Coupling in Large Interactive Applications

Jean-Denis Lesage

MOAIS

|

L 1 GWINRIA CRVARDRLE

11/26/09

1/ 39

Outline

Introduction

A Hierarchical Components Model for Large Interactive
Applications

Study of Synchronization Lag

Conclusion

2/ 39

Outline

Introduction

3/ 39

Interactive Applications

Input

. : Computation

4/ 39

Large Interactive Applications

Large Interactive Applications

y Wll”//,//

Examples of Large Interactive Applications

Metavers: Telepresence:
MMORPG, Second Life Interaction with distant user

Computional Steering:

Interaction with complex simula-
tion. Molecular simulation (300 K
atoms)

Simulations:
Hercules earthquake simulation
(5Hz, 12 billions elements)

5/ 39

6/ 39

Summary: Large Interactive Applications

Applications are

iterative: atask is an endless loop
large: hundreds or thousands of tasks
multi-frequency: asynchronism
samplers: can discard or duplicate data

Use Specific Hardwares

m specific /0 devices
m CPU, GPU, clusters, grids

Must Perform under Strong Performance Constraints
refresh rate (haptic: kHz), latency (< 30 ms)

7/ 39

Problems Statements

Coupling in Large Interactive Applications
How to couple iterative tasks in a large dataflow graph?

8/ 39

Problems Statements

(Coupling in Large Interactive Applications
KHow to couple iterative tasks in a large dataflow graph?

Questions:

m How to handle complexity?

8/ 39

Problems Statements

Coupling in Large Interactive Applications
How to couple iterative tasks in a large dataflow graph?

Questions:

m How to handle complexity?

= How to execute these applications under strong performance
constraints ?

8/ 39

Problems Statements

Coupling in Large Interactive Applications
How to couple iterative tasks in a large dataflow graph?

Questions:

m How to handle complexity?

= How to execute these applications under strong performance
constraints ?

Contributions

m Hierarchical components model

m Study of the impact of samplers on the global latency

8/ 39

Outline

A Hierarchical Components Model for Large Interactive
Applications

9/ 39

Middlewares

Scientific Visualization:
SCIRun, IRISExplorer,
VTK, .

Virtual Reality: FlowVR,
OpenMASK, Vista, ...

Architecture Description
Language (ADL)

INTML, script languages,
XML-based languages, . ..

Middlewares for Interactive Applications

while (wait ()){
get();
compute () ;
put ();

}

—a—
¥

Goal: Modularity

m Multiple developers
m Long projects

= Maintainability

m Performance constraints

10/ 39

Modularity: Components Models

Component:

m Specified by interfaces. Re-usability.
m lterative Task ~ Component

Hierarchical Component Model
Create new components by composing existing ones.
Example: Fractal norm. Implementations: Julia, ProActive, ...

Some Middlewares have a Component Support
SCIRun2 (CCA), VRJuggler (CORBA), ...
No hierarchy and a basic support of parallelism.

11/39

Modularity: Skeleton Programming

Main Idea
Provide efficient implementations of algorithms

m A software becomes a composition of skeletons.

m They often rely on formal models.

m A skeleton can be adapted to a target architecture.

m Skeletons libraries can be dedicated to a specific aera
(Skipper-D...).

m They can support hierarchy.

12/ 39

Our Contribution

Current application design process

|

Monolitic
script

H

Dataflow
graph

13/39

Our Contribution

New application design process
Execution
context
Hierarchical
description

Compilation

Dataflow -

13/39

Hierarchical Components Model

Interface:
Input and Output ports. Ports are FIFO queues.

Input port

Output port

14/ 39

Hierarchical Components Model

Components:
Primitive Primitive components cannot contain any other
component. Tasks, filters, connections are primitive
components.
Composite Composite components contain other components
(composite or primitive).

p ol L -
p— — Composite
e — [‘/
| |
T \
. I J
Primitive

15/ 39

Hierarchical Components Model

Links:
Parent links the port from a composite component to one of
its children’s port.

Sibling links two ports of two components that have the
same father.

Sibling Link
- s s N
=

e !

\ N)
1

Parent Link

16/ 39

Hierarchical Components Model

Controllers:

Introspection Controller reads component state.
Configuration Controller changes component state.

17/ 39

Hierarchical Components Model

Controllers:

Introspection Controller reads component state.
Configuration Controller changes component state.

| frnion)

17/ 39

Hierarchical Components Model

Controllers:

Introspection Controller reads component state.
Configuration Controller changes component state.

| frnion)

Examples:
Introspection Controller Number of children, parameter file,
architecture information. . .

Configuration Controller Addition of children, links or ports,
mapping, deployment, . ..

17/ 39

Example

execute

:

J
18/ 39

Example

Compute

Merge

Captur

J
18/ 39

Example

Compute

7

execute

Merge

Captur

J
18/ 39

Example

Number of
cores ?

Compute

7

execute

Merge

Captur

J
18/ 39

Example

J
18/ 39

Example

execute

J
18/ 39

Example

J
18/ 39

Example

J
18/ 39

Example

J
18/ 39

Example

execute NN\

J
18/ 39

Example

Number of
processes ?

execute NN\

J
18/ 39

Example

Compute

=

Captur

J
18/ 39

Acceptable Order

||
Compute
s N
execute "N\
_ o

Merge

19/ 39

Acceptable Order

I
Compute
(—
execute ANy Number of
processes ?
—_ /

Merge

19/ 39

Acceptable Order

||
Compute
(| S |
execute "N\
_ o

Merge

19/ 39

Traverse Algorithm: Motivations

Goals:

m Controllers must be executed on all components
m Traverse must be performed in an acceptable order

Remarks:

m An acceptable order may not exist (cycle dependencies).

m Express hundred constraints is error-prone and affect
modularity.

m Use exceptions to find dependencies.

20/ 39

Traverse Algorithm [?]

Components list

end

21/ 39

Traverse Algorithm [?]

Components list

end

21/ 39

Traverse Algorithm [?]

Components list

end

controller

21/ 39

Traverse Algorithm [?]

Components list

end

AR

21/ 39

Traverse Algorithm [?]

Components list

21/ 39

Traverse Algorithm [?]

Components list

end

controller

21/ 39

Traverse Algorithm [?]

Components list

end

S

21/39

Traverse Algorithm [?]

Components list

end

21/39

Traverse Algorithm [?]

Components list

end

21/ 39

Traverse Algorithm [?]

Components list

end

21/ 39

Traverse Algorithm [?]

Complexity
O(N?) calls to controllers (N is the total number of components)

Existence of an Acceptable Order
It exists an acceptable order < Components list is empty

Cyclic Dependencies Detection
Traverse algorithm provides the set of components in cyclic depen-
dencies.

22/ 39

Integration on the Top of FlowVR

<regular expression> Search l Reset \

id [host | connections | XML |

host |
hosts

myisionA
= mvisionB

erminal | « Terminal No. 2 | = Terminal No.3 |

23/ 39

Outline

Study of Synchronization Lag

24/ 39

Samplers

Description

Tasks cannot run all at the same frequency: haptic versus simula-
tion.

m Samplers adapt the dataflow rate.
m Samplers can discard or duplicate data.

m Example: double-buffering

25/ 39

Samplers

Description
Tasks cannot run all at the same frequency: haptic versus simula-
tion.

m Samplers adapt the dataflow rate.
m Samplers can discard or duplicate data.

m Example: double-buffering

| I I I I b Source

I I I I Destination

25/ 39

Samplers

Description

Tasks cannot run all at the same frequency: haptic versus simula-
tion.

m Samplers adapt the dataflow rate.
m Samplers can discard or duplicate data.

m Example: double-buffering

N

Destination

25/ 39

Synchronization Lag [?]

Source of Latencies in an Application
Computation, data transferts, ...

26/ 39

Synchronization Lag [?]

Source of Latencies in an Application
Computation, data transferts, ...

Wiloka observes a latency due to samplers
=- Synchronization Lag

AN

Destination

Wiloka’s Observations

m Mean Synchronization Lag=1.3.
m Synchronization Lag is not constant.

26/ 39

Problem Statements

Latency and jitter have an important impact on interactivity.

The jitter is often more perturbing than an important
constant latency.

Combatting Latency in Interactive Applications
m Developers focus on latencies due to computations or data
transfert.
m Developers ignore or even are not aware of synchronization
lag

27/ 39

Synchronization Lag

| | | | | » Source

| | | | Destination

28/ 39

Synchronization Lag

Source

i it
N~

tn+1

tn

Destination

Td

28/ 39

Synchronization Lag

tn tn+1 tn+2
=t A
| | ; | — l' b Source
1 ||<—)||
1 1 TS 1
i l l l Destination
I<T—d>l

Proposition
Vn, tn+1 = (tn -+ Td) mod Ts

28/ 39

Characterization of Synchronization Lag

Linear Congruential Pseudo-Random Generator

Xny1 = (aXn+c) mod m

= simulate a uniform distribution.

Idea:
Our expression looks like this pseudo-random generator.
Does the synchronization lag distribution fit the uniform distribution?

Test

m Generate distributions using f, expression
m Apply a statistical fit-of-goodness test
m Result: We can accept the hypothesis for most points

29/ 39

Mean and Variance of Synchronization Lag

If Synchronization Lag is U(0, 75) then

E[tn] = lzi = %‘;_S
tn € [O,Ts]

7_2
| V[tn] = %

} validate Wloka’s observations

Mean of queuing time Variance of queing time
depending on source frequency depending on source frequency

m Estimated
@ W Mean of uniform law

m Estimated

200

m Variance of uniform law

150

15

100

Queuing time (ms)
Variance (ms)

10

30/ 39

Interpretations

First Idea:
Mean and Standard Deviation are proportional to 7s.

31/ 39

Interpretations

First Idea:
Mean and Standard Deviation are proportional to 7s.
Speed-up tasks!

31/ 39

Interpretations

First |dea:

Mean and Standard Deviation are proportional to 7.

Speed-up tasks!

But dispersion is constant :

AT (3

~Eft]

S

31/ 39

Interpretations

First Idea:
Mean and Standard Deviation are proportional to 7.
Speed-up tasks!

But dispersion is constant :

VAU

Eltr] V3

Second Idea:
Statistical tests fail for some (7, 74) values.
What is E[gn] and V[q,] in these cases ?

31/ 39

A Simple Condition to Remove Jitter

If 7 mod 75 = 0 then

b1 = (tn+7'd) mod 7
= Ini1 th

Mean and Variance Are

Elt)) = b
Vit] = 0

32/ 39

Future Works

Our Result
We should maximize frequencies under constraint 7y mod 73 = 0
It is more complex than “Go as fast as possible”!

33/ 39

Future Works

Our Result
We should maximize frequencies under constraint 7y mod 73 = 0
It is more complex than “Go as fast as possible”!

Questions:

m How measure 7 online ?
m What is the impact of perturbations on the result ?
m Other sampling policies ?

33/ 39

Outline

Conclusion

34/ 39

Summary

Questions:

m How to handle complexity?

m How to execute these applications under strong performance
constraints ?

Hierarchical Components Model

m Add modularity
m Compilation stage (tune the application)

Synchronization Lag

m Sampling is mandatory
m Few studies about sampling

= How to reduce sampling impact ?

35/ 39

My Experience with Large Interactive Applications

Grimage and ANR Dalia
Real-time 3D reconstruction.
Demonstrators: VRSTO08, Sig-
graph09, Féte de la Science
(Grand Palais, Paris),...

ANR FVNano
Real-time interactions with mole-
cular simulation.

FlowVR

Middleware for Interactive Appli-
cations.
http://flowvr.sf.net/

36/ 39

http://flowvr.sf.net/

Perspectives

Architecture will Become more and more Complex
Many-cores (Larrabee, Fermi, ...), clusters, grids, high-
performance network

We should delegate complexity to middlewares

37/ 39

Perspectives

Architecture will Become more and more Complex
Many-cores (Larrabee, Fermi, ...), clusters, grids, high-
performance network

We should delegate complexity to middlewares

Main Problem
Interactivity is a human feeling.
How a middleware can decide if an application is interactive ?

37/ 39

Perspectives

Architecture will Become more and more Complex
Many-cores (Larrabee, Fermi, ...), clusters, grids, high-
performance network

We should delegate complexity to middlewares

Main Problem

Interactivity is a human feeling.

How a middleware can decide if an application is interactive ?
It is an open question = best-effort

The optimization problem is multi-criteria: latencies, frequencies,
level of details, simulation accuracy, . ..

37/ 39

Perspectives

m Synchronization Lag

= Regulation

m (N x M + Sampling) communications

Interactive Application Specific: Sampling

m Efficient sampling algorithms, prediction, dead-reckoning ?

80 Hz

Regulation

\
7

10 Hz

20 Hz

20 Hz

38/ 39

Thank You

Modularity: Design Patterns

Main Idea
Provide an efficient cookbook to developers

m They list well-known developers problem.
m They do not provide any implementation.

m There are some extensions for parallel computing.

The Sacred Elements of the Faith

the holy the holy
origins structures
M the holy M‘:}W
| behaviors ™ = w
PT S| (CR' CP | D

.........

AF |'TM | CD |MD | O | IN | PX | FA

ST | IT V | FL | BR

40/ 39

A Feed-Back

Example of the Grimage Component

m 158 C++ lines
m 90% lines are related to communication

At high-level, few components and lot of ports and
links.

41/ 39

A Benefit of the Hierarchical Structure

Figure: Layout algorithm relies on the hierarchical structure

42/ 39

39/ 39

	Introduction
	A Hierarchical Components Model for Large Interactive Applications
	Study of Synchronization Lag
	Conclusion

