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Abstract

Grids are interesting platforms for supporting the develept of medical image analysis ap-
plications: they enable data and algorithms sharing andigeechuge amounts of computing
power and data storage. In this thesis, we investigate acaleidhage analysis problem that
turns out to be a typical dimensioning application for gyitheis leading to develop new work-
flow description, implementation and optimization methadsl tools. The basic application
problem is the evaluation of medical image registratiomatgms in absence of ground truth.
Results obtained with a statistical method applied to astegfion problem dealing with the

follow-up of brain tumors in radiotherapy are presentedoJéresults allow to detect subtle
flaws among the data. We extend this validation scheme i todpiantify the impact of lossy

image compression on registration algorithms.

This application is representative of typical grid probkeso that we study its deployment
and execution on such infrastructures. We adopt a genernkfieev model to ease the appli-
cation parallelization on a grid infrastructure. A novetdaomy of workflow approaches is
presented. Based on it, we select a suitable workflow largiaad we design and implement
MOTEUR, an enactor exploiting all the parallelism levelsvadrkflow applications. A new
data composition operator is also defined, easing the giscriof medical image analysis
applications on grids. Benchmarks on the EGEE productiahagrmpared to controlled con-
ditions on Grid’5000 reveal that the grid latency and itsiaaility lead to strong performance
drops. Therefore, we propose a probabilistic model of trecetion time of a grid workflow.
This model is user-centric: the whole grid is considered bkak-box introducing a random
latency on the execution time of a job.

Based on this model, we propose three optimization str@segiiming at reducing the im-
pact of the grid latency and of its variability: (1) groupisgquentially linked jobs reduces the
mean latency faced by a workflow, (2) optimizing the timeoaliue of jobs reduces the im-
pact of outliers and (3) optimizing the jobs granularity weds the risk to face high latencies.
Significant speed-up are yielded by those strategies.






Résune

En permettant le partage a grande échelle de donnéesalgbdthmes et en fournissant une
guantité importante de puissance de calcul et de stockeggrilles de calcul sont des plate-
formes intéressantes pour les applications d’analyseatjes médicales. Dans cette these,
nous étudions un probleme d’analyse d’images médiaples’avere étre une application di-
mensionnante pour les grilles, conduisant au développedenouvelles méthodes et outils
pour la description, 'implémentation et I'optimisatide flots de traitements. Le probleme ap-
plicatif étudié est I'évaluation de la précision d’alithmes de recalage d’images médicales en
I'absence de vérité terrain. Nous faisons passer aéie une méthode statistique d’évaluation
de ces algorithmes et nous montrons des résultats desjgm@cur une base de données con-
cernant le suivi de la radiothérapie du cerveau. Cestasypermettent notamment de détecter
des défauts tres legers au sein des données. Nousoageoe schéma pour quantifier I'impact
de la compression des images sur la qualité du recalage.

Cette application étant représentative de problemgig|tes survenant sur les grilles, nous
nous attachons a son déploiement et a son executiom sype d’infrastructures. Pour faciliter
une parallélisation transparente, nous adoptons un legdnérique de flots de traitements,
dont nous proposons une nouvelle taxonomie. Pour répandedimitations de performance
des moteurs d’exécution de flots existants, nous preseM®OTEUR, qui permet d’exploiter
les diferents types de parallélisme inhérents a ces appitsiti La définition d'un nouvel
opérateur de composition de données facilite la desoriples applications d’analyse d'images
médicales sur les grilles. Par une comparaison entrella dé production EGEE et des grappes
dédiées de Grid’5000, nous mettons en évidence I'ingpae de la variabilité de la latence sur
une grille de production. En conséquence, nous proposoemsagele probabiliste du temps
d’exécution d’un flot de traitement sur une grille. Ce miedest centré sur l'utilisateur : il
considéere la grille toute entiere comme une boite noi®duisant une latence aléatoire sur le
temps d’exécution d’'une tache.

A partir de ce modele, nous proposons trois stratégiegptiliosation visant a réduire
limpact de la latence et de sa variabilité : (1) dans un flothitement, grouper les taches
séquentiellement liées permet de réduire la latenceamoy rencontrée, (2) optimiser la valeur
du délai d’expiration des taches prémunit contre leswa extrémes de la latence et (3) opti-
miser la granularité des taches permet de réduire le@sig rencontrer de fortes latences. Des
accélérations significatives sont ainsi obtenues.
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Introduction




Introduction

Sharing data and algorithms with a community of users hadymed fascinating applications
of the Internet, such as the World Wide Web and, to some extpen-source software projects
such as the Linux kernel. Similarly, the development of @igdevices has made available
tremendous amounts of storage and computing resourceseThsources are distributed all
over the world but still accessible: tlgeid [Foster and Kesselman, 19%dénotes the aggrega-
tion of heterogeneous resources transparently accessibbee end-user. In the medical image
analysis domain, sharing data, algorithms and computimgepsuggests awesome applications
benefiting from such resources aggregations.

1 Grids for medical image analysis applications

Computerized medical image analysis is now a well estadtisirea that provides assistance
for diagnosis, therapy, and pathologies follow-up. It manéfit from the adoption of grid
technologies in several aspects.

First, by providing computing power, grids tend to allow aet clinical adoption of med-
ical image analysis procedures. Indeed, the exploitationexlical image analysis algorithms
in clinical context imposes time deadline constraints @& hardly satisfied by time con-
suming applications but could be approached thanks to taeotigrids. Besides, from the
medical image analysis scientists point of view, settingarge scale realistic experiments
(such as parameter sweep applicationsrnesant et al., 20por image acquisition simula-
tion [Benoit-Cattin et al., 200y is often dificult due to the required computing time. This
kind of compute-intensive methods greatly benefits frond ¢gchnologies that speed up the
experiments, specially in case of multiple trials requii@dparameters tuning and the detection
of experimental errors. Applications dedicated to thedation or evaluation of medical image
analysis procedures may also be fostered by computing p&ueh applications often require
to process large databases of images in order to obtainfiseymti results. For instance, the
quality of the results provided by the bronze standard nethotivating this thesis is improv-
ing with the number of processed images and evaluated #igusi In this case, the availability
of computing power is directly related to the quality of tHeained results.
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Second, the gridification of medical image analysis appbcs is also motivated by the
fact that image processing algorithms may be mdiieiently shared on grids. Pushing stan-
dards, grids are easing the use of medical image analydss ftmoa large community of end
users, not necessarily aware of computer technologiesel$tandards enable access to proce-
dures needed for building large scale health-related @xgerts. In particular, the validation of
medical image analysis procedures would benefit from a panesnt sharing of codes. Making
algorithms interoperate on a given platform may rapidlydiee intractable as some serious
engineering problems will arise. For instance, the brortaadard application involves sev-
eral diferent medical image analysis algorithms that may have beeelabed by dterent
researchers and institutes using various programmingiges on heterogeneous systems and
architectures. Particular methods have been set up by gudlapers to ease code sharing.
As detailed in this thesis, the state-of-the-art solutmmléal with code sharing is to adopt a
Service Oriented Architecture (SOA) to develop applicagervices and to useorkflowsas a
programming paradigm to build complete applications ondbihem.

Besides, with the growing inspection capabilities of imagand the increase in medical
data production, the need for large amounts of data storageadases. Beyond that, being able
to share data is also a crucial challenge of medical imaggsieapplications that would often
remain useless without the ability to access image datalidsesignificant size. Applications
such as content-based image indexing and retrievialhfagnat et al., 20(b atlas construc-
tion [Mazziotta et al., 199or statistical validation of algorithms ennec and Thirion, 1937
would greatly benefit from a massive sharing of medical insagérids, in theirdata-grid
aspect provide a common storage and indexation space ajale users of a virtual orga-
nization to share their data. Yet, many issues (such agndetadata access, anonymization
and encryption for dferent users communities) remain specific to the sharing dicakdata
and systems such as the Medical Data Managem[fagnat et al., 20qQor the Globus Medi-
cus [Erberich et al., 2007should become mandatory components of any grid medicaésys
put in production.

Finally, another well established benefit of grid computiedhe federation of scientific
communities in Virtual Organizations (VOS). In the contekinedical image analysis, several
specialized communities can be identified for which the fpreders collaborative work. Indeed,
many actors are likely to take part in a grid-enabled medinate analysis system, with diverse
skills, needs and constraints. In particular:

1. The developers of the applicatiorsgmedical image analysis scientists) should be able
to describe a complete application from existing heteregeis codes that have been
developed independently from each other.

2. The end-userse(gclinicians) should be able (i) to specify the data on whiah alppli-
cation will be run and (ii) to execute it on a grid without wgirrg about the technical
underlying detalils.
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3. The grid experts should be able to transparently deplgyan grid-specific code and to
efficiently execute complete applications composed of sewétaem.

In this thesis, we will try to keep the balance between thbseet aspects. Workflows are an
interesting approach to make them cooperate. Apart fromigireg a transparent way to design
and deploy applications on grids, they constitute a paddrbusuitable application exchange
format among them. They are thus studied in depth in this maipt. Moreover, in order to
study realistic scenarios, we will study the deploymentofe workflows omproductiongrids.

2 Doing research on production grids ?

Production grids are 24 operating platforms that provide stable enough systenssipport
science. They support applications aiming at yieldingredie results in various fields but
computer science, such as high energy physics, aeronaggigogy, earth observations, bioin-
formatics and medical image analysis. Thus, among theiegisolutions, they are ideal
platforms to target for the deployment and scientific expliton of medical image analysis
applications. Conversely, research in computer scient@dstionally made on experimental
platforms [Cappello et al., 2005 appello and Bal, 200 that provide controlled environments
allowing the setup of reproducible experiments. Thoseumsénts are envisioned as “grid tele-
scopes” developed by computer scientists for computensste and required to analyze and
develop models and methods setting the basis of the softarevould be put in production
in a next step.

The grid platforms targeted by this manuscript are produnctnfrastructures rather than
experimental ones. Consequently, the grid deploymenteo&fiplication and the subsequently
studied optimization strategies will be performed in a meproducible context, which may be
debatable from a computer science point of view. Indeedcontl wonder whether production
grids should only be seen as a deployment platform for séiemipplications or if they may
also be considered for computer science research.

Even if the experimental conditions are not so favorablgtjlitremains worth observing the
real sky. Studying production systems seems to be a regsiiegdat least to identifyfiective
problems that could be studied in reproducible contextsiex step. Indeed, production grids
are not very well known systems: the prediction of the peniance of applications is almost
impossible today and even its analysis may be problematigpractice, current production
solutions for debuggingjuan et al., 200pBand even for resource selectionafq et al., 207
rely on huge historical information logs that are empitigahterpreted. No model of those
platforms are available or used in production. The undaditey of production platforms re-
quires the collection of realistic data (such as worklo&aésiElson, 2002Viedernach, 20()
and their improvement expects the identification and exgioesof the new problems raised by
the production exploitation of grid applications. That iBywve study those production sys-
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tems in this manuscript. Beyond their practical interest,intent is to provide some material
helping in their understanding in order to allow the devet@mt of new optimization methods
specific to those platforms. Experimental platforms willyolpe used as a reference to quantify
the performance of production grids.

3 Manuscript organization and contributions

The approach adopted in this manuscript is to start from e#@ypnedical image analysis ap-
plication and to consider it as a dimensioning use-caseutdysyrids. One the one hand, the
power of those infrastructures allows us to derive new aagiresults in the medical image
analysis field. On the other hand, this application-cerapproach led us to design new opti-
mization methods on grids to foster the performance of appbns. This thesis is divided into
three parts, each of them being composed of three chaptarsl dreals with the description
of medical image analysis workflows. After a presentationhaf new results obtained from
the image registration application, it aims at identifyswgtable workflow models for medical
image analysis. Patt is devoted to the execution of workflows on production gridis:goal

is to determine the level of performance that can be achievethose infrastructures and to
highlight the causes of performance drops. Based on thasgduzions, partll proposes new
strategies to optimize workflows execution on productiddgr

Chapter 1. Chapterl presents the new results obtained with the bronze standatittbeh. The
idea of this method and preliminary results demonstratimegf¢asibility proof of the approach
were presented inFennec, 2004b In this thesis, we enable its operational mode thanks to
grid technologies which allow the method to reach its fulveo Results are presented on a
large database related to the follow-up of brain radiothgr®n this registration problem, we
demonstrate that a sub-voxelic precision (about 0.15° tatimn and 0.4 mm in translation)
is achieved by the tested algorithms. The large size of thfalthse and of the computation
involved allows to compute statistically significant resulvhich permits subtle detections such
as a 1.2 degree tilt of part of the images highlighted by osults [Glatard et al., 2004f We
then propose a study of the influence of a lossy image comipressethod on the quality
of the registration. Based on an experiment involving 3,08fistrations, we conclude that
the influence of the tested compression method is almostticeable until a compression
ratio of 48. Coupled to similar results shown irdty et al., 200§, it constitutes a set of
indications tending to suggest that lossy compressiorddoeiconsidered in some applications.
The bronze standard application studied in this chaptestilates several typical grid problems.
In particular, it benefits from a workflow design, as studiedhie next chapters.
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Chapter 2. In this chapter, we propose a new classification of workflonscdgtions for
medical image analysis applications. This taxonomy is thasethe distinction between the
roles of the clinician (specifying the data), the medicahge scientist (defining the treatments
to perform) and the grid expert (mapping the tasks to thewess). This taxonomy allows
to select suitable workflow representations for a given igppe context. In particular, we
underline that the use of the traditional workflow repreagoh used on grids requires to mix
the roles of the clinician and the image analyst, which issuitable. The work presented in
this chapter is original but not published yet.

Chapter 3. Based on this taxonomy, chapterationalizes the use of service workflows for
medical image analysis applications and provides a desmmipf the bronze standard applica-
tion in this paradigm using the Scufl language. After the sasful description of the bronze
standard application in Scufl, we propose a study of the espreness of this language. We
demonstrate that it is possible to implement a Turing maemrScufl, thus guaranteeing that
the language is expressive enough to describe a largeraflagplications.

Chapter 4. Because existing solutions do not provide a satisfyingllgdiation of service
workflows, the implementation of an optimized workflow erg[®latard et al., 2004ds pre-
sented in chapted. This development is based on an existing workflow langu&pef().
Yet, in a fully parallel execution, one of its data compasitioperators is not well-defined.
Thus, we propose a new semantic for this operator and wel detasubsequent implementa-
tion [Montagnat et al., 20Q@5latard et al., 2009b This new operator aims at facilitating the
development of medical image analysis workflows in a padretatext.

Chapter 5. The workflow implementation of the application enables a feompar-
ison between dierent grid systems. Chaptes details its interface with grid plat-
forms [Glatard et al., 2005Glatard et al., 200gcand presents experimental results comparing
production grids and dedicated clusters. Results denaiesér speed-up of 44 of a typical
bronze standard execution on a 60-nodes dedicated platfanioh is close to the theoretical
bound that could be achieved. Because of the latency of thkersy the execution in sim-
ilar conditions on the EGEE production grid only providespeed-up of 10, which can be
explained by the high latency of such production grids. The ef the chapter proposes a
multi-grids model {Glatard et al., 2004tthat is used to quantify the gap between production
and experimental platforms. Given a number of jobs, this @eh@&lable to determine the pro-
portion of them to submit on a production grid rather than afuater to minimise the payfo

of the latency. For instance, we demonstrate that from sopednce point of view, there is
no need to use the production grid rather than a 20 node<cluster a threshold of 50 one
minute long jobs. This threshold grows to 230 jobs when caimpgahe production grid to a



24 Introduction

100 nodes cluster. The experiments and metrics introducéds chapter provide new meth-
ods to benchmark the performance of production grids wisipeet to traditional clusters. The
variability of the grid latency is also identified as partay high (up to 5 minutes) on the
EGEE production grid.

Chapter 6. This chapter proposes a new modeling of workflow on gridssThodel delib-
erately considers the grid as a black box. Given the highalsdity of production platforms,
we consider that it introduces a random latency on the ei@ttitme of a job. A probabilis-
tic model for the performance analysis of workflowsl§tard et al., 2007ds first presented.
Given the topology of the workflow, it allows to determine #pectation and standard devi-
ation of its execution time on a highly variable grid. Usifgstmodel, we demonstrate that
the latency variability leads to a performance drop of ada@ton the execution time of the
bronze standard application. This motivates the need fategjies to reduce the impact of this
variability. Experimental results characterizing thetdimition of the grid latency in production
conditions are then shows[atard et al., 2007]aEven if extreme precautions have to be taken
when a latency model is assumed, we suggest that the prigkdistribution of the latency
is heavy-tailed. We believe that the probabilistic grid m@ech adopted in this chapter is likely
to generate new methods for the optimization of application production grids, as initiated
in chapters3 and9.

Chapter 7. In this chapter, we propose to group some services of the flearkn order
to reduce the impact of the grid latency. A grouping rule emguthat parallelism is pre-
served is proposed. Its application yields significant dpges, ranging from 1.5 to 3 on the
bronze standard application. Grouping services is notgsttdorward in a classical service-
oriented architecture. Thus, to implement our strategypvepose a generic application ser-
vice wrapper which is able to perform the grouping, whildl stbnforming to the services
standardsGlatard et al., 2006&Glatard et al., 2009a

Chapter 8. Grids are operational systems prone to inevitable failatesultiple levels. In
addition to the high variability of the latency, some jobsynggt lost or at least not finish in
a “finite” time. Those jobs are called outliers. Thus, sulbimgt a grid job introduces a risk
that has to be controlled. To do that, chapgigoroposes a strategy to optimize the timeout
value of jobs on production gridss|atard et al., 2007b Relying on the approach introduced
in chapter6, we derive a probabilistic model of the execution time of la ijocluding timeout
and resubmissions. Based on it, we suggest that the weighedhil of the distribution of
the latency is a discriminatory parameter for setting a tintevalue to the jobs. Optimizing
this value is shown to be particularly important on prodoietyrids and latency reductions of a
factor 1.4 are shown with this method on the EGEE grid.
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Chapter 9. To further reduce the risk to face high latencies and owtliene can control
the granularity of a user joh,e the number of grid jobs that will be submitted to compute
it. Chapter9 proposes a method to optimize this job granularity. It eitplthe same proba-
bilistic approach as previously, which seems to be relegantigh to optimize job submission
parameters with a new angle, focusing on the grid varigbdégen from a user’'s perspective.
This method goes one step further than the grouping presentehapter7: here, the data
parallelism of the application is deliberately limited inder to reduce the risk to face high
latencies. The method proposed in this chapter is showmgtofiantly speed-up applications
while reducing the global load imposed to the gligdtard et al., 200qge
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mage registration is an important procedure method are first described. Then, an experimen-
I for medical image analysis applications. It tal use-case related to the follow-up of brain ra-
aims at finding a geometrical transformation be- diotherapy is presented. Finally, a study of the
tween two images so that they are best superim-impact of lossy images compression on registra-
posed. Evaluating the performance of registra- tion is developed and demonstrates the power of
tion is not trivial because of the lack of ground the method. The bronze standard application is
truth in medical image analysis. The goal of the motivating use-case of the following chapters
the bronze standard application is to provide a of the manuscript. It gathers grid challenges re-
framework for the evaluation of registration re- lated to algorithms and data sharing as well as
sults in absence of ground-truth and gold stan- computing power needs that are addressed in the
dard [Pennec, 2006b The foundations of the remaining of this thesis.

e recalage d’'images est une procédure im- temps, les fondements de la méthode sont décrits
L portante pour les applications d’analyse puis un cas d'utilisation concernant le suivi
d'images médicales. Son but est de trouver de la radiothérapie du cerveau est présenteé.
une transformation géométriqgue entre deux im- Enfin, une étude de l'impact de la compres-
ages pour qu'elles se superposent au mieux.sion d'images avec pertes sur le recalage est
Evaluer la performance du recalage n’'est pas développée et démontre la puissance de la
trivial a cause de l'absence de vérite ter- méthode. L'application des étalons de bronze
rain en analyse d’images médicales. Le but motive les chapitres suivants de ce manuscrit.
de l'application des étalons de bronze est de Elle concentre des enjeux en termes de puis-
fournir un cadre pour I'évaluation des résultats sance de calcul et de partage d’'algorithmes et
du recalage en l'absence de vérité terrain et de données qui sont étudiés dans la suite de cette
d’étalon-or [Pennec, 2006b Dans un premier these.

The goal of this chapter is to present, from a medical imag®yars point of view, the
bronze standard application which will be our main use casehie study of grid workflows
in the next chapters. This application aims at evaluatimgpérformance of medical image
registration algorithms with respect to a statistical Hruthich is determined as a mean of
several independent measurements. Those results can Ipeiteohin parallel, thus exploiting
a natural coarse grain parallelism.
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1.1 Medical image registration problems

Medical image registration is a very common procedure inicadmage analysis and it has
been extensively studied during the last decages kman, 2000Viaintz and Viergever, 1998
Hajnal et al., 200,IMakela et al., 2002Gholipour et al., 200)/ Its goal is to estimate a trans-
formation enabling the resampling offl@ating imageonto the geometry of garget image
so that both images are best superimposed. Many classegistiagon problems exist, de-
pending on the nature of the transformation searched (ragiche, deformation field), on the
modalities of the images to register (Magnetic Resonanoglé&Photon Emission Computed
Tomography, Computed Tomography, Ultra-Sound, PositonsEion Tomography) and on
their geometry (2D, 3D, 4D). In practice, a registration hoet aims at optimizing a similarity
measure between 2 input images, considering a partica@asfiormation space. As in every
optimization procedure, performance problems may arig@micular because of the presence
of local minima of the optimized criterion. The output trésrsnation of a registration algo-
rithm may be more or less close to therrect solution which is most of the time unknown
(see figurel.l). Intensity-based methods may optimize similarity meassuch as the sum of
square distances between the intensities of the images (8&xorrelation ratio or cakcient
(CR and CC Roche et al., 199% or the mutual information (MI). Alternately, feature-sed
methods optimize a distance between features extractedtfre images, such as crest-lines.

Rigid registrationassumes that the target and floating images are two sepa@iesia
tions of the same rigid object. In this case, the registrapooblem resumes to the finding
of a rotation and a translation (6 parameters for 3D imageshat the floating image can be
transformed in the frame of the target one. This type of tegfion problem may for instance
correspond to successive acquisitions of a non-defornagbn of a patient (intra-patient reg-
istration). In addition to rotation and translaticagfine registrationalso considers shear and
scaling in all the directions, thus leading to the optimimabf 12 parameters for 3D images.

Non-rigid transformations allow local deformations of thbjects to register. An ex-
tension of the rigid andféine registration problems in this direction is to consideralty
rigid or affine transformations, as proposed inifle et al., 1997 and [Arsigny et al., 200k
With a small number of intuitive parameters tuning the numbgrigid or affine com-
ponents as well as their definition domains, those transitions are able to address
problems involving several rigid objects such as the regfistn of the head (skull and
neck) [Commowick and Malandain, 20006

However, problems concerning highly deformable organsracge properly addressed
by non-rigid transformations. This is the case for the whalbelomen (deformation due to
breathing Farrut et al., 200}), pathological images (such as tumoral follow-up imagesd
of course inter-patient images (including atlas to pajidntthis case, the output transformation
of the registration is a deformation field, which correspgnidr 3D images, to 3 parameters
per voxel.
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i local minima

lobal minimum /
orrect solution

similarity measure

basin of attraction of the correct solution

-

transformation space
Figure 1.1: lllustration of the registration problem: thartsformation space is browsed by
the optimization strategy in order to minimize a similariyeasure between the floating
and the reference images. The basin of attraction of theaglmimimum characterizes the
robustness of the method.

The registration problem is also characterized by the eabdfithe images to register: they
can correspond to the same imaging modality (intra-modgikteation) or to diferent ones
(inter-modal registrationqellier and Barillot, 2004Arbel et al., 200}). The geometry of the
images can also vary among the registration problems. Ftamce, registering 2D to 3D
images is required in some image guided therapy clinicaliegmons [Nicolau et al., 200B
in particular in fluoroscopyiflicu et al., 2006Heining et al., 200pand registering cardiac se-
guences implies 4D imagelsipkela et al., 20013

1.2 Performance evaluation: the bronze standard method

The performance of registration algorithms is critical fieany image-based clinical procedures
but quantifying it is dificult due to the lack of gold standard in most clinical apglmas. In
most cases, there is no reference to which the result of stragjon algorithm can be compared.
To analyze registration algorithms from a technical poinview, one may consider them as
black boxes that take images as input and that return a tnanafion. The performance eval-
uation problem is to estimate the quality of this transfaiiora However, no registration algo-
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rithm will perform the same for all types of input data andsiimportant to keep in mind that

a performance estimation of an algorithm is only valid foe articular registration problem
considered in the evaluation study. For instance, re@ggf€ T images of the head of the same
patient could be much more accurate than registering therabd of the same patient because
some deformations occur in the second case due to breathéhigesaart beating. Likewise, one
algorithm may perform very well for multimodal MR registiat but poorly for SPECICT.
This means that the evaluation data set has to be repraserghthe targeted typical clinical
application problem: all sources of perturbation in theadgttould be represented, such as ac-
quisition noise and artifacts, pathologies,... It canmotbncluded just from one experiment
that one algorithm is better than the others for all appilore.

1.2.1 Performance quantifiers

As far as the registration result is concerned, one camdgjsish between gross errors (conver-
gence to wrong local minima) and small errors around the texxansformation. Gross errors
may impact theobustnessvhich can be quantified by the size of the basin of attractich®
correct solution (see figure 1) or by the probability to find the correct transformation. &m
errors may be sorted intsystematic biasesepeatabilityand accuracy[Jannin et al., 2002
Repeatability accounts for the errors due to internal patars of the algorithm, mainly the
initial transformation, and to the finite numerical accyra€the optimization algorithm, while
the external error accounts for the propagation of the dataeinto the optimization result. It
is important to notice that the accuracy measures the eitbrrespect to the truth (which may
be unknown), while the precision or repeatability only meas the deviation from the average
value,i.e. it does not take into account systematic biases, which & bidden. There are nu-
merous reasons to have systematic biases that are usuglbytém. For instance, a calibration
error in the acquisition system will consistently bias ak images acquired with that device.
Unless another calibration is done or an external referénemsed (e.g. another acquisition
device), there is no way to detect such a bias. In terms asstal modeling, this means that
all the potential error sources have to vary among the measarorder to be considered as
random and be included in the performance evaluation.

In a statistical setting, considering the true transforamats a random variable naturally
leads to quantify the repeatability (resp. accuracy) of@steation method as the standard
deviation of the related observed transformations (cared as realizations of the random
variable) or as the expected RMS distance to their mean.(resthe exact transformation),
or more interestingly with their covariance matrix as trengformation uncertainty is usually
non isotropic €.g. radians and millimeters for rotation and translation p& oigid transfor-
mation). Then, the variability of the transformation cangrepagated to some target points
of interest inside the imageB¢nnec and Thirion, 199ih order to obtain local estimations of
the accuracy of the transformatiofdnnec et al., 1998 We obtain the so-called Target Reg-
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istration Error (TRE) {Vest et al., 199 This should not be confused with the Fiducial Local
Error (FLE) which is related to the value of the similarityterion at the minimum.

1.2.2 Performance evaluation

Several methods have been investigated in order to assegetformance of registration al-
gorithms. The main problem is to determine a satisfyingrezfee to perform the evaluation.
It can then be used to evaluate the robustness, repeatamtitaccuracy of registration meth-
ods. Three dterent classes of approaches can be used to determine trenmfe The bronze
standard method studied in this thesis belongs to the tmed which can be used in absence
of ground truth and gold standard.

Data simulation. One of the simplest evaluation schemes is to simulate naity; tb apply

a known transformation on it and to measure how far is thesteggion result from the true one
(the ground truth is obviously known). Even if in some caseades may be faithfully simu-
lated (e.g SPECT{rova et al., 200l MRI [Benoit-Cattin et al., 20(Q%r CT of the breathing
abdomen $arrut et al., 200 with a very high computational cost due to the complexity o
image acquisition physics, the main drawback of synthedi@a ds that it is very dficult to
identify and model all the sources of variability, and esakcunexpected events (pathologies,
artifacts, etc). Forgetting one single source of error.(bigs due to chemical shift in features
extracted from MRI Pennec et al., 199%r camera calibration errors in 2D-3D registration
[Nicolau et al., 200]) automatically leads to the underestimation of the finahsformation
variability.

Phantoms. The second evaluation level is to use real data in a contr@ferironment, for
instance imaging a physical phantom irffeient position®rientations. There is possibly a
gold standard, if one can precisely measure the motion @raeftion of the phantom with
an external apparatus. However, it ighdiult to test all the clinical conditions with such a
phantom (e.g. many fierent pathologies or evenftérent localization of the same pathology).
Moreover, it is often argued that these phantoms are no¢septative of real in vivo biological
systems. One level closer to the reality, experiments omaed correctly take into account
the anatomy, but fail to exhibit all the errors due to the pbipgy, thus producing images that
may be very dterent from the in-vivo ones.

Performance evaluation without gold standard. The last level of evaluation methods is the
one addressed in this thesis. It relies on a database o¥anreal images representative of the
clinical application. Such a database can be large enougpatio all sources of variability, but
there is usually no gold standard registration to compatie.v@ne method is to perform a cross
comparison of the criteria optimized byfi#irent algorithmslHiellier et al.,, 200k However,
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this does not give any insight about the transformatiorifit$® more interesting method for
registration evaluation is the use of consistency lo6fagden et al., 2000Roche et al., 20q1
The principle is to compose transformations that form aexosircuit and to measure the dif-
ference of the composition from the identity. This criteridoes not require any ground truth,
but it only measures the repeatability as any bias will getaticed. A last type of meth-
ods is to see the ground truth as a hidden variable, and tma&sticoncurrently the ground
truth and the quality as the distance of the computed regultisis reference (EM like algo-
rithms), as it was exemplified for the validation of segméotaby the STAPLE algorithm
[Warfield et al., 200} The bronze standard method belongs to this class of msttkcific
validation methods can also be envisaged for non rigid tegien in absence of ground truth.
For instance, $chestowitz et al., 20()@ssesses the registration in terms of the quality of a
model constructed from the registered images: their idéaaisa correct registration produces
anatomically meaningful images.

1.2.3 The bronze standard method

The principle of the bronze standard method introduced bynBe in several papers
(e.g[Nicolau et al., 200]) and synthetized infennec, 200ghs similar to STAPLE but con-
cerns registration. From a set of measuremengs (egistrations between pairs of images
obtained with several methods), the exact transformatmashe variability of the registration
results with respect to these measures have to be estimh&tdis assume that we have
images of the same organ of the patient anchethods to register them, i.eax nx (n— 1)
transformations‘l’i'fj (we denote here blg the index of the method and hyand j the indexes
of the reference and target images). The goal here is to atgithen — 1 free transformations
'le that relate successive images and that best explain thmmemtsTi'fj (see figurel.2).

The bronze standard transformation between imagesl | is obtained by composition of
the free parameters‘lf_i,j = 'ITLM ) ﬁ+1’i+2 0...0 ‘Fj_l,,- if i < j (or the inverse of both terms if
j > 1). The bronze standard method considers the exact tranafanms as hidden variables of
an overestimated system:— 1 transformations have to be estimated wheraasn x (n — 1)
observations are available. The exact transformationgstimated as the ones that minimize
the prediction error of the observations:

{'ﬂm} = argmin Z d(T-k 'Fj)z (1.1)

T i,j» 'L
ML, jela,n] kelLm]

whered is a distance function between transformations.

In the particular case of rigid transformations, the dis&arfunction can be cho-
sen as a robust variant of the left invariant distance ondrigansformations developed
in [Pennec et al., 1998

d(T1. T2) = min(A(T{V 0 To) L x?)  with  p2(R(0.0).1) = 67/0? + [ItI?/o?
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Figure 1.2: The basic principle of the bronze standard ntkikdo exploit redundancy
among the measurements. The transformations to estineateafrows) are obtained as a
means of measurement compositions (black arrows).

whered is the angle of rotatioR andn is the unitary vector defining its axisis the translation
vector of the transformation. Details on the general mettioddoing statistics on Riemannian
manifolds and Lie groups are given iag¢nnec, 200§aThe Mahanalobis normis normalized
by the variances ando? of the observations that have to be properly estimated.

The larger the number of registered images, the more a&thatestimated bronze stan-
dard. Itis also important to use several algorithms baseatiféerent methods and developed by
various people to prevent the results from being systematibiased by a specific registration
technique or implementation usage. Results over sevetiginps are averaged to obtain more
significant estimations.

In this process, we do not only estimate the optimal trams&pbions, but also the rotational
and translational variance of the “transformation measer@s”, which are propagated through
the criterion to give an estimate of the variance of the ogtimansformations. Of course, these
variances should be considered as a fixtéelot (i.e. these parameters are common to all patients
for a given image registration problem, contrarily to thansformations) so that they can be
computed more faithfully by multiplying the number of patis.

The estimatioﬂTi,Hl is calledbronze standarthecause the result converges toward the per-
fect registration as the number of methadsind the number of imagesincreases. Indeed,
considering a given registration method, the variabilingdo the noise in the data decreases as
the number of images increases, and the registration computed converges tawarnderfect
registration up to the intrinsic bias introduced by the neethNow, using dierent registration
procedures based onflirent methods, the intrinsic bias of each method also bes@man-
dom variable, which is hopefully centered around zero artayed out during the minimiza-
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tion procedure. The etierent bias of the methods are now integrated into the tramsitoon
variability. To fully reach this goal, it is important to ugs many independent registration
methods as possible. As a consequence, computing significanze standard estimations
requires heavy computations.

Criterion1.1is in fact the log-likelihood of the observatiofl'#j assuming Gaussian errors
around the bronze standard registrations with a variarfaen the rotation and-? on the trans-
lation. An important variant is to relax the assumption & §ame variances for all algorithms,
and to unbias their estimation. This can be realized by usitgm — 1 out of them methods
to determine the bronze standard registration, and by ukmgbtained reference to determine
the accuracy of the last method (a kind of leave-one-methddest). This uncertainty is then
propagated into the final bronze standard registrationydieg all methods) to estimate its
accuracy.

1.3 Follow-up of brain tumors evolution in radiotherapy

1.3.1 Data and registration problem

The targeted clinical application is the planning and faHop of the radiotherapy of brain
tumors. In such an application, several registrations aszlad, with very dferent character-
istics. Firstly, a monomodal but highly deformable atlap&dient registration that takes into
account pathologies (tumors) is often performed to segiaegét volumes and organs at risk
in the current image, in order to optimize the dose planningnmimowick et al., 2005 To
be more accurate, multimodal images are often taken (e.g. TWMBnd T2), sometimes with
a contrast agent to enhance the tumor (gadolinium injected A multi-modal rigid regis-
tration is needed to relate all these images in the same icabedsystem. Last but not least,
assessing the evolution of the tumor in follow-up imagesnpartant to evaluate the result of
the treatment. This is the monomodal rigid registrationbem that is considered for those
experiments. Quantifying its accuracy is important to eashe precision of the tumor evolu-
tion estimation in the assessment of titieceency of clinical treatments. Precisely registered
longitudinal studies may be used to validate the qualitgr@ducibility and accuracy) of seg-
mentation algorithms used for radiotherapy planning. Acuaate registration of longitudinal
brain images is also needed in many other image-based switheuro-degeneratives diseases
like multiple sclerosis or Alzheimer’s diseasel[gas-Phocion, 2006

To evaluate all these registratigsegmentation problems, a database of 110 patients with
1 to 6 times points and MR T2, T1 and gadolinium injected T1 atibés was acquired at a
local cancer treatment center (courtesy of Dr Pierre-Yveadiau from the "Centre Antoine
Lacassagne”, Nice, France) on a Genesis Signa MR scannemdthem, 29 have more than
one time point and were suitable to inclusion in the rigidisagtion evaluation study. Only
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the injected T1 images were selected. These images are raorandling for registration than
other MRI sequences as the gadolinium uptake is likely tg sadifferent time points, leading
to local intensity outliers. All T1li images are 25B856x60 x16 bits thus leading to a 7.8 MB
size per image (approximately 2.3 MB when lossless compddss

Four diferent registration algorithms were considered. Two of tham intensity-
based:Baladin [Ourselin et al., 20(J0has a block matching strategy optimizing the fie
cient of correlation and a robust least-trimmed-squarassfiormation estimatioryasmina
uses the Powell algorithm to optimize the SSD or a robustawarof the correlation ra-
tio [Roche et al., 201 The two others are feature-based and match specific ¢nest (ex-
tracted using the third derivatives of the images) witfiadent strategies{ennec et al., 2040
CrestMatch is a prediction-verification method aR#Register is an ICP algorithm extended
to features more complex than points. In the computatiomefironze standard registration,
CrestMatch is used to initialize all the other algorithms close to thghtiregistration. This
ensures that all algorithms converge toward the same (htpefiobal) minimum. A visual
inspection is performed a posteriori on the bronze standagidtration to ensure that this “op-
timal” transformation is indeed correct. As we are focusamgaccuracy and not on the robust-
ness, this initialization does not bias the evaluation.

1.3.2 Accuracy results

The evaluation procedure was run on the 29 selected patights-, = 0.15 degreesy; = 0.42
mm and ay? value of 30. A high number of registration results were rigddn the robust
estimation of the bronze standard transformations. A Visispection revealed that there was
a scaling problem along theaxis and a and shear problem in theplane for one of the
images involved in each of these rejected registrations. etaibd analysis of the DICOM
headers showed that the normal to the slisgg({ane), given by the cross product of theage
Orientation vectors, was not perfectly parallel to the slice trajectduying the acquisition
(axis obtained from th&@mage Position field, i.e. the coordinates of the first voxel of each
slice.). This tilt was found to be1.19 degree in most of the images and -1.22 degree in 13
images. It seems that nothing in the DICOM standard enshe¢3D images are acquired on
an orthogonal grid: it would be interesting to better speth acquisition protocols on the MR
workstation. There, we can see that the bronze standardochéttable to detect subtle flaws
in the images that ever the radiologists had not noticed.

Thus, images are not in an orthogonal coordinate system lamalds be either registered
with an dfine transformation (which adds 6 additional parameters gnwinich only one
-the tilt- has a physical justification) or the tilt should taken into account within the rigid
registration algorithm, but this solution was not implerngehfor the considered algorithms. As
the tilt was small, we chose not to resample the images (ierdalkeep the original image
quality), but rather to perform an uncorrected rigid regisbn within the group of images with
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Number of time points: 2 3 4 6
Registration per patient (and per algorithm): 2 6 12 30
Patients (includingvithout tilted images): | 1515 6/7 7/2 1/1
Total number of registrations: 120120 | 144168 | 33696 | 120'120

Table 1.1: Summary statistics about the image database used

Figure 1.3: Example of a slice of two registered 3D image$ aihigh deformation. One
can clearly see that the tumor growth has pushed the righisipdiere and severalftiérent
rigid transformations may locally account for thdéfdrences between the two brains.

a positive tilt only. This led us to remove 13 images among8bkeand 4 patients for which
only one image was remaining (the statistics on the remginimber of patients, images and
registrations are given in tablel).

The bronze standard application was run again with the saaraeters on this reduced
database of 25 patients. This time, only 20 registrationgweected, among which 15 were
concerning two patients with a very high deformation in tin@or area, leading to some global
deformations of the brain (Figure3). In that situation the rigid motion assumption does not
hold any more and several "optimal” rigid registrations nisgy valid depending on the area
of the brain. The last 5 rejected transformations involve aequisitions with phase-encoded
motion artifacts which impacted filerently feature-based and intensity-based registration a
gorithms, leading to two non-compatible sets of transfaroms. However, it was not possible
to visually decide which result was the “right” one.

Excluding these 20 transformations which correspond taigpeonditions where the rigid
assumption does not really hold, we obtained mean errorsl800degree on the rotations and
0.345 mm on the translations. The propagation of this erromheneistimated bronze standard
leads to an accuracy of@ degree and.048 mm. We then determined the unbiased accuracy
of each of the 4 algorithms by comparing its results to thenbeostandard computed from the
3 others methods. Results are presented in tald@nd show slightly higher but equivalent
values for all algorithms.

This experiment demonstrates that the bronze standardochetin be precise enough to
detect very small deviations from the rigidity assumptiahis of 2 degrees) in images, and
that the 4 used rigid registration algorithms actually reacsubvoxel accuracy of 0.15 degree
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Algorithm | o(deg | o(mm)
CrestMatch| 0.150 | 0.424
PFRegister] 0.180 | 0.416
Baladin 0.139 | 0.395
Yasmina | 0.137 | 0.445

Table 1.2: Accuracy results

in rotation and 0.4 mm in translation for the registratiorafgitudinal T1 injected 1x1x2mm
images of the brain. In the next section, we propose to estitte impact of a lossy com-
pression algorithm on the performance of the registratidhis is another example that will
demonstrate the power of the bronze standard method.

1.4 Impact of lossy compression on registration

With the generalization of digital image acquisition andnipalation devices, an increasing
number of medical images are archived in digital warehaugkesufacturers provide DICOM
compliant devices interfaced to local storage facilitied RACS. The emergence of multi-sites
PACS and technologies such as data grids eases the inbegaail archiving of medical data
at a large scale. Furthermore, recent regulations showd for long term archiving of patient
data. Given the tremendous amount of radiology data aadjdaéy in clinical centers (tens of
TBytes per year) and the will for long term archiving, optaimig storage space is increasingly
needed@Germain et al., 2005

Image compression can lead to drastic data size reductobo@anpression algorithms, such
as JPEG, have been included in the DICOM standard. Lossbeggression ensures a perfect
reconstruction of the compressed data but leads to the tavespresion ratio: in the range
of 3.3 to 3.9 for the brain MRIs with a large black backgroumdctibed in sectiof.3.1(see
figure 1.3). Compression with loss can achieve much better compmesatms but at the cost
of approximative reconstruction. In the medical area, tbe of lossy compression should be
considered with care given the sensitivity of image-basagrbsis and knowing that it will be
impossible to recover the original data. Most often, in therent practice, only lossless JPEG
is considered to compress DICOM data, if any compressiopptied at all.

A trade-dt has to be found betweettfigient image archiving and the quality of archived
data. In the literature, a growing interest for multi-dirseanal medical data compression re-
cently appeared\enegaz and Thiran, 200Pnser et al., 2003 assim et al., 2005 The au-
thors often let to the user the choice of the compressionfastd therefore the image quality.
An important question is the impact of lossy compressionutoaated medical image anal-
ysis procedures. Some recent studies show that a reasdeadl®f lossy compression may
remain acceptable in this case. For instancéfyRa al [Ralty et al., 200 made a quantitative
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Figure 1.4: lllustration of the bronze standard method iappio uncompressed and com-
pressed images (representation of the transformationtseiD plane). Each registration
algorithm (identified by a given shape) produces transfdiona in the compressed (blue)
and uncompressed (black) cases. Bronze standards ar¢edigpyccrosses. Ellipses repre-
sent covariances. The accuracy of a particular algorithdeisrmined with respect to the
bronze standard obtainedthoutthis algorithm (see gray cross and arrows for the “square
algorithm”).

evaluation of the impact of an increasing compression famiadhe computed-aided diagnosis
to detect pulmonary nodules. The study shows that the deteperformance of solid lung
nodules did not dftier until a compression ratio of 48. In this section, we coesitie impact of
lossy compression on rigid registration algorithms thatakghe bronze standard method. An
experimental framework for estimating the impact of consgren on accuracy, repeatability,
and robustness is first described and then applied to thealiproblem of the follow-up of
brain radiotherapy, as it was done in sectiof

1.4.1 A framework for evaluating the impact of compression

The founding hypothesis of this evaluation framework is éasider the transformations ob-
tained from the uncompressed images as the reference favieation. Then, the goal is
to estimate to what extent the compression makes the ratystrresults deviate from their
original locus in terms of robustness, repeatability anchigacy.

1.4.1.1 Building the reference registration with the bronz standard method

Onuncompressed images, the reference registration tusinlg the statistical bronze standard
method. Figurel.4 diagrams the bronze standard notations for the compressimly. Each

algorithm is represented by a shape and produces trandiomaan the compressed (blue) and
uncompressed (black) cases. Bronze standards are depictzdsses. The reference for the
evaluation is built exclusively from the uncompressed iggfplack items). Outliers are first
removed thanks to the? threshold of equatiori.1 and visualization checking as explained
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above. The uncompressed bronze standard (black crosgnsctmputed and the standard-
deviations of the transformations{ ando) are measured. Those variances are re-injected in
the minimization procedure of equatidnl which is iterated until they converge towards a sta-
ble estimation. They characterize the repeatability wittemmpression. The accuracy of each
algorithm will be obtained from the average distance betwtsmeasured transformations and
the standard built from the remaining methods (gray crosisaarow on figurel.4).

1.4.1.2 Evaluating the robustness

The number of outlier transformations gives an estimatibtne robustness of the algorithms
with respect to the compression. Outliers should be deddntean exhaustive visual checking,
as for the uncompressed case. To avoid this tedious manetam, one can rather rely on an
automatic comparisowith the uncompressed referenghbich has already been validated. This
comparison is made thanks to tpétest included in the mean computation of equatloh
Among the transformations rejected by th& a visual inspection has to be performed to de-
termine whether theyfiectively correspond to wrong local minima (when it is ob\sdbat a
manual registration can lead to a better result). In thig cdee whole patient is removed, for
each algorithm: the absence of a specific algorithm for argpagient could bias the quantifi-
cation of the accuracy of the remaining ones. Moreover, ltneé fair comparison between
the compression ratios, patients leading to a wrong localrmim inany of the compression
ratios are excluded for the repeatability and accuracyistudOtherwise, it would be likely
that high compression ratios would have been evaluatedssmlatients than lower ones, thus
leading to potential artificial standard-deviation redoict

1.4.1.3 Evaluating the repeatability

For each compression ratio, the repeatability is measuyeithdo variancesr, and o of the
transformations obtaineiom the compressed images qrdyter having removed the patients
leading to a wrong local minimum in one of the compressioiorly comparison with the
uncompressed reference. Repeatability is pictured bysel on figurel.4. It is determined
without performing any? test in the distance of equatioh.{). Indeed, due to potential biases
on compressed images, one transformation may be considsred outlier with respect to
compressed images while it is an inlier for uncompressedj@agand vice versa). This is the
case for instance of the blue triangle in figuré.

1.4.1.4 Evaluating the accuracy

The transformations obtained from the uncompressed imagesonsidered as the reference
for the evaluation. The accuracy of each algorithm is comgbly measuring the mean distance
of compressed transformations to the uncompressed rekerdio avoid biases, the evaluated
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Figure 1.5: Ratio of outlier patients with respect to the poession ratio

registration algorithm is excluded from the algorithmsdise build the uncompressed refer-
ence. It should be noticed that taking into account uncosgae images to build the reference
does not imply that the accuracy is always worse for compegmages. It is for instance
the case of the transformation of the algorithm depictedh @isquare on figuré.4: compres-
sion has brought it closer to the bronze standard obtain#gtbwi compression. This could for
example be the consequence of a smoothifegeresulting from the compression.

1.4.2 Experiments

Experiments were made with the same setup as in sedti®dn The related database has
been compressed at compression ratios 6, 12, 24, 48 and @4,thve 3D-SPIHT algo-
rithm [Kim and Pearlman, 199.7 SPIHT is a zero-tree-based compression algorithm that is
known to have produced some of the best results in 2D imagdiagolt has been extended
to 3D and adapted to medical imagesdng et al., 200F Figurel.7 shows an image and the
effect of 3D-SPIHT compression on it for a compression ratiodbf 6

1.4.2.1 Impact of compression on the performance of algotims

Robustness. The ratio of outlier patients is plotted on figutesfor each algorithmBaladin

is the most robust method (at most 1 patient is rejected byihest). Yasmina is also very
robust, with 1 or 2 rejected patients. For those two algarghthe behavior does not seem to
be monotonic with respect to the compression ratio: somiemqatare rejected for low ratios
but are again accepted for higher ones and vice versa. Thergbastness of those methods
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Figure 1.7: Image slice without (left) and with (right) corapsion (compression ratie
64). The main structures are still well identified but a bihgreffect is clearly visible.

may be a consequence of their multi-scale strategy: thdyumsx# a pyramid of under-sampled
images and initialize the input transformation of a givemphng level with the result of the
upper one. The robustness of the crest-lines methods ig,levaech may be explained by the
extraction of the crest-lines at a single scale. The numbejected patients is almost constant
until a compression ratio of 48, with 2 or 3 patients rejectedr a compresion ratio of 64, it
highly increases up to almost 50% of rejected patient€f@stLines. At this compression
ratio, PFRegister performs a little bit better, with only 37% of rejected patie, which could
be explained by a more robust matching of the crest-lines.fatt that feature-based methods
are less robust to compression may come from the use of fiteirtborder derivatives of the
image to extract crest-lines, which are very likely to be aofed by the compression procedure.
To illustrate it, we represented on figute8 the longest detected crest lines with and without
compression. The compression significantly disturbs theatien of those lines.

It also has to be noticed that the study of the robustnessded tapidly identify experi-
mental mistakes in the data base. For instance, switchesgthe image names were easily
detected by the statistical procedure, whereas a visuakabfeall the images would have re-
quired a significant time and is clearly not scalable.

Repeatability. Among the patients rejected for at least one method, 4 weresmonding to
wrong local minima for at least one compression ratio. Theyevemoved and the repeatability
and the accuracy were evaluated on the remaining 296 tnanafmns for each algorithm.
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Figure 1.8: 3D views of the longest crest lines detectedawitlileft) and with compression
(right). The red line riding through to the upper part of thsilvie ventricle is not detected
on the compressed image. Two other red lines on the left argggbrough brain sulci.
Only a small part of one of these is visible on the right side.
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Figure 1.9: Mean variances of the transformations witheesfo the compression ratio.
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Figure 1.9 plots the evolution of the mean variances of the transfaonat Despite a subtle
improvement of 1% at the compression ratio 6, the main behnawvian impairment of 4 to 6%
before a strong decline of 13% for a compression ratio of 64.

Accuracy. Figurel.6displays the accuracy of the algorithms with respect to tmpression
ratio. The accuracy of feature-based methods is highlyaedat a compression ratio of 64. At
this compression level, the mean errorGfestLines has increased by 48% for the rotation
and 29% for the translation whereas the on@ERegister has increased by 17% for the rota-
tion and by 25% for the translatioffasmina is quite insensitive to the compression: its mean
error only increases by 10% for the rotation and by 5.5% ferttnslation. More surprisingly,
after a brief rise until a compresion ratio of 24, the accyratBaladin is improving: for a
ratio of 64, it is 34% better than without compression for th&tion and 18.5% better for the
translation. The fine behavior 8aladin andYasmina can be explained by the fact that both
algorithms include a multi-scale handling that may compénshe &ects of potential noise
introduced in the images. Moreover, Baladin, only the most significant blocks (the ones
with the largest standard deviations) are considered ®btbck-matching.

1.5 Conclusions and motivations for the following

1.5.1 Medical image analysis results

In this chapter, the application of the bronze standarduatedn framework was studied on a
clinical use-case related to the follow-up of brain radestipy. Rigid registration algorithms
were evaluated on a database of brain follow-up MRIs. Expenits demonstrate that the
bronze standard method can be precise enough to detectalydeviations from the rigidity
assumption (tilts of 2 degrees) in images, and that the 4l niggistration algorithms used
actually reach a subvoxel accuracy of 0.15 degree in rotaia 0.4 mm in translation for the
registration of longitudinal T1 injected 1x1x2mm imageglod brain.

An evaluation of the impact of the 3D-SPIHT compression athm on the registration
shows that the robustness, repeatability and accuracyitieeimpacted below a significant
compression ratio (48), in particular if the registratidgaithm has a good multi-scale han-
dling. Beyond this threshold, the tested methods basedast-ines are highly penalized: half
of the patients can be considered as outliers and their acgus lowered by 50%. Surpris-
ingly, compression improves the registration accuracyt@p0% forBaladin on our setup)
probably because the registration algorithm focuses arnmétive subsets of the image. Thus,
lossy compression does not seem to be problematic for thetr@gon until a given compres-
sion ratio (48 in our study), which looks similar to the résubund in Ralty et al., 200fon
another clinical problem. Evaluating the impact of othempoession algorithms on fiierent
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registration methods should yet be done to allow more génerelusions.

In conclusion, the bronze standard method is able to estithatperformances of rigid reg-
istration algorithms in the absence of gold standard anddtuate the influence of parameters
such as the compression ratio of the images. Moreover, igldhscalable and makes outliers
easily detectable whereas a visual check of a large amotrarafformations could not be done
in a reasonable amount of time.

1.5.2 The need for grid workflows

From a computer science point of view, the bronze standand &y described aswaorkflow(a
graph of connected processings) as it requires many mostgpendent registrations with sev-
eral algorithms on dferent data sets. FigufielOpictures the precedence constraints between
the algorithms implied in the experiments presented in thigpter. In the reminder of this
thesis, we particularly focus on this application as it [gresentative of a large class of medical
image analysis applications. Indeed, it is common to burldge analysis procedures from
basic image processing algorithms. The representatiorttendxecution of such procedures
as workflows enable a generic processing of many similar evagalysis tasks. In addition,
there are many medical image analysis procedures involaengg data sets for fferent needs
(statistical studies over populations, performancesuateldn such as the bronze standard, epi-
demiology, ...). They require heavy computations, dong@dduty this data-parallel nature. The
workflow-based approach eases the deployment of such catigng over remote parallel grid
resources. It decouples the application from the executibrastructure, thus releasing the
application developers from the most complex computatipra@blems, especially paralleliza-
tion. As explained in chaptet3 3 and4, the workflow-based design of this application will
allow to transparently exploit this parallelism on a grid.

The bronze standard runs presented in this chapter areatiypR0 hours long on state-
of-the-art PCs (see chaptgéifor detailed benchmarks of the algorithms), which would mak
the whole compression experiment of sectiof 7.5 days long (regular rum 5 compression
ratios). The first benefit expected from a grid execution ¢ #pplication is a reduction of the
total execution time of the application. As demonstratedhiapters, the time of this week-
long experiment could be reduced to 4 hours on a dedicatsteclaf 60 nodes and to 18 hours
on a shared production grid in similar conditions. Basederanalysis performed in chaptgr
further optimizations presented in chapt&s8 and9 aim at bridging the gap between those
two kinds of grid infrastructures. The benefit expected foe bronze standard application
from the availability of computing power is twofold. Firghe reduction of its execution time
brings the application closer to a clinical exploitatiowen if a reasonable execution time is
certainly not the only parameter allowing a clinical usaggylong runs remain prohibitive in
such conditions. Second, from a medical image analysig jpbiview, the computing power
offered by a grid allows wider experiments producing more @evesults. The quality of the
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Figure 1.10: Dependencies between the algorithms imptligtié bronze standard exper-
iments presented in this chapter. Arrows denote precedeostraints. Each part of a
registration algorithmdrestLines, crestMatch, Yasmina, Baladin, PFMatchICP and
PFRegister) is iterated on the whole image database, thus triggerirgf@al data paral-
lelism. The CrestMatch feature-based method tested irctiapter is made of two inde-
pendent partcrestLines extracts salient lines from the images atxkstMatch finds

a transformation between them. As explained in this chafter3 other registration al-
gorithms are initialized with the result of CrestMatch. Bea3 methods are completely
independent, thus benefiting from workflow parallelism. RieRegister method (com-
posed ofPFMatchICP andPFRegister) is a robust variant of CrestMatch and also relies
on thecrestLines results. The accuracy evaluation runs once all the regjistis have

been computed.

49
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accuracy results provided by the bronze standard appicadiincreasing with the amount of
registrations performed and the number of algorithms uRedults computed from a few pairs
of images registered with a single algorithm would meashexdpeatabilityof the method,
i.e its variability around a mean potentially far from the trutAs the amount of computed
transformations and algorithms used increases, thos#s@sa converging towardsccuracy
more and more sources of variability are taken into accoundtl@ases are averaged out by
the bronze standard estimation. Thus, the available cangppbwer is directly related to the
quality of the medical image analysis results obtained.

Another motivation for the workflow design of the bronze stard application presented
in the next chapter is its need for algorithms sharing. Irgeqg registration algorithms devel-
oped by several tlierent research teams in a bronze standard evaluation pneceddens the
spectrum of covered biases and further increases the reewat the method. Making medi-
cal image analysiservicesavailable and composable in applicative workflows then bexoa
crucial need.

Finally, even if it is not extensively studied in this thedise gridification of the bronze
standard application provides by itself a way to share dgthdnefiting from the data man-
agement facilities ffered by contemporary grid middlewares. Similarly to aljons sharing,
sharing data enhances the significance of the bronze sthnadhod because it makes possible
the building of large scale image databases: again, theamte of the accuracy results yielded
by the method is increased by the sweeping of a large numberiatbility sources, which is
only possible through the consideration of large imageluzes.
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his chapter deals with the description of language. This classification distinguishes five
T application workflows on grid infrastruc- workflow classes, each of them corresponding to
tures. We propose a classification of workflow a particular user profile. Based on this taxon-
description approaches with respect to the spec- omy, the main existing workflow languages are
ification of functions, data and resources in the then reviewed.
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e chapitre traite de la description Cette classification distingue cing classes
C d’'applications construites par chaines de de chaines de traitements, chacune d’entre
traitements sur des infrastructures de grille. elles correspondant a un profil particulier
Nous proposons une classification des approchesd'’utilisateur. A partir de cette taxonomie, nous
de description selon la présence des fonctions, passons en revue les principaux langages de
des données et des ressources dans le langagedescription de chaines de traitements existants.

The study made in this chapter is motivated by the need of@gifns to share algorithms
across institutes and administrative domains. In padicals detailed in the previous chapter,
the bronze standard application greatly benefits from it@$ows wider registration algorithms
comparisons and produces more relevant results. The afdite-art solution for addressing
such a problem is to wrap codes irgervicesand tocomposeghem into aworkflow Many
workflow approaches have been envisaged, answering nesiisggrom various users profile
(“domain” scientists with scripting skills, computer seiests testing parallelization methods,
end-users without any programming background, ...). Adtdristorical overview of code
reusability methods leading to the emergence of serviceskflew approaches are reviewed
and classified in sectioh.2. Our point is to determine a workflow approach that couldvallo
an easy workflow representation and usage for an end-esga (clinician), a familiar pro-
gramming model for the application developergthe medical image analysis scientist) and
an dficient grid deployment for the computer scientist. The tgpenvisaged scenario would
be to have clinicians understanding and using workflows asag by medical image analysis
scientists from existing services and execute théfciently on a grid platform. The clini-
cian could thus focus on Hlger work without having to deal with problems concerning the
execution and distribution of the processings.

2.1 Sharing algorithms: from assembly to services

Sharing algorithms is the modern vision for code reusahilihich has been considered for a
while in computer science: the emergence of Service-GgaeAtchitectures (SOA) is the result
of a long process to foster code reusability in software eegjiing. Assemblies, the earliest
programming languages for micro-processors, were arctite and system specific. Writing
an application using such languages requires a deep kngevtefcthe target architecture (such
as the number and size of registers) and the resulting codiefiisitely not portable. Yet, the

use of procedures and libraries revealed an early concemtdhe necessity to reuse proven
code as much as possible. Then, compiled languages suchesa@é independent from the
architecture and allowed software projects to be easilyabe on various kind of platforms.

Object-oriented languages such astGvent further in code reusability by providing the ability
to define classes that were supposed to be reusable in a nofrdiéerent applications. For
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instance, in the medical image analysis domain, the Insigbt Kit (ITK)! is a currently
widespread library intensively used for sharing stateéhefart algorithms among scientists.
Yet, C and G-+ languages remain highly dependent on the operating systsame APIs

are diferent in nature from an OS to another one and porting a codeimaalve a significant
burden (see for instance thdi@irences between (win)sockets APIs on Linux and Windows, the
availability of process forking, ...). Later on, the Javadaage abstracted from the operating
system thanks to the use of (system-dependent) virtual imesithat are able to interpret pre-
compiled code and execute it on-the-fly. Still, as noticedlaynon in {>annon, 200]7

“ Object-oriented programming was thought to be the solutmreusability but it
only got us part of the way. Object-oriented concepts aregufalt but they do not
guarantee that a class built for one application can beyeiked in another. To
build truly reusable software, one must design the softwarpart of a component
architecture that defines rules and contracts for deployieuashreuse. ”

The concept oEomponenprogramming cited here has been introduced as early as 8 196
by Mcllroy who suggested an analogy between industrialrigghres and software production.
In [Mcllroy, 1969, he underlines the ideas of sub-assemblies and intereladohg parts that
could both be applied to industrial products and software.akl$o claims that software com-
ponents have to be considered as black boxésting families of parametrizablen-the-shelf
components for a given job. Last but not least, Mcllroy idezg the need for being able to
compile and use the components on various architecturéswiperformance loss. Nowadays,
a common definition of a component is the one of Szyperskyperski, 20012

“ A software component is a unit of composition with contredty specified in-
terfaces and explicit context dependencies only. A softw@mponent can be
deployed independently and is subject to composition b tharties. ”

A contract describes the function implemented by the corepbindependently from its
implementation and a definition of the context dependencadd for instance be found
in [Gannon, 200[7

“ By context dependencies, we refer to the conditions thagtrba satisfied by the
host environment in order to operate properly. For exangdes the component
require a specific version of the JVM or libraries ? ”

For instance, the WComp application development envirarirdedicated to the adaptation of
component assemblies on heterogeneous and dynamic resaaasiders the context as the
presence or absence of software components, of resouafesgse subsystems) and specific
devices Cheung-Foo-Wo et al., 206

1http://www.itk.org
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Hot debates have been conducted in order to determine wiaddjeets could be considered
as components or not. For instance, fitiifter and Szyperski, 19f&he authors explain why
object oriented programming does not fulfill the needs neglifor building component-based
architectures. In particular, they explain that:

“ A component is defined as a collection of cooperating olsjewatith a clearly
defined boundary to other objects or components. Objecideirs component
typically are intertwined tightly, while interaction a@®the component boundary
is relatively weak. ”

This distinction is not purely semantic but can also haveseeonsequences on the perfor-
mance of the software systems. Indeed, since method callaaralways local procedure
calls anymore but can be remote, which is several orders gihmhale slower, it is impor-
tant to be aware of the boundary of a set of locally interactibjects, which justifies this
definition of components. A complete zoo of component modat$ implementations have
been proposed, among which Microsoft CAMCOM [Box, 1997 and OLE, Java Beans,
Sun’s Enterprise Java Beans!¢nson-Haefel, 20(J1and related simplified models such as
Spring or Picd’, Apache Avalofy, and the Corba Component Model (CCM) which inspired
the Corba Component Architecturérfnstrong et al., 1999which is for instance implemented
in SciRunll [Zhang et al., 20(0or XCAT3 [Krishnan and Gannon, 20[)Based on the Frac-
tal [Bruneton et al., 20(04component model, Proactive components are formed of oseor
eral so-called active objects anffer grid computing facilities such as distribution, asymehr
nism, mobility or securityaduel et al., 2006

Servicesare defined as an exposed piece of functionality with threpeities:

1. The interface contract to the service is platform indejeen.
2. The service can be dynamically located and invoked.

3. A service does not call another service (loose coupling).

The two firsts points are motivated by the development ofibisted applications across the In-
ternet and the third one ensures the independence of a giv@oes with respect to other ones.
This property strongly distinguishes services from olgertcomponents that may require de-
pendencies (such as the presence of a given library, or tieection with another component)
to be fulfilled in order to run properly. Services live in See~Oriented Architectures (SOA)
that are basically composed of three actors: the seprm@derruns the service on a particular
endpoint {.e a port and Internet address) and publishes its interfacesemacebroker, which
allows theconsumeto discover the service and to invoke it.

%http://www.springframework.org
Shttp://www.picocontainer.org
4http://avalon.apache.org
5http://fractal.objectweb.org/
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Web-Services are the most common implementation of senaoel have been standard-
ized by the W3€. A Web-Service is an endpoint whose interface is specifieal Web-Service
Description Language (WSDL) document and that is acces#ibbugh the Simple Object Ac-
cess Protocol (SOAP). As many web technologies, Web-Ses\gpecifications rely on XML
to ensure platform and language independence. Web-Ssrw@ebe dynamically discovered
from repositories that may for instance conform to the Urgaé Description Discovery and
Integration (UDDI) standard. However, UDDI has recentlebdighlighted to be severely
limited [Atkinson et al., 200[/and Web-Services discovery is still an extremely activsesrch
domain. Major criticisms of Web-Services coming from thelgromputing community are the
fact that they are stateless and bound to a particular reeo@GSA and WSRF are evolutions
of the Web-Services initial specification that, among otkarlutions, allow a service (i) to
be statefull and (ii) to be dynamically deployed on a resesiitianks to the use of a service
factory [Wagstrom et al., 2042

2.1.1 Composition models

Components and services may be composed throutgreit approaches to build an appli-
cation. Workflows are one of the software composition payadi that emerged jointly with
the concept of software components. A brief overview of congnt composition is thus
needed prior to the introduction of workflows. The conceptomponent composition ap-
peared in the 1970s, after Mcllroy introduced the first refee tosoftware components
1968 [Vicllroy, 1964. A component may have input and outmdrts, corresponding to the
input and output arguments of the underlying function arat #re used by the composition
systems. InGannon, 200]f Gannon sketches a state of the art of software compossiien
tems. Thalirect compositiomechanism consists in connecting input ports to output,dhas
building an application as a data flow graph. Yet, Gannon dimés that applications involv-
ing components that have functional or method interfacesbarponents that have interfaces
based on sending and receiving one-way messages may ndilysdescribed by such graphi-
cal notations. Gannon also notices that components musi®scamaintain input queues or to
block upstream output ports in case of multiple invocatiddisategies also have to be defined
when the component receives dfdrent number of inputs on its ports. We study those strate-
gies in a parallel environment in sectidr8.10f chapterd. Gannon also identifies a problem
related to Web-Services composition: they return a resptmghe caller rather than to another
Web-Service. To avoid that, a proxy can be implemented #ditects the output to the right
component, as it is done in Kepler, Triana and Taverna tleatvarkflow composition systems
able to integrate Web-Services. Yet, it requires the wovkiitoanager to centralize the whole
data exchanged in the workflow, which can raise performassigess.

6http://www.w3.org
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Gannon also cites tHaus-base@omposition mechanism, as a metaphor from the hardware
design. In this scheme, the component framework providesssage bus, on which compo-
nents are plugged with a unique identifier. Each componstetis on the bus and captures mes-
sages that are sent to it. This model is for instance adoptd®BA [Brookshier et al., 2002
As in hardware systems, the bus-based composition systhmes the amount of connections
required to build the application. Thus, adding and remgwaomponents is easier than in a
direct composition paradigm. The bus is also a central obetntity that could facilitate the
management of the application such as for instance theratteg of transversal concerns like
security. The publish-subscribe model is a particular kahdbus-based composition. In this
model, a component may subscribe to some events once it iected to the bus. Then, it
only receives messages corresponding to the subscribetseve

Defining interactionsbetween instances of components is another approach toaspmp
tion [Blay-Fornarino et al., 2004 Their main features are (i) to be independent from the com-
ponent model and language and (ii) to provide dynamic adiapttacilities to applications. In-
teractions allow direct communications between the corapbim order to prevent the applica-
tion from relying on a centralized manager which is potdhyt@bottleneck. They may connect
components from diierent frameworks and can be dynamically created and destrdyring
the execution of the application. Interactions can be défusing a dedicated language, the In-
teraction Specification Language (ISL), which allows to meftonsistent interaction merging
algorithms.

The goal of Aspect Oriented Programming (AOR)dzales et al., 1997s to be able to
easily add or remove a transverse concern (such as seculdggng) in a software architec-
ture. Such a problem is studied for instance Bajais et al., 200 where the authors specify a
set of rules to automatize the integration of new concerrassaftware architecture. Examples
of implementations of AOP systems are Aspéetdd Aspect@+8. AOP differs from classical
component composition because it focuses on non-fundfpoperties (e on properties that
are not required for the global functioning of the applioa)irather than on the description of
the application itself. AOP is used on top of a compositiostem.

A similar approach is meta-level programming that is alsedusn top of an object com-
position system. This concept allows to define meta-clagsethe class of a class) and thus
to redefine the method call mechanism, the object creatiocess,. . . It is then possible to add
code before and after methods invocations. Example of saepproach is the Common Lisp
Object System (CLOS){obrow et al., 198B

The termworkflowis used to denote the representation of an application irs¢inéices
community as well as in grid computing. In both cases, itegponds to the description of
the logic of an application independently from the impleta¢ion of its components and from

http://www.aspect]j.org
Shttp://www.aspectc.org/
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the target infrastructure. Workflows are a particular kirfigoftware component composition
model. They are studied in the remaining of this chapter.

2.1.2 Workflow definitions

The workflow management coalitidbproposes the following definition of workflow manage-
ment:

“ Workflow management is the automation of business proedar “workflows”
during which documents, information or tasks are passeau fvae participant to
another in a way that is governed by rules and procedures.”

This broad definition reflects the diversity of the applioatdomains where workflows are
used. Indeed, before being studied for the description stfiduted applications, workflows
have been used to describe the organization of productmrepses in companies as well as the
interaction between several business entities. This diefiniocuses on the data transmission
among interacting participants which can be denotetsiss servicesprocessedransitions
activities functionsor componentslepending on the workflow approach. The enactment of
a participant can be calledvocation(mostly for services)execution(for tasks),firing (for
transitions and activities) or simpball (for a function or component). In the reminder of this
thesis, those terms will be used ifférently, depending on the workflow context.

Workflow is a particular type of software composition systemmnere the participants of
the workflow are the components to be assembled.Ganjon, 200} Gannon notices that
workflows act at a dferent scale than software composition systems: they dealhwiman-
scale processes that are scheduled over time. Similarlgeifield of distributed applications,
workflows deal with coarse rather than fine grain parallelishich is better described with
traditional parallel programming approaches such as MRmEnMP. Gannon also underlines
that workflows refer to a centralized execution in which agférengine is responsible for the
control of the process. In a grid context, this property ofkflows has pros and cons. On the
one hand, it is true that a centralized perspective simplditt the control of the execution of
the application in order to be able to provide a represamaif the status of the application to
the user. But on the other hand, centralization may leadamdtic performance limitations, in
particular when dealing with applications that involvegmumbers (hundreds of thousands)
of participants: the scalability of the application mayritee highly disturbed by the centralized
workflow approach.

In [Mayeretal., 200} the authors propose a definition highlighting the platier
independence of the workflow definition:

Shttp://www.wfmc. org
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“We consider a workflow to be the organization of a structuapglication in an
abstract fashion, such that the implementation of the atdasks being organized
is independent from the organization itself. ”

This aspect of workflow programming is crucial in the grid qmuting area, where applica-
tions are typically composed from heterogeneous codes aftase, each of them having
its own architecture or system requirements. It is also vatéd by the emergence of ser-
vice and component-based programming models that pronoote i@usability and platform-
independence, as detailed in sectibh While traditional scripts (that are often considered
as the ancestors of workflows because their are used as thegiang several executables,
in particular in scientific applications that make an extemsisage of Perl scripts) are tightly
coupled to the platform, workflows provide a representatbrihe logic of the application
independently from the implementation. It is particulangportant for grid applications,
where the heterogeneity of the resources and middlewai@giwal. Built on top of service-
oriented architectures, workflows foster code reusabititys reducing applications develop-
ment time. As a consequence, workflows are increasinglg eitea transparent way to deploy
applications on grids and a large amount of applicationg oel them for a successful grid-
ification. Examples from various domains are extensivelgcdbed in [faylor et al., 200
whereas [lontagnat, 200pfocuses on medical image analysis applications.

Works related to service composition propose alternataitiefns where the workflow itself
is viewed as a servicé\[agstrom et al., 20QZon Laszewski et al., 2004

“We define the term workflow as a set of rules that define theacteons between
a set of services in order to be composed into a meta-service.

This definition allows a hierarchical composition of apptions, starting with basic workflows
of services, then exposing them as services themselvesraily tomposing thoseompos-
ite services to produce another application. Yet, some fundgh@roblems arise in such
development processes, in particular when workflows sbasime or more services are com-
posed [Nemo et al., 2007pNemo et al., 2007a In this case, redundant services invocations
could occur, leading to performance or even semantic proble the application. Actually,
considering workflows as composite services breaks theelgospling hypothesis of SOAs:
the composite service is tightly coupled to the basic ses/tbat compose it.

Workflows may also be characterized by the use of a simplehgraplanguage for end-
users, thus easing code understanding and applicationogevent. Grids are expected to
provide new methods for scientists, not restricted to campscience and the availability of
simple programming environments is necessary. Workflofisr @ unified and simple view
of complex experiments that may gather heterogeneous dool@svarious developers and
institutes. Barga and Gannon indeed noticedziarpa and Gannon, 20pthat:
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“The result is a workflow in which each step is explicit, no d@n buried in Java
or C code. Since the workflow is described in a unified manhés,much easier
to comprehend, providing the opportunity to verify or mgdiin experiment. ”

2.1.3 Workflows classifications

Several workflow classifications have been proposed in teeture. In {5il, 2007, Gil dis-
tinguishegemplatesinstancesand executablevorkflows. Templates capture the structure of
the workflow independently from the data. It may for instabeedefined by a medical image
analysis scientist to describe the logic of its applicatradependently from the data. A work-
flow instance specifies the data to be processed: it couldfbeedey the clinician to execute
a workflow on a particular data set. The executable workfloweagermined and optimized
by computer scientists: it defines the data location andided steps for data transfers. This
kind of classification does make sense in grid computing,revla@ important gort is made
in order to make a heterogeneous distributed computingstriucture transparently accessible
to the application developers and users. The workflow syseriewed here as a part of the
middleware linking the abstract (template) applicatiopresentation provided by the user to
the (concrete) executable one required for a grid execution

Yu and co-author proposed another taxonomy of workflow mamamnt systems for grid
computing [fu and Buyya, 2005aYu and Buyya, 2005 This classification includes some
intrinsic workflow properties which are important from a cpuater-science point of view. In
particular, their classification of workflow design apprbas concerns (1) the workflow struc-
ture, (2) the workflow model and specification, (3) the wonkflQuality of Service (Qo0S)
constraints and (4) the workflow composition system:

1. The workflow structure consists in separating Direct AicyGraphs (DAG) from non-
DAG workflows. As we will see, this distinction helps to detene the applicability of
grid scheduling algorithms. Indeed, avoiding cycles inkfloww graphs is restrictive but
leads to predictable sets of tasks.

2. The workflow model is close to the one presentedin, [2007 and by the literature re-
lated to the Pegasus workflow manageegiman et al., 20(3it distinguishes concrete
workflows (where resources are defined) from abstract ones.

3. The workflow QoS constrainte.gtime limit constraints) may be specified at the task
level or at the workflow level.

4. Finally, the workflow composition system separates d&ected composition from au-
tomatic composition. The automatic composition seems teespond to the mapping
done by Pegasus between the metadata description of thieecglata products and a
workflow containing information for data derivation of amation components. In the
user-directed composition, Yu distinguishes languagetand graph-based modeling.
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Similarly, the Petri-Net approach adopted iddheisel and Alt, 20(J7leads the authors to
group workflow description languages into two classes:psdike (programming language,
complex semantics) and graph-based (a few basic graph elenén the use-cases envisaged
in this thesis, graphical programming is not crucial as Hrgated application developers are
medical image analysis scientists that have strong promiamskills. Yet, a graphical work-
flow representation remains interesting as it allows a divederstanding of the application
by the end-userg.gthe clinician), which was not the case with traditional ptng languages
(shell, Perl, Python, ...). As noticed in the introductidrj ©aylor et al., 2007, the shift away
from the earliest script workflow representations to graphiorkflows came from the need
for using distributed resources. Indeed, the graph reptaten of a workflow application
also provides a natural parallelization. Thus, graphicatkffow representations are suitable
exchange formats between the application developer, ttieiser and the grid expert. How-
ever, in [Gannon, 200]f Gannon identifies some limitations of the expressiveonégsaphical
languages. In particular, he claims that in general, sueplgcal languages are not Turing
complete, leading to some hard programming limitations.

Control and data flowsare traditionally distinguishedshields, 200). Data flow refers
to approaches where the enactment of a participant is omlgitoned by the availability of
data items in its ports. A pure data flow is also callegipgeline[Rex et al., 2003 On the
contrary, control flow refers to the classical approach opémative software programming,
where the execution of instructions is conditioned by calrgtructures such afor, if, while
or switch. The term workflow is used to denote both the control and thea @aw of an
application Hoheisel and Alt, 20007 The approach adopted in this thesis tends to integrate
the algorithmic logic in the components of the workflow as mas possible: the workflow is
rather a mean to share existing algorithms and to benefit toanse grain parallelism than a
panoptic programming language which would lead to a moreptexrepresentation, hardly
interpretable by end-users. Still, expressiveness liioina are expected with pipelines and
simple control flow constructs may be required.

Businesandscientificworkflows are also distinguished, the former being said tm$oon
the control flow whereas the latter concentrates on data Sawentific applications are indeed
sometimes described by pure pipelines. However, thisndistin seems to be more and more
inadequate: languages and engines from the business catyratespreading into scientific
communities Hlominski, 200F and formal models such as Petri-Nets aridalculus tend to
unify both approaches. Bargd al study in [Barga and Gannon, 20pthe common points and
differences between them. InfGough et al., 20(J7 the authors also define scientific work-
flows as conceptual representations, where only the irtterecbetween the tasks required to
perform an experiment are described. The actual set of tasksred to produce the applica-
tion and their interactions are then denotedraddlewareworkflow. Those definitions must be
related to the distinction between abstract and concret&fisavs identified in [5il, 2007 and
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exploited by the Pegasus workflow manadee¢iman et al., 20(Q3the mapping from abstract
to concrete workflow corresponds to the scheduling problenich justifies this classification.

Finally, the expressiveness of the workflow language mayrmther way to sort work-
flow approaches. When dealing with scientific applicatiomsrkflow languages should re-
main quite simple: the logic of the application is embedddd the components which may
be implemented using classical programming languages landesulting representation of
the application should be easily interpretable. Yet, asaaly stated, expressiveness problems
could occur and it may be quitefticult to describe useful applications with too circumsctdbe
languages. Methods to study the expressiveness of a worldioguage include workflow
patternsyan der Aalst and ter Hofstede, 2Q@2n der Aalst et al., 20QKiepuszewski, 20083
(the ability of the language to describe a set of pre-defiretems is studied), schema rela-
tions [Viendling and Muller, 200B(the XML schema of the languages are semantically com-
pared) and the study of the Turing completeness, which isnadbway to prove that a language
is able to implement any computable functiam{vis and Papadimitriou, 1981

2.2 From formal workflow models to their execution

In this section, we propose a classification of workflow dggions that aims at easing the
choice of a workflow approach for a given category of userss Tlassification is based on the
presence or absencefohctions dataandresourcesn the workflow representation. It extends
Gil's one [Gil, 2007 and it is based on the amount of information concerning treegss
execution that is provided inside the workflow descripti@ur classification is summarized
on figure2.1: existing languages will be studied from completely formaddels to concrete
schedules of tasks-graphs.

Such a classification is particularly suitable for the scenthat we envisage in this thesis.
Indeed, it allows to precisely separate the concerns of thm mctors of a medical image
analysis grid workflow, namely:

¢ the medical image analysis scientist who develops the wawkdind its components (the
functions),

¢ the clinician end-user who instantiates the workflow on thed

¢ the grid expert who performs the grid deployment and in pal#r the scheduling of the
workflow on the resources.

Five main workflow classes can be distinguished:

1. Formal workflow models correspond to languages where fooration is given about
the nature of the implied activities, the amount and typeaidgrocessed and the used
resources. Those models are suitable for workflow analysialse theyféer an abstract
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1. Formal models
*Examples:

*Usage: workflow properties analysis

e Petri-Nets
e m-calculus

2. Functional workflows

Usage:
» Scheduling
» Data-intensive applications
* Data-composition

Examples: 4. Task-graphs
* Virtual Data Language s
- Swift oyl
. ICENI » Scheduling
: Examples:
o cdlem Data « Condor DAGMan,
* GSFL (Proactive) instantiation « YML
* WSFL with UDDI ¢ _Makefile « MA-DAG
» Choreography « P-Grade portal
* XWFL
« CGWL
Sche%uling
3. Service workflows Scheduling
Usage:
» Data-intensive applications
« Data-composition 5. Executable workflows
Examples: Data Examples:
« MoML, instantiation » Concrete Pegasus
 Sculfl,
* BPEL
* BPMN
* BPML

Figure 2.1: Classification of workflow languages. Formal elsedare the most abstract
workflow representation, where neither functions, nor dedaresources are defined. In

functional workflows, only the functions are defined. Fuoicél workflows become task-
graphs when they are instantiated on data. Similarly, serworkflow can be derived
by specifying resources in functional workflows. Executalybrkflows correspond to the
most concrete representations, where functions, dataesudirces are defined. Workflow
managers help to move from one class to another one.
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representation of the application. For instance, propgiuch as liveness (the absence
of deadlocks) and boundedness (of the amount of generatadadlanstance) can be in-
ferred from such models. Formal models may be used by compaientists to perform

a theoretical analysis of the application.

2. Functional workflows are the class of workflows for whichyahe participants and their
dependencies are defined. To become executable, such waskfve to be instantiated
on the data which is provided at runtime. The workflow can thenterated on the
data according talata compositioroperators, which will be studied in sectidn2 of
chapter4. This workflow class is particularly suitable for applicats handling a lot of
data items. Indeed, it prevents the developer from an exivawdescription of the whole
task set required by its application: the developer only teadescribe the functional
template of the application which is instantiated on theadat the workflow manager
at runtime. Consequently, in a functional workflow, the sidehe handled data sets
is not represented in the workflow language and will only beviam at runtime. Thus,
it is not possible to determine the number of tasks generayefilinctional workflows
before their executianThis property can be used to determine whether a workflowahod
belongs to this class or not. In particular, this class dast&aditional script languages
and workflow languages that have elaborated control coetstiallowing to define for
instance dynamic loops.e loops for which the number of iterations cannot be known
before runtime. Resources are not defined in this workflowsclarhus, studying the
scheduling of those workflows is possible to some extentsidening the fact that the
total number of executed tasks is unknown prior to the execuSuch kind of workflows
allows to separate the concerns of the medical image asalggntist and the clinician.
A functional workflow is defined by the medical image analysha and is used by the
clinician who defines the input data at runtime. It is thenspdsto the grid expert that
performs the scheduling.

3. In service workflows, both functions and resources areiipd. As in functional work-
flows, the data is not defined and is specified at runtime by #ag, which provides
several interesting properties. Actually, those workflondude resources in their de-
scription through their reference to Web-Services. A WSicuiment indeed specifies
the endpoint of the service, so that the workflow manager @gperform any schedul-
ing. Yet, optimizing job submission parameters is stillgbke downstream, for instance
at the level of a particular submission service, such as tieepooposed in section2.2
of chapter7 of this thesis. As in functional workflows, a service workfwshould be
defined by the medical image analyst and instantiated ondteelay the clinician. No
scheduling is required yet.

4. In tasks-graphs, both functions and data are defined arddmiA task is defined as
the association of a treatmemte(a function) with data itemsd.¢é the parameters of the
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function). In this class of workflows, the tasks to be exedwtee completely defined:
the workflow representation specifies their number as wethes nature. Tasks-graphs
can be characterized by the fact that the number of taskeiwthkflow is known prior
to the execution: it is a static workflow representation. sTtlass of workflows is in-
tensively used in the development of parallel applicatiohsey are the most suitable
representation for scheduling. Indeed, the only missifigrmation to have the work-
flow completely defined is the mapping onto resources, wti¢he goal of scheduling.
Because the number of tasks has to be predictable, coralibperators are not allowed
in task-graphs. Yet, the case of exceptions, compensa#adlérs, retries allowed in
case of failure and other fault-tolerance mechanisms hias thstinguished from condi-
tional operators. Indeed, even if those constructs leatda@éeneration of a potentially
unpredictable amount of tasks by the workflow, they only esngarticular execution
conditions. A tasks-graph could only be producedbyhthe clinician and the medical
image analysis scientist because it mixes the data withuhetibns. It is used by the
grid expert to perform the scheduling.

5. Executable workflows correspond to the mapping of a tgsaph onto resources.
They are the output of any tasks-graph scheduling algoritmd can be directly
executed. However, some operations on the workflow reptasen may still be
performed by the workflow manager on an executable workflowor fstance,
in [Ramakrishnan et al., 20]) the authors propose a strategy to reduce the data footprin
of the workflow during the execution. The executable workfievanalyzed in order to
determine the instant when a temporary file produced by thé&fleav can be deleted,
thus leading to a reduction of workflow failures due to fubks.

Yu’s workflow structure (see sectidh1.3 may vary among the five workflow classes de-
scribed in this section. Because of their static naturdstgsaphs and executable workflows
have to be directed acyclic graphs (DAGS) or at least to eomtaly static loopsi(e loops for
which the number of iterations is known before runtime). @a ¢tontrary, functional and ser-
vice workflow may contain dynamic loops. QoS constraintssadered in Yu’s classification
may be defined in each class of ours. Similarly, automaticumed-directed composition may
be envisaged in each of the five classes.

The distinction between graphical and script-based agpesis fundamentally orthogonal
to the classes presented here. However, due to the extemtakt, some classes may favor one
paradigm. For instance, service workflows are tightly cedpb the Web technologies which
make an intensive use of XML languages that are naturallyesgmted as a graph. On the
other hand, most of the tasks-graphs presented on fR)ar@xcept the P-GRADE portal that
is clearly dedicated to end-users and provides a userdige@UI) have been developed and
adopted by computer-scientist and thus rely on a scripgdapproach.

Control and data flow approaches may be present in every ofatbgs taxonomy. In a
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tasks-graph or executable workflow, the dependencies kettasks may be defined either by
precedence constrainisgcontrol links) or by the availability of a file or any kind of tiitem

(i.e data links). Similarly, a functional workflow may launch arfpeular execution because
of the control flow €.gin script-like workflow languages) or the availability of tda(e.gin
GSFL [Wagstrom et al., 20(Q). The service workflow class gathers data-flow languagehb su
as Scufl and control-flow oriented ones such as BPEL. Besidesstaxonomy focuses nei-
ther on the classical business versus scientific dichotohinpse aspects are assumed to be
transverse to the proposed workflow classes.

The expressiveness of the underlying workflow languagetislearly related to the classes
presented in this section. Beyond intrinsic limitationsofs as the static nature of tasks-graphs
and executable workflows that prevent them to contain dyodooips), languages of a given
class can exhibit very ffierent capabilities in terms of control flow description ameé@tors.

In the following of this section, we review some existing ewdes belonging to those five
classes.

Finally, it has to be noticed that this classification catexgs workflowdescriptiongather
than workflow managemesystemsindeed, a given workflow system can use sevelf@aint
workflow descriptions during the workflow life cycle. Actiylone of the goals of a workflow
system is to make a workflow description successively moomfone class to another one
in order to finally reach thexecutable workflowslass, where every usable workflow system
could appear. Yet, on figure.1, we chose to put a given workflow system in the highest
possible class (the order being defined by the arrows on theeligf the various workflow de-
scriptions that it handles. For instance, the potentiadhgihg of P-GRADE to thexecutable
workflowsclass is implicit.

2.2.1 Formal workflow models

Two broad classes of formal models have been proposBdtri nets and n-calculus
There has been hot debates about the superiority of one mableVve the other
one [Emith and Fingar, 20Q3san der Aalst, 200¢and they both lead to the development of
systems or standards relying on them. For instaneeglculus are said to have inspired the
development of choreographies (presented in se&idr?) whereas various workflow engines
are based on Petri netsan der Aalst and ter Hofstede, 2Q05

2.2.1.1 Petri Nets

Petri nets have been introduced in the thesis of C.A Petti96® [Petri, 196). Itis a graphical
modeling tool applicable to many systems and particularliable for parallel systems as they
extend the notion of state machine with concurrency.

A Petri Net is a particular kind of directed bipartite grapssociated with a set of tokens. It



66 A taxonomy of workflow approaches for medical image analggslications  Chap. 2

Ot O O
@45>©A© QAB>@Q QAB>©A@

Figure 2.2: Evolution of the multi-merge workflow patternglamented with Petri-Nets
for a particular initial marking.
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Figure 2.3: Implementation of workflow patterns. Left: Mu‘ﬂnerge ; Right: exclusive
choice. Top: with Petri-Nets ; Bottom: withtprocesses.

is made of two kinds of nodes callpthcesandtransitions Edges of the graph are either from
a transition to a place or from a place to a transition. Statehimes are a subclass of Petri nets:
in a state machine, each transition has exactly one inpoé¢@lad one output place. Tokens are
located in places. Multiple edges linking the same tramsitd the same place or the same place
to the same transition can be represented as a weighted démge Vabel denotes the number of
corresponding unary edges. A transition is enabled wheof &k input places contain at least
the number of tokens of the corresponding edge label. Ites teady tdire. After a transition
has fired, it produces for each output places the number enwkf the corresponding edge
label [Viurata, 198} Anillustration of the transition firing rule is given on fige 2.2 The top
line of figure2.3(adapted from\jan der Aalst et al., 20(QRBdisplays an implementation of two
classical workflow patterns using Petri-Nets: the multikgeeand the exclusive choice.

Several extensions of Petri Nets have been proposed and fasedarious applica-
tions. For instance, timed net$/fgott, 198} introduce delays associated with transi-
tions andor places and stochastic Petri Nets associate a randonbleatia the time de-
lays [Ajmone Marsan et al., 19§4Inhibitor edges have also been introduced in extended Pet
Nets: they disable the transition to which they are conrketben their input place has a
token [Agerwala, 197}

Colored Petri Nets (CPN) were introduced to ease the maatipul of data values in Petri
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Nets [Kristensen et al., 1998 They are particularly used for workflow modeling and are th
basis of the YAWL workflow systemvpn der Aalst and ter Hofstede, 2Q0%CPN are a sub-
class of High Level Petri Nets, which also include HieracahPetri Nets. In a CPN, tokens are
distinguishable: each of them is associateddolar which represents a data value. Places have
an associatedolor setwhich represents the data type to which belong the colordl dfiair
tokens. Edges are annotated with expressions that deeetherexact data values removed and
added by the firing of a transition.

2.2.1.2 n-calculus

In [Smith and Fingar, 20(Q3the authors claim that some of the procedures used in éssin
cannot be modeled using workflow engines that do not relyr-@alculus. They suggest to
adopt the ternprocessto denote workflows relying on the-calculus formalism. A singular
characteristic ofr-calculus is that it is able to exchange information amongjg@pants whose
relationships evolve as a result. This feature is cathexbility. Mobility is required to model
processes where the exchange of information fosters thdo&tween participants. The exam-
ple of email exchanges is often cited to illustrate such abiein: by receiving emails sent to
multiple recipients, a participant becomes aware of aded®sf other people, thus developing
her communicating ability. Partisans ofcalculus advocate that static representation systems
such as Petri nets cannot properly represent mob#itynfmann, 2006

Pi-calculus is an extension of process algebra aiming alllmghconcurrency. It has been
proposed by Milnerifliiner, 1999. Pi-calculus is described in termsocesseshannelsand
names Channels are used by processors to exchange messagesn&ssages and processes
are called names and thus cannot be distinguished. Thengpoidh message over a channel
X is written x(u), whereas receiving the messag@ver the channek is denoted byx(u).
Channels themselves can also be sent and received, which paskible the description of
mobile processes such as the email use-case describedgretheus paragraph. The sending
and receiving of a messageover any channel can be abbreviated respectively laynd u.
Processes can be composed sequentially by the opététor in parallel, with the notation
”|”. The choice operatof+” is also available as well as tHé” unary operator which is
used to specify that a process can be iterated as many timegused. A condition about a
particular name can be expressed by tke-[y] notation. There are two particular processes:
0, which does not do anything and stops the process execamidn, which corresponds to
a hidden activity, that does not take part into the globatpss [Voodman et al., 20Q7 A
process is an activity that corresponds to &eaive participant of the workflow as defined in
section2.1.2 for instance, it may model the computation of a service afi@n on some data,
which is seen as a black box from the workflow point of view.

It is clear that z-calculus is able to model both control and data flows. Van
der Aalst's workflow patternsvpn der Aalst et al., 20(Q3are expressed using-calculus
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in [Puhlmann and Puhlmann, 2J0%Examples from this work are recalled here, to illustrate
the r-calculus formalism. The bottom line of figu&3 presents two workflow patterns: the

left of the figure presents shows thaulti-mergewhereas the right of the figure displays the
exclusive choiceTher-calculus representation of the multi-merge is the follogvi

B = TB.(IO
C = 7c.d.0
D = 'dTDO

Each line of this equation models a particular process ofmbrkflow. After their execution,
processe8 andC both send the same nardevhich is required by proced3. The presence of
a”’!” operator in front of procesd indicates that it will be replicated as many times as needed.
In this case, two copies @ will be done. Theexclusive choices represented by the following
m-processes:

A = ta(b.0+C0)
B = b.TB.O
C = c1c0

For this process, the choice operatois needed to distinguish the 3 invocation cases.

The n-calculus formalism has been extended to the case of Wehe8srorchestrations
in [Mazzara and Govoni, 2005 In this work, the authors add a transaction operator which
is able to cope with faults and to trigger a recovery procédise fault message is received.
Based on the sameebrn,, extension of ther-calculus, another application to orchestrations
is proposed in l[[ucchi and Mazzara, 20(,7where the authors detail &calculus based se-
mantics for WS-BPEL. It is highlighted that the thredfeiient error handling mechanisms of
WS-BPEL are not necessary and a novel orchestration largbaged on the idea of event
notification as the unique error handling mechanism is psedo In the context of choreogra-
phies, a formal model of WSCI (see sectidr2.2 using a process algebra approach (CCS) is
proposed in Antonio et al., 200fand applied to web service compatibility, replaceabitityd
the automatic generation of adapters.

2.2.2 Functional workflows

Virtual Data Language. The Virtual Data Language (VDL)/hao et al., 20074s a func-
tional workflow language that derives from a former VDEcfster et al., 2002 It is executed
by the Swift Zhao et al., 2007&tef-Praun et al., 20 workflow engine which derived from
the Virtual Data System (VDS). It has control flow construsish asfor each, if, switch
andwhile. It is based on the declaration of procedures written in &€4dyntax. Procedures
can be atomic or made by other procedures. VDL does not makassumption about the size
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of the input data sets. However, the underlying workflow ngegn@&xpands the VDL definitions
into a tasks-graph (see sectidr2.4 and executes them. This is made possible by the fact that
foreach nodes are expanded at runtime thus enabling data sets tatdueamically deter-
mined size. We guess that a similar late expansion systerseid ior the other control flow
constructs that lead to the execution of tasks whose numbmtiknown before runtime. The
data types representation is extensively described in 'DEklies on an XML Data Set Typing
and Mapping (XDTM) that allows the types of data sets andgutaces to be defined abstractly
in terms of XML schema. Separate mapping descriptors thénedbow such abstract data
structures translate to physical representations. Feéameg, XDTM provides mappings from
file names to their absolute path in a file system. Yet, dat@tisnstantiated inside the VDL
representation. This is made at the engine level. Both thagements lead us to put this ap-
proach in the functional workflow class, even if it is tighihterfaced with tasks-graphs: what
is called a “high-level” workflow representation in Fig.87f [Zhao et al., 2007ais a func-
tional workflow because data segments are not defined ondpissentation. The described
implementation of the VDL prototype converts this workfloefidition into a tasks-graph by
expanding DAG nodes (Fig. 17.9 of’fjao et al., 2007)).

GSFL. The Grid Service Flow Language (GSFL) has been designed asdapta-
tion of the WSFL to grid services, which havefférent needs from standard Web-
Services Vagstrom et al., 20(2In particular, the authors underline the fact that thekflow
specification needs to be able to allow communication batwiee services to avoid the work-
flow manager to become a bottleneck centralizing the datafiees. As already noticed in sec-
tion 2.1.1 avoiding centralized enactment is not straightforwarthWieb-Services, whereas
OGSA introduced facilities for that. In particular, GSFLogrdes a mechanism to connect no-
tification sources and sinks defined in the OGSA. GSFL is di#®ta handle OGSA registries
and factories for creating grid services. A GSFL documefinds services providers, the ac-
tivity model, the composition model and the life-cycle mbdgervice providers are the list of
services involved in the workflow. They can be located sadliicby a hard specification of an
endpoint or invoked using factories. In the latter caseguieses are not defined in the workflow
document, which leaves room for further scheduling. Theated activity model identifies
the particular operations of the services involved in thekflfow. The composition model de-
scribes the data and control flow between the activities hadifie-cycle model contains a list
of precedence links describing the order in which the ses/gxecute.

ICENI /ICENI-II.  ICENI’s authors identify two dferent workflow representations: the spa-
tial and the temporal one&/ayer et al., 2004AMcGough et al., 2004 A workflow is denoted
spatialwhen none of the relations between its participants areggi@tce constraints: in this
case, links between services could for instance be detedry event notifications or data
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links. On the contrary, a workflow iemporalwhen all its relations are precedence constraints.
The authors notice that even if the temporal representaitive most suitable to determine a
planning of task allocations, the spatial representasahe most user-friendly. Thus, in their
ICENI system, the user builds a spatial representationwisithen mapped to a temporal one
for scheduling purposes. The user specifies the workflow paéia expression, which, in our
terminology, corresponds to a functional representatidhis user-defined workflow is also
called an execution plan. At this stage, components areridescin terms of meaning and
behavior. ICENI then converts it to a temporal descriptiana tasks-graph. As underlined by
the authors, problems appear when the functional desanijginot acyclic, as discussed in the
next sections. As in GSFL, the components themselves tdheiopartners, without any exe-
cution centralization. ICENI Il is described iVgGough et al., 200McGough et al., 2006
Three steps are identified in the workflow generation: spmtifin, realization and execution.
Specification produces an abstract workflow whereas raalizaims at validating the work-
flow and then map its elements to concrete resources. Exacddials with the monitoring of
the application and functionalities to allow component raign.

Calcium Calcium [Caromel and Leyton, 200 Caromel et al., 20(8is a framework based
on skeletons Cole, 199] that are a workflow programming model aiming at hiding the
complexity of parallel and distributed applications. Ithsilt upon the Proactive middle-
ware [Caromel et al., 20(J6 Calcium has a set of control constructarm (task replication),
piped(staged computationyeq(wrapping of execution functionsif, while, for, map(single
instruction, multiple datafork (multiple instruction, multiple datajié-c (divide and conquer).
As stated by the authors ichromel and Leyton, 20(:7

New tasks can be dynamically produced by the interpreteeswvdata parallelism
is encountered.

Consequently, we classify this approach in the functiorakfiows.

AGWL. The Abstract Grid Workflow Language (AGWL) is the workflow rage used by
the ASKALON workflow managerfahringer et al., 20Q¥which offers two interfaces for gen-
erating large-scale scientific workflows in a compact andiiive representation: graphical
modeling using the UML standard and a programmatic XML bdaaduage. AGWL work-
flows can be either generated from a graphical UML descripdiodirectly written by the end-
user. AGWL workflow descriptions are definitely independiatn the execution resources.
A dedicated scheduler is responsible for resource allonaind a resource manager handles
reservation. AGWL workflows include both control-flow andtaélow. Control-flow con-
structs includesequences, dags, for, forEach, while anddo-while loops,if andswitch
constructs and more advanced constructs sughesllel activities, parallelFor and
parallelForEach loops and collection iterators. The user can also specifpgnties and
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constraints (such as memory requirements) for activitres@ata flow dependencies. An ex-
ample from [Fahringer et al., 2007underlines that dynamic loops.€. loops for which the
number of iterations cannot be known before runtime) candfimeld, which lead us to put this
language in the functional workflows category. ASKALON usaesther language, CGWL in
order to have a tasks-graph representation of the workflBe®re the execution, the workflow
manager performs a mapping from AGWL to CGWL.

Choreographies. The termchoreographyoriginates in a metaphor of a workflow which is
viewed as an artistic work performed by actors,the participants of the workflow. In that
sense, choreography is opposedtohestration in a choreography, each actor is linked to
other ones and the global process is obtained as a resulosé flocal interactions. On the
contrary, in an orchestration, actors are directed by arabnbnductor which manages the
whole orchestra. Choreography and orchestration are tératsre tightly related to the Web-
Services, as specified by the W3C. Choreography is thus oftteegorized as a decentralized
approach whereas orchestration is centralizéd\jer et al., 200}} However, even if the work-
flow descriptionis not centralized in a choreography as it is in an orchestrathe practical
implementation of a workflow manager that would permit sudeeentralized execution is not
specified. Extensions of Web-Services such as WSRF and O@&#A s be mandatory in
order to have such a decentralized execution.

The initial choreography specification was the Web-Ses/i€horeography Interfate
(WSCI). WSCI allows a Web-Service to defimsterfacesthat describe processes from its
operations. Operations can be composed in sequential allgdagxecutions and loops and
conditions can be defined. WSCI interfaces describe choapbges between the opera-
tions of a Web-Service. WSCI defingdobal modelson top of operations. Global mod-
els describe choreographies between interfaces of sesemaces. It provides a set of con-
nections (mappings) between pairs of individual operatiohcommunicating participants.
In [Antonio et al., 200} authors formalize WSCI using-calculus. WSCI set up the basis
for the development of the Web-Services Choreography Mg Language(WSCDLY. In
this languageinteractionsare defined among filerentroles. Roles can be played byftkrent
behaviorsthat may (optionally) be linked to particular WSDL interésc Indeed, the W3C
candidate recommendation for WSCDL specifies that:

“ A behavior without an interface describes a roleType tkatat required to sup-
port a specific Web Service interface. ”

Thus, WSCDL choreographies are far from being executabley only describe patterns for
message exchanges among abstract participants. Accdadthg W3C, a choreography lan-
guage is not an executable business process descriptigndge or an implementation lan-

10http ://www.w3.org/TR/wsci/
11http ://www.w3.0org/TR/ws-cdl-10/
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guage. The role of specifying the execution logic of an aygion will be covered by these
specifications.

YAWL. YAWL is built upon the Petri-Nets formalism. Its specificati originates
in an exhaustive study of workflow managers with respect toeta & workflow pat-
terns an der Aalst and ter Hofstede, 2Q0Thus, the goal of YAWL is to overcome the ex-
pressiveness limitations of the contemporary workflow ng@maent systems. It is based on
high-level Petri nets, to which extended constructs suadsanced synchronization, multiple
instances and cancellation patterns are added, thus dgefirerextended workflow nets (EWF).

Makefile. Makefiles are a particular kind of functional workflows thaintpletely relies on
data flow. Participants of the workflow are defined by a commaredthat includes services
(executable) and data (arguments of the command line).sTagklinked by precedence con-
straints. When a task is ready to be executed, itfisctively fired if and only if one of its
input files has been modified since the last invocation. Medsetian include conditionals and
loops. Thus, the number of tasks generated by the executi@amakefile may not be known
prior the execution. Moreover, with thej option of the workflow enginaake, it is possible
to define a number of processes that may run concurrentlgnpatly on diferent CPUs, so
that the resources are not defined inside the Makefile. Coesglg, it has to be categorized as
a functional workflow.

2.2.3 Service workflows

Scufl (Taverna) workflows. Scufl is a data-flow oriented language that basically dessrib
the pipeline of an application. Participants of Scufl wonkiéoare callegorocessors Many of
them can be specified: for instance, string constants firg @mte and return a single string
value. Web-Services can also be enacted by specifying a WRigument and a particular
operation as well as compiled Java code or Beanshells morEsthat embed a piece of
Java code. Sources and sinks correspond to the inputs apdt®wtf the workflow. Each of
them may contain several data segments on which the work#aterated. Their content is
not specified inside the Scufl document: it is independemn fitwe workflow description and
is only known at runtime. In that sense, Scufl is a typical epanof functional workflow.
However, Web-Services processors are bound to a particgaurce, included in their WSDL
description. A Scufl workflow instantiated on some input dadald thus be considered as an
executable workflow rather than a tasks-graph.

Processors have input and outpottsthat can contain several data items and are connected
to other ones witldata links A data link is just a pipe between an output port of a processo

12http ://www.beanshell.org/
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and an input port of another one. An output port can be coeddoctseveral input ports. In this
case, the data items are broadcasted to all the connecteidporss. Similarly, several output
ports can be linked to a single input port. In this case, datas are bffered into the input
port according to their order of arrival. Data compositiggeaators allow to define iteration
strategies between the input ports of a processor. Iterati@tegies are used to control how
multiple data items inside the input ports are combined.yTdre described in sectidhl.1of
chapter3.

Coordination constraintgan be specified in Scufl and provide elementary control links
Such a link specifies that a processor has to wait for anotiebefore starting its execution,
even if there are no data dependency between them. This isnilgekind of control link
available in Scufl. No control operators suchfasor while are available. Nevertheless, the
FailIfFalse andFailIfTrue processors are defined to implement conditional branching i
a workflow, although no control operator suchifass defined in Scufl. Those processors fail
or succeed depending on their Boolean input value, thusudistg or enabling the processors
depending on them in the workflow. Apart from that, the wonkfis completely driven by the
presence or absence of data in the input ports of a procegsgocessor will fire if and only
if all of its ports contain adequate data. It is not possibl@¢fine variables in Scufl. As a
consequence, there is no expressions nor operators inrtjedge.

MoML (Kepler) workflows.  Participants of a MoML workflow are callegttors In MoOML,
each actor must define the type of each of its ports. Link$g@atlationg can only be defined
between ports with compatible types. Ports participatinggveral relations have to be defined
asmulti-ports

MoML defines no semantics for an interconnection of comptenit instead pro-
vides a mechanism for attaching a “director” to a model. MoMhows nothing about
directors except that they are instances of classes that bearloaded by the class
loader [.ee and Neuenddier, 200(. Four directors are available in Kepler: Continuous Time
(CT), Discrete-Event (DE), Synchronous Data Flow (SDF) Bnacess Networks (PN). The
CT director is used to model physical systems: the workflothés directed by a clock. In the
DE director, the workflow is also directed by a clock: eacltoecommunicates with the other
ones by sending them timestamped signals. The directorstdese signals and distributes
them to their targets. In the PN director, each actor is ebegtim a dedicated thread. Relations
between actors are waiting queues of finite capacity. Witimio a queue is never blocking
whereas reading in an empty queue is blocking. The SDF direstused to simulate data
flows.

Orchestrations: BPEL, BPML, BPMN, WSFL, XLANG. Orchestrations are workflows
of Web-Services. This denomination originates in a metapha workflow which is viewed
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as a musical partition interpreted by the participants amelcted by the workflow engine.
Orchestrations diier from choreography by the point of view adopted by the dgved. In
an orchestration, a single workflow engine is responsibtettie execution of the applica-
tion. It centralizes the services invocations so that ses/do not communicate between each
other [Viayer et al., 200}k Orchestration is also referred to as a concrete workflovenss
choreography is abstract. Indeed, in a choreography, ressware not mandatorily defined
whereas orchestration precisely defines services WSDL anskgjuently endpoints.

The de facto orchestration standard is BPEL [Mc llraith and Mandell, 2002
Wohed et al., 200X halaf et al., 200BEmmerich et al., 2003V hite, 2006 Slominski, 2007T.
It was defined considering previous specifications: WSFLAKXIG, BPML and BPMN
that did not survive the BPEL emergence. lndgstrom et al., 2002the authors provide a
technology survey of workflow languages for Web-Servicespdrticular, a detailed analysis
of WSFL is provided. WSFL includes both control and data $inkefrom our classification
point of view, a remarkable feature of this language is thentdication of the services
participating in the workflow by usinglacator element which allows a service to be described
by a static (hard reference to a WSDL), a local, a UDDI (theviseris looked up using the
UDDI API) or a mobility (the service provider is referencada message generated by some
activity of the workflow) binding, which would allow us to ptltis language in the functional
workflow class.

In its current 2.0 version, BPEL includes several controistaucts:switch, pick, while,
for each, repeat until, wait, sequence andflow. Activities may include Web-Service
invocations, receive and reply and variable assignatigoroposes a fault handling mechanism
through theexit, throw, rethrow and compensate constructs. Because of those control
constructs, it is not possible to convert a BPEL workflow d&bn to a DAG. In particular, it
is not possible to determine the number of service invoaatiavhich may be dependent on the
nature of the input data.

2.2.4 Tasks-graphs

Condor DAGMan. Condor DAGMan'* is one of the most used tools for tasks-graphs. It
allows the user to define precedence constraints betweeddC@obs that are submitted to a
pool of resources. So-called “pre” and “post” scripts maydeéined to be executed respec-
tively prior or after the job itself. Fault-tolerance fatis are also available, such as the ability
to define a number of retry attempts in case of failure duriregexecution. Such retry speci-
fications have been used to define while loops with DAGMan, bking a job fail and retry
until the stopping condition has been reached

Byww. ibm. com/developerworks/library/ws-bpel/

Yhttp://www.cs.wisc.edu/condor/dagman/
l5https://1ists.cs.wisc.edu/archive/condor—users/2®®5—November/msg®®®®®.shtml
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P-GRADE portal. The P-GRADE portal is a tasks-graph workflow manager basethen
Condor DAGMan [Kacsuk et al., 2003<acsuk and Sipos, 20Qi5It is able to submit jobs si-
multaneously on various grid middlewares, including GTZ4GLCG and gLite with a se-
cured access mechanisiecsuk et al., 200gbAn interesting feature of the P-GRADE portal
with respect to our workflow description classification ig fhossibility to define parametric
tasks Kacsuk et al., 2004aParametric tasks allow the user to define tasks whose @eam
vary in a given range. Parametric tasks bring tasks-grajgseicto the functional workflow
approach as they are templates to generate several tagkpav@metric tasks can still be ex-
panded into a tasks-graph and they generate a predictableof tasks. Anyway, parametric
tasks make a P-GRADE workflow description far more flexiblentimost of the task-graphs.
P-GRADE is an interesting example of a trad&{metween tasks-graphs and functional work-
flows.

DIET MA-DAG. DIET is a grid middleware providing scalable schedulinglfaes for grid
servers Caron and Desprez, 20PD5MA-DAG, a workflow management system has been de-
veloped on top of itfmar et al., 200band is based on a DAG model. This approach focuses
on scheduling, by fdering the ability to use dlierent advanced algorithms. Multi-workflow
scheduling is also under investigation.

XWFL. The Workflow Enactment Engine (WFEE) uses the xml-based Wwk_anguage
(XWFL) [ Yu and Buyya, 200) This language allows users to describe tasks and theerdep
dencies. This language is made of three sections: parahefieitions, task definitions and
data link definitions. This language supports both absttadtconcrete workflows: resources
can be specified so that we could also put this language irkgmitable class. Parameters can
be used in order to define parametric tasks as described prévweus paragraph. Data links
are then used to specify the tasks-graph.

Yvette ML. The YML framework defined YvetteML, a parallel programmingnguage
which is used to model workflow$lannoy and Petiton, 200Belannoy et al., 2006 Yvet-
teML includes a component model and a graph descriptioruagg. Components are defined
as an encapsulation of task nodes of a directed acyclic gggplsenting a complex applica-
tion. They represent a chunk of computation requiring no rmication with the rest of the
application. Components are made of a so-called abstratd@rdéon, which specifies the type
and mode (in, out or inout) of the parameters as well as apesided implementation that
adds some decorations to #33+, Fortran or Java code in order to be able to compile it on
different platforms. The YvetteML graph language is a contmiflanguage. Several control
constructs dedicated to parallel applications are presecth aspar do, seq do wait or sig-
nal. A typical example (extracted fronbflannoy and Petiton, 20])4of the YvetteML graph
language is:
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const problemSize := 10000;

event evt[2];

var MatrixReal vRes[1];

par(i:=1; problemSize) do
compute fillMatrixReal(vRes[i],problemSize,i);
signal(evt[i,1]);

end par do

The YML Framework interacts with the user using a compileichhtranslates components
into binary applications. The model of the YML workflow framerk can contain loops, itera-
tions and branching: the compiler completely expands grapimake them ready for schedul-
ing. Loops are unrolled, condition evaluated, unvisiteanches spread out of the graph and
constants are propagated. The compiler translates appfisadescribed using the YvetteML
language to a set of components calls. Regarding our clzetsin of workflow descriptions
the YvetteML compiler acts as a translator from a functiomatkflow instantiated on its input
data to a tasks-graph. However, the dynamicity of the faneti workflow approach cannot
be handled by YML and the number of tasks generated by thecapiph is foreseeable. That
is why we put it in the tasks-graph class. Yet, the YvetteMLUrkflow language remains very
similar to the one of the Virtual Data Languagépo et al., 2007

2.3 Moving from a class to another one.

The goal of a workflow management system is to move from thdfhlaw definition provided
by the user to an executable workflow. A significant amount ofkimay be necessary to go
from one category to another one.

From tasks-graphs to executable workflows. Moving from tasks-graphs to executable
workflows is the operation done by tlsehedulingof task-graphs. This problem consists in
finding a task execution and resource allocation planningrder to optimize one or more
criterion (such as the makespan of the application, thedas, ...). This problem is NP-
complete as soon as the number of resources is bounded ootheunication costs be-
tween resources are taken into account. This family of gmisl has been extensively stud-
ied [Legrand and Robert, 20[13In particular, list heuristics have been proposed angteath
to different constraints such as the heterogeneity of the reso[ircecuoglu et al., 2002

From functional to service workflows. Moving from functional to service workflows re-
quires to be able to get the endpoint of a service from an fab8tdescription. It can be
done either by dynamic service instantiati@gby the use of an OGSA service factory) or
by service look-up in a registrye(g UDDI). Besides, semantic services discovery is a very
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array of int

return odd number,
L1

Y
1

increment

Figure 2.4: Example of a functional workflow that could not dmnverted into a tasks-
graph: thereturn odd numbers participant extracts some elements of the input array
of integers and pass them to the followihgcrement. The number of invocations of the
increment participant cannot be determined in advance.

hot topic and several approaches are still studlenavfics et al., 2007Atkinson et al., 200,/
Spanoudakis et al., 20p3ong et al., 2047

From service workflows to executable workflows. The shift from service workflows to ex-

ecutable workflows is typically done at runtime. Servicegouoations are dynamically de-

termined during the execution, according to the availgbdif data items in the ports of the

services, eventually after the application of some datapmmition operators (such as iteration
strategies in Scufl) or because of some relations defined myai@onstructs (for instance in

BPEL).

From functional workflows to tasks-graphs A description of the input data of a functional
workflow is suficient to convert it to a tasks-graph if the functional workflis assumed:

e to be acyclic or expandable to a DAG before runtime

e not to contain any conditional control structures suclifisr switch and

e not to generate data sets whose size is determined at runtime
Indeed, the above hypotheses prevent the workflow from géingran unpredictable amount of
tasks at runtime. For instance, if we consider the functiamaakflow of figure2.4, it is obvious
that it could not be converted to a tasks-graph: theurn odd numbers participant returns

a data set whose size depends on the natusexdy of int. Thus, one could not determine
the number of invocations of thiemcrement participant before runtime. The conversion from
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functional workflows to tasks-graphs could be done sepgritesub-parts of the workflow, as
it is done for instance by the engine supporting the VirtuatddLanguage, where sub-parts of
the workflow are progressively converted to tasks-graphsoas as the number of tasks to be
generated is known (see section 17.7.2.0fido et al., 2007)). A typical construct preventing
a functional workflow to be transparently mapped to a tastkpiy is theforeachthat leads
to dynamic loops where the number of iterations cannot bevkngefore the instantiation of
the workflow on the data. To get closer to the functional appho an interesting extension of
the tasks-graphs are parametric tasks descriptions whgeeexic task can be described for a
whole parameter range, resulting in the execution of mialjipbs, as done for instance in the
P-GRADE portal Kacsuk and Sipos, 20115

2.4 Conclusions

In this chapter, a review of the existing workflow descriptiapproaches has been provided.
A classification distinguishing functional, services, exable workflows and tasks-graphs has
been detailed, based on the presence or absence of funcatasnd resources in the workflow
specification. The suitability of each workflow class hasbleighlighted: even if tasks-graphs
are clearly more suitable for workflow scheduling implenatiains, the data composition facil-
ities and the dynamicity of service workflows allow a simplgresentation of the applications.
Moreover, this approach allows to better separate the coaad the three main actors envi-
sioned in this thesis: the clinician, the medical image ystand the grid expert.

Existing workflow descriptions and their corresponding lempentations fier a very di-
verse and complete set of tools providing to the user theiredjdacilities to build higher
application. Depending on hiter profile, diferent approaches could be chosen. For instance,
a Perl-addict scientist wanting to describe the workflowerfdpplication could select a script-
based functional approach such as Swift tH&ers all the constructs and data types facilities of
a traditional scripting language. On the opposite, usesdb not have any programming back-
ground may be more easily targeted by graphical composstygstems such as the P-GRADE
portal, Taverna, Triana or Kepler. Finally, parallel pragrming computer scientists may bet-
ter chose a tasks-graph workflow language such as Condor MAGor Yvette-ML as this
approach is more suitable to implement smart workflow scheglalgorithms because of the
static nature of the tasks-graphs.

The forthcoming research on this area may thus be more fdousé¢he &ective adoption
of existing workflow managers by large users communitielsenrathan on the development of
yet another workflow system. The adoption of stable workfld&tfprms is a prerequisite for
further investigations that have to be initiated by reaksisgeed. Actually, this direction is the
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one adopted by the leading workflow projects such as the P{ERportal®, Taverna’, Swift'®
or Gwendia®. In that sense, we study the implementation of the bronzedata application
with the Scufl services language in the next chapter.

®http://portal.p-grade.hu/
"http://taverna.sourceforge.net
Bnttp://www.ci.uchicago.edu/swift/
Bhttp://gwendia.polytech.unice. fr/


http://portal.p-grade.hu/
http://taverna.sourceforge.net
http://www.ci.uchicago.edu/swift/
http://gwendia.polytech.unice.fr/
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ased on the taxonomy detailed in the previ- guage which is particularly interesting through
B ous chapter, we advocate here the adoption its data composition strategies. An analysis of
of service workflows for medical image analysis the expressiveness of this language is finally pro-
applications. The workflow of the bronze stan- posed through the implementation of a universal
dard application is described with the Scufl lan- Turing machine.
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ans ce chapitre, nous motivons I'adoption Scufl qui fournit des opérateurs de composition

de chaines de traitements de services pour de données particulierement intéressants. Enfin,
les applications d’analyse d’'images médicales. une analyse de I'expressivité de ce langage est
La chaine de traitement de l'application des proposée a travers lI'implémentation d’'une ma-
étalons de bronze est décrite avec le langage chine de Turing universelle.

The workflow classification presented in the previous chajgteealed a wide spectrum of
different workflow approaches. Even if some works still focusmecgic workflow patterns to
further enhance the languagesi der Aalst and ter Hofstede, 2QDwe will concentrate on
the study of the adoption of an existing workflow languagedor application. Among the
presented workflow approaches, we advocate here the usevafesevorkflows for medical
image analysis applications. In particular, the bronzedded application will be described
with the Scufl language.

3.1 The bronze standard workflow

3.1.1 Motivations for the use of service workflows

The Scufl workflow of the bronze standard application is dgpion figure3.3. Apart from the
algorithms sharing needs of this application, which md&sahe adoption of a service-oriented
architecture, several reasons rationalize the use ofeworkflows rather than task-graphs for
this application.

Separation of clinical, medical image analysis and grid corerns. The adoption of service
workflows enables a clear separation of concerns betweed #utors of the typical scenario
envisioned in this thesis. Indeed, in such a paradigm, trtigakimage analyst builds a work-
flow from existing services potentially connected to thelgsiith the help of the computer
scientist. Such workflows are then exposed to the clinidiah dnly specifies the input data on
which to run them. The data instantiation is the last stepreethe execution of the workflow.
Conversely, in task-graphs, those 3 roles are mixed. Toifypihe input data, the clinician
would have to modify the workflow itself, by adding new tasksich could not be automat-
able in case of complex patterns.

Compact description of large workflows. From a user point of view, the mainftérence be-
tween task-graphs and serviitectional workflows appears when considering the re-ettecu
of the same workflow over ferent input data segments, as it is done by the registraéion s
vices of the bronze standard workflow that are iterated onmaptete image database. In a
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Figure 3.1: Data composition operators. Left: one-to-ofgght: all-to-all. A andB
represent ports of a service. They may contain several tietasi@, Bj) on which the
service is going to be iterated.

task-graph, executing the same processing over tfferdnt data segments results in the de-
scription of two independent tasks. This approach enfoticegeplication of the execution
graph for every input data to process, which becomes irgtbdetvhen the workflow is made of
hundreds to thousands of tasks. On the contrary, the déseoripf a functional or service work-
flow is independent from the size of the input data set, whiedpls the workflow description
compact and more easily graphically representable.

Data composition. Thanks to the absence of data instantiation in the workfloscdietion,
operators acting on the data flow itself can be defined: it mapldy the description by
avoiding the use of complex control patterns. In partigutaration strategieover the input
ports of a service are available in Scufl. When a service ownsriputs or more, an iteration
strategy defines the composition rule for the data comingfedl the input ports pairwise.
Iteration strategies are composed of data compositionabpe: Considering two input sets
A = {Ag,A1,..., Ay} and B= {By,B4,...,By} of a service, th@ne-to-onedata composition
operator consists in processing each data item of the fitsvie the matching data item of
the second set in their order of definition. The other contpwsistrategy available in Sculfl
is theall-to-all operator which consists in processing all the input datastérom the first set
with all the input data items from the second set, thus produm x n results. The action
of those operators is illustrated on figuBel. Using iteration strategies to design complex
data interaction patterns is a very powerful tool for dateensive application developers. For
instance, the sweeping of a service over a whole parametge igan be described with a single
all-to-all operator between the parameter to sweep andttier cputs of the service. In the
following of this thesis, all-to-all operators will be deted by® and one-to-one bp.

Dynamic data sets. Task-graphs and functionaérvice workflows dter in depth in their

handling of data. The dynamic nature of the data descrigtiate functional and service
approaches enable the definition and execution of a workfldtwagh the whole input data is
not known in advance. It will be dynamically fed in as new datbeing produced by sources.
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Indeed, it is common in scientific applications that dataugition is a heavy process and that
data segments are being progressively produced. Some awskfhay even act on the data
production source itself, stopping data production ongematations have shown thatfBaient
inputs are available to produce meaningful results. Thisagyicity is also required when the
input data is the result of a data base query whose respornsassnot known in advance.
A significant diference between the task-graph and functiseavice workflow approaches
coming from the ability of the latter to deal with dynamic dagets is that there may exist
loops in a functional workflow, even in absence of specificti@monstructs. In a task-graph,
loops have to be completely expanded in the workflow desoriptiependencies between tasks
are precedence constraints and the workflow graph thus hae &@yclic. Consequently, the
implementation of dynamic loops.€ loops whose number of iterations is not known before
runtime) is not possible in a task-graph whereas it is in &tional or service workflow. For
instance, figure.2 corresponds to the Scufl implementation of the followfiag C++ loop:

for(i=i0;i<nMax;i++) cout<<i<<endl;

In this workflow, theinferior processor compares its two arguments. It is initializedhhe
i@ string constant value. All the subsequent values will be garad to the sammeMax value
which is an input of the workflow that will be defined at runtimehis behavior is obtained
by the use of an all-to-all data composition operator betwide inputs ofinferior. The
Boolean value returned hinferior is piped to theFail_if_false conditional processor. If
it fails, then no more processor can be fired and the workfldig h@therwise, the coordination
constraint allowsincrement to be fired.increment only increments its input, which is also
initialized by thei® value. The output of this processor is looped back to itstinalf-looping
allows the workflow to maintain a state variabiedn figure3.2), whereas all the processors are
stateless and the definition of variables is not possible. Vittluej resulting fromincrement

is then passed to thimferior processor and a new iteration starts.

3.1.2 Description of the bronze standard workflow

The Scufl service workflow of the bronze standard applica{gee chaptefl for scientific
details about this application) is depicted on figGt& In the upper part of the workflow,
image pairs are registered with fouridirent algorithms. Then, the computed transformations
are converted to a single format and compared by the broarnelatd statistical procedure to
produce the accuracy estimations (one per algorithm). \Epirce of data exchanged in this
workflow is a string. Files are represented by references (de names). This workflow has
been implemented in Scufl using the Taverna workbenzhif et al., 200} which provides a
very user-friendly and stable GUI to describe workflows.
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Figure 3.2: Example of a looping workflow in Scufl. Orange orEpresents Beanshells
participants, purple ones are conditionals and blue rgitéanare string constants. Data
links are figured with arrows and coordination constraintdwircle-terminated arrows.

Blue triangles are input and blue diamonds are outputs.

Inputs and outputs. The inputs of this workflow are the lists of image pairs to reg-
ister (floatingImage and referenceImage), the options of each registration algorithm
(sizeCrestLines, PFMOption, BaladinOption andYasminaOption), the name of the file
where to store the produced transformatiofisleName) and the name of the methods to test
with the bronze standard procedutethodToTest).

Registration algorithms. The first registration algorithm is composed of the pair
crestlLines/crestMatch. crestLines extracts salient lines from the images (one per in-
put images) andrestMatch finds a transformation between the produced crest-linee Th
crestMatch service returns (i) a transformation which is passed to then3aining registra-
tion algorithms and (ii) a comment string which will be apped to the transformation file
by thewriteResult service. ThePFMatchICP/PFRegister algorithm is a robust variant of
crest-match. First, theFMatchICP service selects some relevant matching points from the
lines produced byrestLines ; PFRegister then produces (i) a transformation and (ii) a
comment. SimilarlyBaladin andYasmina are initialized with the transformation produced
by CrestMatch and produce a transformation as well as a comment. Eachfdraretion is
first downloaded from the grid to a local storage space by tfetFromGrid service, then
converted to a suitable format by tfiermatConversion service and finally written inside the
result file by thewriteResult service.writeResults has 5 input parameters: the name of
the two registered images, the transformation found by éggstration algorithm, the corre-
sponding comment and the name of the result file.
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Accuracy estimation. Finally, the estimation of the accuracy is performed, fochealgo-
rithm, by thebronze standard service. This service takes as input the name of the resault fil
(fileName) and the name of the registration algorithm to assesshodToTest). The itera-
tion strategy between its ports is an all-to-all: for eachthod to test, the file name has to be
the same. This service is a synchronization barrier. Indiédas to wait forall the data items
to be processed by all the registration algorithms to begiexecution. This synchronization
barrier is expressed with 4 coordination constraints inflSéctually, the synchronization here
acts at two dierent levels. First, a synchronization has to be done betabé¢he data items
of a given registration service: this is done by a given cowtion constraint. Then, the 4 reg-
istration algorithms have to be synchronized, which is doyé¢he “diamond” pattern created
by the 4 coordination constraints.

3.1.3 Semi-automatic workflow generation by merging

At this point, one could have noticed that the generatiomeftorkflow of the bronze standard
application may not be completely straight-forward. Evetihout considering implementation
details such as the compatibility between data formatsanxged by the algorithms, includ-
ing or removing a particular registration algorithm fronettvhole workflow involves a global
understanding of the application which may not always bectse of an end-user. Indeed,
in an ideal scenario, this application could be exposed(glinicians that would specify the
data to use to run an existing evaluation procedure ando(imédical image analysis scien-
tists that may want to assess the accuracy of their own rag@t algorithm with respect to
standard ones by including it into an existing bronze steshdarkflow. In this scenario, the
whole bronze standard workflow is built from the basic onesesponding to the registration
algorithms. One could for instance merge two existing workfl as depicted on figu@4. In

a Service-Oriented Architecture (SOA), this problem caratidressed by considering that the
two basic workflows are themselves services (they are catetpositeservices) that could be
composed in order to build a new workflow. Apart from breakiing loose coupling hypothesis
of SOAs, composing composite services is not suitable aayt lead to performance or even
semantic problems in the application, in particular in aafseverlapping services, as discussed
in [Nemo et al., 2007eand in [Nemo et al., 2007)ofor the particular example of the bronze
standard application. Considering for instance the exampfigure 3.4, it is obvious that a
trivial composition of the two basic workflows would lead vea different invocations of théL
service, which is clearly notfgcient. Elaborating workflows merging strategies is thudeee
two fulfill such scenarios.



3.1. The bronze standard workflow

87

floatinglmage

Pn

X /B /D

sizeCrestl/ines

PFMatchICP

L/

PFRegister

~

getFromGrid

L

formatConversion

PP AE R 4

writeResult

refergncelphage

Bronze standard

ccuracy rotati

curacy translat

crestLines
crestMatch
BaiadinOpfiol asminaghtion
Yasmina
Baladin \_X_‘
getFromGrid getFromGrid
getFromGrid
formatConversion
formatConversion
formatConversion
eNal
writeResult
OB AD AP
DD D
writeResult
melhodToTest writeResult

Figure 3.3: Workflow of the bronze standard application. €Bréoxes represent Web-
Services and data dependencies are depicted with arrowerdi@ation constraints are
figured with dot-terminated arrows. Inputs are figured witleltriangles and outputs with

blue diamonds



88 The bronze standard service workflow Chap. 3

refnicnee tloating,
L Limage
Plesey 3 . GO
relerence Mesating i ClLParam
Image Trnage v
CLParwm Vi
. Y .
relerence  Clifaram  floating iz [ Eealel T ?
Image Tmaga PM&Param . CL.
kv T mil e | o
it Laedlefired -
. I'ransi +
a |y
ol [ c2 // Baap RV IS T
Alarim
e PEParam - \‘ \ CM
Tezalcliz pazam[e e[ i ezl [l
" PEM
' ]
* 1 ¥ , ] T it
e Lo ] T PRFaram PIM
b PR b | k:
s 1] enmira ey e \\ *
+ patae] b [T
i [l Name Tam FileName PTR
(‘Un\ ] el || et
U
e T |
PN .|
Conver, | /o s
A Convert
. e
method TpEval methew ToTxal
falcorfeommem Enzl it
- i o [oommer | fan L
Wilg = =
Wire
meled | i melhod ToEvall 1hoeA 0l ]
e e oy
Mo [Tran oo Rt o0 Lmu.\lm\lin rrethul | Tl
ACCWACY deuTacy SCCLTICY ACCU FACT +
FOTATICN translation by BIRTINY translation < >
ACCIIREY  ACCUMrACY  ACCUTACY Accuracy

rotation translation  rotation teanslarion

Figure 3.4:crestMatch registration workflow (left)PFMatch registration workflow (cen-
ter) and merged bronze standard workflow (right).

3.2 Expressiveness of the selected workflow language

The reader may still wonder whether a simple service languagh as Scufl is expressive
enough to describe scientific applications. As detailecertion2.2.3 this language remains
very simple and does not include any control constructs/(tiae to be implemented by spe-
cific services). In this section, a study of the expressissrué the Scufl language is provided.
Among the available approaches to evaluate the expresssai a workflow language, an im-
plementation of a Turing machine is described here. Beybadheoretical result obtained at
the end of the section, achievements and limitations ofitidementation help to understand
the capabilities of the Scufl language.

3.2.1 Description of the Turing machine

Turing machines are the most formal way to prove the expressss of a language. Accord-
ing to the Church-Turing hypothesis, every computable fiomccan be computed by a Turing
machine. Therefore, every language that is as expressigeTasing machine is said to be
Turing complete and would be able to implement any algoritikndirect way to show that
a language is Turing complete is to implement a Turing mackiith it, as done for instance
in[ Pto show that G-+ templates are Turing complete. Yet, little Turing com-
pleteness proofs can be found in the literature for workflamguages.
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A Turing machine is made of a tape, a head, a state and a tesm&inhction. The tape
contains cells where symbols belonging to a finite alphabepanted. The set of states is
finite too. Particular states of the machine are the initred and the set of final ones. The head
is positioned on a given cell of the tape. At each iteration:

1. The head reads the current symbol on the tape.

2. The transition function produces a new state, a new symbola head shift from the
current state and symbol.

3. The head writes the new symbol on the tape and moves onkeftat right depending
on the shift given by the transition function.

4. The state of the machine is updated with the new statee Il state is final, then the
machine halts. Otherwise, a new iteration starts.

This description is quite minimal and completely informalcomplete presentation of Turing
machines is provided.gin [Lewis and Papadimitriou, 1981

We assume the realistic but restrictive hypothesis thatape of the implemented Turing
machine is finite, thus preventing the algorithm to use anounded amount of resources.
Figure3.5presents the implementation of a Turing machine in Scufl angfailed in the next
paragraphs.

The three sourceRibbon, initState and stopState respectively contain the input
tape of the Turing machine, the initial state of the machind #he final states. The
ReadInitSymbol processor is used to initialize the machine with the first Isghto be in-
terpreted. It has two parameters, the tape and the initdgxmn and simply extracts th@"
character of the string obtained from the tape. The follgvymbols will be read by the
readSymbol processor whose enactment is conditioned by the failurbehalting test. The
obtained symbol is piped to tHeransition processor which combines it with the current
state of the machine to produce a new staiet§tate), a new symbol qutSymbol) and a
movement of the head.

The new state produced is looped back to the input offtfensition processor. Self-
looping allows thefransition processor to maintain the state of the Turing machine (remem
ber that the use of global variables is not possible in ScAfla given iteration of the machine,
the current state is obtained by proper data compositiomeimiputs of th&fransition pro-
cessor. This processor is the core of the Turing machind,iaglements the transition rules.
In this section, it is assumed to be implemented with a Beglhgtocessor, which captures the
whole logic with a piece of Java code. A detailed Scufl impletagon of this processor is
presented in the next section.

The movement output of theTransition processor is passed to theveHead proces-
sor. This processor only computes a new value of the head iftden the shift passed by
Transition and the current index value. Here again, the current valubeasindex variable
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is maintained thanks to self-looping: the output of fe@eHead processor is connected to its
index input. Thezero string constant is also connected to tirelex input of moveHead to
initialize the index value to 0.

The new index generated bywoveHead is piped to thewrite processor as well. This
processor also takes as input thetSymbol returned byTransition and the current tape of
the machine. It replaces th@ character of the current tape loytSymbol and returns the
obtained new tape. The state of the current tape is kept shark self-looping.

Transition also returns the new state of the machinetState parameter) which is
passed to theestHalt processortestHalt compares it to the final states provided as input
of the workflow and returns a Boolean string piped to Faél_if_true conditional proces-
sor. Thus, if the current state of the machine correspondsfitwal state, then the conditional
processor fails andeadSymbol does not fire, which makes the whole workflow stop because
of the lack of symbol to consume. ElsssadSymbol reads the next symbol and the machine
iterates once again.

Finally, theresult output of the workflow contains a history of the values of thes, the
last one being the result of the Turing machine.

The data composition operators of all the processors of thr&flow excepttestHalt are
one-to-one operators because the processors have totgomatch the current values of the
tape, head index afmr symbol over the successive iterations. TestHalt processor has
to test the value of the current state of the machine walitlthe final states, which justifies the
presence of an all-to-all operator between its input ports.

3.2.2 Example on a string length computation

The above-described workflow was implemented inside theffaworkbench and executed
with MOTEUR, our home-made Scufl engine described in the okeapter. It was tested on
examples described with the Turing Machine Markup LanguagéML *) which provides an
easy-to-parse XML description of Turing machines.

In particular, a string length computation Turing machireswmplemented. Its initial state
is start and it has 2 final states, namealyring_is_null andstop. 7 other states can be
reached. At the end of the computation, the tape containsaminteger, which represents the
length of the initial string.

The right of figure3.6 displays this Turing machine executed with MOTEUR. Theiahit
tape was the stringb. A total amount of 20 symbols have been read by the machinpassbd
to theTransition processor. ThaestHalt processor run 42 times. Indeed, including the
initial state, 21 states have had to be tested by this processl for each state to test, 2 invo-
cations are required because there are 2 final states to cemvpgh. The conditional processor

http://www.unidex.com/turing/index.htm, (c) 2001 Unidex, Inc.
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Figure 3.5: Implementation of a Turing machine in Scufl. @&ahboxes represent Beanshell
processors and the purple one is a conditional processarc&and sinks are pictured
with blue triangles and diamonds and the blue rectangletisrg<onstant. Arrows denote

data links and the dot-terminated line is a coordinationstramt.



92 The bronze standard service workflow Chap. 3

only failed once, the last time it was invoked. The left of figg3.6 shows the corresponding
tape obtained for each iteration. The last offeively only contains the length of the initial
tape.

3.2.3 Limitations of this implementation

Parallelism exploitation: Scufl is intrinsically a parallel language: it allows prosess to be
iterated on several data sets (through tekers attribute of theprocessor tag). Given a
suitable engine, data parallelism and pipelining can béogeg from the Scufl representation
to obtain an #icient execution. However, in this Turing machine implenagion, enabling
parallelism would completely puzzle the execution. Fottanse, if several dierent tapes
are provided as input, the current state, index and tapeeoirtaichine could not be properly
maintained. The use of a sub-workflow wrapping the Turing mvae could help to cope with
this problem.

Synchronization between conditional test andreadSymbol: A more fundamental limi-
tation of this Turing machine implementation is the syncization between the conditional
Fail if true processor and theeadSymbol one. The firing of thereadSymbol determines
the firing of theTransition and subsequent processors. In Scufl, in absence of coordina-
tion constraint, the firing of a processor is determined kg akailability of data items in its
input ports. Because of the loops included in the workflowhid tmplementation of the Tur-
ing machine, data items are always available in the inputis pd thereadSymbol processor.
Therefore, one should guarantee that the conditional pemses firedoeforeeach invocation of
thereadSymbol processor. Otherwise, theadSymbol processor could fire several times be-
tween two consecutive invocations of theil_if_true processor. This would certainly lead
to some errors because of wrong halt detection. We solvegbtbblem by firing the processors
in a sequence order in our MOTEUR workflow engine, thus enguitat theFail if true
processor is always fired before theadSymbol one. However, this kind of behavior is not
specified in the Scufl document and is not handled by Taverrspe&ification of the behavior
of the engine should probably be included in the Scufl languagit is done for instance in the
MoML data-flow language through the definition of specifieectors[Ludascher et al., 2005

Code wrapping: As every workflow language, Scufl is able to define invocatiorservices,
whose implementation is external to the workflow specifarati Thus, one should keep in
mind that some logic of the Turing machine implementaticengedded into those processors
whose code is written using a traditional programming laggusuch as Java. Therefore, the
expressiveness of Scufl is tightly coupled to the one of thguages used to implement the
processors. To properly assess the expressiveness of@wiflhould be aware of that and limit
the amount of non-Scufl code included inside the processorparticular, theTransition
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Figure 3.6: Right: Run of the Turing machine on a string lenglgorithm through the
MOTEUR engine. Ellipses represent Beanshell processtangte are sources, rectangles
are string constants, blue diamonds are sinks and the reégsaneonditional processor.
Iterations numbers of the processors are written insidéedrprocessors are colored in red
whereas successful ones are in dark blue. Port names arednttease legibility. Left:
corresponding states of the tape for each iteration. Whpigees are figured by’
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processor includes a whole set of tests to implement thsitran rules. Exaggeratedly, putting

all the Turing machine logic inside a single processor wquittluce a correct implementation
but would not prove anything about the expressiveness oSthdl language. On the other

hand, preventing the workflow from using any external prsoess not relevant because no
arithmetic operators are available by default in the Sculfjleage: under this hypothesis, the
implementation of an incrementation or string concat@matvould not be possible at all.

3.2.4 A universal Turing machine in Scufl

The above-described implementation of the Turing machsaat universal because the
Transition processor has to be implemented for every set of rules. Mereas already
suggested, it embeds a significant amount of code, whicldithe evaluation of the expres-
siveness of the Scufl language. To cope with those limitafidime implementation of the
Transition processor is detailed in Scufl in this sub-section.

The corresponding workflow of this processor is depicted garé 3.7. It is made of a
sub-workflow {lested_Workflow) which tests the matching between a given transition rule
and the current state and symbol of the machine. This sukflearhas 7 diferent inputs:

e currentState and currentSymbol denote the current parameters of the machine.
They must be compared to the conditions of the tested transitle.

e inState andinSymbol are the conditions of the tested transition rule.

e outSymbol, outState andmovement are the consequences of the transition rule. These
are the value that must be returned by the sub-workflow if #sted transition rule
matches the current parameters of the machine.

The sub-workflow first tests the equality of the current pagters of the machine with the
conditions of the tested transition rule. This is done tiglotheis_equal andis_equall pro-
cessors that just compare two strings and return a Boolelaichvis tested by the conditional
Fail_if false andFail_if _falsel processors. Ibothof the conditions are true, then the
outputs of the rule are piped to the outputs of the sub-warkfldoughnop processors. Oth-
erwise, the sub-workflow fails and do not return anything.

TheNested_Workflow sub-workflow is embedded into a global workflow. This is reqdi
(i) to allow to define iteration strategies between thigedent inputs of the sub-workflow even
if they are not all connected to the same processor and @lj@a thenop processors to return
only the correct output parameters of the transition ruteeked, if the sub-workflow was alone
iterated on the whole transition rules, thep processor would produce the complete set of
outState parameters as soon as freil if false processor would succeed.

The iteration strategy of thested_Workflow is depicted on figur&.8. On the left side
of the picture, the current state and symbol of the machieecamposed with a one-to-one
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Figure 3.7: Implementatlon of the Transition processomufs The use of a sub-workflow
allows to define iteration strategies over the source$eafted Workflow and to properly
separate the input data set.
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Figure 3.8: Iteration strategy of théested Workflow sub-workflow of figure3.7. The
current parameters of the machine are compared with alkémsition rules.

operator, to be able to associate only the right symbol Withright state. Similarly, on the
right side of the picture, all the items of the transitionesilare composed with one-to-one
operators. The two terms in brackets are composed with ao-alll operator, in order to test
the current state and symbol widltl the transition rules of the machine.

3.3 Conclusions

Service workflows were selected as a suitable paradigm téemmgnt medical image analysis
applications. The main rationales for this choice is théility to separate clinical, medical
image analysis and grid concerns, to handle dynamic datsaset to provide a compact de-
scription of large workflows. In particular, data compamitioperators of the Scufl language
allow a simple way to describe complex applications. Thekflow of the bronze standard
application has been described with details and implendent8cufl using the Taverna work-
flow managet. Finally, the expressiveness of the Scufl language has lhedied through the
implementation of Turing machines. A universal Turing maethas been implemented using
the Scufl data-flow language. Even if some restrictions rartgich as the embedding of some
Java code in external processors), it is thus possible tolede that Scufl is a Turing complete
language. Therefore, it would theoretically be possiblertplement any algorithm in Scufl.
It highlights the facts that the expressiveness of such afilav oriented language is not as
limited as one could think, even if the language remains génple and easy to manipulate.
Yet, even if, as shown in this chapter, the workflow desasiptanguage is quite satisfying,
there is still room for an fective interface of workflow managers with grid infrastures.
Considering for instance the example of the EGEE Europeiampgoject, the majority of the
applications is still using a low level grid-expert apprbdor workflow deployment, relying
on scripts or task-graphs (Condor DAGMan tool). In this ¢asspecific knowledge of the
middleware is necessary. Grid-enabled service workflowaygars could leverage this issue,
opening the door to a wider adoption of the grid in various pamities. Keeping in mind this
necessity for grid-interfaced high-level service workfigvan implementation of anffecient

“http://taverna.sourceforge.net
3http://public.eu—egee.org/
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service workflow engine is detailed in the next chapter.
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ervices workflows have been shown to be engine. The handling of iteration strategies in
S a suitable way of describing medical im- a fully parallel workflow engine is not straight-
age analysis workflows. In this chapter, an im- forward and a dedicated algorithm is thus pro-
plementation of a Scufl workflow engine is pro- posed. Finally, MOTEUR, a hoMe-made OpTi-
posed. This development is motivated by the im-mizEd scUfl enactoR is described and its perfor-
plementation of a fully parallel service workflow mance is analyzed.

ans ce chapitre, l'implémentation d'un d’'analyse d'images médicales. La gestion des
D moteur de flots basé sur le langage stratégies d'iteration dans un moteur de work-
Scufl est proposée. Ce développement esflows pleinement paralléle n'est pas triviale et
motivé par l'implémentation d'un moteur de nous présentons un algorithme qui lui est dédié.
flots de services. Ceux-ci constituent une ap- Enfin, MOTEUR est décrit et ses performances
proche adaptée a la description d’applications sont évaluées.

Service workflows are a suitable way to describe medical envaaalysis applications. How-
ever, as discussed in chap&optimizing their performance is not straightforward besa of
two main reasons. First, services are black boxes bound tndpoint and they isolate the
workflow manager from the underlying execution infrastuet preventing it from controlling
the resources allocation. Second, in service workflowsntimaber of computing tasks can-
not be forecast before the actual execution of the appticatvhich limits the applicability of
scheduling heuristics. Yet, performance remains a majocem for the execution of scientific
applications, in particular on the grid platforms that aasyeted by this work. In this chapter,
we perform a first step towards affieient grid execution of service workflows by identifying
the parallelism levels that could be achieved in such a waskflaradigm (sectiod.1). In the
subsequent fully parallel service workflows, handling theaccomposition operators described
in chapter3 is problematic. Indeed, the order of data items may be calyleisturbed by
the concurrent execution offeierent jobs and a dedicated algorithm has to be designed in or-
der to keep track of their provenance during the executiarch&n algorithm is presented in
sectiond.2 and implemented into our parallel service workflow engin@® MEUR.
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Figure 4.1: Example of a service workflow exploiting workflodata and service paral-
lelism.

4.1 Parallelism exploitation in service workflows

4.1.1 Asynchronous service calls

To enable parallelism during the workflow execution, muéippplication services have to
be invoked concurrently. The calls made from the workflowatoiato these services need
to be non-blocking in order to exploit the potential paridi®. GridRPC services may be
called asynchronously as defined in the standardkpda et al., 2005 Web Services also
theoretically enables asynchronous calls. However, tls najority of existing web ser-
vice implementations do not cover the whole standard anc rafrthe major implementa-
tions [Van Engelen and Gallivan, 20pzani and Bashna, 20)@do provide any asynchronous
service calls for now. Alternatively, asynchronous calldNeb-Services may be implemented
at the workflow enactor level, by spawning independent systeeads for each processor be-
ing executed.

4.1.2 Workflow parallelism

Given that asynchronous calls are possible, the first lelvphmllelism that can be exploited
is the intrinsic workflow parallelism depending on the grappology. For instance, if we
consider the simple example shown in figurd, processors fand B may be executed in
parallel on any data item. This level of parallelism is impented in all the existing services
workflow managers.

4.1.3 Data parallelism

Several input data segments are likely to be processed agjingn workflow. Services can be
instantiated as several computing tasks running @ermint hardware resources and processing
different input data segments in parallé®ata parallelismdenotes that a service is able to
process several data segments simultaneously with a nipgrf@armance loss. Enabling data
parallelism of course implies that the services are abledogss many parallel connections.
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Do
P3| X | D1
D>
Do
P, || X | D1
D>
Do
P, || D1 | X
D>

Figure 4.2: Data parallel execution diagram of the workfldigure 4.1

Consider the simple workflow made of 3 services and represlart figuret.1and suppose
that we want to execute this workflow on 3 independent inpta dagment®,, D; andD,.
The data parallel execution diagram of this workflow is reprdged on figurel.2. On this
kind of diagram, the abscissa axis represents time. WhemeasdgmenD; appears on a row
corresponding to a processBy, it means thaD; is being processed Wy; at the current time.
To facilitate legibility, D; denotes the piece of data resulting from the processingeoiinitial
input data seD; all along the workflow. For example, it is implicit that on ti® service
row, Dy actually denotes the data resulting from the processingefriput data sed, by P;.
Moreover, the processing time of each data segment by eagheses assumed to be constant,
thus leading to cells of equal widths. Data parallelism osamvhen diterent data segments
appear on a single square of the diagram whereas intringikfie parallelism occurs when
the same data segment appears many times féereit cells of the same column. Crosses
represent idle cycles.

Fully taking into account data parallelism is critical imaee workflows, whereas it does
not make any sense in tasks-graphs. Indeed, in this caseavésed by the workflow paral-
lelism because each task is explicitly described in the flmskdescription.

4.1.4 Service parallelism and synchronization barriers

Input data segments are likely to be independent from eduoér @ts for instance in embar-
rassingly parallel applicationsService parallelisntorresponds to the concurrent execution
of two independent data segments by twfiadent services that are sequentially linked. This
pipelining model, very successfully exploited inside CPtkln be adapted to sequential parts
of service workflows. Consider again the simple workflow esgnted in figurd.1, to be ex-
ecuted on the 3 independent input data segment®, andD,. Figure4.3 presents a service
parallel execution diagram of this workflow. Service patidim occurs when dierent data
segments appear onfiirent cells of the same column (data parallelism is disabledhis
diagram). Similarly to data parallelism, this level of pébsm does not make any sense in
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Ps|| X | Do | D1 | Dy
P, || X | Dg| D1 | Dy
P1 | Do |D1|Dz| X
Figure 4.3: Service parallel execution diagram of the workfof figure4.1

tasks-graphs because it is covered by workflow parallelism.

Synchronization barrierare defined when a service needs to simultaneously process se
eral data segments. It can for example correspond to the wimgpof a mean on a set of
previously computed results, all of them being produced bingle service. In service work-
flows, synchronization barriersfter from the classical join pattern of tasks-graphs: wheeeas
join pattern synchronizes the results producedilfferentservices, a synchronization barrier
corresponds to the synchronization ogewveraldata segments produced bysiagle service.
Consequently, the exploitation of service parallelismrizspribed at synchronization barriers.

In service workflows, exploiting those three types of coayssn parallelism (workflow,
data and services) does not lead to any burden for the usausethey can be directly deter-
mined from the graph of services. Their exploitation is ma&tody to obtain an ficient grid
execution of the workflow. Yet, they could lead to definitiggreblems in the control flow of
the application, which may imply operators assuming anraodehe data items going through
the data pipeline. In particular, Scufl iteration stratesgee disturbed by such a fully parallel
execution.

4.2 Data composition strategies in a parallel service workdiw

A strong motivation for the adoption of service workflows asekevant approach to describe
medical image analysis applications is the availabilitydata composition strategies, which
provide highly expressive operators for the handling of¢éadata sets. In a service workflow,
each service may receive several input data items on eadl wfput ports. Depending on

the desired semantics, the user might envisage various egpuposition patterns between the
different ports.

4.2.1 Basic data composition operators

As described in chapte3, and illustrated on figur&.1, there are two main data composi-
tion operators (one-to-one and all-to-all), very freqiemncountered in scientific applica-
tions [Oinn et al., 200} Note that other composition patterns withlfdrent semantics could
be defined €.g. all-to-all-but-onecomposition). However, they are more specific and conse-
guently more rarely encountered. Combining those two dataposition operators enables
very complex data composition patterns.
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Figure 4.4: When the cardinality of the data set producethfem all-to-all &) operator
(B&C on the left example and®P on the right) difers from the one of the other operand of
the one-to-oneA on the left and on the right), a semantic problem occurs in the definition
of the one-to-oned).

A common example of thall-to-all composition operator is the case where all pieces of
data in the first input set are to be processed with all pamnweinfigurations defined in the
second input set (parameter sweep application). In this, da& andB are two data sets of size
n andmrespectively, the cardinality & ® B = {A; ® B, A1 ®B,... A/ ®B, Ao®B;... Ao ®
Bn...... A, ®B;... A, ® Bp} is mx n (For simplification, the result of processing the pair of
input data A, B;) by a service will be denoted; ® B;).

Theone-to-onestrategy is the classical case where an algorithm needstegs every pair
of input data segments independently. An example is a matitition operator: the sum of
each pair of input matrices is computed and returned as #.réstwo input data set#\ and
B are considered, we hav& & B = {A; @ By, A, & By, ...}. The implementation of the one-
to-one operator in a fully parallel workflow engine is noesgghtforward. Indeed, this operator
assumes that the input operands are ordered. If data paralls not activated, then each
service can number its output data items on-the-fly, whickesaense as their order cannot be
disturbed. If data parallelism is activated but serviceappalism is disabled, then every service
could keep track of the order by renumbering is output da&tia after the last one has been
processed. But if both data and service parallelism areamphted, then the order of data
items may be completely disturbed amonffetient services of the workflow and maintaining
a consistent order between them is not trivial. Moreoveheftwo input data sets do not have
the same siza1f # n), then a precise semantics has to be defined for the oneetoarator.

4.2.2 Semantics for the one-to-one operator

As illustrated at the left of figurd.4, the pairwise one-to-one and all-to-all operators can be
combined to compose data patterns for services with arrarpmumber of input ports. In this
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case, the priority of these operators needs to be explipitbyided by the user (parentheses
explicitly express priorities in the figures). In some cadbge semantics of the one-to-one
is not well defined. For instance, if the input data setsfre {Aj, A1}, B = {Bo, B1}, and
C = {Co, Cy}, then the all-to-all operator betwedhandC produces 4 data itemB¢ ® Co,
B;®Cy,By®C;,B1 ®C;) whereas the cardinality & (to be composed by a one-to-one) is only
2.

In the Taverna workbench (version 1.5 has been téstadruncation of thé ® C data set
is done, thus producing:

A @Tavema(B ® C) = { Ao@(Bo@Co), Al®(Bl®CO) }

This semantics is ambiguous: first, it is dependent on theraficomputation of the elements
of B® C, which is completely arbitrary. For instance, it seems thate is no objective reason
for composingA; with B; ® C, rather than withBy ® C,. Second, this semantics prevent the
all-to-all operator from being commutative. Indeed, if {sd andC of theternary service

of figure4.4 are switched, then Taverna will produce the following d&i s

A @Taverna(B ® C) = { AO@(C0® BO)s Al®(cl® BO) }

which differs from the previous one.

This semantic flaw is not restricted to this particular exmpActually, similar issues
appear as soon as a one-to-one operator is applied subfigqoesn all-to-all operator. For
instance, the example given at the right of figdré corresponds to a classical situation where
an input data sef = {Ag, A1}, is processed by a first algorithm (usingfdrent parameter
configurations = {Py, Py, P>}), before being delivered to a second service that comphees t
results with a matching number of data iteBis- {Bo, B;}. For example, in the medical image
analysis contexServicel could correspond to a smoothing of the images include&with
the parameters put iR, performed prior to a pairwise registration with the imagestained
by the setB implemented byService2. In this case, the user warSgrvice2 to combine
A ® P;j with B;. Yet, the output data set according to the semantics adtyytddverna would
be:

B @Taverna(A ® P) = { Bo® (Ao®Po), Bi&®(Ao® P1), } (41)

In this case, the output data set is not only truncated batraismatched: comparing ® P,
with B; does not make any sense in our example. Thus, another defioitithe one-to-one
operator has to be proposed. The method proposed in the eetidrsis to let the user define
and control its own one-to-one semantics, by specifyingdaia sets that are semantically
correlated.

Ihttp://taverna.sourceforge.net
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4.2.3 A new data composition algorithm

The definition of the one-to-one operator proposed heressdban the specification of correla-
tion groups by the user. Indeed, given that two correlatpdtidata seté andB are provided,
the user can expect that the d&tavill always (i.e for any service of the workflow) be analyzed
with the correlated datB;, regardless of the algorithm parametBrsconsidered. For instance,
the user may define a correlation group between the inputsgds\ andB on the workflow
displayed on the right of figuré.4, then producing the following data set, whe¥es always
consistently combined witB;:

Bo® (Ao ® Pp), Bi1® (A1 ® Po),
(4.2)

Be(A®P) =3 Bo(AeP), Biao(AieP)
Bo®(A0®P2), Bi®(A1®Py)
On the contrary, if this workflow is executed with afférent semantics, then the user may
define a correlation group between the input data BeasdP and in this case, the resulting
output data set will be:

_J Bo®(Ao®Pg), Bi®(Ag®P1),
Bo(AeP)= { Boo (A ®Po). Bre(AePy), } (4.3)

The idea here is to let the user define its own semantics foptigeto-one operator by
defining correlation groups. A group is a set of input datddsithat defines a relation between
data items coming from éerent sets. For instance:

G = {(AO? BO? CO)’ (Al’ Bl’ Cl)’ (AZ’ BZ’ CZ)}

is a group establishing a relation between 3 data souk¢dd and C. Elements of a group
are called groupnstances in this exampleGy = (A, Bo, Cp) andG; = (Aq, By, C,) are two
instances of the grou@. Note that those data items can be unambiguously numberbeyas
belong toinput data sets that are specified prior to the execution and tihéar anay not be
disturbed by parallelism. In this case, group instancesbéish a semantic correlation between
the input data itemgy, B; andC;. Of course, more complex groups could be specified by the
user, depending on the semantic of the application. Foauntst

H = {(As, Bo), (A1, By), (A2, Bs), (As, Bs))

is a group containing 4 instances establishing a non trogakelation between data items.

The one-to-one composition operator only makes sense éopithcessing of related data
items. Therefore, only data items belonging to a same grosgamce should be considered
for the processing of the one-to-one operator by any servid#hen considering a service
directly connected to thmput data sets of the workflow, determining relations betweea dat
is straightforward. However, when considering a complgtgliaation workflow such as the
one of the bronze standard application illustrated in figRifin the previous chapter, other
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Figure 4.5: Workflow example (left), associated data setctid graph (center), and the
associated directed acyclic data graph.

services need to determine which one of their input data seggrare correlated. The one-to-
one composition operator does introduce the need for thegitign described below.

Conversely, note that the all-to-all operator does not calyany pre-determined relation
between input data. Any number of inputs can be combined) wety diferent meanings
(such as data to process and algorithm parameters). Eaahgfielata received as input yields
to one or more invocations of the service for processing.

4.2.3.1 The one-to-one algorithm

The left part of figured.5represents a sample workflow made of 4 services and combiiméng
one-to-one and the all-to-all composition operators. éndénter of the figure is represented the
directed graph of the produced data sets. Given 4 input @dsa’s B, P andQ, the complete
workflows produces

(AeB)eP)a(AaB)®Q).

as output of th&, service. Given the one-to-one operator semantics descabeve, the data
setA & B produced by the first service will be non empty if and only italégems inA and
B are related through a group G that is represented in grayeabih of the figure (two group
instances are defined so thgf the i" element ofA, is correlated wittB;, the i" element o).
Considering the inputs of servi&@, two input data itemsA; @ B;)) ® P, and @A; @ B)) ® Q
should be combined if and only if= j. Indeed, combiningh with B;, or a subsequent pro-
cessing of these data items, does make sense given thaethestablished a relation between
this input pair through the group instanGe
To formalize this approach we need to consider the data jptamuDirected Acyclic Graph
that is represented in right of figure5. This graph shows how all data items are combined by
the different processings. Thieputdata items are parents of all tbeoduceddata. The formal
relation between each data padx,(B;) is represented through a group insta@&eparent of
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Implicit group

Figure 4.6: Implicit groups definition.

both A, and B;. Input data items that have no group parent sucRaand Q, will be named
orphandata.

The directed data graph is constructed from the roots (waskihputs) to the leafs (work-
flow outputs) by applying the two following simple rules irephenting the semantics of the
one-to-one and the all-to-all operators respectively:

1. Two data segments (graph nodes) are always combined iktanadl operation.

2. Two data segments are combined in a one-to-one opetli&aod only if there exists a
commongroup instanceancestor to both data items in the data DAG.

4.2.4 Implicit combinations

The proposed algorithm aims at providing a strict semantdkie combination of data com-
position operators, while providing intuitive data marigtion for the users. Data groups have
been introduced to clarify the semantics of the one-to-qrexaior. However, it is very com-
mon that users are writing workflows without explicitly sggimg pairwise relations between
the data. The order in which data segments are declared btaséme workflow inputs are
rather used as an implicit relation.

To ease the workflow generation by the user, groups can bddithplgenerated when
they are not explicitly specified by the user. Figudré illustrates such a case. The reason
for generating an implicit group is straight forward: twqiurt data sets are being processed
through a one-to-one service. The systematic rule that eaapplied is to create an implicit
group for eaclone-to-oneperator whose input data sets are orphans. For examples tase
illustrated in figure4.6, the input data set& andB are orphans and bourahe-to-oneby the
S; service. An implicit group is therefore created betwéeandB.

The implicit groups are statically created by analyzingwhoekflow topology and the input
data sets before starting the execution of the workflow.
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4.3 Implementation of MOTEUR and overhead quantification

We implemented MOTEUR, a workflow engine taking into accdinthe three kinds of par-
allelism described in sectiof.1 and (ii) the precise one-to-one semantics proposed in sec-
tion 4.2 MOTEUR uses the Scufl language from Taverna for the workfleacdption (see
sections2.2.2and 3.2 for an overview of this language). It supports workflows madth
Web-Services, string constants, BeansReltsd some local Java classes (such agF#id _if
class used to implement conditional branching). More spgaiocessors available in the Tav-
erna workbench such as Biomoby or Talisman ones are nobi@ayet. An interface to DIET
GridRPC servers has also been developed. An XML dialectad ts describe input data sets
and specify correlation groups between them. It simply diees each item of the fierent
inputs of the workflow. Complex WSDL types are supported,clifis not trivial: traditional
Web-Services toolkits (Apache AXisgSOAP, SOAP::Lite) generate classes from XML type
descriptions that are used by the client invocation metloaaspiled after the type parsing.
In the case of a workflow engine, the type has to be handledndigadly: for each complex
WSDL type, MOTEUR generates a particular data structureckvig instantiated on the data
items at runtime. A dedicated serializer enables the cemwerfrom this data structure to the
XML (SOAP) expression of the type and is interfaced with thesAAPI thanks to design
patterns.

Enactor implementation. A genericProcessor class represents a service of the workflow
and implements the basic functionality such as the handiirt;ta composition operators be-
tween its ports. This class is derived for every kind of Sctdlessor and a specific interface is
implemented for each of them. A central enactor periodyoalleries eacRrocessor object

to determine whether it is ready to be enacted. The correpgprocessor then computes the
data sets resulting from the application of its data contmsstrategy on its ports containing
the data segments coming from its predecessors. If a giyen data set has not been already
previously computed, a dedicated thread is then startetheocomputation. When the com-
putation is finished, the execution thread pushes the seBulin its output ports to all of its
connected input ports.

Synchronization barriers. Implementing synchronization barriers in a data and serpar-
allel workflow requires an in-depth inspection of the sesviee. For instance, considering the

thtp://www.beanshell.org

Shttp://ws.apache.org/axis2/

4http://www.cs.fsu.edu/wengelen/soap.html

Shttp://www.soaplite.com/

5The handling of complex WSDL types inside MOTEUR owes a lathie work of Patrick Hoangtrong and
Pascal Rolin during their internship at the “Ecole Polyt@ge Universitaire” of Nice Sophia-Antipolis in Febru-
ary 2007.
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workflow depicted on figurd.7, where servicé& synchronizes the data produced by bBténd

E, it must be guaranteed thBtand E have producedall their data segments befoFestarts.
A necessary and flicient condition to ensure this is thali the ancestors of F are inactive
and have processed a non-null number of data.s@fs use this condition to implement the
synchronization barriers in MOTEUR.

Data composition algorithm. To implement data composition operators, MOTEUR dynam-
ically resolves the data combination problem by applyirgyftiilowing algorithm.

1. Initialize the directed acyclic data graph:

(a) Create root nodes for each group instangea@®d add a child node for each related
data.

(b) Create root nodes for each orphan data.

2. Start the execution of the workflow.

3. For each tuple of data to be processed:

(a) Update the data graph by applying the two rules (as definesection4.2.3.)
corresponding to the one-to-one and the all-to-all opersato

(b) Loop until there is no more data available for processimghe workflow graph.
To implement this strategy, MOTEUR needs to keep representaof:

¢ the topology of the service workflow;
¢ the data graph;

¢ and the list of input data that have already been processeddiyservice.

The data graphs also ensures a full traceability of the dai@egsed by the workflow manager:
for each data node, the parents and children of the data caeteemined. Besides, it pro-
vides a mean to unambiguously identify each data producht Becomes mandatory when
considering parallel execution of the workflow introducaedectiord. L

4.3.1 Comparison with other service workflow engines

Data composition. The one-to-one and the all-to-all data composition opesatgere first
introduced and implemented in the Taverna workflow manaljegy are part of the underlying
Scufl workflow description language. In this context, they lanown as thelot productand
cross product iteration strategigsspectively. The strategy of Taverna for dealing with inpu
sets of diferent sizes in a one-to-one composition is to produce thémm) first results only.
However, the semantics adopted by Taverna when dealing avitbmposition of operators
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Figure 4.7: Implementation of the synchronization barrlestarts wherA, B, C, D andE
are inactive and have run at least once

as illustrated in figuret.4 is not fully satisfying as already discussed in secdod.3 The
Kepler and Triana workflow managers only implement the anerte composition operator.
This operator is implicit for all data composition insidetiworkflow and it cannot be explicitly
specified by the user. We could implement an all-to-all datagosition operator in Kepler by
defining specific actors but this is far from being straightfard’. Kepler actors are blocking
when reading on empty input ports. The case where tfierdint input data sets have #fdrent
size (common in the all-to-all composition operator) is reslly taken into account. Similar
work can be achieved in Triana using the varidasa streantools provided. However, in both
cases, the all-to-all semantics is not handled at the Iduwbleoworkflow engine. It needs to be
implemented inside the application workflow.

Parallelism exploitation. Workflow parallelism is available in Taverna, Kepler andafa.
Data parallelism is available in Taverna but service palialn is not available in this system
yet, although it is planned for the coming Taverna Il. Kejeplements the service parallelism
within its PN director. In this execution framework, eaclb@essor (actor in the Kepler vocabu-
lary) is executed on a dedicated thread. Strategies havedseloped to cope with nested col-
lections [VicPhillips and Bowers, 20(%nd to retrieve data provenandedwers et al., 2006
in service parallel workflows but data parallelism is notikalze.

In table4.1, the characteristics of the main service workflow managegscampared to
MOTEUR, considering the data composition operators andetels of parallelism imple-
mented. It provides a qualitative evaluation of our propety To our knowledge, MOTEUR
is the only workflow manager that implements the two basia daimposition operators and

A study of the implementation of the all-to-all operator iefder was done by Lydie Blanchet and Fabien
Cordier during their internship at the “Ecole Polytechreduniversitaire” of Nice Sophia-Antipolis in January
2006.
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Workflow engines  Data composition Parallelism
one-to-one all-to-all | Workflow | Data| Service
Taverna X X X / O
Kepler X @) X @) X
Triana X O X O X
MOTEUR X X X X X

Table 4.1: Comparison of the main service-based workflowagars. X: present; lim-
ited; O: absent

the 3 levels of parallelism at the same time. In particutadjfters from the Taverna workflow
manager by its implementation of service parallelism. Gydpction grids, service parallelism
is likely to provide a significant speed-up on applicatioAis detailed in sectiof.1.40f chap-
ter6, the activation of service parallelism leads to.@& 4peed-up on the workflow of the bronze
standard application running on the EGEE production ghe @peed-up of the application on
EGEE with respect to a sequential execution i218ith service parallelism (DSP case) and
sinks to 7 without it (DP case)). The tools reported in tahleare exclusivelyservicework-
flow engines, as defined by the taxonomy presented in chaptengines belonging to other
workflow classes may exhibit approaching features, expessdiferent ways. For instance,
it has already been stated that both data and service pesrallere inherent to task-graphs and
do not require any specific handling. Similarly, the parametsks available in the P-Grade
portal [Kacsuk et al., 200g4gwhich is based on a task-graphs paradigm) allow to spetata
composition operators that may emulate one-to-one arto-alk

4.3.2 Performance evaluation

To handle asynchronous service calls, MOTEUR creates atbasad for each invocation,
which allows parallel service invocations even if the cepending APIs do not provide asyn-
chronous methods. However, Java threads handling may seaability problems. In order
to quantify its overhead, MOTEUR was benchmarked on a woskftfeade of a single service
concurrently invoked on several data items. This serviceahsingle string input and returns a
single string result as well. This benchmark was performed ®entium 1V, 1.8GHz, 512MB
RAM running Linux 2.6.21. We used Sun’s JVM 1.6.0 with a maximheap size of 350MB
and a thread stack size of 100kB. Figdr8plots the overhead of MOTEUR with respect to the
number of concurrent service invocations given that theked service was a remote server
(DIET server or Web-Service), or a local method (Beanshellava class). The plotted over-
head is the total one generated by the concurrent invocatibm avoid network latencies, the
Web-Service and the DIET server were deployed on the samkineaas MOTEUR.

For each kind of service, the curve starts with a linear plmesere entering a saturation
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phase (the end of the linear phase is determined as the sé&@d$msn which the error of the
linear approximation of the experimental data is greatantbs). The slope of the linear phase
guantifies the scalability of the interface before it satesa As it could have been expected,
local method calls (Java class and Beanshell) are the malsiode. For Java classes, the over-
head (6mgnvocation) only comes from the Java thread creation wisetiea invocation of a
Beanshell also requires the loading of a Java interpreteauiBhells dynamically interpret Java
code), which makes the overhead grow to 1mvecation. Among remote method calls, DIET
servers are the most scalable in the linear phase, with aheaé of 33m#nvocation whereas
the one of Web-Services is 76/itvocation. This is consistent because DIET servers are in-
voked through a lightweight binary protocol whereas Webvlgses use an XML text-based
protocol which requires costly (de-)serializations.

Yet, on these experiments, the saturation phase of the Ditefface begins at 230 concur-
rent invocations, which is quite poor compared to the Weh#8es, which stay on the linear
phase until 500 invocations. This could be explained by @wenimplementation of the MO-
TEUR/DIET interface: in MOTEUR, as for every other kind of sensca dedicated object is
responsible for the whole DIET request, from the initialiaa to the completion. However, be-
fore being able to perform any request, the DIET API requaresitialization procedure which
is quite heavy in terms of memory (in this experiment, théiatization requires 1.3MB). In
our implementation, the initialization is performed befeveryDIET request, which rapidly
saturates the memory. We are investigating solutions te @ath this problem with the DIET
team. A Java API for DIET, currently under testing, shoultphresolving the problem.

Comparatively, Beanshells enter their saturation phasg®@0 concurrent invocations and
local Java classes for 1400. Yet, even for 1000 concurrebt®Bérvices invocations, the result-
ing total overhead is 2.5 minutes, which is twice lower tHaajbb latency on a production grid
infrastructure (about 5 miper job, see chapte). The bronze standard experiments detailed
in sectionl.3of chapterl involves about 400 concurrent service invocations, wheauk to an
overhead inferior to 40 seconds according to this benchnidrls overhead is reasonably low
compared to the total computed CPU time of this experiment¢hvis 30 hours.

4.4 Conclusions

In this chapter, we presented the design and implementatiMOTEUR, a workflow engine
based on the Scufl language. As concluded at the end of ctzaptasting workflow languages
seem to be dticiently expressive to describe the majority of applicasiand we thus focused
on theexecutiorof the workflow rather than on its description. The develophté MOTEUR
was motivated by the need for affieient service workflow enactor. It implements the 3 kinds
of parallelism that could be achieved in a service workflow Wworkflow, data and service
parallelism). In particular, the presence of service peliam yields a close to 2 speed-up factor
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on the workflow of the bronze standard application runningr@nEGEE production grid. To
make this implementation possible, we proposed a sem#ntmansistent definition of the
one-to-one data composition operator. Indeed, in its firgilémentation inside the Taverna
workbench, this data composition operator assumes an ordiére data items produced by the
workflow, which leads to an unpredictable behavior in a fpliyrallel engine. In the algorithm
that we proposed, the user is responsible for the semantitsobperator through the definition
of correlation groups among the input data sets. This newedpeis designed to facilitate the
description of medical image analysis workflows in a palaitstext.

Workflow systems provide a uniform view of an applicationmurg on heterogeneous sys-
tems and architectures. Therefore, they constitute anesiie@g tool to compare several grids,
as a given application can be transparently executedftareint platforms by a single workflow
engine. In the next chapter, we exploit this feature of workfl and provide a comparison of
various grid systems through the use of MOTEUR. Then, in tllewing of the manuscript,
performance optimization methods are proposed and aindatieg the impact of the latency
on production grids, which is identified to be a major causpasformance drops in chaptér
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he goal of this chapter is to compare the cation which typically involves dozens of hours of
T performance of a production grid (EGEE) CPU time with jobs durations inferior to 10 min-
with dedicated clusters of Grid’5000. Even if utes. Even if a significant speed-up is obtained
the latter are obviously providing highly supe- in production, the grid latency and its variability
rior speed-ups, quantifying the ffiirence with  are determined to be the main causes of perfor-
the former allows to build a reference and deter- mance drops on EGEE. Thus, the last sections
mine what could be expected from performance of this chapter provide a comparative analysis of
optimization strategies dedicated to production the latencies of EGEE and Grid’5000 clusters.
grids. A fair comparison is made possible by Based on it, a model determining a job alloca-
the use of a single workflow manager to execute tion strategy on those two platforms is finally pre-
the application on both systems. The overhead ofsented and provides an additional metric for the
MOTEUR is shown to be negligible on our appli- comparison of those systems.

e but de ce chapitre est de comparer les sur notre application qui met en jeu des temps
L performances d'une grille de production CPU de quelques dizaines d’heures et des taches
(EGEE) a celles obtenues sur des grappes de cal-de durées inférieures a 10 minutes. Méme
cul dédiées de Grid’5000. Méme s'il est évident si une accélération significative est obtenue en
que ces dernieres permettent une accélérationproduction, la latence de la grille et sa vari-
de l'application supérieure a ce qui peut étre abilité sont les principales causes de perte de
obtenu en production, quantifier cettgfdience  performance sur EGEE. Les derniéres sections
est intéressant car cela établit une référence per- de ce chapitre sont donc consacrées a une
mettant de déterminer ce qui peut étre espéré deétude comparative des latences mesurées sur
stratégies d’optimisation dédieées aux grilles de EGEE et sur Grid’5000. Enfin, a partir de ces
production. Une comparaison objective est pos- résultats, un modele permettant de déterminer
sible grace a I'utilisation d’'un unique gestion- une stratégie d'allocation de taches entre ces
naire de flots sur les deux systemes. Nous mondeux plateformes est présenté et fournit une
trons que le surcolt de MOTEUR est négligeable métrique supplémentaire pour la comparaison de

ces systemes.
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5.1 Grid platforms and middlewares

The concept of grids emerged from the idea that resourceagobng power, storage, net-
work. ..) interconnected through a high performance netwould be considered as a single
and sustainable platform accessible and shared amongpieulsers. The intent of the grid
is to provide scientific and business production services fibster information technologies
use, similarly to information networks that have become iengk and seamless support. A
grid can be defined as an aggregation of heterogeneous ambaut resources administrated
in a decentralized way and whose accessibility policiesrref Virtual Organizations (VO) of
users [oster and Kesselman, 199The gridmiddlewareaims at hiding the low levels details
to the end-user, so that the grid can be seen as a unique camimom her perspective.

Grids are traditionally sorted intoomputinganddata grids the former being devoted to
the aggregation of CPUs whereas the latter focuses on aatagst An early example of data
grid is the World Wide Web itself, coupled with search engitteat provide a unified view of a
huge amount of files distributed on heterogeneous resotedesated thanks to the HTTP and
HTML standards. Later emerged, peer-to-peer data manageaystems and overlay networks
provide a uniform data access by the ability of each pawitif.e peer) to get some indexing
information by querying its neighbours in a logical network

Computing grids can be classified according to the kind offmatiing resources concerned.
Desktop gridsonsist of the aggregation of personal workstations ovetriternet, focusing on
the exploitation of idle cycles. They have been successtidimonstrated by the Seti@home
project for decrypting space signal$[Anderson et al., 20)2r more recently by the De-
crypthon project that helped in the sequencing of the human genome. On the ladinel,
academic gridsqlusters of clustepscorrespond to the aggregation of traditional clusters pro
vided by computing centers, each using a classical bat¢breyt® handle its local computing
resources. Such a grid is merely a super-batch system eapiitindling tremendous amounts
of computations, and particularhyffecient in processing independent and large grain parallel
computations. Hective examples of such infrastructures are the EGEE Earopeoduction
grid [Laure et al., 200kand the Grid’5000 French experimental ongppello et al., 20(4hat
are mostly devoted to scientific computations.

Classical middleware approaches to computing grids arentb&a-computingand the
global-computingln a meta-computing approach, the user is able to perfomote procedure
calls (e.g.service invocations) to a set of predefined services runmirtfpe resources. A sched-
uler is responsible for the service finding and the load katanof requests between the po-
tentially numerous instances of a given service. An exarmopéeich a middleware is the DIET
platform [Caron and Desprez, 20pBmar et al., 2006Caron and Dail, 2005which proposes
a scalable hierarchical requests scheduling approacter@#amples of meta-computing plat-

Ihttp://setiathome.ssl.berkeley.edu/
2http://www.decrypthon.org/
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forms are Ninf-G [fanaka et al., 203 Netsolve [Casanova and Dongarra, 19%@nd Globus
Toolkit 4 [Foster, 200pwhich is based on WSRF. The goal of global-computing middies

is to provide a unified view of the resources so that they aeel as a single computer. In this
approach, applications are not associated to the resourttessense that they do not need to be
pre-installed as it was required in meta-computing: the sisemitgobsthat may correspond to
the execution of any command-line and that are allocatedgources by the middleware. Ex-
amples of global-computing middlewares are Globus Tod@Hitoster and Kesselman, 1997
and gLite [Laure et al., 200p

Among existing computing grids, a distinction has to be maeééweenproduction
and experimentalgrids. Experimental grids such as Grid’5000ppello et al., 2005or
DAS3 [Cappello and Bal, 200 have been developed by computer scientists for computer sc
entists and are viewed as an observation instrument to shelgomputing platform and its
middleware stack from low level network protocols to scHedpalgorithms. Their goal is to
provide a reconfigurable platform where experiments areoaiycible and can be performed in
a controlled environment. On the other hand, productiodgyaim at supporting applications
by supplying a huge amount of computing and data storageiress, operated 24 and fed-
erated by a stable middleware whose development shoulcelreshlt of the research made on
experimental platforms. However, because of the scalijngarformed by production systems
(spread all over the Internet), the complexity of their niécares and their sharing among large
users communities (typically thousands of users), thdtieglbehavior of those systems is not
properly understood yet: some jobs fail or are even losteutiproper reports of the problems,
they face high and unpredictable latencies and consegquéml éficiency of applications is
lower than expected.

Therefore, considering production grids is interesting aoly for the exploitation of
domain-specific applications (and in particular of medicahge analysis ones) but also
for the computer science research itself because chamoterthe behavior of produc-
tion systems is the first step towards their study in corgcbl€onditions €.g by simula-
tion [Casanova, 20QBuyya and Murshed, 20Q0Zasanova et al., 2008egrand et al., 2006
or realistic load injection into controlled systems). Expeents performed in controlled en-
vironments should be inspired by realistic applicationpldgment and production systems
should in return adopt the solutions developed thanks temxgntal platforms.

In this chapter, a production grid (EGEE) is compared to citeid clusters of the experi-
mental Grid’5000. In sectioB.2, the workflow of the bronze standard application (see chap-
ter 2) is run on both platforms in similar conditions thanks to tiee of the same workflow
engine: MOTEUR (chaptet). The work presented in this section has been done in callabo
ration with Cécile Germain-Renaud and Emmanuel Jeansaleérthe AGIR French national
ACI project. Based on the conclusions of this section, a comparisoneofatencies of the

Shttp://www.aci-agir.org
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systems is then performed (sectibr8) and finally, a multi-grids model provides additional
guantitative metrics to compare them.

5.1.1 EGEE infrastructure and gLite middleware

EGEE is a production grid infrastructure that has been djpgyaince April 2004. It com-
bines computational and storage resources provided byaeamnputing centers all over the
world. Each participating site configures, runs, and maasta local batch system managing
its local computational resources. About 36,500 CPUs shoxar 230 clusters covering 50
countries are available. Including disks and tape robdis,tbtal storage capacity is 23PB
(figures fromhttp://goc.grid.sinica.edu.tw/gstat). This infrastructure is shared by
5,000 users, gathered into VOs and a wide range of applitatiave been ported on it, in-
cluding CERN's high energy physics experiments (ALICE, A3, LHCBY*, bioinformatics
in-silico drug discoveryJacq et al., 200Dacq et al., 200%4and medical image analysis appli-
cations Montagnat et al., 2004&latard et al., 2008Blanquer Espert et al., 205

Computing centers are federated by the gLite middlewaras ffiddleware is based on
various components coming from the European DataGrid rewdalle, Globus Toolkit, Con-
dor, and other toolboxes. gLite integrates the sites’ campguesources through its Workload
Management System (WMS). Figusel pictures the global architecture of this system which
can handle dferent kinds of jobs, all of them being described with the J@sdiption Lan-
guage (JDL:

e Simple jobs can be simple batch jobs (equiring a single CPU) or MPI-based ones
and could eventually be interactivieg(asking for some input from the user during their
execution).

e Compound jobs can be Condor DAGs (see chaptetollections of jobs (group of jobs
with no dependencies between them) or parametric jobs fjabmg variable attributes
in their JDL).

The user submits jobs fromi@ser Interface (a dedicated machine running the Scientific
Linux distributiorf that allows the installation of gLite) to th@Proxy that creates the job id,
registers it to d.ogging and Bookkeeping (LB) service and returns it to the user. In case of
compound jobs, sub-jobs are registered talfBi@nd the corresponding files are unpacked. The
jobs are then delivered to thlerkload Manager which is responsible for the job submission.
TheWorkload Manager queries éResource Broker (RB) to find resources (whose charac-
teristics are stored insidenformation Supermarkets) matching the job requirements. If no
resources are found, the job is queued inthek queue and periodically retried. Otherwise,

“http://public.web.cern.ch
Shttps://edms.cern.ch/file/555796/1/
6https://www.scientificlinux.org/
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Figure 5.1: Overview of the gLite Workload Management Sys(8/MS). The WMS is
made of several components, each of them being distributeabs the world. Coupled
with a permanent load from the users, it introduces a signifitatency (several minutes)
on the jobs.

the job format is adapted to the submission entity by tbleAdapter and forwarded to the
JobController that passes it t@ondorC. CondorC finally enqueues the job in one of the
computing elements (CE) which are queues of the computing centers. E&is managed
by a local batch scheduler that schedules jobs to the alaifalbker Nodes (WN). The job is
then monitored by th&B during its execution on thiN.

SeveraRBs are available on EGEE and users should use many of them tqplications
involving the submission of a large number of jobs. The ce@tRBs is let to the userRBs
may “see” diferent resourcescbmputing elements) and accept submissions from various
VOs depending on their configuration. Conversely, a givefputing element may be seen
by severaRBs that do not communicate between each other, except thitbegbad informa-
tion advertised in th@&nformation Supermarket. Moreover, each local batch scheduler is
configured by a particular administrator. Consequently,dverall EGEE scheduling policy is
not centrally defined, but results from the interactionsaofjély autonomous policies.

The components of the Workload Management System arellitgd across the world.
Coupled with a permanent load from the users, it introducssgaificant delay (denotela-
tency between the job submission to the beginning of its exenutiatencies in the orderto 5
to 10 minutes are commonly encountered, with a very largedity.
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To reduce the grid latency, users communities running Sheedline Jobs (SDJ) have
defined and implemented the concept ofidual Reservation(VRes) [Germain et al., 2006
Each of thep physical processors of a computing center is virtualizéo krvirtual processors,
providing pk slots to the local batch scheduler. A part of these slots adkcdted to short
jobs that could bypass traditional batch queues to be tiregecuted on those reserved slots
(when a virtual slot is unused, the computing bandwidthaasdparently returned to the other
class of jobs sharing the same physical processor). Howigwemes at the price of shared-
time execution of the jobs on physical CPUs. Moreover, githext only a limited number of
virtual slots is available, jobs submitted to the VRes quangerejected when the system runs
out of free slots and they need to be resubmitted. Thus, ¢higisn remains circumscribed to
a limited number of critical jobs with a high priority. It allvs a two grains priority scheme (a
jobis short oris not) whereas most of the applications mix jobs with a continudichupations.
Besides, VRes queues may be victim of their success in treedéat if they saturate, a lot
of resubmissions become mandatory to have a job executethardtency starts to increase
again. Finally, this strategy acts at the computing elerfess: it prevents a job from waiting
in alocal batch queue. Even if this queuing time is supposed to be tts¢ important cause of
the latency, the experiment that will be presented in chiaptall show that in average, it only
represents 35% of the total latency (see t&bR.

Inside EGEE, specific resources are dedicated to data stoE2@ta transfers between the
Storage ElementSEs) and the worker nodes are mainly done through the gRdéfotocol.
Data files are identified byogical File NamegLFNs). LFNs identify files which may be
replicated in multiple physical instances for fault tolece and optimization reasons. File
catalogs (LFC, FireMan) give a uniform view of the distribdt(and potentially replicated)
storage system as in a traditional file system. Replicasdrandled by the users though.

Inside the EGEE grid, security relies on X509 certificateszalid certificate is required to
submit jobs and manage files. Certificates are issued bynatoertification authorities and
registered by VO managers. Access to resources is corttroliih respect to the VOs. Yet,
grid entry points are not controlled: every authenticatsdricould set up a user interface and
submit jobs from it.

5.1.2 Grid’5000 clusters and OAR batch scheduler

Grid’5000 is a national grid infrastructure composed of 1@sters, distributed in 9 French
cities and totalizing about 3000 CPUs. Sites are linked WitBbitgs or 10 Gbitgs connec-
tions. Within each cluster, the nodes are located in the ggographic area and communicate
through Gigabyte Ethernet links. Communications betweeasters are made through the Re-
nater French academic network.

"http: //egee-nad.ct.infn.it/wiki/index.php/ShortJobs


http://egee-na4.ct.infn.it/wiki/index.php/ShortJobs

124 Production grids versus dedicated clusters Chap. 5

) Grid user-interface o Grid resources

. r

Morkflow in\?o?:':tlijo? Web-Service jooar cal middlewar®]
engine

Figure 5.2: Interaction between MOTEUR and the giit&R middlewares

Each user has a single (UNIX) account per site allowing actesll the clusters. Access
is restricted to a set of front-ends (one per site) that acessible througlsh. The platform
is completely isolated from the Internet for security reasoNodes cannot even be seen from
outside the platform (names and IPs are allocated on a prettvork).

The platform is completely reconfigurable. Users can dephayr own system and envi-
ronments (in particular, they can get root access) on eadh tioough théadeploy tool and
reboot the machines through the network.

Nodes of a given cluster are accessible through the OAR resoallocation sys-
tem [Capit et al., 200bthat provides all the basic mechanisms of classical battiedulers
such as advance reservation, batch and interactive jolishing of resources (jghode prop-
erties), hold and resume jobs, multi-queues with priokigst-éfort queues (for exploiting idle
resources), compute nodes checking before launching hagnasertiorideletion of compute
node, backfiling, first-fit scheduler with matching resouacel advance reservation. A cross-
clusters super-batch system, OARGrid was still under agraknt at the time of this study.

Home directories of users are mounted with NFS among theswaxie front-end of a given
cluster. Each node also has a significant amount of (locafjtdt disk space but no data
management system is deployed by default.

5.1.3 Workflow deployment on grids with MOTEUR

As already stated (see chap®ydeploying applications on grids using service workflows-p
vides (i) a natural coarse-grain parallelization of theleagpion with the workflow description
and (ii) a transparent execution on several grid platforhanks to the system-independent
workflow language. Conversely, the workflow engine is isadidftom the grid infrastructure by
the services layer. Thus, the submission and handling dfjglis is the responsibility of the
services themselves. Indeed, in a pure SOA implementa@mices are black boxes and the
workflow engine has no information about their implemeiatati

To ensure the execution over a grid infrastructure, theisesvshould either be relocatable
or an intermediate layer is needed to control submissioatdsithe desired resources. We are
particularly considering the exploitation of the EGEE pwotion grid which does not provide
such service migration. The intermediate layer then besom&ndatory. Figuré.2 presents

8http ://www-1id.imag. fr/Logiciels/kadeploy/index.html
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the global picture of the interface of the workflows with gridThe workflow engine invokes
(Web-) services that either connect to a User Interface ridrfgpnt-end for Grid’5000) or just
perform a system call to the middleware command-line iatsffor submitting and monitoring
jobs. Such services only aim at wrapping an existing legadgadnto a grid job and submitting
it to the grid. Even if some technical application-specifetails may complicate this task, it
can be automated in most of the cases, thus leveraging tderbof the application developer.
A Generic Application Service Wrapper is presented in ceaptlt also allows workflow-level
optimizations of the execution.

5.2 Comparison of systems on the bronze standard workflow

MOTEUR allows to compare the execution of workflows on vasi&inds of grids in similar
conditions from the application point of view . In this sectj a comparison of the EGEE
production grid with dedicated clusters of Grid’5000 isg@ated. The goal is to quantify the
performance gap between production conditions and desticaltsters that will be consid-
ered as the reference in the remainder of this thesis. Reslthis section will motivate the
development of the optimization strategies presentediinlpa

The bronze standard application is used here as a grid bewkhmhe considered work-
flow is depicted on figur&.3. It corresponds to a simplified version of the complete workfl
presented on figur8.3 at the end of chapte3. Indeed, only the computationally intensive
part of the workflow {.e the services that lead to the submission of a grid job) is inszd.
The lightweight operations such as format conversions hedinal statistical procedure are
computed locally. This workflow is composed of 6 servicegheaf them being iterated over
hundreds of data items in a typical run. The characteristiche services are presented in ta-
ble 5.1 A significant variability in the execution times is obset(standard-deviations range
from 9% to 30% of the average values) even if runs have bedorpeed on nodes with iden-
tical characteristics and input images all have the sane dizcomes from the algorithms
themselves that may converge more or less rapidly depermudirige content of the images.

We made growing scale experiments by executing the bromarelatd workflow on input
data sets with variable size, from 2 to 126 pairs of imagesqating to figure5.3 for each
image pair, 6 grid jobs are submitted and 3 of them may be nghim parallel:Yas, Bal and
PFM or PFR). This workflow has been executed both on Grid’5000 deditatesters and on a
VRes queue of EGEE.

5.2.1 Execution on dedicated clusters of Grid’5000

To benchmark the application on dedicated resources, vervess nodes of Grid’5000 and
deployed the OAR batch scheduler on this reservation todsdbgobs among these nodes. We
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Figure 5.3: Representation of the bronze standard workflesd dor the grid benchmark.
The blue triangles represent inputs and the white boxegsept services to invoke. Each
service invocation leads to the submission of a grid job. ifipet and output parameters
of the services are represented by sub-divisions of theshoXellow parameters denote
files and the other ones are strings. Blue rectangles regresastants and blue diamonds
are the outputs of the workflowss and ® correspond to Scufl iteration strategies (see

chapter2).
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Execution time Input data
Services Average| Stdev | Max | (i.edata transferred) Produced data
CrestLines (CL) 54.87s | 8.19s | 67s 15MB 10MB
CrestMatch (CM) 26.74s 8s 42s 25MB 7.7MB
PFMatch (PFM) 24.12s | 6.87s | 44s 10.2MB 240kB
PFRegister (PFR) 5.37s | 1.02s| 8s 240kB 160kB
Yasmina (Yas) 146.02s| 36.1s | 236s 15.2MB 7.7MB
Baladin (Bal) 601.31s| 53.35s| 753s 15.2MB 7.7MB
Total 858.44s| 65.8s | 1150s 80.84MB 33.5MB
Critical path (CL+CM+Bal) | 682.93s| 54.57s| 862s XXX XXX

Table 5.1: Execution times, input and produced data voluohdéise services of the work-
flow of figure 5.3 for a single input image pair. Execution times have beeninbéthfrom
the logs of the executions on Grid’5000 clusters. Averagessiandard-deviations have
been computed on 126 runs per service. The total volume aftdaisferred for the largest
considered input data set (126 image pairs) is 80.84MR6= 9.9 GB: the network is not
a bottleneck for this experiment.

used three sites for the experiment, approximately disthh000 km from each other: Nancy
(east of France), Rennes (west of France), and Sophia (sblitance). All these sites are
connected through a 10 Gflstbackbone. A total of 60 computing nodes (AMD Opteron 64
bits 2GHz with 2GB RAM) were reserved (20 on each site). Thalner of computing nodes
was selected so that it represents a reasonable numbeoafees, distributed all over the three
sites, but still low enough as compared to the potentialljgdisan of the application (up to 380
concurrent tasks). A unique medical images repository wasgsin Rennes.

An OAR 2.0 server managing the 60 computing nodes was set @ma@uditional node
of Grid’5000. Each Web-Service of the workflow was submdtjabs to this server and was
deployed on the same node. The bronze standard workflow wasyrMOTEUR on the same
node as well. Data transfers were handled at run time by gem@rated scripts copying images
from the repository or from the place where the data has beeesrgted using thecp UNIX
command. When a task ends, it releases the resource of thenOdérand the data remains on
this node for future use.

The makespan of the workflow is plotted in figurel. The curve exhibits two linear phases.
The y-intercept value of the first phase (below 40 image pawsresponds to the critical path
of the application which is 652 seconds in this case.ffeds from the average value reported in
table5.1 because of the variability of the execution times amongrtieges. The slope of this
linear approximation (5.78nage pair) measures (i) the scalability of the whole deplegt
system (MOTEUR, OAR and data transfers) and (ii) the impathe variability of the execu-
tion times on the makespan of the application. The latter beaghe most important reason as
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Service| Longest path | Size of the longest pathPriority
from the service Average| Maximum
CL CL+CM+BAL | 682.92s 1259s 1
CM CM+BAL 628.05s 795s 2
BAL BAL 601.31s 753s 3
YAS YAS 146.02s 236s 4
PFM PFM+PFR 29.49s 52s 5
PFR PFR 5.37s 8s 6

Table 5.2: Priorities of the jobs of the workflow of figuse3 according to the longest paths.
Time values refer to the benchmark displayed on t&ble

the former should be in the order of a few dozens of milliselsoaccording to the overhead
guantification performed at the end of chaptetndeed, increasing the number of input image
pairs also increases the expected value of the critical gigtie application.

Beyond 42 image pairs, the slope of the linear approximarows from 5.78mage pair to
16.5gimage pair. It comes from the saturation of the platform whigonly 60 nodes whereas
3 x 42 = 126 jobs may be running in parallel for 42 image pairs. Thalt®PU time mea-
sured for 126 pairs of images is 29h 49min 12s and the correBpg makespan is 40min
12s. Thus, the speed-up obtained on those 60 nodes is 44i5.sgded-up is clearly sub-
linear with respect to the number of processors but depaneef the workflow have to be
considered to determine the theoretical speed-up. To giveea of this optimal value, we sim-
ulated the scheduling of the workflow using a list scheduéilggprithm based on earliest finish
times [Legrand and Robert, 20[13This algorithm first assigns to each service of the workflow
a priority depending on the weight of the longest path sigrfrom it (see tablé.2). Tasks
ready to be executed € free from dependencies) are ordered according to theiripes. The
first one is then assigned to the resource that provide thiegtdinish time and the algorithm
is iterated until the completion of the workflow. We assuntet services have fixed execution
times that are set either to their average or to their maxinmatitime values. The schedules
obtained from this algorithm are plotted on figuseéb. The finish time of the last task is the
makespan of the workflow. In this simulation, the theorétsgeeed-up is 54.6 for average val-
ues and 43.3 for max values. The 44.5 experimental speetitamed in practice is in between
those two ideal values. Even though a deeper analysis ofctiedsling would probably re-
veal some possible improvements, the deployment systenTEUR invoking Web-Services
submitting jobs to OAR on dedicated resources) seems deaabugh to provide a relevant
practical reference for comparisons with production ctods. The overhead introduced by
MOTEUR (see the end of chaptéfor a detailed analysis) is negligible compared to the whole
application performance and OAR behaves well at this scale.
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Figure 5.4: Evolution of the makespan of the workflow of fig&r& on 60 dedicated
nodes of Grid’5000 for a growing size of the input data se@je pairs). The curve starts
with a linear phase whose slope measures the scalabilityeofléployment system (MO-
TEUR+OAR-+data transfers) as well as the impact of the variability efekecution times
on this application. Beyond 40 image pairs, the 60-nodeSopia is saturated and the
slope of the fitted straight line increases from fAriage pair to 16.58nage pair.
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5.2.2 Execution on the EGEE production grid

The workflow presented in figure 3was then executed on the EGEE production grid. In this
experiment, the virtual reservation mechanism describes#ctions.1.1has been activated on
one EGEE site (LAL, Paris). A hundred slots for immediatecexi®n were allocated. This
is higher than the 60 computing nodes allocated in the exyaeris with Grid’5000. However,
on EGEE, we have no control on the other users activitieseséots have been shared with
other users exploiting the infrastructure for their congtigin needs. The LAL cluster hosts
dual-processor (AMD Opteron, 2.2 GHz) machines with 1 GB éMRper CPU (2 GB to-
tal), which is comparable to the Grid’5000 nodes that wemdus the previous experiment.
Medical images and results produced by the application si@red on a single EGEE storage
server located in Clermont-Ferrand (center of France). MOR ran directly on an EGEE user
interface dfering the client interface for job handling.

It may be argued that this experimental setup significantiyes from the one deployed
on Grid’5000: the number of processors in the EGEE and Goidibsetups is not the same,
the bandwidth of the network connections is not known, EGE&swgridFTP for file transfers
whereas the Grid’5000 setup usER . . . The pointis that the EGEE grid imposes its own setup
which is by no way configurable as it aims at being used for petidn purposes. The ultimate
experiment to fully evaluate the EGEE middleware would bdéploy the gLite middleware
on Grid’5000 nodes, setting up every component implied iE&EE job life-cycle (Resource
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Figure 5.5: Gantt charts figuring the simulation of the sciied of the bronze standard
workflow on 126 image pairs on a 60-nodes dedicated platfeanh service being assumed
to have a constant execution time. Top: average valuesgrhothax values (see tabiel).
The makespan is 2477 seconds in the maximal case and 196¥iseéndhe average case.
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Broker, Logging and Bookkeeping service, .. .) and to siteula@alistic network links between
them. Yet, this goes far beyond the scope of the experimesepted here which only aims at
guantifying the gap between controlled and production der.

The makespan of the workflow for growing numbers of input ieagirs is plotted in fig-
ure5.6. On this infrastructure, the critical path of the applicatihas grown to 1491 seconds
despite the use of VRes. A comparison to the 652 seconds #ratobserved on dedicated re-
sources (see figue4) provides a measure of the high latency introduced by thastucture,
which is about 280 seconds per job in this case (the critiatl pf the workflow is made of 3
services so that the average latency of the joB&%5%2),

An easily measurable cause of latency on the EGEE experirméhe submission time.
Figure 5.7 illustrates it with task-flow diagrams for the 3 experimentish 18 image pairs.
Those graphs have been obtained with the VizDIET%odlhe first 18 workflow tasks were
submitted every 0.17 seconds by the OAR middleware wheneaSGEE experiment revealed
a submission rate of 1 task every 11.6 seconds. This poasnpesthce comes from the time re-
quired by the workload management system to register thamjsbme of its components (such
as the monitoring system and the matchmaker). It drasyitalits the parallelism achieved by
the application.

The linear approximation of the experimental data on figuésstill provides an estimation
of the overhead of the system. This value (88age pairs) is huge compared to the Ariage
pair measured on dedicated resources in the previous exgeti As the deployment system
(MOTEUR invoking Web-Services submitting jobs) is the sameén the previous experiment,
this difference may come from the impact of the latency on the makesipdne application.
This latency may come from (i) the latency introduced by thaéegmiddleware itself and (ii)
from the load imposed by other users that leads to jobs remsimns (remember that a job is
cancelled and resubmitted when no VRes slot is availabl@esite).

An effect of this variability is the fact that the makespan curvee@EE is not monotonic.
Load conditions may change between executions and somenaybe faster than other ones,
even larger (see for instance the decrease between 114 &rich&ge pairs on figuré.6). A
metric to quantify the load of the execution resources isrthmber of jobs rejected by the
VRes queue when it saturates, which is detailed on tal#teit varies between 0 and 25% of
resubmitted jobs.

Yet, the execution on EGEE still provides a speed-up.8fith respect to the 29h 49min
12s sequential time for 126 input image pairs.

Partial conclusion. Experiments on the workflow of the bronze standard appbecatiave
guantified the gap between the execution on dedicated m=®@and production conditions:
the latter is 4.5 times slower than the former in similar donds. The deployment of the

9http ://graal.ens-lyon.fr/~diet/vizdiet.html
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Figure 5.6: Makespan of the Bronze-Standard applicatiordedicated Grid’5000 re-
sources VS a production VRes queue of EGEE. The largeralrjpath measured on EGEE
is a consequence of the high latency observed on this priodugiatform. The high slope
of the linear approximation may come from the variabilitytbé latency on the jobs (due
to the load imposed by other users and middleware-intrireasons.)
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Figure 5.7: Task-flow graphs for 18 image pairs. Left: OARgRi EGEE. Each row of
those diagrams corresponds to a particular job. Coloretmgtes represent the task du-
ration: they start once the corresponding task has beenigaldrand stop at the end of
its execution. The slope of the left contour of these graphssga qualitative information
on the job submission rate on the infrastructure. It charams the middleware submis-
sion performance. Colors are arbitrarily set and just heldistinguish the dferent tasks.
Beware that time scales ardfdirent in those task-flows.
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Number of image pairs  Total number of jobs | Resubmitted jobs

submitted by the workflow Number| Ratio

2 12 1 8%

6 36 0 0%
18 108 2 1.8%
30 180 1 0.5%
42 252 13 5.1%
54 324 1 0.3%
66 396 102 | 25.7%
78 468 31 6.6%
90 540 14 2.5%
102 612 15 2.9%
114 684 115 | 16.8%
126 756 82 10.8%

Table 5.3: Resubmissions performed on EGEE for thEedint sizes of input data. The
resubmission ratio exhibits strong non-monotonic vaoiai which reflects the variability
of the load on the VRes resources.

workflow with MOTEUR and OAR on dedicated nodes of Grid’508Gsatisfying, providing

a speed-up close to the theoretical one that could be obtaim¢éhe execution platform. Even

if the performance on the EGEE grid remains far lower thandhe obtained on dedicated

resources, it is still significant given that this grid is tionously under load and deployed at a
very large scale. The job latency and its variability dueht® bbad of other users are the main
causes of performance drops in production. In the remaioinipis chapter, we propose to

benchmark the EGEE and Grid’5000 platforms by comparing tagencies.

5.3 Latency comparisons

The latency of a job is the duration between its submissida dad the instant at which its
execution really starts. It includes (i) latencies of theanwek infrastructure itself, (ii) the delay

caused by the interaction of middleware components andli@ system load (queuing time
in batch and services queues). The latency of productials gsi known to be high and dam-
ageable for applications having short deadline conssairtowever, a precise quantification
of the impact of this latency on the application performaisamissing. In this section, experi-
ments are presented and latency quantification metricsxénacéed. The latency faced by jobs
on the EGEE production grid is compared to the one of Grid®0listers that constitute the
reference of the study.
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5.3.1 Latency measures

In this section, the whole biomed VO of the EGEE grid will berqmared to 2 Grid’5000
clusters: the “idpot” cluster of the Grenoble site, made @P2GHz bi-processor nodes and a
larger Grid5000 cluster in Sophia Antipolis, made of 10%pkacessor nodes.

Experimental setup. To measure the latency of the systems, the workload manageys
tem was progressively loaded by submitting an increasingbern of jobs. Each time a job
completed, a new one was resubmitted so that the total Iaemtiuirced by the experiment was
constant. Jobs were shott,{ =1 minute long), sleeping for one minute to ensure constant ex
ecution time independently from the hardware on which theyawunning. This experimental
setting favored a short turn-over of jobs and stressing itimm$ of the workload management
system. Experiments were run over 3 hours periods (a longginperiod compared to the
jobs duration to capture the system behavior over a staistisignificant number of mea-
surements). The execution tinige. Of the jobs was measured and the system latépoyas
obtained by computing the filerenceteyec — trun.

Results. Figure5.8displays the median of the latency for a growing numtef submitted
jobs over the 3 studied systems. This figure also displaysdoh measure, the inter-quartile
range (IQR) of the latency. This metric measures the sprédtesamples and gives an infor-
mation about the variability of the system. Considering degbset of values, the IQR is the
interval defined between the first quarter and the third @uaftthe number of values. It rep-
resents the interval of the most relevant values, ignotieg25% lowest and highest ones. We
did not compute any means nor standard deviations in thgsisalf the experimental results
but rather medians and IQRs which are less sensitive toessitlFor this experiment, 2000
jobs were submitted to the EGEE infrastructure, B2 to the Sophia cluster and,Z®0 to
the Grenoble one.

5.3.2 Model and metrics

Those experimental results suggest #ina behavior of the median latencies with respect to
the number of concurrently submitted jobs. Thus, &ima modelAn + B was fitted by a
linear regression to the median latency curve of each systémlines obtained are plotted on
figure 5.8 The parameters of this model are shown in t&bhle where the systems are sorted
from the smallest one to the widest. Those parameters wilideel as metrics, to characterize
the variation of the median of the latency with respect torthmber of jobs for each system.
The B parameter measures theminal latencyof the system. It corresponds to the latency
introduced by the system without any load measures thacalability of the system with
respect to the number of jobs. It represents the additioma enerated by the submission of
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Figure 5.8: Latency time versus number of jobs maintainetihénsystem. An fiine be-
havior of the latency with respect to the number of jobs igested by those experimental
results.

1 extra job to the system. Despite its simplicity, this mqatelvides a relevant way to compare
grid infrastructures, as detailed in the following disdoss Moreover, it will allow the design
of the multi-grids model introduced in sectiém.

Nominal latency. Nominal latencies (B metric) are growing with the size of thigastruc-

ture, which is not surprising from a qualitative point of wieQuantitatively, the EGEE system
has a very strong nominal latency. This value, close to 6 mBWB51 s) is mostly due to
the concurrent usage of the grid by other users. This hugenaatency is a characteristic

System A (s/job) | B (s)
Grid5000 — Grenoble 3.44 0.48
Grid5000 — Sophia| 0.74 8.25
EGEE — biomed VO| 0.24 3514

Table 5.4: Parameters of the latency model (lateaéyn+B). Systems are sorted from the
smallest to the widest. A measures the scalability of theesysvhereas B corresponds to
the nominal latency.
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of production infrastructures. On the contrary, the norhiatency of the Grenoble cluster of
Grid’5000 is far lower. Accessing the infrastructure ragsiless than a second. This per-
formance comes from the relatively low load of the infrastuwe and the reduced size of the
infrastructure that makes communication costs lower. Toyeh& cluster of Grid5000 is not
very far from Grenoble, with a nominal latency of 8.25 secand

Scalability. Conversely, the scalability of the systems is improvingwitieir size. The job
scalability of EGEE constitutes its main advantage. Theniey only grows by 3.5 minutes
from the submission of 5 jobs to 1000 jobs and the latency dule submission of one extra
job is 0.24 second (A metric). The scalability of the Gremobluster of Grid5000 is weak.
Submitting a single extra job leads to a latency growth ofiZdconds. Here again, the Sophia
cluster stands in the middle: its scalability (A metric) i§49 second per job. It is three times
worse than on EGEE and 4.65 better than on the Grenoble cluste

Improving scalability. As already noticed in sectioh 2.2 the submission procedure plays
an important role in the growth of the median latency withpexs to the number of jobs.
Indeed, on all the evaluated systems, the submission isfdamea single entry point (the user
interface) to a central workload manager (OAR or RB hostulgh the network. These two
hosts and the network connection may become bottlenecksnbey critical stressing level.
Computing again the scalability (A metric) on the valueswiit submission time, we obtain
0.07 gjob for the EGEE system, 0.34ab for the Sophia cluster and 2.98ab for the Grenoble
one. Those values are obtained by subtracting the submissies of the jobs to the measures
presented on figuré.8 and by fitting again thefine model. Comparing those values to the
ones obtained in tabk 4, one can conclude that the submission procedure resplydaaels to

a 3.24, 2.15 and 1.18 slow-down ratios on the job scalab#itgolution to improve scalability
could therefore be to distribute the submission systemchwis a real bottleneck on all the
systems studied, as shown above. Many Resource Brokersailabde on the EGEE system.
Nevertheless, they do not communicate between each othdrseaious performance drops
can be forecast in the scheduling when the load reaches@tpbint. Conversely, solutions
such as the one proposed by the DIET middlewéarerpn and Desprez, 20])'where many
collaborative schedulers are able to administrate the ggukof resources could provide an
interesting improvement of the system.

Variability of the latency. On the Sophia and Grenoble clusters, the IQR of the measures
for a low number of submitted jobs remains lower than 15 sdsoiit then increases with the
number of jobs maintained in the system because of the satuiaf the platforms. On the
EGEE infrastructure, the situation is quitefdrent. Variability is around 3 minutes, even for

a low number of submitted jobs. The order of magnitude of theability remains constant
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for less than 600 jobs and grows up to 5 minutes beyond thigeval his high variability,
even for a low number of concurrently submitted jobs leads pooblem specific to large-scale
production infrastructures: a single job is likely to pemalthe whole application performance

if it remains blocked in the system. In palt of this thesis, strategies are proposed to reduce
the impact of the variability of the latency on the applioatperformance.

5.4 Choosing the best platform: a multi-grids model

Grid’5000 clusters and the EGEE grid exhibitférent latency characteristics. The former
has a lower nominal latency whereas the latter has a bettéalslity. Therefore, it is in-
teresting to determine, given a number of jobs to processpgitimal fraction of these jobs
that should be submitted to each infrastructure to mininteetotal execution time. This is
the goal of the multi-grids model proposed in this sectioas&l on the experiments of sec-
tion 5.3, the analysis of this model provides additional metricsdmpare the infrastructures.
Multi-grids executions are for instance performable by kflorw managers such as the P-Grade
portal [Kacsuk et al., 2004a

5.4.1 Principle of the model

Let us consider two systems and a total numbef jobs to submit in parallel. Lai € [0, 1]
be the fraction of jobs to submit on the first system. tﬁ%«tn) be the median latency time
introduced by systemwhen it handles the submission ofconcurrent jobs. The goal is to
minimize the average latency time of the submitted jobsgcivis:

R©) = 6tP6n) + (1 -o)t? ((1-6)n)

lat lat

The problem then resumes to the minimizatiorRofith respect t@. If we consider the fine
model presented in sectidn3.], thenR(6) becomes:

R(é) = 5(A16n + Bl) +
(1-0) (A1 —-0)n+ By)

where,A; andB; are the model parameters of thesystem R has a unique minimum reached
for the optimal proportion of jobs to submit on the first system:
B, — B; + 2A5n

o(n) 2n(Ag + A

(5.1)

It must be determined whej(n) is in [0,1]. In the following, we suppose that system 1 igéar
than system 2. According to sectién3.], it implies thatB; > B,. Indeed, the experimental
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results showed that the nominal latency of the largest sys¢ehigher than the one of the
smallest one. Converselfy; < A, because the scalability of the largest system is better than
the one of the smallest one. In this case, it is straightfaivi prove thab(n) < 1. It shows

that the proportion of jobs to submit on the smallest infiature is never null: the smallest
but fastest infrastructure has to be overwhelmed beforéirggessubmitting on the largest one.
Moreover, we can show thatn) is positive if and only ifn > ng = B;%/fz‘z. It highlights three
phases of job submission. In the first one, wimeg ny, the number of jobs is low enough

to submit all of them on the smallest infrastructure. It esponds to an initialization phase.
Whenn exceeds the critical valus, a transient phase begins: a proportign) of jobs have

to be submitted on the largest platform. During this secdmakp, another variable of interest
is Ngs, the number of jobs for which(n) is 0.5, thus implying that the same number of jobs
is submitted to both infrastructur&éeo.g, = Z:iﬁ). Beyond this point, the largest system starts
being preponderant. The model finally enters a saturatiasg@hwheré tends to its asymptotic
valued(eo) = Al‘fAz. This value is inferior to 1 and denotes the remaining proporof jobs
that would always be submitted to the largest platform, ef¢he number of concurrently

submitted jobs becomes very high.

5.4.2 Application to the studied systems

The variables of interest identifying the 3 phases desdiiibéhe previous section are displayed,
for each pair of systems, in tabfe5. The first line of this table compares EGEE to the Sophia
cluster of Grid’5000. The value afy indicates that there is no need for using EGEE if the
number of jobs is lower than 232. The transient phase stants this critical number of jobs.
This value is twice as high as the number of processors ofdpi& cluster. On the next line,
comparing EGEE to the Grenoble cluster, the critical nundigobs is 51, which is 4 times
higher than the number of processors of the Grenoble clugtkose values ofy are high,
compared to the number of processors of the infrastructliesy are another way to perceive
the diference between a production and an experimental infragteicOn the contrary, the
last line of this table indicates that the critical numbejjais from which it is necessary to
submit to the Sophia cluster rather than only to the Grenobéeis 1. Indeed, even if those two
clusters difer in their number of processors, the nominal latency of $opltluster has the
same order of magnitude as the one of Grenoble’s clusters,This not penalizing to submit
jobs to the Sophia cluster even if the Grenoble one is notvdvelmed.

Thengs value of the same table can lead to similar interpretatidhss value corresponds
to the abscissa where the lines cross on figuB The EGEE infrastructure and the Sophia
cluster have the same latency if 686 jobs are submitted om ief@structure. This number
of jobs is 110 when comparing EGEE to the Grenoble clusterafar the Sophia versus
Grenoble comparison.

To have an idea of how the proportion of jobs to submit to thigdst system grows, fig-
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Figure 5.9: Evolution of the optimal proportion of jobs tobsuit on the largest system:
from top to bottom: EGEE vs Sophia, EGEE vs Grenoble and SoghiGrenoble. Three
different phases are visible: under a given number of jghso job should be submitted
on the largest system. Then this proportion is increasimtfiaally, the optimal proportion

tends to an asymptotic value lower than 100%.
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Largest| Smallest| ng Nos | (o)
system| system
EGEE | Sophia || 232 jobs| 686 jobs| 76%
EGEE | Grenoble|| 51 jobs | 110 jobs| 93%
Sophia| Grenoble| 1job 3jobs | 82%

Table 5.5: Variables of the multi-grids model. Beloy jobs, no job should be submitted
to the largest system. At.5, jobs should be equally split among the two systeffso)
denotes the maximal proportion of jobs to submit to the Isrggstem.

ure5.9displays the evolution of for each pair of systems. All those curves are growing with
the number of jobs, as it could be predicted from equafidn The bottom one, comparing
the Sophia and the Grenoble clusters, grows rapidly anderges towards(co) = 82%. This
value characterizes the saturation phase. It indicateprb@ortion of jobs to submit to the
Sophia cluster when the total number of jobs to submit is highis result is close to the
proportion of nodes on the Sophia cluster in the total nunadferodes on the two systems:
10150+520 = 84%.

Looking at the two upper curves of figused, we can see that the larger the scal&edence
between the two compared systems, the faster the growtleafutves. Concerning the com-
parison between EGEE and Grenoble, the curve converggssp= 93%. This limit is 76%
for the comparison between EGEE and the Sophia cluster. rébigdt indicates that whatever
the number of concurrently submitted jobs is, there is naneesubmit more than 76% of

them to the EGEE infrastructure.

Validity of the results. The results presented above are all inferred from the exqaeri
described in sectioh.3.1, where all the submitted jobs are of identical running tihenfnute).

It should be possible to extend those results to jobs wiieidint running times. In this case,
it is likely that the nominal latency (B metric) of the inftasctures will change only by little.
Indeed, this value corresponds to the latency faced by desjoly submitted to the system,
which does not depend on its execution time in most cases. adsumption could eventually
not be so realistic if the grid system uses a prediction ofekecution time of a job in its
scheduling policy. Yet, this case is not envisaged in thigusaript, given that most of the
users of the EGEE grid do not specify such a prediction fojghesubmission. Concerning the
scalability (A metric), we already noticed that the subrasntity significantly contributes
to it. It is reasonable to state that the submission time matl be correlated to the execution
time of the submitted jobs. Consequently, only a restrigtad of the scalability value (about
30% for the EGEE grid, 46% for the Sophia cluster and 85% fer@&menoble one) may be
disturbed by a change in the job execution time. To have anafi@ow the remaining part of
the scalability value would be disturbed, one should idgiiie steps of the job life cycle that
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could be delayed by the submission of longer jobs. Obvigtisymost impacted step would be
the waiting in the local queues, which would be lengthenedrbincrease of the job execution
time. Yet, this waiting time would be disturbed only if manfytbe jobs are scheduled to the
same queue, and if this queue lacks resources to executéthkr in parallel. Given the
number of queues of the EGEE grid (about 150 in our VO) and ifle humber of resources
per queue, it is probable that such interactions betweejobswill be limited on this system.
The situation will probably be quite filerent on the clusters. In this case, the evolution of
the waiting time with respect to the job duration could prolgabe predicted by quite simple
models. Yet, the multi-grids model itself will remain vali@nly its parameters would have to
be modified.

5.5 Conclusions

In this chapter, the deployment of the bronze standard wawki¥ith MOTEUR enabled a fair
comparison of a production grid (EGEE) and dedicated ctasié Grid’5000. Compared to
theoretical predictions, the execution of the applicabondedicated clusters exhibits reason-
able performance so that the overhead of MOTEUR can be cemesicas negligible on this
application. Even using specific (VRes) queues allowing @diate execution of jobs, the per-
formance of the application is about 4.5 times lower on EGE&hton dedicated resources.
The grid latencyi(e the duration between a job submission and the beginning ekicution)
is the main causes of performance drops. For each systermdtianof the latency has been
shown to follow an fiine model with respect to the number of jobs simultaneoudtyrsts
ted. A multi-grids model was derived from this measures aetrics measuring the scalability
of the infrastructure and its nominal latency were extrdct&hose metrics allow to further
compare the EGEE grid to dedicated clusters. For instarmesidering 1 minute-long jobs,
it shows that there is no need to use the EGEE grid rather theustudied clusters below a
threshold of 230 submitted jobs. Moreover, those resultsvdhat the submission entity is an
important bottleneck of the infrastructures: the subnoissime reduces the scalability of the
EGEE grid with a factor 3.

Beyond this median comparison of the latencies,vleability of the EGEE production
grid has been shown to be superior of several minutes to teeoba cluster. It is suspected
to be a major source of performance drops for the applicatibmdeed, a grid user considers
the completion time of a whole set of jobgthe makespan of the application) rather than the
throughput of the system that may be studied from the innasire’s point of view. Conse-
guently, the variability of the platform is critical becaua single highly delayed job is able to
dramatically penalize the whole application. Thus, in tegtrthapter, we focus on the analysis
of the variability of the grid latency and on its impact on fferformance of the application.

The experimental results shown in this chapter reveal thaiared node dedicated cluster
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provides a better performance than the EGEE productionuridla high threshold of comput-
ing time that was not reached with the bronze standard use-t#éowever, one should keep in
mind that using a production grid provides computing pofeefreefrom a user point of view.
In particular, in a medical context, setting up and maintejra dedicated cluster is not always
feasible and deploying applications on a production griidl @tovides a significant speed-up
with a limited maintenance cost. Considering productiadgmay be a fixed constraint and it
thus remains worth studying their characteristics.
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he goal of this chapter is to study the im- be of a factor 2. We show that the latency can be
T pact of the variability of the latency of the accurately modeled by a random variable with a
EGEE grid on the performance of applications. mixed log-normaf Pareto distribution whose pa-
Based on a black-box model of the grid, we pro- rameters are determined by fitting to experimen-
pose a probabilistic model of the workflow of an tal data. The impact of some job context param-
application. This model allows to quantify the eters such as the execution site or the Resource
impact of the variability of the latency on appli- Broker on the distribution of the latency is finally
cations. In particular, its impact on the bronze highlighted and quantified, which helps to refine
standard application (see chapt&) is shown to  the grid’s latency distribution model.

e but de ce chapitre est d’étudier I'impact duit & une perte de performance d'un facteur

de la latence de la grile EGEE sur les 2 sur I'application des étalons de bronze (voir
performances d'une application. Nous pro- chapitre 1). Nous montrons que la latence
posons un modele probabiliste du flot de traite- peut étre modélisée correctement par une vari-
ments d'une application fondé sur une vision able aléatoire de distribution mixte log-normale
“boite noire” de la grile. Ce modele per- / Pareto dont les parametres sont ajustés a des
met de déterminer l'impact de la variabilité données expérimentales. Nous quantifions enfin
de la latence sur les applications. En parti- linfluence de parametres du contexte des taches
culier, nous montrons que la variabilité con- comme le site d’exécution ou le Resource Broker

sur la distribution de la latence.

Schopf and Berman showed iadhopf and Berman, 19pthat variability is an important
source of performance drops for parallel applications dral it should be avoided, even if
it reduces the mean performance of the infrastructure. @nBBEE production grid, the
latency is not only high but also very variable (about 5 mésutvith an inter-quartile range of
3 minutes), as demonstrated in the previous chapter. Thisssuspected to strongly penalize
the performance of a workflow.

This variability is supposed to come from various factongluding the heterogeneity and
volatility of the infrastructure (endogen factors) and tbhad imposed to it (exogen factor).
Because a deterministic modelling of the system seemsyhaieditable, the approach adopted
in the remaining of this thesis is probabilistic. We proptseadopt a black-box model of
the grid, where the latency is a random variable capturihghal sources of variability. The
grid provides jobs submission and monitoring facilitiesl amtroduces a random delay before
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the beginning of their execution. Beyond the submissioeway, all the parameters are let
to the responsibility of the system administrators. We arly interested in thebservable
behavior of the system. For instance, the heterogeneityratgssors, memory capacities,
network bandwidth, /O performance and other machine dependent factors will bleded
in the latency random variable. Similarly, the load and extofactors are viewed as hidden
variables influencing the grid latency. Consequently, ingrnid model, the actual number of
available grid resources and their characteristics with@a@ unknown. They are also viewed
as hidden variables impacting the latency which is the oalyable of interest.

In some cases, system flaws lead to huge latencies (several) targely prevailing on the
ones faced by the other tasks of the application. Thosedgateslues are obviously outside
the distribution of the normal latency random variable ahdud be modeled separately, as
outliers. The main causes of outliers are hardware faillgeware bugs, locally heavy loads
leading to tremendously high service response times anetsdéing mistakes leading to jobs
facing high queuing times. An important characteristicprduction systems is the presence
of a significant ratio of those outlier jobs.

The goal of the first section of this chapter is to quantify itm@act of the latency vari-
ability on the performance of a workflow. To do that, we propasmodel of the execution
time (makespan) of a workflow taking into account the randamiable modelling the latency.
Determining an accurate predictive model of the distrimuidf the grid latency is a statistical
problem which is not straightforward. Indeed, the grid et is not stationary. The nature of
its distribution, or at least its parameters, depend on &ame on exogen factors. This depen-
dency may not be easily modeled because it depends on facichisas the current number of
jobs submitted by other users that are hardly predictablénd second section of this chapter,
we provide some experimental results analysing the stdtire @ridon a given time periadA
log-normal/ Pareto distribution is correctly fitted to those measuresthe influence of some
context parameters is studied in order to refine this distidm model.

6.1 Influence of the latency variability on a workflow

In this section, a probabilistic model of the makespan of ak#l@w is presented. It is used
to estimate the impact of the variability of the latency oa bronze standard application. In
the experiment presented in this section, the parametdteedistribution of the grid latency
are estimate@ posteriori from the logs of the execution, in order to keefp the statistical
problem of the estimation of up-to-date parameters. Sucba@dems demonstrated to correctly
fit the experimental data. We derive from it a theoreticah variablesystem whose average
latency is the same than the real one. A forecast of what woajben if the latency of the
system were not variable is thus provided.
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Figure 6.1: Because of the variability of the latency, théaal path of a service workflow
depends on the number of data items put in its inputs. On thisdj if the latency of
the grid is assumed Gaussian with mean 300 seconds and rstattedéation 200 seconds,
and if a single data item is put in the source, then the ctipash of the workflow is the
red one which is expected to be 900 seconds (300 secondsfexpected latency 600
seconds for the execution) whereas the expectation of tieediie is only 760 seconds (2
x 300 seconds latency 160 seconds execution). But as soon as the number of dats item
is greater or equal to 3, then the critical path of the workflsscomes the blue one: for
3 data items, the expectation of the blue path is 1098 seashdeeas it is 1069 seconds
for the red path. The computation of those values correspémdhe expectation of the
distribution of the max of the execution times of the path loa data items, as stated in
section6.1.3(data parallelism only — DP case). Numerical details ableist¢computation
are reported in appendix.

6.1.1 Definitions

Critical path of the workflow. In the service workflow of an application (see chagigra
pathdenotes a set of services linking an input of the workflow t@atput. A path is defined
independently from the data to process: it will be instdatiaat runtime on a set of data items.
Thecritical path of the workflow denotes the longest path in terms of executioe. Because
of the variability of the latency, this expected criticatipaepends on the number of data items
on which the workflow is iterated, as suggested by figufe

Notations. ny denotes the number of services on the critical path of thekflmw and np
denotes the number of data sets to be processed by the warkfjaerresponds to the degree
of data parallelism that will be achieved by the workflowe [0, ny — 1] denotes the index
of thei!" service of the critical path of the workflow. Similarly,e [0,np — 1] denotes the
index of thej™ data set to be executed by the workfloW,; denotes the duration in seconds
of the processing of the data sgby the servicd. It corresponds to the total time from the
job submission to its completionil;; = r;j + R ; is made of an application-dependent part
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ri; and the grid latency paR ;. r;j corresponds to the computation time of seniian the
data segmentt It is supposed to be a fixed value (predictable executioa)tiny opposition to
R;,; which is a random variableR ; will model all the sources of variability coming from the
infrastructure. For instance, the variability coming fréine performance of the worker nodes
or the network connection of the execution site will be imgd in this variableR ; does not
take into account outliers. They have to be modeled sepgrate study the impact of the
variability of the grid on the performance of the applicatithe case wherg ; is a fixed value
will also be considered in the followings denotes the makespan of the workflow. The goal
of the next sections is to express it with respechgony, ri; andR; and to the parallelism
configuration.

6.1.2 Hypotheses

Services are supposed not to simultaneously process allataesegments: in the following,
workflows are assumed not to contain any synchronizationdsaon the data itemsWork-
flows containing such synchronization barriers may be a®alyas two sub workflows respec-
tively corresponding to the parts of the initial workflow pesling and succeeding the synchro-
nization barrier.

Thenp data items on which the application is iterated are assumbd bf equal size. For
instance, in the context of medical image analysis, it mélaatsall the processed images have
the same dimensions. It is the case for the bronze standalitapon as well as for several
medical image analysis applications that aim at processmgole database of images acquired
in similar conditions. Consequently, the execution timgsof the jobs can be assumed to
be independent from the data.j,r;; = ri. One could have noticed that given the figures
displayed on tabl®.1 of chapter5, this hypothesis is not strictly verified. Yet, the standard
deviation of the execution times of the services remainstothhan 10 seconds for most of
them and is lower than a minute for the other ones. This standi@aviation is far lower than
the one of the EGEE latency, so that this hypothesis can bgidened as holding in a first
approximation. If the variability of the execution times thie services has to be taken into
account, one should also consider the execution times o$é¢héces as random variables.
Then, in the followingT; ; notations should not be expanded (inte R ;) and the distribution
of this random variable could be determined with respechéodistributions of the execution
times and of the grid latendy; ;. Yet, in this work, we concentrate on the variability intcmed
by the grid platform itself rather than on the intrinsic \adility of the algorithms, which is more
application-specific.

R, ; are assumed to be independent random variables: the joba@sesed not to influence
each other. Given the scale of the infrastructure, this thgms can be considered as realistic.
What is assumed here is that the application itself doesmoact the grid latency. Indeed, the
submission of a couple of hundreds of jobs spread on a fewstghould not disturb the grid
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so much. Nevertheless, bottlenecks may trouble this hgsidh For instance, the submission
time of several jobs from the same machine is very likely tpete on the number of submit-
ted jobs. Taking this phenomenon into account may not be fasya general perspective:
understanding how jobs interact with each other in the wkegtem seems fllicult. Still, for
specific steps such as the submission, some models coultkgested to take into account the
interactions between jobs.

The grid latency is assumed not to depend on the nature ofutbmigted jobsj.e on the
command-line that will be executed on the resources. Iuis that the queuing time of the job
in the batch of a computing center is highly dependent on xipeaed duration of the task.
However, as it is done by the huge majority of grid end-usées expected wall-clock time of
the job is assumed to be set to its default value, which is@sgabto be largely superior to the
effective duration of the submitted jobs. Consequently, tis¢ribution of the grid latency is
assumed to be independent framSimilarly, the distribution of the grid latency is suppdse
to be independent from the daiee(the distribution ofR ; is independent from). Assuming
that the distribution of the latency is independent fromgbevice and from the data is not so
critical. Considering applications handling large volisna# data i.e applications for which
data transfer times would be of several minutes), one cauniglg include it into ther; value.
Problems may only arise for applications for which the datpacts the job life cycle inside
the systemj.e disturbs its submission, scheduling or queuing time. lf/tbeer exist, such
interactions should be of limited importance and still mgigle with respect to the average
grid latency. ThusR ; are assumed to be independent and identically distribuitd@ndom
variables.

6.1.3 Makespan of the application

Under those hypotheses, the expression of the makespare afdtkflow for two diferent
execution policies can be determined. We distinguish tise eghere only data parallelism
is present (DP case) from the case where both data and seaiakelism are enabled (DSP
case). Definitions of those parallelisms are provided irptérat.

Case DP(Data Parallelism only). All the data segments are processacurrently and the
execution is synchronized after each service invocation.

o = el = 2o mexdee Rl
= > n+ Y max(R (6.1)
i<nw i<nw <o

Case DSP(both Data and Service Parallelism). All the data segmemetpeocessed con-
currently and the services are pipelined.

Ypsp = TJTlnaDX{Z Ti,j} = rJTlnaDX{Z (ri + R‘-’j)}

i<nw i<nw
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= r+ rjrlnan{Z R.-,,} (6.2)

i<nw i<nw

Deterministic case. If the latenciesk ; are fixed values, then for evenand every], R j = R
and the above expression simplifies to:

Yop = Zpsp = Z r+nw.R (6.3)

i<nw

In this case, there is noftierence between the DP and DSP cases. This deterministid mitide
be used to forecast the performance of the application ieratesof variability of the latency.
It corresponds to a theoretical non-variable system whahthe same average latency as the
real one.

Probabilistic case. The goal is to determine the expectatiB(X) of the makespan of the
workflow and its standard deviatian(X). We could then have a prediction of the makespan
of the workflow E(X)) and an uncertainty on it{(X))). In the following of this thesis, given
a random variableX, fx will denote the probabilistic density function (pdf) &f and F its
cumulative density function (cdf).

DP case:thanks to the linearity of the expectation operator and édfélct thatr; is a fixed
value, equatior®.1 gives:

E( — . .

(Zop) = D i+ nWE(rjg%m,,})
1<nw

Given that the cumulative density function of the randomalae K = max.n, (R j) is Fk =

FQPJ , we have:

e (maeR,)) =o [ tho, (OFn 07t (6.4
We then have:

ECpp) = Z r + nwE (maX{Ri,j})

- J<np
1<nw

Z I + NwhNp footfRi,j (t)FRi,j (t)nD_ldt (65)

i<nw

Moreover given that two jobs are independent, equaiidgives:
2
o (Zpp)® = Nwo (rjnnaX{ri + Ri,j})
<np
And thus, because are fixed values:

2
0'(ZDP)2 = Nwo (rj'lﬁ?{&i})
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Given thato(maX, (R j})?> = E(MaXxm,{R j}?) — E(MaX,{Rj})? and thatE(X?) =
[ t2x(t)dt, we have:

2
o(Zpp)’® = Nwo (rjgng{R, j})

00 co 2
- nwlnD f tsz(t)FR(t)”D‘ldt—nzD( f tfR(t)FR(t)”D‘ldt)l (6.6)

(%) (%)

DSP case:The max operator prevent from simplifying the expressiohnthe expectation
and standard-deviation of the makespan. Yet, those vahrestdl be computed numerically,
as it will be done in the following.

EQpsp = Z ri + E[rjgnaDX{Z Ri,j}] (6.7)

o(Zpsp) (6.8)
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6.1.4 Experimental results

The goal of this section is to present experimental reshés t

1. evaluate the relevance of the model presented above laiexpe makespan of the ap-
plication;

2. study the impact of the latency variability on the exemutbn a production grid.

6.1.4.1 Experiments conditions

The workflow of the bronze standard application (see chaptevas executed on flerent
input data sets sizes, ranging from 12 to 126 image pairsh Bathe input image pairs led
to 6 job submissions. Thus, the amount of tasks submittethéybrkflows ranged from 72
to 756. The workflow manager used for this experiment was MOREsee chaptef). Each
data set was processed in the DP and DSP configurations. Titkélomoexecutions are not
simultaneously submitted to the grid. Submitting all the@xions simultaneously would not
have been possible without introducing strong biases irré¢kalts. Indeed, the submission
mechanism would have become a bottleneck and it is veryylitedt the executions would
have disturbed each other. To avoid that, one should hawkaisiéferent user interface and
a different resource broker for each execution. Clearly, thisldvalso have created fiierent
experimental conditions between the runs so that we rakemueed successively the workflow
runs. Changes in the grid status (number of available sitesage load from other users, ...)
may thus happen between those runs. Those changes will beredby the fitting of the
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parameters of the latency distribution that is adaptedecettecution conditions, as developed
in the next sub-sections.

On a production grid infrastructure, setting a timeout &k&is mandatory because a small
fraction of tasks are likely to remain blocked for hours in aitmg queue or even to get lost:
the timeout value prevents the application from facingietgl Because of that, and taking into
account failures that are likely to occur, tasks need to bebmitted if necessary. For example,
on the EGEE grid that, the tasks success rate was around 8##%tane of those experiments.
In those experiments, the timeout value was arbitrarilyt@ét hour (which is far greater than
the services walltime; - see tables.1 of chapter5) and no retry was performed in order to
prevent the makespan to be influenced by resubmissionsrthabamodeled. Thus, timed-out
jobs are neglected. A strategy to optimize the timeout vaduescribed in chapted of this
thesis.

6.1.4.2 Gaussian assumption foR

In this experiment, the grid latency is assumed to be Gaunisdiais latency model has been
determined by searching the distribution that best fits ¥peemental results. It led to relevant
results, correctly explaining the makespan of the appboats shown in sectiof1.4.4 How-
ever, this assumptioniiers from the heavy-tailed model that will be studied in smtf.2. At
this point, a justification of this hypothesis may be the that the timeout has been set to 3600
seconds and that jobs that timed-out have been neglectedeGoently, the distribution of the
latency can be assumed to have a lighter tail than the onevihad be obtained by setting a
higher time-out value or taking into account resubmissions

6.1.4.3 Model computation

To compute the probabilistic model presented in sedfidn3 the required parameters are (i)
the deterministic part of the running time of each servicasimgle data sef and (ii) the mean
w and standard deviatian of the grid latencyR.

Ther; values were obtained as the mean values of the benchmar& eétliices presented
in table5.1 of chapters. Estimatinge ando- is more dificult: their values are likely to depend
on the number of input data segments and to vary along time.gbal of this experiment is
not to obtain an up-to-date model of the distribution of thiel gatency. This is investigated
in section6.2 The point here is to validate a model of thpplication assuming that the
distribution of the latency is known. Thug, and o were evaluated posteriori from the
execution trace. Estimating theanpriori requires a dedicated grid monitoring system, which
is out of our scope here.

The first required step for the computation of the model isetedmine the critical path of
the workflow. As already noticed, the number of processed sletsn, dramatically influence
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the makespan of a given path of the workflow, particularly ase of high latency variances.

Thus, we determined the critical path of the workflow sepaydbr each number of data items.
The value of the makespan obtained from the deterministidehis an estimate of the

performance that could be obtained in absence of varigbAis suggested by equati@ng, it

is computed by considering that the latency is a fixed valumes Value is set to the average of

the observed latency.

6.1.4.4 Results

Figure 6.2 displays the experimental results. Two experiments angaed and compared to
the probabilistic and deterministic models: a data pdrakecution (upper DP curves) and a
data+service parallel execution (lower DSP curves). On both lgsaphe experimental data
is figured in red. Probabilistic models are figured with sggaand deterministic ones with
crosses. For the experimental and deterministic casesearlregression is superimposed, as
already done in the experiments of chagieFor the probabilistic cases, intervals correspond-
ing to [u — 3o, u + 30] are also drawn.

6.1.5 Discussion
6.1.5.1 Metrics for the analysis

To analyze performances, the first relevant metric from tber ypoint of view is the speed-
up, measured as the ratio of the execution time over the séiglexecution time. The most
interesting speed-up value is the maximal one obtainedeafblication, which in this case is
the one obtained for the largest input data set.

To have a finer interpretation of the results, the global bieinaf the application makespan
with respect to the number of input data sets can be apprdéedweith straight lines estimated
through a linear regression. Those fitted straight linesie plotted on figuré.2. The relative
error of this approximation with respect to the experimédéda is 78% for the DSP case and
11.6% for the DP one.

The y-intercept and slope of the fitted lines can then be densd. The y-intercept value,
expressed in seconds, measures the latency of the apphicatithis infrastructure. This value
corresponds to the nominal latency of the grid added to tleewion time of a single data
set by the application workflow: it is the incompressible amtoof time required to access
the infrastructure. The slope of the fitted line, expresseseiconds by jobs, is related to the
throughput of the application. This value measures thestatability of the infrastructure, that
is to say its ability to process huge data sets with the savet ¢ performance. Those metrics
are similar to the one used in chapteto compare the EGEE production grid to Grid’5000
clusters.
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Figure 6.2: Comparison of the makespan of the applicaticherexperimental and model
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distribution tail, which explains its weaker performanc&he impact of the variability
of the latency can be noticed by comparing the determin{siidtom green curves) case
with the experimental (red) one. Variability leads to a e performance drop on this
application.
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Experiment Probabilistic Model Deterministic Model
DP DSP || DP(eg6.5 | DSP(ec6.7) || DP(eq6.3) | DSP(ed6.3
y-intercept || 4778.0| 3628.2|| 4921.6 4002.4 2195.2 22145
(seconds)
Slope 71.7 31.7 72.2 26.0 28.6 17.4
(s/data sets)
Max speed-up| 7.0 13.2 6.5 13.5 15.9 21.7

Table 6.1: Values of the metrics. The relevance of the pritibib model can be noticed
by comparing columns 4 and 5 to columns 2 and 3. The impacteo¥/#hniability of the
latency on the application can be quantified by comparingrook 6 and 7 to columns 2
and 3.

The values of those metrics are reported in tahle The two first columns of this table
correspond to the experimental values for the DP and DS cake two next ones correspond
to the values computed with the probabilistic model of s#cé.1.3 from measured mean
and standard-deviation of the latency. The two followinguoms correspond to the values
computed with the deterministic model of secti®i.3 Those values correspond to the ones
that would have been obtained if the infrastructure werevaatble.

6.1.5.2 Relevance of the probabilistic model

First, from a qualitative point of view, the results shownfajure 6.2 exhibit some singular
behaviors. For instance, even if the global trend of the €sirg to increase with the number of
input image pairs, one can notice some local decreasesiwasdée50 and 75 input images for
the DSP case and between 75 and 100 input images for the DR aneorrectly explained by
the model, thanks to the fitting of the parameters (mean atlatd-deviation of the latency)
to the experimental data. Actually, those local decreasesbe explained by a diminution
of the latency mean and standard-deviation between thdsessavhich do not correspond to
simultaneous executions, as already mentioned.

Another singular behavior are the measures done for 50 inpages pairs. Indeed, the DP
case is there faster than the DSP one. Here again, this loeltavi be explained by changes of
the grid status between those two runs: it would not have érgxabif the execution were simul-
taneously submitted. However, the probabilistic modelgaia able to explain this behavior
thanks to thea posteriorifitting of the Gaussian distribution to the observed one.

From a quantitative point of view, and as figuie€ shows, the probabilistic model is quite
relevant and able to explain the experimental results (anfifpure, experimental results are
displayed in red and values from the probabilistic modelfapered with squares). The mean
relative error of the probabilistic model with respect te texperimental data isB% for the
DSP case and.&% for the DP one. The fact that this error is greater in the B$ec¢han in the
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DSP one is consistent because the makespan of the applicatioore &ected by distribution
tails in the DP case than in the DSP one. Indeed, in the forasss, ¢the processing of every data
segment is depending on the processing of all the othersibedhe execution is synchronized
after each service invocation. It is also worth noticingttak the experimental values stay
inside the J: — 30, u + 30 interval. It shows that the model is able to provide bourastiie
error it makes with respect to the experimental case.

The speed-up figures measured and displayed in tabkg’.0 and 13.2 in the DP and DSP
cases respectively) are very close to the probabilisticehedtimates (6.5 and 13.5 respec-
tively), showing that MOTEUR féciently enables the workflow, data and service parallelism
without introducing a significant performance loss.

6.1.5.3 Impact of the service parallelism

It has been explained in secti6ril.3that in a deterministic system, the DP and DSP cases lead
to identical performance. Considering the maximal expental speed-up values, the DSP
case was B times faster than the DP one. The y-intercept metric3diines higher in the DP
case than in the DSP one. The slope ratio comparing thoseasesds 3.

The fact that service parallelism does speed the executican be explained by the service
parallelism making the application less sensitive to dhation tails. If no variability was
possible (deterministic model), the impact of service fpaliam would indeed be lower: the
maximal speed-up ratio would be4] the y-intercept ratio would be.d and the slope ratio
would be 16. It confirms the behavior described above: the more vagiti®@ infrastructure,
the more interesting the service parallelism.

The impact of service parallelism is higher on the slope trathe y-intercept value: for the
experimental case, tabtel shows that service parallelism reduces the slope with arfac3,
whereas it only leads to a factor3lon the y-intercept. It is consistent that the benefit yiglde
by service parallelism mainlyf@ects the data scalability of the application: the more ingoar
the number of submitted jobs, the more important the prditabo lie in the distribution tail.

However, even in case of a non variable platform, there llsastiimpact of service paral-
lelism on the slope of the straight lines and thus on the makapeed-up, whereas there is no
more on the y-intercept value. This can be explained by thetfeat service parallelism re-
duces the mean grid latency due to sequential procedurbsasitbe submission time. Indeed,
if service parallelism is not present, waves of simultarsejmhb submissions occur, whereas
submissions are more spread over time in case of servicgdsra. This explains the impact
of service parallelism on the scalability of the applicatio

6.1.5.4 Impact of variability

The impact of the variability of the grid latency on the mgkas of the application is figured by
the distance between the green and red curves on figir€onsidering the values of taliel,
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variability led to a maximum speed-up reduction factor &f fr the DP case and@ for the
DSP one. If the infrastructure were deterministic, we waabithin a maximal speed-up of Z1
in the DSP case, whereas it is only.23here. Considering the y-intercept metric, variability
leads to an increased factor o22 for the DP case and this factor i8¥or the DSP one.
Variability also introduces a.2 increase factor on the slope metric for the DP case an8 a 1
one for the DSP case. Variability has more impact on the DP ttes on the DSP one. Indeed,
as already mentioned before, the DP case is far less rolarstite DSP one.

The estimates made for a deterministic system show thatditiamhl speed-up in the order
of 2 can be expected by adopting strategies to reduce themsystriability.

6.1.5.5 Analysis of the grid’s latency

The total mean latency introduced by the grid is slightlywgray with the number of input
data sets, as displayed on fige3. This figure plots the mean latency obtained for the DP
and DSP cases and identifies th&eatient sources of latency, namely submission, scheduling
and queuing times and the overhead added to the walltimeselW@ues were obtained by
subtracting the average benchmarked walltime to the aeaaamal walltime of the tasks. The
slow latency increase shows that we are far from saturatiadgrge scale infrastructure.

Table6.2 displays the mean values obtained for each entity of thastructure. The most
important source of latency is the queuing time, as it islgasiderstandable on a multi-users
platform. Then comes the overhead on the walltime, thauohes data transfers and perfor-
mance of the running hosts. Submission and scheduling taneethe less important sources of
overhead. The latency coming from the load of the infrastmgcis distributed among those 4
entities. Yet, most of it may be included in the queuing layeThe latency coming from the
walltime of the jobs covers the heterogeneity of the machofehe grid. Indeed, the services
have been benchmarked on a particular machine and the panfamof the grid worker nodes
is unknown. All those values have been measured with theigiedmation system. They are
thus highly dependent on its accuracy. In particular, toalsopdate frequencies may disturb
those measures. Yet, applications also rely on this infdonaystem so that those values are
representative of what could be measured from the appicsti

Entity Mean latency (s
Submission 182
Scheduling 110

Queuing 308
Walltime 279
Total 880

Table 6.2: Mean grid overhead for each component
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The variability of the overhead is hardly interpretable.eTdtandard deviation of the total
overhead varies from 390s to 890s but does not exhibit globadls.

6.2 Characterization of the latency variability

The goal of this section is to provide some information torabterize the distribution of the
latency. Models of the grid latency are the basis of stratetp optimize the job submission
parameters as presented in pidrt Determining a precise and up-to-date model of the grid
latency is the starting point to allow further optimizatsoto tackle the fects of the latency.
The latency is modeled as a random variable and an outlier fEtte random variable describes
the latency variability in aaormal operation modeOutliers correspond teystem faultshat
lead to huge latencies prevailing on the ones of the othks tafshe application. Those latency
values can be considered as infinite. In this section, a globdel of the distribution of the
latency in the normal functioning mode is first presented #ah the influence of some job
context parameters is studied in order to make the model arerate.

6.2.1 Model of the measured distribution

Data acquisition. To measure the distribution of the system latency on the EGitE probe
jobs that only consist in the execution ofain/hostname were submitted and their round-
trip time was measured. A constant number of probes was aiagd inside the system by
submitting a new one as soon as one completed to avoid irdioglany extra variability.
This measure of the distribution & gathers 2137 probe jobs involving 3 RBs. The maximal
duration of those jobs was fixed tg,x = 10000 seconds. Beyond this value, a job is considered
as an outlier. Given those conditions, the measured oudlier was 2.5%. In normal operating
mode, the measured distributioniRiis plotted on figures.4 (plain red curve). Its expectation

is 393 seconds and its standard deviation is 792 secondsoftesponding latency histogram

is shown on figures.5.

Modeling. The distribution of the experimental data shown on figGré appears to be
close to a log-normal distribution for low values (up to 50€cends) and a Pareto dis-
tribution beyond. Pareto distributions are used to modehrgd class of computer sys-
tem measurements (jobs durations, size of the files, datesfées length on the Inter-
net...) Harchol-Balter and Balter, 20.ZBased on this observation we fitted the experimental
data with the following distribution which is an interpdlat of the log-normal and Pareto ones,
for tin [tmin, tmax:

FON) = (L—-oa(t)® (W) + a(t) (1 - (i)) 6.9)

a+t
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Figure 6.4: Measured data (plain) and best fitting Log-ndReeto model (dashed).

k
t_tmin )

tmax - tmin

with  a(t) = (

tmin denotes the smallest latency measured among the data ftlsezecb below this value) and
tmax the highest one. There are thus five parameters fully desgrthis model g, o, &, v, and
K). a(t) is a weight function designed so thatn) = 0 andae(tmay) = 1. The model thus tends
towards a log-normal distribution ity,;, and towards a Pareto oneti,.. The best fit of the
model6.9with the experimental data was estimated by least-squaremazation, minimizing
the following criterion:

tmaX
: model; expiv)2
argwg_ggk){Z(FR" (i) - F¢ (I))}

1=tmin

whereF5 (i) is the value of the measured distribution at tim&he fitted model is displayed
on figure6.4 (dashed green curve). A Kolmogorov-Smirnov test was madevéduate the
quality of the model. When considering an under-samplingmto 1000 measurements, the
Kolmogorov-Smirnov test value iB1000 = 1.35 (we used, = ynsup|F5" - FXI), which
correspond to a p-valug = 0.051. The tests is thus positive. It shows that a simple mddel (
parameters) can accurately model the distribution medsowver a very complex grid system
(EGEE grid infrastructure).
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Figure 6.5: Histogram of the measured latencies. Values h&en gathered into bins
of 10 seconds. The y-axis denotes the number of jobs in eachThie total number of
submitted jobs is 2137. 2.5% of them were considered aseositflatencies higher than
10,000 seconds) and thus do not appear on this histogram. ufjer figure plots the
remaining ones and the bottom one is a close-up on the [@sl0@erval.
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6.2.2 Influence of job context parameters

Each job can be characterized by its execution context ga¢nds on the grid status and may
evolve during the job life-cycle. A promising way to refinestlistribution model presented
above is to adapt it to the evolutions of this job context. Tenate goal of such a study
would be to have the latency prediction of a job start with agto estimation€.g from the
global model presented above) and be refined as the job saguslving. For instance, once
the submission and scheduling times are known, one coutd sgdme information about the
grid load and refine the latency estimation accordingly. tif@mimore, as soon as the target
Computing Element (CE) is known, one could switch to a paldiclatency model dedicated
to this CE. The context parameters of a job are seen as hidd@bles that are progressively
discovered, thus refining the latency estimation. One cpubtbably end-up with a complete
probabilistic model of the grid.

The context of a job depends both on grid internal and extgrai@meters. The internal
context corresponds to parameters such as the hosts idvolthe management of a specific
job. It may not be completely known at the job submissionanst The external context is
related to parameters such as the day of the week and may hawgact on the load imposed
to the grid. Many parameters may have a direct influence orjaibe submitted to a grid
infrastructure. We are here focusing on three of them whrclvgd to have a particular impact
as shown below: the Computing Element (CE), Resource B(&#®), and the day of the week.

Data collection. The results presented here involve 4477 probe jobs acquitbdhe same
method as in sectiof.2.1 For each one, the job submission date, the User Interfabe (U
used, the Ul load at submission time, the RB used, the CE us#dhe jobs status duration
(total durationt;,, submission times,, scheduling time;,, queuing timet, and running time

tun as illustrated in figures.6) was logged. The median of this sampling is 363 seconds, its
expectation is 559 seconds and its standard deviation is&&inds.

6.2.2.1 Site of computation parameter

The probe measures involved 9Gtdrent CEs of the infrastructure. Figuée7 plots the cu-
mulative distribution of the grid latency for each CE invet/in the experiment. To ensure
statistical significance, CEs with less than 30 probe measuere removed from the study. 60
computing elements out of the 90 were remaining. Figuiesuggests that 3 classes can be
identified among the CEs. k-means classification was thus done on the cumulative gensit
functions of the CEs and the obtained classes are identifigddistinct colors on the figure.
Centroids of the classes are plotted in black.

The first class of CEs, pictured in blue, has the highest padace in average. The median
of its centroid is 237 seconds. It is composed of 15 CEs. Therskclass of CEs, pictured in
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Figure 6.6: Job life-cycle inside EGEE and measured duratio

green, is composed of 35 CEs. The median of its centroid iss8¢8nds, which corresponds
to a 1.6 ratio with respect to the fastest class. Finally,dlogvest class, pictured in red, is
composed of 10 CEs and the median of its centroid is 652 secofable6.3 compares the
median, expectation and standard-deviation of the griehtat for each CE class. It reveals
that even if the first (blue) class of CEs has the highest padiace in average, it is also more
variable than the second (green) class. The third (redk ¢tathe most variable. As shown
in section6.1, the impact of variability on the performance of an appimatdepends on the
number of submitted jobs. In some cases (high number of jabspuld be better to submit
jobs on a less variable CE class, even if it has a lower pedaga in average.

A noticeable feature of the green class is that almost atsdf Es contain thécgpbs string
in their names. In this class, the only CE whose name doesamtéio this string is plotted
in cyan on figures.7 and is close to the border of this class. In the blue class,bBocdhtains
this string in its name and in the slowest class, 7 CEs hagesthing in their name. It shows
that thelcgpbs string name is informative in itself although the reasores rawt necessarily
known (it may correspond to a specific middleware versionagg on some of the CEs in
this heterogeneous infrastructure).

Figure 6.8 displays the fitting of the mixed log-normaPareto model of equatiof.9 on
the centroids of the 3 classes identified on figéré and table6.4 shows the corresponding
parameters of the model. This model is well fitted to the blog green classes but is not
so convincing for the red one. Actually, the CEs of the red€laecem to be outliers: they
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Figure 6.7: Classification in 3 classes of the cumulativesilgriunctions of the grid laten-
cies by CE. Centroids of the k-means classes are plottedakbl

exhibit very poor average performance (expected laterasedo 20 minutes) with a very high
variability (the standard-deviation is more than 20 misjiteA dedicated model should be
determined for such poor-performance CEs.

CE group Median (s)| Expect. (s)| Stdev (s)
not Icgpbs (blue 237 436 880
lcgpbs (green) 373 461 493
other (red) 652 1132 1396
Whole data 363 559 850

Table 6.3: First moments and median of the grid latency wagpect to the execution CE
class

The order of magnitude of the grid latency appears to be lzde@ to the execution CE. Itis
relevant because the CE is directly related to the job qugtinme as a CE exactly corresponds
to a batch queue. Variations of middleware and system vessioay explain the éfierences
observed among the 3ftirent classes while variations inside a given class may bengp
from the load imposed by the users and the performance of G&slardware.

However, in general, the execution CE is only known afterjttiesubmission, during the



164 Analysis and impact of the latency variability on the EGEElgr Chap. 6
1 T T T T ; | : :
09 ---‘.--____;;‘t)_f:-..'.—._.:.—.—.—.-.:.4..<-:».—.—.:.:.—.1n;.—.—.;;—.—.—. ....................... _
0.8 |
0.7
0.6
S osf
LL ‘J
04
03 |
T Class 3 (exp) ——
Class 3 (model)
Class 2 (exp)
“ Class 2 (model) ------- -
Class 1 (exp) -
_____ | . . | CbFsl(modﬂ)-uuu-

200 300 400 500 600

t(s)

700 800

900

1000

Figure 6.8: Fit of the model of equatidh9 on the centroids of the 3 classes identified on

figure6.7
k Ju(s)|o(s)| a(s) v
Class 1 (blue)| 0.38| 4.7 | 0.63| 663.5| 2.04
Class 2 (green) 0.57 | 5.53| 0.32 | 9306.7| 18.24
Class3(red) | 11.8| 6.27| 1.1 | 70.4 | 6.47

Table 6.4: Parameters of the model of equatiohfitted on the centroids of the 3 classes

identified on figures.7

scheduling procedure. Thus, this information could onlyekploited for parameters that can
be updated once the job has been submitted, as for instamtiengout value or the application
completion prediction date, whereas parameters such aganelarity of the tasks to submit
could not benefit from the CE information.

6.2.2.2 Resource Broker parameter

The probe measures were submitted tofBedént Resource Brokers (RBs). Fig@@displays

the cumulative density function of the submission time efpphobe jobs sent to each of the RBs
as well as the one of the submission time considering theevdgerimental data set. First, the
submission times seem to be quantified to a discrete set oévahat correspond to the ones
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Resource Broker Expectation (s) Stdev (s)
IFCA (red) 19 14
LAL (green) 25 24
SINP (blue) 22 16
Whole data 22 19

Table 6.5: First moments of the submission time with respette RB

were the cumulative density function is growing. As evergewcorrespond to more than 1400
probe measures, this phenomenon does not come from the flaskasures but rather from
a characteristic of the submission system. Indeed, to erstalability, jobs are sequentially
submitted to the RB, which could explain this behavior. Thkmission time is a multiple of
the duration required to submit one job, which is about 4 sds@ccording to those measures.

The 3 RBs exhibit quite dierent behaviors. Two of them (red and blue curves) have equiv
alent tails that are smaller than the one of the third RB (g@eve). It indicates that the latter
RB is prone to have very high submission delays: on this RB 8D the jobs require more
than 40 seconds to be submitted, whereas they are less th@folthe two other RBs. On the
other hand, many of the jobs of the green RB are submittedrféisan on the two other ones.
As a consequence, the median of the submission time on tle@ ¢tB is only 12 seconds,
whereas it is respectively between 19 and 20 seconds anéé&ethb and 16 seconds on the
blue and red RBs.

Table 6.5 displays the expectation and standard-deviation of thengsgion time with re-
spect to the RB. Knowing that a job is submitted to the red oe B reduces the variance
of the submission time distribution. On the contrary, trensiard-deviation of the green RB is
higher than the one of the whole data.

6.2.2.3 Day of the week parameter

The day of the week is an important parameter of the extewralext which is likely to influ-
ence the load of the grid infrastructure. Figud 0 plots the cumulative density function of
the grid latency with respect to the day of the week and tébalisplays the corresponding
expectations and standard-deviations. For this expetini&64 probes submitted during the
week-end were added to the previous 4477 ones.

The seven days exhibit similar behaviors for latencies favan 500 seconds. Above this
value, Saturday and Sunday have very similar cdf signiflgdover than the ones of the other
days. In average, those week-end days correspond to thentraesthe latency is the highest,
as shown by tablé.6. The variance also seems to be higher during the week-enddtinang
the week.
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Day Expectation (s) Standard-deviation (s)

Monday 622 1088
Tuesday 530 747
Wednesday 461 542
Thursday 609 972
Friday 569 808

Saturday 630 1035

Sunday 629 1066
Whole datal 569 886

Table 6.6: First moments of the grid latency with respech®day of the week

6.2.2.4 Discussion

These experiments revealed that the grid latency is relatdtie choice of a RB or a CE.
More precisely, the middleware and system versions aregimglnvolved in this phenomenon.
Computers with older systems and middlewares are probaltypaters that were installed
before newer ones, and not upgraded. THeedences can either come from software perfor-
mance improvement or the fact that newer computers havehaimputing capabilities. This
hypothesis could be confirmed by other experiments estabfjsvhat fraction of the latency
is due to the computer hardware or to its software. It mighabeluable information for
middleware developers. However, from our grid user poinviefv, the main interest is not
necessarily the cause but rather its impact on the apgitsitiA similar approach led Cies-
lak and co-authorgjieslak et al., 200jdo propose performance analysis through grid log data
mining. This can be veryficient in identifying point of failures or performance dragdghough

it usually provides little information on their cause.

The last experiment made in this section shows also an sttegeresult: days from Monday
to Friday are usually accepted as working days while Saysrdad Sundays are usually non-
working days. This is the case for most western and eastemtiges involved in the EGEE
project. However, this assumption fails in some particigatountries (for instance, in Algeria
the week-end is on Thursday-Friday and in Israel on Fridaigs®lay). This information on
working days would thus need to be corrected by the geograplucation of the grid sites
handling the jobs. Working on such a large geographical alsaimplies to consider the time
of the day. Working hours depend on the country we are dealtiy and local habits. The
dependency between latency and day of the week could bedeforesidering:

¢ Local meaning of week-ene(g. SaturdaySunday or Thursdalfriday).
e Local time of the day (day or night).

e Time zone: days start with significant time shifts in the EGigEastructure (from
GMT+9 in Japan to GMT-8 in the USA).
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e Local habits €.g.working hours).

The dependency between latency and day of the week may bedétethe system administra-
tors activity (they are more frequently at work and systera@wices crashes are more rapidly
fixed on week days). However, the fact that there is more i¢tiuring the week than during
week-end, generating probably more faults should also heidered. These hypotheses need
to be further tested by building a notion of time context wispect to time zones, working
days and hours.

Similarly, a correlation between temperature and faulsaathern countries may be inves-
tigated: in summer, air conditioning systems cooling dowmputing centers are more likely
to break down, making large amounts of local resources wardly unavailable. CPU’s tem-
perature is certainly the most accurate parameter to demad@shis fact but is often éicult to
obtain remotely. Considering cities temperatures cowdd gives indications on failures prob-
ability. This information is easily obtained for large eisi through well known Web-Services.

Correlations between job latencies and parameters fromteution context such as the
Resource Broker and batch systems involved in jobs managenrahe week of the day have
been demonstrated. These results encourage to performdetaiéed studies in order to have
a better understanding of the influence of these paramddesending on their influence and
availability, they can be used to refine the model of job leyeand thus to provide a better
basis for the latency reduction strategies presented inlpar

6.3 Handling variability in grid models

The work presented in this chapter covers twfiaedent areas: the probabilistic modeling of
workflows and the statistical parameters estimation of petidn grid systems. We review
below the main contributions of the literature concerningse two aspects. The probabilistic
modeling of applications has been investigated for quitergy ltime. However, the sources
of variability were not the same and the application areas #ignificantly difered from ours
here. Consequently, statistical investigations about gystems have only been introduced in
the last years. A broad survey of such methods is reporteditelSon’s on going bodkwhich
synthesizes many of its papefsjielson, 2002~eitelson, 200 Yet, as far as we know, such
methods have only been introduced from the infrastrucsyseint of view so far. For instance,
statistical attempts have been done to model the job inteahtime of a cluster of the grid.
The idea of considering the whole grid as a black box intraty@ random latency on the
jobs submitted by the user is original and leads to new paemmeptimization methods in grid
computing (see chaptegsand9).

1http ://www.cs.huji.ac.il/~feit/wlmod/
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6.3.1 Probabilistic approaches for application modeling

Probabilistic approaches to performance analysis have beed for quite a long time in
parallel and distributed applications. Gelendieal [Gelenbe et al., 1936and Mussi and
Nain [Mussi and Nain, 199/already considered the execution time of a task-graph asa r
dom variable and determined its distribution from the grpplrameters and topology. Sequen-
tial compositions are modeled as convolutions of the dgrigitction and parallel ones lead
to exponentiation, as done in this chapter. They then déterthe distribution of the execu-
tion time of the graph from the known ones of the tasks. Eveheafmotivating problem of
those works is very dlierent from ours (in Gelenbe et al., 1945the variability is related to
the topology of the task graph and ikllissi and Nain, 1984 only task trees are considered),
the probabilistic tools employed are very similar, reimiog the idea that they are adequate to
model this kind of problem.

Later on, Gautamat al [Gautama, 199anoticed that directly using the pdf to determine
the execution time of the application leads to heavy contfuts preventing from any practical
application. They thus propose an approach based on thdifsumoments of the distribu-
tion. The moments of the execution time of the applicatianexpressed from moments of the
tasks in the graph and from the graph topology, includingséaguential operator, conditional
branching and parallel composition. They also take intamant more complex program pat-
terns including for example random loops bounds which afigcdit to model directly using
the pdf. However, parallel operators raise problems inftlaisiework because there is no rela-
tion linking the moments of the random variable rféx. . ., X,} (which is the most common
parallel pattern) to the ones of tiin the general case. In this case, the authors thus approxi-
mate density functions with generalized lambda distrimgi characterized by four parameters
only [Gautama and van Gemund, 2)0Assuming that, the moments of the execution time
of the graph are expressed from the ones of the tasks. Resulterning normal distributions
show that the error made by the approximation remains urfdeiot 1000 parallel tasks. How-
ever, only low mean and standard deviation values are piegeine to numerical instabilities.

Close to this approach, Schopf and Berman use stochastiessalefined by their mean and
standard deviation to model the execution time of an apjdicdSchopf and Berman, 1998
Schopfand Berman, 2001 They define arithmetic operations on them that comes frioen t
arithmetic on normal distributions. As in Gautama’s woftke tefinition of the max operation,
that is critical in a parallel execution is not obvious and la be “supplied by the model
builder, scheduler or user”. The application model preseénn this work seems to be quite
specific whereas using a workflow representation allows ugetxribe any workflow-based
application in a more generic way.

Works such aslflanolache et al., 20Q7and inside references propose performance analy-
sis methods for task scheduling into embedded systemsiderimg probabilistic models of
task execution times. In this work, the authors model tagicetion by a generalized contin-
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uous probability distribution and propose a method notriestd to any specific scheduling
policy. They consider both execution time and memory aspetheir method is based on
the construction of an underlying stochastic process andnalysis. Even if this approach is
entirely probabilistic and makes no assumption on the eattithe probability function of the
execution time, which well suits with our hypotheses, thesuane all the tasks to be executed
concurrently on a single processor.

In practice, the probabilistic approaches mentioned inptleious paragraphs have never
been applied to production grid infrastructures at theesead are demonstrating here. Even the
recent work of Schopf and Berman described above exhibiisdiéerent orders of magnitude
to ours. Results are showed on a cluster environment whére&GEE grid on which we con-
ducted our experiments is much wider. Consequently, vaithaim [ Schopf and Berman, 20P1
is about 100 seconds whereas it can reach 900 seconds insmurloaour case, variability is
related to the grid latency itself, which does not occur iarsproportion on smaller platforms.

General considerations about features and architectgreresl for an icient production
grid (particularly focusing on data transfers) are disedds [_aure et al., 2Z00drom the expe-
rience of the EU DataGrid project. This work focus on the éaggale multi-users grid that we
are also targeting here. However, no detailed model to éxplaw the infrastructure behaves
is proposed.

6.3.2 Statistical parameters estimation of grid systems

Several initiatives aim at modeling workload managemestesys. In [i et al., 2004, cor-
relations between job execution characteristics (job sizaumber of processors requested,
job runtime and memory used) are studied on a multi-clustpescomputer in order to build
models of workloads, enabling comparative study on systesigth and scheduling strategies.
Feitelson [eitelson, 200phas observed correlations between runtime and job sizapeu of
cluster and time of the day.

In [Medernach, 2005 the author analyzes the usage of a cluster of the EGEEsinire:
ture. He studies several of the job parameters, such as timenigy waiting and arrival times.
A Markov-chains based model is then proposed and explaesliberved data. Our approach
is similar to those ones in the sense that a deterministicetimaylof the studied parameters is
not investigated. Yet, the adopted point of view is signifibadifferent. Whereas those works
focus on the infrastructure’s point of view (and even on dipalar cluster of the infrastructure)
in order to provide realistic workloads modellings, we stérom the user’s point of view, try-
ing to model the global behavior of the grid. Consequentig,dptimized parameters resulting
from those studies may be quitei@irent, concerning for instance particular configuratiohs o
the local batch schedulers of the clusters.
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6.4 Conclusions

Based on the observations made in the previous chapter,opeged here a model of the work-
flow of the application taking into account the variabilititbe grid latency. The originality of
this model lie in the fact that the global behavior of the gsidhodeled by a single random vari-
able: the grid is viewed as a black box introducing a randdemiey on the jobs submitted by
the user. This model is used to quantify the impact of thenlgtevariability, which is shown to
lead to a factor 2 performance drop on the workflow of the beostandard application. Thus,
strategies have to be developed in order to reduce the inoptet latency and of its variability
on EGEE. This is the goal of the next part of this thesis.

In order to be predictive, such a probabilistic model hasetg on accurate statistical es-
timates of the latency distribution. We investigated suadats in the second section of this
chapter. Experiments demonstrate the relevance of a hedeg distribution for modeling
the grid latency in its normal functioning mode, with an @itratio capturing large latencies
coming from system faults. In particular, a mixed log-nokfRareto model has been shown
to correctly fit to the measurement presented here and theemde of the computing element,
resource broker and day of the week has been studied. Sucldal isaa rationale for the
distinction between the tail weights that will be made infutlea8.
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In the previous part of this manuscript, the grid latency asdariability have been shown
to drastically reduce the performance of a workflow runninggroduction grid. For instance,
the performance gain that could be expected on the bronzdadapplication by reducing the
impact of the latency variability is in the order of a factar Qutliers (.e jobs whose latency
can be considered as infinite) may also dramatically distpgdications and strategies have to
be studied to reduce the risk of facing them and to deal wighinlevitable ones. In this part,
we investigate methods to achieve such performance imprents.

In the literature, some strategies aim at reducing the itnpiabe latency by pre-allocating
resources with dedicated agents before the execution afpkcation and directly connecting
to them (bypassing the middleware) when a job needs to beittedniGaronne et al., 2004
Germain et al., 20005 With such strategies, the latency penalty is actuallytetiibefore the
execution: reservation agents need to be launchgtigmtly early before the executiond at
least one latency duration before), which may not be realist all users. Even if reasonable
schemes can be set up, such reservations exploit a kind aflewdre flaws as they keep
resources busy for some time prior to the execution withamjguting anything. If a large
number of users adopt them, then one could expect that thagesevall-time of the jobs would
grow, leading the grid latency duration to increase too. global performance of the system
would thus degrade, requiring the users to submit resenvagents even earlier and finally
entering a vicious cycle. Besides, such pre-allocation edguires to forecast the amount of
submitted jobs, which is not always possible in particutafunctional or service workflows
(see chapte?). Yet, in some specific cases (in particular for applicatiowolving a few jobs
with a high priority), this kind of strategies would const# an interesting alternate to the ones
presented in this part.

In the following chapters, three strategies are envisagedduce the impact of the latency
and outliers. Service grouping (chapt®rand granularity optimization (chaptéy act at the
workflow level. They are both based on a reduction of the totahber of jobs submitted
by the application. The basic idea behind them is that theefedve number of submitted
jobs, the lower the probability to face high latencies. Timeebut optimization (chaptes)
corresponds to a parameter optimization at the job level. dtd main interest is toféciently
deal with outliers. All those strategies but the serviceugiog are based on probabilistic
models, assuming that the job latency is a random variabtessezhormal functioning mode is
described by a probabilistic distribution and that may faa#diers with a non null probability.
They are a direct consequence of the probabilistic appradopted in chaptes.
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his chapter studies service grouping as tions required to enable service grouping while
T a strategy to reduce the impact of the still respecting the SOA principles. The grouping
grid latency on the execution of a workflow. strategy itself is then described: it ensures that
In a Service-Oriented Architecture (SOA, see service grouping will not slow-down the work-
chapter 2), grouping services is not possible flow execution by breaking any kind of paral-
because they are black boxes only exposinglelism. Finally, experiments on the EGEE pro-
an implementation-independent interface to the duction grid are presented to evaluate the impact
outer world. Based on a dynamic wrapper, a ser- of this optimization on the execution time of a
vice factory is presented and fulfills the condi- workflow.
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ans ce chapitre, nous étudions le groupe- dynamique est présentée et permet de mettre
D ment de services pour réduire I'impact de en ceuvre le groupement de services tout en
la latence de la grille sur I'exécution d’'un flot de respectant les principes de SOA. La stratégie
traitements. Dans une architecture orientée ser- de groupement elle-méme est ensuite décrite :
vice (SOA, cf. chapitr@), grouper les services elle assure que le groupement ne ralentira pas
n'est pas possible car ce sont des boites noiresl’exécution du workflow en limitant le par-
qui n’exposent qu’une interface indépendante de allélisme. Enfin, des expériences sont présentées
l'implémentation au monde extérieur. Une usine sur la grille de production EGEE pour évaluer
a services basée sur un procédé d’encapsulationl'impact de cette optimisation sur le temps

d’exécution d'un flot de traitements.

7.1 Service grouping optimization strategy

On the one hand, grouping services of a workflow may reduceothéencountered latency by
reducing the number of submitted jobs required to run thdiegmon. Consider for instance
the simple workflow represented on the left side of figare On top, service®; andP; are
invoked independently. Data transfers are handled by eawiice and the connection between
the output ofP; and the input o, is handled at the workflow engine level. On the bottom,
P, and P, are grouped into a virtual single service. This service igatde of sequentially
invoking the code embedded in both services, thus resothi@glata transfer and independent
code invocation issues.

On the other hand, grouping services may also reduce workikrallelism (described in
chapter4) and we have to take care of the grouping strategy in ordervdodgperformance
losses. In particular, grouping sequentially linked segsiis interesting because they do not
benefit from any workflow parallelism. Those groupings cardbee at the services level,
i.e they will be available for each data item processed by thekfiaw. For example, consid-
ering the computational part of the workflow of the bronzend&d application introduced in
chapter3 and recalled on figurer.2, servicescrestLines andcrestMatch can be grouped
without parallelism loss as well as servid@latchICP andPFRegister.

From the middleware point of view, grouping strategies mksp e interesting because
it reduces the total number of jobs to handle, thus decrgakbim global load imposed on the
infrastructure. Yet, grouping services leads to the submisof longer jobs, which may also
increase the average queuing time as a damaging fiiglet.eConsistently with the approach
adopted in this thesis, we will not try to model the behavibthe middleware in order to be
able to predict the impact of those sidéeets. Rather, we will focus on the global system’s
behavior perceived by the grid end-user.

In practice, implementing service grouping is not straiginivard given that:
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Figure 7.1: Classical services invocation (top) and sergiouping (bottom).
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Figure 7.2: Workflow of the application. Services to be gmedijare squared in green. The
extracted sub-workflow is grouped into a single service,etaitbd on figure’.6.
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1. The services composing the workflow are totally indepahdeom each other: as
explained in chapteP, services are black boxes that only publish implementation
independent interfaces. Therefore, the workflow engin@otaccess the details of the
jobs submitted by the services.

2. The grid infrastructure handling the jobs does not haweiaformation concerning the
workflow and the job dependencies. The grouping cannot belleédrat this level.
Workflow learning solutions could eventually been devethpge have the middleware
detect dependencies between jobs from historical infdonafas done for instance
in [Shao et al., 204y but this would provide a middleware-specific service grimg,
which is not suitable.

Thus, a specific architecture has to be designed to allovicesrgrouping. In order to cope with
the first problem described above, we propose below a GeAeptication Service Wrapper
(GASW).

7.1.1 The Grid Application Service Wrapper

We developed a generic grid submission Web-Service. Timscgeis generic in the sense that
it is unique and it does not depend on the executable codebtmisult exposes a standard
interface that can be used by any Web-Service compliamtddetrigger job submissions. It
completely hides the grid infrastructure from the end uset takes care of the interaction with
the grid middleware.

To accommodate to any executable at runtime, this Genenptiegiion Service Wrapper
(GASW) is taking two diferent inputs: a descriptor of the executable command limedt and
the input parameters and data of this executable. The prioduxf the legacy code descriptor
is the only extra work required from the application develodt is a simple XML file which
describes the legacy executable location, command lirenpeters and inpytoutput data.

The main diference between this wrapper and related solutions (destcrib sec-
tion 7.1.1.) is that it is able to dynamically wrap code at runtime, thilevang optimization
strategies as the service grouping presented in this ahapigeed, as the workflow enactor
has access to the descriptors of the executables, it is @alolgnamically create a virtual ser-
vice, composing the command lines of the codes to be invaked,submitting a single job
corresponding to a sequence of command lines invocations.

Legacy code descriptor. The command line description has to be complete enoughdw all
dynamic composition of the command line from the list of pae#ers at the service invoca-
tion time and to access the executable and input data filea damsequence, the executable
descriptor contains:
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1. The name and access method of the executable. In our tumplementation, access
methods can be a URL or a Logical File Name (LFN). The wrappeesponsible for
fetching the data according to thosédrent access modes.

2. The access method and command-line option of the inpat ddte actual name of the
input data files is not mandatory in the description. Thodaeesawill be defined at the
execution time. This feature fikers from various job description languages used in the
task-based middlewares. The command-line option allowsstrvice to dynamically
build the actual command-line at the execution time.

3. The command-line option of the input parameters: pararseare values of the
command-line that are not files and which do not have any acoeshod.

4. The access method and command-line option of the outpaut @his information enables
the service to register the output data in a suitable plaee tife execution. Here again,
names of output data files cannot be statically determinedus® output file names are
only generated at execution time.

5. The name and access method of the sandboxed files. Saddilegeare external files
such as dynamic libraries or scripts that may be needed éexiecution although they
do not appear on the command-line.

The wrapper is then able to build a dedicated job with thetiojatia items provided at runtime
and to submit and monitor it to the grid. It enables a compiiteoupling of the grid con-
cerns from the service providers.§the medical image analysis scientists) and the workflow
users €.gthe clinicians). Ideally, this wrapper would be maintairi®da grid “expert” who
would configure and update it according to the middlewareistand evolutions. The service
providers would just release the descriptor of their colas tould be embedded in a workflow
thanks to the Web-Service standard.

Example. An example of a legacy code description file is presented urdig@.3 It corre-
sponds to the description of the executatiestLines which is part of the bronze standard
application (see its workflow in chapt@). It describes the scripirestLines.pl which is
available from the servdregacy . code. fr and takes 3 input arguments: 2 files (optietis1
and -im2 of the command-line) that are already registered on the agitlFNs at execution
time and 1 parameter (optiors of the command-line). It produces 2 files that will be regis-
tered on the grid. It also requires 3 sandboxed files that\aiadle from the same web server
as the executable.

7.1.1.1 Comparison with related systems

Here, we briefly review systems that are used to wrap legadyg tuo services to be embedded
in workflows.
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<description>
<executable name="CrestLines.pl">
<access type="URL">
<path value="http://legacy.code. fr"/>
</access>
<value value="CrestLines.pl"/>
<input name="floating_image" option="-iml">
<access type="LFN"/>
</input>
<input name="reference_image" option="-im2">
<access type="LFN"/>
</input>
<input name="scale" option="-s"/>
<output name="crest_reference" option="-cl">
<access type="LFN"/>
</output>
<output name="crest_floating" option="-c2">
<access type="LFN"/>
</output>
<sandbox name="convert8bits">
<access type="URL">
<path value="http://legacy.code. fr"/>
</access>
<value value="Convert8bits.pl"/>
</sandbox>
<sandbox name="copy'>
<access type="URL">
<path value="http://legacy.code. fr"/>
</access>
<value value="copy"/>
</sandbox>
<sandbox name="cmatch">
<access type="URL">
<path value="http://legacy.code. fr"/>
</access>
<value value="cmatch"/>
</sandbox>
</executable>
</description>

Figure 7.3: Legacy code descriptor example for the Genepiglidation Service Wrapper.
The location of the executable is first described. Then, tsyaund outputs participating

in the command-line generation are specified. Finally,resledependencies (such as dy-
namic libraries) are described in the sandbox section.
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The Java Native Interface (JNI) has been widely adoptechimtrapping of legacy codes
into services. Wrappers have been developed to automatprtisess. InHuang et al., 2003
an automatic JNI-based wrapper of C code into Java and thespmnding type mapper with
Triana [faylor et al., 200pis presented: JACAW generates all the necessary java an@<C fi
from a C header file and compiles them. A coupled tool, MEDhE&nt maps the types of
the obtained Java native method to Triana types, thus ewgthie use of the legacy code into
this workflow manager. Related to the ICENI workflow managerrnento et al., 2002the
wrapper presented in[et al., 2009 is based on code reengineering. It identifies distinct com-
ponents from a code analysis, wrap them using JNI and addscifisgCXML interface layer
to be plugged into an ICENI workflow.

The WSPeer frameworki{arrison and Taylor, 20(Q5interfaced with Triana, aims at easing
the deployment of Web-Services by exposing many of them iaigdesendpoint. It difers from
a container approach by giving to the application the cordwer service invocation. The
Soaplab systentfenger et al., 20(Q3s especially dedicated to the wrapping of command-line
tools into Web-Services. It has been largely used to intego@informatics executables in
workflows with Taverna®inn et al., 200}l It is able to deploy a Web-Service in a container,
starting from the description of a command-line tool. Trosenand-line description, referred
to as the metadata of the analysis, is written for each agpdic using the ACD text format file
and then converted into a corresponding XML format. Amonighedm specific descriptions, the
authors underline that such a command-line descriptian&must include (i) the description
of the executable, (ii) the names and types of the input dadgparameters and (iii) the names
and types of the resulting output data. As described latierformat we used includes those
features and adds new ones to cope with requirements of doeigan of legacy code on grids.

The GEMLCA environment [Pelaitre et al., 200p addresses the problem of exposing
legacy code command-line programs as Grid services. Ittesfaced with the P-GRADE
portal workflow manageri{acsuk et al., 20(J2 The command-line tool is described with the
LCID (Legacy Code Interface Description) format which ains (i) a description of the ex-
ecutable, (i) the name and binary file of the legacy code sxete and (iii) the name, nature
(input or output), order, mandatory, file or command linegfixand regular expressions to be
used as input validation. A GEMLCA service depends on a s#drgkt resources where the
code is going to be executed. Architectures to provide nesdorokering and service migration
at execution time are presented ifecskemeti et al., 2005

7.1.2 Implementing the grouping with a dynamic service faatry

Our above-presented service wrapper separates the algatiscription from the grid details:
grouping services is thus made possible by grouping thgorahm descriptions and submit-
ting the resulting description to the wrapper. To do thas, workflow engine can dynamically
enable services grouping by analyzing the workflow and geimgr grouped services on the
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fly. An application wrapper factory service is added to thehdecture. Its role is to instan-
tiate both the code wrapping services and the grouped sstvithe complete architecture is
diagrammed on figur&.4 and owes a lot to the ideas and work of David Emsellem. GASW
command-line descriptions are called MOTEUR descriptacsservices described with it are
called MOTEUR services. The MOTEUR factory is responsildledynamically generating
and deploying application services. The aim of this facierp achieve two antagonist goals:

e To expose codes as autonomous Web-Services.

e To enable the grouping of two of these Web-Services as a aroqe for optimizing the
execution.

On one hand, the specific Web-Service implementation defad. the execution of the
wrapped code on a grid infrastructure) are hidden to thewmes. On the other hand, when the
consumer is a workflow manager which can group jobs, it neetie taware of the real nature
the Web-Services (the encapsulation of a MOTEUR descjigtothat it could merge them at
run time. We choose to use the WSDL XML Format extension meishawhich allows to
insert user defined XML elements in the WSDL content itselé Mus strictly conform to the
WSDL standard while enabling our optimization strategy.
On figure7.4, we exemplify the architecture through a usage scenario:

R.1 First, the legacy code provider registers a MOTEUR XML dggor P1 to the MOTEUR
factory.

G.1 The factory, then dynamically generates a Web-Service vhi@ps the submission of
the legacy code to the grid via the generic service wrapper.

R.2 Another provider do the same with the descriptor of P2.

The resulting Web-Services expose their WSDL contractshi déxternal world with
a specific extension associated with the WSDL operation. ifstance, the WSDL con-
tract resulting of the deployment of therestLines legacy code described on figuie3
is printed on figure7.5. This WSDL document defines two typeGréstLines-request
andCrestLines-response) corresponding to the descriptor inputs and outputs andglesi
Execute operation. Notice that in the binding section, the WSDL duoeunt contains an extra
MOTEUR-descriptor tag pointing to the URL of the legacy code descriptor filedation)
and a binding to the Execute operatiaod{p:operation).

Suppose now that the workflow manager identifies a serviogpgng optimization€.g.P1
and P2, displayed in green in figured). Because of its ability to discover the extended nature
of these two services, the engine can retrieve the two qooreting MOTEUR descriptors.

C.1+2 The workflow manager can ask the factorycambinethem and
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<?xml version="1.0" encoding="utf-8" 7>
<definitions ...>
<types>

<schema>

<element name="CrestLines-request">

<complexType>
<sequence>
<element name="floating_image"
type="string"... />
<element name="reference_image"
type="string"... />
<element name="scale" type="string"... />
</sequence>
</complexType>
</element>
<element name="CrestLines-response">
<complexType>
<sequence>
<element name="crest_reference"
type="string"... />
<element name="crest_floating"
type="string"... />
</sequence>
</complexType>
</element>
</schema>
</types>

<message name="ExecuteSoapIn">
<part name="parameters"
element="CrestLines.pl-request" />
</message>
<message name="ExecuteSoapOut'>
<part name="parameters"
element="CrestLines.pl-response" />
</message>
<portType name="CrestLines.plSoap">
<operation name="Execute">
<input message="ExecuteSoapIn" />
<output message="ExecuteSoapOut" />
</operation>
</portType>
<binding ...>
<soap:binding transport="http://..." />
<operation name="Execute'">
<soap:operation soapAction="http://.../Execute"
style="document" />

<MOTEUR-descriptor xmlns="urn:...">
<location>http://...</location>

</MOTEUR-descriptor>

</operation>
</binding>
</definitions>

Figure 7.5: Extended WSDL generated by the factory for thdedatroduced in figur&.3



7.1. Service grouping optimization strategy 187

G.1+2 generate a single composite Web-Service which exposeseamatam taking its inputs
from P1 (and P2 inputs coming from other external services)) r@turning the outputs
defined by P2 (and P1 outputs going to other external seivices

I.1+2 The workflow manager can invoke this composite Web-Servites of the same type

than any regular legacy code wrapping service and it is adadesthrough the same
interface.

S.1+2 It also delegates the grid submission to the generic sulboni$geb-Service by sending
the composite MOTEUR descriptor and the input link of P1 aBdrithe workflow.

7.1.3 Grouping strategy

In order to determine a grouping strategy that does notdlice any slow-down, neither from
the user point of view, nor from the infrastructure one, w@ase the two following constraints:

e The grouping strategy must not limit any kind of paralleli@mser point of view) and

e During their execution, jobs cannot communicate with thekffow manager (infras-
tructure point of view).

The second constraint prevents a job from holding a resqust&vaiting for one of its ancestor
to complete. An implication of this constraint is that if gees A and B are grouped together,
the results produced by A will only be available once B wilhgalete. Moreover, a workflow
may include both MOTEUR Web-Servicese( services that are able to be grouped) and clas-

sical ones, that could not be grouped. Assuming those @ntty we can prove the following
rule:

Let A be a MOTEUR service of the workflow and,,...B,} its children in the

service graph. GroupinB; andA does not lead to any parallelism loss if and only
if:

1. B; is an ancestor of ever; for everyi # j and
2. each ancestor C & is an ancestor o or A itself.

Let us first prove that (1) and (2) areecessarygonditions to avoid parallelism loss. If (1) is
not respected, then there exists a cijcof A which is not a descendant Bf. If AandB; are
grouped, then workflow parallelism is broken betwém@ndB; becausd; has to wait forB;
to complete before starting. Similarly, if (2) is not respezt; then there exists an ancestor
of B; that is not an ancestor éf and workflow parallelism is broken betwe&randC whenA
andB; are grouped.

(1) and (2) are alssyficientto avoid any parallelism break in the workflow. Let us first
notice that grouping services does not breaka parallelism because this kind of parallelism



188 Service grouping Chap. 7

only concerns a single service of the workflow. Moreowssrvice parallelismrelies on the
independence of the processings of twéfatent data segments by two successive services.
As service grouping does not prevet from processing a given piece of data whieis
processing another one (assuming that data parallelisiot isroken, which is the case here),
service grouping does not break service parallelism. Tivesare left to prove that (1) and (2)
guarantee thaworkflow parallelism is not broken by groupind andB;. (1) guarantees that
there is no workflow parallelism betwedh and everyB;. Workflow parallelism is thus likely
to concerrB; only for services that are not children Afand thus cannot be broken by grouping
A andB;. Similarly, (2) guarantees that there is no workflow patafe betweerA and every
other ancestor dB;. Workflow parallelism is thus likely to conceronly for services that are
not ancestors dB; and thus cannot be broken by groupid@ndB;. m

Our grouping strategy tests this rule for each MOTEUR seroicthe workflow. Groups of
more than two services may be recursively composed by ssiveasiatches of the grouping
rule.

The constraints applied by the matching rule are illusttada three dierent grouping
examples in figur&.6. This simplified workflow was extracted from the bronze staddvork-
flow (see end of chaptét and chapteb). It is made of 4 MOTEUR services. As it can be
seen from the workflow graph, the data dependencies willreafa sequential execution of
these 4 services. It is therefore expected that the foulEnare grouped in a single one in
order to minimize the job submission overhead. On this fignotations nearby the services
correspond to the ones introduced above in the grouping ke each of the 3 examples of
figure 7.6, the grouping of the two services outlined by a green boxudist:

1. On the left of figurer.6, the tested MOTEUR serviokis crestLines. Ais connected
to the workflow inputs and it has two childre®, andB;. By is a father ofB; and it
only has as single ancestor whichAisThus, the rule matche# andB, can be grouped.
If there were a servic€ ancestor ofBy but not of A as represented on the figure, the
rule would not matchA andC would have to be executed in parallel before starigg
Similarly, if there were a servic child of A but not ofBy, then the rule would not match
as the workflow manager would need to communicate resultegltite execution of the
grouped jobs in order to allow workflow parallelism betwdgandD.

2. Inthe middle of figur& .6, the tested servic&is nowcrestMatch. A has a single child:
Bo. By has two ancestorgy andC. The rule matches becau€eis an ancestor oA. A
andBy can then be grouped.

3. On the right of figure.6, A is thePFMatch service. It has only one chilB, which only

has a single ancestd, The rule matches and those services can thus be grouped.

Finally, whenA is thePFRegister service, the grouping rule does not match because it does
not have any child. Note that in this example, the recursireeiging strategy leads to a single
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Figure 7.6: Service grouping examples. On this workflow, gheuping rule matches 3
times (once for each green box), thus resulting in a singlécewrapping those 4. On the
left part of the figure, service C or D would prevent the grogpbetweercrestLines and
crestMatch because it would break workflow parallelism between A and € lzgtween
By and D.

job submission, as expected.

7.2 Experiments on the EGEE production grid

To quantify the speed-up introduced by service grouping ogahapplication workflow, we
made experiments on the EGEE production grid infrastrestusing the whole biomed VO
(see a description of this infrastructure in chager

7.2.1 Experimental workflows

First, we study the impact of service grouping on the workflofathe bronze standard ap-
plication represented on figui®2. On this application, the grouping rule matches twice, as
represented on the figure. Moreover, to show how servicegyngus able to speed-up the exe-
cution on highly sequential applications, we also congdersub-workflow of our application,
as shown in figur&.2 (dash-circled workflow) . It is made of 4 services that cqoeed to the
crestLines, crestMatch, PFMatchICP andPFRegister ones in the application workflow.
Our grouping rule groups those 4 services of the sub-workfilow a single one, as it has been
detailed in the example of figurg6. It is important to notice that even if this sub-workflow is
sequential, and thus does not benefit from workflow paraheliits execution on a grid does
make sense because of data and service parallelisms. Tatvéhe impact of our grouping
strategy on the performance, we compared the executiorstohéhose workflows with and
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Number of input|  Sub-workflow (figure7.6) Whole application (figur&.2)
image pairs Number of jobs | Speed-up  Number of jobs | Speed-up
Regular| Grouping Regular| Grouping
12 48 12 2.91 72 48 1.42
66 264 66 1.72 396 264 1.34
126 504 126 2.30 756 504 1.23

Table 7.1: Grouping strategy speed-ups

without the grouping strategy.

7.2.2 Results

Table 7.1 presents the speed-ups induced by the grouping strategy goowing number of
input image pairs and for the two experimental workflows désd above. This speed-up is
computed as the ratio of a regular grid execution time (wleareh service invocation leads
to a job submission) over the execution time using the graygirategy. We can notice on
this table that service grouping dodseetively provide a significant speed-up on the workflow
execution. This speed-up is ranging fror@3.to 291.

The speed-up values are greater on the sub-workflow thareomtible application. Indeed,
on the sub-workflow, 4 services are grouped into a single tines saving 3 job submissions
for each input data set. On the whole application workflow, ghouping rule is applied only
twice, thus only saving 2 job submissions for each input dataas depicted on figuie2.

7.3 Conclusions

A service grouping rule ensuring that no parallelism is lemknside the workflow has been
presented in this chapter. Coupled with a dynamic serviget®fy that enables the implemen-
tation of services grouping while respecting the SOA ppies, this rule allows a saving-up
of job submissions and therefore a reduction of the impatii@frid latency on the workflow.
On the workflow of the bronze standard application, speeslaifl.2 to 1.4 can be achieved
and on a dedicated workflow, speed-up values can reach aBnost

It is important to notice that this grouping strategy canslotv down the application be-
cause it does not break any parallelism (even if it is trué¢ sbae side-gects resulting from
an increase of the job size may limit the expected speedAipext step in service grouping
could be to limit parallelism at some point, thus furtheruehg the number of submitted jobs
and the risk to face high latencies. In this case, a comp®wmaild have to be found between
parallelism loss and latency reduction. Such a strategywisstigated in chapté&where data
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parallelism is restricted in order to limit the impact of tla¢ency. Breaking workflow paral-
lelism to reduce the number of submitted jobs may also besaged. In this case, a metric to
foresee the interest of such a grouping could be providedhéwiorkflow model presented in
chapter6.

Yet, grouping services does not prevent the workflow fronmfgoutliers, which could still
be damaging. To avoid them, setting a timeout value to ths iplmandatory. A method to
properly set this timeout value is investigated in the néepter.



192 Service grouping Chap. 7




Chapter 8

Optimization of the timeout value

Contents

8.1 Model of the user job latency taking into account the timeut value . . . 195
8.1.1 lllustration forareliablesystem . . . . ... ... ... ...... 197
8.1.2 Expectation of the latencfaced by auserjob . . . . .. .. ... 199

8.2 Timeout optimization for classical latency distributions . . . . . . .. .. 200
8.2.1 Uniformdistribution. . . . . . ... ... ... ... ... ... 201
8.2.2 Truncated Gaussian distribution. . . . . ... ... ... ... .. 202
8.2.3 Exponential distribution. . . . . ... ... .0 0 0000 203
8.2.4 Weibull distribution . . . . . .. ... o 204
8.2.5 Log-normal distribution. . . .. .. .. ... ... ... .. ... 204
8.2.6 Paretodistribution. . . . . ... ... oo 207
8.2.7 Results summary and interpretation. . . . . . ... ... ... .. 207
8.2.8 Performance improvement. . . . . . . . ... oL 208

8.3 Experiments on the EGEE latency distribution. . . . . . ... ... ... 210

8.4 Conclusions. . . . . . ... 210




194

Optimization of the timeout value

Chap. 8

n this chapter, another solution for reducing
I the impact of the grid latency is investigated:
setting a timeout value and resubmitting abnor-
mally long jobs. The timeout value has to be
properly set in order to prevent the job from fac-
ing too high latencies or to remain blocked some-
where in the grid because of a system failure.
Otherwise, setting a timeout value will at least be

and triggers overkilling cancellations and resub-
missions. The probabilistic approach introduced
in chapter6 is considered. Through a theoreti-

cal study on classical latency distributions, typi-
cal behaviors are highlighted: in particular, the

importance of the weight of the tail of the distri-
bution of the latency is noticed. Finally, results
obtained on an experimental distribution mea-

useless and could even lead to considerable per-sured on EGEE give an idea of the performance
formance drops if the timeout value is to small gain that could be expected with such a method
in practice.

ans ce chapitre, une autre solution de considérablement les performances si le délai
D reduction de l'impact de la latence est d’expiration est trop faible et conduit a des an-
étudiee. Assigner un délai d'expiration aux nulations et ressoumissions de taches excessives.
taches pour les resoumettre en cas de la- Une étude théorique des distributions classiques
tence trop importante est une stratégie a dou- permet de mettre en évidence certaines pro-
ble tranchant : d'un coté, si la valeur du prietés comme l'importance du poids de la queue
délai d’expiration est fixée correctement, les de la distribution de la latence pour I'existence
latences excessivement importantes provenantou non d’'une valeur finie du délai d’expiration
d'une défaillance du systeme peuvent eétre optimal. Enfin, des résultats obtenus sur une dis-
evitées. Mais d'un autre, si cette valeur tribution expérimentale mesurée sur EGEE don-
est mal fixée, assigner un délai d'expiration nent une idée du gain de performance qui peut
aux taches sera au mieux inutile et dégradera étre espéré en pratique par I'utilisation d'une

telle méthode.

Time-outing and resubmitting abnormally long jobs is a camnnstrategy to reduce
the impact of latency and outliers. However, choosing tineetiut value is often let to
the administrator or to the end user. A non trivial tradé-eas to be found as a too
long timeout will not prevent the job from facing excessyéligh latencies, while a too
short one may be overkilling, causing the unnecessary remsiion of jobs that almost
completed. This problem is often encountered when consiglarmreliable systems and
timeout strategies have been designed in areas féeyadit as TCP throughput optimiza-
tion [Kesselman and Mansour, 2Q0HTTP requestsReinecke et al., 2004ie et al., 2002
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or power saving devicesong and Pedram, 206

From this chapter, two ffierent kind of job definitions will be used. #serjob will denote
the computation that need to be performed by the user. Itngposed of one or severgtid
jobsthat are the actual jobs that will be submitted on the gridr iRstance, in this chapter,
the total latency faced by a user job is first modeled in sadid in order to determine the
optimal timeout value to set to the grid jobs. Then, sec8dhpresents some results of time-
out optimization on classical distributions. To show how tptimization performs on a real
infrastructure, the asymptotic behavior of the system &edrhpact of outliers are particularly
studied. Some experimental results from a distributiorheflatency measured on the EGEE
production grid are finally presented in sectiB. To facilitate legibility, many of the detailed
proofs of the theoretical results are deferred to appeBdikhe termdatencyandoutliersrefer
to the definitions already given: the latency is the duratiom the job submission instant and
the beginning of its execution and an outlier is a job whosenley is largely prevailing on the
other ones (the latency faced by outliers is consideredfasta).

8.1 Model of the user job latency taking into account the
timeout value

As motivated in chapte®, a probabilistic modeling of the large-scale workload ngerahas
been adopted. In this section, our goal is to determine theilolition of the latency faced
by a user job taking into account timeout and resubmissiatisnespect to the timeout value
and the grid latency. Lel be the total latency faced by a user job (including all itseptial
resubmissions) antl, be a user defined timeout value. The system is seen as a black bo
introducing a positive latencRR on the grid jobs. Consistently with the approach adopted in
chapters, R is assumed to be a random variable. The outlier ratio is @ehbyp. The case
o = 0 corresponds to a reliable cluster management systents fealising jobs loss are very
unlikely (highly reliable LAN, robust schedulers). The eas > 0 is needed to model grid
infrastructures where lower reliability of WANSs, scal&exts and scheduling errors lead to a
significant number of outliers. For instance on the EGEEastiucturep is in the order of 2%
to 3%.

g is the probability for a grid job to timeout. A grid job timesit either if it is an outlier or
if it faces a latency which is superior tQ. Thus:

p+ (1 -p)P(R>1.)
= 1-(1-p)Fr(t). (8.1)

O
Il

If a grid job times-out, then it is canceled and a new one islbyastted. The cost of
canceling a grid job and the resulting system load are veny lthey are neglected in this
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model. Moreover, the submission time of a resubmitted gixlig part of the grid latency and
is included inR. Thus, consecutive submissions can be considered as mdiee

Let J, be the latency faced by a user job from tHerid job submission to its completiod;
are independent and identically distributed random véegmbThey can be recursively defined
as:

. . (8.2)
to + Ji;1  with probabilityq.

5 { R with probability 1— q
The goal is to determine the distribution df = J;, the total latency faced by a user job,
including all its resubmissions. The distribution dhas to be determined with respect to the
grid latencyR (i.e the latency faced by a grid job if no timeout is set) dand J is superior to

nt,, if and only if n grid jobs timed-out. Thus:
P(J>nt,)=q" sothat PO <nt,)=1-q". (8.3)

Consequently, the cdf ad is known for every multiple of the timeout value. A complete
expression ofF; now has to be obtained. Interpolatifg in every |nt.,, (n + 1)t.] is clearly
not suitable. Indeed, those intervals can be quite large mggpect to the total latency and the
interpolation error is likely to produce inconsistent riésult is better to notice thdor all tin
[nt., (N + D)t [:

F,(t) P(J < tft € [nt,, (N + L)t.])

PJ<nt.)+P(nt, <J<t|t<(n+ 1)

and thus, according to equatiérs:
Fij(t) = 1-9"+P(nt, <J<t|t<(n+ Dt). (8.4)

Given thatt < (n + 1)t., a user job latency is in [nt., t] if and only if n grid jobs timed-out
(probabilityg™) and the  + 1) one succeededlg it was not an outlier (probability & p) and
R <t - nt,, (probability Fr(t — nt.,)). Therefore,

Pint, <J<t|t<(n+1t.) = q'A-p)Fg(t-nt.)
We finally get,Vt € [nt., (N + L)t [:
F;) =1-q"+q"(QA-p)Fr(t—nt,) with q=1-(1-p)Fg(t.). (8.5)

Given thatR>0, it is clear that;(0) = 0 and lim_,,. F;(t) = 1 (note that limp,,., N = +o0
and thus lim,,, 9" = 0) so thatf; is a pdf. It is important to notice that because it reveals tha
the timeout strategy is able to highly reduce the impact dliens. With a finite timeout value,
the probability for the latency faced by the user job to be infinite is null, whereas without
timeout, it isp.
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Moreover,F; is continuous at evemyt,,. Indeed, according to equati@nmb, the expression
of F; at the lower bound of the segment], (n + 1)t ] is:

Fsnt,) = 1-9"+d"(1-p)Fr(O0)=1-7"

And at the upper bound of this segmefaj,is:

Fyo((n+ Dite) 1-9"+q"(1-p)Fr((N+ Dt = Nts) = 1 - "+ 0"(1 - p)Fr(ts)
1-9q"+q"(1-q) (given equatior8.1)

1-q

n+1

However, in generak:; is not diferentiable imt...
Note that ifp = 0, then equatioB.5resumes to:

Fi) =1-q"+g"Fr(t - nt,) with g=1- Fg(t.).
whereas with outliers, it was:
Fit) =1-9"+q"(1-p)Fr(t —nt.) with gq=1-(1-p)Fg(t.).

It means that the outlier case can be derived from the reliedse by replacingg with (1-p)Fg
in the expressions df; andg. We will use this property to simplify some interpretationghe
following of this chapter.

8.1.1 lllustration for a reliable system

If no outlier is present, the choice of a timeout value canMadLeated by comparing the latencies
faced by a user job withJ) and without R) setting a timeout value. Figui&1 displays an
example of a cdf foR (red curve) and (green curve). Note the singularitiesrdy, points. On
the upper graph, the distribution Bfis Gaussian with mean 300 seconds and standard deviation
100 seconds, truncated above zero to avoid negative latethegs. The timeout value is equal
to the mean of the original Gaussian (300 seconds). It is ofssoa very low timeout value
leading to many resubmissions. We can graphically notiaeftr everyt, Fg(t) > F;(t), which
means that at any tintethere is a higher probability th& < t than that] < t. In this case, it
would thus have been better not to set any timeout value aghtyhpenalizes the execution.

On the other hand, the bottom of figugel displays an example of a cdf & andJ in a
case where the timeout choice improves the execution. Tineotiit value is still 300 seconds
but the distribution oR has a longer tail than in the former exampiis actually log-normal,
with u=15 seconds and=10 seconds. In this case, it seems that for e¥eRg(t) < F;(1),
which means that this timeout value reduces the total Igtéateed by a user job.
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Figure 8.2: The cdfs of the latency witholg) and with ;) a timeout value cannot be

compared for every time point. The optimal timeout value bardetermined by expecta-
tion minimization.

As suggested by those graphical remarks, the impact of sone®ut choices on the user
job latency may be evaluated by comparkhgandFg only. However, apart from those partic-
ular cases, it is often not possible to have general resnltes@comparison betwedty andFg
at every time point and the configuration displayed on figus& is observed. On this figure,
the distribution ofR is log-normal, withu = 5.5s,0- = 1s and a timeout value of 300s. In this
case, minimizing the expectation dfwith respect td., is a natural solution to optimize the
timeout value.

8.1.2 Expectation of the latencyd faced by a user job

Computing the expectation of the latency faced by a usegeberal conclusions can be made
on its behavior when the timeout value increases, indepglydieom the system latency dis-
tribution. As shown in appendi®.1, The expectation of the latencyfaced by a user job
is:
. ("
E;(te)= R(tw) f ufr(u)du+ A pFa) teo- (8.6)

Equation 8.6 compares to similar expressions derived for modeling cetot

times probabilistically: equation 6 invf§in Moorsel and Wolter, 20)6and equation 1
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in [Libman and Orda, 2002  In both cases, the authors introduced a fixed cost
penalty to resubmission that is considered here to be ieduth the latencyR.
In [van Moorsel and Wolter, 20(6the authors also derives higher momentsiaind some
relevant properties about them.§. their existence). Our hypotheses are similar to theirs, ex-
cept that they do not take into account outliers that are gbmmportance on the production
infrastructures that are targeted in this chapter. Thisup@ter is characteristic of unreliable
systems and is needed to properly model a grid infrastractum [Libman and Orda, 2042
the authors do take into account the outlier ratio (denadeih the context of the retransmis-
sion of network packets. However, the studied hypothesesotdeeally match ours. In our
case, a grid job is abandoned when it times-out (simple Blwhereas it is still monitored
in [Libman and Orda, 2092

As shown in appendiB.2, E; has the following limits:

lim Ey(ts) = 4o if p#0 (8.7)

and tIim E;(t.) = Er otherwise (8.8)

Moreover, ifp # 0 (with outliers), the straight-lin&g + l’%ptoo IS an asymptote oE;(t.,). The
first limit can be explained by noticing that if a single grabjis an outlier, then the latency
faced by the user job is infinite. When — +oo, the probability for encountering an outlier
tends towards 1 and the expected latency faced by the uséenols towards infinity. It is
thus mandatory to set a timeout value in case of outliers.sBeend limit is also intuitive: in
absence of outliers, if no timeout value is set, then onlynglsigrid job is submitted and the
expectation of the latency faced by the user job resumestexpectation of the grid latency.

8.2 Timeout optimization for classical latency distributions

In this section, some classical distributions of the layeRare studied from a theoretical point
of view in order to understand how the timeout value impalesdxpectation of the latency
faced by the user job both with and without outliers. Digitibns with light tails (uniform,
truncated Gaussian and Weibull with shape parametgare distinguished from heavy-tailed
ones (log-normal, Weibull with shape parameté&) and power tails (Pareto) to show how they
exhibit different behaviors. The exponential distribution will congg a transition between
light and heavy-tailed distributions. Light-tailed dibuttions are the ones that decay faster than
the exponential. In this case, there exisssich that: lin, ., €'(1 — F(t)) = 0. On the contrary,
heavy-tailed distributions decay slower than the expdakntlim,,., €*(1 - F(t)) = +co.
Power-tailed distributions are a subset of the heavydailees. In this case, there existand

b such that lim, ., =£© = p,

ta
For each distribution, the goal is to determine the optinmaébut value:

f, = arg rtnir{EJ(too)}.




8.2. Timeout optimization for classical latency distrilouns 201

EJ 4

a+b +b P

2 1-p

atb | _----" 1

I I I
| | |
T . .
a b  timeout value a b  timeout value

Figure 8.3: Behavior of the expectation of the latefgift.,) faced by a user job for the
uniform distribution without (left) and with (right) ou#rs.

In case of very reliable systems (when no outliers are ptgsiie optimal value of the timeout
may be-+oo, which means that no timeout should be set. Another singqapimal timeout
value is 0. This configuration occurs when the probabilitydayrid job to face a null latency
is so high that it is interesting to resubmit a new one as s@oon@ knows that the current
one is going to face a non null latency. This result would dmyrealistic if it was possible
to resubmit an arbitrarily large number of jobs at no addiéibcost. Obviously, the overhead
induced on any real system would finally slow down the praocess

8.2.1 Uniform distribution

In this case, the pdf of the system latency is:

(8.9)

ﬁ if te[a, b
0 otherwise

It is possible to derive from equatiéh6the expectation of the latendyfaced by a user job:

400 if t, <a
Ej(te) = { =2 4t 2leple® it c[g b (8.10)
Weo) =0 727 T heTqma)19) o €13, :
B8 4t otherwise
0

The curve ofE;(t.,) is depicted on figur&.3. The optimal timeout value ib both with and
without outliers. Without outliers, setting the timeout+oo is also optimal because the ex-
pectation of] is constant in [byoo[.  If there is no outlier, it can be graphically noticed that
setting a timeout always penalizes the execution. Indezfigare8.4 shows, the cdf of the
latency with timeoutlt;(t)) is lower than the cdf of the latency without any timedgk(t)), for
every timeout valué,, and every time point t.
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a tin‘f ‘b 2ti:nf
Figure 8.4: Behavior of the cdf; of the latency faced by a user job (green) and theFgdf
of the grid latency (red) for a uniform distribution withoottliers.

8.2.2 Truncated Gaussian distribution

Normal distributions are commonly used but they do not eXelnegative values. In this case,
the latency cannot be lower than 0. We are thus considering$an distributions with mean
and standard-deviatian truncated above 0. In this case, the pdf and cdf of the systgandy
are:

| e i =0
R = o o
otherwise

Fr() = %E@ with @) =L [ ei¥du

with @ being the cdf of the normed and centered Gaussian diswifoub is linked to the error
function (erf) as detailed in appendi.9.
As shown in appendiB.5, the expectation of the latency faced by a user job is then:

o(8)-o(52) | 1 o ()
o(5)-o(5r) Toe

EJ(too) = u+o

: @(5)—@(*‘%”]
with ¢ = @’ the pdf of the normed and centered Gaussian distribution.

The curve ofE; is plotted on figure3.5. E; exhibits diferent behaviors depending on the
presence of outliers or not. If there is no outlier £ 0), thenE; is decreasing towards its
limit Eg whent,, — +c0. On the other hand, when# 0, thenE; exhibits a global minimum
reached fof,,< + co. The corresponding proof is based on the fact that the falativative of
E; is always positive, so that we can study the existence oftamdbe lower order derivatives.
It is reported in appendii8.6.

If the distribution of the system latency is Gaussian andetl®no outlier, time-outing is
not a solution to limit the impact of variability, regardgesf the order of magnitude of the
variability.
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Figure 8.5: Behavior of the expectati@ of the latency faced by a user job for a truncated
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Figure 8.6: Behavior of the expectatidy of the latency faced by a user job for an expo-
nential distribution without (left) and with (right) oudfs.

8.2.3 Exponential distribution

In this case, the cdf of the system latency is:
Fr(t) = 1-e“.

And according to equatio®.6, the expectation of the latendyfaced by a user job is:

+ Pl
a (1-p)(l-e)

Ej(ts)

The curve ofE;(t.,) is depicted on figureé3.6. In case of outliersg; is increasing and the
best timeout value i§, = 0. If there are no outliers, the expectation bfs independent
from t.,, which is a singular behavior particular to the exponerdiatribution, as proved in
appendixB.3. The exponential distribution is a particular case of thabi one which is
studied in the next section.
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8.2.4 Weibull distribution

The Weibull distribution is typically used to model the ta# of technical devices. For this
distribution, the cdf of the grid latency is:

Fa) = 1-e ()

where k is a shape parameter aht a scale parameter of the distribution. In the context of
failure modeling,k<1 means that the failure rate decreases over tkne, 1 means that the
failure rate is independent from time akd1l means that the failure rate increases over time.
In this case, the random varialiRcan be seen as the instant at which a grid job compleges,
R models the success of a grid job instead of its failure. Nio&t the exponential distribution
of parameter 11 is a Weibull distribution with k1.

In this case, the following results can be proved:

e If k> 1, then setting a timeout value always penalizes the exatutihatever this value
is. The optimal timeout value is thusx (no timeout). This result is consistent with the
fact that the Weibull distribution witlk = 3 is often used to approximate the Gaussian
one. In this case, it has been shown in secBdh2that setting a timeout value always
penalizes the execution.

e If k < 1, then the timeout value has to be as low as possible. Thealptimeout value
is 0.

e If k = 1, then the distribution oR is exponential and the timeout value does not impact
at all the latency faced by a user job.

The corresponding proofs are reported in appedik

The obtained results are consistent with the classicalpregation of the shape parameter
of the Weibull distribution. Indeed, whdo-1, the success rate of a grid job is increasing over
time, which explains that time-outing will penalize the ug#. On the contrary, whek<1,
the success rate of a grid job is then decreasing over tintetimue-outing as soon as possible
becomes mandatory.

8.2.5 Log-normal distribution

The log-normal distribution is a typical example of heaayldd distribution.
In [Lietal, 2004, it is used to fit job running times on clusters. In this sewti the
grid latency is assumed to have a log-normal distributiothypiarameterg ando. In this
case, the cdf and pdf of the system latency are:

Int—pu

Fr(t) = cI)( ) and fg(t) = Vo
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The expectation and standard-deviation of the latency are:
&2
Er=e"7 and op=(¢" -1)e¥ . (8.11)

In this case, as reported in appendix/, the expectation of the latencyfaced by a user
job is:

Bolte) = ER( () A= po0e)
In(t.) - u

This expression shows that the minimizatioregfcan be performed independently franon
the transformed variablg.,. The obtained solution.. (o, p) only depends ol andp. The
optimal timeout value can then be written as:

f.(u, o) = ¢K(o,p) where K(o,p) = &*=0) (8.13)

D%, - o) Xw-§( : 1)) (8.12)

where X, =

and:
N . D (Xoo — 0) o2 ( 1 ))
X (0, p) = arg mi ——t & [ — - 1]].
(o, p) = argmin, A= )00
K(o, p) is actually the optimal timeout value far= 0.

We also have the following limit fot,, = O:
im Es(te) = lim Ey(xs) = +oo.
This infinite limit proves that whep # 0 (with outliers), there exists a finite non null optimal
timeout value that minimizels;. Indeed, in this case, the limit &; whent,, tends towards in-
finity is infinite, according to equatio®.7andE; thus has to reach a global minimum (because
it is continuous on J0+ool).

The existence of a global minimum &f(t.,) whenp = 0 is not straight-forward. Given
the infinite limit of E; whent,, tends towards 0 and given tha§(+o0) = Eg, it resumes to the
existence of &, for which E;(t..)<Er. If o0 > 1, thent,, = € satisfies this relation. Indeed, in
this casex., = 0 and according to equatiéhl2

E)(Xe = 0) = (2@(—0) ; e‘é) Ex

A numeric resolution then shows thaj<Eg if and only if o > 0.9311. Numeric simulations
suggest thaE; has a global minimum even for lower valuescaf However, an analytic proof
still has to be derived.

Figure 8.7 displays a simulation of the optimal timeout value fet0, several values of
the outlier ratio andr- ranging from 1 to 2 seconds. We first can notice #ét, p) seems to
decrease with respect o The timeout value thus has to be reduced when the propasfion
outliers is increasing, which is consistent. Moreoverggian outlier ratio, the optimal timeout
value foru = 0 is decreasing as is growing. It is also consistent because the standard-
deviation of the log-normal distribution is increasing hwespect tor (see equatiof.11). The
optimal timeout value thus has to be reduced as the vatabiiithe infrastructure is growing.
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Figure 8.7: Evolution of the optimal timeout value fo£0 in the log-normal case (o, o)
is decreasing with respect j@and o, which indicates that the timeout value has to be
reduced when the variability of the latency and the outléiorincrease.
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Figure 8.8: Behavior of the expectati@y of the latency faced by a user job for a Pareto
distribution of the grid latency. Left: no outlierp & 0); Right: p # 0.

8.2.6 Pareto distribution

The Pareto distribution was introduced to represent thteiloligion of wealth and proved to be
very accurate to model a large class of computer systemsuregasnts (jobs durations, size
of the files, data transfers length on the Internet.HarEhol-Balter and Balter, 2021t is an
example of power tailed distribution. The cdf of the systateihcy is then:
Fat) = 1- (i) with a and v > O.
a+t
The expectation is only defined fer1. Then:

a
T
In this case, the expression of the expectatignof the latency faced by a user job can be
directly derived from equatio.6and it is:

Er =

a+tey— a(%)v te 0

Ei(t) = ; + _ + t.,.
B e A R (3 R

We also have the following limit when the timeout value isInul

a
V(1-p)

It can be shown thdE; is increasing with respect to the timeout value, regardbéske p
value (see proof in appendi8). The optimal timeout value is thus 0. The behavioEgft..)
is depicted on figuré&.8.

t!xl,To Eats)

8.2.7 Results summary and interpretation

Table 8.1 displays a summary of the results obtained for various ibigions of the system
latency. Those results suggest that the weight of the tathefdistribution of the system la-
tency is a discriminatory parameter for the timeout optetiizn when outliers are not present.
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Distribution of the latency Without outliers | With outliers| Tail

(Fr) (0 =0) (0>0) of Fr

Uniform no timeout (or b) b Light

Trunc. Gaussian no timeout 0 < f, < +c0 | Light

Weibull k>1 no timeout ? Light

Exponential any 0 Exp.
Weibull k<1 0 ? Heavy
Log-normal f1,0) fo = eK(0) < +0 | 0 < f, < +00 | Heavy
Pareto ¢>1) 0 0 Power

Table 8.1: Optimal timeout values. The weight of the tailhaf tlistribution is an important
parameter of the problem.

Indeed, only heavy-tailed distributions such as the logyad, or the Pareto ones lead to finite
optimal timeout values. In this case, which correspondbéanost realistic one, the optimiza-
tion speeds up the execution. On the other hand, when thébdisdn of the system latency
decays faster than the exponential, (which is the case &6tussian truncated distribution,
for the Weibull one withk > 1, and for the uniform one) then setting a timeout value avay
penalizes the execution and the optimal timeoutds. The exponential distribution stands in
the middle and is notféected by the timeout value.

As noticed in sectiom.1, taking into account outliers corresponds to repladiady (1 -
p)Frin Fjandg (and thus irg;). In this case, there is a probability to face an infiniternaig
which makes the tail of the grid latency distribution heamathematically, the distribution of
the system latency becomes heavy-tailed because, lige®*(1 - (1 — p)Fr(X)) = +o0 when
a > 0). Consistently, the optimal timeout value is then alwaggdi

8.2.8 Performance improvement

In case of reliable systems (without outliers), the expemteof the latency faced by a user job
without timeout equals to the one of the system latency.igd#ise, the rati% evaluates the
speed-up yielded by the optimization. If the latency of thetem is light-tailed, then setting
a timeout value always penalizes the execution. The bestegly is thus to set the timeout
value to infinity. In this case, the optimization does notvile any speed-up with respect to
the expectation of the system latency. Concerning the tase of an exponential distribution,
the expectation of the latency faced by a user job is indegatrfcom the timeout value and the
optimization does not lead to any speed-up.

The optimization becomes interesting for heavy-tailedriistions as already suggested.
For the log-normal case, figui@9 displays a numerical simulation of the evolution of the
speed-up of the optimization with respectdadior a particular value of:. It shows that the
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Figure 8.9: Evolution of the speed-up of the optimization o= 6.4s in the log-normal
case. The more variable the infrastructure, the more istieig the timeout optimization.

speed-up is growing witbr. In this case, both the expectatidfr] and standard-deviatioor)
of the grid latency without any timeout are also growing witlisee equatioB.11). Thus, the
higher and the more variable the latency, the more intergshie timeout optimization.

Concerning the Pareto distribution, the optimized expewtaf the latency faced by a user
job without outliers is?, whereas the one obtained without setting any timeotkis= -%;.
The speed-up obtained by the optimization is thts This value is maximal for = 1 and
decreases towards 1 whemcreases. Moreover, under Pareto assumption, the varafritbe
system Iatencf%) Is decreasing with respect to Thus, the more variable the latency

of the infrastructure, the higher the speed-up yielded yobtimization.

When outliers are present, the optimization of the timeoev@nts the expectation dfto
be infinite. The impact of the optimization can then be evaddy comparing the optimized
expectation of the latency faced by a user job to the onemédaivithout outliers. In case of a
uniform distribution, outliers add the terhi‘_’—p to the expectation of the latency faced by a user
job. This term is increasing with respect to the outlieraand tends towards infinity when
tends towards 1. The exponential distribution and the Bare¢ exhibit a similar behavior: the
outliers introduce an extrg}; factor on the expectation of the latency faced by a user job.
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8.3 Experiments on the EGEE latency distribution

In this section, we present experimental results obtairyech&asuring the distribution of the
latency of the EGEE grid infrastructure on a particular tipexiod. This distribution was
described in sectiofi.2.10of chapter6 and can be accurately modeled by a mixed log-normal
and Pareto model. Thus, according to the theoretical stadghaected above, the expectation of
the latency with respect to the timeout value should exlailgjtobal finite minimum both with
and without taking into account outliers.

If outliers are not taken into account, the evolution of thpextatiorE; of the latency faced
by a user job with respect to the timeout value is plotted omr&@.10 E; converges towards
Er as predicted by the theoretical analysis. It reaches a naimifior f,, = 360s. At this optimal
point, E;(f.,) = 289s wherea&g = 393s. The speed-up with respect to an execution without
timeout is 136.

The evolution ofE;(t.,) taking the outliers into account is also plotted on fig8réQ E;
effectively tends towards its asymptote. The optimal timealieft,, is now 358 seconds and
E,(f.) has grown to 300 seconds. Setting the optimal timeout vélue limits the impact of
the outliers to a 11-seconds loss, whereas it would be mugttehif the timeout value is not
properly set, as suggested by fig@&&Q This figure also shows that the timeout value should
better be overestimated than underestimated: both cureaspidly decreasing to the optimal
timeout value whereas they increase more smoothly after it.

Once the distribution of the grid latency is available (seaptert for latency estimations),
deriving the optimal timeout value with this method is easilttomatable. The optimization
criterion (.e. E; written in equatiorB.6) is computable in a short time: it mainly includes the
computation of an integral aifz(u), which is a piecewise linear function when an empirical
distribution is considered. For instance, plotting thevesrof figure8.10 takes less than 2
seconds on a modern PC.

8.4 Conclusions

In practice, setting a timeout value to the grid jobs is avai¢ strategy to reduce the impact of
the grid latency and it is required to keep the impact of ewliunder control. In this chapter,
a probabilistic model of the latency faced by a user job tgkimo account time-outing and

resubmissions was presented. It can describe both job reareag systems prone to face
outliers (grid) or not (cluster). The optimal timeout valoghly depends on the distribution

of the system latency. Without outliers, the heavy-tailetrdbutions lead to a finite optimal

timeout value whereas for the light-tailed ones settingr@etiut value always penalizes the
execution. If outliers are present, the model predicts thatexpectation of the latency faced
by a user job with respect to the timeout value is diverging-to for every distributions,
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following an asymptote whose slope only depends on theesutiitio. The optimal timeout
value is finite for all the studied distributions since takoutliers into account lengthens the tail
of the distribution. Some results were finally presented mempirical distribution measured
from the EGEE grid. It is heavy-tailed and modelable throagmixture of log-normal and
Pareto distributions. Even without outliers, a 1.36 spepaan be achieved by optimizing the
timeout value. Considering outliers, optimizing the tiraewalue is even more critical and the
resulting expectation of the latency faced by a user jobaselto the one obtained without
outliers.

Results presented in this chapter can be related to the fiederational research and in
particular to the queuing theori([einrock, 1975 Gross and Harris, 198Baynat, 200]) For
instance, the fact that the job timeout might be set to anyevalithout any impact on the ex-
pected execution time given that the distribution of thel dgitency is exponential could have
been induced from the memory-less property of this distiitou This property made this dis-
tribution extremely popular in the queuing theory, in pautar in the MM/c model. Yet, given
an arrival rate of the clients and a service rate, the goahefqueuing theory is to determine
the distribution of the number of clients inside the systamd the waiting time. It might be
used at a finer grain to explain or even predict the distrdyutf the latency which is assumed
here to be known. What we showed in this chapter is that censiglthe grid latency as a ran-
dom variable (whose distribution is measurable or supptsée known from another theory)
and optimizing the jobs timeout value from it improves thef@enance of grid applications in
practice. We believe that the adopted approach is new indheadh of distributed computing,
as traditional systems do not exhibit the required condgiof variability for making such an
optimization interesting. For instance, one can intultiveasily conceive that setting a timeout
to jobs submitted to a single cluster would not be of any usdeéd, in this case, cancelling
and resubmitting the job to the same queue could only lead io@ease of the job waiting
time.

As introduced in chapteB, the grid is seen here as a black-box introducing a variable
latency on the grid jobs. It is important to notice that thigdy is completely grounded by
the highly variable nature of the grid latency, which waghtighted in chapters and6. This
variability introduces aisk in the process of submitting a grid job: a job can be highlyaged
or even not finish at all. Similarly, the problem addressethannext chapter is motivated by
this notion of risk associated to the submission of a grid job
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n this chapter, the optimization of the job remaining blocked somewhere in the system) and
I granularity is studied as a solution to re- lowering the number of jobs (which reduces par-
duce the impact of the latency on an application. allelism as well as the risk to face high latencies).
Given a divisible user job to compute and consid- Similarly to the approach adopted in the previous
ering its total execution time as the criterion to chapter, this trade-f is formalized using a prob-
optimize, a trade-ff has to be found between the abilistic model and studied on classical distribu-
submission of a high number of short jobs (which tions. Finally, experimental results are presented
maximizes parallelism but increases the risk that on EGEE, showing that a significant speed-up as
one of them penalizes the whole application by well as an important reduction of the number of

jobs can be obtained using this method.

ans ce chapitre, I'optimisation de la gran- cycle de vie) et diminuer le nombre de taches (ce
D ularité des taches est étudiee comme qui réduit le parallélisme mais aussi le risque
stratégie de réduction de limpact de la la- de rencontrer de fortes latences). Comme dans
tence sur une application. Pour une applica- les chapitres précédents, ce compromis est for-
tion partitionable, et en considérant son temps malisé par un modele probabiliste et étudié sur
d’exécution total comme le critere a optimiser, des distributions classiques. Enfin, des résultats
un compromis doit étre trouvé entre soumettre un expérimentaux sont présentés sur EGEE. lIs
grand nombre de taches courtes (ce qui maximisemontrent qu’'une accélération substantielle de
le parallelisme mais augmente le risque que l'application ainsi qu’une réduction importante
'une d’entre-elles pénalise toute I'application du nombre total de taches soumises peuvent étre
en restant bloquée quelque part au cours de sonobtenues en utilisant cette méthode.

The impact of the grid latency on the performance of an appbo composed by a set of
independent jobs is crucial. Ideally, a user would splitjobrin as many independent grid jobs
as computing resources available in order to benefit from x@mmel parallelism. Even in case
of high but fixed latencies, this strategy would be optimahé grid jobs do not communicate
between each other. However, if the latency is assumed t@abable, which is the case on
the EGEE infrastructure, as shown in chapteend6, a trade-& has to be found between the
expected level of parallelization of the application and tisk to face high latencies. Indeed,
the higher the number of submitted grid jobs, the higher tfabability for one of them to
be impacted by a high latency. It is important to notice haeg the performance metric that
is best considered from a workflow application point of viethe makespan rather than the
throughput or the job fairness that may be taken into acctrant the infrastructure point of
view. Thus, a single grid job is able to penalize the wholeliappon performance if it is
subject to an excessive latency. A strategy has to be foundder to minimize this risk. The
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goal of such a strategy is to optimize the granularity of aryslke in order to find the best
compromise between parallelism and the risk of facing hagkrcies. The granularity of a
user job is defined here as the number of grid jobs to submeingilvat the user job is supposed
to be divisible into any number of chunks.

Optimizing the granularity of a user job also reduces thaltotmber of jobs submitted to
the infrastructure with respect to the default maximal iparting strategy. Hence, a potential
global improvement of the grid performance can be expedtedary user adopts such a strat-
egy. The goal of this study is to propose an optimizatiorntatyafor tuning the granularity of
the user jobs. This strategy aims at :

e Lowering the total execution time of a user job (user’s pointiew) ;

e Reducing the total number of grid jobs submitted for a givearyob (infrastructure’s
point of view).

A typical class of applications targeted by this strategyeanbarrassingly parallel applications,
that may correspond to parameter sweep studies and areamman in several scientific do-
mains [Jacq et al., 20(J7including medical image analysiS§rmesant et al., 20pand where
a large number of small jobs could be grouped into larger ones

We consider a user job corresponding to a total executioa wWrsupposed to be divisible
into any numbep of independent grid jobs. The grid infrastructure introesia latencyr on
the grid jobi. The goal is to minimize the makesparmf the user job defined as:

w
X = irer[ll:?ll[?]((Ri + B) (9.1)
If R are assumed to be constant fixed valuasK;, = §) then the solution is straightforward
andp has to be as high as possible. Thus, this problem is spectiigkdy variable infrastruc-
tures such as production grids. In the following of this deapthe order of magnitude of the
variability of the latency will be an important parametertbé problem. We will demonstrate
that the more variable the infrastructure, the more intergghe granularity optimization. As

it has already be discussed in chagidsection6.1.2, R will be assumed to be independent
and identically distributed random variables.

The problem of splitting jobs over a set of a known amount gfipating resources con-
nected through a reliable and high performance network kas targely studied in the field
of parallel computing Chretienne et al., 199%eitelson et al., 2004 Several works address
the job granularity issue, noticing that there is an optimahber of processors to determine
to minimize the total execution time, taking into accounthbthe computation time and the
communication time. In\[/eissman and Zhao, 19p&he authors use heuristics to determine
a close to optimal configuration, in which jobs are assigmedpecific processors to reduce
communication overhead induced by routing and contenttowen if it provides good results
in their scope, their solution is strictly deterministiccamodels the communication function
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linearly in the number of processors, which cannot propéedscribe the latendg considered
here. In [Viontagnat et al., 2004/the authors determine the optimal number of jobs to submit
by determining an analytical model of the latency of the gudmission and queuing systems
in a batch architecture. Such an analytical model is verd badetermine in a complex dy-
namic multi-users grid infrastructure. In those worksjtsplg a user job in a high number of
grid jobs is damageable because the grid jobs are going tonconcate between each other.
The cost of these communications is increasing with the rrrabsubmitted jobs. Is is funda-
mental to notice that our problem does not come from the sasui In our problem, the point
is that the submission of a single job introduces a risk offizimg the whole application.

In the following, the behaviour of the makesparf the user job defined by equati@nl
is investigated. Its expectation is derived and studiedréwious classical distributions of the
latency in sectio®.1 Then, an experiment on EGEE evaluates the gain that couddtieved
by this method.

9.1 Model of the execution time of a user job allowing gran-
ularity tuning
The goal here is to determine the expectation of the makesdra user job with respect to

its execution timav, its granularityp and the grid latencir in order to study its minimization
for various distributions. First, the cdf &f can easily be determined:

P W

0 = Pe<t=]]P(R+Y <t
() = PE<t) 1‘[ (R.+p<)
w)\P w\?

= pR<t=Y) —poft-¥

(R< p R( p)
dF w Wp—l

Thenfy(t) = - = pr(t_B)FR( _5)

The expectation af can then be derived:

p-1
ft.fz(t)dt:ftpr(t—V—v)FR(t—v—v) dt
R R p p

f p(t + "—F‘)’) fo(OFR(DP 1dt

f ptfr(t)Fr(t)® 'dt + V—F‘)' (9.2)

Ex(p)
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Figure 9.1: Representation of the expectatisrof the makespan of a user job with respect
to its granularityp for a uniform distribution of the grid latency with = 200s,b = 4000s
andw = 2000s (top) ané = 700s,b = 1500s andv = 2000s (bottom). The existence of a
finite optimal granularity value is conditioned by the mdgde ofb;vf‘.
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9.1.1 Uniform distribution

If the grid latencyR is assumed to be uniformly distributed between a minimuroevaland a
maximum valueb, then an explicit solution can be provided. Indeed, we thereh

L if
() = p ifte .[a, b]
0 otherwise

and
Oift<a
Fr(t) = E)‘T";}lifte[a,b]
Oift>b

Thus, according to equati¢h2

b1 /t—a\rt? w
Ex(p) = faptb—a(b—a) dt+6
(p+ 1w+ bp? +ap
p(p+1)

It can be noticed thaEs(1) = w + a—;b: it is consistent with the fact that the execution time
on a single machine & and the execution $iers from a%’ penalty that is the mean latency
introduced by the infrastructure. Moreover, lB}(p))p-- = b: if an infinite amount of
resources is used, the worst possible latency is faloedut the best computation time (0) is
also obtained. Indeed, as the number of submitted grid jodreases, the probability for one
of them to stifer from a high latency increases. Finally, li&3(p)),—0 = +oo: the limit of Ex
towards zero corresponds to the execution of the user jokeom machine. In this case, the
makespan of the user job consistently tends towards infinity

The next step is the minimization of the expectatiorz afith respect to the granularity.

At the optimum, the derivative of the expectatiortghould be null:

dEs(p) _p2w+2pw+w—bp2+ap2_
dp PP(p+ 1) -

Thus, ifw # b — a, then the optimal number of grid jobs to submit is:

0

_ V(b-a)w+w
P1=—""wra
or

_ ~(b-aw-w
P2 = “wp-a

p, is positive if o — a) > w and negative otherwise wherepsis always negative. Given that

p has to be positive, there is a unique optimal number of gris jm,,: minimizing Ex(p) if

(b —a) > wand we havepyy = — V\fvb_‘(i)l’gw Such a configuration is represented on the upper
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graph of figured.1whereEg(p) is plotted for a uniform distribution witla = 200s,b = 4000s
andw = 2000s. On the other hand, € a) < wthend%—ép) < 0 so thatEs is strictly decreasing
and the optimal number of grid jobs corresponds to the malxime. Such a configuration is
represented on the bottom graph of figAréwhereEs(p) is plotted for a uniform distribution
with a = 700s,b = 1500s andv = 2000s. Ifw = b — a, thendEdz—ép) = —pffzg:f)z: it has no
positive root and here again, the optimal number of grid jodrsesponds to the maximal one.

We can conclude from this particular example that the r%‘\)‘ﬁqalays a strong role into the
optimization procedure. Actually, this ratio correspotmla comparison between the standard-
deviation %) of the grid latency andv, the execution time of the user job. We define the
relative variability of the latency for the user job as théaga/ = = whereo is the standard-
deviation of the latency. This parameter will play an impottrole in the following. For a
uniform distribution, whatever the actual mearnRis, if V is low enough, then looking for an
optimal user job partitioning is straight forward (maximyartitioning).

9.1.2 Gaussian distribution

If the distribution of the grid latencR is supposed to be Gaussian, with mgasnd standard
deviationo, then:

1 t — p)?
RO = \/Zo_exp(—( 20',;[) )
t U— )2
and Fg(t) = EIM exp(—( 20_5) )du

Then the expectation of the makespan of the user job is:

1 (t—#)z)( 1 f ( (U—ﬂ)z) )"‘1 w
E = f t ex (— exp|- dul dt+—
=(p) P T2 (Vo )L P T 20 D
Minimizing Ex(p) is hardly analytically feasible but a minimum can be estedanumerically.
For example, figur®.2 displays the evolution dEs(p) with respect tap for different values of
the relative variabilityy ranging from 0.015 to 0.6 and wiglh= 600s andr- = 300s. It can be
noticed from those graphs that the higher the relative féiiya V, the deeper the minimum of

Es(p). One can here again conclude that the optimization praeadyparticularly suitable for
environments with a high variability with respect to the extéon timew of the user job.

9.1.3 Experimental EGEE distribution

Figure 9.3 presents the granularity optimization of a 2000 seconds jafeconsidering the
experimental distribution measured on EGEE in secBidhof chapter6. The expectation
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Figure 9.3: Evolution of the expected execution time of a@00ser job with respect to

the number of submitted grid jobs with the experimentalritistion measured on EGEE
(in section6.2 of chapter6). In this case, the optimal granularity is to submit 4 gridgaf
500s. Increasing this number rapidly leads to a strong penal

Er of this latency distribution is 393 seconds and it has beerectly fitted by a mixed log-
normal/ Pareto model. The expectation of the makespan of the us€Ejglexhibits a global
minimum reached for 4 submitted jobs, which correspondsitbjgbs of 8min 20s. After this
optimum, the expected makespan is rapidly growing. Abovegribjobs, it is even higher than
the time expected for the submission of a single 2000s ghdgoeen line). The minimum is
deep enough (it is about 1000 seconds between the value expleeted time at the minimum
and the green line) to conclude that the the optimizatiomefgranularity could fectively be
interesting on EGEE.

Going further in the theoretical analysis of the optimiaatof the granularity of a user job
would for sure be an interesting perspective of this sectionparticular, it could be worth
studying the influence of the tail of the distribution of thedglatency on the existence of a
global minimum. Indeed, it is an important parameter forapémization of the timeout value
presented in chapt@rof this manuscript.

9.2 Experimental evaluation on EGEE

9.2.1 Distribution acquisition

Our strategy to optimize the granularity of a user job wagsssd on EGEE. To do that, the
optimal granularity was determined on-line, from an exmpemtal distribution periodically up-
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Min | Max | Avg | Median
0 econasy | 10 | 960 | 258.94| 215

Onormalized | 0.04| 12.64| 2.1 1.16

Table 9.1: Errors between the model and the measures.

dated through waves of dedicated probe jobs submitted tmffastructure. Those jobs do not
process anything and were used as probes to measure thatgndy. The main problem raised
by this distribution acquisition is the fact that the stadfishe infrastructure may be disrupted
by such a measure. Indeed, submitting waves of measure jobislwause an additional load
on the infrastructure, leading to inconsistent measurestagde this problem, a limited set of
probe jobs was initially submitted and then, a new one wasngtdd each time a probe job
completed, so that the total number of measure jobs runnmthe infrastructure remained
constant, leading to a fixed perturbation.

Even if a grid provides a huge number of resources, thus dtieatly allowing a large num-
ber of job submissions, the EGEE infrastructure is actuiaiyted by the maximum number
of simultaneous connections from the submission entitythaanaximum number of grid jobs
on the Resource Broker. The number of probe jobs was emityricaned to 50, as a tradeflo
between the accuracy of the measure and the induced oveohethg submission system. It
is true that this kind of method is quite unfair because itadtices a significant overload on
the infrastructure. But ultimately, the middleware shoptdvide to the users such statistics
computed from all the submitted jobs so that the method woatde invasive.

Setting a timeout to grid jobs is required to avoid unreabtmavaiting times because of
outliers. Taking into account timed-out grid jobs into theimization procedure would require
to propose a fault-tolerant model handling grid job resigsioins and so on. This is investigated
in chapter8 and some remarks about the joint optimization of the graityland the timeout
value are done in sectidh3.2 Here, timed-out grid jobs are neglected, both in the measur
scope and in the validation study. In those experimentdjriieout value was fixed to the total
execution timav of the user job, so that timed-out grid jobs are the ones whimhld lead to a
slowing down of the user job with respect to a sequential etxew.

Once latency measures are acquired, the next step is tardeésthe pdf of the grid latency
R. It was done by considering the 50 last probe measures ahérgeg them into 5 seconds
bins. The computation and minimizationB&§(p) is straightforward from equatio®.2 Ex(p)
is then computed for the granularityranging from 1 to a maximum value corresponding to
the maximum number of grid jobs submittable to the infragiee from a single user interface.
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Min | Max | Avg
Expected| O 671 | 162.5
Measured -775| 1308 | 198.1

Table 9.2: Time dference in seconds between maximal and optimal strateca@s @the
optimization).

9.2.2 Experimental set-up

Two experiments were conducted in order to evaluate the hwdthe EGEE infrastructure.
First, the capability of the model to correctly predict thakaspan of a user job was evaluated.
The makespan of a user job was measured and compared to tieegwatn byEs(p). The user
job was composed of 30 grid jobs, 67 seconds long each, tadsigto a total execution time
w of 2000 seconds.

Second, the performance obtained with the modpti(nal strategywas compared to the
naive strategy consisting in submitting a maximal numbegraf jobs (naximal strategy A
user job corresponding tova= 2000s execution time was submitted, on the one hand using the
optimal number of grid jobs resulting from the minimizatiohEg(p), and on the other hand
using a fixed number of 30 grid jobs (this corresponds to thgimam number of grid jobs
that we can submit concurrently on the infrastructure withatting some performance loss).
To avoid any bias resulting from an evolution of the grid ssabetween the two submission
processes, the two strategies were alternatively repegted 88 times, on various day times
(mornings, afternoons, nights) spread over one week amdj Bsdiferent Resource Brokers.

9.2.3 Results

Experiment 1. model versus measures. On its upper line, tabl8.1shows statistics concern-
ing the diferences in seconds between the model prediction and tecdve measures =

X predicted — Zmeasured: 1N Order to quantify the accuracy of the model, this erroswarmalized
with the predicted standard-deviation of the random v&@iab: 6normalized = M
On its lower line, the table shows the minimum, maximum, agerand median Gf,ormaiized
One can notice that the median ratio is close to 1, that isytohsd the measured error is close
to the standard-deviation @f which is consistent. Thus, the model provides a good esttima
of the makespan of a user job as well as a confidence inteniéll on

Experiment 2: optimal strategy versus maximal strategy. Two different conclusions can
be made from this experiment.

¢ Job saving: the total number of submitted grid jobs is 258@He maximal strategy and
1756 for the optimal one. The optimal strategy leads to d sataeing of 824 grid jobs,
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representing 32% of the grid jobs submitted with the maxistiategy.

e Time gain: tablé®.2shows statistics on theftierences (in seconds) between the maximal
and the optimal strategies. Those statistics have beenwtechpver the 42% of the cases
for which the optimal number of grid jobsfiiered from the maximal one. The remaining
58% correspond to cases for which the computed optimal nuoflggid jobs is superior
or equal to the maximal value (30). One can notice that theagectime gain yielded by
our optimization strategy is about 200s, which represed¥® &f the execution timers of
the user job.

9.3 Extensions of the method

9.3.1 Taking into account outliers

The reader may wonder why outliers were not taken into adciouthis chapter, whereas their
importance was highlighted in the previous one. Actuahg optimization of the granularity
of a user job is not able to prevent an application from fa@uaotjiers. If we take outliers into
account, then the probability for the makespanf a user job corresponding to an execution
time w composed op grid jobs to be lower than a given valties the probability for each grid
job (i) to be an inlier (probability * p) and (ii) to have a total execution tink& + "—; inferior to

t. Therefore:

P w

PE<t) = l;l(l—p)P(Ri+B<t)
e
(1-p) FR(t p)

We can notice thaP(X = +o0) > 0. Consequently, if outliers are taken into account, then th
expectation ok will be infinite whatever the number of submitted jobs. Ondbatrary, as no-
ticed by equatio.5of section8.1 of the previous chapter, setting a timeout value prevems th
expectation of the latency faced by a user job to be infiniter a suficiently high (potentially
infinite) number of resubmission, the user job will complete

9.3.2 Joint timeout and granularity optimization

As shown above, setting a timeout value is the only strategtyguarantees that the application
will not be impacted by outliers. Still, as it has be shownhistchapter, optimizing the job
granularity provides significant performance gains. Arrasting approach could be to set an
optimal timeout value to each grid job resulting from theimptation of the user job granu-
larity. Yet, there is no rationale to state that the timealtie of the grid jobs and the user job
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granularity can be determined independently from eachroiiiee timeout value and the granu-
larity should probably be jointly optimized. To do that, ta@dom variabl& = max.,_, J has
to be considered, whet® are defined similarly as in equati@nb5 of chapter8, yet including a
wall-clock time depending on the granularity of the user jgor everyt in [nt.,, (N + 1)t.]:

Fyt) = 1—q”+q”(1—p)FR(t—ntoo—V—F\)/) with q:l—(l—p)FR(tw—v—F\)’)

The expectation of the makesparof the user job can then be expressed according to the
one ofR:

+00 AN+t W w\ 1P

Es(pte) = Zf ptq”fR(t —nt. - —) (1-p) [1 —q"+q"(1 —p)FR(t ~nt. - —)] dt
= Int. p Y

The minimization ofEz with respect top andt., and for various distributions dR could then

be studied. The major interest to study this minimizatioiwibe able to limit the impact of the

outliers while optimizing the job granularity.

9.4 Conclusions

A strategy to optimize the job partitioning on a real gridragtructure was proposed and stud-
ied in this chapter. The method was evaluated taking intowtidthe dynamic and probabilistic
nature of such an infrastructure by perpetually refreshirggpdf of the grid latency and min-
imizing the expectation of the makespan of the user job. HExmntal results demonstrate
that (i) a significant speed-up and (ii) a substantial grlol $aving can be obtained using this
method.

In practice, exploiting the methods presented in cha@easd 9 requires (i) to estimate
of the distribution of the grid latency and (ii) the derivatiof the optimal parameters values.
The first issue cannot reasonably be addressed by an end@a&cting real-time statistics
about the grid latency implies the submission of severabgrobs that may disturb the grid
operation without any production usage of the resourcesveider, such an information should
easily be available from logs of the grid workload managersgstem. A production grid such
as EGEE already includes a logging service which would be sibtompute and update the
cdf of the grid latency over time. Yet, more fundamental peots such as the handling of
non-stationarities of the workload still remain.

Considering the whole grid as a black box characterized byandom variable capturing
its latency seems to be a powerful approach. Important problsuch as the ones presented
in this part can be modeled in this way. The fundamental idg@nd those models is that
the submission of a grid job introducesisk which is likely to impact the whole application.
The strategies presented in this part aim at reducing tekswiithout limiting too much the
parallelism of the application. A major interest of the riéisig optimizations lies in the fact
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that they only depend on the distribution of the grid laterngling the internal complexity of
the grid. Several other optimizations may be targeted uiegsame approach. For instance,
submitting redundant grid job§psanova, 20(Q@r further grouping the services of a workflow
would also reduce the risk associated to a user job.



Conclusions and future directions

1 Summary of the contributions

In this thesis, we studied the deployment and the results afehetypal medical image analy-
sis application on the EGEE production grid: the bronzedaish This is a precise and scalable
method to assess the accuracy of rigid medical image ragj@tr Results have demonstrated
that this statistical procedure is powerful enough to detebtle image impairments such as
tilts of less than 2 degrees. It is also generic enough tosagde influence of external pa-
rameters such as the lossy compression ratio of the imadesbibnze standard application
exhibits requirements that characterize many medical eévawplysis applications. In partic-
ular, the need for computing power and algorithms and dadairsy motivate the study of a
grid workflow deployment of such applications. Based on ataxny of existing workflow
approaches, we highlighted the suitability of service Vilorks for this scientific area. We thus
presented the service workflow of the bronze standard agdfit and we demonstrated that
the selected Scufl language is expressive enough to desamidar applications.

Because of the lack of existing fully parallel service waokflenactor, we developped MO-
TEUR, a Scufl workflow enactor enabling all the paralleliswels that could be achieved on
a grid. In this context, the handling of Scufl iteration stgaés is not straightforward, because
the order of data items going through the workflow is comyetiesturbed. We thus proposed
a novel algorithm to deal with this problem. This developtfenilitates the execution of the
application in comparable experimental conditions on ss\grid platforms. The application
was considered as a grid benchmark and we compared its exeounta production grid versus
on dedicated clusters. The execution was shown to be 4 tilmesison production grids than
on dedicated clusters. To further compare those two kindefcdstructures, we proposed a
multi-grids model which is able to determine, given an anmtafrCPU time to compute, the
proportion of jobs to submit on each of those systems. Werhéted that the main cause of
performance drop on production grids was the high latenaywas imposed by such systems.
Based on an appropriate model of the execution time of a wawkthevariability of the la-
tency was demonstrated to have a strong impact on applsatia particular, it slows down
the execution of the bronze standard application by a fé&t®his is one of the mostimportant
remark that guided the following developments.
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Those conclusions rationalized the adoption of a proksthaliatency model that was used
to develop strategies aiming at reducing the impact of tteslzy on the workflow. The adopted
approach focuses on the modeling of the global behaviorefjtid which is seen as a black
box introducing a random latency on its jobs. In addition t@lagrouping strategy aiming
at reducing the mean latency faced by the application, wpqsed two strategies based on
such a probabilistic model: both the job granularity andtthreout value can be optimized by
considering such a model and significant speed-up results demonstrated. Moreover, the
optimization of the timeout value allows to properly comtitte impact of the outliers on the
application. All those strategies are based on a limitatioime number of grid jobs submitted
by the applications: even if it may reduce the parallelistmeed by the application, reducing
the number of jobs limits the risk to face outliers and higieteies. Further exploitating this
statement seems to be a very promising way for a deeper uaddisg and optimization of
production grids.

2 Future directions in grid workflows

Latency reduction strategies at a workflow-level. Latency reduction strategies proposed
in chapters3 and9 are relying on probabilistic models based on statisticairegions of the
grid latency. Even if they provide relevant strategies fptimizing the timeout value and the
granularity of the jobs, they are still limited to the job4# or to very simple workflows (for
the granularity). On the other hand, the probabilistic mafeéhe makespan of a workflow
presented in chaptérdoes not include the timeout and granularity parameterslamicannot
be used for optimization yet. Extending those probabdistodels to the case of a complete
workflow (or integrating parameters to the workflow modelgisequired perspective towards
the application of those strategies to complete applinati€omparing job-level and workflow-
level optimization results would also be interesting: daiaing whether the position of a job
inside a whole workflow influences its submission parametech as the timeout value and to
what extent scaling up to the workflow-level could speed @petkecution would motivate such
investigations.

Probabilistic methods. Generally speaking, we believe that investigating prolstitm meth-
ods to optimize the execution of workflows is particularlijdeed to production grids condi-
tions. This could include optimization of other parametarthe workflow (such as the degree
of redundant job submissions or the Resource Brokers toarsa)en be extended to the intro-
duction of variability in well-known algorithms such as schuling ones. To properly tune the
grid parameters of an application, one should keep in miatttie submission of a single grid
job introduces a significant risk on the whole performance.
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Scheduling of functional workflows. As detailed in chapteg, functional workflows are
characterized by the impossibility to predict before rorgithe number of tasks that are going
to be generated by the application. In this thesis, jobsmgéea by the workflow are submitted
to the grid independently from each other: the schedulirtpise at the job level only. It could
be interesting to study (i) to what extent existing workflt@vel scheduling algorithms could
improve the performance of the application in productiengarticular w.r.t latency reduction)
and (ii) scheduling strategies dedicated to functionalkfiows. Current approaches for the
scheduling of such partially unknown workflows are basedrendustering of the workflow
into independent tasks-graphs that could be completelyeegpd and scheduled using classical
heuristics. Nonetheless, taking into accofiateach, if and other unpredictable constructs
in the scheduling (for instance using branching predicstiategies or history information
about services or simply expectation minimization) mayriove the execution. Yet, workflow-
level scheduling may still remain problematic in a Servi@eented Architecture: if services
are assumed to be completely black boxes (which guaranteespementation independent
description and eases their integration in an applicatisaivice developers could choose to
hide the grid deployment of their applications (for instarar security reasons, or to keep the
interface simple). In this case, the workflow engine canmoeas the job submission system
and it is consequently unable to perform any workflow-leweieduling. A very practical
strategy to cope with this problem would be that the grid sisian system learns the workflow
topologies from the submitted jobs as suggestedimep et al., 20(J7 Dependencies could be
detected between jobs submitted by a given user (or even maoity of users), thus detecting
workflow being currently executed on the infrastructure.

3 Future directions in production grids modeling

Latency distribution monitoring.  Our probabilistic methods would be completely useless
without a satisfying statistical estimate of the grid latgnThe latency reduction strategies
presented in this thesis are based on a probabilistic mddbkecexecution time according to
the distribution function of the latency and allowing theiopzation of a given parameter (the
timeout value or the job granularity). Along this manustripany models have been envisaged
for the distribution of the latency (mixed Log-Normal and€&a, Gaussian, bi-uniform) and the
nature of this distribution is not really known at that timEne grid remains a non-stationary
system, constantly impacted by the load imposed by othesws®l by intrinsic evolutions
(middleware updates, site connectidowntimes,...). Even if promising results have been
obtained by a real-time monitoring of the latency in chapteprediction errors remain high
(200 seconds in the presented experiment). The use of statkges in a real system first
requires to be able to predict the latency that will be faced b with a reasonably low error.
Several approaches could be envisaged in that purpose:
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e Purely agnostic probabilistic approach (as done in thisif)ethe latency is considered
as a random variable. The (statistical) correlation of ptlagiables is then investigated
and modeled.

e Causes identification: a large-scale modelization of the griddleware could help to
understand what are some of the causes of the latency. licyart determining to
what extend the grid latency is due to external load and wpahcomes from intrinsic
middleware design would be a great step towards a latencyein@imulations of the
middleware or even benchmarks in controlled conditiondatbe done on experimental
grids such as Grid’5000, under realistic load conditiorjeated from traces and logs
obtained in production.

e Comparisons with other production grids to identify comnpaterns and features. Re-
sults remain specific to the EGEE grid yet. Comparing themthemoproduction grids
could help to characterize them more generically.

4 Future directions in service computing for medical image
analysis applications

Medical image analysis application would for sure be impddiy the perspectives presented
above. Yet, several initiatives could also be conductedrtompte the use of grids in this
particular scientific field. There is still a little adoptioh grids among medical image analysis
scientists. Even if such infrastructures have proven to lide 80 support science in many
domains, they are still not a daily tool for the medical imagelyst, as highlighted by the low
number of papers using the grid in medical image computingezences such as MICCAI
(in 2007, the only paper mentioning the grid in its title i&2[ig et al., 200]). Yet, there is

a quite strong algorithms sharing culture among the mediabe analysis community, as
demonstrated by the success of standard developmentgsmlkh as ITK, which is currently
being interfaced with Condor gridsThe development of grid services repositories dedicated
to medical image analysis could help to foster algorithmexisly one step further. Several
use-cases could benefit from such repositories. For inst@me could tests one’s data with the
algorithm of other scientists or compare several of themamesdata.

Even if such repositories seem technically feasible with eisting technologies, inter-
operability problems among the algorithms will arise (fostance data type conversions) and
providing ontologies such as the one developedimfud et al., 20(in Neuroimaging would
probably be required to address such problems. Such omésleguld also allow a semantic
browsing of such an algorithms repository, facilitating tfnding of a suitable service for a

1http://www.itk.org/
thtp ://wiki.na-mic.org/Wiki/index.php/NACGrid_Enabled ITK
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given problem. Connecting such a medical image analysiscesr repository to a comput-
ing grid could then help to answer the potentially huge cotimgudemand of such a sharing
facility.

5 Future directions towards a clinical use of the grid

The question of the use of grids in a clinical context stitheens a long term perspective to
this work. Even if the solutions proposed in this manuscaigt a step to bridge the gap be-
tween still low level grid middlewares and their usage foradlydmedical activity, we remain
completely aware that this ultimate goal would requirelartdevelopments to reach an opera-
tional level quality of service and to cover all end usersestations. The technical part of the
research towards this objective requires the developmiestable and approved user-friendly
interfaces completely hiding the grid to their users, agafeg system now ber for hardware
architectures. We believe that the development of MOTEURoge principle, design and ap-
plications are presented in chapters 1 to 5 of this thesg¥tep in this direction. Nevertheless,
it remains that the immediate audience of this software adical image scientists rather than
clinicians. Such scientists can now benefit from it to sigaifitly leverage the gridification of
their applications. MOTEUR could also constitutpart of a future clinical system using the
grid.

Another blocking point limiting the grid adoption by medicesers is the fact that produc-
tion grids are still not completely autonomous systems. @isihecases, baby-sitting the grid is
still required at some point of the execution. To addressphoblem, the methods presented in
chapters 6 to 9 of this manuscript can be considered. We shtve¢ they can improve fault-
tolerance and guarantee a quality of service at a user;levspite of terrible highly variable
execution conditions. The future directions reported mphevious sections of this conclusion
reveal how they might still be developed.

Finally, we keep in mind that a clinical use of the grid wouhaply changes in clinical or
even legal practices regarding patient data. Howeversittae recognized that the subsequent
restrictions (for instance in terms of datetadata storage locations or clinical computations
performed outside of the hospitals) remain grounded bytétians of grid systems that are for
instance unable to provide afigient security guarantees for medical applications for,now
even if some solutions are under investigatidiohtagnat et al., 20Q Erberich et al., 2007
It keeps the window excitingly opened for further researcthis domain.
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Appendix A

Determination of the numerical values of
the path of the workflow of figure 6.1

According to equatiol.5the expectation of a path made fraypservices with runtimes and
iterated omp data items is, in DP mode:

E(ZDP) = Z I +anDf tij’j(t)FR‘v’j(t)nD_ldt

In the example of figuré.1, the latency is assumed to be Gaussian so that:

RY
fRi,j(t) = \/21—71_0_ exp(_(tzo.l;))
Thus:
) 2 t N2 np-1
i I

The example assumes thgt=3, u=300s andr=200s. We can then numerically compute

that:
00 _ )2 t _ )2 np-1
Lnf texp B Gt f exp _u-p) du dt = 4688s
(\/ZU) S 202 oo 202

Along the blue path, we havey=2, ro=150s andr;=10s, so thatE(Xpp)=160+2
x468.8=1098s. Similarly, along the red pathny=1 and ro=600 so that
E(Zpp)=600+468.8=1069s.
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Appendix B

Proofs of the timeout results of chapter8

B.1 Expectation ofJ in the general case

We have:

EJ (too)

tf(t)dt = f tfIP 2 tydt

© (n+ 1)t
- @AY d [t ntd:
n=0 n

te

o0 too
=@1-p) ). (U Nt fr(Udu
n=0

L _ tm
Il T ¥ I L f fr(U)du
0

1-aJo (1-q)?
I S (1-p) (1 -1 -p)Frto)) teo
D) fo W(thdu+ (1 - p)2Fr(tw)? Frt)

_ 1 e (1~ (1~ p)FR(to))te
- FR(tm)fo W R ) Fr(te)

1 o0 T
= B fo MR R

B.2 Limits of E;

l 00 +00
lim ufr(u)du = f ufr(u)du=E
Jm fo +(U)  uiR(Udu=Eq

And, whenp # O:

to
im —— -t
tomeo (1 = p)Fr(ts)

= 400
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Whereas whep = 0:

(1-p)Frlte) ~  Frltw) - Fr(to)
h . J ufr(u)du
Thus m -1, < m

Sothat lm|——= -t | =
teo—>o0 ( (1 - p)Fr(ts) )

B.3 Distributions for which the timeout value does not im-
pact E; whenp =0

Let F be the cdf of a distribution which has this property. ithe

vYne N, Vt, € R,

1-(1-F(t))"+ (1 - F(ta))"F(t - nt) = F(1)
= VneN,Vt, € R",

G(t.)"G(t—nt,) = G(t) with G=1-F

= VYn e N, Vt, € R",

nNH(t.,) + H(t — nt,) = H(t) with H =1In(G)
= VneN,Vt, € R",

H'(t — nt.) = H'(t)

H’ is thus periodic, with periodht,, for everyt,, and every n. It is thus constant and we have
H’(t) = a. Thus,H(t) = at + 8. We thus havé-(t) = 1 — €®e¢"'. Moreover, the limit ofF(t) has

to be 1 whert — +o0, so thatr<0 andB = 0, which demonstrates that the distributiorrdfias

to be exponential.

B.4 Behavior of E; in the Weibull case without outliers
We have:

¥Yne N, Vt e [nt,, (n+ Lt.],
Fit) = 1-9"+q"Fg(t-nt.)
= 1_en(®) 4 en(R) (1 _ e (U k)

_ 1 ey
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We are going to comparg; andFg. To do that, we will actually compare (@_1—FJ) and
In (l_—lFR) The comparison resumes to study the sign of the followimgtion f_ ,, for everyn

and evenyt., (fin=In(Z) - In(Z)):

YneN, VYt > 0,
fun:[nte,(n+t,] —» R
to\K  t—nto\k K
ol (5

A A A

If f__n IS positive, then setting a timeout improves the executibme derivative off;_, with

o, TN BN
respect td is: f/_,(t) = % ((_) -(4) )

A A

If k>1: f_n(nty) = (tﬂ)k(n —nk) < 0 andvt € [nt,, (n+ D], (1) < 0. fi_q(t) is thus

A
negative on this interval and we have:

Yt > 0, Vit > 0,

[ ! | —l 0
n(l—FJ(t))_ n(l—FR(t)) )
thus Fy(t) < Fg(t)

It proves that every timeout value penalizes the execufitwe.timeout thus has to be infinite.

A
positive on this interval and we have:

If k<1 f_n(nto) = (tﬁ)k(n —nk) > 0 andvt € [nt., (n+ D], f () > 0. fi_a(t) is thus

vVt > 0, Vt, > 0,
1 1
n{———|-In[———| > 0
(1—F3(t)) (1_FR(t))
thUS FJ(t) > FR(t)
k k
Moreover,n(%’") + (“3‘“) is decreasing with respecttg. Thus,Vt,, > 0, Y/, > t,, Fy (1) <
F ;.. (t) for everyt. The optimal timeout value is thus 0.

B.5 Expression ofE;(t.) in the truncated Gaussian case

According to equatio.6,

t

1 © oo
) = iy, RO G

1 1 (% iy ta® (%)
- ue (%) du z —teo
o(5)-0(==) Voo Tap(e(E) -0 (=)

o
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Moreover,
fot ue 2 () du = UI: vel~? Vz)dV+0',uf: e(-3¥)dv
) om0 )
Thus,
1Y g (et —to,
) = ot et

B.6 Behavior of E;(t.) in the truncated Gaussian case

Let us consider the following transformed variables:

—t.
voo:’u and 1=
g ag

According to equatio.11, we then have:

E) . d)-dv) (v..) p
c = Moo owe tY V‘X’)((l—p)(cw)—cb(vw»+

To study the behavior ofE;, we are going to consider the functioh®(v,) =
2
G-p@U-0e)) %) yhich has the same sign 451 We are going to show that the third

derivative off® is positive. We will then be able to study the signféf. We have:

F'(Veo) = ¢(Veo) [K(2) = K(Veo) + pVeo (P (Vi) = D(A)) + p ($(Veo) — B(A))]
+ D(Veo) (P(Veo) = D)) = p (B(D) = D(Vew))?
with k(v) = v(V) + ¢(V)

k is actually a primitive ofd and is thus increasing. Derivating f’ with respect to v, weéait
fAv = ¢(v)g?W)
with g2(v) = v (k) - k(1)) + pV* (D(2) - D(V))
+pV (¢(2) — (V) + (1 = p) (D(V) — ©(2))

f@ has the same sign gf?. By successive derivation of this function, we obtain:

goW) = vOWV)(1-20) + (V)1 - 20) + k(V) — k(1) + 20vD(2) + p(2)
and
g“(v) 2(1 - p)@(v) + 2pD(2)
g¥(v) is thus positive on |- o, 1], so thatg® is increasing on this interval. Moreover,
g®)(=o0) = —co andg®(2) = AD(1) + (1 - p)p(2)>0. g® thus has a single roe on ] — o, A].
g® is negative fov<vy and positive otherwise.
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. ‘
£(1) g(3) I
R R

Figure B.1: Behavior of (), g andg® derivatives ofE (V) in the truncated Gaussian
case.

g®@ is thus decreasing ond oo, Vp] and increasing onvp, 1]. Moreover,g?(-co) = +co
andg®(1) = 0. g® thus has a single roo on ] — oo, A] (v1<Vp). g@ is positive forv<v; and
negative otherwise.

f@ is thus increasing on} o, v;] and decreasing onv{, ] Moreover, fM(1) = 0 and
f(—00) = —p®(1). Two cases then have to be studied:

1. p = 0: in this casef M (~o0) = 0. f® is thus positive on } o, A].

2. p # 0: in this casef M (-c0)<0. ¥ thus has a single roep on ] — co, 1] (Vo<vy). f®is
negative forv<v, and positive otherwise.

The behavior off @, g andg® is plotted on figures.6.
We can then conclude on the behavioigg({t.,) by noticing that:

0E;(t.) 0E (Vo) OVeo
teo Voo e
_1 6EJ (Voo)

(o Voo

The two cases described above thus resume to:
1. p = 0: E4(t.) is decreasing on [G-oo[

2. p # 0: E,(t.,) is decreasing on [@,] and increasing ont, +oo[ (with t; = u — o'vy).

B.7 Expression ofE; in the log-normal case

If we consider the transformed variabtg = % then equatio.6 gives:

1 e

509 = 5ol Voo

_1(Inw-p)? N 1
A s e i 1)
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If we then perform the variable change- W — o in the integral term, we obtain:

R _ o[ L
Bi) = Gy T m o) r e (a—m®ma Q

B.8 Behavior of E; in the Pareto case

Let us consider the transformed varialdle= % We then have, according to equati®i4
and after some manipulations:

B2 E-2)+£527-2)

a Zr-1

By derivation, we then have:

(2" - 1)? dE4(2) 1 »
- — (A-nWZ+v2 -1
a oz 1—v(( Z Y )

22 (27 - (v + )Z +2)
1-p

A(2)=(1-v)Z" + vZ'! - 1 is negative, for every>1 and for every 1. Indeed, A(130 and
A(Z)=v(1 - v)2"2(Z - 1) is negative. Moreover, B(ZZ"*! — (v + 1)Z + vZ is positive, for
everyv>1 and for every Z>1. Indeed, B(130 and B'(Z=(v + 1)(Z - 1) is positive.aE;—Z(z) IS
thus positive, as well a% andE; is thus increasing.

B.9 Properties of® and link with erf

o) = —=e i
Var

#O = -0

O(-t) = 1- D)

erf(t) = 20(V2t)—1

o) = %+%erf(%)
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