
Coupling in Large Interactive Applications

Jean-Denis Lesage

11/26/09

1/ 39

Outline

1 Introduction

2 A Hierarchical Components Model for Large Interactive
Applications

3 Study of Synchronization Lag

4 Conclusion

2/ 39

Outline

1 Introduction

2 A Hierarchical Components Model for Large Interactive
Applications

3 Study of Synchronization Lag

4 Conclusion

3/ 39

Interactive Applications

Input

Computation

Output

User

[?]

4/ 39

Large Interactive Applications

Input

Computation

Output

User

[?]

4/ 39

Large Interactive Applications

Input

Computation

Output

User

[?]

4/ 39

Examples of Large Interactive Applications

Metavers:
MMORPG, Second Life

Telepresence:
Interaction with distant user

Computional Steering:
Interaction with complex simula-

tion. Molecular simulation (300 K
atoms)

Simulations:
Hercules earthquake simulation

(5Hz, 12 billions elements)

5/ 39

Grimage Example [?]

6/ 39

Summary: Large Interactive Applications

Applications are

iterative: a task is an endless loop

large: hundreds or thousands of tasks

multi-frequency: asynchronism

samplers: can discard or duplicate data

Use Specific Hardwares

specific I/O devices

CPU, GPU, clusters, grids

Must Perform under Strong Performance Constraints
refresh rate (haptic: kHz), latency (≤ 30 ms)

7/ 39

Problems Statements

Coupling in Large Interactive Applications
How to couple iterative tasks in a large dataflow graph?

Questions:

How to handle complexity?

How to execute these applications under strong performance
constraints ?

Contributions

Hierarchical components model

Study of the impact of samplers on the global latency

8/ 39

Problems Statements

Coupling in Large Interactive Applications
How to couple iterative tasks in a large dataflow graph?

Questions:

How to handle complexity?

How to execute these applications under strong performance
constraints ?

Contributions

Hierarchical components model

Study of the impact of samplers on the global latency

8/ 39

Problems Statements

Coupling in Large Interactive Applications
How to couple iterative tasks in a large dataflow graph?

Questions:

How to handle complexity?

How to execute these applications under strong performance
constraints ?

Contributions

Hierarchical components model

Study of the impact of samplers on the global latency

8/ 39

Problems Statements

Coupling in Large Interactive Applications
How to couple iterative tasks in a large dataflow graph?

Questions:

How to handle complexity?

How to execute these applications under strong performance
constraints ?

Contributions

Hierarchical components model

Study of the impact of samplers on the global latency

8/ 39

Outline

1 Introduction

2 A Hierarchical Components Model for Large Interactive
Applications

3 Study of Synchronization Lag

4 Conclusion

9/ 39

Middlewares for Interactive Applications

Middlewares
Scientific Visualization:
SCIRun, IRISExplorer,
VTK, . . .
Virtual Reality: FlowVR,
OpenMASK, Vista, . . .

Architecture Description
Language (ADL)
InTML, script languages,
XML-based languages, . . .

wh i le (wa i t ()) {
get () ;
compute () ;
put () ;

}

Goal: Modularity

Multiple developers

Long projects
Maintainability

Performance constraints

10/ 39

Modularity: Components Models

Component:

Specified by interfaces. Re-usability.

Iterative Task ' Component

Hierarchical Component Model
Create new components by composing existing ones.
Example: Fractal norm. Implementations: Julia, ProActive, . . .

Some Middlewares have a Component Support
SCIRun2 (CCA), VRJuggler (CORBA), . . .
No hierarchy and a basic support of parallelism.

11/ 39

Modularity: Skeleton Programming

Main Idea
Provide efficient implementations of algorithms

A software becomes a composition of skeletons.

They often rely on formal models.

A skeleton can be adapted to a target architecture.

Skeletons libraries can be dedicated to a specific aera
(Skipper-D. . .).

They can support hierarchy.

12/ 39

Our Contribution

Current application design process

Runtime
Dataflow

graph
Monolitic

script

Hierarchical
description

Compilation

Execution
context

13/ 39

Our Contribution

New application design process

Runtime
Dataflow

graph
Hierarchical
description

Compilation

Execution
context

13/ 39

Hierarchical Components Model

Interface:
Input and Output ports. Ports are FIFO queues.

Input port

Output port

14/ 39

Hierarchical Components Model

Components:

Primitive Primitive components cannot contain any other
component. Tasks, filters, connections are primitive
components.

Composite Composite components contain other components
(composite or primitive).

Primitive

Composite

15/ 39

Hierarchical Components Model

Links:

Parent links the port from a composite component to one of
its children’s port.

Sibling links two ports of two components that have the
same father.

Sibling Link

Parent Link

16/ 39

Hierarchical Components Model

Controllers:

Introspection Controller reads component state.

Configuration Controller changes component state.

ID ?

Examples:

Introspection Controller Number of children, parameter file,
architecture information. . .

Configuration Controller Addition of children, links or ports,
mapping, deployment, . . .

17/ 39

Hierarchical Components Model

Controllers:

Introspection Controller reads component state.

Configuration Controller changes component state.

ID ?

Examples:

Introspection Controller Number of children, parameter file,
architecture information. . .

Configuration Controller Addition of children, links or ports,
mapping, deployment, . . .

17/ 39

Hierarchical Components Model

Controllers:

Introspection Controller reads component state.

Configuration Controller changes component state.

ID ?

Examples:

Introspection Controller Number of children, parameter file,
architecture information. . .

Configuration Controller Addition of children, links or ports,
mapping, deployment, . . .

17/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute
Number of
processes ?

execute

18/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute
Number of
processes ?

execute

18/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute
Number of
processes ?

execute

18/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute
Number of
processes ?

execute

18/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute
Number of
processes ?

execute

18/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute
Number of
processes ?

execute

18/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute
Number of
processes ?

execute

18/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute

Number of
processes ?

execute

18/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute
Number of
processes ?

execute

18/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute
Number of
processes ?

execute

18/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute

Number of
processes ?

execute

18/ 39

Example

0 1 2 3

Compute

execute

Number of
cores ?

Capture

execute

Merge

execute

Visu

execute
Number of
processes ?

execute

18/ 39

Acceptable Order

Compute

Merge

execute

Number of
processes ?

FAILED!

19/ 39

Acceptable Order

Compute

Merge

execute
Number of
processes ?

FAILED!

19/ 39

Acceptable Order

Compute

Merge

execute
Number of
processes ?

FAILED!

19/ 39

Traverse Algorithm: Motivations

Goals:

Controllers must be executed on all components

Traverse must be performed in an acceptable order

Remarks:

An acceptable order may not exist (cycle dependencies).

Express hundred constraints is error-prone and affect
modularity.

Use exceptions to find dependencies.

20/ 39

Traverse Algorithm [?]

Components list

end

Components list

end

controllerSUCCESS!FAILED!

R
ol

l-b
ac

k

21/ 39

Traverse Algorithm [?]

Components list

end

Components list

end

controllerSUCCESS!FAILED!

R
ol

l-b
ac

k

21/ 39

Traverse Algorithm [?]

Components list

end

Components list

end

controller

SUCCESS!FAILED!

R
ol

l-b
ac

k

21/ 39

Traverse Algorithm [?]

Components list

end

Components list

end

controller

SUCCESS!

FAILED!

R
ol

l-b
ac

k

21/ 39

Traverse Algorithm [?]

Components list

end

Components list

end

controller

SUCCESS!

FAILED!
R

ol
l-b

ac
k

21/ 39

Traverse Algorithm [?]

Components list

end

Components list

end

controller

SUCCESS!FAILED!

R
ol

l-b
ac

k

21/ 39

Traverse Algorithm [?]

Components list

end

Components list

end

controllerSUCCESS!

FAILED!

R
ol

l-b
ac

k

21/ 39

Traverse Algorithm [?]

Components list

end

Components list

end

controllerSUCCESS!

FAILED!

R
ol

l-b
ac

k

21/ 39

Traverse Algorithm [?]

Components list

end

Components list

end

controllerSUCCESS!FAILED!

R
ol

l-b
ac

k

21/ 39

Traverse Algorithm [?]

Components list

end

Components list

end

controllerSUCCESS!FAILED!

R
ol

l-b
ac

k

21/ 39

Traverse Algorithm [?]

Complexity
O(N2) calls to controllers (N is the total number of components)

Existence of an Acceptable Order
It exists an acceptable order⇔ Components list is empty

Cyclic Dependencies Detection
Traverse algorithm provides the set of components in cyclic depen-
dencies.

22/ 39

Integration on the Top of FlowVR

23/ 39

Outline

1 Introduction

2 A Hierarchical Components Model for Large Interactive
Applications

3 Study of Synchronization Lag

4 Conclusion

24/ 39

Samplers

Description
Tasks cannot run all at the same frequency: haptic versus simula-
tion.

Samplers adapt the dataflow rate.

Samplers can discard or duplicate data.

Example: double-buffering

Source

Destination

25/ 39

Samplers

Description
Tasks cannot run all at the same frequency: haptic versus simula-
tion.

Samplers adapt the dataflow rate.

Samplers can discard or duplicate data.

Example: double-buffering

Source

Destination

25/ 39

Samplers

Description
Tasks cannot run all at the same frequency: haptic versus simula-
tion.

Samplers adapt the dataflow rate.

Samplers can discard or duplicate data.

Example: double-buffering

Source

Destination

25/ 39

Synchronization Lag [?]

Source of Latencies in an Application
Computation, data transferts, . . .

Wloka observes a latency due to samplers
⇒ Synchronization Lag

Source

Destination

Wloka’s Observations

Mean Synchronization Lag=1
2 .

1
f .

Synchronization Lag is not constant.

26/ 39

Synchronization Lag [?]

Source of Latencies in an Application
Computation, data transferts, . . .
Wloka observes a latency due to samplers
⇒ Synchronization Lag

Source

Destination

Wloka’s Observations

Mean Synchronization Lag=1
2 .

1
f .

Synchronization Lag is not constant.

26/ 39

Problem Statements

Latency and jitter have an important impact on interactivity.

!
The jitter is often more perturbing than an important
constant latency.

Combatting Latency in Interactive Applications

Developers focus on latencies due to computations or data
transfert.

Developers ignore or even are not aware of synchronization
lag

27/ 39

Synchronization Lag

Source

Destination

tn tn+1 tn+2

τd

τs

Proposition
∀n, tn+1 = (tn + τd) mod τs

28/ 39

Synchronization Lag

Source

Destination

tn tn+1 tn+2

τd

τs

Proposition
∀n, tn+1 = (tn + τd) mod τs

28/ 39

Synchronization Lag

Source

Destination

tn tn+1 tn+2

τd

τs

Proposition
∀n, tn+1 = (tn + τd) mod τs

28/ 39

Characterization of Synchronization Lag

Linear Congruential Pseudo-Random Generator

Xn+1 = (a.Xn + c) mod m

⇒ simulate a uniform distribution.

Idea:
Our expression looks like this pseudo-random generator.
Does the synchronization lag distribution fit the uniform distribution?

Test

Generate distributions using tn expression

Apply a statistical fit-of-goodness test

Result: We can accept the hypothesis for most points

29/ 39

Mean and Variance of Synchronization Lag

If Synchronization Lag is U(0, τs) then

E[tn] = τs
2 = 1

2 .
1
fs

tn ∈ [0, τs]

}
validate Wloka’s observations

V[tn] =
τ2

s
12

0 20 40 60 80 100 120

5
1
0

1
5

2
0

2
5

Mean of queuing time
depending on source frequency

Source frequency (Hz)

Q
u
e
u
in
g
 t
im
e
 (
m
s)

Estimated
Mean of uniform law

0 20 40 60 80 100 120

0
5
0

1
0
0

1
5
0

2
0
0

Variance of queing time
depending on source frequency

Source frequency (Hz)

V
a
ri
a
n
ce
 (
m
s)

Estimated
Variance of uniform law

30/ 39

Interpretations

First Idea:
Mean and Standard Deviation are proportional to τs.

Speed-up tasks!

But dispersion is constant :

Cv =

√
V[tn]

E[tn]
=

1√
3

Second Idea:
Statistical tests fail for some (τs, τd) values.
What is E[qn] and V[qn] in these cases ?

31/ 39

Interpretations

First Idea:
Mean and Standard Deviation are proportional to τs.
Speed-up tasks!

But dispersion is constant :

Cv =

√
V[tn]

E[tn]
=

1√
3

Second Idea:
Statistical tests fail for some (τs, τd) values.
What is E[qn] and V[qn] in these cases ?

31/ 39

Interpretations

First Idea:
Mean and Standard Deviation are proportional to τs.
Speed-up tasks!

But dispersion is constant :

Cv =

√
V[tn]

E[tn]
=

1√
3

Second Idea:
Statistical tests fail for some (τs, τd) values.
What is E[qn] and V[qn] in these cases ?

31/ 39

Interpretations

First Idea:
Mean and Standard Deviation are proportional to τs.
Speed-up tasks!

But dispersion is constant :

Cv =

√
V[tn]

E[tn]
=

1√
3

Second Idea:
Statistical tests fail for some (τs, τd) values.
What is E[qn] and V[qn] in these cases ?

31/ 39

A Simple Condition to Remove Jitter

If τd mod τs = 0 then

tn+1 = (tn + τd) mod τs

⇒ tn+1 = tn

Mean and Variance Are

E[tn] = t0
V[tn] = 0

32/ 39

Future Works

Our Result
We should maximize frequencies under constraint τd mod τs = 0
It is more complex than “Go as fast as possible” !

Questions:

How measure τi online ?

What is the impact of perturbations on the result ?

Other sampling policies ?

33/ 39

Future Works

Our Result
We should maximize frequencies under constraint τd mod τs = 0
It is more complex than “Go as fast as possible” !

Questions:

How measure τi online ?

What is the impact of perturbations on the result ?

Other sampling policies ?

33/ 39

Outline

1 Introduction

2 A Hierarchical Components Model for Large Interactive
Applications

3 Study of Synchronization Lag

4 Conclusion

34/ 39

Summary

Questions:

How to handle complexity?

How to execute these applications under strong performance
constraints ?

Hierarchical Components Model

Add modularity

Compilation stage (tune the application)

Synchronization Lag

Sampling is mandatory

Few studies about sampling

How to reduce sampling impact ?

35/ 39

My Experience with Large Interactive Applications

Grimage and ANR Dalia
Real-time 3D reconstruction.
Demonstrators: VRST08, Sig-
graph09, Fête de la Science
(Grand Palais, Paris),. . .

ANR FVNano
Real-time interactions with mole-
cular simulation.

FlowVR
Middleware for Interactive Appli-
cations.
http://flowvr.sf.net/

36/ 39

http://flowvr.sf.net/

Perspectives

Architecture will Become more and more Complex
Many-cores (Larrabee, Fermi, . . .), clusters, grids, high-
performance network

We should delegate complexity to middlewares

Main Problem
Interactivity is a human feeling.
How a middleware can decide if an application is interactive ?

It is an open question⇒ best-effort

The optimization problem is multi-criteria: latencies, frequencies,
level of details, simulation accuracy, . . .

37/ 39

Perspectives

Architecture will Become more and more Complex
Many-cores (Larrabee, Fermi, . . .), clusters, grids, high-
performance network

We should delegate complexity to middlewares

Main Problem
Interactivity is a human feeling.
How a middleware can decide if an application is interactive ?

It is an open question⇒ best-effort

The optimization problem is multi-criteria: latencies, frequencies,
level of details, simulation accuracy, . . .

37/ 39

Perspectives

Architecture will Become more and more Complex
Many-cores (Larrabee, Fermi, . . .), clusters, grids, high-
performance network

We should delegate complexity to middlewares

Main Problem
Interactivity is a human feeling.
How a middleware can decide if an application is interactive ?
It is an open question⇒ best-effort

The optimization problem is multi-criteria: latencies, frequencies,
level of details, simulation accuracy, . . .

37/ 39

Perspectives

Interactive Application Specific: Sampling

Synchronization Lag

Efficient sampling algorithms, prediction, dead-reckoning ?

(N ×M + Sampling) communications

Regulation

80 Hz

10 Hz

20 Hz

20 Hz

Regulation

38/ 39

Thank You

Any questions ?

39/ 39

Modularity: Design Patterns

Main Idea
Provide an efficient cookbook to developers

They list well-known developers problem.

They do not provide any implementation.

There are some extensions for parallel computing.

40/ 39

A Feed-Back

Example of the Grimage Component

158 C++ lines

90% lines are related to communication

At high-level, few components and lot of ports and
links.

41/ 39

A Benefit of the Hierarchical Structure

Figure: Simple layout algorithm

Figure: Layout algorithm relies on the hierarchical structure

42/ 39

39/ 39

	Introduction
	A Hierarchical Components Model for Large Interactive Applications
	Study of Synchronization Lag
	Conclusion

