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i

E ainda que tivesse o dom da profecia, e conhecesse todos os

mistérios e toda a ciência, e ainda que tivesse toda a fé, a ponto de
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de Nice Sophia Antipolis (UNSA) and the Universidade Federal do Ceará (UFC). I must start
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mestrado, sempre dispońıvel para uma discussão calorosa. Pesquisador de alto ńıvel e batalhador
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Abstract

M
odern telecommunication systems offer services demanding very high transmission

rates. Channel identification appears as a major concern in this context. Looking

forward better tradeoffs between the quality of information recovery and suitable

bit-rates, the use of blind techniques is of great interest. Making use of the special

properties of the 4th-order output cumulants, this thesis introduces new statistical signal pro-

cessing tools with applications in radio-mobile communication systems. Exploiting the highly

symmetrical structure of the output cumulants, we address the blind channel identification prob-

lem by introducing a multilinear model for the 4th-order output cumulant tensor, based on the

Parallel Factor (Parafac) analysis. The components of the new tensor model have a Hankel

structure, in the SISO case. For (memoryless) MIMO channels, redundant tensor factors are

exploited in the estimation of the channel coefficients.

In this context, we develop blind identification algorithms based on a single-step least squares

(SS-LS) minimization problem. The proposed methods fully exploit the multilinear structure of

the cumulant tensor as well as its symmetries and redundancies, thus enabling us to avoid any

kind of pre-processing. Indeed, the SS-LS approach induces a solution based on a sole optimiza-

tion procedure, without intermediate stages, contrary to the vast majority of methods found

in the literature. Using only the 4th-order cumulants, and exploiting the Virtual Array con-

cept, we treat the source localization problem in multiuser sensor array processing. Exploiting

a particular arrangement of the cumulant tensor, an original contribution consists in providing

additional virtual sensors by improving the array resolution by means of an enhanced array

structure that commonly arises when using 6th-order statistics. We also consider the problem

of estimating the physical parameters of a multipath MIMO communication channel. Using a

fully blind approach, we first treat the multipath channel as a convolutive MIMO model and

propose a new technique to estimate its coefficients. This non-parametric technique generalizes

the methods formerly proposed for the SISO and (memoryless) MIMO cases. Using a tensor

formalism to represent the multipath MIMO channel, we estimate the physical multipath pa-

rameters by means of a combined ALS-MUSIC technique based on subspace algorithms. Finally,

we turn our attention to the problem of determining the order of FIR channels in the context of

MISO systems. We introduce a complete combined procedure for the detection and estimation

of frequency-selective MISO communication channels. The new algorithm successively detects

the signal sources, determines the order of their individual transmission channels and estimates

the associated channel coefficients using a deflationary approach.

Keywords: Blind channel identification, channel order determination, multipath MIMO chan-

nel estimation, Parafac decomposition, source localization, tensors, wireless com-

munication systems.
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Résumé

L
es systèmes de télécommunications modernes exigent des débits de transmission très
élevés. Dans ce cadre, le problème d’identification de canaux est un enjeu majeur.
L’utilisation de techniques aveugles est d’un grand intérêt pour avoir le meilleur compro-
mis entre un taux binaire adéquat et la qualité de l’information récupérée. En utilisant

les propriétés des cumulants d’ordre 4 des signaux de sortie du canal, cette thèse introduit de
nouvelles méthodes de traitement du signal tensoriel avec des applications pour les systèmes de
communication radio-mobiles. En utilisant la structure symétrique des cumulants de sortie, nous
traitons le problème de l’identification aveugle de canaux en introduisant un modèle multilinéaire
pour le tenseur des cumulants d’ordre 4, basé sur une décomposition de type Parafac. Dans le
cas SISO, les composantes du modèle tensoriel ont une structure de Hankel. Dans le cas de
canaux MIMO instantanés, la redondance des facteurs tensoriels est exploitée pour l’estimation
des coefficients du canal.

Dans ce contexte, nous développons des algorithmes d’identification aveugle basés sur une
minimisation de type moindres carrés à pas unique (SS-LS). Les méthodes proposées exploitent
la structure multilinéaire du tenseur de cumulants aussi bien que les relations de symétrie et de
redondance, ce qui permet d’éviter toute sorte de traitement au préalable. En effet, l’approche
SS-LS induit une solution basée sur une seule et unique procédure d’optimisation, sans les
étapes intermédiaires requises par la majorité des méthodes existant dans la littérature. En
exploitant seulement les cumulants d’ordre 4 et le concept de réseau virtuel, nous abordons aussi
le problème de la localisation de sources dans le cadre d’un réseau d’antennes multiutilisateur.
Une contribution originale consiste à augmenter le nombre de capteurs virtuels en exploitant
un arrangement particulier du tenseur de cumulants, de manìere à améliorer la résolution du
réseau, dont la structure équivaut à celle qui est typiquement issue de l’utilisation des statistiques
d’ordre 6. Nous traitons par ailleurs le problème de l’estimation des paramètres physiques d’un
canal de communication de type MIMO à trajets multiples. Dans un premier temps, nous
considérons le canal à trajets multiples comme un modèle MIMO convolutif et proposons une
nouvelle technique d’estimation des coefficients. Cette technique non-paramétrique généralise
les méthodes proposées dans les chapitres précédents pour les cas SISO et MIMO instantané. En
représentant le canal multi-trajet à l’aide d’un formalisme tensoriel, les paramètres physiques
sont obtenus en utilisant une technique combinée de type ALS-MUSIC, basée sur un algorithme
de sous-espaces. Enfin, nous considérons le problème de la détermination d’ordre de canaux de
type RIF, dans le contexte des systèmes MISO. Nous introduisons une procédure complète qui
combine la détection des signaux avec l’estimation des canaux de communication MISO sélectifs
en fréquence. Ce nouvel algorithme, basé sur une technique de déflation, est capable de détecter
successivement les sources, de déterminer l’ordre de chaque canal de transmission et d’estimer
les coefficients associés.

Mots-clés: canaux MIMO à trajets multiples, décomposition Parafac, détermination dordre,
estimation de canaux, identification aveugle de canaux, localisation de sources,
systèmes de communication sans-fils, tenseurs
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Resumo

O
s sistemas de telecomunicações atuais oferecem servios que demandam taxas de trans-
missão muito elevadas. O problema da identificação de canal aparece nesse contexto
com um problema da maior importância. O uso de técnicas cegas tem sido de grande
interesse na busca por um melhor compromisso entre uma taxas binária adequada e

a qualidade da informação recuperada. Apoiando-se em propriedades especiais dos cumulantes
de 4a ordem dos sinais à sáıda do canal, esta tese introduz novas ferramentas de processamento
de sinais com aplicações em sistemas de comunicação rádio-móveis. Explorando a estrutura
simétrica dos cumulantes de sáıda, o problema da identificação cega de canais é abordado a
partir de um modelo multilinear do tensor de cumulantes 4a ordem, baseado em uma decom-
posição em fatores paralelos (Parafac). No caso SISO, os componentes do novo modelo tensorial
apresentam uma estrutura Hankel. No caso de canais MIMO sem memória, a redundância dos
fatores tensoriais é explorada na estimação dos coeficientes dos canal.

Neste contexto, novos algoritmos de identificação cega de canais são desenvolvidos nesta tese
com base em um problema de otimização de mı́nimos quadrados de passo único (SS-LS). Os
métodos propostos exploram plenamente a estrutura multilinear do tensor de cumulantes bem
como suas simetrias e redundâncias, evitando assim qualquer forma de pré-processamento. Com
efeito, a abordagem SS-LS induz uma solução baseada em um único procedimento de mini-
mização, sem etapas intermediárias, contrariamente ao que ocorre na maior parte dos métodos
existentes na literatura. Utilizando apenas os cumulantes de ordem 4 e explorando o con-
ceito de Arranjo Virtual, trata-se também o problema da localização de fontes, num contexto
multiusuário. Uma contribuição original consiste em aumentar o número de sensores virtu-
ais com base em uma decomposição particular do tensor de cumulantes, melhorando assim a
resolução do arranjo, cuja estrutura é tipicamente obtida quando se usa estat́ısticas de ordem
6. Considera-se ainda a estimação dos parâmetros f́ısicos de um canal de comunicação MIMO
com muti-percursos. Através de uma abordagem completamente cega, o canal multi-percurso é
primeiramente tratado como um modelo convolutivo e uma nova técnica é proposta para estimar
seus coeficientes. Esta técnica não-paramétrica generaliza os métodos previamente propostos
para os casos SISO e MIMO (sem memória). Fazendo uso de um formalismo tensorial para rep-
resentar o canal de multi-percursos MIMO, seus parâmetros f́ısicos podem ser obtidos através
de uma técnica combinada de tipo ALS-MUSIC, baseada em um algoritmo de subespaço. Por
fim, será considerado o problema da determinação de ordem de canais FIR, particularmente no
caso de sistemas MISO. Um procedimento completo é introduzido para a detecção e estimação
de canais de comunicação MISO seletivos em freqüência. O novo algoritmo, baseado em uma
abordagem de deflação, detecta sucessivamente cada fonte de sinal, determina a ordem de seu
canal de transmissão individual e estima os coeficientes associados.

Palavras-chave: canais de multi-percursos MIMO, decomposição Parafac, determinação de or-
dem, estimação de canais, identificação cega de canais, localização de fontes,
sistemas de de communicação sem-fio, tensores
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Introduction

P
arametric channel modelling and estimation are of primary importance in digital

telecommunication systems. The knowledge of the channel model can be used to

design equalizers to deconvolve the received signals. Channel identification and equal-

ization consist in the retrieval of unknown information about the transmission channel

and source signals, respectively. In order to reach a desired quality of service, broadband wire-

less communication systems classically perform channel identification and/or equalization using

pilot symbols, i.e. training sequences composed of a priori known signals. This supervised ap-

proach introduces an overhead to the transmission system that may not be suitable for certain

radiocommunication systems since it reduces the effective transmission rate. On the other hand,

unsupervised (or “blind”) approaches take only the output signals into account with possibly

some a priori hypothesis on the input signals.

Most of the known channel identification algorithms assume the channel order (memory)

is known. This is not always necessarily true and any mismatch may have very costly conse-

quences. Actually, the order of the radio mobile channel is closely related to the delay spread

profile produced by the multipath propagation scenario. Long delay spread profiles characterize

highly frequency-selective channels and introduce intersymbol interference (ISI) in the sampling

process. Typical effects of under- or over-estimating the channel order include bit error rate

(BER) floors, signal-to-noise ratio (SNR) penalties and numerical instabilities.

High-order statistics (HOS) have been an important research topic in diverse fields includ-

ing data communication, speech and image processing and geophysical data processing. When

dealing with stationary complex input signals, the second-order statistics (SOS) may be unable

to keep the phase information of a nonminimum phase system and the use of HOS is generally

mandatory for blindly identifying finite impulse response (FIR) channels, unless additional in-

formation about the input signal is known, such as the non-circularity property, for instance.

The high-order spectra have the ability to preserve both magnitude and (nonminimum-) phase

information. Moreover, it is well-known that all the cumulant spectra of order greater than 2

vanish for Gaussian signals, which makes HOS-based identification methods insensitive to an

additive Gaussian noise [1, 2].

A major problem treated in this thesis concerns the blind identification of channel param-

eters, in the context of radiocommunication systems. Several relationships exist connecting

1
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high-order cumulants of a linear process to the parameters of its generating model. A vast

amount of papers can be found on this subject and numerous solutions have been proposed

for the identification of linear autoregressive (AR), moving-average (MA) and ARMA models,

exploiting only the cumulants of output signals. In particular, Brillinger and Rosenblatt [3]

established the exact expressions for computing cumulants in terms of the coefficients of an FIR

system. The well-known C(q, k) solution proposed by Giannakis [4] requires very few statis-

tics but is quite sensitive to cumulant estimation errors. Other approaches include techniques

that use additional cumulant information yielding improved solutions, such as the methods by

Mendel and Giannakis [5], Friedlander [6] and Comon [7], whose method is optimal in the total

least squares (TLS) sense. See also [8, 9, 10, 11] among others.

Since the introduction of the independent component analysis (ICA) concept in the seminal

paper by Comon [12], research efforts have been spent for generalizing simultaneous diagonal-

ization criteria and establishing links with canonical tensor decompositions (c.f. [13, 14] and

references therein). For instance, in [15], De Lathauwer et. al reformulated the canonical decom-

position of high-order tensors as a simultaneous generalized Schur decomposition. The Parallel

Factor (Parafac) analysis of a P -dimensional tensor with rank F consists in the decomposition

of the tensor into a sum of F rank-one tensors, each one being written as an outer product of

P vectors [16]. In fact, output cumulants are multi-index objects having a symmetric tensor

representation [17] and the blind identification of linear mixtures is closely related to the (simul-

taneous) diagonalization of cumulant tensors [18, 19]. In Chapter 1, we present a survey of the

main HOS concepts and properties; some algebraic tools and algorithms are also reviewed and

a synthetic presentation of the Parafac tensor decomposition is included along with the proposi-

tion of an extended version of the alternating least squares (ALS) algorithm for the estimation

of the Parafac components of tensors of any order.

The key-point in the use of the Parafac decomposition is its uniqueness property, which can

be ensured under simple conditions that are stated in the Kruskal Theorem [20]. Furthermore,

canonical tensor decompositions do not impose any kind of orthogonality constraints and the fac-

torization of tensors composed of high-order output cumulants has the advantage of avoiding the

so-called prewhitening operation by fully exploiting the multidimensional nature of the cumulant

tensor. Moreover, the tensor rank is not bounded by the tensor dimensions as it is the case for

matrices, which conceptually allows for the blind identification of underdetermined mixtures.

A formal relationship between Parafac decomposition and simultaneous matrix diagonalization

has been established in [21] showing that the components of the tensor decomposition can be

obtained from a simultaneous matrix diagonalization by congruence transformation, leading to

weaker uniqueness conditions and yielding algorithms that identify a greater number of user

channels with a given number of receive antennas, but still proceeding with two computation

stages to recover the channel coefficients [22], i.e. one needs to compute a unitary factor (spatial

pre-whitening) before extracting the channel coefficients from an estimated matrix product.
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Our main focus in Chapter 2 is in exploiting the redundancies in the factors of the 4th-

order cumulant tensor decomposition by solving a single-step least-squares (SS-LS) problem,

under very mild assumptions. To this end, we treat the 4th-order cumulants as a Parafac tensor

with components having a particular Hankel structure. Introducing this new cumulant tensor

modeling enables us to develop an iterative blind identification algorithm for the case of FIR

single-input single-output (SISO) communication channels. In this context, the proposed method

estimates the channel coefficients by solving a sole minimization problem, contrary to previously

known techniques, thus avoiding classical pre-processing operations. On the other hand, we also

treat the case of instantaneous (memoryless) multiple-input multiple-output (MIMO) mixtures

by extending our 4th-order cumulant Parafac tensor model and then introducing another impor-

tant contribution of this thesis, corresponding to a SS-LS algorithm for the blind identification

of the MIMO channel coefficients. In the FIR-SISO case, the SS-LS Parafac-based algorithm

represents a new tensor-based scheme for the blind estimation of the channel coefficients. Al-

though the 4th-order cumulant symmetries have being exploited with a tensor formalism for a

long time [23, 24], the SS-LS approach also consists, to our knowledge, in the first contribution

proposing to improve the LS solution of the Parafac decomposition, in both SISO and MIMO

contexts, using the redundancies of the 4th-order cumulant tensor.

Mobile radiocommunication systems are often characterized by multipath propagation,

which introduces ISI, thus causing serious limitations in capacity and performance. In mul-

tiuser/multiantenna systems, this scenario can be represented by a convolutive MIMO channel

model, characterized by the multipath physical parameters (delays, attenuations, and angles of

departure and arrival). In this context, equalization algorithms generally make use of the chan-

nel coefficients and the multipath parameters can be of interest for source localization purposes,

among other applications. In this thesis, we have been interested in estimating both the MIMO

channel coefficients and the physical parameters describing the multipath propagation scenario,

using a fully-blind two-stage approach. First, we extend the 4th-order output cumulant tensor

model for the convolutive MIMO channel case and, using a SS-LS algorithm, we perform a non-

parametric estimation of the channel coefficients. This cumulant tensor model along with the

new blind identification technique can be viewed as a generalization of the models and methods

proposed in Chapter 2 for the SISO and the instantaneous MIMO cases, hence consisting in a

major contribution of chapter 3. In a second stage, we introduce a tensor notation to represent

the structure of a convolutive multiuser radio channel, which allows us to identify the spatial

and temporal signatures of the channel by using a 3rd-order Parafac decomposition. Using an

ALS-based algorithm followed by a MUSIC-like search for the multipath parameters, we end

up with a new combined ALS-MUSIC technique that allows for the recovery of the physical

structure of the MIMO channel, as well as its coefficients without the ambiguities due to the

Parafac decomposition.

Actually, MUSIC-like algorithms play an important role in determining the location of signal
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sources in sensor array processing. In this context, direction finding (DF) techniques have

been of particular interest for source separation and interference suppression (beamforming)

applications. We also treat this problem in chapter 3, where we come up with a new high-

resolution DF algorithm based on the 4th-order cumulants only. Exploiting the virtual antenna

array concept [25, 26], we show that we can get some additional virtual sensors using the

Khatri-Rao structure of an unbalanced arrangement of the cumulant tensor, thus providing

some additional free dimensions to the antenna array. Without resorting to 6th-order statistics,

our new source localization algorithm uses the SS-LS approach to estimate the extended virtual

array, allowing for resolution gains comparable to the 6-MUSIC algorithm [27] with cumulant

estimation burden equivalent to the 4-MUSIC algorithm [28, 29].

Finally, we turn our attention to the problem of determining the order of radiocommunication

channels in the context of multiple-input single-output (MISO) systems, using only the 4th-order

cumulants of the output data sequence. Channel order estimation is a classic model selection

problem strongly related to determining the number of signals embedded in noisy observations

in narrow-band array processing. This is often referred to as the signal (or source) detection

problem [30, 31, 32]. A classical solution for the channel order selection problem relies on the

Sphericity Test [33], which is a well-known algorithm for estimating the number of parameters in

a model using the eigenvalues of a correlation matrix in order to determine test statistics. This

algorithm finds several applications in the context of passive arrays, such as in [34, 35], where

an important modification of the Sphericity Test has been proposed. This approach is based on

the sample correlation matrix, which is estimated from a finite number of output samples and

hence subject to statistical variations.

In chapter 4, we address the problem of channel order determination as a series of hypothesis

tests based on scalar statistics. Using the multivariate estimator of the 4th-order output cumu-

lants, we exploit the insensitiveness of a Chi-square test statistic with respect to the non-linearity

of a stochastic process. This property enables us to observe the amount of signal energy in the

representation space of the 4th-order cumulants and thereby deduce the order of a FIR-SISO

communication channel. Our approach leads to a new channel order detection method and we

provide a performance analysis along with a criterion to establish decision thresholds, according

to a desired level of statistical tolerance. Afterwards, we come up with another major contribu-

tion of the chapter, which consists in introducing the concept of MISO channel nested detectors

based on a deflation-type procedure using the 4th-order output cumulants. The nested detector

devices run combined algorithms that select the order and estimate the coefficients associated

to the different emitters composing the MISO channel. By treating successively shorter and

shorter channels, we can also determine the number of sources.
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Chapter contents and contributions

This thesis is fundamentally based on the following axis:

1. Blind channel identification exploiting the symmetry properties of the 4th-order output

cumulants in a single LS minimization problem;

2. Source localization in multiuser narrowband array processing;

3. Structured channel parameter estimation in a multipath propagation scenario;

4. Channel order estimation and signal detection in the context of MISO channels.

The thesis is divided in four chapters, organized as follows:

Chapter 1: We present a survey on high-order statistics tools in Signal Processing. Some defi-

nitions and properties of HOS are introduced and reported to the context of telecommunication

systems, including important relationships between higher-order cumulants and the parameters

of a linear system model. Useful linear algebraic tools and (simultaneous) matrix decomposi-

tions are discussed. Finally, we present a brief introduction to multilinear tensor decomposition

tools using a generalized formulation for tensors of any order and extending the ALS algorithm

to this general case. Uniqueness conditions are presented and the particular cases of 3rd- and

4th-order tensors are also discussed.

Chapter 2: New blind channel identification algorithms are proposed exploiting 4th-order cu-

mulant redundancies in order to perform the cumulant tensor decomposition by solving a single

least squares minimization problem. We analyze the cumulant tensors in the convolutive SISO

as well as in the instantaneous MIMO cases and propose particular cumulant tensor models for

treating each case. Then, we propose Parafac-based SS-LS algorithms to estimate the channel

coefficients. The algorithms, based on 4th-order cumulants only, are also able to treat certain

underdetermined mixtures. Known algorithms based on the joint-diagonalization technique are

also described and performance comparisons are provided by means of computer simulations to

assess the applicability of the proposed algorithms in both SISO and MIMO cases.

Chapter 3: In this chapter, we are first interested in the problem of blind multiuser localization

in the context of multiple antenna array processing, under the far-field assumption, using only

the array output signals. Exploiting the Virtual Array concept, we propose a high-resolution

DF algorithm exploiting an unbalanced structure of the cumulant tensor, based on the estima-

tion of an array matrix formed from a double Khatri-Rao product, using the SS-LS technique.

Then, we also treat the problem of estimating the physical parameters of a multipath MIMO

communication channel characterized by specular reflections due to remote scatterers. A two-

stage approach is proposed: before extracting the physical parameters of the multipath channel
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structure using a proposed ALS-MUSIC approach, we extend the 4th-order cumulant tensor

model to the case of a convolutive MIMO channel and estimate its coefficients using a SS-LS

algorithm.

Chapter 4: This chapter treats the problem of estimating the channel order and detecting the

number of sources in a MISO channel. First, we propose a sequence of hypothesis tests for

selecting order of a FIR-SISO communication channel. Relying on some properties of the 4th-

order cumulant, we introduce a test variable that is sensitive to the non-linearity of a stochastic

process. Exploiting this property enables us to detect the channel order. We discuss the choice

of a decision criterion and propose a new algorithm for order determination. In the context

of MISO channels, we introduce the concept of nested detectors that successively test for the

presence of shorter and shorter channels, determining their respective orders and estimating

their associated coefficients using HOS-based blind identification techniques.

The main original contributions of this thesis are listed below:

• Proposition of a generalized version of the ALS algorithm for the estimation of the Parafac

components of a P th-order tensor (section 1.3.2);

• Definition of a tensor model for 4th-order output cumulants, in the FIR-SISO case, ad-

mitting a Parafac decomposition with components having a particular Hankel structure

(section 2.2);

• Development of a Parafac-based blind channel identification (PBCI) algorithm using a

SS-LS approach (section 2.3);

• Proposition of a Parafac-based blind (memoryless) MIMO channel identification (PBMCI)

algorithm using the SS-LS approach to exploit the redundancies in the Parafac components

of the 4th-order output cumulant tensor (sections 2.4 and 2.5.2);

• Definition of a 3rd-order tensor model of the 4th-order output cumulants and proposition

of a Parafac SS-LS algorithm for blind channel identification in the memoryless MIMO

case (sections 2.4 and 2.5.2);

• Derivation of a 3rd-order virtual array based on an unbalanced unfolding of the 4th-order

cumulant tensor structure; description of a method for estimating the VA using the SS-LS

approach (section 3.2);

• Unification of the 4th-order cumulant tensor models by means of a generalized tensor

formulation including the convolutive MIMO case, in which the Parafac components have

a block-Hankel structure (section 3.3.1);
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• Development of a non-parametric Parafac-based SS-LS algorithm for the blind identifica-

tion of convolutive MIMO channels (section 3.4.1);

• Introduction of a Parafac tensor representation for the structured multipath MIMO chan-

nel model based on the parameters characterizing the signal propagation (section 3.3.2);

• Realization of a combined ALS-MUSIC method for the estimation of the structured mul-

tipath MIMO channel parameters (section 3.4.2);

• Determination of a Chi-square test statistic based on the energy of the 4th-order cumulants

(section 4.1); proposition of a blind method for determining the order of a SISO channel

(section 4.1.2);

• Development of a combined blind procedure for signal detection, order determination and

channel identification in the context of MISO channels (section 4.2);
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Chapter 1

Mathematical Tools

T
he telecommunications history dates back to the 19th century, when Samuel F. B. Morse

started telegraphic transmissions and Alexander Graham Bell invented the telephone.

Since then, the information technologies experimented dramatic developments and the

technological challenges changed a lot: ubiquitous access, powerful computation and high

transfer rates. The new world scenario created a very harmful environment to data transmissions,

especially in the wireless and mobile communication contexts. Dense urban agglomerations, hot

spot user areas, and high-speed transportation means are some of the factors causing the physical

phenomena responsible for signal deterioration. Actually, these phenomena lead to well-known

troubles of imperfect information recovery, known by the generic name of interference.

In multipath propagation environments, distorted frequency-response channels may cause

the energy of the electromagnetic pulses to spread in time thus corrupting adjacent pulses and

introducing inter-symbol interference (ISI). Wireless communication systems are known to face

several problems related to multipath propagation including ISI as a very severe performance

and capacity limiting factor. In order to suppress the effects of interference and assure the

information recovery at the receiver side, knowledge of the transmission channel is necessary.

Several mathematical models have been developed in order to tentatively predict the behavior

of real systems with the purpose of designing filtering structures (equalizers) that compensates

or reduces the ISI.

In this context, second- and high-order statistics (HOS) appear as powerful signal process-

ing tools, playing a very important role in several applications that involve system information

recovery. However, second-order statistics (SOS) contain no phase information and, as a conse-

quence, nonminimum phase signals cannot be correctly identified by those techniques. On the

other hand, HOS of Gaussian signals are either zero (odd-ordered moments) or contain redun-

dant information. This is a remarkable information since measurement noise is often Gaussian

and many real-life signals have non-zero HOS. Several important papers on HOS have been

written since the Sixties, but it is from the Seventies that the subject starts to experience its

greatest growing of interest with applications involving different contexts such as economics,

9
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speech, seismic data processing, plasma physics, control, optics and obviously, communications.

More recently, the introduction of the multiuser and multiple output communication systems

served as an application background to the new developments in the area. Section 1 is a brief

tutorial on this subject, presenting the important definitions, properties and some relationships

between high-order moments and cumulants.

Anyway, processing HOS data often implies implementing algebraic methods and generally

requires the use of numerical algorithms. Most of the engineering problems and physical applica-

tions make use of numerical methods, especially those associated with stability and perturbation

analysis. In particular, the eigenvalue problem for square matrices is of crucial importance in

several domains of Signal Processing. As we will see in section 2, several matrix factorization

techniques play an important role in these scenarios and will be divided in two main strate-

gies [36]: diagonalization and triangularization. The former is classically solved by Jacobi-like

algorithms, still powerful and popular due to the high inherent parallelism. The latter one

is applicable to any (square) matrix and its classical implementations are based on QR-type

algorithms. In some domains, such as blind sources separation and system identification, simul-

taneous matrix factorization tools are strongly desirable. Section 2 also discusses simultaneous

decomposition techniques that are suitable for processing long data records sharing common

structure properties but differing in the individual information contents.

On the other hand, multi-linear algebraic tools have been developed and applications in

multiuser systems using HOS are now a current research topic. In particular, the trilinear

Parallel Factor analysis (Parafac) has become very popular in the fields of Psychometrics and

Chemometrics [37, 38] but it also has been widely used in Signal Processing applications (c.f. [39,

40, 41, 42, 43, 44] among others). The major importance of using Parafac is due to its uniqueness

property, ensured under very mild conditions that have been stated by Kruskal [20]. In section 3,

we present a synthetic review and some fundamental aspects of the Parafac decomposition, using

a general formulation for the case of a P th-order tensor. We also briefly discuss the estimation

of Parafac components by describing the associated alternating least squares (ALS) algorithm.

1 High-order statistics

Moments and cumulants are descriptive constants of a probability distribution. In this section,

we present a global overview on the main aspects of HOS including definitions, properties and

important relationships.

Moments and cumulants

Let us consider a set of k real random variables (r.v.) Z = {z1, . . . , zk} with known joint

probability density function (p.d.f.), f
Z
(z1, . . . , zk), and a sequence of k integer numbers
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(n1, n2, · · · , nk) such that n1 + n2 + · · ·+ nk = m. The mth-order moment of Z is defined as

Mm,Z = E
{
zn1
1 zn2

2 . . . znk
k

}
, (1.1)

where E {·} stands for the expectation operator. The moments Mm,Z defined in (1.1) can be

obtained as the coefficients of the Taylor series expansion around the origin of the characteristic

function ΩZ(u), also known as the moments generating function, given as follows [45]:

ΩZ(u) ,

∫ ∞

−∞
f
Z
(z1, . . . , zk) exp

(
juTZ

)
dz1 . . . dzk

= E

{
exp

(
juTZ

)}
, (1.2)

where u = (u1 . . . uk)
T. For complex random variables, we consider the joint distribution of

their real and imaginary parts, and the expressions given here become more complicated [46].

The second characteristic function, known as the cumulants generating function,

ΥZ(u), is then defined as the natural logarithm of the moments generating function, i.e.

ΥZ(u) = ln [ΩZ(u)]. Thus, the mth-order cumulants of Z are obtained as the coefficients of its

Taylor series expansion around the origin and they can be computed as the partial derivatives

of ΥZ(u):

cm,Z =
∂mΥZ(u)

∂un1
1 . . . ∂unk

k

. (1.3)

Let us assume, without loss of generality, that n1 = · · · = nk = 1 and thus m = k. Now,

denote by P
(η)
i a partition of length η of the set I = {1, . . . ,m}. The partition P

(η)
i is an

unordered collection of η nonintersecting nonempty sets Pj such that
⋃η

j=1 Pj = I. Let Pη be

the set containing all partitions of I with length η, so that Pj ⊂ P
(η)
i ⊂ Pη, 1 ≤ η ≤ m. Consider

the set P comprising all possible groups of partitions Pη of the set I, i.e. P = {P1, . . . ,Pm}.
For instance, when m = 3 we have I = {1, 2, 3} and thus:

P1 =

{
{1, 2, 3}
︸ ︷︷ ︸

P
(1)
1

}
, P2 =

{ [
{1}, {2, 3}

]

︸ ︷︷ ︸
P
(2)
1

,

[
{2}, {1, 3}

]

︸ ︷︷ ︸
P
(2)
2

,

[
{3}, {1, 2}

]

︸ ︷︷ ︸
P
(2)
3

}
, P3 =

{ [
{1}, {2}, {3}

]

︸ ︷︷ ︸
P
(3)
1

}

so that

P =

{
P1,P2,P3

}
=

{[
{1, 2, 3}

]
,

[
{1}, {2, 3}

]
,

[
{2}, {1, 3}

]
,

[
{3}, {1, 2}

]
,

[
{1}, {2}, {3}

]}
.

Using the above definitions, we can state the following formulas explicitly relating moments

to cumulants and vice-versa, respectively [2]:

cm,Z =
m∑

η=1

(−1)η−1(η − 1)!
∑

P
(η)
i ⊂Pη

η∏

j=1

Mm,ZPj
Pj ⊂ P

(η)
i (1.4)

Mm,Z =

m∑

η=1

∑

P
(η)
i ⊂Pη

η∏

j=1

cm,ZPj
Pj ⊂ P

(η)
i (1.5)
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where ZPj is a subset of Z = {z1, . . . , zm} formed with the elements having indices in Pj.

From definition (1.1), we observe that if the variables z1, . . . , zm are independent with zero

mean (i.e. centered around the origin) then all the odd-order moments are identically zero. From

(1.4), we note that this property can be extended to cumulants because, if m is odd then every

partition P
(η)
i will always contain at least one subset Pj with an odd number of elements. That

is the reason why in so many situations we are constrained to use at least fourth-order statistics.

For centered independent processes, the expression for the 4th-order cumulant reduces to

c4,Z = E {z1z2z3z4} − E {z1z2}E {z3z4} − E {z1z3}E {z2z4} − E {z1z4}E {z2z3} , (1.6)

with Z = {z1, z2, z3, z4}. For notational convenience, we define the following convention, to be

used throughout the rest of this thesis:

cm,ZP
, cum [zj1 , . . . , zjm ] , (1.7)

where P = {j1, . . . , jm} and the operator cum [·] stand for the mth-order joint cumulant of the

random variables zj1 , . . . , zjm . Thus, considering a zero-mean random process {υ(t)}, we have

Mm, Υ = E

{
m−1∏

i=0

υ(t+ ti)

}
(1.8)

Cm,Υ = cum
[
υ(t+ t0), υ(t + t1), . . . , υ(t+ tm−1)

]
, (1.9)

where Υ = {υ(t + t0), υ(t + t1), . . . , υ(t + tm−1)} and hence the involved r.v. are time-shifted

samples of the process ν(t). Notice that, for stationary processes, themth-order statistics depend

only on the m− 1 time-lags τ1 = t1 − t0, . . ., τm−1 = tm−1 − t0. This allows us to introduce the

following notations:

Mm,υ(τ1, . . . , τm−1) = E

{
υ(t)

m−1∏

i=1

υ(t+ τi)

}
(1.10)

Cm,υ(τ1, . . . , τm−1) = cum [υ(t), υ(t + τ1), . . . , υ(t+ τm−1)] (1.11)

where {υ(t)} is a zero-mean stationary random process. Stationarity will be further discussed

later in this section.

Polyspectra

The polyspectrum of a stationary process υ(t) is defined as the (m− 1)-dimensional discrete

Fourier Transform of the mth-order cumulant, i.e.

Sm,υ(ω1, ω2, . . . , ωm−1) ,

∞∑

τ1=−∞

· · ·
∞∑

τm−1=−∞

Cm,υ(τ1, . . . , τm−1)× exp

(

−j
m−1∑

i=1

ωiτi

)

(1.12)

where Cm,υ(τ1, . . . , τm−1) is assumed to be absolutely summable. For m = 2, equation (1.12)

coincides with the classic power spectrum S2,υ(ω). Whenm = 3, we have the so-called bispectrum

S3,υ(ω1, ω2), whereas for m = 4 we get S4,υ(ω1, ω2, ω3), named trispectrum.
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Next, we present a survey of the most important properties of cumulants and polyspectra.

Further details and proofs to these properties can be easily found in the literature (c.f. [1, 2])

and will be omitted here.

1.1 Properties and comments

Due to some special properties, the use of cumulants yields advantages that may not necessarily

be exploited when dealing with moments. Consider a set of k r.v. Z = {z1, . . . , zk} and the

following properties hold for cumulants:

P1 Linearity :

cum [λ1z1, . . . , λkzk] = cum [z1, . . . , zk]

k∏

i=1

λi, (1.13)

where λi, i = 1, . . . , k are constants

P2 Additivity : If x0, y0 are mutually independent random variables, then

cum [x0 + y0, z1, . . . , zk] = cum [x0, z1, . . . , zk] + cum [y0, z1, . . . , zk] . (1.14)

P3 Symmetry : Let the set {n1, . . . , nk} be any permutation of {1, . . . , k}. Then, it holds

cum [z1, . . . , zk] = cum [zn1 , . . . , znk
] (1.15)

P4 Independence: If any (nonempty) subset of Z is independent of the remaining r.v. in Z,

then

cum [z1, . . . , zk] = 0. (1.16)

Comments and discussion

1. Stationarity : A stochastic process {υ(t)} is said to be strictly stationary if the joint dis-

tribution of any set of random variables {υ(t+ t0), . . . , υ(t+ tn−1)} is independent of the

time t, for all n. In other words, all the moments of υ(t) are time-invariant and depend

only on the differences between the time-lags τi = ti − t0, i ∈ [1, n − 1]. In practice, it

is usual to deal with the weaker concept of wide-sense stationarity (WSS), also known

as second-order stationarity, which only ensures the mean and the correlation function to

be independent of the observation instants. Recalling property P4, it follows that for a

stationary centered i.i.d. process the mth-order cumulant is a multidimensional impulse

function, i.e.

cum [υ(t), υ(t + τ1), . . . , υ(t + τm−1)] = cum [υm(t)] δ(τ1) . . . δ(τm−1), (1.17)
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where δ(·) stands for the Dirac’s impulse function. We thus denote γm,υ = cum [νm(t)]

and, assuming υ(t) is zero-mean, we get

γ2,υ = cum
[
υ2(t)

]
= C2,υ(0) = E

{
υ2(t)

}
, (1.18)

γ3,υ = cum
[
υ3(t)

]
= C3,υ(0, 0) = E

{
υ3(t)

}
, (1.19)

γ4,υ = cum
[
υ4(t)

]
= C4,υ(0, 0, 0) = E

{
υ4(t)

}
− 3E

{
υ2(t)

}2
, (1.20)

where γ2,υ, γ3,υ and γ4,υ stand respectively for the variance, the skewness and the kurtosis

of the random process υ(t).

The skewness measures the lack of symmetry in a given distribution. It equals zero for

symmetric (centered) distributions. A normalized version of the skewness is reported in

the literature as follows:

γ̄3,υ =
C3,υ(0, 0)

(C2,υ(0))3/2
.

The kurtosis is a measure of flatness and, indirectly, of gaussianity. It equals zero for

Gaussian processes and has positive or negative value depending on whether the probability

density of the process is peaked (over-Gaussian) or flat (under-Gaussian) with respect to

a normal distribution, respectively. A normalized version of the kurtosis is defined as

γ̄4,υ =
C4,υ(0, 0, 0)

(C2,υ(0))2
.

2. Symmetries: In addition to properties P1 to P4, cumulants and polyspectra present several

symmetry properties. Using property P3, we notice from (1.11), that Cm,υ(τ1, . . . , τm−1) =

Cm,υ(τn1, . . . , τnm−1), where {n1, . . . , nk} can be any permutation of the set {1, . . . ,m−1}.
Hence, there are (m−1)! different ways to order the time-lags τi yielding the same cumulant

value. In addition, notation (1.11) was defined with respect to the time-shift t0, using the

convention τi = ti − t0, i ∈ [1, n − 1]. However, any other choice of ti, i ∈ [1, n − 1],

should lead to the same result, giving us m additional ways to get the same cumulant. In

conclusion, mth-order cumulants define a representation space C
τ1×···×τm−1 in which the

function Cm,υ(τ1, . . . , τm−1) has m(m−1)! = m! regions of symmetry, each one containing

all the mth-order cumulant information and providing no additional information with

respect to the other regions. For instance, when m = 3 each cumulant appears 3! = 6

times in the space R
τ1×τ2 , as illustrated in fig. 1.1. Each of these 6 regions of symmetry

in the plane τ1× τ2 contains all the non-redundant 3rd-order information. For m = 4, the

space R
τ1×τ2×τ3 is divided into 4! = 24 redundant regions of symmetry.

3. Cumulants of complex processes: The above formulas were stated for the case of real-valued

random processes. In the complex case, the random variables may be conjugated or not.

Starting from equation (1.11), where no conjugations were made, we can state several

definitions until reaching the one where all the variables are conjugated. Throughout the
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Figure 1.1: Regions of symmetry for the 3rd-order cumulants in the plane τ1 × τ2.

rest of this work, except when otherwise stated, we will employ a particular definition1 in

which the random variables are alternately conjugated, so that (1.11) becomes:

Cm,υ(τ1, . . . , τm−1) =

{
cum [υ∗(t), υ(t+ τ1), . . . , υ

∗(t+ τm−2), υ(t+ τm−1)] , if m is even;

cum [υ∗(t), υ(t+ τ1), . . . , υ(t+ τm−2), υ
∗(t+ τm−1)] , if m is odd,

(1.21)

and, according to the above, γm,υ is denoted as follows:

γm,υ = Cm,υ(0, 0, . . . , 0). (1.22)

4. Second-order moments and cumulants: using (1.21) and the relationship (1.4), second-

order moments and cumulants (m = 2) can be written as

M2,υ(τ) = E {υ∗(t)υ(t+ τ)} = cum [υ∗(t), υ(t + τ)] = C2,υ(τ), (1.23)

which is the autocorrelation function of υ(t). We also define

M
(d)
2,υ (τ) = E {υ(t)υ(t + τ)} = cum [υ(t), υ(t + τ)] = C

(d)
2,υ(τ), (1.24)

so that M
(d)∗
2,υ (τ) = E {υ∗(t)υ∗(t+ τ)} = (E {υ(t)υ(t + τ)} )∗ = C

(d)∗
2,υ (τ).

5. Fourth-order cumulants: For centered processes, when m = 4, relation (1.4) reduces to

(1.6). Recalling υ(t) is assumed zero-mean stationary, and using the notation (1.21), we

get the following:

C4,υ(τ1, τ2, τ3) = cum [υ∗(t), υ(t + τ1), υ
∗(t+ τ2), υ(t+ τ3)] (1.25)

= E {υ∗(t)υ(t+ τ1)υ
∗(t+ τ2)υ(t+ τ3)} −

E {υ∗(t)υ(t+ τ1)}E {υ∗(t+ τ2)υ(t+ τ3)} −
E {υ∗(t)υ∗(t+ τ2)}E {υ(t+ τ1)υ(t+ τ3)} −
E {υ∗(t)υ(t+ τ3)}E {υ(t+ τ1)υ

∗(t+ τ2)}
1 The use of this definition is motivated by the fact that for certain signals of interest fourth-order cumulants

are zero when an odd number of conjugated terms is taken into account.
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and consequently

C4,υ(τ1, τ2, τ3) = M4,υ(τ1, τ2, τ3)−M2,υ(τ1)M2,υ(τ3 − τ2)− (1.26)

M
(d)∗

2,υ (τ2)M
(d)
2,υ (τ3 − τ1)−M2,υ(τ3)M2,υ(τ1 − τ2).

Replacing τ1 = τ2 = τ3 = 0 in (1.26) we can re-write (1.20) as

γ4,υ = C4,υ(0, 0, 0) = M4,υ(0, 0, 0) − 2M2
2,υ(0)−

∣∣∣M (d)
2,υ (0)

∣∣∣
2

= E
{
|υ(t)|4

}
− 2E

{
|υ(t)|2

}2 −
∣∣E
{
υ2(t)

}∣∣2 (1.27)

6. Gaussianity : Cumulants of any order greater than two of Gaussian processes are zero

[1, 2]. Hence, cumulants can be viewed as a measure of the distance of a process from

gaussianity.

7. Circularity: Let us define the complex-valued random vector z = [z1 . . . zk]
T. The vector

z is said to be circular if and only if

Ωz(e
θu) = Ωz(e

u), ∀ θ,  =
√
−1, (1.28)

which means that the moments of the variables z and eθ z are equal. The circularity of

a complex random variable can therefore be viewed as the invariance of its probability

density to a rotation of an angle θ. In particular, for a scalar complex circular random

variable, it follows that moments and cumulants with a different number of conjugated

and non-conjugated terms are zero, e.g. E {z} = 0, E
{
z2
}

= 0, E
{
z2z∗

}
= 0 and so on.

1.2 Estimation of moments and cumulants from real data

Practical applications of high-order statistics require the use of methods for estimating their

values from the available data. In this context, ergodicity2 is key assumption, allowing us to

estimate moments from finite data sequences. Therefore, disposing of N data samples of a

centered random variable υ(t), the simplest estimator of the mth-order moments of υ(t) is given

as follows:

M̂m,υ(τ1, . . . , τm−1) =






1
n2−n1+1

n2∑
n=n1

υ∗(t)υ(t+ τ1) · · · υ∗(t+ τm−2)υ(t+ τm−1), if m is even;

1
n2−n1+1

n2∑
n=n1

υ∗(t)υ(t+ τ1) · · · υ(t+ τm−2)υ
∗(t+ τm−1), if m is odd,

(1.29)

where n1 = max(0,−τ1, . . . ,−τm−1) and n2 = min(N,N − τ1, . . . , N − τm−1). Let us also define

M̂ (d)
m,υ(τ1, . . . , τm−1) =

1

n2 − n1 + 1

n2∑

n=n1

υ(t)υ(t + τ1) · · · υ(t+ τm−1), ∀ m ∈ N
∗. (1.30)

2 Statistical expectations of ergodic processes coincide with their time averages
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Furthermore, in order to evaluate the performance of an estimator ϑ̂ of a given deterministic

quantity ϑ, the mean, variance and bias of the estimator are useful metrics, and we define them

as follows, respectively:

µϑ̂ = E

{
ϑ̂
}

(1.31)

σϑ̂ = E

{(
ϑ̂− µϑ̂

)2
}

(1.32)

bias
(
ϑ̂
)

= E

{
ϑ̂
}
− ϑ (1.33)

Taking ϑ = Mm,υ(τ1, . . . , τm−1), we notice that the mth-order moment estimator defined in

(1.29) is non-biased, since E

{
M̂m,υ(τ1, . . . , τm−1)

}
= Mm,υ(τ1, . . . , τm−1). In addition, (1.29) is

also said to be a consistent estimator because

lim
N→∞

σM̂m,υ(τ1,...,τm−1) = 0. (1.34)

In this thesis, we are particularly interested in the case where m = 4. In order to estimate

4th-order cumulants, we first get the 2nd- and 4th-order moments estimates using (1.29) and

(1.30), which yields






M̂4,υ(τ1, τ2, τ3) = 1
n2−n1+1

n2∑
n=n1

υ∗(n)υ(n + τ1)υ
∗(n+ τ2)υ(n + τ3)

M̂2υ(τ) = 1
n2−n1+1

n2∑
n=n1

υ∗(n)υ(n + τ)

M̂2υ,d(τ) = 1
n2−n1+1

n2∑
n=n1

υ(n)υ(n + τ),

(1.35)

and then Ĉ4,υ(τ1, τ2, τ3) is obtained from the relationship (1.26). It is possible to show that

the cumulant estimator is biased, but its bias tends to zero as N tends to infinity (c.f. [47] and

references therein). In addition, Ĉ4,υ(τ1, τ2, τ3) is said to be a consistent estimator, since its

variance goes to zero as N goes to infinity.

For polyspectra estimations, cumulant estimates must be obtained first and then converted

to the frequency-domain, using (1.12). Further information on cumulant and polyspectra esti-

mation can be found in [17, 48, 47].

2 Linear algebraic tools

In this section, we consider the computation of eigenvectors that simultaneously satisfy a number

of given matrices. This so-called generalized eigenproblem consists in the search for solutions

revealing the common eigenstructure of a set of symmetric matrices. This problem is of great

importance in the domain of blind source separation but we also find applications in the field of

system identification and equalization.
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2.1 The symmetric-definite eigenvalue problem

Eigenanalysis is a basic algebraic tool in any domain of Signal Processing. The search for the

nontrivial solutions of the linear system Ax = λx gave rise to enormous developments since the

Jacobi’s works in the middle of the 19th century [49]. In particular, computing the eigenvalues

of a matrix A consists in finding the roots of the characteristic equation:

det(A− λI) = 0. (1.36)

However, in most of the cases, explicitly solving the characteristic equation is an ill-conditioned

problem that should be avoided. Moreover, if there exist solutions to (1.36), those are necessarily

iterative because there is no closed-form expression for the roots of a general polynomial of degree

n > 4. As a result, numerical solutions and stability issues have been strongly addressed in the

literature aiming an accurate and efficient computation of eigenvalues and eigenvectors.

A straightforward solution to this problem consists in a Schur-type decomposition of the

square matrix A to the form A = QLTQH, where Q is unitary3 and L is lower triangular. Several

zero-introducing methods are reported in the literature for implementing this triangularization

strategy, including Householder, Givens and Gram-Schmidt [50, 49]. A special case occurs

when A is normal, i.e. it commutes with its conjugate-transpose (AAH = AHA). A normal

matrix is unitarily diagonalizable i.e. there exists a unitary matrix Q such that QHAQ = ∆,

where ∆ is a diagonal matrix with the eigenvalues of A composing its main diagonal. This

diagonalization approach is easily implemented by means of successive applications of unitary

similarity transformations.

Next, we briefly discuss these two classes of techniques that cope with the vast majority of the

cases concerned in signal processing applications. Notice, however, that the choice of an adequate

algorithm depends on a number of characteristics of the concerned matrix. In particular, some

features to be considered involve main properties (symmetric, unitary, Hermitian, etc), structure

(sparse, Toeplitz, etc) and type of elements (real or complex) among others.

Triangularization strategies

A valuable approach for computing the eigenvalues of a square matrix A ∈ C
n×n consists in

reducing A to a triangular form by means of unitary similarity transformations. This solution

is based on the Schur’s Unitary Triangularization Theorem, which states that there exists a

unitary n × n matrix Q such that QHAQ = LT is upper triangular. Since the determinant of

a triangular matrix equals the product of the diagonal entries, the eigenvalues of A are given

by the diagonal elements of L, i.e. λi = [L]ii. Furthermore, provided that A is full rank, the

columns of Q form an orthonormal basis for the column space of A. Therefore, the Schur

decomposition can be viewed as a way to compute eigenvalues and eigenvectors of A, as it is

shown in Appendix A.1.

3 A matrix Q ∈ C
n×n is unitary iff QQH = QHQ = I. As a result, if Q is unitary then QH = Q−1.
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Diagonalization strategies

Let ∆ be unitarily similar to A, i.e. ∆ = QHAQ, with Q unitary. If A is normal then also

is ∆, i.e. if AAH = AHA then ∆∆H = ∆H∆. On the other hand, Schur’s Triangularization

Theorem says that a unitary Q exists for which ∆ is upper triangular. Notice, however, that

a matrix that is both normal and upper triangular can only be diagonal and hence, the Schur

factorization actually diagonalizes normal matrices. Therefore, diagonalization techniques can

be used to determine the eigenstructure of a normal matrix. In particular, Hermitian matrices

(symmetric in the real case) often receive special attention since they have real eigenvalues.

Numerical solutions to this problem are known to be iterative and the idea is based on the

repeated application of unitary similarity transformations so that matrix A is systematically

changed toward a diagonal form until reaching a tolerance level with respect to a certain criterion.

Such a criterion must be carefully defined in order to stop iteration at a point where A is close

enough to being diagonal. A classical measure of how much a matrix differs from being diagonal,

based on its non-diagonal values, is given in [50], as follows:

off (A) ,




n∑

i=1

n∑

j = 1
j 6=i

|aij |2





1/2

(1.37)

=
(
‖A‖2F − ‖diag (A)‖2

)1/2
, (1.38)

where

‖A‖F ,




n∑

i=1

n∑

j=1

|aij |2



1/2

(1.39)

is the Frobenius norm of A, diag (A) is the vector consisting of the diagonal elements of A and

‖ · ‖ stands for the Euclidean norm. Note that ‖A‖2F = Tr(AAH) and, since the trace of a

matrix is invariant under a similarity transformation, the following holds for any unitary n× n
matrix Q:

‖A‖2F = Tr(AAH) = Tr(QHAAHQ) = Tr(QHAQQHAHQ) = ‖QHAQ‖2F . (1.40)

Therefore, the Frobenius norm is also preserved under a similarity transformation. As a result,

we have the following relationship

‖A‖2F = off
(
QHAQ

)2
+
∥∥∥diag

(
QHAQ

)∥∥∥
2
. (1.41)

Once the sum in the right-hand side of the above equation is constant it is straightforward to

conclude that minimizing the norm of the off-diagonal terms implies maximizing the norm of

the diagonal elements and vice-versa.

Diagonalization methods appear among the earliest solutions for the eigenvalue problem and

have been formerly addressed by Jacobi, whose seminal ideas became classic and very attractive
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for application in parallel computing. In Appendix A.2, we describe the classical Jacobi method

for computing similarity transformations that make A closer and closer to being diagonal, in an

iterative procedure.

In the next section, we show that the simultaneous diagonalization of two symmetric matrices

is equivalent to a generalized eigenvalue problem. Under certain conditions, this problem can be

viewed as a generalization of the Lower-Diagonal-Upper factorization (L∆MT) and it indicates

a link between the EVD techniques and the optimization methods [51, 52]. We will also show

how this problem can be extended to a set of K symmetric matrices.

2.2 The generalized eigenvalue problem

Given a Hermitian matrix A ∈ C
n×n and a Hermitian positive-definite matrix B ∈ C

n×n, we

want to find a factor Q such that QHAQ and QHBQ are diagonal n× n matrices. We start by

looking for an intermediate transformation W1, referred to as whitening transformation, such

that

WH

1 BW1 = I. (1.42)

In the above equation, W1 can be computed by several means including classical singular value

decomposition (SVD) or eigenvalue decomposition (EVD). Let, for instance, the EVD of B be

given by ΓHBΓ = ΛB , then

W1 = ΓΛ
−1/2
B , (1.43)

where Λ
−1/2
B is real since B is assumed Hermitian and positive-definite. However, we search a

factor Q that is supposed to diagonalize both A and B, simultaneously. Hence, the whitening

transformation W1 must also be applied to A, which yields A1 = WH
1 AW1. We can now

diagonalize A1 by computing a second transformation W2, as follows,

WH

2 A1W2 = WH

2 WH

1 AW1W2 = ∆, (1.44)

where WH
2 A1W2 = ∆ is the EVD of A1 with ∆ being a diagonal matrix and W2 a unitary

transformation (because A1 is Hermitian). We conclude that Q = W1W2 jointly diagonalizes

both A and B, so that {
QHAQ = ∆

QHBQ = I,
(1.45)

where we have used the fact that W2 is unitary to obtain the latter equation. Furthermore,

QQH = W1W2W
H
2 WH

1 = W1W
H
1 and, from (1.43), we get W1W

H
1 = ΓΛ−1

B ΓH, hence

QQH = B−1. Thus, we can handle (1.45) to get (BQ)QHAQ = (BQ)∆ and it follows that

AQ = BQ∆. (1.46)
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The above equation states a generalized eigenvalue problem [50]. The columns of Q form a basis

of eigenvectors associated with the generalized eigenvalues, disposed at the diagonal entries of

∆. Moreover, since B is nonsingular4, we have

B−1AQ = Q∆. (1.47)

Therefore, equation (1.47) shows that the diagonalizing factor Q exists and can be exactly

obtained from the EVD of B−1A or, equivalently, from two consecutive matrix decompositions

as indicated by (1.43) and (1.44), avoiding matrix inversion. This problem is referred to as the

symmetric-definite generalized eigenproblem and a number of algorithms are available in the

literature to compute Q satisfying (1.45).

Simultaneous diagonalization

We have just considered the simultaneous diagonalization of two symmetric matrices (K = 2).

We now consider the general case where K > 2. In other words, we search the nonsingular factor

Q that simultaneously diagonalizes a set A of symmetric matrices A(k) ∈ C
n×n, k = 1, . . . ,K.

For K > 2, it does not necessarily exist a common set of eigenvectors and Q is said to reveal the

average eigenstructure of the set A [53]. Existing numerical methods can be used to compute an

orthonormal basis Q = [Q·1 · · ·Q·n] that approximately diagonalizes the matrices A(k), as best

as possible, following a Jacobi-like approach. The idea behind these methods is to optimize a

cost function aiming to minimize the off-diagonal elements of A(k), so that all matrices in the set

A become systematically and simultaneously closer to being diagonal. A very straightforward

way to define the cost function describing this criterion is as follows:

J(Q,A) ,

K∑

k=1

off
(
QHA(k)Q

)
(1.48)

where the operator off (·) is given in (1.38) and the matrix Q that minimizes (1.48) is referred

to as joint diagonalizer of the set A [53].

From the previous section, recall that minimizing the norm of the off-diagonal terms of a

matrix implies maximizing the norm of its diagonal elements, as suggested by (1.41). As a result,

computing a joint diagonalizer Q to the set A by minimizing (1.48) is equivalent to maximizing

the following criterion

J(Q,A) ,

K∑

k=1

∥∥∥diag
(
QHA(k)Q

)∥∥∥
2
. (1.49)

4 If B is singular, the method discussed here can be applied by using a rank-reduction technique in such a way

that the first r
B

= rank (B) < n columns of Γ (eigenvectors of B) are used to form ΓrB and then (1.43) becomes

ΓrB diag (λ1, . . . , λrB)−1/2 = W1 ∈ C
n×rB . Thus, W2 ∈ C

rB×rB and hence W1W2 = Q ∈ C
n×rB . In this case,

(1.47) becomes B#AQ = Q∆, where B# is the pseudo-inverse of B defined as B# = ΓrB diag (λ1, . . . , λrB)−1
ΓH

rB

so that BB# = B#B = ΓrBΓH
rB . This procedure is referred to as reduced-rank simultaneous diagonalization.
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For K = 1, the above problem corresponds to a simple matrix diagonalization and we can easily

compute Q using a classical Jacobi algorithm. The same holds for K = 2. For K > 2, however,

orthogonal similarity transformations might not be able to produce K perfectly diagonal matri-

ces. An extended version of the Jacobi diagonalization algorithm was proposed in [51, 52] for

performing an approximative joint diagonalization of the matrices in A by maximizing (1.49)

through the successive application of plane rotations (Givens rotations). The extended Jacobi

algorithm for approximative simultaneous diagonalization is described in Appendix A.2.

Least Squares equivalence

The criterion (1.49) for the simultaneous diagonalization of the set A is shown to be equivalent

to the following:

J (Q,A) =
K∑

k=1

∥∥∥A(k) −Q∆kQ
H

∥∥∥
2

F
. (1.50)

Although the original proposition of Cardoso and Souloumiac [51] was merely intuitive, the above

result, first demonstrated by Wax [54], proves that joint diagonalization actually coincides with

a least squares problem and it is therefore optimal in that sense.

3 Multilinear algebraic tools

3.1 Parafac tensor decomposition

The Parallel Factor (Parafac) analysis of a P th order tensor with rank F consists in the de-

composition of the tensor into a sum of F rank-one tensors, each one being written as an outer

product of P vectors [16]. Let us consider the P th-order tensor T (P ) of dimensions I1× . . .× IP
having the following F -component decomposition:

ti1 ... iP =

F∑

f=1

a
(1)
i1f . . . a

(P )
iP f (1.51)

where ip ∈ [1, Ip], with p ∈ [1, P ]. The sum expressed in (1.51) is the scalar representation of the

Parafac decomposition of tensor T (P ). The rank of a tensor is defined as the minimum number

F of factors needed to decompose it in the form (1.51). The tensor T (P ) can be written as the

sum of F outer products5 involving P vectors, as follows:

T (P ) =

I1∑

i1=1

· · ·
IP∑

iP =1

ti1 ... iP e
(I1)
i1
◦ · · · ◦ e(IP )

iP

=
F∑

f=1

A
(1)
·f ◦ · · · ◦A

(P )
·f , (1.52)

5The outer product of two arrays A
(P )

∈ C
I1×...×IP and B

(Q)
∈ C

J1×...×JQ consists of a tensor of order P +Q

in which the element in position i1, i2, . . . , iP , j1, j2, . . . , jQ equals the product ai1 i2 ... iP
bj1 j2 ... jQ

.
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where the notation e
(Ip)
ip

, ip ∈ [1, Ip], p ∈ [1, P ], stands for the ipth canonical basis vector of R
Ip ,

i.e. e
(Ip)
ip

= [0, . . . , 0, 1, 0, . . . , 0]T ∈ R
Ip×1, with the nonzero element ‘1’ placed at the ipth entry.

In addition, the P matrices A(p) ∈ C
Ip×F , p ∈ [1, P ], formed of the elements a

(p)
ipf , ip ∈ [1, Ip],

f ∈ [1, F ], contain all the tensor information and will be referred to as (canonical) Parafac

components. The fth column of matrix A(p) is defined as follows:

A
(p)
·f ,

Ip∑

ip=1

a
(p)
ipfe

(Ip)
ip

, f ∈ [1, F ]. (1.53)

We define a d-dimensional slice of tensor T (P ) as the set of elements obtained by freezing P − d
of its P indexes and making the d other ones to vary in their respective ranges. As a result,

one-dimensional (1D) tensor slices can be viewed as vectors and two-dimensional (2D) tensor

slices are matrices.

Establishing conditions to ensure uniqueness of the Parafac decomposition is of major im-

portance. Uniqueness represents a great advantage of Parafac over matrix decompositions,

since Parafac does not produce rotational ambiguities. In addition, there are generally no or-

thogonality constraints such as in SVD, even in the symmetric (Hermitian) case, where such

constraints also apply to EVD 6. In particular, the decomposition of a tensor T (P ) with compo-

nents A(1), . . . ,A(P ) is said to be essentially unique if any other set of matrices {Ā(1), . . . , Ā(P )}
satisfying (1.52) is such that

Ā(p) = A(p)ΛpΠ, ∀ p ∈ [1, P ], (1.54)

where Λp, p ∈ [1, P ], are diagonal scaling matrices satisfying

P∏

p=1

Λp = IF (1.55)

and Π is an F ×F permutation matrix [55]. In other words, essential uniqueness means unique-

ness up to column scaling and permutation. A sufficient uniqueness condition has been stated

by Kruskal in [20] for the case of a 3rd-order tensor. For a generic P th-order tensor, Sidiropoulos

and Bro extended the Kruskal Uniqueness Theorem as follows [38]:

Theorem 1.1 The Parafac decomposition of a P th-order tensor with rank F > 1, is essentially

unique if
P∑

p=1

kA(p) ≥ 2F + (P − 1), (1.56)

where kA(p) stands for the k-rank of the Parafac component A(p), p ∈ [1, P ].

6 It is well known that the SVD of a (complex) matrix yields a factorization of the type X = UDVH, with D

diagonal and U and V unitary matrices. When dealing with Hermitian matrices, this orthogonality constraint

also applies to EVD.
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The k-rank of an n × m matrix X equals the largest integer kX for which any set of kX

columns of X is independent. From this definition, we notice that kX ≤ rX ≤ min(n,m), where

rX = rank (X). Several authors have addressed the Parafac uniqueness problem and different

proofs have been given to the above theorem [20, 38, 56]. In addition, the Kruskal condition is

shown to be necessary for F = 2 and F = 3 and, if kA(p) = rA(p) , ∀ p ∈ [1, P ], then (1.56) is

also necessary for F = 4 [38]. In the general case, some necessary uniqueness conditions include

kA(p) 6= 0, ∀ p ∈ [1, P ], which means that the Parafac components A(p) should not have any

all-zero column [57]. Implications of this fact will be further discussed later in this section.

In section 3.2 below, we discuss the important issue of estimating Parafac components.

Specifically, we will introduce the basic principles for implementing the ALS algorithm under a

general framework. To this end, we need to express tensor T (P ) using matrix representations.

In which follows, we derive a generalized formulation for the matrix representations of a P th-

order (Parafac) tensor allowing us to extend trilinear estimation algorithms to the order P .

Matrix representations are obtained by unfolding the tensor so that all the tensor elements

are placed in a 2D array. We define the P th unfolded tensor representation of T (P ) as a

(I1 · · · IP−1) × IP matrix T[P ], such that [T[P ]]r,iP = ti1 ... iP where the row number is given

by r = (i1 − 1)I2 · · · IP−1 + (i2 − 1)I3 · · · IP−1 + . . .+ (iP−2 − 1)IP−1 + iP−1.

Using the canonical basis vector notation, this is equivalent to write:

T[P ] ,

I1∑

i1=1

· · ·
IP∑

iP =1

ti1 ... iP e
(I1···IP−1)
(i1−1)I2···IP−1+(i2−1)I3···IP−1+...+(iP−2−1)IP−1+iP−1

e
(IP )T

iP

=

I1∑

i1=1

· · ·
IP∑

iP =1

ti1 ... iP

(
e

(I1)
i1
⋄ e(I2)

i2
⋄ · · · ⋄ e(IP−1)

iP−1

)
e

(IP )T

iP
(1.57)

where we have used the fact that e
(I)
i ⋄ e

(J)
j = e

(IJ)
(i−1)J+j . Replacing (1.51) in the above equation

and using definition (1.53), we easily get:

T[P ] =

F∑

f=1

(
A

(1)
·f ⋄ · · · ⋄A

(P−1)
·f

)
A

(P )T

·f

=
(
A(1) ⋄ · · · ⋄A(P−1)

)
A(P )T ∈ C

(I1···IP−1)×IP . (1.58)

The index P in T[P ] is clearly associated with the Parafac component A(P ), which is right-

multiplied by the Khatri-Rao product in the above equation. This notation suggests that A(P )

can be estimated from T[P ], provided that initial estimates of A(1), . . . ,A(P−1) are given. Ex-

tending the above reasoning, we can define P −1 other unfolded tensor representations, denoted

T[p], p ∈ [1, P − 1], which can be used to estimate the remaining components A(1), . . . ,A(P−1).
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For instance, when p = 1 we have:

T[1] =
(
A(2) ⋄ · · · ⋄A(P )

)
A(1)T ∈ C

(I2···IP )×I1. (1.59)

The general formulation is given as follows:

T[p] =
(
A(p+1) ⋄ · · · ⋄A(P ) ⋄A(1) ⋄ · · · ⋄A(p−1)

)
A(p)T , p ∈ [2, P − 1]. (1.60)

Note that T[p] ∈ C
(Ip+1···IP I1···Ip−1)×Ip. In practice, in order to form the column [T[p]]·,ip , we

arrange the elements ti1 ... iP by fixing the index ip while varying the first p−1 and the last P −p
indices in consecutive nested loops with iP being the most inner one (fastest) and i1 the most

outer one (slowest).

Finally, we remark that for each p ∈ [1, P ], there exist (P − 1)! equivalent (but different)

ways to define a matrix denoted T[p] (by permuting the P −1 indices of the Parafac components

in the multiple Khatri-Rao product of (1.60)). Actually, (1.60) is only one of these equivalent

formulations. For the sake of a uniform notation, throughout the rest of this thesis, we convention

to denote by T[p] the matrix representation of tensor T (P ) obtained from the unfolding procedure

above described, taking the order of the indices into account. As a consequence, equations (1.58)

to (1.60) hold. Any other notation will be disregarded.

Among many algorithms proposing a solution to estimate the factors of the Parafac decompo-

sition, the ALS algorithm is probably the most famous one. In the next section, we address this

subject under a general framework by describing an ALS algorithm that estimates the Parafac

components of a pth-order tensor. We will also briefly discuss the particular cases of P = 4 and

P = 3, which yield quadrilinear and trilinear ALS algorithms, respectively. In chapter 2, we will

exploit the redundancies in the factors of the 4th-order cumulant tensor decomposition in the

minimization problem in order to develop new channel identification algorithms.

3.2 The Alternating Least Squares (ALS) algorithm

The main idea behind the ALS algorithm is to divide the parameters to be estimated into several

sets in order to facilitate the use of simpler estimation algorithms. Then, each set is estimated

by iteratively minimizing, in the least squares sense, a single cost function conditioned to the

previous estimates of the other parameters. The algorithm iterates until no improvements

are observed (c.f. [58] and references therein). In fact, the ALS algorithm is shown to be

monotonically convergent, i.e. it can only improve or keep the same fit of the model. Its main

drawbacks include slow convergence and possible convergence to local minima due to inadequate

initializations. But these problems are more likely to occur in difficult cases7.

7 Situations with strongly correlated Parafac components or with too many components.
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Using the unfolded tensor representations defined in the previous section, with the general

formulation given in (1.60), we can define the following LS criteria:

ψp(A
(p)) ,

∥∥∥T[p] −
(
Â(p+1)

r ⋄ · · · Â(P )
r ⋄ Â(1)

r−1 ⋄ · · · Â
(p−1)
r−1

)
A(p)T

∥∥∥
2

F
, (1.61)

where r stands for the iteration number and, for notational convenience, we have omitted the

dependence of ψp on Â
(p+1)
r , . . . , Â

(P )
r , Â

(1)
r−1, . . . , Â

(p−1)
r−1 . Then, each Parafac component A

(p)
r ,

p ∈ [1, P ], can be estimated by minimizing the function ψp(A
(p)), assuming that previous es-

timates of the Parafac components A(1), . . . ,A(p−1) are available from the preceding iteration,

while estimates of A(p+1), . . . ,A(P ) have been previously obtained during the current iteration.

The optimal LS solution to this problem is given by:

Â(p)T
r = arg min

A(p)
{ψp(A

(p))}

=
(
Â(p+1)

r ⋄ · · · Â(P )
r ⋄ Â(1)

r−1 ⋄ · · · Â
(p−1)
r−1

)#
T[p], p ∈ [1, P ]. (1.62)

The Generalized Parafac-ALS algorithm is summarized below. We start with p = P by assuming

the initial guesses Â
(1)
0 , . . . , Â

(P−1)
0 are known. Random initialization can be a good choice, but

it does not always yield a good first estimate [55].

Algorithm 1.1 (Generalized Parafac-ALS algorithm)

Determine a threshold ε > 0, initialize the Parafac components Â
(1)
0 , . . . , Â

(P−1)
0 and

execute the steps below, starting with r = 1:

1. Using (1.62) with p = P , compute Â
(P )
r , using the estimates Â

(1)
r−1, . . . , Â

(P−1)
r−1

from the preceding iteration, so that:

Â(P )T

r =
(
Â

(1)
r−1 ⋄ · · · Â

(P−1)
r−1

)#
T[P ];

2. For p = P − 1, . . . , 2, compute Â
(p)
r using the estimates Â

(p+1)
r , . . . , Â

(P )
r previ-

ously computed during the current iteration and Â
(1)
r−1, . . . , Â

(p−1)
r−1 from the pre-

ceding iteration, as follows:

Â(p)T
r =

(
Â(p+1)

r ⋄ · · · Â(P )
r ⋄ Â(1)

r−1 ⋄ · · · Â
(p−1)
r−1

)#
T[p];

3. For p = 1, take all the estimates previously computed in the current iteration

into account and get:

Â(1)T

r =
(
Â(2)

r ⋄ · · · Â(P )
r

)#
T[1];

4. Update r ← r + 1 and repeat steps 1 to 4 until criterion (1.63) is satisfied.
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Classically, the estimation process is terminated when we can no longer observe significant

variations on either the parameters or the fit of the model. According to [58], convergence of

fit does not necessarily imply convergence of parameters, although this is usually the case in

practical situations. As suggested therein, in order to avoid costly fit calculations after each

iteration, the relative change in the value of the estimated parameters can also be indicative of

convergence. That is why we adopt, throughout the rest of this thesis, except when otherwise

stated, the following stop criterion:

∣∣∣e(r)− e(r − 1)
∣∣∣ ≤ ε, (1.63)

where

e(r) =

P∑

p=1

∥∥∥Â(p)
r − Â

(p)
r−1

∥∥∥
2

F∥∥∥Â(p)
r

∥∥∥
2

F

, (1.64)

and ε is an arbitrary small positive constant.

Lastly, we note that the full-column rank property of the multiple Khatri-Rao product

A(p+1) ⋄ · · ·A(P ) ⋄A(1) ⋄ · · ·A(p−1), for all p ∈ [1, P ], is a necessary condition for the uniqueness

of the Parafac decomposition [56]. It is also possible to show that satisfying the Kruskal con-

dition implies satisfying this necessary full-column rank condition. In fact, it has been shown

in the context of 3rd-order tensors that, if the Kruskal condition is satisfied, then the terms

(A(1) ⋄A(2)), (A(1) ⋄A(3)) and (A(2) ⋄A(3)) are full-column rank, provided that the k-ranks of

the Parafac components are nonzero [59]. This result is easily extendable to any order P > 3

[60]. Consequently, as r increases, the multiple Khatri-Rao product in (1.62) is ensured to

converge to a full-column rank matrix for any p ∈ [1, P ], if the Kruskal condition is satisfied.

3.3 Particular cases

Fourth-order tensor

Let us consider a 4th-order tensor T (4) of dimensions I × J ×K × L with scalar representation

given from (1.51) as follows:

tijkl =
F∑

f=1

aifbjfckfdlf , (1.65)

where, for convenience of notation, we used aif , bjf , ckf , and dlf , with i ∈ [1, I], j ∈ [1, J ], k ∈
[1,K] and l ∈ [1, L], to denote the elements of the Parafac components A ∈ C

I×F , B ∈ C
J×F ,

C ∈ C
K×F and D ∈ C

L×F . Taking this notation into account and rewriting equations (1.58)

to (1.60) with P = 4 (and P = 3), we easily obtain the unfolded tensor representations shown

in Table 1.1, which summarizes the formulæ for the unfolded forms of the 4th- (and 3rd-) order

Parafac tensor.
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Table 1.1: Unfolded representations of 4th- and 3rd-order Parafac tensors

Unfolded tensor

representations
P = 4 (dim.) P = 3 (dim.)

T[4] (A ⋄B ⋄C)DT IJK × L

T[3] (D ⋄A ⋄B)CT LIJ × K (A ⋄B)CT IJ × K

T[2] (C ⋄D ⋄A)BT KLI × J (C ⋄A)BT KI × J

T[1] (B ⋄C ⋄D)AT JKL × I (B ⋄C)AT JK × I

Uniqueness, up to column scaling and permutation, is ensured under the condition stated in

Theorem 1.1. Thus, we conclude from (1.56) that, if

kA + kB + kC + kD ≥ 2F + 3, (1.66)

then, any set {Ā, B̄, C̄, D̄} satisfying the equations in Table 1.1 is of the form

Ā = AΛ1Π, B̄ = BΛ2Π, C̄ = CΛ3Π, and D̄ = DΛ4Π, (1.67)

where Π is an F × F permutation matrix and Λp, p ∈ [1, 4], are diagonal scaling matrices

satisfying (1.55), i.e. Λ1Λ2Λ3Λ4 = IF .

Quadrilinear Parafac-ALS (QALS) algorithm

Algorithm 1.2 (QALS algorithm)

Determine a threshold ε > 0, initialize Â0, B̂0 and Ĉ0 and compute the Parafac

components as follows, starting with r = 1:

1. D̂T
r =

(
Âr−1 ⋄ B̂r−1 ⋄ Ĉr−1

)#
T[4];

2. ĈT
r =

(
D̂r ⋄ Âr−1 ⋄ B̂r−1

)#
T[3];

3. B̂T
r =

(
Ĉr ⋄ D̂r ⋄ Âr−1

)#
T[2];

4. ÂT
r =

(
B̂r ⋄ Ĉr ⋄ D̂r

)#
T[1];

5. Update r ← r + 1 and repeat the previous steps until (1.63) is satisfied.

Using the expressions in Table 1.1, we can easily obtain from (1.61) the LS criteria to be

minimized in order to estimate the four desired Parafac components. The Quadrilinear Parafac-

ALS algorithm, presented above, follows from Algorithm 1.1 straightforwardly. Each Parafac

component is updated with the three other ones fixed to their most up-to-date estimated values.
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Third-order tensor

Originally proposed in the context of 3rd-order tensors, the Parafac decomposition of a tensor

T (3) of dimensions I × J ×K with scalar representation given as

tijkl =

F∑

f=1

aif bjfckf (1.68)

yields components A ∈ C
I×F , B ∈ C

J×F and C ∈ C
K×F , which are unique up to column scaling

and permutation, if (1.56) is satisfied, i.e.

kA + kB + kC ≥ 2(F + 1). (1.69)

In this case, the unfolded representations of T (3), derived from equations (1.58) to (1.60) with

P = 3, are shown in Table 1.1. Hence, if (1.69) holds, then any set {Ā, B̄, C̄} satisfying the

equations in Table 1.1 is of the form

Ā = AΛ1Π, B̄ = BΛ2Π, and C̄ = CΛ3Π, (1.70)

where Π is an F × F permutation matrix and Λp, p ∈ [1, 3], are diagonal scaling matrices

satisfying Λ1Λ2Λ3 = IF .

Trilinear Parafac-ALS (TALS) algorithm

The idea behind the ALS algorithm is now straightforward. For the particular case of a third-

order tensor, the LS cost functions follow from (1.61) with P = 3 and the Trilinear Parafac-ALS

(TALS) algorithm can be summarized as follows:

Algorithm 1.3 (TALS algorithm)

Determine a threshold ε > 0, initialize Â0 and B̂0 and compute the Parafac compo-

nents as follows, starting with r = 1:

1. ĈT
r =

(
Âr−1 ⋄ B̂r−1

)#
T[3];

2. B̂T
r =

(
Ĉr ⋄ Âr−1

)#
T[2];

3. ÂT
r =

(
B̂r ⋄ Ĉr

)#
T[1];

4. Update r ← r + 1 and repeat the previous steps until (1.63) is satisfied.
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4 Summary

In the first part of this chapter, we presented a review of the main statistical tools used in

this thesis for applications in telecommunication systems. We reviewed classical definitions such

as moments, cumulants and polyspectra and several statistical properties have been discussed,

including stationarity and symmetry relationships. Since blind signal processing methods do

not generally assume any a priori knowledge about output statistics, we also addressed the issue

of estimating cumulants from real data. Cumulants (of order higher than two) present special

properties that moments do not. In fact, those properties enable us to handle nonminimum-phase

channels using only the output (complex) signals. In addition, high-order output cumulants are

blind with respect to additive Gaussian noise. Computational burden may be a drawback, due

to the amounts of data required for satisfactory estimates.

Afterwards, we presented a description of some important algebraic tools used throughout the

rest of this thesis. We first treated the triangularization strategies and then, more particularly,

we discussed the diagonalization methods for Hermitian matrices using the classical Jacobi

algorithm, based on the application of successive plane rotations. Motivated by applications in

blind source separation and blind system identification using HOS, we also studied techniques

for the approximative simultaneous factorization of several matrices sharing some properties but

differing in individual information contents. In this context, we described an extended version

of the Jacobi algorithm, which is shown to be optimal in the least squares sense.

Finally, we turned our attention to multilinear algebraic tools of great interest in statistical

signal processing. In particular, we presented an overview of the Parafac tensor decomposition,

which has been recently used for modeling communication systems. We described the decompo-

sition of a generic P th-order tensor with rank F as the sum of F rank-one tensors and discussed

the uniqueness issue by introducing the Kruskal Theorem and defining the notion of k-rank.

Concerning the estimation of the Parafac components, we revisited the well-known Alternating

Least Square algorithm by proposing a generalized procedure for estimating the components of

a tensor of any order.



Chapter 2

Blind Channel Identification using

Tensor Decomposition

S
ymmetry properties of fourth-order cumulants yield enormous redundancies in the com-

ponents of the Parallel Factor (Parafac) decomposition of the cumulant tensors. In this

chapter, we develop new blind channel identification algorithms that exploit those re-

dundancies, performing the cumulant tensor decomposition by solving a single-step (SS)

least squares (LS) problem. We start with a single-input single-output (SISO) finite impulse

response (FIR) channel and then we extend the principle to a multiple-input multiple-output

(MIMO) instantaneous mixture. Our solution is based on the 4th-order output cumulants only

and it is shown to hold for certain underdetermined mixtures, i.e. systems with more sources

than sensors. In the MIMO case, a simplified approach using a reduced-order tensor is also

discussed. Computer simulations are provided to assess the performance of the proposed algo-

rithms in both SISO and MIMO cases, comparing them to other existing solutions. Initialization

and convergence issues are also addressed.

As we have seen in the preceding chapter, several algorithms propose solutions to fit a P th-

order Parafac model. The well-known Alternating Least Squares (ALS) algorithm iteratively

minimizes, in an alternate way, P least squares (LS) cost functions. Our main focus in this

chapter is in exploiting the redundancies of the 4th-order cumulants in the Parafac decomposition

of the cumulant tensors. This allows us to propose new iterative single-step least squares (SS-

LS) Parafac-based Blind Channel Identification (PBCI) algorithms that have the advantage of

being based on the solution of a sole optimization problem, contrary to the methods described in

the literature. For that reason, SS-LS PBCI consists in a new scheme for the estimation of FIR

systems [61, 62]. In addition, using the same underlying idea, under mild assumptions, we also

propose algorithms to treat the case of instantaneous MIMO channels[63, 64]. These techniques

are, to our knowledge, the first to consider the cumulant redundancies in order to improve the

LS solution of the Parafac decomposition of the cumulant tensor.

In the sequel, we will be interested first in recovering the impulse response of a complex

31



32 CHAPTER 2. PARAFAC-BASED BLIND CHANNEL IDENTIFICATION

FIR-SISO channel from the Parafac decomposition of a 3rd-order tensor composed of 4th-order

output cumulants. Using the SS-LS approach, the permutation and scaling ambiguities intrinsic

to the Parafac decomposition are solved and the uniqueness issue is addressed [61, 62, 64]. After

that, we consider the problem of blind MIMO channel (mixture) identification in the context

of a multiuser system characterized by instantaneous complex channels. A quadrilinear ALS

solution is described based on the decomposition of a 4th-order tensor composed of 4th-order

spatial cumulants. A trilinear approach is also discussed using a third-order tensor of 4th-order

cumulants. Then, we finally present a simplified SS-LS Parafac-based Blind MIMO Channel

Identification (PBMCI) algorithm. Although our main goal is not focused on underdetermined

mixtures, we make use of some tensor properties to show that under certain conditions our

algorithm is able to identify channels with more sources than sensors. Computer simulations il-

lustrate the performance gains that our method provides with respect to other existing solutions.

We also assess the algorithms performances by recovering the input signals using a minimum

mean squared error (MMSE) equalizer built from the estimated channel. In the MIMO case, a

semi-blind MMSE equalizer will be implemented, using a few pilot symbols.

This chapter is organized as follows: in section 2, we introduce the signal model and define the

output cumulants as a tensor; in section 3, we describe a joint-diagonalization based algorithm

and propose a Parafac-based algorithm to estimate the SISO channel parameters based on a

SS-LS minimization procedure; we also discuss come connections between the (simultaneous)

matrix diagonalization approach and our cumulant tensor decomposition; section 4 introduces a

multiuser and multiantenna channel model and, in section 5, we propose blind channel estimation

algorithms coping with the MIMO case; methods using joint-diagonalization techniques are

also described; section 6 presents some computer simulation results to illustrate the proposed

methods; conclusions are drawn in section 7, along with some perspectives.

1 Brief history of the HOS-based blind identification methods

Blind identification methods aim to determine an unknown model from the system output only.

Known applications range from data communications, beamforming and echo cancelation to

image restoration, speech recognition and seismic applications, among others. In which concerns

statistical techniques, second-order statistics (SOS) based methods usually require models with

multiple outputs, such as oversampled or multiantenna systems.

On the other hand, it is well-known that cumulants of order higher than two can be viewed

as tensors with a highly symmetrical structure [17]. Among the earliest works exploiting the

cumulant symmetries with a tensor formalism, Cardoso introduced the concept of eigenvalue

structure of 4th-order cumulant tensors [23, 24]. He used the uniqueness property of the cumu-

lant tensors as an advantage over singular value decomposition (SVD), but prewhitening was
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needed. Later on, an extended Jacobi technique for approximate simultaneous diagonalization

was proposed by Cardoso and Soloumiac in [51]. This latter paper introduced the JADE al-

gorithm that uses second and 4th-order statistics to estimate an instantaneous multiple-input

multiple-output (MIMO) channel in the context of blind beamforming. The joint diagonaliza-

tion technique became very popular and has been used by Belouchrani et al. to propose the

second-order blind identification (SOBI) algorithm [65], which uses a set of correlation matrices

to identify stationary sources with different spectral contents, also in the context of memoryless

MIMO channels. On the other hand, the fourth-order system identification (FOSI) algorithm

[66] treats single-input single output (SISO) FIR channels and also involves an a priori trans-

formation over the cumulant matrices, which is often a source of increased complexity and

estimation errors.

During the last decade, several joint-diagonalization criteria have been introduced [13, 14].

Important modifications of the technique proposed in [24] were provided by De Lathauwer et

al. in [67], resorting to joint diagonalization techniques. A link between the Parafac decomposi-

tion and the simultaneous matrix diagonalization approach has been discussed in [21], leading to

algorithms subject to weaker uniqueness conditions. These ideas gave rise to the FOOBI family

of algorithms [22], which are theoretically able to identify a greater number of user channels

for a given number of receive antennas. The FOOBI algorithms exploit the Quadricovariance

matrix making use of its column-wise Kronecker structure. Also using the joint diagonalization

approach, the ICAR algorithm proposed in [68] is based on the redundancies of the Quadrico-

variance structure to estimate the mixture matrix, but only in the overdetermined case, i.e. the

case of systems with more sensors than sources. The principle behind the ICAR method [68]

has also been used in [69] and [70], resorting to 6th- and higher-order statistics, respectively, in

order to include the case of underdetermined mixtures. The ICAR and the FOOBI algorithms

will be further discussed in section 5.1. These techniques, while avoiding prewhitening, still

break the problem into two optimization stages, which remain necessary to extract the MIMO

channel coefficients from an initial estimate based on an eigenvalue decomposition (EVD).

Using the Parafac decomposition and exploiting the symmetry properties of the 4th-order

cumulants, we eliminate the need for prewhitening in the SISO case and, in both SISO and

MIMO cases, we found solutions to the blind identification problem by searching the minima of

a single LS cost function. In addition, the Parafac-based approach allows us to treat the under-

determined case, although the uniqueness condition imposes an upper bound on the number of

identifiable sources. Actually, the blind identification of underdetermined mixtures has received

a special attention from the signal processing community under different tensorial approaches

that include, among others, the decomposition of quantics in sums of powers of linear forms [42];

the use of congruent transformation [70] exploiting the virtual array concept [25, 26]; and the

use of high-order derivatives of the multivariate characteristic function [71]. Besides, a frequency

domain framework for MIMO system identification using Parafac was introduced in [72] using
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HOS-based tensors. More recently, that approach was further developed and also included the

underdetermined case [73, 74, 60].

2 Single-user signal model and 4th-order output cumulants

Let us represent a FIR-SISO communication channel in which the output signal y(n), after

sampling at the symbol rate, is written as follows:

y(n) = x(n) + υ(n),

x(n) =
L∑

ℓ=0

h(ℓ)s(n − ℓ),
(2.1)

with h(0) = 1 (which is equivalent to a simple unit-norm constraint). Moreover, the following

assumptions hold:

A1 : The non-measurable, complex-valued, discrete input sequence s(n) is stationary, ergodic,

independent and identically distributed (iid) with symmetric distribution, zero-mean and

non-zero kurtosis γ4,s.

A2 : The additive Gaussian noise sequence υ(n), with zero-mean, unknown variance σ2
υ and

unknown autocorrelation function, is assumed to be independent of the input signal s(n).

A3 : The complex coefficients h(ℓ) represent the equivalent discrete channel impulse response,

including the pulse shaping filter, the transmission channel and the receive filter.

A4 : The FIR filter representing the channel is assumed to be causal with memory L 6= 0 and

no temporal sparsity, i.e. h(ℓ) 6= 0, ∀ ℓ ∈ [0, L], and h(ℓ) = 0 otherwise.

From definition (1.25), the 4th-order cumulants of the output signal y(n) are given as follows:

c4,y(τ1, τ2, τ3) , cum
[
y∗(n), y(n+ τ1), y

∗(n + τ2), y(n+ τ3)
]
. (2.2)

Using the channel model (2.1), taking assumptions A1 and A2 into account and making use of

the multilinearity property of cumulants, it can be shown that (c.f. Appendix B):

c4,y(τ1, τ2, τ3) = γ4,s

L∑

ℓ=0

h∗(ℓ)h(ℓ + τ1)h
∗(ℓ+ τ2)h(ℓ + τ3), (2.3)

where γ4,s = c4,s(0, 0, 0), according to definition (1.20). Based on (2.3) and on assumption A4,

we note that:

c4,y(τ1, τ2, τ3) = 0, ∀ |τ1|, |τ2|, |τ3| > L. (2.4)

Hence, by taking the time-lags τ1, τ2 and τ3 in the interval [−L,L], we consider all possible

nonzero values of c4,y(τ1, τ2, τ3). This choice yields a maximum redundancy information model.



3. BLIND SISO CHANNEL IDENTIFICATION ALGORITHMS 35

Let us define the 3rd-order tensor C(3,y) ∈ C
(2L+1)×(2L+1)×(2L+1), with scalar representation

given by cijk = c4,y(i − L− 1, j − L− 1, k − L− 1), i, j, k ∈ [1, 2L + 1]. Using (2.3), in analogy

with (1.51), it is not difficult to show that tensor C(3,y), depicted in fig. 2.1a, can be written as

a sum of L+ 1 outer products, each one involving 3 vectors, so that

C(3,y) = γ4,s

L∑

ℓ=0

H·ℓ+1 ◦H∗
·ℓ+1 ◦

(
h∗(ℓ)H·ℓ+1

)
, (2.5)

with

H·ℓ+1 =

2L+1∑

p=1

h(ℓ+ p− L− 1)e(2L+1)
p , (2.6)

where e
(I)
i denotes the ith canonical basis vector of R

I . The above equations can be easily

obtained from (1.52) and (1.53) with P = 3, taking the scalar representation of C(3,y) into

account. Clearly, equation (2.5) represents the Parafac decomposition of the tensor C(3,y), with

components A, B and C given as follows:

A = H, B = H∗ and C = γ4,sHDiag (h∗) , (2.7)

where Diag (·) denotes a diagonal matrix built from the entries of the vector argument and the

channel coefficient vector h is defined as:

h =
[
h(0) . . . h(L)

]T
∈ C

(L+1). (2.8)

The channel coefficient matrix H ∈ C
(2L+1)×(L+1) can be explicitly expressed as follows:

H , H
(
h
)

=
[
H·1 H·2 . . . H·L+1

]
=





0 0 · · · h(0)
...

...
. . .

...

0 h(0) · · · h(L− 1)

h(0) h(1) · · · h(L)
...

...
. . .

...

h(L − 1) h(L) · · · 0

h(L) 0 · · · 0





(2.9)

where H( · ) is an operator that builds a Hankel matrix from its vector argument, as shown

above.

3 Blind SISO channel identification algorithms

Due to the symmetric structure of the cumulant tensor C(3,y), the Parafac decomposition given

in (2.5) can be obtained by means of a simultaneous diagonalization of the cumulant tensor

(2D) slices, subject to a prior orthonormalization. The FOSI algorithm proposed in [66] adopts

this latter approach without using a tensor formulation. In this section, we present the FOSI

algorithm, highlighting that connection with the simultaneous diagonalization approach. After

that, we also present the SS-LS blind channel identification algorithm and discuss the uniqueness

issue.
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(a) (b)

Figure 2.1: (a) 3rd-order tensor C(3,y) of 4th-order output cumulants; (b) frontal slices of tensor

C(3,y).

3.1 A Joint-diagonalization based approach

Joint diagonalization (JD) has been a reference tool in signal processing, finding applications in

several fields including blind source separation, blind identification of quadratic models [75] and

source localization [76]. The concept introduced in [51], in the context of blind beamforming,

gave rise to the Joint Approximate Diagonalization of Eigenmatrices (JADE) algorithm, which

exploits the assumption of statistical independence of the sources and utilizes extended Jacobi

techniques (c.f. Appendix A) over a set of 4th-order cumulant matrices [52]. This basic principle

has been shown to be very useful in applications using second and higher-order statistics [65, 66].

Let us define the frontal slices C··k ∈ C
(2L+1)×(2L+1), k ∈ [1, 2L+ 1], of the cumulant tensor

C(3,y) as illustrated in fig. 2.1(b). Taking the scalar representation cijk into account, we have:

C··k =

2L+1∑

i=1

2L+1∑

j=1

cijke
(2L+1)
i e

(2L+1)T

j

= γ4,s

L∑

ℓ=0

h∗(ℓ)h(ℓ+ k − L− 1)H·ℓH
H

·ℓ

= γ4,sHDk (Σ)HH, k ∈ [1, 2L+ 1], (2.10)

where Di (·) denotes a diagonal matrix built from the ith row of the matrix argument and we

have used the following definition:

Σ = HDiag (h∗) ∈ C
(2L+1)×(L+1). (2.11)
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Noticing from (2.11) that Dk (Σ) = Dk (H)DL+1 (H∗), let us define the set of modified cumulant

matrices C̄k , WC··kW
H ∈ C

(L+1)×(L+1), so that from (2.10) we have:

C̄k = γ4,s WH
(
Dk (H)DL+1 (H∗)

)
HHWH. (2.12)

Left- and right-multiplying the term Dk (H) by DL+1 (H) and DL+1 (H)−1, respectively, we end

up with

C̄k = Q∆̄k QH, (2.13)

where ∆̄k = γ4,sDk (H)DL+1 (H)−1 and the transformation W ∈ C
(L+1)×(2L+1) is such that

Q = WHDL+1 (H) (2.14)

is a (L+ 1)× (L+ 1) unitary matrix. Matrix W can be computed from the above equation by

noting that QQH = I, which leads to:

W
(
γ4,sH |DL+1 (H) |2 HH

)
WH = I, (2.15)

where | · | denotes the element-wise absolute value. Using k = L + 1 in (2.10), we note that

C··L+1 = γ4,sH |DL+1 (H) |2 HH and hence W can be viewed as a whitening transformation that

decorrelates the elements of the cumulant matrix C··L+1. A solution to this problem is given by

the inverse square-root1 of C··L+1, as follows:

W = C
−1/2
··L+1 = Λ−1/2 UH, (2.16)

where the matrices U ∈ C
(2L+1)×(L+1) and Λ ∈ C

(L+1)×(L+1) represent the economy-size EVD

of C··L+1. Although the source Kurtosis is assumed unknown, it must be ensured to be positive

(γ4,s > 0) due to the above square-root calculation. If this is not the case, then matrix −C··L+1

should be used instead.

The computation of matrix W is a very common operation in HOS-based methods [65, 77,

78], often referred to as prewhitening. However, it usually requires resorting to SOS and, even if

this is not the case, this additional stage is time-consuming and often responsible for increased

estimation errors [79, 80].

Noticing from (2.13) that Q is the matrix that simultaneously diagonalizes the set C̄k,

k = 1, . . . , 2L+ 1, it can be computed by maximizing the following cost function:

J(Q, C̄) =
2L+1∑

k=1
k 6=L+1

∥∥∥diag
(
QHC̄kQ

)∥∥∥
2
, (2.17)

1 The square-root of a given Hermitian matrix X is so that (X1/2)(X1/2)H = X. This operation presents an

orthonormal ambiguity since any matrix X̄1/2 = X1/2U is also a square-root of X if U is unitary.
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where C̄ = {C̄1, . . . , C̄L, C̄L+2, . . . , C̄2L+1}. This solution is shown to be optimal in the LS sense

[54] and can be obtained using the joint-diagonalization algorithm (A.2) described in Appendix

A based on the extended Jacobi technique. Finally, the channel coefficient matrix is obtained

from (2.14) and (2.16), as follows:

H̄ = W#Q = UΛ1/2 Q, (2.18)

up to trivial indeterminacies (column scaling and permutations).

In order to recover the channel coefficient vector from the estimated channel matrix H̄, we

need to get rid of the permutation ambiguity. Considering the structure of H, given in (2.9),

we note from (2.10) and (2.11) that C··1 = H∆1 HH, where ∆1 = δ1Diag ([0, . . . 0, 1]) is an

(L + 1) × (L + 1) diagonal matrix, with δ1 = γ4,s h(0)h
∗(L). Thus, C··1 is a rank-1 matrix

and can be written as C··1 = δ1 H ·L+1 HH

·L+1. Using the column-permuted and scaled channel

matrix H̄, computed in (2.18), we denote by ℓ(1) the column of H̄ that is a weighted version of

the (L+ 1)th column of H, so that

H̄·ℓ(1) = ξℓ(1)H·L+1, (2.19)

where ξℓ(1) is a nonzero complex scalar factor. This allows us to write C··1 = δ̄1 H̄ ·ℓ(1) H̄
H

·ℓ(1)
,

with δ̄1 = γ4,s h(0)h
∗(L)|ξℓ(1) |−2, and we can conclude that ℓ(1) determines the position of the

only nonzero diagonal entry of matrix ∆̄1, which can be obtained from the set of equations

(2.13). Analogously, using (2.10) and (2.11) with k = 2L + 1, we can conclude that C··2L+1 is

also a rank-1 matrix and can be written from the 1st column of H. Denoting by ℓ(2L+1) the

column of H̄ that is a weighted version of the 1st column of H, we get

H̄·ℓ(2L+1)
= ξℓ(2L+1)

H·1, (2.20)

so that C··2L+1 = δ̄2L+1 H̄ ·ℓ(2L+1)
H̄H

·ℓ(2L+1)
, with δ̄2L+1 = γ4,s h(L)h∗(0)|ξℓ(2L+1)

|−2, where

ξℓ(2L+1)
is a nonzero complex scalar factor. As a result, ℓ(2L+1) determines the position of

the sole nonzero diagonal element of ∆̄2L+1, which can be obtained from (2.13).

Considering the Hankel structure of H given in (2.9), equations (2.19) and (2.20) suggest

that the channel coefficient vector h can be recovered from the L + 1 top elements of H̄·ℓ(1)

and the L + 1 bottom elements of H̄·ℓ(2L+1)
. These two solutions can be computed by means

of the FOSI algorithm, summarized below in Algorithm 2.1. A third channel estimate can be

obtained by averaging these solutions. Finally, we note that in [66] the 4th-order cumulants

are computed with exclusively non-negative time-lags, i.e. 0 ≤ τ1, τ2, τ3 ≤ L or, equivalently,

L+ 1 ≤ i, j, k ≤ 2L+ 1. Therefore, matrix dimensions are different from those shown here.
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Algorithm 2.1 (Fourth-Order System Identification)

1. Compute the EVD of Ĉ··L+1 and denote by U the (2L+ 1) × 1 eigen-

vectors associated with the L + 1 largest eigenvalues, arranged in the

diagonal matrix Λ; Deduce the sign of γ4,s from the diagonal elements

of Λ; If the sign(γ4,s) < 0, then use −Ĉ··L+1 instead.

2. Estimate the orthonormalizing transformation Ŵ = Λ−1/2UH and its

pseudo-inverse Ŵ# = UΛ1/2.

3. Compute the set of modified cumulant matrices C̄k , WĈ··kW
H,

k = 1, . . . , L, L+ 2, . . . , 2L+ 1;

4. Using Algorithm A.2 compute a unitary matrix Q that simultaneously

diagonalizes C̄ = {C̄1, . . . , C̄L, C̄L+2, . . . , C̄2L+1}. Denote by ∆̂k the

corresponding diagonal matrices.

5. Take the diagonal elements of ∆̂1 and ∆̂2L+1 and denote by ℓ(1) and

ℓ(2L+1) the column number of their largest absolute values, respectively;

6. From (2.18), compute the channel matrix estimate as Ĥ = W#Q.

7. Determine two different channel estimates by taking the L+ 1 top ele-

ments of Ĥ·ℓ(1) and the L+ 1 bottom elements of Ĥ·ℓ(2L+1)
. Normalize

the two resulting vectors with respect to their corresponding first entries.

3.2 The Single-Step Least-Squares approach

Using the Parafac components expressed in (2.7), the unfolded tensor representations of C(3,y),

with dimensions (2L+ 1)2 × (2L+ 1), can be written from the general formulæ (1.58), (1.59)

and (1.60), as follows:

C[1] = γ4,s

(
H ⋄H∗

)
ΣT (2.21)

C[2] = γ4,s

(
H∗ ⋄Σ

)
HT (2.22)

C[3] = γ4,s

(
Σ ⋄H

)
HH, (2.23)

where Σ is defined in (2.11).

Equation (2.5) shows that the rank of tensor C(3,y) equals L + 1. Assumption A4 ensures

that L ≥ 1. Due to its Hankel structure, H is full-rank and then kA = kB = rH = L+1. Taking

assumption A4 into account, we deduce from (2.11) that kC = rΣ = L + 1. From the Kruskal

uniqueness condition (1.69), we conclude that kA + kB + kC = 3L+ 3 ≥ 2F + 2 = 2L+ 4, which
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Table 2.1: Parafac formulæ for the 3rd-order tensor C(3,y)

Slicing direction 2D slices Unfolded representations

Horizontal Ci·· = γ4,sH
∗Di (H)ΣT C[1] = γ4,s

(
H ⋄H∗

)
ΣT

Vertical C·j· = γ4,sΣDj (H∗)HT C[2] = γ4,s

(
H∗ ⋄Σ

)
HT

Frontal C··k = γ4,sHDk (Σ)HH C[3] = γ4,s

(
Σ ⋄H

)
HH

is always true. Thus, any set {Ā, B̄, C̄} satisfying the Parafac decomposition of the cumulant

tensor C(3,y) has the form (1.70), with components A, B and C given in (2.7).

Table 2.1 summarizes the Parafac decomposition of tensor C(3,y), including the tensor un-

folded representations and the 2D slices obtained from the three possible slicing directions.

Considering the unfolded matrices in the right column, traditional ALS algorithms can be used

to estimate the three Parafac components of C(3,y), leading to the matrices H and Σ and then to

the channel parameters. However, we can improve the efficiency of the estimation procedure by

coupling both estimation steps, i.e. taking the relationships between the channel coefficient vec-

tor h and the matrices H and Σ into account, thus eliminating column scaling and permutation

ambiguities [61, 62, 64].

A new SS-LS PBCI algorithm

Next, we present a very useful property of the Khatri-Rao product and then we propose a

single-step least squares algorithm to estimate the channel coefficient vector h by means of the

previously described tensor decomposition.

Property 1

Let Z ∈ C
m×n be written as Z = XDiag (v) Y, where X ∈ C

m×q, Y ∈ C
q×n and

v ∈ C
q×1. Then it holds:

vec(Z) = (YT ⋄X)v ∈ C
mn×1. (2.24)

In the above equation, vec (·) denotes the vectorization operator. Replacing (2.11) in (2.21),

matrix C[1] can be written as follows:

C[1] = γ4,s(H ⋄H∗)Diag (h∗)HT.

Applying property (2.24) to the above equation, we get:

vec(C[1]) = γ4,s(H ⋄H ⋄H∗)h∗. (2.25)
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Thus, the channel coefficient vector h can be obtained as the argument that minimizes the

following LS cost function

ψ(h∗, ĥ(r−1)) ,

∥∥∥vec(C[1])− γ4,sĜ
(r−1) h∗

∥∥∥
2

F
(2.26)

by means of an iterative procedure, where Ĝ is given as:

Ĝ(r−1) = Ĥ(r−1) ⋄ Ĥ(r−1) ⋄ Ĥ(r−1)∗. (2.27)

Considering the structure of the channel matrix H given in (2.9), we denote Ĥ(r−1) = H(ĥ(r−1)).

At each iteration r ≥ 1, we have:

ĥ(r) = arg minψ(h∗, ĥ(r−1)), (2.28)

from which we get:

ĥ(r)∗ = γ−1
4,s Ĝ

(r−1)#vec
(
C[1]

)
. (2.29)

The algorithm is initialized with a Hankel matrix Ĥ(0) of which the first column is

[0T

(L) ĥ(0)T]T and the last row is [ĥ(0)(L) 0T

(L)], where ĥ(0) = [1 vT]T, v ∈ C
(L) is a Gaus-

sian random vector and 0(L) is an all-zero vector of dimension L. The algorithm is stopped

when significant variations of the estimated parameters are no longer observed, i.e. when

|e(r)− e(r − 1)| ≤ ε, where e(r) = ‖ĥ(r) − ĥ(r−1)‖2/‖ĥ(r)‖2 and ε is an arbitrary small positive

constant. Taking the model constraint h(0) = 1 into account, we normalize, at each iteration r,

the preceding estimate ĥ(r−1) with respect to its first entry ĥ(r−1)(0), before using it to update

Ĥ(r−1) from (2.9). Then, Ĝ(r−1) is computed from (2.27) using Ĥ(r−1). The normalization step

eliminates the scaling ambiguity and renders the solution independent from the source kurtosis.

Forcing the Hankel structure of H with the operator H(·) allows us to avoid column permuta-

tion in the estimated Parafac components. The Single-Step LS Parafac-based Blind Channel

Identification (SS-PBCI) algorithm can be summarized as follows:

Algorithm 2.2 (Single-Step LS PBCI algorithm)

Determine a threshold ε > 0 and initialize ĥ(0) as described above.

For r ≥ 1, execute the steps below:

1. Use (2.9) to build Ĥ(r−1) = H
(

1
ĥ(r−1)(0)

ĥ(r−1)
)
;

2. Using (2.27), compute Ĝ(r−1);

3. Compute the channel vector estimate as ĥ(r)∗ = Ĝ(r−1)#vec
(
C[1]

)
;

4. Reiterate until |e(r)− e(r − 1)|2 ≤ ε, e(r) = ‖ĥ(r) − ĥ(r−1)‖/‖ĥ(r)‖.
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According to the above discussion, the identifiability of the channel coefficient vector ĥ(r)

depends on the uniqueness of the LS solution (2.29), which in turn depends on the full-rank

property of the double Khatri-Rao product defined in (2.27). It is possible to show [60, 59]

that satisfying the Kruskal condition implies the full-column rank property, which is actually a

necessary condition for the uniqueness of the Parafac decomposition [56]. As a result, matrix

Ĝ(r−1) can be said to be full-column rank, which ensures the uniqueness of the proposed solution.

The SS-LS strategy ensures the Hankel structure of H at each iteration, taking advantage

of its full-rank property to make the tensor decomposition essentially unique and the channel

parameters estimation free from ambiguities. Furthermore, one sole LS minimization is needed,

contrary to the classical trilinear ALS algorithm. For that reason, our method should also be

expected to increase convergence speed.

4 Multiuser channel model and 4th-order spatial cumulants

Let us consider an instantaneous MIMO channel with Q signal sources and M receive antennas.

The signals received at the front-end of the antenna array at the time-instant n are modeled as

a complex vector y(n) ∈ C
M , which is written as:

y(n) = Hs(n) + υ(n), (2.30)

where the elements of the complex instantaneous mixing matrix H ∈ C
M×Q are the MIMO

channel coefficients hmq, i.e. [H]mq = hmq. The following assumptions hold:

B1 : The source signals sq(n) are stationary, ergodic and mutually independent with symmet-

ric distribution, zero-mean and non-zero kurtosis γ4,sq = c4,sq(0, 0, 0).

B2 : The vector υ(n) ∈ C
M×1 is the additive Gaussian noise at the output of the antenna

array. It is independent from the input signals and has unknown spatial correlation.

B3 : The transmission channel is characterized by a Rayleigh flat fading propagation envi-

ronment, i.e. the channel coefficients hm,q are complex constants with real and imaginary

parts driven from a continuous Gaussian distribution.

By blind channel (or mixture) identification, we understand the problem of estimating the

channel model coefficients with no a priori knowledge on the array manifold, i.e. estimate the

column vectors H·q, q ∈ [1, Q], in an arbitrary order, up to a nonzero complex gain, using the

4th-order output statistics only. Actually, it is well-known that solutions to the blind channel

identification problem only exist up to a column scaling and permutation indeterminacy.

Assumption B3 allows us to say that H is full-rank with probability one. Moreover, since

any combination of the columns of H can be viewed as another random matrix driven from a
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continuous distribution, H is also said to be full k-rank, i.e. kH = rH = min(M,Q) [41]. In

addition, although the source modulation schemes are generally known in a telecommunication

context, we do not make any constraints on the sign of the source Kurtoses γ4,sq , contrary to

other known methods [70, 22].

We define the 4th-order spatial cumulants of the array outputs as follows:

C4,y(i, j, k, l) , cum
[
y∗i (n), yj(n), y∗k(n), yl(n)

]
. (2.31)

Under the above mentioned assumptions, it is straightforward to show that:

C4,y(i, j, k, l) =

Q∑

q=1

γ4,sqh
∗
iqhjqh

∗
kqhlq, (2.32)

Notice that the spatial cumulants defined in (2.31) only exist for 1 ≤ i, j, k, l ≤M . Let us define

the 4th-order tensor C(4,y) ∈ C
M×M×M×M with scalar representation given by C4,y(i, j, k, l),

i.e. the element in position (i, j, k, l) can be written as in (2.32). Recalling the general formulation

(1.52) with P = 4, we can write C(4,y) as a sum of Q rank-1 tensors that can be written as outer

products involving four vectors, as follows:

C(4,y) =

Q∑

q=1

H∗
·q ◦H·q ◦H∗

·q ◦ (γ4,sqH·q), (2.33)

with H·q =
∑M

m=1 hm,qe
(M)
m , q ∈ [1, Q]. Equation (2.33) is the Parafac decomposition of tensor

C(4,y) with the four Parafac components depending on H and being given by:

A = H∗, B = H, C = H∗ and D = HΓ4,s, (2.34)

where Γ4,s = Diag
(
γ4,s1, . . . , γ4,sQ

)
.

Uniqueness

Notice from (2.33) that the rank of the 4th-order tensor C(4,y) is Q. In addition, since H is

assumed to be full k-rank, we have kA(1) = kA(2) = kA(3) = kA(4) = rH = min(M,Q). From

(1.66), we conclude that the Kruskal uniqueness condition reduces to

4rH ≥ 2Q+ 3. (2.35)

We will consider the two following cases:

• The MIMO channel is an overdetermined system, i.e. M ≥ Q. In this case rH = Q and

(2.35) states that the Parafac decomposition of C(4,y) is essentially unique if Q ≥ 3/2,

i.e. Q > 1. There are no further constraints on the number of sensors.

• The MIMO channel is an underdetermined system, i.e. M < Q. In this case rH = M and

hence equation (2.35) becomes

Q ≤ 4M − 3

2
. (2.36)
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Although equation (2.36) is not a necessary condition, it establishes an upper bound on

the number of sources we are guaranteed to identify using tensor C(4,y). Under that condition,

C(4,y) can be expressed as the sum of Q rank-1 tensors, up to trivial permutation and scaling

ambiguities. In other words, the Parafac components of C(4,y) are written as in (1.67) with A,

B, C and D given by (2.34).

Reduced-order cumulant tensor

It is possible to reduce the 4th-order tensor defined in (2.33) to a 3rd-order one by combining

the 3D slices of tensor C(4,y). We can thus reduce the complexity of the above described tensor

decomposition. Let us freeze, without loss of generality, the index k of the cumulant tensor

C(4,y) and define the 3D tensors C(3,y)
k ∈ C

M×M×M . Replacing the scalar representation (2.32)

in the general formulation (1.52), with P = 3, we end up with

C(3,y)
k =

Q∑

q=1

H∗
·q ◦H·q ◦

(
γ4,sqh

∗
kqH·q

)
(2.37)

Summing the above tensors for all k ∈ [1,M ] we get

C(3,y) =
M∑

k=1

C(3,y)
k =

Q∑

q=1

H∗
·q ◦H·q ◦

(
γ4,sqH·q

M∑

k=1

h∗kq

)
. (2.38)

The 3rd-order tensor C(3,y) ∈ C
M×M×M has a straightforward Parafac decomposition with the

following components:

A = H∗,B = H and C = H∆Γ4,s, (2.39)

where ∆ is a diagonal matrix given by:

∆ =

M∑

k=1

Dk (H∗) . (2.40)

Note that kA = kB = kC = rH = min(M,Q) and the Kruskal uniqueness condition (1.69)

becomes 3rH ≥ 2Q+2. This yields an upper bound on the number of identifiable sources, which

is given by {
Q ≥ 2, for M ≥ Q and

Q ≤ (3M − 2)/2 for M < Q.
(2.41)

Under the above condition, the Parafac components of C(3,y) are written as in (1.70) with A, B

and C given in (2.39).

5 Blind MIMO channel identification algorithms

In this section, we propose two algorithms to estimate the instantaneous MIMO mixing matrix,

up to column scaling and permutations. This is achieved by means of a SS-LS minimization
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procedure, thanks to the symmetry properties of the 4th-order cumulant. The algorithms pro-

posed in the sequel utilize only one of the unfolded representations of the cumulant tensors by

exploiting the relationships (2.34), or (2.39) in the case of the 3rd-order tensor. After that, we

present the procedures for estimating the Parafac components of the cumulant tensors separately

by means of the classical trilinear and quadrilinear ALS-type algorithms, described in section

1.3.1.

Other (non-ALS) algorithms have been reported in the literature to solve the canonical tensor

decomposition problem, notably by means of simultaneous diagonalization of matrices. In fact,

it has been shown in [21] that the canonical tensor components can be derived from a simulta-

neous matrix diagonalization and, most importantly, this leads to weaker uniqueness conditions.

Exploiting the symmetric structure of the quadricovariance matrix, the joint diagonalization

approach has been used in [68] and [22], giving rise o the ICAR and FOOBI algorithms, re-

spectively. While the FOOBI algorithms induce weaker uniqueness conditions, allowing for the

identification of more sources than sensors, the ICAR approach only treats the overdetermined

case, by exploiting the redundancies in the 4th-order cumulant. In order to include the case

of underdetermined mixtures, the underlying principle behind the ICAR method has also been

applied to 6th- [69] and higher-order statistics [70].

Although avoiding prewhitening, both ICAR and FOOBI algorithms come up with solutions

that require going through two different optimization stages in order to extract MIMO parame-

ters from an initial EVD-based estimate. The ICAR and FOOBI algorithms are briefly described

in the sequel. After that, the SS-LS approach is discussed and an algorithm that minimizes one

single LS cost function is proposed, under very mild assumptions.

5.1 Joint-diagonalization based algorithms

Making use of the multilinearity property of the cumulants, several methods have been recently

proposed utilizing the JD technique to exploit the Hermitian structure of a certain representation

of the cumulant tensor [69, 70, 81, 68, 22]. In fact, from the scalar representation of C(4,y), we

can form the matrix Q(4,y) ∈ C
M2×M2

, so that

[
Q(4,y)

]

(j−1)M+i, (k−1)M+l
= C4,y(i, j, k, l), (2.42)

from which, using (2.32), we easily get:

Q(4,y) =
(
H ⋄H∗

)
Γ4,s

(
H ⋄H∗

)H

. (2.43)

Since the source Kurtoses are assumed to be nonzero2 and the coefficients of H ∈ C
M×Q are

driven from a complex continuous Gaussian distribution, the rank of Q(4,y) is ensured to be

2 Additionally, all the source Kurtoses are assumed to have equal sign. In the case of under-Gaussian sources

(γ4,sq < 0, ∀q ∈ [1, Q]), one should replace Q(4,y) by −Q(4,y).



46 CHAPTER 2. PARAFAC-BASED BLIND CHANNEL IDENTIFICATION

equal to the number of signal sources Q [68]. Often referred to as the Quadricovariance matrix

[82, 83], Q(4,y) admits the following (economy-size) EVD:

Q(4,y) = UΛUH, (2.44)

where the columns of U ∈ C
M2×Q are the eigenvectors of Q(4,y) associated with the Q largest

real-valued eigenvalues, arranged in the diagonal matrix Λ ∈ R
Q×Q. From (2.44), we get:

Q(4,y)1/2
= UΛ1/2, (2.45)

and, since the square root of a Hermitian matrix is unique up to a unitary factor W, we deduce

from (2.43) that

UΛ1/2 =
(
H ⋄H∗

)
Γ

1/2
4,s WH. (2.46)

The relationship (2.46) is the core equation for some recently proposed methods proposing

solutions to recover the channel coefficients by retrieving the unitary matrix W. This is the case

of the so-called Independent Component Analysis using the Redundancies in the Quadricovari-

ance (ICAR) algorithm, which uses a JD approach in order to estimate W, exploiting symmetry

relationships of the 4th-order cumulants [68]. Also using the JD technique, the Fourth-Order-

Only Blind Identification (FOOBI) algorithm exploits the rank-1 Kronecker structure intrinsic

to the columns of Q(4,y)1/2
W [22]. These methods are further discussed in the sequel.

The ICAR algorithm (Albera et al. [68])

Using the ICAR concept, after the EVD of the Quadricovariance matrix, the channel coefficients

are estimated by means of two additional stages: computation of W using the JD technique and

subsequent estimation of H from (H ⋄H∗). This latter Khatri-Rao product can be written as:

(
H ⋄H∗

)
=





H∗D1 (H)
...

H∗DM (H)



 , (2.47)

from which we readily deduce, using (2.45) and (2.46), that Q(4,y)1/2
=
[
ΩT

1 · · · ΩT

M

]T
, where

each block Ωm ∈ C
M×Q, m ∈ [1,M ], is given as follows:

Ωm = H∗Dm (H)Γ
1/2
4,s WH, m ∈ [1,M ], (2.48)

and shown to be full-rank. Let Ω#
m denote the pseudoinverse of the above defined matrix,

i.e. Ω#
m = (ΩH

mΩm)−1ΩH
m, and define the following set of M(M − 1) matrices:

Θm1,m2 = Ω#
m1

Ωm2 , 1 ≤ m1 6= m2 ≤M, (2.49)

so that, after some straightforward manipulations, we end up with

Θm1,m2 = WDm1 (H)Dm2 (H)WH, 1 ≤ m1 6= m2 ≤M. (2.50)
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Due to (2.49), the ICAR approach is limited to treat only the overdetermined case (Q ≤ M).

The above equation shows that the unitary factor W is a joint-diagonalizer of the M(M − 1)

matrices Θm1,m2 defined in (2.49). Thus, W can be approximately computed from the JD of

those matrices, using the extended Jacobi technique, by means of the Algorithm A.2, described

in the Appendix A. However, we know from [65] that the solution Wo of the JD problem is

unique only up to column permutations and scaling. Hence, by multiplying the output of the

JD algorithm by any of the M ×Q blocks Ωm defined in (2.48) yields

ΩmWo = H∗Dm (H)Γ
1/2
4,s ΛΠ (2.51)

where matrix Λ is nonsingular and diagonal and Π is a permutation matrix. Otherwise, by

right-multiplying Q(4,y)1/2
by Wo, and using (2.45) and (2.46), we get an estimate of (H ⋄H∗),

up to the trivial indeterminacies, i.e.

Q(4,y)1/2
Wo =

(
H ⋄H∗

)
Γ

1/2
4,s ΛΠ. (2.52)

To obtain H from the above equation, note that unvec
(
H·q ⊗H∗

·q,M
)

= H∗
·qH

T
·q, which is a

rank-1 matrix, with⊗ denoting the Kronecker product and unvec (x, n) being the unvectorization

operator, which builds from the vector x a matrix with n columns. As a result, by mapping the

qth column of Q(4,y)1/2
Wo into a M ×M matrix Bq, the column H·q can be obtained, up to a

scaling factor, as the eigenvector associated with the largest eigenvalue of B∗
q . This solution is

referred to as the ICAR3 algorithm, and is summarized below.

Algorithm 2.3 (ICAR algorithm)

1. Compute U ∈ C
M2×Q and Λ ∈ R

Q×Q from the EVD of Q̂(4,y) as

in (2.44); Deduce the sign of the source Kurtoses from the diagonal

elements of Λ; If it is negative, use −Q̂(4,y) instead.

2. Take the square-root of Q̂(4,y) as in (2.45), i.e. Q̂(4,y)1/2
= UΛ1/2;

3. Deduce the M matrices Ωm ∈ C
M×Q, by taking for each m ∈ [1,M ]

the rows (m− 1)M + 1 to mM of Q̂(4,y)1/2
;

4. Using (2.49), form the set of M(M − 1) matrices Θm1,m2 , for all

1 ≤ m1 6= m2 ≤M ;

5. Using Algorithm A.2 compute the matrix Wo that simultaneously diag-

onalizes Θm1,m2 , for all 1 ≤ m1 6= m2 ≤M ;

6. Compute Q(4,y)1/2
Wo and denote its qth column by bq ∈ C

M2×1; De-

duce Bq = unvec (bq,M) ∈ C
M×M for all q ∈ [1, Q];

7. Estimate the qth column Ĥ·q of the mixture matrix as the eigenvector

of B∗
q associated with its largest eigenvalue, for all q ∈ [1, Q].
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Other solutions to extract Ĥ from the matrix Q(4,y)1/2
Wo are reported in [68] but will not

be considered here. Finally, we note that extending the ICAR concept to 6th- or higher-order

statistics allows for treating some underdetermined cases, which is the case of the BIRTH and

the BIOME algorithms, respectively [69, 70]. Since we limit our analyses to the methods using

4th-order statistics, these two latter algorithms will not be further discussed. In addition, the

FOBIUM algorithm [81] can be viewed as an extension to high orders of the classical SOS-based

SOBI algorithm [65]. FOBIUM includes a 4th-order based prewhitening step and it is unable

to deal with sources that have similar trispectra, analogously to the SOBI algorithm, which is

theoretically insensitive to the presence of sources with the same spectral densities. For that

reason, these algorithm will not be considered in this thesis.

The FOOBI algorithm (De Lathauwer et al. [22])

The FOOBI algorithm exploits the Khatri-Rao structure obtained when we right multiply

Q(4,y)1/2
by W. The basic principle behind this method relies on a rank-1 detecting device,

which takes the form of a 4th-order tensor Φ(X,Y) ∈ C
M×M×M×M with scalar representation

given by [
Φ(X,Y)

]

ijkl
= XijY

∗
kl + YijX

∗
kl −XikY

∗
jl −YikX

∗
jl, (2.53)

where X and Y are M × M matrices. It has been shown in [22] that Φ(X,X) is an all-

zero tensor if and only if the rank of X is at most equal to one (see also [24, 21]). Let

us denote by bq the qth M2 × 1 column of Q(4,y)1/2
= UΛ1/2 and define the Q Hermi-

tian matrices Bq = unvec (bq,M) ∈ C
M×M , q ∈ [1, Q]. Moreover, define the 4th-order tensors

Fq1,q2 = Φ(Bq1 ,Bq2), 1 ≤ q1 ≤ q2 ≤ Q. Assuming that the tensors Fq1,q2, 1 ≤ q1 < q2 ≤ Q, are

linearly independent, it is possible to show that there exist Q real-valued linearly independent

symmetric matrices Vq ∈ R
Q×Q, satisfying

Q∑

q1=1

Q∑

q2=1

[
Vq

]

q1,q2

Fq1,q2 = 0M×M×M×M , (2.54)

and being simultaneously diagonalized by W, i.e. Vq = WDqW
T, q ∈ [1, Q], with Dq real-

valued and diagonal. Therefore, W can be obtained from the JD of the linearly independent

symmetric matrices Vq, by means of the extended Jacobi Algorithm A.2.

Matrices Vq can be computed from the set of equations (2.54), which can be rewritten as:

Fvq = 0M4 , where, (2.55)

vq =
[
[Vq]1,1, . . . , [Vq]Q,Q, 2[Vq]1,2, 2[Vq]1,3, . . . , 2[Vq]Q−1,Q

]T
, and (2.56)

F =
[
f1,1 . . . fQ,Q f1,2 f1,3 . . . fQ−1,Q

]
∈ C

M4×Q(Q−1)/2, (2.57)

where the vectors fq1,q2 ∈ C
M4×1 are the vectorized versions of the tensors Fq1,q2, given as follows:

[
fq1,q2

]

(i−1)M3+(j−1)M2+(k−1)M+l
=
[
Fq1,q2

]

ijkl
. (2.58)
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The LS solution of the linear system (2.55) is given by the Q right singular vectors

vq ∈ R
Q(Q−1)/2×1 associated with its smallest singular values of F. These singular vectors are

then mapped into upper triangular matrices V̄q ∈ R
Q×Q in the order suggested by (2.56), i.e.

V̄q =





[vq]1 [vq]Q+1 [vq]Q+2 . . . [vq]2Q−2 [vq]2Q−1

0 [vq]2 [vq]2Q . . . [vq]3Q−4 [vq]3Q−3

...
...

...
. . .

...
...

0 0 0 . . . [vq]Q−1 [vq]Q(Q−3)/2

0 0 0 . . . 0 [vq]Q





(2.59)

and we finally get

Vq =

(
V̄q + V̄T

q

)

2
. (2.60)

Algorithm 2.4 (FOOBI algorithm)

1. Compute U ∈ C
M2×Q and Λ ∈ R

Q×Q from the EVD of Q̂(4,y) as

in (2.44); Deduce the sign of the source Kurtoses from the diagonal

elements of Λ; If it is negative, use −Q̂(4,y) instead.

2. Take the square-root of Q̂(4,y) as in (2.45), i.e. Q̂(4,y)1/2
= UΛ1/2; De-

note by bq the qth column of Q̂(4,y)1/2
and form Q Hermitian matrices

Bq = unvec (bq,M) ∈ C
M×M , q ∈ [1, Q];

3. Using (2.53), form the 4th-order tensors Fq1,q2 = Φ(Bq1 ,Bq2), for all

1 ≤ q1 ≤ q2 ≤ Q and build vectors fq1,q2 ∈ C
M4×1 as follows:

[
fq1,q2

]

(i−1)M3+(j−1)M2+(k−1)M+l
=
[
Fq1,q2

]

ijkl
.

4. Form the matrix F ∈ C
M4×Q(Q−1)/2 by concatenating the vectors

fq1,q2 for all 1 ≤ q1 ≤ q2 ≤ Q; Compute the Q right singular vectors

vq ∈ R
Q(Q−1)/2×1 associated with the smallest singular values of F;

5. From each vq, q ∈ [1, Q], form a triangular matrix V̄q ∈ R
Q×Q as

indicated in (2.59); Compute Q matrices Vq = (V̄q + V̄T
q )/2;

6. Using Algorithm A.2 compute the orthogonal matrix W that simultane-

ously diagonalizes the set Vq, q = 1, . . . , Q; Compute Q(4,y)1/2
W and

denote its qth column by zq ∈ C
M2×1;

7. Form the Q matrices Zq = unvec (zq,M) ∈ C
M×M , q ∈ [1, Q]; Estimate

the qth column Ĥ·q of the mixture matrix as the left singular vector of

Z∗
q associated with the largest singular value, for all q ∈ [1, Q].
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The matter of estimating H is addressed by exploiting the rank-1 structure that characterizes

the columns of Q(4,y)1/2
W. Denote by zq ∈ C

M2×1 the qth column of Q(4,y)1/2
W and build Q

matrices Zq = unvec (zq,M) ∈ C
M×M , q ∈ [1, Q]. Since Zq are rank-1 matrices for all q ∈ [1, Q],

the qth column of the mixture matrix Ĥ·q can be estimated from the left singular vector of Z∗
q

associated with the largest singular value, for all q ∈ [1, Q]. The above described method is

referred to as the FOOBI-1 algorithm. We note that a second FOOBI-like algorithm has been

proposed in [22] based on a simultaneous off-diagonalization. Since both FOOBI solutions have

demonstrated very similar performance, we will only consider FOOBI-1 throughout the rest of

this chapter.

A major interest in the FOOBI algorithm relies on the condition ensuring the uniqueness of

its solution. In fact, assuming that the tensors Fq1,q2, 1 ≤ q1 < q2 ≤ Q are linearly independent

implies an upper bound on the number of identifiable sources. However, linear independence of

the tensors Fq1,q2 is claimed to be guaranteed under the following condition:

Q(Q− 1) ≤M2(M − 1)2/2, (2.61)

which allows this algorithm for identifying, with a given number of sensors, more sources than

the classical ALS approaches can deal with.

5.2 Single-step least squares PBMCI algorithms

The main idea behind the algorithms proposed in the sequel is to exploit the fact that all the

Parafac components of the cumulant tensors depend on the channel matrix H. The parameter

estimation algorithms make use of only one among the unfolded representations of the tensors

C(4,y) and C(3,y). According to the unfolding procedure introduced in section 1.3.1, using equation

(1.58) with P = 4, and taking (2.34) into account, we get the following for C(4,y):

C
(4,y)
[4] =

(
H∗ ⋄H ⋄H∗

)
Γ4,sH

T ∈ C
M3×M . (2.62)

The solution to the above is said to be unique if any matrix H̄ satisfying (2.62) is such that

H̄ = HΛΠ, where Π is a permutation matrix and Λ a diagonal matrix. A sufficient uniqueness

condition for this decomposition has been given in (2.36). For C(3,y), using (2.39), we get the

following from (1.58) with P = 3:

C
(3,y)
[3]

=
(
H∗ ⋄H

)
Γ4,s∆HT ∈ C

M2×M . (2.63)

In practice, we compose C
(4,y)
[4] by filling in its lth column [C

(4,y)
[4] ]·l, l ∈ [1,M ], with the elements

C4,y(i, j, k, l) by varying the indices i, j, k ∈ [1,M ] in nested loops with k being the innermost

one (fastest) and i the outermost one (slowest). For the 3rd-order tensor, we proceed likewise,

except for the index k, which is kept fixed for each value in the interval [1,M ]. Matrix C
(3,y)
[3] is

then obtained by summing the M resulting matrices.
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4D SS-LS PBMCI algorithm

Equation (2.62) enables us to estimate the MIMO channel matrix by iteratively minimizing a

single LS cost function, which is written as follows:

ψ(Ĥr−1,H) , ‖C(4,y)
[4] − (Ĥ∗

r−1 ⋄ Ĥr−1 ⋄ Ĥ∗
r−1)Γ4,sH

T‖2F . (2.64)

where r denotes the iteration number. The iterative minimization of ψ(Ĥr−1,H) yields the

following LS solution:

ĤT

r , arg min
H

ψ(Ĥr−1,H)

= Γ−1
4,s(Ĥ

∗
r−1 ⋄ Ĥr−1 ⋄ Ĥ∗

r−1)
#C

(4,y)
[4] (2.65)

where Ĥ0 is initialized as a complex M × Q Gaussian random matrix. In order to improve

estimation at iteration r ≥ 1, before computing Ĥr, we normalize each column of the previous

estimate by its respective norm i.e. [Ĥr−1]·q ← [Ĥr−1]·q/‖[Ĥr−1]·q‖. This normalization step

also renders the solution (2.65) independent of the source Kurtosis matrix Γ4,s. The algorithm

is stopped when |e(r)− e(r − 1)|2 ≤ ε, where e(r) = ‖Ĥr − Ĥr−1‖/‖Ĥr‖ and ε is an arbitrary

small positive constant.

Our developments in this section only considered the unfolded matrix C
(4,y)
[4] , without loss

of generality. Using any other unfolded representation C
(4,y)
[p] , p = 1, 2, 3, should lead to similar

results. The above described method will be referred to as the Single-Step LS Parafac-based

Blind MIMO Channel Identification (SS-LS PBMCI) algorithm [63, 64]. The SS-LS approach

can also be formulated from tensor C(3,y) defined in (2.37). This is discussed in the sequel.

3D SS-LS PBMCI algorithm

The SS approach can also be formulated using tensor C(3,y) defined in (2.37). Equation (2.63)

yields the following LS cost function:

ψ(Ĥr−1,H) , ‖C(3,y)
[3] − (Ĥ∗

r−1 ⋄ Ĥr−1)Γ4,s∆̂r−1H
T‖2F . (2.66)

Iteratively minimizing (2.66) leads to:

ĤT

r = Γ−1
4,s∆̂

−1
r−1(Ĥ

∗
r−1 ⋄ Ĥr−1)

#C
(3,y)
[3]

. (2.67)

Here again, Ĥ0 is initialized as a complex M × Q Gaussian random matrix and Ĥr−1 is nor-

malized before computing the next estimate Ĥr. Due to this normalization step, the algorithm

is independent of the diagonal matrices Γ4,s and ∆̂r−1, which do not need to be computed. We

will refer to this method as the 3D SS-LS PBMCI algorithm.
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5.3 Classical ALS-type PBMCI algorithms

Classical ALS-type algorithms can also be used to solve the blind MIMO channel identification

problem. In particular, the QALS and TALS algorithms described in section 1.3.3 provide

solutions to the Parafac decomposition of tensors C(4,y) and C(3,y), respectively. Methods utilizing

these algorithms are discussed in the sequel.

Quadrilinear ALS-PBMCI algorithm

The Parafac components of C(4,y) can be estimated from its unfolded tensor representations.

While C
(4,y)
[4] has been given in (2.62), matrices C

(4,y)
[p] , p = 1, 2, 3, can be straightforwardly

deduced from Table 1.1 using (2.34). The unfolded representations of tensor C(4,y) are explicitly

given in Table 2.2. A solution to this set of equations can be iteratively obtained by means of the

QALS algorithm described in section 1.3.3 (Algorithm 1.2). Denoting by r = ∞ the iteration

at which convergence is reached, and taking the column scaling and permutation into account,

we can write:

Â∞ = Ĥ∗
1Λ1Π,

B̂∞ = Ĥ2Λ2Π,

Ĉ∞ = Ĥ∗
3Λ3Π,

D̂∞ = Ĥ4Γ4,sΛ4Π.

(2.68)

The channel estimates Ĥ1 and Ĥ3 can be obtained, up to the trivial ambiguities, by simple

conjugation of Â∞ and Ĉ∞, respectively. Another solution is obtained by averaging Â∗
∞, B̂∞,

Ĉ∗
∞ and D̂∞. The above procedure will be referred to as the Quadrilinear ALS Parafac-based

Blind MIMO Channel Identification (QALS-PBMCI) algorithm.

The QALS algorithm does not exploit the interdependencies between the Parafac compo-

nents. In spite of that, we can initialize it with a complex M ×Q Gaussian random matrix Â0

and then deduce B̂0 and Ĉ0 using (2.34). After that, the Algorithm 1.2 starts by computing

D̂0. The above described procedure will be referred to as the Quadrilinear ALS Parafac-based

Blind MIMO Channel Identification (QALS-PBMCI) algorithm.

Trilinear ALS-PBMCI algorithm

A similar ALS approach can be implemented for decomposing the 3rd-order tensor C(3,y) defined

in (2.37), by means of the Trilinear Parafac-ALS (TALS) algorithm, described in section 1.3.3.

In this case, the unfolded tensor representations can be deduced from Table 1.1 using (2.39) and

they are explicitly given in Table 2.2. The solution is iteratively obtained from the Algorithm

1.3, which can be initialized with a complex M ×Q Gaussian random matrix Â0, with B̂0 being

deduced from (2.39) and (2.40). After convergence of the algorithm, the Parafac components of
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Table 2.2: Parafac formulæ for the 3rd- and 4th-order spatial cumulant tensors

Unfolded tensor

representations
P = 4 P = 3

C[4]

(
H∗ ⋄H ⋄H∗

)
(HΓ4,s)

T

C[3]

(
(HΓ4,s) ⋄H∗ ⋄H

)
HH

(
H∗ ⋄H

)
(H∆Γ4,s)

T

C[2]

(
H∗ ⋄ (HΓ4,s) ⋄H∗

)
HT

(
(H∆Γ4,s) ⋄H∗

)
HT

C[1]

(
H ⋄H∗ ⋄ (HΓ4,s)

)
HH

(
H ⋄ (H∆Γ4,s)

)
HH

C(3,y) have the following form:

Â(∞) = Ĥ∗
1Λ1Π,

B̂(∞) = Ĥ2Λ2Π,

Ĉ(∞) = Ĥ3∆̂3Γ4,sΛ3Π,

(2.69)

from which we can deduce three channel matrix estimates, up to column scaling and permuta-

tions. Averaging these three estimates yields a fourth solution. This method will be called the

Trilinear ALS Parafac-based Blind MIMO Channel Identification (TALS-PBMCI) algorithm.

Column scaling and permutation indeterminacies, although not explicitly solved by any of the

algorithms described in this section, do not represent a concern in the context of blind mixture

identification, still allowing for the recovery of the source signals in the overdetermined case.

Finally, in order to evaluate the capacity of the algorithms in terms of the bounds on the number

of identifiable sources, we show in Table 2.3 the theoretical maximum number of users that each

algorithm is capable to identify using a given number of receive antennas (varying from M = 2

to M = 7). The bounds for the 4D SS-LS and the QALS algorithms are derived from (2.36),

while those for the 3D SS-LS and the TALS algorithms come from (2.41). The identifiability

condition of the FOOBI algorithm has been given in (2.61). The ICAR algorithm is omitted

since it is constrained to the overdetermined case (Q < M). In spite of the bounds stated in

Table 2.3, the tradeoff between capacity and estimation performance of these algorithms remains

an open issue and it will be addressed in the computer simulations section.

Table 2.3: Identifiability conditions of MIMO channel identification algorithms

M = 2 3 4 5 6 7

3D SS-LS and TALS Q ≤ 2 3 5 6 8 9

4D SS-LS and QALS Q ≤ 2 4 6 8 10 12

FOOBI Q ≤ 2 4 9 14 21 30
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6 Computer simulations

In this section, we present some computer simulation results in order to assess the performance

of the blind identification algorithms proposed in this chapter. We will first consider the case

of a SISO-FIR communication channel. We compare the performance of the proposed SS-LS

PBCI method with the results obtained using the well-known Fourth-Order System Identification

(FOSI) algorithm [66], which is based on a joint diagonalization technique. We also compare

our method with an algebraic solution that is optimal in the total least squares (TLS) sense,

proposed in [7].

After that, we consider in section 6.2 a quasi-static MIMO scenario in which the propagation

channel is characterized by a Rayleigh flat fading, so that the channel coefficients are drawn from

a continuous complex Gaussian distribution and assumed to be time-invariant within the dura-

tion of a time-slot consisting of N symbols. The QALS-PBMCI and TALS-PBMCI algorithms

are compared with the SS-LS approach. We also present a comparative study to illustrate how

the 4D SS-LS PBMCI algorithm performs with respect to some methods reported in the liter-

ature. Finally, although our main interest is on mixture identification, we also provide results

concerning the recovery of the transmitted symbols using the channel estimates obtained from

the proposed methods in both SISO and MIMO cases.

6.1 SISO channel identification

In the SISO case, the parametric channel estimation performance will be evaluated by means of

the normalized mean squared error (NMSE) of the estimator, computed as follows:

NMSE =
1

R

R∑

r=1

‖ĥ(∞)
〈r〉 − h‖2

‖h‖2 , (2.70)

where R is the number of Monte Carlo simulations and ĥ
(∞)
〈r〉 is the channel estimate obtained

after convergence for the rth simulation, assuming perfect knowledge of the channel memory L.

Except otherwise stated, 4th-order cumulants are estimated usingN = 1000 output data samples

(length of one time-slot). For each Monte Carlo simulation, a different complex channel coef-

ficient vector has been randomly generated in such a way that minimum-phase, nonminimum-

phase as well as maximum-phase channels are allowed to occur. Furthermore, we allow for

possibly sparse channels, i.e. channel having some coefficients with very small magnitude, which

may lead to numerical instabilities. The results illustrated in the following curves represent the

average of R = 200 Monte Carlo runs. The input signal is QPSK modulated. In which follows,

the results concerning the FOSI algorithm have been obtained by averaging the two solutions

proposed in [66], as suggested by the authors.

In fig. 2.2, the NMSE is plotted against signal-to-noise ratio (SNR) for the SS-LS PBCI, FOSI

and TLS algorithms. The curves on the left-hand side show that the SS-LS approach performs
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Figure 2.2: NMSE performance with QPSK modulation.

better than both, the FOSI algorithm and the TLS solution, for channels with memory L = 3.

The relative behavior of the algorithms shown in that figure has also been verified for L = 2

and L = 4. On the right-hand side of fig. 2.2, we compare the results of SS-LS PBCI for L = 4

with those of the FOSI algorithm for L = 2, 3 and 4. Note that the estimation errors obtained

with SS-LS PBCI for L = 4 are smaller than those of FOSI for L = 4 and L = 3. Furthermore,

for low SNR values, the performance provided by the SS-LS PBCI algorithm for channels with

L = 4 can be considered equivalent (or better) than those obtained with FOSI for channels

with L = 2. We can therefore conclude that SS-LS PBCI is able to deal with more complicated

channel scenarii (larger delay spread) while providing better performance than the other two

algorithms, especially in highly noisy situations.
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Figure 2.3: NMSE × channel memory with SNR = 21dB.

In order to evaluate the effect of the output data sequence length used to estimate the

4th-order cumulants over the identification performance of the algorithms, we plot in fig. 2.3

the NMSE against the channel memory for N = 1000 and N = 3000 output symbols, with
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Figure 2.4: Convergence analysis for SS-PBCI with three different initializations (SNR = 21dB).

SNR = 21dB. In a general manner, using SS-LS PBCI with N = 1000 yields better results than

using TLS or FOSI algorithms with N = 3000.

It is interesting to note that the number of iterations required for convergence of the SS-LS

PBCI algorithm can be reduced by initializing it with an algebraic solution such as the TLS

solution. In fig. 2.4 we show the mean and median number of iterations needed for convergence

of SS-LS PBCI with SNR = 21dB using three different initializations: 1) a Gaussian random

vector; 2) the TLS solution and 3) the C(q, k) solution [4]. Using both TLS and C(q, k) solu-

tions to initialize SS-LS PBCI decreases the number of iterations in comparison with a random

initialization. Finally, it is worth to mention that the NMSE performance after convergence

remains unchanged, i.e. initialization only affects convergence speed.

Recovery of the input signal

Several equalization approaches exist to recover the input data sequence using the estimated

channel. The optimal solution in the minimum mean squared error (MMSE) sense is given by

the Wiener solution [36]. The coefficient vector wo ∈ C
(K+1)×1 of the optimal equalizer is given

by:

wo =
(
THT + σ2

υI(L+1)

)−1
THsd, (2.71)

where T is a (K + L+ 1)× (K + 1) Toeplitz matrix built from the channel coefficients, of

which the first row is given by T1· = [h(0) 0T

K×1] and the first column is T·1 = [hT 0T

K×1]
T.

The vector sd ∈ R
(K+L+1)×1 is given by [0, . . . , 0, 1, 0, . . . , 0]T, where the only nonzero element

corresponds to the dth entry and d represents the equalization delay, which is usually taken as

d = (K +L+ 1)/2 if K +L is odd or d = (K +L+ 2)/2 if K +L is even [36]. The input signal

is recovered as follows:

ŝ(n) =
K∑

k=0

wo(k)y(n − k). (2.72)
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Figure 2.5: Symbol error rate (SER) performance in the SISO case with QPSK modulation for

L = 2 (left) and L = 3 (right).

In fig. 2.5, we present the performance of SS-LS PBCI and FOSI algorithms in terms of

the symbol error rate (SER) for channels with L = 2 (left) and L = 3 (right) with a QPSK

modulated input signal. The dotted lines concern the results obtained with the optimal MMSE

equalizer assuming perfect knowledge of the channel coefficients. For a target SER of 10−3, with

L = 2 (left), SS-LS PBCI provides a gain of about 5dB in SNR with respect to FOSI. For L = 3

(right), despite the expected performance loss of both algorithms, this gain is around 7dB in

SNR for a target SER of 2× 10−3.

6.2 MIMO channel identification

In this section, we assume a quasi-static Rayleigh flat-fading transmission scenario where the

MIMO channel coefficients are drawn from a continuous complex Gaussian distribution and are

assumed to be time-invariant within the duration of a time-slot with length equal to N symbol

periods. At each time-slot, a new channel is randomly selected. In which follows, the length of

the time-slot has been set to N = 1000 symbol periods and the output data samples received

in this interval are used to estimate the spatial cumulants. Our results are averaged over 300

time-slots.

Overdetermined mixtures

In order to evaluate the performance of the Parafac-based blind MIMO channel identification

algorithms in the overdetermined case (M > Q), we utilize the identification performance index

given in [84, 85], which is based on the matrix Φ〈r〉 = H#Ĥ〈r〉, where Ĥ〈r〉 is an estimate of

the channel matrix, up to column scaling and permutations, obtained after convergence for the

simulation r ∈ [1, R]. Therefore, in the ideal case Ĥ〈r〉 = HΛΠ, and hence Φ〈r〉 should take

the form of a scaled permutation matrix. The identification performance index is computed as
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Figure 2.6: Average identification performance index × SNR.

follows:

ξ(Φ〈r〉) ,
1

2








∑

i

(∑

j

|φ〈p〉i,j |2

maxℓ |φ〈r〉i,ℓ |2
)
− 1



+




∑

j

(∑

i

|φ〈r〉i,j |2

maxℓ |φ〈r〉ℓ,j |2
)
− 1







 , (2.73)

where φ
〈r〉
i,j are the entries of Φ〈r〉. The identification performance index ξ(·) equals zero if

its matrix argument has the exact structure of a scaled permutation matrix, and small values

indicate proximity to the desired solution. In our case, ξ(Φ〈r〉) tends towards zero when the

channel estimate approximates the actual MIMO channel matrix, up to column scaling and

permutation. Actually, the identification performance index defined in (2.73) is generally viewed

as a measure of the quality of source restoration, irrespective of the trivial indeterminacies,

indicating the global level of interference rejection at the output of a spatial filter built from the

estimated channel coefficients. In the following figures, we plot the value in dB for the average

performance index, i.e. (1/R)
∑R

r=1 ξ(Φ
〈r〉), where R is the number of time-slots (Monte Carlo

simulations).

In a first simulation experiment, we evaluate the PBMCI approach by comparing the pro-

posed algorithms 4D SS-LS and 3D SS-LS with their ALS-based counterparts (QALS and TALS

respectively). We obtained the plots in fig. 2.6 using M = 3 antenna elements. These pictures

show the average identification performance index computed using (2.73) in function of the SNR

for Q = 2 (left) and Q = 3 (right) QPSK modulated sources. Notice that the methods based

on 4th-order tensors (4D SS-LS and QALS) performed generally better than their 3rd-order

versions (3D SS-LS and TALS). As expected, increasing the number of sources leads to worse

performance, but 4D SS-LS seems to be less affected than the other methods.

In fig. 2.7, we show the mean number of iterations needed for convergence of the four algo-

rithms when Q = 2 (left) and Q = 3 sources (right) with SNR = 21dB. Although 4D SS-LS

takes generally more iterations to converge than QALS, the former one is a more attractive

option due to its smaller computational complexity, since it involves only one LS minimization

instead of four. Note that increasing the number of users for a given number of antennas con-
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Figure 2.7: Mean number of iterations for convergence with SNR = 21dB.
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Figure 2.8: Comparison with other algorithms.

siderably increases the number of iterations needed for the tensor-based algorithms to converge.

As expected, the methods based on the 4th-order tensor converge faster than those based on the

3rd-order one. Finally, we observe that the algorithms take more iterations to converge when

the number of antennas decreases, due to the loss of spatial diversity.

In the sequel, we present some results comparing the SS-LS approach with some algorithms

reported in the literature. In particular, we confront the identification performance obtained

with the 4D SS-LS PBMCI algorithm against the results provided by the classical JADE [51]

algorithm, the FOOBI [22] and the ICAR [68] methods. From fig. 2.8, we note that the 4D

SS-LS PBMCI algorithm presents satisfactory results vis-a-vis of the other three methods. By

increasing the noise level, JADE’s performance degrades and becomes worse than the other

methods for SNR values below 12dB. For Q = 3 sources and M = 3 antennas, fig. 2.8 (right)

shows that our approach performs better than the other tested algorithms. In conclusion, the

SS-LS approach seems to be a very interesting solution, especially when the number of users

increases and the noise level becomes important.
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Figure 2.9: SER vs. SNR in the MIMO case.

Finally, concerning the recovery of the source signals, we illustrate in fig. 2.9, the perfor-

mance of the 4D SS-LS PBMCI algorithm in terms of the average SER per user, for Q = 2

users (left) and Q = 3 users (right). The source symbols were recovered using a semi-

blind MMSE filter W ∈ C
Q×M built from the estimated MIMO channel matrices, as follows:

W = ĤH(ĤĤH + R̂υ)−1, where R̂υ is the estimated noise covariance matrix. In order to get rid

of the problem of scaling (phase) and permutation ambiguities, P pilot symbols have been used,

with P = 10 in the case of Q = 2 users and P = 15 for Q = 3 users. The results are compared

with those obtained with the optimal MMSE receiver using perfect knowledge of the channel

coefficients. Note that, for Q = 2 users (left) as well as for Q = 3 users (right), the performance

of 4D SS-LS is quite close to the optimal MMSE reference. With Q = 2 users, the average SER

performance has the same global behavior as with Q = 3 users, except for a vertical shift in the

curves, indicating an expected performance loss due to the increase in the number of users.

Underdetermined mixtures

In order to evaluate the identification algorithms in the underdetermined case, we will con-

sider a uniform linear antenna (ULA) array with M identical sensors, equally spaced of half a

wavelength, receiving signal from Q narrow-band sources, assumed to be in the far-field of the

antenna array, with azimuth angles given by θq, q ∈ [1, Q], and no elevation angle. The signals

are transmitted in the baseband with unit-variance using a QPSK modulation. The mixing

matrix coefficients are given by:

[
H
]

m,q
= e π(m−1) cos θq , m ∈ [1,M ], q ∈ [1, Q], (2.74)

where  =
√
−1. The estimation accuracy is measured in terms of the NMSE, computed as:

NMSE =
1

R

R∑

r=1

‖Ĥ(∞)
〈r〉 −H‖2F
‖H‖2F

, (2.75)
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Figure 2.10: NMSE vs. SNR with N = 1000 symbols (left) and NMSE vs. Sample data length

with SNR=5dB (right).
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Figure 2.11: NMSE vs. SNR with N = 1000 symbols (left) and NMSE vs. Sample data length

with SNR=5dB (right).

where R is the number of Monte Carlo simulations and Ĥ
(∞)
〈r〉 is the optimally ordered and scaled

channel estimate obtained after convergence for the rth simulation. Our simulations include 300

Monte Carlo runs of each experiment. Firstly, we have used M = 3 sensors and Q = 4 sources

with angles of arrival given by θ1 = 55◦, θ2 = −5◦, θ3 = −50◦ and θ4 = 25◦, respectively. The

curves in fig. 2.10 have been obtained with N = 1000 symbols for a SNR ranging from 0 to 30dB

(left) and with a SNR of 5dB with N varying from 400 to 5000 symbols (right). These results

show that 4D SS-LS algorithm gives better precision than FOOBI, specially for low SNR levels.

Note from Table 2.3, that in this particular scenario (M = 3, Q = 4) both methods have the

same bounds in terms of the maximum number of identifiable sources.

For the next experiment, we used M = 4 sensors and included an extra source with angle of

arrival given by θ5 = −25◦. In fig. 2.11, we observe that FOOBI’s performance with respect to

the 4D SS-LS algorithm is better, and their NMSE practically coincide for high SNR levels (left)

as well as for large sample sizes (right). Note from Table 2.3 that in this case (M = 4, Q = 5),

FOOBI has weaker uniqueness conditions than the SS-LS approach and hence more freedom to
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Figure 2.12: Maximum SINR vs. SNR with N = 1000 symbols: Best (left) and worst (right)

cases.

treat additional sources.

The performance of the identification algorithms can also be assessed in terms of the quality

of the extraction of theQ independent components. To this end, we apply a spatial matched filter

(SMF) built from the estimated channel coefficients as W = R̂−1
y Ĥ. A performance evaluation

criterion can be defined as the maximum signal-to-interference-plus-noise ratio (SINR) per source

[25]. The SINR of each source q ∈ [1, Q] at the ith separator output can be computed as follows:

SINRq(wi) = σ2
sq

|wH

i Ĥ·q|2
wH

i Rυqwi
, (2.76)

where wi = [W]·i, σ
2
sq

is the variance of source q and Rυq is the total noise plus interference

matrix for source q, corresponding to Ry = E
{
y(n)yH(n)

}
in the absence of source q. The

maximum value of SINRq(wi) for all i ∈ [1, Q] is indicative of the quality of restitution of source

q. In fig. 2.12, we plot the results in function of the SNR level, for the sources q = 3 and q = 4,

which gave respectively the best and worst fit with respect to the optimal SMF, which built

from the exact channel coefficients (dotted lines). We conclude that some sources can be better

recovered than others in spite of the global performance of the separator.
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7 Summary

In this chapter, a new blind SISO channel identification algorithm has been presented based on

the Parafac decomposition of a 3rd-order tensor formed of 4th-order output cumulants. The

proposed PBCI algorithm relies on a SS-LS minimization problem. The Parafac decomposition

fully exploits the three-dimensional nature of the cumulant tensor and has the advantage of

avoiding any kind of pre-processing. Uniqueness and convergence issues have been addressed.

Computer simulations show that our approach provides better estimation performance than

both the TLS solution and the FOSI algorithm, which is based on a simultaneous matrix diag-

onalization. Furthermore, the convergence of the PBCI algorithm can be accelerated when it is

initialized with the TLS solution.

We have also addressed the problem of blind MIMO channel (mixture) identification in

the context of a multiuser system characterized by instantaneous complex channels. We have

presented a simplified SS-LS MIMO channel identification algorithm based on the Parafac de-

composition of a 4th-order tensor composed of 4th-order spatial output cumulants. Quadrilinear

and trilinear ALS solutions have been described and compared with the SS-LS method. We have

established uniqueness conditions bounding the number of identifiable sources and showing that,

under certain conditions, our algorithm can identify underdetermined mixtures. Computer simu-

lations have been presented assessing the performance of the proposed algorithms and comparing

it with other MIMO channel identification algorithms, showing that the SS-LS approach is of

great interest in several practical situations.
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Chapter 3

Parafac-based methods for Array

Processing and Multipath Parameter

Estimation

H
igh -resolution subspace-based direction finding (DF) methods, such as the well-

known MUSIC [86, 87] and ESPRIT [88] algorithms, have become very popular

in narrowband (NB) array processing. Exploiting the orthogonality between the

signal and noise subspaces, these methods based on the second-order statistics (SOS)

provide asymptotically infinite resolution and are very interesting solutions for localizing multiple

sources when the spatial correlation of the additive noise is known [89, 90, 91, 92, 93]. However,

the performance of SOS-based methods can be seriously deteriorated when dealing with several

sources with low signal-to-noise ratio (SNR) and small angular separation using finite data

sample sequences [90, 92, 93] or in presence of spatial noise with unknown correlation function

[94]. In addition, they can only treat overdetermined mixtures (more sensors than sources).

Source localization is a crucial aspect in sensor array processing. Determining the loca-

tion of signal emitters allows for the implementation of source separation techniques as well as

beamforming for interference suppression. During the last two decades, the use of high-order

statistics (HOS) has been widely considered for the estimation of the direction-of-arrival (DOA)

in the context of multiuser NB array processing. Several solutions to the source localization and

DF problems have been proposed for non-Gaussian signals based on the 4th-order cumulants of

the array output data [82, 95, 96]. Extensions of the MUSIC algorithm to the 4th- and higher

(even) orders gave rise to the 4-MUSIC [28, 97, 29] and, more recently, the 2κ-MUSIC (κ ≥ 2)

methods [27]. In addition to noise robustness, these methods offer better resolution and allow

for an increased number of sources to be localized, including certain underdetermined cases. Al-

though characterized by a higher variance [98], the HOS-based MUSIC-like algorithms increase

the number of virtual sensors and the effective aperture of the receive antenna array at the

65
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cost of an increased complexity due to the estimation of the high-order statistical information

[99, 25, 26]. Other known 4th-order DF approaches include [82, 100, 101], among others.

In the first part of this chapter, we treat the problem of blind multiuser localization in

the context of multiple antenna array processing. Assuming that the sources are located at

the far-field of the antenna array, our goal is to estimate signal DOAs using only the array

output signals. Specifically, we propose a new high-resolution DF algorithm that artificially adds

sensors to a virtual antenna array without resorting to statistics of order higher than fourth. In

fact, using the 4th-order cumulants only, the proposed method estimates the array matrix and,

exploiting the structure of the cumulant tensor, creates an enhanced virtual array that yields an

augmented observation space, thus providing additional degrees of freedom to the antenna array

and allowing for improved resolution. Based on the single-step least-squares (SS-LS) Parallel

Factor (Parafac) decomposition technique introduced in Chapter 2, the new source localization

algorithm exploits an array having a double Kronecker structure, which commonly only arises

when using 6th-order statistics. However, since we do not need to estimate cumulants of order

higher than fourth, our approach keeps the variance of the cumulant estimators at a moderate

level, even for quite short output data sequences. Uniqueness and identifiability conditions will

be discussed in order to assess the capacity of the proposed technique in terms of the maximum

number of resolvable sources. Computer simulations are provided to illustrate the performance

of the proposed method compared with the classical MUSIC approaches.

On the other hand, in mobile radiocommunication contexts, signals are often transmitted

through multiple propagation paths, characterized by specular reflections and scattering due

to physical objects placed in the environment. In such a multipath propagation scenario, the

wavefronts may reach the receive array front-end with different delays, spreading the energy of

the signals over the time and corrupting temporally adjacent pulses. The so-called delay spread

profile induces an altered channel impulse response thus yielding intersymbol interference (ISI),

which accounts for important capacity and performance limitations in wireless communication

systems. In order to ensure a correct information recovery, we may need to reduce or suppress

the effects of ISI, which generally requires some knowledge about the transmission channel.

Classically estimated by using known sequences embedded in the transmitted signals, the use

of channel coefficients allow for the application of several linear and nonlinear methods aiming

the recovery of the input symbols [102]. However, such a supervised (trained) approach may be

very costly in the context of time-varying channels, even when variations are slow.

Due to the (possibly) nonminimum phase property of the radio channel, the identification

problem has been often addressed using a HOS formulation, which gave rise to several non-

supervised (blind) approaches [5, 103, 104]. Other blind HOS-based approaches include well-

known adaptive techniques that are intended to recover the transmitted symbols without the

previous channel estimation stage [105, 106, 107, 108]. Since the pioneer paper by Tong et. al

[109], blind methods have also been proposed for the single user case based only on SOS, ex-
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ploiting subspace properties of multiple output channels corresponding to the different sensors

of an antenna array and/or to an oversampled output signal (fractionally-spaced equalization)

[110, 111, 112, 113, 114]. See also [115] and references therein for the particular case of single-

input multiple-output (SIMO) channels. Still relying on the oversampling of the channel output,

extensions of the subspace method to multiuser configurations have been developed in [116, 117]

and SOS-based approaches using linear prediction have been proposed in [118, 119].

Starting from section 3, we will focus on the problem of blind multipath channel parameter

estimation. Our approach includes two successive stages. We first introduce a 4th-order output

cumulant tensor model for the convolutive MIMO channel case, which is an important contri-

bution of this chapter as long as it generalizes the results obtained in Chapter 2 for the SISO

and the memoryless MIMO cases. After that, using the physical multipath parameters to model

the channel coefficients, we introduce a 3rd-order Parafac tensor representation for the convo-

lutive multiuser radio channel. Using the proposed generalized cumulant tensor framework, we

extend the SS-LS algorithm to the non-parametric estimation of the convolutive MIMO chan-

nel coefficients. Uniqueness conditions show that the proposed algorithm copes with a flexible

range of possible channel configurations, each configuration corresponding to a given number

of transmit and receive antennas and a fixed channel memory. Then, an ALS-based algorithm

is used to estimate the spatial and temporal channel signatures using the estimated channel

coefficients. Finally, the multipath parameters are extracted by means of subspace-based algo-

rithms, which enables us to recover the channel coefficients without the trivial indeterminacies

associated with the Parafac decomposition. This new parametric estimation procedure is also

an original contribution of this chapter and will be referred to as ALS-MUSIC algorithm.

The two-stage procedure introduced in this chapter for estimating the convolutive MIMO

channel and its multipath parameters is, to our knowledge, the first fully blind technique propos-

ing solution to the channel identification problem in a multiuser radio-mobile context, making

use of the 4th-order cumulant symmetries in a single LS minimization problem and exploiting

the multipath structure of the channel using a tensor formalism in both stages, without resorting

to oversampling.

The remaining of this chapter is organized as follows: in section 1, we formulate the array

output signal model along with the basic definitions of signal and noise subspaces; we also dis-

cuss the Virtual Array concept and present a survey of classic MUSIC-like algorithms, including

the general formulation for the case of statistics of any even order; in section 2 we derive a new

high-resolution DF algorithm exploiting the double Kronecker structure of the unfolded 4th-

order cumulant tensor; the SS-LS cumulant tensor decomposition approach is revisited and the

uniqueness issue is addressed; in section 3, we turn our attention to the problem of estimating

the multipath parameters of a MIMO channel; we start by introducing a general formulation for

the 4th-order output cumulant tensor model in the convolutive MIMO case and then we treat
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Figure 3.1: Linear antenna array and incoming signal.

the multiuser radio channel as a Parafac tensor formed from its physical multipath parameters;

section 4 proposes combined algorithms for the blind identification of the convolutive multipath

MIMO channel in two stages: using first a non-parametric 4th-order cumulant-based SS-LS

approach and then a parametric ALS-based algorithm that uses the previous estimation of the

channel coefficients; after that, the multipath parameters are extracted by means of MUSIC-

like subspace-based algorithms that allow for the complete reconstruction of the MIMO channel

impulse responses without scaling ambiguities; finally, in section 5, we provide computer simula-

tions illustrating the methods discussed throughout the chapter and assessing their performance

under different channel configurations. Conclusions are drawn in section 6, along with some

future work perspectives.

1 The source localization problem in NB array processing

Let us consider a linear array of M identical NB sensors receiving the contributions of Q

zero-mean stationary sources, assumed to be placed at the far-field of the array. Denoting

by y(n) ∈ C
M×1 the vector of complex signals measured at the output of the antenna array, we

have:

y(n) =

Q∑

q=1

sq(n)a(θq, φq) + υ(n)

= As(n) + υ(n) (3.1)

where the vector s(n) ∈ C
Q×1 is formed of the complex amplitudes of the source signals sq(n),

which are stationary, ergodic and mutually independent with symmetric distribution, zero-mean

and non-zero kurtosis γ4,sq = c4,sq(0, 0, 0), q ∈ [1, Q], with azimuth and elevation angles given

by θq and φq, respectively, as illustrated in fig. 3.1. Moreover, the signals sq(n) are assumed to

be independent of the additive Gaussian noise, which is arranged in the vector υ(n) ∈ C
M×1,

stationary with zero-mean and unknown spatial correlation. Matrix A ∈ C
M×Q represents

the spatial responses of the linear antenna array, concatenating the source steering vectors
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a(θq, φq) ∈ C
M×1, carrying the DOA information (θq, φq) associated with each source q ∈ [1, Q].

The array matrix A can therefore be written as

A =
[
a(θ1, φ1) . . . a(θQ, φQ)

]
∈ C

M×Q, (3.2)

where the mth element of vector a(θq, φq) corresponds to the response of the array element m

with respect to the source q. Assuming a planewave propagation with no coupling between

sensors [120, 121], we can write:

am(θq, φq) = exp

{
 2π xm cos θq cosφq

λ

}
, (3.3)

where  =
√
−1 and xm is the distance of each array element m ∈ [1,M ] with respect to a

given reference sensor, assumed by convention to be the first antenna, i.e. x1 = 0. The signal

wavelength λ is given by λ = c/fc, where fc is the carrier frequency and the constant c is the

propagation speed of the light. Due to (3.3), A has a particular unit-modulus property and,

since x1 = 0, the directional matrix gets a all-one first row, i.e. A1· = [1, 1, . . . , 1]. In the case

of Uniform Linear Antenna (ULA) arrays, the sensors are equally spaced from each other along

the array axis and distanced of ∆x with respect to adjacent sensors, so that (3.3) becomes as

follows:

am(θq, φq) = exp

{
 2π (m− 1)∆x cos θq cos φq

λ

}
. (3.4)

In this case, the spatial response array matrix A has the following Vandermonde structure:

A =





1 . . . 1

a1(θ1, φ1) . . . a1(θK , φK)

a 2
1 (θ1, φ1) . . . a 2

1 (θK , φK)
...

. . .
...

aM−1
1 (θ1, φ1) . . . aM−1

1 (θK , φK)





, (3.5)

where the second row is the generating vector, from which the whole matrix can be deduced.

1.1 Array output statistics

Considering the above mentioned assumptions, let us define the covariance matrix C(2,y) ∈
C

M×M , so that [C(2,y)]i,j = C2,y(i, j), i, j ∈ [1,M ], where the 2nd-order spatial cumulant of the

array output is defined as C2,y(i, j) , cum
[
yi(n), y∗j (n)

]
. From (3.1), we have:

C(2,y) = E

{
y(n)yH(n)

}

= AΓ2,sA
H + C(2,υ) (3.6)

where Γ2,s = E
{
s(n)sH(n)

}
and C(2,υ) = E

{
υ(n)υH(n)

}
. From the assumption of mutually

independence of the sources, it follows that Γ2,s is a diagonal matrix with diagonal entries given

by the source variances, γ2,sq = E
{
|sq(n)|2

}
, q ∈ [1, Q].
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Moreover, by defining the 4th-order tensor C(4,y) ∈ C
M×M×M×M with scalar representation

given by C4,y(i, j, k, l) , cum [y∗i (n), yj(n), y∗k(n), yl(n)], we can build the Quadricovariance ma-

trix C(4,y) ∈ C
M2×M2

, as [C(4,y)](j−1)M+i, (k−1)M+l = C4,y(i, j, k, l), yielding the structure given

below [82, 83]:

C(4,y) =
(
A ⋄A∗

)
Γ4,s

(
A ⋄A∗

)H

, (3.7)

where Γ4,s = Diag
(
γ4,s1, . . . , γ4,sQ

)
and ⋄ denotes the Khatri-Rao product.

Comparing (3.7) with (3.6), we note strong similarities in the structures of C(4,y) and (the

noiseless part of) C(2,y). While both are diagonal quadratic forms, the latter one is built from

the source steering vectors, and C(4,y) involves a column-wise Kronecker product of those vec-

tors. This structural analogy is the basic idea allowing for extending some array processing

methods based on SOS to the 4th-order [82, 47]. In addition, since the above analysis only

evokes the linearity and the additivity properties of cumulants, it can be extended to statis-

tics of any (even) order. In fact, complex-valued 2κth-order output cumulants, defined as

C2κ,y(i1, . . . , i2κ) , cum
[
yi1(n), . . . , yiκ(n), y∗iκ+1

(n), . . . , y∗i2κ
(n)
]
, κ ≥ 2, can always be repre-

sented by a Hermitian matrix C
(2κ,y)
ℓ ∈ C

Mκ×Mκ
, which admits the following decomposition:

C
(2κ,y)
ℓ =

(
A⋄ℓ ⋄A∗⋄κ−ℓ

)
Γ2κ,s

(
A⋄ℓ ⋄A∗⋄κ−ℓ

)H

, ℓ ∈ [1, κ], (3.8)

where Γ2κ,s = Diag
(
γ2κ,s1, . . . , γ2κ,sQ

)
and γ2κ,sq is the 2κ th-order cumulant of the input signal

sq(n). The notation X⋄n stands for a multiple Khatri-Rao product involving a matrix X so that

X⋄n = X⋄X⋄ . . .⋄X, where the Khatri-Rao product symbol ⋄ appears n−1 times. Throughout

the rest of this chapter, we omit the index ℓ, choosing by convention ℓ = κ/2 when κ is even

and ℓ = (κ+ 1)/2 for odd values of κ.

In practical applications, the channel statistics are not known at the array output and must

be estimated from the received data sequences, based on the ergodicity assumption. Cumulant

estimation is an important issue and has been briefly discussed in section 1.1.2 of Chapter 1, in

the case of 4th-order cumulants. Exact expressions exist for computing the variance of cumulant

estimators of order 2κ, generally involving very complicated calculations using cumulants of order

up to 4κ [48, 122, 17]. In this context, an important result shows that, for orders higher than

3, as the sample data length increases, the cumulant estimators tend to be Gaussian random

variables [3]. However, the convergence towards Gaussianity may be very slow, as κ increases.

Consequently, when dealing with HOS, the use of short sample data sequences may lead to

significant errors with respect to the asymptotic results [98].

Signal and noise subspaces

Assuming that the sources are spaced far enough apart from each other, we can consider that the

source steering vectors a(θq, φq), q ∈ [1, Q], are mutually independent. Under this assumption,

the space spanned by these vectors is a subspace of the observation space, with M dimensions,
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which the received signal vector y(n) belongs to. Therefore, the column space of matrix A, with

Q dimensions, will be referred to as the signal subspace, while its orthogonal complement, with

M −Q dimensions, M > Q, will be named the noise subspace.

From (3.6) we conclude that the rank of C(2,y) is ensured to be equal to the number of

sources Q if Q ≤M . In this case, we notice that the signal subspace contains all the necessary

information for representing the transmitted signals. By projecting the observations on the

signal subspace, we can reduce the amount of noise without loss of useful information (M > Q).

In addition, the number of sources is given by the dimension of the signal subspace.

On the other hand, the rank of C(4,y) equals Q whenever Q ≤ M2. In fact, (3.7) suggests

that the observation space of the 4th-order cumulants, with M2 dimensions, is spanned by

the Kronecker products of the received signal vectors y(n) ⊗ y∗(n). In this case, the signal

subspace is defined as the space spanned by the Kronecker products of the steering vectors

a(θq, φq)⊗ a∗(θq, φq), with Q dimensions. Its orthogonal complement, with M2−Q dimensions,

will be referred to as the noise subspace.

1.2 The Virtual Array concept

By replacing the received signal vectors by their Kronecker product, we actually increase the

dimension of the observation space, thus allowing for a greater number of separable sources

[123]. To illustrate this principle, let us consider the Kronecker product a(θq, φq)⊗ a∗(θq, φq)

and take the element in position (m1 − 1)M +m2, with m1,m2 ∈ [1,M ]. Using a ULA array,

we can write this element from (3.4), as follows:

[
a(θq, φq)⊗ a∗(θq, φq)

]

(m1−1)M+m2

= am1(θq, φq) a
∗
m2

(θq, φq)

= exp

{
 2π (m1 −m2)∆x cos θq cos φq

λ

}
. (3.9)

The above equation clearly shows that the Kronecker product of the steering vectors results in

an augmented ULA array with virtual sensors (VS) placed at the array axis and distanced of

(m1 −m2)∆x with respect to the reference sensor, for all m1,m2 ∈ [1,M ]. Notice that the M

elements for which m1 = m2 are located at the array origin and are said to be virtual sensors

of multiplicity M . In the case of ULA arrays with space diversity only, the 2nd-order virtual

array (VA) defined in (3.9) is shown to have 2M − 1 different VS, meaning it can deal with up

to 2M − 2 independent sources [25]. In the general case, using an optimal array geometry, it is

possible to get up to M2 −M + 1 different VS [25].

The theory of Virtual Arrays has been introduced independently in [99] and [123] using 4th-

order statistics. The concept has been further developed in [25] and [26], for the case of 4th-

and higher-order cumulants, respectively. However, some basic results had already been given

in [124]. The steering vectors of a κ th-order VA are given as follows:

aκ(θq, φq) =
[
a(θq, φq)

⊗ℓ ⊗ a∗(θq, φq)
⊗κ−ℓ

]
, (3.10)
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where x⊗n denotes a multiple Kronecker product involving a vector x so that

x⊗n = x⊗ x⊗ . . . ⊗ x, where the Kronecker product symbol ⊗ appears n− 1 times. The index

ℓ has been omitted from the left-hand side of (3.10) since we have chosen to take, by convention,

ℓ = κ/2 for κ even and ℓ = (κ+ 1)/2 when κ is odd.

One major interest in using high-order (HO) VAs is in exploiting the Kronecker structure

that naturally arises in the HOS representations. Despite the increased variance of the HOS

estimators, the HO VAs are known to provide gains in terms of resolution, which can be measured

by means of the spatial correlation between two sources. Let us consider the sources q1 and q2,

with DOAs given by the angles (θq1, φq1) and (θq2 , φq2), respectively. The spatial correlation

coefficient of sources q1 and q2 is given by the normalized inner product of the steering vectors

aκ(θq1, φq1) and aκ(θq2 , φq2), i.e.

ςκ(q1, q2) ,
aκ(θq1 , φq1)

Haκ(θq2 , φq2)[
aκ(θq1 , φq1)

Haκ(θq1 , φq1)
]1/2[

aκ(θq2 , φq2)
Haκ(θq2 , φq2)

]1/2
. (3.11)

Notice that for any complex n×1 vectors a, b, c and d it holds: (a⊗b∗)H(c⊗d∗) = (aHc)(dHb);

we can thus write (a⊗ℓ ⊗ a∗⊗κ−ℓ
)H(b⊗ℓ ⊗ b∗⊗κ−ℓ

) = (aHb)ℓ(bHa)κ−ℓ, for all a,b ∈ C
n×1. Re-

placing this latter relationship into (3.11) and taking its modulus, we obtain:

∣∣∣ςκ(q1, q2)
∣∣∣ =

( |a(θq1, φq1)
Ha(θq2 , φq2)|

|a(θq1, φq1)| |a(θq2, φq2)|

)κ

, (3.12)

from which it is straightforward to deduce that |ςκ(q1, q2)| = |ς1(q1, q2)|κ. Note that for κ = 1 the

virtual steering vector defined in (3.10) coincides with the actual array response vector a(θq, φq).

Thus, for an array with space diversity only, the spatial correlation coefficient of the κ th-order

Virtual Array associated with a given direction (θ0, φ0) only depends on κ and on the normalized

amplitude response |ς1(q, 0)| of the actual antenna array of M sensors, for each pair (θq, φq).

Since 0 ≤ |ς1(q, 0)| ≤ 1, we conclude that for the direction (θ0, φ0), the spatial correlation of

the HO VA decreases with κ, thus improving its angular resolution. This fact is illustrated in

fig. 3.2 for a ULA array with 3 sensors spaced of λ/2, where we plot the antenna response of

the VAs with κ = 1, κ = 2 and κ = 3, to a source at θ0 = 5◦ (no elevation angle). The antenna

pattern is obtained from the inner products of the associated steering vectors. Considering the

beamwidth (in degrees) at the point of 3dB attenuation of the main lobe for the DOA of 5◦, we

observe gains of about 13.5◦ and 19.8◦ using the HO VAs with κ = 2 and κ = 3, respectively,

with respect to the considered array of M sensors (κ = 1).

1.3 MUSIC-like DF algorithms

In its basic form, the Multiple Signal Classification (MUSIC) technique has been introduced to

provide asymptotically unbiased estimates of the parameters of multiple wavefronts arriving at

an antenna array [86, 87]. Exploiting the orthogonality between the signal and noise subspaces,
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Figure 3.2: Antenna pattern of different VAs for a ULA with 3 sensors spaced of λ/2.

the MUSIC algorithm aims to determine, among others, the number of signal sources, their

location (DOAs) and the cross-correlations among the directional waveforms.

2-MUSIC

The SOS-based MUSIC algorithm (so-called 2-MUSIC) algorithm is of particular interest: 1) in

the noiseless case, in which (3.6) leads to C(2,y) = AΓ2,sA
H; 2) in the case of a spatially white

additive noise, when C(2,υ) is proportional to the identity matrix, i.e. C(2,υ) = γ2,υIM , with γ2,υ

being the noise variance. In this latter case, the smallest eigenvalues of C(2,y) equal the noise

variance and the corresponding eigenvectors span the noise subspace of the noiseless observation

space. The eigenvectors associated with the largest eigenvalues span the signal subspace and the

EVD of the estimated covariance matrix is shown to yield the maximum likelihood estimator of

the number of sources [87]. Implementations of the 2-MUSIC algorithm generally assume that

the additive noise is white and M > Q.

Taking the EVD of the Covariance matrix C(2,y), we get:

C(2,y) = UΣUH (3.13)

where Σ is a real-valued M × M diagonal matrix and U = [Us Un] ∈ C
M×M is a unitary

matrix, with Us ∈ C
M×Q and Un ∈ C

M×M−Q corresponding to the signal and noise subspaces,

respectively. Taking (3.6) into account and noticing that UT
nA = 0(M−Q)×Q, we can define the

following localization function:

P2(θ, φ) =
1

∥∥∥w(θ, φ)HUn

∥∥∥
2 , (3.14)

where Un is chosen as the columns of U associated with the M − Q smallest eigenvalues and

the orthogonal projector w(θ, φ) ∈ C
M×1 has the form of the steering vector a(θ, φ) defined in
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(3.3). The function P2(θ, φ) clearly measures the orthogonality between the signal and noise

subspaces for the source q; the desired value of the orthogonal projector is the one maximizing

(3.14) [82]. We can therefore conclude that the local maxima of P2(θ, φ) are associated with the

DOAs of the Q source signals.

In practice, the algorithm must previously estimate the covariance matrix of the output

observations Ĉ(2,y) (the equations given in section 1.2 of Chapter 1 can be used to this end) and

the localization function is built from the estimated noise subspace Ûn. This approach provides

asymptotically infinite resolution because only the true array steering vectors associated to each

source strictly belong to the column space of A. The main drawback is the limitation to treat

only overdetermined mixtures, since it can only localize M − 1 sources.

HO-MUSIC

As we have seen in section 1.1, the Quadricovariance matrix C(4,y) has structural properties

very similar to those of the Covariance matrix C(2,y), but involving the Kronecker products of

the source steering vectors. According to the VA concept discussed in section 1.2, the Kronecker

structure of C(4,y) yields an increased number of virtual antenna elements, thus allowing for the

localization of more sources than sensors, the amount of which varies in function of the array

geometry. This is the main principle behind the extension of the MUSIC algorithm to the 4th-

(and higher-) orders [82, 47].

Let us consider the EVD of C(4,y), as follows:

C(4,y) =
[
Us Un

]
Σ
[
Us Un

]H
(3.15)

where Σ is a real-valued M2 × M2 diagonal matrix and the columns of Us ∈ C
M2×Q and

Un ∈ C
M2×(M2−Q) correspond to the 4th-order signal and noise subspaces, obtained from the

eigenvectors associated with the Q largest and the M2 − Q smallest eigenvalues of C(4,y), re-

spectively. Exploiting the orthogonality between the observation space and the noise subspace,

we define the following localization function:

P4(θ, φ) =
1

∥∥∥w2(θ, φ)H Un

∥∥∥
2 , (3.16)

where w2(θ, φ) = a(θ, φ)⊗ a∗(θ, φ). The source DOA parameters (θq, φq) can be deduced from

the parameters of the orthogonal projectors w2(θ, φ) ∈ C
M2×1 that maximize the 4th-order

localization function P4(θ, φ), which in practice is built from the estimated noise subspace Ûn,

obtained from the estimated cumulant matrix Ĉ(4,y).

The 4-MUSIC algorithm has been introduced in [28, 97, 29] in the context of overdetermined

mixtures. The concept has been discussed in [82] as well, including the case of more sources than

sensors. The principle underlying the 4-MUSIC algorithm makes use of two basic properties of

4th-order cumulants: the linearity and the additivity under linear independence. Since these
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properties hold for cumulants of any (even) order, the algorithmic formalism is easily extendable

to higher-order statistics. In fact, using the 2κ th-order cumulant matrix C(2κ,y) defined in (3.8),

it is straightforward to build a general localization function of the form:

P2κ(θ, φ) =
1

∥∥∥wκ(θ, φ)H Un

∥∥∥
2 , (3.17)

where the orthogonal projector wκ(θ, φ) ∈ C
Mκ×1 takes the form of (3.10) and Un is the

Mκ × (Mκ −Q) matrix that concatenates the eigenvectors of C(2κ,y) associated with its Mκ −Q
smallest eigenvalues. Source DOAs can be found by searching for the local maxima of P2κ(θ, φ).

See [27] for a survey on the 2κ-MUSIC algorithms.

2 DF algorithms based on cumulant tensor decomposition

As we have seen in the preceding sections, HO-MUSIC-like algorithms have the ability to make

use of the virtual antenna array that naturally arises from the HOS structure at the array

output. However, due to the high variance of the HO cumulant estimators, the use of finite

sample data yields considerable deviations with respect to asymptotic results. On the other

hand, exploiting additional sensors allows for improving resolution and capacity in terms of the

number of resolvable sources, at the cost of an increased complexity due to the estimation of

higher-order cumulants.

In this section, we propose a high-resolution DF algorithm that creates a 3rd-order virtual

array, only exploiting the Kronecker structure of the 4th-order cumulant tensor. Our solution

is based on the single-step least-squares (SS-LS) Parafac decomposition technique introduced in

Chapter 2, which exploits the symmetry properties of 4th-order output cumulants to perform

the Parafac decomposition of a cumulant tensor [63, 64]. This approach involves a channel

estimation stage prior to source localization, but it allows for an improved resolution due to

an enhanced VA, artificially constructed from the estimated channel, without resorting to 6th-

order statistics. While keeping the cumulant estimation variance at a lower level compared with

the 2κ-MUSIC algorithms, κ > 2, the proposed technique is robust to an additive Gaussian

noise with unknown spatial correlation, contrary to the 2-MUSIC method. In addition, for ULA

arrays, the SS-LS approach is shown to resolve as many sources as the 4-MUSIC algorithm.

Let us rewrite the scalar representation of the 4th-order tensor C(4,y), defined in section 1.1,

as follows:

C4,y(i, j, k, l) =

Q∑

q=1

γ4,sq a
∗
i (θq, φq) aj(θq, φq) a

∗
k(θq, φq) al(θq, φq) (3.18)

for 1 ≤ i, j, k, l ≤ M and q ∈ [1, Q], where the nonzero source Kurtoses γ4,sq are assumed

unknown. It follows from (3.18) that C(4,y) is a 4th-order Parafac tensor with rank Q. Its

canonical components can be straightforwardly deduced and are all written in terms of the
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array matrix A and the diagonal Kurtosis matrix Γ4,s (see section 4 of Chapter 2)1. Let us now

define the unfolded tensor representation C[1] ∈ C
M3×M , as follows:

[
C[1]

]

(j−1)M2+(k−1)M+l, i
= C4,y(i, j, k, l), (3.19)

which can be easily shown to be written as follows (see the unfolding procedure introduced in

section 3.1 of Chapter 1):

C[1] = (A ⋄A∗ ⋄A)Γ4,sA
H (3.20)

= A(3) Γ4,s AH (3.21)

where A(3) is the M3 × Q 3rd-order VA matrix, defined as A(3) = A ⋄A∗ ⋄A, with A being

defined in (3.5).

2.1 The SS-LS Parafac algorithm

Using the unfolded tensor representation C[1], the SS-LS Parafac algorithm introduced in Chap-

ter 2 can be used to estimate the array matrix A, as well as the VA matrix A(3). The algorithm

iteratively minimizes a single LS cost function, given by:

ψ(Âr−1,A) ,

∥∥∥C[1] −
(
Âr−1 ⋄ Â∗

r−1 ⋄ Âr−1

)
Γ4,s AH

∥∥∥
2

F
, (3.22)

in which r is the iteration number and ‖ · ‖F denotes the Frobenius norm. The iterative mini-

mization of ψ(Âr−1,A) yields the following LS solution:

ÂH

r , arg min
A

ψ(Âr−1,A)

= Γ−1
4,s Â

(3)#

r−1 C[1], (3.23)

with

Â
(3)
r−1 = Âr−1 ⋄ Â∗

r−1 ⋄ Âr−1. (3.24)

Note that we only have to initialize Â0. In fact, at each iteration r ≥ 1, we deduce Â
(3)
r−1 from

(3.24) and then, we compute Âr from (3.23).

Iterative LS algorithms are known to be very sensitive to the initialization of the parameters

[58]. Exploiting the unit-modulus property of the array steering matrix, the following modifi-

cation of the algorithmic procedure is expected to improve convergence. After initializing Â0

with an M ×Q matrix drawn from a (complex) Gaussian distribution, perform the following:

At each iteration r ≥ 1, before computing Âr, divide each entry of the preceding estimate

by its own magnitude, i.e.

[Âr−1]mq ←
[Âr−1]mq∣∣∣[Âr−1]mq

∣∣∣
;

1 This result can also be obtained from the general formulations (1.52) and (1.53), introduced in Chapter 1,

with P = 4.
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Normalize each column by its first-row element:

[Âr−1]·q ←
[Âr−1]·q

[Âr−1]1 q

;

Deduce Â
(3)
r−1 from (3.24) and compute the array matrix estimate at iteration r as follows:

Âr ←
[
Â

(3)#

r−1 C[1]

]H
. (3.25)

Notice that, due to the normalization step, the computation of Âr becomes independent of

the source Kurtosis matrix Γ4,s. The algorithm is stopped when |e(r)− e(r − 1)|2 ≤ ε, where

e(r) = ‖Âr − Âr−1‖F /‖Âr‖F and ε is an arbitrary small positive constant.

2.2 Uniqueness and identifiability

Due to the Vandermonde structure of the array matrix, given in (3.5), and assuming the signal

sources are not closely located, matrix A can be shown to be full k-rank [125], so that kA = rA =

min(M,Q). In this case, the Kruskal Theorem (1.56) yields Q ≤ (4M−3)/2, for M < Q, leading

to the following general sufficient conditions for the uniqueness of the Parafac decomposition of

tensor C(4,y):

2 ≤ Q ≤ 2M − 2. (3.26)

Although (3.26) is not a necessary condition, it establishes an upper bound on the number of

guaranteed resolvable sources. This bound limits the number of sources that we can treat using

the 3rd-order VA matrix A(3), regardless of the number of virtual sensors.

In the case of a ULA array with M sensors, the number of different virtual sensors associated

with the κ th-order VA is shown to be equal to κ(M − 1) + 1 [26]. In this context, the 3rd-order

VA matrix A(3) admits a maximum capacity of 3M − 3 sources. However, since the SS-LS

approach is bounded by the uniqueness condition (3.26), we can never charge the VA with more

than 2M − 2 sources, so that its noise subspace has at least M free dimensions (i.e. linearly

independent basis vectors). Moreover, when using an M -element ULA array, the capacity of

the 4-MUSIC algorithm is associated with the number of VS sensors of a 2nd-order VA, which

coincides with the upper bound of the SS-LS approach. However, if 4-MUSIC operates with

maximal capacity, the noise subspace of the 2nd-order VA has only one free dimension.

DOA estimation

The source DOAs can be recovered from the VA matrix A(3) by using a 6th-order MUSIC-like

localization function P6(θ, φ), such as defined in (3.17) with κ = 3, i.e.

P6(θ, φ) =
1

∥∥∥w3(θ, φ)H Un

∥∥∥
2 , (3.27)
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where w3(θ, φ) = a(θ, φ) ⊗ a∗(θ, φ) ⊗ a(θ, φ), with a(θ, φ) defined in (3.3), and Un is a

M3 × (M3 −Q) matrix representing the noise subspace and formed of the left singular vec-

tors of A(3) associated with its M3 −Q smallest singular values.

The source DOA parameters (θq, φq) can be recovered from the parameters of the orthogonal

projectors w3(θ, φ) ∈ C
M3×1 leading to the local maxima of the 6th-order localization function

P6(θ, φ), defined in (3.27).

3 Multipath MIMO channel modeling

Let us consider a multiple-input multiple-output (MIMO) wireless communication system with

Q transmit and M receive sensors disposed both in ULA arrays, with sensors spaced of half

wavelength. The transmit antenna array is assumed to be placed at the far-field of the receive

array and the transmission is subject to specular multipath propagation due to remote scatterers,

as illustrated in fig. 3.3, so that the channel between each transmit and receive antenna can be

represented by a superposition of K plane waves, associated with different scatterers, located

far apart each other. The location of each scatterer determines the angles (ϑk, ϕk) and (θk, φk)

defining the directions of departure (DOD) and arrival of the kth path with respect to the

transmit and receive arrays, respectively. For notational simplicity, we assume that the antenna

arrays and the scatterers are approximately coplanar so that the elevation angles ϕk and φk

approach zero and will therefore be omitted in the sequel. The transmitted signals are assumed

to be narrowband with respect to the array aperture so that the signals over the kth path are

subject to the a single attenuation factor βk, and achieve the same relative propagation delay,

equal to τk. In order to capture all the incoming delayed signals, we utilize a known real-valued

pulse shape filter g(ℓ), with finite temporal support equal to L + 1 symbol periods, so that

g(ℓ) = 0, for ℓ /∈ [0, L]. We also assume that the multipath delay spread profile is finite with a

known maximum path delay τmax that is larger than the inverse of the coherence bandwidth so

that the channel can be viewed as a frequency-selective MIMO model. Finally, the channel is

stationary over the length of the observation interval.

The received signal at the output of the array element m, sampled at the symbol rate, can

be written as follows:

ym(n) =

Q∑

q=1

K∑

k=1

βk a
′
q(ϑk) am(θk)

L∑

ℓ=0

g(ℓ− τk) sq(n − ℓ) + υm(n) (3.28)

=

Q∑

q=1

L∑

ℓ=0

hmq(ℓ) sq(n− ℓ) + υm(n), m ∈ [1,M ], (3.29)

where the channel coefficient hmq(ℓ) has been defined as follows:

hmq(ℓ) ,

K∑

k=1

βk a
′
q(ϑk) am(θk) g(ℓ − τk), ∀ ℓ ∈ [0, L], (3.30)
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Figure 3.3: Multipath propagation scenario.

and hmq(ℓ) = 0 elsewhere, with βk being the complex fading gain associated with the kth path

and a′q(ϑk) and am(θk) denoting the spatial responses of the transmit and receive array elements

q and m, respectively, with respect to the kth path, with DOD equal to ϑk and DOA given by

the angle θk. The non-measurable complex-valued discrete input signals sq(n) are stationary,

ergodic and mutually independent with symmetric distribution, zero-mean and non-zero kurtosis

γ4,sq = c4,sq(0, 0, 0). The additive noise υm(n) at the receive array output is assumed Gaussian

and independent from the input signals, with zero-mean and unknown spatial correlation.

Let us write the channel coefficients hmq(ℓ) in a vector form, so that

h(m,q)(ℓ) = [hmq(ℓ), . . . , hmq(ℓ+ L)]T. By stacking the row-vectors h(m,q)(ℓ)T for all m ∈ [1,M ],

we can build the following matrices:

H(q)(ℓ) =
[
h(1,q)(ℓ) . . . h(M,q)(ℓ)

]T
∈ C

M×(L+1) (3.31)

=





h1q(ℓ) h1q(ℓ+ 1) . . . h1q(ℓ+ L)
...

...
. . .

...

hMq(ℓ) hMq(ℓ+ 1) . . . hMq(ℓ+ L)





Note that for ℓ = 0, matrix H(q)(0) contains the impulse responses of the channels linking the

transmit antenna q with each receive antenna m ∈ [1,M ]. Hence, by concatenating H(q)(0) for

all q ∈ [1, Q], we can define a channel matrix H ∈ C
M×Q(L+1), that can be written as

H ,

[
H(1)(0) . . . H(Q)(0)

]
, (3.32)

and contains all the channel impulse responses characterizing the M×Q MIMO system. Finally,

by stacking temporally shifted versions of H(q)(0), we can define a matrix H(q) ∈ C
M(2L+1)×(L+1)
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for each transmit antenna q ∈ [1, Q], as follows:

H(q) ,





H(q)(−L)
...

H(q)(0)
...

H(q)(L)





, (3.33)

where each block-row of sizeM×(L+ 1) can be written as H(q)(ℓ+∆ℓ), with ℓ = 0, ∆ℓ ∈ [−L,L].

Recalling that hmq(ℓ) = 0, ∀ ℓ /∈ [0, L], we notice from (3.33) and (3.31) that matrix H(q) has a

block -Hankel structure, since

H(q)(∆ℓ) =





0 . . . 0 h1q(0) . . . h1q(L+ ∆ℓ)
...

. . .
...

...
. . .

...

0 . . . 0 hMq(0) . . . hMq(L+ ∆ℓ)



 , for ∆ℓ ≤ 0 and (3.34)

H(q)(∆ℓ) =





h1q(∆ℓ) . . . h1q(L) 0 . . . 0
...

. . .
...

...
. . .

...

hMq(∆ℓ) . . . hMq(L) 0 . . . 0



 , for ∆ℓ ≥ 0. (3.35)

By concatenating H(q), for all q ∈ [1, Q], we define the matrix H ∈ C
M(2L+1)×Q(L+1), as follows:

H ,

[
H(1) . . . H(Q)

]T
, (3.36)

which, due to (3.34) and (3.35), has the following structure:

H =





H(1)(−L) H(2)(−L) · · · H(Q)(−L)
...

...
. . .

...

H(1)(0) H(2)(0) · · · H(Q)(0)
...

...
. . .

...

H(1)(L) H(2)(L) · · · H(Q)(L)





=





. . .
...

...
. . .

...

. . .

. . .

. . .
...

...
. . .

...

. . .





.

Notice that the (L + 1)th block-row of size M × Q(L+ 1) of matrix H corresponds to

matrix H defined in (3.32). Thus, it is possible to deduce H from the block-columns H(q)(0)

of matrix H. To this end, we first build H(q) by stacking the time-shifted versions H(q)(∆ℓ),

for all ∆ℓ ∈ [−L,L], as suggested by (3.33). Then, we obtain H by concatenating the resulting

matrices H(q) for all q ∈ [1, Q], as indicated in (3.36).
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3.1 A Space-Time 4th-order cumulant tensor model

The space-time (ST) 4th-order output cumulants are defined as follows2:

c(4,y)
m1m2m3m4

(l1, l2, l3) , cum

[
y∗m1

(n), ym2(n + l1), y
∗
m3

(n+ l2), ym4(n+ l3)

]
, (3.37)

and, due to the linearity and additivity properties of cumulants, considering the assumption of

Gaussian noise, we can write:

c(4,y)
m1m2m3m4

(l1, l2, l3) =

Q∑

q=1

γ4,sq

L∑

ℓ=0

h∗m1q(ℓ)hm2q(ℓ+ l1)h
∗
m3q(ℓ+ l2)hm4q(ℓ+ l3), (3.38)

where γ4,sq = cum
[
s∗q(n), sq(n), s∗q(n), sq(n)

]
, m1,m2,m3,m4 ∈ [1,M ] and |l1|, |l2|, |l3| ≤ L.

Let us denote ip+1 = (up − 1)M +mp+1, with up = lp + L+ 1, for all p ∈ [1, 3], and define

C
(4,y)
i1i2i3i4

, c
(4,y)
m1m2m3m4(l1, l2, l3), where i1 = m1. Then, using f = (q − 1)(L+ 1) + ℓ+ 1, equa-

tion (3.38) yields:

C
(4,y)
i1i2i3i4

=

F∑

f=1

ai1f bi2f ci3f di4f , (3.39)

where F = Q(L+ 1) and we have performed the following substitutions:





ai1f = γ4,sq h
∗
m1q(ℓ), m1 = i1 ∈ [1,M ],

bi2f = hm2q(ℓ+ l1), m2 ∈ [1,M ], l1 ∈ [−L,L], i2 ∈ [1,M(2L + 1)],

ci3f = h∗m3q(ℓ+ l2), m3 ∈ [1,M ], l2 ∈ [−L,L], i3 ∈ [1,M(2L + 1)],

di4f = hm4q(ℓ+ l3), m4 ∈ [1,M ], l3 ∈ [−L,L], i4 ∈ [1,M(2L + 1)].

(3.40)

From (3.39), we note that C
(4,y)
i1i2i3i4

can be viewed as the scalar representation of a 4th-order tensor

C(4,y) with rank equal to Q(L+1), which admits a Parafac decomposition with components given

by the matrices A ∈ C
M×Q(L+1) and B,C,D ∈ C

M(2L+1)×Q(L+1), of which the elements are

given in (3.40). Tensor C(4,y) has one dimension equal to M and three other equal dimensions of

size M(2L+ 1). Using the canonical basis vector notation, matrix A can be written as follows:

A =
F∑

f=1

M∑

i1=1

ai1f e
(M)
i1

e
(F )T

f

A =

Q∑

q=1

L∑

ℓ=0

M∑

m1=1

γ4,sq h
∗
m1q(ℓ) e

(M)
m1

(
e(Q)

q ⋄ e(L+1)
ℓ+1

)T

, (3.41)

where e
(I)
i denotes the ith canonical basis vector of R

I and we have used the fact that

e
(I)
i ⋄ e

(J)
j = e

(IJ)
(i−1)J+j . From the above equation, we conclude that

A = H∗ Γ4,s ∈ C
M×Q(L+1), (3.42)

2 Notice that, due to the assumption of stationarity of the input signals, all the output statistics only depend

on the differences between the considered time-shifts. As a result, only three temporal indices are needed in

definition (3.37).
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where H has been defined in (3.32) and Γ4,s = Diag
(
Γ4,s1 , . . . ,Γ4,sQ

)
is a Q(L+ 1)×Q(L+ 1)

diagonal matrix, with Γ4,sq = γ4,sqIL+1. Similarly, matrix B can be represented as follows:

B =

F∑

f=1

M(2L+1)∑

i2=1

bi2f e
(M)
i2

e
(F )T

f

B =

Q∑

q=1

L∑

ℓ=0

L∑

l1=−L

M∑

m2=1

hm2q(ℓ+ l1)
(
e

(2L+1)
l1+L+1 ⋄ e(M)

m2

)(
e(Q)

q ⋄ e(L+1)
ℓ+1

)T

, (3.43)

and we note that:

B = H ∈ C
M(2L+1)×Q(L+1), (3.44)

where H is the block-Hankel matrix defined in (3.36). From (3.40), it is now straightforward to

deduce that

C = H
∗ ∈ C

M(2L+1)×Q(L+1), (3.45)

D = H ∈ C
M(2L+1)×Q(L+1). (3.46)

Comments on the space-time cumulant tensor formulation

It is interesting to compare the above described cumulant tensor C(4,y), with the formulations

introduced in Chapter 2 for the convolutive SISO and instantaneous MIMO cases (sections 2 and

4, respectively). Notice that when M = Q = 1, with L ≥ 1, the signal model (3.29) corresponds

to the output of a purely temporal SISO channel represented by a single FIR filter. In this case,

using (3.36), H reduces to the Hankel channel matrix given in (2.9), while from (3.32), we note

that H becomes the channel coefficient vector hT, defined in (2.8). In the convolutive SISO

case, the 4th-order cumulant definition given in (3.37) is equivalent to (2.2) and tensor C(4,y)

becomes the 3rd-order tensor defined in (2.5).

On the other hand, considering the memoryless case (L = 0) with Q > 1 and M > 1, the

signal model (3.29) can be viewed as the output of an instantaneous MIMO channel. Indeed,

using (3.36) and (3.32), we note that the expression for H coincides with H in this case, and

both are equivalent to the channel coefficient matrix used in (2.30). Under these conditions, the

4th-order cumulants defined in (3.37) take the form of (2.31) and tensor C(4,y) is equivalent to

the purely spatial cumulant tensor defined in (2.33), with four identical dimensions of size M .

In conclusion, the space-time cumulant tensor C(4,y) can be viewed as a generalized cumulant

tensor model that includes the convolutive SISO (Q = 1, M = 1, L ≥ 1) and the instantaneous

MIMO (Q > 1, M > 1, L = 0) as particular cases.

Uniqueness conditions

A sufficient uniqueness condition for the Parafac decomposition of the cumulant tensor C(4,y)

can be derived from the Kruskal Theorem, introduced in section 3.1 of Chapter 1. Due
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to its block-Hankel structure, H is ensured to be full k-rank, and thus kH = rH =

min(M(2L+ 1), Q(L + 1)). Assuming that the specular reflectors are located far apart each

other, and remote to both the transmit and receive arrays, we can consider that the in-

coming signals are spatially distinguishable. Further, assuming that there is at least one

path delay τk that is not a multiple of the symbol period3, we can ensure that hmq(ℓ) 6= 0,

∀ ℓ ∈ [0, L]. Under these conditions, matrix H is also guaranteed to be full k-rank, and hence

kH = rH = min(M,Q(L+1)). Under these assumptions, the Kruskal uniqueness theorem yields:

3kH + kH ≥ 2F + 3, (3.47)

where F = Q(L+ 1), and it follows that:

3min
(
M(2L+ 1), Q(L+ 1)

)
+ min

(
M,Q(L+ 1)

)
≥ 2Q(L+ 1) + 3. (3.48)

Assuming L ≥ 1, the following cases can be considered:

1. M ≥ Q(L+ 1), which implies M(2L+ 1) ≥ Q(L+ 1).

In this case, (3.48) becomes 2Q(L + 1) ≥ 3, which is satisfied for all Q ≥ 1

and L ≥ 1, so that uniqueness is ensured for all

1 ≤ Q ≤ M

L+ 1
, L ≥ 1; (3.49)

2. M < Q(L+ 1) and M(2L+ 1) ≥ Q(L+ 1).

In this case, (3.48) yields Q(L + 1) + M ≥ 3, which is always satisfied with

Q ≥ 1, M ≥ 1 and L ≥ 1, i.e. the uniqueness condition is guaranteed when:

M

L+ 1
< Q ≤ M(2L+ 1)

L+ 1
, M ≥ 1, L ≥ 1; (3.50)

3. M(2L+ 1) < Q(L+ 1), which implies M < Q(L+ 1).

In this case, (3.48) gives 3M(2L+ 1) +M ≥ 2Q(L+ 1) + 3, which is satisfied

when
M(2L+ 1)

L+ 1
< Q ≤ 2M(3L+ 2)− 3

2(L+ 1)
, (3.51)

Putting together equations (3.49) to (3.51), it follows that the uniqueness of the Parafac decom-

position of C(4,y) is guaranteed under the following general sufficient condition:

Q ≤ 2M(3L + 2)− 3

2(L+ 1)
M ≥ 1, L ≥ 1. (3.52)

When L = 0, we have a memoryless MIMO channel and the cases 1 and 2 correspond to Q ≤M
and Q = M , respectively. In such cases, (3.48) is satisfied provided that 2 ≤ Q ≤ M . Case 3

3 This assumption is due to the frequency-selective nature of the channel. In the case of a flat-fading channel,

this assumption is not necessary and we should use L = 0.
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corresponds to a strictly underdetermined mixture (Q > M), and yields the following uniqueness

condition:

2 ≤ Q ≤ 4M − 3

2
, L = 0, (3.53)

which coincides, as it should be expected, with the uniqueness condition stated in (2.36) for

instantaneous MIMO mixtures in the underdetermined case;

The uniqueness conditions for the Parafac decomposition of the generalized cumulant tensor

C(4,y) are summarized in Table 3.1 for some values of M and L. Note that the first row (L = 0)

corresponds to the instantaneous MIMO case, while the first column (M = 1) corresponds to

the purely temporal case, without spatial diversity. In this latter case, we notice that when

L > 1, uniqueness is ensured for Q ≤ 2, which enables us to identify convolutive multiple-input

single-output (MISO) channels with up to 2 signal sources.

Table 3.1: Uniqueness conditions for the Parafac decomposition of C(4,y).

M 1 2 3 4 5 6 7 8

L = 0 maxQ - 2 4 6 8 10 12 14

L = 1 maxQ 1 4 6 9 11 14 16 19

L = 2 maxQ 2 4 7 10 12 15 18 20

L = 3 maxQ 2 5 7 10 13 16 18 21

L = 4 maxQ 2 5 8 10 13 16 19 22

3.2 Parafac modeling of the multipath MIMO channel

The introduction of the propagation channel structure in the signal model (3.28) allows us

to model the multipath transmission as a specular channel with multiple planar wavefronts,

each one being characterized by an attenuation, a propagation delay and a spatial signature,

associated with the angles of departure and arrival. Using such a parametric model, the blind

identification problem reduces the estimation of these multipath parameters. This allows us

to exploit some prior information about the structure of the wireless channel, which is often

available in radiocommunication contexts, such as the knowledge of pulse shape filter and the

transmit and receive array manifolds.

Considering the parametric multipath channel model (3.30), let us define:






[AR]m,k = am(θk), m ∈ [1,M ]

[AT]q,k = a′q(ϑk), q ∈ [1, Q]

[G]ℓ+1, k = g(ℓ− τk), ℓ ∈ [0, L].

[b]k = βk k ∈ [1,K],

(3.54)
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and

F = GDiag (b) ∈ C
(L+1)×K , (3.55)

where AR ∈ C
M×K, AT ∈ C

Q×K , G ∈ C
(L+1)×K and b ∈ C

K×1. Notice that the channel

coefficients hmq(ℓ) defined in equation (3.30) can be viewed as the scalar representation of a

3rd-order tensor H ∈ C
M×Q×(L+1) that admits a Parafac decomposition with rank K and

components given by AR, AT and F. This model assumes that the channel is stationary over

the interval of one time-slot and H can be viewed as a particularization of the tensor channel

model proposed in [126], where a block-fading channel has been considered yielding a Parafac

tensor properly formed by combining the signals received during multiple time-slots. In that

case, training sequences have been used to separate the signals from the channel information.

Uniqueness conditions

The spatial signature matrices AR and AT have a Vandermonde structure, as shown in (3.5),

and can be written as follows:

AR =





1 . . . 1

a1 . . . aK

a 2
1 . . . a 2

K

...
. . .

...

aM−1
1 . . . aM−1

K





; AT =





1 . . . 1

a’1 . . . a’K

a’ 21 . . . a’ 2K
...

. . .
...

a’Q−1
1 . . . a’Q−1

K





, (3.56)

where we have defined ak = e π cos θk and a’k = e π cos ϑk from (3.4), considering transmit and re-

ceive ULA arrays with sensors spaced of half wavelength and no elevation angle. In this context,

assuming that the incoming signals are spatially distinguishable is equivalent to have generating

vectors of AR and AT with distinct nonzero elements, i.e. ak1 6= ak2 6= 0 and a’k1 6= a’k2 6= 0,

for all k1 6= k2 ∈ [1,K]. Under this condition, it has been shown in [125] that a Vandermonde

matrix is full k-rank and, therefore: kAR
= rAR

= min(M,K) and kAT
= rAT

= min(Q,K).

In addition, the pulse shape filter g(ℓ) is known and, due to the frequency-selective nature

of the channel, we have assumed that there is at least one path delay τk that is not a multiple of

the symbol period. This allows us to ensure that g(ℓ−τk) 6= 0, ∀ ℓ ∈ [0, L], k ∈ [1,K]. Moreover,

the path delays are distinct τk1 6= τk2, ∀ k1 6= k2, and a Rayleigh fading is assumed so that the

gains βk are modeled as a complex random variable with independent real and imaginary parts

driven from a continuous Gaussian distribution. Under these conditions, matrix F = GDiag (b)

is also ensured to be full k-rank, and hence kF = rF = min(L+ 1,K).

Using the Kruskal Theorem, we derive a sufficient condition for the uniqueness of the Parafac

decomposition of the 3rd-order tensor H, as follows:

kAR
+ kAT

+ kF ≥ 2K + 2 (3.57)
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and hence

min(M,K) + min(Q,K) + min(L+ 1,K) ≥ 2K + 2. (3.58)

When M > K, Q > K and L + 1 > K, the above condition yields K ≥ 2, meaning that in

this case at least two delayed signals must be collected at the receive filters. In the SISO case

(M = Q = 1), the uniqueness condition is not satisfied, as it should be expected, since the

channel lacks of information in the spatial domain.

4 Blind identification of multipath MIMO channels

By characterizing the transmission channel in terms of its multipath parameters (attenuations,

propagation delays and spatial signatures), the identification of the MIMO channel becomes

equivalent to the estimation of these propagation parameters. In this section, we propose a

two-stage approach for estimating the multipath MIMO channel. Firstly, in section 4.1, we use

a non-parametric model to blindly identify the convolutive channel coefficients. This stage is

based on a SS-LS algorithm and can be viewed as a generalization of the blind identification

methods introduced in Chapter 2. After that, in section 4.2, we propose to recover the multipath

channel parameters by means of an ALS-based algorithm exploiting the specular structure of

the channel model.

4.1 A non-parametric Parafac-based SS-LS algorithm

Let us denote I = M(2L+ 1). The 4th-order tensor C(4,y) ∈ C
M×I×I×I, with scalar representa-

tion given by (3.39), can be unfolded in the form of matrix C[1] ∈ C
I3×M , so that

[
C[1]

]

(i2−1)I2+(i3−1)I+i4, i1
= C

(4,y)
i1i2i3i4

, (3.59)

for all i1 ∈ [1,M ] and i2, i3, i4 ∈ [1, I]. From the above definition, and using (3.39), it is easy to

note that C[1] =
(
B ⋄C ⋄D

)
AT, and hence, using equations (3.42) to (3.46), we end up with:

C[1] =
(
H ⋄H

∗ ⋄H

)
Γ4,s HH. (3.60)

From (3.60), we can define the following iterative LS cost function:

ψ(Ĥr−1,A) ,

∥∥∥C[1] −
(
Ĥr−1 ⋄ Ĥ

∗

r−1 ⋄ Ĥr−1

)
AT

∥∥∥
2

F
, (3.61)

where r is the iteration number and A = H∗ Γ4,s, according to (3.42). Minimizing (3.61) yields:

ÂT

r = arg min
H

ψ(Ĥr−1,H)

=
(
Ĥr−1 ⋄ Ĥ

∗

r−1 ⋄ Ĥr−1

)#
C[1]. (3.62)

The Kruskal Theorem ensures uniqueness up to column scaling and permutation ambiguities.

Therefore, under the conditions stated in section 3.1, the Parafac decomposition of tensor C(4,y)
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is subject to these trivial indeterminacies, so that any matrices H̄ and H̄ satisfying (3.60) are

such that H̄ = HΛ1Π and H̄ = HΛ2Π, where Λ1, Λ2 are Q(L+ 1) × Q(L+ 1) diagonal

matrices and Π is a permutation matrix. Exploiting the block-Hankel structure of H, given

in (3.36), we can avoid intra-block permutations, thus reducing the permutation ambiguity to

block-column permutations. In practice, before computing the iteration r ≥ 1 using (3.62),

matrix Ĥr−1 is built from Ĥr−1, as follows:

1. Deduce Ĥ
(q)
r−1(0), q ∈ [1, Q], from the columns of Â∗

r−1, as follows:

Ĥ
(q)
r−1(0) =

[
[Â∗

r−1]· (q−1)(L+1)+1 . . . [Â∗
r−1]· q(L+1)

]
;

2. For each q ∈ [1, Q], build the matrices Ĥ
(q)
r−1(∆ℓ), for all ∆ℓ ∈ [−L,L], by shifting the

columns of Ĥ
(q)
r−1(0), as indicated in (3.34) and (3.35);

3. From (3.33), build Ĥ
(q)
r−1, q ∈ [1, Q], by stacking Ĥ

(q)
r−1(∆ℓ), for all ∆ℓ ∈ [−L,L];

4. Obtain Ĥr−1 by concatenating Ĥ
(q)
r−1 for all q ∈ [1, Q], as indicated in (3.36).

The algorithm is initialized with a M ×Q(L + 1) Gaussian random matrix Ĥ0. The itera-

tions are stopped when |e(r)− e(r − 1)|2 ≤ ε, where e(r) = ‖Ĥr − Ĥr−1‖2F /‖Ĥr‖2F and ε is an

arbitrary small positive constant.

4.2 Parametric estimation of multipath MIMO channels

In this section, we propose an ALS-based algorithm to jointly estimate the multipath propagation

delays and the angles of departure and arrival. This approach is based on the Parafac modeling

of the multipath MIMO channel presented in section 3.2, and assumes a prior estimation of the

channel coefficients by means of a blind technique such as the SS-LS algorithm introduced in

the previous section.

Let us consider the 3rd-order tensor H ∈ C
Q×M×(L+1), with scalar representation given by

(3.30) and Parafac components given by the matrices AT, AR and F, defined in (3.55) and

(3.56). Taking q ∈ [1, Q], m ∈ [1,M ] and ℓ ∈ [0, L], we define three unfolded representations of

H, as follows: 




[H[1]]ℓM+m, q = hmq(ℓ),

[H[2]](m−1)Q+q, ℓ+1 = hmq(ℓ),

[H[3]](q−1)(L+1)+ℓ+1, m = hmq(ℓ),

(3.63)

where H[1] ∈ C
M(L+1)×Q, H[2] ∈ C

QM×(L+1) and H[3] ∈ C
Q(L+1)×M . From (3.30), using the
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canonical basis vector notation and definitions (3.55) and (3.56), we can write:

H[1] =
Q∑

q=1

M∑
m=1

L∑
ℓ=0

hmq(ℓ)
(
e

(L+1)
ℓ+1 ⋄ e(M)

m

)
e

(Q)T
q

=
K∑

k=1

[(∑L
ℓ=0 βkg(ℓ− τk)e(L+1)

ℓ+1

)
⋄
(∑M

m=1 am(θk)e
(M)
m

)](∑Q
q=1 a

′
q(ϑk)e

(Q)
q

)T

,

(3.64)

and hence

H[1] =
(
F ⋄AR

)
AT

T . (3.65)

After similar manipulations with H[2] and H[3], we get:

H[2] =
(
AR ⋄AT

)
FT, (3.66)

H[3] =
(
AT ⋄ F

)
AT

R . (3.67)

Equations (3.65) to (3.67) allow us to write the following iterative cost functions:

ψ1(AT, F̂
(r−1), Â

(r−1)
R ) =

∥∥∥H[1] −
(
F̂(r−1) ⋄A(r−1)

R

)
AT

T

∥∥∥
2

F
, (3.68)

ψ2(F, Â
(r−1)
R , Â

(r)
T ) =

∥∥∥H[2] −
(
Â

(r−1)
R ⋄ Â(r)

T

)
FT

∥∥∥
2

F
, (3.69)

ψ3(AR, Â
(r)
T , F̂(r)) =

∥∥∥H[3] −
(
Â

(r)
T ⋄ F̂(r)

)
AT

R

∥∥∥
2

F
, (3.70)

where r is the iteration number. The LS solution of these equations is given by

Â
(r)T

T =
(
F̂(r−1) ⋄A(r−1)

R

)#
H[1], (3.71)

F̂(r)T =
(
Â

(r−1)
R ⋄ Â(r)

T

)#
H[2], (3.72)

Â
(r)T

R =
(
Â

(r)
T ⋄ F̂(r)

)#
H[3], (3.73)

where F̂(0) and A
(0)
R can be initialized as Gaussian random matrices or using some previous

knowledge about the multipath parameters, if available (e.g. DOAs for A
(0)
R ). The algorithm

is stopped when |e(r) − e(r − 1)|2 ≤ ε, where ε is an arbitrary small positive constant and the

estimation error e(r) for the iteration r ≥ 1 is given by e(r) = e1(r) + e2(r) + e3(r), where

e1(r) =

∥∥∥Â(r)
T − Â

(r−1)
T

∥∥∥
2

F∥∥∥Â(r)
T

∥∥∥
2

F

, e2(r) =

∥∥∥Â(r)
R − Â

(r−1)
R

∥∥∥
2

F∥∥∥Â(r)
R

∥∥∥
2

F

, e3(r) =

∥∥∥F̂(r)
− F̂(r−1)

∥∥∥
2

F∥∥∥F̂(r−1)

∥∥∥
2

F

. (3.74)

Subspace-based algorithms for multipath parameter extraction

We now describe specific techniques for extracting the multipath channel parameters from the

estimates ÂT = Â
(r)
T , ÂR = Â

(r)
R and F̂ = F̂(r), obtained after the convergence of the algorithm.

Exploiting the known transmit and receive array manifolds as well as the knowledge of the

pulse shape filter, we build orthogonal projectors based on the signal subspace structure. In
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the sequel, we describe three subspace techniques for the estimation of DOAs, DODs and path

delays, based on MUSIC-like localization functions

Let us start with the case M > K and denote by Ûn ∈ C
M×(M−K) the matrix formed

from the left singular vectors of ÂR associated with its M − K null singular values. Define

wm(θ) = e π(m−1) cos θ and build a column-vector w(θ) ∈ C
M×1. For each given value of θ,

the orthogonal projector w(θ) reproduces the column-wise structure of (3.56). The DOAs θk

associated with each path k ∈ [1,K], can be obtained as the arguments yielding the K local

minima of the localization function P2(θ), defined in (3.14). For the case M ≤ K, a generalized

localization function P2κ(θ) has been defined in (3.17), where the orthogonal projector wκ(θ)

takes the form of a multiple Kronecker product, as indicated in (3.10) and Un ∈ C
Mκ×(Mκ−K)

is obtained from the left singular vectors associated with the Mκ −K null singular values of

the κth-order virtual array Â
(κ)
R . Using ULA arrays, this technique allows us for estimating

up to κ(M − 1) multipath DOAs [26]. Finally, note that the DODs ϑk, k ∈ [1,K] can also be

estimated using the above described technique, with Q replacing M and ÂT instead of ÂR.

Similarly, path delays can also be extracted from the estimated matrix F̂ using the orthog-

onality between signal and noise subspaces. Exploiting the knowledge of the real-valued pulse

shape filter g(ℓ), we can construct orthogonal projectors w(τ) ∈ C
(L+1)×1, L + 1 > K, so that

wℓ(τ) = g(τ − ℓ + 1), ℓ ∈ [1, L + 1], for all τ ∈ [0, τmax], where τmax is a known upper bound

of the path delays. Taking the SVD of F̂, we build Ûn ∈ C
(L+1)×(L+1−K) with the left singular

vectors associated with the L+1−K null singular values and find the path delays τk, k ∈ [1,K],

as the arguments yielding the K local minima of P2(τ). A straightforward extension of the

technique for the case L+ 1 ≤ K is possible by utilizing an augmented matrix F̂(κ) = F̂⋄κ, and

a corresponding projector wκ(τ) = w(τ)⊗κ. For instance, with κ = 2, matrix F̂(2) = F̂ ⋄ F̂ has

(L+ 1)2 rows, of which L(L+ 1)/2 are repeated. Hence, F̂(2) can be easily shown to have rank

equal to r
F̂(2) = min(I,K), where I = (L + 1)2 − L(L+ 1)/2 = (L + 1)(L + 2)/2, which is the

number of distinct rows, meaning that we can estimate the delays of up to I−1 paths, provided

that L+ 1 ≤ K ≤ I − 1.

We also notice that, under the Kruskal condition (3.58), the Parafac decomposition of the

3rd-order tensor H is ensured to be unique up to column scaling and permutations, which means

that any matrices ĀT, ĀR and F̄, satisfying equations (3.65) to (3.67), are of the following form:





ĀT = ATΛTΠ,

ĀR = ARΛRΠ,

F̄ = FΛFΠ,

(3.75)

where Π is a permutation matrix and ΛT, ΛR, ΛF are complex diagonal scaling matrices sat-

isfying ΛTΛRΛF = IK . Due to their Vandermonde structure shown in (3.56), the spatial array

response matrices, AT and AR, have an all-one first row. This property allows us to get rid of
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the diagonal scaling ambiguities. By taking the first row of ĀT, we build the diagonal matrix

Λ̄T = D1

(
ĀT

)
and, using (3.75), we have Λ̄T = D1 (ATΛTΠ) = ΠTD1 (AT)ΛTΠ, where Di (·)

denotes the diagonal matrix built from the ith row of the matrix argument. Since D1 (AT) = IK ,

we get Λ̄T = ΠTΛTΠ. Analogous manipulations yield Λ̄R = D1

(
ĀR

)
= ΠTΛRΠ. It follows

that Λ̄TΛ̄R = ΠTΛ−1
F Π = Λ̄−1

F , which is also a diagonal matrix. Note that the above procedure

leaves the column permutation unchecked.

Let us now denote by ĂR, ĂT and Ğ the parameter matrices reconstructed from the es-

timated DOAs (θ̂k), DODs (ϑ̂k) and path delays (τ̂k), according to (3.54), for all k ∈ [1,K].

Recalling that F = GDiag (b), we are able to estimate the attenuation vector b̂, as follows:

b̂ = diag
(
Ğ#F̂Λ̂−1

F

)
, L+ 1 ≥ K, (3.76)

where the matrix F̂, obtained after the convergence of the ALS-based algorithm, is an estimate

of F̄ and Λ̂−1
F is computed as Λ̂−1

F = Λ̂TΛ̂R, where Λ̂T = D1(ÂT) and Λ̂R = D1(ÂR) represent

the estimates of Λ̄T and Λ̄R, respectively. The operator diag (·) forms a column-vector from the

diagonal elements of the matrix argument.

At last, we remark that the remaining column permutation, although not resolvable, is not

relevant in the present context. However, in order to completely characterize the multipath

channel, we need to indicate the correspondences linking the parameters associated with a given

path k ∈ [1,K], i.e. given the estimates θ̂k1, ϑ̂k2 and τ̂k3, which values of k1, k2 and k3, are

associated with the kth path. In other words, we need to find k1, k2 and k3, for each k ∈ [1,K],

so that [ĂR]·k1, [ĂT]·k2 and [Ğ]·k3 are scaled versions of [ÂR]·k, [ÂT]·k and [F̂]·k, respectively. In

practice, we solve this problem using the normalized inner product, so that

k1 = arg min
u∈[1,K]

∣∣∣∣∣1−
[ĂR]H

·u[ÂR]·k

‖[ĂR]·u‖ ‖[ÂR]·k‖

∣∣∣∣∣ , k2 = arg min
u∈[1,K]

∣∣∣∣∣1−
[ĂT]H

·u[ÂT]·k

‖[ĂT]·u‖ ‖[ÂT]·k‖

∣∣∣∣∣ ,

and

k3 = arg min
u∈[1,K]

∣∣∣∣∣1−
[Ğ]T

·u[F̂]·k

‖[Ğ]·u‖ ‖[F̂]·k‖

∣∣∣∣∣ , ∀ k ∈ [1,K].

The attenuation vector b̂ can only be estimated from (3.76) after reordering the columns of Ğ,

as explained above, in order to keep the same permutation as F̂.

5 Simulation results

In this section, we present computer simulation results aiming to illustrate the use and assess

the performance of the techniques discussed throughout this chapter. First, in the context of a

flat fading channel and using a ULA receive array, we simulate a radio propagation scenario for

the application of direction finding algorithms. The SS-LS approach, proposed in section 2, will
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be used to estimate the signal DOAs from a 3rd-order virtual array. Performance comparisons

will be provided using the 2-, 4- and 6-MUSIC algorithms [86, 127, 27].

After that, we will simulate a multipath radio propagation channel with multiple transmit

and receive antennas, both using ULA arrays. In this context, we will be first interested in

estimating the coefficients of the convolutive filters representing the connections between each

transmit and receive antenna. To this end, the generalized 4th-order cumulant tensor described

in section 3.1 will be decomposed by means of the SS-LS algorithm proposed in section 4.1. Then,

starting from the estimated channel model, we recover the spatial and temporal signatures of

the MIMO channel using the Parafac-based algorithm proposed in section 4.2. Finally, we

extract the multipath channel parameters (DOAs, DODs, path delays and attenuations) using

the subspace-based methods also described in section 4.2.

Direction finding algorithms for array processing

In which follows, we evaluate the performance of the method proposed in section 2 in terms of

the quality of DOA estimation. We will use the root mean-squared error (RMSE) performance

criterion, defined for each source q as follows [27]:

RMSE(q) ,

√√√√ 1

R

R∑

r=1

∣∣∣θ̂〈r〉q − θq

∣∣∣
2
, q ∈ [1, Q], (3.77)

where R is the number of Monte Carlo simulations and θ̂
〈r〉
q is the estimation of θq for the

simulation r. The DOA estimates θ̂
〈r〉
q , q ∈ [1, Q], are deduced from the angle arguments of

the orthogonal projectors wκ(θ) leading to the local maxima of the corresponding localization

function P2κ(θ). Local maxima can be obtained by searching the critical points, i.e. where

the first derivative is zero, with a negative second derivative. In this context, an estimate

θ̂
〈r〉
q , q ∈ [1, Q], is said to be aberrant if 1/P2κ(θ̂

〈r〉
q ) is greater than a certain threshold. For

the simulations performed in this section, we adopted the value of 0.1 for this threshold, as

suggested by [26, 27]. Aberrant estimates can also happen when the algorithm cannot resolve

all the sources. In this case, the number of local maxima of the localization function is smaller

than Q. In the following results, the probability of having aberrant estimates has been omitted,

since only negligible values have been attained.

We first simulated the case of a ULA array with M = 3 narrowband sensors spaced of

λ/2, receiving Q = 4 sources with azimuth angles given by θ1 = −55◦, θ2 = −25◦, θ3 = 5◦,

θ4 = 50◦, and no elevation angle. The array output signals are corrupted by additive Gaussian

and spatially white noise. The curves in fig. 3.4 show, for several values of SNR, the RMSE

for the worst (left) and the best (right) estimated sources. In order to evaluate the impact of

cumulant estimation errors on the tested algorithms, we show in fig. 3.5 the maximal (left) and

minimal (right) RMSE as a function of the sample data length, for a fixed SNR value of 15dB.

In this case, the SS-LS and the 4-MUSIC algorithms operate with their maximal capacity in
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Figure 3.4: Maximal (left) and minimal (right) RMSE as a function of the SNR.
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Figure 3.5: Maximal (left) and minimal (right) RMSE as a function of the sample data length.

terms of the number of sources. By exploiting the larger noise subspace of the 3rd-order virtual

array, the SS-LS approach provides better results than the 4-MUSIC algorithm, using the same

output statistics. In this scenario, the 6-MUSIC algorithm is not at its identifiability bound

and, in the worst case (curves at left), it gives better results than the other techniques, at the

cost of having to estimate 6th-order cumulants.

By adding a fourth sensor (M = 4) to the antenna array (with λ/2 spacing), we set up

another simulation scenario with Q = 5 sources. In this case, the additional source arrives from

the direction θ5 = 20◦, with no elevation angle. In fig. 3.6, we show the maximal (left) and

minimal (right) RMSE as a function of the SNR, for N = 1000. These curves demonstrate that

the three algorithms achieve better performance, with very similar results when the VAs do not

operate with maximal capacity. In fig. 3.7, the results for the worst (left) and the best (right)

estimated sources are given for several values of the sample data length, with a fixed SNR of

15dB. In this case, the 6-MUSIC algorithm does not yield any noticeable advantage.
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Figure 3.6: Maximal (left) and minimal (right) RMSE as a function of the SNR.
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Figure 3.7: Maximal (left) and minimal (right) RMSE as a function of the sample data length.

We have also tested the algorithms in presence of Gaussian noise with unknown spatial

correlation. In this case, we used a λ/2-spaced 3-element ULA array receiving Q = 2 sources

with DOAs given by θ1 = 5◦ and θ2 = 50◦, respectively. Since this is an overdetermined case,

we used the SS-LS approach to estimate the user DOAs from both, the 3rd-order virtual array

Â(3) (κ = 3) and the estimated array matrix Â (κ = 1). The additive Gaussian noise has been

modeled so that its spatial correlation matrix is given by [Rυ]ij = σ2
υρ

|i−j|, i, j ∈ [1,M ], where

σ2
υ is the noise variance per antenna and ρ is the spatial correlation coefficient of the noise. In

fig. 3.8, we compare our results with the 2- and 4-MUSIC algorithms using N = 1000 output

symbols, with a SNR of 5dB, for different values of the noise spatial correlation. Note that, for

κ = 1 as well as for κ = 3, the SS-LS approach performed very closely to the 4-MUSIC algorithm,

showing good robustness with respect to spatially colored noise, as it should be expected. The

2-MUSIC algorithm, on the other hand, degrades as ρ increases, since the SOS are not able to

handle an additive noise with unknown spatial correlation.
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Figure 3.8: Maximal RMSE vs. noise spatial correlation (N = 1000 and SNR=5dB).
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Figure 3.9: Antenna pattern obtained from the 3rd- and 2nd-order VAs for a ULA with 4 sensors.

Finally, we illustrate the resolution gains in terms of beamwidth provided by the 3rd-order VA

used in the SS-LS approach with respect to the 2nd-order VA used by the 4-MUSIC algorithm.

In fig. 3.9 we show, for a ULA with 4 sensors spaced of λ/2, the array response of the 3rd-

and 2nd-order VAs for a source arriving from direction θ0 = 5◦ (left) and θ0 = −25◦ (right).

These curves have been obtained from the magnitude of the inner product of the VA steering

vectors, computed as shown in (3.11). In both cases, for a 3dB attenuation, the beamwidth of

the estimated 3rd-order VA (SS-LS) in the given direction is narrower than the one obtained

with 4-MUSIC. In practice, this latter one is computed from the eigenvector of Ĉ(4,y) associated

with its largest eigenvalue. We used N = 1000 output symbols with additive white Gaussian

noise at a SNR level of 10dB. The gain in terms of the beamwidth for an attenuation of 3dB is

about 8◦ for the curves at left and 3◦ for the figure at right.
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Multipath MIMO channel estimation

Let us consider a Q-sensor transmit and an M -sensor receive ULA arrays located far apart

each other, transmitting signals over a multipath specular radio channel such as defined in

(3.28). The multipath channel is characterized by K remote scatterers each one determining

a set of physical parameters (θk, ϑk, τk, βk), according to the model (3.28). In which follows,

we will be first interested in the non-parametric representation of the multipath channel and

in estimating the channel impulse response coefficients hmq(ℓ) of the convolutive MIMO model,

up to a scaling factor and a permutation on the order of the transmit antennas. After that,

exploiting the physical model given in (3.30), we make use of the ALS-based algorithm described

in section 4.2 to estimate the spatial and temporal channel signatures and extract the multipath

parameters by means of subspace-based techniques.

Non-parametric estimation of convolutive MIMO channel

In order to assess the quality of the non-parametric MIMO channel estimation, we will use the

normalized mean squared error (NMSE) performance criterion4, defined as:

NMSE =
1

R

R∑

r=1

Q∑

q=1

NMSE
〈r〉(q), (3.78)

where R is the number of Monte Carlo simulations and NMSE
〈r〉(q) = min

q1∈[1,Q]

(
ǫ
(q1)
〈r〉 (q)

)
and

ǫ
(q1)
〈r〉 (q) =

‖Ĥ(q1)
〈r〉 (0)−H(q)(0)‖2F
‖H(q)(0)‖2F

, (3.79)

with Ĥ
(q1)
〈r〉 (0) being the q1th M × (L+ 1) block of the estimated matrix Â〈r〉, obtained from

(3.62) after convergence of the simulation r, assuming that Ĥ
(q1)
〈r〉 (0) has been optimally scaled

with respect to H(q)(0), defined in (3.31).

The following simulation results have been obtained with synthesized 4th-order output cu-

mulant data. In order to reproduce the effects of the additive Gaussian noise corrupting the

output signals and to emulate the errors due to cumulant estimation from finite-length output

data sequences, we have modeled the 4th-order output cumulant as follows:

Ĉ[1] = C[1] + σ2
eE + σ2

υΥ (3.80)

where C[1] ∈ C
M3(2L+1)3×M is the true output cumulant matrix computed from (3.60), while E

and Υ are complex random matrices of the same size as C[1] and elements driven from standard

Gaussian distributions. In this context, σ2
e represents the variance of the 4th-order cumulant

4 Note that the NMSE is used only for performance evaluation purposes, since its computation involves the

knowledge of the true channel coefficients.
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estimators and σ2
υ amounts to the additive noise power and is computed in such a way to ensure

a given SNR level, given as follows:

SNR =
‖C[1]‖F
‖σ2

1E1‖F
. (3.81)

In our simulations we have used the fixed value σ2
e = 0.01 whereas the SNR has been taken in

the range of 5 to 35dB. The curves shown in the sequel have been obtained from the average of

R = 100 Monte Carlo simulations.
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Figure 3.10: NMSE vs. SNR for channel configuration A with L = 1.
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Figure 3.11: NMSE vs. SNR for channel configuration B with L = 2.

Two sets of channel configuration parameters have been considered and are described in

Table 3.2. In fig. 3.10, we show the NMSE performance of the SS-LS algorithm for M = 5 (left)

and M = 4 (right) receive antennas, under the channel configuration A (K = 2 multipath),

using a pulse shape filter of order L = 1 (note that τmax < Ts in this case). By increasing the

number of transmit antennas from Q = 1 to Q = 2, the channels become more complex and
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Figure 3.12: NMSE vs. SNR for channel configuration A with L = 1.

the curves clearly show an identification performance loss due to the co-channel interference. In

fig. 3.11, we show similar results obtained under the channel configuration B, in which multipath

propagation is characterized by K = 3 rays. In this case, Ts < τmax < 2Ts and we use L = 2.

Again, the curves show worse results for Q = 2, as it should be expected, and a performance

degradation can also be observed with respect to the case of L = 1. In both figures, 3.10 and

3.11, comparing the left and right graphs, we notice an improvement due to addition of a receive

antenna for a given value of Q. Finally, in fig. 3.12, we included the case of Q = 3 transmit

antennas under channel configuration A, with L = 1 and M = 6 receive antennas. The curves

show that the SS-LS algorithm correctly identified the MIMO channel coefficients in this case,

in spite of the performance loss.

Table 3.2: Channel configuration parameters.

Configuration A Configuration B

Number of paths 2 3

DOAs θ1 = 40◦, θ2 = −30◦ θ1 = 50◦, θ2 = −5◦, θ3 = −45◦

DODs ϑ1 = 50◦, ϑ2 = −5◦ ϑ1 = 45◦, ϑ2 = −35◦, ϑ3 = −10◦

Path delays† τ1 = 0.3Ts, τ2 = 0.85Ts τ1 = 0.35Ts, τ2 = 0.8Ts, τ3 = 1.4Ts

† Ts stands for the symbol period.

Subspace-based algorithms for multipath parameter extraction

In the sequel, we will be interested in estimating the physical multipath parameters of the MIMO

channel using the combined ALS-MUSIC algorithm proposed in section 4.2. In this section,
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Figure 3.13: Physical multipath parameter extraction using ALS-MUSIC method for channel

configuration A with Q = 3 Tx, M = 5 Rx and L = 2.
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Figure 3.14: Physical multipath parameter extraction using ALS-MUSIC method for channel

configuration B with Q = 3 Tx, M = 5 Rx and L = 2.

in order to estimate the multipath channel parameters, we have first obtained an estimate

of the convolutive MIMO coefficients using the non-parametric SS-LS algorithm based on the

synthesized 4th-order output cumulant model given (3.80). The following results have been

obtained with σ2
e = 0.01 and a SNR of 20B. After that, we decompose the estimated channel

coefficient tensor using the ALS algorithm and extract the physical multipath parameters from

the resulting Parafac components using a MUSIC-like algorithm. In fig. 3.13 we show the

localization function P2(·) as a function of τ , θ and φ, respectively, for one realization of the

experiment using channel configuration A (K = 2) with Q = 3, M = 5 and L = 2. In fig. 3.14 we

show the results for channel configuration B (K = 3) with the same parameters (Q = 3, M = 5,

L = 2). Notice that, in this latter case, AT and G are square matrices since K = Q = L + 1.

For that reason, we need to use the 4th-order localization functions P4(·), as a function of τ and

φ, in order to estimate the DODs and path delays. For the DOAs, we keep P2(θ), since M > K.
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6 Summary

The goals of this chapter have been two fold: firstly, we have been interested in the blind source

localization problem in the context of multiuser narrowband array processing, under the as-

sumption of sources located at the far-field of the antenna array. The DOA estimation problem

has been treated using the 4th-order cumulants only. A high-resolution DF algorithm has been

proposed, exploiting the structure of the cumulant tensor. This method is based on the estima-

tion of an array matrix formed from a double (column-wise) Kronecker product, thus creating an

enhanced virtual array that commonly only arises when using 6th-order statistics. This yields an

augmented observation space, which allows for more free dimensions at the antenna array and

provides a resolution improvement, without resorting to statistics of order higher than fourth.

Consequently, the proposed method works well even for relatively short output data sequences

and it is robust with respect to an additive Gaussian noise with an unknown spatial correlation.

Making use of the symmetry properties of 4th-order output cumulants, the estimation of the

enhanced virtual array utilizes the SS-LS technique to perform the Parafac decomposition of

the cumulant tensor. In the case of ULA arrays, this yields as many resolvable sources as the 4-

MUSIC algorithm but with better DOA estimation performance, as confirmed by our simulation

results.

In the second part of this chapter, we turned our attention to the estimation of the physical

parameters describing a multipath MIMO communication channel characterized by specular

reflections due to remote scatterers. This problem has been treated with a two-stage approach.

We start by modeling the physical channel between each transmit-receive antenna pair as an FIR

filter with coefficients that are given as a function of the multipath MIMO channel parameters.

At that stage, we have proposed a 4th-order cumulant tensor formulation that generalizes the

notation introduced in Chapter 2 for the convolutive SISO and the memoryless MIMO cases.

This allows us to solve the blind channel estimation problem from a non-parametric perspective,

using the SS-LS approach and exploiting the block-Hankel structure of the channel matrix,

without oversampling the channel output. After that, we consider the structured multipath

MIMO channel coefficients to form a tensor that admits a Parafac decomposition with rank

equal to the number of multipaths. An ALS-based algorithm has been used to estimate the

channel spatial and temporal signatures and the multipath parameters have been extracted

by means of subspace-based algorithms, enabling us to recover the MIMO channel coefficients

without ambiguities. Illustrative simulations have been shown demonstrating the applicability

of the proposed methods in practical situations.
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Chapter 4

Order selection, signal detection and

blind identification of MISO channels

C
onvolutive propagation channels are typical in radiocommunication systems. In

this context, the channel memory is known to be closely related to the delay spread

profile produced by the multipath propagation scenario and it indicates the length

of the channel impulse response. Long delay spread profiles characterize highly

frequency-selective channels and introduce intersymbol interference (ISI) in the sampling pro-

cess. The order of the radio mobile channel relates the length of the channel impulse response

with the symbol period by indicating the number of past symbols being convolved with the

current one. In practice, the channel order is given by the number of symbol periods fitting

the (truncated) channel delay spread profile. Most channel parameter estimation algorithms

require the knowledge of the channel order or, at least an upper bound of it [128]. Channel

order mismatches may have very costly consequences, including bit error rate (BER) floors,

signal-to-noise ratio (SNR) penalties and numerical instabilities [129, 130, 131, 31].

In this chapter, we address the problem of determining the order of finite impulse response

(FIR) channels in the context of a multiple-input single-output (MISO) communication system,

using only the 4th-order cumulants of the output data sequence. Channel order estimation is a

classic model selection problem strongly related to determining the number of signals embedded

in noisy observations in narrow-band array processing. This has been often referred to as

the signal (or source) detection problem [30, 31, 32]. Classical procedures for model order

determination are based on multiple hypothesis testing and make use of the eigenvalues of a

sample correlation matrix. This is the case of the well-known sphericity test [132, 33], which

estimates the number of model parameters by testing on adjacent groups of eigenvalues, in

the case of a Gaussian process [133]. This approach has been widely used for solving the

signal detection problem in the context of passive arrays [34, 35]. Other traditional techniques

are based on information theoretical criteria that minimize the information lost due to the

model approximation [134, 135]. The Akaike’s Information Criterion (AIC) [136] as well as

101
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the Rissanen’s Minimum Description Length (MDL) [137], also known as the Schwarz Bayesian

Criterion (SBC) [138], can both be used to test the equality of the smallest eigenvalues of the

sample correlation matrix. Since AIC is not consistent [138], it tends to overestimate the model

order, even for high SNR values [139]. In general, MDL performs better than AIC, but it tends to

an underestimation at low and medium SNR [140]. Similar results have also been demonstrated

in the context of source detection in passive arrays [141, 142].

Opposite to previous works, the order detection method proposed in this chapter is based

on a scalar Chi-square test statistic that is sensitive to the non-linearity of a stochastic process,

since it is derived from the multivariate estimator of the 4th-order output cumulants. Exploiting

this property enables us to detect the order of a single-input single-output (SISO) communica-

tion channel by measuring the channel energy in the space of representation of the 4th-order

cumulants. Making use of existing results on the asymptotic variance of the test variable, we

present in section 1.2 a performance analysis of the proposed detector. In addition, we establish

a criterion for fixing decision thresholds based on a given level of statistical tolerance. Some

implementations of the proposed method are provided in the context of radiocommunication

channels demonstrating very good fit between the empirical results and the theoretical curves.

Nevertheless, in the case of MISO communication channels, the propagation scenario can be

viewed as a highly underdetermined convolutive mixture (more sources than sensors). Overde-

termined mixtures have been exhaustively studied in the literature, including instantaneous

[143, 144, 145, 146, 51, 12] as well as convolutive mixtures (c.f. [111, 112, 114, 116, 118, 115]

and references therein). The case of underdetermined mixtures, on the other hand, has only

recently been treated [67, 42, 70, 71, 73], and systems with one single output sensor have received

considerably less attention. In this work, we introduce a deflation-type approach to solve the

MISO channel order detection and identification problem. The proposed method is based on

the use of a combined procedure that jointly selects the order, detects the number of sources

and identifies the coefficients of the MISO channels. The so-called HOS-based nested detector

searches for the longest channel, determines its order and estimates the associated coefficients.

Then, based on the deflation principle, it successively tests and detects the presence of shorter

and shorter channels. Adopting the Chi-square channel order selection method proposed in the

first part of this chapter, our detector makes use of blind identification techniques for properly

estimating the MISO channel coefficients using the 4th-order cumulants. A preliminary version

of this deflation approach has been introduced in [147], where only the case of 2× 1 MISO sys-

tems has been considered and the order detection test statistics were based on the eigenvalues

of 4th-order output cumulant matrices.

This chapter is organized as follows: in section 1, we derive a Chi-square test statistic based

on 4th-order cumulant information; the principles underlying our SISO channel order detector

are introduced and an asymptotic performance analysis is carried out; then, in section 2, we



1. CHI-SQUARE TEST FOR SISO CHANNEL ORDER SELECTION 103

introduce the concept of nested detectors for combined order selection, signal detection and blind

identification in the context of convolutive MISO communication channels; this idea exploits

the residual 4th-order information remaining after subtraction of the reconstructed cumulants of

previously estimated sources; in section 3, computer simulations results are provided to illustrate

the good performance obtained in terms of channel order detection and identification; we finally

draw our conclusions in section 4 along with some perspectives for future works.

1 HOS-based Chi-square test for SISO channel order selection

In order to introduce the main ideas behind our channel order detector, we first consider the

case of a single input. Let us consider the baseband representation of a radiocommunication

channel in which the output signal y(n), after sampling at the symbol rate, is written as follows:

x(n) =
L∑

ℓ=0

h(ℓ)s(n − ℓ),

y(n) = x(n) + υ(n),

(4.1)

where the complex coefficients h(ℓ) represent the equivalent discrete impulse response of the

channel, including pulse shaping and receiving filters. The model (4.1) introduces memory to

the received signal corresponding to L times the symbol period. Throughout the rest of this

work, we denote the channel order by L+ 1. The following assumptions hold:

A1 : The discrete input sequence s(n) is complex-valued, non-measurable, ergodic, stationary,

independent and identically distributed (iid) with symmetric distribution, zero-mean, unit

variance and non-zero kurtosis γ4,s.

A2 : The additive noise sequence υ(n) is normally distributed with zero-mean and unknown

autocorrelation function. It is assumed to be independent from s(n).

A3 : The FIR filter representing the channel is assumed to be causal, i.e. h(ℓ) = 0, ∀ ℓ /∈ [0, L].

In addition, h(ℓ) 6= 0 for ℓ = L and ℓ = 0.

A4 : The channel order is bounded by a known value K, i.e. L+ 1 < K.

The 4th-order output cumulants are defined as follows:

c4,y(i, j, k) , cum
[
y∗(n), y(n + i), y∗(n+ j), y(n + k)

]
. (4.2)

Using the channel model (4.1), taking assumptions A1 and A2 into account and making use of

the multilinearity property of cumulants, we get [3]:

c4,y(i, j, k) = γ4,s

L∑

ℓ=0

h∗(ℓ)h(ℓ+ i)h∗(ℓ+ j)h(ℓ + k) (4.3)
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where γ4,s = c4,s(0, 0, 0). Let us define the 4th-order output cumulant vectors ck ∈ C
P×1, for

k ∈ [1,K], with elements given by [ck]p = C
(p)
k , p ∈ [1, P ], where

C
(p)
k , c4,y(ip − 1, jp − 1, k − 1), (ip, jp) ∈ J , (4.4)

and each pair (ip, jp) is formed of strictly positive natural numbers, with ip, jp ≤ K, belonging

to the index set J = {(i1, j1); . . . ; (iP , jP )}, with cardinality P . Notice that the decision about

which cumulants are to be included in ck is done by carefully choosing the elements of the

index set J . This choice may vary in function of the assumptions considered in each particular

application. Further discussion on this subject is postponed to section 2.1, in the context of the

blind identification of MISO channels. Due to (4.3) and assumption A3, we have:

C
(p)
k = 0, ∀ |ip|, |jp|, |k| > L+ 1. (4.5)

Hence, the 4th-order output cumulants are zero whenever either ip, jp, or k are larger than the

channel order L+ 1. Furthermore, from the above definitions, we also note that ck can include

some purely real-valued components. More precisely, we have:

C
(p)
k = C

(p)∗

k






if k = 1 and jp = ip

or

if ip = 1 and jp = k.

(4.6)

In most of the real-life situations, the true value of the output cumulants is not available and

have to be estimated from the output signal samples y(n), n = 0, . . . , N − 1. As discussed in

section 1.1.2 of Chapter 1, due to the ergodicity assumption, the 2nd- and 4th-order moments

can be estimated by replacing the expectations by the corresponding time averages, as in (1.35).

The cumulant estimator Ĉ
(p)
k thus obtained take the form of (1.26). It is possible to show that

this estimator is biased, but its bias tends towards zero as N goes to infinity [47]. Cumulant

estimators are also consistent, since their variance is shown to be asymptotically zero.

We can hence define the complex-valued estimator ĉk, which is written as:

ĉk =
[
Ĉ

(1)
k · · · Ĉ(P )

k

]T
. (4.7)

Let Vk and Wk be the P ×P positive-definite circular and non-circular covariance matrices of

the estimator ĉk, defined respectively as follows:

Vk , E

{(
ĉk − ck

)(
ĉk − ck

)H
}

; (4.8)

Wk , E

{(
ĉk − ck

)(
ĉk − ck

)T
}
. (4.9)
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Note that both Vk and Wk are complex-valued matrices, with Vk being Hermitian, while Wk

is a symmetric matrix. Let us now define the following real-valued 4th-order cumulant vector:

zk =
[
Re(ck)

T Im(ck)
T

]T
∈ R

2P×1, (4.10)

where the operators Re(·) and Im(·) return the real and imaginary parts of the vector arguments,

respectively. Consider the estimator ẑk with covariance matrix Σk , E
{
(ẑk − zk)(ẑk − zk)

T
}
∈

R
2P×2P , which can be readily deduced from (4.8) and (4.9), as follows:

Σk =
1

2

(
Re(Vk + Wk) Im(Vk + Wk)

T

Im(Vk + Wk) Re(Vk −Wk)

)

. (4.11)

We can now define the following scalar multivariate function:

ξk =
(
zk − ẑk

)T

Σ−1
k

(
zk − ẑk

)
(4.12)

which depends, though omitted here, on the channel coefficient vector h = [h(0) . . . h(L)]T.

It appears that Porat and Friedlander have been the first to use the above function in the

context of channel parameter estimation [28, 97]. Actually, they showed that if the estimated

parameter vector ĥ yields a global minimum of ξk, then ĥ is an asymptotically minimum variance

estimate [97]. However, this approach requires the calculation of the covariance matrix Σk, which

depends on h and involves knowledge of exact output cumulants of order up to eight. Due to

the enormous computational complexity involved in calculating Σk, a simpler solution has been

proposed in [148] based on an estimated covariance matrix. Expressions for computing Vk and

Wk in the case of input signals with discrete probability distributions and spatially uncorrelated

Gaussian noise have also been given [29]. Other exact expressions for the computation of the

covariance matrices are available in the literature for symmetrically distributed sources and also

in the general case (c.f. [149] for the former and [150] for the latter). These expressions are very

important for the theoretical analysis of the estimator when the model parameters are assumed

known, but they have also found application in the context of Gaussianity tests [151]. On the

other hand, they can also be useful for algorithmic purposes when only output measurements

are available. In this case, ergodicity can be exploited and time averages can be used to estimate

moments and cumulants. These estimates take the place of the actual cumulant values in the

covariance expressions (this approach is often used, e.g. in [29]).

Finally, note that zk may have some zero elements corresponding to the entries [zk]P+p for

which p and k are such that the conditions stated in (4.6) are satisfied. Each zero element in

zk induces a zero row and a zero column in matrix Σk. To avoid singularity of the covariance

matrix, we need to eliminate the element in position P + p of the vector zk for each triplet

(ip, jp, k) satisfying (4.6). This yields a reduced vector zk ∈ R
2P−mk , where mk is the number of

purely real-valued elements in ck. Consequently, in order to obtain the covariance matrix of zk,
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we have to suppress from Σk the rows and the columns corresponding to each triplet (ip, jp, k)

satisfying (4.6), which yields a (2P −mk) × (2P −mk) matrix. This is an important step in

order to ensure the non-singularity of Σk. Throughout the rest of this chapter, we denote by

zk and Σk the reduced versions of these variables, thus assuming that the covariance matrix is

nonsingular and the real-valued cumulant vector has 2P −mk elements.

1.1 A Chi-square statistic for channel order detection

Given a sample output data sequence y(n), n = 0, . . . , N − 1, it can be shown that, as N

goes to infinity, the estimator ĉk approaches a complex multivariate random variable that fol-

lows an approximately Gaussian distribution with mean equal to ck and covariance matrix Vk,

i.e. ĉk ∼ N (ck,Vk) [152]. As a consequence, we have:

ẑk ∼ N (zk,Σk), as N →∞. (4.13)

Hence, ẑk can be viewed as a realization of an asymptotically Gaussian random vector, which

can be standardized as follows:

ωk = Σ
−1/2
k (zk − ẑk) (4.14)

so that ωk ∈ R
2P−mk is asymptotically normal with zero mean and unit variance, i.e. ωk ∼

N (0, I). It is now easy to see that the scalar random variable ξk defined in (4.12), can be

written as:

ξk = ω
T

k ωk. (4.15)

The above results enable us to conclude that ξk asymptotically follows a Chi-square distribution

with dk = 2P −mk degrees of freedom [133], i.e.

ξk ∼ X 2
(dk). (4.16)

Therefore, its probability density function (pdf) can be written as follows:

fξ(ξk) =






1
2dk/2Γ(dk/2)

ξ
(dk/2)−1
k e−ξk/2, for ξk > 0

0 for ξk ≤ 0,
(4.17)

where Γ(·) denotes the well-known Gamma function, defined as Γ(z) =
∫∞
0 tz−1e−tdt. From the

above equation, it is not difficult to deduce that:

µξk
= E {ξk} = dk (4.18)

and

σ2
ξk

= E
{
(ξk − µξk

)2
}

= 2dk. (4.19)
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1.2 Order detection algorithm

In the sequel, we formulate the problem of determining the channel order as a series of successive

hypothesis tests on adjacent groups of variables ρk, k ∈ [1,K], K > L+ 1, aiming to determine

whether k > L + 1 or not. Contrary to the approach based on exhaustive search for the

minimum variance, our proposition exploits the fact that zk = 0 if k > L+ 1. Thus, replacing

the covariance matrix Σk by its estimate, equation (4.14) becomes:

ω̄k = −Σ̂
−1/2
k ẑk, for k > L+ 1, (4.20)

and we can define

ρk = ω̄
T

k ω̄k = ẑT

k Σ̂−1
k ẑk, k > L+ 1. (4.21)

The above defined variable can be viewed as a measure of the energy in the space of repre-

sentation of the 4th-order cumulants. It means that, since ẑk is a consistent estimator with

asymptotically zero bias, ρk should be able to detect the presence of signal sources with nonzero

4th-order cumulants whenever k ≤ L+ 1.

From definition (4.21), we conclude that, as the output data sequence length goes to infinity,

ρk tends to be X 2
(dk), if k > L + 1. In this case, the pdf of ρk is given by (4.17). However,

for k ≤ L + 1, the true cumulant vector zk is unknown and we cannot center the random

vector ωk, hence ρk assumes a non-central Chi-square distribution, denoted nCχ
2
(dk)(λk), with

dk = 2P −mk degrees of freedom and parameter λk = zT

k Σ−1
k zk, which is related to the mean

of the test variable as follows: E {ρk} = λk + dk. From (4.21), we have: ρk ∼ nCχ
2
(dk)(λk), with

λk = 0 for k > L+ 1 and λk 6= 0 for k ≤ L+ 1.

Remark on the number of degrees of freedom dk

Situations may arise where the estimated covariance matrix Σ̂k is ill-conditioned due, for in-

stance, to negligible values of the cross-correlation between the real and imaginary parts of some

of the 4th-order cumulants composing the test statistic ρk. Such situations are difficult to pre-

dict and the literature lacks of guidelines on how to proceed in order to skip them. In spite of

that, numerical instabilities can be avoided by controlling the condition number of Σ̂k, i.e. the

ratio between its greatest and smallest eigenvalues. In practice, when the condition number

is high, we eliminate the smallest eigenvalues and the associated eigenvectors, until the condi-

tion number falls below a certain threshold. Thus, we can write the economy-size eigenvalue

decomposition (EVD) of Σ̂k ∈ R
(2P−mk)×(2P−mk), as follows:

Σ̂k = UkDkU
T

k , (4.22)
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where Dk = Diag (δ1, . . . , δ2P−mk−µk
) and Uk ∈ R

(2P−mk)×(2P−mk−µk) is the matrix concate-

nating the eigenvectors of Σ̂k associated with its 2P − mk − µk largest eigenvalues, with µk

corresponding to the number of small eigenvalues eliminated in order to attain a moderate con-

dition number. From (4.22), we have Σ̂
−1/2
k = D

−1/2
k UT

k ∈ R
(2P−mk−µk)×(2P−mk), and thus

(4.20) becomes:

ω̄k = −D
−1/2
k UT

k ẑk ∈ R
(2P−mk−µk)×1. (4.23)

In this case, since the dimension of the real-valued vector ω̄k has been modified, the number of

degrees of freedom of the test statistic ρk = ω̄
T

k ω̄k is reduced to dk = 2P −mk − µk.

Hypothesis test and performance analysis

Let us build our channel order test by defining the null hypotheses H0(k) and corresponding

alternative hypotheses H1(k) as follows:

H0(k) : Channel order is strictly smaller than k (k > L+ 1) ⇒ ρk ∼ X 2
(dk)

H1(k) : Channel order is k (k = L+ 1) ⇒ ρk ∼nC χ2
(dk)(λk)

Under H0(k), we have E {ρk} = 2P −mk and hence we should expect that ρk < ηk, where ηk

is a decision threshold associated with the number of degrees of freedom of the test statistic

ρk. Under H1(k), E {ρk} = λk + 2P −mk, and we should get ρk ≥ ηk. The test is successively

performed for k = K,K − 1, . . . , 1. Our goal is to find the largest value of k so that the null

hypothesis H0(k) is rejected, i.e. ρk ≥ ηk, which implies L̂ = k − 1. The non-rejection of H0(k)

for a given k (ρk < ηk) induces a new test on ρk−1. If the null hypothesis is rejected only when

k = 1, then L̂ = 0 and the channel is said to be memoryless. The rejection of H0(k) for all

k ∈ [1,K] indicates that no signal is being transmitted (only additive Gaussian noise is observed

at the antenna output).

Let us denote by pk and qk the probabilities of the event ρk ≥ ηk, under hypotheses H0(k)

and H1(k), respectively, i.e.

pk , P[ρk ≥ ηk|H0(k)], k ∈ [1,K], (4.24)

qk , P[ρk ≥ ηk|H1(k)], k ∈ [1,K]. (4.25)

In addition, we denote by P (k) the probability of getting L̂ = k− 1, k ∈ [1,K], which is defined

as the joint probability of the events ρK < ηK , ρK−1 < ηK−1, . . ., ρk+1 < ηk+1 and ρk ≥ ηk, i.e.

P (k) =

{
P[ρK ≥ ηK ]; for k = K,

P[ρK < ηK ; ρK−1 < ηK−1; . . . ; ρk+1 < ηk+1; ρk ≥ ηk]; for 1 ≤ k < K.
(4.26)
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The test on the variable ρk may have one of the following results, for each k ∈ [1,K]:

i. ρk < ηk ⇒ L̂ < k − 1. The test continues. This happens with probability 1 − pk. The

next step is to test ρk−1. In this case, if k ≤ L + 1, we underestimate the channel order

(detection missed) with unknown probability 1− qk.

ii. ρk ≥ ηk ⇒ L̂ = k − 1. The test stops. This happens with probability qk if indeed

k = L+ 1. In this case, the channel order is correctly detected. Otherwise, if k > L+ 1,

we overestimate the channel order with probability pk.

Theorem 4.1 The total probability of false alarm (overestimation) of the channel order is given

as follows:

PF =

K−L−1∑

q=1

Nq∑

i=1

(−1)q+1
∏

k∈ I(q)i

pk, (4.27)

with I
(q)
i denoting a q-subset of the set {K,K − 1, . . . , L + 2}, i.e. a subset with q disjoint

elements. The family of all q-subsets is given by I(q) = {I(q)1 , I
(q)
2 , . . . , I

(q)
Nq
}, where Nq is the

number of combinations of size q from a set with K −L− 1 elements, which equals the binomial

coefficient, i.e. Nq =
(

K−L−1
q

)
= (K−L−1)!

(K−L−1−q)!q! .

Proof: Overestimation happens when we get L̂ = k − 1 for any k > L+ 1. Hence, the total

probability of overestimation of the channel order is given as follows:

PF =
K∑

k=L+2

P[L̂ = k − 1] =
K−L−1∑

q=1

P (K + 1− q). (4.28)

Assuming that the events ρk > ηk are mutually independent for all k ∈ [1,K], equation (4.26)

yields:

P (k) =

{
pK , k = K,

(1− pK) . . . (1− pk+1)pk, k = K − 1, . . . , L+ 2
(4.29)

Replacing (4.29) into (4.28), equation (4.27) follows straightforwardly.

�

Theorem 4.2 The probability of detection of the channel order is given as follows:

PD = (1− pK)(1 − pK−1) . . . (1− pL+2)qL+1 (4.30)
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Proof: In order to correctly detect the channel order, we need: ρK < ηK , ρK−1 < ηK−1, . . . and

ρL+2 < ηL+2 under H0(k) and ρL+1 ≥ ηL+1 under H1(k). The joint probability of these events

is given by (4.26), so that (4.30) follows immediately from (4.29) with k = L+ 1.

�

Theorem 4.3 The probability of missing the channel order detection (underestimation) is given

as follows:

PM = (1− pK)(1 − pK−1) . . . (1− pL+2)(1 − qL+1) (4.31)

Proof: If k < L + 1, the channel order is always underestimated. This means that PM =

P[ρK < ηK ; ρK−1 < ηK−1; . . . ; ρL+2 < ηL+2; ρL+1 < ηL+1], which yields (4.31).

�

The total probability of error in the order detection is given by PE = PF + PM .

Decision thresholds

According to the Neyman-Pearson criterion [135, 153], a decision rule can be established in order

to maximize the probability of detection PD while not allowing the probability of false alarm

PF to exceed a certain value. However, in our particular case, PF and PD can not be computed

explicitly as in (4.27) and (4.30), respectively, because we do not know the channel order L. We

can nevertheless limit the tolerance of each ρk-test, by establishing a bound α for the acceptable

level of the probability pk, defined in (4.24), so that decision thresholds ηk can be established in

order to ensure that P[ρk ≥ ηk] ≤ α, k ∈ [K, L̂+ 2].

Considering definition (4.21) and under the null-hypothesis (k > L + 1), the test variable

ρk is asymptotically Chi-square distributed with dk = 2P −mk degrees of freedom, since zk is

theoretically zero for all k > L+ 1. Otherwise, ρk follows a non-central Chi-square distribution,

also with dk degrees of freedom, but with an unknown parameter λk = zT

k Σ−1
k zk, the value of

which depending on the true real-valued cumulant vector zk. In other words, the distribution of

the test variable ρk under the null hypothesis is given by (4.17), for a given choice of the index

set J . Thus, equation (4.24) becomes:

pk =

∫ +∞

ηk

fρ(ρk)dρk, k ∈ [1,K]

=
1

2dk/2Γ(dk/2)

∫ +∞

ηk

ρ
(dk/2)−1
k e−ρk/2dρk (4.32)
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Figure 4.1: pdf curves for ρk and decision thresholds: variation in function of the number of

degrees of freedom.

Substituting ρk = 2u, we have:

pk =
1

Γ(dk/2)

∫ +∞

ηk/2
u(dk/2)−1e−udu,

=
Γ̄(dk/2, ηk/2)

Γ(dk/2)
, (4.33)

where Γ̄(dk/2, ηk/2) is the upper incomplete Gamma function, defined as Γ̄(z, n) =
∫∞
n tz−1e−tdt

[154]. Equation (4.33) enables us to plot the pdf curves of the marginal events ρk ≥ ηk for

different values of the parameter dk, as illustrated in fig. 4.1.

Decision thresholds ηk can now be established in such a way to limit the probability of events

ρk ≥ ηk, k > L + 1, to a low level α, while allowing P[ρL+1 ≥ ηL+1] to be as high as possible,

depending on the value of zk. With such an aim, we choose ηk so that

Γ̄(dk/2, ηk/2) ≤ αΓ(dk/2). (4.34)

Using the curves of fig. 4.1 corresponding to the exact number of degrees of freedom of the test

variables ρk, we can define decision rules by placing the threshold levels at the points where

each curve crosses the acceptable level of tolerance α. These threshold levels are indicated in

the table in fig. 4.1 for the considered values of dk, with α = 1% and α = 0.5%.

Notice from (4.28) that the global level of false alarm probability still depends on α and K−L
so that a bad choice of K may reduce the power of the test (increased PF should be expected for

K ≫ L). Possible solutions to this drawback include the use the Benjamini-Hochberg procedure

for controlling the global level of false alarm (c.f. [32, 31, 155] and references therein). This

approach will not be discussed here.
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The proposed channel order detection algorithm can be summarized as follows:

Algorithm 4.1 (HOS-based channel order detector algorithm)

Define J and α and initialize the algorithm with k = K:

1. Estimate the 4th-order output cumulants corresponding to the indices

in J and compose ĉk ∈ C
P×1 as in (4.7);

2. Determine mk as the number of real-valued cumulants in ĉk; compose

the real-valued vector ẑk ∈ R
(2P−mk)×1

3. Estimate the 8th-, 6th- and 2nd-order output cumulants corresponding

to the indices in J ; Compute the approximate circular and non-circular

covariance matrices defined in (4.8) and (4.9), respectively [149];

4. Deduce Σ̂k from (4.11), take its EVD and test its condition number;

Keep eliminating the smallest eigenvalue until the condition number

becomes smaller than a certain threshold; define µk as the number of

eliminated eigenvalues;

5. Determine the number of degrees of freedom dk = 2P −mk − µk and

compute ω̄k from (4.23);

6. Compute ρk = ω̄
T

k ω̄k and derive ηk from (4.34) using dk;

7. Test the hypotheses:

• if ρk < ηk, take k ← k − 1 and repeat the procedure from step 1.

• if ρk ≥ ηk, then L̂ = k − 1. Stop the algorithm.

Simulation examples

Let us consider a channel with L+1 = 3 constant coefficients chosen at random from a complex

Gaussian distribution. Using N noiseless output data samples, we compute the 4th-order cumu-

lant estimates to form the vector ĉk, defined in (4.7), for (ip, jp) ∈ J and k = 1, . . . ,K. In this

example, we take J = {(1, 1); (1, 2); . . . ; (1, P )} and P = K = 4. After that, we compose the

vector ẑk by taking the real and imaginary parts of ĉk, as in (4.10), and then we eliminate the

zero components corresponding to the imaginary part of the purely real-valued cumulants. Any

triplet (ip, jp, k) satisfying the conditions given in (4.6) yields a purely real-valued cumulant,

and we denote by mk the number of such components in the vector ĉk. For k = 4 and k = 3,

due to our choice of J , we have m4 = 0 and m3 = 1 (since Ĉ
(3)
k is purely real-valued for k = 3)

and hence d4 = 8 and d3 = 7.
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Figure 4.2: Histogram curves of ρ3 and ρ4 (left) in a noiseless static SISO channel scenario with

L = 2, N = 10000 and 3000 Monte Carlo repetitions; dotted lines are the theoretical pdf curves;

detail on the area associated with the null-hypothesis (right) showing the decision thresholds for

α = 1% and α = 5%.

Using the expressions given in [149] (for the case of symmetrically distributed sources) we

can estimate the circular and non-circular covariance matrices V̂k and Ŵk, defined in (4.8) and

(4.9), respectively, by replacing the true cumulant values by their estimates, obtained using time

averages of the output signal. Thus, Σ̂k follows from (4.11) with subsequent elimination of the

mk rows and columns corresponding to the imaginary part of the purely real-valued cumulants.

Then, the test variable ρk can be computed from (4.21). Decision thresholds can be deduced

from the criterion (4.34), in function of dk, as indicated in fig. 4.1.

In order to validate in practice the theoretical behavior of the test variable, we repeated the

above described experiment by performing 3000 Monte Carlo simulations, varying the input data

sequence s(n) from one repetition to another, but keeping the same channel parameters all over

the simulations (static channel scenario). In this case, we used N = 10000 and fig. 4.2 shows the

histogram curves for the test variables ρ4 and ρ3. The figure at right consists in a zoom on the

area of the ρ4 pdf curve at left. Decision thresholds for α = 1% and α = 5% are depicted. The

dotted lines correspond to the theoretical pdf curves of the associated variables. The curves for

k < 3 have been omitted from fig. 4.2 because in this case λk ≫ ηk (none underestimation cases

occurred).

In a second example, we performed another 200 Monte Carlo simulations varying the input

data sequence as well as the channel parameters from one repetition to another (quasi-static

channel scenario). The performance of the proposed order detection test can be assessed in terms

of the detection and error rates, which are summarized in fig. 4.3 for α = 1% and α = 0.5%

with N = 500, 1000, 3000, 5000 and 10000. Decision thresholds have been set to η4 = 20.11
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Figure 4.3: Performance of the channel order detection algorithm in a noiseless static channel

SISO scenario with L = 2 over 200 Monte Carlo simulations: rates of false alarm, good detection

and miss-detection.

and η3 = 18.47 for α = 1% and η4 = 21.97 and η3 = 20.29 for α = 0.5% (note that d3 = 7 and

d4 = 8)

2 Order determination and identification of MISO channels

Let us now consider other signal sources sharing the same carrier frequency at the neighborhood

of the receive antenna. In this section, we assume that an unknown number Q of co-channel

users are located far apart from each other, hence utilizing physically different channels. In this

context, the radiocommunication channel can be modeled as a MISO system and we will be

interested in estimating the number of sources and identifying their respective channel param-

eters. The signal measured at time instant n at the output of the receive antenna, is written

as:

xq(n) =
Lq∑
ℓ=0

hq(ℓ)sq(n − ℓ), hq(0) = 1,

y(n) =
Q∑

q=1
xq(n) + υ(n),

(4.35)

where the order of each channel q is Lq + 1. Assumptions A1 to A4 from section 1 still hold for

each source sq(n) and their respective channel coefficients hq(ℓ). Here, we further assume that

input signals sq(n) are mutually (spatially and temporally) independent with non-zero kurtoses.

There exists a known bound K for the orders of all the Q channels, i.e. K > Lq + 1, ∀ q ∈ [1, Q].

We also assume that channel orders are not equal and, without loss of generality, we consider

that L1 > . . . > LQ, so that L1 = max(Lq). The case of same length channels will be discussed

in section 2.3.

Taking the above assumptions into account and using the multilinearity property of cumu-

lants, the 4th-order cumulant of the output signal y(n), defined in (4.2), can be expressed as
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the sum of the marginal cumulant contributions of each source as:

c4,y(τ1, τ2, τ3) =

Q∑

q=1

Cq(τ1, τ2, τ3) (4.36)

in which Cq(τ1, τ2, τ3) depends on the unknown user channel parameters hq(ℓ) and can be written

as follows [7, 3]:

Cq(τ1, τ2, τ3) = γ4,sq

Lq∑

ℓ=0

h∗q(ℓ)hq(ℓ+ τ1)h
∗
q(ℓ+ τ2)hq(ℓ+ τ3), q ∈ [1, Q], (4.37)

where γ4,sq = c4,sq(0, 0, 0). Since we assume that hq(ℓ) = 0, ∀ ℓ /∈ [0, Lq], we have:

Cq(τ1, τ2, τ3) = 0, ∀ |τ1|, |τ2|, |τ3| > Lq. (4.38)

Using (4.36), we can define the 4th-order output cumulant vector, as follows:

ck =

Q∑

q=1

ck,q ∈ C
P×1, for each k ∈ [1,K], (4.39)

so that [ck,q]p = Cq(ip − 1, jp − 1, k − 1), q ∈ [1, Q], p ∈ [1, P ], with (ip, jp) ∈ J , where the index

set J = {(i1, j1); . . . ; (iP , jP )} is formed of strictly positive natural numbers ip, jp ≤ K. Note

from (4.38) that ck,q = 0P , ∀ k > Lq + 1. Hence, since we have assumed L1 > . . . > LQ, we

have:

ck =






0P , if k > L1 + 1

ck,1, if L2 + 1 < k ≤ L1 + 1

ck,1 + ck,2, if L3 + 1 < k ≤ L2 + 1
...

...

ck,1 + . . .+ ck,Q, if k ≤ LQ + 1.

(4.40)

In the sequel, we describe a deflation-type approach based on the use of nested channel order

detectors, in which the test statistics are formed from the residual 4th-order cumulants, after

subtracting the contribution of the previously estimated channels. We will also briefly discuss

the impacts of allowing the user channels to have the same order. We remark that, in the

context of 2× 1 MISO systems, an earlier description of this deflation-based technique has been

introduced in [147], using a different order detection technique, with test statistics obtained from

the eigenvalue decomposition of a cumulant matrix.

2.1 Nested MISO order-detectors and blind identification

Equation (4.40) shows that, for an appropriate range of k, the output cumulant vector contains

information on the the longest channel exclusively. More precisely, if k = L1 + 1, ck can be
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written only from the coefficients h1(ℓ). As a result, if we can determine the order L1 + 1 of the

longest channel, then ĉL+1,1 = ĉL+1 and we can obtain the channel coefficients associated with

the corresponding source. After that, using the estimated channel coefficients, the marginal

cumulants associated with that particular source can be reconstructed approximately for all

k ∈ [1, L1 + 1]. To this end, kurtosis estimation is also needed. Then, by subtracting the con-

tribution ĉk,1 from ĉk, we get an identical situation with Q− 1 sources and the same reasoning

can be successively applied until the Q channels are identified. The algorithm is stopped when

no residual information remains in the estimated output cumulant vector.

The procedure suggested above summarizes the idea behind the proposed nested MISO

detectors. The following three main steps are repeated for each user q ∈ [1, Q]:

1. Channel order detection: determine Lq + 1;

2. Blind channel identification: estimate channel coefficients ĥq(ℓ), ℓ ∈ [0, Lq];

3. Estimation of marginal cumulants: reconstruct ĉk,q for all k ∈ [1, Lq + 1] using the esti-

mated channel coefficients.

Before proceeding to user q + 1, the marginal contribution of user q is subtracted from the

estimated output cumulant vector ĉk. Using the channel-order detection method proposed in

section 1, we can solve the problem of determining the channel order Lq + 1 by formulating

a multiple hypothesis test based on the variables ρk that are computed from the estimated

MISO channel output cumulant vectors, ĉk. Details about these test variables (step 1) are post-

poned to section 2.2. In the sequel, we discuss the matter of estimating the channel coefficients

ĥq(ℓ) (step 2) using singular value decomposition (SVD) techniques. Afterwards, we will show

that the reconstruction of the marginal cumulant vectors ĉk,q for all k ∈ [1, Lq + 1] (step 3) is

straightforward.

MISO channel parameter estimation

A. Using a rank-1 approximation

We know from (4.37) that:

Cq(ip − 1, jp − 1, Lq) = γ4,sq h
∗
q(0)hq(ip − 1)h∗q(jp − 1)hq(Lq), q ∈ [1, Q]. (4.41)

and hence

cLq+1,q = γ4,sqh
∗
q(0)hq(Lq)g

(q), (4.42)

where [g(q)]p = hq(ip−1)h∗q(jp−1), p ∈ [1, P ]. In order to recover the channel parameters,

we need to impose some minimal conditions on the index set J of the cumulants utilized by
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the algorithm. Simple conditions ensuring correct parameter estimation can be as follows:
{
ip = 1, ∀ p ∈ [1, P ]

jp = p, ∀ p ∈ [1, P ], P = K.
(4.43)

Satisfying the above conditions, we get [g(q)]p = hq(0)h
∗
q(p − 1) and (4.42) becomes

cLq+1,q = γ4,sq |hq(0)|2hq(Lq)h
(q), with h(q) = [hq(0), . . . , hq(Lq), 0, . . . , 0]

T ∈ C
K×1. Thus

we can construct the matrix Cq ∈ C
K×K, as follows:

Cq = cLq+1,qc
H

Lq+1,q = γ2
4,sq
|hq(0)|4|hq(Lq)|2h(q)h(q)H , (4.44)

which is clearly a rank-1 matrix. Assuming we know the channel-order Lq + 1, we can

estimate the vector h(q) ∈ C
K×1, up to a complex scaling factor, by computing the eigen-

vector associated with the largest eigenvalue of Cq. The constraint h(0) = 1 imposed in

(4.35) helps us to avoid the trivial solution and solve the intrinsic scaling ambiguity. In

practice, we only need to use the first Lq + 1 elements of ĉLq+1,q to compose Ĉq in order

to avoid the zero-padding at the estimated channel tail.

By allowing for an increased set of 4th-order cumulants, we can improve the quality of the

channel parameter estimates. It can be particularly interesting to expand the index set J
to the following:

J =
{

(1, 1) . . . (1,K) . . . (K, 1) . . . (K,K)
}

(4.45)

so that P = K2. Using the above index set, we get the following from (4.42):

Cq = unvec
(
cLq+1,q,K

)
= γ4,sqh

∗
q(0)hq(Lq)G

(q), (4.46)

with G(q) = unvec
(
g(q),K

)
= h(q)h(q)H , where the notation unvec (x, n) stands for the

unvectorization operator, which builds a matrix X ∈ C
m×n from the vector argument

x ∈ C
mn×1. As a result, we can still use the rank-1 approximation solution by taking the

singular vector associated with the largest singular value of Cq.

B. Using an optimal solution in the total least squares sense

Noticing that [cLq+1,q]ipjp = Cq(ip − 1, jp − 1, Lq), another way to recover the channel

coefficients consists in solving the following linear system of equations, obtained from

(4.41):

Cq(v − 1, u− 1, Lq)hq(w − 1)− Cq(w − 1, u− 1, Lq)hq(v − 1) = 0, (4.47)

with 1 ≤ v < w ≤ Lq + 1, and 1 ≤ u ≤ Lq + 1. (4.48)

System (4.47) yields a set of up to Lq(Lq + 1)2/2 equations with Lq + 1 unknowns, which

can be rewritten in a matrix form as follows:

Tqhq = 0, (4.49)



118 CHAPTER 4. MISO CHANNEL ORDER SELECTION AND IDENTIFICATION

where 0 is an all-zero vector, hq = [hq(0), . . . , hq(Lq)]
T and Tq is built from the output

cumulants in such a way that equation (4.49) is equivalent to the linear system (4.47).

Matrix Tq has Lq + 1 columns and up to Lq(Lq + 1)2/2 rows so that each row has only two

nonzero elements given by [Tq]rv = −C(w − 1, u− 1, Lq) and [Tq]rw = C(v − 1, u− 1, Lq),

where r = (Lq + 1)(v + w − 3) + u is the row number satisfying the general rule (4.48).

Since we need to have at least Lq + 1 equations, we must impose some minimal conditions

on the index set J , always satisfying (4.48), such as the following:

{
ip = p, ∀ p ∈ [1, P ], P = K,

jp = 1, ∀ p ∈ [1, P ].
(4.50)

A solution to (4.49) is obtained by computing the right singular vector of Tq associated

with its smallest singular value. The expanded index set (4.45) can also be used to improve

this solution, which has been originally proposed in [7] and is shown to be optimal in the

total least squares (TLS) sense.

Reconstructing marginal cumulants from estimated channel coefficients

Rewriting (4.40) for k = Lq + 1, q ∈ [1, Q], we have:

ck =






cL1+1,1 for k = L1 + 1

cL2+1,1 + cL2+1,2 for k = L2 + 1
...

...

cLQ+1,1 + . . .+ cLQ+1,Q for k = LQ + 1.

(4.51)

so that we can estimate the marginal cumulant contribution of source q as follows:

ĉLq+1,q = ĉLq+1 −
q−1∑

i=1

c̄Lq+1,i. (4.52)

where c̄Lq+1,i are the reconstructed cumulant vectors obtained from (4.37) and (4.39) using

the previously estimated coefficient vectors ĥi, i ∈ [1, q − 1]. To achieve this step, we need to

estimate the kurtosis of source q. Using the index set defined in (4.43) for instance, this can be

done as follows:

γ̂4,sq =
1

P

P∑

p=1

[ĉL̂q+1]p

ĥ∗q(jp − 1)ĥq(k − 1)
, (4.53)

where [ĉL̂q+1]p = ĉ4,y(ip − 1, jp − 1, L̂q).
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2.2 Test statistics for MISO order-detection

To start with the MISO channel detection procedure proposed above, we must first determine

the order of each user channel, since all the subsequent steps depend on this parameter. Here,

we will treat this problem as an FIR channel order selection problem and show that we can

use the method proposed in section 1 of this chapter by computing the test variables from the

estimated cumulant vectors obtained at the output of the MISO channel.

Recalling definition (4.21), we can compute the test variable ρk from the real cumulant vector

ẑk. The structure of vector ẑk is given in (4.10), consisting of the real and imaginary parts of the

vector ĉk, which is formed of the estimated 4th-order output cumulants of the MISO channel,

such as defined in (4.39). Thus, from (4.40), we know that ẑk,1 = [Re(ĉk,1)
T Im(ĉk,1)

T]T and

ẑk = ẑk,1 for k = L1 + 1. In addition, since zk = 0dk
for k > L1 + 1, we can use (4.21) to

construct our test variable from the vector ẑk, so that ρk follows a Chi-square distribution with

dk = 2P − mk degrees of freedom, for k > L1 + 1. As before, mk stands for the number of

purely real-valued elements in ĉk, and is given by the number of entries satisfying the conditions

in (4.6). On the other hand, as long as zk is nonzero for k = L1 + 1, the variable ρL1+1 has

a non-central Chi-square distribution with parameter λL1+1 = zT

L1+1,1Σ
−1
L1+1zL1+1,1, which is

related to the mean of the test variable as follows: E {ρL1+1} = λL1+1 + dL1+1. We can hence

denote:

ρk = ẑT

k Σ̂−1
k ẑk

{
∼ χ2

(dk), k > L1 + 1, N →∞
∼ nCχ

2
(dk)(λk), k ≤ L1 + 1, N →∞.

(4.54)

Using (4.11), we can deduce Σ̂k for k ≥ L1 + 1 from the estimated circular and non-circular

covariance matrices, given in (4.8) and (4.9), respectively.

Equation (4.54) shows that the test statistic ρk enables us to correctly detect the order of

the longest channel associated with the MISO mixture. After determining the order L1 + 1, we

can use one of the techniques described in section 2.1 to estimate the channel coefficients ĥ1(ℓ).

Then, by replacing the estimated coefficients in (4.37) and (4.39), we approximately reconstruct

the vectors c̄k,1 for all k ∈ [1, L1 +1]. Subtracting c̄k,1 from ĉk allows for the computation of new

test statistics leading to the detection of the next longest channel. This deflation principle has

been discussed in section 2.1 and allows us to successively extract the sources from the MISO

mixture. The algorithm continues until no residual information is detected in the remaining

cumulant vector. The nested MISO channel detection procedure is summarized in Table 4.1.

2.3 MISO channels with identical lengths

Throughout section 2, we have assumed that the channel orders are strictly different for all the

Q users. In the case where at least two users q1 and q2 have channels with the same order,

Lq1 = Lq2 = L, the proposed MISO channel detection method does not fully apply because we

cannot separate the marginal cumulants of these sources. Note that, in this case, the residual
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Table 4.1: Nested MISO channel detection procedure

1. Estimate the 4th-order cumulants from the MISO channel output and

compose the real cumulant vectors ẑk, k ∈ [1,K];

2. Initialize q = 1 and k = K;

3. Compute the test variables ρk, defined in (4.21) using ẑk and Σ̂k;

determine decision thresholds using the procedure described in section 1

4. Run the order-detection algorithm by testing the hypotheses:

if ρk < ηk then take k ← k − 1 and start over from step 3.

if ρk ≥ ηk then L̂q = k − 1. Go to step 5.

if L̂q = 0, terminate the procedure;

5. Compute ĥq(ℓ), ℓ ∈ [0, Lq], from ĉLq+1,q using one of the blind channel

identification techniques described in section 2.1;

6. From (4.37) and (4.39), compute the entries of c̄k,q, for all k ∈ [1, Lq + 1],

using ĥq(ℓ) and γ̂4,sq
, the latter one obtained from (4.53);

7. Update the output cumulant vector as ĉk ← ĉk − c̄k,q ;

8. Update q ← q + 1 and repeat steps 3 to 8 until hypothesis ρk < ηk

is not rejected in step 4.

information in ĉk at k = L + 1 still contains a mixture of both channels, i.e. for q ∈ {q1, q2},
the residual cumulant vector at k = L + 1 is written as ĉL+1 = ĉL+1,q1 + ĉL+1,q2. As long as

the marginal cumulant vectors are not separable, it is not possible to estimate the individual

channel coefficients and the nested detection procedure is terminated. As a conclusion, the

deflation principle cannot fully apply when there are channels with the same length. However,

we can still determine the channel orders greater than L+1 as well as their respective coefficients.

Actually, the proposed algorithm (Table 4.1) is able to run normally for all the users hav-

ing channel order greater than L + 1. We can detect their orders, estimate their coefficients

and, subtracting their contribution from the 4th-order output cumulant vector, the remaining

information contained in ĉk can be detected by the proposed channel order detection procedure.

Hence, when q = q1 (or q = q2), the hypothesis H0(k) (ρk < ηk) in step 4 should be rejected for

k = L+ 1, enabling us to determine the order of the channels with same length. In the sequel

of the procedure, the blind channel estimation algorithms are obviously affected, because they

assume that the estimated cumulant vector only contains information about one single channel,

which is not true in this case. Thus, the estimated parameters do not correspond to the actual

channel coefficients, and the recomposition of the marginal cumulants in step 6 leads to bad

results. After that, the residual information ĉk − c̄k,q at k = L+ 1 should be different of zero,

in spite of (4.51).
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As a result, when the algorithm runs the next iteration (for q = q1 − 1 or q = q2 − 1), the

hypothesis test should be able to detect another channel at k = L+ 1, since the residue in ẑL+1

is not zero. One can thus conclude that there are at least two channels with same order. In

this case, the coefficients of the last channel estimated should be disregarded and the nested

detection procedure terminated. At the present time, we are not able to identify the number

of channels having the same length L + 1 (we can only say that there are at least two). Also,

using the deflation approach herein described, we cannot estimate the coefficients of any of the

channels with order equal to or lower than L+ 1.

3 Simulation results

In this section, we will be interested in assessing the overall performance of the nested detectors

described in Table 4.1. In the sequel, computer simulation results are shown to illustrate the

combined procedure for MISO channel identification in terms of both, channel order detection

and blind channel estimation. In order to evaluate the method, we make use of the two following

criteria, which are defined for each signal source q ∈ [1, Q]:

i. The empirical probability of detection: the ratio between the number of Monte Carlo

simulations in which the detector results are consistent (L̂q = Lq) and the total number

R of realizations of the experiment;

ii The normalized mean squared error (NMSE) of the consistent results: computed for each

channel q as follows:

NMSE(q) =
1

Rq

Rq∑

r=1

∥∥∥ĥ〈r〉
q − hq

∥∥∥
2

‖hq‖2
, (4.55)

where Rq is the number of consistent results obtained for source q over R realizations and

ĥ
〈r〉
q is the estimated channel vector associated with source q, obtained after the (consistent)

realization r.

Both blind channel identification algorithms described in section 2.1 have been implemented

(rank-1 approximation and TLS) using the index set defined in (4.45). However, since their

results are very close, we omitted here the curves obtained from the rank-1 approximation

solution.

Nested algorithms for order detection and blind estimation of MISO channels

Let us consider a frequency-selective MISO communication channel with Q = 2 users and one

single receive antenna. A static multipath propagation scenario is assumed, which induces a

delay spread of the order of 3 symbol periods on the channel of source 1 (L1 = 2) and of the order

of 2 symbol periods on the channel of source 2 (L2 = 1). Channel coefficients have been randomly
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Figure 4.4: Blind MISO channel order detection and identification: detection success rate and

NMSE as a function of the sample data length, with SNR=40dB (L1 = 3, L2 = 1 and K = 4).

generated from a continuous complex Gaussian distribution. The figures in the sequel have

been obtained with the following coefficient vectors: h1 = [1.0, 1.35 − 0.57, −0.72 + 1.49]T;

h2 = [1.0, −1.14 + 0.23]T. A known upper bound of K = 4 is assumed for both channel orders.

We simulated the nested detection-estimation procedure presented in Table 4.1 and the results

have been averaged over 300 received data blocks, with N symbols each.

In a first experiment, we fixed the SNR value in 40dB and considered values of the output

sample data length (N) varying from 103 to 104. At the left-hand side of fig. 4.4, we notice a poor

detection performance for both sources when the sample data length is smaller than N = 3000.

At a glance, the results in fig. 4.4 indicate that the overall channel identification performance

increases as the number of output data symbols becomes greater. This is an expected result

due to the fact that the cumulant estimators are biased, but the bias is asymptotically zero. It

also suggests that the statistical variance of the cumulant estimators depends on all the user

channels, since it depends on the output cumulants. Increased cumulant estimation variance

implies worse channel parameter estimation, specially for short data lengths.

In our second simulation, we used a sample data length of N = 104 for SNR values ranging

from 5 to 40dB. As we can see in fig. 4.5, the nested detectors are quite robust with respect

to additive Gaussian noise, at moderate an high SNR levels. For low SNR levels the channel

estimation performance is significantly degraded. Notice that, although our order detection

technique is based on the 4th-order cumulants, the computation of ρk involves the estimation of

the covariance matrix Σ̂k, which requires 2nd-order moments estimates. The overall detection

performance should be therefore expected to suffer with increasing levels of Gaussian noise, as

illustrated in fig. 4.5. In addition, we observe in both figures, 4.4 and 4.5, a severe performance

loss between sources 1 and 2, suggesting that the nested MISO channel detector may suffer from
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Figure 4.5: SNR × NMSE: blind MISO channel identification with N = 10000 symbols (L1 = 3,

L2 = 1 and K = 4).

error propagation, harming the identification of shorter channels. This behavior can be explained

from the fact that shorter channels are estimated from the residual 4th-order cumulants, i.e. the

information remaining after the extraction of the reconstructed cumulants of the longer channels,

which are in turn estimated and hence susceptible to errors.

4 Summary

This chapter treated the problem of determining the order of an FIR channel in a radiocom-

munications context. We have proposed a channel order detection algorithm based on HOS

hypothesis testing. A Chi-square test variable has been introduced along with a discussion

about the choice of decision thresholds and detection performance in terms of success rate. The

proposed detection algorithm relies on some properties of the 4th-order output cumulants.

Exploiting the order selection method proposed in the first part of this chapter, we have also

proposed a complete combined detection-estimation procedure in the context of a frequency-

selective MISO communication system. Still using the 4th-order cumulant properties, this new

algorithm successively detects the signal sources, determines the orders of their individual trans-

mission channels and estimates the associated channel coefficients. The so-called nested detectors

process the sources one after the other, extracting from the output cumulant matrix the esti-

mated contributions of the previously identified channels and testing for the presence of shorter

and shorter channels.

We have shown that the test variable defined in the first part of the chapter (in the context

of a single FIR channel) can also be useful in the case of MISO mixtures. The nested detectors

treat the order-detection problem separately for each user channel by applying the proposed

order detection algorithm on the residual cumulant vector. Computer simulations show good
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results obtained for channel order detection and identification.

The case of channels with the same order still needs further investigation. Future works on

this subject include an implementation of the nested MISO detectors to the case of a multiple-

input multiple-output (MIMO) communications channel. Such an approach is simpler than the

one presented here and should allow us to treat the case of same length channels, including the

overdetermined as well as the underdetermined mixtures.



General Conclusions and future work

M
odern telecommunication systems require increased transmission rates. The cor-

rect recovery of the transmitted information is among the greatest challenges of

the upcoming era of wireless and mobile communications so that strong engi-

neering efforts are currently spent on this active research topic. This thesis has

been mainly devoted to the problem of blind channel estimation in the context of radiocommu-

nication systems. In other words, we have aimed in obtaining a complete representation of the

communication channel using only the data sequences available at the channel output. Making

use of 4th-order cumulants, we have been able to exploit their highly symmetrical structure using

a tensor formalism. High-order cumulants also have the advantage of eliminating the effects of

an additive Gaussian noise (with unknown correlation function) corrupting the output signals.

Our propositions throughout the thesis have been guided by the underlying idea of avoiding

multiple optimization stages or redundant computational operations.

In which follows, we summarize the most important points discussed in each chapter of this

thesis, highlighting the main conclusions and contributions. After that, we present a list of

possible topics that could lead to the continuation of some of our propositions.

Summary and conclusions

In Chapter 1, we have presented an overview of the main definitions, relationships and prop-

erties of high-order statistics (HOS). We have also briefly discussed the simultaneous matrix

diagonalization issue using linear algebraic tools. Then, using a generalized formulation for

tensors of any order, we have surveyed the basic notions behind the Parallel Factor (Parafac)

tensor decomposition. Concerning the estimation of the tensor components, we have introduced

an extended version of the alternating least squares (ALS) algorithm, generalizing it to the case

of a P th-order tensor.

In Chapter 2, we have addressed the problem of blind channel identification based on a

multilinear decomposition of the 4th-order output cumulant tensor. A new tensor model has

been proposed for the single-input single-output (SISO) case including components with a Hankel

structure. Regarding the instantaneous multiple-input multiple-output (MIMO) mixtures, the
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redundancies contained in the tensor components have been exploited when estimating the

channel coefficients. In both SISO and MIMO cases, we proposed new blind identification

algorithms based on the solution of the cumulant tensor decomposition problem by means of

a single-step least squares (SS-LS) minimization. The multilinear approach fully exploits the

structural properties of the cumulant tensor and allows to skip any kind of pre-processing.

Indeed, the SS-LS approach has been an original contribution of this thesis, based on one sole

iterative optimization, with no need for intermediate steps such as pre-whitening.

In Chapter 3, we have extended our blind identification solution to the case of a convolutive

MIMO channel, thus unifying the proposed tensor models into a generalized space-time 4th-order

cumulant tensor admitting a Parafac decomposition with a block-Hankel structure, of which the

SISO and the memoryless MIMO channels are particular cases. A SS-LS algorithm has also

been derived to estimate the coefficients of the convolutive MIMO channel model, which can

in fact be used to represent a multiantenna communication system characterized by specular

multipath propagation. Indeed, the coefficient estimation method proposed in this chapter

has been introduced in the context of a two-stage technique for estimating the parameters

that describe the physical structure of a multipath channel. In this broader framework, after

estimating the channel coefficients, the structure of the convolutive multipath channel has been

shown to be associated with the components of a Parafac tensor formed from the channel

parameters. This new tensor modeling introduced in Chapter 3 has allowed us to propose a

fully blind ALS-MUSIC technique to recover the path delays, attenuations as well as the angles

of departure and arrival of the transmitted and received signals, respectively.

Previously, in the first part of Chapter 3, we have also been interested in determining the

source locations in the context of narrowband multiuser sensor array processing, under the far-

field approximation. We have described a new technique that allows for incorporating additional

virtual sensors to a linear antenna array by exploiting an asymmetric arrangement of the 4th-

order cumulant tensor, involving a Khatri-Rao structure generally associated with the 6th-order

cumulant tensor. A high-resolution algorithm has been proposed using the SS-LS approach to

estimate the direction of arrival of the incoming signals.

At last, in Chapter 4, we have taken the channel order detection problem into consider-

ation. First, we derived a Chi-square test statistic from the 4th-order output cumulants and,

relying on its insensitiveness with respect to a non-linear stochastic process, we have developed

a new method for FIR-SISO channel order determination. Then, using the residual 4th-order

information at the output of a multiple-input single-output (MISO) channel, we have introduced

a combined procedure for detecting the presence of the signal sources, determining the chan-

nel orders and estimating their coefficients. This deflationary approach treating single-output

channels has been another original contribution of this thesis.
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Near future work and perspectives

Beyond the contributions presented in this thesis, some questions remain open issues and need

further investigation. Below, we list some topics that may be viewed as the natural continuity

of our work.

• The SS-LS algorithms presented in Chapter 2 belong to the class of iterative techniques,

which is also the case for the joint-diagonalization based methods described in sections

2.3.1 and 2.5.1. A deeper performance comparison between these algorithms should an-

swer to some questions about the ultimate potentialities of each technique in terms of the

tradeoff between capacity and estimation performance. A formal analysis of their respec-

tive computational burden should also help to bring out their practical applicability.

• The joint-diagonalization-based methods described in sections 2.3.1 and 2.5.1 do not cope

with the case of convolutive MIMO channels; extending these methods or, maybe, propos-

ing a combination of them to treat that case is envisaged for the near future. Since we

focus on telecommunication contexts, it should be interesting to evaluate the impact of

this methods in terms of channel equalization as well.

• The proposed SS-LS approach has been based on the use of 4th-order output cumulants

because this is the lower order allowing us to keep the advantages of HOS while eliminat-

ing the effects of an additive Gaussian noise with unknown correlation function. Notice,

however, that we have only used the properties of linearity and additivity of cumulants.

Moreover, symmetry relationships also apply to higher-order cumulants. As a matter of

fact, it seems that the SS-LS technique for channel estimation can be generalized to the

case of any (even) order cumulants. We think that such an extension deserves more atten-

tion in the near future and should yield some questions about the multiple possible choices

to unfold higher-order cumulant tensors.

• In the sequel of the preceding topic, it is straightforward to imagine that, using cumulants

of order higher than fourth, we should be able to create different array configurations in

order to further expand the number of virtual sensors achieved using the method proposed

in section 3.2.

• The proposition of the nested MISO channel detector in Chapter 4 has been based on the

assumption that all the individual channels have different orders. When this condition is

not satisfied, the technique does not fully apply. therefore, further investigation is due in

the case of same order channels. In order to treat that case, the inclusion of additional

receive antennas can be envisaged, so yielding MIMO channels, which should be simpler

to treat since the information can be observed from a supplementary spatial domain.
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Appendix A

Eigenvalue decomposition algorithms

R
educing a square matrix A ∈ C

n×n to a triangular form is an interesting way to

compute its eigenvalues. Several techniques can be used to implement this strategy,

including Householder, Givens and Gram-Schmidt transformations [50, 49]. In the

special case of normal matrices, it can be shown that the eigenvalue decomposition

reduces to a diagonalization problem, which can be implemented by means of successive appli-

cations of unitary similarity transformations. In appendix A.1 below, we describe a triangular

factorization algorithm that solves the eigenvalue problem by means of a Schur decomposition;

then, in appendix A.2, we present an overview of the main ideas behind diagonalization tech-

niques for normal matrices, including the classical Jacobi algorithm and its extended version for

approximative simultaneous diagonalization.

A.1 Eigenvalue computation via Schur decomposition

From the Schur Unitary Triangularization Theorem, we know that there exists a unitary n× n
matrix Q such that QHAQ = LT is upper triangular. Using the Schur decomposition, we can

compute the triangularizing factor Q by means of successive unitary similarity transformations.

Let us consider a initial transformation Q0 ∈ C
n×r, 1 ≤ r ≤ n, with pairwise orthonormal

columns. Consider the sequence of matrices {Qk} generated by means of a certain number of

iterations as follows {
Bk = AQk−1

QkL
T

k ← Bk for all k ≥ 1,
(A.1)

where the second iteration step is the QR factorization of the auxiliary matrix Bk, so that Qk

is unitary and LT

k is upper triangular. Then, it is possible to show [50, pp. 333] that, under

certain assumptions on the initial iterate Q0, the column space of Qk “converges” to the column

space of V(r) = [V·1 . . .V·r], in which VHAV = LT is a Schur decomposition of A and V(r)

corresponds to the first r columns of V. Making r = n, this implies that limk→∞ Qk = V,

129



130 APPENDIX A. EIGENVALUE DECOMPOSITION ALGORITHMS

i.e. under reasonable conditions1, the iterations (A.1) actually compute a Schur decomposition

of A. Therefore, defining

Tk = QH

k AQk, (A.2)

we note that as k approaches infinity Tk goes upper triangular, i.e. limk→∞ Tk = LT.

In order to compute the factor Tk from the preceding iteration Tk−1, we first write

Tk−1 = QH

k−1AQk−1 and then, using AQk−1 = QkL
T

k from (A.1), we note that

Tk−1 =
(
QH

k−1Qk

)
LT

k (A.3)

is the QR factorization of Tk−1 with unitary factor Q̄k = QH

k−1Qk. However, from (A.2) we

have Tk = QH

k A(Qk−1Q
H

k−1)Qk and, since LT

k = QH

k AQk−1, we can finally write

Tk = LT

k

(
QH

k−1Qk

)
= LT

k Q̄k, (A.4)

which is exactly the product of the factors obtained from the QR decomposition of Tk−1 in the

reverse order. Now, the following QR iteration is straightforward

{
Q̄kL

T

k ← Ak−1

Ak = LT

k Q̄k for all k ≥ 1.
(A.5)

Initializing the above iterative loop with A0 = A, we notice that Ak = Q̄H

k . . . Q̄
H
1 AQ̄1 . . . Q̄k.

We can thus conclude that Ak is unitarily similar to A. Moreover, Ak is a Schur decomposition

of A and hence upper triangular. So, its main diagonal entries are the eigenvalues of A and the

matrix product Q̄1 . . . Q̄k is an orthonormal basis of eigenvectors.

A.2 Jacobi algorithms for matrix diagonalization

Orthogonal transformations play a central role in the least squares solutions of overdetermined

systems as well as in eigenvalue computation. Jacobi methods are very interesting for solving

the symmetric eigenvalue problem because they present high parallelism features allowing for

efficient implementations in modern computer architectures. Good rounding error properties,

sometimes better than the QR algorithm, are also reported in the literature [53].

In this context, Givens rotations are a well-known tool for introducing zeros in a matrix, in a

controlled manner. Givens rotations are orthogonal rank-2 transformations denoted by Gpq(c, s)

and defined in function of the complex parameters c and s as follows

Gpq(c, s) = In + (c− 1)e(n)
p e(n)T

p − s e(n)
p e(n)T

q + s e(n)
q e(n)T

p + (c− 1)e(n)
q e(n)T

q , (A.6)

1 For r = n, the column space of the initial iterate Q0 must not be orthogonal to the column space of V.



A.2. JACOBI ALGORITHMS FOR MATRIX DIAGONALIZATION 131

where |c|2 + |s|2 = 1 and the vectors e
(n)
p and e

(n)
q stand for the pth and qth canonical basis

vectors of R
n, respectively. Notice that it is reasonable to parameterize (A.6) using c = cos θ

and s = sin θ, thus we can denote Gpq(c, s) = Gpq(θ). Clearly, a pre-multiplication by Gpq(θ)

has the effect of rotating the affected space of an amount of θ radians on the 2-dimensional

subspace spanned by the basis vectors {e(n)
p , e

(n)
q }, referred to as the (p, q)-plan.

For real matrices, Jacobi’s diagonalization approach consists in applying successive transfor-

mations on a matrix A ∈ R
n×n so that A← QTAQ in such a way that A is closer and closer to

being diagonal. The basic step in this iterative procedure consists in choosing, at each iteration,

an orthogonal matrix Q in the form of a plane rotation as given in (A.6), where the angle θ is

chosen to systematically reduce the quantity off (QTAQ), the operator off (·) being defined in

(1.37). The algorithm is iterated for all pairs (p, q), 1 ≤ p < q ≤ n. Denoting ∆ = QTAQ, we

note that if Q = Gpq(θ) then the elements of matrix ∆ are the same as those of A except for

the rows p and q as well as columns p and q. Indeed,

(
δpp δpq

δqp δqq

)

=

(
c s

−s c

)T(
app apq

aqp aqq

)(
c s

−s c

)

(A.7)

where apq = aqp and δpq = δqp (recall that A is assumed symmetric).

Thus, for each pair (p, q), p 6= q, we search for the parameters c and s that make the non-

diagonal elements of ∆ go to zero, i.e.

δpq = (app − aqq)cs + apq(c
2 − s2) = 0. (A.8)

The above equation yields the following quadratic form

t2 + 2κt− 1 = 0, (A.9)

where we have defined κ = (aqq − app)/2apq and used the parametrization t = tan θ = s/c in

order to obtain c and s from the conventional formulas c = 1/
√

1 + t2 and s = tc, without

resorting to trigonometrical equations. Solutions for (A.9) are of the form t = −κ±
√

1 + κ2

and it is possible to show that the smallest of them minimizes the difference between A and ∆

(|θ| ≤ π/4) hence improving stability.

Classical Jacobi algorithm

Next, we describe an iterative procedure for computing the orthogonal matrix Q so that

∆ = QTAQ is closer and closer to diagonal. The algorithm is stopped when a certain tolerance

level α > 0 is reached, i.e. off (∆) < α off (A).
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Algorithm A.1 (Classical Jacobi algorithm)

Initialize the algorithm with ∆ ← A and Q← I, determine a tolerance level α > 0

and verify if off (∆) < α off (A). While this is false, repeat the procedure below:

1. Choose the values of p and q so that 1 ≤ p < q ≤ n and |apq| ≥ |aij |, ∀ i 6= p,

j 6= q, i 6= j;

2. If δpq = 0 then c = 1 and s = 0. Go to step 4;

3. If δpq 6= 0, determine κ = (aqq − app)/2apq and then compute the parameters

c = 1/
√

1 + t2 and s = tc so that δpq = 0, where t = −κ+
√

1 + κ2 if κ ≥ 0 and

t = −κ−
√

1 + κ2 otherwise.

4. Construct the Givens rotation matrix Gpq(c, s), as indicated in (A.6).

5. ∆← Gpq(c, s)
T∆Gpq(c, s)

6. Q← QGpq(c, s)

It is possible to show that Jacobi’s algorithm is monotonically convergent, i.e. at each new

iteration, its solutions are shown to be systematically closer to being diagonal.

The extended Jacobi algorithm

In this section, we describe an extended version of the Jacobi algorithm that computes a non-

singular factor Q that simultaneously diagonalizes a set A of symmetric matrices A(k) ∈ C
n×n,

k = 1, . . . ,K. Let us define an n×n plane rotation matrix Gpq(c, s), slightly different from that

of (A.6), as follows:

Gpq(c, s) = I + (c− 1)e(n)
p e(n)T

p − s∗ e(n)
p e(n)T

q + s e(n)
q e(n)T

p + (c∗ − 1)e(n)
q e(n)T

q , (A.10)

with 1 ≤ p < q ≤ n, where c, s ∈ C are parameterized as c = cos θ and s = e−jφ sin θ,

respectively. The problem here consists in computing the complex values c and s in order to

maximize the diagonal elements of Gpq(c, s)A
(k)GH

pq(c, s) for each pair (p, q), i.e.

(c, s) = arg max
|c|2+|s|2=1

J(Q,A), (A.11)

where J(Q,A) has been defined in (1.49) with Q = Gpq(c, s)
H and A = {A1, . . . , AK}. Denoting

∆k = QHAkQ, we notice that

(
δ
(k)
pp δ

(k)
pq

δ
(k)
qp δ

(k)
qq

)
=

(
cos θ −ejφ sin θ

e−jφ sin θ cos θ

)H(
a
(k)
pp a

(k)
pq

a
(k)
qp a

(k)
qq

)(
cos θ −ejφ sin θ

e−jφ sin θ cos θ

)
, (A.12)

and

‖diag (∆k)‖2 = ‖diag (Ak)‖2 −
∣∣∣a(k)

pp

∣∣∣
2
−
∣∣∣a(k)

qq

∣∣∣
2
+
∣∣∣δ(k)

pp

∣∣∣
2
+
∣∣∣δ(k)

qq

∣∣∣
2
. (A.13)
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Thus, recalling that ‖∆k‖F = ‖Ak‖F , we observe that maximizing J(Q,A) is equivalent to

maximizing |δ(k)
pp |2 + |δ(k)

qq |2. Furthermore, using the following ordinary identity for complex

numbers a and b

|a+ b|2 + |a− b|2 = 2
(
|a|2 + |b|2

)
(A.14)

and, taking into account the trace preservation property of orthogonal transformations, it is

straightforward to conclude that

J(Q,A) =
K∑

k=1

∣∣∣δ(k)
pp − δ(k)

qq

∣∣∣
2
. (A.15)

From (A.12), we can deduce

δ(k)
pp = a(k)

pp cos2 θ + a(k)
pq e

−jφ sin θ cos θ + a(k)
qp e

jφ sin θ cos θ + a(k)
qq sin2 θ

δ(k)
qq = a(k)

pp sin2 θ − a(k)
pq e

−jφ sin θ cos θ − a(k)
qp e

jφ sin θ cos θ + a(k)
qq cos2 θ

Then, after some simple manipulations, we get K equations of the form

(δ(k)
pp − δ(k)

qq ) = (a(k)
pp − a(k)

qq ) cos 2θ + (a(k)
qp + a(k)

pq ) cosφ sin 2θ + j(a(k)
qp − a(k)

pq ) sin φ sin 2θ

which may be expressed in vector form as

p = Fv (A.16)

where we have used F = [f1 . . . fK ]T and the following definitions

p =





δ
(1)
pp − δ(1)qq

...

δ
(K)
pp − δ(K)

qq



 fk =





a
(k)
pp − a(k)

qq

a
(k)
qp + a

(k)
pq

j(a
(k)
qp − a(k)

pq )



 v =





cos 2θ

cos φ sin 2θ

sinφ sin 2θ



 . (A.17)

We can now rewrite (A.15) as follows

J(Q,A) = pHp = vTFHFv (A.18)

and, since FHF has a Hermitian structure and v is a real vector, it is possible to show that

J(Q,A) = vT
Re

(
FHF

)
v, (A.19)

where we have used the fact that if A ∈ C
n×n is a Hermitian matrix, then xTAx = xT

Re(A)x,

with x ∈ R
n. The value of v that maximizes (A.19) is given by the eigenvector v = [v1 v2 v3]

T

associated with the largest eigenvalue of the 3×3 matrix Re(FHF). Thus, the angles φ and θ are

easily obtained from (A.17). However, we can avoid trigonometrical operations by computing c

and s directly from the coordinates of v as follows

c =

√
v1 + 1

2
s =

v2 − jv3√
2(v1 + 1)

(A.20)
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and, finally, the plane rotations are determined using (A.10).

In the sequel, we summarize the implementation of the Extended Jacobi algorithm using a

cyclic-by-row approach, i.e. each iteration consists in the search for a plane rotation relative to

a given pair (p, q), where p and q correspond to the indexes of the upper triangular part of a

n× n matrix. The algorithm is said to have performed a sweep when it finishes all n(n − 1)/2

possible pairs (p, q). After each sweep, a stop condition is checked. In general, several sweeps

are necessary in order to reach convergence under a certain tolerance level.

Algorithm A.2 (Extended Jacobi algorithm)

Initialize the algorithm with V ← I and ∆k ← Ak, ∀ k = 1, . . . ,K.; determine a toler-

ance level α > 0 and compute J(Q,∆) from (1.48), with ∆ = {∆1, . . . ,∆K}. Verify if

J(Q,∆) < α J(Q, A). While this is false, repeat the procedure below:

For p = 1 : n

For q = p+ 1 : n− 1

1. If
∑

k δ
(k)
pq = 0 then c = 1 and s = 0. Go to step 4;

2. If
∑

k δ
(k)
pq 6= 0 then compose the K vectors fk from (A.19) and construct

the following 3× 3 matrix:

F′ = Re

(
K∑

k=1

fkf
H

k

)

(A.21)

3. Compute the EVD of F′ and obtain c and s from (A.20), where v1, v2 and

v3 are the elements of the eigenvector associated with the largest eigenvalue.

4. Construct the Givens rotation matrix Gpq(c, s), as indicated in (A.10).

5. ∆k ← Gpq(c, s)
H∆kGpq(c, s), k = 1, . . . ,K.

6. V← VGpq(c, s)



Appendix B

Fundamental relationships

R
andom processes observed at the output of a linear system convey information about

the system parameters. High-order statistics have the ability to preserve system mag-

nitude and phase information. Recovering system coefficients from output signals is

hence possible due to existing relationships between output cumulants and the system

parameters. In particular, Brillinger and Rosenblatt [3] established the link between high-order

cumulants and the coefficients of a linear filter. In this appendix, we derive the Brillinger and

Rosenblatt relationship in a simplified approach, for the case of a single-input single-output

(SISO) system described by a noisy MA process.

Output cumulants of linear systems

Let y(n) be the complex signal observed at the output of a linear SISO system given in (2.1)

with the assumptions considered in section 2 of Chapter 2. From property P4, equation (??),

we write the mth-order cumulant of y(n) as follows

Cm,y(τ1, . . . , τm−1) = Cm,x(τ1, . . . , τm−1) + Cm,υ(τ1, . . . , τm−1). (B.1)

thus, using assumption A2,

Cm,y(τ1, . . . , τm−1) = Cm,x(τ1, . . . , τm−1), m > 2. (B.2)

Using definition (1.21) and the signal model (2.1), the above equation becomes

Cm,y(τ1, . . . , τm−1) =

{
cum [y∗(n), y(t+ τ1), . . . , y

∗(n+ τm−2), y(n+ τm−1)] , if m is even;

cum [y∗(n), y(n + τ1), . . . , y(n+ τm−2), y
∗(n+ τm−1)] , if m is odd,

and, considering only the case where m is even (for ease of notation), we get:

Cm,y(τ1, . . . , τm−1)=cum

[
L∑

ℓ0=0

h∗(ℓ0)s
∗(n − ℓ0),

L∑
ℓ1=0

h(ℓ1)s(n − ℓ1 + τ1), . . . ,
L∑

ℓm−2=0

h∗(ℓm−2)s
∗(n − ℓm−2 + τm−2),

L∑
ℓm−1=0

h(ℓm−1)s(n − ℓm−1 + τm−1)

]
,

(B.3)
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where we have considered the stationarity of the input signal sequence s(n) (assumption A1).

Notice that the MA parameters h(0), . . . , h(L) are deterministic complex constants. Therefore,

using the additivity property of cumulants (1.14) along with property P1 (1.13), we get

Cm,y(τ1, . . . , τm−1) =
∑
ℓ0

∑
ℓ1

· · · ∑
ℓm−2

∑
ℓm−1

h∗(ℓ0)h(ℓ1) · · · h∗(ℓm−2)h(ℓm−1) cum
[
s∗(n− ℓ0),

s(n− ℓ1 + τ1), . . . , s
∗(n− ℓm−2 + τm−2)s(n− ℓm−1 + τm−1)

]
.

(B.4)

Due to the iid property of the input signal sequence (assumption A1), the term represented

by the cum [·] operator in the above equation yields the following:

cum
[
s∗(n− ℓ0), s(n − ℓ1 + τ1), . . . ,

s∗(n− ℓm−2 + τm−2), s(n− ℓm−1 + τm−1)
]

=

{
γm,s, ℓ0 = ℓ1 − τ1 = . . . = ℓm−1 − τm−1

0, otherwise

(B.5)

where γm,s is defined in (1.22). Thus, rewriting the indices in function of ℓ0, we get ℓ1 = ℓ0 + τ1,

. . ., ℓm−1 = ℓ0 + τm−1, and hence (B.4) becomes

Cm,y(τ1, . . . , τm−1) = γm,s

∑

ℓ0

h∗(ℓ0)h(ℓ0 + τ1) · · ·h∗(ℓ0 + τm−2)h(ℓ0 + τm−1). (B.6)

Finally, replacing ℓ0 by ℓ and considering odd and even orders m, it follows that:

Cm,y(τ1, . . . , τm−1) =






γm,s

α2∑
ℓ=α1

h∗(ℓ)h(ℓ + τ1) · · ·h∗(ℓ+ τm−2)h(ℓ+ τm−1), if m is even;

γm,s

α2∑
ℓ=α1

h∗(ℓ)h(ℓ + τ1) · · ·h(ℓ+ τm−2)h
∗(ℓ+ τm−1), if m is odd;

(B.7)

where α1 = max(0,−τ1,−τ2, . . . ,−τm−1) and α2 = min(L,L− τ1, L− τ2, . . . , L− τm−1), be-

cause h(ℓ) = 0 ∀ ℓ /∈ [0, L] (assumption A4). Equation (B.7) consists in the well-known Brillinger

and Rosenblatt’s relationship [3] and it represents a fundamental tool in system identification

since it establishes the link between cumulants and the system coefficients.

For m = 4, equation (B.7) gives

C4,y(τ1, τ2, τ3) = γ4,s

α2∑

ℓ=α1

h∗(ℓ)h(ℓ + τ1)h
∗(ℓ+ τ2)h(ℓ + τ3), (B.8)

with α1 = max(0,−τ1,−τ2,−τ3) and α2 = min(L,L − τ1, L − τ2, L − τ3). Identical reasoning

leads to similar results for m = 2. However, taking into account that (B.2) does not hold for

m = 2 because C2,υ(τ) 6= 0, we have C2,y(τ) = C2,x(τ) + C2,υ(τ), but we can still write the

cumulants of the noiseless signal x(n) as follows:

C2,x(τ) = γ2,s

α2∑

ℓ=α1

h∗(ℓ)h(ℓ+ τ), (B.9)
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with α1 = max(0,−τ) and α2 = min(L,L − τ). Obviously, in the noiseless case we have

C2,y(τ) = C2,x(τ).

Notice that cumulants only admit non-zero values within the range of time-lags τ1, . . ., τm−1

limited by the system memory. Particularly, as we assumed a causal MA model with order L+1,

high-order cumulants will vanish when any of the lags τi, or the difference between any pair of

lags, go beyond L or −L. Fourth-order cumulants, for instance, are non-zero in a region of the

R
τ1×τ2×τ3 space limited by the following bounds: |τ1|, |τ2|, |τ3| ≤ L, |τ3 − τ2| ≤ L, |τ3 − τ1| ≤ L

and |τ1 − τ2| ≤ L.
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[25] P. Chevalier and A. Ferréol. On the virtual array concept for fourth order direction finding

problem. IEEE Trans. on Signal Processing, 47(9):2592–2595, sep. 1999.
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number of signals using the Benjamini-Hochberg procedure. IEEE Transactions on Signal

Processing, 55(6):2497–2508, jun. 2007.

[33] W. S. Liggett Jr. Passive sonar: fitting models to multiple time series. In J. W. R.

Griffiths and P. L. Stocklin, editors, Proc. of NATO ASI Signal Processing, Academic,

pages 327–345, New York, USA, 1973.

[34] D. B. Williams and D. H. Johnson. Modifying the sphericity test for improved source

detection with narrowband passive arrays. In Proc. of IEEE ICASSP, volume 12, pages

2272–2275, Dallas, USA, apr. 1987.

[35] D. B. Williams and D. H. Johnson. Using the sphericity test for source detection with

narrow-band passive arrays. IEEE Transactions on Signal Processing, 38(11):2008–2014,

nov. 1990.



142 BIBLIOGRAPHY

[36] S. Haykin. Adaptive Filter Theory. Prentice Hall, 3rd edition, 1995.

[37] R. Bro. PARAFAC. tutorial and applications. Elsevier Chemometrics and Intelligent

Laboratory Systems, 38:149–171, 1997.

[38] N. D. Sidiropoulos and R. Bro. On the uniqueness of multilinear decomposition of N -way

arrays. Journal of Chemometrics, 14:229–239, may. 2000.

[39] L. De Lathauwer. Signal Processing Based on Multilinear Algebra. PhD thesis, Katholieke

Universiteit Leuven, Belgium, 1997. ESAT-SISTA/TR 1997-74.

[40] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro. Blind PARAFAC receivers for DS-CDMA

systems. IEEE Trans. on Signal Processing, 48(3):810–823, mar 2000.

[41] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis. Parallel factor analysis in sensor array

processing. IEEE Trans. on Signal Processing, 48(8):2377–2388, aug. 2000.

[42] P. Comon. Blind identification and source separation in 2× 3 under-determined mixtures.

IEEE Trans. on Signal Processing, 1(52):11–22, jan. 2004.

[43] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. PARAFAC models for wireless

communication systems. In 4th Int. Conf. on Phys. Sig. Image Proc. (PSIP’05), Toulouse,

France, 2005.

[44] A. L. F. de Almeida, G. Favier, and J. C. M. Mota. PARAFAC-based unified tensor mod-

eling of wireless communication systems with application to blind multiuser equalization.

Signal Processing Elsevier, 87(2):337–351, fev. 2007.

[45] A. Papoulis. Probability, Random Variables and Stochastic Processes. McGraw-Hill Inter-

national, 3 edition, 1991.

[46] P. O. Amblard, M. Gaeta, and J.-L. Lacoume. Statistics for complex variables and signals,

part I: variables, part II: signals. Signal Processing, 53:1–13 (part I), 15–25 (part II), 1996.

[47] J.-L. Lacoume, P.-O. Amblard, and P. Comon. Statistiques d’Ordre Supérieur pour le

Traitement du Signal. Masson, 1997. in French.

[48] S. Kotz and N.L. Johnson. Enciclopedia of Statistical Sciences. Wiley, 1982.

[49] G. H. Golub and H. A. van der Vorst. Eigenvalue computation in the 20th century. Journal

of Computational and Applied Mathematics, (123):35–65, 2000.

[50] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University

Press, Maryland, US, 3rd edition, 1996.



BIBLIOGRAPHY 143

[51] J.-F. Cardoso and A. Souloumiac. Blind beamforming for non gaussian signals. IEE

Proceedings-F, 140(6):362–370, dec. 1993.

[52] A. Souloumiac J.-F. Cardoso. Jacobi angles for simultaneous diagonalization. SIAM

Journal on Matrix Analysis and Applications, 17(1):161–164, jan. 1996.

[53] A. Bunse-Gerstner, R. Byers, and V. Mehrmann. Numerical methods for simultaneous

diagonalization. SIAM Journal on Matrix Analysis and Applications, 14(4):927–949, oct.

1993.

[54] M. Wax and J. Sheinvald. A least squares approach to joint diagonalization. IEEE Signal

Processing Letters, 4(2):52–53, feb. 1997.

[55] R. A. Harshman and M. E. Lundy. The PARAFAC model for three-way factor analysis and

multidimensional scaling. In H.G. Law, C.W. Snyder, Jr.J. Hattie, and R.P. McDonald,

editors, Research Methods for Multimode Data Analysis, pages 122–215, New York, 1984.

Praeger.

[56] X. Liu and N. D. Sidiropoulos. Cramér-Rao bounds for low-rank decomposition of multi-

dimensional arrays. IEEE Trans. on Signal Processing, 49:2074–2086, 2001.

[57] A. Stegeman and N. D. Sidiropoulos. On Kruskal’s uniqueness condition for the Can-

decomp/Parafac decomposition. Linear Algebra and Its Applications, 420(2-3):540–552,

2007.

[58] A. Smilde, R. Bro, and P. Geladi. Multi-way Analysis with Applications in the Chemical

Sciences. John Wiley and Sons Ltd, 2004.

[59] A. Stegeman and J. M. F. Ten Berge. Kruskal’s condition for uniqueness in cande-

comp/parafac when ranks and k-ranks coincide. Computational Statistics & Data Analysis,

50(1):210–220, jan. 2006.

[60] Y. Yu and A. P. Petropulu. PARAFAC based blind estimation of possibly under-

determined convolutive MIMO systems. IEEE Trans. on Signal Processing, 56(1):111–124,

jan. 2008.

[61] C. E. R. Fernandes, G. Favier, and J. C. M. Mota. Parafac-based blind channel iden-

tification using 4th-order cumulants. In Proc. of VI International Telecommunications

Symposium (ITS2006), Fortaleza, Brazil, sep. 2006.

[62] C. E. R. Fernandes, G. Favier, and J. C. M. Mota. Tensor-based blind channel identifica-

tion. In Proc. of IEEE International Conference on Communications (ICC 2007), pages

2728–2732, Glasgow, Scotland, UK, jun. 2007.



144 BIBLIOGRAPHY

[63] C. E. R. Fernandes, G. Favier, and J. C. M. Mota. Blind MIMO channel identification

using cumulant tensor decomposition. In ASILOMAR Conference on Signals, Systems

and Computers, Pacific Grove, CA, USA, nov. 2007.

[64] C. E. R. Fernandes, G. Favier, and J. C. M. Mota. Blind channel identification algorithms

based on the Parafac decomposition of cumulant tensors: the single and multiuser cases.

Signal Processing, Elsevier, 88(6):1382–1401, jun. 2008.

[65] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines. A blind source separa-

tion technique using second-order statistics. IEEE Trans. on Signal Processing, 45(2):434–

444, feb. 1997.

[66] A. Belouchrani and B. Derras. An efficient fourth-order system identification FOSI algo-

rithm utilizing the joint diagonalization procedure. In Proc. of the 10-th IEEE Workshop

on Statistical Signal and Array Processing, pages 621–625, Pocono Manor, Pennsylvania,

USA, aug. 2000.

[67] L. De Lathauwer, B. De Moor, J. Vandewalle, and J.-F. Cardoso. Independent component

analysis of largely underdetermined mixtures. In Proc. 4th Int. Symp. on Independent

Component Analysis and Blind Signal Separation (ICA 2003), pages 29–34, Nara, Japan,

apr. 2003.
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