
HAL Id: tel-00460156
https://theses.hal.science/tel-00460156v1

Submitted on 26 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Description, deployment and optimization of medical
image analysis workflows on production grids

Tristan Glatard

To cite this version:
Tristan Glatard. Description, deployment and optimization of medical image analysis workflows on
production grids. Human-Computer Interaction [cs.HC]. Université de Nice Sophia Antipolis, 2007.
English. �NNT : �. �tel-00460156�

https://theses.hal.science/tel-00460156v1
https://hal.archives-ouvertes.fr

Universit́e de Nice Sophia-Antipolis

ECOLE DOCTORALE STIC
S ’

THESE
pour obtenir le titre de

Docteur en Sciences
de l’Université de Nice Sophia-Antipolis

mention

I

présentée et soutenue par

Tristan GLATARD

le 20 novembre 2007

Description, deployment and optimization of medical image

analysis workflows on production grids

Rapporteurs :

M Péter KACSUK

Mme Isabelle MAGNIN

Jury :

M Christian BARILLOT

M Denis CAROMEL Pŕesident

M Fréd́eric DESPREZ

Mme Ćecile GERMAIN-RENAUD

Mme Isabelle MAGNIN

M Johan MONTAGNAT Directeur

M Xavier PENNEC Co-directeur

M Michel RIVEILL

A mes parents et grand-parents.

Remerciements

Cette thèse n’aurait jamais vu le jour sans le concours de multiples personnes que je tiens

ici à remercier chaleureusement. Je tiens en tout premier lieu à remercier mes directeurs de

thèse Johan Montagnat et Xavier Pennec. Ils ont été à l’origine de la définition d’un sujet de

thèse particulièrement enrichissant de par sa pluridisciplinarité.

Johan, pour son encadrement au jour le jour, sa disponibilité exceptionnelle, quasi-

quotidienne, sa capacité à suggérer des pistes de recherche, orienter mes tâtonnements et

répondre sans délai à mes questions parfois naı̈ves quelque soit son emploi du temps. Au

delà de son encadrement scientifique et technique sans faille, sa capacité à faire partager son

enthousiasme a constitué une source de motivation particulière, indispensable pour fournir un

travail parfois exigeant. Un grand merci aussi pour m’avoir, en compagnie de Diane, changé

régulièrement les idées, dans les eaux fraı̂ches de la Maglia ou, les palmes aux pieds, à la

rencontre des mérous.

Xavier, pour sa vision éclairée de l’interface grille/ imagerie médicale, sa capacité à prendre

du recul pour identifier les problèmes importants, s’illustrant dans des commentaires souvent

exigeants mais toujours justifiés sur la rédaction, la pr´esentation des résultats et l’importance

accordée à l’adoption d’une démarche scientifique rigoureuse.

Je tiens aussi à remercier Michel Riveill et Nicholas Ayache pour m’avoir accueilli pendant

ces 3 ans dans leur équipe de recherche et pour avoir su créer les conditions matérielles et

humaines indispensables à la réalisation de cette thèse.

Thanks a lot to Professor Péter Kacsuk for having accepted the time-consuming task to

review this manuscript and for the interesting collaboration that we had during those 3 years.

Je tiens également à remercier Isabelle Magnin pour avoiraccepté la charge de rapporteur

en formulant des remarques fructueuses ainsi que pour son encadrement de mes débuts en

recherche à Creatis.

Je souhaite aussi remercier les membres de mon jury, Christian Barillot, Denis Caromel,

Frédéric Desprez, Cécile Germain-Renaud, Isabelle Magnin, Johan Montagnat, Xavier Pennec

et Michel Riveill pour leur disponibilité malgré les aléas des conditions de trafic aérien le jour

de la soutenance.

Au delà des conditions matérielles, le projet AGIR a grandement contribué à élargir le

spectre de cette thèse. Un grand merci à tous ses membres eten particulier à Cécile Germain-

Renaud qui le coordonne.

Merci aussi aux enseignants qui m’ont confié la charge de certains de leurs TD, Diane Lin-

grand pour le sérieux de ses supports, Pierre Mathieu pour son souci pédagogique contagieux

et Jean-Yves Tigli pour sa confiance, sa bonne humeur et son dynamisme rare.

La plupart des développements logiciels présentés dansce manuscrit doivent aussi beau-

coup à l’assistance compétente des stagiaires de l’EPU, Yann Biancheri, Lydie Blanchet,

Christophe Bonnet, Vincent Cave, Fabien Cordier, Fabien Gaujous, Amir Hnain, Patrick

Hoangtrong, Vincent Léon, Damien Mandrioli, Romain Raugi, Pascal Rolin et Thomas

Rollinger.

Enfin, remercier ici les gens qui m’accompagnent au quotidien peut paraı̂tre dérisoire, tant

leur apport dépasse le cadre de ce manuscrit, dans la duréecomme dans la nature de leur

soutien. Papa, Maman, Anaı̈s et Céline, ce travail vous appartient aussi. Caroline, merci pour

ces lumineuses années, malgré tout.

Cette thèse a été financée par le projet ACI AGIR.

Abstract

Grids are interesting platforms for supporting the development of medical image analysis ap-

plications: they enable data and algorithms sharing and provide huge amounts of computing

power and data storage. In this thesis, we investigate a medical image analysis problem that

turns out to be a typical dimensioning application for grids, thus leading to develop new work-

flow description, implementation and optimization methodsand tools. The basic application

problem is the evaluation of medical image registration algorithms in absence of ground truth.

Results obtained with a statistical method applied to a registration problem dealing with the

follow-up of brain tumors in radiotherapy are presented. Those results allow to detect subtle

flaws among the data. We extend this validation scheme in order to quantify the impact of lossy

image compression on registration algorithms.

This application is representative of typical grid problems so that we study its deployment

and execution on such infrastructures. We adopt a generic workflow model to ease the appli-

cation parallelization on a grid infrastructure. A novel taxonomy of workflow approaches is

presented. Based on it, we select a suitable workflow language and we design and implement

MOTEUR, an enactor exploiting all the parallelism levels ofworkflow applications. A new

data composition operator is also defined, easing the description of medical image analysis

applications on grids. Benchmarks on the EGEE production grid compared to controlled con-

ditions on Grid’5000 reveal that the grid latency and its variability lead to strong performance

drops. Therefore, we propose a probabilistic model of the execution time of a grid workflow.

This model is user-centric: the whole grid is considered as ablack-box introducing a random

latency on the execution time of a job.

Based on this model, we propose three optimization strategies aiming at reducing the im-

pact of the grid latency and of its variability: (1) groupingsequentially linked jobs reduces the

mean latency faced by a workflow, (2) optimizing the timeout value of jobs reduces the im-

pact of outliers and (3) optimizing the jobs granularity reduces the risk to face high latencies.

Significant speed-up are yielded by those strategies.

Résuḿe

En permettant le partage à grande échelle de données et d’algorithmes et en fournissant une

quantité importante de puissance de calcul et de stockage,les grilles de calcul sont des plate-

formes intéressantes pour les applications d’analyse d’images médicales. Dans cette thèse,

nous étudions un problème d’analyse d’images médicalesqui s’avère être une application di-

mensionnante pour les grilles, conduisant au développement de nouvelles méthodes et outils

pour la description, l’implémentation et l’optimisationde flots de traitements. Le problème ap-

plicatif étudié est l’évaluation de la précision d’algorithmes de recalage d’images médicales en

l’absence de vérité terrain. Nous faisons passer à l’échelle une méthode statistique d’évaluation

de ces algorithmes et nous montrons des résultats de précision sur une base de données con-

cernant le suivi de la radiothérapie du cerveau. Ces résultats permettent notamment de détecter

des défauts très légers au sein des données. Nous étendons ce schéma pour quantifier l’impact

de la compression des images sur la qualité du recalage.

Cette application étant représentative de problèmes typiques survenant sur les grilles, nous

nous attachons à son déploiement et à son éxecution sur ce type d’infrastructures. Pour faciliter

une parallélisation transparente, nous adoptons un modèle générique de flots de traitements,

dont nous proposons une nouvelle taxonomie. Pour répondreaux limitations de performance

des moteurs d’exécution de flots existants, nous présentons MOTEUR, qui permet d’exploiter

les différents types de parallélisme inhérents à ces applications. La définition d’un nouvel

opérateur de composition de données facilite la description des applications d’analyse d’images

médicales sur les grilles. Par une comparaison entre la grille de production EGEE et des grappes

dédiées de Grid’5000, nous mettons en évidence l’importance de la variabilité de la latence sur

une grille de production. En conséquence, nous proposons un modèle probabiliste du temps

d’exécution d’un flot de traitement sur une grille. Ce modèle est centré sur l’utilisateur : il

considère la grille toute entière comme une boı̂te noire introduisant une latence aléatoire sur le

temps d’exécution d’une tâche.

A partir de ce modèle, nous proposons trois stratégies d’optimisation visant à réduire

l’impact de la latence et de sa variabilité : (1) dans un flot de traitement, grouper les tâches

séquentiellement liées permet de réduire la latence moyenne rencontrée, (2) optimiser la valeur

du délai d’expiration des tâches prémunit contre les valeurs extrêmes de la latence et (3) opti-

miser la granularité des tâches permet de réduire le risque de rencontrer de fortes latences. Des

accélérations significatives sont ainsi obtenues.

Contents

Notations 16

Introduction 18

1 Grids for medical image analysis applications. 19

2 Doing research on production grids ?. 21

3 Manuscript organization and contributions. 22

I Workflows for medical image analysis applications 27

1 Performance evaluation of medical image registration using bronze standards 29

1.1 Medical image registration problems. 31

1.2 Performance evaluation: the bronze standard method. 32

1.3 Follow-up of brain tumors evolution in radiotherapy. 37

1.4 Impact of lossy compression on registration. 40

1.5 Conclusions and motivations for the following. 47

2 A taxonomy of workflow approaches for medical image analysis applications 51

2.1 Sharing algorithms: from assembly to services. 52

2.2 From formal workflow models to their execution. 61

2.3 Moving from a class to another one.. 76

2.4 Conclusions. 78

3 The bronze standard service workflow 81

3.1 The bronze standard workflow. 82

3.2 Expressiveness of the selected workflow language. 88

3.3 Conclusions. 96

II Workflow execution on production grids 99

4 The MOTEUR engine for service workflows 101

4.1 Parallelism exploitation in service workflows. 103

4.2 Data composition strategies in a parallel service workflow 105

4.3 Implementation of MOTEUR and overhead quantification. 111

4.4 Conclusions. 115

5 Production grids versus dedicated clusters 117

5.1 Grid platforms and middlewares. 119

5.2 Comparison of systems on the bronze standard workflow. 125

5.3 Latency comparisons. 133

5.4 Choosing the best platform: a multi-grids model. 137

5.5 Conclusions. 141

6 Analysis and impact of the latency variability on the EGEE grid 143

6.1 Influence of the latency variability on a workflow. 145

6.2 Characterization of the latency variability. 158

6.3 Handling variability in grid models. 168

6.4 Conclusions. 171

III Execution optimization on production grids 173

7 Service grouping 177

7.1 Service grouping optimization strategy. 178

7.2 Experiments on the EGEE production grid. 189

7.3 Conclusions. 190

8 Optimization of the timeout value 193

8.1 Model of the user job latency taking into account the timeout value. 195

8.2 Timeout optimization for classical latency distributions 200

8.3 Experiments on the EGEE latency distribution. 210

8.4 Conclusions. 210

9 Optimization of the job granularity 213

9.1 Model of the execution time of a user job allowing granularity tuning 216

9.2 Experimental evaluation on EGEE. 221

9.3 Extensions of the method. 224

9.4 Conclusions. 225

Conclusions and future directions 227

1 Summary of the contributions. 227

2 Future directions in grid workflows. 228

3 Future directions in production grids modeling. 229

4 Future directions in service computing for medical image analysis applications 230

5 Future directions towards a clinical use of the grid. 231

A Determination of the numerical values of the path of the workflow of figure 6.1 233

B Proofs of the timeout results of chapter 8 235

B.1 Expectation ofJ in the general case. 235

B.2 Limits of EJ . 235

B.3 Distributions for which the timeout value does not impact EJ whenρ = 0 . . . 236

B.4 Behavior ofEJ in the Weibull case without outliers. 236

B.5 Expression ofEJ(t∞) in the truncated Gaussian case. 237

B.6 Behavior ofEJ(t∞) in the truncated Gaussian case. 238

B.7 Expression ofEJ in the log-normal case. 239

B.8 Behavior ofEJ in the Pareto case. 240

B.9 Properties ofΦ and link with erf . 240

Bibliography 241

Notations

� all-to-all data composition operator

� one-to-one data composition operator

nW number of services on the critical path of a workflow

nD number of data items to be processed by a workflow

R grid latency

Ri, j grid latency faced by service i processing data item j

Σ makespan of a workflow

J total execution time of a job (including resubmissions)

w CPU time of an application

p number of jobs submitted by an application

fV/FV pdf/cdf of the random variableV

EV expectation of the random variableV

σV standard-deviation of the random variableV

t∞ timeout value

q probability for a job to timeout

ρ outliers ratio

φ/Φ pdf/cdf of the standard normal distribution

18 Introduction

Introduction

Sharing data and algorithms with a community of users has produced fascinating applications

of the Internet, such as the World Wide Web and, to some extent, open-source software projects

such as the Linux kernel. Similarly, the development of digital devices has made available

tremendous amounts of storage and computing resources. Those resources are distributed all

over the world but still accessible: thegrid [Foster and Kesselman, 1997] denotes the aggrega-

tion of heterogeneous resources transparently accessibleby the end-user. In the medical image

analysis domain, sharing data, algorithms and computing power suggests awesome applications

benefiting from such resources aggregations.

1 Grids for medical image analysis applications

Computerized medical image analysis is now a well established area that provides assistance

for diagnosis, therapy, and pathologies follow-up. It may benefit from the adoption of grid

technologies in several aspects.

First, by providing computing power, grids tend to allow a wider clinical adoption of med-

ical image analysis procedures. Indeed, the exploitation of medical image analysis algorithms

in clinical context imposes time deadline constraints thatare hardly satisfied by time con-

suming applications but could be approached thanks to the use of grids. Besides, from the

medical image analysis scientists point of view, setting uplarge scale realistic experiments

(such as parameter sweep applications [Sermesant et al., 2006] or image acquisition simula-

tion [Benoit-Cattin et al., 2005]) is often difficult due to the required computing time. This

kind of compute-intensive methods greatly benefits from grid technologies that speed up the

experiments, specially in case of multiple trials requiredfor parameters tuning and the detection

of experimental errors. Applications dedicated to the validation or evaluation of medical image

analysis procedures may also be fostered by computing power. Such applications often require

to process large databases of images in order to obtain significant results. For instance, the

quality of the results provided by the bronze standard method motivating this thesis is improv-

ing with the number of processed images and evaluated algorithms. In this case, the availability

of computing power is directly related to the quality of the obtained results.

20 Introduction

Second, the gridification of medical image analysis applications is also motivated by the

fact that image processing algorithms may be more efficiently shared on grids. Pushing stan-

dards, grids are easing the use of medical image analysis tools for a large community of end

users, not necessarily aware of computer technologies. These standards enable access to proce-

dures needed for building large scale health-related experiments. In particular, the validation of

medical image analysis procedures would benefit from a transparent sharing of codes. Making

algorithms interoperate on a given platform may rapidly become intractable as some serious

engineering problems will arise. For instance, the bronze standard application involves sev-

eral different medical image analysis algorithms that may have been developed by different

researchers and institutes using various programming languages on heterogeneous systems and

architectures. Particular methods have been set up by grid developers to ease code sharing.

As detailed in this thesis, the state-of-the-art solution to deal with code sharing is to adopt a

Service Oriented Architecture (SOA) to develop application services and to useworkflowsas a

programming paradigm to build complete applications on topof them.

Besides, with the growing inspection capabilities of imagers and the increase in medical

data production, the need for large amounts of data storage increases. Beyond that, being able

to share data is also a crucial challenge of medical image analysis applications that would often

remain useless without the ability to access image databases of a significant size. Applications

such as content-based image indexing and retrieval [Montagnat et al., 2005], atlas construc-

tion [Mazziotta et al., 1995] or statistical validation of algorithms [Pennec and Thirion, 1997],

would greatly benefit from a massive sharing of medical images. Grids, in theirdata-grid

aspect provide a common storage and indexation space allowing the users of a virtual orga-

nization to share their data. Yet, many issues (such as data/metadata access, anonymization

and encryption for different users communities) remain specific to the sharing of medical data

and systems such as the Medical Data Manager [Montagnat et al., 2007] or the Globus Medi-

cus [Erberich et al., 2007] should become mandatory components of any grid medical system

put in production.

Finally, another well established benefit of grid computingis the federation of scientific

communities in Virtual Organizations (VOs). In the contextof medical image analysis, several

specialized communities can be identified for which the gridfosters collaborative work. Indeed,

many actors are likely to take part in a grid-enabled medicalimage analysis system, with diverse

skills, needs and constraints. In particular:

1. The developers of the applications (e.gmedical image analysis scientists) should be able

to describe a complete application from existing heterogeneous codes that have been

developed independently from each other.

2. The end-users (e.gclinicians) should be able (i) to specify the data on which the appli-

cation will be run and (ii) to execute it on a grid without worrying about the technical

underlying details.

2. Doing research on production grids ? 21

3. The grid experts should be able to transparently deploy any non grid-specific code and to

efficiently execute complete applications composed of severalof them.

In this thesis, we will try to keep the balance between those three aspects. Workflows are an

interesting approach to make them cooperate. Apart from providing a transparent way to design

and deploy applications on grids, they constitute a particularly suitable application exchange

format among them. They are thus studied in depth in this manuscript. Moreover, in order to

study realistic scenarios, we will study the deployment of those workflows onproductiongrids.

2 Doing research on production grids ?

Production grids are 24/7 operating platforms that provide stable enough systems tosupport

science. They support applications aiming at yielding scientific results in various fields but

computer science, such as high energy physics, aeronautics, geology, earth observations, bioin-

formatics and medical image analysis. Thus, among the existing solutions, they are ideal

platforms to target for the deployment and scientific exploitation of medical image analysis

applications. Conversely, research in computer science istraditionally made on experimental

platforms [Cappello et al., 2005, Cappello and Bal, 2007] that provide controlled environments

allowing the setup of reproducible experiments. Those instruments are envisioned as “grid tele-

scopes” developed by computer scientists for computer scientists and required to analyze and

develop models and methods setting the basis of the softwarethat would be put in production

in a next step.

The grid platforms targeted by this manuscript are production infrastructures rather than

experimental ones. Consequently, the grid deployment of the application and the subsequently

studied optimization strategies will be performed in a non-reproducible context, which may be

debatable from a computer science point of view. Indeed, onecould wonder whether production

grids should only be seen as a deployment platform for scientific applications or if they may

also be considered for computer science research.

Even if the experimental conditions are not so favorable, itstill remains worth observing the

real sky. Studying production systems seems to be a requiredstep at least to identify effective

problems that could be studied in reproducible contexts in anext step. Indeed, production grids

are not very well known systems: the prediction of the performance of applications is almost

impossible today and even its analysis may be problematic. In practice, current production

solutions for debugging [Duan et al., 2006] and even for resource selection [Jacq et al., 2007]

rely on huge historical information logs that are empirically interpreted. No model of those

platforms are available or used in production. The understanding of production platforms re-

quires the collection of realistic data (such as workloads [Feitelson, 2002, Medernach, 2005])

and their improvement expects the identification and expression of the new problems raised by

the production exploitation of grid applications. That is why we study those production sys-

22 Introduction

tems in this manuscript. Beyond their practical interest, our intent is to provide some material

helping in their understanding in order to allow the development of new optimization methods

specific to those platforms. Experimental platforms will only be used as a reference to quantify

the performance of production grids.

3 Manuscript organization and contributions

The approach adopted in this manuscript is to start from a typical medical image analysis ap-

plication and to consider it as a dimensioning use-case to study grids. One the one hand, the

power of those infrastructures allows us to derive new original results in the medical image

analysis field. On the other hand, this application-centricapproach led us to design new opti-

mization methods on grids to foster the performance of applications. This thesis is divided into

three parts, each of them being composed of three chapters. Part I deals with the description

of medical image analysis workflows. After a presentation ofthe new results obtained from

the image registration application, it aims at identifyingsuitable workflow models for medical

image analysis. PartII is devoted to the execution of workflows on production grids:its goal

is to determine the level of performance that can be achievedon those infrastructures and to

highlight the causes of performance drops. Based on those conclusions, partIII proposes new

strategies to optimize workflows execution on production grids.

Chapter 1. Chapter1 presents the new results obtained with the bronze standard method. The

idea of this method and preliminary results demonstrating the feasibility proof of the approach

were presented in [Pennec, 2006b]. In this thesis, we enable its operational mode thanks to

grid technologies which allow the method to reach its full power. Results are presented on a

large database related to the follow-up of brain radiotherapy. On this registration problem, we

demonstrate that a sub-voxelic precision (about 0.15° in rotation and 0.4 mm in translation)

is achieved by the tested algorithms. The large size of this database and of the computation

involved allows to compute statistically significant results, which permits subtle detections such

as a 1.2 degree tilt of part of the images highlighted by our results [Glatard et al., 2006f]. We

then propose a study of the influence of a lossy image compression method on the quality

of the registration. Based on an experiment involving 3,000registrations, we conclude that

the influence of the tested compression method is almost unnoticeable until a compression

ratio of 48. Coupled to similar results shown in [Raffy et al., 2006], it constitutes a set of

indications tending to suggest that lossy compression could be considered in some applications.

The bronze standard application studied in this chapter illustrates several typical grid problems.

In particular, it benefits from a workflow design, as studied in the next chapters.

3. Manuscript organization and contributions 23

Chapter 2. In this chapter, we propose a new classification of workflow descriptions for

medical image analysis applications. This taxonomy is based on the distinction between the

roles of the clinician (specifying the data), the medical image scientist (defining the treatments

to perform) and the grid expert (mapping the tasks to the resources). This taxonomy allows

to select suitable workflow representations for a given applicative context. In particular, we

underline that the use of the traditional workflow representation used on grids requires to mix

the roles of the clinician and the image analyst, which is notsuitable. The work presented in

this chapter is original but not published yet.

Chapter 3. Based on this taxonomy, chapter3 rationalizes the use of service workflows for

medical image analysis applications and provides a description of the bronze standard applica-

tion in this paradigm using the Scufl language. After the successful description of the bronze

standard application in Scufl, we propose a study of the expressiveness of this language. We

demonstrate that it is possible to implement a Turing machine in Scufl, thus guaranteeing that

the language is expressive enough to describe a larger classof applications.

Chapter 4. Because existing solutions do not provide a satisfying parallelization of service

workflows, the implementation of an optimized workflow engine [Glatard et al., 2006c] is pre-

sented in chapter4. This development is based on an existing workflow language (Scufl).

Yet, in a fully parallel execution, one of its data composition operators is not well-defined.

Thus, we propose a new semantic for this operator and we detail the subsequent implementa-

tion [Montagnat et al., 2006, Glatard et al., 2008b]. This new operator aims at facilitating the

development of medical image analysis workflows in a parallel context.

Chapter 5. The workflow implementation of the application enables a fair compar-

ison between different grid systems. Chapter5 details its interface with grid plat-

forms [Glatard et al., 2005, Glatard et al., 2006d] and presents experimental results comparing

production grids and dedicated clusters. Results demonstrate a speed-up of 44 of a typical

bronze standard execution on a 60-nodes dedicated platform, which is close to the theoretical

bound that could be achieved. Because of the latency of the system, the execution in sim-

ilar conditions on the EGEE production grid only provides a speed-up of 10, which can be

explained by the high latency of such production grids. The end of the chapter proposes a

multi-grids model [Glatard et al., 2006b] that is used to quantify the gap between production

and experimental platforms. Given a number of jobs, this model is able to determine the pro-

portion of them to submit on a production grid rather than on acluster to minimise the pay-off

of the latency. For instance, we demonstrate that from a performance point of view, there is

no need to use the production grid rather than a 20 nodes cluster under a threshold of 50 one

minute long jobs. This threshold grows to 230 jobs when comparing the production grid to a

24 Introduction

100 nodes cluster. The experiments and metrics introduced in this chapter provide new meth-

ods to benchmark the performance of production grids with respect to traditional clusters. The

variability of the grid latency is also identified as particularly high (up to 5 minutes) on the

EGEE production grid.

Chapter 6. This chapter proposes a new modeling of workflow on grids. This model delib-

erately considers the grid as a black box. Given the high variability of production platforms,

we consider that it introduces a random latency on the execution time of a job. A probabilis-

tic model for the performance analysis of workflows [Glatard et al., 2007c] is first presented.

Given the topology of the workflow, it allows to determine theexpectation and standard devi-

ation of its execution time on a highly variable grid. Using this model, we demonstrate that

the latency variability leads to a performance drop of a factor 2 on the execution time of the

bronze standard application. This motivates the need for strategies to reduce the impact of this

variability. Experimental results characterizing the distribution of the grid latency in production

conditions are then shown [Glatard et al., 2007a]. Even if extreme precautions have to be taken

when a latency model is assumed, we suggest that the probabilistic distribution of the latency

is heavy-tailed. We believe that the probabilistic grid approach adopted in this chapter is likely

to generate new methods for the optimization of applications on production grids, as initiated

in chapters8 and9.

Chapter 7. In this chapter, we propose to group some services of the workflow in order

to reduce the impact of the grid latency. A grouping rule ensuring that parallelism is pre-

served is proposed. Its application yields significant speed-ups, ranging from 1.5 to 3 on the

bronze standard application. Grouping services is not straight-forward in a classical service-

oriented architecture. Thus, to implement our strategy, wepropose a generic application ser-

vice wrapper which is able to perform the grouping, while still conforming to the services

standards [Glatard et al., 2006a, Glatard et al., 2008a].

Chapter 8. Grids are operational systems prone to inevitable failuresat multiple levels. In

addition to the high variability of the latency, some jobs may get lost or at least not finish in

a “finite” time. Those jobs are called outliers. Thus, submitting a grid job introduces a risk

that has to be controlled. To do that, chapter8 proposes a strategy to optimize the timeout

value of jobs on production grids [Glatard et al., 2007b]. Relying on the approach introduced

in chapter6, we derive a probabilistic model of the execution time of a job including timeout

and resubmissions. Based on it, we suggest that the weight ofthe tail of the distribution of

the latency is a discriminatory parameter for setting a timeout value to the jobs. Optimizing

this value is shown to be particularly important on production grids and latency reductions of a

factor 1.4 are shown with this method on the EGEE grid.

3. Manuscript organization and contributions 25

Chapter 9. To further reduce the risk to face high latencies and outliers, one can control

the granularity of a user job,i.e the number of grid jobs that will be submitted to compute

it. Chapter9 proposes a method to optimize this job granularity. It exploits the same proba-

bilistic approach as previously, which seems to be relevantenough to optimize job submission

parameters with a new angle, focusing on the grid variability seen from a user’s perspective.

This method goes one step further than the grouping presented in chapter7: here, the data

parallelism of the application is deliberately limited in order to reduce the risk to face high

latencies. The method proposed in this chapter is shown to significantly speed-up applications

while reducing the global load imposed to the grid [Glatard et al., 2006e].

26 Introduction

Part I

W

Chapter 1

Performance evaluation of medical image

registration using bronze standards

Contents
1.1 Medical image registration problems . 31

1.2 Performance evaluation: the bronze standard method. 32

1.2.1 Performance quantifiers. 33

1.2.2 Performance evaluation. 34

1.2.3 The bronze standard method. 35

1.3 Follow-up of brain tumors evolution in radiotherapy 37

1.3.1 Data and registration problem. 37

1.3.2 Accuracy results. 38

1.4 Impact of lossy compression on registration. 40

1.4.1 A framework for evaluating the impact of compression. 41

1.4.2 Experiments . 43

1.5 Conclusions and motivations for the following 47

1.5.1 Medical image analysis results. 47

1.5.2 The need for grid workflows. 48

30 Performance evaluation of medical image registration using bronze standards Chap. 1

I
mage registration is an important procedure

for medical image analysis applications. It

aims at finding a geometrical transformation be-

tween two images so that they are best superim-

posed. Evaluating the performance of registra-

tion is not trivial because of the lack of ground

truth in medical image analysis. The goal of

the bronze standard application is to provide a

framework for the evaluation of registration re-

sults in absence of ground-truth and gold stan-

dard [Pennec, 2006b]. The foundations of the

method are first described. Then, an experimen-

tal use-case related to the follow-up of brain ra-

diotherapy is presented. Finally, a study of the

impact of lossy images compression on registra-

tion is developed and demonstrates the power of

the method. The bronze standard application is

the motivating use-case of the following chapters

of the manuscript. It gathers grid challenges re-

lated to algorithms and data sharing as well as

computing power needs that are addressed in the

remaining of this thesis.

L
e recalage d’images est une procédure im-

portante pour les applications d’analyse

d’images médicales. Son but est de trouver

une transformation géométrique entre deux im-

ages pour qu’elles se superposent au mieux.

Evaluer la performance du recalage n’est pas

trivial à cause de l’absence de vérité ter-

rain en analyse d’images médicales. Le but

de l’application des étalons de bronze est de

fournir un cadre pour l’évaluation des résultats

du recalage en l’absence de vérité terrain et

d’étalon-or [Pennec, 2006b]. Dans un premier

temps, les fondements de la méthode sont décrits

puis un cas d’utilisation concernant le suivi

de la radiothérapie du cerveau est présenté.

Enfin, une étude de l’impact de la compres-

sion d’images avec pertes sur le recalage est

développée et démontre la puissance de la

méthode. L’application des étalons de bronze

motive les chapitres suivants de ce manuscrit.

Elle concentre des enjeux en termes de puis-

sance de calcul et de partage d’algorithmes et

de données qui sont étudiés dans la suite de cette

thèse.

The goal of this chapter is to present, from a medical image analysis point of view, the

bronze standard application which will be our main use case for the study of grid workflows

in the next chapters. This application aims at evaluating the performance of medical image

registration algorithms with respect to a statistical truth which is determined as a mean of

several independent measurements. Those results can be computed in parallel, thus exploiting

a natural coarse grain parallelism.

1.1. Medical image registration problems 31

1.1 Medical image registration problems

Medical image registration is a very common procedure in medical image analysis and it has

been extensively studied during the last decades [Bankman, 2000, Maintz and Viergever, 1998,

Hajnal et al., 2001, Makela et al., 2002, Gholipour et al., 2007]. Its goal is to estimate a trans-

formation enabling the resampling of afloating imageonto the geometry of atarget image,

so that both images are best superimposed. Many classes of registration problems exist, de-

pending on the nature of the transformation searched (rigid, affine, deformation field), on the

modalities of the images to register (Magnetic Resonance, Single Photon Emission Computed

Tomography, Computed Tomography, Ultra-Sound, Positon Emission Tomography) and on

their geometry (2D, 3D, 4D). In practice, a registration method aims at optimizing a similarity

measure between 2 input images, considering a particular transformation space. As in every

optimization procedure, performance problems may arise inparticular because of the presence

of local minima of the optimized criterion. The output transformation of a registration algo-

rithm may be more or less close to thecorrect solution which is most of the time unknown

(see figure1.1). Intensity-based methods may optimize similarity measures such as the sum of

square distances between the intensities of the images (SSD), the correlation ratio or coefficient

(CR and CC [Roche et al., 1998]) or the mutual information (MI). Alternately, feature-based

methods optimize a distance between features extracted from the images, such as crest-lines.

Rigid registrationassumes that the target and floating images are two separate acquisi-

tions of the same rigid object. In this case, the registration problem resumes to the finding

of a rotation and a translation (6 parameters for 3D images) so that the floating image can be

transformed in the frame of the target one. This type of registration problem may for instance

correspond to successive acquisitions of a non-deformableorgan of a patient (intra-patient reg-

istration). In addition to rotation and translation,affine registrationalso considers shear and

scaling in all the directions, thus leading to the optimization of 12 parameters for 3D images.

Non-rigid transformations allow local deformations of theobjects to register. An ex-

tension of the rigid and affine registration problems in this direction is to consider locally

rigid or affine transformations, as proposed in [Little et al., 1997] and [Arsigny et al., 2005].

With a small number of intuitive parameters tuning the number of rigid or affine com-

ponents as well as their definition domains, those transformations are able to address

problems involving several rigid objects such as the registration of the head (skull and

neck) [Commowick and Malandain, 2006].

However, problems concerning highly deformable organs aremore properly addressed

by non-rigid transformations. This is the case for the wholeabdomen (deformation due to

breathing [Sarrut et al., 2006]), pathological images (such as tumoral follow-up images), and

of course inter-patient images (including atlas to patient). In this case, the output transformation

of the registration is a deformation field, which corresponds, for 3D images, to 3 parameters

per voxel.

32 Performance evaluation of medical image registration using bronze standards Chap. 1

local minima

transformation space

basin of attraction of the correct solution

correct solution
global minimum /

si
m

ila
rit

y
m

ea
su

re

Figure 1.1: Illustration of the registration problem: the transformation space is browsed by

the optimization strategy in order to minimize a similaritymeasure between the floating

and the reference images. The basin of attraction of the global minimum characterizes the

robustness of the method.

The registration problem is also characterized by the nature of the images to register: they

can correspond to the same imaging modality (intra-modal registration) or to different ones

(inter-modal registration [Hellier and Barillot, 2004, Arbel et al., 2004]). The geometry of the

images can also vary among the registration problems. For instance, registering 2D to 3D

images is required in some image guided therapy clinical applications [Nicolau et al., 2003],

in particular in fluoroscopy [Micu et al., 2006, Heining et al., 2006] and registering cardiac se-

quences implies 4D images [Makela et al., 2003].

1.2 Performance evaluation: the bronze standard method

The performance of registration algorithms is critical formany image-based clinical procedures

but quantifying it is difficult due to the lack of gold standard in most clinical applications. In

most cases, there is no reference to which the result of a registration algorithm can be compared.

To analyze registration algorithms from a technical point of view, one may consider them as

black boxes that take images as input and that return a transformation. The performance eval-

uation problem is to estimate the quality of this transformation. However, no registration algo-

1.2. Performance evaluation: the bronze standard method 33

rithm will perform the same for all types of input data and it is important to keep in mind that

a performance estimation of an algorithm is only valid for the particular registration problem

considered in the evaluation study. For instance, registering CT images of the head of the same

patient could be much more accurate than registering the abdomen of the same patient because

some deformations occur in the second case due to breathing and heart beating. Likewise, one

algorithm may perform very well for multimodal MR registration but poorly for SPECT/CT.

This means that the evaluation data set has to be representative of the targeted typical clinical

application problem: all sources of perturbation in the data should be represented, such as ac-

quisition noise and artifacts, pathologies,. . . It cannot be concluded just from one experiment

that one algorithm is better than the others for all applications.

1.2.1 Performance quantifiers

As far as the registration result is concerned, one can distinguish between gross errors (conver-

gence to wrong local minima) and small errors around the exact transformation. Gross errors

may impact therobustnesswhich can be quantified by the size of the basin of attraction of the

correct solution (see figure1.1) or by the probability to find the correct transformation. Small

errors may be sorted intosystematic biases, repeatabilityandaccuracy[Jannin et al., 2002].

Repeatability accounts for the errors due to internal parameters of the algorithm, mainly the

initial transformation, and to the finite numerical accuracy of the optimization algorithm, while

the external error accounts for the propagation of the data errors into the optimization result. It

is important to notice that the accuracy measures the error with respect to the truth (which may

be unknown), while the precision or repeatability only measures the deviation from the average

value,i.e. it does not take into account systematic biases, which are often hidden. There are nu-

merous reasons to have systematic biases that are usually forgotten. For instance, a calibration

error in the acquisition system will consistently bias all the images acquired with that device.

Unless another calibration is done or an external referenceis used (e.g. another acquisition

device), there is no way to detect such a bias. In terms of statistical modeling, this means that

all the potential error sources have to vary among the measures in order to be considered as

random and be included in the performance evaluation.

In a statistical setting, considering the true transformation as a random variable naturally

leads to quantify the repeatability (resp. accuracy) of a registration method as the standard

deviation of the related observed transformations (considered as realizations of the random

variable) or as the expected RMS distance to their mean (resp. to the exact transformation),

or more interestingly with their covariance matrix as the transformation uncertainty is usually

non isotropic (e.g. radians and millimeters for rotation and translation part of a rigid transfor-

mation). Then, the variability of the transformation can bepropagated to some target points

of interest inside the images [Pennec and Thirion, 1997] in order to obtain local estimations of

the accuracy of the transformation [Pennec et al., 1998]). We obtain the so-called Target Reg-

34 Performance evaluation of medical image registration using bronze standards Chap. 1

istration Error (TRE) [West et al., 1997]. This should not be confused with the Fiducial Local

Error (FLE) which is related to the value of the similarity criterion at the minimum.

1.2.2 Performance evaluation

Several methods have been investigated in order to assess the performance of registration al-

gorithms. The main problem is to determine a satisfying reference to perform the evaluation.

It can then be used to evaluate the robustness, repeatability and accuracy of registration meth-

ods. Three different classes of approaches can be used to determine the reference. The bronze

standard method studied in this thesis belongs to the third one, which can be used in absence

of ground truth and gold standard.

Data simulation. One of the simplest evaluation schemes is to simulate noisy data, to apply

a known transformation on it and to measure how far is the registration result from the true one

(the ground truth is obviously known). Even if in some cases images may be faithfully simu-

lated (e.g SPECT [Grova et al., 2001], MRI [Benoit-Cattin et al., 2005] or CT of the breathing

abdomen [Sarrut et al., 2006]) with a very high computational cost due to the complexity of

image acquisition physics, the main drawback of synthetic data is that it is very difficult to

identify and model all the sources of variability, and especially unexpected events (pathologies,

artifacts, etc). Forgetting one single source of error (e.g. bias due to chemical shift in features

extracted from MRI [Pennec et al., 1998] or camera calibration errors in 2D-3D registration

[Nicolau et al., 2003]) automatically leads to the underestimation of the final transformation

variability.

Phantoms. The second evaluation level is to use real data in a controlled environment, for

instance imaging a physical phantom in different positions/orientations. There is possibly a

gold standard, if one can precisely measure the motion or deformation of the phantom with

an external apparatus. However, it is difficult to test all the clinical conditions with such a

phantom (e.g. many different pathologies or even different localization of the same pathology).

Moreover, it is often argued that these phantoms are not representative of real in vivo biological

systems. One level closer to the reality, experiments on cadavers correctly take into account

the anatomy, but fail to exhibit all the errors due to the physiology, thus producing images that

may be very different from the in-vivo ones.

Performance evaluation without gold standard. The last level of evaluation methods is the

one addressed in this thesis. It relies on a database of in-vivo real images representative of the

clinical application. Such a database can be large enough tospan all sources of variability, but

there is usually no gold standard registration to compare with. One method is to perform a cross

comparison of the criteria optimized by different algorithms [Hellier et al., 2003]. However,

1.2. Performance evaluation: the bronze standard method 35

this does not give any insight about the transformation itself. A more interesting method for

registration evaluation is the use of consistency loops [Holden et al., 2000, Roche et al., 2001].

The principle is to compose transformations that form a closed circuit and to measure the dif-

ference of the composition from the identity. This criterion does not require any ground truth,

but it only measures the repeatability as any bias will get unnoticed. A last type of meth-

ods is to see the ground truth as a hidden variable, and to estimate concurrently the ground

truth and the quality as the distance of the computed resultsto this reference (EM like algo-

rithms), as it was exemplified for the validation of segmentation by the STAPLE algorithm

[Warfield et al., 2004]. The bronze standard method belongs to this class of methods. Specific

validation methods can also be envisaged for non rigid registration in absence of ground truth.

For instance, [Schestowitz et al., 2006] assesses the registration in terms of the quality of a

model constructed from the registered images: their idea isthat a correct registration produces

anatomically meaningful images.

1.2.3 The bronze standard method

The principle of the bronze standard method introduced by Pennec in several papers

(e.g [Nicolau et al., 2003]) and synthetized in [Pennec, 2006b] is similar to STAPLE but con-

cerns registration. From a set of measurements (i.e. registrations between pairs of images

obtained with several methods), the exact transformationsand the variability of the registration

results with respect to these measures have to be estimated.Let us assume that we haven

images of the same organ of the patient andm methods to register them, i.e.m× n × (n − 1)

transformationsTk
i, j (we denote here byk the index of the method and byi and j the indexes

of the reference and target images). The goal here is to estimate then− 1 free transformations

T̄i,i+1 that relate successive images and that best explain the measurementsTk
i, j (see figure1.2).

The bronze standard transformation between imagesi and j is obtained by composition of

the free parameters:̄Ti, j = T̄i,i+1 ◦ T̄i+1,i+2 ◦ . . . ◦ T̄ j−1, j if i < j (or the inverse of both terms if

j > i). The bronze standard method considers the exact transformations as hidden variables of

an overestimated system:n− 1 transformations have to be estimated whereasm× n× (n− 1)

observations are available. The exact transformations areestimated as the ones that minimize

the prediction error of the observations:
{

T̄i,i+1

}

= arg min
T̄i,i+1

∑

i, j∈[1,n],k∈[1,m]

d
(

Tk
i, j , T̄i, j

)2
(1.1)

whered is a distance function between transformations.

In the particular case of rigid transformations, the distance function can be cho-

sen as a robust variant of the left invariant distance on rigid transformations developed

in [Pennec et al., 1998]:

d(T1,T2) = min
(

µ2(T(−1)
1 ◦ T2) , χ

2
)

with µ2(R(θ, n), t) = θ2/σ2
r + ‖t‖2/σ2

t

36 Performance evaluation of medical image registration using bronze standards Chap. 1

Figure 1.2: The basic principle of the bronze standard method is to exploit redundancy

among the measurements. The transformations to estimate (red arrows) are obtained as a

means of measurement compositions (black arrows).

whereθ is the angle of rotationRandn is the unitary vector defining its axis.t is the translation

vector of the transformation. Details on the general methods for doing statistics on Riemannian

manifolds and Lie groups are given in [Pennec, 2006a]. The Mahanalobis normµ is normalized

by the variancesσ2
θ

andσ2
t of the observations that have to be properly estimated.

The larger the number of registered images, the more accurate the estimated bronze stan-

dard. It is also important to use several algorithms based ondifferent methods and developed by

various people to prevent the results from being systematically biased by a specific registration

technique or implementation usage. Results over several patients are averaged to obtain more

significant estimations.

In this process, we do not only estimate the optimal transformations, but also the rotational

and translational variance of the “transformation measurements”, which are propagated through

the criterion to give an estimate of the variance of the optimal transformations. Of course, these

variances should be considered as a fixed effect (i.e. these parameters are common to all patients

for a given image registration problem, contrarily to the transformations) so that they can be

computed more faithfully by multiplying the number of patients.

The estimation̄Ti,i+1 is calledbronze standardbecause the result converges toward the per-

fect registration as the number of methodsm and the number of imagesn increases. Indeed,

considering a given registration method, the variability due to the noise in the data decreases as

the number of imagesn increases, and the registration computed converges towardthe perfect

registration up to the intrinsic bias introduced by the method. Now, using different registration

procedures based on different methods, the intrinsic bias of each method also becomes a ran-

dom variable, which is hopefully centered around zero and averaged out during the minimiza-

1.3. Follow-up of brain tumors evolution in radiotherapy 37

tion procedure. The different bias of the methods are now integrated into the transformation

variability. To fully reach this goal, it is important to useas many independent registration

methods as possible. As a consequence, computing significant bronze standard estimations

requires heavy computations.

Criterion1.1 is in fact the log-likelihood of the observationsTk
i, j assuming Gaussian errors

around the bronze standard registrations with a varianceσ2
r on the rotation andσ2

t on the trans-

lation. An important variant is to relax the assumption of the same variances for all algorithms,

and to unbias their estimation. This can be realized by usingonly m− 1 out of them methods

to determine the bronze standard registration, and by usingthe obtained reference to determine

the accuracy of the last method (a kind of leave-one-method-out test). This uncertainty is then

propagated into the final bronze standard registration (including all methods) to estimate its

accuracy.

1.3 Follow-up of brain tumors evolution in radiotherapy

1.3.1 Data and registration problem

The targeted clinical application is the planning and follow-up of the radiotherapy of brain

tumors. In such an application, several registrations are needed, with very different character-

istics. Firstly, a monomodal but highly deformable atlas topatient registration that takes into

account pathologies (tumors) is often performed to segmenttarget volumes and organs at risk

in the current image, in order to optimize the dose planning [Commowick et al., 2005]. To

be more accurate, multimodal images are often taken (e.g. MRT1 and T2), sometimes with

a contrast agent to enhance the tumor (gadolinium injected T1). A multi-modal rigid regis-

tration is needed to relate all these images in the same coordinate system. Last but not least,

assessing the evolution of the tumor in follow-up images is important to evaluate the result of

the treatment. This is the monomodal rigid registration problem that is considered for those

experiments. Quantifying its accuracy is important to ensure the precision of the tumor evolu-

tion estimation in the assessment of the efficiency of clinical treatments. Precisely registered

longitudinal studies may be used to validate the quality (reproducibility and accuracy) of seg-

mentation algorithms used for radiotherapy planning. An accurate registration of longitudinal

brain images is also needed in many other image-based studies of neuro-degeneratives diseases

like multiple sclerosis or Alzheimer’s disease [Dugas-Phocion, 2006].

To evaluate all these registration/ segmentation problems, a database of 110 patients with

1 to 6 times points and MR T2, T1 and gadolinium injected T1 modalities was acquired at a

local cancer treatment center (courtesy of Dr Pierre-Yves Bondiau from the ”Centre Antoine

Lacassagne”, Nice, France) on a Genesis Signa MR scanner. Among them, 29 have more than

one time point and were suitable to inclusion in the rigid registration evaluation study. Only

38 Performance evaluation of medical image registration using bronze standards Chap. 1

the injected T1 images were selected. These images are more demanding for registration than

other MRI sequences as the gadolinium uptake is likely to vary at different time points, leading

to local intensity outliers. All T1i images are 256×256×60×16 bits thus leading to a 7.8 MB

size per image (approximately 2.3 MB when lossless compressed).

Four different registration algorithms were considered. Two of themare intensity-

based:Baladin [Ourselin et al., 2000] has a block matching strategy optimizing the coeffi-

cient of correlation and a robust least-trimmed-squares transformation estimation;Yasmina

uses the Powell algorithm to optimize the SSD or a robust variant of the correlation ra-

tio [Roche et al., 2001]. The two others are feature-based and match specific crest lines (ex-

tracted using the third derivatives of the images) with different strategies [Pennec et al., 2000]:

CrestMatch is a prediction-verification method andPFRegister is an ICP algorithm extended

to features more complex than points. In the computation of the bronze standard registration,

CrestMatch is used to initialize all the other algorithms close to the right registration. This

ensures that all algorithms converge toward the same (hopefully global) minimum. A visual

inspection is performed a posteriori on the bronze standardregistration to ensure that this “op-

timal” transformation is indeed correct. As we are focusingon accuracy and not on the robust-

ness, this initialization does not bias the evaluation.

1.3.2 Accuracy results

The evaluation procedure was run on the 29 selected patientswith σr = 0.15 degrees,σt = 0.42

mm and aχ2 value of 30. A high number of registration results were rejected in the robust

estimation of the bronze standard transformations. A visual inspection revealed that there was

a scaling problem along thez axis and a and shear problem in theyz plane for one of the

images involved in each of these rejected registrations. A detailed analysis of the DICOM

headers showed that the normal to the slices (xyplane), given by the cross product of theImage

Orientation vectors, was not perfectly parallel to the slice trajectoryduring the acquisition

(axis obtained from theImage Position field, i.e. the coordinates of the first voxel of each

slice.). This tilt was found to be+1.19 degree in most of the images and -1.22 degree in 13

images. It seems that nothing in the DICOM standard ensures that 3D images are acquired on

an orthogonal grid: it would be interesting to better specify the acquisition protocols on the MR

workstation. There, we can see that the bronze standard method is able to detect subtle flaws

in the images that ever the radiologists had not noticed.

Thus, images are not in an orthogonal coordinate system and should be either registered

with an affine transformation (which adds 6 additional parameters among which only one

-the tilt- has a physical justification) or the tilt should betaken into account within the rigid

registration algorithm, but this solution was not implemented for the considered algorithms. As

the tilt was small, we chose not to resample the images (in order to keep the original image

quality), but rather to perform an uncorrected rigid registration within the group of images with

1.3. Follow-up of brain tumors evolution in radiotherapy 39

Number of time points: 2 3 4 6

Registration per patient (and per algorithm): 2 6 12 30

Patients (including/without tilted images): 15/15 6/7 7/2 1/1

Total number of registrations: 120/120 144/168 336/96 120/120

Table 1.1: Summary statistics about the image database used.

Figure 1.3: Example of a slice of two registered 3D images with a high deformation. One

can clearly see that the tumor growth has pushed the right hemisphere and several different

rigid transformations may locally account for the differences between the two brains.

a positive tilt only. This led us to remove 13 images among the82, and 4 patients for which

only one image was remaining (the statistics on the remaining number of patients, images and

registrations are given in table1.1).

The bronze standard application was run again with the same parameters on this reduced

database of 25 patients. This time, only 20 registrations were rejected, among which 15 were

concerning two patients with a very high deformation in the tumor area, leading to some global

deformations of the brain (Figure1.3). In that situation the rigid motion assumption does not

hold any more and several ”optimal” rigid registrations maybe valid depending on the area

of the brain. The last 5 rejected transformations involve two acquisitions with phase-encoded

motion artifacts which impacted differently feature-based and intensity-based registration al-

gorithms, leading to two non-compatible sets of transformations. However, it was not possible

to visually decide which result was the “right” one.

Excluding these 20 transformations which correspond to special conditions where the rigid

assumption does not really hold, we obtained mean errors of 0.130 degree on the rotations and

0.345 mm on the translations. The propagation of this error on the estimated bronze standard

leads to an accuracy of 0.05 degree and 0.148 mm. We then determined the unbiased accuracy

of each of the 4 algorithms by comparing its results to the bronze standard computed from the

3 others methods. Results are presented in table1.2 and show slightly higher but equivalent

values for all algorithms.

This experiment demonstrates that the bronze standard method can be precise enough to

detect very small deviations from the rigidity assumption (tilts of 2 degrees) in images, and

that the 4 used rigid registration algorithms actually reach a subvoxel accuracy of 0.15 degree

40 Performance evaluation of medical image registration using bronze standards Chap. 1

Algorithm σr(deg) σt(mm)

CrestMatch 0.150 0.424

PFRegister 0.180 0.416

Baladin 0.139 0.395

Yasmina 0.137 0.445

Table 1.2: Accuracy results

in rotation and 0.4 mm in translation for the registration oflongitudinal T1 injected 1x1x2mm

images of the brain. In the next section, we propose to estimate the impact of a lossy com-

pression algorithm on the performance of the registration.This is another example that will

demonstrate the power of the bronze standard method.

1.4 Impact of lossy compression on registration

With the generalization of digital image acquisition and manipulation devices, an increasing

number of medical images are archived in digital warehouses. Manufacturers provide DICOM

compliant devices interfaced to local storage facilities and PACS. The emergence of multi-sites

PACS and technologies such as data grids eases the integration and archiving of medical data

at a large scale. Furthermore, recent regulations show a trend for long term archiving of patient

data. Given the tremendous amount of radiology data acquired daily in clinical centers (tens of

TBytes per year) and the will for long term archiving, optimizing storage space is increasingly

needed [Germain et al., 2005].

Image compression can lead to drastic data size reduction and compression algorithms, such

as JPEG, have been included in the DICOM standard. Lossless compression ensures a perfect

reconstruction of the compressed data but leads to the lowest compresion ratio: in the range

of 3.3 to 3.9 for the brain MRIs with a large black background described in section1.3.1(see

figure1.3). Compression with loss can achieve much better compression ratios but at the cost

of approximative reconstruction. In the medical area, the use of lossy compression should be

considered with care given the sensitivity of image-based diagnosis and knowing that it will be

impossible to recover the original data. Most often, in the current practice, only lossless JPEG

is considered to compress DICOM data, if any compression is applied at all.

A trade-off has to be found between efficient image archiving and the quality of archived

data. In the literature, a growing interest for multi-dimensional medical data compression re-

cently appeared [Menegaz and Thiran, 2002, Unser et al., 2003, Kassim et al., 2005]. The au-

thors often let to the user the choice of the compression factor and therefore the image quality.

An important question is the impact of lossy compression on automated medical image anal-

ysis procedures. Some recent studies show that a reasonablelevel of lossy compression may

remain acceptable in this case. For instance, Raffy et al [Raffy et al., 2006] made a quantitative

1.4. Impact of lossy compression on registration 41

σt σθ,

σt σθ,

Figure 1.4: Illustration of the bronze standard method applied to uncompressed and com-

pressed images (representation of the transformations in the 2D plane). Each registration

algorithm (identified by a given shape) produces transformations in the compressed (blue)

and uncompressed (black) cases. Bronze standards are depicted by crosses. Ellipses repre-

sent covariances. The accuracy of a particular algorithm isdetermined with respect to the

bronze standard obtainedwithout this algorithm (see gray cross and arrows for the “square

algorithm”).

evaluation of the impact of an increasing compression factor on the computed-aided diagnosis

to detect pulmonary nodules. The study shows that the detection performance of solid lung

nodules did not suffer until a compression ratio of 48. In this section, we consider the impact of

lossy compression on rigid registration algorithms thanksto the bronze standard method. An

experimental framework for estimating the impact of compression on accuracy, repeatability,

and robustness is first described and then applied to the clinical problem of the follow-up of

brain radiotherapy, as it was done in section1.3.

1.4.1 A framework for evaluating the impact of compression

The founding hypothesis of this evaluation framework is to consider the transformations ob-

tained from the uncompressed images as the reference for theevaluation. Then, the goal is

to estimate to what extent the compression makes the registration results deviate from their

original locus in terms of robustness, repeatability and accuracy.

1.4.1.1 Building the reference registration with the bronze standard method

On uncompressed images, the reference registration is built using the statistical bronze standard

method. Figure1.4 diagrams the bronze standard notations for the compressionstudy. Each

algorithm is represented by a shape and produces transformations in the compressed (blue) and

uncompressed (black) cases. Bronze standards are depictedby crosses. The reference for the

evaluation is built exclusively from the uncompressed images (black items). Outliers are first

removed thanks to theχ2 threshold of equation1.1 and visualization checking as explained

42 Performance evaluation of medical image registration using bronze standards Chap. 1

above. The uncompressed bronze standard (black cross) is then computed and the standard-

deviations of the transformations (σθ andσt) are measured. Those variances are re-injected in

the minimization procedure of equation1.1which is iterated until they converge towards a sta-

ble estimation. They characterize the repeatability without compression. The accuracy of each

algorithm will be obtained from the average distance between its measured transformations and

the standard built from the remaining methods (gray cross and arrow on figure1.4).

1.4.1.2 Evaluating the robustness

The number of outlier transformations gives an estimation of the robustness of the algorithms

with respect to the compression. Outliers should be detected by an exhaustive visual checking,

as for the uncompressed case. To avoid this tedious manual operation, one can rather rely on an

automatic comparisonwith the uncompressed referencewhich has already been validated. This

comparison is made thanks to theχ2 test included in the mean computation of equation1.1.

Among the transformations rejected by theχ2, a visual inspection has to be performed to de-

termine whether they effectively correspond to wrong local minima (when it is obvious that a

manual registration can lead to a better result). In this case, the whole patient is removed, for

each algorithm: the absence of a specific algorithm for a given patient could bias the quantifi-

cation of the accuracy of the remaining ones. Moreover, to allow a fair comparison between

the compression ratios, patients leading to a wrong local minimum inanyof the compression

ratios are excluded for the repeatability and accuracy studies. Otherwise, it would be likely

that high compression ratios would have been evaluated on less patients than lower ones, thus

leading to potential artificial standard-deviation reduction.

1.4.1.3 Evaluating the repeatability

For each compression ratio, the repeatability is measured by the variancesσθ andσt of the

transformations obtainedfrom the compressed images only, after having removed the patients

leading to a wrong local minimum in one of the compression ratio by comparison with the

uncompressed reference. Repeatability is pictured by ellipses on figure1.4. It is determined

without performing anyχ2 test in the distance of equation (1.1). Indeed, due to potential biases

on compressed images, one transformation may be consideredas an outlier with respect to

compressed images while it is an inlier for uncompressed images (and vice versa). This is the

case for instance of the blue triangle in figure1.4.

1.4.1.4 Evaluating the accuracy

The transformations obtained from the uncompressed imagesare considered as the reference

for the evaluation. The accuracy of each algorithm is computed by measuring the mean distance

of compressed transformations to the uncompressed reference. To avoid biases, the evaluated

1.4. Impact of lossy compression on registration 43

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10 20 30 40 50 60 70

R
ej

ec
te

d
pa

tie
nt

s
(%

)

Compression ratio

Baladin
CrestLines
PFRegister

Yasmina

Figure 1.5: Ratio of outlier patients with respect to the compression ratio

registration algorithm is excluded from the algorithms used to build the uncompressed refer-

ence. It should be noticed that taking into account uncompressed images to build the reference

does not imply that the accuracy is always worse for compressed images. It is for instance

the case of the transformation of the algorithm depicted with a square on figure1.4: compres-

sion has brought it closer to the bronze standard obtained without compression. This could for

example be the consequence of a smoothing effect resulting from the compression.

1.4.2 Experiments

Experiments were made with the same setup as in section1.3. The related database has

been compressed at compression ratios 6, 12, 24, 48 and 64, with the 3D-SPIHT algo-

rithm [Kim and Pearlman, 1997]. SPIHT is a zero-tree-based compression algorithm that is

known to have produced some of the best results in 2D images coding. It has been extended

to 3D and adapted to medical images [Xiong et al., 2003]. Figure1.7shows an image and the

effect of 3D-SPIHT compression on it for a compression ratio of 64.

1.4.2.1 Impact of compression on the performance of algorithms

Robustness. The ratio of outlier patients is plotted on figure1.5for each algorithm.Baladin

is the most robust method (at most 1 patient is rejected by theχ2 test). Yasmina is also very

robust, with 1 or 2 rejected patients. For those two algorithms, the behavior does not seem to

be monotonic with respect to the compression ratio: some patients are rejected for low ratios

but are again accepted for higher ones and vice versa. The good robustness of those methods

44 Performance evaluation of medical image registration using bronze standards Chap. 1

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 10 20 30 40 50 60 70
 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

de
g

m
m

Compression ratio

Baladin rot (deg)
Baladin tr (mm)

CrestLines rot (deg)
CrestLines tr (mm)

PFRegister rot (deg)
PFRegister tr (mm)
Yasmina rot (deg)

Yasmina tr (mm)

Figure 1.6: Accuracy of the algorithms.

1.4. Impact of lossy compression on registration 45

Figure 1.7: Image slice without (left) and with (right) compression (compression ratio=

64). The main structures are still well identified but a blurring effect is clearly visible.

may be a consequence of their multi-scale strategy: they both use a pyramid of under-sampled

images and initialize the input transformation of a given sampling level with the result of the

upper one. The robustness of the crest-lines methods is lower, which may be explained by the

extraction of the crest-lines at a single scale. The number of rejected patients is almost constant

until a compression ratio of 48, with 2 or 3 patients rejected. For a compresion ratio of 64, it

highly increases up to almost 50% of rejected patients forCrestLines. At this compression

ratio,PFRegister performs a little bit better, with only 37% of rejected patients, which could

be explained by a more robust matching of the crest-lines. The fact that feature-based methods

are less robust to compression may come from the use of first tothird order derivatives of the

image to extract crest-lines, which are very likely to be impacted by the compression procedure.

To illustrate it, we represented on figure1.8 the longest detected crest lines with and without

compression. The compression significantly disturbs the detection of those lines.

It also has to be noticed that the study of the robustness led us to rapidly identify experi-

mental mistakes in the data base. For instance, switches among the image names were easily

detected by the statistical procedure, whereas a visual check of all the images would have re-

quired a significant time and is clearly not scalable.

Repeatability. Among the patients rejected for at least one method, 4 were corresponding to

wrong local minima for at least one compression ratio. They were removed and the repeatability

and the accuracy were evaluated on the remaining 296 transformations for each algorithm.

46 Performance evaluation of medical image registration using bronze standards Chap. 1

Figure 1.8: 3D views of the longest crest lines detected without (left) and with compression

(right). The red line riding through to the upper part of the visible ventricle is not detected

on the compressed image. Two other red lines on the left are going through brain sulci.

Only a small part of one of these is visible on the right side.

 0.114

 0.116

 0.118

 0.12

 0.122

 0.124

 0.126

 0.128

 0.13

 0.132

 10 20 30 40 50 60 70
 0.32

 0.325

 0.33

 0.335

 0.34

 0.345

 0.35

 0.355

 0.36

 0.365

 0.37

σ θ
 (

de
g)

σ t
 (

m
m

)

Compression ratio

σθ (deg)
σt (mm)

Figure 1.9: Mean variances of the transformations with respect to the compression ratio.

1.5. Conclusions and motivations for the following 47

Figure1.9 plots the evolution of the mean variances of the transformations. Despite a subtle

improvement of 1% at the compression ratio 6, the main behavior is an impairment of 4 to 6%

before a strong decline of 13% for a compression ratio of 64.

Accuracy. Figure1.6displays the accuracy of the algorithms with respect to the compression

ratio. The accuracy of feature-based methods is highly reduced at a compression ratio of 64. At

this compression level, the mean error ofCrestLines has increased by 48% for the rotation

and 29% for the translation whereas the one ofPFRegister has increased by 17% for the rota-

tion and by 25% for the translation.Yasmina is quite insensitive to the compression: its mean

error only increases by 10% for the rotation and by 5.5% for the translation. More surprisingly,

after a brief rise until a compresion ratio of 24, the accuracy of Baladin is improving: for a

ratio of 64, it is 34% better than without compression for therotation and 18.5% better for the

translation. The fine behavior ofBaladin andYasmina can be explained by the fact that both

algorithms include a multi-scale handling that may compensate the effects of potential noise

introduced in the images. Moreover, inBaladin, only the most significant blocks (the ones

with the largest standard deviations) are considered for the block-matching.

1.5 Conclusions and motivations for the following

1.5.1 Medical image analysis results

In this chapter, the application of the bronze standard evaluation framework was studied on a

clinical use-case related to the follow-up of brain radiotherapy. Rigid registration algorithms

were evaluated on a database of brain follow-up MRIs. Experiments demonstrate that the

bronze standard method can be precise enough to detect very small deviations from the rigidity

assumption (tilts of 2 degrees) in images, and that the 4 rigid registration algorithms used

actually reach a subvoxel accuracy of 0.15 degree in rotation and 0.4 mm in translation for the

registration of longitudinal T1 injected 1x1x2mm images ofthe brain.

An evaluation of the impact of the 3D-SPIHT compression algorithm on the registration

shows that the robustness, repeatability and accuracy are little impacted below a significant

compression ratio (48), in particular if the registration algorithm has a good multi-scale han-

dling. Beyond this threshold, the tested methods based on crest-lines are highly penalized: half

of the patients can be considered as outliers and their accuracy is lowered by 50%. Surpris-

ingly, compression improves the registration accuracy (upto 30% forBaladin on our setup)

probably because the registration algorithm focuses on informative subsets of the image. Thus,

lossy compression does not seem to be problematic for the registration until a given compres-

sion ratio (48 in our study), which looks similar to the results found in [Raffy et al., 2006] on

another clinical problem. Evaluating the impact of other compression algorithms on different

48 Performance evaluation of medical image registration using bronze standards Chap. 1

registration methods should yet be done to allow more general conclusions.

In conclusion, the bronze standard method is able to estimate the performances of rigid reg-

istration algorithms in the absence of gold standard and to evaluate the influence of parameters

such as the compression ratio of the images. Moreover, it is highly scalable and makes outliers

easily detectable whereas a visual check of a large amount oftransformations could not be done

in a reasonable amount of time.

1.5.2 The need for grid workflows

From a computer science point of view, the bronze standard isnicely described as aworkflow(a

graph of connected processings) as it requires many mostly independent registrations with sev-

eral algorithms on different data sets. Figure1.10pictures the precedence constraints between

the algorithms implied in the experiments presented in thischapter. In the reminder of this

thesis, we particularly focus on this application as it is representative of a large class of medical

image analysis applications. Indeed, it is common to build image analysis procedures from

basic image processing algorithms. The representation andthe execution of such procedures

as workflows enable a generic processing of many similar image analysis tasks. In addition,

there are many medical image analysis procedures involvinglarge data sets for different needs

(statistical studies over populations, performances evaluation such as the bronze standard, epi-

demiology, . . .). They require heavy computations, dominated by this data-parallel nature. The

workflow-based approach eases the deployment of such computations over remote parallel grid

resources. It decouples the application from the executioninfrastructure, thus releasing the

application developers from the most complex computational problems, especially paralleliza-

tion. As explained in chapters2, 3 and4, the workflow-based design of this application will

allow to transparently exploit this parallelism on a grid.

The bronze standard runs presented in this chapter are typically 30 hours long on state-

of-the-art PCs (see chapter5 for detailed benchmarks of the algorithms), which would make

the whole compression experiment of section1.4 7.5 days long (regular run+ 5 compression

ratios). The first benefit expected from a grid execution of this application is a reduction of the

total execution time of the application. As demonstrated inchapter5, the time of this week-

long experiment could be reduced to 4 hours on a dedicated cluster of 60 nodes and to 18 hours

on a shared production grid in similar conditions. Based on the analysis performed in chapter6,

further optimizations presented in chapters7, 8 and9 aim at bridging the gap between those

two kinds of grid infrastructures. The benefit expected for the bronze standard application

from the availability of computing power is twofold. First,the reduction of its execution time

brings the application closer to a clinical exploitation: even if a reasonable execution time is

certainly not the only parameter allowing a clinical usage,daylong runs remain prohibitive in

such conditions. Second, from a medical image analysis point of view, the computing power

offered by a grid allows wider experiments producing more relevant results. The quality of the

1.5. Conclusions and motivations for the following 49

crestLines

PFMatchICP Yasmina

PFRegister

AccuracyEvaluation

Baladin

crestMatch

Figure 1.10: Dependencies between the algorithms implied in the bronze standard exper-

iments presented in this chapter. Arrows denote precedenceconstraints. Each part of a

registration algorithm (crestLines, crestMatch, Yasmina, Baladin, PFMatchICP and

PFRegister) is iterated on the whole image database, thus triggering a natural data paral-

lelism. The CrestMatch feature-based method tested in thischapter is made of two inde-

pendent part:crestLines extracts salient lines from the images andcrestMatch finds

a transformation between them. As explained in this chapter, the 3 other registration al-

gorithms are initialized with the result of CrestMatch. Those 3 methods are completely

independent, thus benefiting from workflow parallelism. ThePFRegister method (com-

posed ofPFMatchICP andPFRegister) is a robust variant of CrestMatch and also relies

on thecrestLines results. The accuracy evaluation runs once all the registrations have

been computed.

50 Performance evaluation of medical image registration using bronze standards Chap. 1

accuracy results provided by the bronze standard application is increasing with the amount of

registrations performed and the number of algorithms used.Results computed from a few pairs

of images registered with a single algorithm would measure the repeatabilityof the method,

i.e its variability around a mean potentially far from the truth. As the amount of computed

transformations and algorithms used increases, those results are converging towardsaccuracy:

more and more sources of variability are taken into account and biases are averaged out by

the bronze standard estimation. Thus, the available computing power is directly related to the

quality of the medical image analysis results obtained.

Another motivation for the workflow design of the bronze standard application presented

in the next chapter is its need for algorithms sharing. Integrating registration algorithms devel-

oped by several different research teams in a bronze standard evaluation procedure widens the

spectrum of covered biases and further increases the relevance of the method. Making medi-

cal image analysisservicesavailable and composable in applicative workflows then becomes a

crucial need.

Finally, even if it is not extensively studied in this thesis, the gridification of the bronze

standard application provides by itself a way to share data by benefiting from the data man-

agement facilities offered by contemporary grid middlewares. Similarly to algorithms sharing,

sharing data enhances the significance of the bronze standard method because it makes possible

the building of large scale image databases: again, the relevance of the accuracy results yielded

by the method is increased by the sweeping of a large number ofvariability sources, which is

only possible through the consideration of large image databases.

Chapter 2

A taxonomy of workflow approaches for

medical image analysis applications

Contents
2.1 Sharing algorithms: from assembly to services. 52

2.1.1 Composition models. 55

2.1.2 Workflow definitions. 57

2.1.3 Workflows classifications. 59

2.2 From formal workflow models to their execution 61

2.2.1 Formal workflow models. 65

2.2.2 Functional workflows. 68

2.2.3 Service workflows. 72

2.2.4 Tasks-graphs. 74

2.3 Moving from a class to another one. 76

2.4 Conclusions. 78

T
his chapter deals with the description of

application workflows on grid infrastruc-

tures. We propose a classification of workflow

description approaches with respect to the spec-

ification of functions, data and resources in the

language. This classification distinguishes five

workflow classes, each of them corresponding to

a particular user profile. Based on this taxon-

omy, the main existing workflow languages are

then reviewed.

52 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

C
e chapitre traite de la description

d’applications construites par chaı̂nes de

traitements sur des infrastructures de grille.

Nous proposons une classification des approches

de description selon la présence des fonctions,

des données et des ressources dans le langage.

Cette classification distingue cinq classes

de chaı̂nes de traitements, chacune d’entre

elles correspondant à un profil particulier

d’utilisateur. A partir de cette taxonomie, nous

passons en revue les principaux langages de

description de chaı̂nes de traitements existants.

The study made in this chapter is motivated by the need of applications to share algorithms

across institutes and administrative domains. In particular, as detailed in the previous chapter,

the bronze standard application greatly benefits from it as it allows wider registration algorithms

comparisons and produces more relevant results. The state-of-the-art solution for addressing

such a problem is to wrap codes intoservicesand tocomposethem into aworkflow. Many

workflow approaches have been envisaged, answering needs issuing from various users profile

(“domain” scientists with scripting skills, computer scientists testing parallelization methods,

end-users without any programming background, . . .). Aftera historical overview of code

reusability methods leading to the emergence of services, workflow approaches are reviewed

and classified in section2.2. Our point is to determine a workflow approach that could allow

an easy workflow representation and usage for an end-user (e.g a clinician), a familiar pro-

gramming model for the application developer (e.g the medical image analysis scientist) and

an efficient grid deployment for the computer scientist. The typical envisaged scenario would

be to have clinicians understanding and using workflows composed by medical image analysis

scientists from existing services and execute them efficiently on a grid platform. The clini-

cian could thus focus on his/her work without having to deal with problems concerning the

execution and distribution of the processings.

2.1 Sharing algorithms: from assembly to services

Sharing algorithms is the modern vision for code reusability which has been considered for a

while in computer science: the emergence of Service-Oriented Architectures (SOA) is the result

of a long process to foster code reusability in software engineering. Assemblies, the earliest

programming languages for micro-processors, were architecture and system specific. Writing

an application using such languages requires a deep knowledge of the target architecture (such

as the number and size of registers) and the resulting code isdefinitely not portable. Yet, the

use of procedures and libraries revealed an early concern about the necessity to reuse proven

code as much as possible. Then, compiled languages such as C became independent from the

architecture and allowed software projects to be easily portable on various kind of platforms.

Object-oriented languages such as C++went further in code reusability by providing the ability

to define classes that were supposed to be reusable in a numberof different applications. For

2.1. Sharing algorithms: from assembly to services 53

instance, in the medical image analysis domain, the InsightTool Kit (ITK) 1 is a currently

widespread library intensively used for sharing state-of-the-art algorithms among scientists.

Yet, C and C++ languages remain highly dependent on the operating systems: some APIs

are different in nature from an OS to another one and porting a code mayinvolve a significant

burden (see for instance the differences between (win)sockets APIs on Linux and Windows, the

availability of process forking, . . .). Later on, the Java language abstracted from the operating

system thanks to the use of (system-dependent) virtual machines that are able to interpret pre-

compiled code and execute it on-the-fly. Still, as noticed byGannon in [Gannon, 2007]:

“ Object-oriented programming was thought to be the solution to reusability but it

only got us part of the way. Object-oriented concepts are powerfull but they do not

guarantee that a class built for one application can be easily reused in another. To

build truly reusable software, one must design the softwareas part of a component

architecture that defines rules and contracts for deployment and reuse. ”

The concept ofcomponentprogramming cited here has been introduced as early as in 1968

by McIlroy who suggested an analogy between industrial techniques and software production.

In [McIlroy, 1968], he underlines the ideas of sub-assemblies and interchangeable parts that

could both be applied to industrial products and software. He also claims that software com-

ponents have to be considered as black boxes, offering families of parametrizableon-the-shelf

components for a given job. Last but not least, McIlroy identifies the need for being able to

compile and use the components on various architectures without performance loss. Nowadays,

a common definition of a component is the one of Szyperski [Szyperski, 2002]:

“ A software component is a unit of composition with contractually specified in-

terfaces and explicit context dependencies only. A software component can be

deployed independently and is subject to composition by third parties. ”

A contract describes the function implemented by the component independently from its

implementation and a definition of the context dependenciescould for instance be found

in [Gannon, 2007]:

“ By context dependencies, we refer to the conditions that must be satisfied by the

host environment in order to operate properly. For example,does the component

require a specific version of the JVM or libraries ? ”

For instance, the WComp application development environment dedicated to the adaptation of

component assemblies on heterogeneous and dynamic resources considers the context as the

presence or absence of software components, of resources (software subsystems) and specific

devices [Cheung-Foo-Wo et al., 2006].

1http://www.itk.org

http://www.itk.org

54 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

Hot debates have been conducted in order to determine whether objects could be considered

as components or not. For instance, in [Pfister and Szyperski, 1996], the authors explain why

object oriented programming does not fulfill the needs required for building component-based

architectures. In particular, they explain that:

“ A component is defined as a collection of cooperating objects, with a clearly

defined boundary to other objects or components. Objects inside a component

typically are intertwined tightly, while interaction across the component boundary

is relatively weak. ”

This distinction is not purely semantic but can also have severe consequences on the perfor-

mance of the software systems. Indeed, since method calls are not always local procedure

calls anymore but can be remote, which is several orders of magnitude slower, it is impor-

tant to be aware of the boundary of a set of locally interacting objects, which justifies this

definition of components. A complete zoo of component modelsand implementations have

been proposed, among which Microsoft COM/DCOM [Box, 1997] and OLE, Java Beans,

Sun’s Enterprise Java Beans [Monson-Haefel, 2001] and related simplified models such as

Spring2 or Pico3, Apache Avalon4, and the Corba Component Model (CCM) which inspired

the Corba Component Architecture [Armstrong et al., 1999] which is for instance implemented

in SciRunII [Zhang et al., 2004] or XCAT3 [Krishnan and Gannon, 2004]. Based on the Frac-

tal5 [Bruneton et al., 2004] component model, Proactive components are formed of one orsev-

eral so-called active objects and offer grid computing facilities such as distribution, asynchro-

nism, mobility or security [Baduel et al., 2006].

Servicesare defined as an exposed piece of functionality with three properties:

1. The interface contract to the service is platform independent.

2. The service can be dynamically located and invoked.

3. A service does not call another service (loose coupling).

The two firsts points are motivated by the development of distributed applications across the In-

ternet and the third one ensures the independence of a given service with respect to other ones.

This property strongly distinguishes services from objects or components that may require de-

pendencies (such as the presence of a given library, or the connection with another component)

to be fulfilled in order to run properly. Services live in Service-Oriented Architectures (SOA)

that are basically composed of three actors: the serviceproviderruns the service on a particular

endpoint (i.e a port and Internet address) and publishes its interface in aservicebroker, which

allows theconsumerto discover the service and to invoke it.
2http://www.springframework.org
3http://www.picocontainer.org
4http://avalon.apache.org
5http://fractal.objectweb.org/

http://www.springframework.org
http://www.picocontainer.org
http://avalon.apache.org
http://fractal.objectweb.org/

2.1. Sharing algorithms: from assembly to services 55

Web-Services are the most common implementation of services and have been standard-

ized by the W3C6. A Web-Service is an endpoint whose interface is specified bya Web-Service

Description Language (WSDL) document and that is accessible through the Simple Object Ac-

cess Protocol (SOAP). As many web technologies, Web-Services specifications rely on XML

to ensure platform and language independence. Web-Services can be dynamically discovered

from repositories that may for instance conform to the Universal Description Discovery and

Integration (UDDI) standard. However, UDDI has recently been highlighted to be severely

limited [Atkinson et al., 2007] and Web-Services discovery is still an extremely active research

domain. Major criticisms of Web-Services coming from the grid computing community are the

fact that they are stateless and bound to a particular resource. OGSA and WSRF are evolutions

of the Web-Services initial specification that, among otherevolutions, allow a service (i) to

be statefull and (ii) to be dynamically deployed on a resources thanks to the use of a service

factory [Wagstrom et al., 2002].

2.1.1 Composition models

Components and services may be composed through different approaches to build an appli-

cation. Workflows are one of the software composition paradigms that emerged jointly with

the concept of software components. A brief overview of component composition is thus

needed prior to the introduction of workflows. The concept ofcomponent composition ap-

peared in the 1970s, after McIlroy introduced the first reference tosoftware componentsin

1968 [McIlroy, 1968]. A component may have input and outputports, corresponding to the

input and output arguments of the underlying function and that are used by the composition

systems. In [Gannon, 2007], Gannon sketches a state of the art of software compositionsys-

tems. Thedirect compositionmechanism consists in connecting input ports to output ones, thus

building an application as a data flow graph. Yet, Gannon underlines that applications involv-

ing components that have functional or method interfaces orcomponents that have interfaces

based on sending and receiving one-way messages may not be easily described by such graphi-

cal notations. Gannon also notices that components must be able to maintain input queues or to

block upstream output ports in case of multiple invocations. Strategies also have to be defined

when the component receives a different number of inputs on its ports. We study those strate-

gies in a parallel environment in section4.3.1of chapter4. Gannon also identifies a problem

related to Web-Services composition: they return a response to the caller rather than to another

Web-Service. To avoid that, a proxy can be implemented that redirects the output to the right

component, as it is done in Kepler, Triana and Taverna that are workflow composition systems

able to integrate Web-Services. Yet, it requires the workflow manager to centralize the whole

data exchanged in the workflow, which can raise performance issues.

6http://www.w3.org

http://www.w3.org

56 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

Gannon also cites thebus-basedcomposition mechanism, as a metaphor from the hardware

design. In this scheme, the component framework provides a message bus, on which compo-

nents are plugged with a unique identifier. Each component listens on the bus and captures mes-

sages that are sent to it. This model is for instance adopted by JXTA [Brookshier et al., 2002].

As in hardware systems, the bus-based composition system reduces the amount of connections

required to build the application. Thus, adding and removing components is easier than in a

direct composition paradigm. The bus is also a central control entity that could facilitate the

management of the application such as for instance the integration of transversal concerns like

security. The publish-subscribe model is a particular kindof bus-based composition. In this

model, a component may subscribe to some events once it is connected to the bus. Then, it

only receives messages corresponding to the subscribed events.

Defining interactionsbetween instances of components is another approach to composi-

tion [Blay-Fornarino et al., 2004]. Their main features are (i) to be independent from the com-

ponent model and language and (ii) to provide dynamic adaptation facilities to applications. In-

teractions allow direct communications between the component in order to prevent the applica-

tion from relying on a centralized manager which is potentially a bottleneck. They may connect

components from different frameworks and can be dynamically created and destroyed during

the execution of the application. Interactions can be defined using a dedicated language, the In-

teraction Specification Language (ISL), which allows to define consistent interaction merging

algorithms.

The goal of Aspect Oriented Programming (AOP) [Kiczales et al., 1997] is to be able to

easily add or remove a transverse concern (such as security or logging) in a software architec-

ture. Such a problem is studied for instance, in [Barais et al., 2006], where the authors specify a

set of rules to automatize the integration of new concerns ina software architecture. Examples

of implementations of AOP systems are AspectJ7 and AspectC++8. AOP differs from classical

component composition because it focuses on non-functional properties (i.e on properties that

are not required for the global functioning of the application) rather than on the description of

the application itself. AOP is used on top of a composition system.

A similar approach is meta-level programming that is also used on top of an object com-

position system. This concept allows to define meta-classes(i.e the class of a class) and thus

to redefine the method call mechanism, the object creation process,. . . It is then possible to add

code before and after methods invocations. Example of such an approach is the Common Lisp

Object System (CLOS) [Bobrow et al., 1988].

The termworkflow is used to denote the representation of an application in theservices

community as well as in grid computing. In both cases, it corresponds to the description of

the logic of an application independently from the implementation of its components and from

7http://www.aspectj.org
8http://www.aspectc.org/

http://www.aspectj.org
http://www.aspectc.org/

2.1. Sharing algorithms: from assembly to services 57

the target infrastructure. Workflows are a particular kind of software component composition

model. They are studied in the remaining of this chapter.

2.1.2 Workflow definitions

The workflow management coalition9 proposes the following definition of workflow manage-

ment:

“ Workflow management is the automation of business procedures or “workflows”

during which documents, information or tasks are passed from one participant to

another in a way that is governed by rules and procedures.”

This broad definition reflects the diversity of the application domains where workflows are

used. Indeed, before being studied for the description of distributed applications, workflows

have been used to describe the organization of production processes in companies as well as the

interaction between several business entities. This definition focuses on the data transmission

among interacting participants which can be denoted astasks, services, processes, transitions,

activities, functionsor componentsdepending on the workflow approach. The enactment of

a participant can be calledinvocation(mostly for services),execution(for tasks),firing (for

transitions and activities) or simplycall (for a function or component). In the reminder of this

thesis, those terms will be used indifferently, depending on the workflow context.

Workflow is a particular type of software composition system, where the participants of

the workflow are the components to be assembled. In [Gannon, 2007], Gannon notices that

workflows act at a different scale than software composition systems: they deal with human-

scale processes that are scheduled over time. Similarly, inthe field of distributed applications,

workflows deal with coarse rather than fine grain parallelismwhich is better described with

traditional parallel programming approaches such as MPI orOpenMP. Gannon also underlines

that workflows refer to a centralized execution in which a single engine is responsible for the

control of the process. In a grid context, this property of workflows has pros and cons. On the

one hand, it is true that a centralized perspective simplifies a lot the control of the execution of

the application in order to be able to provide a representation of the status of the application to

the user. But on the other hand, centralization may lead to dramatic performance limitations, in

particular when dealing with applications that involve large numbers (hundreds of thousands)

of participants: the scalability of the application may then be highly disturbed by the centralized

workflow approach.

In [Mayer et al., 2004], the authors propose a definition highlighting the platform-

independence of the workflow definition:

9http://www.wfmc.org

http://www.wfmc.org

58 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

“ We consider a workflow to be the organization of a structuredapplication in an

abstract fashion, such that the implementation of the atomic tasks being organized

is independent from the organization itself. ”

This aspect of workflow programming is crucial in the grid computing area, where applica-

tions are typically composed from heterogeneous codes and software, each of them having

its own architecture or system requirements. It is also motivated by the emergence of ser-

vice and component-based programming models that promote code reusability and platform-

independence, as detailed in section2.1. While traditional scripts (that are often considered

as the ancestors of workflows because their are used as the glue among several executables,

in particular in scientific applications that make an extensive usage of Perl scripts) are tightly

coupled to the platform, workflows provide a representationof the logic of the application

independently from the implementation. It is particularlyimportant for grid applications,

where the heterogeneity of the resources and middlewares iscritical. Built on top of service-

oriented architectures, workflows foster code reusability, thus reducing applications develop-

ment time. As a consequence, workflows are increasingly cited as a transparent way to deploy

applications on grids and a large amount of applications rely on them for a successful grid-

ification. Examples from various domains are extensively described in [Taylor et al., 2007]

whereas [Montagnat, 2006] focuses on medical image analysis applications.

Works related to service composition propose alternate definitions where the workflow itself

is viewed as a service [Wagstrom et al., 2002, von Laszewski et al., 2004]:

“ We define the term workflow as a set of rules that define the interactions between

a set of services in order to be composed into a meta-service.”

This definition allows a hierarchical composition of applications, starting with basic workflows

of services, then exposing them as services themselves and finally composing thosecompos-

ite services to produce another application. Yet, some fundamental problems arise in such

development processes, in particular when workflows sharing one or more services are com-

posed [Nemo et al., 2007b, Nemo et al., 2007a]. In this case, redundant services invocations

could occur, leading to performance or even semantic problems in the application. Actually,

considering workflows as composite services breaks the loose coupling hypothesis of SOAs:

the composite service is tightly coupled to the basic services that compose it.

Workflows may also be characterized by the use of a simple graphical language for end-

users, thus easing code understanding and application development. Grids are expected to

provide new methods for scientists, not restricted to computer science and the availability of

simple programming environments is necessary. Workflows offer a unified and simple view

of complex experiments that may gather heterogeneous codesfrom various developers and

institutes. Barga and Gannon indeed noticed in [Barga and Gannon, 2007] that:

2.1. Sharing algorithms: from assembly to services 59

“ The result is a workflow in which each step is explicit, no longer buried in Java

or C code. Since the workflow is described in a unified manner, it is much easier

to comprehend, providing the opportunity to verify or modify an experiment. ”

2.1.3 Workflows classifications

Several workflow classifications have been proposed in the literature. In [Gil, 2007], Gil dis-

tinguishestemplates, instancesandexecutableworkflows. Templates capture the structure of

the workflow independently from the data. It may for instancebe defined by a medical image

analysis scientist to describe the logic of its applicationindependently from the data. A work-

flow instance specifies the data to be processed: it could be defined by the clinician to execute

a workflow on a particular data set. The executable workflow isdetermined and optimized

by computer scientists: it defines the data location and includes steps for data transfers. This

kind of classification does make sense in grid computing, where an important effort is made

in order to make a heterogeneous distributed computing infrastructure transparently accessible

to the application developers and users. The workflow systemis viewed here as a part of the

middleware linking the abstract (template) application representation provided by the user to

the (concrete) executable one required for a grid execution.

Yu and co-author proposed another taxonomy of workflow management systems for grid

computing [Yu and Buyya, 2005a, Yu and Buyya, 2005b]. This classification includes some

intrinsic workflow properties which are important from a computer-science point of view. In

particular, their classification of workflow design approaches concerns (1) the workflow struc-

ture, (2) the workflow model and specification, (3) the workflow Quality of Service (QoS)

constraints and (4) the workflow composition system:

1. The workflow structure consists in separating Direct Acyclic Graphs (DAG) from non-

DAG workflows. As we will see, this distinction helps to determine the applicability of

grid scheduling algorithms. Indeed, avoiding cycles in workflow graphs is restrictive but

leads to predictable sets of tasks.

2. The workflow model is close to the one presented in [Gil, 2007] and by the literature re-

lated to the Pegasus workflow manager [Deelman et al., 2003]: it distinguishes concrete

workflows (where resources are defined) from abstract ones.

3. The workflow QoS constraints (e.g time limit constraints) may be specified at the task

level or at the workflow level.

4. Finally, the workflow composition system separates user-directed composition from au-

tomatic composition. The automatic composition seems to correspond to the mapping

done by Pegasus between the metadata description of the required data products and a

workflow containing information for data derivation of application components. In the

user-directed composition, Yu distinguishes language-based and graph-based modeling.

60 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

Similarly, the Petri-Net approach adopted in [Hoheisel and Alt, 2007] leads the authors to

group workflow description languages into two classes: script-like (programming language,

complex semantics) and graph-based (a few basic graph elements). In the use-cases envisaged

in this thesis, graphical programming is not crucial as the targeted application developers are

medical image analysis scientists that have strong programming skills. Yet, a graphical work-

flow representation remains interesting as it allows a direct understanding of the application

by the end-user (e.gthe clinician), which was not the case with traditional scripting languages

(shell, Perl, Python, . . .). As noticed in the introduction of [Taylor et al., 2007], the shift away

from the earliest script workflow representations to graphical workflows came from the need

for using distributed resources. Indeed, the graph representation of a workflow application

also provides a natural parallelization. Thus, graphical workflow representations are suitable

exchange formats between the application developer, the end-user and the grid expert. How-

ever, in [Gannon, 2007], Gannon identifies some limitations of the expressivenessof graphical

languages. In particular, he claims that in general, such graphical languages are not Turing

complete, leading to some hard programming limitations.

Control and data flowsare traditionally distinguished [Shields, 2007]. Data flow refers

to approaches where the enactment of a participant is only conditioned by the availability of

data items in its ports. A pure data flow is also called apipeline [Rex et al., 2003]. On the

contrary, control flow refers to the classical approach of imperative software programming,

where the execution of instructions is conditioned by control structures such asfor, if, while

or switch. The term workflow is used to denote both the control and the data flow of an

application [Hoheisel and Alt, 2007]. The approach adopted in this thesis tends to integrate

the algorithmic logic in the components of the workflow as much as possible: the workflow is

rather a mean to share existing algorithms and to benefit fromcoarse grain parallelism than a

panoptic programming language which would lead to a more complex representation, hardly

interpretable by end-users. Still, expressiveness limitations are expected with pipelines and

simple control flow constructs may be required.

Businessandscientificworkflows are also distinguished, the former being said to focus on

the control flow whereas the latter concentrates on data flow.Scientific applications are indeed

sometimes described by pure pipelines. However, this distinction seems to be more and more

inadequate: languages and engines from the business community are spreading into scientific

communities [Slominski, 2007] and formal models such as Petri-Nets andπ-calculus tend to

unify both approaches. Bargaet alstudy in [Barga and Gannon, 2007] the common points and

differences between them. In [McGough et al., 2007], the authors also define scientific work-

flows as conceptual representations, where only the interactions between the tasks required to

perform an experiment are described. The actual set of tasksrequired to produce the applica-

tion and their interactions are then denoted asmiddlewareworkflow. Those definitions must be

related to the distinction between abstract and concrete workflows identified in [Gil, 2007] and

2.2. From formal workflow models to their execution 61

exploited by the Pegasus workflow manager [Deelman et al., 2003]: the mapping from abstract

to concrete workflow corresponds to the scheduling problem,which justifies this classification.

Finally, the expressiveness of the workflow language may be another way to sort work-

flow approaches. When dealing with scientific applications,workflow languages should re-

main quite simple: the logic of the application is embedded into the components which may

be implemented using classical programming languages and the resulting representation of

the application should be easily interpretable. Yet, as already stated, expressiveness problems

could occur and it may be quite difficult to describe useful applications with too circumscribed

languages. Methods to study the expressiveness of a workflowlanguage include workflow

patterns [van der Aalst and ter Hofstede, 2002, van der Aalst et al., 2003, Kiepuszewski, 2003]

(the ability of the language to describe a set of pre-defined patterns is studied), schema rela-

tions [Mendling and Müller, 2003] (the XML schema of the languages are semantically com-

pared) and the study of the Turing completeness, which is a formal way to prove that a language

is able to implement any computable function [Lewis and Papadimitriou, 1981].

2.2 From formal workflow models to their execution

In this section, we propose a classification of workflow descriptions that aims at easing the

choice of a workflow approach for a given category of users. This classification is based on the

presence or absence offunctions, dataandresourcesin the workflow representation. It extends

Gil’s one [Gil, 2007] and it is based on the amount of information concerning the process

execution that is provided inside the workflow description.Our classification is summarized

on figure2.1: existing languages will be studied from completely formalmodels to concrete

schedules of tasks-graphs.

Such a classification is particularly suitable for the scenario that we envisage in this thesis.

Indeed, it allows to precisely separate the concerns of the main actors of a medical image

analysis grid workflow, namely:

• the medical image analysis scientist who develops the workflow and its components (the

functions),

• the clinician end-user who instantiates the workflow on the data,

• the grid expert who performs the grid deployment and in particular the scheduling of the

workflow on the resources.

Five main workflow classes can be distinguished:

1. Formal workflow models correspond to languages where no information is given about

the nature of the implied activities, the amount and type of data processed and the used

resources. Those models are suitable for workflow analysis because they offer an abstract

62 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

Figure 2.1: Classification of workflow languages. Formal models are the most abstract

workflow representation, where neither functions, nor datanor resources are defined. In

functional workflows, only the functions are defined. Functional workflows become task-

graphs when they are instantiated on data. Similarly, service workflow can be derived

by specifying resources in functional workflows. Executable workflows correspond to the

most concrete representations, where functions, data and resources are defined. Workflow

managers help to move from one class to another one.

2.2. From formal workflow models to their execution 63

representation of the application. For instance, properties such as liveness (the absence

of deadlocks) and boundedness (of the amount of generated data for instance) can be in-

ferred from such models. Formal models may be used by computer-scientists to perform

a theoretical analysis of the application.

2. Functional workflows are the class of workflows for which only the participants and their

dependencies are defined. To become executable, such workflows have to be instantiated

on the data which is provided at runtime. The workflow can thenbe iterated on the

data according todata compositionoperators, which will be studied in section4.2 of

chapter4. This workflow class is particularly suitable for applications handling a lot of

data items. Indeed, it prevents the developer from an exhaustive description of the whole

task set required by its application: the developer only hasto describe the functional

template of the application which is instantiated on the data by the workflow manager

at runtime. Consequently, in a functional workflow, the sizeof the handled data sets

is not represented in the workflow language and will only be known at runtime. Thus,

it is not possible to determine the number of tasks generatedby functional workflows

before their execution. This property can be used to determine whether a workflow model

belongs to this class or not. In particular, this class contains traditional script languages

and workflow languages that have elaborated control constructs allowing to define for

instance dynamic loops,i.e loops for which the number of iterations cannot be known

before runtime. Resources are not defined in this workflow class. Thus, studying the

scheduling of those workflows is possible to some extent, considering the fact that the

total number of executed tasks is unknown prior to the execution. Such kind of workflows

allows to separate the concerns of the medical image analysis scientist and the clinician.

A functional workflow is defined by the medical image analyst alone and is used by the

clinician who defines the input data at runtime. It is then passed to the grid expert that

performs the scheduling.

3. In service workflows, both functions and resources are specified. As in functional work-

flows, the data is not defined and is specified at runtime by the user, which provides

several interesting properties. Actually, those workflowsinclude resources in their de-

scription through their reference to Web-Services. A WSDL document indeed specifies

the endpoint of the service, so that the workflow manager cannot perform any schedul-

ing. Yet, optimizing job submission parameters is still possible downstream, for instance

at the level of a particular submission service, such as the one proposed in section7.2.2

of chapter7 of this thesis. As in functional workflows, a service workflows should be

defined by the medical image analyst and instantiated on the data by the clinician. No

scheduling is required yet.

4. In tasks-graphs, both functions and data are defined and mixed. A task is defined as

the association of a treatment (i.e a function) with data items (i.e the parameters of the

64 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

function). In this class of workflows, the tasks to be executed are completely defined:

the workflow representation specifies their number as well astheir nature. Tasks-graphs

can be characterized by the fact that the number of tasks in the workflow is known prior

to the execution: it is a static workflow representation. This class of workflows is in-

tensively used in the development of parallel applications. They are the most suitable

representation for scheduling. Indeed, the only missing information to have the work-

flow completely defined is the mapping onto resources, which is the goal of scheduling.

Because the number of tasks has to be predictable, conditional operators are not allowed

in task-graphs. Yet, the case of exceptions, compensation handlers, retries allowed in

case of failure and other fault-tolerance mechanisms has tobe distinguished from condi-

tional operators. Indeed, even if those constructs lead to the generation of a potentially

unpredictable amount of tasks by the workflow, they only concern particular execution

conditions. A tasks-graph could only be produced byboth the clinician and the medical

image analysis scientist because it mixes the data with the functions. It is used by the

grid expert to perform the scheduling.

5. Executable workflows correspond to the mapping of a tasks-graph onto resources.

They are the output of any tasks-graph scheduling algorithmand can be directly

executed. However, some operations on the workflow representation may still be

performed by the workflow manager on an executable workflow. For instance,

in [Ramakrishnan et al., 2007], the authors propose a strategy to reduce the data footprint

of the workflow during the execution. The executable workflowis analyzed in order to

determine the instant when a temporary file produced by the workflow can be deleted,

thus leading to a reduction of workflow failures due to full disks.

Yu’s workflow structure (see section2.1.3) may vary among the five workflow classes de-

scribed in this section. Because of their static nature, tasks-graphs and executable workflows

have to be directed acyclic graphs (DAGs) or at least to contain only static loops (i.e loops for

which the number of iterations is known before runtime). On the contrary, functional and ser-

vice workflow may contain dynamic loops. QoS constraints considered in Yu’s classification

may be defined in each class of ours. Similarly, automatic anduser-directed composition may

be envisaged in each of the five classes.

The distinction between graphical and script-based approaches is fundamentally orthogonal

to the classes presented here. However, due to the external context, some classes may favor one

paradigm. For instance, service workflows are tightly coupled to the Web technologies which

make an intensive use of XML languages that are naturally represented as a graph. On the

other hand, most of the tasks-graphs presented on figure2.1 (except the P-GRADE portal that

is clearly dedicated to end-users and provides a user-friendly GUI) have been developed and

adopted by computer-scientist and thus rely on a script-based approach.

Control and data flow approaches may be present in every classof this taxonomy. In a

2.2. From formal workflow models to their execution 65

tasks-graph or executable workflow, the dependencies between tasks may be defined either by

precedence constraints (i.e control links) or by the availability of a file or any kind of data item

(i.e data links). Similarly, a functional workflow may launch a particular execution because

of the control flow (e.g in script-like workflow languages) or the availability of data (e.g in

GSFL [Wagstrom et al., 2002]). The service workflow class gathers data-flow languages such

as Scufl and control-flow oriented ones such as BPEL. Besides,this taxonomy focuses nei-

ther on the classical business versus scientific dichotomy.Those aspects are assumed to be

transverse to the proposed workflow classes.

The expressiveness of the underlying workflow language is not clearly related to the classes

presented in this section. Beyond intrinsic limitations (such as the static nature of tasks-graphs

and executable workflows that prevent them to contain dynamic loops), languages of a given

class can exhibit very different capabilities in terms of control flow description and operators.

In the following of this section, we review some existing examples belonging to those five

classes.

Finally, it has to be noticed that this classification categorizes workflowdescriptionsrather

than workflow managementsystems. Indeed, a given workflow system can use several different

workflow descriptions during the workflow life cycle. Actually, one of the goals of a workflow

system is to make a workflow description successively move from one class to another one

in order to finally reach theexecutable workflowsclass, where every usable workflow system

could appear. Yet, on figure2.1, we chose to put a given workflow system in the highest

possible class (the order being defined by the arrows on the figure) of the various workflow de-

scriptions that it handles. For instance, the potential belonging of P-GRADE to theexecutable

workflowsclass is implicit.

2.2.1 Formal workflow models

Two broad classes of formal models have been proposed:Petri nets and π-calculus.

There has been hot debates about the superiority of one modelabove the other

one [Smith and Fingar, 2003, van der Aalst, 2004] and they both lead to the development of

systems or standards relying on them. For instance,π-calculus are said to have inspired the

development of choreographies (presented in section2.2.2) whereas various workflow engines

are based on Petri nets [van der Aalst and ter Hofstede, 2005].

2.2.1.1 Petri Nets

Petri nets have been introduced in the thesis of C.A Petri, in1962 [Petri, 1962]. It is a graphical

modeling tool applicable to many systems and particularly suitable for parallel systems as they

extend the notion of state machine with concurrency.

A Petri Net is a particular kind of directed bipartite graph,associated with a set of tokens. It

66 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

A

B

C

A

B

C

A

B

C

Figure 2.2: Evolution of the multi-merge workflow pattern implemented with Petri-Nets

for a particular initial marking.

p
2

p1 A

B

p
3 C p

4

p1

A

A’

C

p

pp

p
2

3 4

5B

!condition

condition

d
D

B

C C

B

A

b

c
Figure 2.3: Implementation of workflow patterns. Left: Multi-merge ; Right: exclusive

choice. Top: with Petri-Nets ; Bottom: withπ-processes.

is made of two kinds of nodes calledplacesandtransitions. Edges of the graph are either from

a transition to a place or from a place to a transition. State machines are a subclass of Petri nets:

in a state machine, each transition has exactly one input place and one output place. Tokens are

located in places. Multiple edges linking the same transition to the same place or the same place

to the same transition can be represented as a weighted edge whose label denotes the number of

corresponding unary edges. A transition is enabled when allof its input places contain at least

the number of tokens of the corresponding edge label. It is then ready tofire. After a transition

has fired, it produces for each output places the number of tokens of the corresponding edge

label [Murata, 1989]. An illustration of the transition firing rule is given on figure2.2. The top

line of figure2.3(adapted from [van der Aalst et al., 2003]) displays an implementation of two

classical workflow patterns using Petri-Nets: the multi-merge and the exclusive choice.

Several extensions of Petri Nets have been proposed and usedfor various applica-

tions. For instance, timed nets [Magott, 1984] introduce delays associated with transi-

tions and/or places and stochastic Petri Nets associate a random variable to the time de-

lays [Ajmone Marsan et al., 1984]. Inhibitor edges have also been introduced in extended Petri

Nets: they disable the transition to which they are connected when their input place has a

token [Agerwala, 1974]

Colored Petri Nets (CPN) were introduced to ease the manipulation of data values in Petri

2.2. From formal workflow models to their execution 67

Nets [Kristensen et al., 1998]. They are particularly used for workflow modeling and are the

basis of the YAWL workflow system [van der Aalst and ter Hofstede, 2005]. CPN are a sub-

class of High Level Petri Nets, which also include Hierarchical Petri Nets. In a CPN, tokens are

distinguishable: each of them is associated to acolor which represents a data value. Places have

an associatedcolor setwhich represents the data type to which belong the colors of all their

tokens. Edges are annotated with expressions that determine the exact data values removed and

added by the firing of a transition.

2.2.1.2 π-calculus

In [Smith and Fingar, 2003], the authors claim that some of the procedures used in business

cannot be modeled using workflow engines that do not rely onπ-calculus. They suggest to

adopt the termprocessto denote workflows relying on theπ-calculus formalism. A singular

characteristic ofπ-calculus is that it is able to exchange information among participants whose

relationships evolve as a result. This feature is calledmobility. Mobility is required to model

processes where the exchange of information fosters the link between participants. The exam-

ple of email exchanges is often cited to illustrate such a behavior: by receiving emails sent to

multiple recipients, a participant becomes aware of addresses of other people, thus developing

her communicating ability. Partisans ofπ-calculus advocate that static representation systems

such as Petri nets cannot properly represent mobility [Puhlmann, 2006].

Pi-calculus is an extension of process algebra aiming at handling concurrency. It has been

proposed by Milner [Milner, 1999]. Pi-calculus is described in terms ofprocesses, channelsand

names. Channels are used by processors to exchange messages. Bothmessages and processes

are called names and thus cannot be distinguished. The sending of a messageu over a channel

x is written x̄(u), whereas receiving the messageu over the channelx is denoted byx(u).

Channels themselves can also be sent and received, which make possible the description of

mobile processes such as the email use-case described in theprevious paragraph. The sending

and receiving of a messageu over any channel can be abbreviated respectively by ¯u andu.

Processes can be composed sequentially by the operator′′.′′ or in parallel, with the notation
′′|′′. The choice operator′′+′′ is also available as well as the′′!′′ unary operator which is

used to specify that a process can be iterated as many times asrequired. A condition about a

particular name can be expressed by the [x = y] notation. There are two particular processes:

0, which does not do anything and stops the process executionandτ, which corresponds to

a hidden activity, that does not take part into the global process [Woodman et al., 2007]. A τ

process is an activity that corresponds to an effective participant of the workflow as defined in

section2.1.2: for instance, it may model the computation of a service operation on some data,

which is seen as a black box from the workflow point of view.

It is clear that π-calculus is able to model both control and data flows. Van

der Aalst’s workflow patterns [van der Aalst et al., 2003] are expressed usingπ-calculus

68 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

in [Puhlmann and Puhlmann, 2005]. Examples from this work are recalled here, to illustrate

theπ-calculus formalism. The bottom line of figure2.3 presents two workflow patterns: the

left of the figure presents shows themulti-mergewhereas the right of the figure displays the

exclusive choice. Theπ-calculus representation of the multi-merge is the following:

B = τB.d̄.0

C = τC.d̄.0

D = !d.τD.0

Each line of this equation models a particular process of theworkflow. After their execution,

processesB andC both send the same named which is required by processD. The presence of

a ′′!′′ operator in front of processD indicates that it will be replicated as many times as needed.

In this case, two copies ofD will be done. Theexclusive choiceis represented by the following

π-processes:

A = τA.(b̄.0+ c̄.0)

B = b.τB.0

C = c.τC.0

For this process, the choice operator+ is needed to distinguish the 3 invocation cases.

The π-calculus formalism has been extended to the case of Web-Services orchestrations

in [Mazzara and Govoni, 2005]. In this work, the authors add a transaction operator which

is able to cope with faults and to trigger a recovery process if the fault message is received.

Based on the samewebπ∞ extension of theπ-calculus, another application to orchestrations

is proposed in [Lucchi and Mazzara, 2007], where the authors detail aπ-calculus based se-

mantics for WS-BPEL. It is highlighted that the three different error handling mechanisms of

WS-BPEL are not necessary and a novel orchestration language based on the idea of event

notification as the unique error handling mechanism is proposed. In the context of choreogra-

phies, a formal model of WSCI (see section2.2.2) using a process algebra approach (CCS) is

proposed in [Antonio et al., 2004] and applied to web service compatibility, replaceabilityand

the automatic generation of adapters.

2.2.2 Functional workflows

Virtual Data Language. The Virtual Data Language (VDL) [Zhao et al., 2007b] is a func-

tional workflow language that derives from a former VDL [Foster et al., 2002]. It is executed

by the Swift [Zhao et al., 2007a, Stef-Praun et al., 2007] workflow engine which derived from

the Virtual Data System (VDS). It has control flow constructssuch asfor each, if, switch

andwhile. It is based on the declaration of procedures written in a C-like syntax. Procedures

can be atomic or made by other procedures. VDL does not make any assumption about the size

2.2. From formal workflow models to their execution 69

of the input data sets. However, the underlying workflow manager expands the VDL definitions

into a tasks-graph (see section2.2.4) and executes them. This is made possible by the fact that

foreach nodes are expanded at runtime thus enabling data sets to havea dynamically deter-

mined size. We guess that a similar late expansion system is used for the other control flow

constructs that lead to the execution of tasks whose number is not known before runtime. The

data types representation is extensively described in VDL.It relies on an XML Data Set Typing

and Mapping (XDTM) that allows the types of data sets and procedures to be defined abstractly

in terms of XML schema. Separate mapping descriptors then define how such abstract data

structures translate to physical representations. For instance, XDTM provides mappings from

file names to their absolute path in a file system. Yet, data is not instantiated inside the VDL

representation. This is made at the engine level. Both thosearguments lead us to put this ap-

proach in the functional workflow class, even if it is tightlyinterfaced with tasks-graphs: what

is called a “high-level” workflow representation in Fig.17.8 of [Zhao et al., 2007b] is a func-

tional workflow because data segments are not defined on this representation. The described

implementation of the VDL prototype converts this workflow definition into a tasks-graph by

expanding DAG nodes (Fig. 17.9 of [Zhao et al., 2007b]).

GSFL. The Grid Service Flow Language (GSFL) has been designed as anadapta-

tion of the WSFL to grid services, which have different needs from standard Web-

Services [Wagstrom et al., 2002]. In particular, the authors underline the fact that the workflow

specification needs to be able to allow communication between the services to avoid the work-

flow manager to become a bottleneck centralizing the data transfers. As already noticed in sec-

tion 2.1.1, avoiding centralized enactment is not straightforward with Web-Services, whereas

OGSA introduced facilities for that. In particular, GSFL provides a mechanism to connect no-

tification sources and sinks defined in the OGSA. GSFL is also able to handle OGSA registries

and factories for creating grid services. A GSFL document defines services providers, the ac-

tivity model, the composition model and the life-cycle model. Service providers are the list of

services involved in the workflow. They can be located statically, by a hard specification of an

endpoint or invoked using factories. In the latter case, resources are not defined in the workflow

document, which leaves room for further scheduling. The so-called activity model identifies

the particular operations of the services involved in the workflow. The composition model de-

scribes the data and control flow between the activities and the life-cycle model contains a list

of precedence links describing the order in which the services execute.

ICENI / ICENI-II. ICENI’s authors identify two different workflow representations: the spa-

tial and the temporal ones [Mayer et al., 2004, McGough et al., 2004]. A workflow is denoted

spatialwhen none of the relations between its participants are precedence constraints: in this

case, links between services could for instance be determined by event notifications or data

70 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

links. On the contrary, a workflow istemporalwhen all its relations are precedence constraints.

The authors notice that even if the temporal representationis the most suitable to determine a

planning of task allocations, the spatial representation is the most user-friendly. Thus, in their

ICENI system, the user builds a spatial representation which is then mapped to a temporal one

for scheduling purposes. The user specifies the workflow in a spatial expression, which, in our

terminology, corresponds to a functional representation.This user-defined workflow is also

called an execution plan. At this stage, components are described in terms of meaning and

behavior. ICENI then converts it to a temporal description,i.e a tasks-graph. As underlined by

the authors, problems appear when the functional description is not acyclic, as discussed in the

next sections. As in GSFL, the components themselves talk totheir partners, without any exe-

cution centralization. ICENI II is described in [McGough et al., 2007, McGough et al., 2006].

Three steps are identified in the workflow generation: specification, realization and execution.

Specification produces an abstract workflow whereas realization aims at validating the work-

flow and then map its elements to concrete resources. Execution deals with the monitoring of

the application and functionalities to allow component migration.

Calcium Calcium [Caromel and Leyton, 2007, Caromel et al., 2008] is a framework based

on skeletons [Cole, 1991] that are a workflow programming model aiming at hiding the

complexity of parallel and distributed applications. It isbuilt upon the Proactive middle-

ware [Caromel et al., 2006]. Calcium has a set of control constructs:farm (task replication),

piped(staged computation),seq(wrapping of execution functions),if, while, for, map(single

instruction, multiple data),fork (multiple instruction, multiple data),d&c (divide and conquer).

As stated by the authors in [Caromel and Leyton, 2007]:

New tasks can be dynamically produced by the interpreters when data parallelism

is encountered.

Consequently, we classify this approach in the functional workflows.

AGWL. The Abstract Grid Workflow Language (AGWL) is the workflow language used by

the ASKALON workflow manager [Fahringer et al., 2007] which offers two interfaces for gen-

erating large-scale scientific workflows in a compact and intuitive representation: graphical

modeling using the UML standard and a programmatic XML basedlanguage. AGWL work-

flows can be either generated from a graphical UML description or directly written by the end-

user. AGWL workflow descriptions are definitely independentfrom the execution resources.

A dedicated scheduler is responsible for resource allocation and a resource manager handles

reservation. AGWL workflows include both control-flow and data-flow. Control-flow con-

structs includesequences, dags, for, forEach, while anddo-while loops,if andswitch

constructs and more advanced constructs such asparallel activities, parallelFor and

parallelForEach loops and collection iterators. The user can also specify properties and

2.2. From formal workflow models to their execution 71

constraints (such as memory requirements) for activities and data flow dependencies. An ex-

ample from [Fahringer et al., 2007] underlines that dynamic loops (i.e. loops for which the

number of iterations cannot be known before runtime) can be defined, which lead us to put this

language in the functional workflows category. ASKALON usesanother language, CGWL in

order to have a tasks-graph representation of the workflows.Before the execution, the workflow

manager performs a mapping from AGWL to CGWL.

Choreographies. The termchoreographyoriginates in a metaphor of a workflow which is

viewed as an artistic work performed by actors,i.e the participants of the workflow. In that

sense, choreography is opposed toorchestration: in a choreography, each actor is linked to

other ones and the global process is obtained as a result of those local interactions. On the

contrary, in an orchestration, actors are directed by a central conductor which manages the

whole orchestra. Choreography and orchestration are termsthat are tightly related to the Web-

Services, as specified by the W3C. Choreography is thus oftencategorized as a decentralized

approach whereas orchestration is centralized [Mayer et al., 2004]. However, even if the work-

flow descriptionis not centralized in a choreography as it is in an orchestration, the practical

implementation of a workflow manager that would permit such adecentralized execution is not

specified. Extensions of Web-Services such as WSRF and OGSA seem to be mandatory in

order to have such a decentralized execution.

The initial choreography specification was the Web-Services Choreography Interface10

(WSCI). WSCI allows a Web-Service to defineinterfacesthat describe processes from its

operations. Operations can be composed in sequential or parallel executions and loops and

conditions can be defined. WSCI interfaces describe choreographies between the opera-

tions of a Web-Service. WSCI definesglobal modelson top of operations. Global mod-

els describe choreographies between interfaces of severalservices. It provides a set of con-

nections (mappings) between pairs of individual operations of communicating participants.

In [Antonio et al., 2004], authors formalize WSCI usingπ-calculus. WSCI set up the basis

for the development of the Web-Services Choreography Description Language(WSCDL)11. In

this language,interactionsare defined among differentroles. Roles can be played by different

behaviorsthat may (optionally) be linked to particular WSDL interfaces. Indeed, the W3C

candidate recommendation for WSCDL specifies that:

“ A behavior without an interface describes a roleType that is not required to sup-

port a specific Web Service interface. ”

Thus, WSCDL choreographies are far from being executable: they only describe patterns for

message exchanges among abstract participants. Accordingto the W3C, a choreography lan-

guage is not an executable business process description language or an implementation lan-

10http://www.w3.org/TR/wsci/
11http://www.w3.org/TR/ws-cdl-10/

http://www.w3.org/TR/wsci/
http://www.w3.org/TR/ws-cdl-10/

72 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

guage. The role of specifying the execution logic of an application will be covered by these

specifications.

YAWL. YAWL is built upon the Petri-Nets formalism. Its specification originates

in an exhaustive study of workflow managers with respect to a set of workflow pat-

terns [van der Aalst and ter Hofstede, 2005]. Thus, the goal of YAWL is to overcome the ex-

pressiveness limitations of the contemporary workflow management systems. It is based on

high-level Petri nets, to which extended constructs such asadvanced synchronization, multiple

instances and cancellation patterns are added, thus defining the extended workflow nets (EWF).

Makefile. Makefiles are a particular kind of functional workflows that completely relies on

data flow. Participants of the workflow are defined by a commandline that includes services

(executable) and data (arguments of the command line). Tasks are linked by precedence con-

straints. When a task is ready to be executed, it is effectively fired if and only if one of its

input files has been modified since the last invocation. Makefiles can include conditionals and

loops. Thus, the number of tasks generated by the execution of a makefile may not be known

prior the execution. Moreover, with the-j option of the workflow enginemake, it is possible

to define a number of processes that may run concurrently, potentially on different CPUs, so

that the resources are not defined inside the Makefile. Consequently, it has to be categorized as

a functional workflow.

2.2.3 Service workflows

Scufl (Taverna) workflows. Scufl is a data-flow oriented language that basically describes

the pipeline of an application. Participants of Scufl workflows are calledprocessors. Many of

them can be specified: for instance, string constants fire only once and return a single string

value. Web-Services can also be enacted by specifying a WSDLdocument and a particular

operation as well as compiled Java code or Beanshells processors12 that embed a piece of

Java code. Sources and sinks correspond to the inputs and outputs of the workflow. Each of

them may contain several data segments on which the workflow is iterated. Their content is

not specified inside the Scufl document: it is independent from the workflow description and

is only known at runtime. In that sense, Scufl is a typical example of functional workflow.

However, Web-Services processors are bound to a particularresource, included in their WSDL

description. A Scufl workflow instantiated on some input datacould thus be considered as an

executable workflow rather than a tasks-graph.

Processors have input and outputportsthat can contain several data items and are connected

to other ones withdata links. A data link is just a pipe between an output port of a processor

12http://www.beanshell.org/

http://www.beanshell.org/

2.2. From formal workflow models to their execution 73

and an input port of another one. An output port can be connected to several input ports. In this

case, the data items are broadcasted to all the connected input ports. Similarly, several output

ports can be linked to a single input port. In this case, data items are buffered into the input

port according to their order of arrival. Data composition operators allow to define iteration

strategies between the input ports of a processor. Iteration strategies are used to control how

multiple data items inside the input ports are combined. They are described in section3.1.1of

chapter3.

Coordination constraintscan be specified in Scufl and provide elementary control links.

Such a link specifies that a processor has to wait for another one before starting its execution,

even if there are no data dependency between them. This is theonly kind of control link

available in Scufl. No control operators such asfor or while are available. Nevertheless, the

FailIfFalse andFailIfTrue processors are defined to implement conditional branching in

a workflow, although no control operator such asif is defined in Scufl. Those processors fail

or succeed depending on their Boolean input value, thus discarding or enabling the processors

depending on them in the workflow. Apart from that, the workflow is completely driven by the

presence or absence of data in the input ports of a processor:a processor will fire if and only

if all of its ports contain adequate data. It is not possible to define variables in Scufl. As a

consequence, there is no expressions nor operators in the language.

MoML (Kepler) workflows. Participants of a MoML workflow are calledactors. In MoML,

each actor must define the type of each of its ports. Links (called relations) can only be defined

between ports with compatible types. Ports participating in several relations have to be defined

asmulti-ports.

MoML defines no semantics for an interconnection of components. It instead pro-

vides a mechanism for attaching a “director” to a model. MoMLknows nothing about

directors except that they are instances of classes that canbe loaded by the class

loader [Lee and Neuendorffer, 2000]. Four directors are available in Kepler: Continuous Time

(CT), Discrete-Event (DE), Synchronous Data Flow (SDF) andProcess Networks (PN). The

CT director is used to model physical systems: the workflow isthen directed by a clock. In the

DE director, the workflow is also directed by a clock: each actor communicates with the other

ones by sending them timestamped signals. The director orders those signals and distributes

them to their targets. In the PN director, each actor is executed in a dedicated thread. Relations

between actors are waiting queues of finite capacity. Writing into a queue is never blocking

whereas reading in an empty queue is blocking. The SDF director is used to simulate data

flows.

Orchestrations: BPEL, BPML, BPMN, WSFL, XLANG. Orchestrations are workflows

of Web-Services. This denomination originates in a metaphor of a workflow which is viewed

74 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

as a musical partition interpreted by the participants and directed by the workflow engine.

Orchestrations differ from choreography by the point of view adopted by the developer. In

an orchestration, a single workflow engine is responsible for the execution of the applica-

tion. It centralizes the services invocations so that services do not communicate between each

other [Mayer et al., 2004]. Orchestration is also referred to as a concrete workflow whereas

choreography is abstract. Indeed, in a choreography, resources are not mandatorily defined

whereas orchestration precisely defines services WSDL and consequently endpoints.

The de facto orchestration standard is BPEL13 [Mc Ilraith and Mandell, 2002,

Wohed et al., 2003, Khalaf et al., 2003, Emmerich et al., 2005, White, 2006, Slominski, 2007].

It was defined considering previous specifications: WSFL, XLANG, BPML and BPMN

that did not survive the BPEL emergence. In [Wagstrom et al., 2002], the authors provide a

technology survey of workflow languages for Web-Services. In particular, a detailed analysis

of WSFL is provided. WSFL includes both control and data links. From our classification

point of view, a remarkable feature of this language is the identification of the services

participating in the workflow by using alocatorelement which allows a service to be described

by a static (hard reference to a WSDL), a local, a UDDI (the service is looked up using the

UDDI API) or a mobility (the service provider is referenced in a message generated by some

activity of the workflow) binding, which would allow us to putthis language in the functional

workflow class.

In its current 2.0 version, BPEL includes several control constructs:switch, pick, while,

for each, repeat until, wait, sequence andflow. Activities may include Web-Service

invocations, receive and reply and variable assignation. It proposes a fault handling mechanism

through theexit, throw, rethrow andcompensate constructs. Because of those control

constructs, it is not possible to convert a BPEL workflow definition to a DAG. In particular, it

is not possible to determine the number of service invocations, which may be dependent on the

nature of the input data.

2.2.4 Tasks-graphs

Condor DAGMan. Condor DAGMan14 is one of the most used tools for tasks-graphs. It

allows the user to define precedence constraints between Condor jobs that are submitted to a

pool of resources. So-called “pre” and “post” scripts may bedefined to be executed respec-

tively prior or after the job itself. Fault-tolerance facilities are also available, such as the ability

to define a number of retry attempts in case of failure during the execution. Such retry speci-

fications have been used to define while loops with DAGMan, by making a job fail and retry

until the stopping condition has been reached15.

13www.ibm.com/developerworks/library/ws-bpel/
14http://www.cs.wisc.edu/condor/dagman/
15https://lists.cs.wisc.edu/archive/condor-users/2005-November/msg00000.shtml

www.ibm.com/developerworks/library/ws-bpel/
http://www.cs.wisc.edu/condor/dagman/
https://lists.cs.wisc.edu/archive/condor-users/2005-November/msg00000.shtml

2.2. From formal workflow models to their execution 75

P-GRADE portal. The P-GRADE portal is a tasks-graph workflow manager based onthe

Condor DAGMan [Kacsuk et al., 2003, Kacsuk and Sipos, 2005]. It is able to submit jobs si-

multaneously on various grid middlewares, including GT2, GT4, LCG and gLite with a se-

cured access mechanism [Kacsuk et al., 2006b]. An interesting feature of the P-GRADE portal

with respect to our workflow description classification is the possibility to define parametric

tasks [Kacsuk et al., 2006a]. Parametric tasks allow the user to define tasks whose parameters

vary in a given range. Parametric tasks bring tasks-graphs closer to the functional workflow

approach as they are templates to generate several tasks. Yet, parametric tasks can still be ex-

panded into a tasks-graph and they generate a predictable amount of tasks. Anyway, parametric

tasks make a P-GRADE workflow description far more flexible than most of the task-graphs.

P-GRADE is an interesting example of a trade-off between tasks-graphs and functional work-

flows.

DIET MA-DAG. DIET is a grid middleware providing scalable scheduling facilities for grid

servers [Caron and Desprez, 2005]. MA-DAG, a workflow management system has been de-

veloped on top of it [Amar et al., 2006] and is based on a DAG model. This approach focuses

on scheduling, by offering the ability to use different advanced algorithms. Multi-workflow

scheduling is also under investigation.

XWFL. The Workflow Enactment Engine (WFEE) uses the xml-based Workflow Language

(XWFL) [Yu and Buyya, 2004]. This language allows users to describe tasks and their depen-

dencies. This language is made of three sections: parameterdefinitions, task definitions and

data link definitions. This language supports both abstractand concrete workflows: resources

can be specified so that we could also put this language in the executable class. Parameters can

be used in order to define parametric tasks as described in theprevious paragraph. Data links

are then used to specify the tasks-graph.

Yvette ML. The YML framework defined YvetteML, a parallel programming language

which is used to model workflows [Delannoy and Petiton, 2004, Delannoy et al., 2006]. Yvet-

teML includes a component model and a graph description language. Components are defined

as an encapsulation of task nodes of a directed acyclic graphrepresenting a complex applica-

tion. They represent a chunk of computation requiring no communication with the rest of the

application. Components are made of a so-called abstract declaration, which specifies the type

and mode (in, out or inout) of the parameters as well as a user-provided implementation that

adds some decorations to a C/C++, Fortran or Java code in order to be able to compile it on

different platforms. The YvetteML graph language is a control-flow language. Several control

constructs dedicated to parallel applications are presentsuch aspar do, seq do, wait or sig-

nal. A typical example (extracted from [Delannoy and Petiton, 2004]) of the YvetteML graph

language is:

76 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

const problemSize := 10000;

event evt[2];

var MatrixReal vRes[1];

par(i:=1; problemSize) do

compute fillMatrixReal(vRes[i],problemSize,i);

signal(evt[i,1]);

end par do

The YML Framework interacts with the user using a compiler which translates components

into binary applications. The model of the YML workflow framework can contain loops, itera-

tions and branching: the compiler completely expands graphs to make them ready for schedul-

ing. Loops are unrolled, condition evaluated, unvisited branches spread out of the graph and

constants are propagated. The compiler translates applications described using the YvetteML

language to a set of components calls. Regarding our classification of workflow descriptions ,

the YvetteML compiler acts as a translator from a functionalworkflow instantiated on its input

data to a tasks-graph. However, the dynamicity of the functional workflow approach cannot

be handled by YML and the number of tasks generated by the application is foreseeable. That

is why we put it in the tasks-graph class. Yet, the YvetteML workflow language remains very

similar to the one of the Virtual Data Language [Zhao et al., 2007b].

2.3 Moving from a class to another one.

The goal of a workflow management system is to move from the workflow definition provided

by the user to an executable workflow. A significant amount of work may be necessary to go

from one category to another one.

From tasks-graphs to executable workflows. Moving from tasks-graphs to executable

workflows is the operation done by theschedulingof task-graphs. This problem consists in

finding a task execution and resource allocation planning inorder to optimize one or more

criterion (such as the makespan of the application, the fairness, . . .). This problem is NP-

complete as soon as the number of resources is bounded or the communication costs be-

tween resources are taken into account. This family of problems has been extensively stud-

ied [Legrand and Robert, 2003]. In particular, list heuristics have been proposed and adapted

to different constraints such as the heterogeneity of the resources [Topcuoglu et al., 2002].

From functional to service workflows. Moving from functional to service workflows re-

quires to be able to get the endpoint of a service from an “abstract” description. It can be

done either by dynamic service instantiation (e.gby the use of an OGSA service factory) or

by service look-up in a registry (e.g UDDI). Besides, semantic services discovery is a very

2.3. Moving from a class to another one. 77

increment

array of int

return odd numbers

Figure 2.4: Example of a functional workflow that could not beconverted into a tasks-

graph: thereturn odd numbers participant extracts some elements of the input array

of integers and pass them to the followingincrement. The number of invocations of the

increment participant cannot be determined in advance.

hot topic and several approaches are still studied [Kovács et al., 2007, Atkinson et al., 2007,

Spanoudakis et al., 2007, Song et al., 2007].

From service workflows to executable workflows. The shift from service workflows to ex-

ecutable workflows is typically done at runtime. Services invocations are dynamically de-

termined during the execution, according to the availability of data items in the ports of the

services, eventually after the application of some data composition operators (such as iteration

strategies in Scufl) or because of some relations defined by control constructs (for instance in

BPEL).

From functional workflows to tasks-graphs A description of the input data of a functional

workflow is sufficient to convert it to a tasks-graph if the functional workflow is assumed:

• to be acyclic or expandable to a DAG before runtime

• not to contain any conditional control structures such asif or switch and

• not to generate data sets whose size is determined at runtime.

Indeed, the above hypotheses prevent the workflow from generating an unpredictable amount of

tasks at runtime. For instance, if we consider the functional workflow of figure2.4, it is obvious

that it could not be converted to a tasks-graph: thereturn odd numbers participant returns

a data set whose size depends on the nature ofarray of int. Thus, one could not determine

the number of invocations of theincrement participant before runtime. The conversion from

78 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

functional workflows to tasks-graphs could be done separately for sub-parts of the workflow, as

it is done for instance by the engine supporting the Virtual Data Language, where sub-parts of

the workflow are progressively converted to tasks-graphs assoon as the number of tasks to be

generated is known (see section 17.7.2 of [Zhao et al., 2007b]). A typical construct preventing

a functional workflow to be transparently mapped to a tasks-graph is theforeachthat leads

to dynamic loops where the number of iterations cannot be known before the instantiation of

the workflow on the data. To get closer to the functional approach, an interesting extension of

the tasks-graphs are parametric tasks descriptions where ageneric task can be described for a

whole parameter range, resulting in the execution of multiple jobs, as done for instance in the

P-GRADE portal [Kacsuk and Sipos, 2005].

2.4 Conclusions

In this chapter, a review of the existing workflow description approaches has been provided.

A classification distinguishing functional, services, executable workflows and tasks-graphs has

been detailed, based on the presence or absence of functions, data and resources in the workflow

specification. The suitability of each workflow class has been highlighted: even if tasks-graphs

are clearly more suitable for workflow scheduling implementations, the data composition facil-

ities and the dynamicity of service workflows allow a simplerrepresentation of the applications.

Moreover, this approach allows to better separate the concerns of the three main actors envi-

sioned in this thesis: the clinician, the medical image analyst and the grid expert.

Existing workflow descriptions and their corresponding implementations offer a very di-

verse and complete set of tools providing to the user the required facilities to build his/her

application. Depending on his/her profile, different approaches could be chosen. For instance,

a Perl-addict scientist wanting to describe the workflow of her application could select a script-

based functional approach such as Swift that offers all the constructs and data types facilities of

a traditional scripting language. On the opposite, users that do not have any programming back-

ground may be more easily targeted by graphical compositionsystems such as the P-GRADE

portal, Taverna, Triana or Kepler. Finally, parallel programming computer scientists may bet-

ter chose a tasks-graph workflow language such as Condor DAG-Man or Yvette-ML as this

approach is more suitable to implement smart workflow scheduling algorithms because of the

static nature of the tasks-graphs.

The forthcoming research on this area may thus be more focused on the effective adoption

of existing workflow managers by large users communities rather than on the development of

yet another workflow system. The adoption of stable workflow platforms is a prerequisite for

further investigations that have to be initiated by real users’ need. Actually, this direction is the

2.4. Conclusions 79

one adopted by the leading workflow projects such as the P-GRADE portal16, Taverna17, Swift18

or Gwendia19. In that sense, we study the implementation of the bronze standard application

with the Scufl services language in the next chapter.

16http://portal.p-grade.hu/
17http://taverna.sourceforge.net
18http://www.ci.uchicago.edu/swift/
19http://gwendia.polytech.unice.fr/

http://portal.p-grade.hu/
http://taverna.sourceforge.net
http://www.ci.uchicago.edu/swift/
http://gwendia.polytech.unice.fr/

80 A taxonomy of workflow approaches for medical image analysisapplications Chap. 2

Chapter 3

The bronze standard service workflow

Contents
3.1 The bronze standard workflow . 82

3.1.1 Motivations for the use of service workflows. 82

3.1.2 Description of the bronze standard workflow. 84

3.1.3 Semi-automatic workflow generation by merging. 86

3.2 Expressiveness of the selected workflow language. 88

3.2.1 Description of the Turing machine. 88

3.2.2 Example on a string length computation. 90

3.2.3 Limitations of this implementation. 92

3.2.4 A universal Turing machine in Scufl. 94

3.3 Conclusions. 96

B
ased on the taxonomy detailed in the previ-

ous chapter, we advocate here the adoption

of service workflows for medical image analysis

applications. The workflow of the bronze stan-

dard application is described with the Scufl lan-

guage which is particularly interesting through

its data composition strategies. An analysis of

the expressiveness of this language is finally pro-

posed through the implementation of a universal

Turing machine.

82 The bronze standard service workflow Chap. 3

D
ans ce chapitre, nous motivons l’adoption

de chaı̂nes de traitements de services pour

les applications d’analyse d’images médicales.

La chaı̂ne de traitement de l’application des

étalons de bronze est décrite avec le langage

Scufl qui fournit des opérateurs de composition

de données particulièrement intéressants. Enfin,

une analyse de l’expressivité de ce langage est

proposée à travers l’implémentation d’une ma-

chine de Turing universelle.

The workflow classification presented in the previous chapter revealed a wide spectrum of

different workflow approaches. Even if some works still focus on specific workflow patterns to

further enhance the languages [van der Aalst and ter Hofstede, 2005], we will concentrate on

the study of the adoption of an existing workflow language forour application. Among the

presented workflow approaches, we advocate here the use of service workflows for medical

image analysis applications. In particular, the bronze standard application will be described

with the Scufl language.

3.1 The bronze standard workflow

3.1.1 Motivations for the use of service workflows

The Scufl workflow of the bronze standard application is depicted on figure3.3. Apart from the

algorithms sharing needs of this application, which motivates the adoption of a service-oriented

architecture, several reasons rationalize the use of service workflows rather than task-graphs for

this application.

Separation of clinical, medical image analysis and grid concerns. The adoption of service

workflows enables a clear separation of concerns between the3 actors of the typical scenario

envisioned in this thesis. Indeed, in such a paradigm, the medical image analyst builds a work-

flow from existing services potentially connected to the grid with the help of the computer

scientist. Such workflows are then exposed to the clinician that only specifies the input data on

which to run them. The data instantiation is the last step before the execution of the workflow.

Conversely, in task-graphs, those 3 roles are mixed. To specify the input data, the clinician

would have to modify the workflow itself, by adding new tasks,which could not be automat-

able in case of complex patterns.

Compact description of large workflows. From a user point of view, the main difference be-

tween task-graphs and service/functional workflows appears when considering the re-execution

of the same workflow over different input data segments, as it is done by the registration ser-

vices of the bronze standard workflow that are iterated on a complete image database. In a

3.1. The bronze standard workflow 83

...
.
.. ...

.

..

A

A

A

0

1

n

B 0
B 1

B n

A

A

A

0

1

n

B 0
B 1

B n

A B A B

Figure 3.1: Data composition operators. Left: one-to-one.Right: all-to-all. A and B

represent ports of a service. They may contain several data items (Ai, B j) on which the

service is going to be iterated.

task-graph, executing the same processing over two different data segments results in the de-

scription of two independent tasks. This approach enforcesthe replication of the execution

graph for every input data to process, which becomes intractable when the workflow is made of

hundreds to thousands of tasks. On the contrary, the description of a functional or service work-

flow is independent from the size of the input data set, which keeps the workflow description

compact and more easily graphically representable.

Data composition. Thanks to the absence of data instantiation in the workflow description,

operators acting on the data flow itself can be defined: it may simplify the description by

avoiding the use of complex control patterns. In particular, iteration strategiesover the input

ports of a service are available in Scufl. When a service owns two inputs or more, an iteration

strategy defines the composition rule for the data coming from all the input ports pairwise.

Iteration strategies are composed of data composition operators. Considering two input sets

A = {A0,A1, . . . ,An} and B= {B0,B1, . . . ,Bm} of a service, theone-to-onedata composition

operator consists in processing each data item of the first set with the matching data item of

the second set in their order of definition. The other composition strategy available in Scufl

is theall-to-all operator which consists in processing all the input data items from the first set

with all the input data items from the second set, thus producing m× n results. The action

of those operators is illustrated on figure3.1. Using iteration strategies to design complex

data interaction patterns is a very powerful tool for data-intensive application developers. For

instance, the sweeping of a service over a whole parameter range can be described with a single

all-to-all operator between the parameter to sweep and the other inputs of the service. In the

following of this thesis, all-to-all operators will be denoted by� and one-to-one by�.

Dynamic data sets. Task-graphs and functional/service workflows differ in depth in their

handling of data. The dynamic nature of the data descriptionin the functional and service

approaches enable the definition and execution of a workflow although the whole input data is

not known in advance. It will be dynamically fed in as new datais being produced by sources.

84 The bronze standard service workflow Chap. 3

Indeed, it is common in scientific applications that data acquisition is a heavy process and that

data segments are being progressively produced. Some workflows may even act on the data

production source itself, stopping data production once computations have shown that sufficient

inputs are available to produce meaningful results. This dynamicity is also required when the

input data is the result of a data base query whose response size is not known in advance.

A significant difference between the task-graph and functional/service workflow approaches

coming from the ability of the latter to deal with dynamic data sets is that there may exist

loops in a functional workflow, even in absence of specific control constructs. In a task-graph,

loops have to be completely expanded in the workflow description: dependencies between tasks

are precedence constraints and the workflow graph thus has tobe acyclic. Consequently, the

implementation of dynamic loops (i.e loops whose number of iterations is not known before

runtime) is not possible in a task-graph whereas it is in a functional or service workflow. For

instance, figure3.2corresponds to the Scufl implementation of the followingfor C++ loop:

for(i=i0;i<nMax;i++) cout<<i<<endl;

In this workflow, theinferior processor compares its two arguments. It is initialized with the

i0 string constant value. All the subsequent values will be compared to the samenMax value

which is an input of the workflow that will be defined at runtime. This behavior is obtained

by the use of an all-to-all data composition operator between the inputs ofinferior. The

Boolean value returned byinferior is piped to theFail if false conditional processor. If

it fails, then no more processor can be fired and the workflow halts. Otherwise, the coordination

constraint allowsincrement to be fired.increment only increments its input, which is also

initialized by thei0 value. The output of this processor is looped back to its input. Self-looping

allows the workflow to maintain a state variable (i on figure3.2), whereas all the processors are

stateless and the definition of variables is not possible. The valuej resulting fromincrement

is then passed to theinferior processor and a new iteration starts.

3.1.2 Description of the bronze standard workflow

The Scufl service workflow of the bronze standard application(see chapter1 for scientific

details about this application) is depicted on figure3.3. In the upper part of the workflow,

image pairs are registered with four different algorithms. Then, the computed transformations

are converted to a single format and compared by the bronze standard statistical procedure to

produce the accuracy estimations (one per algorithm). Every piece of data exchanged in this

workflow is a string. Files are represented by references (grid file names). This workflow has

been implemented in Scufl using the Taverna workbench [Oinn et al., 2004] which provides a

very user-friendly and stable GUI to describe workflows.

3.1. The bronze standard workflow 85

Figure 3.2: Example of a looping workflow in Scufl. Orange boxes represents Beanshells

participants, purple ones are conditionals and blue rectangles are string constants. Data

links are figured with arrows and coordination constraints with circle-terminated arrows.

Blue triangles are input and blue diamonds are outputs.

Inputs and outputs. The inputs of this workflow are the lists of image pairs to reg-

ister (floatingImage and referenceImage), the options of each registration algorithm

(sizeCrestLines, PFMOption, BaladinOption andYasminaOption), the name of the file

where to store the produced transformations (FileName) and the name of the methods to test

with the bronze standard procedure (methodToTest).

Registration algorithms. The first registration algorithm is composed of the pair

crestLines/crestMatch. crestLines extracts salient lines from the images (one per in-

put images) andcrestMatch finds a transformation between the produced crest-lines. The

crestMatch service returns (i) a transformation which is passed to the 3remaining registra-

tion algorithms and (ii) a comment string which will be appended to the transformation file

by thewriteResult service. ThePFMatchICP/PFRegister algorithm is a robust variant of

crest-match. First, thePFMatchICP service selects some relevant matching points from the

lines produced bycrestLines ; PFRegister then produces (i) a transformation and (ii) a

comment. Similarly,Baladin andYasmina are initialized with the transformation produced

by CrestMatch and produce a transformation as well as a comment. Each transformation is

first downloaded from the grid to a local storage space by thegetFromGrid service, then

converted to a suitable format by theformatConversion service and finally written inside the

result file by thewriteResult service.writeResults has 5 input parameters: the name of

the two registered images, the transformation found by the registration algorithm, the corre-

sponding comment and the name of the result file.

86 The bronze standard service workflow Chap. 3

Accuracy estimation. Finally, the estimation of the accuracy is performed, for each algo-

rithm, by thebronze standard service. This service takes as input the name of the result file

(fileName) and the name of the registration algorithm to assess (methodToTest). The itera-

tion strategy between its ports is an all-to-all: for each method to test, the file name has to be

the same. This service is a synchronization barrier. Indeed, it has to wait forall the data items

to be processed by all the registration algorithms to begin its execution. This synchronization

barrier is expressed with 4 coordination constraints in Scufl. Actually, the synchronization here

acts at two different levels. First, a synchronization has to be done between all the data items

of a given registration service: this is done by a given coordination constraint. Then, the 4 reg-

istration algorithms have to be synchronized, which is doneby the “diamond” pattern created

by the 4 coordination constraints.

3.1.3 Semi-automatic workflow generation by merging

At this point, one could have noticed that the generation of the workflow of the bronze standard

application may not be completely straight-forward. Even without considering implementation

details such as the compatibility between data formats exchanged by the algorithms, includ-

ing or removing a particular registration algorithm from the whole workflow involves a global

understanding of the application which may not always be thecase of an end-user. Indeed,

in an ideal scenario, this application could be exposed (i) to clinicians that would specify the

data to use to run an existing evaluation procedure and (ii) to medical image analysis scien-

tists that may want to assess the accuracy of their own registration algorithm with respect to

standard ones by including it into an existing bronze standard workflow. In this scenario, the

whole bronze standard workflow is built from the basic ones corresponding to the registration

algorithms. One could for instance merge two existing workflows as depicted on figure3.4. In

a Service-Oriented Architecture (SOA), this problem can beaddressed by considering that the

two basic workflows are themselves services (they are calledcompositeservices) that could be

composed in order to build a new workflow. Apart from breakingthe loose coupling hypothesis

of SOAs, composing composite services is not suitable as it may lead to performance or even

semantic problems in the application, in particular in caseof overlapping services, as discussed

in [Nemo et al., 2007a] and in [Nemo et al., 2007b] for the particular example of the bronze

standard application. Considering for instance the example of figure3.4, it is obvious that a

trivial composition of the two basic workflows would lead to two different invocations of theCL

service, which is clearly not efficient. Elaborating workflows merging strategies is thus needed

two fulfill such scenarios.

3.1. The bronze standard workflow 87

Figure 3.3: Workflow of the bronze standard application. Green boxes represent Web-

Services and data dependencies are depicted with arrows. Coordination constraints are

figured with dot-terminated arrows. Inputs are figured with blue triangles and outputs with

blue diamonds

88 The bronze standard service workflow Chap. 3

Figure 3.4:crestMatch registration workflow (left),PFMatch registration workflow (cen-

ter) and merged bronze standard workflow (right).

3.2 Expressiveness of the selected workflow language

The reader may still wonder whether a simple service language such as Scufl is expressive

enough to describe scientific applications. As detailed in section2.2.3, this language remains

very simple and does not include any control constructs (they have to be implemented by spe-

cific services). In this section, a study of the expressiveness of the Scufl language is provided.

Among the available approaches to evaluate the expressiveness of a workflow language, an im-

plementation of a Turing machine is described here. Beyond the theoretical result obtained at

the end of the section, achievements and limitations of thisimplementation help to understand

the capabilities of the Scufl language.

3.2.1 Description of the Turing machine

Turing machines are the most formal way to prove the expressiveness of a language. Accord-

ing to the Church-Turing hypothesis, every computable function can be computed by a Turing

machine. Therefore, every language that is as expressive asa Turing machine is said to be

Turing complete and would be able to implement any algorithm. A direct way to show that

a language is Turing complete is to implement a Turing machine with it, as done for instance

in [Veldhuizen, 2003] to show that C++ templates are Turing complete. Yet, little Turing com-

pleteness proofs can be found in the literature for workflow languages.

3.2. Expressiveness of the selected workflow language 89

A Turing machine is made of a tape, a head, a state and a transition function. The tape

contains cells where symbols belonging to a finite alphabet are printed. The set of states is

finite too. Particular states of the machine are the initial one and the set of final ones. The head

is positioned on a given cell of the tape. At each iteration:

1. The head reads the current symbol on the tape.

2. The transition function produces a new state, a new symboland a head shift from the

current state and symbol.

3. The head writes the new symbol on the tape and moves one cellleft or right depending

on the shift given by the transition function.

4. The state of the machine is updated with the new state. If the new state is final, then the

machine halts. Otherwise, a new iteration starts.

This description is quite minimal and completely informal.A complete presentation of Turing

machines is providede.gin [Lewis and Papadimitriou, 1981].

We assume the realistic but restrictive hypothesis that thetape of the implemented Turing

machine is finite, thus preventing the algorithm to use an unbounded amount of resources.

Figure3.5presents the implementation of a Turing machine in Scufl and is detailed in the next

paragraphs.

The three sourcesRibbon, initState and stopState respectively contain the input

tape of the Turing machine, the initial state of the machine and the final states. The

ReadInitSymbol processor is used to initialize the machine with the first symbol to be in-

terpreted. It has two parameters, the tape and the initial index i and simply extracts thei th

character of the string obtained from the tape. The following symbols will be read by the

readSymbol processor whose enactment is conditioned by the failure of the halting test. The

obtained symbol is piped to theTransition processor which combines it with the current

state of the machine to produce a new state (outState), a new symbol (outSymbol) and a

movement of the head.

The new state produced is looped back to the input of theTransition processor. Self-

looping allows theTransition processor to maintain the state of the Turing machine (remem-

ber that the use of global variables is not possible in Scufl).At a given iteration of the machine,

the current state is obtained by proper data composition on the inputs of theTransition pro-

cessor. This processor is the core of the Turing machine, as it implements the transition rules.

In this section, it is assumed to be implemented with a Beanshell processor, which captures the

whole logic with a piece of Java code. A detailed Scufl implementation of this processor is

presented in the next section.

The movement output of theTransition processor is passed to themoveHead proces-

sor. This processor only computes a new value of the head index from the shift passed by

Transition and the current index value. Here again, the current value oftheindex variable

90 The bronze standard service workflow Chap. 3

is maintained thanks to self-looping: the output of themoveHead processor is connected to its

index input. Thezero string constant is also connected to theindex input of moveHead to

initialize the index value to 0.

The new indexi generated bymoveHead is piped to thewrite processor as well. This

processor also takes as input theoutSymbol returned byTransition and the current tape of

the machine. It replaces thei th character of the current tape byoutSymbol and returns the

obtained new tape. The state of the current tape is kept thanks to a self-looping.

Transition also returns the new state of the machine (outState parameter) which is

passed to thetestHalt processor.testHalt compares it to the final states provided as input

of the workflow and returns a Boolean string piped to theFail if true conditional proces-

sor. Thus, if the current state of the machine corresponds toa final state, then the conditional

processor fails andreadSymbol does not fire, which makes the whole workflow stop because

of the lack of symbol to consume. Else,readSymbol reads the next symbol and the machine

iterates once again.

Finally, theresult output of the workflow contains a history of the values of the tape, the

last one being the result of the Turing machine.

The data composition operators of all the processors of the workflow excepttestHalt are

one-to-one operators because the processors have to correctly match the current values of the

tape, head index and/or symbol over the successive iterations. ThetestHalt processor has

to test the value of the current state of the machine withall the final states, which justifies the

presence of an all-to-all operator between its input ports.

3.2.2 Example on a string length computation

The above-described workflow was implemented inside the Taverna workbench and executed

with MOTEUR, our home-made Scufl engine described in the nextchapter. It was tested on

examples described with the Turing Machine Markup Language(TMML 1) which provides an

easy-to-parse XML description of Turing machines.

In particular, a string length computation Turing machine was implemented. Its initial state

is start and it has 2 final states, namelystring is null andstop. 7 other states can be

reached. At the end of the computation, the tape contains only an integer, which represents the

length of the initial string.

The right of figure3.6 displays this Turing machine executed with MOTEUR. The initial

tape was the stringab. A total amount of 20 symbols have been read by the machine andpassed

to theTransition processor. ThetestHalt processor run 42 times. Indeed, including the

initial state, 21 states have had to be tested by this processor and for each state to test, 2 invo-

cations are required because there are 2 final states to compare with. The conditional processor

1http://www.unidex.com/turing/index.htm, (c) 2001 Unidex, Inc.

http://www.unidex.com/turing/index.htm

3.2. Expressiveness of the selected workflow language 91

Figure 3.5: Implementation of a Turing machine in Scufl.Orange boxes represent Beanshell

processors and the purple one is a conditional processor. Sources and sinks are pictured

with blue triangles and diamonds and the blue rectangle is a string constant. Arrows denote

data links and the dot-terminated line is a coordination constraint.

92 The bronze standard service workflow Chap. 3

only failed once, the last time it was invoked. The left of figure 3.6 shows the corresponding

tape obtained for each iteration. The last one effectively only contains the length of the initial

tape.

3.2.3 Limitations of this implementation

Parallelism exploitation: Scufl is intrinsically a parallel language: it allows processors to be

iterated on several data sets (through theworkers attribute of theprocessor tag). Given a

suitable engine, data parallelism and pipelining can be exploited from the Scufl representation

to obtain an efficient execution. However, in this Turing machine implementation, enabling

parallelism would completely puzzle the execution. For instance, if several different tapes

are provided as input, the current state, index and tape of the machine could not be properly

maintained. The use of a sub-workflow wrapping the Turing machine could help to cope with

this problem.

Synchronization between conditional test andreadSymbol: A more fundamental limi-

tation of this Turing machine implementation is the synchronization between the conditional

Fail if true processor and thereadSymbol one. The firing of thereadSymbol determines

the firing of theTransition and subsequent processors. In Scufl, in absence of coordina-

tion constraint, the firing of a processor is determined by the availability of data items in its

input ports. Because of the loops included in the workflow of this implementation of the Tur-

ing machine, data items are always available in the inputs ports of thereadSymbol processor.

Therefore, one should guarantee that the conditional processor is firedbeforeeach invocation of

thereadSymbol processor. Otherwise, thereadSymbol processor could fire several times be-

tween two consecutive invocations of theFail if true processor. This would certainly lead

to some errors because of wrong halt detection. We solved this problem by firing the processors

in a sequence order in our MOTEUR workflow engine, thus ensuring that theFail if true

processor is always fired before thereadSymbol one. However, this kind of behavior is not

specified in the Scufl document and is not handled by Taverna. Aspecification of the behavior

of the engine should probably be included in the Scufl language, as it is done for instance in the

MoML data-flow language through the definition of specificdirectors[Ludäscher et al., 2005].

Code wrapping: As every workflow language, Scufl is able to define invocationsto services,

whose implementation is external to the workflow specification. Thus, one should keep in

mind that some logic of the Turing machine implementation isembedded into those processors

whose code is written using a traditional programming language such as Java. Therefore, the

expressiveness of Scufl is tightly coupled to the one of the languages used to implement the

processors. To properly assess the expressiveness of Scufl,one should be aware of that and limit

the amount of non-Scufl code included inside the processors.In particular, theTransition

3.2. Expressiveness of the selected workflow language 93

1: ab

2: ab

3: 0 ab

4: 0 ab

5: 0 ab

6: 0 ab

7: 0 ab

8: 0 a

9: 0 a

10: 0 a

11: 1 a

12: 1 a

13: 1 a

14: 1 a

15: 1

16: 1

17: 2

18: 2

19: 2

20: 2

Figure 3.6: Right: Run of the Turing machine on a string length algorithm through the

MOTEUR engine. Ellipses represent Beanshell processors, triangle are sources, rectangles

are string constants, blue diamonds are sinks and the red oneis a conditional processor.

Iterations numbers of the processors are written inside. Failed processors are colored in red

whereas successful ones are in dark blue. Port names are omitted to ease legibility. Left:

corresponding states of the tape for each iteration. White spaces are figured by ’’.

94 The bronze standard service workflow Chap. 3

processor includes a whole set of tests to implement the transition rules. Exaggeratedly, putting

all the Turing machine logic inside a single processor wouldproduce a correct implementation

but would not prove anything about the expressiveness of theScufl language. On the other

hand, preventing the workflow from using any external processor is not relevant because no

arithmetic operators are available by default in the Scufl language: under this hypothesis, the

implementation of an incrementation or string concatenation would not be possible at all.

3.2.4 A universal Turing machine in Scufl

The above-described implementation of the Turing machine is not universal because the

Transition processor has to be implemented for every set of rules. Moreover, as already

suggested, it embeds a significant amount of code, which limits the evaluation of the expres-

siveness of the Scufl language. To cope with those limitations, the implementation of the

Transition processor is detailed in Scufl in this sub-section.

The corresponding workflow of this processor is depicted on figure 3.7. It is made of a

sub-workflow (Nested Workflow) which tests the matching between a given transition rule

and the current state and symbol of the machine. This sub-workflow has 7 different inputs:

• currentState and currentSymbol denote the current parameters of the machine.

They must be compared to the conditions of the tested transition rule.

• inState andinSymbol are the conditions of the tested transition rule.

• outSymbol, outState andmovement are the consequences of the transition rule. These

are the value that must be returned by the sub-workflow if the tested transition rule

matches the current parameters of the machine.

The sub-workflow first tests the equality of the current parameters of the machine with the

conditions of the tested transition rule. This is done through theis equal andis equal1 pro-

cessors that just compare two strings and return a Boolean, which is tested by the conditional

Fail if false andFail if false1 processors. Ifbothof the conditions are true, then the

outputs of the rule are piped to the outputs of the sub-workflow throughnop processors. Oth-

erwise, the sub-workflow fails and do not return anything.

TheNested Workflow sub-workflow is embedded into a global workflow. This is required

(i) to allow to define iteration strategies between the different inputs of the sub-workflow even

if they are not all connected to the same processor and (ii) toallow thenop processors to return

only the correct output parameters of the transition rule. Indeed, if the sub-workflow was alone

iterated on the whole transition rules, thenop processor would produce the complete set of

outState parameters as soon as theFail if false processor would succeed.

The iteration strategy of theNested Workflow is depicted on figure3.8. On the left side

of the picture, the current state and symbol of the machine are composed with a one-to-one

3.2. Expressiveness of the selected workflow language 95

Figure 3.7: Implementation of the Transition processor in Scufl. The use of a sub-workflow

allows to define iteration strategies over the sources ofNested Workflow and to properly

separate the input data set.

96 The bronze standard service workflow Chap. 3

Figure 3.8: Iteration strategy of theNested Workflow sub-workflow of figure3.7. The

current parameters of the machine are compared with all the transition rules.

operator, to be able to associate only the right symbol with the right state. Similarly, on the

right side of the picture, all the items of the transition rules are composed with one-to-one

operators. The two terms in brackets are composed with an all-to-all operator, in order to test

the current state and symbol withall the transition rules of the machine.

3.3 Conclusions

Service workflows were selected as a suitable paradigm to implement medical image analysis

applications. The main rationales for this choice is their ability to separate clinical, medical

image analysis and grid concerns, to handle dynamic data sets and to provide a compact de-

scription of large workflows. In particular, data composition operators of the Scufl language

allow a simple way to describe complex applications. The workflow of the bronze standard

application has been described with details and implemented in Scufl using the Taverna work-

flow manager2. Finally, the expressiveness of the Scufl language has been studied through the

implementation of Turing machines. A universal Turing machine has been implemented using

the Scufl data-flow language. Even if some restrictions remain (such as the embedding of some

Java code in external processors), it is thus possible to conclude that Scufl is a Turing complete

language. Therefore, it would theoretically be possible toimplement any algorithm in Scufl.

It highlights the facts that the expressiveness of such a data-flow oriented language is not as

limited as one could think, even if the language remains verysimple and easy to manipulate.

Yet, even if, as shown in this chapter, the workflow description language is quite satisfying,

there is still room for an effective interface of workflow managers with grid infrastructures.

Considering for instance the example of the EGEE European grid project3, the majority of the

applications is still using a low level grid-expert approach for workflow deployment, relying

on scripts or task-graphs (Condor DAGMan tool). In this case, a specific knowledge of the

middleware is necessary. Grid-enabled service workflow managers could leverage this issue,

opening the door to a wider adoption of the grid in various communities. Keeping in mind this

necessity for grid-interfaced high-level service workflows, an implementation of an efficient

2http://taverna.sourceforge.net
3http://public.eu-egee.org/

http://taverna.sourceforge.net
http://public.eu-egee.org/

3.3. Conclusions 97

service workflow engine is detailed in the next chapter.

98 The bronze standard service workflow Chap. 3

Part II

W

Chapter 4

The MOTEUR engine for service

workflows

Contents
4.1 Parallelism exploitation in service workflows 103

4.1.1 Asynchronous service calls. 103

4.1.2 Workflow parallelism. 103

4.1.3 Data parallelism . 103

4.1.4 Service parallelism and synchronization barriers. 104

4.2 Data composition strategies in a parallel service workflow 105

4.2.1 Basic data composition operators. 105

4.2.2 Semantics for the one-to-one operator. 106

4.2.3 A new data composition algorithm. 108

4.2.4 Implicit combinations . 110

4.3 Implementation of MOTEUR and overhead quantification 111

4.3.1 Comparison with other service workflow engines. 112

4.3.2 Performance evaluation. 114

4.4 Conclusions. 115

102 The MOTEUR engine for service workflows Chap. 4

S
ervices workflows have been shown to be

a suitable way of describing medical im-

age analysis workflows. In this chapter, an im-

plementation of a Scufl workflow engine is pro-

posed. This development is motivated by the im-

plementation of a fully parallel service workflow

engine. The handling of iteration strategies in

a fully parallel workflow engine is not straight-

forward and a dedicated algorithm is thus pro-

posed. Finally, MOTEUR, a hoMe-made OpTi-

mizEd scUfl enactoR is described and its perfor-

mance is analyzed.

D
ans ce chapitre, l’implémentation d’un

moteur de flots basé sur le langage

Scufl est proposée. Ce développement est

motivé par l’implémentation d’un moteur de

flots de services. Ceux-ci constituent une ap-

proche adaptée à la description d’applications

d’analyse d’images médicales. La gestion des

stratégies d’itération dans un moteur de work-

flows pleinement parallèle n’est pas triviale et

nous présentons un algorithme qui lui est dédié.

Enfin, MOTEUR est décrit et ses performances

sont évaluées.

Service workflows are a suitable way to describe medical image analysis applications. How-

ever, as discussed in chapter2, optimizing their performance is not straightforward because of

two main reasons. First, services are black boxes bound to anendpoint and they isolate the

workflow manager from the underlying execution infrastructure, preventing it from controlling

the resources allocation. Second, in service workflows, thenumber of computing tasks can-

not be forecast before the actual execution of the application, which limits the applicability of

scheduling heuristics. Yet, performance remains a major concern for the execution of scientific

applications, in particular on the grid platforms that are targeted by this work. In this chapter,

we perform a first step towards an efficient grid execution of service workflows by identifying

the parallelism levels that could be achieved in such a workflow paradigm (section4.1). In the

subsequent fully parallel service workflows, handling the data composition operators described

in chapter3 is problematic. Indeed, the order of data items may be completely disturbed by

the concurrent execution of different jobs and a dedicated algorithm has to be designed in or-

der to keep track of their provenance during the execution. Such an algorithm is presented in

section4.2and implemented into our parallel service workflow engine: MOTEUR.

4.1. Parallelism exploitation in service workflows 103

2P

1P

3P

Source

Sink

Figure 4.1: Example of a service workflow exploiting workflow, data and service paral-

lelism.

4.1 Parallelism exploitation in service workflows

4.1.1 Asynchronous service calls

To enable parallelism during the workflow execution, multiple application services have to

be invoked concurrently. The calls made from the workflow enactor to these services need

to be non-blocking in order to exploit the potential parallelism. GridRPC services may be

called asynchronously as defined in the standard [Nakada et al., 2005]. Web Services also

theoretically enables asynchronous calls. However, the vast majority of existing web ser-

vice implementations do not cover the whole standard and none of the major implementa-

tions [Van Engelen and Gallivan, 2002, Irani and Bashna, 2002] do provide any asynchronous

service calls for now. Alternatively, asynchronous calls to Web-Services may be implemented

at the workflow enactor level, by spawning independent system threads for each processor be-

ing executed.

4.1.2 Workflow parallelism

Given that asynchronous calls are possible, the first level of parallelism that can be exploited

is the intrinsic workflow parallelism depending on the graphtopology. For instance, if we

consider the simple example shown in figure4.1, processors P2 and P3 may be executed in

parallel on any data item. This level of parallelism is implemented in all the existing services

workflow managers.

4.1.3 Data parallelism

Several input data segments are likely to be processed usinga given workflow. Services can be

instantiated as several computing tasks running on different hardware resources and processing

different input data segments in parallel.Data parallelismdenotes that a service is able to

process several data segments simultaneously with a minimal performance loss. Enabling data

parallelism of course implies that the services are able to process many parallel connections.

104 The MOTEUR engine for service workflows Chap. 4

D0

P3 X D1

D2

D0

P2 X D1

D2

D0

P1 D1 X

D2

Figure 4.2: Data parallel execution diagram of the workflow of figure 4.1

Consider the simple workflow made of 3 services and represented on figure4.1and suppose

that we want to execute this workflow on 3 independent input data segmentsD0, D1 andD2.

The data parallel execution diagram of this workflow is represented on figure4.2. On this

kind of diagram, the abscissa axis represents time. When a data segmentDi appears on a row

corresponding to a processorP j, it means thatDi is being processed byP j at the current time.

To facilitate legibility,Di denotes the piece of data resulting from the processing of the initial

input data setDi all along the workflow. For example, it is implicit that on theP2 service

row, D0 actually denotes the data resulting from the processing of the input data setD0 by P1.

Moreover, the processing time of each data segment by each service is assumed to be constant,

thus leading to cells of equal widths. Data parallelism occurs when different data segments

appear on a single square of the diagram whereas intrinsic workflow parallelism occurs when

the same data segment appears many times on different cells of the same column. Crosses

represent idle cycles.

Fully taking into account data parallelism is critical in service workflows, whereas it does

not make any sense in tasks-graphs. Indeed, in this case it iscovered by the workflow paral-

lelism because each task is explicitly described in the workflow description.

4.1.4 Service parallelism and synchronization barriers

Input data segments are likely to be independent from each other as for instance in embar-

rassingly parallel applications.Service parallelismcorresponds to the concurrent execution

of two independent data segments by two different services that are sequentially linked. This

pipelining model, very successfully exploited inside CPUs, can be adapted to sequential parts

of service workflows. Consider again the simple workflow represented in figure4.1, to be ex-

ecuted on the 3 independent input data segmentsD0, D1 andD2. Figure4.3presents a service

parallel execution diagram of this workflow. Service parallelism occurs when different data

segments appear on different cells of the same column (data parallelism is disabledon this

diagram). Similarly to data parallelism, this level of parallelism does not make any sense in

4.2. Data composition strategies in a parallel service workflow 105

P3 X D0 D1 D2

P2 X D0 D1 D2

P1 D0 D1 D2 X

Figure 4.3: Service parallel execution diagram of the workflow of figure4.1

tasks-graphs because it is covered by workflow parallelism.

Synchronization barriersare defined when a service needs to simultaneously process sev-

eral data segments. It can for example correspond to the computing of a mean on a set of

previously computed results, all of them being produced by asingle service. In service work-

flows, synchronization barriers differ from the classical join pattern of tasks-graphs: whereasa

join pattern synchronizes the results produced bydifferentservices, a synchronization barrier

corresponds to the synchronization overseveraldata segments produced by asingleservice.

Consequently, the exploitation of service parallelism is proscribed at synchronization barriers.

In service workflows, exploiting those three types of coarsegrain parallelism (workflow,

data and services) does not lead to any burden for the user because they can be directly deter-

mined from the graph of services. Their exploitation is mandatory to obtain an efficient grid

execution of the workflow. Yet, they could lead to definitionsproblems in the control flow of

the application, which may imply operators assuming an order on the data items going through

the data pipeline. In particular, Scufl iteration strategies are disturbed by such a fully parallel

execution.

4.2 Data composition strategies in a parallel service workflow

A strong motivation for the adoption of service workflows as arelevant approach to describe

medical image analysis applications is the availability ofdata composition strategies, which

provide highly expressive operators for the handling of large data sets. In a service workflow,

each service may receive several input data items on each of its input ports. Depending on

the desired semantics, the user might envisage various input composition patterns between the

different ports.

4.2.1 Basic data composition operators

As described in chapter3, and illustrated on figure3.1, there are two main data composi-

tion operators (one-to-one and all-to-all), very frequently encountered in scientific applica-

tions [Oinn et al., 2004]. Note that other composition patterns with different semantics could

be defined (e.g. all-to-all-but-onecomposition). However, they are more specific and conse-

quently more rarely encountered. Combining those two data composition operators enables

very complex data composition patterns.

106 The MOTEUR engine for service workflows Chap. 4

Figure 4.4: When the cardinality of the data set produced from an all-to-all (⊗) operator

(B⊗C on the left example andA⊗P on the right) differs from the one of the other operand of

the one-to-one (A on the left andB on the right), a semantic problem occurs in the definition

of the one-to-one (⊕).

A common example of theall-to-all composition operator is the case where all pieces of

data in the first input set are to be processed with all parameter configurations defined in the

second input set (parameter sweep application). In this case, if A andB are two data sets of size

n andm respectively, the cardinality ofA ⊗ B = {A1 ⊗ B1,A1 ⊗ B2 . . .A1 ⊗ Bm,A2 ⊗ B1 . . .A2 ⊗
BmAn ⊗ B1 . . .An ⊗ Bm} is m× n (For simplification, the result of processing the pair of

input data (A1, B1) by a service will be denotedA1 ⊗ B1).

Theone-to-onestrategy is the classical case where an algorithm needs to process every pair

of input data segments independently. An example is a matrixaddition operator: the sum of

each pair of input matrices is computed and returned as a result. If two input data setsA and

B are considered, we have:A ⊕ B = {A1 ⊕ B1,A2 ⊕ B2, . . .}. The implementation of the one-

to-one operator in a fully parallel workflow engine is not straightforward. Indeed, this operator

assumes that the input operands are ordered. If data parallelism is not activated, then each

service can number its output data items on-the-fly, which makes sense as their order cannot be

disturbed. If data parallelism is activated but service parallelism is disabled, then every service

could keep track of the order by renumbering is output data items after the last one has been

processed. But if both data and service parallelism are implemented, then the order of data

items may be completely disturbed among different services of the workflow and maintaining

a consistent order between them is not trivial. Moreover, ifthe two input data sets do not have

the same size (m, n), then a precise semantics has to be defined for the one-to-one operator.

4.2.2 Semantics for the one-to-one operator

As illustrated at the left of figure4.4, the pairwise one-to-one and all-to-all operators can be

combined to compose data patterns for services with an arbitrary number of input ports. In this

4.2. Data composition strategies in a parallel service workflow 107

case, the priority of these operators needs to be explicitlyprovided by the user (parentheses

explicitly express priorities in the figures). In some cases, the semantics of the one-to-one

is not well defined. For instance, if the input data sets areA = {A0,A1}, B = {B0, B1}, and

C = {C0,C1}, then the all-to-all operator betweenB andC produces 4 data items (B0 ⊗ C0,

B1⊗C0,B0⊗C1,B1⊗C1) whereas the cardinality ofA (to be composed by a one-to-one) is only

2.

In the Taverna workbench (version 1.5 has been tested1), a truncation of theB⊗C data set

is done, thus producing:

A ⊕Taverna(B ⊗ C) =
{

A0 ⊕ (B0 ⊗C0), A1 ⊕ (B1 ⊗C0)
}

This semantics is ambiguous: first, it is dependent on the order of computation of the elements

of B⊗C, which is completely arbitrary. For instance, it seems thatthere is no objective reason

for composingA1 with B1 ⊗ C0 rather than withB0 ⊗ C1. Second, this semantics prevent the

all-to-all operator from being commutative. Indeed, if ports B andC of theternary service

of figure4.4are switched, then Taverna will produce the following data set:

A ⊕Taverna(B ⊗ C) =
{

A0 ⊕ (C0 ⊗ B0), A1 ⊕ (C1 ⊗ B0)
}

which differs from the previous one.

This semantic flaw is not restricted to this particular example. Actually, similar issues

appear as soon as a one-to-one operator is applied subsequently to an all-to-all operator. For

instance, the example given at the right of figure4.4corresponds to a classical situation where

an input data setA = {A0,A1}, is processed by a first algorithm (using different parameter

configurationsP = {P0,P1,P2}), before being delivered to a second service that compares the

results with a matching number of data itemsB = {B0, B1}. For example, in the medical image

analysis context,Service1 could correspond to a smoothing of the images included inA with

the parameters put inP, performed prior to a pairwise registration with the imagescontained

by the setB implemented byService2. In this case, the user wantsService2 to combine

Ai ⊗ P j with Bi. Yet, the output data set according to the semantics adoptedby Taverna would

be:

B ⊕Taverna(A ⊗ P) =
{

B0 ⊕ (A0 ⊗ P0), B1 ⊕ (A0 ⊗ P1),
}

(4.1)

In this case, the output data set is not only truncated but also mismatched: comparingAi ⊗ P j

with B j does not make any sense in our example. Thus, another definition of the one-to-one

operator has to be proposed. The method proposed in the next section is to let the user define

and control its own one-to-one semantics, by specifying thedata sets that are semantically

correlated.

1http://taverna.sourceforge.net

http://taverna.sourceforge.net

108 The MOTEUR engine for service workflows Chap. 4

4.2.3 A new data composition algorithm

The definition of the one-to-one operator proposed here is based on the specification of correla-

tion groups by the user. Indeed, given that two correlated input data setsA andB are provided,

the user can expect that the dataAi will always (i.e for any service of the workflow) be analyzed

with the correlated dataBi, regardless of the algorithm parametersP j considered. For instance,

the user may define a correlation group between the input datasetsA andB on the workflow

displayed on the right of figure4.4, then producing the following data set, whereAi is always

consistently combined withBi:

B ⊕ (A ⊗ P) =

B0 ⊕ (A0 ⊗ P0), B1 ⊕ (A1 ⊗ P0),

B0 ⊕ (A0 ⊗ P1), B1 ⊕ (A1 ⊗ P1),

B0 ⊕ (A0 ⊗ P2), B1 ⊕ (A1 ⊗ P2)

(4.2)

On the contrary, if this workflow is executed with a different semantics, then the user may

define a correlation group between the input data setsB andP and in this case, the resulting

output data set will be:

B ⊕ (A ⊗ P) =
{

B0 ⊕ (A0 ⊗ P0), B1 ⊕ (A0 ⊗ P1),

B0 ⊕ (A1 ⊗ P0), B1 ⊕ (A1 ⊗ P1),

}

(4.3)

The idea here is to let the user define its own semantics for theone-to-one operator by

defining correlation groups. A group is a set of input data tuples that defines a relation between

data items coming from different sets. For instance:

G = {(A0, B0,C0), (A1, B1,C1), (A2, B2,C2)}

is a group establishing a relation between 3 data sourcesA, B andC. Elements of a group

are called groupinstances: in this example,G0 = (A0, B0,C0) andG1 = (A1, B1,C1) are two

instances of the groupG. Note that those data items can be unambiguously numbered asthey

belong toinput data sets that are specified prior to the execution and their order may not be

disturbed by parallelism. In this case, group instances establish a semantic correlation between

the input data itemsAi, Bi andCi. Of course, more complex groups could be specified by the

user, depending on the semantic of the application. For instance:

H = {(A4, B0), (A1, B2), (A2, B5), (A6, B6)}

is a group containing 4 instances establishing a non trivialcorrelation between data items.

The one-to-one composition operator only makes sense for the processing of related data

items. Therefore, only data items belonging to a same group instance should be considered

for the processing of the one-to-one operator by any service. When considering a service

directly connected to theinput data sets of the workflow, determining relations between data

is straightforward. However, when considering a complete application workflow such as the

one of the bronze standard application illustrated in figure3.3 in the previous chapter, other

4.2. Data composition strategies in a parallel service workflow 109

S1

S32S

4S

P Q

G0 G1

A 1 B 1 Q0A 1 B 1 P 0

A 1 B 1 Q0

B 0A 0 P 0
A 1 B 1 P 0

B 0A 0 Q0

A 0 B 0 A 1 B 1

B 0A 0 A 1 B 1

B 0A 0 Q0B 0A 0 P 0

P 0

Q0

((A B) P)

(A B) P (A B) Q

A B

((A B) Q)

Data group GA B

Figure 4.5: Workflow example (left), associated data sets directed graph (center), and the

associated directed acyclic data graph.

services need to determine which one of their input data segments are correlated. The one-to-

one composition operator does introduce the need for the algorithm described below.

Conversely, note that the all-to-all operator does not relyon any pre-determined relation

between input data. Any number of inputs can be combined, with very different meanings

(such as data to process and algorithm parameters). Each piece of data received as input yields

to one or more invocations of the service for processing.

4.2.3.1 The one-to-one algorithm

The left part of figure4.5represents a sample workflow made of 4 services and combiningthe

one-to-one and the all-to-all composition operators. In the center of the figure is represented the

directed graph of the produced data sets. Given 4 input data sets,A,B,P andQ, the complete

workflows produces

((A ⊕ B) ⊗ P) ⊕ ((A ⊕ B) ⊗Q).

as output of theS4 service. Given the one-to-one operator semantics described above, the data

setA ⊕ B produced by the first service will be non empty if and only if data items inA and

B are related through a group G that is represented in gray at the top of the figure (two group

instances are defined so thatAi, the ith element ofA, is correlated withBi, the ith element ofB).

Considering the inputs of serviceS4, two input data items (Ai ⊕ Bi) ⊗ Pk and (A j ⊕ B j) ⊗Ql

should be combined if and only ifi = j. Indeed, combiningAi with Bi, or a subsequent pro-

cessing of these data items, does make sense given that the user established a relation between

this input pair through the group instanceGi.

To formalize this approach we need to consider the data production Directed Acyclic Graph

that is represented in right of figure4.5. This graph shows how all data items are combined by

the different processings. Theinputdata items are parents of all theproduceddata. The formal

relation between each data pair (Ai, Bi) is represented through a group instanceGi, parent of

110 The MOTEUR engine for service workflows Chap. 4

S1

Implicit group

A B

Figure 4.6: Implicit groups definition.

both Ai andBi. Input data items that have no group parent such asP0 andQ0 will be named

orphandata.

The directed data graph is constructed from the roots (workflow inputs) to the leafs (work-

flow outputs) by applying the two following simple rules implementing the semantics of the

one-to-one and the all-to-all operators respectively:

1. Two data segments (graph nodes) are always combined in an all-to-all operation.

2. Two data segments are combined in a one-to-one operationif and only if there exists a

commongroup instanceancestor to both data items in the data DAG.

4.2.4 Implicit combinations

The proposed algorithm aims at providing a strict semanticsto the combination of data com-

position operators, while providing intuitive data manipulation for the users. Data groups have

been introduced to clarify the semantics of the one-to-one operator. However, it is very com-

mon that users are writing workflows without explicitly specifying pairwise relations between

the data. The order in which data segments are declared or sent to the workflow inputs are

rather used as an implicit relation.

To ease the workflow generation by the user, groups can be implicitly generated when

they are not explicitly specified by the user. Figure4.6 illustrates such a case. The reason

for generating an implicit group is straight forward: two input data sets are being processed

through a one-to-one service. The systematic rule that can be applied is to create an implicit

group for eachone-to-oneoperator whose input data sets are orphans. For example, in the case

illustrated in figure4.6, the input data setsA andB are orphans and boundone-to-oneby the

S1 service. An implicit group is therefore created betweenA andB.

The implicit groups are statically created by analyzing theworkflow topology and the input

data sets before starting the execution of the workflow.

4.3. Implementation of MOTEUR and overhead quantification 111

4.3 Implementation of MOTEUR and overhead quantification

We implemented MOTEUR, a workflow engine taking into account(i) the three kinds of par-

allelism described in section4.1 and (ii) the precise one-to-one semantics proposed in sec-

tion 4.2. MOTEUR uses the Scufl language from Taverna for the workflow description (see

sections2.2.2 and3.2 for an overview of this language). It supports workflows madewith

Web-Services, string constants, Beanshells2 and some local Java classes (such as theFail if

class used to implement conditional branching). More specific processors available in the Tav-

erna workbench such as Biomoby or Talisman ones are not available yet. An interface to DIET

GridRPC servers has also been developed. An XML dialect is used to describe input data sets

and specify correlation groups between them. It simply describes each item of the different

inputs of the workflow. Complex WSDL types are supported, which is not trivial: traditional

Web-Services toolkits (Apache Axis3, gSOAP4, SOAP::Lite5) generate classes from XML type

descriptions that are used by the client invocation methodscompiled after the type parsing.

In the case of a workflow engine, the type has to be handled dynamically: for each complex

WSDL type, MOTEUR generates a particular data structure which is instantiated on the data

items at runtime. A dedicated serializer enables the conversion from this data structure to the

XML (SOAP) expression of the type and is interfaced with the Axis API thanks to design

patterns6.

Enactor implementation. A genericProcessor class represents a service of the workflow

and implements the basic functionality such as the handlingof data composition operators be-

tween its ports. This class is derived for every kind of Scufl processor and a specific interface is

implemented for each of them. A central enactor periodically queries eachProcessor object

to determine whether it is ready to be enacted. The corresponding processor then computes the

data sets resulting from the application of its data composition strategy on its ports containing

the data segments coming from its predecessors. If a given input data set has not been already

previously computed, a dedicated thread is then started forthe computation. When the com-

putation is finished, the execution thread pushes the results from its output ports to all of its

connected input ports.

Synchronization barriers. Implementing synchronization barriers in a data and service par-

allel workflow requires an in-depth inspection of the service tree. For instance, considering the

2http://www.beanshell.org
3http://ws.apache.org/axis2/
4http://www.cs.fsu.edu/∼engelen/soap.html
5http://www.soaplite.com/
6The handling of complex WSDL types inside MOTEUR owes a lot tothe work of Patrick Hoangtrong and

Pascal Rolin during their internship at the “Ecole Polytechnique Universitaire” of Nice Sophia-Antipolis in Febru-

ary 2007.

http://www.beanshell.org
http://ws.apache.org/axis2/
http://www.cs.fsu.edu/~engelen/soap.html
http://www.soaplite.com/

112 The MOTEUR engine for service workflows Chap. 4

workflow depicted on figure4.7, where serviceF synchronizes the data produced by bothB and

E, it must be guaranteed thatB andE have producedall their data segments beforeF starts.

A necessary and sufficient condition to ensure this is thatall the ancestors of F are inactive

and have processed a non-null number of data sets. We use this condition to implement the

synchronization barriers in MOTEUR.

Data composition algorithm. To implement data composition operators, MOTEUR dynam-

ically resolves the data combination problem by applying the following algorithm.

1. Initialize the directed acyclic data graph:

(a) Create root nodes for each group instance Gi and add a child node for each related

data.

(b) Create root nodes for each orphan data.

2. Start the execution of the workflow.

3. For each tuple of data to be processed:

(a) Update the data graph by applying the two rules (as definedin section4.2.3.1)

corresponding to the one-to-one and the all-to-all operators.

(b) Loop until there is no more data available for processingin the workflow graph.

To implement this strategy, MOTEUR needs to keep representations of:

• the topology of the service workflow;

• the data graph;

• and the list of input data that have already been processed byeach service.

The data graphs also ensures a full traceability of the data processed by the workflow manager:

for each data node, the parents and children of the data can bedetermined. Besides, it pro-

vides a mean to unambiguously identify each data produced. This becomes mandatory when

considering parallel execution of the workflow introduced in section4.1.

4.3.1 Comparison with other service workflow engines

Data composition. The one-to-one and the all-to-all data composition operators were first

introduced and implemented in the Taverna workflow manager.They are part of the underlying

Scufl workflow description language. In this context, they are known as thedot productand

cross product iteration strategiesrespectively. The strategy of Taverna for dealing with input

sets of different sizes in a one-to-one composition is to produce the min(m, n) first results only.

However, the semantics adopted by Taverna when dealing witha composition of operators

4.3. Implementation of MOTEUR and overhead quantification 113

A

B

D

E

F

C

Figure 4.7: Implementation of the synchronization barrier: F starts whenA, B, C, D andE

are inactive and have run at least once

as illustrated in figure4.4 is not fully satisfying as already discussed in section4.2.3. The

Kepler and Triana workflow managers only implement the one-to-one composition operator.

This operator is implicit for all data composition inside the workflow and it cannot be explicitly

specified by the user. We could implement an all-to-all data composition operator in Kepler by

defining specific actors but this is far from being straightforward7. Kepler actors are blocking

when reading on empty input ports. The case where two different input data sets have a different

size (common in the all-to-all composition operator) is notreally taken into account. Similar

work can be achieved in Triana using the variousdata streamtools provided. However, in both

cases, the all-to-all semantics is not handled at the level of the workflow engine. It needs to be

implemented inside the application workflow.

Parallelism exploitation. Workflow parallelism is available in Taverna, Kepler and Triana.

Data parallelism is available in Taverna but service parallelism is not available in this system

yet, although it is planned for the coming Taverna II. Keplerimplements the service parallelism

within its PN director. In this execution framework, each processor (actor in the Kepler vocabu-

lary) is executed on a dedicated thread. Strategies have been developed to cope with nested col-

lections [McPhillips and Bowers, 2005] and to retrieve data provenance [Bowers et al., 2006]

in service parallel workflows but data parallelism is not available.

In table4.1, the characteristics of the main service workflow managers are compared to

MOTEUR, considering the data composition operators and thelevels of parallelism imple-

mented. It provides a qualitative evaluation of our prototype. To our knowledge, MOTEUR

is the only workflow manager that implements the two basic data composition operators and

7A study of the implementation of the all-to-all operator in Kepler was done by Lydie Blanchet and Fabien

Cordier during their internship at the “Ecole Polytechnique Universitaire” of Nice Sophia-Antipolis in January

2006.

114 The MOTEUR engine for service workflows Chap. 4

Workflow engines Data composition Parallelism

one-to-one all-to-all Workflow Data Service

Taverna X X X / O

Kepler X O X O X

Triana X O X O X

MOTEUR X X X X X

Table 4.1: Comparison of the main service-based workflow managers. X: present;/: lim-

ited; O: absent

the 3 levels of parallelism at the same time. In particular, it differs from the Taverna workflow

manager by its implementation of service parallelism. On production grids, service parallelism

is likely to provide a significant speed-up on applications.As detailed in section6.1.4of chap-

ter6, the activation of service parallelism leads to a 1.9 speed-up on the workflow of the bronze

standard application running on the EGEE production grid (the speed-up of the application on

EGEE with respect to a sequential execution is 13.2 with service parallelism (DSP case) and

sinks to 7 without it (DP case)). The tools reported in table4.1 are exclusivelyservicework-

flow engines, as defined by the taxonomy presented in chapter2. Engines belonging to other

workflow classes may exhibit approaching features, expressed in different ways. For instance,

it has already been stated that both data and service parallelism are inherent to task-graphs and

do not require any specific handling. Similarly, the parametric tasks available in the P-Grade

portal [Kacsuk et al., 2006a] (which is based on a task-graphs paradigm) allow to specifydata

composition operators that may emulate one-to-one and all-to-all.

4.3.2 Performance evaluation

To handle asynchronous service calls, MOTEUR creates a Javathread for each invocation,

which allows parallel service invocations even if the corresponding APIs do not provide asyn-

chronous methods. However, Java threads handling may raisescalability problems. In order

to quantify its overhead, MOTEUR was benchmarked on a workflow made of a single service

concurrently invoked on several data items. This service has a single string input and returns a

single string result as well. This benchmark was performed on a Pentium IV, 1.8GHz, 512MB

RAM running Linux 2.6.21. We used Sun’s JVM 1.6.0 with a maximum heap size of 350MB

and a thread stack size of 100kB. Figure4.8plots the overhead of MOTEUR with respect to the

number of concurrent service invocations given that the invoked service was a remote server

(DIET server or Web-Service), or a local method (Beanshell or Java class). The plotted over-

head is the total one generated by the concurrent invocations. To avoid network latencies, the

Web-Service and the DIET server were deployed on the same machine as MOTEUR.

For each kind of service, the curve starts with a linear phasebefore entering a saturation

4.4. Conclusions 115

phase (the end of the linear phase is determined as the abscissa from which the error of the

linear approximation of the experimental data is greater than 1s). The slope of the linear phase

quantifies the scalability of the interface before it saturates. As it could have been expected,

local method calls (Java class and Beanshell) are the most scalable. For Java classes, the over-

head (6ms/invocation) only comes from the Java thread creation whereas the invocation of a

Beanshell also requires the loading of a Java interpreter (Beanshells dynamically interpret Java

code), which makes the overhead grow to 16ms/invocation. Among remote method calls, DIET

servers are the most scalable in the linear phase, with an overhead of 33ms/invocation whereas

the one of Web-Services is 76ms/invocation. This is consistent because DIET servers are in-

voked through a lightweight binary protocol whereas Web-Services use an XML text-based

protocol which requires costly (de-)serializations.

Yet, on these experiments, the saturation phase of the DIET interface begins at 230 concur-

rent invocations, which is quite poor compared to the Web-Services, which stay on the linear

phase until 500 invocations. This could be explained by our naive implementation of the MO-

TEUR/DIET interface: in MOTEUR, as for every other kind of services, a dedicated object is

responsible for the whole DIET request, from the initialization to the completion. However, be-

fore being able to perform any request, the DIET API requiresan initialization procedure which

is quite heavy in terms of memory (in this experiment, the initialization requires 1.3MB). In

our implementation, the initialization is performed before everyDIET request, which rapidly

saturates the memory. We are investigating solutions to cope with this problem with the DIET

team. A Java API for DIET, currently under testing, should help resolving the problem.

Comparatively, Beanshells enter their saturation phase for 1100 concurrent invocations and

local Java classes for 1400. Yet, even for 1000 concurrent Web-Services invocations, the result-

ing total overhead is 2.5 minutes, which is twice lower than the job latency on a production grid

infrastructure (about 5 minper job, see chapter6). The bronze standard experiments detailed

in section1.3of chapter1 involves about 400 concurrent service invocations, which leads to an

overhead inferior to 40 seconds according to this benchmark. This overhead is reasonably low

compared to the total computed CPU time of this experiment which is 30 hours.

4.4 Conclusions

In this chapter, we presented the design and implementationof MOTEUR, a workflow engine

based on the Scufl language. As concluded at the end of chapter2, existing workflow languages

seem to be sufficiently expressive to describe the majority of applications and we thus focused

on theexecutionof the workflow rather than on its description. The development of MOTEUR

was motivated by the need for an efficient service workflow enactor. It implements the 3 kinds

of parallelism that could be achieved in a service workflow (i.e workflow, data and service

parallelism). In particular, the presence of service parallelism yields a close to 2 speed-up factor

116 The MOTEUR engine for service workflows Chap. 4

saturation

saturation

76ms/invocation

33ms/invocation

lin
ea

r

saturation

lin
ea

r

saturation

lin
ea

r

lin
ea

r

6ms/invocation

16ms/invocation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 500 1000 1500 2000

O
ve

rh
ea

d
(s

)

Number of concurrent invocations

Web−Service
DIET C API

Beanshell
Local Java class

Figure 4.8: Overhead of MOTEUR with respect to the number of concurrent service in-

vocations. For each kind of services, the curve starts with alinear phase before entering a

saturation phase.

on the workflow of the bronze standard application running onthe EGEE production grid. To

make this implementation possible, we proposed a semantically consistent definition of the

one-to-one data composition operator. Indeed, in its first implementation inside the Taverna

workbench, this data composition operator assumes an orderon the data items produced by the

workflow, which leads to an unpredictable behavior in a fullyparallel engine. In the algorithm

that we proposed, the user is responsible for the semantic ofthis operator through the definition

of correlation groups among the input data sets. This new operator is designed to facilitate the

description of medical image analysis workflows in a parallel context.

Workflow systems provide a uniform view of an application running on heterogeneous sys-

tems and architectures. Therefore, they constitute an interesting tool to compare several grids,

as a given application can be transparently executed on different platforms by a single workflow

engine. In the next chapter, we exploit this feature of workflows and provide a comparison of

various grid systems through the use of MOTEUR. Then, in the following of the manuscript,

performance optimization methods are proposed and aim at reducing the impact of the latency

on production grids, which is identified to be a major cause ofperformance drops in chapter6.

Chapter 5

Production grids versus dedicated clusters

Contents
5.1 Grid platforms and middlewares . 119

5.1.1 EGEE infrastructure and gLite middleware. 121

5.1.2 Grid’5000 clusters and OAR batch scheduler. 123

5.1.3 Workflow deployment on grids with MOTEUR. 124

5.2 Comparison of systems on the bronze standard workflow. 125

5.2.1 Execution on dedicated clusters of Grid’5000. 125

5.2.2 Execution on the EGEE production grid. 129

5.3 Latency comparisons . 133

5.3.1 Latency measures. 134

5.3.2 Model and metrics. 134

5.4 Choosing the best platform: a multi-grids model 137

5.4.1 Principle of the model. 137

5.4.2 Application to the studied systems. 138

5.5 Conclusions. 141

118 Production grids versus dedicated clusters Chap. 5

T
he goal of this chapter is to compare the

performance of a production grid (EGEE)

with dedicated clusters of Grid’5000. Even if

the latter are obviously providing highly supe-

rior speed-ups, quantifying the difference with

the former allows to build a reference and deter-

mine what could be expected from performance

optimization strategies dedicated to production

grids. A fair comparison is made possible by

the use of a single workflow manager to execute

the application on both systems. The overhead of

MOTEUR is shown to be negligible on our appli-

cation which typically involves dozens of hours of

CPU time with jobs durations inferior to 10 min-

utes. Even if a significant speed-up is obtained

in production, the grid latency and its variability

are determined to be the main causes of perfor-

mance drops on EGEE. Thus, the last sections

of this chapter provide a comparative analysis of

the latencies of EGEE and Grid’5000 clusters.

Based on it, a model determining a job alloca-

tion strategy on those two platforms is finally pre-

sented and provides an additional metric for the

comparison of those systems.

L
e but de ce chapitre est de comparer les

performances d’une grille de production

(EGEE) à celles obtenues sur des grappes de cal-

cul dédiées de Grid’5000. Même s’il est évident

que ces dernières permettent une accélération

de l’application supérieure à ce qui peut être

obtenu en production, quantifier cette différence

est intéressant car cela établit une référence per-

mettant de déterminer ce qui peut être espéré de

stratégies d’optimisation dédiées aux grilles de

production. Une comparaison objective est pos-

sible grâce à l’utilisation d’un unique gestion-

naire de flots sur les deux systèmes. Nous mon-

trons que le surcoût de MOTEUR est négligeable

sur notre application qui met en jeu des temps

CPU de quelques dizaines d’heures et des tâches

de durées inférieures à 10 minutes. Même

si une accélération significative est obtenue en

production, la latence de la grille et sa vari-

abilité sont les principales causes de perte de

performance sur EGEE. Les dernières sections

de ce chapitre sont donc consacrées à une

étude comparative des latences mesurées sur

EGEE et sur Grid’5000. Enfin, à partir de ces

résultats, un modèle permettant de déterminer

une stratégie d’allocation de tâches entre ces

deux plateformes est présenté et fournit une

métrique supplémentaire pour la comparaison de

ces systèmes.

5.1. Grid platforms and middlewares 119

5.1 Grid platforms and middlewares

The concept of grids emerged from the idea that resources (computing power, storage, net-

work. . .) interconnected through a high performance network could be considered as a single

and sustainable platform accessible and shared among multiple users. The intent of the grid

is to provide scientific and business production services that foster information technologies

use, similarly to information networks that have become a primal and seamless support. A

grid can be defined as an aggregation of heterogeneous and autonomic resources administrated

in a decentralized way and whose accessibility policies refer to Virtual Organizations (VO) of

users [Foster and Kesselman, 1997]. The gridmiddlewareaims at hiding the low levels details

to the end-user, so that the grid can be seen as a unique computer from her perspective.

Grids are traditionally sorted intocomputinganddata grids, the former being devoted to

the aggregation of CPUs whereas the latter focuses on data storage. An early example of data

grid is the World Wide Web itself, coupled with search engines that provide a unified view of a

huge amount of files distributed on heterogeneous resourcesfederated thanks to the HTTP and

HTML standards. Later emerged, peer-to-peer data management systems and overlay networks

provide a uniform data access by the ability of each participant (i.e peer) to get some indexing

information by querying its neighbours in a logical network.

Computing grids can be classified according to the kind of computing resources concerned.

Desktop gridsconsist of the aggregation of personal workstations over the Internet, focusing on

the exploitation of idle cycles. They have been successfully demonstrated by the Seti@home

project1 for decrypting space signals [P. Anderson et al., 2002] or more recently by the De-

crypthon project2 that helped in the sequencing of the human genome. On the other hand,

academic grids (clusters of clusters) correspond to the aggregation of traditional clusters pro-

vided by computing centers, each using a classical batch system to handle its local computing

resources. Such a grid is merely a super-batch system capable of handling tremendous amounts

of computations, and particularly efficient in processing independent and large grain parallel

computations. Effective examples of such infrastructures are the EGEE European production

grid [Laure et al., 2006] and the Grid’5000 French experimental one [Cappello et al., 2005] that

are mostly devoted to scientific computations.

Classical middleware approaches to computing grids are themeta-computingand the

global-computing. In a meta-computing approach, the user is able to perform remote procedure

calls (e.g.service invocations) to a set of predefined services runningon the resources. A sched-

uler is responsible for the service finding and the load balancing of requests between the po-

tentially numerous instances of a given service. An exampleof such a middleware is the DIET

platform [Caron and Desprez, 2005, Amar et al., 2006, Caron and Dail, 2005] which proposes

a scalable hierarchical requests scheduling approach. Other examples of meta-computing plat-

1http://setiathome.ssl.berkeley.edu/
2http://www.decrypthon.org/

http://setiathome.ssl.berkeley.edu/
http://www.decrypthon.org/

120 Production grids versus dedicated clusters Chap. 5

forms are Ninf-G [Tanaka et al., 2003], Netsolve [Casanova and Dongarra, 1997] and Globus

Toolkit 4 [Foster, 2005] which is based on WSRF. The goal of global-computing middlewares

is to provide a unified view of the resources so that they are used as a single computer. In this

approach, applications are not associated to the resourcesin the sense that they do not need to be

pre-installed as it was required in meta-computing: the user submitsjobsthat may correspond to

the execution of any command-line and that are allocated to resources by the middleware. Ex-

amples of global-computing middlewares are Globus Toolkit2 [Foster and Kesselman, 1997]

and gLite [Laure et al., 2006].

Among existing computing grids, a distinction has to be madebetweenproduction

and experimentalgrids. Experimental grids such as Grid’5000 [Cappello et al., 2005] or

DAS3 [Cappello and Bal, 2007] have been developed by computer scientists for computer sci-

entists and are viewed as an observation instrument to studythe computing platform and its

middleware stack from low level network protocols to scheduling algorithms. Their goal is to

provide a reconfigurable platform where experiments are reproducible and can be performed in

a controlled environment. On the other hand, production grids aim at supporting applications

by supplying a huge amount of computing and data storage resources, operated 24/7 and fed-

erated by a stable middleware whose development should be the result of the research made on

experimental platforms. However, because of the scaling-up performed by production systems

(spread all over the Internet), the complexity of their middlewares and their sharing among large

users communities (typically thousands of users), the resulting behavior of those systems is not

properly understood yet: some jobs fail or are even lost without proper reports of the problems,

they face high and unpredictable latencies and consequently, the efficiency of applications is

lower than expected.

Therefore, considering production grids is interesting not only for the exploitation of

domain-specific applications (and in particular of medicalimage analysis ones) but also

for the computer science research itself because characterizing the behavior of produc-

tion systems is the first step towards their study in controlled conditions (e.g by simula-

tion [Casanova, 2001, Buyya and Murshed, 2002, Casanova et al., 2003, Legrand et al., 2006]

or realistic load injection into controlled systems). Experiments performed in controlled en-

vironments should be inspired by realistic applications deployment and production systems

should in return adopt the solutions developed thanks to experimental platforms.

In this chapter, a production grid (EGEE) is compared to dedicated clusters of the experi-

mental Grid’5000. In section5.2, the workflow of the bronze standard application (see chap-

ter 2) is run on both platforms in similar conditions thanks to theuse of the same workflow

engine: MOTEUR (chapter4). The work presented in this section has been done in collabo-

ration with Cécile Germain-Renaud and Emmanuel Jeannot inside the AGIR French national

ACI project3. Based on the conclusions of this section, a comparison of the latencies of the

3http://www.aci-agir.org

http://www.aci-agir.org

5.1. Grid platforms and middlewares 121

systems is then performed (section5.3) and finally, a multi-grids model provides additional

quantitative metrics to compare them.

5.1.1 EGEE infrastructure and gLite middleware

EGEE is a production grid infrastructure that has been operating since April 2004. It com-

bines computational and storage resources provided by several computing centers all over the

world. Each participating site configures, runs, and maintains a local batch system managing

its local computational resources. About 36,500 CPUs spread over 230 clusters covering 50

countries are available. Including disks and tape robots, the total storage capacity is 23PB

(figures fromhttp://goc.grid.sinica.edu.tw/gstat). This infrastructure is shared by

5,000 users, gathered into VOs and a wide range of applications have been ported on it, in-

cluding CERN’s high energy physics experiments (ALICE, ATLAS, LHCB)4, bioinformatics

in-silico drug discovery [Jacq et al., 2007, Jacq et al., 2004] and medical image analysis appli-

cations [Montagnat et al., 2004a, Glatard et al., 2005, Blanquer Espert et al., 2005].

Computing centers are federated by the gLite middleware. This middleware is based on

various components coming from the European DataGrid middleware, Globus Toolkit, Con-

dor, and other toolboxes. gLite integrates the sites’ computing resources through its Workload

Management System (WMS). Figure5.1pictures the global architecture of this system which

can handle different kinds of jobs, all of them being described with the Job Description Lan-

guage (JDL)5:

• Simple jobs can be simple batch jobs (i.e requiring a single CPU) or MPI-based ones

and could eventually be interactive (i.e asking for some input from the user during their

execution).

• Compound jobs can be Condor DAGs (see chapter2), collections of jobs (group of jobs

with no dependencies between them) or parametric jobs (jobshaving variable attributes

in their JDL).

The user submits jobs from aUser Interface (a dedicated machine running the Scientific

Linux distribution6 that allows the installation of gLite) to theWMProxy that creates the job id,

registers it to aLogging and Bookkeeping (LB) service and returns it to the user. In case of

compound jobs, sub-jobs are registered to theLB and the corresponding files are unpacked. The

jobs are then delivered to theWorkload Manager which is responsible for the job submission.

TheWorkload Manager queries aResource Broker (RB) to find resources (whose charac-

teristics are stored insideInformation Supermarkets) matching the job requirements. If no

resources are found, the job is queued in thetask queue and periodically retried. Otherwise,

4http://public.web.cern.ch
5https://edms.cern.ch/file/555796/1/
6https://www.scientificlinux.org/

http://goc.grid.sinica.edu.tw/gstat
http://public.web.cern.ch
https://edms.cern.ch/file/555796/1/
https://www.scientificlinux.org/

122 Production grids versus dedicated clusters Chap. 5

Figure 5.1: Overview of the gLite Workload Management System (WMS). The WMS is

made of several components, each of them being distributed across the world. Coupled

with a permanent load from the users, it introduces a significant latency (several minutes)

on the jobs.

the job format is adapted to the submission entity by theJobAdapter and forwarded to the

JobController that passes it toCondorC. CondorC finally enqueues the job in one of the

computing elements (CE) which are queues of the computing centers. EachCE is managed

by a local batch scheduler that schedules jobs to the available Worker Nodes (WN). The job is

then monitored by theLB during its execution on theWN.

SeveralRBs are available on EGEE and users should use many of them to run applications

involving the submission of a large number of jobs. The choice of RBs is let to the user.RBs

may “see” different resources (computing elements) and accept submissions from various

VOs depending on their configuration. Conversely, a givencomputing elementmay be seen

by severalRBs that do not communicate between each other, except throughthe load informa-

tion advertised in theInformation Supermarket. Moreover, each local batch scheduler is

configured by a particular administrator. Consequently, the overall EGEE scheduling policy is

not centrally defined, but results from the interactions of largely autonomous policies.

The components of the Workload Management System are distributed across the world.

Coupled with a permanent load from the users, it introduces asignificant delay (denotedla-

tency) between the job submission to the beginning of its execution. Latencies in the order to 5

to 10 minutes are commonly encountered, with a very large variability.

5.1. Grid platforms and middlewares 123

To reduce the grid latency, users communities running ShortDeadline Jobs (SDJ)7 have

defined and implemented the concept of aVirtual Reservation(VRes) [Germain et al., 2006].

Each of thep physical processors of a computing center is virtualized into k virtual processors,

providing pk slots to the local batch scheduler. A part of these slots are dedicated to short

jobs that could bypass traditional batch queues to be directly executed on those reserved slots

(when a virtual slot is unused, the computing bandwidth is transparently returned to the other

class of jobs sharing the same physical processor). However, it comes at the price of shared-

time execution of the jobs on physical CPUs. Moreover, giventhat only a limited number of

virtual slots is available, jobs submitted to the VRes queueare rejected when the system runs

out of free slots and they need to be resubmitted. Thus, this solution remains circumscribed to

a limited number of critical jobs with a high priority. It allows a two grains priority scheme (a

job is short oris not) whereas most of the applications mix jobs with a continuum of durations.

Besides, VRes queues may be victim of their success in the sense that if they saturate, a lot

of resubmissions become mandatory to have a job executed andthe latency starts to increase

again. Finally, this strategy acts at the computing elementlevel: it prevents a job from waiting

in a local batch queue. Even if this queuing time is supposed to be the most important cause of

the latency, the experiment that will be presented in chapter 6 will show that in average, it only

represents 35% of the total latency (see table6.2).

Inside EGEE, specific resources are dedicated to data storage. Data transfers between the

Storage Elements(SEs) and the worker nodes are mainly done through the gridFTP protocol.

Data files are identified byLogical File Names(LFNs). LFNs identify files which may be

replicated in multiple physical instances for fault tolerance and optimization reasons. File

catalogs (LFC, FireMan) give a uniform view of the distributed (and potentially replicated)

storage system as in a traditional file system. Replication is handled by the users though.

Inside the EGEE grid, security relies on X509 certificates. Avalid certificate is required to

submit jobs and manage files. Certificates are issued by national certification authorities and

registered by VO managers. Access to resources is controlled with respect to the VOs. Yet,

grid entry points are not controlled: every authenticated user could set up a user interface and

submit jobs from it.

5.1.2 Grid’5000 clusters and OAR batch scheduler

Grid’5000 is a national grid infrastructure composed of 13 clusters, distributed in 9 French

cities and totalizing about 3000 CPUs. Sites are linked with1 Gbits/s or 10 Gbits/s connec-

tions. Within each cluster, the nodes are located in the samegeographic area and communicate

through Gigabyte Ethernet links. Communications between clusters are made through the Re-

nater French academic network.

7http://egee-na4.ct.infn.it/wiki/index.php/ShortJobs

http://egee-na4.ct.infn.it/wiki/index.php/ShortJobs

124 Production grids versus dedicated clusters Chap. 5

Figure 5.2: Interaction between MOTEUR and the gLite/OAR middlewares

Each user has a single (UNIX) account per site allowing access to all the clusters. Access

is restricted to a set of front-ends (one per site) that are accessible throughssh. The platform

is completely isolated from the Internet for security reasons. Nodes cannot even be seen from

outside the platform (names and IPs are allocated on a private network).

The platform is completely reconfigurable. Users can deploytheir own system and envi-

ronments (in particular, they can get root access) on each node through thekadeploy8 tool and

reboot the machines through the network.

Nodes of a given cluster are accessible through the OAR resource allocation sys-

tem [Capit et al., 2005] that provides all the basic mechanisms of classical batch schedulers

such as advance reservation, batch and interactive jobs, matching of resources (job/node prop-

erties), hold and resume jobs, multi-queues with priority,best-effort queues (for exploiting idle

resources), compute nodes checking before launching, dynamic insertion/deletion of compute

node, backfiling, first-fit scheduler with matching resourceand advance reservation. A cross-

clusters super-batch system, OARGrid was still under development at the time of this study.

Home directories of users are mounted with NFS among the nodes and front-end of a given

cluster. Each node also has a significant amount of (local) scratch disk space but no data

management system is deployed by default.

5.1.3 Workflow deployment on grids with MOTEUR

As already stated (see chapter2), deploying applications on grids using service workflows pro-

vides (i) a natural coarse-grain parallelization of the application with the workflow description

and (ii) a transparent execution on several grid platforms thanks to the system-independent

workflow language. Conversely, the workflow engine is isolated from the grid infrastructure by

the services layer. Thus, the submission and handling of grid jobs is the responsibility of the

services themselves. Indeed, in a pure SOA implementation,services are black boxes and the

workflow engine has no information about their implementation.

To ensure the execution over a grid infrastructure, the services should either be relocatable

or an intermediate layer is needed to control submission towards the desired resources. We are

particularly considering the exploitation of the EGEE production grid which does not provide

such service migration. The intermediate layer then becomes mandatory. Figure5.2 presents

8http://www-id.imag.fr/Logiciels/kadeploy/index.html

http://www-id.imag.fr/Logiciels/kadeploy/index.html

5.2. Comparison of systems on the bronze standard workflow 125

the global picture of the interface of the workflows with grids. The workflow engine invokes

(Web-) services that either connect to a User Interface (or grid front-end for Grid’5000) or just

perform a system call to the middleware command-line interface for submitting and monitoring

jobs. Such services only aim at wrapping an existing legacy code into a grid job and submitting

it to the grid. Even if some technical application-specific details may complicate this task, it

can be automated in most of the cases, thus leveraging the burden of the application developer.

A Generic Application Service Wrapper is presented in chapter7. It also allows workflow-level

optimizations of the execution.

5.2 Comparison of systems on the bronze standard workflow

MOTEUR allows to compare the execution of workflows on various kinds of grids in similar

conditions from the application point of view . In this section, a comparison of the EGEE

production grid with dedicated clusters of Grid’5000 is presented. The goal is to quantify the

performance gap between production conditions and dedicated clusters that will be consid-

ered as the reference in the remainder of this thesis. Results of this section will motivate the

development of the optimization strategies presented in part III .

The bronze standard application is used here as a grid benchmark. The considered work-

flow is depicted on figure5.3. It corresponds to a simplified version of the complete workflow

presented on figure3.3, at the end of chapter3. Indeed, only the computationally intensive

part of the workflow (i.e the services that lead to the submission of a grid job) is usedhere.

The lightweight operations such as format conversions and the final statistical procedure are

computed locally. This workflow is composed of 6 services, each of them being iterated over

hundreds of data items in a typical run. The characteristicsof the services are presented in ta-

ble 5.1. A significant variability in the execution times is observed (standard-deviations range

from 9% to 30% of the average values) even if runs have been performed on nodes with iden-

tical characteristics and input images all have the same size. It comes from the algorithms

themselves that may converge more or less rapidly dependingon the content of the images.

We made growing scale experiments by executing the bronze standard workflow on input

data sets with variable size, from 2 to 126 pairs of images (according to figure5.3, for each

image pair, 6 grid jobs are submitted and 3 of them may be running in parallel:Yas, Bal and

PFM or PFR). This workflow has been executed both on Grid’5000 dedicated clusters and on a

VRes queue of EGEE.

5.2.1 Execution on dedicated clusters of Grid’5000

To benchmark the application on dedicated resources, we reserved nodes of Grid’5000 and

deployed the OAR batch scheduler on this reservation to schedule jobs among these nodes. We

126 Production grids versus dedicated clusters Chap. 5

Figure 5.3: Representation of the bronze standard workflow used for the grid benchmark.

The blue triangles represent inputs and the white boxes represent services to invoke. Each

service invocation leads to the submission of a grid job. Theinput and output parameters

of the services are represented by sub-divisions of the boxes. Yellow parameters denote

files and the other ones are strings. Blue rectangles represent constants and blue diamonds

are the outputs of the workflow.� and � correspond to Scufl iteration strategies (see

chapter2).

5.2. Comparison of systems on the bronze standard workflow 127

Execution time Input data

Services Average Stdev Max (i.e data transferred) Produced data

CrestLines (CL) 54.87s 8.19s 67s 15MB 10MB

CrestMatch (CM) 26.74s 8s 42s 25MB 7.7MB

PFMatch (PFM) 24.12s 6.87s 44s 10.2MB 240kB

PFRegister (PFR) 5.37s 1.02s 8s 240kB 160kB

Yasmina (Yas) 146.02s 36.1s 236s 15.2MB 7.7MB

Baladin (Bal) 601.31s 53.35s 753s 15.2MB 7.7MB

Total 858.44s 65.8s 1150s 80.84MB 33.5MB

Critical path (CL+CM+Bal) 682.93s 54.57s 862s xxx xxx

Table 5.1: Execution times, input and produced data volumesof the services of the work-

flow of figure5.3 for a single input image pair. Execution times have been obtained from

the logs of the executions on Grid’5000 clusters. Averages and standard-deviations have

been computed on 126 runs per service. The total volume of data transferred for the largest

considered input data set (126 image pairs) is 80.84MB× 126= 9.9 GB: the network is not

a bottleneck for this experiment.

used three sites for the experiment, approximately distantof 1000 km from each other: Nancy

(east of France), Rennes (west of France), and Sophia (southof France). All these sites are

connected through a 10 Gbit/s backbone. A total of 60 computing nodes (AMD Opteron 64

bits 2GHz with 2GB RAM) were reserved (20 on each site). The number of computing nodes

was selected so that it represents a reasonable number of resources, distributed all over the three

sites, but still low enough as compared to the potential parallelism of the application (up to 380

concurrent tasks). A unique medical images repository was set up in Rennes.

An OAR 2.0 server managing the 60 computing nodes was set up onan additional node

of Grid’5000. Each Web-Service of the workflow was submitting jobs to this server and was

deployed on the same node. The bronze standard workflow was run by MOTEUR on the same

node as well. Data transfers were handled at run time by auto-generated scripts copying images

from the repository or from the place where the data has been generated using thescpUNIX

command. When a task ends, it releases the resource of the OARnode and the data remains on

this node for future use.

The makespan of the workflow is plotted in figure5.4. The curve exhibits two linear phases.

The y-intercept value of the first phase (below 40 image pairs) corresponds to the critical path

of the application which is 652 seconds in this case. It differs from the average value reported in

table5.1because of the variability of the execution times among the images. The slope of this

linear approximation (5.7s/image pair) measures (i) the scalability of the whole deployment

system (MOTEUR, OAR and data transfers) and (ii) the impact of the variability of the execu-

tion times on the makespan of the application. The latter maybe the most important reason as

128 Production grids versus dedicated clusters Chap. 5

Service Longest path Size of the longest pathPriority

from the service Average Maximum

CL CL+CM+BAL 682.92s 1259s 1

CM CM+BAL 628.05s 795s 2

BAL BAL 601.31s 753s 3

YAS YAS 146.02s 236s 4

PFM PFM+PFR 29.49s 52s 5

PFR PFR 5.37s 8s 6

Table 5.2: Priorities of the jobs of the workflow of figure5.3according to the longest paths.

Time values refer to the benchmark displayed on table5.1.

the former should be in the order of a few dozens of milliseconds according to the overhead

quantification performed at the end of chapter4. Indeed, increasing the number of input image

pairs also increases the expected value of the critical pathof the application.

Beyond 42 image pairs, the slope of the linear approximationgrows from 5.7s/image pair to

16.5s/image pair. It comes from the saturation of the platform which is only 60 nodes whereas

3 × 42 = 126 jobs may be running in parallel for 42 image pairs. The total CPU time mea-

sured for 126 pairs of images is 29h 49min 12s and the corresponding makespan is 40min

12s. Thus, the speed-up obtained on those 60 nodes is 44.5. This speed-up is clearly sub-

linear with respect to the number of processors but dependencies of the workflow have to be

considered to determine the theoretical speed-up. To give an idea of this optimal value, we sim-

ulated the scheduling of the workflow using a list schedulingalgorithm based on earliest finish

times [Legrand and Robert, 2003]. This algorithm first assigns to each service of the workflow

a priority depending on the weight of the longest path starting from it (see table5.2). Tasks

ready to be executed (i.e free from dependencies) are ordered according to their priorities. The

first one is then assigned to the resource that provide the earliest finish time and the algorithm

is iterated until the completion of the workflow. We assumed that services have fixed execution

times that are set either to their average or to their maximumwalltime values. The schedules

obtained from this algorithm are plotted on figure5.5. The finish time of the last task is the

makespan of the workflow. In this simulation, the theoretical speed-up is 54.6 for average val-

ues and 43.3 for max values. The 44.5 experimental speed-up obtained in practice is in between

those two ideal values. Even though a deeper analysis of the scheduling would probably re-

veal some possible improvements, the deployment system (MOTEUR invoking Web-Services

submitting jobs to OAR on dedicated resources) seems scalable enough to provide a relevant

practical reference for comparisons with production conditions. The overhead introduced by

MOTEUR (see the end of chapter4 for a detailed analysis) is negligible compared to the whole

application performance and OAR behaves well at this scale.

5.2. Comparison of systems on the bronze standard workflow 129

saturation of the 60−
nodes platform

16.5s/image pair

5.7s/image pair

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 20 40 60 80 100 120 140

M
ak

es
pa

n
(s

ec
on

ds
)

Number of input image pairs

Experimental data (OAR)
Linear regressions

Figure 5.4: Evolution of the makespan of the workflow of figure5.3 on 60 dedicated

nodes of Grid’5000 for a growing size of the input data set (image pairs). The curve starts

with a linear phase whose slope measures the scalability of the deployment system (MO-

TEUR+OAR+data transfers) as well as the impact of the variability of the execution times

on this application. Beyond 40 image pairs, the 60-nodes platform is saturated and the

slope of the fitted straight line increases from 5.7s/image pair to 16.5s/image pair.

5.2.2 Execution on the EGEE production grid

The workflow presented in figure5.3was then executed on the EGEE production grid. In this

experiment, the virtual reservation mechanism described in section5.1.1has been activated on

one EGEE site (LAL, Paris). A hundred slots for immediate execution were allocated. This

is higher than the 60 computing nodes allocated in the experiments with Grid’5000. However,

on EGEE, we have no control on the other users activities: these slots have been shared with

other users exploiting the infrastructure for their computation needs. The LAL cluster hosts

dual-processor (AMD Opteron, 2.2 GHz) machines with 1 GB of RAM per CPU (2 GB to-

tal), which is comparable to the Grid’5000 nodes that were used in the previous experiment.

Medical images and results produced by the application werestored on a single EGEE storage

server located in Clermont-Ferrand (center of France). MOTEUR ran directly on an EGEE user

interface offering the client interface for job handling.

It may be argued that this experimental setup significantly differs from the one deployed

on Grid’5000: the number of processors in the EGEE and Grid’5000 setups is not the same,

the bandwidth of the network connections is not known, EGEE uses gridFTP for file transfers

whereas the Grid’5000 setup usesscp, . . . The point is that the EGEE grid imposes its own setup

which is by no way configurable as it aims at being used for production purposes. The ultimate

experiment to fully evaluate the EGEE middleware would be todeploy the gLite middleware

on Grid’5000 nodes, setting up every component implied in anEGEE job life-cycle (Resource

130 Production grids versus dedicated clusters Chap. 5

Figure 5.5: Gantt charts figuring the simulation of the scheduling of the bronze standard

workflow on 126 image pairs on a 60-nodes dedicated platform,each service being assumed

to have a constant execution time. Top: average values ; bottom: max values (see table5.1).

The makespan is 2477 seconds in the maximal case and 1967 seconds in the average case.

5.2. Comparison of systems on the bronze standard workflow 131

Broker, Logging and Bookkeeping service, . . .) and to simulate realistic network links between

them. Yet, this goes far beyond the scope of the experiment presented here which only aims at

quantifying the gap between controlled and production conditions.

The makespan of the workflow for growing numbers of input image pairs is plotted in fig-

ure 5.6. On this infrastructure, the critical path of the application has grown to 1491 seconds

despite the use of VRes. A comparison to the 652 seconds that were observed on dedicated re-

sources (see figure5.4) provides a measure of the high latency introduced by the infrastructure,

which is about 280 seconds per job in this case (the critical path of the workflow is made of 3

services so that the average latency of the jobs is1491s−652s
3).

An easily measurable cause of latency on the EGEE experimentis the submission time.

Figure 5.7 illustrates it with task-flow diagrams for the 3 experimentswith 18 image pairs.

Those graphs have been obtained with the VizDIET tool9. The first 18 workflow tasks were

submitted every 0.17 seconds by the OAR middleware whereas the EGEE experiment revealed

a submission rate of 1 task every 11.6 seconds. This poor performance comes from the time re-

quired by the workload management system to register the jobin some of its components (such

as the monitoring system and the matchmaker). It drastically limits the parallelism achieved by

the application.

The linear approximation of the experimental data on figure5.6still provides an estimation

of the overhead of the system. This value (80s/image pairs) is huge compared to the 5.7s/image

pair measured on dedicated resources in the previous experiment. As the deployment system

(MOTEUR invoking Web-Services submitting jobs) is the sameas in the previous experiment,

this difference may come from the impact of the latency on the makespanof the application.

This latency may come from (i) the latency introduced by the gLite middleware itself and (ii)

from the load imposed by other users that leads to jobs resubmissions (remember that a job is

cancelled and resubmitted when no VRes slot is available on the site).

An effect of this variability is the fact that the makespan curve onEGEE is not monotonic.

Load conditions may change between executions and some runsmay be faster than other ones,

even larger (see for instance the decrease between 114 and 126 image pairs on figure5.6). A

metric to quantify the load of the execution resources is thenumber of jobs rejected by the

VRes queue when it saturates, which is detailed on table5.3: it varies between 0 and 25% of

resubmitted jobs.

Yet, the execution on EGEE still provides a speed-up of 9.8 with respect to the 29h 49min

12s sequential time for 126 input image pairs.

Partial conclusion. Experiments on the workflow of the bronze standard application have

quantified the gap between the execution on dedicated resources and production conditions:

the latter is 4.5 times slower than the former in similar conditions. The deployment of the

9http://graal.ens-lyon.fr/∼diet/vizdiet.html

http://graal.ens-lyon.fr/~diet/vizdiet.html

132 Production grids versus dedicated clusters Chap. 5

80s/image pair

cr
iti

ca
l p

at
h

(1
49

1s
)

1

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 40 60 80 100 120 140

M
ak

es
pa

n
(s

ec
on

ds
)

Number of input image pairs

Dedicated resources (60 Grid’5000 nodes)
Production grid (100 Vres nodes of EGEE) − experimental data
Production grid (100 Vres nodes of EGEE) − linear regression

 0

Figure 5.6: Makespan of the Bronze-Standard application ondedicated Grid’5000 re-

sources VS a production VRes queue of EGEE. The larger critical path measured on EGEE

is a consequence of the high latency observed on this production platform. The high slope

of the linear approximation may come from the variability ofthe latency on the jobs (due

to the load imposed by other users and middleware-intrinsicreasons.)

Figure 5.7: Task-flow graphs for 18 image pairs. Left: OAR. Right: EGEE. Each row of

those diagrams corresponds to a particular job. Colored rectangles represent the task du-

ration: they start once the corresponding task has been submitted and stop at the end of

its execution. The slope of the left contour of these graphs gives a qualitative information

on the job submission rate on the infrastructure. It characterizes the middleware submis-

sion performance. Colors are arbitrarily set and just help to distinguish the different tasks.

Beware that time scales are different in those task-flows.

5.3. Latency comparisons 133

Number of image pairs Total number of jobs Resubmitted jobs

submitted by the workflow Number Ratio

2 12 1 8%

6 36 0 0%

18 108 2 1.8%

30 180 1 0.5%

42 252 13 5.1%

54 324 1 0.3%

66 396 102 25.7%

78 468 31 6.6%

90 540 14 2.5%

102 612 15 2.9%

114 684 115 16.8%

126 756 82 10.8%

Table 5.3: Resubmissions performed on EGEE for the different sizes of input data. The

resubmission ratio exhibits strong non-monotonic variations, which reflects the variability

of the load on the VRes resources.

workflow with MOTEUR and OAR on dedicated nodes of Grid’5000 is satisfying, providing

a speed-up close to the theoretical one that could be obtained on the execution platform. Even

if the performance on the EGEE grid remains far lower than theone obtained on dedicated

resources, it is still significant given that this grid is continuously under load and deployed at a

very large scale. The job latency and its variability due to the load of other users are the main

causes of performance drops in production. In the remainingof this chapter, we propose to

benchmark the EGEE and Grid’5000 platforms by comparing their latencies.

5.3 Latency comparisons

The latency of a job is the duration between its submission date and the instant at which its

execution really starts. It includes (i) latencies of the network infrastructure itself, (ii) the delay

caused by the interaction of middleware components and (iii) the system load (queuing time

in batch and services queues). The latency of production grids is known to be high and dam-

ageable for applications having short deadline constraints. However, a precise quantification

of the impact of this latency on the application performanceis missing. In this section, experi-

ments are presented and latency quantification metrics are extracted. The latency faced by jobs

on the EGEE production grid is compared to the one of Grid’5000 clusters that constitute the

reference of the study.

134 Production grids versus dedicated clusters Chap. 5

5.3.1 Latency measures

In this section, the whole biomed VO of the EGEE grid will be compared to 2 Grid’5000

clusters: the “idpot” cluster of the Grenoble site, made of 20 2 GHz bi-processor nodes and a

larger Grid5000 cluster in Sophia Antipolis, made of 105 bi-processor nodes.

Experimental setup. To measure the latency of the systems, the workload management sys-

tem was progressively loaded by submitting an increasing numbern of jobs. Each time a job

completed, a new one was resubmitted so that the total load introduced by the experiment was

constant. Jobs were short (trun =1 minute long), sleeping for one minute to ensure constant ex-

ecution time independently from the hardware on which they were running. This experimental

setting favored a short turn-over of jobs and stressing conditions of the workload management

system. Experiments were run over 3 hours periods (a long enough period compared to the

jobs duration to capture the system behavior over a statistically significant number of mea-

surements). The execution timetexec of the jobs was measured and the system latencytlat was

obtained by computing the differencetexec− trun.

Results. Figure5.8 displays the median of the latency for a growing numbern of submitted

jobs over the 3 studied systems. This figure also displays, for each measure, the inter-quartile

range (IQR) of the latency. This metric measures the spread of the samples and gives an infor-

mation about the variability of the system. Considering a sorted set of values, the IQR is the

interval defined between the first quarter and the third quarter of the number of values. It rep-

resents the interval of the most relevant values, ignoring the 25% lowest and highest ones. We

did not compute any means nor standard deviations in the analysis of the experimental results

but rather medians and IQRs which are less sensitive to outliers. For this experiment, 20, 000

jobs were submitted to the EGEE infrastructure, 32, 000 to the Sophia cluster and 28, 000 to

the Grenoble one.

5.3.2 Model and metrics

Those experimental results suggest an affine behavior of the median latencies with respect to

the number of concurrently submitted jobs. Thus, an affine modelAn + B was fitted by a

linear regression to the median latency curve of each system. The lines obtained are plotted on

figure5.8. The parameters of this model are shown in table5.4, where the systems are sorted

from the smallest one to the widest. Those parameters will beused as metrics, to characterize

the variation of the median of the latency with respect to thenumber of jobs for each system.

The B parameter measures thenominal latencyof the system. It corresponds to the latency

introduced by the system without any load.A measures thescalability of the system with

respect to the number of jobs. It represents the additional time generated by the submission of

5.3. Latency comparisons 135

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800

La
te

nc
y

(s
)

Number of jobs n

Measures EGEE
Model EGEE

Measures Grenoble
Model Grenoble

Measures Sophia
Model Sophia

Figure 5.8: Latency time versus number of jobs maintained inthe system. An affine be-

havior of the latency with respect to the number of jobs is suggested by those experimental

results.

1 extra job to the system. Despite its simplicity, this modelprovides a relevant way to compare

grid infrastructures, as detailed in the following discussion. Moreover, it will allow the design

of the multi-grids model introduced in section5.4.

Nominal latency. Nominal latencies (B metric) are growing with the size of theinfrastruc-

ture, which is not surprising from a qualitative point of view. Quantitatively, the EGEE system

has a very strong nominal latency. This value, close to 6 minutes (351 s) is mostly due to

the concurrent usage of the grid by other users. This huge nominal latency is a characteristic

System A (s/job) B (s)

Grid5000 – Grenoble 3.44 0.48

Grid5000 – Sophia 0.74 8.25

EGEE – biomed VO 0.24 351.4

Table 5.4: Parameters of the latency model (latency= An+B). Systems are sorted from the

smallest to the widest. A measures the scalability of the system whereas B corresponds to

the nominal latency.

136 Production grids versus dedicated clusters Chap. 5

of production infrastructures. On the contrary, the nominal latency of the Grenoble cluster of

Grid’5000 is far lower. Accessing the infrastructure requires less than a second. This per-

formance comes from the relatively low load of the infrastructure and the reduced size of the

infrastructure that makes communication costs lower. The Sophia cluster of Grid5000 is not

very far from Grenoble, with a nominal latency of 8.25 seconds.

Scalability. Conversely, the scalability of the systems is improving with their size. The job

scalability of EGEE constitutes its main advantage. The latency only grows by 3.5 minutes

from the submission of 5 jobs to 1000 jobs and the latency due to the submission of one extra

job is 0.24 second (A metric). The scalability of the Grenoble cluster of Grid5000 is weak.

Submitting a single extra job leads to a latency growth of 3.44 seconds. Here again, the Sophia

cluster stands in the middle: its scalability (A metric) is 0.74 second per job. It is three times

worse than on EGEE and 4.65 better than on the Grenoble cluster.

Improving scalability. As already noticed in section5.2.2, the submission procedure plays

an important role in the growth of the median latency with respect to the number of jobs.

Indeed, on all the evaluated systems, the submission is donefrom a single entry point (the user

interface) to a central workload manager (OAR or RB host) through the network. These two

hosts and the network connection may become bottlenecks beyond a critical stressing level.

Computing again the scalability (A metric) on the values without submission time, we obtain

0.07 s/job for the EGEE system, 0.34 s/job for the Sophia cluster and 2.93 s/job for the Grenoble

one. Those values are obtained by subtracting the submission times of the jobs to the measures

presented on figure5.8 and by fitting again the affine model. Comparing those values to the

ones obtained in table5.4, one can conclude that the submission procedure respectively leads to

a 3.24, 2.15 and 1.18 slow-down ratios on the job scalability. A solution to improve scalability

could therefore be to distribute the submission system, which is a real bottleneck on all the

systems studied, as shown above. Many Resource Brokers are available on the EGEE system.

Nevertheless, they do not communicate between each others and serious performance drops

can be forecast in the scheduling when the load reaches a critical point. Conversely, solutions

such as the one proposed by the DIET middleware [Caron and Desprez, 2005], where many

collaborative schedulers are able to administrate the samepool of resources could provide an

interesting improvement of the system.

Variability of the latency. On the Sophia and Grenoble clusters, the IQR of the measures

for a low number of submitted jobs remains lower than 15 seconds. It then increases with the

number of jobs maintained in the system because of the saturation of the platforms. On the

EGEE infrastructure, the situation is quite different. Variability is around 3 minutes, even for

a low number of submitted jobs. The order of magnitude of the variability remains constant

5.4. Choosing the best platform: a multi-grids model 137

for less than 600 jobs and grows up to 5 minutes beyond this value. This high variability,

even for a low number of concurrently submitted jobs leads toa problem specific to large-scale

production infrastructures: a single job is likely to penalize the whole application performance

if it remains blocked in the system. In partIII of this thesis, strategies are proposed to reduce

the impact of the variability of the latency on the application performance.

5.4 Choosing the best platform: a multi-grids model

Grid’5000 clusters and the EGEE grid exhibit different latency characteristics. The former

has a lower nominal latency whereas the latter has a better scalability. Therefore, it is in-

teresting to determine, given a number of jobs to process, the optimal fraction of these jobs

that should be submitted to each infrastructure to minimizethe total execution time. This is

the goal of the multi-grids model proposed in this section. Based on the experiments of sec-

tion 5.3, the analysis of this model provides additional metrics to compare the infrastructures.

Multi-grids executions are for instance performable by workflow managers such as the P-Grade

portal [Kacsuk et al., 2006a].

5.4.1 Principle of the model

Let us consider two systems and a total numbern of jobs to submit in parallel. Letδ ∈ [0, 1]

be the fraction of jobs to submit on the first system. Lett(i)
lat(n) be the median latency time

introduced by systemi when it handles the submission ofn concurrent jobs. The goal is to

minimize the average latency time of the submitted jobs, which is:

R(δ) = δt(1)
lat (δn) + (1− δ)t(2)

lat ((1− δ)n)

The problem then resumes to the minimization ofR with respect toδ. If we consider the affine

model presented in section5.3.1, thenR(δ) becomes:

R(δ) = δ(A1δn+ B1) +

(1− δ)(A2(1− δ)n+ B2)

where,Ai andBi are the model parameters of thei th system.R has a unique minimum reached

for the optimal proportion of jobŝδ to submit on the first system:

δ̂(n) =
B2 − B1 + 2A2n

2n(A2 + A1)
(5.1)

It must be determined when̂δ(n) is in [0,1]. In the following, we suppose that system 1 is larger

than system 2. According to section5.3.1, it implies thatB1 > B2. Indeed, the experimental

138 Production grids versus dedicated clusters Chap. 5

results showed that the nominal latency of the largest system is higher than the one of the

smallest one. Conversely,A1 < A2 because the scalability of the largest system is better than

the one of the smallest one. In this case, it is straightforward to prove that̂δ(n) < 1. It shows

that the proportion of jobs to submit on the smallest infrastructure is never null: the smallest

but fastest infrastructure has to be overwhelmed before starting submitting on the largest one.

Moreover, we can show thatδ̂(n) is positive if and only ifn ≥ n0 =
B1−B2
2.A2

. It highlights three

phases of job submission. In the first one, whenn ≤ n0, the number of jobs is low enough

to submit all of them on the smallest infrastructure. It corresponds to an initialization phase.

Whenn exceeds the critical valuen0, a transient phase begins: a proportionδ̂(n) of jobs have

to be submitted on the largest platform. During this second phase, another variable of interest

is n0.5, the number of jobs for whicĥδ(n) is 0.5, thus implying that the same number of jobs

is submitted to both infrastructures
(

n0.5 =
B1−B2
A2−A1

)

. Beyond this point, the largest system starts

being preponderant. The model finally enters a saturation phase, wherêδ tends to its asymptotic

value δ̂(∞) = A2
A1+A2

. This value is inferior to 1 and denotes the remaining proportion of jobs

that would always be submitted to the largest platform, evenif the number of concurrently

submitted jobs becomes very high.

5.4.2 Application to the studied systems

The variables of interest identifying the 3 phases described in the previous section are displayed,

for each pair of systems, in table5.5. The first line of this table compares EGEE to the Sophia

cluster of Grid’5000. The value ofn0 indicates that there is no need for using EGEE if the

number of jobs is lower than 232. The transient phase starts from this critical number of jobs.

This value is twice as high as the number of processors of the Sophia cluster. On the next line,

comparing EGEE to the Grenoble cluster, the critical numberof jobs is 51, which is 4 times

higher than the number of processors of the Grenoble cluster. Those values ofn0 are high,

compared to the number of processors of the infrastructures. They are another way to perceive

the difference between a production and an experimental infrastructure. On the contrary, the

last line of this table indicates that the critical number ofjobs from which it is necessary to

submit to the Sophia cluster rather than only to the Grenobleone is 1. Indeed, even if those two

clusters differ in their number of processors, the nominal latency of Sophia’s cluster has the

same order of magnitude as the one of Grenoble’s cluster. Thus, it is not penalizing to submit

jobs to the Sophia cluster even if the Grenoble one is not overwhelmed.

Then0.5 value of the same table can lead to similar interpretations.This value corresponds

to the abscissa where the lines cross on figure5.8. The EGEE infrastructure and the Sophia

cluster have the same latency if 686 jobs are submitted on each infrastructure. This number

of jobs is 110 when comparing EGEE to the Grenoble cluster and3 for the Sophia versus

Grenoble comparison.

To have an idea of how the proportion of jobs to submit to the largest system grows, fig-

5.4. Choosing the best platform: a multi-grids model 139

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Number of jobs

EGEE vs Sophia
0.76

n
0.5

n
0

d(infty)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

Number of jobs

EGEE vs Grenoble
0.93d(infty)

n
0

n
0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Number of jobs

Sophia vs Grenoble
0.82

d(infty)

n
0

n
0.5

Figure 5.9: Evolution of the optimal proportion of jobs to submit on the largest system:

from top to bottom: EGEE vs Sophia, EGEE vs Grenoble and Sophia vs Grenoble. Three

different phases are visible: under a given number of jobsn0, no job should be submitted

on the largest system. Then this proportion is increasing and finally, the optimal proportion

tends to an asymptotic value lower than 100%.

140 Production grids versus dedicated clusters Chap. 5

Largest Smallest n0 n0.5 δ̂(∞)

system system

EGEE Sophia 232 jobs 686 jobs 76%

EGEE Grenoble 51 jobs 110 jobs 93%

Sophia Grenoble 1 job 3 jobs 82%

Table 5.5: Variables of the multi-grids model. Belown0 jobs, no job should be submitted

to the largest system. Atn0.5, jobs should be equally split among the two systems.δ̂(∞)

denotes the maximal proportion of jobs to submit to the largest system.

ure5.9displays the evolution of̂δ for each pair of systems. All those curves are growing with

the number of jobs, as it could be predicted from equation5.1. The bottom one, comparing

the Sophia and the Grenoble clusters, grows rapidly and converges towardŝδ(∞) = 82%. This

value characterizes the saturation phase. It indicates theproportion of jobs to submit to the

Sophia cluster when the total number of jobs to submit is high. This result is close to the

proportion of nodes on the Sophia cluster in the total numberof nodes on the two systems:
105

105+20 = 84%.

Looking at the two upper curves of figure5.9, we can see that the larger the scale difference

between the two compared systems, the faster the growth of the curves. Concerning the com-

parison between EGEE and Grenoble, the curve converges toδ̂(∞) = 93%. This limit is 76%

for the comparison between EGEE and the Sophia cluster. Thisresult indicates that whatever

the number of concurrently submitted jobs is, there is no need to submit more than 76% of

them to the EGEE infrastructure.

Validity of the results. The results presented above are all inferred from the experiment

described in section5.3.1, where all the submitted jobs are of identical running time (1 minute).

It should be possible to extend those results to jobs with different running times. In this case,

it is likely that the nominal latency (B metric) of the infrastructures will change only by little.

Indeed, this value corresponds to the latency faced by a single job submitted to the system,

which does not depend on its execution time in most cases. This assumption could eventually

not be so realistic if the grid system uses a prediction of theexecution time of a job in its

scheduling policy. Yet, this case is not envisaged in this manuscript, given that most of the

users of the EGEE grid do not specify such a prediction for thejob submission. Concerning the

scalability (A metric), we already noticed that the submission entity significantly contributes

to it. It is reasonable to state that the submission time willnot be correlated to the execution

time of the submitted jobs. Consequently, only a restrictedpart of the scalability value (about

30% for the EGEE grid, 46% for the Sophia cluster and 85% for the Grenoble one) may be

disturbed by a change in the job execution time. To have an idea of how the remaining part of

the scalability value would be disturbed, one should identify the steps of the job life cycle that

5.5. Conclusions 141

could be delayed by the submission of longer jobs. Obviously, the most impacted step would be

the waiting in the local queues, which would be lengthened byan increase of the job execution

time. Yet, this waiting time would be disturbed only if many of the jobs are scheduled to the

same queue, and if this queue lacks resources to execute all of them in parallel. Given the

number of queues of the EGEE grid (about 150 in our VO) and the high number of resources

per queue, it is probable that such interactions between ourjobs will be limited on this system.

The situation will probably be quite different on the clusters. In this case, the evolution of

the waiting time with respect to the job duration could probably be predicted by quite simple

models. Yet, the multi-grids model itself will remain valid. Only its parameters would have to

be modified.

5.5 Conclusions

In this chapter, the deployment of the bronze standard workflow with MOTEUR enabled a fair

comparison of a production grid (EGEE) and dedicated clusters of Grid’5000. Compared to

theoretical predictions, the execution of the applicationon dedicated clusters exhibits reason-

able performance so that the overhead of MOTEUR can be considered as negligible on this

application. Even using specific (VRes) queues allowing immediate execution of jobs, the per-

formance of the application is about 4.5 times lower on EGEE than on dedicated resources.

The grid latency (i.e the duration between a job submission and the beginning of its execution)

is the main causes of performance drops. For each system, themedianof the latency has been

shown to follow an affine model with respect to the number of jobs simultaneously submit-

ted. A multi-grids model was derived from this measures and metrics measuring the scalability

of the infrastructure and its nominal latency were extracted. Those metrics allow to further

compare the EGEE grid to dedicated clusters. For instance, considering 1 minute-long jobs,

it shows that there is no need to use the EGEE grid rather than the studied clusters below a

threshold of 230 submitted jobs. Moreover, those results show that the submission entity is an

important bottleneck of the infrastructures: the submission time reduces the scalability of the

EGEE grid with a factor 3.

Beyond this median comparison of the latencies, thevariability of the EGEE production

grid has been shown to be superior of several minutes to the one of a cluster. It is suspected

to be a major source of performance drops for the applications. Indeed, a grid user considers

the completion time of a whole set of job (i.e the makespan of the application) rather than the

throughput of the system that may be studied from the infrastructure’s point of view. Conse-

quently, the variability of the platform is critical because a single highly delayed job is able to

dramatically penalize the whole application. Thus, in the next chapter, we focus on the analysis

of the variability of the grid latency and on its impact on theperformance of the application.

The experimental results shown in this chapter reveal that ahundred node dedicated cluster

142 Production grids versus dedicated clusters Chap. 5

provides a better performance than the EGEE production griduntil a high threshold of comput-

ing time that was not reached with the bronze standard use-case. However, one should keep in

mind that using a production grid provides computing powerfor freefrom a user point of view.

In particular, in a medical context, setting up and maintaining a dedicated cluster is not always

feasible and deploying applications on a production grid still provides a significant speed-up

with a limited maintenance cost. Considering production grids may be a fixed constraint and it

thus remains worth studying their characteristics.

Chapter 6

Analysis and impact of the latency

variability on the EGEE grid

Contents
6.1 Influence of the latency variability on a workflow 145

6.1.1 Definitions . 146

6.1.2 Hypotheses. 147

6.1.3 Makespan of the application. 148

6.1.4 Experimental results. 150

6.1.5 Discussion . 152

6.2 Characterization of the latency variability 158

6.2.1 Model of the measured distribution. 158

6.2.2 Influence of job context parameters. 161

6.3 Handling variability in grid models . 168

6.3.1 Probabilistic approaches for application modeling. 169

6.3.2 Statistical parameters estimation of grid systems. 170

6.4 Conclusions. 171

144 Analysis and impact of the latency variability on the EGEE grid Chap. 6

T
he goal of this chapter is to study the im-

pact of the variability of the latency of the

EGEE grid on the performance of applications.

Based on a black-box model of the grid, we pro-

pose a probabilistic model of the workflow of an

application. This model allows to quantify the

impact of the variability of the latency on appli-

cations. In particular, its impact on the bronze

standard application (see chapter1) is shown to

be of a factor 2. We show that the latency can be

accurately modeled by a random variable with a

mixed log-normal/ Pareto distribution whose pa-

rameters are determined by fitting to experimen-

tal data. The impact of some job context param-

eters such as the execution site or the Resource

Broker on the distribution of the latency is finally

highlighted and quantified, which helps to refine

the grid’s latency distribution model.

L
e but de ce chapitre est d’étudier l’impact

de la latence de la grille EGEE sur les

performances d’une application. Nous pro-

posons un modèle probabiliste du flot de traite-

ments d’une application fondé sur une vision

“boı̂te noire” de la grille. Ce modèle per-

met de déterminer l’impact de la variabilité

de la latence sur les applications. En parti-

culier, nous montrons que la variabilité con-

duit à une perte de performance d’un facteur

2 sur l’application des étalons de bronze (voir

chapitre 1). Nous montrons que la latence

peut être modélisée correctement par une vari-

able aléatoire de distribution mixte log-normale

/ Pareto dont les paramètres sont ajustés à des

données expérimentales. Nous quantifions enfin

l’influence de paramètres du contexte des tâches

comme le site d’exécution ou le Resource Broker

sur la distribution de la latence.

Schopf and Berman showed in [Schopf and Berman, 1999] that variability is an important

source of performance drops for parallel applications and that it should be avoided, even if

it reduces the mean performance of the infrastructure. On the EGEE production grid, the

latency is not only high but also very variable (about 5 minutes with an inter-quartile range of

3 minutes), as demonstrated in the previous chapter. Thus, it is suspected to strongly penalize

the performance of a workflow.

This variability is supposed to come from various factors, including the heterogeneity and

volatility of the infrastructure (endogen factors) and theload imposed to it (exogen factor).

Because a deterministic modelling of the system seems hardly tractable, the approach adopted

in the remaining of this thesis is probabilistic. We proposeto adopt a black-box model of

the grid, where the latency is a random variable capturing all the sources of variability. The

grid provides jobs submission and monitoring facilities and introduces a random delay before

6.1. Influence of the latency variability on a workflow 145

the beginning of their execution. Beyond the submission gateway, all the parameters are let

to the responsibility of the system administrators. We are only interested in theobservable

behavior of the system. For instance, the heterogeneity of processors, memory capacities,

network bandwidth, I/O performance and other machine dependent factors will be included

in the latency random variable. Similarly, the load and exogen factors are viewed as hidden

variables influencing the grid latency. Consequently, in our grid model, the actual number of

available grid resources and their characteristics will remain unknown. They are also viewed

as hidden variables impacting the latency which is the only variable of interest.

In some cases, system flaws lead to huge latencies (several hours) largely prevailing on the

ones faced by the other tasks of the application. Those latency values are obviously outside

the distribution of the normal latency random variable and should be modeled separately, as

outliers. The main causes of outliers are hardware failures, software bugs, locally heavy loads

leading to tremendously high service response times and scheduling mistakes leading to jobs

facing high queuing times. An important characteristics ofproduction systems is the presence

of a significant ratio of those outlier jobs.

The goal of the first section of this chapter is to quantify theimpact of the latency vari-

ability on the performance of a workflow. To do that, we propose a model of the execution

time (makespan) of a workflow taking into account the random variable modelling the latency.

Determining an accurate predictive model of the distribution of the grid latency is a statistical

problem which is not straightforward. Indeed, the grid latency is not stationary. The nature of

its distribution, or at least its parameters, depend on timeand on exogen factors. This depen-

dency may not be easily modeled because it depends on factorssuch as the current number of

jobs submitted by other users that are hardly predictable. In the second section of this chapter,

we provide some experimental results analysing the status of the gridon a given time period. A

log-normal/ Pareto distribution is correctly fitted to those measures and the influence of some

context parameters is studied in order to refine this distribution model.

6.1 Influence of the latency variability on a workflow

In this section, a probabilistic model of the makespan of a workflow is presented. It is used

to estimate the impact of the variability of the latency on the bronze standard application. In

the experiment presented in this section, the parameters ofthe distribution of the grid latency

are estimateda posteriori, from the logs of the execution, in order to keep off the statistical

problem of the estimation of up-to-date parameters. Such a model is demonstrated to correctly

fit the experimental data. We derive from it a theoreticalnon variablesystem whose average

latency is the same than the real one. A forecast of what wouldhappen if the latency of the

system were not variable is thus provided.

146 Analysis and impact of the latency variability on the EGEE grid Chap. 6

source

sink

150s

10s

600s

Figure 6.1: Because of the variability of the latency, the critical path of a service workflow

depends on the number of data items put in its inputs. On this figure, if the latency of

the grid is assumed Gaussian with mean 300 seconds and standard-deviation 200 seconds,

and if a single data item is put in the source, then the critical path of the workflow is the

red one which is expected to be 900 seconds (300 seconds for the expected latency+ 600

seconds for the execution) whereas the expectation of the blue one is only 760 seconds (2

× 300 seconds latency+ 160 seconds execution). But as soon as the number of data items

is greater or equal to 3, then the critical path of the workflowbecomes the blue one: for

3 data items, the expectation of the blue path is 1098 secondswhereas it is 1069 seconds

for the red path. The computation of those values corresponds to the expectation of the

distribution of the max of the execution times of the path on the data items, as stated in

section6.1.3(data parallelism only – DP case). Numerical details about this computation

are reported in appendixA.

6.1.1 Definitions

Critical path of the workflow. In the service workflow of an application (see chapter2), a

pathdenotes a set of services linking an input of the workflow to anoutput. A path is defined

independently from the data to process: it will be instantiated at runtime on a set of data items.

Thecritical pathof the workflow denotes the longest path in terms of executiontime. Because

of the variability of the latency, this expected critical path depends on the number of data items

on which the workflow is iterated, as suggested by figure6.1.

Notations. nW denotes the number of services on the critical path of the workflow andnD

denotes the number of data sets to be processed by the workflow. nD corresponds to the degree

of data parallelism that will be achieved by the workflow.i ∈ [0, nW − 1] denotes the index

of the i th service of the critical path of the workflow. Similarly,j ∈ [0, nD − 1] denotes the

index of the j th data set to be executed by the workflow.Ti, j denotes the duration in seconds

of the processing of the data setj by the servicei. It corresponds to the total time from the

job submission to its completion.Ti, j = r i, j + Ri, j is made of an application-dependent part

6.1. Influence of the latency variability on a workflow 147

r i, j and the grid latency partRi, j. r i, j corresponds to the computation time of servicei on the

data segmentj. It is supposed to be a fixed value (predictable execution time) by opposition to

Ri, j which is a random variable.Ri, j will model all the sources of variability coming from the

infrastructure. For instance, the variability coming fromthe performance of the worker nodes

or the network connection of the execution site will be included in this variable.Ri, j does not

take into account outliers. They have to be modeled separately. To study the impact of the

variability of the grid on the performance of the application, the case whereRi, j is a fixed value

will also be considered in the following.Σ denotes the makespan of the workflow. The goal

of the next sections is to express it with respect tonD, nW, r i, j andRi, j and to the parallelism

configuration.

6.1.2 Hypotheses

Services are supposed not to simultaneously process all thedata segments: in the following,

workflows are assumed not to contain any synchronization barriers on the data items. Work-

flows containing such synchronization barriers may be analyzed as two sub workflows respec-

tively corresponding to the parts of the initial workflow preceding and succeeding the synchro-

nization barrier.

ThenD data items on which the application is iterated are assumed to be of equal size. For

instance, in the context of medical image analysis, it meansthat all the processed images have

the same dimensions. It is the case for the bronze standard application as well as for several

medical image analysis applications that aim at processinga whole database of images acquired

in similar conditions. Consequently, the execution timesr i, j of the jobs can be assumed to

be independent from the data:∀ j, r i, j = r i. One could have noticed that given the figures

displayed on table5.1 of chapter5, this hypothesis is not strictly verified. Yet, the standard-

deviation of the execution times of the services remains lower than 10 seconds for most of

them and is lower than a minute for the other ones. This standard-deviation is far lower than

the one of the EGEE latency, so that this hypothesis can be considered as holding in a first

approximation. If the variability of the execution times ofthe services has to be taken into

account, one should also consider the execution times of theservices as random variables.

Then, in the following,Ti, j notations should not be expanded (intor i +Ri, j) and the distribution

of this random variable could be determined with respect to the distributions of the execution

times and of the grid latencyRi, j. Yet, in this work, we concentrate on the variability introduced

by the grid platform itself rather than on the intrinsic variability of the algorithms, which is more

application-specific.

Ri, j are assumed to be independent random variables: the jobs aresupposed not to influence

each other. Given the scale of the infrastructure, this hypothesis can be considered as realistic.

What is assumed here is that the application itself does not impact the grid latency. Indeed, the

submission of a couple of hundreds of jobs spread on a few hours should not disturb the grid

148 Analysis and impact of the latency variability on the EGEE grid Chap. 6

so much. Nevertheless, bottlenecks may trouble this hypothesis. For instance, the submission

time of several jobs from the same machine is very likely to depend on the number of submit-

ted jobs. Taking this phenomenon into account may not be easyfrom a general perspective:

understanding how jobs interact with each other in the wholesystem seems difficult. Still, for

specific steps such as the submission, some models could be integrated to take into account the

interactions between jobs.

The grid latency is assumed not to depend on the nature of the submitted jobs,i.e on the

command-line that will be executed on the resources. It is true that the queuing time of the job

in the batch of a computing center is highly dependent on the expected duration of the task.

However, as it is done by the huge majority of grid end-users,the expected wall-clock time of

the job is assumed to be set to its default value, which is supposed to be largely superior to the

effective duration of the submitted jobs. Consequently, the distribution of the grid latency is

assumed to be independent fromi. Similarly, the distribution of the grid latency is supposed

to be independent from the data (i.e the distribution ofRi, j is independent fromj). Assuming

that the distribution of the latency is independent from theservice and from the data is not so

critical. Considering applications handling large volumes of data (i.e applications for which

data transfer times would be of several minutes), one could simply include it into ther i value.

Problems may only arise for applications for which the data impacts the job life cycle inside

the system,i.e disturbs its submission, scheduling or queuing time. If they ever exist, such

interactions should be of limited importance and still negligible with respect to the average

grid latency. Thus,Ri, j are assumed to be independent and identically distributed (iid) random

variables.

6.1.3 Makespan of the application

Under those hypotheses, the expression of the makespan of the workflow for two different

execution policies can be determined. We distinguish the case where only data parallelism

is present (DP case) from the case where both data and serviceparallelism are enabled (DSP

case). Definitions of those parallelisms are provided in chapter4.

Case DP(Data Parallelism only). All the data segments are processed concurrently and the

execution is synchronized after each service invocation.

ΣDP =
∑

i<nW

max
j<nD

{

Ti, j

}

=
∑

i<nW

max
j<nD

{

r i + Ri, j

}

=
∑

i<nW

r i +
∑

i<nW

max
j<nD

{

Ri, j

}

(6.1)

Case DSP(both Data and Service Parallelism). All the data segments are processed con-

currently and the services are pipelined.

ΣDS P = max
j<nD

∑

i<nW

Ti, j

= max
j<nD

∑

i<nW

(

r i + Ri, j

)

6.1. Influence of the latency variability on a workflow 149

=
∑

i<nW

r i +max
j<nD

∑

i<nW

Ri, j

(6.2)

Deterministic case. If the latenciesRi, j are fixed values, then for everyi and everyj, Ri, j = R̄

and the above expression simplifies to:

ΣDP = ΣDS P =
∑

i<nW

r i + nW.R̄ (6.3)

In this case, there is no difference between the DP and DSP cases. This deterministic model will

be used to forecast the performance of the application in absence of variability of the latency.

It corresponds to a theoretical non-variable system which has the same average latency as the

real one.

Probabilistic case. The goal is to determine the expectationE(Σ) of the makespan of the

workflow and its standard deviationσ(Σ). We could then have a prediction of the makespan

of the workflow (E(Σ)) and an uncertainty on it (σ(Σ))). In the following of this thesis, given

a random variableX, fX will denote the probabilistic density function (pdf) ofX andFX its

cumulative density function (cdf).

DP case:thanks to the linearity of the expectation operator and to the fact thatr i is a fixed

value, equation6.1gives:

E (ΣDP) =
∑

i<nW

r i + nWE

(

max
j<nD

{Ri, j}
)

Given that the cumulative density function of the random variable K = maxj<nD (Ri, j) is FK =

FnD
Ri, j

, we have:

E

(

max
j<nD

{Ri, j}
)

= nD

∫ ∞

−∞
t fRi, j(t)FRi, j (t)

nD−1dt, (6.4)

We then have:

E(ΣDP) =
∑

i<nW

r i + nWE

(

max
j<nD

{Ri, j}
)

=
∑

i<nW

r i + nWnD

∫ ∞

−∞
t fRi, j (t)FRi, j (t)

nD−1dt (6.5)

Moreover given that two jobs are independent, equation6.1gives:

σ (ΣDP)2 = nWσ

(

max
j<nD

{r i + Ri, j}
)2

And thus, becauser i are fixed values:

σ (ΣDP)2 = nWσ

(

max
j<nD

{Ri, j}
)2

150 Analysis and impact of the latency variability on the EGEE grid Chap. 6

Given thatσ(maxj<nD {Ri, j})2 = E(maxj<nD {Ri, j}2) − E(maxj<nD {Ri, j})2 and that E(X2) =
∫ ∞
−∞ t2 fX(t)dt, we have:

σ (ΣDP)2 = nWσ

(

max
j<nD

{Ri, j}
)2

= nW

nD

∫ ∞

−∞
t2 fR(t)FR(t)nD−1dt− n2

D

(∫ ∞

−∞
t fR(t)FR(t)nD−1dt

)2

(6.6)

DSP case:The max operator prevent from simplifying the expressions of the expectation

and standard-deviation of the makespan. Yet, those values can still be computed numerically,

as it will be done in the following.

E(ΣDS P) =
∑

i<nW

r i + E

max
j<nD

∑

i<nW

Ri, j

(6.7)

σ(ΣDS P) = σ

max
j<nD

∑

i<nW

Ri, j

(6.8)

6.1.4 Experimental results

The goal of this section is to present experimental results that:

1. evaluate the relevance of the model presented above to explain the makespan of the ap-

plication;

2. study the impact of the latency variability on the execution on a production grid.

6.1.4.1 Experiments conditions

The workflow of the bronze standard application (see chapter3) was executed on different

input data sets sizes, ranging from 12 to 126 image pairs. Each of the input image pairs led

to 6 job submissions. Thus, the amount of tasks submitted by the workflows ranged from 72

to 756. The workflow manager used for this experiment was MOTEUR (see chapter4). Each

data set was processed in the DP and DSP configurations. The workflow executions are not

simultaneously submitted to the grid. Submitting all the executions simultaneously would not

have been possible without introducing strong biases in theresults. Indeed, the submission

mechanism would have become a bottleneck and it is very likely that the executions would

have disturbed each other. To avoid that, one should have used a different user interface and

a different resource broker for each execution. Clearly, this would also have created different

experimental conditions between the runs so that we rather executed successively the workflow

runs. Changes in the grid status (number of available sites,average load from other users, . . .)

may thus happen between those runs. Those changes will be captured by the fitting of the

6.1. Influence of the latency variability on a workflow 151

parameters of the latency distribution that is adapted to the execution conditions, as developed

in the next sub-sections.

On a production grid infrastructure, setting a timeout to tasks is mandatory because a small

fraction of tasks are likely to remain blocked for hours in a waiting queue or even to get lost:

the timeout value prevents the application from facing outliers. Because of that, and taking into

account failures that are likely to occur, tasks need to be resubmitted if necessary. For example,

on the EGEE grid that, the tasks success rate was around 84% atthe time of those experiments.

In those experiments, the timeout value was arbitrarily setto 1 hour (which is far greater than

the services walltimer i - see table5.1 of chapter5) and no retry was performed in order to

prevent the makespan to be influenced by resubmissions that are not modeled. Thus, timed-out

jobs are neglected. A strategy to optimize the timeout valueis described in chapter8 of this

thesis.

6.1.4.2 Gaussian assumption forR

In this experiment, the grid latency is assumed to be Gaussian. This latency model has been

determined by searching the distribution that best fits the experimental results. It led to relevant

results, correctly explaining the makespan of the application, as shown in section6.1.4.4. How-

ever, this assumption differs from the heavy-tailed model that will be studied in section6.2. At

this point, a justification of this hypothesis may be the factthat the timeout has been set to 3600

seconds and that jobs that timed-out have been neglected. Consequently, the distribution of the

latency can be assumed to have a lighter tail than the one thatwould be obtained by setting a

higher time-out value or taking into account resubmissions.

6.1.4.3 Model computation

To compute the probabilistic model presented in section6.1.3, the required parameters are (i)

the deterministic part of the running time of each service ona single data setr i and (ii) the mean

µ and standard deviationσ of the grid latencyR.

Ther i values were obtained as the mean values of the benchmark of the services presented

in table5.1of chapter5. Estimatingµ andσ is more difficult: their values are likely to depend

on the number of input data segments and to vary along time. The goal of this experiment is

not to obtain an up-to-date model of the distribution of the grid latency. This is investigated

in section6.2. The point here is to validate a model of theapplication, assuming that the

distribution of the latency is known. Thus,µ andσ were evaluateda posteriori, from the

execution trace. Estimating thema priori requires a dedicated grid monitoring system, which

is out of our scope here.

The first required step for the computation of the model is to determine the critical path of

the workflow. As already noticed, the number of processed data setsnD dramatically influence

152 Analysis and impact of the latency variability on the EGEE grid Chap. 6

the makespan of a given path of the workflow, particularly in case of high latency variances.

Thus, we determined the critical path of the workflow separately for each number of data items.

The value of the makespan obtained from the deterministic model is an estimate of the

performance that could be obtained in absence of variability. As suggested by equation6.3, it

is computed by considering that the latency is a fixed value. This value is set to the average of

the observed latency.

6.1.4.4 Results

Figure6.2 displays the experimental results. Two experiments are displayed and compared to

the probabilistic and deterministic models: a data parallel execution (upper DP curves) and a

data+service parallel execution (lower DSP curves). On both graphs, the experimental data

is figured in red. Probabilistic models are figured with squares and deterministic ones with

crosses. For the experimental and deterministic cases, a linear regression is superimposed, as

already done in the experiments of chapter5. For the probabilistic cases, intervals correspond-

ing to [µ − 3σ, µ + 3σ] are also drawn.

6.1.5 Discussion

6.1.5.1 Metrics for the analysis

To analyze performances, the first relevant metric from the user point of view is the speed-

up, measured as the ratio of the execution time over the sequential execution time. The most

interesting speed-up value is the maximal one obtained on the application, which in this case is

the one obtained for the largest input data set.

To have a finer interpretation of the results, the global behavior of the application makespan

with respect to the number of input data sets can be approximated with straight lines estimated

through a linear regression. Those fitted straight lines arealso plotted on figure6.2. The relative

error of this approximation with respect to the experimental data is 7.8% for the DSP case and

11.6% for the DP one.

The y-intercept and slope of the fitted lines can then be considered. The y-intercept value,

expressed in seconds, measures the latency of the application on this infrastructure. This value

corresponds to the nominal latency of the grid added to the execution time of a single data

set by the application workflow: it is the incompressible amount of time required to access

the infrastructure. The slope of the fitted line, expressed in seconds by jobs, is related to the

throughput of the application. This value measures the datascalability of the infrastructure, that

is to say its ability to process huge data sets with the same level of performance. Those metrics

are similar to the one used in chapter5 to compare the EGEE production grid to Grid’5000

clusters.

6.1. Influence of the latency variability on a workflow 153

71.7 s/image pair

28.6 s/image pair

Im
pact of the variability on the application 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120 140

M
ak

es
pa

n
(s

)

Number of input image pairs

DP (Exp.)
DP (Prob.) (cf. eq 6.3)

DP (Deter.) (cf. eq 6.5)

31.7 s/image pair

17.4 s/image pair

Im
pact of the variability on the application

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100 120 140

M
ak

es
pa

n
(s

)

Number of input image pairs

DSP (Exp.)
DSP (Prob.) (cf. eq 6.4)

DSP (Deter.) (cf. eq 6.5)

Figure 6.2: Comparison of the makespan of the application inthe experimental and model

cases. Top: DP case ; Bottom: DSP case. The DP case is less robust to the latency

distribution tail, which explains its weaker performance.The impact of the variability

of the latency can be noticed by comparing the deterministic(bottom green curves) case

with the experimental (red) one. Variability leads to a factor 2 performance drop on this

application.

154 Analysis and impact of the latency variability on the EGEE grid Chap. 6

Experiment Probabilistic Model Deterministic Model

DP DSP DP(eq6.5) DSP(eq6.7) DP(eq6.3) DSP(eq6.3)

y-intercept 4778.0 3628.2 4921.6 4002.4 2195.2 2214.5

(seconds)

Slope 71.7 31.7 72.2 26.0 28.6 17.4

(s/data sets)

Max speed-up 7.0 13.2 6.5 13.5 15.9 21.7

Table 6.1: Values of the metrics. The relevance of the probabilistic model can be noticed

by comparing columns 4 and 5 to columns 2 and 3. The impact of the variability of the

latency on the application can be quantified by comparing columns 6 and 7 to columns 2

and 3.

The values of those metrics are reported in table6.1. The two first columns of this table

correspond to the experimental values for the DP and DSP cases. The two next ones correspond

to the values computed with the probabilistic model of section 6.1.3, from measured mean

and standard-deviation of the latency. The two following columns correspond to the values

computed with the deterministic model of section6.1.3. Those values correspond to the ones

that would have been obtained if the infrastructure were notvariable.

6.1.5.2 Relevance of the probabilistic model

First, from a qualitative point of view, the results shown onfigure 6.2 exhibit some singular

behaviors. For instance, even if the global trend of the curves is to increase with the number of

input image pairs, one can notice some local decreases, as between 50 and 75 input images for

the DSP case and between 75 and 100 input images for the DP one.It is correctly explained by

the model, thanks to the fitting of the parameters (mean and standard-deviation of the latency)

to the experimental data. Actually, those local decreases can be explained by a diminution

of the latency mean and standard-deviation between those values which do not correspond to

simultaneous executions, as already mentioned.

Another singular behavior are the measures done for 50 inputimages pairs. Indeed, the DP

case is there faster than the DSP one. Here again, this behavior can be explained by changes of

the grid status between those two runs: it would not have happened if the execution were simul-

taneously submitted. However, the probabilistic model is again able to explain this behavior

thanks to thea posteriorifitting of the Gaussian distribution to the observed one.

From a quantitative point of view, and as figure6.2shows, the probabilistic model is quite

relevant and able to explain the experimental results (on this figure, experimental results are

displayed in red and values from the probabilistic model arefigured with squares). The mean

relative error of the probabilistic model with respect to the experimental data is 6.7% for the

DSP case and 8.4% for the DP one. The fact that this error is greater in the DP case than in the

6.1. Influence of the latency variability on a workflow 155

DSP one is consistent because the makespan of the application is more affected by distribution

tails in the DP case than in the DSP one. Indeed, in the former case, the processing of every data

segment is depending on the processing of all the others because the execution is synchronized

after each service invocation. It is also worth noticing that all the experimental values stay

inside the [µ − 3σ, µ + 3σ] interval. It shows that the model is able to provide bounds for the

error it makes with respect to the experimental case.

The speed-up figures measured and displayed in table6.1(7.0 and 13.2 in the DP and DSP

cases respectively) are very close to the probabilistic model estimates (6.5 and 13.5 respec-

tively), showing that MOTEUR efficiently enables the workflow, data and service parallelism

without introducing a significant performance loss.

6.1.5.3 Impact of the service parallelism

It has been explained in section6.1.3that in a deterministic system, the DP and DSP cases lead

to identical performance. Considering the maximal experimental speed-up values, the DSP

case was 1.8 times faster than the DP one. The y-intercept metric is 1.3 times higher in the DP

case than in the DSP one. The slope ratio comparing those two cases is 2.3.

The fact that service parallelism does speed the execution up can be explained by the service

parallelism making the application less sensitive to distribution tails. If no variability was

possible (deterministic model), the impact of service parallelism would indeed be lower: the

maximal speed-up ratio would be 1.4, the y-intercept ratio would be 1.0 and the slope ratio

would be 1.6. It confirms the behavior described above: the more variable the infrastructure,

the more interesting the service parallelism.

The impact of service parallelism is higher on the slope thanon the y-intercept value: for the

experimental case, table6.1shows that service parallelism reduces the slope with a factor 2.3,

whereas it only leads to a factor 1.3 on the y-intercept. It is consistent that the benefit yielded

by service parallelism mainly affects the data scalability of the application: the more important

the number of submitted jobs, the more important the probability to lie in the distribution tail.

However, even in case of a non variable platform, there is still an impact of service paral-

lelism on the slope of the straight lines and thus on the maximal speed-up, whereas there is no

more on the y-intercept value. This can be explained by the fact that service parallelism re-

duces the mean grid latency due to sequential procedures such as the submission time. Indeed,

if service parallelism is not present, waves of simultaneous job submissions occur, whereas

submissions are more spread over time in case of service parallelism. This explains the impact

of service parallelism on the scalability of the application.

6.1.5.4 Impact of variability

The impact of the variability of the grid latency on the makespan of the application is figured by

the distance between the green and red curves on figure6.2. Considering the values of table6.1,

156 Analysis and impact of the latency variability on the EGEE grid Chap. 6

variability led to a maximum speed-up reduction factor of 2.4 for the DP case and 1.6 for the

DSP one. If the infrastructure were deterministic, we wouldobtain a maximal speed-up of 21.7

in the DSP case, whereas it is only 13.2 there. Considering the y-intercept metric, variability

leads to an increased factor of 2.24 for the DP case and this factor is 1.8 for the DSP one.

Variability also introduces a 2.5 increase factor on the slope metric for the DP case and a 1.5

one for the DSP case. Variability has more impact on the DP case than on the DSP one. Indeed,

as already mentioned before, the DP case is far less robust than the DSP one.

The estimates made for a deterministic system show that an additional speed-up in the order

of 2 can be expected by adopting strategies to reduce the system variability.

6.1.5.5 Analysis of the grid’s latency

The total mean latency introduced by the grid is slightly growing with the number of input

data sets, as displayed on figure6.3. This figure plots the mean latency obtained for the DP

and DSP cases and identifies the different sources of latency, namely submission, scheduling

and queuing times and the overhead added to the walltime. These values were obtained by

subtracting the average benchmarked walltime to the average actual walltime of the tasks. The

slow latency increase shows that we are far from saturating the large scale infrastructure.

Table6.2displays the mean values obtained for each entity of the infrastructure. The most

important source of latency is the queuing time, as it is easily understandable on a multi-users

platform. Then comes the overhead on the walltime, that includes data transfers and perfor-

mance of the running hosts. Submission and scheduling timesare the less important sources of

overhead. The latency coming from the load of the infrastructure is distributed among those 4

entities. Yet, most of it may be included in the queuing latency. The latency coming from the

walltime of the jobs covers the heterogeneity of the machines of the grid. Indeed, the services

have been benchmarked on a particular machine and the perfomance of the grid worker nodes

is unknown. All those values have been measured with the gridinformation system. They are

thus highly dependent on its accuracy. In particular, too small update frequencies may disturb

those measures. Yet, applications also rely on this information system so that those values are

representative of what could be measured from the applications.

Entity Mean latency (s)

Submission 182

Scheduling 110

Queuing 308

Walltime 279

Total 880

Table 6.2: Mean grid overhead for each component

6.1. Influence of the latency variability on a workflow 157

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

M
ea

n
ov

er
he

ad
 (

s)

Number of input image pairs

Submission (DP)
Scheduling (DP)

Queuing (DP)
Walltime (DP)

Total overhead (DP)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

M
ea

n
ov

er
he

ad
 (

s)

Number of input image pairs

Submission (DSP)
Scheduling (DSP)

Queuing (DSP)
Walltime (DSP)

Total overhead (DSP)

Figure 6.3: Mean overhead for each grid’s component. The standard deviation of the total

latency is plotted on the corresponding curve. Top: DP ; Bottom: DSP.

158 Analysis and impact of the latency variability on the EGEE grid Chap. 6

The variability of the overhead is hardly interpretable. The standard deviation of the total

overhead varies from 390s to 890s but does not exhibit globaltrends.

6.2 Characterization of the latency variability

The goal of this section is to provide some information to characterize the distribution of the

latency. Models of the grid latency are the basis of strategies to optimize the job submission

parameters as presented in partIII . Determining a precise and up-to-date model of the grid

latency is the starting point to allow further optimizations to tackle the effects of the latency.

The latency is modeled as a random variable and an outlier ratio. The random variable describes

the latency variability in anormal operation mode. Outliers correspond tosystem faultsthat

lead to huge latencies prevailing on the ones of the other tasks of the application. Those latency

values can be considered as infinite. In this section, a global model of the distribution of the

latency in the normal functioning mode is first presented andthen the influence of some job

context parameters is studied in order to make the model moreaccurate.

6.2.1 Model of the measured distribution

Data acquisition. To measure the distribution of the system latency on the EGEEgrid, probe

jobs that only consist in the execution of a/bin/hostname were submitted and their round-

trip time was measured. A constant number of probes was maintained inside the system by

submitting a new one as soon as one completed to avoid introducing any extra variability.

This measure of the distribution ofR gathers 2137 probe jobs involving 3 RBs. The maximal

duration of those jobs was fixed totmax = 10000 seconds. Beyond this value, a job is considered

as an outlier. Given those conditions, the measured outlierratio was 2.5%. In normal operating

mode, the measured distribution ofR is plotted on figure6.4 (plain red curve). Its expectation

is 393 seconds and its standard deviation is 792 seconds. Thecorresponding latency histogram

is shown on figure6.5.

Modeling. The distribution of the experimental data shown on figure6.4 appears to be

close to a log-normal distribution for low values (up to 500 seconds) and a Pareto dis-

tribution beyond. Pareto distributions are used to model a large class of computer sys-

tem measurements (jobs durations, size of the files, data transfers length on the Inter-

net. . .) [Harchol-Balter and Balter, 2002]. Based on this observation we fitted the experimental

data with the following distribution which is an interpolation of the log-normal and Pareto ones,

for t in [tmin, tmax]:

Fm
R(t) = (1− α(t))Φ

(

ln(t − tmin) − µ
σ

)

+ α(t)
(

1−
(a
a+ t

)ν)

(6.9)

6.2. Characterization of the latency variability 159

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 300 400 500 600 700 800 900 1000

F
R

(t
)

t (s)

Experimental cdf
Mixed Lognormal-Pareto model

Figure 6.4: Measured data (plain) and best fitting Log-normal-Pareto model (dashed).

with α(t) =

(

t − tmin

tmax− tmin

)k

tmin denotes the smallest latency measured among the data (the cdf is zero below this value) and

tmax the highest one. There are thus five parameters fully describing this model (µ, σ, a, ν, and

k). α(t) is a weight function designed so thatα(tmin) = 0 andα(tmax) = 1. The model thus tends

towards a log-normal distribution intmin and towards a Pareto one intmax. The best fit of the

model6.9with the experimental data was estimated by least-square minimization, minimizing

the following criterion:

arg min
(µ,σ,a,ν,k)

tmax
∑

i=tmin

(

Fmodel
R (i) − Fexp

R (i)
)2

whereFexp
R (i) is the value of the measured distribution at timei. The fitted model is displayed

on figure6.4 (dashed green curve). A Kolmogorov-Smirnov test was made toevaluate the

quality of the model. When considering an under-sampling ofup to 1000 measurements, the

Kolmogorov-Smirnov test value isD1000 = 1.35 (we usedDn =
√

nsup|Fexp
R − Fm

R |), which

correspond to a p-valuep = 0.051. The tests is thus positive. It shows that a simple model (5

parameters) can accurately model the distribution measured over a very complex grid system

(EGEE grid infrastructure).

160 Analysis and impact of the latency variability on the EGEE grid Chap. 6

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 jo

bs

t(s)

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

N
um

be
r

of
 jo

bs

t(s)

Figure 6.5: Histogram of the measured latencies. Values have been gathered into bins

of 10 seconds. The y-axis denotes the number of jobs in each bin. The total number of

submitted jobs is 2137. 2.5% of them were considered as outliers (latencies higher than

10,000 seconds) and thus do not appear on this histogram. Theupper figure plots the

remaining ones and the bottom one is a close-up on the [0s,1000s] interval.

6.2. Characterization of the latency variability 161

6.2.2 Influence of job context parameters

Each job can be characterized by its execution context that depends on the grid status and may

evolve during the job life-cycle. A promising way to refine the distribution model presented

above is to adapt it to the evolutions of this job context. Theultimate goal of such a study

would be to have the latency prediction of a job start with a rough estimation (e.g from the

global model presented above) and be refined as the job statusis evolving. For instance, once

the submission and scheduling times are known, one could infer some information about the

grid load and refine the latency estimation accordingly. Furthermore, as soon as the target

Computing Element (CE) is known, one could switch to a particular latency model dedicated

to this CE. The context parameters of a job are seen as hidden variables that are progressively

discovered, thus refining the latency estimation. One couldprobably end-up with a complete

probabilistic model of the grid.

The context of a job depends both on grid internal and external parameters. The internal

context corresponds to parameters such as the hosts involved in the management of a specific

job. It may not be completely known at the job submission instant. The external context is

related to parameters such as the day of the week and may have an impact on the load imposed

to the grid. Many parameters may have a direct influence on thejobs submitted to a grid

infrastructure. We are here focusing on three of them which proved to have a particular impact

as shown below: the Computing Element (CE), Resource Broker(RB), and the day of the week.

Data collection. The results presented here involve 4477 probe jobs acquiredwith the same

method as in section6.2.1. For each one, the job submission date, the User Interface (UI)

used, the UI load at submission time, the RB used, the CE used and the jobs status duration

(total durationttot, submission timetsub, scheduling timetrb, queuing timetq and running time

trun as illustrated in figure6.6) was logged. The median of this sampling is 363 seconds, its

expectation is 559 seconds and its standard deviation is 850seconds.

6.2.2.1 Site of computation parameter

The probe measures involved 90 different CEs of the infrastructure. Figure6.7 plots the cu-

mulative distribution of the grid latency for each CE involved in the experiment. To ensure

statistical significance, CEs with less than 30 probe measures were removed from the study. 60

computing elements out of the 90 were remaining. Figure6.7 suggests that 3 classes can be

identified among the CEs. Ak-means classification was thus done on the cumulative density

functions of the CEs and the obtained classes are identified with distinct colors on the figure.

Centroids of the classes are plotted in black.

The first class of CEs, pictured in blue, has the highest performance in average. The median

of its centroid is 237 seconds. It is composed of 15 CEs. The second class of CEs, pictured in

162 Analysis and impact of the latency variability on the EGEE grid Chap. 6

User
Interface

Ressource
Broker

Computing
Element

Working
Node

Personnal
Workstation

t tot

UI

RBRB

CE CE CE

WN WN WN WNWN

0 1

210

RB2

runt

tq

rbt

subt

Figure 6.6: Job life-cycle inside EGEE and measured durations.

green, is composed of 35 CEs. The median of its centroid is 373seconds, which corresponds

to a 1.6 ratio with respect to the fastest class. Finally, theslowest class, pictured in red, is

composed of 10 CEs and the median of its centroid is 652 seconds. Table6.3 compares the

median, expectation and standard-deviation of the grid latency for each CE class. It reveals

that even if the first (blue) class of CEs has the highest performance in average, it is also more

variable than the second (green) class. The third (red) class is the most variable. As shown

in section6.1, the impact of variability on the performance of an application depends on the

number of submitted jobs. In some cases (high number of jobs), it would be better to submit

jobs on a less variable CE class, even if it has a lower performance in average.

A noticeable feature of the green class is that almost all of its CEs contain thelcgpbs string

in their names. In this class, the only CE whose name does not contain this string is plotted

in cyan on figure6.7and is close to the border of this class. In the blue class, no CE contains

this string in its name and in the slowest class, 7 CEs have this string in their name. It shows

that thelcgpbs string name is informative in itself although the reasons are not necessarily

known (it may correspond to a specific middleware version deployed on some of the CEs in

this heterogeneous infrastructure).

Figure6.8 displays the fitting of the mixed log-normal/ Pareto model of equation6.9 on

the centroids of the 3 classes identified on figure6.7 and table6.4 shows the corresponding

parameters of the model. This model is well fitted to the blue and green classes but is not

so convincing for the red one. Actually, the CEs of the red class seem to be outliers: they

6.2. Characterization of the latency variability 163

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

F
R

Grid latency (seconds)

Figure 6.7: Classification in 3 classes of the cumulative density functions of the grid laten-

cies by CE. Centroids of the k-means classes are plotted in black.

exhibit very poor average performance (expected latency close to 20 minutes) with a very high

variability (the standard-deviation is more than 20 minutes). A dedicated model should be

determined for such poor-performance CEs.

CE group Median (s) Expect. (s) Stdev (s)

not lcgpbs (blue) 237 436 880

lcgpbs (green) 373 461 493

other (red) 652 1132 1396

Whole data 363 559 850

Table 6.3: First moments and median of the grid latency with respect to the execution CE

class

The order of magnitude of the grid latency appears to be correlated to the execution CE. It is

relevant because the CE is directly related to the job queuing time as a CE exactly corresponds

to a batch queue. Variations of middleware and system versions may explain the differences

observed among the 3 different classes while variations inside a given class may be coming

from the load imposed by the users and the performance of CEs host hardware.

However, in general, the execution CE is only known after thejob submission, during the

164 Analysis and impact of the latency variability on the EGEE grid Chap. 6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 300 400 500 600 700 800 900 1000

F
R

(t
)

t (s)

Class 3 (exp)
Class 3 (model)

Class 2 (exp)
Class 2 (model)

Class 1 (exp)
Class 1 (model)

Figure 6.8: Fit of the model of equation6.9 on the centroids of the 3 classes identified on

figure6.7

k µ (s) σ (s) a (s) ν

Class 1 (blue) 0.38 4.7 0.63 663.5 2.04

Class 2 (green) 0.57 5.53 0.32 9306.7 18.24

Class 3 (red) 11.8 6.27 1.1 70.4 6.47

Table 6.4: Parameters of the model of equation6.9 fitted on the centroids of the 3 classes

identified on figure6.7

scheduling procedure. Thus, this information could only beexploited for parameters that can

be updated once the job has been submitted, as for instance the timeout value or the application

completion prediction date, whereas parameters such as thegranularity of the tasks to submit

could not benefit from the CE information.

6.2.2.2 Resource Broker parameter

The probe measures were submitted to 3 different Resource Brokers (RBs). Figure6.9displays

the cumulative density function of the submission time of the probe jobs sent to each of the RBs

as well as the one of the submission time considering the whole experimental data set. First, the

submission times seem to be quantified to a discrete set of values that correspond to the ones

6.2. Characterization of the latency variability 165

Resource Broker Expectation (s) Stdev (s)

IFCA (red) 19 14

LAL (green) 25 24

SINP (blue) 22 16

Whole data 22 19

Table 6.5: First moments of the submission time with respectto the RB

were the cumulative density function is growing. As every curve correspond to more than 1400

probe measures, this phenomenon does not come from the lack of measures but rather from

a characteristic of the submission system. Indeed, to ensure scalability, jobs are sequentially

submitted to the RB, which could explain this behavior. The submission time is a multiple of

the duration required to submit one job, which is about 4 seconds according to those measures.

The 3 RBs exhibit quite different behaviors. Two of them (red and blue curves) have equiv-

alent tails that are smaller than the one of the third RB (green curve). It indicates that the latter

RB is prone to have very high submission delays: on this RB, 30% of the jobs require more

than 40 seconds to be submitted, whereas they are less than 10% for the two other RBs. On the

other hand, many of the jobs of the green RB are submitted faster than on the two other ones.

As a consequence, the median of the submission time on the green RB is only 12 seconds,

whereas it is respectively between 19 and 20 seconds and between 15 and 16 seconds on the

blue and red RBs.

Table6.5 displays the expectation and standard-deviation of the submission time with re-

spect to the RB. Knowing that a job is submitted to the red or blue RB reduces the variance

of the submission time distribution. On the contrary, the standard-deviation of the green RB is

higher than the one of the whole data.

6.2.2.3 Day of the week parameter

The day of the week is an important parameter of the external context which is likely to influ-

ence the load of the grid infrastructure. Figure6.10plots the cumulative density function of

the grid latency with respect to the day of the week and table6.6 displays the corresponding

expectations and standard-deviations. For this experiment, 1364 probes submitted during the

week-end were added to the previous 4477 ones.

The seven days exhibit similar behaviors for latencies lower than 500 seconds. Above this

value, Saturday and Sunday have very similar cdf significantly lower than the ones of the other

days. In average, those week-end days correspond to the oneswhen the latency is the highest,

as shown by table6.6. The variance also seems to be higher during the week-end than during

the week.

166 Analysis and impact of the latency variability on the EGEE grid Chap. 6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

F

Submission time (seconds)

egeerb.ifca.org.es
grid09.lal.in2p3.fr
lcg16.sinp.msu.ru

whole data

Figure 6.9: Cumulative density functions of the submissiontime by Resource Broker

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 2000 4000 6000 8000 10000

F
R

Grid latency (seconds)

"Monday"
"Tuesday"

"Wednesday"
"Thursday"

"Friday"
"Saturday"

"Sunday"

Figure 6.10: Cumulative density functions of the grid latency for each day of the week

6.2. Characterization of the latency variability 167

Day Expectation (s) Standard-deviation (s)

Monday 622 1088

Tuesday 530 747

Wednesday 461 542

Thursday 609 972

Friday 569 808

Saturday 630 1035

Sunday 629 1066

Whole data 569 886

Table 6.6: First moments of the grid latency with respect to the day of the week

6.2.2.4 Discussion

These experiments revealed that the grid latency is relatedto the choice of a RB or a CE.

More precisely, the middleware and system versions are probably involved in this phenomenon.

Computers with older systems and middlewares are probably computers that were installed

before newer ones, and not upgraded. The differences can either come from software perfor-

mance improvement or the fact that newer computers have higher computing capabilities. This

hypothesis could be confirmed by other experiments establishing what fraction of the latency

is due to the computer hardware or to its software. It might bea valuable information for

middleware developers. However, from our grid user point ofview, the main interest is not

necessarily the cause but rather its impact on the applications. A similar approach led Cies-

lak and co-authors [Cieslak et al., 2006] to propose performance analysis through grid log data

mining. This can be very efficient in identifying point of failures or performance dropsalthough

it usually provides little information on their cause.

The last experiment made in this section shows also an interesting result: days from Monday

to Friday are usually accepted as working days while Saturdays and Sundays are usually non-

working days. This is the case for most western and eastern countries involved in the EGEE

project. However, this assumption fails in some participating countries (for instance, in Algeria

the week-end is on Thursday-Friday and in Israel on Friday-Saturday). This information on

working days would thus need to be corrected by the geographical location of the grid sites

handling the jobs. Working on such a large geographical areaalso implies to consider the time

of the day. Working hours depend on the country we are dealingwith and local habits. The

dependency between latency and day of the week could be refined considering:

• Local meaning of week-end (e.g.Saturday/Sunday or Thursday/Friday).

• Local time of the day (day or night).

• Time zone: days start with significant time shifts in the EGEEinfrastructure (from

GMT+9 in Japan to GMT-8 in the USA).

168 Analysis and impact of the latency variability on the EGEE grid Chap. 6

• Local habits (e.g.working hours).

The dependency between latency and day of the week may be related to the system administra-

tors activity (they are more frequently at work and system orservices crashes are more rapidly

fixed on week days). However, the fact that there is more activity during the week than during

week-end, generating probably more faults should also be considered. These hypotheses need

to be further tested by building a notion of time context withrespect to time zones, working

days and hours.

Similarly, a correlation between temperature and faults insouthern countries may be inves-

tigated: in summer, air conditioning systems cooling down computing centers are more likely

to break down, making large amounts of local resources unexpectedly unavailable. CPU’s tem-

perature is certainly the most accurate parameter to demonstrate this fact but is often difficult to

obtain remotely. Considering cities temperatures could also gives indications on failures prob-

ability. This information is easily obtained for large cities through well known Web-Services.

Correlations between job latencies and parameters from theexecution context such as the

Resource Broker and batch systems involved in jobs management, or the week of the day have

been demonstrated. These results encourage to perform moredetailed studies in order to have

a better understanding of the influence of these parameters.Depending on their influence and

availability, they can be used to refine the model of job latency and thus to provide a better

basis for the latency reduction strategies presented in part III .

6.3 Handling variability in grid models

The work presented in this chapter covers two different areas: the probabilistic modeling of

workflows and the statistical parameters estimation of production grid systems. We review

below the main contributions of the literature concerning those two aspects. The probabilistic

modeling of applications has been investigated for quite a long time. However, the sources

of variability were not the same and the application areas thus significantly differed from ours

here. Consequently, statistical investigations about grid systems have only been introduced in

the last years. A broad survey of such methods is reported in Feitelson’s on going book1 which

synthesizes many of its papers [Feitelson, 2002, Feitelson, 2003]. Yet, as far as we know, such

methods have only been introduced from the infrastructure’s point of view so far. For instance,

statistical attempts have been done to model the job inter arrival time of a cluster of the grid.

The idea of considering the whole grid as a black box introducing a random latency on the

jobs submitted by the user is original and leads to new parameters optimization methods in grid

computing (see chapters8 and9).

1http://www.cs.huji.ac.il/∼feit/wlmod/

http://www.cs.huji.ac.il/~feit/wlmod/

6.3. Handling variability in grid models 169

6.3.1 Probabilistic approaches for application modeling

Probabilistic approaches to performance analysis have been used for quite a long time in

parallel and distributed applications. Gelenbeet al [Gelenbe et al., 1986] and Mussi and

Nain [Mussi and Nain, 1984] already considered the execution time of a task-graph as a ran-

dom variable and determined its distribution from the graphparameters and topology. Sequen-

tial compositions are modeled as convolutions of the density function and parallel ones lead

to exponentiation, as done in this chapter. They then determine the distribution of the execu-

tion time of the graph from the known ones of the tasks. Even ifthe motivating problem of

those works is very different from ours (in [Gelenbe et al., 1986], the variability is related to

the topology of the task graph and in [Mussi and Nain, 1984], only task trees are considered),

the probabilistic tools employed are very similar, reinforcing the idea that they are adequate to

model this kind of problem.

Later on, Gautamaet al [Gautama, 1998] noticed that directly using the pdf to determine

the execution time of the application leads to heavy computations preventing from any practical

application. They thus propose an approach based on the fourfirst moments of the distribu-

tion. The moments of the execution time of the application are expressed from moments of the

tasks in the graph and from the graph topology, including thesequential operator, conditional

branching and parallel composition. They also take into account more complex program pat-

terns including for example random loops bounds which are difficult to model directly using

the pdf. However, parallel operators raise problems in thisframework because there is no rela-

tion linking the moments of the random variable max{X1, . . . ,Xn} (which is the most common

parallel pattern) to the ones of theXi in the general case. In this case, the authors thus approxi-

mate density functions with generalized lambda distributions, characterized by four parameters

only [Gautama and van Gemund, 2003]. Assuming that, the moments of the execution time

of the graph are expressed from the ones of the tasks. Resultsconcerning normal distributions

show that the error made by the approximation remains under 1% for 1000 parallel tasks. How-

ever, only low mean and standard deviation values are presented due to numerical instabilities.

Close to this approach, Schopf and Berman use stochastic values, defined by their mean and

standard deviation to model the execution time of an application [Schopf and Berman, 1998,

Schopf and Berman, 2001]. They define arithmetic operations on them that comes from the

arithmetic on normal distributions. As in Gautama’s work, the definition of the max operation,

that is critical in a parallel execution is not obvious and has to be “supplied by the model

builder, scheduler or user”. The application model presented in this work seems to be quite

specific whereas using a workflow representation allows us todescribe any workflow-based

application in a more generic way.

Works such as [Manolache et al., 2001] and inside references propose performance analy-

sis methods for task scheduling into embedded systems, considering probabilistic models of

task execution times. In this work, the authors model task execution by a generalized contin-

170 Analysis and impact of the latency variability on the EGEE grid Chap. 6

uous probability distribution and propose a method not restricted to any specific scheduling

policy. They consider both execution time and memory aspects. Their method is based on

the construction of an underlying stochastic process and its analysis. Even if this approach is

entirely probabilistic and makes no assumption on the nature of the probability function of the

execution time, which well suits with our hypotheses, they assume all the tasks to be executed

concurrently on a single processor.

In practice, the probabilistic approaches mentioned in theprevious paragraphs have never

been applied to production grid infrastructures at the scale we are demonstrating here. Even the

recent work of Schopf and Berman described above exhibits very different orders of magnitude

to ours. Results are showed on a cluster environment whereasthe EGEE grid on which we con-

ducted our experiments is much wider. Consequently, variability in [Schopf and Berman, 2001]

is about 100 seconds whereas it can reach 900 seconds in our case. In our case, variability is

related to the grid latency itself, which does not occur in such proportion on smaller platforms.

General considerations about features and architecture required for an efficient production

grid (particularly focusing on data transfers) are discussed in [Laure et al., 2005] from the expe-

rience of the EU DataGrid project. This work focus on the large-scale multi-users grid that we

are also targeting here. However, no detailed model to explain how the infrastructure behaves

is proposed.

6.3.2 Statistical parameters estimation of grid systems

Several initiatives aim at modeling workload management systems. In [Li et al., 2004], cor-

relations between job execution characteristics (job sizeor number of processors requested,

job runtime and memory used) are studied on a multi-cluster supercomputer in order to build

models of workloads, enabling comparative study on system design and scheduling strategies.

Feitelson [Feitelson, 2002] has observed correlations between runtime and job size, number of

cluster and time of the day.

In [Medernach, 2005], the author analyzes the usage of a cluster of the EGEE infrastruc-

ture. He studies several of the job parameters, such as the running, waiting and arrival times.

A Markov-chains based model is then proposed and explains the observed data. Our approach

is similar to those ones in the sense that a deterministic modeling of the studied parameters is

not investigated. Yet, the adopted point of view is significantly different. Whereas those works

focus on the infrastructure’s point of view (and even on a particular cluster of the infrastructure)

in order to provide realistic workloads modellings, we stand from the user’s point of view, try-

ing to model the global behavior of the grid. Consequently, the optimized parameters resulting

from those studies may be quite different, concerning for instance particular configurations of

the local batch schedulers of the clusters.

6.4. Conclusions 171

6.4 Conclusions

Based on the observations made in the previous chapter, we proposed here a model of the work-

flow of the application taking into account the variability of the grid latency. The originality of

this model lie in the fact that the global behavior of the gridis modeled by a single random vari-

able: the grid is viewed as a black box introducing a random latency on the jobs submitted by

the user. This model is used to quantify the impact of the latency variability, which is shown to

lead to a factor 2 performance drop on the workflow of the bronze standard application. Thus,

strategies have to be developed in order to reduce the impactof the latency and of its variability

on EGEE. This is the goal of the next part of this thesis.

In order to be predictive, such a probabilistic model has to rely on accurate statistical es-

timates of the latency distribution. We investigated such models in the second section of this

chapter. Experiments demonstrate the relevance of a heavy-tailed distribution for modeling

the grid latency in its normal functioning mode, with an outlier ratio capturing large latencies

coming from system faults. In particular, a mixed log-normal/Pareto model has been shown

to correctly fit to the measurement presented here and the influence of the computing element,

resource broker and day of the week has been studied. Such a model is a rationale for the

distinction between the tail weights that will be made in chapter8.

172 Analysis and impact of the latency variability on the EGEE grid Chap. 6

Part III

E

175

In the previous part of this manuscript, the grid latency andits variability have been shown

to drastically reduce the performance of a workflow running on a production grid. For instance,

the performance gain that could be expected on the bronze standard application by reducing the

impact of the latency variability is in the order of a factor 2. Outliers (i.e jobs whose latency

can be considered as infinite) may also dramatically disturbapplications and strategies have to

be studied to reduce the risk of facing them and to deal with the inevitable ones. In this part,

we investigate methods to achieve such performance improvements.

In the literature, some strategies aim at reducing the impact of the latency by pre-allocating

resources with dedicated agents before the execution of theapplication and directly connecting

to them (bypassing the middleware) when a job needs to be submitted [Garonne et al., 2004,

Germain et al., 2005]. With such strategies, the latency penalty is actually shifted before the

execution: reservation agents need to be launched sufficiently early before the execution (i.e at

least one latency duration before), which may not be realistic for all users. Even if reasonable

schemes can be set up, such reservations exploit a kind of middleware flaws as they keep

resources busy for some time prior to the execution without computing anything. If a large

number of users adopt them, then one could expect that the average wall-time of the jobs would

grow, leading the grid latency duration to increase too. Theglobal performance of the system

would thus degrade, requiring the users to submit reservation agents even earlier and finally

entering a vicious cycle. Besides, such pre-allocation also requires to forecast the amount of

submitted jobs, which is not always possible in particular in functional or service workflows

(see chapter2). Yet, in some specific cases (in particular for applications involving a few jobs

with a high priority), this kind of strategies would constitute an interesting alternate to the ones

presented in this part.

In the following chapters, three strategies are envisaged to reduce the impact of the latency

and outliers. Service grouping (chapter7) and granularity optimization (chapter9) act at the

workflow level. They are both based on a reduction of the totalnumber of jobs submitted

by the application. The basic idea behind them is that the fewer the number of submitted

jobs, the lower the probability to face high latencies. The timeout optimization (chapter8)

corresponds to a parameter optimization at the job level only. Its main interest is to efficiently

deal with outliers. All those strategies but the service grouping are based on probabilistic

models, assuming that the job latency is a random variable whose normal functioning mode is

described by a probabilistic distribution and that may faceoutliers with a non null probability.

They are a direct consequence of the probabilistic approachadopted in chapter6.

176

Chapter 7

Service grouping

Contents
7.1 Service grouping optimization strategy 178

7.1.1 The Grid Application Service Wrapper. 180

7.1.2 Implementing the grouping with a dynamic service factory 183

7.1.3 Grouping strategy. 187

7.2 Experiments on the EGEE production grid 189

7.2.1 Experimental workflows. 189

7.2.2 Results . 190

7.3 Conclusions. 190

T
his chapter studies service grouping as

a strategy to reduce the impact of the

grid latency on the execution of a workflow.

In a Service-Oriented Architecture (SOA, see

chapter 2), grouping services is not possible

because they are black boxes only exposing

an implementation-independent interface to the

outer world. Based on a dynamic wrapper, a ser-

vice factory is presented and fulfills the condi-

tions required to enable service grouping while

still respecting the SOA principles. The grouping

strategy itself is then described: it ensures that

service grouping will not slow-down the work-

flow execution by breaking any kind of paral-

lelism. Finally, experiments on the EGEE pro-

duction grid are presented to evaluate the impact

of this optimization on the execution time of a

workflow.

178 Service grouping Chap. 7

D
ans ce chapitre, nous étudions le groupe-

ment de services pour réduire l’impact de

la latence de la grille sur l’exécution d’un flot de

traitements. Dans une architecture orientée ser-

vice (SOA, cf. chapitre2), grouper les services

n’est pas possible car ce sont des boı̂tes noires

qui n’exposent qu’une interface indépendante de

l’implémentation au monde extérieur. Une usine

à services basée sur un procédé d’encapsulation

dynamique est présentée et permet de mettre

en œuvre le groupement de services tout en

respectant les principes de SOA. La stratégie

de groupement elle-même est ensuite décrite :

elle assure que le groupement ne ralentira pas

l’exécution du workflow en limitant le par-

allélisme. Enfin, des expériences sont présentées

sur la grille de production EGEE pour évaluer

l’impact de cette optimisation sur le temps

d’exécution d’un flot de traitements.

7.1 Service grouping optimization strategy

On the one hand, grouping services of a workflow may reduce thetotal encountered latency by

reducing the number of submitted jobs required to run the application. Consider for instance

the simple workflow represented on the left side of figure7.1. On top, servicesP1 andP2 are

invoked independently. Data transfers are handled by each service and the connection between

the output ofP1 and the input ofP2 is handled at the workflow engine level. On the bottom,

P1 and P2 are grouped into a virtual single service. This service is capable of sequentially

invoking the code embedded in both services, thus resolvingthe data transfer and independent

code invocation issues.

On the other hand, grouping services may also reduce workflowparallelism (described in

chapter4) and we have to take care of the grouping strategy in order to avoid performance

losses. In particular, grouping sequentially linked services is interesting because they do not

benefit from any workflow parallelism. Those groupings can bedone at the services level,

i.e they will be available for each data item processed by the workflow. For example, consid-

ering the computational part of the workflow of the bronze standard application introduced in

chapter3 and recalled on figure7.2, servicescrestLines andcrestMatch can be grouped

without parallelism loss as well as servicesPFMatchICP andPFRegister.

From the middleware point of view, grouping strategies may also be interesting because

it reduces the total number of jobs to handle, thus decreasing the global load imposed on the

infrastructure. Yet, grouping services leads to the submission of longer jobs, which may also

increase the average queuing time as a damaging side effect. Consistently with the approach

adopted in this thesis, we will not try to model the behavior of the middleware in order to be

able to predict the impact of those side-effects. Rather, we will focus on the global system’s

behavior perceived by the grid end-user.

In practice, implementing service grouping is not straightforward given that:

7.1. Service grouping optimization strategy 179

7. Code 2 execution

8. Output data

6. Input data

P1

2P

1. service
invocation

1. service
invocation

Grouped
services

P1

2P

Workflow manager

3. Code 1 execution

2. Input data

4. Output data
services

Successive

3. Code 1 + code 2 execution

4. Output data

2. Input data

resources

storage

storage

resources

5. service
invocation

Figure 7.1: Classical services invocation (top) and service grouping (bottom).

Figure 7.2: Workflow of the application. Services to be grouped are squared in green. The

extracted sub-workflow is grouped into a single service, as detailed on figure7.6.

180 Service grouping Chap. 7

1. The services composing the workflow are totally independent from each other: as

explained in chapter2, services are black boxes that only publish implementation-

independent interfaces. Therefore, the workflow engine cannot access the details of the

jobs submitted by the services.

2. The grid infrastructure handling the jobs does not have any information concerning the

workflow and the job dependencies. The grouping cannot be handled at this level.

Workflow learning solutions could eventually been developed, to have the middleware

detect dependencies between jobs from historical information (as done for instance

in [Shao et al., 2007]) but this would provide a middleware-specific service grouping,

which is not suitable.

Thus, a specific architecture has to be designed to allow services grouping. In order to cope with

the first problem described above, we propose below a GenericApplication Service Wrapper

(GASW).

7.1.1 The Grid Application Service Wrapper

We developed a generic grid submission Web-Service. This service is generic in the sense that

it is unique and it does not depend on the executable code to submit. It exposes a standard

interface that can be used by any Web-Service compliant client to trigger job submissions. It

completely hides the grid infrastructure from the end user as it takes care of the interaction with

the grid middleware.

To accommodate to any executable at runtime, this Generic Application Service Wrapper

(GASW) is taking two different inputs: a descriptor of the executable command line format, and

the input parameters and data of this executable. The production of the legacy code descriptor

is the only extra work required from the application developer. It is a simple XML file which

describes the legacy executable location, command line parameters and input/ output data.

The main difference between this wrapper and related solutions (described in sec-

tion 7.1.1.1) is that it is able to dynamically wrap code at runtime, thus allowing optimization

strategies as the service grouping presented in this chapter. Indeed, as the workflow enactor

has access to the descriptors of the executables, it is able to dynamically create a virtual ser-

vice, composing the command lines of the codes to be invoked,and submitting a single job

corresponding to a sequence of command lines invocations.

Legacy code descriptor. The command line description has to be complete enough to allow

dynamic composition of the command line from the list of parameters at the service invoca-

tion time and to access the executable and input data files. Asa consequence, the executable

descriptor contains:

7.1. Service grouping optimization strategy 181

1. The name and access method of the executable. In our current implementation, access

methods can be a URL or a Logical File Name (LFN). The wrapper is responsible for

fetching the data according to those different access modes.

2. The access method and command-line option of the input data. The actual name of the

input data files is not mandatory in the description. Those values will be defined at the

execution time. This feature differs from various job description languages used in the

task-based middlewares. The command-line option allows the service to dynamically

build the actual command-line at the execution time.

3. The command-line option of the input parameters: parameters are values of the

command-line that are not files and which do not have any access method.

4. The access method and command-line option of the output data. This information enables

the service to register the output data in a suitable place after the execution. Here again,

names of output data files cannot be statically determined because output file names are

only generated at execution time.

5. The name and access method of the sandboxed files. Sandboxed files are external files

such as dynamic libraries or scripts that may be needed for the execution although they

do not appear on the command-line.

The wrapper is then able to build a dedicated job with the input data items provided at runtime

and to submit and monitor it to the grid. It enables a completedecoupling of the grid con-

cerns from the service providers (e.g the medical image analysis scientists) and the workflow

users (e.g the clinicians). Ideally, this wrapper would be maintainedby a grid “expert” who

would configure and update it according to the middleware status and evolutions. The service

providers would just release the descriptor of their codes that could be embedded in a workflow

thanks to the Web-Service standard.

Example. An example of a legacy code description file is presented in figure 7.3. It corre-

sponds to the description of the executablecrestLines which is part of the bronze standard

application (see its workflow in chapter2). It describes the scriptCrestLines.pl which is

available from the serverlegacy.code.fr and takes 3 input arguments: 2 files (options-im1

and-im2 of the command-line) that are already registered on the gridas LFNs at execution

time and 1 parameter (option-s of the command-line). It produces 2 files that will be regis-

tered on the grid. It also requires 3 sandboxed files that are available from the same web server

as the executable.

7.1.1.1 Comparison with related systems

Here, we briefly review systems that are used to wrap legacy code into services to be embedded

in workflows.

182 Service grouping Chap. 7

<description>

<executable name="CrestLines.pl">

<access type="URL">

<path value="http://legacy.code.fr"/>

</access>

<value value="CrestLines.pl"/>

<input name="floating_image" option="-im1">

<access type="LFN"/>

</input>

<input name="reference_image" option="-im2">

<access type="LFN"/>

</input>

<input name="scale" option="-s"/>

<output name="crest_reference" option="-c1">

<access type="LFN"/>

</output>

<output name="crest_floating" option="-c2">

<access type="LFN"/>

</output>

<sandbox name="convert8bits">

<access type="URL">

<path value="http://legacy.code.fr"/>

</access>

<value value="Convert8bits.pl"/>

</sandbox>

<sandbox name="copy">

<access type="URL">

<path value="http://legacy.code.fr"/>

</access>

<value value="copy"/>

</sandbox>

<sandbox name="cmatch">

<access type="URL">

<path value="http://legacy.code.fr"/>

</access>

<value value="cmatch"/>

</sandbox>

</executable>

</description>

Figure 7.3: Legacy code descriptor example for the Generic Application Service Wrapper.

The location of the executable is first described. Then, inputs and outputs participating

in the command-line generation are specified. Finally, external dependencies (such as dy-

namic libraries) are described in the sandbox section.

7.1. Service grouping optimization strategy 183

The Java Native Interface (JNI) has been widely adopted for the wrapping of legacy codes

into services. Wrappers have been developed to automate this process. In [Huang et al., 2003],

an automatic JNI-based wrapper of C code into Java and the corresponding type mapper with

Triana [Taylor et al., 2005] is presented: JACAW generates all the necessary java and C files

from a C header file and compiles them. A coupled tool, MEDLI, then maps the types of

the obtained Java native method to Triana types, thus enabling the use of the legacy code into

this workflow manager. Related to the ICENI workflow manager [Furmento et al., 2002], the

wrapper presented in [Li et al., 2005] is based on code reengineering. It identifies distinct com-

ponents from a code analysis, wrap them using JNI and adds a specific CXML interface layer

to be plugged into an ICENI workflow.

The WSPeer framework [Harrison and Taylor, 2005], interfaced with Triana, aims at easing

the deployment of Web-Services by exposing many of them at a single endpoint. It differs from

a container approach by giving to the application the control over service invocation. The

Soaplab system [Senger et al., 2003] is especially dedicated to the wrapping of command-line

tools into Web-Services. It has been largely used to integrate bioinformatics executables in

workflows with Taverna [Oinn et al., 2004]. It is able to deploy a Web-Service in a container,

starting from the description of a command-line tool. This command-line description, referred

to as the metadata of the analysis, is written for each application using the ACD text format file

and then converted into a corresponding XML format. Among domain specific descriptions, the

authors underline that such a command-line description format must include (i) the description

of the executable, (ii) the names and types of the input data and parameters and (iii) the names

and types of the resulting output data. As described latter,the format we used includes those

features and adds new ones to cope with requirements of the execution of legacy code on grids.

The GEMLCA environment [Delaitre et al., 2005] addresses the problem of exposing

legacy code command-line programs as Grid services. It is interfaced with the P-GRADE

portal workflow manager [Kacsuk et al., 2003]. The command-line tool is described with the

LCID (Legacy Code Interface Description) format which contains (i) a description of the ex-

ecutable, (ii) the name and binary file of the legacy code to execute and (iii) the name, nature

(input or output), order, mandatory, file or command line, fixed and regular expressions to be

used as input validation. A GEMLCA service depends on a set oftarget resources where the

code is going to be executed. Architectures to provide resource brokering and service migration

at execution time are presented in [Kecskemeti et al., 2005].

7.1.2 Implementing the grouping with a dynamic service factory

Our above-presented service wrapper separates the algorithm description from the grid details:

grouping services is thus made possible by grouping their algorithm descriptions and submit-

ting the resulting description to the wrapper. To do that, the workflow engine can dynamically

enable services grouping by analyzing the workflow and generating grouped services on the

184 Service grouping Chap. 7

fly. An application wrapper factory service is added to the architecture. Its role is to instan-

tiate both the code wrapping services and the grouped services. The complete architecture is

diagrammed on figure7.4 and owes a lot to the ideas and work of David Emsellem. GASW

command-line descriptions are called MOTEUR descriptors and services described with it are

called MOTEUR services. The MOTEUR factory is responsible for dynamically generating

and deploying application services. The aim of this factoryis to achieve two antagonist goals:

• To expose codes as autonomous Web-Services.

• To enable the grouping of two of these Web-Services as a unique one for optimizing the

execution.

On one hand, the specific Web-Service implementation details (i.e. the execution of the

wrapped code on a grid infrastructure) are hidden to the consumer. On the other hand, when the

consumer is a workflow manager which can group jobs, it needs to be aware of the real nature

the Web-Services (the encapsulation of a MOTEUR descriptor) so that it could merge them at

run time. We choose to use the WSDL XML Format extension mechanism which allows to

insert user defined XML elements in the WSDL content itself. We thus strictly conform to the

WSDL standard while enabling our optimization strategy.

On figure7.4, we exemplify the architecture through a usage scenario:

R.1 First, the legacy code provider registers a MOTEUR XML descriptor P1 to the MOTEUR

factory.

G.1 The factory, then dynamically generates a Web-Service which wraps the submission of

the legacy code to the grid via the generic service wrapper.

R.2 Another provider do the same with the descriptor of P2.

The resulting Web-Services expose their WSDL contracts to the external world with

a specific extension associated with the WSDL operation. Forinstance, the WSDL con-

tract resulting of the deployment of thecrestLines legacy code described on figure7.3

is printed on figure7.5. This WSDL document defines two types (CrestLines-request

andCrestLines-response) corresponding to the descriptor inputs and outputs and a single

Execute operation. Notice that in the binding section, the WSDL document contains an extra

MOTEUR-descriptor tag pointing to the URL of the legacy code descriptor file (location)

and a binding to the Execute operation (soap:operation).

Suppose now that the workflow manager identifies a service grouping optimization (e.g.P1

and P2, displayed in green in figure7.4). Because of its ability to discover the extended nature

of these two services, the engine can retrieve the two corresponding MOTEUR descriptors.

C.1+2 The workflow manager can ask the factory tocombinethem and

7.1.
S

ervice
grouping

optim
ization

strategy
1

8
5

execute

execute
P1

P2

P3
WSDL Contract

Service

Interface

P3

?

Regular Web service P3

Service

Interface

WSDL

Contract

Service

Implementation

Generic submission Service – Grid 1

G
rid

 1submit

job

Workflow Manager

MOTEUR

FACTORY

Web Service

I.1+2 Invoke

Service

Interface

P1+P2

Service

Implementation

P1+P2

WSDL Contract

MOTEUR ext
MOTEUR

descriptor

MOTEUR

Composite

Web Service

P1

P2

Generate composite web service

from DESC(P1) and DESC(P2)

Service

Interface

P1

Service

Implementation

P1

WSDL Contract

MOTEUR ext
MOTEUR

descriptor

MOTEUR

Web Service
P1

Generate from DESC(P1)

Service

Interface

P2

Service

Implementation

P2

WSDL Contract

MOTEUR ext
MOTEUR

descriptor

P2MOTEUR

Web Service

deploy

combine

 DESC(P1)

& DESC(P2)

I.3 Invoke

 DESC(P2)

DESC(P1)

R.2

G.1+2

C1+2

JOB

GROUPING

R.1

Legacy code

Deployer

G.1

I.1+2 Invoke

S.1+2 Submit

F
igure

7.4:
S

ervices
factory

enabling
service

grouping.
T

h
e

M
O

T
E

U
R

factory
is

able
to

deploy
a

W
eb-S

ervice
from

the
description

ofan
executable

(
see

figure7.3
for

an
exam

ple

of
such

a
description).

To
group

services,
the

w
orkflow

engin
e

(M
O

T
E

U
R

)
dynam

ically

invokes
the

services
factory

w
ith

the
description

ofthe
alg

orithm
s

to
group

(D
E

S
C

(P
1)and

D
E

S
C

(P
2)).

T
he

factory
then

deploys
a

com
posite

W
eb-S

ervic
e

P
1+

P
2

thatcan
be

directly

invoked
by

the
w

orkflow
engine.

186 Service grouping Chap. 7

<?xml version="1.0" encoding="utf-8" ?>

<definitions ...>

<types>

<schema>

<element name="CrestLines-request">

<complexType>

<sequence>

<element name="floating_image"

type="string"... />

<element name="reference_image"

type="string"... />

<element name="scale" type="string"... />

</sequence>

</complexType>

</element>

<element name="CrestLines-response">

<complexType>

<sequence>

<element name="crest_reference"

type="string"... />

<element name="crest_floating"

type="string"... />

</sequence>

</complexType>

</element>

</schema>

</types>

<message name="ExecuteSoapIn">

<part name="parameters"

element="CrestLines.pl-request" />

</message>

<message name="ExecuteSoapOut">

<part name="parameters"

element="CrestLines.pl-response" />

</message>

<portType name="CrestLines.plSoap">

<operation name="Execute">

<input message="ExecuteSoapIn" />

<output message="ExecuteSoapOut" />

</operation>

</portType>

<binding ...>

<soap:binding transport="http://..." />

<operation name="Execute">

<soap:operation soapAction="http://.../Execute"

style="document" />

<MOTEUR-descriptor xmlns="urn:...">

<location>http://...</location>

</MOTEUR-descriptor>

....

</operation>

</binding>

</definitions>

Figure 7.5: Extended WSDL generated by the factory for the code introduced in figure7.3

7.1. Service grouping optimization strategy 187

G.1+2 generate a single composite Web-Service which exposes an operation taking its inputs

from P1 (and P2 inputs coming from other external services) and returning the outputs

defined by P2 (and P1 outputs going to other external services).

I.1+2 The workflow manager can invoke this composite Web-Service.It is of the same type

than any regular legacy code wrapping service and it is accessible through the same

interface.

S.1+2 It also delegates the grid submission to the generic submission Web-Service by sending

the composite MOTEUR descriptor and the input link of P1 and P2 in the workflow.

7.1.3 Grouping strategy

In order to determine a grouping strategy that does not introduce any slow-down, neither from

the user point of view, nor from the infrastructure one, we impose the two following constraints:

• The grouping strategy must not limit any kind of parallelism(user point of view) and

• During their execution, jobs cannot communicate with the workflow manager (infras-

tructure point of view).

The second constraint prevents a job from holding a resourcejust waiting for one of its ancestor

to complete. An implication of this constraint is that if services A and B are grouped together,

the results produced by A will only be available once B will complete. Moreover, a workflow

may include both MOTEUR Web-Services (i.e. services that are able to be grouped) and clas-

sical ones, that could not be grouped. Assuming those constraints, we can prove the following

rule:

Let A be a MOTEUR service of the workflow and{B0,...Bn} its children in the

service graph. GroupingBi andA does not lead to any parallelism loss if and only

if:

1. Bi is an ancestor of everyB j for everyi , j and

2. each ancestor C ofBi is an ancestor ofA or A itself.

Let us first prove that (1) and (2) arenecessaryconditions to avoid parallelism loss. If (1) is

not respected, then there exists a childB j of A which is not a descendant ofBi. If A andBi are

grouped, then workflow parallelism is broken betweenBi andB j becauseB j has to wait forBi

to complete before starting. Similarly, if (2) is not respected, then there exists an ancestorC

of Bi that is not an ancestor ofA and workflow parallelism is broken betweenA andC whenA

andBi are grouped.

(1) and (2) are alsosufficient to avoid any parallelism break in the workflow. Let us first

notice that grouping services does not breakdata parallelism because this kind of parallelism

188 Service grouping Chap. 7

only concerns a single service of the workflow. Moreover,service parallelismrelies on the

independence of the processings of two different data segments by two successive services.

As service grouping does not preventBi from processing a given piece of data whileA is

processing another one (assuming that data parallelism is not broken, which is the case here),

service grouping does not break service parallelism. Thus,we are left to prove that (1) and (2)

guarantee thatworkflow parallelism is not broken by groupingA andBi. (1) guarantees that

there is no workflow parallelism betweenBi and everyB j. Workflow parallelism is thus likely

to concernBi only for services that are not children ofA and thus cannot be broken by grouping

A andBi. Similarly, (2) guarantees that there is no workflow parallelism betweenA and every

other ancestor ofBi. Workflow parallelism is thus likely to concernA only for services that are

not ancestors ofBi and thus cannot be broken by groupingA andBi. �

Our grouping strategy tests this rule for each MOTEUR service of the workflow. Groups of

more than two services may be recursively composed by successive matches of the grouping

rule.

The constraints applied by the matching rule are illustrated on three different grouping

examples in figure7.6. This simplified workflow was extracted from the bronze standard work-

flow (see end of chapter2 and chapter5). It is made of 4 MOTEUR services. As it can be

seen from the workflow graph, the data dependencies will enforce a sequential execution of

these 4 services. It is therefore expected that the four services are grouped in a single one in

order to minimize the job submission overhead. On this figure, notations nearby the services

correspond to the ones introduced above in the grouping rule. For each of the 3 examples of

figure7.6, the grouping of the two services outlined by a green box is studied:

1. On the left of figure7.6, the tested MOTEUR serviceA is crestLines. A is connected

to the workflow inputs and it has two children:B0 andB1. B0 is a father ofB1 and it

only has as single ancestor which isA. Thus, the rule matches:A andB0 can be grouped.

If there were a serviceC ancestor ofB0 but not ofA as represented on the figure, the

rule would not match:A andC would have to be executed in parallel before startingB0.

Similarly, if there were a serviceD child of A but not ofB0, then the rule would not match

as the workflow manager would need to communicate results during the execution of the

grouped jobs in order to allow workflow parallelism betweenB0 andD.

2. In the middle of figure7.6, the tested serviceA is nowcrestMatch. A has a single child:

B0. B0 has two ancestors,A andC. The rule matches becauseC is an ancestor ofA. A

andB0 can then be grouped.

3. On the right of figure7.6, A is thePFMatch service. It has only one childB0 which only

has a single ancestor,A. The rule matches and those services can thus be grouped.

Finally, whenA is thePFRegister service, the grouping rule does not match because it does

not have any child. Note that in this example, the recursive grouping strategy leads to a single

7.2. Experiments on the EGEE production grid 189

D

CcrestLines

crest
Match

PFMatch

PFRegister

A

B
0

B
1

crestLines

Match
crest

PFMatch

PFRegister

C

A

0
B A

crest
Match

crestLines

PFMatch

PFRegister
0

B

Figure 7.6: Service grouping examples. On this workflow, thegrouping rule matches 3

times (once for each green box), thus resulting in a single service wrapping those 4. On the

left part of the figure, service C or D would prevent the grouping betweencrestLines and

crestMatch because it would break workflow parallelism between A and C and between

B0 and D.

job submission, as expected.

7.2 Experiments on the EGEE production grid

To quantify the speed-up introduced by service grouping on areal application workflow, we

made experiments on the EGEE production grid infrastructure, using the whole biomed VO

(see a description of this infrastructure in chapter5).

7.2.1 Experimental workflows

First, we study the impact of service grouping on the workflowof the bronze standard ap-

plication represented on figure7.2. On this application, the grouping rule matches twice, as

represented on the figure. Moreover, to show how service grouping is able to speed-up the exe-

cution on highly sequential applications, we also considered a sub-workflow of our application,

as shown in figure7.2 (dash-circled workflow) . It is made of 4 services that correspond to the

crestLines, crestMatch, PFMatchICP andPFRegister ones in the application workflow.

Our grouping rule groups those 4 services of the sub-workflowinto a single one, as it has been

detailed in the example of figure7.6. It is important to notice that even if this sub-workflow is

sequential, and thus does not benefit from workflow parallelism, its execution on a grid does

make sense because of data and service parallelisms. To evaluate the impact of our grouping

strategy on the performance, we compared the execution times of those workflows with and

190 Service grouping Chap. 7

Number of input Sub-workflow (figure7.6) Whole application (figure7.2)

image pairs Number of jobs Speed-up Number of jobs Speed-up

Regular Grouping Regular Grouping

12 48 12 2.91 72 48 1.42

66 264 66 1.72 396 264 1.34

126 504 126 2.30 756 504 1.23

Table 7.1: Grouping strategy speed-ups

without the grouping strategy.

7.2.2 Results

Table7.1 presents the speed-ups induced by the grouping strategy fora growing number of

input image pairs and for the two experimental workflows described above. This speed-up is

computed as the ratio of a regular grid execution time (whereeach service invocation leads

to a job submission) over the execution time using the grouping strategy. We can notice on

this table that service grouping does effectively provide a significant speed-up on the workflow

execution. This speed-up is ranging from 1.23 to 2.91.

The speed-up values are greater on the sub-workflow than on the whole application. Indeed,

on the sub-workflow, 4 services are grouped into a single one,thus saving 3 job submissions

for each input data set. On the whole application workflow, the grouping rule is applied only

twice, thus only saving 2 job submissions for each input dataset, as depicted on figure7.2.

7.3 Conclusions

A service grouping rule ensuring that no parallelism is broken inside the workflow has been

presented in this chapter. Coupled with a dynamic services factory that enables the implemen-

tation of services grouping while respecting the SOA principles, this rule allows a saving-up

of job submissions and therefore a reduction of the impact ofthe grid latency on the workflow.

On the workflow of the bronze standard application, speed-ups of 1.2 to 1.4 can be achieved

and on a dedicated workflow, speed-up values can reach almost3.

It is important to notice that this grouping strategy cannotslow down the application be-

cause it does not break any parallelism (even if it is true that some side-effects resulting from

an increase of the job size may limit the expected speed-up).A next step in service grouping

could be to limit parallelism at some point, thus further reducing the number of submitted jobs

and the risk to face high latencies. In this case, a compromise would have to be found between

parallelism loss and latency reduction. Such a strategy is investigated in chapter9 where data

7.3. Conclusions 191

parallelism is restricted in order to limit the impact of thelatency. Breaking workflow paral-

lelism to reduce the number of submitted jobs may also be envisaged. In this case, a metric to

foresee the interest of such a grouping could be provided by the workflow model presented in

chapter6.

Yet, grouping services does not prevent the workflow from facing outliers, which could still

be damaging. To avoid them, setting a timeout value to the jobs is mandatory. A method to

properly set this timeout value is investigated in the next chapter.

192 Service grouping Chap. 7

Chapter 8

Optimization of the timeout value

Contents
8.1 Model of the user job latency taking into account the timeout value . . . 195

8.1.1 Illustration for a reliable system. 197

8.1.2 Expectation of the latencyJ faced by a user job. 199

8.2 Timeout optimization for classical latency distributions 200

8.2.1 Uniform distribution . 201

8.2.2 Truncated Gaussian distribution. 202

8.2.3 Exponential distribution. 203

8.2.4 Weibull distribution. 204

8.2.5 Log-normal distribution . 204

8.2.6 Pareto distribution. 207

8.2.7 Results summary and interpretation. 207

8.2.8 Performance improvement. 208

8.3 Experiments on the EGEE latency distribution 210

8.4 Conclusions. 210

194 Optimization of the timeout value Chap. 8

I
n this chapter, another solution for reducing

the impact of the grid latency is investigated:

setting a timeout value and resubmitting abnor-

mally long jobs. The timeout value has to be

properly set in order to prevent the job from fac-

ing too high latencies or to remain blocked some-

where in the grid because of a system failure.

Otherwise, setting a timeout value will at least be

useless and could even lead to considerable per-

formance drops if the timeout value is to small

and triggers overkilling cancellations and resub-

missions. The probabilistic approach introduced

in chapter6 is considered. Through a theoreti-

cal study on classical latency distributions, typi-

cal behaviors are highlighted: in particular, the

importance of the weight of the tail of the distri-

bution of the latency is noticed. Finally, results

obtained on an experimental distribution mea-

sured on EGEE give an idea of the performance

gain that could be expected with such a method

in practice.

D
ans ce chapitre, une autre solution de

réduction de l’impact de la latence est

étudiée. Assigner un délai d’expiration aux

tâches pour les resoumettre en cas de la-

tence trop importante est une stratégie à dou-

ble tranchant : d’un côté, si la valeur du

délai d’expiration est fixée correctement, les

latences excessivement importantes provenant

d’une défaillance du système peuvent être

évitées. Mais d’un autre, si cette valeur

est mal fixée, assigner un délai d’expiration

aux tâches sera au mieux inutile et dégradera

considérablement les performances si le délai

d’expiration est trop faible et conduit à des an-

nulations et ressoumissions de tâches excessives.

Une étude théorique des distributions classiques

permet de mettre en évidence certaines pro-

priétés comme l’importance du poids de la queue

de la distribution de la latence pour l’existence

ou non d’une valeur finie du délai d’expiration

optimal. Enfin, des résultats obtenus sur une dis-

tribution expérimentale mesurée sur EGEE don-

nent une idée du gain de performance qui peut

être espéré en pratique par l’utilisation d’une

telle méthode.

Time-outing and resubmitting abnormally long jobs is a common strategy to reduce

the impact of latency and outliers. However, choosing the timeout value is often let to

the administrator or to the end user. A non trivial trade-off has to be found as a too

long timeout will not prevent the job from facing excessively high latencies, while a too

short one may be overkilling, causing the unnecessary resubmission of jobs that almost

completed. This problem is often encountered when considering unreliable systems and

timeout strategies have been designed in areas as different as TCP throughput optimiza-

tion [Kesselman and Mansour, 2005], HTTP requests [Reinecke et al., 2004, Xie et al., 2002]

8.1. Model of the user job latency taking into account the timeout value 195

or power saving devices [Rong and Pedram, 2006].

From this chapter, two different kind of job definitions will be used. Auserjob will denote

the computation that need to be performed by the user. It is composed of one or severalgrid

jobs that are the actual jobs that will be submitted on the grid. For instance, in this chapter,

the total latency faced by a user job is first modeled in section 8.1 in order to determine the

optimal timeout value to set to the grid jobs. Then, section8.2 presents some results of time-

out optimization on classical distributions. To show how the optimization performs on a real

infrastructure, the asymptotic behavior of the system and the impact of outliers are particularly

studied. Some experimental results from a distribution of the latency measured on the EGEE

production grid are finally presented in section8.3. To facilitate legibility, many of the detailed

proofs of the theoretical results are deferred to appendixB. The termslatencyandoutliersrefer

to the definitions already given: the latency is the durationfrom the job submission instant and

the beginning of its execution and an outlier is a job whose latency is largely prevailing on the

other ones (the latency faced by outliers is considered as infinite).

8.1 Model of the user job latency taking into account the

timeout value

As motivated in chapter6, a probabilistic modeling of the large-scale workload manager has

been adopted. In this section, our goal is to determine the distribution of the latency faced

by a user job taking into account timeout and resubmissions with respect to the timeout value

and the grid latency. LetJ be the total latency faced by a user job (including all its potential

resubmissions) andt∞ be a user defined timeout value. The system is seen as a black box

introducing a positive latencyR on the grid jobs. Consistently with the approach adopted in

chapter6, R is assumed to be a random variable. The outlier ratio is denoted byρ. The case

ρ = 0 corresponds to a reliable cluster management system: faults causing jobs loss are very

unlikely (highly reliable LAN, robust schedulers). The case ρ > 0 is needed to model grid

infrastructures where lower reliability of WANs, scale effects and scheduling errors lead to a

significant number of outliers. For instance on the EGEE infrastructure,ρ is in the order of 2%

to 3%.

q is the probability for a grid job to timeout. A grid job times-out either if it is an outlier or

if it faces a latency which is superior tot∞. Thus:

q = ρ + (1− ρ)P(R>t∞)

= 1− (1− ρ)FR(t∞). (8.1)

If a grid job times-out, then it is canceled and a new one is resubmitted. The cost of

canceling a grid job and the resulting system load are very low: they are neglected in this

196 Optimization of the timeout value Chap. 8

model. Moreover, the submission time of a resubmitted grid job is part of the grid latency and

is included inR. Thus, consecutive submissions can be considered as independent.

Let Ji be the latency faced by a user job from thei th grid job submission to its completion.Ji

are independent and identically distributed random variables. They can be recursively defined

as:

Ji =

R with probability 1− q

t∞ + Ji+1 with probabilityq.
(8.2)

The goal is to determine the distribution ofJ = J1, the total latency faced by a user job,

including all its resubmissions. The distribution ofJ has to be determined with respect to the

grid latencyR (i.e the latency faced by a grid job if no timeout is set) andt∞. J is superior to

nt∞ if and only if n grid jobs timed-out. Thus:

P(J > nt∞) = qn so that P(J < nt∞) = 1− qn. (8.3)

Consequently, the cdf ofJ is known for every multiple of the timeout value. A complete

expression ofFJ now has to be obtained. InterpolatingFJ in every [nt∞, (n+ 1)t∞] is clearly

not suitable. Indeed, those intervals can be quite large with respect to the total latency and the

interpolation error is likely to produce inconsistent results. It is better to notice thatfor all t in

[nt∞, (n+ 1)t∞[:

FJ(t) = P(J < t|t ∈ [nt∞, (n+ 1)t∞])

= P(J < nt∞) + P(nt∞ < J < t | t ≤ (n+ 1)t∞)

and thus, according to equation8.3:

FJ(t) = 1− qn + P(nt∞ < J < t | t ≤ (n+ 1)t∞). (8.4)

Given thatt ≤ (n + 1)t∞, a user job latencyJ is in [nt∞, t] if and only if n grid jobs timed-out

(probabilityqn) and the (n+ 1)th one succeeded,i.e it was not an outlier (probability 1− ρ) and

R≤ t − nt∞ (probabilityFR(t − nt∞)). Therefore,

P(nt∞ < J < t | t ≤ (n+ 1)t∞) = qn(1− ρ)FR(t − nt∞)

We finally get,∀t ∈ [nt∞, (n+ 1)t∞[:

FJ(t) = 1− qn + qn(1− ρ)FR(t − nt∞) with q = 1− (1− ρ)FR(t∞). (8.5)

Given thatR>0, it is clear thatFJ(0) = 0 and limt→+∞ FJ(t) = 1 (note that limt→+∞ n = +∞
and thus limt→+∞ qn = 0) so thatfJ is a pdf. It is important to notice that because it reveals that

the timeout strategy is able to highly reduce the impact of outliers. With a finite timeout value,

the probability for the latencyJ faced by the user job to be infinite is null, whereas without

timeout, it isρ.

8.1. Model of the user job latency taking into account the timeout value 197

Moreover,FJ is continuous at everynt∞. Indeed, according to equation8.5, the expression

of FJ at the lower bound of the segment [nt∞, (n+ 1)t∞] is:

FJ(nt∞) = 1− qn + qn(1− ρ)FR(0) = 1− qn

And at the upper bound of this segment,FJ is:

FJ((n+ 1)t∞) = 1− qn + qn(1− ρ)FR((n+ 1)t∞ − nt∞) = 1− qn + qn(1− ρ)FR(t∞)

= 1− qn + qn(1− q) (given equation8.1)

= 1− qn+1

However, in general,FJ is not differentiable innt∞.

Note that ifρ = 0, then equation8.5resumes to:

FJ(t) = 1− qn + qnFR(t − nt∞) with q = 1− FR(t∞).

whereas with outliers, it was:

FJ(t) = 1− qn + qn(1− ρ)FR(t − nt∞) with q = 1− (1− ρ)FR(t∞).

It means that the outlier case can be derived from the reliable case by replacingFR with (1−ρ)FR

in the expressions ofFJ andq. We will use this property to simplify some interpretationsin the

following of this chapter.

8.1.1 Illustration for a reliable system

If no outlier is present, the choice of a timeout value can be evaluated by comparing the latencies

faced by a user job with (J) and without (R) setting a timeout value. Figure8.1 displays an

example of a cdf forR (red curve) andJ (green curve). Note the singularities atnt∞ points. On

the upper graph, the distribution ofR is Gaussian with mean 300 seconds and standard deviation

100 seconds, truncated above zero to avoid negative latencyvalues. The timeout value is equal

to the mean of the original Gaussian (300 seconds). It is of course a very low timeout value

leading to many resubmissions. We can graphically notice that for everyt, FR(t) > FJ(t), which

means that at any timet, there is a higher probability thatR < t than thatJ < t. In this case, it

would thus have been better not to set any timeout value as it highly penalizes the execution.

On the other hand, the bottom of figure8.1 displays an example of a cdf ofR andJ in a

case where the timeout choice improves the execution. The timeout value is still 300 seconds

but the distribution ofR has a longer tail than in the former example.R is actually log-normal,

with µ=15 seconds andσ=10 seconds. In this case, it seems that for everyt, FR(t) < FJ(t),

which means that this timeout value reduces the total latency faced by a user job.

198 Optimization of the timeout value Chap. 8

1−q3

1−q

1−q²

timeout value 2 x (timeout value)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

FR
FJ

timeout value 2 x (timeout value)

1−q3

1−q

1−q²

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800 900

FR
FJ

Figure 8.1: Example of cdfs of the latency without (R) and with timeout (J). Top: bad

timeout choice (FR > FJ). Bottom: good timeout choice (FR < FJ).

8.1. Model of the user job latency taking into account the timeout value 199

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200

seconds

FR
FJ

1-q
1-q2
1-q3

Figure 8.2: The cdfs of the latency without (FR) and with (FJ) a timeout value cannot be

compared for every time point. The optimal timeout value canbe determined by expecta-

tion minimization.

As suggested by those graphical remarks, the impact of some timeout choices on the user

job latency may be evaluated by comparingFJ andFR only. However, apart from those partic-

ular cases, it is often not possible to have general results on the comparison betweenFJ andFR

at every time pointt and the configuration displayed on figure8.2 is observed. On this figure,

the distribution ofR is log-normal, withµ = 5.5s,σ = 1s and a timeout value of 300s. In this

case, minimizing the expectation ofJ with respect tot∞ is a natural solution to optimize the

timeout value.

8.1.2 Expectation of the latencyJ faced by a user job

Computing the expectation of the latency faced by a user job,general conclusions can be made

on its behavior when the timeout value increases, independently from the system latency dis-

tribution. As shown in appendixB.1, The expectation of the latencyJ faced by a user job

is:

EJ(t∞)=
1

FR(t∞)

∫ t∞

0
u fR(u)du+

t∞
(1− ρ)FR(t∞)

− t∞. (8.6)

Equation 8.6 compares to similar expressions derived for modeling completion

times probabilistically: equation 6 in [van Moorsel and Wolter, 2006] and equation 1

200 Optimization of the timeout value Chap. 8

in [Libman and Orda, 2002]. In both cases, the authors introduced a fixed cost

penalty to resubmission that is considered here to be included in the latencyR.

In [van Moorsel and Wolter, 2006], the authors also derives higher moments ofJ and some

relevant properties about them (e.g. their existence). Our hypotheses are similar to theirs, ex-

cept that they do not take into account outliers that are of major importance on the production

infrastructures that are targeted in this chapter. This parameter is characteristic of unreliable

systems and is needed to properly model a grid infrastructure. In [Libman and Orda, 2002],

the authors do take into account the outlier ratio (denotedL) in the context of the retransmis-

sion of network packets. However, the studied hypotheses donot really match ours. In our

case, a grid job is abandoned when it times-out (simple client) whereas it is still monitored

in [Libman and Orda, 2002].

As shown in appendixB.2, EJ has the following limits:

lim
t∞→∞

EJ(t∞) = +∞ if ρ , 0 (8.7)

and lim
t∞→∞

EJ(t∞) = ER otherwise. (8.8)

Moreover, ifρ , 0 (with outliers), the straight-lineER +
ρ

1−ρ t∞ is an asymptote ofEJ(t∞). The

first limit can be explained by noticing that if a single grid job is an outlier, then the latency

faced by the user job is infinite. Whent∞ → +∞, the probability for encountering an outlier

tends towards 1 and the expected latency faced by the user jobtends towards infinity. It is

thus mandatory to set a timeout value in case of outliers. Thesecond limit is also intuitive: in

absence of outliers, if no timeout value is set, then only a single grid job is submitted and the

expectation of the latency faced by the user job resumes to the expectation of the grid latency.

8.2 Timeout optimization for classical latency distributions

In this section, some classical distributions of the latency Rare studied from a theoretical point

of view in order to understand how the timeout value impacts the expectation of the latency

faced by the user job both with and without outliers. Distributions with light tails (uniform,

truncated Gaussian and Weibull with shape parameter>1) are distinguished from heavy-tailed

ones (log-normal, Weibull with shape parameter<1) and power tails (Pareto) to show how they

exhibit different behaviors. The exponential distribution will constitute a transition between

light and heavy-tailed distributions. Light-tailed distributions are the ones that decay faster than

the exponential. In this case, there existsasuch that: limt→+∞ eat(1− F(t)) = 0. On the contrary,

heavy-tailed distributions decay slower than the exponential : limt→+∞ eat(1− F(t)) = +∞.

Power-tailed distributions are a subset of the heavy-tailed ones. In this case, there existsa and

b such that limt→+∞
1−F(t)

ta = b.

For each distribution, the goal is to determine the optimal timeout value:

t̂∞ = arg min
t∞
{EJ(t∞)}.

8.2. Timeout optimization for classical latency distributions 201

a+b
2

a b timeout value

EJ

a+b
2

a+b
2

+b
ρ

1−ρ

a b timeout value

EJ

Figure 8.3: Behavior of the expectation of the latencyEJ(t∞) faced by a user job for the

uniform distribution without (left) and with (right) outliers.

In case of very reliable systems (when no outliers are present), the optimal value of the timeout

may be+∞, which means that no timeout should be set. Another singularoptimal timeout

value is 0. This configuration occurs when the probability for a grid job to face a null latency

is so high that it is interesting to resubmit a new one as soon as one knows that the current

one is going to face a non null latency. This result would onlybe realistic if it was possible

to resubmit an arbitrarily large number of jobs at no additional cost. Obviously, the overhead

induced on any real system would finally slow down the process.

8.2.1 Uniform distribution

In this case, the pdf of the system latency is:

fR(t) =

1
b−a if t ∈ [a, b]

0 otherwise.
(8.9)

It is possible to derive from equation8.6the expectation of the latencyJ faced by a user job:

EJ(t∞) =

+∞ if t∞ ≤ a

t∞+a
2 + t∞

b−t∞+ρ(t∞−a)
(t∞−a)(1−ρ) if t∞ ∈ [a, b]

b+a
2 + t∞

ρ

1−ρ otherwise.

(8.10)

The curve ofEJ(t∞) is depicted on figure8.3. The optimal timeout value isb both with and

without outliers. Without outliers, setting the timeout to+∞ is also optimal because the ex-

pectation ofJ is constant in [b,+∞[. If there is no outlier, it can be graphically noticed that

setting a timeout always penalizes the execution. Indeed, as figure8.4 shows, the cdf of the

latency with timeout (FJ(t)) is lower than the cdf of the latency without any timeout (FR(t)), for

every timeout valuet∞ and every time point t.

202 Optimization of the timeout value Chap. 8

1

0
a b

1−q

FJ

FR

1−q²

tinf tinf2

Figure 8.4: Behavior of the cdfFJ of the latency faced by a user job (green) and the cdfFR

of the grid latency (red) for a uniform distribution withoutoutliers.

8.2.2 Truncated Gaussian distribution

Normal distributions are commonly used but they do not exclude negative values. In this case,

the latency cannot be lower than 0. We are thus considering Gaussian distributions with meanµ

and standard-deviationσ truncated above 0. In this case, the pdf and cdf of the system latency

are:

fR(t) =

1
Φ(µσ)

1√
2πσ

e−
1
2(

t−µ
σ)2

if t ≥ 0

0 otherwise,

FR(t) =
Φ(µσ)−Φ(

µ−t
σ)

Φ(µσ)
with Φ(t) = 1√

2π

∫ t

−∞ e−
1
2u2

du.

with Φ being the cdf of the normed and centered Gaussian distribution.Φ is linked to the error

function (erf) as detailed in appendixB.9.

As shown in appendixB.5, the expectation of the latency faced by a user job is then:

EJ(t∞) = µ + σ
φ
(

µ

σ

)

− φ
(

µ−t∞
σ

)

Φ
(

µ

σ

)

−Φ
(

µ−t∞
σ

) +
1

1− ρ
t∞

Φ
(

µ−t∞
σ

)

Φ
(

µ

σ

)

− Φ
(

µ−t∞
σ

) + ρ

with φ = Φ′ the pdf of the normed and centered Gaussian distribution.

The curve ofEJ is plotted on figure8.5. EJ exhibits different behaviors depending on the

presence of outliers or not. If there is no outlier (ρ = 0), thenEJ is decreasing towards its

limit ER whent∞ → +∞. On the other hand, whenρ , 0, thenEJ exhibits a global minimum

reached for̂t∞< +∞. The corresponding proof is based on the fact that the fourthderivative of

EJ is always positive, so that we can study the existence of a root in the lower order derivatives.

It is reported in appendixB.6.

If the distribution of the system latency is Gaussian and there is no outlier, time-outing is

not a solution to limit the impact of variability, regardless of the order of magnitude of the

variability.

8.2. Timeout optimization for classical latency distributions 203

0 timeout

EJ

EJ(0)

ER

EJ

EJ(0)

timeout
0

ER

Figure 8.5: Behavior of the expectationEJ of the latency faced by a user job for a truncated

Gaussian distribution without (left) and with (right) outliers.

timeout value
0

EJ

1
α α(1−ρ)

1

1
α

timeout value
0

EJ

Figure 8.6: Behavior of the expectationEJ of the latency faced by a user job for an expo-

nential distribution without (left) and with (right) outliers.

8.2.3 Exponential distribution

In this case, the cdf of the system latency is:

FR(t) = 1− e−αt.

And according to equation8.6, the expectation of the latencyJ faced by a user job is:

EJ(t∞) =
1
α
+

ρt∞
(1− ρ) (1− e−αt∞)

.

The curve ofEJ(t∞) is depicted on figure8.6. In case of outliers,EJ is increasing and the

best timeout value iŝt∞ = 0. If there are no outliers, the expectation ofJ is independent

from t∞, which is a singular behavior particular to the exponentialdistribution, as proved in

appendixB.3. The exponential distribution is a particular case of the Weibull one which is

studied in the next section.

204 Optimization of the timeout value Chap. 8

8.2.4 Weibull distribution

The Weibull distribution is typically used to model the failure of technical devices. For this

distribution, the cdf of the grid latency is:

FR(t) = 1− e−(
t
λ)

k

where k is a shape parameter andλ is a scale parameter of the distribution. In the context of

failure modeling,k<1 means that the failure rate decreases over time,k = 1 means that the

failure rate is independent from time andk>1 means that the failure rate increases over time.

In this case, the random variableR can be seen as the instant at which a grid job completes,i.e

R models the success of a grid job instead of its failure. Note that the exponential distribution

of parameter 1/λ is a Weibull distribution with k=1.

In this case, the following results can be proved:

• If k > 1, then setting a timeout value always penalizes the execution, whatever this value

is. The optimal timeout value is thus+∞ (no timeout). This result is consistent with the

fact that the Weibull distribution withk = 3 is often used to approximate the Gaussian

one. In this case, it has been shown in section8.2.2that setting a timeout value always

penalizes the execution.

• If k < 1, then the timeout value has to be as low as possible. The optimal timeout value

is 0.

• If k = 1, then the distribution ofR is exponential and the timeout value does not impact

at all the latency faced by a user job.

The corresponding proofs are reported in appendixB.4.

The obtained results are consistent with the classical interpretation of the shape parameter

of the Weibull distribution. Indeed, whenk>1, the success rate of a grid job is increasing over

time, which explains that time-outing will penalize the user job. On the contrary, whenk<1,

the success rate of a grid job is then decreasing over time, and time-outing as soon as possible

becomes mandatory.

8.2.5 Log-normal distribution

The log-normal distribution is a typical example of heavy-tailed distribution.

In [Li et al., 2004], it is used to fit job running times on clusters. In this section, the

grid latency is assumed to have a log-normal distribution with parametersµ andσ. In this

case, the cdf and pdf of the system latency are:

FR(t) = Φ

(

ln t − µ
σ

)

and fR(t) =
1

t
√

2πσ
e−

(ln t−µ)2

2σ2 .

8.2. Timeout optimization for classical latency distributions 205

The expectation and standard-deviation of the latency are:

ER = eµ+
σ2
2 and σR =

(

eσ
2 − 1

)

e2µ+σ2
. (8.11)

In this case, as reported in appendixB.7, the expectation of the latencyJ faced by a user

job is:

EJ(t∞) = ER

(

Φ (x∞ − σ)
Φ(x∞)

+ eσx∞−σ
2

2

(

1
(1− ρ)Φ(x∞)

− 1

))

(8.12)

where x∞ =
ln(t∞) − µ
σ

This expression shows that the minimization ofEJ can be performed independently fromµ on

the transformed variablex∞. The obtained solution ˆx∞(σ, ρ) only depends onσ andρ. The

optimal timeout value can then be written as:

t̂∞(µ, σ) = eµK(σ, ρ) where K(σ, ρ) = eσx̂∞(σ,ρ) (8.13)

and:

x̂∞(σ, ρ) = arg minx∞

(

Φ (x∞ − σ)
Φ(x∞)

+ eσx∞−σ
2

2

(

1
(1− ρ)Φ(x∞)

− 1

))

.

K(σ, ρ) is actually the optimal timeout value forµ = 0.

We also have the following limit fort∞ = 0:

lim
t∞→0

EJ(t∞) = lim
x∞→−∞

EJ(x∞) = +∞.

This infinite limit proves that whenρ , 0 (with outliers), there exists a finite non null optimal

timeout value that minimizesEJ. Indeed, in this case, the limit ofEJ whent∞ tends towards in-

finity is infinite, according to equation8.7andEJ thus has to reach a global minimum (because

it is continuous on]0,+∞[).

The existence of a global minimum ofEJ(t∞) whenρ = 0 is not straight-forward. Given

the infinite limit of EJ whent∞ tends towards 0 and given thatEJ(+∞) = ER, it resumes to the

existence of at∞ for which EJ(t∞)<ER. If σ ≥ 1, thent∞ = eµ satisfies this relation. Indeed, in

this case,x∞ = 0 and according to equation8.12,

EJ(x∞ = 0) =
(

2Φ(−σ) + e−
σ2
2

)

ER

A numeric resolution then shows thatEJ<ER if and only if σ & 0.9311. Numeric simulations

suggest thatEJ has a global minimum even for lower values ofσ. However, an analytic proof

still has to be derived.

Figure8.7 displays a simulation of the optimal timeout value forµ=0, several values of

the outlier ratio andσ ranging from 1 to 2 seconds. We first can notice thatK(σ, ρ) seems to

decrease with respect toρ. The timeout value thus has to be reduced when the proportionof

outliers is increasing, which is consistent. Moreover, given an outlier ratio, the optimal timeout

value for µ = 0 is decreasing asσ is growing. It is also consistent because the standard-

deviation of the log-normal distribution is increasing with respect toσ (see equation8.11). The

optimal timeout value thus has to be reduced as the variability of the infrastructure is growing.

206 Optimization of the timeout value Chap. 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 1.2 1.4 1.6 1.8 2

K
(s

ig
m

a,
rh

o)

sigma (s)

K(sigma,0.1)
K(sigma,0.05)
K(sigma,0.01)

K(sigma,0)

Figure 8.7: Evolution of the optimal timeout value forµ=0 in the log-normal case.K(ρ, σ)

is decreasing with respect toρ andσ, which indicates that the timeout value has to be

reduced when the variability of the latency and the outlier ratio increase.

8.2. Timeout optimization for classical latency distributions 207

a
ν

ν−1
a

tinf

EJ

tinf

EJ

ν (1−ρ)
a

Figure 8.8: Behavior of the expectationEJ of the latency faced by a user job for a Pareto

distribution of the grid latency. Left: no outliers (ρ = 0); Right:ρ , 0.

8.2.6 Pareto distribution

The Pareto distribution was introduced to represent the distribution of wealth and proved to be

very accurate to model a large class of computer systems measurements (jobs durations, size

of the files, data transfers length on the Internet. . .) [Harchol-Balter and Balter, 2002]. It is an

example of power tailed distribution. The cdf of the system latency is then:

FR(t) = 1−
(a
a+ t

)ν

with a and ν > 0.

The expectation is only defined forν>1. Then:

ER =
a

v− 1
.

In this case, the expression of the expectationEJ of the latency faced by a user job can be

directly derived from equation8.6and it is:

EJ(t∞) =
a+ t∞ν − a

(

a+t∞
a

)ν

(1− ν)
[(

a+t∞
a

)ν
− 1

] +
t∞

(1− ρ)
[(

a+t∞
a

)ν
− 1

] +
ρ

1− ρ
t∞.

We also have the following limit when the timeout value is null:

lim
t∞→0

EJ(t∞) =
a

v(1− ρ)
.

It can be shown thatEJ is increasing with respect to the timeout value, regardlessof theρ

value (see proof in appendixB.8). The optimal timeout value is thus 0. The behavior ofEJ(t∞)

is depicted on figure8.8.

8.2.7 Results summary and interpretation

Table8.1 displays a summary of the results obtained for various distributions of the system

latency. Those results suggest that the weight of the tail ofthe distribution of the system la-

tency is a discriminatory parameter for the timeout optimization when outliers are not present.

208 Optimization of the timeout value Chap. 8

Distribution of the latency Without outliers With outliers Tail

(FR) (ρ = 0) (ρ>0) of FR

Uniform no timeout (or b) b Light

Trunc. Gaussian no timeout 0 < t̂∞ < +∞ Light

Weibull k>1 no timeout ? Light

Exponential any 0 Exp.

Weibull k<1 0 ? Heavy

Log-normal (µ,σ) t̂∞ = eµK(σ) < +∞ 0 < t̂∞ < +∞ Heavy

Pareto (ν>1) 0 0 Power

Table 8.1: Optimal timeout values. The weight of the tail of the distribution is an important

parameter of the problem.

Indeed, only heavy-tailed distributions such as the log-normal, or the Pareto ones lead to finite

optimal timeout values. In this case, which corresponds to the most realistic one, the optimiza-

tion speeds up the execution. On the other hand, when the distribution of the system latency

decays faster than the exponential, (which is the case for the Gaussian truncated distribution,

for the Weibull one withk > 1, and for the uniform one) then setting a timeout value always

penalizes the execution and the optimal timeout is+∞. The exponential distribution stands in

the middle and is not affected by the timeout value.

As noticed in section8.1, taking into account outliers corresponds to replacingFR by (1−
ρ)FR in FJ andq (and thus inEJ). In this case, there is a probability to face an infinite latency,

which makes the tail of the grid latency distribution heavy (mathematically, the distribution of

the system latency becomes heavy-tailed because limx→+∞ eax(1− (1− ρ)FR(x)) = +∞ when

a > 0). Consistently, the optimal timeout value is then always finite.

8.2.8 Performance improvement

In case of reliable systems (without outliers), the expectation of the latency faced by a user job

without timeout equals to the one of the system latency. In this case, the ratioER
EJ(t̂∞) evaluates the

speed-up yielded by the optimization. If the latency of the system is light-tailed, then setting

a timeout value always penalizes the execution. The best strategy is thus to set the timeout

value to infinity. In this case, the optimization does not provide any speed-up with respect to

the expectation of the system latency. Concerning the limitcase of an exponential distribution,

the expectation of the latency faced by a user job is independent from the timeout value and the

optimization does not lead to any speed-up.

The optimization becomes interesting for heavy-tailed distributions as already suggested.

For the log-normal case, figure8.9 displays a numerical simulation of the evolution of the

speed-up of the optimization with respect toσ for a particular value ofµ. It shows that the

8.2. Timeout optimization for classical latency distributions 209

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

se
co

nd
s

S
pe

ed
-u

p
of

 th
e

op
tim

iz
at

io
n

sigma(s)

EJ(hat t_infty)
ER

speed-up

Figure 8.9: Evolution of the speed-up of the optimization for µ = 6.4s in the log-normal

case. The more variable the infrastructure, the more interesting the timeout optimization.

speed-up is growing withσ. In this case, both the expectation (ER) and standard-deviation (σR)

of the grid latency without any timeout are also growing withσ (see equation8.11). Thus, the

higher and the more variable the latency, the more interesting the timeout optimization.

Concerning the Pareto distribution, the optimized expectation of the latency faced by a user

job without outliers isa
ν
, whereas the one obtained without setting any timeout isER =

a
ν−1.

The speed-up obtained by the optimization is thusν
ν−1. This value is maximal forν = 1 and

decreases towards 1 whenν increases. Moreover, under Pareto assumption, the variance of the

system latency
(

νa2

(ν−2)(ν−1)2

)

is decreasing with respect toν. Thus, the more variable the latency

of the infrastructure, the higher the speed-up yielded by the optimization.

When outliers are present, the optimization of the timeout prevents the expectation ofJ to

be infinite. The impact of the optimization can then be evaluated by comparing the optimized

expectation of the latency faced by a user job to the one obtained without outliers. In case of a

uniform distribution, outliers add the termb ρ

1−ρ to the expectation of the latency faced by a user

job. This term is increasing with respect to the outlier ratio and tends towards infinity whenρ

tends towards 1. The exponential distribution and the Pareto one exhibit a similar behavior: the

outliers introduce an extra1
1−ρ factor on the expectation of the latency faced by a user job.

210 Optimization of the timeout value Chap. 8

8.3 Experiments on the EGEE latency distribution

In this section, we present experimental results obtained by measuring the distribution of the

latency of the EGEE grid infrastructure on a particular timeperiod. This distribution was

described in section6.2.1of chapter6 and can be accurately modeled by a mixed log-normal

and Pareto model. Thus, according to the theoretical study conducted above, the expectation of

the latency with respect to the timeout value should exhibita global finite minimum both with

and without taking into account outliers.

If outliers are not taken into account, the evolution of the expectationEJ of the latency faced

by a user job with respect to the timeout value is plotted on figure8.10. EJ converges towards

ER as predicted by the theoretical analysis. It reaches a minimum for t̂∞ = 360s. At this optimal

point, ÊJ(t̂∞) = 289s whereasER = 393s. The speed-up with respect to an execution without

timeout is 1.36.

The evolution ofEJ(t∞) taking the outliers into account is also plotted on figure8.10. EJ

effectively tends towards its asymptote. The optimal timeout valuet̂∞ is now 358 seconds and

ÊJ(t̂∞) has grown to 300 seconds. Setting the optimal timeout valuethus limits the impact of

the outliers to a 11-seconds loss, whereas it would be much higher if the timeout value is not

properly set, as suggested by figure8.10. This figure also shows that the timeout value should

better be overestimated than underestimated: both curves are rapidly decreasing to the optimal

timeout value whereas they increase more smoothly after it.

Once the distribution of the grid latency is available (see chapter6 for latency estimations),

deriving the optimal timeout value with this method is easily automatable. The optimization

criterion (i.e. EJ written in equation8.6) is computable in a short time: it mainly includes the

computation of an integral ofu fR(u), which is a piecewise linear function when an empirical

distribution is considered. For instance, plotting the curves of figure8.10 takes less than 2

seconds on a modern PC.

8.4 Conclusions

In practice, setting a timeout value to the grid jobs is a relevant strategy to reduce the impact of

the grid latency and it is required to keep the impact of outliers under control. In this chapter,

a probabilistic model of the latency faced by a user job taking into account time-outing and

resubmissions was presented. It can describe both job management systems prone to face

outliers (grid) or not (cluster). The optimal timeout valuehighly depends on the distribution

of the system latency. Without outliers, the heavy-tailed distributions lead to a finite optimal

timeout value whereas for the light-tailed ones setting a timeout value always penalizes the

execution. If outliers are present, the model predicts thatthe expectation of the latency faced

by a user job with respect to the timeout value is diverging to+∞ for every distributions,

8.4. Conclusions 211

 250

 300

 350

 400

 450

 500

 550

 600

 650

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
xp

ec
ta

tio
n

of
 J

 (
s)

timeout value (s)

Expected total job latency (EJ) without outliers
Asymptote of EJ

EJ with outliers
Expected latency without timeout and without outliers (ER)

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 480

 200 300 400 500 600 700 800 900 1000

E
xp

ec
ta

tio
n

of
 J

 (
s)

timeout value (s)

Expected total job latency (EJ) without outliers
EJ with outliers

Expected latency without timeout and without outliers (ER)

Figure 8.10: Evolution of the expectation of the total latency J of a user job in the exper-

imental case (on EGEE). Top: experimental curves effectively tend towards their asymp-

totes. Bottom: close-up between 200s and 1000s. The impact of outliers (difference be-

tween the two curves) is limited to 11 seconds. Overestimating the timeout value seems

better than underestimating it.

212 Optimization of the timeout value Chap. 8

following an asymptote whose slope only depends on the outlier ratio. The optimal timeout

value is finite for all the studied distributions since taking outliers into account lengthens the tail

of the distribution. Some results were finally presented on an empirical distribution measured

from the EGEE grid. It is heavy-tailed and modelable througha mixture of log-normal and

Pareto distributions. Even without outliers, a 1.36 speed-up can be achieved by optimizing the

timeout value. Considering outliers, optimizing the timeout value is even more critical and the

resulting expectation of the latency faced by a user job is close to the one obtained without

outliers.

Results presented in this chapter can be related to the field of operational research and in

particular to the queuing theory [Kleinrock, 1975, Gross and Harris, 1985, Baynat, 2000]. For

instance, the fact that the job timeout might be set to any value without any impact on the ex-

pected execution time given that the distribution of the grid latency is exponential could have

been induced from the memory-less property of this distribution. This property made this dis-

tribution extremely popular in the queuing theory, in particular in the M/M/c model. Yet, given

an arrival rate of the clients and a service rate, the goal of the queuing theory is to determine

the distribution of the number of clients inside the system and the waiting time. It might be

used at a finer grain to explain or even predict the distribution of the latency which is assumed

here to be known. What we showed in this chapter is that considering the grid latency as a ran-

dom variable (whose distribution is measurable or supposedto be known from another theory)

and optimizing the jobs timeout value from it improves the performance of grid applications in

practice. We believe that the adopted approach is new in the domain of distributed computing,

as traditional systems do not exhibit the required conditions of variability for making such an

optimization interesting. For instance, one can intuitively easily conceive that setting a timeout

to jobs submitted to a single cluster would not be of any use. Indeed, in this case, cancelling

and resubmitting the job to the same queue could only lead to an increase of the job waiting

time.

As introduced in chapter6, the grid is seen here as a black-box introducing a variable

latency on the grid jobs. It is important to notice that this study is completely grounded by

the highly variable nature of the grid latency, which was highlighted in chapters5 and6. This

variability introduces arisk in the process of submitting a grid job: a job can be highly delayed

or even not finish at all. Similarly, the problem addressed inthe next chapter is motivated by

this notion of risk associated to the submission of a grid job.

Chapter 9

Optimization of the job granularity

Contents
9.1 Model of the execution time of a user job allowing granularity tuning . . 216

9.1.1 Uniform distribution . 218

9.1.2 Gaussian distribution. 219

9.1.3 Experimental EGEE distribution. 219

9.2 Experimental evaluation on EGEE. 221

9.2.1 Distribution acquisition. 221

9.2.2 Experimental set-up. 223

9.2.3 Results . 223

9.3 Extensions of the method. 224

9.3.1 Taking into account outliers. 224

9.3.2 Joint timeout and granularity optimization. 224

9.4 Conclusions. 225

214 Optimization of the job granularity Chap. 9

I
n this chapter, the optimization of the job

granularity is studied as a solution to re-

duce the impact of the latency on an application.

Given a divisible user job to compute and consid-

ering its total execution time as the criterion to

optimize, a trade-off has to be found between the

submission of a high number of short jobs (which

maximizes parallelism but increases the risk that

one of them penalizes the whole application by

remaining blocked somewhere in the system) and

lowering the number of jobs (which reduces par-

allelism as well as the risk to face high latencies).

Similarly to the approach adopted in the previous

chapter, this trade-off is formalized using a prob-

abilistic model and studied on classical distribu-

tions. Finally, experimental results are presented

on EGEE, showing that a significant speed-up as

well as an important reduction of the number of

jobs can be obtained using this method.

D
ans ce chapitre, l’optimisation de la gran-

ularité des tâches est étudiée comme

stratégie de réduction de l’impact de la la-

tence sur une application. Pour une applica-

tion partitionable, et en considérant son temps

d’exécution total comme le critère à optimiser,

un compromis doit être trouvé entre soumettre un

grand nombre de tâches courtes (ce qui maximise

le parallélisme mais augmente le risque que

l’une d’entre-elles pénalise toute l’application

en restant bloquée quelque part au cours de son

cycle de vie) et diminuer le nombre de tâches (ce

qui réduit le parallélisme mais aussi le risque

de rencontrer de fortes latences). Comme dans

les chapitres précédents, ce compromis est for-

malisé par un modèle probabiliste et étudié sur

des distributions classiques. Enfin, des résultats

expérimentaux sont présentés sur EGEE. Ils

montrent qu’une accélération substantielle de

l’application ainsi qu’une réduction importante

du nombre total de tâches soumises peuvent être

obtenues en utilisant cette méthode.

The impact of the grid latency on the performance of an application composed by a set of

independent jobs is crucial. Ideally, a user would split herjob in as many independent grid jobs

as computing resources available in order to benefit from a maximal parallelism. Even in case

of high but fixed latencies, this strategy would be optimal ifthe grid jobs do not communicate

between each other. However, if the latency is assumed to be variable, which is the case on

the EGEE infrastructure, as shown in chapters5 and6, a trade-off has to be found between the

expected level of parallelization of the application and the risk to face high latencies. Indeed,

the higher the number of submitted grid jobs, the higher the probability for one of them to

be impacted by a high latency. It is important to notice here that the performance metric that

is best considered from a workflow application point of view is the makespan rather than the

throughput or the job fairness that may be taken into accountfrom the infrastructure point of

view. Thus, a single grid job is able to penalize the whole application performance if it is

subject to an excessive latency. A strategy has to be found inorder to minimize this risk. The

215

goal of such a strategy is to optimize the granularity of a user job in order to find the best

compromise between parallelism and the risk of facing high latencies. The granularity of a

user job is defined here as the number of grid jobs to submit given that the user job is supposed

to be divisible into any number of chunks.

Optimizing the granularity of a user job also reduces the total number of jobs submitted to

the infrastructure with respect to the default maximal partitioning strategy. Hence, a potential

global improvement of the grid performance can be expected if every user adopts such a strat-

egy. The goal of this study is to propose an optimization strategy for tuning the granularity of

the user jobs. This strategy aims at :

• Lowering the total execution time of a user job (user’s pointof view) ;

• Reducing the total number of grid jobs submitted for a given user job (infrastructure’s

point of view).

A typical class of applications targeted by this strategy are embarrassingly parallel applications,

that may correspond to parameter sweep studies and are very common in several scientific do-

mains [Jacq et al., 2007] including medical image analysis [Sermesant et al., 2006] and where

a large number of small jobs could be grouped into larger ones.

We consider a user job corresponding to a total execution time w supposed to be divisible

into any numberp of independent grid jobs. The grid infrastructure introduces a latencyRi on

the grid jobi. The goal is to minimize the makespanΣ of the user job defined as:

Σ = max
i∈[1,p]

(

Ri +
w
p

)

(9.1)

If Ri are assumed to be constant fixed values (∀i,Ri = R̄), then the solution is straightforward

andp has to be as high as possible. Thus, this problem is specific tohighly variable infrastruc-

tures such as production grids. In the following of this chapter, the order of magnitude of the

variability of the latency will be an important parameter ofthe problem. We will demonstrate

that the more variable the infrastructure, the more interesting the granularity optimization. As

it has already be discussed in chapter6 (section6.1.2), Ri will be assumed to be independent

and identically distributed random variables.

The problem of splitting jobs over a set of a known amount of computing resources con-

nected through a reliable and high performance network has been largely studied in the field

of parallel computing [Chrétienne et al., 1995, Feitelson et al., 2004]. Several works address

the job granularity issue, noticing that there is an optimalnumber of processors to determine

to minimize the total execution time, taking into account both the computation time and the

communication time. In [Weissman and Zhao, 1998], the authors use heuristics to determine

a close to optimal configuration, in which jobs are assigned to specific processors to reduce

communication overhead induced by routing and contention.Even if it provides good results

in their scope, their solution is strictly deterministic and models the communication function

216 Optimization of the job granularity Chap. 9

linearly in the number of processors, which cannot properlydescribe the latencyR considered

here. In [Montagnat et al., 2004b], the authors determine the optimal number of jobs to submit

by determining an analytical model of the latency of the gridsubmission and queuing systems

in a batch architecture. Such an analytical model is very hard to determine in a complex dy-

namic multi-users grid infrastructure. In those works, splitting a user job in a high number of

grid jobs is damageable because the grid jobs are going to communicate between each other.

The cost of these communications is increasing with the number of submitted jobs. Is is funda-

mental to notice that our problem does not come from the same issue. In our problem, the point

is that the submission of a single job introduces a risk of penalizing the whole application.

In the following, the behaviour of the makespanΣ of the user job defined by equation9.1

is investigated. Its expectation is derived and studied forvarious classical distributions of the

latency in section9.1. Then, an experiment on EGEE evaluates the gain that could beachieved

by this method.

9.1 Model of the execution time of a user job allowing gran-

ularity tuning

The goal here is to determine the expectation of the makespanΣ of a user job with respect to

its execution timew, its granularityp and the grid latencyFR in order to study its minimization

for various distributions. First, the cdf ofΣ can easily be determined:

FΣ(t) = P(Σ < t) =
p

∏

i=1

P

(

Ri +
w
p
< t

)

= P

(

Ri < t − w
p

)p

= FR

(

t − w
p

)p

Then fΣ(t) =
dF
dt
= p fR

(

t − w
p

)

FR

(

t − w
p

)p−1

The expectation ofΣ can then be derived:

EΣ(p) =
∫

�

t. fΣ(t)dt =
∫

�

tp fR

(

t −
w
p

)

FR

(

t −
w
p

)p−1

dt

=

∫

�

p

(

t +
w
p

)

fR(t)FR(t)p−1dt

=

∫

�

pt fR(t)FR(t)p−1dt+
w
p

(9.2)

9.1. Model of the execution time of a user job allowing granularity tuning 217

 3700

 3750

 3800

 3850

 3900

 3950

 4000

 4050

 4100

 0 20 40 60 80 100

E
xp

ec
te

d
m

ak
es

pa
n

E
H

 (
s)

Number of jobs p

EH(p)
b

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 0 20 40 60 80 100

E
xp

ec
te

d
m

ak
es

pa
n

E
H

 (
s)

Number of jobs p

EH(p)
b

Figure 9.1: Representation of the expectationEΣ of the makespan of a user job with respect

to its granularityp for a uniform distribution of the grid latency witha = 200s,b = 4000s

andw = 2000s (top) anda = 700s,b = 1500s andw = 2000s (bottom). The existence of a

finite optimal granularity value is conditioned by the magnitude of b−a
w .

218 Optimization of the job granularity Chap. 9

9.1.1 Uniform distribution

If the grid latencyR is assumed to be uniformly distributed between a minimum valuea and a

maximum valueb, then an explicit solution can be provided. Indeed, we then have:

fR(t) =

1
b−a if t ∈ [a, b]

0 otherwise

and

FR(t) =

0 if t < a
t−a
b−a if t ∈ [a, b]

0 if t > b

Thus, according to equation9.2:

EΣ(p) =
∫ b

a
pt

1
b− a

(t − a
b− a

)p−1

dt+
w
p

=
(p+ 1)w+ bp2 + ap

p(p+ 1)

It can be noticed thatEΣ(1) = w + a+b
2 : it is consistent with the fact that the execution time

on a single machine isw and the execution suffers from aa+b
2 penalty that is the mean latency

introduced by the infrastructure. Moreover, lim(EΣ(p))p→+∞ = b: if an infinite amount of

resources is used, the worst possible latency is faced (b) but the best computation time (0) is

also obtained. Indeed, as the number of submitted grid jobs increases, the probability for one

of them to suffer from a high latency increases. Finally, lim(EΣ(p))p→0 = +∞: the limit of EΣ
towards zero corresponds to the execution of the user job on zero machine. In this case, the

makespan of the user job consistently tends towards infinity.

The next step is the minimization of the expectation ofΣ with respect to the granularityp.

At the optimum, the derivative of the expectation ofΣ should be null:

dEΣ(p)
dp

= −
p2w+ 2pw+ w− bp2 + ap2

p2(p+ 1)2
= 0

Thus, ifw , b− a, then the optimal number of grid jobs to submit is:

p1 = −
√

(b−a)w+w
w−(b−a)

or

p2 =
√

(b−a)w−w
w−(b−a)

p1 is positive if (b− a) > w and negative otherwise whereasp2 is always negative. Given that

p has to be positive, there is a unique optimal number of grid jobs popt minimizing EΣ(p) if

(b− a) > w and we have:popt = −
√

(b−a)w+w
w−(b−a) . Such a configuration is represented on the upper

9.1. Model of the execution time of a user job allowing granularity tuning 219

graph of figure9.1whereEΣ(p) is plotted for a uniform distribution witha = 200s,b = 4000s

andw = 2000s. On the other hand, if (b−a) < w thendEΣ(p)
dp < 0 so thatEΣ is strictly decreasing

and the optimal number of grid jobs corresponds to the maximal one. Such a configuration is

represented on the bottom graph of figure9.1whereEΣ(p) is plotted for a uniform distribution

with a = 700s,b = 1500s andw = 2000s. Ifw = b − a, then dEΣ(p)
dp = − 2pw+w

p2.(p+1)2 : it has no

positive root and here again, the optimal number of grid jobscorresponds to the maximal one.

We can conclude from this particular example that the ratiob−a
w plays a strong role into the

optimization procedure. Actually, this ratio correspondsto a comparison between the standard-

deviation (b−a√
12

) of the grid latency andw, the execution time of the user job. We define the

relative variability of the latency for the user job as the ratio V = σ
w whereσ is the standard-

deviation of the latency. This parameter will play an important role in the following. For a

uniform distribution, whatever the actual mean ofR is, if V is low enough, then looking for an

optimal user job partitioning is straight forward (maximumpartitioning).

9.1.2 Gaussian distribution

If the distribution of the grid latencyR is supposed to be Gaussian, with meanµ and standard

deviationσ, then:

fR(t) =
1
√

2πσ
exp

(

−
(t − µ)2

2σ2

)

and FR(t) =
1
√

2πσ

∫ t

−∞
exp

(

−(u− µ)2

2σ2

)

du

Then the expectation of the makespan of the user job is:

EΣ(p) =
∫

�

pt
1
√

2πσ
exp

(

−
(t − µ)2

2σ2

) (

1
√

2πσ

∫ t

−∞
exp

(

−
(u− µ)2

2σ2

)

du

)p−1

dt+
w
p

Minimizing EΣ(p) is hardly analytically feasible but a minimum can be estimated numerically.

For example, figure9.2displays the evolution ofEΣ(p) with respect top for different values of

the relative variabilityV ranging from 0.015 to 0.6 and withµ = 600s andσ = 300s. It can be

noticed from those graphs that the higher the relative variability V, the deeper the minimum of

EΣ(p). One can here again conclude that the optimization procedure is particularly suitable for

environments with a high variability with respect to the execution timew of the user job.

9.1.3 Experimental EGEE distribution

Figure 9.3 presents the granularity optimization of a 2000 seconds user job considering the

experimental distribution measured on EGEE in section6.2 of chapter6. The expectation

220 Optimization of the job granularity Chap. 9

Figure 9.2:EΣ(p) for a Gaussian distribution withσ = 300s andµ = 600s. From top to

bottom:V = 0.6, V = 0.15 andV = 0.015

9.2. Experimental evaluation on EGEE 221

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 5 10 15 20 25 30 35 40

S
ec

on
ds

Number of jobs p

EΣ(p)
ER+w

Figure 9.3: Evolution of the expected execution time of a 2000s user job with respect to

the number of submitted grid jobs with the experimental distribution measured on EGEE

(in section6.2of chapter6). In this case, the optimal granularity is to submit 4 grid jobs of

500s. Increasing this number rapidly leads to a strong penalty.

ER of this latency distribution is 393 seconds and it has been correctly fitted by a mixed log-

normal/ Pareto model. The expectation of the makespan of the user job(EΣ) exhibits a global

minimum reached for 4 submitted jobs, which corresponds to grid jobs of 8min 20s. After this

optimum, the expected makespan is rapidly growing. Above 16grid jobs, it is even higher than

the time expected for the submission of a single 2000s grid job (green line). The minimum is

deep enough (it is about 1000 seconds between the value of theexpected time at the minimum

and the green line) to conclude that the the optimization of the granularity could effectively be

interesting on EGEE.

Going further in the theoretical analysis of the optimization of the granularity of a user job

would for sure be an interesting perspective of this section. In particular, it could be worth

studying the influence of the tail of the distribution of the grid latency on the existence of a

global minimum. Indeed, it is an important parameter for theoptimization of the timeout value

presented in chapter8 of this manuscript.

9.2 Experimental evaluation on EGEE

9.2.1 Distribution acquisition

Our strategy to optimize the granularity of a user job was assessed on EGEE. To do that, the

optimal granularity was determined on-line, from an experimental distribution periodically up-

222 Optimization of the job granularity Chap. 9

Min Max Avg Median

δ (seconds) 10 960 258.94 215

δnormalized 0.04 12.64 2.1 1.16

Table 9.1: Errors between the model and the measures.

dated through waves of dedicated probe jobs submitted to theinfrastructure. Those jobs do not

process anything and were used as probes to measure the grid latency. The main problem raised

by this distribution acquisition is the fact that the statusof the infrastructure may be disrupted

by such a measure. Indeed, submitting waves of measure jobs would cause an additional load

on the infrastructure, leading to inconsistent measures. To face this problem, a limited set of

probe jobs was initially submitted and then, a new one was submitted each time a probe job

completed, so that the total number of measure jobs running on the infrastructure remained

constant, leading to a fixed perturbation.

Even if a grid provides a huge number of resources, thus theoretically allowing a large num-

ber of job submissions, the EGEE infrastructure is actuallylimited by the maximum number

of simultaneous connections from the submission entity andthe maximum number of grid jobs

on the Resource Broker. The number of probe jobs was empirically tuned to 50, as a trade-off

between the accuracy of the measure and the induced overheadon the submission system. It

is true that this kind of method is quite unfair because it introduces a significant overload on

the infrastructure. But ultimately, the middleware shouldprovide to the users such statistics

computed from all the submitted jobs so that the method wouldnot be invasive.

Setting a timeout to grid jobs is required to avoid unreasonable waiting times because of

outliers. Taking into account timed-out grid jobs into the optimization procedure would require

to propose a fault-tolerant model handling grid job resubmissions and so on. This is investigated

in chapter8 and some remarks about the joint optimization of the granularity and the timeout

value are done in section9.3.2. Here, timed-out grid jobs are neglected, both in the measure

scope and in the validation study. In those experiments, thetimeout value was fixed to the total

execution timew of the user job, so that timed-out grid jobs are the ones whichwould lead to a

slowing down of the user job with respect to a sequential execution.

Once latency measures are acquired, the next step is to determine the pdf of the grid latency

R. It was done by considering the 50 last probe measures and gathering them into 5 seconds

bins. The computation and minimization ofEΣ(p) is straightforward from equation9.2. EΣ(p)

is then computed for the granularityp ranging from 1 to a maximum value corresponding to

the maximum number of grid jobs submittable to the infrastructure from a single user interface.

9.2. Experimental evaluation on EGEE 223

Min Max Avg

Expected 0 671 162.5

Measured -775 1308 198.1

Table 9.2: Time difference in seconds between maximal and optimal strategies (gain of the

optimization).

9.2.2 Experimental set-up

Two experiments were conducted in order to evaluate the model on the EGEE infrastructure.

First, the capability of the model to correctly predict the makespan of a user job was evaluated.

The makespan of a user job was measured and compared to the value given byEΣ(p). The user

job was composed of 30 grid jobs, 67 seconds long each, thus leading to a total execution time

w of 2000 seconds.

Second, the performance obtained with the model (optimal strategy) was compared to the

naive strategy consisting in submitting a maximal number ofgrid jobs (maximal strategy). A

user job corresponding to aw = 2000s execution time was submitted, on the one hand using the

optimal number of grid jobs resulting from the minimizationof EΣ(p), and on the other hand

using a fixed number of 30 grid jobs (this corresponds to the maximum number of grid jobs

that we can submit concurrently on the infrastructure without hitting some performance loss).

To avoid any bias resulting from an evolution of the grid status between the two submission

processes, the two strategies were alternatively repeatedup to 88 times, on various day times

(mornings, afternoons, nights) spread over one week and using 3 different Resource Brokers.

9.2.3 Results

Experiment 1: model versus measures. On its upper line, table9.1shows statistics concern-

ing the differenceδ in seconds between the model prediction and the effective measure:δ =

|Σpredicted− Σmeasured|. In order to quantify the accuracy of the model, this error was normalized

with the predicted standard-deviation of the random variable Σ : δnormalized =
|Σpredicted−Σmeasured|

σΣ
.

On its lower line, the table shows the minimum, maximum, average and median ofδnormalized.

One can notice that the median ratio is close to 1, that is to say that the measured error is close

to the standard-deviation ofΣ, which is consistent. Thus, the model provides a good estimation

of the makespan of a user job as well as a confidence interval onit.

Experiment 2: optimal strategy versus maximal strategy. Two different conclusions can

be made from this experiment.

• Job saving: the total number of submitted grid jobs is 2580 for the maximal strategy and

1756 for the optimal one. The optimal strategy leads to a total saving of 824 grid jobs,

224 Optimization of the job granularity Chap. 9

representing 32% of the grid jobs submitted with the maximalstrategy.

• Time gain: table9.2shows statistics on the differences (in seconds) between the maximal

and the optimal strategies. Those statistics have been computed over the 42% of the cases

for which the optimal number of grid jobs differed from the maximal one. The remaining

58% correspond to cases for which the computed optimal number of grid jobs is superior

or equal to the maximal value (30). One can notice that the average time gain yielded by

our optimization strategy is about 200s, which represents 10% of the execution timew of

the user job.

9.3 Extensions of the method

9.3.1 Taking into account outliers

The reader may wonder why outliers were not taken into account in this chapter, whereas their

importance was highlighted in the previous one. Actually, the optimization of the granularity

of a user job is not able to prevent an application from facingoutliers. If we take outliers into

account, then the probability for the makespanΣ of a user job corresponding to an execution

timew composed ofp grid jobs to be lower than a given valuet is the probability for each grid

job (i) to be an inlier (probability 1− ρ) and (ii) to have a total execution timeRi +
w
p inferior to

t. Therefore:

P(Σ < t) =
p

∏

i=1

(1− ρ)P
(

Ri +
w
p
< t

)

= (1− ρ)pFR

(

t −
w
p

)p

We can notice thatP(Σ = +∞) > 0. Consequently, if outliers are taken into account, then the

expectation ofΣ will be infinite whatever the number of submitted jobs. On thecontrary, as no-

ticed by equation8.5of section8.1of the previous chapter, setting a timeout value prevents the

expectation of the latency faced by a user job to be infinite: after a sufficiently high (potentially

infinite) number of resubmission, the user job will complete.

9.3.2 Joint timeout and granularity optimization

As shown above, setting a timeout value is the only strategy that guarantees that the application

will not be impacted by outliers. Still, as it has be shown in this chapter, optimizing the job

granularity provides significant performance gains. An interesting approach could be to set an

optimal timeout value to each grid job resulting from the optimization of the user job granu-

larity. Yet, there is no rationale to state that the timeout value of the grid jobs and the user job

9.4. Conclusions 225

granularity can be determined independently from each other. The timeout value and the granu-

larity should probably be jointly optimized. To do that, therandom variableΣ = maxi=1...p Ji has

to be considered, whereJi are defined similarly as in equation8.5of chapter8, yet including a

wall-clock time depending on the granularity of the user job. For everyt in [nt∞, (n+ 1)t∞]:

FJ(t) = 1− qn + qn (1− ρ) FR

(

t − nt∞ −
w
p

)

with q = 1− (1− ρ) FR

(

t∞ −
w
p

)

The expectation of the makespanΣ of the user job can then be expressed according to the

one ofR:

EΣ(p, t∞) =
+∞
∑

n=0

∫ (n+1)t∞

nt∞

ptqn fR

(

t − nt∞ −
w
p

)

(1− ρ)
[

1− qn + qn(1− ρ)FR

(

t − nt∞ −
w
p

)]p−1

dt

The minimization ofEΣ with respect top andt∞ and for various distributions ofR could then

be studied. The major interest to study this minimization isto be able to limit the impact of the

outliers while optimizing the job granularity.

9.4 Conclusions

A strategy to optimize the job partitioning on a real grid infrastructure was proposed and stud-

ied in this chapter. The method was evaluated taking into account the dynamic and probabilistic

nature of such an infrastructure by perpetually refreshingthe pdf of the grid latency and min-

imizing the expectation of the makespan of the user job. Experimental results demonstrate

that (i) a significant speed-up and (ii) a substantial grid job saving can be obtained using this

method.

In practice, exploiting the methods presented in chapters8 and9 requires (i) to estimate

of the distribution of the grid latency and (ii) the derivation of the optimal parameters values.

The first issue cannot reasonably be addressed by an end-user. Collecting real-time statistics

about the grid latency implies the submission of several probe jobs that may disturb the grid

operation without any production usage of the resources. However, such an information should

easily be available from logs of the grid workload management system. A production grid such

as EGEE already includes a logging service which would be able to compute and update the

cdf of the grid latency over time. Yet, more fundamental problems such as the handling of

non-stationarities of the workload still remain.

Considering the whole grid as a black box characterized by the random variable capturing

its latency seems to be a powerful approach. Important problems such as the ones presented

in this part can be modeled in this way. The fundamental idea behind those models is that

the submission of a grid job introduces arisk which is likely to impact the whole application.

The strategies presented in this part aim at reducing this risk without limiting too much the

parallelism of the application. A major interest of the resulting optimizations lies in the fact

226 Optimization of the job granularity Chap. 9

that they only depend on the distribution of the grid latency, hiding the internal complexity of

the grid. Several other optimizations may be targeted usingthe same approach. For instance,

submitting redundant grid jobs [Casanova, 2006] or further grouping the services of a workflow

would also reduce the risk associated to a user job.

Conclusions and future directions

1 Summary of the contributions

In this thesis, we studied the deployment and the results of an archetypal medical image analy-

sis application on the EGEE production grid: the bronze standard. This is a precise and scalable

method to assess the accuracy of rigid medical image registration. Results have demonstrated

that this statistical procedure is powerful enough to detect subtle image impairments such as

tilts of less than 2 degrees. It is also generic enough to assess the influence of external pa-

rameters such as the lossy compression ratio of the images. The bronze standard application

exhibits requirements that characterize many medical image analysis applications. In partic-

ular, the need for computing power and algorithms and data sharing motivate the study of a

grid workflow deployment of such applications. Based on a taxonomy of existing workflow

approaches, we highlighted the suitability of service workflows for this scientific area. We thus

presented the service workflow of the bronze standard application and we demonstrated that

the selected Scufl language is expressive enough to describesimilar applications.

Because of the lack of existing fully parallel service workflow enactor, we developped MO-

TEUR, a Scufl workflow enactor enabling all the parallelism levels that could be achieved on

a grid. In this context, the handling of Scufl iteration strategies is not straightforward, because

the order of data items going through the workflow is completely disturbed. We thus proposed

a novel algorithm to deal with this problem. This development facilitates the execution of the

application in comparable experimental conditions on several grid platforms. The application

was considered as a grid benchmark and we compared its execution on a production grid versus

on dedicated clusters. The execution was shown to be 4 times slower on production grids than

on dedicated clusters. To further compare those two kinds ofinfrastructures, we proposed a

multi-grids model which is able to determine, given an amount of CPU time to compute, the

proportion of jobs to submit on each of those systems. We determined that the main cause of

performance drop on production grids was the high latency that was imposed by such systems.

Based on an appropriate model of the execution time of a workflow, thevariability of the la-

tency was demonstrated to have a strong impact on applications: in particular, it slows down

the execution of the bronze standard application by a factor2. This is one of the most important

remark that guided the following developments.

228 Conclusions and future directions

Those conclusions rationalized the adoption of a probabilistic latency model that was used

to develop strategies aiming at reducing the impact of the latency on the workflow. The adopted

approach focuses on the modeling of the global behavior of the grid which is seen as a black

box introducing a random latency on its jobs. In addition to ajob grouping strategy aiming

at reducing the mean latency faced by the application, we proposed two strategies based on

such a probabilistic model: both the job granularity and thetimeout value can be optimized by

considering such a model and significant speed-up results were demonstrated. Moreover, the

optimization of the timeout value allows to properly control the impact of the outliers on the

application. All those strategies are based on a limitationof the number of grid jobs submitted

by the applications: even if it may reduce the parallelism achieved by the application, reducing

the number of jobs limits the risk to face outliers and high latencies. Further exploitating this

statement seems to be a very promising way for a deeper understanding and optimization of

production grids.

2 Future directions in grid workflows

Latency reduction strategies at a workflow-level. Latency reduction strategies proposed

in chapters8 and9 are relying on probabilistic models based on statistical estimations of the

grid latency. Even if they provide relevant strategies for optimizing the timeout value and the

granularity of the jobs, they are still limited to the job-level or to very simple workflows (for

the granularity). On the other hand, the probabilistic model of the makespan of a workflow

presented in chapter6 does not include the timeout and granularity parameters andthus cannot

be used for optimization yet. Extending those probabilistic models to the case of a complete

workflow (or integrating parameters to the workflow model) isa required perspective towards

the application of those strategies to complete applications. Comparing job-level and workflow-

level optimization results would also be interesting: determining whether the position of a job

inside a whole workflow influences its submission parameterssuch as the timeout value and to

what extent scaling up to the workflow-level could speed up the execution would motivate such

investigations.

Probabilistic methods. Generally speaking, we believe that investigating probabilistic meth-

ods to optimize the execution of workflows is particularly tailored to production grids condi-

tions. This could include optimization of other parametersof the workflow (such as the degree

of redundant job submissions or the Resource Brokers to use)or even be extended to the intro-

duction of variability in well-known algorithms such as scheduling ones. To properly tune the

grid parameters of an application, one should keep in mind that the submission of a single grid

job introduces a significant risk on the whole performance.

3. Future directions in production grids modeling 229

Scheduling of functional workflows. As detailed in chapter2, functional workflows are

characterized by the impossibility to predict before runtime the number of tasks that are going

to be generated by the application. In this thesis, jobs generated by the workflow are submitted

to the grid independently from each other: the scheduling isdone at the job level only. It could

be interesting to study (i) to what extent existing workflow-level scheduling algorithms could

improve the performance of the application in production (in particular w.r.t latency reduction)

and (ii) scheduling strategies dedicated to functional workflows. Current approaches for the

scheduling of such partially unknown workflows are based on the clustering of the workflow

into independent tasks-graphs that could be completely expressed and scheduled using classical

heuristics. Nonetheless, taking into accountforeach, if and other unpredictable constructs

in the scheduling (for instance using branching predictionstrategies or history information

about services or simply expectation minimization) may improve the execution. Yet, workflow-

level scheduling may still remain problematic in a Service-Oriented Architecture: if services

are assumed to be completely black boxes (which guarantees an implementation independent

description and eases their integration in an application), service developers could choose to

hide the grid deployment of their applications (for instance for security reasons, or to keep the

interface simple). In this case, the workflow engine cannot access the job submission system

and it is consequently unable to perform any workflow-level scheduling. A very practical

strategy to cope with this problem would be that the grid submission system learns the workflow

topologies from the submitted jobs as suggested in [Shao et al., 2007]. Dependencies could be

detected between jobs submitted by a given user (or even a community of users), thus detecting

workflow being currently executed on the infrastructure.

3 Future directions in production grids modeling

Latency distribution monitoring. Our probabilistic methods would be completely useless

without a satisfying statistical estimate of the grid latency. The latency reduction strategies

presented in this thesis are based on a probabilistic model of the execution time according to

the distribution function of the latency and allowing the optimization of a given parameter (the

timeout value or the job granularity). Along this manuscript, many models have been envisaged

for the distribution of the latency (mixed Log-Normal and Pareto, Gaussian, bi-uniform) and the

nature of this distribution is not really known at that time.The grid remains a non-stationary

system, constantly impacted by the load imposed by other users and by intrinsic evolutions

(middleware updates, site connection/downtimes,. . .). Even if promising results have been

obtained by a real-time monitoring of the latency in chapter7, prediction errors remain high

(200 seconds in the presented experiment). The use of such strategies in a real system first

requires to be able to predict the latency that will be faced by a job with a reasonably low error.

Several approaches could be envisaged in that purpose:

230 Conclusions and future directions

• Purely agnostic probabilistic approach (as done in this thesis): the latency is considered

as a random variable. The (statistical) correlation of other variables is then investigated

and modeled.

• Causes identification: a large-scale modelization of the grid middleware could help to

understand what are some of the causes of the latency. In particular, determining to

what extend the grid latency is due to external load and whichpart comes from intrinsic

middleware design would be a great step towards a latency model. Simulations of the

middleware or even benchmarks in controlled conditions could be done on experimental

grids such as Grid’5000, under realistic load conditions injected from traces and logs

obtained in production.

• Comparisons with other production grids to identify commonpatterns and features. Re-

sults remain specific to the EGEE grid yet. Comparing them to other production grids

could help to characterize them more generically.

4 Future directions in service computing for medical image

analysis applications

Medical image analysis application would for sure be impacted by the perspectives presented

above. Yet, several initiatives could also be conducted to promote the use of grids in this

particular scientific field. There is still a little adoptionof grids among medical image analysis

scientists. Even if such infrastructures have proven to be able to support science in many

domains, they are still not a daily tool for the medical imageanalyst, as highlighted by the low

number of papers using the grid in medical image computing conferences such as MICCAI

(in 2007, the only paper mentioning the grid in its title is [Yang et al., 2007]). Yet, there is

a quite strong algorithms sharing culture among the medicalimage analysis community, as

demonstrated by the success of standard developments toolkits such as ITK1, which is currently

being interfaced with Condor grids2. The development of grid services repositories dedicated

to medical image analysis could help to foster algorithms sharing one step further. Several

use-cases could benefit from such repositories. For instance, one could tests one’s data with the

algorithm of other scientists or compare several of them on some data.

Even if such repositories seem technically feasible with the existing technologies, inter-

operability problems among the algorithms will arise (for instance data type conversions) and

providing ontologies such as the one developed in [Gibaud et al., 2004] in Neuroimaging would

probably be required to address such problems. Such ontologies would also allow a semantic

browsing of such an algorithms repository, facilitating the finding of a suitable service for a

1http://www.itk.org/
2http://wiki.na-mic.org/Wiki/index.php/NAC Grid Enabled ITK

http://www.itk.org/
http://wiki.na-mic.org/Wiki/index.php/NAC_Grid_Enabled_ITK

5. Future directions towards a clinical use of the grid 231

given problem. Connecting such a medical image analysis services repository to a comput-

ing grid could then help to answer the potentially huge computing demand of such a sharing

facility.

5 Future directions towards a clinical use of the grid

The question of the use of grids in a clinical context still remains a long term perspective to

this work. Even if the solutions proposed in this manuscriptare a step to bridge the gap be-

tween still low level grid middlewares and their usage for a daily medical activity, we remain

completely aware that this ultimate goal would require further developments to reach an opera-

tional level quality of service and to cover all end users expectations. The technical part of the

research towards this objective requires the development of stable and approved user-friendly

interfaces completely hiding the grid to their users, as operating system now offer for hardware

architectures. We believe that the development of MOTEUR (whose principle, design and ap-

plications are presented in chapters 1 to 5 of this thesis) isa step in this direction. Nevertheless,

it remains that the immediate audience of this software are medical image scientists rather than

clinicians. Such scientists can now benefit from it to significantly leverage the gridification of

their applications. MOTEUR could also constitute apart of a future clinical system using the

grid.

Another blocking point limiting the grid adoption by medical users is the fact that produc-

tion grids are still not completely autonomous systems. In most cases, baby-sitting the grid is

still required at some point of the execution. To address this problem, the methods presented in

chapters 6 to 9 of this manuscript can be considered. We showed that they can improve fault-

tolerance and guarantee a quality of service at a user-level, in spite of terrible highly variable

execution conditions. The future directions reported in the previous sections of this conclusion

reveal how they might still be developed.

Finally, we keep in mind that a clinical use of the grid would imply changes in clinical or

even legal practices regarding patient data. However, it has to be recognized that the subsequent

restrictions (for instance in terms of data/metadata storage locations or clinical computations

performed outside of the hospitals) remain grounded by limitations of grid systems that are for

instance unable to provide a sufficient security guarantees for medical applications for now,

even if some solutions are under investigation [Montagnat et al., 2007, Erberich et al., 2007].

It keeps the window excitingly opened for further research in this domain.

232 Conclusions and future directions

Appendix A

Determination of the numerical values of

the path of the workflow of figure 6.1

According to equation6.5the expectation of a path made fromnw services with runtimesr i and

iterated onnD data items is, in DP mode:

E(ΣDP) =
∑

i<nW

r i + nWnD

∫ ∞

−∞
t fRi, j (t)FRi, j (t)

nD−1dt

In the example of figure6.1, the latency is assumed to be Gaussian so that:

fRi, j (t) =
1
√

2πσ
exp

(

−(t − µ)2

2σ2

)

Thus:

E(ΣDP) =
∑

i<nW

r i +
nWnD

(√
2πσ

)nD

∫ ∞

−∞
t exp

(

−
(t − µ)2

2σ2

) (∫ t

−∞
exp

(

−
(u− µ)2

2σ2

)

du

)nD−1

dt

The example assumes thatnD=3, µ=300s andσ=200s. We can then numerically compute

that:

nD
(√

2πσ
)nD

∫ ∞

−∞
t exp

(

−
(t − µ)2

2σ2

) (∫ t

−∞
exp

(

−
(u− µ)2

2σ2

)

du

)nD−1

dt = 468.8s

Along the blue path, we havenW=2, r0=150s andr1=10s, so thatE(ΣDP)=160+2

×468.8=1098s. Similarly, along the red path,nW=1 and r0=600 so that

E(ΣDP)=600+468.8=1069s.

234 Determination of the numerical values of the path of the workflow of figure6.1 Chap. A

Appendix B

Proofs of the timeout results of chapter8

B.1 Expectation ofJ in the general case

We have:

EJ(t∞) =
∫ ∞

0
t fJ(t)dt =

∞
∑

n=0

∫ ∞

0
t f [n,n+1]

J (t)dt

= (1− ρ)
∞
∑

n=0

qn
∫ (n+1)t∞

nt∞
t fR(t − nt∞)dt

= (1− ρ)
∞
∑

n=0

qn
∫ t∞

0
(u+ nt∞) fR(u)du

=
1− ρ
1− q

∫ t∞

0
u fR(u)du+

(1− ρ)qt∞
(1− q)2

∫ t∞

0
fR(u)du

=
1

FR(t∞)

∫ t∞

0
u fR(u)du+

(1− ρ) (1− (1− ρ)FR(t∞)) t∞
(1− ρ)2FR(t∞)2

FR(t∞)

=
1

FR(t∞)

∫ t∞

0
u fR(u)du+

(1− (1− ρ)FR(t∞))t∞
(1− ρ)FR(t∞)

=
1

FR(t∞)

∫ t∞

0
u fR(u)du+

t∞
(1− ρ)FR(t∞)

− t∞

B.2 Limits of EJ

lim
t∞→+∞

1
FR(t∞)

∫ t∞

0
u fR(u)du =

∫ +∞

0
u fR(u)du= ER

And, whenρ , 0:

lim
t∞→+∞

t∞
(1− ρ)FR(t∞)

− t∞ = +∞

236 Proofs of the timeout results of chapter8 Chap. B

Whereas whenρ = 0:

t∞
(1− ρ)FR(t∞)

− t∞ =
t∞(1− FR(t∞)

FR(t∞)
=

t∞
∫ ∞

t∞
fR(u)du

FR(t∞)

Thus,
t∞

(1− ρ)FR(t∞)
− t∞ ≤

∫ ∞
t∞

u fR(u)du

FR(t∞)

So that lim
t∞→+∞

(

t∞
(1− ρ)FR(t∞)

− t∞

)

= 0

B.3 Distributions for which the timeout value does not im-

pact EJ whenρ = 0

Let F be the cdf of a distribution which has this property. Then:

∀n ∈ N,∀t∞ ∈ R+,

1− (1− F(t∞))n + (1− F(t∞))nF(t − nt∞) = F(t)

⇒ ∀n ∈ N,∀t∞ ∈ R+,

G(t∞)nG(t − nt∞) = G(t) with G = 1− F

⇒ ∀n ∈ N,∀t∞ ∈ R+,
nH(t∞) + H(t − nt∞) = H(t) with H = ln (G)

⇒ ∀n ∈ N,∀t∞ ∈ R+,
H′(t − nt∞) = H′(t)

H’ is thus periodic, with periodnt∞ for every t∞ and every n. It is thus constant and we have

H′(t) = α. Thus,H(t) = αt + β. We thus haveF(t) = 1− eβeαt. Moreover, the limit ofF(t) has

to be 1 whent → +∞, so thatα<0 andβ = 0, which demonstrates that the distribution ofRhas

to be exponential.

B.4 Behavior ofEJ in the Weibull case without outliers

We have:

∀n ∈ N,∀t ∈ [nt∞, (n+ 1)t∞],

FJ(t) = 1− qn + qnFR(t − nt∞)

= 1− e−n(t∞
λ)k

+ e−n(t∞
λ)k

(

1− e−(
t−nt∞
λ)k

)

= 1− e
−
(

n(t∞
λ)k
+(t−nt∞

λ)k
)

B.5. Expression ofEJ(t∞) in the truncated Gaussian case 237

We are going to compareFJ andFR. To do that, we will actually compare ln
(

1
1−FJ

)

and

ln
(

1
1−FR

)

. The comparison resumes to study the sign of the following function ft∞,n, for everyn

and everyt∞ (ft∞,n = ln
(

1
1−FJ

)

− ln
(

1
1−FR

)

):

∀n ∈ N,∀t∞ > 0,

ft∞,n : [nt∞, (n+ 1)t∞] → R

t 7→ n
(t∞
λ

)k

+

(t − nt∞
λ

)k

−
(t
λ

)k

If ft∞,n is positive, then setting a timeout improves the execution.The derivative offt∞,n with

respect tot is: f ′t∞,n(t) =
k
λ

(

(

t−nt∞
λ

)k−1
−

(

t
λ

)k−1
)

.

If k > 1: ft∞,n(nt∞) =
(

t∞
λ

)k (

n− nk
)

< 0 and∀t ∈ [nt∞, (n+ 1)t∞], f ′t∞,n(t) < 0. ft∞,n(t) is thus

negative on this interval and we have:

∀t > 0,∀t∞ > 0,

ln

(

1
1− FJ(t)

)

− ln

(

1
1− FR(t)

)

< 0

thus, FJ(t) < FR(t)

It proves that every timeout value penalizes the execution.The timeout thus has to be infinite.

If k < 1: ft∞,n(nt∞) =
(

t∞
λ

)k (

n− nk
)

> 0 and∀t ∈ [nt∞, (n+ 1)t∞], f ′t∞,n(t) > 0. ft∞,n(t) is thus

positive on this interval and we have:

∀t > 0,∀t∞ > 0,

ln

(

1
1− FJ(t)

)

− ln

(

1
1− FR(t)

)

> 0

thus, FJ(t) > FR(t)

Moreover,n
(

t∞
λ

)k
+

(

t−nt∞
λ

)k
is decreasing with respect tot∞. Thus,∀t∞ > 0,∀t′∞ > t∞, FJ,t′∞(t) <

FJ,t∞(t) for everyt. The optimal timeout value is thus 0.

B.5 Expression ofEJ(t∞) in the truncated Gaussian case

According to equation8.6,

EJ(t∞) =
1

FR(t∞)

∫ t∞

0
u fR(u)du+

t∞
(1− ρ)FR(t∞)

− t∞

=
1

Φ
(

µ

σ

)

−Φ
(

µ−t∞
σ

)

1
√

2πσ

∫ t∞

0
ue−

1
2(

u−µ
σ)2

du+
t∞Φ

(

µ

σ

)

(1− ρ)
(

Φ
(

µ

σ

)

−Φ
(

µ−t∞
σ

)) − t∞

238 Proofs of the timeout results of chapter8 Chap. B

Moreover,
∫ t∞

0
ue−

1
2(

u−µ
σ)2

du= σ2
∫

t∞−µ
σ

− µ
σ

ve(−
1
2 v2)dv+ σµ

∫
t∞−µ
σ

− µ
σ

e(− 1
2 v2)dv

= σ2
√

2π
(

φ

(

µ

σ

)

− φ
(

µ − t∞
σ

))

+ σµ
√

2π
(

Φ

(

µ

σ

)

−Φ
(

µ − t∞
σ

))

Thus,

EJ(t∞) = µ + σ
φ
(

µ

σ

)

− φ
(

µ−t∞
σ

)

Φ
(

µ

σ

)

−Φ
(

µ−t∞
σ

) +
1

1− ρ
t∞

Φ
(

µ−t∞
σ

)

Φ
(

µ

σ

)

−Φ
(

µ−t∞
σ

) + ρ

B.6 Behavior ofEJ(t∞) in the truncated Gaussian case

Let us consider the following transformed variables:

v∞ =
µ − t∞
σ

and λ =
µ

σ

According to equation8.11, we then have:

EJ(v∞)
σ

= λ +
φ(λ) − φ(v∞)
Φ(λ) − Φ(v∞)

+ (λ − v∞)

(

Φ(v∞)
(1− ρ) (Φ(λ) − Φ(v∞))

+
ρ

1− ρ

)

To study the behavior ofEJ, we are going to consider the functionf (1)(v∞) =
(1−ρ)(Φ(λ)−Φ(v∞))2

σ

∂EJ(v∞)
∂v∞

which has the same sign as∂EJ(v∞)
∂v∞

. We are going to show that the third
derivative of f (1) is positive. We will then be able to study the sign off (1). We have:

f ′(v∞) = φ(v∞)
[

k(λ) − k(v∞) + ρv∞ (Φ(v∞) −Φ(λ)) + ρ (φ(v∞) − φ(λ))
]

+ Φ(v∞) (Φ(v∞) −Φ(λ)) − ρ (Φ(λ) −Φ(v∞))2

with k(v) = vΦ(v) + φ(v)

k is actually a primitive ofΦ and is thus increasing. Derivating f’ with respect to v, we obtain:

f (2)(v) = φ(v)g(2)(v)

with g(2)(v) = v (k(v) − k(λ)) + ρv2 (Φ(λ) − Φ(v))

+ρv (φ(λ) − φ(v)) + (1− ρ) (Φ(v) − Φ(λ))

f (2) has the same sign ofg(2). By successive derivation of this function, we obtain:

g(3)(v) = vΦ(v)(1− 2ρ) + φ(v)(1− 2ρ) + k(v) − k(λ) + 2ρvΦ(λ) + ρφ(λ)

and

g(4)(v) = 2(1− ρ)Φ(v) + 2ρΦ(λ)

g(4)(v) is thus positive on]− ∞, λ], so thatg(3) is increasing on this interval. Moreover,

g(3)(−∞) = −∞ andg(3)(λ) = λΦ(λ) + (1− ρ)φ(λ)>0. g(3) thus has a single rootv0 on]−∞, λ].
g(3) is negative forv<v0 and positive otherwise.

B.7. Expression ofEJ in the log-normal case 239

v
0

(2)
g

(3)
g

−ρΦ(λ) 2

v
2

(3)
g (λ)

λv
1

v

f (1)

Figure B.1: Behavior off (1), g(2) andg(3) derivatives ofEJ(v∞) in the truncated Gaussian

case.

g(2) is thus decreasing on]− ∞, v0] and increasing on [v0, λ]. Moreover,g(2)(−∞) = +∞
andg(2)(λ) = 0. g(2) thus has a single rootv1 on]− ∞, λ] (v1<v0). g(2) is positive forv<v1 and

negative otherwise.

f (1) is thus increasing on]− ∞, v1] and decreasing on [v1, λ] Moreover, f (1)(λ) = 0 and

f (1)(−∞) = −ρΦ(λ). Two cases then have to be studied:

1. ρ = 0: in this case,f (1)(−∞) = 0. f (1) is thus positive on]− ∞, λ].

2. ρ , 0: in this case,f (1)(−∞)<0. f (1) thus has a single rootv2 on]−∞, λ] (v2<v1). f (1) is

negative forv<v2 and positive otherwise.

The behavior off (1), g(2) andg(3) is plotted on figureB.6.

We can then conclude on the behavior ofEJ(t∞) by noticing that:

∂EJ(t∞)
t∞

=
∂EJ(v∞)

v∞

∂v∞
t∞

= − 1
σ

∂EJ(v∞)
v∞

The two cases described above thus resume to:

1. ρ = 0: EJ(t∞) is decreasing on [0,+∞[

2. ρ , 0: EJ(t∞) is decreasing on [0, t2] and increasing on [t2,+∞[(with t2 = µ − σv2).

B.7 Expression ofEJ in the log-normal case

If we consider the transformed variablex∞ =
ln(t∞)−µ
σ

, then equation8.6gives:

EJ(x∞) =
1

Φ(x∞)

∫ eσx∞+µ

0

1
√

2πσ
e−

1
2

(

ln(u)−µ
σ

)2

du+ eσx∞+µ
(

1
(1− ρ)Φ(x∞)

− 1

)

240 Proofs of the timeout results of chapter8 Chap. B

If we then perform the variable changev = ln(u)−µ
σ
− σ in the integral term, we obtain:

EJ(x∞) =
1

Φ(x∞)
eµ+

σ2
2 Φ(x∞ − σ) + eσx∞+µ

(

1
(1− ρ)Φ(x∞)

− 1

)

B.8 Behavior ofEJ in the Pareto case

Let us consider the transformed variableZ = a+t∞
a . We then have, according to equation8.14

and after some manipulations:

EJ(Z)
a

=

1
1−ν (Z − Zν) + ρ

1−ρ (Z
ν+1 − Zν)

Zν − 1

By derivation, we then have:

(Zν − 1)2

a
∂EJ(Z)
∂Z

=
1

1− ν
(

(1− ν)Zν + νZν−1 − 1
)

+
ρ

1− ρ
Zν−1

(

Zν+1 − (ν + 1)Z + νZ
)

A(Z)=(1− ν)Zν + νZν−1 − 1 is negative, for everyν>1 and for every Z>1. Indeed, A(1)=0 and

A’(Z)=ν(1 − ν)Zν−2(Z − 1) is negative. Moreover, B(Z)=Zν+1 − (ν + 1)Z + νZ is positive, for

everyν>1 and for every Z>1. Indeed, B(1)=0 and B’(Z)=(ν + 1)(Z − 1) is positive. ∂EJ(Z)
∂Z is

thus positive, as well as∂EJ(t∞)
∂t∞

andEJ is thus increasing.

B.9 Properties ofΦ and link with erf

φ(t) =
1
√

2π
e−

1
2 t2

φ′(t) = −tφ(t)

Φ(−t) = 1−Φ(t)

er f(t) = 2Φ(
√

2t) − 1

Φ(t) =
1
2
+

1
2

er f

(

t
√

2

)

Bibliography

[Agerwala, 1974] Agerwala, T. (1974). A complete model for representing the coordination of

asynchronous processes. Technical Report 32, John HopkinsUniversity, Hopkins Computer

Science Program, Baltimore.

[Ajmone Marsan et al., 1984] Ajmone Marsan, M., Conte, G., and Balbo, G. (1984). A Class

of Generalized Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Sys-

tems.ACM Transactions on Computer Systems, 2(2):93–122.

[Amar et al., 2006] Amar, A., Bolze, R., Bouteiller, A., Chis, A., Caniou, Y., Caron, E.,

Kaur Chouan, P., Le Mahec, G., Dail, H., Depardon, B., Desprez, F., Gay, J.-S., and Su,

A. (2006). DIET: New Developments and Recent Results. Technical Report RR-6027,

INRIA Rhône-Alpes.

[Antonio et al., 2004] Antonio, B., Canal, C., Pimentel, E.,and Vallecillo, A. (2004). For-

malizing Web Services Choreographies.Electronic Notes in Theoretical Computer Science,

105:73–94.

[Arbel et al., 2004] Arbel, T., Morandi, X., M Comeau, R., andLouis Collins, D. (2004). Au-

tomatic non-linear MRI-ultrasound registration for the correction of intra-operative brain

deformations.Comput Aided Surg, 9(4):123–36.

[Armstrong et al., 1999] Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S.,

McInnes, L., Parker, S., and Smolinski, B. (1999). Toward a Common Component Architec-

ture for High-Performance Scientific Computing. InEighth IEEE International Symposium

on High Performance Distributed Computing (HPDC’99), pages 115–124.

[Arsigny et al., 2005] Arsigny, V., Pennec, X., and Ayache, N. (2005). Polyrigid and Polyaffine

Transformations: a Novel Geometrical Tool to Deal with Non-Rigid Deformations - Appli-

cation to the registration of histological slices.Medical Image Analysis (MedIA), 9(6):507–

523.

[Atkinson et al., 2007] Atkinson, C., Bostan, P., Hummel, O., and Stoll, D. (2007). A Practical

Approach to Web Service Discovery and Retrieval. InInternational Conference on Web-

Services (ICWS’07), Salt-Lake City, Utah, USA.

242 Bibliography

[Baduel et al., 2006] Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., and

Quilici, R. (2006). Grid Computing: Software Environments and Tools, chapter Program-

ming, Deploying, Composing, for the Grid. Springer-Verlag.

[Bankman, 2000] Bankman, I. (2000).Handbook of Medical Imaging. Academic Press.

[Barais et al., 2006] Barais, O., Lawall, J., Le Meur, A.-F.,and Duchien, L. (2006). Safe

Integration of New Concerns in a Software Architecture. In13th Annual IEEE International

Conference on Engineering of Computer Based Systems (ECBS’06), Potsdam, Germany.

IEEE.

[Barga and Gannon, 2007] Barga, R. and Gannon, D. (2007).Scientific versus Business Work-

flows, chapter 2, pages 9–16. In [Taylor et al., 2007].

[Baynat, 2000] Baynat, B. (2000).Théorie des files d’attente. Hermes.

[Benoit-Cattin et al., 2005] Benoit-Cattin, H., Collewet,G., Belaroussi, B., Saint-Jalmes, H.,

and Odet, C. (2005). The SIMRI project : a versatile and interactive MRI simulator.Journal

of Magnetic Resonance Imaging (JMRI), (173):97–115.

[Blanquer Espert et al., 2005] Blanquer Espert, I., Hernández Garcı́a, V., and Segrelles Quilis,

J. (2005). Creating Virtual Storages and Searching DICOM Medical Images through a GRID

Middleware based in OGSA.Journal of Clinical Monitoring and Computing, 19(4-5):295–

305.

[Blay-Fornarino et al., 2004] Blay-Fornarino, M., Charfi, A., Emsellem, D., Pinna-Déry, A.-

M., and Riveill, M. (2004). Software interaction.Journal of Object Technology (ETH

Zurich), 3(10):161–180.

[Bobrow et al., 1988] Bobrow, D. G., DeMichiel, L. G., Gabriel, R. P., Keene, S. E., Kiczales,

G., and Moon, D. A. (1988). Common Lisp Object System specification. ACM SIGPLAN

Notices, 23:1–142.

[Bowers et al., 2006] Bowers, S., McPhillips, T., Ludäscher, B., Cohen, S., and Davidson, S.

(2006). A Model for User-Oriented Data Provenance in Pipelined Scientific Workflows. In

International Provenance and Annotation Workshop (IPAW), LNCS.

[Box, 1997] Box, D. (1997).Essential COM. Addison-Wesley Longman Publishing, Boston,

MA, USA.

[Brookshier et al., 2002] Brookshier, D., Govoni, D., Govoni, D., Krishnan, N., and Soto, J.

(2002).JXTA: Java P2P Programming. Sams publishing, Indianapolis.

Bibliography 243

[Bruneton et al., 2004] Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and Stefani, J.-B.

(2004). An open component model and its support in java. InCBSE, pages 7–22.

[Buyya and Murshed, 2002] Buyya, R. and Murshed, M. (2002). GridSim: A Toolkit for the

Modeling and Simulation of Distributed Resource Management and Scheduling for Grid

Computing. Concurrency and Computation: Practice and Experience (CCPE), 14(13-

15):1175–1220.

[Capit et al., 2005] Capit, N., Da Costa, G., Georgiou, Y., Huard, G., and Marti, C. (2005).

A batch scheduler with high level components. InCluster computing and Grid 2005 (CC-

Grid’05), volume 2, pages 776– 783.

[Cappello and Bal, 2007] Cappello, F. and Bal, H. (2007). Towards an International Computer

Science Grid. In7th IEEE Int. Symp. on Cluster Computing and the Grid (CCGrid’07),

pages 3–12, Rio de Janeiro, Brazil.

[Cappello et al., 2005] Cappello, F., Desprez, F., Dayde, M., Jeannot, E., Jegou, Y., Lanteri,

S., Melab, N., Namyst, R., Vicat-Blanc Primet, P., Richard,O., Caron, E., Leduc, J., and

Mornet, G. (2005). Grid’5000: A Large Scale, Reconfigurable, Controlable and Monitorable

Grid Platform. In6th IEEE/ACM International Workshop on Grid Computing (Grid’2005),

Seattle, Washington, USA.

[Caromel et al., 2006] Caromel, D., Delbe, C., Costanzo, A.,and Leyton, M. (2006). Proac-

tive: an integrated platform for programming and running applications on grids and p2p

systems.Computational Methods in Science and Technology, (12).

[Caromel et al., 2008] Caromel, D., Henrio, L., and Leyton, M. (2008). Type safe algorith-

mic skeletons. InProceedings of the 16th Euromicro International Conference on Parallel,

Distributed and network-based Processing, Toulouse, France. To appear.

[Caromel and Leyton, 2007] Caromel, D. and Leyton, M. (2007). Fine tuning algorithmic

skeletons. In13th International Euro-par Conference: Parallel Processing, volume 4641,

pages 72–81.

[Caron and Dail, 2005] Caron, E. and Dail, H. (2005). GoDIET:a tool for managing dis-

tributed hierarchies of DIET agents and servers. TechnicalReport RR-5520, Institut Na-

tional de Recherche en Informatique et en Automatique (INRIA).

[Caron and Desprez, 2005] Caron, E. and Desprez, F. (2005). DIET: A Scalable Toolbox to

Build Network Enabled Servers on the Grid.International Journal of High Performance

Computing Applications.

244 Bibliography

[Casanova, 2001] Casanova, H. (2001). Simgrid: A Toolkit for the Simulation of Applica-

tion Scheduling. In1st International Symposium on Cluster Computing and the Grid (CC-

Grid’01), page 430.

[Casanova, 2006] Casanova, H. (2006). On the Harmfulness ofRedundant Batch Requests.

In 15th IEEE International Symposium on High Performance Distributed Computing

(HPDC’06), pages 255–266, Paris, France.

[Casanova and Dongarra, 1997] Casanova, H. and Dongarra, J.(1997). NetSolve: A Network-

Enabled Server for Solving Computational Science Problems. International Journal of High

Performance Computing and Applications (IJHPCA), 11(3):212–223.

[Casanova et al., 2003] Casanova, H., Legrand, A., and Marchal, L. (2003). Scheduling Dis-

tributed Applications: the SimGrid Simulation Framework.In Proceedings of the Third

IEEE International Symposium on Cluster Computing and the Grid (CCGrid’03). IEEE

Computer Society Press.

[Cheung-Foo-Wo et al., 2006] Cheung-Foo-Wo, D., Tigli, J.-Y., Lavirotte, S., and Riveill, M.

(2006). Wcomp: a Multi-Design Approach for Prototyping Applications using Heteroge-

neous Resources. In17th IEEE International Workshop on Rapid System Prototyping (RSP),

Chania, Crete.

[Chrétienne et al., 1995] Chrétienne, P., Coffman, E., Lenstra, J., and Liu, Z. (1995).Schedul-

ing theory and its applications. John Wiley and Sons.

[Cieslak et al., 2006] Cieslak, D., Thain, D., and Chawla, N.(2006). Troubleshooting Dis-

tributed Systems via Data Mining. InIEEE International Symposium on High Performance

Distribut ed Computing (HPDC’06), Paris, France.

[Cole, 1991] Cole, M. (1991).Algorithmic skeletons: structured management of parallelcom-

putation. MIT press, Cambridge, MA, USA.

[Commowick and Malandain, 2006] Commowick, O. and Malandain, G. (2006). Evaluation

of Atlas Construction Strategies in the Context of Radiotherapy Planning. InSA2PM Work-

shop (From Statistical Atlases to Personalized Models), Copenhagen.

[Commowick et al., 2005] Commowick, O., Stefanescu, R., Fillard, P., Arsigny, V., Ayache,

N., Pennec, X., and Malandain, G. (2005). Incorporating Statistical Measures of Anatomical

Variability in Atlas-to-Subject Registration for Conformal Brain Radiotherapy. InMICCAI

2005, Part II, pages 927–934, Palm Springs, CA, USA. Springer Verlag.

[Deelman et al., 2003] Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,

Blackburn, K., Lazzarini, A., Arbree, A., Cavanaugh, R., and Koranda, S. (2003). Mapping

Bibliography 245

Abstract Complex Workflows onto Grid Environments.Journal of Grid Computing (JGC),

1(1):9–23.

[Delaitre et al., 2005] Delaitre, T., Kiss, T., Goyeneche, A., Terstyanszky, G., Winter, S., and

Kacsuk, P. (2005). GEMLCA: Running Legacy Code Applications as Grid Services.Journal

of Grid Computing (JGC), 3(1-2).

[Delannoy et al., 2006] Delannoy, O., Emad, N., and Petiton,S. (2006). Workflow Global

Computing with YML. In 7th IEEE/ACM International Conference on Grid Computing,

pages 25–32, Barcelona, Spain.

[Delannoy and Petiton, 2004] Delannoy, O. and Petiton, S. (2004). A Peer to Peer Computing

Framework ; Design and Performance Evaluation of YML. InThird International Work-

shop on Algorithms, Models, and Tools for Parallel Computing on Heterogeneous Networks,

pages 362– 369.

[Duan et al., 2006] Duan, R., Prodan, R., and Fahringer, T. (2006). Data Mining-based Fault

Prediction and Detection on the Grid. InProceedings of the IEEE International Symposium

on High Performance Distributed Computing (HPDC-15), pages 305–308, Paris, France.

[Dugas-Phocion, 2006] Dugas-Phocion, G. (2006).Segmentation d’IRM Cérébrales Multi-

Séquences et Application à la Sclérose en Plaques. Thèse de sciences,École des Mines de

Paris.

[Emmerich et al., 2005] Emmerich, W., Butchart, B., Chen, L., Wassermann, B., and Price,

S. (2005). Grid Service Orchestration Using the Business Process Execution Language

(BPEL). Journal of Grid Computing (JGC), 3(3-4):283 – 304.

[Erberich et al., 2007] Erberich, S., Silverstein, J., Chervenak, A., Schuler, R., Nelson, M., and

Kesselman, C. (2007). Globus MEDICUS - Federation of DICOM Medical Imaging Devices

into Healthcare Grids.Studies in Health Technology and Informatics, 126:269–278.

[Fahringer et al., 2007] Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., Nerieri,

F., Podlipnig, S., Qin, J., Siddiqui, M., Truong, H.-L., Villazon, A., and Wieczorek, M.

(2007).ASKALON: a development and grid computing environment for scientific workflows,

chapter 27, pages 450–471. In [Taylor et al., 2007].

[Feitelson, 2002] Feitelson, D. (2002).Workload modeling for performance evaluation, pages

114–141. Springer-Verlag - LNCS vol 2459.

[Feitelson, 2003] Feitelson, D. (2003). Metric and workload effects on computer systems eval-

uation.Computer, 36(9):18–25.

246 Bibliography

[Feitelson et al., 2004] Feitelson, D., Rudolph, L., and Schwiegelshohn, U. (2004). Parallel

Job Scheduling – A Status Report. In10th Workshop on Job Scheduling Strategies for

Parallel Processing, New-York, NY, USA.

[Foster, 2005] Foster, I. (2005). Globus Toolkit Version 4:Software for Service-Oriented

Systems. InInternational Conference on Network and Parallel Computing (IFIP), volume

3779, pages 2–13. Springer-Verlag LNCS.

[Foster and Kesselman, 1997] Foster, I. and Kesselman, C. (1997). Globus: A Metacomputing

Infrastructure Toolkit. International Journal of Supercomputer Applications, 11(2):115–

128.

[Foster et al., 2002] Foster, I., Voeckler, J., Wilde, M., and Zhao, Y. (2002). Chimera: A Vir-

tual Data System for Representing, Querying and AutomatingData Derivation. InScientific

and Statistical Databases Management, Edinburgh, UK.

[Furmento et al., 2002] Furmento, N., Mayer, A., McGough, S., Newhouse, S., Field, T., and

Darlington, J. (2002). ICENI : Optimisation of component applications within a Grid envi-

ronment.Journal of Parallel Computing, 28(12):1753–1772.

[Gannon, 2007] Gannon, D. (2007).Component Architectures and Services: From Application

Construction to Scientific Workflows, chapter 12, pages 174–189. In [Taylor et al., 2007].

[Garonne et al., 2004] Garonne, V., Tsaregorodtsev, A., andStokes-Rees, I. (2004). A scalable

lightweight architecture for high throughput computing. In 5th International Workshop on

Grid Computing (GRID’04), pages 19–25, Pittsburgh, PA, USA. IEEE Computer Society.

[Gautama, 1998] Gautama, H. (1998). A probabilistic approach to the analysis of program

execution time. Master’s thesis, Delft University of Technology, Information Technology

and Systems.

[Gautama and van Gemund, 2003] Gautama, H. and van Gemund, A.J. C. (2003). Symbolic

Performance Estimation Of Speculative Parallel Programs.Parallel Processing Letters,

13(4):513–524.

[Gelenbe et al., 1986] Gelenbe, E., Montagne, E., Suros, R.,and Woodside, C. (1986). A

performance model of block structured parallel programms.In International Workshop on

Parallel Algorithms and Architectures, pages 127–138, Luminy, France. Elsevier Science

B.V (North Holland).

[Germain et al., 2005] Germain, C., Breton, V., Clarysse, P., Gaudeau, Y., Glatard, T., Jeannot,

E., Legré, Y., Loomis, C., Magnin, I., Montagnat, J., Moureaux, J.-M., Osorio, A., Pen-

nec, X., and Texier, R. (2005). Grid-enabling medical imageanalysis.Journal of Clinical

Monitoring and Computing, 19(4–5):339–349.

Bibliography 247

[Germain et al., 2006] Germain, C., Texier, R., Osorio, A., and Loomis, C. (2006). Grid

Scheduling for Interactive Analysis of Medical Images. InHealthgrid’06, pages 25–33,

Valencia, Spain.

[Gholipour et al., 2007] Gholipour, A., Kehtarnavaz, N., Briggs, R., Devous, M., and

Gopinath, K. (2007). Brain Functional Localization: A Survey of Image Registration Tech-

niques.IEEE Transactions on Medical Imaging (TMI), 26(4):427–451.

[Gibaud et al., 2004] Gibaud, B., Dojat, M., Benali, H., Dameron, O., Matsumoto, J.-P.,

Pellegrini-Issac, M., Valabregue, R., and Barillot, C. (2004). Towards an Ontology for Shar-

ing Neuroimaging Data and Processing Tools: Experience Learned from the Development

of a Demonstrator. InDiDaMIC’04 Workshop. Satellite of the MICCAI conference, pages

15–23, St Malo, France.

[Gil, 2007] Gil, Y. (2007). Workflow Composition: Semantic Representation for Flexible Au-

tomation, chapter 16, pages 244–257. In [Taylor et al., 2007].

[Glatard et al., 2006a] Glatard, T., Emsellem, D., and Montagnat, J. (2006a). Generic web

service wrapper for efficient embedding of legacy codes in service-based workflows.In

Grid-Enabling Legacy Applications and Supporting End Users Workshop (GELA’06), pages

44–53, Paris, France.

[Glatard et al., 2007a] Glatard, T., Lingrand, D., Montagnat, J., and Riveill, M. (2007a). Im-

pact of the execution context on Grid job performances. InInternational Workshop on

Context-Awareness and Mobility in Grid Computing (WCAMG07), pages 713–718, Rio de

Janeiro. IEEE.

[Glatard et al., 2008a] Glatard, T., Montagnat, J., Emsellem, D., and Lingrand, D. (2008a).

A Service-Oriented Architecture enabling dynamic services grouping for optimizing dis-

tributed workflows execution.Future Generation Computer Systems. to appear.

[Glatard et al., 2008b] Glatard, T., Montagnat, J., Lingrand, D., and Pennec, X. (2008b). Flex-

ible and efficient workflow deployement of data-intensive applicationson grids with MO-

TEUR. International Journal of High Performance Computing and Applications (IJHPCA).

to appear.

[Glatard et al., 2005] Glatard, T., Montagnat, J., and Pennec, X. (2005). Grid-enabled work-

flows for data intensive medical applications. In18th IEEE International Symposium on

Computer-Based Medical Systems (CBMS), pages 537–542, Dublin, Ireland.

[Glatard et al., 2006b] Glatard, T., Montagnat, J., and Pennec, X. (2006b). An experimental

comparison of Grid5000 clusters and the EGEE grid. InWorkshop on Experimental Grid

248 Bibliography

testbeds for the assessment of large-scale distributed applications and tools (EXPGRID’06),

Paris, France.

[Glatard et al., 2006c] Glatard, T., Montagnat, J., and Pennec, X. (2006c). Efficient services

composition for grid-enabled data-intensive applications. In IEEE International Symposium

on High Performance Distributed Computing (HPDC’06), pages 333–334, Paris, France.

[Glatard et al., 2006d] Glatard, T., Montagnat, J., and Pennec, X. (2006d). Medical image

registration algorithms assesment: Bronze Standard application enactment on grids using

the MOTEUR workflow engine. InHealthGrid conference (HealthGrid’06), pages 93–103,

Valencia, Spain. IOS Press.

[Glatard et al., 2006e] Glatard, T., Montagnat, J., and Pennec, X. (2006e). Probabilistic and

dynamic optimization of job partitioning on a grid infrastructure. In14th euromicro con-

ference on Parallel, Distributed and network-based Processing (PDP06), pages 231–238,

Montbéliard-Sochaux, France.

[Glatard et al., 2007b] Glatard, T., Montagnat, J., and Pennec, X. (2007b). Optimizing jobs

timeouts on clusters and production grids. InInternational Symposium on Cluster Comput-

ing and the Grid (CCGrid), pages 100–107, Rio de Janeiro. IEEE.

[Glatard et al., 2006f] Glatard, T., Pennec, X., and Montagnat, J. (2006f). Performance eval-

uation of grid-enabled registration algorithms using bronze-standards. InMedical Image

Computing and Computer-Assisted Intervention (MICCAI’06), LNCS 4191, pages 152–160,

Copenhagen, Denmark. Springer.

[Glatard et al., 2007c] Glatard, T., Sipos, G., Montagnat, J., Farkas, Z., and Kacsuk, P. (2007c).

Workflow Level Parametric Study Support by MOTEUR and the P-GRADE Portal, chap-

ter 18, pages 279–299. In [Taylor et al., 2007].

[Gross and Harris, 1985] Gross, D. and Harris, C. (1985).Fundamentals of Queueing Theory.

John Wiley and Sons, second edition.

[Grova et al., 2001] Grova, C., Biraben, A., Scarabin, J.-M., Jannin, P., Buvat, I., Benali, H.,

and Gibaud, B. (2001). A methodology to validate MRI/ SPECT registration methods using

realistic simulated SPECT data. InMICCAI, volume 2208 ofLNCS, pages 275–282, Utrecht

(The Netherlands). Springer.

[Hajnal et al., 2001] Hajnal, J., Hill, D., and Hawkes, D. (2001). Medical Image Registration.

Crc press edition.

[Harchol-Balter and Balter, 2002] Harchol-Balter, M. and Balter, R. (2002). Task Assignment

with Unknown Duration.Journal of the ACM (JACM), 49(2):260–288.

Bibliography 249

[Harrison and Taylor, 2005] Harrison, A. and Taylor, I. (2005). Dynamic Web Service Deploy-

ment Using WSPeer. InProceedings of 13th Annual Mardi Gras Conference - Frontiers of

Grid Applications and Technologies, pages 11–16.

[Heining et al., 2006] Heining, S. M., Wiesner, S., Euler, E., and Navab, N. (2006). Pedicle

screw placement under video-augmented fluoroscopic control. first clinical application in a

cadaver study.International Journal of Computer Assisted Radiology and Surgery, 1(Sup-

plement 1):189–190.

[Hellier and Barillot, 2004] Hellier, P. and Barillot, C. (2004). A hierarchical parametric algo-

rithm for deformable multimodal image registration.Computer Methods and Programs in

Biomedicine, 75(2):107–115.

[Hellier et al., 2003] Hellier, P., Barillot, C., Corouge, I., Gibaud, B., Le Goualher, G., Collins,

D., Evans, A., Malandain, G., Ayache, N., Christensen, G., and Johnson, H. (2003). Retro-

spective evaluation of intersubject brain registration.IEEE Transactions on Medical Imaging

(TMI), 22(9):1120–1130.

[Hoheisel and Alt, 2007] Hoheisel, A. and Alt, M. (2007).Petri Nets, chapter 13, pages 190–

207. In [Taylor et al., 2007].

[Holden et al., 2000] Holden, M., Hill, D., Denton, E., Jarosz, J. M., Cox, T. C., Rohlfing, T.,

Goodey, J., and Hawkes, D. (2000). Voxel Similarity Measures for 3-D Serial MR Brain

Image Registration.IEEE Transactions on Medical Imaging (TMI), 19(2):94–102.

[Huang et al., 2003] Huang, Y., Taylor, I., Walker, D. M., andDavies, R. (2003). Wrapping

Legacy Codes for Grid-Based Applications. In17th International Parallel and Distributed

Processing Symposium (IPDPS), page 139. IEEE Computer Society.

[Irani and Bashna, 2002] Irani, R. and Bashna, S. J. (2002).AXIS: Next Generation Java

SOAP. Wrox Press.

[Jacq et al., 2004] Jacq, N., Blanchet, C., Combet, C., Cornillot, E., Duret, L., Kurata, K.,

Nakamura, H., Silvestre, T., and Breton, V. (2004). Grid as abioinformatic tool.Journal of

Parallel Computing, 30(9-10):1093–110.

[Jacq et al., 2007] Jacq, N., Salzeman, J., Jacq, F., Legré,Y., Medernach, E., Montagnat, J.,

Maass, J., Reichstadt, M., Schwichtenberg, H., Sridhar, M., Kasam, V., Zimmermann, M.,

Hofmann, M., and Breton, V. (2007). Grid-enabled Virtual Screening against malaria.Jour-

nal of Grid Computing (JGC).

[Jannin et al., 2002] Jannin, P., Fitzpatrick, J., Hawkes, D., Pennec, X., Shahidi, R., and Van-

nier, M. (2002). Validation of Medical Image Processing in Image-guided Therapy.IEEE

Transactions on Medical Imaging (TMI), 21(12):1445–1449.

250 Bibliography

[Kacsuk et al., 2003] Kacsuk, P., Dózsa, G., Kovács, J., Lovas, R., Podhorszki, N., Balaton,

Z., and Gombás, G. (2003). P-GRADE: A Grid Programing Environment.Journal of Grid

Computing (JGC), 1(2):171–197.

[Kacsuk et al., 2006a] Kacsuk, P., Farkas, Z., Sipos, G., Toth, A., and Herrmann, G. (2006a).

Workflow-level parameter study management in multi-grid environments by the P-GRADE

portal. InGrid Computing Environments 2006 (GCE’06), Tampa, USA.

[Kacsuk et al., 2006b] Kacsuk, P., Kiss, T., and Sipos, G. (2006b). Solving the Grid Inter-

operability Problem by P-GRADE Portal at Workflow Level. In Collet, P. and Lahire, P.,

editors,Journées du groupe Objets, Composants et Modèles (OCM’2006), Nmes, France.

I3S/RR-2006-06-FR.

[Kacsuk and Sipos, 2005] Kacsuk, P. and Sipos, G. (2005). Multi-Grid, Multi-User Workflows

in the P-GRADE Grid Portal.Journal of Grid Computing (JGC), 3(3-4):221 – 238.

[Kassim et al., 2005] Kassim, A., Yan, P., Yan, P., Lee, W., and Sengupta, K. (2005). Mo-

tion Compensated Lossy-to-Lossless Compression of 4D Medical Images Using Integer

Wavelet Transforms.IEEE Transactions on Information Technology In Biomedicine (TITB),

9(1):132–138.

[Kecskemeti et al., 2005] Kecskemeti, G., Zetuny, Y., Kiss,T., Sipos, G., Kacsuk, P., Ter-

styanszky, G., and Winter, S. (2005). Automatic deploymentof Interoperable Legacy Code

Services. InUK e-Science All Hands Meeting, Nottingham, UK.

[Kesselman and Mansour, 2005] Kesselman, A. and Mansour, Y.(2005). Optimizing TCP Re-

transmission Timeout. InInternational Conference on Networking, volume 3421 ofLNCS,

Saint-Denis de la Réunion. Springer.

[Khalaf et al., 2003] Khalaf, R., Mukhi, N., and Weerawarana, S. (2003). Service-Oriented

Composition in BPEL4WS. InInternational World Wide Web Conference (WWW), Bu-

dapest, Hungary. W3C.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Lo-

ingtier, J.-M., and Irwin, J. (1997). Aspect-Oriented Programming. InProceedings of the

European Conference on Object-Oriented Programming, volume 1241, pages 220–242.

[Kiepuszewski, 2003] Kiepuszewski, B. (2003).Expressiveness and Suitability of Languages

for Control Flow Modelling in Workflows. PhD thesis, Queensland University of Technol-

ogy, Brisbane, Australia.

[Kim and Pearlman, 1997] Kim, B.-J. and Pearlman, W. (1997).An Embedded Wavelet Video

Coder Using Three-Dimensional Set Partitioning in Hierarchical Trees. InIEEE Data Com-

pression Conference (DCC’97), pages 251–260, Snowbird, Utah, USA.

Bibliography 251

[Kleinrock, 1975] Kleinrock, L. (1975).Queueing Systems.

[Kovács et al., 2007] Kovács, L., Micsik, A., and Pallinger, P. (2007). Handling User Prefer-

ences and Added Value in Discovery of Semantic Web Services.In 2007 IEEE International

Conference on Web Services ((ICWS 2007)), pages 225–232, Salt-Lake City, Utah, USA.

IEEE Computer Society.

[Krishnan and Gannon, 2004] Krishnan, N. and Gannon, D. (2004). XCAT3: A Framework

for CCA Components as OGSA Services. In9th International Workshop on High-Level

Parallel Programming Models and Supportive Environments (HIPS’2004).

[Kristensen et al., 1998] Kristensen, L. M., Christensen, S., and Jensen, K. (1998). The practi-

tioner’s guide to coloured Petri nets.International Journal on Software Tools for Technology

Transfer (STTT), 2(2):98–132.

[Laure et al., 2006] Laure, E., Fisher, S., Frohner,Á., Grandi, C., and Kunszt, P. (2006).

Programming the Grid with gLite.Computational Methods in Science and Technology,

12(1):33–45.

[Laure et al., 2005] Laure, E., Stockinger, H., and Stockinger, K. (2005). Performance Engi-

neering in Data Grids.Concurrency and Computation: Practice& Experience, 17(2-4).

[Lee and Neuendorffer, 2000] Lee, E. A. and Neuendorffer, S. (2000). MoML - A Modeling

Markup Language in XML, Version 0.4. Technical Report UCB/ERL M00/12, University

of California, Berkeley, CA 94720.

[Legrand et al., 2006] Legrand, A., Quinson, M., Fujiwara, K., and Casanova, H. (2006). The

SimGrid Project - Simulation and Deployment of DistributedApplications. InProceedings

of the IEEE International Symposium on High Performance Distributed Computing (HPDC-

15), Paris, France. IEEE Computer Society Press.

[Legrand and Robert, 2003] Legrand, A. and Robert, Y. (2003). Algorithmique parallèle.

Dunod edition.

[Lewis and Papadimitriou, 1981] Lewis, H. and Papadimitriou, C. (1981). Elements of the

theory of computation. Prentice-Hall, Englewood Cliffs, New Jersey.

[Li et al., 2004] Li, H., Groep, D., and Walters, L. (2004). Workload Characteristics of a Multi-

cluster Supercomputer. InJob Scheduling Strategies for Parallel Processing, pages 176–

193. Springer Verlag.

[Li et al., 2005] Li, J., Zhang, Z., and Yang, H. (2005). A GridOriented Approach to Reusing

Legacy Code in ICENI Framework. InIEEE International Conference on Information Reuse

and Integration (IRI’05), pages 464– 469, Las Vegas, Nevada, USA.

252 Bibliography

[Libman and Orda, 2002] Libman, L. and Orda, A. (2002). Optimal Retrial and Timeout

Strategies for Accessing Network Resources.IEEE/ACM Transactions on Networking (TN),

10(4):551–564.

[Little et al., 1997] Little, J. A., Hill, D., and Hawkes, D. (1997). Deformations incorpotationg

rigid structures.Computer Vision and Image Understanding, 66(2):223–232.

[Lucchi and Mazzara, 2007] Lucchi, R. and Mazzara, M. (2007). A pi-calculus based seman-

tics for WS-BPEL.Journal of Logic and Algebraic Programming, (70):96–118.

[Ludäscher et al., 2005] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones,

M., Lee, E. A., Tao, J., and Zhao, Y. (2005). Scientific Workflow Management and the

Kepler System. Concurrency and Computation: Practice& Experience, 18(10):1039 –

1065.

[Magott, 1984] Magott, J. (1984). Performance evaluation of concurrent systems using Petri

nets.Information Processing Letters, 18(1):7–13.

[Maintz and Viergever, 1998] Maintz, J. and Viergever, M. (1998). A survey of medical regis-

tration. Medical Image Analysis (MedIA), 1(2):1–36.

[Makela et al., 2002] Makela, T., Clarysse, P., Sipila, O., Pauna, N., Pham, Q., Katila, T., and

Magnin, I. (2002). A review of cardiac registration methods. IEEE Transactions on Medical

Imaging, 21(9):1011–1021.

[Makela et al., 2003] Makela, T., Pham, Q., Clarysse, P., Lotjonen, J., Sipila, O., Hanninen,

H., Lauerma, K., Knutti, J., Katila, T., and Magnin, I. (2003). A 3d model-based registration

approach for the pet, mr and mcg cardiac data fusion.Medical Image Analysis, 7(3):377–

389.

[Manolache et al., 2001] Manolache, S., Eles, P., and Peng, Z. (2001). Memory and Time-

Efficient Schedulability Analysis of Task Sets with StochasticExecution Time. InEuromicro

Conference on Real-Time Systems, Delft, The Netherlands.

[Mayer et al., 2004] Mayer, A., McGough, S., Furmento, N., Lee, W., Gulamali, M., New-

house, S., and Darlington, J. (2004). Workflow Expression: Comparison of Spatial and

Temporal Approaches. InWorkflow in Grid Systems Workshop, GGF-10, Berlin.

[Mazzara and Govoni, 2005] Mazzara, M. and Govoni, S. (2005). A Case Study of Web Ser-

vices Orchestration. InCoordination Models and Languages, LNCS 3454, pages 1–16.

Springer Verlag.

Bibliography 253

[Mazziotta et al., 1995] Mazziotta, J., Toga, A., Evans, A. C., Fox, P., and Lancaster, J. (1995).

A probabilistic atlas of the human brain: theory and rationale for its development. The

International Consortium for Brain Mapping.NeuroImage, 2(2):89–101.

[Mc Ilraith and Mandell, 2002] Mc Ilraith, S. and Mandell, D.(2002). Comparison of DAML-

S and BPEL4WS. Technical report, Knowledge Systems Lab, Standford.

[McGough et al., 2006] McGough, S., Cohen, J., Darlington, J., Katsiri, E., Lee, W., Pana-

giotidi, S., and Patel, Y. (2006). An End-to-end Workflow Pipeline for Large-scale Grid

Computing.Journal of Grid Computing (JGC), pages 1–23.

[McGough et al., 2007] McGough, S., Lee, W., Cohen, J., Katsiri, E., and Darlington, J.

(2007). ICENI, pages 395–415. In [Taylor et al., 2007].

[McGough et al., 2004] McGough, S., Young, L., Afzal, A., Newhouse, S., and Darlington, J.

(2004). Workflow Enactment in ICENI. InUK e-Science All Hands Meeting, pages 894–

900, Nottingham, UK.

[McIlroy, 1968] McIlroy, M. (1968). Mass-produced software components. InProceedings

of the NATO Conference on Software Engineering, Garmisch, Germany. NATO Science

Committee.

[McPhillips and Bowers, 2005] McPhillips, T. and Bowers, S.(2005). An Approach for

Pipelining Nested Collections in Scientific Workflows.SIGMOD Record, 35(3).

[Medernach, 2005] Medernach, E. (2005). Workload Analysisof a Cluster in a Grid Environ-

ment. InJob Scheduling Strategies for Parallel Processing.

[Mendling and Müller, 2003] Mendling, J. and Müller, M. (2003). A Comparison of BPML

and BPEL4WS. In1st Conference Berliner XML-Tage, pages 305–316, Berlin.

[Menegaz and Thiran, 2002] Menegaz, G. and Thiran, J.-P. (2002). Lossy to lossless object-

based coding of 3-D MRI data.IEEE Transactions on Image Processing (TIP), 11(9):1053–

1061.

[Micu et al., 2006] Micu, R., Jakobs, T., Urschler, M., and Navab, N. (2006). A new registra-

tion/visualization paradigm for ct-fluoroscopy guided rf liver ablation. InProc. Int’l Conf.

Medical Image Computing and Computer Assisted Intervention (MICCAI), Lecture Notes in

Computer Science. Springer.

[Milner, 1999] Milner, R. (1999). Communicating and Mobile Systems: The Pi-Calculus.

Cambridge University Press, Cambridge, UK.

254 Bibliography

[Monson-Haefel, 2001] Monson-Haefel, R. (2001).Enterprise JavaBeans. O’Reilly, third

edition.

[Montagnat, 2006] Montagnat, J. (2006).Processing and analyzing large medical image sets.

Hdr thesis, University of Nice-Sophia Antipolis, Sophia Antipolis, France.

[Montagnat et al., 2004a] Montagnat, J., Bellet, F., Benoit-Cattin, H., Breton, V., Brunie, L.,

Duque, H., Legré, Y., Magnin, I., Maigne, L., Miguet, S., Pierson, J.-M., Seitz, L., and

Tweed, T. (2004a). Medical images simulation, storage, andprocessing on the european

datagrid testbed.Journal of Grid Computing (JGC), 2(4):387–400.

[Montagnat et al., 2005] Montagnat, J., Breton, V., and Magnin, I. (2005). Partitionning medi-

cal image databases for content-based queries on a grid.Methods of Information in Medicine

(MIM), 44(2):154–160.

[Montagnat et al., 2007] Montagnat, J., Frohner,Á., Jouvenot, D., Pera, C., Kunszt, P.,

Koblitz, B., Santos, N., Loomis, C., Texier, R., Lingrand, D., Guio, P., Brito Da Rocha,

R., Sobreira de Almeida, A., and Farkas, Z. (2007). A Secure Grid Medical Data Manager

Interfaced to the gLite Middleware.Journal of Grid Computing (JGC).

[Montagnat et al., 2006] Montagnat, J., Glatard, T., and Lingrand, D. (2006). Data composi-

tion patterns in service-based workflows. InWorkshop on Workflows in Support of Large-

Scale Science (WORKS’06), Paris, France.

[Montagnat et al., 2004b] Montagnat, J., Magnin, I., and Breton, V. (2004b). Medical image

databases content-based queries partitioning on a grid. InHealthGrid’04, Clermont-Ferrand,

France.

[Murata, 1989] Murata, T. (1989). Petri Nets: Properties, Analysis and Applications.Proceed-

ings of the IEEE, 77(4):541–580.

[Mussi and Nain, 1984] Mussi, P. and Nain, P. (1984). Evaluation of parallel execution of

program tree structures. InProceedings of the 1984 ACM SIGMETRICS conference on

Measurement and modeling of computer systems (SIGMETRICS ’84), pages 78–87, New

York, NY, USA. ACM Press.

[Nakada et al., 2005] Nakada, H., Matsuoka, S., Seymour, K.,Dongarra, J., Lee, C., and

Casanova, H. (2005). A GridRPC Model and API for End-User Applications. Technical

report, Global Grid Forum (GGF).

[Nemo et al., 2007a] Nemo, C., Blay-Fornarino, M., Kniesel,G., and Riveill, M. (2007a). SE-

MANTIC ORCHESTRATIONS MERGING - Towards Composition of Overlapping Or-

chestrations. In Filipe, J., editor,9th International Conference on Enterprise Information

Systems (ICEIS’2007), Funchal, Madeira.

Bibliography 255

[Nemo et al., 2007b] Nemo, C., Glatard, T., Blay-Fornarino,M., and Montagnat, J. (2007b).

Merging overlapping orchestrations: an application to theBronze Standard medical applica-

tion. In International Conference on Services Computing (SCC 2007), Salt Lake City, Utah,

USA. IEEE Computer Engineering.

[Nicolau et al., 2003] Nicolau, S., Pennec, X., Soler, L., and Ayache, N. (2003). Evaluation of

a New 3D/2D Registration Criterion for Liver Radio-Frequencies Guided by Augmented

Reality. In International Symposium on Surgery Simulation and Soft Tissue Modeling

(IS4TM’03), volume 2673 ofLNCS, pages 270–283, Juan-les-Pins, France. INRIA Sophia

Antipolis, Springer-Verlag.

[Oinn et al., 2004] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M.,

Carver, T., Glover, K., Pocock, M. R., Wipat, A., and Li, P. (2004). Taverna: A tool

for the composition and enactment of bioinformatics workflows. Bioinformatics journal,

17(20):3045–3054.

[Ourselin et al., 2000] Ourselin, S., Roche, A., Prima, S., and Ayache, N. (2000). Block

Matching: A General Framework to Improve Robustness of Rigid Registration of Medical

Images. InThird International Conference on Medical Image ComputingAnd Computer-

Assisted Intervention (MICCAI’00), LNCS, pages 557–566, Pittsburgh, Pennsylvania USA.

Springer Verlag.

[P. Anderson et al., 2002] P. Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., and

Werthimer, D. (2002). SETI@home: an experiment in public-resource computing.Commu-

nications of the ACM (CACM), 45(11):56–61.

[Pennec, 2006a] Pennec, X. (2006a). Intrinsic Statistics on Riemannian Manifolds: Basic

Tools for Geometric Measurements.Journal of Mathematical Imaging and Vision (JMIV),

1(25):127–154.

[Pennec, 2006b] Pennec, X. (2006b).Statistical Computing on Manifolds for Computational

Anatomy. Hdr thesis, Université Nice Sophia-Antipolis.

[Pennec et al., 2000] Pennec, X., Ayache, N., and Thirion, J.-P. (2000). Landmark-based reg-

istration using features identified through differential geometry. In Bankman, I., editor,

Landmark-based registration using features identified through differential geometry, chap-

ter 31, pages 499–513. Academic Press.

[Pennec et al., 1998] Pennec, X., Guttman, R. G., and Thirion, J.-P. (1998). Feature-Based

Registration of Medical Images: Estimation and Validationof the Pose Accuracy. InMedical

Image Computing and Computer-Assisted Intervention (MICCAI98), volume 1496 ofLNCS,

pages 1107–1114, Cambridge, USA. Springer.

256 Bibliography

[Pennec and Thirion, 1997] Pennec, X. and Thirion, J.-P. (1997). A Framework for Uncer-

tainty and Validation of 3D Registration Methods based on Points and Frames.International

Journal of Computer Vision (IJCV), 25(3):203–229.

[Petri, 1962] Petri, C. A. (1962).Kommunikation mit Automaten. PhD thesis, Institut für

Instrumentelle Mathematik, Schriften des IIM Nr. 3, Bonn.

[Pfister and Szyperski, 1996] Pfister, C. and Szyperski, C. (1996). Why Objects are Not

Enough. InInternational Component Users Conference, Munich, Germany. SIGS.

[Puhlmann, 2006] Puhlmann, F. (2006). Why do we actually need the Pi-Calculus for Business

Process Management? In9th International Conference on Business Information Systems

(BIS06), Klagenfurt, Austria.

[Puhlmann and Puhlmann, 2005] Puhlmann, F. and Puhlmann, F.(2005). Using the pi-

Calculus for Formalizing Workflow Patterns. InThird International Conference on Business

Process Management (BPM’05), LNCS 3649, pages 153–168, Nancy, France.

[Raffy et al., 2006] Raffy, P., Gaudeau, Y., Miller, D., Moureaux, J.-M., and Castellino, R.

(2006). Computer-aided Detection of Solid Lung Nodules in Lossy Compressed Multide-

tector Computed Tomography Chest Exams.Academic Radiology, 13(10):1194–1203.

[Ramakrishnan et al., 2007] Ramakrishnan, A., Singh, G., Zhao, H., Deelman, E., Sakellariou,

R., Vahi, K., Blackburn, K., Meyers, D., and Samidi, M. (2007). Scheduling Data-Intensive

Workflows onto Storage-Constrained Distributed Resources. In 7th IEEE International Sym-

posium on Cluster Computing and the Grid (CCGrid’07), pages 401–409, Rio de Janeiro,

Brazil. IEEE Computer Society Press.

[Reinecke et al., 2004] Reinecke, P., van Moorsel, A., and Wolter, K. (2004). A Measurement

Study of the Interplay between Application Level Restart and Transport Protocol. InIn-

ternational Service Availability Symposium (ISAS), volume 3335 ofLNCS, pages 86–100,

Munich, Germany.

[Rex et al., 2003] Rex, D., Ma, J., and Toga, A. W. (2003). The LONI Pipeline Processing

Environment.NeuroImage, 3(19):1033–1048.

[Roche et al., 1998] Roche, A., Malandain, G., Pennec, X., and Ayache, N. (1998). The Cor-

relation Ratio as a New Similarity Measure for Multimodal Image Registration. InFirst

International Conference on Medical Image Computing and Computer-Assisted Interven-

tion (MICCAI’98), volume 1496 ofLNCS, pages 1115–1124, Cambridge, USA. Springer

Verlag.

Bibliography 257

[Roche et al., 2001] Roche, A., Pennec, X., Rudolph, L., Auer, D., Malandain, G., Ourselin,

S., Auer, L., and Ayache, N. (2001). Rigid Registration of 3DUltrasound with MR Images:

a New Approach Combining Intensity and Gradient Information. IEEE Transactions on

Medical Imaging (TMI), 20(10):1038–1049.

[Rong and Pedram, 2006] Rong, P. and Pedram, M. (2006). Determining the optimal timeout

values for a power-managed system based on the theory of Markovian processes: offline and

online algorithms. InDesign, Automation and Test in Europe (DATE’06), pages 1128–1133,

Munich, Germany.

[Sarrut et al., 2006] Sarrut, D., Boldea, V., Miguet, S., andGinestet, C. (2006). Simulation of

4d ct images from deformable registration between inhale and exhale breath-hold ct scans.

Medical Physics, 33(3):605–617.

[Schestowitz et al., 2006] Schestowitz, R., Twining, C. J.,Cootes, T., Petrovic, V. S., Taylor,

C., and Crum, W. R. (2006). Assessing the accuracy of non-rigid registration with and with-

out ground truth. InThird IEEE International Symposium on Biomedical Imaging (ISBI’06),

pages 836–839.

[Schopf and Berman, 1998] Schopf, J. and Berman, F. (1998). Performance prediction in pro-

duction environments. In12th International Parallel Processing Symposium, pages 647–

653, Orlando, Florida, USA.

[Schopf and Berman, 1999] Schopf, J. and Berman, F. (1999). Stochastic Scheduling. InSu-

percomputing (SC’99), Portland, USA.

[Schopf and Berman, 2001] Schopf, J. and Berman, F. (2001). Using Stochastic Information

to Predict Application Behavior on Contended Resources.International Journal of Founda-

tions of Computer Science, 12(3):341–364.

[Senger et al., 2003] Senger, M., Rice, P., and Oinn, T. (2003). Soaplab - a unified Sesame

door to analysis tool. InUK e-Science All Hands Meeting, pages 509–513, Nottingham.

[Sermesant et al., 2006] Sermesant, M., Delingette, H., andAyache, N. (2006). An Electrome-

chanical Model of the Heart for Image Analysis and Simulation. IEEE Transactions on

Medical Imaging (TMI), 25(5):612–625.

[Shao et al., 2007] Shao, Q., Kinsy, M., and Chen, Y. (2007). Storing and Discovering Critical

Workflows from Log in Scientific Exploration. InIEEE Congress on Services, International

Workshop on Scientific Workflows (Services’07), pages 209–212, Salt-Lake City, Utah, USA.

[Shields, 2007] Shields, M. (2007).Control- Versus Data-Driven Workflows, chapter 11. In

[Taylor et al., 2007].

258 Bibliography

[Slominski, 2007] Slominski, A. (2007).Adapting BPEL to Scientific Workflows, chapter 14,

pages 208–226. In [Taylor et al., 2007].

[Smith and Fingar, 2003] Smith, H. and Fingar, P. (2003). Workflow is jus a Pi process.

[Song et al., 2007] Song, H., Cheng, D., Messer, A., and Kalasapur, S. (2007). Web Service

Discovery Using General-Purpose Search Engines. In2007 IEEE International Conference

on Web Services (ICWS 2007), Salt-Lake City, Utah, USA. IEEE Computer Society.

[Spanoudakis et al., 2007] Spanoudakis, G., Mahbub, K., andZisman, A. (2007). A Platform

for Context Aware Runtime Web Service Discovery. In2007 IEEE International Conference

on Web Services (ICWS 2007), pages 233–240, Salt-Lake City, Utah, USA. IEEE Computer

Society.

[Stef-Praun et al., 2007] Stef-Praun, T., Clifford, B., Foster, I., Hasson, U., Hategan, M.,

Small, S., Wilde, M., and Zhao, Y. (2007). Accelerating Medical Research using the Swift

Workflow System. InHealthGrid.

[Szyperski, 2002] Szyperski, C. (2002).Component Software: Beyond Object-Oriented Pro-

gramming. Addison Wesley, second edition.

[Tanaka et al., 2003] Tanaka, Y., Nakada, H., Sekiguchi, S.,Suzumura, T., and Matsuoka, S.

(2003). Ninf-G: A Reference Implementation of RPC-based Programming Middleware for

Grid Computing.Journal of Grid Computing (JGC), 1(1):41–51.

[Taylor et al., 2007] Taylor, I., Deelman, E., Gannon, D., and Shields, M. (2007).Workflows

for e-Science. Springer-Verlag.

[Taylor et al., 2005] Taylor, I., Wand, I., Shields, M., and Majithia, S. (2005). Distributed

computing with Triana on the Grid.Concurrency and Computation: Practice& Experience,

17(1–18).

[Topcuoglu et al., 2002] Topcuoglu, H., Hariri, S., and Min-You, W. (2002). Performance-

effective and low-complexity task scheduling for heterogeneous computing.International

Journal of Supercomputer Applications, 13(3):260–274.

[Unser et al., 2003] Unser, M., Aldroubi, A., and Laine, A. (2003). Special Issue on Wavelets

in Medical Imaging (editorial).IEEE Transactions on Medical Imaging (TMI), 22(3):285–

288.

[van der Aalst, 2004] van der Aalst, W. M. (2004). Why workflowis NOT just a Pi-process.

[van der Aalst and ter Hofstede, 2002] van der Aalst, W. M. andter Hofstede, A. H. (2002).

Workflow Patterns: On the Expressive Power of (Petri-net-based) Workflow Language. In

Bibliography 259

Proceedings of the Fourth Workshop on the Practical Use of Coloured Petri Nets and CPN

Tools (CPN 2002), volume 560 ofDAIMI. Jensen, K.

[van der Aalst and ter Hofstede, 2005] van der Aalst, W. M. andter Hofstede, A. H. (2005).

YAWL: Yet Another Workflow Language.Information Systems, 30(4):245–275.

[van der Aalst et al., 2003] van der Aalst, W. M., ter Hofstede, A. H., Kiepuszewski, B., and

Barros, A. P. (2003). Workflow patterns.Distributed and Parallel Databases, 14(1):5–51.

[Van Engelen and Gallivan, 2002] Van Engelen, R. A. and Gallivan, K. A. (2002). The gSOAP

Toolkit for Web Services and Peer-to-Peer Computing Networks. InProceedings of the 2nd

IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID ’02),

page 128, Washington DC, USA. IEEE Computer Society.

[van Moorsel and Wolter, 2006] van Moorsel, A. and Wolter, K.(2006). Analysis of Restart

Mechanisms in Software Systems.IEEE Transactions on Software Engineering (TSE),

32(8):547–558.

[Veldhuizen, 2003] Veldhuizen, T. (2003). C++ Templates are Turing Complete. Technical

report, Indiana University.

[von Laszewski et al., 2004] von Laszewski, G., Kaizar, A., Hategan, M., Zaluzec, N. J.,

Hampton, S., and Rossi, A. (2004). GridAnt: A Client-Controllable Grid Workflow Sys-

tem. In37th Hawai’i International Conference on System Science, Island of Hawaii, Big

Island.

[Wagstrom et al., 2002] Wagstrom, P., Krishnan, S., and von Laszewski, G. (2002). GSFL: A

Workflow Framework for Grid Services. In Austvoll, I., editor, Scandinavian Conference

on Image Analysis, Bergen, Norway.

[Warfield et al., 2004] Warfield, S. K., Zou, K., and Wells, W. (2004). Simultaneous truth and

performance level estimation (STAPLE): an algorithm for the validation of image segmen-

tation. IEEE Transactions on Medical Imaging (TMI), 23(7):903– 921.

[Weissman and Zhao, 1998] Weissman, J. and Zhao, X. (1998). Scheduling parallel applica-

tions in distributed networks.Cluster Computing (CC), 1(1):109–118.

[West et al., 1997] West, J., Fitzpatrick, J. M., Wang, M. Y.,Dawant, B. M., Maurer, Jr., C. R.,

Kessler, R. M., Maciunas, R. J., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens,

P., Vandermeulen, D., van den Elsen, P. A., Napel, S., Sumanaweera, T. S., Harkness, B.,

Hemler, P. F., Hill, D. L. G., Hawkes, D. J., Studholme, C., Maintz, J. B. A., Viergever,

M. A., Malandain, G., Pennec, X., Noz, M. E., Maguire, Jr., G.Q., Pollack, M., Pelizzari,

C. A., Robb, R. A., Hanson, D., and Woods, R. P. (1997). Comparison and evaluation

260 Bibliography

of retrospective intermodality brain image registration techniques. Journal of Computer

Assisted Tomography, 21(4):554–566.

[White, 2006] White, S. A. (2006). Using BPMN to model BPEL process. Technical report,

IBM Corp.

[Wohed et al., 2003] Wohed, P., van der Aalst, W. M., Dumas, M., and ter Hofstede, A. H.

(2003). Analysis of Web Services Composition Languages: The Case of BPEL4WS. In

22nd International Conference on Conceptual Modeling, Chicago.

[Woodman et al., 2007] Woodman, S., Parastatidis, S., and Webber, J. (2007).Protocol-Based

Integration Using SSDL and pi-Calculus, pages 227–243. In [Taylor et al., 2007].

[Xie et al., 2002] Xie, W., Sun, H., Cao, Y., and Trivedi, K. (2002). Optimal Webserver Session

Timeout Settings for Web Users. InComputer Measurement Group Conference (CMGC),

pages 799–820, Reno, NV, USA.

[Xiong et al., 2003] Xiong, Z., Wu, X., Cheng, S., and Hua, J. (2003). Lossy-to-lossless com-

pression of medical volumetric data using three-dimensional integer wavelet transforms.

IEEE Transactions on Medical Imaging (TMI), 22(3):459–470.

[Yang et al., 2007] Yang, L., Chen, W., Meer, P., Salaru, G., Feldman, M., and Foran, D. J.

(2007). High Throughput Analysis of Breast Cancer Specimens on the Grid. InMedical

Image Computing and Computer-Assisted Intervention (MICCAI’07), Brisbane, Australia.

[Yu and Buyya, 2004] Yu, J. and Buyya, R. (2004). A novel architecture for realizing grid

workflow using tuple spaces. InProceedings. Fifth IEEE/ACM International Workshop on

Grid Computing, pages 119–128.

[Yu and Buyya, 2005a] Yu, J. and Buyya, R. (2005a). A taxonomyof scientific workflow

systems for grid computing.ACM SIGMOD records (SIGMOD), 34(3):44–49.

[Yu and Buyya, 2005b] Yu, J. and Buyya, R. (2005b). A Taxonomyof Workflow Management

Systems for Grid Computing.Journal of Grid Computing (JGC), 3(3-4):171 – 200.

[Zhang et al., 2004] Zhang, K., Damevski, K., Venkatachalapathy, V., and Parker, S. (2004).

SCIRun2: A CCA Framework for High Performance Computing. In9th International Work-

shop on High-Level Parallel Programming Models and Supportive Environments (HIPS),

pages 72–79, Los Alamitos, CA, USA.

[Zhao et al., 2007a] Zhao, Y., Hategan, M., Clifford, B., Foster, I., von Laszewski, G., Raicu,

I., Stef-Praun, T., and Wilde, M. (2007a). Swift: Fast, Reliable, Loosely Coupled Parallel

Computation. InIEEE International Workshop on Scientific Workflows, Salt-Lake City.

Bibliography 261

[Zhao et al., 2007b] Zhao, Y., Wilde, M., and Foster, I. (2007b). Virtual Data Language: A

Typed Workflow Notation for Diversely Structured ScientificData, chapter 17, pages 258–

275. In [Taylor et al., 2007].

262 Bibliography

	Notations
	Introduction
	Grids for medical image analysis applications
	Doing research on production grids ?
	Manuscript organization and contributions

	I Workflows for medical image analysis applications
	Performance evaluation of medical image registration using bronze standards
	Medical image registration problems
	Performance evaluation: the bronze standard method
	Follow-up of brain tumors evolution in radiotherapy
	Impact of lossy compression on registration
	Conclusions and motivations for the following

	A taxonomy of workflow approaches for medical image analysis applications
	Sharing algorithms: from assembly to services
	From formal workflow models to their execution
	Moving from a class to another one.
	Conclusions

	The bronze standard service workflow
	The bronze standard workflow
	Expressiveness of the selected workflow language
	Conclusions

	II Workflow execution on production grids
	The MOTEUR engine for service workflows
	Parallelism exploitation in service workflows
	Data composition strategies in a parallel service workflow
	Implementation of MOTEUR and overhead quantification
	Conclusions

	Production grids versus dedicated clusters
	Grid platforms and middlewares
	Comparison of systems on the bronze standard workflow
	Latency comparisons
	Choosing the best platform: a multi-grids model
	Conclusions

	Analysis and impact of the latency variability on the EGEE grid
	Influence of the latency variability on a workflow
	Characterization of the latency variability
	Handling variability in grid models
	Conclusions

	III Execution optimization on production grids
	Service grouping
	Service grouping optimization strategy
	Experiments on the EGEE production grid
	Conclusions

	Optimization of the timeout value
	Model of the user job latency taking into account the timeout value
	Timeout optimization for classical latency distributions
	Experiments on the EGEE latency distribution
	Conclusions

	Optimization of the job granularity
	Model of the execution time of a user job allowing granularity tuning
	Experimental evaluation on EGEE
	Extensions of the method
	Conclusions
	Conclusions and future directions
	Summary of the contributions
	Future directions in grid workflows
	Future directions in production grids modeling
	Future directions in service computing for medical image analysis applications
	Future directions towards a clinical use of the grid

	Determination of the numerical values of the path of the workflow of figure 6.1
	Proofs of the timeout results of chapter 8
	Expectation of J in the general case
	Limits of EJ
	Distributions for which the timeout value does not impact EJ when =0
	Behavior of EJ in the Weibull case without outliers
	Expression of EJ(t) in the truncated Gaussian case
	Behavior of EJ(t) in the truncated Gaussian case
	Expression of EJ in the log-normal case
	Behavior of EJ in the Pareto case
	Properties of and link with erf

	Bibliography

