ‘ DIMVisualReader H

v i
PajeEventDecoder}—>‘ PajeSimulator }——bStorageController <& User Interactions
\\ Triva2DFrame
PajeFileReader ~—p» TimeSlice

Paje Filters

Figura A.4 — Arquitetura Triva.

O componente TrivaController, escrito na linguagem C++, fica a cargoidalizacdo de
todos 0s componentes, conectando-0s seguindo a arquitetura da Aigurale também ap-
resenta ao usuario a interface gréfica, criada usando a biblioteca getd/iitravés de uma
janela, com opcdes de configuragdo e mecanismos de interacdo. A iedinzetrsional e a
renderizacéo treemap € também inicialmente configurada por esse cobaponen

Os filtros Pajé, representados pelos retangulos pontilhados da FigursdA.4s mesmos
utilizados na ferramenta de visualizacdo Pajé. Suas implementacfes levaontanvdrias
guestdes ligadas a escalabilidade e baixo tempo de resposta aos conaimiedate com o
usuério. O primeiro dos filtros, PajeEventDecoder, lida com a entraddaeelo DIMVisual-
Reader e prepara para o proximo modulo. O PajeSimulator transformarisseen objetos
visuais. Esta transformacao consiste em criar uma estrutura hierargsicastros, usando os
tipos basicos Pajé. Esta estrutura, que representa a mesma informagitcaelacnos rastros, é
otimizada para a visualizagao, e registrada no StorageController.

Na parte mais da direita da Figura A.4, as interacdes entre os médulos famanms dois
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sentidos. InteragBes da direita para a esquerda sdo pedidos deladass Eles sdo lancados
por comandos de usuario ou mudancas nas configuracées. As isedg@&squerda para a
direita sdo respostas aos pedidos.

A.4.1 TrivaView

O modelo de visualizacado, apresentado na secdo A.2, é implementado nipprhiva através
do componente TrivaView. A Figura A.5 apresenta sua organizacabigeluindo os compo-
nentes relacionados. O modulo TrivaView implementa a parte do Extractor delon®D, ob-
tendo do fluxo de objetos Pajé os containers e links, e redirecionandm@#fita 0 componente
DrawManager. A parte do modelo 3D que se chama Entity Matcher é implementatiés
components do protétipo: TrivaApplicationGraph, TrivaResourcaglsrand TrivaTreemap-
Squarified. Eles recebem como entrada os containers e links do Triwad/ie descricdo dos
recursos de arquivo. A parte Visualization do modelo 3D mostrada atlavgsulo pontilhado
na direita da Figura A.5, é implementada com 4 componentes: o Triva3DFgamenantém
a cena 3D, e seus trés gerenciadores que podem mudar os aspektiss eiDrawManager, o
AmbientManager e o CameraManager.

Pajé Objecti

TrivaView

Resource
Description

DrawManager

: TrivaApplicationGraph (-
- TrivaResourcesGraph
i rivaTreemapSquarified ;

\ b

Triva3DFrame %» \‘;%}f )

3D Rerdered

‘ AmbientManager

: CameraManager

Figura A.5 — Layout de implementag&o do TrivaView.

A.4.2 TimeSliceView

O modelo de agregacéo e o algoritmo de fatia de tempo foram implementados noneorep
TimeSliceView, como mostrado na Figura A.6. Outro componente importante dgsta E
o Triva2DFrame, cuja responsabilidade é desenhar a treemap na janggaaizacao do pro-
totipo.

On demand ]
Pajé Objects i i ‘ Configured Treemap wxWidgets
4% TimeSlice | ﬁ Triva2DFrame

Window Size Changed

Treemap Rendered

New Aggregation Level
/ Time Slice Changed

A A A

Figura A.6 — Layout de implementag&o do TimeSliceView.
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A Figura A.6 também detalha as interacdes e notificacdes que acontecamedarrexe-
cucdo do componente. A chegada de objetos do simulador Pajé (veja Kkidyrara detalhes)
€ representada na esquerda da Figura. As interag6es com o uswfenio pausar trés diferentes
tipos de notificagbes que vao do componente Triva2DFrame para o Time&inoedanca do
tamanho da janela, um novo nivel de agregacédo e a mudanca da fatia de fodpe estas
notificagdes disparam a mesma cadeia de acontecimentos no componenéa deaima hi-
erarquia de comportamento, possivel aplicacdo de operadores dag@gre calculo da nova
treemap. A treemap resultante é enviada como resposta e entdo desemeanaeja compo-
nente Triva2DFrame.
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A.5 Resultados e Avaliacéo

O principal objetivo desta parte do resumo é mostrar os dois tipos de vigd&izgerados pelo
protétipo Triva, um deles tri-dimensional e outro com treemap. Em paraketsas visualiza-
¢Oes, é feita uma analise considerando os rastros de execucédo utitpadmentrada para o
protétipo.

A.5.1 Tri-Dimensional

O principal objetivo do modelo tri-dimensional é realizar o mapeamento dosarenfes da
aplicacdo com a topologia de interconexdo dos recursos. Parardpras® dos resultados
obtidos com este tipo de visualizagdo, selecionamos um cenario onde e&Bteracessos,
alocados em 2 sites diferentes do Grid’5000. O s#acycontribui para a execu¢do com 30
magquinas do clustgrelon ao mesmo tempo que o siemnesem uma alocagéo de 25 maquinas
do clusterparamounte 5 maquinas do clustgraraguad Consideramos neste caso que uma
topologia de rede no qual cada site contém um roteador préprio e todstess de um site sdo
conectados no seu respectivo roteador. Os roteadores de sitestdifeestdo interconectados.
Sendo assim, quando uma mensagem é enviado de um cluster de um site atendeloutro
site, ela deve passar através dos dois roteadores.

A Figura A.7 mostra duas capturas de tela do protétipo Triva geradastd@aisualizacao
do arquivo de rastro deste cenario. O texto e as linhas pontilhadasimaaomalmente inseridas
para aumentar o entendimento do exemplo. A imadenesta Figura mostra o tempo total
de execucdo com uma escala de tempo pequena, fazendo com quegamgstas figuem
perto da base da visualizagdo. A linha pontilhada desta imagem mostra e@epamte 0s
sitesrennes com dois clusters, rancy com apenas um cluster. N6és podemos observar nesta
escala de tempo que um grande namero de roubo de tarefas aconteaesetitrstergrelon
e paraquad provavelmente devido ao maior nimero de processos alocados nelsaAdo
essas interacdes com a topologia da rede, o protétipo Triva permite gugudovisualize que
todos os pedidos de tarefas destes clusters devem ser comunicadés @dsdois roteadores
da interconexao.

O protdtipo também permite a mudanca dindmica da escala do tempo, usando 0 mouse
A imagemB da Figura A.7 mostra o tempo total de execucdo para os rastros desti®,cenar
com uma maior escala de tempo. Através desta imagem, € possivel obseatifaremgas do
comportamento do roubo de tarefas em diferentes intervalos de tempoalgdxe Pode-se
perceber que no inicio ha um numero significativamente menor de roubgsacado com o
fim. Isto ocorre porque no fim de uma aplicacdo KAAPI as tarefas dispisnpara execucao
se tornam mais raras. Este comportamento é esperado na atual implemeotdédd~d, onde
um roubo de tarefas aleatério é implementado.

Um segundo cendrio é uma aplicacdo KAAPI composta por 200 pro¢cess@90 maquinas.
A alocacdo de maquinas esta dividida em dois sitesnese nancy O nimero de maquinas
alocadas em cada um € igual, embora a alocac¢éo interna de cada unewifguantidade de
maquinas por cluster. A images da Figura A.8 mostra o nimero de maquinas para cada
cluster alocado e também a topologia da rede que interconecta os dois ditdg pontilhada
€ utilizada para separar os sites. NOs consideramos para este cerdrnagifes adicionais
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Figura A.7 — Duas capturas de tela do protétipo Triva durante a visuabizig@ima aplicacao
composta de 60 processes, em diferentes escalas de tempo.
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o clustergrelone seu roteador é de 1 megabit, como mostrado na imagdaFigura.

B interconexzo se torna gargalo, dicas possiveis para uma melhor alocagéo
Paravent (61)

A Inicio da Execugéo da Aplicagdo

100 Megabit Link | "y &

Paraquad (33) \

Parafount (6)

Rennes _.-~"

100 Megabit Link

Ll 1
Grelon (87)

Grillon (13) Grelon (87)

Figura A.8 — Duas visfes de um exemplo com mais informacdes da topologdalaomo as
limitagBes impostas pela largura de banda.

Neste cenario, existem 87 processos executando no cfiristen, e 61 noparavent Con-
siderando apenas os roubos de tarefas entre estes dois clustersnestmraalo no circulo pon-

tilhado da imagem a direita da Figura A.8. A flecha pontilhada da mesma imagem dudica
estes pedidos devem passar através do link de 1 megabit. A visualizgedie gue um nimero
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menor de processos deveria ser colocado em um cluster com largbenda limitada. Se,
por exemplo, os processos do clugjezlonfossem executados no clusggillon, a execucdo
poderia obter um melhor desempenho.

Através do exemplo deste segundo cendrio, nés podemos notar a imiod@analise do
desempenho de uma aplicac@o juntamente com uma representacgdo topadgite. dSe este
tipo de visualizagdo, como mostrado na imadgda Figura A.8, ndo estiver presente, o analista
pode obter conclusdes erradas sobre 0 desempenho da aplicacao.

A.5.2 Agregacao

Um dos principais beneficios do modelo de agregacao de dados deséadseilidade de
analise uma grande quantidade de entidades monitoradas na mesma telavalRara o
escalavel é a visualizacdo, nés geramos um rastro sintético compost0d él peocessadores,
cada um com dois estados diferentes. Segue a seguir a anélise dizssmra a técnica de fatia
de tempo e o algoritmo de agregacéo.

A Figura A.9 mostra a analise do rastro, cuja hierarquia tem quatro niveis:Clitster,
Machine e Processor. A hierarquia tem 10 Sites, cada qual com 10r8]usida cluster com
100 Machines e cada machine com 100 processors. Cada procgesadelestar em um de dois
estados possiveis, representados na Figura pelas tonalidadesférdeale cinza.

A andlise em larga-escala usando o prot6tipo comeca com a tréertagalizada no topo a
esquerda da Figura A.9, no nivel processor. Nesta treemap, existemilz@tangulos: 100 mil
processadores vezes a quantidade de estados possiveis, quidNe&gpddemos observar que
algumas regifes desta treemap sdo mais escuras que outras, permitindiipalgienconclusao.
Entretanto, qualquer conclusao precisa é dificil de obter com esta treéknaincipal razéo
disso € que a treemaptem retdngulos que sdo muito pequenos, tornando dificil a observacao
de diferencas de tamanho entre dois estados de um Unico proces3as@mplo é mostrado
para indicar a limitacdo de uma visualizag&o treemap tradicional.

O retangulo branco da treem#@pna Figura A.9 representa o espac¢o dedicado para uma
maquina. Embora seja dificil de notar, existem 200 retangulos nesta jpeguesnque repre-
sentam o estado dos 100 processadores desta maquina. Pelo fatalifieisde entender o
padrdo de todos esses 100 processadores, 0 usuario pode irteragirprotétipo e mostrar
valores agregados para o nivel maquina, como mostrado na tré&uaafrigura. Ela mostra
para cada maquina os dois possiveis estados. Nesta visao, ja é posdisat diferencas entre
as maquinas: algumas estao significativamente mais em um estado do quecerA aota em
evidéncia no lado esquerdo da treerBqapnostrada através de um zoom, corresponde a area do
retangulo branco da treemap

As agregacfes seguintes permitem o usuario de visualizar os rastrégehden cluster,
como mostrado na treem&pda mesma Figura, e no nivel de site na treeiDap treemap
C mostra 100 clusters (10 por site). Em seu lado esquerdo, a treemapraprem retangulo
preto que mostra 10 clusters na area dedicada para um site. A flechaocolmeeste retangulo
aponta para os valores agregados para este site, na treemap D. A madgagag possivel,
mostrada na treemdp, permite uma visao por estado das informagdes disponiveis, indicando
gue o estado representado pela tonalidade mais clara aparece maisreaesitjo na fatia de
tempo selecionado para este exemplo.
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A Hierarchy: Site (10) - Cluster(10) - Machine (10) - Processor (100) Hierarchy: Site (10) - Cluster(10) - Machlne(10) Processor(100)
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Figura A.9 — Treemap Normal (A) e quatro treemaps com dados agre(Rde&) de dois
estados para 100 mil processadores (gerados sinteticamente).

Um segundo cendrio para a visualizacdo treemap € uma aplicacdo deot88sps, exe-
cutada em 188 maquinas, distribuidas em cinco sites do Grid’5000 incluididster de Porto
Alegre. Existem 13 maguinas alocadas do cluster, emportoalegre 2 debordereay 17 de
bordemey e 6 debordeplage em bordeaux 45 depaste| 5 deviolette emtoulouse 14 de
paramount 36 deparaquad emrennes e finalmente 50 dgrelonno sitenancy A Figura A.10
mostra duas treemaps calculadas com os rastros gerados neste cenario.

A treemapA mostra os estados Run e RSteal para todos os 188 processos. Quoase tod
0S processos mostram o mesmo comportamento, com o estado Run maiotdéreas cinza
claro) comparado com o estado RSteal (cinza escuro). A Unica exapgéece nos K-processos
executados no site gmrtoalegre colocados em evidéncia manualmente com o circulo pontil-
hado. Observando esta treemap, n6s notamos que estes procesaosipas tempo roubando
tarefas que os processos de outros sites. A tre@niap direita, mostra a mesma fatia de tempo
€ 0S mesmos processos, mas somente o estado RSteal. Aqui, a diferemgpaldespendida
roubando tarefas se torna ainda mais evidente. Nés acreditamos queipapriazao atras
deste comportamento vem da interconexao entre os sites. O gitetdalegreé localizado no
Brasil, e a sua conexdo com o Grid’5000 é feita través de uma Redd#®¥irdual (VPN) que
€ mantida através da internet. A laténcia desta interconexdo, comparadalatéimcia geral
entre os sites do Grid’5000 localizados na Franca, € significativa. ltd eitarefas tradicional
implementado no KAAPI ndo diferencia quem sera o alvo do roubo. Istajrerambiente de
interconexao heterogéneo, pode levar a mais tempo gasto para raubaiindicado através da
treemap calculada através do nosso algoritmo de fatia de tempo.
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A Run e RSteal B Mostrando apenas o estado RSteal
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Figura A.10 — Cenério KAAPI com uma aplicacdo composta de 188 praxesso

No geral, o algoritmo de fatia de tempo combinado com o modelo de agregastadeate
possibilita uma facil identificacdo de questbes de desempenho ao companapartamento de
processos de uma aplicacéo paralela. O modelo de agregacéo aptatgenarpara situacdes
de larga-escala, ndo importanto quantos processos estdo envolvidieglisa. O Unico passo
necessario para as duas propostas funcionarem bem nestes antbedefmicao de uma hier-
arquia com ao menos alguns niveis. As hierarquias usadas neste teh@Rbtem 5 niveis,
tornando possivel a obtencao de bons resultados na visualizagéo.
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A.6 Conclusao e Trabalhos Futuros

Esquemas de visualizacao tradicionais para andlise de aplicagbes pdaimta concebidos
para lidar com dados de monitoramento de pequena escala e de ambieniesadgs. A
necessidade de técnicas de visualizacdo para a analise de aplicagbas\pi@ntes de larga-
escala, tais como Grids, motiva este trabalho. Dois problemas na analidecded®s paralelas
através da visualizag&o sdo identificados nesta tese.

O primeiro é o impacto da rede de interconexdo na execuc¢ao de aplicaréksdgs. Este
impacto deve estar presente na analise para se melhor entender e melitesampenho da
aplicagé@o. Técnicas de visualizacao tradicionais, como a represeasjigim-tempo por exem-
plo, sdo largamento usadas para andlise de aplicac8es. No entanti@ositas ndo conseguem
mostrar na mesma tela a topologia da rede e os dados de monitoramento da@pktagidde
levar a conclus@es erradas durante a deteccéo de problemas deatgsedygs aplicacdes. O se-
gundo problema é a escalabilidade visual das técnicas de visualizagatalMente, o nimero
de entidades monitoradas que pode ser analisado na mesma tela é limitadoc@oesatical
da tela de um computador. Representacdes espaco-tempo sdo umenapedeste problema,
nao sendo bem apropriadas para a andlise de aplicacdes Grid conppostasnimero grande
de processos.

A idéia principal desta tese é a exploracdo de técnicas de visualizacafiiaacdo que
podem ser utilizadas para analisar o comportamento de aplicacdes parblelassso caso,
esta exploracdo também considera os dois problemas que tentamos reNolssas primeira
abordagem mostra a rede de interconexao juntamente com os dados agéaplisando uma
visualizacao tri-dimensional, onde a base desta visualizacao € usadatadinar a interconexao
entre 0s recursos, e o terceiro eixo para mostrar a evolucao da aplézalgingo do tempo. Nés
melhorarmos nossa solucéo através da representacéo de padrd@esidieacdo, oferecendo ao
desenvolvedor a possibilidade de casar este padrdo com o da topelagaed

A segunda abordagem é o modelo de agregacéo visual, onde os pbkpstalabilidade
sdo superados através da combinacédo da técnica Treemap e o algoriatia de fempo. Este
algoritmo leva em conta intervalos de tempo para gerar valores e injeta-lomarorganiza-
¢céo hierarquica da aplicacdo. Esta estrutura é entdo representads dadécnica Treemap.
A escalabilidade da visualizacao é atingida através do modelo de agregagéms niveis da
hierarquia s&o explorados para criar dados intermediarios que paggases para criar visual-
izacdes treemap por niveis com mais informacdes.

Ambas as abordagens foram implementadas em um proto6tipo chamadal@ésgayolvido
usando um gerenciador de cena 3D chamado Ogre e uma implementac&em@d propria.
O protétipo tem mecanismos de leitura que o ligam com a biblioteca de integralgiésDal,
capaz de integrar dados de monitoramento de diferentes fontes e forRashos sintéticos e
reais do KAAPI e MPI foram usados para validar as abordagens e anraptacdo. Os rastros
KAAPI foram coletados na plataforma Grid’5000. Embora a avaliagdordtiipo é ligada
aos rastros usados, o uso do formato Pajé como entrada permite a exiensfEmeficios da
ferramenta para outros campos de pesquisa e aplicacdo, de visuatieaggursos a outros
tipos de bibliotecas de comunicacéo.

Os resultados obtidos séo promissores. A visualizacao tri-dimensiomait@em melhor
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entendimento de padrées de comunicacdo com a topologia da rede. Nasusaa simpli-
ficacdo da topologia do Grid’5000 e o roubo de tarefas de aplicacd@dKAomos capazes
de mostrar que em diferentes fatias de tempo, o roubo de tarefas padbegrneficiar mais da
localidade, uma vez que a implementacéo atual de KAAPI ndo leva em conmdiacede para
realizar pedidos de roubo de tarefas. Por outro lado, os resultatidssodom o modelo de agre-
gacédo permitiram a visualizagédo dos estados de 100 mil processadweagsinteticamente.
As treemaps definidas pelo algoritmo de fatia de tempo foram também definadauastros
reais KAAPI e MPI. Fomos capazes de identificar nos rastros KAAPtatites caracteristi-
cas, como o comportamento diferente nos mecanismos de roubo apreseundiferentes
processos, a eficiéncia do balanceamento de carga consideranaotémdjoo de execucéo das
aplicacOes, e a analise em larga-escala de uma aplicacdo KAAPI compogiagse 3 mil
processos.

Em resumo, os principais objetivos alcancados nesta tese séo a pagasiardagem 3D,
o0 modelo de agregacéo visual combinado com o técnica de fatia de temptb&pprdriva.
Além disso, se incluem a interacdo entre o protétipo Triva e a biblioteca KA#dPmitindo
uma andlise das atividades de roubo de tarefas desta biblioteca.

Como perspectivas de trabalhos futuros, prevé-se a evolucéo diéizagéo 3D para a rep-
resentacdo de informacfes geradas pelo modelo de agregacdop deaggpresentacdes de
grafo com a técnica de fatia de tempo e agregacéo; o estudo de ougdedute agregacao e
outros tipos de dados para o algoritmo de fatia de tempo. Acreditamos que a ¢géplioais
significativa deste trabalho seja o estudo de técnicas de visualizacaaaplsaa a analise de
aplicacdes paralelas.
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Extended Abstract in French

The French title for this thesis IQuelques Modéles de Visualisation pour I'’Analyse des Ap-
plications Paralléles” The extended french abstract is also presented here to fulfill theeequ
ments established in tha-tutelleagreement of the author. This abstract is a french translation
of previous Portuguese extended abstract.
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B.1 Introduction

Les systémes distribués sont fondés sur du matériel et des logiciels amoinéeigérant plus
d’une unité d’exécution [19]. Dans ces systemes, les processeauiigt@connectés et commu-
niguent via un réseau. Les programmes pour ces machines sont slieispisieurs catégories
et doivent interagir & différents niveaux de parallélisme, tels que legaste messages ou la
mémoire partagée. Un exemple de systeme distribué est représenté pillekedecalcul [30].
Ce type de systéme est structuré en organisations virtuelles [29], eétpeuwmposé de mil-
liers de machines distribuées géographiquement. Deux exemples de gritlesmojet francais
Grid’5000 [12] et le projet américain TeraGrid [16].

Les caractéristiques partagées par presque toutes les plates-fortyes gelle sont le dy-
namisme, 'hétérogénéité des ressources et des logiciels et la présenatigles domaines ad-
ministratifs. Le dynamisme signifie que les ressources d’une grille peuseanil indisponibles
a tout moment, sans aucune notification préalable. Les applications pardtd@lest consid-
érer ces conditions dynamiques typiquement pour faire face aux fluctsat®la quantité de
ressources disponible. L'hétérogénéité signifie que différentegycwafions de ressources sont
présentes sur la méme plate-forme de grille. Ceci est également valableplmgiciels de bib-
liotheques. Une grille peut étre composée par les différents domaines adatifisisou chaque
partie est maintenue indépendamment par leur administrateurs. Au-dela ceraetéristiques,
une grille peut également étre connectée par un réseau complexe acéemént étendue par
I'ajout de nouvelles ressources.

L'interconnexion entre les ressources d’'un réseau peut étre cémpulesdifférents types
de réseau : Ethernet, Myrinet, InfiniBand, ou fibre optique. Un exemplgrille contenant
plusieurs types d’interconnexion est appe&sktop Grid$48], comme les projets BOINC [1] et
Seti@Home [2], ou I'interconnexion se fait généralement par le biais diateAutre exemple
qui montre la présence de plusieurs types d’interconnexions estillaegmposée delusters
ou une forte hiérarchie d'interconnexion est utilisée pour connecsalalgtershomogénes [12].
La présence de plusieurs types d’interconnexion est un reflet déddg&néité et la répartition
géographique de grilles. Ces aspects imposent un réseau plus complexanbre plus grand
de directives de routage pour la communication entre les processusletanee variable dans
le temps.

Les plate-formes de type grille passent facilement a I'échelle car de ifesivessources
peuvent y étre ajoutées indéfiniment en les reliant aux participants exidgamnsgle générale,
ces compléments apportent plus d’hétérogénéité et de complexité au dévegeau. Actuelle-
ment, il existe des grilles globales composées de milliers d’ordinateurs, commeteerex-
emple du projet BOINC. Un autre exemple qui montre comme il est facile d’ajdateouvelles
ressources a une grille est Grid’5000, ou de nouvedusterssont ajoutés abackboneorinci-
pal de la plate-forme. Le passage a I'échelle de ces plate-formes elsbnne chose pour les
applications paralléles, qui exigent de plus en plus de ressourcesatfques.

Toutes ces caractéristiques de la grille influencent directement le compottdazeappli-
cations paralléles au cours de leur développement et leur mise en exé@ion fait, il est
important que le développeur comprenne les impacts des systémes distibliggication.
L'analyse d'une application paralléle qui depend de la topologie duuésgain exemple. L'ap-
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plication peut avoir un performance qui varie en fonction des resssgua ont été sélectionnées
et I'interconnexion entre elles. Cette influence est encore plus évidestputles caractéris-
tiques de réseau sont considérées, comme la latence et la bande paesares applications
qui sont limitées par celui-ci. Le passage a I'échelle d'une grille est ue agprect qui influence
directement le comportement des applications paralléles, la disponibilité dellesuessources
pour I'application ne signifie pas que I'exécution aura une meilleure pedoce.

Compte tenu de ces éléments, nous pouvons voir qu’il est important dsanddycomporte-
ment des applications paralléles en conjonction avec les informations de la@eite analyse
peut aider les développeurs a comprendre I'impact de la topologie daurése I'application,
par exemple. En visualisant la fagon dont I'application communique et la tapalogéseau, il
est possible de determiner comment I'adapter afin de mieux exploiter cetteonmersgon. En
outre, si le réseau est hiérarchiqguement organisé, les applicationsnpauivre sa hiérarchie
pour éviter les goulets d’étranglement. Une bonne analyse doit auskiioea des conclusions
sur tous les processus qui sont mis en exécution, y compris sur les daempats locaux et
globaux qui peuvent apparaitre entre eux. Quand il y a une grarshitgude processus, I'anal-
yse doit étre en mesure de générer des résultats statistiques sur I'enderédeprocessus.

La visualisation est une forme d’aide a I'analyse des applications parali#les été large-
ment utilisé au cours des 30 derniéres années, pour comprendreadiseisies applications qui
sont axées sur différents niveaux de parallélisme. La facon la plusigqua&sde construire une
visualisation consiste a utiliser une adaptation des diagrammes de Gantggli@nént connue
sous le nom de graphiques d’espace-temps. Ces visualisations didpdst® des composants
de l'application verticalement et metent la ligne du temps sur I'axe horizontal.eRemples
d'outils qui offrent ce type d’analyse sont I'outil de visualisation génér Pajé [22], Vam-
pir [60] et d’autres [5, 46, 63]. Ces graphiques espace-tempsdggginiargement utilisés dans
les plates-formes existantes, tels quedlesters ou les données sont simples et uniformes.

Beaucoup de ces outils de visualisation ont été adaptés afin d’obsem@mfmmrtement
des applications dans les systemes distribués, comme les grilles. Habituellencamtifisent
a utiliser les méme techniques de visualisation. Considérant les représentsp@te-temps,
le premier probléme qui se pose est qu’elles ne peuvent pas représerteles données de
I'application, la complexité de la topologie du réseau d’'une grille. Comme nousni&adit,
'impact de la la topologie ne peut pas étre exclu de I'analyse quand I'imtees@on entre les
ressources est complexe. Le deuxieme probléme est lié au passageelid'éde I'affichage
graphique espace-temps. Avec l'utilisation de ces représentations, lesndeltomposantes
de I'application qui peuvent étre visualisés dans un écran d’ordinaglimité a la résolution
verticale de I'écran.

Cette thése tente de résoudre les problémes des techniques traditionnedlées diauali-
sation des applications paralleles. L'idée principale est d’exploiter le dentkEria visualisa-
tion de I'information et essayer d’appliquer ses concepts dans le cadfandlyse des pro-
grammes paralléles. Portant de cette idée, la thése propose deux modétsligation : les
trois dimensions et le modeéle d’'agrégation visuelle. Le premier peut étre utiliséapalyser
les programmes paralléles en tenant compte de la topologie du réseauahhgéfilui-méme se
compose de trois dimensions, ou deux sont utilisés pour indiquer la topotdgig@siéme est
utilisée pour représenter le temps. Le second modéle peut étre utilisé pdyseardes applica-
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tions paralleles comportant un trés grand nombre de processsus. Xiéntemodele exploite
une organisation hiérarchique des données utilisée par une techniqeléeappeemap pour
représenter visuellement la hiérarchie. Les deux modeéles constituembuwelle facon d’anal-
yser visuellement les applications paralleéles, car ils ont été congus paystésnes distribués
grands et complexes, tels que les grilles.

Quelques concepts proposés dans cette these ont été publiés et uesiréaleours d'éval-
uation.

Ce résumé étendu est organisé en cing sections, de la fagcon suivante :

Section B.2 : Le Modéle Tridimensionnel
Cette section présente le premier modéle de cette thése, constitué par Peppnacois
dimensions. Nous décrivons la conception visuelle et une organisatiénajé de com-
posants pour la génération de visualisations 3D.

Section B.3 : Le Modéle d’agrégation des Données
La section présente I'algorithme de tranche de temps pour la descriptiomghodement
d’une application sous forme d’'une hiérarchie, et le modéle d’agrégatilis€ pour at-
teindre le passage a I'échelle dans la représentafi@enap

Section B.4 : Limplementation du Prototype Triva
Cette section présente le prototype développé pour cette thése. Sataesdaps cette
partie comprend I'organisation générale de ses composants.

Section B.5 : Résultats obtenus et Evaluation
Les résultats obtenus avec le prototype Triva sont présentés danseagtitm. Deux
études de cas y sont presentes : une par rapport au modele tridimehsiaurre liée
au modéle d’agrégation visuelle.

Section B.6 : Conclusion
Les résultats et implications de la these sont présentés, ainsi que lesgpigesppour les
travaux futurs.
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B.2 Le Modele Tridimensionnel

La performance des applications paralléles exécutées sur une grilleeesti¥iccaractéris-
tiques de l'interconnexion du réseau [49]. Quand les ressourcamertforte hiérarchie entre
elles, le choix de celles assignées a une application sera décisif pouf@aja@ce mais aussi
pour sa compréhension. Sans information sur la topologie du réseaalyS@nn’est pas en
mesure de voir que les problemes sont dus a la mise en oeuvre des commusidtagsodéci-
sions prises a partir d’'une vision traditionnelle dans ce cas peuventiiceradddes conclusions
erronées sur la performance. Ainsi, si nous avons été en mesugeerdiex I'exécution en ten-
ant compte des caractéristiques du réseau, nous pouvons voir plasngairles raisons du
comportement de I'application.

La plupart des outils de visualisation ne sont pas en mesure d'effecte@nalyse en tenant
compte de la topologie du réseau. ParaGraph est le seul outil qui offrencept de I'intercon-
nexion dans ses techniques de visualisation, mais seulement par I'adfisBparés de I'hyper-
cube et des modes de communication. En effet, ParaGraph n’a pas étépoam I'analyse des
applications a grande échelle. D’'autres techniques telles que le gragsiogaes-temps, utilisé
dans d’autres outils de visualisation, ne sont pas capables de préad¢opeiogie du réseau de
communication des applications paralléles. Dans ce cas, la limitation est liée araifatt les
ressources et les composants de I'application sont représentésndesyzage linéaire. Lorsque
la plate-forme d’exécution devient de plus en plus complexe, montrer la gipadiol réseau
dans un affichage espace-temps devient impraticable.

Notre proposition d'établir une connexion entre I'analyse de I'applicatida topologie du
réseau est fondée sur un systéme composé de trois dimensions. Uireelesiahs est la ligne
du temps, et les deux autres dimensions sont utilisés pour représentalidayteplu réseau. La
prochaine section présente la conception visuelle de notre modéle, gida seivante présente
le modéle abstrait de composants qui peut étre utilisé pour produire ¢catresu

B.2.1 Conception Visuelle

La conception visuelle de notre modéle est composée par la combinaisomdigtes de
visualisation qui montrent le comportement de I'application avec les dontréesuselles ou
statistiques de celle-ci. Si les données structurelles sont choisies, lagiepdioréseau peut
étre utilisée avec le comportement de I'application. Si les données statistimuteregquises,
I'utilisateur peut simplifier quantitativement les données a tracer, a delleschedes tranches
de temps différentes.

Le résultat de la conception visuelle est le modéle tridimensionnel. Le modélexadde
mensions réservés pour la représentation des données statistiquescchuedtes. Nous avons
nommé ces deux dimensions la “base de la visualisation 3D". La troisieme dimesstitan
ligne de temps. La Figure B.1(a) montre un exemple de I'approche pasespadion en 3D
avec les données d’une application. Les états des processus séaerg@s par des barres verti-
cales qui sont placées au-dessus de la base. Les différents étatpde laxe du temps peut étre
représenté par des couleurs différentes. La représentation deecitat|est placée verticalement
selon ses marques de début et de fin. Les communications sont ré@edsesr des fleches ou
des lignes dans un environnement 3D en reliant deux ou plusieursspusogui communiquent.
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Figure B.1(b) montre un point de vue différent, situé au dessus des ofpeésentés. Ce point
de vue permet 'observation de la structure de la communication de I'applicpoexemple.

(a) Conception visuelle de I'approche 3D. (b) Different point de vue.

FiGc. B.1 — La conception visuelle de I'approche 3D avec les traces d'uieafpn représen-
tées par des barres verticales montrant I'évolution des processute demgps.

B.2.2 Modele de Composants

Pour créer un affichage 3D, les traces collectées lors de I'executsoapgdications passent
a travers une série de transformations. A cette fin, nous proposons fobdéle abstrait de
composants. Figure B.2 montre I'organisation globale de ce modéle. En,datmadeéle utilise
deux types d'informations : des traces d'applications paralléles et uierfidb configuration
contenant la description des ressources de I'environnement dieécu

Monitoring Dat A B D
Trace Reader Extractor Visualization \ \\u‘] ’
=®
\ ¢
C -
Resources Description Comm. Pattern
C Ccz2
Entity Matcher Network Topology
C3
Logical Organization

Fic. B.2 — Modéle abstrait de composants pour I'approche 3D, avec troigooations possi-
bles pour la base de la visualisation.

La base de la visualisation est configuré pagigity Matcher(C). Nous avons développé
trois configurations différentes pour celui-ci : celle qui montre le schéemaochmunication de
I'application, celle qui montre ce modéle combiné avec la topologie du résdawjeniére qui
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combine les données provenant de I'application avec une représembgiigue des ressources.
Le composant selectionne une de ces configurations selon le choix dedtetilis

Parmi les trois alternatives dintity Matcher celle qui considére la topologie du réseau (C.2)
traite directement le probléme de l'influence de l'interconnexion sur I'appiicales autres
variantes sont présentées pour montrer d’autres informations, commenleésdstructurelles
(le modéle decommunication de I'application) et une représentation statistiquiétigls de
son comportement au fil du temps.

Nous considérons dans le modéle I'existence des traces qui sont dpoaitiles pour la
lecture et qui sont transformées en un flot qui traverse les élémentd-apite B.2 de gauche
a droite. Méme en supposant I'existence de ces fichiers d’entrée ngmsants peuvent fonc-
tionner indépendamment de la fagon dont les données sont injectéele dandele. Ainsi, le
modéle est capable de faire face a une génération d’événements “éridigaee leur volume
n'est pas trop gros. Des notifications peuvent également se produiselel modéle, en direc-
tion des autres composants, et de propager les modifications de caifigamarespondant aux
commandes initiées par I'utilisateur.
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B.3 Le Modéle Visuelle d’agrégation

Une autre préoccupation relative aux applications de la grille est gu'allasept étre com-
posées d’'un grand nombre de processus. Quelgues analyseéjaqrussibles avec des applica-
tions a grand échelle [50], mais seulement au niveau duster. Plusieurs questions se posent
dans des environnements de grille lors de I'analyse de ces applicatione.dst la grande quan-
tité de données de trace, qui dépend de deux facteurs : le nombre d'datit@pplication, et
la quantité de détails recueillis pour chaque entité. Une autre question essbgpaa I'échelle
des techniques de visualisation [26], qui doivent s'adapter a la qudetiiénnées qui peuvent
étre affichées sur I'écran sans que I'utilisateur ne perde la capaciténggrendre ce qui est
représenté.

Les techniques de visualisation des outils doivent également passdrellégmour I'analyse
des applications paralléles. Si on considére seulement la quantité desabg@dges, les outils
devraient étre en mesure de représenter au moins quelques milliers degu®sur le méme
écran. Un certain nombre de détails doivent également étre présentiadaprésentation. Un
exemple d’'un manque de passage a I'échelle est la représentation-espaseou la quantité
de données a représenter est limitée par la résolution verticale des @oralirsateurs.

Parmi les outils existants pour la visualisation, Vampir a une technique hi&paechour
sa visualisation espace-temps qui augmente la quantité de processusvguitfitre consultés
en méme temps. La technigue fonctionne en agrégeant les comportementsaessys en
fonction de la représentation hiérarchique. Le probléme de cette agpestue chaque niveau
d’'information est présenté différemment, ce qui rend difficile I'analysiéetisemble des points
de vue. D’autres outils tels que Jumpshot et Pajé, grace a une fené&tédildenent, peuvent
faire face a un grand nombre d’entités analysées. Cette technique a urt mépatif car le
comportement de toutes les entités ne figure plus dans la méme visualisation.

Notre approche utilise un intervalle de temps pour créer une structuragdhiépze qui
représente le comportement de I'application pour la période sélectionaés ulllisons ensuite
la technique Treemap [42] pour créer une représentation visuelle deidtusé. La technique
proposée augmente le nombre d’entités qui peuvent étre représentééme temps, et permet
une comparaison directe entre elles. En outre, nous présentons ausécanisme d'agréga-
tion qui peut étre appliqué pour changer la visualisation quand il y a de reoisds entités
qui doivent étre analysés dans le méme écran. La combinaison de ceedaniques permet
d’atteindre une passage a I'échelle de I'analyse visuelle des applicati@iie es.

B.3.1 Lalgorithme de Tranche de Temps

L'objectif de I'algorithme de tranche de temps est de créer une structwardhiéue qui
refléte le comportement du programme pendant un temps donné. Pour clefagemmets de
la hiérarchie doivent étre des valeurs qui sont calculées a partiruefaeteurs : la définition
d'une tranche de temps et un résumé des événements pour chaque éssitigpdans cette
période. Différents réglages pour définir I'intervalle de temps sontipless allant des petites
aux grandes plages.

Le résumé des événements se fait en tenant compte du temps spécifié éodadiion sur
une entité, présente dans les données de trace. Le but est de troewaeur numérique qui
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représente le comportement de chaque entité. Il existe différentesfdeatéfinir cette valeur,
comme la quantité de temps ou le nombre de changements d’état, ou de toute atrtratioh
gui peut étre prise dans les traces. Le principe général de I'algoritemkagouter séparément
les valeurs de chaque type de données qui peuvent étre trouvéasngoentité, et ensuite de
réaliser une union de cette somme avec la tranche de temps utilisé.

B.3.2 Agrégation Visuelle

L'utilisation d’une représentation Treemap permet la passage a I'échdllenddyse. Cela
signifie que si la taille de la plateforme affichée est augmentée, la reprimemaste com-
préhensible du point de vue de I'utilisateur. Si ce passage a I'échelted@ifcorrectement dans
la plupart des situations, la technique reste limitée par la taille de I'espace dad&Epaésenta-
tion sur I'écran de I'ordinateur.

Le modéle d’'agrégation essaie de surmonter cette limitation par le biais de lani&atgpn
de la hiérarchie a afficher. Il agit principalement par I'agrégation désuvs des feuilles de 'ar-
bre dans les noeuds intermédiaires. Avec cette approche, le rendoafreeut étre interrompu
a tout niveau, sans perdre I'information importante qui a été enregisiréeles feuilles.

Original Hierarchy generated Aggregated at Aggregated at Aggregated at

st nd ¥
by the Time-Slice Algorithm ! Aggre‘am" Machine Level ZMW Cluster Level 3 Aggre?.a“"” Grid Level

(5,4) (2,7) (6,3) (0,9 (5,4
+ +

FiG. B.3 — Trois agrégations réalisées par le modéle.

La Figure B.3 montre trois changements dans la hiérarchie d’agrégatiséscpar le mod-
ele. La hiérarchie originale est indiqué sur I'extréme gauche. Chaqoeriafion dans les
feuilles peut représenter différentes métriques, telles que le nombresdetifguelque chose
se passe. Dans notre exemple, il existe trois niveaux intermédiairesesBusc(P), Machine
(M) et Cluster (C). Le principal objectif de I'agrégation est de regssups valeurs de chaque
processus et de les déplacer d’un niveau plus haut dans I'agsreoRséquent, aprés la premiere
agrégation, les valeurs dans les vecteurs sont additionnées et steokées noeuds machine.
L'algorithme peut étre appliqué de nouveau jusqu’a I'agrégation darseledprincipal.

Outre I'opération d’addition (Figure B.3), le modele d’agrégation peutagpdiqué en util-
isant d’autres fonctions telles que la teneur maximale, minimale, moyenne et médappli-
cation de ces fonctions dépend directement de la nature des informatiéggeg et peut étre
utilisée pour mettre en évidence une caractéristique particuliére.

Le bénéfice apporté par le modéle d’agrégation est évident quanddrabiné avec l'algo-
rithme de la tranche de temps. Quand une application paralléle est compas#aliteux pro-
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cessus, la technique de regroupement peut étre utilisée pour amélioadys@a de I'affichage
basé sur les treemaps.
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B.4 Limplementation du Prototype Triva

Cette section décrit brievement le prototype mis au point pour mettre en cesivnedles
présentés dans les sections précédents. Cette description décriti$gsnded’implementation
prises. Le prototype est appelé Triva.

L'un des principaux guides pour la réalisation de ce prototype est quitilétre construit a
partir d'outils et de bibliothéques existants, en particulier afin de préverérilmplementation
d’outils déja validés. La premiere décision est I'adoption de certaines pddiktoutil Pajé. Les
principales raisons qui ont motivé cette adoption est la réutilisation de ¢ddgerformance
de I'ensemble des composants Pajé. Les autres décisions prises somneotd’utilisation
de formats de description des ressources faciles a reconnaitre gtibadde la bibliothéque
GraphViz.

La Figure B.4 montre I'organisation générale du prototype, composé de rsaylileonver-
tissent les données de trace pour des objets Pajé, puis élaborentdégpdsude visualisation :
la 3D et treemap. L'adoption des traces génériques a fait que la setibechaprototype dépen-
dante du format de la trace soit DIMVisual, représenté sur la gauche-ifuige. Les rectangles
blancs sont des bibliotheques et des outils qui ont été réutilisés aveemhiadgement ; rect-
angles gris ont été développés pour composer le prototype.

Integrator

Y (

‘PajeEventDecoderH‘ PajeSimulator }—~>‘StorageControlIer
\\ Triva2DFrame
4 PajeFileReader —» TimeSlice

TrivaController T EED EEE
DIMVisual ‘DlMVisualReader }\ wxWidgets /}’m__‘

-4----- User Interactions

Paje Filters

FIG. B.4 — L'architecture du prototype Triva.

Le composant TrivaController, écrit en langage C++, est en charde ohise en route de
tous les composants en les reliant selon I'architecture de la Figure B.4. Eftdtfégalement
a l'utilisateur une interface graphique, créée en utilisant la bibliothequeidgets, sous la
forme d’'une fenétre, avec des options de configuration et des mécanikimiraction. Les
visualisations 3D et treemap sont aussi mises en route par cette composante.

Les filtres, représentés par des rectangles en pointillés dans la FigusoBt4des mémes
filtres que ceux utilisés dans Pajé. Leur implementation prend en compte piugiestions
liées au passage a I'échelle et au temps de réponse des commandes dackiniBlisateur.
Le premier de ces filtres, PajeEventDecoder, traite I'entrée générdellddfisualReader et
la prépare pour le prochain module. Le PajeSimulator transforme les évéiseaneobjets vi-
suels. Cette transformation a comme but la creation d’'une structure hiéraae trace, en
utilisant les types de base Pajé. Cette structure, qui représente la mémeatidarque celle
qui se trouve dans les fichiers d'entrée, est optimisée pour la visualisatienregistrée dans le
StorageController.

Dans la partie droite de la Figure B.4, les interactions entre les modules bgénaries deux
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directions. Les interactions de la droite vers la gauche sont les demandes\lles données.
Elles sont initiées par 'utilisateur par des commandes ou par la modificationala@izes. Les
interactions de gauche a droite sont des réponses a des demandes.

B.4.1 TrivaView

Le modeéle de visualisation 3D, présenté dans la section B.2, est mis en dangrie pro-
totype Triva par la composante TrivaView. La Figure B.5 montre I'orgaicisaylobale de cette
composante. Le module implémente la partie Extractor du modéle. Il obtient ddefiobb-
jets Pajé les conteneurs et les liens a envoyer au EntityMatcher, et engsideaflot au com-
posant DrawManager. La partie du modéle 3D appelé EntityMatcher estemisguvre dans
les trois composantes du prototype : TrivaApplicationGraph, TrivalressGraph et Triva-
TreemapSquarified. lls recoivent en plus du flot d’objects Pajé, léeficke description des
ressources. La visualisation du modéle 3D, representée dans la drkztEidare B.5, est mise
en ceuvre avec 4 composantes : le Triva3DFrame, pour le maintien de éa32ent de trois
mainteneurs qui peuvent changer les aspects visuels de la scéneyMdbrager, le Ambient-
Manager et le CameraManager.

TrivaView

Pajé Objecti

Resource
Description

DrawManager

: TrivaApplicationGraph :
TrivaResourcesGraph
: rivaTreemapSquarified—:

‘ AmbientManager

Triva3DFrame }a—b \ ‘

CameraManager 3D Renhdered

FIG. B.5 — Structure d'implementation du TrivaView.

B.4.2 TimeSliceView

Le modéle d’agrégation et I'algorithme de tranche de temps ont été mis en deunaéde
composant TimeSliceView, comme le montre la Figure B.6. Une autre composantéameo
de cette partie est le Triva2DFrame, dont la responsabilité est de desstreemap dans la
fenétre de visualisation du prototype.

Réponse avec un .
Objets Pajé | | treemap configuré
—>

TimeSlice ‘ ﬁ Triva2DFrame
- / Changement de taille de la fenétre Treemap dessiné
- Changement de niveau d'agrégation
- / Changement de tranche de temps

FiG. B.6 — Structure d’implementation du TimeSliceView.
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La Figure B.6 détaille également les interactions et les notifications qui saipeod pen-
dant I'exécution de la composante. L'arrivée d’'objets du simulateur RajéKigure B.4 pour
plus de détails) est représentée sur la gauche de la Figure. Les intesastie |'utilisateur peu-
vent provoquer des trois différents types de notifications qui paredatebmposante Triva2DFrame
vers la composante TimeSlice : changer la taille de la fenétre, changeredeiiagrégation
ou modifier la tranche de temps. Toutes ces natifications déclenchent la méine diévéne-
ments dans le composant : la création d’une hiérarchie de comportemeplicBsipn possible
des opérateurs d’agrégation et le calcul des nouveaux treemapebspeaésultant est envoyé
comme une réponse et est dessiné dans la fenétre par le composa2DFriame.
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B.5 Résultats Obtenus et Evaluation

L'objectif principal de cette partie du résumé est de présenter les deexdgvisualisations
générées par le prototype, une en trois dimensions et I'autre sous fertneednap. Dans le
méme temps, une analyse de ces resultats est faite compte tenu des tradagidiexitilisées
comme entrée pour le prototype.

B.5.1 Trois Dimensions

Le principal objectif du modele 3D est de réaliser la combinaison en trois diomsndes
composants de I'application avec la topologie d’interconnexion des negsans un premier
temps, nous avons retenu un scénario comprenant 60 proces$sss @ 2 sites différents de
Grid’5000. Le sitenancycontribue a la I'exécution avec 30 machines du clugtefon, tandis
gue le sitaennesa une allocation de 25 machines du clugiramountet 5 machines du cluster
paraquad Nous considérons ici une topologie du réseau dans laquelle chaquersient un
routeur lui-méme et tous ledusterssont connectés au routeur de leur site. Les routeurs de
différents sites sont interconnectés via un backbone. Ainsi, quand ssage est envoyé a un
clusterd’un site a partir d'urclusterd’un autre site, il doit passer par I'intermédiaire de deux
routeurs.

La Figure B.7 montre deux captures d’écran du prototype Triva gésdoés de I'affichage
du fichier de trace de ce scénario. Le texte et les lignes en pointillés oqmétEsamanuellement
pour accroitre la compréhension de I'exemple. L'imAgaontre le temps total d’exécution avec
une petite échelle de temps, de sorte que tous les objets soient dans lalhagsuddisation. La
ligne pointillée montre la séparation entre les siggmes avec deuxclusters etnancy avec un
seulcluster Nous pouvons voir a cette échelle de temps, un grand nombre de volgalkandre
les groupegrelonetparaquad probablement di au nombre de processus qui leur sont attribués.
L'analyse de ces interactions en conjonction avec la topologie du réseaeta |'utilisateur de
voir que toutes les demandes de travail deatestersdoivent passer a travers les deux routeurs
de I'interconnexion.

Le prototype permet également de changer de fagon dynamique I'échedengs, en util-
isant la souris. L'imag® dans la Figure B.7 indique le temps d’exécution total pour les traces
de ce scénario, mais avec une plus grande échelle de temps. Grace a apitaliest possi-
ble d’observer des différences dans le comportement de vol de téagidiérentes périodes de
temps de I'exécution. Il est ainsi possible d’apercevoir qu’au débytaibeaucoup moins de
vols qu'a la fin. La raison de cela est qu’a la fin d’'une application KAAEd taches deviennent
plus rares. Ce comportement est normal, vu que le vol de travail destiaichiémenté dans la
version actuelle de la bibliothéque KAAPI est aléatoire.

Un deuxiéme scénario est une application KAAPI composée de 200 puscagr 200 ma-
chines. La répartition des machines est divisée en deux sigemeset nancy Le nombre de
machines affectées a chacun d’eux est le méme, bien que la répartitior idéechacun differe
au niveau du nombre de machines par cluster. L'imagte la Figure B.8 indique le nombre
de machines affectées a chaaqligsterainsi que la topologie du réseau qui relie les deux sites.
La ligne pointillée est utilisé pour separer les sites distincts. Nous consglgoom ce scénario
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B Differents nombre de requétes

A Petit Echelle du Temps, Application sur la Topologie Réseau
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FiG. B.7 — Deux captures d'écran du prototype Triva pendant la visualisdtime application
composé de 60 processus, a différentes échelles de temps.

I'existence d'informations complémentaires concernant l'interconnexitne é&s routeurs et les
trois clusters La bande passante disponible entrediessters paravenét grillon, a travers les
deux routeurs, est de 100 mégabits. Le lien entotuster greloret son routeur est de 1 mégabit,

comme indiqué dans I'imagk de la Figure.

B L'Interconnexion saturée

A Debut d'execution de I'application

Paravent (61)

100 Megabit Link | =

Pararﬁoun( (6)

Rennes _.--""

100 Megabit Link

i
Grelon (8)

Grillon (13)

FiG. B.8 — Deux vues d'un exemple avec plus d’'informations sur la topologi€skau, telles
que les limitations imposées par la bande passante.

Dans ce scénario, il y a 87 processus en cours dans le ctirsten, et 61 dangaravent
Considérons seulement les vols du travail entre ces dhusters indiqués dans le cercle en
pointillés de I'image sur la droite de la Figure B.8 : la fleche en pointillés dans la ménge ima
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indiqgue que ces demandes doivent passer par le lien de 1 mégabit. Lisatsom permet de
déduire qu’'un nombre plus restreint de processus devraient étésplans ulclusteravec une
bande passante limitée. Si, par exemple, les processus du grgterpouvaient étre exécutés
dans le clustegrillon, I'application pourrait atteindre une meilleure performance.

A travers I'exemple de ce deuxiéme scénario, nous pouvons noter I'immgertiianalyser
la performance d’'une application accompagnée d’'une représentatmodaue du réseau. Si
ce type de visualisation, illustré dans I'imaBealans la Figure B.8, n’est pas présent, I'analyste
peut obtenir des conclusions incomplétes sur les performances de l&jgplic

B.5.2 Agrégation

Un des principaux avantages du modele d’agrégation de données dbésttest la facilité
qu'il apporte pour I'analyse d’'un grand nombre d’'entités dans le ménaméBour évaluer la
facon dont la visualisation passe a I'’échelle, une trace de synthése s@emb® 100 milliers de
processus a été utilisé, chacun avec deux états différents. L'anallyseitgnontre I'emploi de
la technique de la tranche de temps et de I'algorithme d’agrégation.

La Figure B.9 montre I'analyse de cette trace, qui comprend une hiérarghigtre niveaux :
Site, Cluster, Machine et Processor. La hiérarchie contient 10 sitasuctavec 10 clusters,
chaque cluster avec 100 machines et chaque machine avec 100 pso€&saque processeur
peut étre dans I'un des deux états possibles, représentée dans éag@gles différentes tonal-
ités de gris.

L'analyse a grande échelle en utilisant le prototype commence avec le tréersapé en
haut a gauche de la Figure B.9, avec le niveau Processor. Dansmmafrdl y a 200 mille rectan-
gles : 100 mille fois le nombre des états possibles. Nous pouvons obseevegigaines régions
du treemap sont plus sombres que d’autres, permettant une sorte desimonconcernant la
repartition des états. Toutefois, une conclusion précise est difficile acttednec cette repre-
sentation. La raison principale est que le treerammporte des rectangles qui sont trés petits,
de sorte qu'il est difficile de noter des différences de taille entre detsxétan seul processeur.
L'exemple est montré pour illustrer la limitation de la visualisation treemap traditionnelle

Le rectangle blanc de la treemApdans la Figure B.9 représente I'espace dédié a une ma-
chine. Bien qu'il soit difficile de le constater, il y a 200 rectangles datte g@etite région qui
représente |'état des 100 processeurs de cette machine. Comme il ese di#ficomprendre
la structure de I'ensemble de ces 100 processus, l'utilisateur peut iintevag le prototype et
visualiser la valeur agrégée au niveau de la machine, comme montré darerapB de la
Figure. Elle indique, pour chaque machine, les deux états possiblescBmsepresentation,
il est possible d’examiner les différences entre les machines : certaisssnt beaucoup plus
de temps dans un état que dans un autre. La zone en évidence sur laudiité du treemalp,
présentée par l'intermédiaire d’'un zoom, est la zone du rectangle blanesstoapA.

Les agrégations suivantes permettent a l'utilisateur de visualiser les &ntaodsau Cluster,
comme indiqué dans le treem&pde la méme Figure, et au niveau Site dans le treebhap
Le treemap C montre 100 clusters (10 par site). Dans sa partie gauchesnepreontient
un rectangle noir qui montre les 10 clusters dans la région dédiée a unasifiéche dans ce
rectangle désigne les valeurs agrégés pour ce site, dans le treemagigghtion maximale
possible, le treemalp, permet d’avoir une vue des informations d’état disponibles globalement,
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A Hierarchy: Site (10) - Cluster(10) - Machine (10) - Processor (100) Hierarchy: Site (10) - Cluster(10) - Machlne(10) Processor(100)

PR EEED

#ﬁ

B
},
l innmm ]
| Rl
;: HerrH :ﬁ,ﬁ; ] f‘f‘i:¥
L LT H
E fﬁ%ﬂ{? } fﬁ \\Hj\ﬂ\ﬂ
T ] e
:%fﬁ :%ﬁ:%ﬁ! 1 § J i‘ I t
(] Tierar‘chy: Site (10) - Cluster(10) - Machine (10) - Processor (100) D Hierarchy: Site (10) - Cluster(10) - Machine (10) - Processor (100)
[ - mEn
‘ ‘ — ] — — ‘——— ‘ /k ‘ E Maximum Aggregation
=
] =R

FiG. B.9 — Visualisation treemap normale (A) and quatre agrégés (B — E) dedtks»pour 100
mille processeurs (trace synthétique).

en indiquant que I'état représenté par le ton plus claire apparait plusrgaque I'autre dans la
tranche de temps choisie pour cet exemple.

Un second scénario pour la visualisation treemap est une application gedt@8sus, réal-
isée sur 188 machines, réparties dans cing sites du Grid’5000, dont dke $erto Alegre. Il y
a 13 machines affectées dans le clugtar, aportoalegre 2 debordereay 17 debordemer et
6 debordeplage abordeaux 45 depaste) 5 deviolette atoulouse 14 deparamount 36 de
paraguad arennes et finalement 50 dgrelonanancy La Figure B.10 montre deux treemaps
calculés avec les traces générées dans ce scénario.

Le treemapA montre les états Run et RSteal pour les 188 processus. Presque tous les p
cessus exhibent le méme comportement, avec plus de temps passé dansitiétairfes avec
un ton de gris clair) par rapport a I'état RSteal (gris foncé). La sexdemion apparait dans
le K-processus au sein du site plertoalegre manuellement mis en evidence avec le cercle en
pointillés. Nous notons que ces processus sont restés plus de temps las/tdehes que les
processus d’'autres sites. Le treenBg@ droite, montre la méme tranche de temps et les mémes
processus, mais seulement pour I'état RSteal. Ici, la différence de texsps @ voler les tache
devient encore plus évidente. Nous pensons que la principale raismatenportement vient
de l'interconnexion entre les sites. Le site matoalegrese trouve au Brésil, et son lien avec
Grid’5000 n’est fait qu'a travers d’un réseau privé virtuel (VRN est maintenue grace a Inter-
net. La latence de cette connexion, par rapport a la latence globale erdite$eGrid’5000 situés
en France, est significative. Le vol des taches traditionnellement misae dans KAAPI dif-
ferencie pas les cibles d’'un vol. Ce choix, dans un environnement idarteexion hétérogéne,
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peut conduire a passer plus de temps a voler, comme indiqué par le tredmag par notre
algorithme de tranche de temps.

A Run et RSteal B Seulement I'état RSteal
Rennes Toulouse Toulouse Nancy
| \‘\‘Hi vl [T
B B o T |
‘ ‘ ‘ 7 — S ~148's ~110s B ‘ ‘
\ \
N =) (111 ]
[l I ~78s ~65s ~43s
|| \ |
= [
| ~67s
AN L]
Nancy Bordeaux Porto Alegre Rennes Porto Alegre Bordeaux

FiG. B.10 — Scénario KAAPI avec une application composée de 188 pracessu

Globalement, l'algorithme de tranche de temps combiné avec le modéle d’agnédatio
cette thése permetent d’identifier facilement les problémes de performasga’ém compare
le comportement relatif des processus dans une application paralléle. ledenabalyrégation
présente des avantages pour les situations a grande échelle, peu impontbte de processus
impliqués dans I'analyse. La seule mesure nécessaire pour permetttieditipp de nos propo-
sitions est la définition d’une hiérarchie avec au moins quelques nivealhérarchie utilisée
dans le scénario KAAPI dispose de 5 niveaux, ce qui permet d'oldertions résultats dans la
visualisation.
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B.6 Conclusion

Les visualisations classiques pour I'analyse des applications paralléles@wues pour
traiter des données a petite échelle et équilibrées. Le besoin de techaéguisgalisation pour
'analyse a grande échelle, telles que au sein de grilles de calcul, motivaevad.tbeux prob-
[émes dans I'analyse des applications paralléles par le biais de la visualisaticoslevés dans
cette these.

Le premier est I'impact de I'interconnexion des réseaux dans I'exécdgsmpplications
paralléles. Cet impact devrait étre pris en compte dans I'analyse pour miewprendre et
améliorer les performances de I'application. Les techniques traditionnellgsuglisation, tels
gue les graphiques espace-temps par exemple, sont largement utilis€anayse des appli-
cations. Toutefois, ces techniques ne peuvent pas montrer, dans le ffiéhaga, la topologie
du réseau et le suivi des données d’exécution de I'application. Cetapeduire a des conclu-
sions erronées dans la détection des problemes de performance liestiapp. Le deuxieme
probléme est la passage a I'échelle des techniques de visualisational@gratt, le nombre
d’entités de suivi que I'on peut voir sur le méme écran est limité a la résoluéditale de
I'écran d’'un ordinateur. Les représentations espace-temps en 2mis@xemple clair de ce
probléme, elles sont mal adaptées a I'analyse des applications de grille sspiun grand
nombre de processus.

L'idée principale de cette thése est I'exploitation des techniques de vigialiséinforma-
tion qui peuvent étre utilisées pour analyser le comportement des applecpticailéles. Notre
premiére approche montre le réseau d'interconnexion, ainsi que deéatode I'application en
utilisant une vue en trois dimensions. La base de ce point de vue est utitisedgiailler I'in-
terconnexion entre les ressources, et le troisieme axe pour montrdutiéuade I'application
dans le temps. Cette visualisation est complétée par la représentation des oationyrgui
donne la possibilité au développeur de les comparer avec la topologiesdw rés

La deuxiéme approche est le modéle visuel d’agrégation, ou les problangsssage a
I'échelle sont surmontés par la combinaison de la technique du treemap atgieithme de
tranche de temps. Cet algorithme prend en compte des tranches de temp2pénar des
valeurs et de les injecter dans une organisation hiérarchique de I'applic@ette structure est
alors représentée par la technique du treemap. Le passage a I'échedlalieé par le modéle
d’agrégation, ou les niveaux de la hiérarchie sont utilisées pouradegatonnées intermédiaires
qui peuvent étre utilisés pour une représentation treemap avec pluzrdiatfons.

Les deux approches ont été implémentées dans un prototype appeédvetoppé en util-
isant un gestionnaire de scénes 3D appelé Ogre et une implementation diétlialg Treemap.
Le prototype dispose de mécanismes pour la lecture des traces fourre Iphlfiothéque
DIMVisual, capable d'intégrer les données provenant de différestesces et formats. Des
traces synthétiques et réelles d'applications KAAPI et MPI ont été utiligéasvalider I'ap-
proche et 'implementation. Le traces KAAPI ont été recueillies sur la plateddsrid’5000.
Bien que I'évaluation du prototype est liée a I'analyse d'applications KAZMIPI, le format
d’entrée Pajé permet d’étendre les avantages de I'outil a d’autres desradgrrecherche, pour
visualiser d'autres types de ressources dans les bibliotheques de cimationn

Les résultats sont prometteurs. La visualisation en trois dimensions permm¢ube com-
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prendre les communications en conjonction avec la topologie du réseayafiirrecours a une
simplification de la topologie de Grid’5000, nous avons pu montrer que dandifférentes
tranches de temps, le vol de travail dans KAAPI pourrait bénéficieardage de la localité.
En effet, 'implementation actuelle de KAAPI ne prend pas en compte le réseaufgire les
requétes de vol de travail. En outre, les résultats obtenus avec le moalgiégdition ont permis
la visualisation des états de 100 milliers de processeurs, générés de nsgni@édique. Les
treemaps définis par I'algorithme de la tranche de temps ont également ét@idéseen util-
isant des traces KAAPI et MPI. Nous avons été en mesure d'identifisrlda traces KAAPI des
caractéristiques variées, telles que le comportement de différents mécadiswva effectuées
par des processus distincts, I'efficacité de I'équilibrage de la changel’pasemble du temps
d’exécution de applications, et I'analyse d’'une application KAAPI a deaéchelle composée
de prés de 3 mille processus.

En résumé, les principaux objectifs atteints dans cette thése sont la prapdaitie ap-
proche tridimensionnelle, le modéle visuel d'agrégation combiné avec leheade temps et
le prototype Triva. En outre, il comprend l'interaction entre Triva et ldidibeque KAAPI,
permettant une analyse des activités de vol de travail de cette bibliotheque.

Comme perspectives, il est prévu I'extension de la visualisation 3D poeptésentation de
I'information produite par le modéle d'agrégation, la création des grapghesglitation réduits
avec la technique de la tranche de temps et d’agrégation, I'étude d’éoiBns d’'agréga-
tion et l'utilisation d'autres données pour l'algorithme de la tranche de tempss [Nensons
que la plus importante contribution de ce travail est I'étude des techniquderdaine de la
visualisation appliquées a I'analyse des applications paralléles.
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Title: Some Visualization Models applied to the Analysis of Parallel Applications.
Abstract: This thesis tries to overcome the issues encountered on traditional visualitzstio
niques for parallel applications. The main idea behind our efforts is to expgahniques from
the information visualization research area and to apply them in the contexsiraifel appli-
cations analysis. Based on this main idea, the thesis proposes two visualipaiiets: the
three-dimensional and the visual aggregation model. The former mighebetaisinalyze par-
allel applications taking into account the network topology of the resoufes visualization
itself is composed of three dimensions, where two of them are used to rtedepology and
the third is used to represent time. The later model can be used to analglel@goplications
composed of several thousands of processes. It uses hierdmgmaization of monitoring data
and an information visualization technique called Treemap to represenidhatdny.
Keywords: Parallel applications, performance analysis, visualization, 3D visualizateemap,
scalability, grid.

Titulo: Alguns Modelos de Visualizacéo aplicados para a Analise de Aplicac@aleRa.
Resumo: Esta tese tenta resolver os problemas encontrados em técnicas de \gaodliaéli-
cionais para a analise de aplicacBes paralelas. A idéia principal comsistetrar técnicas da
area de visualizacao da informacéo e aplica-las no contexto de analissgdanpas paralelos.
Levando em conta isto, esta tese prop6e dois modelos de visualizacadtrée dienensdes e 0
modelo de agregacao visual. O primeiro pode ser utilizado para analisacgliclevando-se
em conta a topologia da rede dos recursos. A visualizacdo em si € dapposés dimensdes,
onde duas sao usadas para mostrar a topologia e a terceira é usadspps@ntar o tempo.
O segundo modelo pode ser usado para analisar aplicagBes paratelamaogrande quanti-
dade de processos. Ela explora uma organizacao hierarquica @ssdgamionitoramento e uma
técnica de visualizacdo chamada Treemap para representar visualméererguia. Os dois
modelos representam uma nova forma de analisar aplicacéo paralelémergeauma vez que
eles foram concebidos para larga-escala e sistemas distribuidos cosnptExo grids.
Palavras-chave: AplicacBes paralelas, andlise de desempenho, visualizacéo, visualeraca
3D, treemap, escalabilidade, grid.

Titre: Quelques Modeles de Visualisation pour I'Analyse des Applications Pasallele
Résumé: Cette thése tente de résoudre les problémes des techniques traditionnedl&es\da
sualisation du comportement des applications paralléles. L'idée princigal&rgloiter le do-
maine de la visualisation de I'information et d’appliquer ses concepts daadie de I'analyse
des programmes paralléles. La thése propose deux modeles de visualisatimis dimensions
et le modéle d’agrégation visuelle. Le premier peut étre utilisé pour andgserogrammes
paralléles en tenant compte de la topologie du réseau. La visualisation seseodwptrois di-
mensions, ou deux sont utilisés pour la representation de la topologie asiartre est utilisée
pour représenter le temps. Le second modéle peut étre utilisé pour arddgsapplications
paralleles comportant un trés grand nombre de processus. Ce deuxiéhake mxploite une
organisation hiérarchique des données et une technigue appelésaprpeur représenter vi-
suellement la hiérarchie.

Mots clés: Applications paralléles, analyse de performance, visualisation, visuatisti@D,
treemap, passage a I'échelle, grille.



