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L’approche classique : genre 0, 1, 2 et 3

genre 0 x2 + y2 = 1

genre 1 y2 = x(x + 1)(x + 2)

genre 2 y2 = x(x2 − 1)(x2 − 1
4) genre 3 (x2 − 1)2 + (y2 − 1)2 = 4
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Quelques quartiques de genre 0 au quotidien

Le spirographe
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Quelques quartiques de genre 0 au quotidien

La cardioïde (x2 + y2 − x)2 = x2 + y2 comme épicycloïde
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Quelques quartiques de genre 0 au quotidien

au réveil
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Quelques quartiques de genre 0 au quotidien

La cardioïde comme caustique
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besace (x2 − y)2 = (x2 − y2)

courbe de Lissajous

fenêtre de Vivani musée de la marine d’Osaka
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les conchoïdes de Nicomède,

la trisectrice de Delanges, le bicorne, . . .
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Quelques quartiques de genre 1

ovale de Descartes (x2 + y2 − 2x + 1)2 = 4(x2 + y2)

système Bélidor pour pont-levis (ici à Fort-l’Écluse)
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ovales de Cassini ((x − a)2 + y2)((x + a)2 + y2) = b4

au Palais de la Découverte

Cassini par Jean-Guillaume Moitte
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courbe d’Edwards x2 + y2 = 1− 30x2y2

un jour dans nos cartes bleues ?
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Quartique de genre 2

courbe du diable y4 + 10
9 x2 = x4 + 8

9y
2

H sur l’hyperbole, HN = 1,OM = ON
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Quartique de genre 2

courbe du diable y4 + 10
9 x2 = x4 + 8

9y
2

H sur l’hyperbole, rectangle en O, HM = 1
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Quartique de genre 3

quartique de Klein
x3y + y3 + x = 0

quartique de Klein (bis)
196x3 + 84x2 − 588xy2+
84y2 + 16− 147x4−
294x2y2 = 147y4

sculpture
au MSRI
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Overview of the manuscript

1 Plane quartics over finite fields of characteristic 2:
models;

invariants;
isogeny classes of supersingular abelian threefolds which contain a
Jacobian;
quartics with many involutions and optimal curves.

2 isogeny classes of abelian surfaces over finite fields which contain a
Jacobian.

3 Serre’s obstruction for genus 3 curves.
4 Cryptography:

addition law for plane quartics;
Edwards curves and pairings;
distorsion map for genus 2 curves;
2-adic CM method for genus 2 curves.
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Maximal curves and optimal curves

k = Fq = Fpn a finite field. K any (perfect) field;

C/K a (smooth, projective, absolutely irreducible) curve of genus g
over K ;
m = b2√qc;
Nq(g)

≤ 1 + q + gm

: maximal number of points on a genus g curve
over Fq.

Definition
A curve C of genus g over k is maximal if #C (k) = Nq(g).
It is optimal if #C (k) = 1 + q + gm.

Christophe Ritzenthaler (IML) HDR defense December 2, 2009 12 / 25



Maximal curves and optimal curves

k = Fq = Fpn a finite field. K any (perfect) field;
C/K a (smooth, projective, absolutely irreducible) curve of genus g
over K ;

m = b2√qc;
Nq(g)

≤ 1 + q + gm

: maximal number of points on a genus g curve
over Fq.

Definition
A curve C of genus g over k is maximal if #C (k) = Nq(g).
It is optimal if #C (k) = 1 + q + gm.

Christophe Ritzenthaler (IML) HDR defense December 2, 2009 12 / 25



Maximal curves and optimal curves

k = Fq = Fpn a finite field. K any (perfect) field;
C/K a (smooth, projective, absolutely irreducible) curve of genus g
over K ;
m = b2√qc;

Nq(g)

≤ 1 + q + gm

: maximal number of points on a genus g curve
over Fq.

Definition
A curve C of genus g over k is maximal if #C (k) = Nq(g).
It is optimal if #C (k) = 1 + q + gm.

Christophe Ritzenthaler (IML) HDR defense December 2, 2009 12 / 25



Maximal curves and optimal curves

k = Fq = Fpn a finite field. K any (perfect) field;
C/K a (smooth, projective, absolutely irreducible) curve of genus g
over K ;
m = b2√qc;
Nq(g)

≤ 1 + q + gm

: maximal number of points on a genus g curve
over Fq.

Definition
A curve C of genus g over k is maximal if #C (k) = Nq(g).
It is optimal if #C (k) = 1 + q + gm.

Christophe Ritzenthaler (IML) HDR defense December 2, 2009 12 / 25



Maximal curves and optimal curves

k = Fq = Fpn a finite field. K any (perfect) field;
C/K a (smooth, projective, absolutely irreducible) curve of genus g
over K ;
m = b2√qc;
Nq(g) ≤ 1 + q + gm: maximal number of points on a genus g curve
over Fq.

Definition
A curve C of genus g over k is maximal if #C (k) = Nq(g).
It is optimal if #C (k) = 1 + q + gm.

Christophe Ritzenthaler (IML) HDR defense December 2, 2009 12 / 25



Maximal curves and optimal curves

k = Fq = Fpn a finite field. K any (perfect) field;
C/K a (smooth, projective, absolutely irreducible) curve of genus g
over K ;
m = b2√qc;
Nq(g) ≤ 1 + q + gm: maximal number of points on a genus g curve
over Fq.

Definition
A curve C of genus g over k is maximal if #C (k) = Nq(g).
It is optimal if #C (k) = 1 + q + gm.

Christophe Ritzenthaler (IML) HDR defense December 2, 2009 12 / 25



Optimal curves of genus 0, 1, 2 and 3

If C/k is a genus 0 curve, it is isomorphic to P1 so Nq(0) = q + 1.

If C is an optimal curve of genus 1 ≤ g ≤ 3 then JacC ∼ E g with E an
elliptic curve of trace −m.

Existence of the isogeny class (Deuring 1941): explained by
Honda-Tate theory.

Proposition
There does not exist an elliptic curve with trace −m if and only if n ≥ 3, n
is odd and p|m.

This solves the question for optimal genus 1 curves.
Existence of a principal polarization in the class E g : yes (the product
polarization a0).
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Existence of an absolutely indecomposable principal polarization in the
class E g .
This question mainly translates into existence of positive definite
indecomposable (quaternion) hermitian forms on End(E )-modules +
descent.

g = 2 (Hayashida, Nishi 1965, Serre 1983): no if and only if q = 4, 9 or

m2 − 4q ∈ {−3,−4,−7}.

g = 3 (Ibukiyama 1993, Lauter, Serre 2002, Nart, R. 2008): no if and
only if q = 4, 16 or

m2 − 4q ∈ {−3,−4,−8,−11}.
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The case g = 2, 3 (Continued)

For g ≤ 3, any absolutely indecomposable p.p.a.v. (A, a)/K is the
Jacobian of a curve C0 over K̄ (Oort, Ueno 1973).

Theorem (Arithmetic Torelli theorem (Serre 1985))

There is a model C/K of C0 such that:
1 If C0 is hyperelliptic, there is an isomorphism

(JacC , j) ∼−−−−→ (A, a).

2 If C0 is not hyperelliptic, there is a quadratic character ε of Gal(K̄/K ),
and an isomorphism

(JacC , j) ∼−−−−→ (A, a)ε

where (A, a)ε is the twist of A by ε.
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The case g = 2 (end)

For g = 2, the previous results give the answer. Actually (Serre 1983) gives
the value Nq(2).

Theorem (Howe, Maisner, Nart, R. 2008)

An isogeny class of Weil polynomial x4 + ax3 + bx2 + aqx + q2 does not
contain a principally polarized abelian surface if and only if the three
following conditions are fullfilled:

a2 − b = q,
b < 0 and
all prime divisors of b are congruent to 1 modulo 3.

Theorem (Howe, Nart, R. 2009)

One characterizes the isogeny classes which contains a Jacobian in terms of
their Weil polynomials.

Christophe Ritzenthaler (IML) HDR defense December 2, 2009 16 / 25



The case g = 2 (end)

For g = 2, the previous results give the answer. Actually (Serre 1983) gives
the value Nq(2).

Theorem (Howe, Maisner, Nart, R. 2008)

An isogeny class of Weil polynomial x4 + ax3 + bx2 + aqx + q2 does not
contain a principally polarized abelian surface if and only if the three
following conditions are fullfilled:

a2 − b = q,
b < 0 and
all prime divisors of b are congruent to 1 modulo 3.

Theorem (Howe, Nart, R. 2009)

One characterizes the isogeny classes which contains a Jacobian in terms of
their Weil polynomials.

Christophe Ritzenthaler (IML) HDR defense December 2, 2009 16 / 25



The case g = 2 (end)

For g = 2, the previous results give the answer. Actually (Serre 1983) gives
the value Nq(2).

Theorem (Howe, Maisner, Nart, R. 2008)

An isogeny class of Weil polynomial x4 + ax3 + bx2 + aqx + q2 does not
contain a principally polarized abelian surface if and only if the three
following conditions are fullfilled:

a2 − b = q,
b < 0 and
all prime divisors of b are congruent to 1 modulo 3.

Theorem (Howe, Nart, R. 2009)

One characterizes the isogeny classes which contains a Jacobian in terms of
their Weil polynomials.

Christophe Ritzenthaler (IML) HDR defense December 2, 2009 16 / 25



Serre’s obstruction for genus 3 curve

Serre’s observation (1983): "Le théorème de Torelli s’applique de façon
moins satisfaisante (on doit extraire une mystérieuse racine carrée . . . )"

Serre’s Question (letter to Top 2003): how to compute the character ε ?

1 Explicit quotients by isogeny (Partial results);
2 Serre’s analytic strategy, also followed by S. Meagher (Well

understood);
3 Algebraic interpretation of this strategy (Work in progress);
4 Geometric strategy (Work in progress).
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Quotients by isogeny

Key idea: use families with explicit elliptic isogeny factors and reverse the
process to see when you can glue them together in this way.

Using families with geometric automorphism group (Z/2Z)2.
(Howe, Leprevost, Poonen 2002) in characteristic different from 2 (but
no general results for maximal curves);
(Nart, R. 2008): if n ≥ 6 is even then there is an optimal curve over
F2n .
(Nart, R. 2009) : if n is odd and m = b2

√
2nc ≡ 1, 5, 7 (mod 8) there

is an optimal curve over F2n .
Rem: (Mestre 2009) works with the family with geometric automorphism
group S3.

This works quite well for small values of q: see www.manypoints.org (van
der Geer, Howe, Lauter, R.).
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Main result (Lachaud, R., Zykin 2009)

Let A = (A, a)/K be a p.p.a.t. defined over a field K with charK 6= 2.
Assume that a is absolutely indecomposable. There exists a unique
geometric Siegel modular form of weight 18 defined over Z, denoted χ18,
such that

1 (A, a) is a hyperelliptic Jacobian if and only if χ18(A, a) = 0.
2 (A, a) is a non hyperelliptic Jacobian if and only if χ18(A, a) is a

non-zero square.
Moreover, if K ⊂ C, let

(ω1, ω2, ω3) be a basis of Ω1
K [A];

γ1, . . . γ6 be a symplectic basis (for a);
Ωa := [Ω1 Ω2] = [

∫
γj
ωi ] with τa := Ω−1

2 Ω1 ∈ H3.

Then (A, a) is a Jacobian if and only if

χ18((A, a), ω1 ∧ ω2 ∧ ω3) :=

(2π)54

228 ·
∏

[ε] even θ[ε](τa)

det(Ω2)18

is a square in K .
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Ingredients of the proof and consequences

Result of (Ichikawa 1996): let t : M3 → A3 be the Torelli map. There
exists a Teichmüller modular form of weight 9 defined over Z, denoted
µ9, such that t∗(χ18) = µ2

9.

General result on the action of twists on geometric Siegel modular
forms.
Link between analytic and geometric Siegel modular forms.

By-products:
Klein’s formula: µ9 = ±Disc;
cannot work for g even;
need forms of weight h such that h/2 is odd;
cannot take χh.
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How to use it for optimal curves ?

R. 2009 : worked out the procedure in the case A = E 3 where E is an
elliptic curve with CM.

∃ ? optimal curve C/F47: A = JacC ∼ E 3 with E CM by O = Z[τ ]
where τ = (1 +

√
−19)/2.

Cl(O) = 1⇒ A = E 3.
a0 the product polarization on A:

{a p.p. on A} ←→ {M = a−1
0 a ∈ M3(O) hermitian posi-

tive definite of determinant 1}.
computation by (Schiemann 1998) of such matrices. There is only one
–up to equivalence–, which is indecomposable:

M =

 2 1 −1
1 3 −2 + τ
−1 −2 + τ 3

 .
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Cl(O) = 1⇒ A = E 3.
a0 the product polarization on A:

{a p.p. on A} ←→ {M = a−1
0 a ∈ M3(O) hermitian posi-

tive definite of determinant 1}.

computation by (Schiemann 1998) of such matrices. There is only one
–up to equivalence–, which is indecomposable:

M =

 2 1 −1
1 3 −2 + τ
−1 −2 + τ 3

 .
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lift E as a CM curve over Q: Ẽ : y2 = x3 − 152x − 722;

find a period matrix associated to (Ẽ 3, a0M) w.r.t. wedge product ω0
of the pull back of the differential dx/(2y) on each Ẽ of Ẽ 3:

c1(a0M) =
1

Im(ω1ω2)
tM

where [ω1, ω2] is a period matrix of Ẽ w.r.t. dx/(2y);
compute an analytic approximation of

χ18((Ẽ 3, a0M), ω0) = (219 · 197)2;

since it is a square (over F47), such an optimal curve C exists.

(Guàrdia 2009):

C̃ : x4 +
1
9
y4 +

2
3
x2y2 − 190y2 − 570x2 +

152
9

y3 − 152x2y = 1083.
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c1(a0M) =
1

Im(ω1ω2)
tM

where [ω1, ω2] is a period matrix of Ẽ w.r.t. dx/(2y);
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Values of χ = χ18((Ẽ 3, a0M), ω0)

Ẽ : Gross’ models with discriminant d3 (when the class number is 1).

d M, τ = (1 +
√

d)/2 χ # Aut(Ẽ3, a)

−7

0@ 2 1 1
1 2 τ
1 τ 2

1A (77)2 2 · 168

−19

0@ 2 1 −1
1 3 −2 + τ
−1 −2 + τ 3

1A (25 · 197)2 · (−2) 2 · 6

−43

0@ 3 1 1− τ
1 4 2

1− τ 2 5

1A (26 · 437)2 · (−47 · 79 · 107 · 173) 2 · 1

−67

0@ 2 0 −1
0 3 −2 + τ
−1 −2 + τ 7

1A (25 · 74 · 677)2 · (−2 · 7 · 31) 2 · 6

−163

0@ 2 1 −τ
1 2 1− τ
−τ 1− τ 28

1A (25 · 74 · 114 · 1637)2 · (−2 · 7 · 11 · 19 · 127) 2 · 6

−15

0@ 2 −1 −1 + τ
−1 2 1− τ
−1 + τ 1− τ 3

1A 22769095299822142340569171645771726299/4+

10182522603020834484863085151244322675 ·
√

5/4+
4462640909353821881995695647429476869 ·

√
−15/4

+9978330617922886443823982755114202445 ·
√
−3

2 · 24
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Algebraic interpretation of χ

Idea: interpret p|χ in terms of the geometric nature of (Ẽ 3, a0M) (mod p).

So far, very basic results about primes that appear because of
decomposable polarizations.

Question: how to detect hyperelliptic reduction ?
Ex. for d = −15 with p|19:

√
−3

√
5 (Ẽ 3, a0M) (mod p) is the Jacobian of a

−4 9 non hyperelliptic curve with 1 + q + 3m − 3 points
−4 −9 non hyperelliptic curve with 1 + q + 3m − 3 points
4 −9 non hyperelliptic curve with 1 + q − 3m + 3 points
4 9 hyperelliptic curve

Worse: how to control the (parity of the) exponents ?
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So far, very basic results about primes that appear because of
decomposable polarizations.

Question: how to detect hyperelliptic reduction ?
Ex. for d = −15 with p|19:

√
−3

√
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References for introduction material

Mainly: http://www.mathcurve.com/
Spirograph: http://fr.wikipedia.org/wiki/Spirographe_(jeu)
Osaka museum:
http://fr.wikipedia.org/wiki/Fenêtre_de_Viviani

"Ovales de Cassini" : picture from G. Lachaud
"Cassini statue": http:
//home.nordnet.fr/~ajuhel/Obs_Paris/Cassini/cassini.html

The eightfold way. The beauty of Klein’s quartic curve. Edited by
Silvio Levy. Mathematical Sciences Research Institute Publications,
35. Cambridge University Press, Cambridge, 1999, p. 325
Video of Klein quartic: http://www.gregegan.net/SCIENCE/
KleinQuartic/KleinQuartic.html
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