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Université de Nice-Sophia Antipolis

Ecole Doctorale STIC

Sciences et Technologies de l’Information et de la Communication

THESE

pour obtenir le titre de

Docteur en Sciences
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Abstract

Due to the presence of nonlinear devices such as power amplifiers (PA) and
optical instruments, the communication signals are sometimes corrupted by

nonlinear distortions. In such cases, nonlinear models are used to provide an accu-
rate signal representation, allowing the development of efficient signal processing
techniques capable of eliminating or reducing these nonlinear distortions. In this
context, the choice of the nonlinear system model plays a fundamental role. The
Volterra model has since longtime been used to represent communication systems
in presence of nonlinear distortions, with applications for modeling satellite com-
munication links, orthogonal frequency division multiplexing (OFDM) systems and
radio over fiber (ROF) channels.

The main objective of this thesis is to propose techniques for channel estima-
tion and information recovery in multiple-input-multiple-output (MIMO) Volterra
communication systems. This kind of MIMO model is able of modeling nonlinear
communication channels with multiple transmit and receive antennas, as well as
multi-user channels with a single transmit antenna for each user and multiple re-
ceive antennas. Channel estimation and equalization techniques are developed for
three types of nonlinear MIMO communication systems: OFDM, ROF and Code
division multiple access (CDMA)-ROF systems. According to the considered com-
munication systems, different kinds of MIMO Volterra models are used. In the case
of OFDM systems, we develop receivers that exploit the diversity provided by a
proposed transmission scheme. In the case of time and space division multiple
access (TDMA-SDMA) systems, a set of orthonormal polynomials is developed
for increasing the convergence speed of a supervised adaptive MIMO Volterra es-
timation algorithm. Moreover, in order to develop signal processing techniques for
MIMO Volterra communication channels in a blind scenario, we make use of tensor
decompositions. By exploiting the fact that Volterra models are linear with respect
to their coefficients, blind estimation and equalization of MIMO Volterra channels
are carried out by means of the Parallel Factor (PARAFAC) tensor decomposition,
considering TDMA-SDMA and CDMA communication systems.

Key-words: Nonlinear communication system, Volterra model, MIMO, channel
estimation, information recovery, OFDM, Radio Over Fiber, CDMA, PARAFAC
decomposition.
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Résumé

Du à la présence de dispositifs non-linéaires comme des amplificateurs de puis-
sance (PAs) et des instruments optiques, les signaux de communication sont

parfois corrompus par des distorsions non-linéaires. Dans ce cas, des modèles non-
linéaires sont utilisés pour fournir une description précise des signaux, permettant
le développement de techniques de traitement du signal capables d’éliminer ou
de réduire ces distorsions. Dans ce contexte, le choix du modèle non-linéaire a
une importance majeure. Les modèles de Volterra sont depuis longtemps utilisés
pour représenter les systèmes de communication en présence de distorsions non-
linéaires, ayant des applications dans les systèmes de communication par satellite,
les systèmes OFDM et les systèmes radio over fiber (ROF), entre autres.

Le principal objectif de cette thèse est de proposer des techniques d’estimation
et de récupération d’information dans les systèmes de communication MIMO Vol-
terra. Ce type de modèle MIMO peut être utilisé pour modéliser des canaux de
communication avec de multiples antennes à la transmission et à la réception, ainsi
que des canaux multi-utilisateurs avec de multiples antennes à réception et une an-
tenne de transmission par utilisateur. Les techniques d’estimation et d’égalisation
de canaux sont développées pour trois systèmes de communication non-linéaires
différents: OFDM, ROF et ROF-CDMA, différents modèles MIMO Volterra étant
utilisés selon l’application considérée. Dans le cas des systèmes du type OFDM,
un nouveau schéma de transmission qui introduit de la redondance dans les si-
gnaux transmis, ainsi que des récepteurs exploitant cette redondance sont proposés.
Dans le cas des systèmes TDMA-SDMA, un ensemble de polynômes orthonormaux
est développé pour améliorer la vitesse de convergence de l’algorithme LMS pour
l’estimation adaptative supervisée d’un système MIMO Volterra. D’autre part, le
développement de récepteurs pour des systèmes de communication MIMO Volterra
dans un schéma de transmission aveugle est réalisé à l’aide de décompositions ten-
sorielles. Dans ce cas, en exploitant le fait que les modèles de Volterra sont linéaires
vis-à-vis de leurs coefficients, des techniques d’estimation et d’égalisation de ca-
naux MIMO Volterra basées sur la décomposition PARAFAC sont développées
pour des systèmes de communication TDMA-SDMA et CDMA.

Mots-clés: Système de communication non-linéaire, modèle de Volterra, MIMO,
estimation de canal, récupération d’information, OFDM, système Radio Sur Fibre,
CDMA, décomposition PARAFAC.
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Resumo

Devido à presença de dispositivos não-lineares tais como amplificadores de
potência (PAs) e equipamentos ópticos, sinais em sistemas de comunicações

estão sujeitos a distorções não-lineares. Quando tais efeitos são importantes, mo-
delos não-lineares são utilizados para fornecer uma descrição precisa dos sinais,
permitindo o desenvolvimento de técnicas de processamento de sinais capazes de
reduzir ou eliminar estas distorções. Dentro deste contexto, a escolha apropriada
de um modelo de sistema não-linear é de grande importância. Os sistemas de
Volterra são um dos modelos mais utilizados para representar sistemas de comu-
nicações contaminados por distorções não-lineares, com aplicações na modelagem
de enlaces satelitários, sistemas OFDM e radio over fiber (ROF), entre outros.

O principal objetivo desta tese é propor técnicas de estimação de canal e recu-
peração da informação em sistemas de comunicação MIMO Volterra. Tais modelos
MIMO podem ser utilizados para representar sistemas de comunicação não-lineares
com múltiplas antenas na transmissão e recepção, assim como canais multi-usuários
com múltiplas antenas na recepção e uma antena de transmissão por usuário. As
técnicas de estimação e equalização de canais contidas nesta tese são desenvol-
vidas para três diferentes tipos de sistemas de comunicação MIMO não-lineares:
OFDM, ROF e ROF-CDMA, com diferentes tipos de modelos MIMO Volterra
sendo utilizados de acordo como o sistema de comunicação considerado. Para o
caso de sistemas OFDM, um esquema de transmissão que introduz diversidade
nos sinais recebidos, assim como receptores que exploram esta diversidade, são
propostos. Para o caso de sistemas TDMA-SDMA, um conjunto de polinômios
ortogonais é desenvolvido para acelerar a convergência do algoritmo LMS durante
a estimação supervisionada de sistemas MIMO Volterra. Além disso, para se de-
senvolver técnicas de processamento de sinais para canais de comunicação MIMO
Volterra em um ambiente não-supervisionado, esta tese faz uso de decomposições
tensoriais. Neste caso, técnicas de estimação e equalização de canais MIMO Vol-
terra são desenvolvidas, tanto no caso de sistemas TDMA-SDMA, como no caso
de sistemas CDMA, utilizando-se a decomposição PARAFAC e explorando o fato
de os modelos de Volterra serem lineares com relação a seus coeficientes.

Palavras-chave: Sistema de comunicação não-linear, modelo de Volterra, MIMO,
estimação de canal, recuperação de informação, OFDM, Rádio Sobre Fibra,
CDMA, decomposição PARAFAC.
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CHAPTER 1

Introduction

In many practical situations, the input-output relationship of a system cannot
be assumed to be linear. In these cases, nonlinear models are powerful tools

for representing the system behavior. The Volterra series [160], developed by the
italian mathematician Vito Volterra in 1887, is one of the most common represen-
tations of nonlinear systems [134]. It constitutes a class of polynomial models that
can be viewed as a sort of extension of the linear convolution. The Volterra series
has received a considerable attention from researchers of different areas. Among
them, it should be highlighted the work of N. Wiener, on the modeling of nonli-
near systems using Volterra series [164]. A main property of this kind of model is
the fact that it is linear with respect to its parameters. Another great advantage
is its ability of modeling the behavior of nonlinear real-life phenomena, specially
its ability to capture “memory” effects. Due to this characteristic, applications of
Volterra models can be encountered in many areas as, for instance, in biological
and physiological systems [101, 92, 61], magnetic recording channels [75, 13] and
engine transmission modeling [123]. See [61, 65] for applications of Volterra series
in different areas. Moreover, Volterra models have many applications in the field of
telecommunication, which is the domain of study of this thesis. In the sequel, we
discuss the characterization of nonlinear communication channels using Volterra
models.
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Volterra modeling of nonlinear communication channels

Due to the presence of nonlinear devices such as power amplifiers (PA) and optical
instruments, communication channels are sometimes corrupted by nonlinear dis-
tortions such as nonlinear intersymbol interference (ISI), nonlinear multiple access
interference (MAI) and nonlinear inter-carrier interference (ICI). These nonlinear
distortions can significantly deteriorate the signal reception, leading to poor system
performance. In such cases, linear models fail to characterize the communication
channel, providing inexact channel description. Nonlinear models can then be
used to provide an accurate channel representation, allowing the development of
efficient signal processing techniques capable of eliminating or reducing these nonli-
near distortions. Considering the growing complexity of the current and upcoming
communication systems, the development of receivers that extract the transmit-
ted information has become an important and difficult task. In this context, the
channel estimation is often an essential task in the design of such receivers.

The choice of the nonlinear model plays then a fundamental role. The Volterra mo-
del has since longtime being used to represent communication channels in presence
of nonlinear distortions. In this context, one of the most important works is due
to Benedetto et al [11], for the modeling and performance evaluation of nonlinear
satellite communication links using Volterra series. Posterior works of S. Bene-
detto and E. Biglieri have significantly contributed to the modeling, estimation
and equalization of nonlinear channels using Volterra models, mainly in the case
of satellite communication channels [9, 14, 10]. In this case, the signals are trans-
mitted from a ground station towards a satellite station and then retransmitted
to a ground station, the satellite station usually employing a PA driven at or near
saturation to obtain a power efficient transmission. At saturation, the PA exhibits
a nonlinear characteristic, resulting in the introduction of nonlinear distortions.
Other important works about nonlinear satellite communication channels can be
found in [78, 157, 30, 69, 169].

Furthermore, all the systems employing PA are subject to nonlinear distortions.
Orthogonal Frequency Division Multiplexing (OFDM) signals are especially vul-
nerable to PA nonlinear distortions due to their high peak-to-average power ratio
(PAPR) [31, 126, 148, 166, 16, 6, 5]. The PAPR of a signal is defined as the ratio
of its maximum squared amplitude to the average power [96]. This means that,
if the PAPR of a signal is high, the maximal signal power is high compared to
the average signal power, i.e. the signal has large envelope fluctuations. In this
case, if the PA operates near the saturation region, nonlinear distortions will be
introduced.

Volterra series have also important applications in the field of telecommunications
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for modeling Radio Over Fiber (ROF) channels [55, 57, 114, 117]. The uplink
transmission of such systems is done from a mobile station towards a Radio Access
Point (RAP), where the transmitted signals are converted in optical frequencies
and then retransmitted through optical fibers to a Central Base Station. Important
nonlinear distortions can be introduced by the electrical-optical (E/O) conversion
[54, 57].

Other applications of Volterra models in communication systems can be encounte-
red in the literature, e.g. for modeling ultra-wideband (UWB) systems [165, 113],
nonlinear acoustic echo paths [140, 139, 8], software-defined radio systems [172],
analog to digital converters [76], Code division multiple access (CDMA) systems
[23, 127, 26] and optical transmitters [138]. See [61] for more bibliography about
applications of nonlinear models in communication systems.

An important phenomenon caused by nonlinear channels is called spectral broa-
dening, which corresponds to spreading the spectrum of the transmitted signal.
In fact, for a passband modulated signal, this phenomenon can be viewed as the
sum of two different phenomena: the spectral broadening of the signal carrier and
envelope. The broadening of the carrier implies that the received signal will have
spectral components centered in frequencies different from the transmitted signal
carrier. However, this phenomenon is canceled by placing bandpass filters (zonal
filters) after the nonlinear devices. On the other hand, the spectral broadening of
signal envelope implies that the frequency support of the received signal envelope
is higher than the frequency support of the transmitted signal envelope. This may
lead to a significant increase of the signal bandwidth. The spectral broadening
of the signal envelope can be partially canceled by a bandpass filter. However,
sometimes it can be interesting to maintain all the spectral components of the
envelope signal in order to exploit this information at the receiver.

Nevertheless, most part of the works dealing with channel estimation and/or infor-
mation recovery on Volterra communication channels consider the case of single-
input single-output (SISO) systems. There are few works dealing with these pro-
blems in the context of nonlinear multiple-input-multiple-output (MIMO) commu-
nication channels, which is the main subject of this thesis. In what follows, the
use of Volterra models in MIMO channels is discussed and the main objectives of
this thesis are presented.

MIMO Volterra communication channels

MIMO transmission schemes with multiple transmit and receive antennas are well-
known solutions to improve the spectral efficiency and/or the transmission rate
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by increasing the spatial diversity [63, 151]. The multiple transmit and receive
antenna schemes are very attractive due to the rising demand for transmission
bandwidth and they are one of the key technologies to be considered in current
and upcoming wireless communication systems [111].

In fact, in this thesis, the term MIMO will also be used to denote a multi-user
system with a single transmit antenna for each user and multiple receive antennas.
In this case, the antenna array is used for directional signal reception, exploiting
the spatial diversity to increase the number of users transmitting at the same time
and same frequency band [150, 141, 159, 145]. This kind of technology, also known
as beamforming, is used to provide space division multiple access (SDMA). The
antenna array optimizes the radio spectrum by taking advantage of the directional
properties of antenna array. This kind of transmission scheme is normally used
at the base station in uplink, the antenna array providing signals of the highest
possible quality to each user.

As well as in SISO communication channels, MIMO channels are subject to non-
linear distortions due to the presence of nonlinear blocks such as radio frequency
PA and E/O conversion device. MIMO communication systems subject to nonli-
near distortions can be found in OFDM systems [67, 133], multiuser ROF systems
[114, 117, 116], satellite systems [117], CDMA systems [127], wireless communi-
cation links [148] and in ultra-wide-band systems [113]. In such situations, the
received signals are nonlinear mixtures of transmitted signals, possibly including
their delayed versions.

In these cases, MIMO Volterra models are interesting tools to model the com-
munication channel. Different versions of MIMO Volterra models can be defined,
depending on the generality of the model. Some versions of MIMO Volterra mo-
dels have been used by a number of authors in different areas [123, 1, 136, 124, 2].
However, to the best of our knowledge, few authors have proposed channel estima-
tion or information recovery techniques for MIMO Volterra models in the context
of communications systems [113, 127, 67, 133]. Moreover, the systems considered
in [113, 127, 67, 133] do not correspond to the most general form of the MIMO
Volterra model studied in this thesis. Channel estimation and equalization tech-
niques for multiple-input-single-output (MISO) Volterra channels were proposed in
[114, 117, 116]. On the other hand, nonlinear single-input-multiple-output (SIMO)
channels were also treated by some authors [60, 43, 99].

Other kind of models can also be used for modeling nonlinear mixtures as, for
instance, post nonlinear (PNL) mixtures [149, 170, 80], constituted of a linear
instantaneous mixture followed by memoryless nonlinearities. In order to take
realistic phenomena into account, convolutive post nonlinear (CPNL) mixtures
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were introduced in [4]. The CPNL mixtures are constituted of a linear convolu-
tive mixture followed by memoryless nonlinearities. When the nonlinearities of
PNL and CPNL mixtures are polynomial, they can be viewed as a special case
of MIMO Volterra system also known as MIMO Wiener system. Applications of
PNL mixtures can be encountered in biomedical data recording [171, 170], sensor
array processing [80, 110], etc. Works dealing with blind source separation of non-
linear mixtures using other kinds of mixtures models can be found in [158, 72].
However, it should be highlighted that many of these nonlinear source separation
techniques can not be applied to nonlinear MIMO communication channels, be-
cause these systems have some characteristics and constraints that must be taken
into account. Moreover, important results concerning the inversion of nonlinear
MIMO polynomial mixtures were demonstrated in [20, 21].

The general objective of this thesis is to propose new techniques for channel es-
timation and information recovery in MIMO Volterra communication channels.
This is motivated by the fact that the performance limits of approaches based on
linear channels have made less advances in the last years than the approaches ba-
sed on nonlinear channels. Although this seems to be an important and promising
research field, there is a lack of works dealing with nonlinear MIMO communi-
cation channels. This is probably due to the fact that the development of such
techniques is a quite difficult task, since nonlinear MIMO models are, in general,
very complex.

In fact, the most part of the techniques proposed in this manuscript are for esti-
mating MIMO Volterra channels. The reason is that, once the channel estimated,
the recovery of the transmitted signals can be efficiently carried out by using tech-
niques such as the Viterbi algorithm or the Wiener receiver [118, 74]. An accurate
channel estimation is then very important for the performance of the receiver. Ne-
vertheless, some techniques for information recovery in MIMO Volterra channels
are also proposed in Chapters 3 and 6 of this thesis.

In the development of the proposed techniques, various approaches are considered.
An overview of some of these approaches is then given in the sequel, providing a
motivation of their use.

Some approaches considered in this work

All the communication channels considered in this work correspond to series-
cascades of linear and nonlinear systems such as the Wiener, Hammerstein and
Wiener-Hammerstein models. As shown in Chapter 2, in these cases, it is always
possible to obtain a global Volterra representation of the channel. One of the main
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advantages of these block-structured nonlinear systems is that they are characte-
rized by less parameters than their global Volterra representations. On the other
hand, an important drawback of such kind of models is that they are not linear
with respect to their parameters, contrarily to the global Volterra representation.

The signal processing methods developed in this thesis are based on global MIMO
Volterra representations of the communication channel, exploiting the fact that the
model is linear with respect to its coefficients. This approach is to be used when
the compensation of the nonlinear distortions is carried out at the receiver side,
which provides other advantages with respect to pre-distortion schemes [39, 31,
148, 38, 120, 81, 3] that compensate the nonlinear distortions at the transmitter
side: (i) global optimization of the problem, (ii) in an uplink transmission, the
computational complexity associated with the signal processing for compensating
the nonlinearities is at the base station and (iii) compensation of other possible
channel nonlinearities.

Some of the channel estimation techniques proposed in this thesis make use of a
training sequence known by both transmitter and receiver during the acquisition
period. In this period, the receiver has access to the transmitted data for estima-
ting the channel by means of a supervised estimation technique. Other approach
considered in this manuscript is the blind (or non supervised) channel estimation,
which is characterized by the absence of a training sequence. Several of these ap-
plications take advantage of this feature to improve spectral efficiency by using the
time earlier spent in the training period to transmit information. In some cases
the transmission of a training sequence is undesired or even impossible, such as in
multi-point computer network and radio-digital transmission on microwave band.
As we will see in Chapters 5 and 6, signal processing techniques for MIMO Volterra
channels in a blind scenario can be developed by exploiting some kind of redun-
dancy of the received signals. In these chapters, we exploit these redundancies by
making use of tensor decompositions. Moreover, the transmission scheme is called
semi-blind when the training sequence is composed of only a few pilot symbols at
the beginning of the acquisition period, the end of the acquisition period being
carried out by a blind technique.

Another interesting point concerning channel estimation and information recovery
in nonlinear systems is the use of the phase-shift keying (PSK) modulation. PSK
signals provide less nonlinear distortions than quadrature amplitude modulation
(QAM) signals due to the fact that PSK symbols have less amplitude fluctuations
than QAM symbols, which makes the use of PSK signals interesting for transmis-
sions over nonlinear channels. As we will see in Chapter 5, when the input signals
are PSK-modulated, a Volterra system can be rewritten with a smaller number of
coefficients. The performance of PSK signals over nonlinear satellite channels was
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investigated by several authors, e.g. [9, 78]. In fact, the properties of nonlinearly
distorted PSK signals established in [100] have motivated the use of PSK signals
in Chapters 5 and 6.

Thesis content

This thesis is divided into five chapters, the first one containing a survey of the main
concepts and models exploited throughout the thesis, and the others containing
the different contributions. The organization of the thesis is illustrated in Fig. 1.1,
where the links between the chapters, applications, type of MIMO Volterra models
and used approaches are indicated. The chapters are organized according to the
type of Volterra model and the considered application. In fact, the approach and
the type of MIMO Volterra model used in each chapter depend on the considered
communication system.

Chapter 2, entitled Volterra Models for Nonlinear MIMO Communica-
tion Systems, provides an overview of MIMO Volterra models in the context of
nonlinear communication systems, containing the basic material to be exploited
throughout the thesis. The development of an equivalent baseband representa-
tion of a discrete-time SISO Volterra system is carried out. These developments
constitute the basis for the discrete-time equivalent baseband MIMO Volterra sys-
tems presented in the sequel, which are the models used through this work to
model MIMO communication channels. Some important block structured nonli-
near models are also described, with their link to the MIMO Volterra system being
developed. The main nonlinear MIMO communication systems considered in this
thesis are discussed at the end of the chapter. This chapter presents Volterra sys-
tem models in a way to put in evidence the approaches and methods considered
for each communication system exploited in the following chapters, as shown in
Fig. 1.1. Moreover, this chapter contains two theoretical contributions concerning
the modeling of nonlinear communication channels by MIMO Volterra systems.

In Chapter 3, entitled Estimation and Equalization of Nonlinear MIMO-
OFDM Channels, the MIMO Volterra models are applied to the estimation and
equalization of nonlinear MIMO-OFDM channels. In this case, as the nonlinearity
is introduced by the transmitter PAs, the communication channel is modeled as a
special case of MIMO Volterra systems that does not contain products of different
sources, i.e. the multiple sources are not nonlinearly mixed. This kind of model
can be viewed as a parallel-cascade of multiple SIMO Volterra systems.

Two different models for the PA are considered: a memoryless polynomial model
and a memory polynomial model, also known as diagonal Volterra model [38, 119,
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Figure 1.1: Links between the chapters, applications, types of MIMO Volterra
models and used approaches.

39, 102, 66, 16, 40]. A technique for supervised channel estimation is first proposed
for the memoryless polynomial PA case. Channel equalization techniques are then
developed based on a transmission scheme that re-transmits all the symbols several
times with a different transmission power each time. Due to the nonlinear nature of
the channel, the redundancy added by this transmission scheme can be exploited to
provide multi-access at the reception and, consequently, to recover the transmitted
signals.

It is also demonstrated that when the PAs are modeled as memory polynomials,
the received signals can be expressed in the same way as in the case of memoryless
polynomial PAs. As a result, the channel estimation and equalization techniques
proposed for polynomial PAs can be directly applied in the case of memory poly-
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nomial PAs.

Chapter 4, entitled Supervised Estimation of MIMO Volterra Channels
Using Orthonormal Polynomials, is dedicated to the development of estima-
tion techniques for MIMO Volterra channels in a supervised scenario, considering
time and space division multiple access (TDMA-SDMA) systems. This chapter
considers the most general type of MIMO Volterra systems used in this thesis,
where the received signals are nonlinear mixtures of the sources, with no constraint
in the channel memory.

In adaptive schemes, the Least Mean Square (LMS) algorithm generally exhibits a
slow convergence speed when identifying Volterra models, as the covariance matrix
of the regression vector has, in general, a high eigenvalue spread when the input
signals are QAM modulated [14]. In order to improve the conditioning of this
covariance matrix and overcome this problem, the use of orthonormal polynomials
is an efficient solution used by some authors in the SISO case [14, 108, 105]. In
Chapter 4, we extend the procedure of construction and the use of these polyno-
mials to the case of MIMO Volterra systems, allowing different probability density
functions (PDFs) for the input signals and different memories with respect to the
inputs. The supervised channel estimation technique proposed in this chapter is
applied to the estimation of multisuer nonlinear ROF channels.

Chapter 5, entitled Blind Estimation of Memoryless MIMO Volterra
Channels Using Tensor Decomposition and Precoding, also presents es-
timation methods for MIMO Volterra communication channels in the context of
TDMA-SDMA systems. However, the techniques proposed in this chapter consider
a blind scenario and treat the case of memoryless channels using tensor decom-
positions. By exploiting the fact that Volterra models are linear with respect to
their coefficients, the blind estimation of MIMO Volterra channels is carried out
by means of the Parallel Factor (PARAFAC) decomposition, also known as Ca-
nonical Decomposition (CANDECOMP). In fact, these methods are based on the
PARAFAC decomposition of a tensor composed of channel output covariances.
Such a decomposition is possible owing to a new precoding scheme developed for
PSK signals modeled as Markov chains. Some conditions on the transition proba-
bility matrices (TPMs) of the Markov chains are established to introduce temporal
correlation and satisfy statistical correlation constraints inducing the PARAFAC
decomposition of the considered tensor.

A great advantage of using the PARAFAC decomposition is that it allows the
blind channel identification and information recovery when the number of receive
antennas is smaller than the number of terms of the Volterra series, contrarily
to some previous works [127, 43, 113]. This is particularly interesting since the
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Volterra filters may have a large number of parameters. Indeed, working with
a number of receive antennas higher than or equal to the number of terms of
the Volterra series imposes a strong constraint on the number of antennas to be
used. Moreover, PARAFAC decomposition avoids the use of a pre-whitening step,
an operation that increases the computational complexity and may degrade the
channel estimation [168]. The channel estimation techniques proposed in this
chapter are also applied to the estimation of multisuer nonlinear ROF channels.

Chapter 6, entitled Estimation and Equalization of MIMO Volterra
Channels in CDMA systems, proposes various techniques for channel esti-
mation and information recovery in MIMO Volterra systems in the context of a
CDMA communication system based on the use of tensor decompositions. Indeed,
signal processing techniques that use the PARAFAC decomposition are particu-
larly interesting when used with CDMA systems.

This chapter deals with memoryless communication channels, as well as with short
memory channels. In the memoryless case, a technique for joint blind channel
estimation and information recovery is developed based on the PARAFAC decom-
position of a third-order tensor composed of received signals, by exploring space,
time and code diversities. Still in the case of a memoryless channel, a blind estima-
tion technique is developed based on the PARAFAC decomposition of a fifth-order
tensor composed of covariances of the received signals, considering that the trans-
mitted signals are PSK modulated. Moreover, a blind identification method for
a MIMO Volterra channel with short memory in a CDMA system is proposed.
This method, based on the PARAFAC decomposition of a third-order tensor of
channel output covariances, can be viewed as an extension of the ones developed
in Chapter 5 for channels with short memory.

Thus, it should be highlighted that this thesis covers channel estimation and in-
formation recovery in different kinds of MIMO Volterra systems. Note that the
techniques proposed in Chapters 3 and 4 are supervised, and the ones proposed
in Chapters 5 and 6 are blind. In fact, as we will see later, Chapters 5 and 6
also propose some methods based on semi-blind transmission schemes. Note also
that the proposed techniques use different kinds of approaches, according to the
considered problem. At last, it can be viewed that the proposed techniques are
applied to three different types of communication systems: wireless OFDM, ROF
and CDMA-ROF systems.

Main contributions

The main contributions of this thesis can be summarized as follows:
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Chapter 2

• Development of general expressions for equivalent baseband discrete-time
MIMO Volterra channels (Section 2.2).

• Establishment of relationships between MIMO Wiener, Hammerstein and
Wiener-Hammerstein models, and the MIMO Volterra model (Section 2.3).

Chapter 3

• Proposition of a technique for supervised estimation of SISO- and MIMO-
OFDM channels with memoryless polynomial PAs (Sections 3.2.2 and 3.3.1).

• Proposition of Zero Forcing (ZF) and Minimum Mean Square Error (MMSE)
receivers for SISO- and MIMO-OFDM channels with memoryless polynomial
PAs (Sections 3.2.3 and 3.3.3.)

• Theorem 3.1 stating that a memory polynomial PA in a OFDM system can be
expressed as a polynomial PA with coefficients that vary from one subcarrier
to another (Section 3.4).

• Development of a link between the frequency domain received signals in a
MIMO-OFDM system in terms of the global channel parameters in the case
of memoryless and memory polynomial PAs (Section 3.4).

Chapter 4

• Development of a basis of orthonormal polynomials for equivalent baseband
MIMO Volterra systems, allowing different probability density functions for
the input signals and different memories with respect to the inputs (Section
4.3).

• Application of the proposed basis of orthonormal polynomials to the estima-
tion of uplink nonlinear MIMO ROF channels (Sections 4.4 and 4.5).

Chapter 5

• Development of orthogonality constraints inducing the PARAFAC decompo-
sition of a third-order tensor of received signal covariances in a memoryless
MIMO Volterra channel (Sections 5.2 and 5.3).

• Proposition of a precoding scheme based on the use of discrete time Markov
chains (DTMCs) so that the transmitted signals satisfy these orthogonality
constraints (Section 5.4).
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• Proposition of two techniques for blind estimation of memoryless MIMO
Volterra channels, based on the use of the Alternating Least Squares (ALS)
algorithm and a Joint Diagonalization Algorithm (JDA) (Section 5.5).

Chapter 6

• Proposition of two deterministic techniques for joint estimation and equali-
zation of memoryless MIMO Volterra channels in a CDMA system (Section
6.1).

• Proposition of three stochastic techniques for blind estimation of memoryless
MIMO Volterra channels in a CDMA system (Section 6.2).

• Development of a stochastic approach for blind estimation of MIMO Volterra
channels with short memory in a CDMA system (Section 6.3).

• Application of the proposed techniques in uplink nonlinear MIMO-CDMA
ROF channels (Section 6.4).
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The relationships between these publications and chapters of the thesis is the
following: publications 1 and 5 are related to Chapter 3, publications 10 and 13 to
Chapter 4, publications 3, 9, 10, 11 and 12 to Chapter 5, and publications 2, 6, 7
and 8 to Chapter 6. Publication 4 was developed during the period of the thesis,
but its results are not included in this thesis. Its results have motivated some of
the works of the present thesis.



CHAPTER 2

Volterra Models for Nonlinear MIMO
Communication Channels

This thesis is fundamentally based on the development of techniques for chan-
nel estimation and information recovery in multiple-input multiple-output

(MIMO) Volterra communication channels. This chapter presents a survey of the
Volterra models used in this thesis for modeling nonlinear MIMO communication
channels. As mentioned earlier, the multiple-inputs of these channels represent
various sources transmitting at the same time and frequency band, which can cor-
respond to multiple users or a single user with multiple transmit antennas. On the
other hand, multiple-outputs represent the observations at the receiver, obtained
through an antenna array. In fact, the multiple observations at the receiver can
also be obtained by oversampling the received signals, however, this approach is
not considered in this thesis.

We are particularly interested in three different applications of nonlinear MIMO
communication channels: Orthogonal Frequency Division Multiplexing (OFDM),
Radio-Over-Fiber (ROF) and ROF-Code division multiple access (ROF-CDMA)
systems, which constitute important technologies used in current and upcoming
telecommunication systems. An interesting issue about these systems is that their
communication channels can be modeled as block-structured nonlinear systems, i.e.
series-cascades of nonlinear and linear blocks, such as MIMO Wiener, Hammerstein
and Wiener-Hammerstein models. As it will be shown later in the chapter, this
kind of systems can be viewed as special cases of Volterra systems.

However, for simplifying the presentation of Volterra models, we first consider
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single-input single-output (SISO) communication channels. By starting from an
expression for the continuous-time passband received signals, we develop an ex-
pression for the continuous-time equivalent baseband received signals. In order
to show the broadening of the spectral support provided by the Volterra system
on the equivalent baseband received signals, the frequency domain representation
of the Volterra channel is developed. The expression for the discrete-time equi-
valent baseband received signals is also introduced, constituting the basis for all
the MIMO Volterra models used in this work. It is important to highlight that
the signal processing techniques developed in this thesis exploit the fact that a
Volterra model is linear with respect to its parameters. Due to this, vector repre-
sentations for the discrete-time received signals that explicit this property are also
introduced.

The rest of this chapter is organized as follows. Section 2.1 presents the single-
input-single-output (SISO) communication channels modeled by Volterra models.
In Section 2.2, the discrete-time equivalent baseband MIMO Volterra models are
introduced. Section 2.3 describes some systems constituted of series-cascades of
linear and nonlinear blocks. Section 2.4 describes some applications of MIMO
Volterra models in communication systems and some conclusions about the present
chapter are drawn in Section 2.5.

2.1 Volterra communication channels

In this section, we introduce the main Volterra systems used for modeling SISO
communication channels, as well as some of their properties. The output x̌(ξ)
of a real-valued continuous-time SISO Volterra system of finite order Ǩ can be
represented by the following relationship:

x̌(ξ) =
Ǩ∑

k=1

∫ ∞

−∞
· · ·

∫ ∞

−∞
ȟk(τ1, . . . , τk)

k∏

i=1

š(ξ − τi)dτi , (2.1)

where ξ is the continuous-time variable, ȟk(τ1, . . . , τk) is the real-valued continuous-
time Volterra kernel of order k and š(ξ) is the real-valued continuous-time input
signal. Regarding the signals and systems considered through this thesis, the
following assumptions will be considered in all the developments of this work:

(A1): The transmitted signals are stationary.

(A2): The systems are causal and time-invariant.
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One of the main advantages of the Volterra model is that a wide range of practical
physical systems can be approximated by (2.1). In particular, any finite memory
nonlinear system satisfying A2 can be approximated using (2.1) [17]. Moreover,
it must be remarked that, when Ǩ = 1, the Volterra model is equivalent to the
convolution of input signal with the linear kernel ȟ1(τ1).

A Volterra kernel ȟk(τ1, . . . , τk) is said to be symmetric if it is invariant to a per-
mutation of the indices τ1, . . . , τk. Thus, as a permutation of the indices τ1, . . . , τk

does not change the product
∏k

i=1 š(ξ − τi), an asymmetric Volterra kernel can
always be rewritten as a symmetric kernel [134]. For instance, let us consider a
homogeneous Volterra system of order 2, i.e. a Volterra system containing only
the quadratic kernel:

x̌(ξ) =

∫ ∞

−∞

∫ ∞

−∞
h̄2(τ1, τ2)š(ξ − τ1)š(ξ − τ2)dτ1dτ2 , (2.2)

where the kernel h̄2(τ1, τ2) is non-symmetric, i.e. h̄2(τ1, τ2) 6= h̄2(τ2, τ1). Equation
(2.2) can be rewritten as

x̌(ξ) =

∫ ∞

−∞

∫ ∞

−∞
ȟ2(τ1, τ2)š(ξ − τ1)š(ξ − τ2)dτ1dτ2 , (2.3)

with ȟ2(τ1, τ2) = (h̄2(τ1, τ2) + h̄2(τ2, τ1))/2 being symmetric. Thus, in this work,
with no loss of generality, we will consider symmetric kernels.

In the case of a communication channel, x̌(ξ) and š(ξ) can be viewed respectively
as the bandpass received and transmitted signals. In the sequel, we derive the
continuous- and discrete-time equivalent baseband representations of the Volterra
system (2.1).

2.1.1 The equivalent baseband Volterra channel

The digital signal processing techniques of this thesis are based on discrete-time
equivalent baseband representations of the received signals, which are obtained by
sampling the continuous-time equivalent baseband received signals. The develop-
ment of a continuous-time equivalent baseband Volterra system is then needed. A
real-valued continuous-time bandpass signal š(ξ) and its continuous-time equiva-
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lent baseband version s(ξ) are related by the following expression:

š(ξ) = Re
{
s(ξ)e 2πfcξ

}

=
1

2

[
s(ξ)e 2πfcξ + s∗(ξ)e− 2πfcξ

]
, (2.4)

where  =
√
−1 is the imaginary unit and fc the carrier frequency. The baseband

signal s(ξ), also known as complex-envelope, is assumed to be bandlimited, i.e.
the Fourier transform and the power spectral density of s(ξ) have finite support,
vanishing outside I = [−B,B]. Moreover, it is assumed that B is much smaller
than fc (B ≪ fc).

Initially, let us consider a homogeneous Volterra system of order 2. Substituting
(2.4) into (2.3), we get:

x̌(ξ) =
1

4

∫ ∞

−∞

∫ ∞

−∞
ȟ2(τ1, τ2)

[
s(ξ − τ1)e

 2πfc(ξ−τ1) + s∗(ξ − τ1)e
− 2πfc(ξ−τ1)

]

[
s(ξ − τ2)e

 2πfc(ξ−τ2) + s∗(ξ − τ2)e
− 2πfc(ξ−τ2)

]
dτ1dτ2, (2.5)

which gives:

x̌(ξ) =
1

4

∫ ∞

−∞

∫ ∞

−∞
ȟ2(τ1, τ2)

[
s(ξ − τ1)s(ξ − τ2)e

 2π(2fc)ξe 2πfc(−τ1−τ2)

+ s(ξ − τ1)s
∗(ξ − τ2)e

 2πfc(−τ1+τ2) + s∗(ξ − τ1)s(ξ − τ2)e
 2πfc(τ1−τ2)

+ s∗(ξ − τ1)s
∗(ξ − τ2)e

− 2π(2fc)ξe 2πfc(τ1+τ2)
]
. (2.6)

At the receiver, the signal x̌(ξ) is filtered by a bandpass filter centered in fc.
Thus, if B ≪ fc, all the frequency components not centered at fc are assumed
to be suppressed by the bandpass filter1. As we can see in (2.6), the frequency
components of x̌(ξ) are centered at the frequencies 0 and 2fc. This means that
the received signal is equal to zero after the bandpass filter. In fact, it can be
demonstrated that all the spectral components generated by the even-order kernels
are not centered at the carrier frequency fc [77].

Similarly as (2.6), the output of a homogeneous Volterra system of order 3, i.e. a

1In fact, bandpass filters are also placed after nonlinear devices such as power amplifiers,
suppressing all the frequency components lying outside the passband of the filter at this stage of
the transmission.
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Volterra system containing only the cubic kernel, can be rewritten as:

x̌(ξ) =
1

8

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ȟ3(τ1, τ2, τ3)

[
s(ξ − τ1)e

 2πfc(ξ−τ1) + s∗(ξ − τ1)e
− 2πfc(ξ−τ1)

]

[
s(ξ − τ2)e

 2πfc(ξ−τ2) + s∗(ξ − τ2)e
− 2πfc(ξ−τ2)

]

[
s(ξ − τ3)e

 2πfc(ξ−τ3) + s∗(ξ − τ3)e
− 2πfc(ξ−τ3)

]
dτ1dτ2τ3, (2.7)

or,equivalently,

x̌(ξ) =
1

8

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ȟ3(τ1, τ2, τ3)

[
s(ξ − τ1)s(ξ − τ2)s(ξ − τ3)e

 2π(3fc)ξe 2πfc(−τ1−τ2−τ3)

+ s(ξ − τ1)s(ξ − τ2)s
∗(ξ − τ3)e

 2πfcξe 2πfc(−τ1−τ2+τ3)

+ s(ξ − τ1)s
∗(ξ − τ2)s(ξ − τ3)e

 2πfcξe 2πfc(−τ1+τ2−τ3)

+ s(ξ − τ1)s
∗(ξ − τ2)s

∗(ξ − τ3)e
− 2πfcξe 2πfc(−τ1+τ2+τ3)

+ s∗(ξ − τ1)s(ξ − τ2)s(ξ − τ3)e
 2πfcξe 2πfc(τ1−τ2−τ3)

+ s∗(ξ − τ1)s(ξ − τ2)s
∗(ξ − τ3)e

− 2πfcξe 2πfc(τ1−τ2+τ3)

+ s∗(ξ − τ1)s
∗(ξ − τ2)s(ξ − τ3)e

− 2πfcξe 2πfc(τ1+τ2−τ3)

+ s∗(ξ − τ1)s
∗(ξ − τ2)s

∗(ξ − τ3)e
− 2π(3fc)ξe 2πfc(τ1+τ2+τ3)

]
dτ1dτ2τ3. (2.8)

Taking the symmetry of the kernel ȟ3(τ1, τ2, τ3) into account and noting that the
first and the last terms inside the brackets in (2.8) are centered at 3fc and, conse-
quently, suppressed by bandpass filtering, we can write the following expression
for the bandpass received signal after the bandpass filter:

x̄(ξ) =
3

8

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ȟ3(τ1, τ2, τ3)

[
s(ξ − τ1)s(ξ − τ2)s

∗(ξ − τ3)e
 2πfc(−τ1−τ2+τ3)

e 2πfcξ + s∗(ξ − τ1)s
∗(ξ − τ2)s(ξ − τ3)e

 2πfc(τ1+τ2−τ3)e− 2πfcξ
]
dτ1dτ2τ3,(2.9)

where we assumed that the bandpass filter is perfectly flat at the passband. Thus,

x̄(ξ) = Re

{(
3

4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ȟ3(τ1, τ2, τ3)s(ξ − τ1)s(ξ − τ2)s

∗(ξ − τ3)

e 2πfc(−τ1−τ2+τ3)dτ1dτ2τ3

)
e 2πfcξ

}
. (2.10)

The equivalent baseband received signal is then given by:

x(ξ) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
h3(τ1, τ2, τ3)s(ξ − τ1)s(ξ − τ2)s

∗(ξ − τ3)dτ1dτ3τ3, (2.11)
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where

h3(τ1, τ2, τ3) =
3

4
ȟ3(τ1, τ2, τ3)e

 2πfc(−τ1−τ2+τ3). (2.12)

In a similar way, it can be shown that the equivalent baseband received signal for
a Volterra system of order 2K + 1 can be written as [77]:

x(ξ) =
K∑

k=0

∫ ∞

−∞
· · ·

∫ ∞

−∞
h2k+1(τ1, . . . , τ2k+1)

k+1∏

i=1

s(ξ − τi)
2k+1∏

i=k+2

s∗(ξ − τi)

dτ1dτ2 . . . dτ2k+1, (2.13)

where the equivalent baseband kernel is given by:

h2k+1(τ1, . . . , τ2k+1) =
C2k+1,k

22k
ȟ2k+1(τ1, . . . , τ2k+1)e

2πfc(−
∑k+1

i=1 τi+
∑2k+1

i=k+2 τi). (2.14)

with C2k+1,k defined in (A.6). Three characteristics of the equivalent baseband
Volterra system (2.13) should be highlighted. The first one is that it includes only
the odd-order kernels with one more non-conjugated term than conjugated terms.
The second one is that the Volterra coefficients (2.14) are complex-valued, while
the bandpass Volterra coefficients in (2.1) are real-valued. The last one is that,
due to the asymmetry of indices on the phase of the exponential term in (2.14):
ϕ(τ1, ..., τ2k+1) = −∑k+1

i=1 τi +
∑2k+1

i=k+2 τi, the equivalent baseband Volterra kernels
h2k+1(τ1, . . . , τ2k+1) are not symmetric.

2.1.2 Fourier transform of a Volterra channel output

The understanding of the behavior of a nonlinear system can be improved if the
spectrum of the output signal is computed. In the sequel, the frequency domain
representation of the equivalent baseband Volterra system (2.13) is developed.
Using the inverse Fourier transform formula, we may rewrite (2.13) as:

x(ξ) =
K∑

k=0

∫ ∞

−∞
· · ·

∫ ∞

−∞
h2k+1(τ1, . . . , τ2k+1)

k+1∏

i=1

(∫ ∞

−∞
S(fi)e

 2πfi(ξ−τi)dfi

)

2k+1∏

i=k+2

(∫ ∞

−∞
S∗(−fi)e

 2πfi(ξ−τi)dfi

)

dτ1 . . . dτ2k+1, (2.15)
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where S(f) denotes the Fourier transform of s(ξ). Denoting by
H2k+1(f1, . . . , f2k+1) the multidimensional Fourier transform of h2k+1(τ1, . . . , τ2k+1)
given by:

H2k+1(f1, . . . , f2k+1) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
h2k+1(τ1, . . . , τ2k+1)e

− 2π(
∑2k+1

i=1 fiτi)

dτ1 . . . dτ2k+1, (2.16)

equation (2.15) can be expressed as:

x(ξ) =
K∑

k=0

∫ ∞

−∞
· · ·

∫ ∞

−∞
H2k+1(f1, . . . , f2k+1)

k+1∏

i=1

S(fi)
2k+1∏

i=k+2

S∗(−fi)

e 2π(
∑2k+1

i=1 fi)ξdf1 . . . df2k+1. (2.17)

Defining υi = υi−1 + fi, for i = 1, 2, ..., 2k + 1, with υ0 = 0, (2.17) can be written
as:

x(ξ) =

∫ ∞

−∞

(
K∑

k=0

∫ ∞

−∞
· · ·

∫ ∞

−∞
H2k+1(υ1, υ2 − υ1, . . . , υ2k+1 − υ2k)

k+1∏

i=1

S(υi − υi−1)
2k+1∏

i=k+2

S∗(−(υi − υi−1))dυ1 . . . dυ2k

)

e 2πυ2k+1ξdυ2k+1, (2.18)

where we can recognize the inverse Fourier transform formula. Thus, we have:

X(f) =
K∑

k=0

∫ ∞

−∞
· · ·

∫ ∞

−∞
H2k+1(υ1, υ2 − υ1, . . . , f − υ2k)

k+1∏

i=1

S(υi − υi−1)
2k∏

i=k+2

S∗(−(υi − υi−1))S
∗(−(f − υ2k))dυ1 . . . dυ2k, (2.19)

where X(f) denotes the Fourier transform of x(ξ) and υ2k+1 was replaced by f for
the sake of simplifying the notation.

To get a better understanding of (2.19), let us consider a linear-cubic Volterra
system (K = 1) and use the fact that S(f) is zero outside I = [−B, B]:

X(f) = H1(f)S(f) +

∫ B

−B

∫ 2B

−2B

H3(υ1, υ2 − υ1, f − υ2)S(υ1)S(υ2 − υ1)

S∗(−(f − υ2))dυ1dυ2. (2.20)
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It can be viewed in (2.19) that if the Volterra system changes the phase of the
transmitted signal frequency spectrum, a memory will then be introduced. Moreo-
ver, note that the frequency support of X(f) is equal to [−3B, 3B], which means
that the output signal x(ξ) may have spectral components outside the frequency
support of the input signal I = [−B, B].

It should be noted that a signal is never truly bandlimited in practice because
a bandlimited signal would require infinite time support. Furthermore, due to
causality, a system can not be truly bandlimited in practice neither. Thus, the
bandwidth of a signal is usually considered as the range of frequencies where its
Fourier transform has a power above a certain threshold. The signal bandwidth
is then understood to be the width of the frequency range where the main part
of its power is located. This means that, when the spectral broadening provided
by the Volterra system is not important, the signal bandwidth may not change
significantly.

Concerning the bandwidth of the bandpass filter considered in Section 2.1.1, two
cases can be considered. The first one is when the bandpass filter bandwidth is
wide enough to cover the spectral broadening provided by the Volterra system
[78, 3]. In this case, it is generally assumed that the bandpass filter causes no
significant signal distortion in the components centered at the frequency fc, in
such a way that this filter can be considered as transparent with respect to the
equivalent baseband input signal. The second case is when the bandpass filter
bandwidth is not large enough to cover the spectral broadening, i.e. the bandpass
filter partially rejects the nonlinear interference introduced by the Volterra filter
at the frequency fc [9, 12, 68, 147]. In this case, the bandpass filter can not be
considered as transparent with respect to the equivalent baseband input signals.
In this thesis, we consider the first case.

2.1.3 Discrete-time equivalent baseband Volterra channel

In the sequel, a discrete-time representation of the equivalent baseband Volterra
channel studied in Section 2.1.1 is developed. Discrete-time equivalent baseband
Volterra models were developed in the context of communication systems for mo-
deling bandwidth limited channels [11, 77, 9, 14, 137, 24].

We consider that the received signal in (2.13) is sampled with a rate of W , assumed
to be higher than or equal to the Nyquist rate 2B of the input signal. Thus,
assuming perfect synchronization, we get x(n) = x(ξ)|ξ=n/W (n = 0, 1, ...). As
pointed out earlier, nonlinear systems increase signal bandwidth, which means
that it is not possible to reconstruct x(ξ) from x(n) using a sampling rate of
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W = 2B. However, it was demonstrated that the Nyquist rate 2B of the input
signal is sufficient to identify and compensate nonlinear systems [154, 104]. The
input signal sampled at the Nyquist rate W = 2B leads to [109]:

S(f) =
∞∑

n=−∞
s(n)e− 2πnf/2B. (2.21)

In the sequel, the Volterra kernel h2k+1(τ1, . . . , τ2k+1) is assumed to be bandlimited,
i.e. H(f1, ..., f2k+1) = 0 for |fi| > B, ∀i = 1, 2, ..., 2k + 1. In fact, from (2.19), it
can be viewed that the form of H(f1, ..., f2k+1) outside the hypercube I × · · · × I
(I = [−B, B]) is of no consequence since S(f) vanishes outside I [104]. Thus,
sampling the Volterra kernel h2k+1(τ1, . . . , τ2k+1) at the first dimension with the
Nyquist rate of input signal as:

h2k+1(n, τ2, . . . , τ2k+1) =
1

2B
h2k+1(τ1, τ2, . . . , τ2k+1)|τ1= n

2B
, (2.22)

leads to:

H2k+1(f, τ2, . . . , τ2k+1) =
1

2B

∞∑

n=−∞
h2k+1(n, τ2, . . . , τ2k+1)e

− 2πnf/2B. (2.23)

Thus, sampling the Volterra kernel as:

h2k+1(n1, . . . , n2k+1) =
1

(2B)2k+1
h2k+1(τ1, . . . , τ2k+1)|τ1=

n1
2B

,··· ,τ2k+1=
n2k+1

2B

, (2.24)

leads to:

H2k+1(f1, ..., f2k+1) =
1

(2B)2k+1

∞∑

n1=−∞
· · ·

∞∑

n2=−∞
h2k+1(n1, . . . , n2k+1)

e− 2π(
∑2k+1

i=1 nifi)/2B. (2.25)

From (2.17), (2.21) and (2.25), the output signal sampled at the Nyquist rate of
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input signal, i.e. x(n) = x(ξ)|ξ=n/2B, can be written as:

x(n) =
1

(2B)2k+1

K∑

k=0

∫ B

−B

· · ·
∫ B

−B

∞∑

n1=−∞
· · ·

∞∑

n2k+1=−∞
h2k+1(n1, . . . , n2k+1)

e− 2π(
∑2k+1

i=1 nifi)/2B
k+1∏

i=1

∞∑

n=−∞
s(n)e− 2πnfi/2B

2k+1∏

i=k+2

∞∑

n=−∞
s∗(n)e− 2πnfi/2B

e 2π(
∑2k+1

i=1 fi)n/2Bdf1 . . . df2k+1, (2.26)

which leads to

x(n) =
1

(2B)2k+1

K∑

k=0

∞∑

n1=−∞
· · ·

∞∑

n2k+1=−∞
h2k+1(n1, . . . , n2k+1)

∫ B

−B

· · ·
∫ B

−B

e− 2π(
∑2k+1

i=1 nifi)/2B
∞∑

n
′

1=−∞

· · ·
∞∑

n
′

2k+1=−∞

k+1∏

i=1

s(n
′

i)
2k+1∏

i=k+2

s∗(n
′

i)e
− 2π

(
∑2k+1

i=1 n
′

ifi

)

/2B

e 2π(
∑2k+1

i=1 fi)n/2Bdf1 . . . df2k+1, (2.27)

or, yet,

x(n) =
1

(2B)2k+1

K∑

k=0

∞∑

n1=−∞
· · ·

∞∑

n2k+1=−∞

∞∑

n
′

1=−∞

· · ·
∞∑

n
′

2k+1=−∞

h2k+1(n1, . . . , n2k+1)

k+1∏

i=1

s(n
′

i)
2k+1∏

i=k+2

s∗(n
′

i)
2k+1∏

i=1

∫ B

−B

e
 2π

(

n−ni−n
′

i

)

fi/2B
dfi, (2.28)

which implies:

x(n) =
K∑

k=0

∞∑

n1=−∞
· · ·

∞∑

n2k+1=−∞

∞∑

n
′

1=−∞

· · ·
∞∑

n
′

2k+1=−∞

h2k+1(n1, . . . , n2k+1)

k+1∏

i=1

s(n
′

i)
2k+1∏

i=k+2

s∗(n
′

i)
2k+1∏

i=1

sinc
(

π
[

n − ni − n
′

i

])

, (2.29)

where

sinc (θ) =

{
1, for θ = 0

sin θ
θ

, otherwise.
(2.30)
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Equation (2.29) can then be rewritten as:

x(n) =
K∑

k=0

∞∑

n1=−∞
· · ·

∞∑

n2k+1=−∞
h2k+1(n1, . . . , n2k+1)

k+1∏

i=1

s(n − ni)
2k+1∏

i=k+2

s∗(n − ni). (2.31)

The output x(n) of a causal complex-valued discrete-time baseband equivalent
Volterra system of finite memory M can then be represented by the following
relationship:

x(n) =
K∑

k=0

M∑

m1=0

· · ·
M∑

m2k+1=0

h2k+1(m1, . . . , m2k+1)
k+1∏

i=1

s(n − mi)
2k+1∏

i=k+2

s∗(n − mi). (2.32)

Note that (2.32) corresponds to the output of a linear finite impulse response (FIR)
filter of order (M +1) when K = 0, the coefficients of which are given by the linear
kernel h1(m1), for 0 ≤ m1 ≤ M .

The discrete-time Volterra model (2.32) can be rewritten in a compact form as:

x(n) = hTw(n), (2.33)

where w(n) ∈ C
Q×1 is the nonlinear regression vector given by:

w(n) = [sT (n) ⊗3
∗ sT (n) · · · ⊗2K+1

∗ sT (n)]T , (2.34)

with the operator ⊗2k+1
∗ defined as:

⊗2k+1
∗ s(n) ≡

[
⊗k+1s(n)

]
⊗

[
⊗ks∗(n)

]
∈ C

(M+1)2k+1×1, (2.35)

s(n) = [s(n) s(n−1) . . . s(n−M)]T ∈ C
(M+1)×1 being the linear regression vector,

⊗ks(n) the power of order k of the Kronecker product of s(n) (see Appendix A)
and Q the number of channel coefficients (nonlinear terms) of the Volterra filter,
given by:

Q =
K∑

k=0

(M + 1)2k+1. (2.36)

Note that w(n) contains all the products like
∏k+1

i=1 s(n − mi)
∏2k+1

i=k+2 s∗(n − mi)
of (2.32). Moreover, the vector h ∈ C

Q×1 containing the Volterra coefficients is
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given by:

h =

[(

h(1)
)T (

h(3)
)T

. . .
(

h(2K+1)
)T

]T

, (2.37)

with h(2k+1) ∈ C
(M+1)2k+1×1, for 0 ≤ k ≤ K. Using (A.3), the qth element of

h(2k+1) can be written as h
(2k+1)
q = hk(m1, . . . , m2k+1), with

q = m2k+1 + m2k(M + 1) + · · · + m2(M + 1)2k−1 + m1(M + 1)2k

= 1 +
N∑

n=1

mk(M + 1)N−n, (2.38)

for 0 ≤ m1, m2, ...,m2k+1 ≤ M + 1.

From (2.33), it can be viewed that the output x(n) is linear with respect to the
system parameters hk(m1, . . . , mk). This means that a Volterra filter can be viewed
as a linear system where the output is a weighted sum of Q virtual-sources or quasi-
sources, these sources being given by the nonlinear products wq(n) of the input,
where wq(n) denotes the qth element of the nonlinear regression vector w(n). In
fact, this property corresponds to one of the main advantages of Volterra models,
as it may simplify the estimation of the system coefficients and the recovery of the
input signals.

2.1.4 Time-varying FIR filter interpretation

In order to get a better understanding of discrete-time Volterra filters, let us
consider the following homogeneous real-valued Volterra system of order 2:

x(n) =
M∑

m1=0

(
M∑

m2=0

h2(m1,m2)s(n − m2)

)

s(n − m1). (2.39)

Note that (2.39) can be written as the output of a FIR filter:

x(n) =
M∑

m1=0

f2(m1, n)s(n − m1), (2.40)
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Figure 2.1: Homogeneous quadratic real-valued Volterra system viewed as a
time-variant FIR filter.

the coefficients of which given by:

f2(m1, n) =
M∑

m2=0

h2(m1, m2)s(n − m2), (2.41)

for 0 ≤ m1 ≤ M . Moreover, the coefficient f2(m1, n) can also be viewed as the
output of a FIR filter with coefficients h2(m1,m2), for 0 ≤ m2 ≤ M , and input
s(n). This means that the output a homogeneous quadratic Volterra system can
be written as the output of a FIR filter of order (M +1), the mth (1 ≤ m ≤ M +1)
coefficient of which being the output of another FIR filter of order (M + 1). This
approach is illustrated by Fig. 2.1. Note that the coefficient that multiplies the
delayed input s(n − m) (0 ≤ m ≤ M) is the output of the FIR with impulse
response [h2(m, 0) h2(m, 1) · · ·h2(m,M)] and input s(n). The considered Volterra
filter can then be viewed as a linear FIR filter with time-variant coefficients that
depend on the input signal s(n).

A similar development can be done for a Volterra filter of any order of nonlinearity.
For instance, the output of a homogeneous cubic Volterra system can be written
as the output of a FIR filter, the coefficients of which being the output of a
homogeneous quadratic Volterra system.

2.1.5 Triangular form

Let us go back to the general discrete-time baseband equivalent Volterra model
(2.32). One of the main drawbacks of this models is its high number of coefficients.
It can be viewed in (2.36) that the number of parameters Q grows exponentially
with the nonlinearity order 2K + 1. However, it can be noted that some terms of
the nonlinear regression vector (2.34) are redundant. They can be eliminated by
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rewriting (2.32) as a triangular Volterra system:

x(n) =
K∑

k=0

M∑

m1=0

M∑

m2=m1

· · ·
M∑

mk+1=mk

M∑

mk+2=0

· · ·
M∑

m2k+1=m2k

h̃2k+1(m1,m2, . . . , m2k+1)

k+1∏

i=1

s(n − mi)
2k+1∏

i=k+2

s∗(n − mi). (2.42)

with

h̃2k+1(m1,m2, . . . , m2k+1) =
M∑

m̃1=0

· · ·
M∑

m̃k+1=0
︸ ︷︷ ︸

{m̃1,...,m̃k+1}∈
π(m1,...,mk+1)

M∑

m̃k+2=0

· · ·
M∑

m̃2k+1=0
︸ ︷︷ ︸

{m̃k+2,...,m̃2k+1}∈
π(mk+2...,m2k+1)

h2k+1(m̃1, m̃2, . . . , m̃2k+1), (2.43)

where π(m1, . . . , mk+1) denotes the set of all the permutations of {m1, . . . , mk+1}.
Note that, in (2.42), we have m1 ≤ · · · ≤ mk+1 and mk+2 ≤ · · · ≤ m2k+1.

The vector form of a triangular Volterra model is given by:

x(n) = h̃
T
w(n), (2.44)

where the nonlinear regression vector w(n) ∈ C
Q×1 is given by:

w(n) = [sT (n) ⊘3
∗ sT (n) · · · ⊘2K+1

∗ sT (n)]T ∈ C
Q×1, (2.45)

the operator ⊘2k+1
∗ being defined as:

⊘2k+1
∗ s(n) =

[
⊘k+1s(n)

]
⊗

[
⊘ks∗(n)

]
(2.46)

and ⊘ks(n) being the power of order k of the truncated Kronecker product of s(n)
(see Appendix A). In this case, the vector h̃ ∈ C

Q×1 contains the parameters of
the triangular Volterra model and the number of parameters Q can be deduced
from (A.6) in Appendix A:

Q =
K∑

k=0

CM+1,kCM+1,k+1 , where Ci,p =
(i + p − 1)!

(i − 1)!p!
. (2.47)

As we will see later, if the input signals have a constant modulus, as in Phase Shift
Keying (PSK) modulations, the triangular Volterra model (2.42) can be rewritten
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with a smaller number of coefficients Q, since, in this case, some power terms of
s(n) can be viewed as power terms of smaller order.

2.2 MIMO Volterra channels

As mentioned earlier, MIMO communication channels are also subject to nonlinear
distortions. In such cases, the MIMO Volterra models, described in this section,
can be used for modeling the channel. In fact, the models described in the se-
quel correspond to the most general forms of MIMO Volterra systems considering
discrete-time equivalent baseband representations. It should be highlighted that,
assuming the multiple sources transmit at the same time and the same frequency
band, the developments of Section 2.1 can be done in a similar way for MIMO
Volterra channels. The applications of MIMO Volterra models in communication
systems exploited in this thesis are discussed in Section 2.4.

For developing the expression of a discrete-time equivalent baseband MIMO Vol-
terra model, we first consider a nonlinear Single-Input-Multiple-Output (SIMO)
communication channel. That corresponds, for instance, to the case where a single
user transmits to an array of R receive antennas. In this case, the link between
each antenna element and the user can be modeled as a discrete-time baseband
equivalent Volterra system like (2.32). Thus, the discrete-time signal received by
the rth antenna element can be expressed as:

xr(n) =
K∑

k=0

M∑

m1=0

· · ·
M∑

m2k+1=0

h
(r)
2k+1(m1, . . . ,m2k+1)

k+1∏

i=1

s(n − mi)
2k+1∏

i=k+2

s∗(n − mi).

(2.48)

where h
(r)
2k+1(m1, . . . , m2k+1) are the Volterra kernels coefficients associated with

the rth output.

In the case of MIMO channel, i.e. considering multiple transmit antennas or
multiple-users, if the link between each source (Tx antenna or user) and each
receive antenna is modeled as a Volterra system, the rth output signal is then



30 CHAPTER 2. VOLTERRA MODELS FOR NONLINEAR MIMO COMMUNICATION CHANNELS

expressed by:

xr(n) =
T∑

t=1

K∑

k=0

M∑

m1=0

· · ·
M∑

m2k+1=0

h
(r)
2k+1(t,m1, . . . , m2k+1)

k+1∏

i=1

st(n − mi)
2k+1∏

i=k+2

s∗t (n − mi). (2.49)

where st(n) is the tth input signal (1 ≤ t ≤ T ) and h
(r)
k (t, m1, . . . , mk) are the

Volterra kernels coefficients associated with the rth output and the tth input signal.

Note that the discrete-time baseband equivalent MIMO Volterra system (2.49)
have products of the input signals in the form

∏k+1
i=1 st(n − mi)

∏2k+1
i=k+2 s∗t (n −

mi), which means that it does not contain products of different sources. This
corresponds to the case where the signal of each source is corrupted by nonlinear
intersymbol interference (ISI) and, then, the signal of all the sources are linearly
mixed, i.e. the nonlinearities are applied to the input signals individually, before
mixing the sources. This kind of model can be viewed as a parallel-cascade of T
SIMO Volterra systems. Thus, although (2.49) corresponds to a MIMO Volterra
model, it does not represent the case where the sources are nonlinearly mixed. In
order to develop a generical expression for a MIMO Volterra model taking this
case into account, let us consider the SIMO Volterra system (2.48) with the input
signal s(n) being the mixture of T different sources:

s(n) =
T∑

t=1

atst(n), (2.50)

leading to:

xr(n) =
K∑

k=0

M∑

m1=0

· · ·
M∑

m2k+1=0

h
(r)
2k+1(m1, . . . ,m2k+1)

k+1∏

i=1

(
T∑

t=1

atst(n − mi)

)
2k+1∏

i=k+2

(
T∑

t=1

a∗
t s

∗
t (n − mi)

)

, (2.51)
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or, equivalently,

xr(n) =
K∑

k=0

T∑

t1=1

· · ·
T∑

t2k+1=1

M∑

m1=0

· · ·
M∑

m2k+1=0
[

h
(r)
2k+1(m1, . . . , m2k+1)

k+1∏

i=1

ati

2k+1∏

i=k+2

a∗
ti

]
k+1∏

i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti(n − mi).(2.52)

The MIMO Volterra model (2.52) contains products of different sources
∏k+1

i=1 sti(n − mi)
∏2k+1

i=k+2 s∗ti(n − mi), as it corresponds to the case where the non-
linearities are applied to the input signals after mixing the sources. Based on
(2.52), the general discrete-time equivalent baseband MIMO Volterra model with
T inputs and R outputs is defined as:

xr(n) =
K∑

k=0

T∑

t1=1

· · ·
T∑

t2k+1=1

M∑

m1=0

. . .

M∑

m2k+1=0

h
(r)
2k+1(t1, . . . , t2k+1,m1, . . . , m2k+1)

k+1∏

i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti(n − mi). (2.53)

where h
(r)
2k+1(t1, . . . , t2k+1,m1, . . . , mk) are the Volterra kernels coefficients associa-

ted with the rth output and the product
∏k+1

i=1 sti(n−mi)
∏2k+1

i=k+2 s∗ti(n−mi). When
the diversity at the reception is provided by an antenna array, equation (2.53) can
be viewed as a “spatial-temporal Volterra” model in contrast with the “temporal
Volterra” model (2.32). Indeed, in this case, the Volterra kernels have multiple
time (t1, . . . , tk) and space (m1, . . . , mk) indices, instead of only time indices, as
in the SISO Volterra system (2.32), or multiple time indices and only one space
index, as in the MIMO Volterra model (2.49).

As well as for the SISO case, the discrete-time MIMO Volterra model (2.53) can
be rewritten in a triangular form, in such a way that the redundant terms are
eliminated:

xr(n) =
K∑

k=0

T∑

t1=1

· · ·
T∑

tk+1=tk

T∑

tk+2=1

· · ·
T∑

t2k+1=t2k

M∑

m1=0

. . .

M∑

mk+1=m
′

k+1

M∑

mk+2=0

· · ·
M∑

m2k+1=m
′

2k+1

h̃
(r)
2k+1(t1, . . . , t2k+1,m1, . . . , m2k+1)

k+1∏

i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti(n − mi). (2.54)
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with

m
′

k =

{
mk−1 if tk = tk−1,
0 if tk 6= tk−1,

(2.55)

It is also possible to define a MIMO Volterra model in order to take into account
the fact that the system has different memories with respect to the inputs. Thus, a
more general representation of discrete-time baseband equivalent MIMO Volterra
systems can be written as:

xr(n) =
K∑

k=0

T∑

t1=1

· · ·
T∑

tk+1=tk

T∑

tk+2=1

· · ·
T∑

t2k+1=t2k

Mt1∑

m1=0

· · ·
Mtk+1∑

mk+1=m
′

k+1

Mtk+2∑

mk+2=0

· · ·
Mt2k+1∑

m2k+1=m
′

2k+1

h̃
(r)
2k+1(t1, . . . , t2k+1,m1, . . . , m2k+1)

k+1∏

i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti(n − mi), (2.56)

where Mti is the memory of the system with respect to the tthi input, for 1 ≤ ti ≤ T .
The system model (2.56) can be rewritten in a different way:

xr(n) =
K∑

k=0

M̄∑

m̄1=1

· · ·
M̄∑

m̄k+1=m̄k

M̄∑

m̄k+2=1

· · ·
M̄∑

m̄2k+1=m̄2k

h̃
(r)
2k+1(m̄1, . . . , m̄2k+1)

k+1∏

i=1

s̄m̄i
(n)

2k+1∏

i=k+2

s̄∗m̄i
(n), (2.57)

where M̄ = M1 + · · · + MT + T and s̄m̄i
(n) corresponds to the m̄th

i component of
the linear input vector defined as:

s̄(n) = [s̄1(n) s̄2(n) . . . s̄M̄(n)]T ∈ C
M̄×1

= [s1(n) ... s1(n − M1) · · · sT (n) ... sT (n − MT )]T . (2.58)

Note that the Volterra models (2.56) and (2.57) are equivalent and can be repre-
sented in the following compact way:

x(n) = H̃w(n), (2.59)

where x(n) = [x1(n) x2(n) . . . xR(n)]T ∈ C
R×1 and the nonlinear input vector

w(n) ∈ C
Q×1 is given by:

w(n) = [s̄T (n) ⊘3
∗ s̄T (n) · · · ⊘2K+1

∗ s̄T (n)]T ∈ C
Q×1, (2.60)
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with s̄(n) given by (2.58). Moreover, H̃ = [h̃1 h̃2 . . . h̃R]T ∈ C
R×Q, with h̃r ∈

C
Q×1 (1 ≤ r ≤ R) containing the coefficients of the triangular Volterra system

associated with rth output. In this case, the length of the Volterra filter is given
by:

Q =
K∑

k=0

CM̄,kCM̄,k+1 . (2.61)

Discrete-time MIMO Volterra models have already being studied in a few works.
However, some works deal with MIMO Volterra systems less generical than (2.53)-
(2.57), e.g [123, 1, 124, 113, 127, 67, 133], and some of them deal with a real-valued
version of (2.53), e.g [136, 2]. To the best of our knowledge, the complex-valued
equivalent baseband MIMO Volterra models (2.53)-(2.57) are unexplored in the
literature.

2.3 Block-structured nonlinear systems

The MIMO communication channels studied in this thesis can be viewed as spe-
cial cases of Volterra filters constituted of series-cascades of nonlinear and linear
systems. In this section, some of these block-structured nonlinear systems are stu-
died. In particular, the Wiener, Hammerstein and Wiener-Hammerstein models
are described. These block-structured nonlinear systems have important applica-
tions in many areas [65] and specially in telecommunication systems, as we will see
in Section 2.4. The next developments concern discrete-time equivalent baseband
MIMO models, the SISO case being a particular case for T = R = 1.

2.3.1 The Wiener model

A SISO Wiener system is the cascade of a linear finite impulse response (FIR)
filter followed by a static nonlinearity. A MIMO Wiener system with T inputs and
R outputs is composed of a linear mixer followed by memoryless nonlinearities, as
shown in Fig. 2.2. In the sequel, we present the case where the linear part of the
system is a convolutional mixer.

Let us denote by zr(n) (1 ≤ r ≤ R) the outputs of the linear mixer and by w
(r)
t (m)

(0 ≤ m ≤ M) the (m + 1)th element of the impulse response associated with the
tth input and the rth output. It is considered that the system has a fixed memory
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Figure 2.2: A MIMO Wiener system.

M with respect to all the inputs. So, we may write:

zr(n) =
T∑

t=1

M∑

m=0

w
(r)
t (m)st(n − m). (2.62)

Denoting by xr(n) (1 ≤ r ≤ R) the outputs of the MIMO Wiener system, we have:

xr(n) = f (r) (zr(n)) , (2.63)

where f (r) (·) (1 ≤ r ≤ R) is a polynomial function. Considering an equivalent
baseband representation, similarly as for the Volterra models (2.53)-(2.57), the
functions f (r) (·) can be represented by a polynomial of the form:

xr(n) =
K∑

k=0

f
(r)
2k+1 |zr(n)|2k zr(n), (2.64)

where | · | denotes the magnitude of a complex number and {f (r)
1 , f

(r)
3 , . . . , f

(r)
2K+1}

are the baseband equivalent coefficients of the polynomial function f (r) (·). As in
(2.53)-(2.57), the polynomial terms that do not have the form (2.64) correspond
to spectral components lying outside the system bandwidth.

Substituting (2.62) into (2.64), we get:

xr(n) =
K∑

k=0

f
(r)
2k+1

∣
∣
∣
∣
∣

T∑

t=1

M∑

m=0

w
(r)
t (m)st(n − m)

∣
∣
∣
∣
∣

2k T∑

t=1

M∑

m=0

w
(r)
t (m)st(n − m), (2.65)



2.3 BLOCK-STRUCTURED NONLINEAR SYSTEMS 35

or, equivalently,

xr(n) =
K∑

k=0

T∑

t1=1

· · ·
T∑

t2k+1=1

M∑

m1=0

· · ·
M∑

m2k+1=0

f
(r)
2k+1

k+1∏

i=1

w
(r)
ti (mi)sti(n − mi)

2k+1∏

i=k+2

[

w
(r)
ti (mi)sti(n − mi)

]∗
. (2.66)

So, by defining a global Volterra kernel as:

h
(r)
2k+1(t1, . . . , t2k+1, m1, . . . ,m2k+1) ≡ f

(r)
2k+1

k+1∏

i=1

w
(r)
ti (mi)

2k+1∏

i=k+2

[

w
(r)
ti (mi)

]∗
, (2.67)

equation (2.66) can be rewritten as:

xr(n) =
K∑

k=0

T∑

t1=1

· · ·
T∑

t2k+1=1

M∑

m1=0

· · ·
M∑

m2k+1=0

h
(r)
2k+1(t1, . . . , t2k+1,m1, . . . , m2k+1)

k+1∏

i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti(n − mi). (2.68)

From (2.68) and (2.67), it can be concluded that a MIMO Wiener system is equi-
valent to a MIMO Volterra model with separable kernels.

2.3.2 The Hammerstein model

A SISO Hammerstein system is composed of a memoryless nonlinear block fol-
lowed by a linear FIR filter, while a MIMO Hammerstein model is composed of
memoryless nonlinear blocks in parallel, followed by a linear mixer, as shown in
Fig. 2.3. Note that the order of the blocks of a Hammerstein system is the inverse
of that of a Wiener system.

Let zt(n) (1 ≤ t ≤ T ) be the outputs of the memoryless nonlinearities f (t) (·)
(1 ≤ t ≤ T ). Using the same assumption about the nonlinear functions considered
for the Wiener model, we can write:

zt(n) =
K∑

k=0

f
(t)
2k+1 |st(n)|2k st(n), (2.69)
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Figure 2.3: A MIMO Hammerstein system.

where {f (t)
1 , f

(t)
3 , . . . , f

(t)
2K+1} are the baseband equivalent coefficients of the poly-

nomial function f (t) (·). Denoting by w
(r)
t (m) (0 ≤ m ≤ M) the (m + 1)th element

of the impulse response associated with the tth input and the rth output, we have:

xr(n) =
T∑

t=1

M∑

m=0

w
(r)
t (m)zt(n − m). (2.70)

Substituting (2.69) into (2.70), we get:

xr(n) =
K∑

k=0

T∑

t=1

M∑

m=0

f
(t)
2k+1w

(r)
t (m) |st(n − m)|2k st(n − m). (2.71)

So, by defining the global Volterra kernel as:

h
(r)
2k+1(t1, . . . , t2k+1,m1, . . . , m2k+1) ≡







f
(t1)
2k+1w

(r)
t1 (m1), if t1 = . . . = t2k+1

and m1 = . . . = m2k+1,
0, else,

(2.72)

it is possible to write the output of the MIMO Hammerstein system (2.71) as
the output of the MIMO Volterra model (2.68). So, it can be concluded that
a MIMO Hammerstein system can be viewed as a particular case of a diagonal
MIMO Volterra system.

2.3.3 The Wiener-Hammerstein model

A SISO Wiener-Hammerstein system is composed of a static nonlinearity sandwi-
ched between two linear FIR filters, and its MIMO version is composed of static
nonlinear blocks in parallel, sandwiched between two linear mixers (see Fig. 2.4).



2.3 BLOCK-STRUCTURED NONLINEAR SYSTEMS 37

Figure 2.4: A MIMO Wiener-Hammerstein system.

Note that the Wiener and the Hammerstein models can be viewed as particular
cases of a Wiener-Hammerstein system.

Let R
′

be the number of outputs of the first mixer, zr′ (n) (1 ≤ r
′ ≤ R

′

) the
outputs of the first mixer, qr′ (n) (1 ≤ r

′ ≤ R
′

) the outputs of the nonlinear blocks,

w
(r

′

)
t (m) (0 ≤ m ≤ Mw) the (m + 1)th element of the impulse response of the first

mixer associated with the tth input and the (r
′

)th output, and Mw the memory of
the first mixer. From (2.66), we can write:

qr′ (n) =
K∑

k=0

T∑

t1=1

· · ·
T∑

t2k+1=1

Mw∑

m1=0

· · ·
Mw∑

m2k+1=0

f
(r

′

)
2k+1

k+1∏

i=1

w
(r

′

)
ti (mi)

2k+1∏

i=k+2

[

w
(r

′

)
ti (mi)

]∗

k+1∏

i=1

sti(n − mi)
2k+1∏

i=k+2

s∗ti(n − mi). (2.73)

On the other hand, the outputs of the MIMO Wiener-Hammerstein system can be
expressed as:

xr(n) =
R

′

∑

r′=1

Ml∑

m=0

l
(r)

r′
(m)qr′ (n − m), (2.74)

where l
(r)

r′
(m) (0 ≤ m ≤ Ml) is the (m + 1)th element of the impulse response of

the second mixer associated with the (r
′

)th input and the rth output, and Ml is
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the memory of the second mixer. Substituting (2.73) into (2.74), we get:

xr(n) =
K∑

k=0

T∑

t1=1

· · ·
T∑

t2k+1=1

Mw∑

m1=0

· · ·
Mw∑

m2k+1=0

R
′

∑

r′=1

Ml∑

m=0

l
(r)

r′
(m)f

(r
′

)
2k+1

k+1∏

i=1

w
(r

′

)
ti (mi)

2k+1∏

i=k+2

[

w
(r

′

)
ti (mi)

]∗ k+1∏

i=1

sti(n − mi − m)
2k+1∏

i=k+2

s∗ti(n − mi − m). (2.75)

By defining:

h
(r)
2k+1(t1, . . . , t2k+1, m̄1, . . . , m̄2k+1) ≡

Ml∑

m=0

Mw∑

m1=0

· · ·
Mw∑

m2k+1=0
︸ ︷︷ ︸

{m+m1=m̄1}∩···∩{m+m2k+1=m̄2k+1}

R
′

∑

r
′
=1

l
(r)

r
′ (m)f

(r
′

)
2k+1

(
k+1∏

i=1

w
(r

′

)
ti (mi)

)(
2k+1∏

i=k+2

[

w
(r

′

)
ti (mi)

]∗
)

, (2.76)

with m̄2k+1 = m2k+1 + m, equation (2.75) can be rewritten as a MIMO Volterra
filter:

xr(n) =
K∑

k=0

T∑

t1=1

· · ·
T∑

t2k+1=1

M∑

m̄1=0

· · ·
M∑

m̄2k+1=0

h
(r)
2k+1(t1, . . . , t2k+1, m̄1, . . . , m̄2k+1)

k+1∏

i=1

sti(n − m̄i)
2k+1∏

i=k+2

s∗ti(n − m̄i), (2.77)

where M = Mw + Ml.

Note that the MIMO Wiener, Hammerstein and Wiener-Hammerstein models have
a global Volterra representation, allowing to conclude that they can be viewed as
particular cases of the MIMO Volterra model. A link between Wiener, Hammer-
stein and Wiener-Hammerstein models, and the Volterra model was developed
in [85] for SISO systems. The above developments linking these MIMO block-
structured models and the MIMO Volterra model constitute then a generalization
of the results of [85].

The main advantage of representing Wiener, Hammerstein and Wiener-
Hammerstein systems in terms of the parameters of the subsystems, i.e. the linear
mixers and memoryless nonlinearities, is that the total number of parameters of
these subsystems is, in general, smaller than the number of coefficients of the glo-
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bal Volterra system. On the other hand, the system output is not linear with
respect to the parameters of these subsystems, as we can see in (2.66), (2.71) and
(2.75), contrarily to the coefficients of the global Volterra system.

2.4 Applications in communication systems

This section is dedicated to present some applications of MIMO Volterra models
in communication systems, based on the nonlinear MIMO models presented in the
previous sections. These applications correspond to situations where the received
signals are corrupted by nonlinear Intersymbol Interference (ISI), nonlinear Mul-
tiple Access Interference (MAI) and/or nonlinear Inter-carrier Interference (ICI).
Applications of Volterra models in other kinds of MIMO communication systems
can be found in [127, 148, 113]. In all the following examples, it is assumed perfect
symbol synchronization and that the receive filter is matched to the transmit pulse
shape filter.

2.4.1 MIMO channels with nonlinear power amplifiers

In general, all the wireless communication systems employing power amplifiers
(PAs) are subject to nonlinear distortions. However, when the signal at the in-
put of the PA is characterized by a high peak-to-average power ratio (PAPR),
the introduced nonlinear distortions are particularly important. For these signals,
the maximal signal amplitude is high compared to the root mean square (RMS)
value. Thus, if the PA operates near the saturation region to obtain a good po-
wer efficiency, some components of the input signal fall at the saturation region
due to the large fluctuations on the signal envelope. The PA exhibits a nonlinear
characteristic at saturation, resulting in the introduction of nonlinear bandlimited
distortions [169]. That may lead to significant signal distortion and system perfor-
mance deterioration. For further details about the PA, see [131, 79] and references
therein.

Some models can be encountered in the literature to represent the nonlinearity
of the PA. The Saleh model represents the traveling wave tube (TWT) PA as
a frequency independent memoryless nonlinearity characterized by the following
amplitude to amplitude (AM/AM) and amplitude to phase (AM/PM) conversions
[131]:

A(r) =
αar

1 + βar2
(2.78)
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and

Φ(r) =
αφr

2

1 + βφr2
, (2.79)

where r is the amplitude of the PA input signal, A(r) and Φ(r) are respectively
the amplitude and phase gain of the PA output signal, and αa, βa, αφ and βφ are
positive scalar constants.

Radio frequency PAs can also be modeled using polynomial models such as Volterra
systems. Considering memoryless models, the equivalent baseband input-output
relationship of a PA is often represented by the memoryless memoryless polynomial
model [38, 169, 119]:

x(n) =
K∑

k=0

f2k+1 |s(n)|2k s(n). (2.80)

If the polynomial coefficients f2k+1 are real-valued, the model (2.80) is strictly me-
moryless, which means that the PA introduces only amplitude distortion (AM/AM
conversion). However, it was shown that, if the coefficients f2k+1 are complex-
valued, the model (2.80) allows representing a more general class of models called
quasi-memoryless PA [38, 119, 121]. This means that if the memory of the PA is
short compared to the time variations of the input signal envelope, equation (2.80)
may represent the output of a PA with amplitude and phase distortions (AM/AM
and AM/PM conversions).

Nevertheless, when the bandwidth of the input signal is large, the memory of the
PA can not be considered short with respect to the time variations of the input
signal [38, 169]. More complex models must then be used to take the memory
effects of the PA into account. In this case, among the nonlinear models usually
considered in the literature for modeling the PA, the most general is given by the
SISO Volterra model (2.42) [39, 38, 119]. Several special cases of the Volterra
model can also be used for modeling the PA nonlinearities as the SISO Wiener,
Hammerstein and Wiener-Hammerstein systems [38, 119, 25]. Moreover, PAs with
memory effects are also often modeled as a diagonal Volterra model [38, 119, 39,
102, 66, 16, 40]:

x(n) =
K∑

k=0

M∑

m=0

f2k+1(m) |s(n − m)|2k s(n − m). (2.81)

This model is also referred to as memory polynomial model and can be viewed as
a generalization of the SISO Hammerstein model.
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Thus, all the wireless MIMO communication channels employing PAs are subject
to nonlinear distortions. In theses cases, the MIMO Volterra model can be used for
modeling the channel. In the sequel, two wireless communication systems modeled
as MIMO Volterra models are presented.

OFDM systems

Orthogonal Frequency Division Multiplexing (OFDM) signals are characterized by
a high PAPR [31, 126, 148, 166, 16, 6, 5], caused by the sum of several symbols with
different phases and frequencies. As a consequence, the received signals in a OFDM
system are particularly affected by the presence of a nonlinear PA. In this case, a
nonlinear PA results in the introduction of nonlinear inter-carrier interference (ICI)
between the subcarriers. Theoretical analysis and performance of OFDM signals in
nonlinear channels have been widely studied in the literature [28, 32, 6, 5, 15, 16].
It should be highlighted that the nonlinear distortions in OFDM systems can be
reduced by using peak power control techniques that reduce the PAPR of the
transmitted signals [96]. However, this kind of technique will not be used in this
thesis.

A single-user OFDM channel can then be modeled as a cascade of a nonlinear
system, corresponding to the PA, followed by a linear FIR filter corresponding
to the frequency selective fading wireless link. Besides, the global SISO-OFDM
channel (PA + wireless link) can be modeled as a Volterra system [126].

MIMO transmission schemes can be used in OFDM systems to provide an efficient
radio spectrum, allowing a good reuse of the same frequency range to increase
the data rate and the system capacity. In this case, the global channel between
each source (Tx antenna or user) and each receive antenna can be modeled as Vol-
terra system and the global MIMO-OFDM channel can be written as a the MIMO
Volterra model (2.49). Note that, due to the fact that the nonlinearity is at the
transmitter, the nonlinear MIMO-OFDM channel does not contain products bet-
ween terms of different sources. The signal of each source, corrupted by nonlinear
ICI, is linearly mixed with the signal of the other sources.

Particularly, if the PA is characterized as a memoryless polynomial model, the
global MIMO-OFDM channel can be modeled as a MIMO Hammerstein system.
In this case, using the notation introduced in Section 2.3.1:

• f
(t)
2k+1 denotes coefficients of the polynomial function representing the PA of

the tth antenna element.
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• w
(r)
t (m),m = 0, 1, ...M, denotes the channel impulse response of the wireless

channel between the tth user and the rth receive antenna.

Channel estimation and equalization of nonlinear MIMO-OFDM channels are
considered in Chapter 3 of this thesis. As it will be shown, the OFDM trans-
mission/reception scheme allows a great simplification in the modeling of MIMO
Volterra channels.

Satellite systems

In satellite communication systems, the signals are transmitted from a ground
(earth) station towards a satellite station (uplink) and then retransmitted to a
receive ground station (downlink). Due to power limitation, the satellite station
usually employs a PA [30], often in the form of a traveling wave tube (TWT) or
solid-state power amplifiers (SSPA), that is driven at or near saturation in order to
obtain a power efficient transmission [9, 78, 157, 69], resulting in the introduction
of nonlinear distortions.

The overall satellite channel, i.e. considering the cascade of the uplink, PA and
downlink, was first modeled as an equivalent baseband SISO Volterra system by
Benedetto et al. [11], its effectiveness for modeling this kind of channels being
verified in [9]. In some cases, the Volterra model for the satellite channel incor-
porates the satellite pre- and post-filters [9, 12, 68, 147]. Satellite channels can
also be modeled as a SISO Wiener-Hammerstein system, the wireless uplink and
downlink being represented by FIR filters and the PA by a memoryless polynomial
model [9, 79].

In order to improve the transmission spectral efficiency, the use of MIMO satel-
lite systems has been considered by a number of works [135, 89, 90, 91, 167].
Concerning the structure of the MIMO satellite link, one of the following configu-
rations can be considered: (i) one ground station with multiple transmit antennas
transmits towards a satellite transponder with multiple antenna that retransmits
towards another ground station with multiple receive antennas; (ii) the ground
station with multiple transmit antennas transmits towards multiple satellites with
a single antenna each one, that retransmits towards another ground station with
multiple receive antennas. Moreover, we can also consider the case where the T
sources correspond to various ground stations with a single transmit antenna, i.e.
mobile unites transmitting towards a single receive station. In all these cases, the
channel can be represented as a MIMO Wiener-Hammerstein model and, hence,
as a MIMO Volterra model, with:
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• the wireless uplink being modeled as a linear T × R
′

mixer with channel

impulse responses denoted by w
(r

′

)
t (m),m = 0, 1, ...Mw, t = 1, ..., T, r

′

=
1, ..., R

′

;

• f
(r

′

)
2k+1 denoting coefficients of the polynomial function representing the PA,

r
′

= 1, ..., R
′

.

• the wireless downlink being modeled as a linear R
′ × R mixer with impulse

responses denoted by l
(r)

r′
(m),m = 0, 1, ...Mw, r = 1, ..., R, r

′

= 1, ..., R
′

.

Simulation results concerning nonlinear satellite channels are not provided in this
thesis. However, the techniques for channel estimation and information recovery
in MIMO Volterra models developed in the Chapters 4, 5 and 6 can be applied for
this kind of communication systems.

2.4.2 Radio Over Fiber (ROF) channels

ROF links have found a new important application with their introduction in
micro- and pico-cellular wireless networks [55, 57, 54, 116, 115]. Micro- and pico-
cellular architectures provide to the system a better capacity, coverage and power
consumption, specially in hot-spot areas. Thus, it can also improve the system
reliability and Quality of Service. ROF links provide a cost-effective solution
for important problems of such wireless systems as complexity and bandwidth
limitation [88]. In ROF systems, the uplink transmission is done from a mobile
station towards Radio Access Points (RAP), which are merely low-cost remote
antenna stations consisting of an electro-optical converter and a transponder [132].
At the RAP, the transmitted signals are converted in optical frequencies by a laser
diode and then retransmitted through optical fibers towards a central Base Station
(BS), as summarized in Fig. 2.5. Most part of the signal processing, such as
channel estimation, equalization, modulation and demodulation, is done at the BS
[55, 57, 132].

Important nonlinear distortions are introduced by the laser diode at the electrical-
optical (E/O) conversion device [55, 57, 54, 114, 116]. Gain compression characte-
ristics combined with stimulated and spontaneous mechanisms of emission make
the laser inherently nonlinear [55], the nonlinearity being categorized as static and
dynamic [161]. However, only static nonlinearity is considered as a major concern.
Dynamic nonlinearity plays an important role only in transient state, which are
not of interest in communications. Moreover, other phenomena, as leakage current
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Figure 2.5: Radio Over Fiber Uplink system.

and axial hole burning may also be sources of nonlinearities [55]. The E/O nonli-
nearity in a ROF system is often modeled using the memoryless polynomial model
[55, 57, 116, 114]. For more details about the ROF nonlinearities, see [161, 55] and
references therein.

Concerning the optical link, chromatic dispersion is some of the main concerns
with single-mode and multi-mode fibers. The transfer function of a fiber reflecting
the chromatic dispersion, is given by [55]:

H(f) = e−jαl(f−fo)2 (2.82)

where α is a dispersion coefficient, l is the fiber length and fo is the optical carrier
frequency. For a wavelength of 1310 nm, the chromatic dispersion of the fiber
is not significant up to several hundreds of kilometers of fiber length and up to
few GHz [55, 54, 162]. This means that the chromatic dispersion of the fiber is
negligible and the nonlinear distortion arising from the E/O conversion process
becomes then preponderant. Thus, the overall uplink channel can be viewed as a
wireless link followed by an E/O conversion. In a single-user and a single receive
antenna case, the wireless link can be modeled as a linear FIR filter and the overall
ROF uplink channel as a SISO Wiener model [55, 54, 114] .

Aiming to supply the growing demand for system capacity, technologies such as
smart antennas (or MIMO) and ROF transmission can be used together [88, 128].
In a ROF system with an antenna array at the RAP, the optical link between the
RAP and the BS can be implemented using either multiple fibers or a single fiber
with wavelength division multiplexing (WDM) [88, 128, 132]. The second case is
particularly interesting, as the use of an antenna array can be done using the same
optical components already installed for the ROF system [128]. In this case, the
signal received at the RAP is multiplexed, a single optical carrier being assigned
to each antenna element, and then transmitted over the optical fiber, followed by
an optical carrier demultiplexing.

In a multiuser channel employing an antenna array at the RAP, the wireless link
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can be modeled as a linear mixture and the overall ROF uplink as a MIMO Wiener
model. In this case, using the notation introduced in Section 2.3.1:

• w
(r)
t (m), m = 0, 1, ...M, denotes the channel impulse response of the wireless

channel between the tth user and the rth receive antenna;

• f
(r)
2k+1 denotes coefficients of the polynomial function representing the nonli-

near E/O conversion device associated with the rth antenna element.

Thus, using the developments of Section 2.3.1, the ROF uplink channel can be
modeled as a MIMO Volterra filter like (2.68). Experimental measurements on a
ROF link have shown that the channel frequency response can be considered as
flat from 1.7 to 2.2 GHz [55, 54]. This means that, with adequate bandwidth, the
baseband model of the ROF can be characterized by a memoryless MIMO Volterra
filter (M = 0):

xr(n) =
K∑

k=0

T∑

t1=1

· · ·
T∑

tk+1=tk

T∑

tk+2=0

· · ·
T∑

t2k+1=t2k

h
(r)
2k+1(t1, . . . , t2k+1)

k+1∏

i=1

sti(n)
2k+1∏

i=k+1

s∗ti(n). (2.83)

Besides, ROF links have been considered by a number of works in the context
of Code Division Multiple Access (CDMA) systems [56, 115, 116, 114], as well
as for OFDM 802.11a systems [106, 88, 115, 132]. In fact, the representation of
the overall ROF channel (5.40) also allows modeling the case where the T sources
represent the number of transmitting antennas for one user.

The downlink channel of a ROF can be modeled similarly as the uplink. However,
in this case, the wireless channel is placed after the E/O conversion [55]. The
overall channel can then be viewed as a Hammerstein system. Besides, at the
downlink, the received signals are more subject to nonlinear distortions due to PA
saturation than at the uplink.

Channel estimation and information recovery in multiuser nonlinear uplink ROF
channels are considered in Chapters 4 and 5, while the case of ROF-CDMA chan-
nels is treated in Chapter 6. In fact, the techniques proposed in these chapters are
designed for the general MIMO Volterra models, the application of such techniques
in ROF systems being considered in the simulations results of these chapters.
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2.4.3 Signal processing techniques at the receiver

The digital signal processing techniques proposed in this thesis are based on global
Volterra representations of the above studied nonlinear MIMO channels, exploiting
the property that the output of a Volterra system is linear with respect to the
channel coefficients. In fact, in all the chapters of this work, the knowledge of the
global Volterra representation is sufficient to recovery the transmitted symbols,
the estimation of the parameters of subsystems such as PA or wireless channel
being unnecessary. Indeed, as we will see later, once the global Volterra channel is
estimated, the recovery of the transmitted signals can be carried out by means of
techniques such as the Viterbi algorithm, Zero Forcing (ZF) and Wiener receivers
[118, 74].

This approach based on a global Volterra representation is to be used in the case
where the compensation of the nonlinear distortions is carried out at the receiver
side, which provides some advantages over pre-distortion schemes that try to com-
pensate nonlinear distortions at the transmitter [39, 31, 148, 38, 120, 81, 3, 103,
129]. The first one is that it allows the global optimization of the problem, i.e. the
joint compensation of the distortions due to the linear and nonlinear subsystems
that constitute the Volterra channel. For instance, in a ROF system, the joint
compensation of the distortions due to the wireless channel and E/O conversion
is possible.

Another advantage of compensating the nonlinear distortions at the receiver side
is that, in a multiuser uplink transmission, most part of the signal processing is
done at the BS, no modification in the portable units being then necessary to ac-
commodate the nonlinearity compensation [57, 115]. Indeed, if the compensation
of the nonlinear distortions is done at the transmitter, the associated computa-
tional complexity may prohibit their use in small mobile units [67]. In fact, in
the considered ROF system, the portable units do not need to be aware of the
existence of the ROF uplink [115].

Moreover, the Volterra representation of the overall channel has the advantage
of taking into account other possible channel nonlinearities, contrarily to pre-
distortion schemes that generally compensates the nonlinear distortions of a single
nonlinear block. For instance, the received signals in a ROF channel are also
subject to nonlinearities due to PAs [55].
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2.5 Conclusion

The main objective of this chapter is to provide a general overview about the
modeling of nonlinear MIMO communication channels using Volterra models. The
main properties of Volterra systems have been highlighted and, from the expression
of a continuous-time passband received signal, we presented the expression of an
equivalent baseband discrete-time SISO Volterra channel. Based on this channel
representation, we developed some versions of equivalent baseband discrete-time
MIMO Volterra models, which are used in this thesis for modeling nonlinear MIMO
communication channels.

Furthermore, as these channels can be viewed as MIMO Wiener, Hammerstein or
Wiener-Hammerstein models, it was shown that these block-structured nonlinear
models can be viewed as special cases of MIMO Volterra models. Some applications
of MIMO Volterra models in communication systems have also been described, in
particular, MIMO-OFDM, ROF and satellite communication systems.

The developments carried out in this chapter are of great importance due to the
lack of works dealing with nonlinear MIMO communication channels. Moreover, it
should be highlighted that this chapter contains two main original contributions.
The first one is the development of the general expressions (2.53)-(2.57) for equiva-
lent baseband discrete-time MIMO Volterra channels. As earlier mentioned, some
works have already used real-valued or less generical versions of MIMO Volterra
systems. However, to the best of our knowledge, the equivalent baseband MIMO
Volterra models developed in Section 2.2 are unexplored in the literature.

The second original contribution of this chapter is the development concerning
MIMO Wiener, Hammerstein and Wiener-Hammerstein models, where we have
demonstrated relationships between these block structured MIMO nonlinear sys-
tems and MIMO Volterra models. Due to this result, these nonlinear systems can
be modeled as particular cases of MIMO Volterra systems.

In the next chapter, we propose techniques for channel estimation and equalization
of nonlinear MIMO-OFDM channels described earlier. These techniques make use
of the models introduced in the present chapter, considering two different models
for the PA. Contrarily to the MIMO Volterra systems used in Chapters 4, 5 and
6, the model considered for the MIMO-OFDM channel does not correspond to a
nonlinear mixture of the sources.



CHAPTER 3

Estimation and Equalization of
Nonlinear MIMO-OFDM Systems

In this chapter, we develop techniques for estimation and equalization of nonli-
near MIMO-OFDM channels. As it was viewed in Section 2.4, a transmitted

signal in a OFDM system is characterized by a high peak-to-average power ratio
(PAPR) [31, 126, 148, 166, 16, 6, 5], which causes the introduction of nonlinear
interferences if the mean power of the transmitted signals is near the saturation
region of the power amplifier (PA). It is well-known that, in a OFDM system,
the frequency domain received signals do not suffer with interference from other
information symbols if a cyclic-prefix is used. However, as it will be detailed later,
nonlinear PAs introduce nonlinear inter-carrier interference (ICI) in the received
signals, which may significantly deteriorate the recovery of the information sym-
bols. Moreover, in the MIMO case, the received signals are also corrupted by
Multiple Access Interference (MAI). A device that cancels or reduces these inter-
ferences, such as an equalizer, is then needed. It should be mentioned that the
equalizers proposed in this chapter are developed to cancel ICI and MAI, instead
of traditional equalizers that cancel inter-symbol interference (ISI).

It should be highlighted that the nonlinear distortions in OFDM systems can be
reduced by using a peak power control technique that reduces the PAPR of the
OFDM signals [96]. However, this kind of approach will not be considered in this
chapter.

In this chapter, we consider two different models for the PA: the memoryless
polynomial model (2.80) and the memory polynomial model (2.81), also known
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as diagonal Volterra model. When its coefficients are real-valued, the memoryless
polynomial model allows the characterization of only amplitude distortions. In
this case, the PA is said to be strictly memoryless. However, if its coefficients
are complex-valued and the memory of the PA is short compared to the time
variations of the input signal envelope, the memoryless polynomial model allows
the characterization of amplitude and phase distortions [38, 119, 121]. In this case,
the PA is said to be quasi-memoryless. On the other hand, the memory polynomial
model [148, 38, 119, 39, 102, 66, 16] allows the characterization of the PA when
the memory is not short with respect to the time variations of the input signal
envelope.

For simplifying the understanding of the present chapter, we first consider the case
of a SISO-OFDM channel with a memoryless polynomial PA (Section 3.2). The
presented channel estimation and equalization techniques are based on a global
representation of the channel, i.e. a “Volterra-type” channel that characterizes
the cascade of the nonlinear PA and the linear wireless link. An expression for
the least squares (LS) estimate of the global channel parameters is first given,
by using some known pilot symbols. Then, two channel equalization techniques
are proposed assuming that these global channel coefficients are known. These
techniques, called Zero-Forcing Power Diversity-based Receiver (ZF PDR) and
Minimum Mean Square Error (MMSE) PDR, are based on a transmission scheme
that re-transmits all the symbols several times with a different transmission power
each time. As it will be demonstrated, due to the nonlinear nature of the global
channel, the power diversity can be used to provide multi-channels at the reception.
Techniques such as the ZF and MMSE receivers can then be used to separate the
transmitted symbol from the nonlinear interferences. In fact, the PDRs can be
viewed as source separation techniques. The main drawback of the PDRs is the
fact that the transmission rate is divided by the repetition factor, i.e. the number
of times that every symbol is transmitted. However, as it will be viewed later in
the chapter, in many cases it is possible to use a repetition factor equal to 2.

In Section 3.3, we generalize the PDRs for the case of a MIMO-OFDM channel
with PAs represented by memoryless polynomial models. In this case, the PAs of
the sources (transmit antennas) are possibly characterized by different coefficients.
Due to the fact that the nonlinearities are at the transmitters, the signal of each
source is corrupted with nonlinear ICI and, then, the signal of all the sources are
linearly mixed. We show that the spatial diversity provided by an antenna array
at the reception can be exploited to separate the signals of the multiple sources,
but it can not be exploited to separate the information signals from the nonlinear
interferences. Thus, in this case, the PDRs jointly exploit the spatial diversity,
provided by an antenna array, and transmission power diversity, provided by the
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transmission scheme, to recover the information symbols.

Section 3.4 demonstrates two results concerning MIMO-OFDM channels assuming
memory polynomial PAs. The first one is that a memory polynomial PA in a
OFDM system can be expressed as a memoryless polynomial PA with coefficients
that vary from one subcarrier to another. Based on this result, we show that the
expressions of the frequency domain received signals in terms of the global channel
parameters are the same in the case of memoryless and memory polynomial PAs.
As a consequence, the channel estimation and equalization techniques proposed
in Section 3.3 can be directly applied in the case of memory polynomial PAs. In
other words, the case of memory polynomial PAs can be treated in the same way
as the case of memoryless polynomial PAs if we use an approach based on the
global channel representation.

Most of the techniques proposed to cancel or reduce PA nonlinear distortions
in OFDM systems are based on pre-distortion schemes [31, 129, 3, 81, 120, 38,
39, 103]. However, as we saw in Section 2.4.3, this approach has some draw-
backs. Techniques for channel estimation and equalization of nonlinear SISO-
OFDM channels at the receiver side based on an equivalent baseband Volterra
model were proposed in [126]. An iterative equalization method consisting in the
estimation of the interference at the receiver and its further cancelation for nonli-
near time-varying channels is presented in [41]. In fact, most of the techniques for
nonlinear interference rejection at the receiver side of OFDM systems are based on
iterative methods as, for instance, [42, 22]. Moreover, it should be highlighted that
the theoretical characterization of nonlinear distortions in SISO-OFDM systems
with nonlinear PAs has been widely studied in the literature [28, 32, 6, 5, 15, 16].

However, the methods for nonlinear SISO-OFDM systems can not be directly
applied to the MIMO case, since all MIMO transmission links exhibit their own
nonlinear transfer function, a MIMO detection being then needed [133]. The equa-
lization of nonlinear MIMO-OFDM channels has been treated by a few authors.
Several digital nonlinear compensation methods are proposed in [133]. An itera-
tive PA nonlinearity cancelation (PANC) technique is proposed in [67], based on
an iterative technique for maximum likelihood detection of nonlinearly distorted
symbols [152]. As we will see in the simulation results, the drawback of this itera-
tive method is that it does not work well with memory polynomial PAs, contrarily
to the proposed PDRs.

This chapter is organized as follows. Section 3.1 describes a SISO-OFDM com-
munication system assuming a linear PA. In Section 3.2, channel estimation and
equalization techniques are proposed for a SISO-OFDM system with a memory-
less polynomial PA. Section 3.3 extends these techniques for the case of a MIMO-



3.1 LINEAR SISO-OFDM CHANNEL 51

Figure 3.1: Discrete-time equivalent baseband SISO-OFDM system.

OFDM channel with memoryless polynomial PAs. In Section 3.4, we demonstrate
the equivalence between the MIMO-OFDM channel in the case of memoryless and
memory polynomial PAs when the global channel representation is used. In Sec-
tion 3.5, we evaluate the performance of these techniques by means of simulations
and the conclusions about the chapter are drawn in Section 3.6.

3.1 Linear SISO-OFDM channel

A simplified scheme of the considered discrete-time equivalent baseband SISO-
OFDM system is shown in Fig. 3.1. Let N be the number of subcarriers and
s̄(i) = [s̄i,1 · · · s̄i,N ]T ∈ C

N×1 the ith vector of frequency domain symbols, where i
denotes the transmission block number and s̄i,n the frequency domain symbol at
the nthsubcarrier and ith transmission block. The frequency domain symbol s̄i,n

is assumed to contain the source information and to belong to a QAM alphabet.
In this chapter, all the variables with an overline correspond to frequency domain
signals. The Fast Fourier Transform (FFT) matrix of dimension N is denoted by
V ∈ C

N×N , with

[V]p,q = e−j2π(p−1)(q−1)/N , for 1 ≤ p, q ≤ N, (3.1)

or, equivalently:

V =
1√
N










1 1 1 · · · 1
1 ω ω2 · · · ω(N−1)

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ω(N−1) ω2(N−1) · · · ω(N−1)(N−1)










, (3.2)



52 CHAPTER 3. ESTIMATION AND EQUALIZATION OF NONLINEAR MIMO-OFDM SYSTEMS

where ω = e−j2π/N . The ith vector of time domain symbols s(i) = [si,1 · · · si,N ]T ∈
C

N×1 is obtained by means of an Inverse Fast Fourier Transform (IFFT) of the
vector of frequency domain symbols as:

s(i) = VH s̄(i). (3.3)

Considering that the time domain symbols si,n, for 1 ≤ n ≤ N , at the output of
the IFFT block are in a time-series, a cyclic prefix of length Mcp is inserted in
the symbols si,n in order to ensure that the subcarriers are orthogonal, avoiding
intersymbol interference (ISI) and intercarrier interference (ICI). However, this
is accomplished only if the time dispersion from the channel is smaller than the
duration of the cyclic prefix. In fact, the cyclic prefix is a copy of the last symbols
si,N at the beginning of the transmission block, inserted in the following way:

s(cp)(i) = [si,(N−Mcp+1) · · · si,N sT (i)]T ∈ C
(N+Mcp)×1, (3.4)

or, equivalently:

s(cp)(i) = Ω s(i), (3.5)

where Ω ∈ C
(N+Mcp)×N is a cyclic prefix insertion matrix given by:

Ω =

[
0Mcp, (N−Mcp) IMcp

IN

]

, (3.6)

with 0Mcp, (N−Mcp) being the null matrix of dimension Mcp × (N −Mcp) and IN the
identity matrix of order N .

The time domain symbols are then transmitted through a frequency-selective fa-
ding wireless channel with impulse response denoted by wm, for 0 ≤ m ≤ M ,
where M is the wireless channel memory. The impulse response wm is assumed to
be time-invariant over IB transmission blocks, that is, for i = 1, ..., IB. At the re-
ceiver, the cyclic prefix is removed from the received signals xi,n (1 ≤ n ≤ N +Mcp)
in the following way:

x(i) = Θx(cp)(i), (3.7)

where

x(cp)(i) = [xi,1 · · ·xi,(N+Mcp
)]T ∈ C

(N+Mcp)×1, (3.8)

x(i) = [xi,(Mcp+1) · · ·xi,(N+Mcp)]
T ∈ C

N×1, (3.9)
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and Θ ∈ C
N×(N+Mcp) is a cyclic prefix removing matrix given by:

Θ = [0N, Mcp
IN ]. (3.10)

Note that x(i) is the ith vector of time domain received signals after removing the
cyclic prefix.

The transfer function of a linear PA can be represented by a scalar gain that can be
absorbed by the channel impulse response wm. Assuming that length of the cyclic
prefix is higher than or equal to the channel memory (Mcp ≥ M), the wireless
channel can be represented by a circular convolution:

xi,(n+Mcp) =
M∑

m=0

wms
(cir)
i,(n−m), (3.11)

for 1 ≤ n ≤ N , where s
(cir)
i,n is a circular version of the time domain signals si,n, i.e.

s
(cir)
i,n =

{
si,n, for 1 ≤ n ≤ N,

si,N+n, for 1 − N ≤ n ≤ 0.
(3.12)

Equation (3.11) can be expressed in a vector form as:

x(i) = Ws(i), (3.13)

where W ∈ C
N×N is the circulant channel matrix given by:

W =
















w0 0 · · · 0 wM wM−1 · · · w1

w1 w0 · · · 0 0 wM · · · w2
...

...
. . .

...
...

. . . . . .
...

wM−1 wM−2 · · · w0 0 · · · 0 wM

wM wM−1 · · · w1 w0 0 . . . 0
0 wM · · · w2 w1 w0 . . . 0
...

...
. . .

...
...

. . . . . .
...

0 0 · · · 0 wM · · · w1 w0
















. (3.14)

The FFT of the received signals is then calculated as:

x̄(i) = Vx(i), (3.15)

where x̄(i) ∈ C
N×1 is the ith vector of frequency domain received signals. Substi-
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tuting (3.3) and (3.13) into (3.15), we get:

x̄(i) = VWVH s̄(i). (3.16)

It can be shown that a circulant matrix is diagonalized by a FTT matrix, i.e.
Λ = VWVH , where Λ ∈ C

N×N is a diagonal matrix containing the eigenvalues
of W [64]. The nth eigenvalue of W represents the channel frequency response at
subcarrier n. Thus, we have:

x̄(i) = Λs̄(i), (3.17)

which shows the orthogonality of the OFDM channel when a cyclic prefix is used.

3.2 SISO-OFDM channel with memoryless poly-

nomial PA

In this section, channel estimation and equalization techniques for a SISO-OFDM
channel with a memoryless polynomial PA are proposed. As mentioned in Section
2.4.1, when the PA is represented by a memoryless polynomial model, the global
channel (PA + wireless) can be modeled as a Hammerstein system. However, as
we will be shown in the sequel, the OFDM transmission scheme provides a simple
expression for the received signal in terms of the global channel coefficients. It
should be mentioned that the proposed equalizer is to be placed after the FFT
block in Fig. 3.1. The considered channel is characterized in Section 3.2.1 and the
channel estimation method is presented in Section 3.2.2. Then, in Section 3.2.3
the proposed channel equalization techniques are developed.

3.2.1 Channel characterization

Let us assume that the PA is represented by a memoryless polynomial model of
order 2K+1, the equivalent baseband coefficients denoted by f2k+1, for 0 ≤ k ≤ K.
Denoting by ui,n (1 ≤ n ≤ N + Mcp) the time domain symbols after the PA, we
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may write for 1 ≤ n ≤ N :

ui,(n+Mcp) =
K∑

k=0

f2k+1|si,n|2ksi,n

=
K∑

k=0

f2k+1ψ2k+1(si,n), (3.18)

where the operator ψ2k+1(·) is defined as:

ψ2k+1(a) = |a|2ka. (3.19)

Note that the signal ui,n also contains a cyclic prefix: {ui,1, · · · , ui,Mcp
} is equal to

{ui,(N−Mcp+1), · · · , ui,N}. Let us define ith vector of time domain symbols after the
PA as:

u(i) = [ui,(Mcp+)1 · · ·ui,(Mcp+N)]
T ∈ C

N×1. (3.20)

Thus, we have:

u(i) =
K∑

k=0

f2k+1Ψ2k+1(s(i)), (3.21)

where

Ψ2k+1(a) = [ψ2k+1(a1) · · ·ψ2k+1(aN)]T ∈ C
N×1, (3.22)

for a = [a1 · · · aN ] ∈ C
N×1.

In this case, the ith vector of time domain received signals after removing the cyclic
prefix is given by:

x(i) = Wu(i). (3.23)

Taking the FFT of (3.23), the ith vector of frequency domain received signals can
be expressed as:

x̄(i) = VWu(i)

= VWVHū(i) = Λū(i), (3.24)

where Λ = VWVH ∈ C
N×N and

ū(i) = Vu(i) (3.25)
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is the frequency domain version of u(i). From (3.21), we may then write:

ū(i) =
K∑

k=0

f2k+1VΨ2k+1(s(i))

=
K∑

k=0

f2k+1Ψ̄2k+1(s(i)), (3.26)

where Ψ̄2k+1(s(i)) ∈ C
N×1 is the frequency domain version of Ψ2k+1(s(i)), i.e.

Ψ̄2k+1(a) ≡ VΨ2k+1(a). (3.27)

Substituting (3.26) into (3.24), we get:

x̄(i) = Λ
K∑

k=0

f2k+1Ψ̄2k+1(s(i)). (3.28)

Equation (3.28) can be written in a scalar form as:

x̄i,n =
K∑

k=0

λnf2k+1ψ̄2k+1(si,n), (3.29)

for 1 ≤ n ≤ N , where λn = [Λ]n,n, x̄i,n = [x̄(i)]n is the frequency domain re-
ceived signal and ψ̄2k+1(si,n) = [Ψ̄2k+1(s(i))]n is the frequency domain version of
ψ2k+1(si,n). A global channel representation including the PA and the wireless
channel coefficients can be defined from (3.29) as:

hn,k+1 = λnf2k+1, (3.30)

for 1 ≤ n ≤ N and 0 ≤ k ≤ K, which gives

x̄i,n =
K∑

k=0

hn,k+1ψ̄2k+1(si,n). (3.31)

Equation (3.31) can be expressed as:

x̄i,n = hn,1s̄i,n +
K∑

k=1

hn,k+1ψ̄2k+1(si,n), (3.32)

showing that the frequency domain received signal x̄i,n is a scaled version of the
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information signal s̄i,n plus the nonlinear ICI. It should be remarked that the term
ψ̄2k+1(si,n) depends on information symbols of other subcarriers, which means that
a given subcarrier interferes in other subcarriers. This phenomenon can be viewed
as consequence of the spectral broadening provided by the nonlinear PA.

Note also that x̄i,n is not corrupted with interferences from other information
symbols s̄i

′
,n, for i

′ 6= i. In this case, an equalizer should be used to eliminate the

nonlinear ICI terms
∑K

k=1 hn,k+1ψ̄2k+1(si,n) and to remove the scalar factor hn,1.

Let us consider a set of IB transmission blocks, i.e. IB information symbols per
subcarrier, and by x̄n = [x̄1,n · · · x̄IB ,n] ∈ C

1×IB the row-vector containing the IB

frequency domain signals received at the nth subcarrier. Equation (3.31) can then
be rewritten as:

x̄n = hT
n S̄n, (3.33)

where

hn = [hn,1 hn,3 · · · hn,2K+1]
T ∈ C

(K+1)×1 (3.34)

is a vector containing the global channel coefficients of the nth subcarrier and
S̄n ∈ C

(K+1)×IB is defined as:

S̄n =








s̄1,n · · · s̄IB ,n

ψ̄3(s1,n) · · · ψ̄3(sIB ,n)
...

. . .
...

ψ̄2K+1(s1,n) · · · ψ̄2K+1(sIB ,n)








. (3.35)

As the equalizers proposed in this chapter assume that the global channel coeffi-
cients are known, a channel estimation technique is then needed. Equations (3.31)
and (3.33) show the linear dependence between the received signals and the glo-
bal channel coefficients, which can then be estimated during a training period by
means of a LS approach. In the sequel, channel estimation of the global channel
coefficients is addressed.

3.2.2 Channel Estimation

Channel estimation of OFDM channels is usually done by using one of two different
approaches [67]. The first one assumes that pilot symbols are allocated on all
subcarriers and the second one assumes that pilot symbols are allocated on a
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reduced set of subcarriers. In the second case, the channel coefficients on all the
subcarriers are estimated using interpolation. The channel estimation techniques
proposed in this chapter consider the second case, the number of pilot subcarriers
being denoted by NP , with NP ≤ N . In the simulation results of this chapter,
the channel hn,k+1 is interpolated using truncated FFT matrices. See [67, 66] for
further details about interpolation using the FFT method.

The channel estimation technique presented in the sequel is based on the global
channel representation (3.33) that includes the coefficients of the PA and the wi-
reless channel. The LS estimate of these global channel coefficients can be done
by using IP pilot symbols per pilot subcarrier {s̄(p)

1,n, · · · , s̄
(p)
IP ,n}, for 1 ≤ n ≤ NP .

Let

x̄(p)
n = [x̄

(p)
1,n · · · x̄(p)

IP ,n] ∈ C
1×IP (3.36)

be the row-vector containing the IP frequency domain signals received during the
training period at the nth pilot subcarrier. From (3.33), the LS estimate of the
global channel vector hn can be done as:

ĥn =

[

x̄(p)
n

[

S̄
(p)
n

]†
]T

, (3.37)

where (·)† denotes the matrix pseudo-inverse and S̄
(p)
n ∈ C

(K+1)×IP is defined as:

S̄
(p)
n =









s̄
(p)
1,n · · · s̄

(p)
IP ,n

ψ̄3(s
(p)
1,n) · · · ψ̄3(s

(p)
IP ,n)

...
. . .

...

ψ̄2K+1(s
(p)
1,n) · · · ψ̄2K+1(s

(p)
IP ,n)









, (3.38)

with s
(p)
i,n being the time domain version of s̄

(p)
i,n.

Note that, a necessary condition for (3.37) is IP ≥ K + 1. However, based on a
realistic assumption that the PA can be modeled using a third-order polynomial
(K + 1 = 2) [15, 16, 39, 95, 66, 38, 119, 3], we can use IP = 2 pilot symbols per
subcarrier.

3.2.3 Power Diversity-based Receivers (PDRs)

In this section, we propose two receivers for the nonlinear OFDM channel described
in Section 3.2.1 assuming that channel coefficients hn,k+1 are known, for 1 ≤ n ≤ N
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Figure 3.2: PDR transmission scheme.

and 0 ≤ k ≤ K + 1. However, as we will see, of the proposed techniques use only
the linear coefficients hn,1 of the channel.

Transmission scheme

The PDRs are based on the transmission scheme shown in Fig. 3.2. For a given
subcarrier n (1 ≤ n ≤ N) and transmission block i (1 ≤ i ≤ IB), we have:

s̄
(pd)
((i−1)L+l),n =

√

Pl s̄i,n, for 1 ≤ l ≤ L, (3.39)

where s̄
(pd)
k,n is the kth frequency domain transmitted signal associated with the nth

subcarrier, L is the repetition factor and P1, ..., PL are the transmission powers.
Equation (3.39) can be written in a vector form as:

s̄(pd)((i − 1)L + l) = s̄(i)
√

Pl, for 1 ≤ l ≤ L, (3.40)

where s̄(pd)(k) = [s̄
(pd)
k,1 · · · s̄

(pd)
k,N ]T ∈ C

N×1 is the kth vector of frequency domain

transmitted symbols. This means that each block s̄(i) ∈ C
N×1 of frequency do-

main QAM-modulated information symbols is repeated L times using transmission
powers equal to P1, ..., PL.

Note that, for each subcarrier, one frequency domain information symbol s̄i,n ge-



60 CHAPTER 3. ESTIMATION AND EQUALIZATION OF NONLINEAR MIMO-OFDM SYSTEMS

nerates a set of L frequency domain transmitted symbols s̄
(pd)
((i−1)L+l),n (1 ≤ l ≤ L)

and, hence, a set of L frequency domain received signals, denoted by x̄
(pd)
((i−1)L+l),n.

Let us define

x̄
(pd)
i,n = [x̄

(pd)
((i−1)L+1),n · · · x̄

(pd)
iL,n]T ∈ C

L×1 (3.41)

as the column-vector containing the L frequency domain received signals at the nth

subcarrier associated with the frequency domain information symbol s̄i,n. From
(3.33), we have:

x̄
(pd)
i,n =

[

S̄
(pd)
i,n

]T

hn, (3.42)

where S̄
(pd)
i,n ∈ C

(K+1)×L is defined as:

S̄
(pd)
i,n =









s̄
(pd)
((i−1)L+1),n s̄

(pd)
((i−1)L+2),n · · · s̄

(pd)
iL,n

ψ̄3(s
(pd)
((i−1)L+1),n) ψ̄3(s

(pd)
((i−1)L+2),n) · · · ψ̄3(s

(pd)
iL,n)

...
. . .

...

ψ̄2K+1(s
(pd)
((i−1)L+1),n) ψ̄2K+1(s

(pd)
((i−1)L+2),n) · · · ψ̄2K+1(s

(pd)
iL,n)









. (3.43)

By using (3.39), the matrix S̄
(pd)
i,n can be rewritten as:

S̄
(pd)
i,n = diag [s̄i,n] PT , (3.44)

where diag[·] denotes the diagonal matrix formed from the vector argument, s̄i,n =
[s̄i,n, ψ̄3(si,n), · · · , ψ̄2K+1(si,n)]T ∈ C

(K+1)×1 and

P =







P
1
2
1 · · · P

2K+1
2

1
...

. . .
...

P
1
2

L · · · P
2K+1

2
L






∈ C

L×(K+1). (3.45)

Substituting (3.44) into (3.42), we get:

x̄
(pd)
i,n = P diag [s̄i,n] hn

= P diag [hn] s̄i,n. (3.46)
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By defining

X̄
(pd)
n = [x̄

(pd)
1,n · · · x̄(pd)

IB ,n] ∈ C
L×IB , (3.47)

we can deduce from (3.46):

X̄
(pd)
n = P diag [hn] [s̄1,n · · · s̄IB ,n] , (3.48)

or, equivalently,

X̄
(pd)
n = P diag [hn] S̄n, (3.49)

where S̄n ∈ C
(K+1)×IB is defined in (3.35). By comparing (3.33) with (3.49), it can

be seen that re-transmitting the symbols s̄i,n L times with different amplitudes
has the effect of creating L sub-channels for the nonlinear OFDM system, the
equivalent channel matrix given by (P diag [hn]). It can then be concluded that
the power variation can be viewed as diversity for the received signals.

Equalization

Due to the multi-channel representation above described, the frequency domain
information signals s̄i,n can be recovered from the matrix of frequency domain

received signals X̄
(pd)
n by means of a multi-channel processing technique. Seve-

ral techniques can be used for this purpose as, for instance, the ZF and MMSE
receivers. In this case, the MMSE and ZF receivers are respectively given by:

Wn = Rs̄ diag [h∗
n] PH

(
P diag [hn]Rs̄ diag [h∗

n] PH + ILσ2
)−1 ∈ C

(K+1)×L,(3.50)

and

Wn = (P diag [hn])† ∈ C
(K+1)×L, (3.51)

where σ2 is the noise variance and Rs̄ = E[s̄i,ns̄
H
i,n] ∈ C

(K+1)×(K+1) is the covariance
matrix of the vector s̄i,n, the matrix S̄n being estimated as:

ˆ̄Sn = WnX̄
(pd)
n . (3.52)

As we can see in (3.35), the first row of ˆ̄Sn corresponds to the linear terms, which
means that frequency domain symbols s̄i,n can be estimated from the first row of
ˆ̄Sn. Moreover, it can be shown after some manipulations that expressions (3.50)
and (3.51) are equivalent when σ2 = 0.
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The main advantage of the MMSE receiver is that it is more robust to noise than
the ZF receiver. However, in order to use the MMSE receiver, we have to assume
that the noise variance is known, contrarily to the ZF receiver. Besides, as it is
shown in the sequel, the use of a ZF receiver allows a great simplification in the
estimation of the information signals s̄i,n. Indeed, by replacing (3.51) into (3.52),
we get:

ˆ̄Sn = diag [I(hn)]P†X̄
(pd)
n ∈ C

(K+1)×IB , (3.53)

where I(a) is an operation that inverses each element of the vector a in the argu-
ment (element-wise inverse), i.e. [I(a)]k = 1/ [a]k. In fact, denoting by p̃ ∈ C

1×L

the first row of P†, the first row of ˆ̄Sn can be expressed as:

[ˆ̄Sn]1,· =
p̃

hn,1

X̄
(pd)
n ∈ C

1×IB , (3.54)

The recovery of the information signals of the N subcarriers and IB blocks can be
done by defining

X̄
(pd)

=
[

X̄
(pd)
1 · · · X̄(pd)

N

]

∈ C
L×IBN (3.55)

and

ˆ̄s =
[

[ˆ̄S1]1,· · · · [ˆ̄SN ]1,·
]

∈ C
1×IBN . (3.56)

A compact form of (3.54) is then given by:

ˆ̄s = p̃
[

h−1
1,1 X̄

(pd)
1 · · ·h−1

N,1 X̄
(pd)
N

]

= p̃X̄
(pd)

diag
(

I(h(lin)) ⊗ 1IB

)

, (3.57)

where ⊗ denotes the Kronecker product, 1IB
∈ R

IB×1 is the all ones vector of
dimension IB and

h(lin) = [h1,1 · · ·hN,1]
T ∈ C

N×1. (3.58)

The ZF- and MMSE-PDR expressions are summarized in Tables 3.1 and 3.2, res-
pectively. Note that, a necessary condition for these techniques is that P be full
column-rank, which means that the repetition factor must satisfy L ≥ K + 1. An
important drawback of these equalization methods is the fact that the transmission
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Table 3.1: Minimum Mean Square Error-Power Diversity-based Receiver
(MMSE-PDR)

Transmission scheme

For 1 ≤ i ≤ IB and 1 ≤ l ≤ L:

s̄(pd)((i − 1)L + l) = s̄(i)
√

Pl ∈ C
N×1

Equalization:

For 1 ≤ n ≤ N :

1) Construct X̄
(pd)
n = [x̄

(pd)
1,n · · · x̄(pd)

IB ,n] ∈ C
L×IB , where x̄

(pd)
i,n =

[x̄
(pd)
((i−1)L+1),n · · · x̄

(pd)
iL,n]T ∈ C

L×1 .

2) Calculate ˆ̄Sn = Rs̄ diag [h∗
n] PH

(
P diag [hn]Rs̄ diag [h∗

n] PH + ILσ2
)−1

X̄
(pd)
n

∈ C
(K+1)×IB .

3) The estimate of the IB frequency domain symbols associated with the nth

subcarrier is the first row of ˆ̄Sn.

rate is divided by L. However, note that when K + 1 = 2 (third-order polynomial
nonlinearity) [15, 16, 39, 95, 66, 38, 119, 3], we can use L = 2.

An interesting characteristic of the proposed ZF equalization method is that it uses
only the coefficients hn,1 associated with the linear terms. This means that we do
not need to know the coefficients of the PA, excepting linear one f1. Moreover,
when K + 1 = L = 2, the ZF-PDR technique needs the computation of only one
inverse matrix of dimensions 2× 2 for all 1 ≤ n ≤ N and 1 ≤ i ≤ IB, which means
that the ZF receiver has a smaller computational cost than the MMSE receiver.

In fact, it should be highlighted that the above proposed channel estimation and
equalization techniques can also be applied when the PA is modeled as a Ham-
merstein system. That is due to the fact that the impulse response of the FIR
filter corresponding to the PA can be incorporated with the impulse response of
the wireless channel.
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Table 3.2: Zero-Forcing Power Diversity-based Receiver (ZF-PDR)

Transmission scheme

For 1 ≤ i ≤ IB and 1 ≤ l ≤ L:

s̄(pd)((i − 1)L + l) = s̄(i)
√

Pl ∈ C
N×1

Equalization:

1) Construct P from (3.45) and calculate p̃ as the fitst row of P†.

2) Construct X̄
(pd)

=
[

X̄
(pd)
1 · · · X̄(pd)

N

]

∈ C
L×IBN , where X̄

(pd)
n =

[x̄
(pd)
1,n · · · x̄(pd)

IB ,n] ∈ C
L×IB and x̄

(pd)
i,n = [x̄

(pd)
((i−1)L+1),n · · · x̄

(pd)
iL,n]T ∈ C

L×1 .

3) The estimate of the information signals of the N subcarriers and IB blocks

is given by: ˆ̄s = p̃X̄
(pd)

diag
(

I(h(lin)) ⊗ 1IB

)

∈ C
1×IBN .

3.3 MIMO-OFDM channel with memoryless po-

lynomial PAs

This section extends the above channel estimation and equalization techniques for
the case of a MIMO-OFDM system assuming memoryless polynomial PAs. As well
as in Section 3.2, the equalizer proposed in this section should be placed after the
FFT stage. The channel characterization, estimation and equalization are treated
respectively in Sections 3.3.1, 3.3.2 and 3.3.3.

3.3.1 Channel characterization

Let us consider that the PA of each source is nonlinear and represented by a me-
moryless polynomial model of order 2K + 1, with equivalent baseband coefficients
denoted by f2k+1,t, for 0 ≤ k ≤ K and 1 ≤ t ≤ T , where T is the number of
sources. Besides, let us denote respectively by s̄(i, t) ∈ C

N×1 and s(i, t) ∈ C
N×1

the ith vector of frequency and time domain symbols of the tth user, with compo-
nents s̄i,n,t = [s̄(i, t)]n and si,n,t = [s(i, t)]n.

As the signals from the multiple source are linearly mixed, from (3.24), the ith
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vector x̄(i, r) ∈ C
N×1 of frequency domain signals received by the rth antenna, for

1 ≤ r ≤ R, can be written as:

x̄(i, r) =
T∑

t=1

Λ(r, t)ū(i, t), (3.59)

where R is the number of receive antennas,

ū(i, t) = Vu(i, t) ∈ C
N×1 (3.60)

is a vector containing the frequency domain version of tth PA output, with

u(i, t) = [ui,(Mcp+1),t · · ·ui,(Mcp+N),t]
T ∈ C

N×1, (3.61)

and

Λ(r, t) = VW(r, t)VH ∈ C
N×N (3.62)

is a diagonal matrix containing the eigenvalues of circulant channel matrix W(r, t),
constructed as in (3.14), using the impulse response of the wireless channel wm(r, t)
(0 ≤ m ≤ M) associated with the rth receive antenna and the tth source, for
1 ≤ r ≤ R and 1 ≤ t ≤ T . The main diagonal of Λ(r, t) contains N samples of the
frequency response of the wireless channel between source t and receive antenna
r.

From (3.26), we have:

ū(i, t) =
K∑

k=0

f2k+1,tΨ̄2k+1(s(i, t)), (3.63)

where

Ψ̄2k+1(s(i, t)) = VΨ2k+1(s(i, t)) ∈ C
N×1. (3.64)

Thus substituting (3.63) into (3.59), we get:

x̄(i, r) =
T∑

t=1

Λ(r, t)
K∑

k=0

f2k+1,tΨ̄2k+1(s(i, t)). (3.65)
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Equation (3.65) can be expressed in a scalar form as:

x̄i,n,r =
T∑

t=1

K∑

k=0

λn,r,tf2k+1,tψ̄2k+1(si,n,t), (3.66)

for 0 ≤ i ≤ IB, 1 ≤ n ≤ N and 1 ≤ r ≤ R, where λn,r,t = [Λ(r, t)]n,n, x̄i,n,r =
[x̄(i, r)]n and ψ̄2k+1(si,n,t) = [Ψ̄2k+1(s(i, t))]n. By defining:

hn,k+1,r,t = λn,r,t f2k+1,t, (3.67)

for 1 ≤ n ≤ N , 0 ≤ k ≤ K, 1 ≤ r ≤ R and 1 ≤ t ≤ T , a global channel
representation of (3.66) can be obtained:

x̄i,n,r =
T∑

t=1

K∑

k=0

hn,k+1,r,t ψ̄2k+1(si,n,t). (3.68)

Equation (3.68) can be expressed as:

x̄i,n,r = hn,1,r,1s̄i,n,1 +
K∑

k=1

hn,k+1,r,1 ψ̄2k+1(si,n,1) +
T∑

t=2

K∑

k=0

hn,k+1,r,t ψ̄2k+1(si,n,t),

(3.69)

showing that the frequency domain received signal x̄i,n can be viewed as a scaled
version of the information signal of the first user s̄i,n,1 corrupted with MAI and
nonlinear ICI from itself.

Similarly as in (3.33), denoting by X̄n ∈ C
R×IB , with [X̄n]r,i = x̄i,n,r, for 1 ≤ i ≤ IB

and 1 ≤ r ≤ R, the matrix containing the IB frequency domain signals received
by all the R antennas at the nth subcarrier, equation (3.68) may be written in a
matrix form as:

X̄n = Hn S̄n, (3.70)
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where S̄n ∈ C
(K+1)T×IB is defined as:

S̄n =























s̄1,n,1 · · · s̄IB ,n,1

ψ̄3(s1,n,1) · · · ψ̄3(sIB ,n,1)
...

. . .
...

ψ̄2K+1(s1,n,1) · · · ψ̄2K+1(sIB ,n,1)

...

s̄1,n,T · · · s̄IB ,n,T

ψ̄3(s1,n,T ) · · · ψ̄3(sIB ,n,T )
...

. . .
...

ψ̄2K+1(s1,n,T ) · · · ψ̄2K+1(sIB ,n,T )























, (3.71)

and Hn ∈ C
R×(K+1)T contains the global channel coefficients of the nth subcarrier,

with [Hn]r,((t−1)(K+1)+k+1) = hn,k+1,r,t, for 0 ≤ k ≤ K, 1 ≤ r ≤ R and 1 ≤ t ≤ T .

Note that the matrix Hn can be expressed as:

Hn = Λn F, (3.72)

with

F =






fT1 · · · 0T
K+1,1

...
. . .

...
0T

K+1,1 · · · fTT




 ∈ C

T×(K+1)T , (3.73)

where Λn ∈ C
R×T is the linear channel matrix, with [Λn]r,t = λn,r,t, for 1 ≤ r ≤

R and 1 ≤ t ≤ T , and ft = [f1,t f3,t · · · f2K+1,t]
T ∈ C

(K+1)×1 contains the PA
coefficients associated with the tth source. As the rank of F is equal to T , it can
be concluded that the rank of the channel matrix Hn can not be higher than T .
Thus, the matrix S̄n can not be estimated by using the pseudo-inverse of Hn,
which means that the spatial diversity provided by the antenna array can not be
exploited to recover the information signals s̄i,n,t.

However, substituting (3.72) into (3.70), we get:

X̄n = Λn Ūn, (3.74)

where

Ūn = F S̄n ∈ C
T×IB , (3.75)



68 CHAPTER 3. ESTIMATION AND EQUALIZATION OF NONLINEAR MIMO-OFDM SYSTEMS

Figure 3.3: Transmission scheme for MIMO channel estimation.

which allows us to conclude that the Fourier transform of the output of the tth PA
[Ūn]t,i = ūi,n,t (see (3.18)) can be estimated from X̄n by means of a pseudo-inverse
of Λn. This means that the PA outputs can be separated by exploiting the spatial
diversity.

3.3.2 Channel Estimation

As well as in Section 3.2.2, we assume that pilot symbols are allocated on NP

subcarriers (NP ≤ N), the channel coefficients on all the subcarriers being esti-
mated using the FFT interpolation method. Moreover, we assume that, when a
given source is transmitting pilot symbols, the other ones do not transmit any
information. This transmission scheme for MIMO channel estimation is shown in
Fig. 3.3, with X representing “transmitting” and O “not-transmitting”. Thus, the
channel estimation is carried out as in a single-user system, the total number of
transmission blocks being equal to TIP .

Let us denote by {s̄(p)
1,n,t, · · · , s̄

(p)
IP ,n,t} the IP pilot symbols of the tth user at nth

pilot subcarrier and by X̄
(p)
n,t ∈ C

R×IP the matrix containing the frequency domain
signals received by all the R antennas during the training period of the tth user
at the nth pilot subcarrier, i.e. for a given t (1 ≤ t ≤ T ) and n (1 ≤ n ≤ NB),

we have [X̄
(p)
n,t]r,i = x̄i,n,r, for 1 ≤ r ≤ R and (t − 1)IP + 1 ≤ i ≤ tIP . Thus, from

(3.70), the LS estimate of the channel matrix Hn is obtained as follows:

Ĥn = [Ĥn,1 Ĥn,2 · · · Ĥn,T ] ∈ C
R×(K+1)T , (3.76)
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with

Ĥn,t = X̄
(p)
n,t

[

S̄
(p)
n,t

]†
∈ C

R×(K+1), (3.77)

for 1 ≤ t ≤ T , where (·)† denotes the matrix pseudo-inverse and S̄
(p)
n,t ∈ C

(K+1)×IP

is defined as:

S̄
(p)
n,t =









s̄
(p)
1,n,t · · · s̄

(p)
IP ,n,t

ψ̄3(s
(p)
1,n,t) · · · ψ̄3(s

(p)
IP ,n,t)

...
. . .

...

ψ̄2K+1(s
(p)
1,n,t) · · · ψ̄2K+1(s

(p)
IP ,n,t)









. (3.78)

Note that a necessary condition for (3.77) is IP ≥ (K + 1).

3.3.3 MIMO Power Diversity-based Receivers (MIMO-
PDRs)

As pointed out earlier, it is not possible to recover the frequency domain infor-
mation signals s̄i,n,t from the matrix X̄n by exploiting the spatial diversity, as the
channel matrix Hn can never be full-column rank. However, it can be viewed
from (3.74) that if Λn is full column-rank, the spatial diversity can be used to
separate the outputs of the PAs of the different sources, without canceling the
nonlinear distortions. Thus, the receivers proposed in this section use an antenna
array to cancel the MAI and the power diversity transmission scheme to cancel
the nonlinear ICI. Indeed, as we will see in the sequel, the joint use of R receive
antennas and a power diversity transmission scheme with a repetition factor equal
to L provides RL sub-channels for the nonlinear OFDM system. The information
symbols will then be recovered exploiting jointly the space and power transmission
diversities.

Transmission Scheme

The proposed power diversity transmission scheme in a MIMO-OFDM channel is
described in the following. For a given subcarrier n (1 ≤ n ≤ N), a transmission
block i (1 ≤ i ≤ IB) and user t (1 ≤ t ≤ T ), we have:

s̄
(pd)
((i−1)L+l),n,t =

√

Pl,t s̄i,n,t, for 1 ≤ l ≤ L, (3.79)
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where s̄
(pd)
k,n,t are the frequency domain transmitted signals of the tth user, L is the

repetition factor and P1,t, ..., PL,t are the transmission powers of the tth user.

Let us denote by x̄
(pd)
((i−1)L+l),n,r the frequency domain signal received by the rth

antenna at the nth subcarrier and associated with the ith transmission block and
lth symbol repetition. Moreover, let X̄

(pd)
i,n ∈ C

R×L be the matrix containing the L
frequency domain signals received by all the R antennas at the nth subcarrier and
associated with the ith transmission block, with

[X̄
(pd)
i,n ]r,l = x̄

(pd)
((i−1)L+l),n,r, (3.80)

for 1 ≤ l ≤ L and 1 ≤ r ≤ R. Thus, using (3.70) and the following relationship:
vec [ABC] =

(
CT ⊗ A

)
vec [B], we may write:

vec
[

X̄
(pd)
i,n

]

= (IL ⊗ Hn) vec
[

S̄
(pd)
i,n

]

∈ C
RL×1, (3.81)

where S̄
(pd)
i,n ∈ C

(K+1)T×L defined as:

S̄
(pd)
i,n =





















s̄
(pd)
((i−1)L+1),n,1 · · · s̄

(pd)
iL,n,1

...
. . .

...

|s̄(pd)
((i−1)L+1),n,1|2K s̄

(pd)
((i−1)L+1),n,1 · · · |s̄(pd)

iL,n,1|2K s̄
(pd)
iL,n,1

...

s̄
(pd)
((i−1)L+1),n,T · · · s̄

(pd)
iL,n,T

...
. . .

...

|s̄(pd)
((i−1)L+1),n,T |2K s̄

(pd)
((i−1)L+1),n,T · · · |s̄(pd)

iL,n,T |2K s̄
(pd)
iL,n,T





















, (3.82)

which can be rewritten as:

S̄
(pd)
i,n = diag

[

s̄
(pd)
i,n

]

PT , (3.83)

where s̄
(pd)
i,n = [s̄i,n,1, . . . , |s̄i,n,1|2K s̄i,n,1, · · · s̄i,n,T , . . . , |s̄i,n,T |2K s̄i,n,T ]T ∈ C

(K+1)T×1

and P = [P1 · · ·PT ] ∈ C
L×(K+1)T , with

Pt =







P
1
2
1,t · · · P

2K+1
2

1,t
...

. . .
...

P
1
2

L,t · · · P
2K+1

2
L,t






∈ C

L×(K+1). (3.84)
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Substituting (3.83) into (3.81), we get:

vec
[

X̄
(pd)
i,n

]

= (IL ⊗ Hn)
(

IL ⊗ diag
[

S̄
(pd)
i,n

])

vec
[
PT

]

= (P ⋄ Hn) s̄
(pd)
i,n ∈ C

RL×1, (3.85)

where ⋄ denotes the Khatri-Rao product.

In order to take all the transmission blocks into account, we can define:

X̄
(pd)
n =

[

vec
[

X̄
(pd)
1,n

]

· · · vec
[

X̄
(pd)
IB ,n

]]

∈ C
RL×IB , (3.86)

which can be expressed as:

X̄
(pd)
n = (P ⋄ Hn) S̄n, (3.87)

where S̄n ∈ C
(K+1)T×IB is defined in (3.71). Note that each row of the ma-

trix X̄
(pd)
n corresponds to one of the RL sub-channels provided by the pro-

posed MIMO transmission scheme, the corresponding channel matrix given by
(P ⋄ Hn) ∈ C

RL×(K+1)T .

Furthermore, substituting (3.72) into (3.87) and using (A.10), we get:

X̄
(pd)
n = (IL ⊗ Λn) (P ⋄ F) S̄n. (3.88)

Denoting by ū
(pd)
((i−1)L+l),n,t the FFT of the tth PA output at the nth subcarrier and

associated with the ith transmission block and lth symbol repetition, we define:

Ū
(pd)
n =





















ū
(pd)
1,n,1 ū

(pd)
L+1,n,1 · · · ū

(pd)
((IB−1)L+1),n,1

...
...

. . .
...

ū
(pd)
1,n,T ū

(pd)
L+1,n,T · · · ū

(pd)
((IB−1)L+1),n,T

...

ū
(pd)
L,n,1 ū

(pd)
2L,n,1 · · · ū

(pd)
IBL,n,1

...
...

. . .
...

ū
(pd)
L,n,T ū

(pd)
2L,n,T · · · ū

(pd)
IBL,n,T





















∈ C
TL×IB . (3.89)
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Using (3.75), the matrix Ū
(pd)
n can then be expressed as:

Ū
(pd)
n =






Fdiag [P1,·]
...

Fdiag [PL,·]
























s̄1,n,1 · · · s̄IB ,n,1
...

. . .
...

|s̄1,n,1|2K s̄1,n,1 · · · |s̄IB ,n,1|2K s̄IB ,n,1

...

s̄1,n,T · · · s̄IB ,n,T
...

. . .
...

|s̄1,n,T |2K s̄1,n,T · · · |s̄IB ,n,T |2K s̄IB ,n,T



















= (P ⋄ F) S̄n. (3.90)

Thus, substituting (3.90) into (3.88), we get:

X̄
(pd)
n = (IL ⊗ Λn) Ū

(pd)
n . (3.91)

It can be noted from (3.89) that the informations relative to the tth source are in

rows t, (T + t),...,((L − 1)T + t) of Ū
(pd)
n , for 1 ≤ t ≤ T . Thus, by defining

Ū
(pd)
n,t =

[[

Ū
(pd)
n

]T

t,·

[

Ū
(pd)
n

]T

(T+t),·
· · ·

[

Ū
(pd)
n )

]T

((L−1)T+t),·

]

∈ C
L×IB . (3.92)

we get from (3.90):

Ū
(pd)
n,t = Ptdiag [ft] S̄n,t, (3.93)

where Pt is defined in (3.84) and

S̄n,t =






s̄1,n,t · · · s̄IB ,n,t
...

. . .
...

|s̄1,n,t|2K s̄1,n,t · · · |s̄IB ,n,t|2K s̄IB ,n,t




 . (3.94)

Thus, it is possible to develop a method for recovering the information symbols
s̄i,n,t based on (3.91) and (3.93), which is done in the sequel.
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Table 3.3: MMSE MIMO-Power Diversity-based Receiver (MMSE MIMO-
PDR)

Transmission scheme

For 1 ≤ i ≤ IB, 1 ≤ l ≤ L and 1 ≤ t ≤ T :

s̄(pd)((i − 1)L + l, t) = s̄(i, t)
√

Pl,t ∈ C
N×1

Equalization:

For 1 ≤ n ≤ N :

1) Construct: X̄
(pd)
n =

[

vec
[

X̄
(pd)
1,n

]

· · · vec
[

X̄
(pd)
IB ,n

]]

∈ C
RL×IB , where

[X̄
(pd)
i,n ]r,l = x̄

(pd)
((i−1)L+l),n,r ∈ C

R×L, for 1 ≤ l ≤ L and 1 ≤ r ≤ R.

2) Calculate: ˆ̄Sn = RS̄ (P ⋄ Hn)H
[

(P ⋄ Hn)RS̄ (P ⋄ Hn)H + IRLσ2
]−1

X̄
(pd)
n ∈

C
(K+1)T×IB

3) The estimate of the IB frequency domain symbols associated with the nth

subcarrier and tth source is the [(t − 1)(2K + 1) + 1]th row of ˆ̄Sn.

Equalization

Using the multi-channel representation (3.87), the MMSE estimate of the matrix
S̄n, defined in (3.71), is given by:

ˆ̄Sn = RS̄ (P ⋄ Hn)H
[

(P ⋄ Hn)RS̄ (P ⋄ Hn)H + IRLσ2
]−1

X̄
(pd)
n ∈ C

(K+1)T×IB ,

(3.95)

where RS̄ = E[S̄nS̄
H
n ] ∈ C

(K+1)T×(K+1)T is covariance matrix of S̄n. The expres-
sions of the MMSE MIMO-PDR are summarized in Table 3.3.

The ZF PDR for the considered MIMO-ODFM systems is based on two steps: the
first one consists in separating the signals of the sources using the spacial diversity
and the second one in separating information signals from the nonlinear distortions
using the power diversity. Using the multi-channel representation (3.91), the ZF
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estimate of the matrix Ū
(pd)
n is given by:

ˆ̄U(pd)
n = (IL ⊗ Λn)† X̄

(pd)
n ∈ C

TL×IB . (3.96)

Thus, using (3.92) and (3.93), as in Section 3.2.3, the first row of S̄n,t, containing
the frequency domain symbols s̄i,n,t of the tth user, can be estimated as:

[ˆ̄Sn,t]1,· =
p̃t

f1,t

ˆ̄U
(pd)
n,t ∈ C

1×IB , (3.97)

where p̃t ∈ C
1×L is the first row of P†

t .

Taking all the subcarriers into account, we get:

ˆ̄U(pd) =
[

(IL ⊗ Λ1)
† X̄

(pd)
1 · · · (IL ⊗ Λn)† X̄

(pd)
n

]

, (3.98)

where

ˆ̄U(pd) =
[

ˆ̄U
(pd)
1 · · · ˆ̄U

(pd)
N

]

∈ C
TL×IBN . (3.99)

Thus, defining:

ˆ̄U
(pd)
t =

[[
ˆ̄U(pd)

]T

t,·

[
ˆ̄U(pd)

]T

(T+t),·
· · ·

[
ˆ̄U(pd)

]T

((L−1)T+t),·

]

∈ C
L×NIB , (3.100)

the tth user’s information signal on the N subcarriers and IB blocks can be esti-
mated as:

ˆ̄st =
p̃t

f1,t

ˆ̄U
(pd)
t ∈ C

1×NIB . (3.101)

The expressions of the ZF MIMO-PDR are summarized in Table 3.4, where the
matrix H(lin)

n ∈ C
R×T is defined as

H(lin)
n = Λndiag

(

f(lin)
)

, (3.102)

with f(lin) = [f1,1 · · · f1,T ]T ∈ C
T×1 being the vector containing the linear PA

coefficients of all the sources. Recalling that

[Hn]r,((t−1)(K+1)+k+1) = hn,k+1,t,r, (3.103)



3.3 MIMO-OFDM CHANNEL WITH MEMORYLESS POLYNOMIAL PAS 75

Table 3.4: ZF MIMO-Power Diversity-based Receiver (ZF MIMO-PDR)

Transmission scheme

For 1 ≤ i ≤ IB, 1 ≤ l ≤ L and 1 ≤ t ≤ T :

s̄(pd)((i − 1)L + l, t) = s̄(i, t)
√

Pl,t ∈ C
N×1

Equalization:

1) For 1 ≤ n ≤ N , construct: X̄
(pd)
n =

[

vec
[

X̄
(pd)
1,n

]

· · · vec
[

X̄
(pd)
IB ,n

]]

∈ C
RL×IB ,

where [X̄
(pd)
i,n ]r,l = x̄

(pd)
((i−1)L+l),n,r ∈ C

R×L, for 1 ≤ l ≤ L and 1 ≤ r ≤ R.

2) Calculate: ˆ̄U(pd) =

[(

IL ⊗ H
(lin)
1

)†
X̄

(pd)
1 · · ·

(

IL ⊗ H(lin)
n

)†
X̄

(pd)
n

]

∈

C
TL×IBN , where H(lin)

n is given by (3.104).

For 1 ≤ t ≤ T :

3) Construct Pt from (3.84) and calculate p̃t as the first row of P†
t

4) Construct ˆ̄U
(pd)
t =

[[
ˆ̄U(pd)

]T

t,·

[
ˆ̄U(pd)

]T

(T+t),·
· · ·

[
ˆ̄U(pd)

]T

((L−1)T+t),·

]

∈
C

L×IBN

5) The information signal of tth source on the N subcarriers and IB blocks is

estimated as: ˆ̄st = p̃t
ˆ̄U

(pd)
t ∈ C

1×IBN

the matrix H(lin)
n can be estimated directly from the global channel matrix Hn as:

H(lin)
n =

[

[Hn]T·,1 [Hn]T·,(K+1)+1 · · · [Hn]T·,(T−1)(K+1)+1

]

. (3.104)

A necessary condition for the ZF and MMSE MIMO-PDRs is that Λn and Pt

(1 ≤ t ≤ T ) be full column-rank, which implies respectively R ≥ T and L ≥ K +1.
It should be highlighted that the matrices Pt (1 ≤ t ≤ T ) can be the same for all
the users. Moreover, as well as in the SISO case, the proposed ZF equalization
method uses only the channel coefficients associated with the linear terms.
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3.4 MIMO-OFDM system with memory polyno-

mial PAs

In this section, we deal with a MIMO-OFDM channel assuming that each PA is
represented by a memory polynomial model (2.81). The main result of this section
is that the channel estimation and equalization techniques proposed respectively in
Sections 3.3.2 and 3.3.3 can be directly applied for the case of memory polynomial
PAs. This is due a theorem stating that a memory polynomial PA model can be
expressed as a memoryless polynomial model with coefficients that depend on the
subcarrier.

In what follows, we assume that the length of the cyclic prefix satisfy: Mcp ≥
M +Mpa, where Mpa is the memory of the PAs, assumed to be the same for all the
sources. Thus, denoting by ui,n,t (1 ≤ n ≤ N +Mcp) the output of the tth memory
polynomial PA at the ith transmission block, we may write for 1 ≤ n ≤ N :

ui,(n+Mcp),t =

Mpa∑

m=0

K∑

k=0

f2k+1,t(m) ψ2k+1(s
(cir)
i,(n−m),t), (3.105)

where f2k+1,t(m) are the coefficients of the tth PA and

s
(cir)
i,n,t =

{
si,n,t, for 1 ≤ n ≤ N,

si,N+n,t, for 1 − N ≤ n ≤ 0.
(3.106)

Note that, due to the fact that Mcp ≥ M + Mpa, the signal ui,n,t contains
a cyclic block of (Mcp − Mpa) symbols: {ui,(Mpa+1,t), · · · , ui,Mcp,t} is equal to
{ui,(N−Mcp+Mpa+1),t, · · · , ui,N,t}. As a consequence, equation (3.59) is still valid
in this case.

From (3.59), it can be concluded that frequency domain received signals are linear
mixtures of the T frequency domain PA outputs ūi,n,t, with ūi,n,t = [ū(i, t)]n. In
what follows, Theorem 3.1 demonstrates that, when then PA is represented by
a memory polynomial model, the signal ūi,n,t can be written as the frequency
domain of the output of a memoryless polynomial PA, the coefficients of which
varying from one subcarrier to another. Before that, Lemma 3.1 demonstrates an
important result used in the proof of Theorem 3.1.

Lemma 3.1: Let V ∈ C
N×N be the FFT matrix of order N and U ∈ C

N×N be a
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circulant lower shift matrix of order N defined as:

U =










0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . . 0

...
0 0 · · · 1 0










. (3.107)

Then, we have:
VUi =

√
N diag(i+1)[V ]V, (3.108)

for 0 ≤ i ≤ N − 1, where diagi[A] is the diagonal matrix formed from the ith row
of A.

Proof:

Post-multiplying a matrix by Ui is equivalent to circularly shifting its columns to
the left i times, that is, by defining V(i) = VUi, the nth column of V(i) is given
by:

V(i)·,n = V·,(mod(n+i−1,N)+1). (3.109)

As the kth column of V, defined in (3.2), is given by V·,k =
1√
N

[1 ω(k−1) ω2(k−1) · · · ω(N−1)(k−1)]T , with ω = e−j2π/N , we have:

V(i) =
1√
N










1 1 · · · 1
ωi ω(i+1) · · · ω(i+N−1)

ω2i ω2(i+1) · · · ω2(i+N−1)

...
...

. . .
...

ω(N−1)i ω(N−1)(i+1) · · · ω(N−1)(i+N−1)










. (3.110)

Equation (3.110) can be reexpressed as:

V(i) = diag










1
ωi

ω2i

...
ω(N−1)i










1√
N










1 1 1 · · · 1
1 ω ω2 · · · ω(n−1)

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ω(n−1) ω2(N−1) · · · ω(N−1)(N−1)










,

(3.111)
which is equivalent to (3.108) .

¥
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Theorem 3.1: Let ūi,n,t (1 ≤ n ≤ N) be the frequency domain output of a
memory polynomial PA with coefficients denoted by f2k+1,t(m), for 0 ≤ k ≤ K
and 0 ≤ m ≤ Mpa. Then, the signal ūi,n,t can expressed as the frequency domain
output of a memoryless polynomial PA:

ūi,n,t =
K∑

k=0

f
′

2k+1,t,n ψ̄2k+1(si,n,t), (3.112)

with subcarrier dependent coefficients given by:

f
′

2k+1,t,n =

Mpa∑

m=0

f2k+1,t(m) e−2πm(n−1)/N . (3.113)

Proof:

Let us express (3.105) in a vector form as:

u(i, t) =

Mpa∑

m=0

K∑

k=0

f2k+1,t(m) Ψ2k+1(s
(cir)
m (i, t)) ∈ C

N×1 (3.114)

where [u(i, t)]n = ui,(n+Mcp),t for 1 ≤ n ≤ N , and

s(cir)
m (i, t) = [s

(cir)
i,(1−m),t · · · s

(cir)
i,(N−m),t]

T ∈ C
N×1. (3.115)

Note that, due to its circularity property, the vector s
(cir)
m (i, t) can be expressed as:

s(cir)
m (i, t) = Us

(cir)
m−1(i, t)

= Ums
(cir)
0 (i, t) = Ums(i, t), (3.116)

with U defined in (3.107) and [s(i, t)]n = si,n,t.

Thus, substituting (3.116) into (3.114), we get:

u(i, t) =

Mpa∑

m=0

K∑

k=0

f2k+1,t(m) Ψ2k+1(U
ms(i, t))

=

Mpa∑

m=0

K∑

k=0

f2k+1,t(m) UmΨ2k+1(s(i, t)) (3.117)
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Calculating the FFT of both sides of (3.117), we get:

ū(i, t) =

Mpa∑

m=0

K∑

k=0

f2k+1,t(m)VUmΨ2k+1(s(i, t)). (3.118)

Using Lemma 3.1, we have:

ū(i, t) =

Mpa∑

m=0

K∑

k=0

f2k+1,t(m)
√

N diag(m+1)[V ]VΨ2k+1(s(i, t)),

=

Mpa∑

m=0

K∑

k=0

f2k+1,t(m)
√

N diag(m+1)[V ]Ψ̄2k+1(s(i, t)). (3.119)

Thus, by defining:

f
′

2k+1,t,n =

Mpa∑

m=0

f2k+1,t(m) e− 2π m (n−1)/N (3.120)

or, using the vector from f
′

2k+1,t = [f
′

2k+1,t,1 · · · f
′

2k+1,t,N ]T ∈ C
N×1:

diag[f
′

2k+1,t] =
√

N

Mpa∑

m=0

f2k+1,t(m) diag(m+1)[V ], (3.121)

we obtain from (3.119):

ū(i, t) =
K∑

k=0

diag[f
′

2k+1,t]Ψ̄2k+1(s(i, t)), (3.122)

which gives the desired result. ¥

Theorem 3.1 is of great importance as, by comparing the expressions for the fre-
quency domain output of the PA (3.63) and (3.122), it can be concluded that,
with respect to the signal ūi,n,t, the memory polynomial model is equivalent to a
subcarrier dependent memoryless polynomial model, the relationship between the
parameters of these two models being given by (3.113).

Thus, using (3.59), the ith vector of frequency domain signals received by the rth
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antenna is given by:

x̄(i, r) =
T∑

t=1

Λ(r, t)
K∑

k=0

diag[f
′

2k+1,t]Ψ̄2k+1(s(i, t)) ∈ C
N×1, (3.123)

or, equivalently,

x̄i,n,r =
T∑

t=1

K∑

k=0

λn,r,tf
′

2k+1,t,n ψ̄2k+1(si,n,t)

=
T∑

t=1

K∑

k=0

h
′

n,k+1,r,t ψ̄2k+1(si,n,t), (3.124)

with the global channel coefficients defined as:

h
′

n,k+1,r,t = λn,r,tf
′

2k+1,t,n. (3.125)

Comparing (3.124) and (3.68), it can be viewed that the frequency domain received
signals x̄i,n,r have the same expression for memoryless and memory polynomial
PAs, the global channel coefficients given by (3.67) and (3.125), respectively. The
only difference between these two cases is the fact that the PA coefficients f2k+1,t

in (3.67) are the same for all the subcarriers, while the PA coefficients f
′

2k+1,t,n

in (3.125) vary from one subcarrier to another. Thus, similarly as in (3.70), the
matrix X̄n ∈ C

R×IB , containing the IB frequency domain signals received by all
the R antennas at the nth subcarrier, can be expresses as:

X̄n = H
′

n S̄n, (3.126)

where S̄n ∈ C
(K+1)T×IB is given in (3.71) and H

′

n ∈ C
R×(K+1)T contains the global

channel coefficients of the nth subcarrier, with [H
′

n]r,((t−1)(K+1)+k+1) = h
′

n,k+1,r,t, for
0 ≤ k ≤ K, 1 ≤ r ≤ R and 1 ≤ t ≤ T .

In this case, the matrix H
′

n can be expressed as H
′

n = Λn Fn, with:

Fn =






fT1,n · · · 0T
K+1,1

...
. . .

...
0T

K+1,1 · · · fTT,n




 ∈ C

T×(K+1)T , (3.127)

where ft,n = [f1,t,n f3,t,n · · · f2K+1,t,n]T ∈ C
(K+1)×1. Similarly as in Section 3.3.1, the

matrix S̄n can not be estimated by using the pseudo-inverse of H
′

n as the matrix
H

′

n can not be full column rank. However, the matrix X̄n can still be expressed
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as X̄n = Λn Ūn, with Ūn = Fn S̄n.

In summary, owing to Theorem 3.1, it was possible to demonstrate that, when
the PAs are represented by memory polynomial models, the expressions for the
frequency domain received signals in terms of the global channel parameters are
the same than the ones developed in Section 3.3 for memoryless polynomial PAs.
Indeed, in both cases the global channel parameters have four indices: subcarrier,
nonlinearity order, antenna number and source number. The main result of this
section is then the fact that, as the channel estimation and equalization techniques
proposed in Sections 3.3.2 and 3.3.3 are based on the use of the global channel
parameters, these techniques can be directly applied in the case of memory poly-
nomial PAs. In other words, we have shown that a more general case (memory
polynomial PA) can be treated as particular case (memoryless polynomial PA).
This means that the matrix H

′

n can be estimated as in (3.77)-(3.76), i.e.:

Ĥ
′

n = X̄
(p)
n

[

S̄
(p)
n

]†
, (3.128)

and the information signals of the tth source on the N subcarriers and IB blocks
can be estimated by the MIMO-PDRs, summarized in Tables 3.3 and 3.4, using

respectively the channel matrix Ĥ
′

n and the linear part of the channel matrix Ĥ
′

n:

H
′(lin)
n =

[[

H
′

n

]T

·,1

[

H
′

n

]T

·,(K+1)+1
· · ·

[

H
′

n

]T

·,(T−1)(K+1)+1

]

. (3.129)

3.5 Simulation Results

In this section, the proposed channel estimation and equalization techniques are
evaluated by means of simulations. MIMO-OFDM systems with memoryless and
memory third-order polynomial PAs have been considered for the simulations, with
the PA coefficients shown in Table 3.5 for t = 1, . . . , T . The R × T wireless link,
corresponding to R receive and T transmit antennas, has a frequency selective
fading due to multipath propagation, with the wireless link memory equal to 4
(M = 4). The length of the cyclic prefix Lcp is equal to 4 in the memoryless
case and to 7 in the memory case. The results were obtained with N = 64
subcarriers and 64-QAM transmitted signals, via Monte Carlo simulations using
at least NR = 100 independent data realizations. In all the simulations, the PDRs
use a repetition factor L = 2, with P1,t = 1 and P2,t = 0.8, for t = 1, ..., T .
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Table 3.5: Memoryless and memory polynomial PA coefficients

PA coefficients

memoryless polynomial [15] f1,t = 0.9798 − 0.2887, f3,t = −0.2901 + 0.4350

memory polynomial [94] f1,t(0) = 1.9702 + 0.1931, f3,t(0) = −0.5934 − 0.1174

f1,t(1) = −0.9606 + 0.0036, f3,t(1) = 0.2300 + 0.0560

f1,t(2) = 0, f3,t(2) = 0

f1,t(3) = 0.1591 − 0.0132, f3,t(3) = −0.0112 − 0.0094

3.5.1 Memoryless polynomial PA - channel estimation

The next three figures contain simulation results corresponding to channel estima-
tion in the case of memoryless polynomial PAs. The proposed channel estimation
method is evaluated by means of the Normalized Mean Squared Error (NMSE) of
the estimated global channel parameters, defined as:

NMSEH =
1

NR

NR∑

l=1

‖ H − Ĥl ‖2
F

‖ H ‖2
F

, (3.130)

where Ĥl represents the channel matrix estimated at the lth Monte Carlo simula-
tion and ‖ · ‖F the Frobenius norm.

Fig. 3.4 shows the NMSE versus signal-to-noise-ratio (SNR) provided by proposed
channel estimation technique for various values of NP (number of pilot subcarriers),
with R = T = 1 and IP = 2 pilot symbols per subcarrier. It can be viewed that
the channel estimates obtained with the tested values of NP are very close, except
for NP = 8 and high SNRs. This figure shows that, in this case, it is interesting
to use NP = 8 or NP = 16 pilot subcarriers.

To have a performance comparison for our technique, we have simulated the chan-
nel estimation method proposed in [67]. This technique assumes that the PA
coefficients of all the users are known at the receiver. In practice, the PA para-
meters have to be estimated at the transmitter and this information has to be
sent to the receiver. In the case of a memory PA, all coefficients of the memory
polynomial model are sent to the receiver. The transmission of these parameters
must be included in the system initialization process before the channel estima-
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Figure 3.4: NMSE versus SNR for various values of NP - R = T = 1 with
memoryless PA

tion. Thus, this method performs the estimation of the wireless channel coefficients
only. In this case, the estimation method is evaluated by means of the NMSE of
the estimated wireless channel coefficients, defined as:

NMSEL =
1

NR

NR∑

l=1

∑N
n=1 ‖ Λn − Λ̂

(l)
n ‖2

F
∑N

n=1 ‖ Λn ‖2
F

, (3.131)

where Λ̂
(l)
n ∈ C

R×T represents the estimate of Λn at the lth Monte Carlo simulation.

However, note that the NMSEL can not be computed for the proposed estimation
technique, as it does not provide an estimate of the wireless channel coefficients.
Thus, as H(lin)

n = Λnf1 , where f1 = f1,t for t = 1, ..., T , a figure of merit similar
to (3.131) can be defined as:

NMSEHlin =
1

NR

NR∑

l=1

∑N
n=1 ‖ H(lin)

n − Ĥ
(lin)

n (l) ‖2
F

∑N
n=1 ‖ H(lin)

n ‖2
F

, (3.132)

where Ĥ
(lin)

n (l) ∈ C
R×T represents the estimate of H(lin)

n at the lth Monte Carlo
simulation.

Fig. 3.5 shows the NMSEH and NMSEHlin provided by proposed channel es-
timation technique, for R = T = 1, NP = 16 and IP = 2, and the NMSEL
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Figure 3.5: NMSE versus SNR for proposed and Known PA techniques -
R = T = 1 with memoryless PA

provided by the method proposed in [67], henceforth referred to as Known PA
channel estimation technique. In this case, as this technique uses only one pilot
symbol per user per subcarrier, we have used NP = 32 and IP = 1, so that both
techniques use 32 pilot symbols. Note that the Known PA technique provides a
SNR gain of approximatively 6dB with respect to the proposed technique. The
advantage of the proposed technique is that it does not require the knowledge
of the PA coefficients. Indeed, the transmission of the PA coefficients leads to
additional information to be transmitted, implying in a loss of transmission rate.
Furthermore, as the transmission of these parameters is done before the channel
estimation, a linear channel with good quality must be used to avoid errors on the
values of the PA coefficients.

Similar results were obtained for the MIMO case. Fig. 3.6 shows the NMSEH and
NMSEHlin provided by proposed channel estimation technique, for R = T = 2,
NP = 8 and IP = 2, and the NMSEL provided by the Known PA estimation
technique. In this case, we have used NP = 16 and IP = 1, so that both technique
use 16 pilot symbols per user. The conclusions that we can draw from Fig. 3.6 are
similar to those of Fig. 3.5.
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Figure 3.6: NMSE versus SNR for proposed and Known PA techniques -
R = T = 2 with memoryless PA

3.5.2 Memoryless polynomial PA - channel equalization

The next figures contain simulation results corresponding to channel equalization
in the case of memoryless polynomial PAs. The channel equalization techniques
are evaluated by means of the Bit-Error-Rate (BER).

Fig. 3.7 shows the BER versus SNR provided by the proposed ZF and MMSE
PDRs using channel estimates provided by the proposed channel estimation me-
thod, for R = T = 1, NP = 16 and IP = 2. In the case of a linear PA, the
equalization of an OFDM channel can be carried out by a 1-tap equalizer that
de-rotate the received signals. Thus, for comparison purposes, Fig. 3.7 also shows
the BER provided by a 1-tap equalizer that simply divides the received signal x̄i,n

by the channel coefficient gn,1. Note that the proposed receivers provide BERs
much lower than the 1-tap equalizer. Moreover, as expected, the ZF and MMSE
receivers have similar performances when the SNR is high.

Fig. 3.8 shows the BER versus SNR provided by the proposed ZF and MMSE
PDRs using channel estimates provided by the proposed channel estimation me-
thod, and assuming that the global channel coefficients are known, for R = T = 1,
NP = 16 and IP = 2. It is also shown the BER provided by the proposed MMSE
receiver for a linear PA, assuming that the channel coefficients are known. Once
again, the ZF and MMSE receivers have similar performances when the SNR is
high. Besides, BER obtained with the known and estimated channel are similar
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Figure 3.7: BER versus SNR provided by a single-tap equalizer and by the
proposed ZF and MMSE PDRs - R = T = 1 with memoryless PA

for SNRs up to 35dB.

Fig. 3.9 shows the BER versus SNR provided by the proposed ZF and MMSE
MIMO-PDRs using channel estimates provided by the proposed channel estimation
method, for R = T = 2, NP = 16 and IP = 2, and the BER provided by the PA
nonlinearity cancelation (PANC) [67], for NP = 32 and IP = 1. Note that the
proposed PDRs provide a BER of 3.10−4 for high SNRs, while the PANC provides
a BER of 6.10−3. The drawback of the PDR receivers is that their transmission
rate is two times smaller than the one of the PANC.

Fig. 3.10 shows the BER versus SNR provided by the proposed ZF and MMSE
MIMO-PDRs using channel estimates provided by the proposed channel estimation
method, and assuming that the global channel coefficients are known, for R = T =
2, NP = 16 and IP = 2. It is also shown the BER provided by the proposed MMSE
receiver for R = 3 and T = 2. Once again, the BER obtained with the known and
estimated channel are similar for SNRs up to 35dB. Besides, it can be seen that
the BER provided by the use of an additional antenna is significant

Moreover, concerning Figs. 3.7-3.10, it can viewed that, in some cases, the BERs
are not equal to zero even for high SNRs. This is due to the fact that the ICI
and/or MAI are not perfectly canceled.
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Figure 3.8: BER versus SNR provided by the proposed ZF and MMSE PDRs
with known and estimated channels - R = T = 1 with memoryless PA

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

MMSE
ZF
PANC

Figure 3.9: BER versus SNR provided by the PANC and by the proposed ZF
and MMSE MIMO-PDRs - R = T = 2 with memoryless PA
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Figure 3.10: BER versus SNR provided by the proposed ZF and MMSE
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T = 2 with memoryless PA

3.5.3 Memory polynomial PA - channel estimation

This section provides simulation results corresponding to channel estimation in
the case of memory polynomial PAs. As mentioned earlier, in this case, the length
of the cyclic prefix is equal to M + Mpa = 7. Fig. 3.11 shows the NMSEH and
NMSEHlin provided by proposed channel estimation technique, for R = T = 1,
NP = 16 and IP = 2, and the NMSEL provided by the Known PA estimation
technique, for NP = 32 and IP = 1. In this case, the SNR gain provided by the
Known PA technique with respect to the proposed one is approximatively equal to
10dB. However, it should be highlighted that, if the Known PA technique is used,
the transmitter has to estimate and transmit the 8 complex-valued coefficients
that characterizes the memory polynomial PA. Similar results were obtained for
the MIMO case. Fig. 3.12 shows the NMSEH and NMSEHlin provided by
proposed channel estimation technique, for R = T = 2, NP = 8 and IP = 2, and
the NMSEL provided by the Known PA estimation technique, for NP = 16 and
IP = 1.

The next figure shows the influence of the number of pilot subcarriers NP and the
number IP of pilot symbols per subcarrier per user on the estimation of MIMO
global channel coefficients in the case of a memory polynomial PA. Fig. 3.13
shows the NMSE versus SNR provided by proposed channel estimation technique
for various values of NP and IP , for R = T = 2. It can be viewed that the use
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Figure 3.11: NMSE versus SNR for proposed and Known PA techniques -
R = T = 1 with memory polynomial PA
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Figure 3.12: NMSE versus SNR for proposed and Known PA techniques -
R = T = 2 with memory polynomial PA
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Figure 3.13: NMSE versus SNR for various values of Np and IP - R = T = 2
with memory polynomial PA

of NP = 16 pilot subcarriers improves the channel estimation with respect to the
case NP = 8 when the SNR is higher than 30dB. Moreover, it can be noted that
the NMSE is significantly improved if 3 or 4 pilot symbols are used per subcarrier
per user, instead of 2. This result shows that, if we increase the number of pilot
symbols, the proposed channel estimation technique may provide results similar to
those obtained by the Known PA technique, with the advantage of not assuming
that the PA coefficients are known.

3.5.4 Memory polynomial PA - channel equalization

The next two figures contain simulation results concerning channel equalization
in the case of memory polynomial PAs. Fig. 3.14 shows the BER versus SNR
provided by the proposed ZF and MMSE MIMO-PDRs using channel estimates
provided by the proposed channel estimation method, for R = T = 2, NP = 16
and IP = 2, and the BER provided by the PANC technique, for NP = 32 and
IP = 1. Note that the PANC does not perform well in the case of a memory
polynomial PA, while the PDRs provide a BER of 7.10−4 for high SNRs.

Fig. 3.15 shows the BER versus SNR provided by the proposed ZF and MMSE
MIMO-PDRs using channel estimates provided by the proposed channel estimation
method, and assuming that the global channel coefficients are known, for R = T =
2, NP = 16 and IP = 2. It should be highlighted that the BER obtained with the
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Figure 3.14: BER versus SNR provided by the PANC and by the proposed
ZF and MMSE MIMO-PDRs - R = T = 2 with memory polynomial PA

known and estimated channel are similar for SNRs up to 25dB in the case of the
MMSE MIMO-PDR and up to 35dB in the case of the ZF MIMO-PDR.

The main conclusion that can be drawn from the last five figures is that, when
PDRs are used, the simulation results obtained with memory polynomial PAs are
very similar to those obtained with memoryless polynomial PAs. That reinforces
the results obtained in Section 3.4, i.e. if channel estimation and equalization
methods based on the use of the global channel parameters are used, the cases of
memoryless and memory polynomial PAs can be treated in the same way.

3.6 Conclusion

In this chapter, we have proposed techniques for channel estimation and equaliza-
tion of MIMO-OFDM channels considering nonlinear PAs. These techniques are
based on the use of global channel coefficients that characterize the cascade of the
nonlinear PA and the linear wireless link. Initially, we have considered OFDM
systems with memoryless PAs. In this case, we have developed a supervised LS
channel estimation technique whose main advantage is that it estimates the linear
and nonlinear coefficients jointly, do not requiring the knowledge of the PA para-
meters. Also in the case of memoryless PAs, two channel equalization techniques
were proposed based on a transmission scheme that re-transmits all the symbols
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Figure 3.15: BER versus SNR provided by the proposed ZF and MMSE
MIMO-PDRs with known and estimated channels - R = T = 2 with me-
mory polynomial PA

several times with a different transmission power each time. These techniques
have provided good simulation results, their main drawback being the fact that
the transmission rate is divided by the repetition factor.

Moreover, we have demonstrated that, in a OFDM system, a memory polyno-
mial PA can be expressed as a memoryless polynomial PA with coefficients that
vary from one subcarrier to another. We have then shown that, when the global
channel parameters are used, memoryless and memory polynomial PAs lead to
identical expressions for the frequency domain received signals. Thus, the channel
estimation and equalization techniques proposed for memoryless PAs can be di-
rectly applied in the case of memory polynomial PAs. As expected, the simulation
results concerning memory polynomial PAs were very similar to those concerning
memoryless PAs.

In the next chapter, we develop techniques for supervised estimation of MIMO
Volterra channels. However, in Chapter 4, the proposed techniques are designed
for time and space division multiple access (TDMA-SDMA) systems, instead of
OFDM systems. In the next chapter, we deal with MIMO Volterra channels more
general than the ones used in the present chapter, the channel model being the
most general type of MIMO Volterra system used in this thesis. A well-known and
efficient approach for estimating SISO Volterra models is the use of orthonormal
polynomials [14, 108, 105, 137, 120, 134, 59]. In Chapter 4, we extend the procedure
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of construction and the use of orthonormal polynomials to the case of MIMO
Volterra systems. Moreover, the proposed techniques are applied to the estimation
of a multiuser nonlinear ROF channel.



CHAPTER 4

Supervised Estimation of MIMO
Volterra Channels Using Orthonormal

Polynomials

This chapter deals with the estimation of discrete-time equivalent baseband
MIMO Volterra communication channels in a supervised scenario, i.e. the

transmitted signals are assumed to be known. The channel model considered in this
chapter is the general MIMO Volterra system (2.57) or, equivalently, (2.56). This
channel model is the most general MIMO Volterra system used in this thesis, with
the channel possibly having different memories with respect to the sources. Few
authors have proposed channel estimation or equalization techniques for MIMO
Volterra communication channels and, to the best of our knowledge, none of them
correspond to the general MIMO Volterra model (2.56)-(2.57). A receiver for
MIMO ultra-wideband (UWB) systems was proposed in [113], based on a MIMO
Volterra model of order two with binary PSK (BPSK) transmitted signals. Be-
sides, channel estimation and equalization of MIMO Volterra channels that do
not correspond to a nonlinear mixture of the sources were proposed in [67, 133]
and [127], respectively for OFDM and CDMA systems. Some works dealing with
MIMO Volterra systems were also proposed considering other kinds of applica-
tions, however, to the best of our knowledge, they also use less generical models
than the one considered in this chapter [123, 1, 124, 136, 2].

The main drawback of Volterra models is their high number of coefficients, which
may significantly difficult the estimation of these coefficients. For instance, in the
case of adaptive schemes, although the estimation of the Volterra parameters can
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be done by a number of algorithms, it is often carried out by the Least Mean Square
(LMS) algorithm [163] due to its simplicity [14, 108]. However, the convergence
speed of the LMS algorithm is slow if the condition number (or eigenvalue spread)
of the covariance matrix of the regression vector is high [74]. The condition number
of a matrix is defined as the ratio between its highest and smallest eigenvalues. For
Volterra systems, this covariance matrix has, in general, a high eigenvalue spread
[108], specially when the input signals are QAM modulated. Hence, the estimation
of Volterra channels by means of the LMS algorithm is, in general, very slow if the
transmitted signals are QAM modulated. To overcome this problem, we develop
a set of orthonormal polynomials to improve the conditioning of the covariance
matrix of the nonlinear input vector associated with a MIMO Volterra system with
QAM inputs. Thus, the use of this set of orthonormal polynomials accelerates the
convergence of the LMS algorithm when performing adaptive estimation of MIMO
Volterra channels.

Several works have used similar orthogonalization approaches for SISO Volterra
systems [14, 108, 137, 134, 59, 84]. However, these methods developed for SISO
systems can not be applied to a MIMO Volterra system like (2.57), since the recei-
ved signals are nonlinear mixtures of the sources that can have different probability
density functions (PDFs) and different delay spreads (channel memory). To the
best of our knowledge, there is no similar orthogonalization technique for MIMO
Volterra systems. In this chapter, we propose a procedure of construction of ortho-
normal polynomials in the case of MIMO Volterra systems, allowing different PDFs
for the input signals and different memories with respect to the inputs, so that
the orthonormal polynomials can be applied to the general equivalent baseband
MIMO Volterra channel (2.57).

The orthonormal polynomials can also be exploited in the calculus of the Minimum
Mean Squared Error (MMSE) estimation of MIMO Volterra systems in a block
processing scheme. In this case, the use of orthonormal polynomials makes possible
a decoupled estimation of each coefficient of the MIMO Volterra system, leading
to a reduction of the computational complexity associated with the calculus of the
MMSE estimate of the system coefficients.

Other contribution of this chapter is the application of the proposed techniques
for the estimation of uplink nonlinear MIMO Radio-Over-Fiber (ROF) channels,
considering multiple users and multiple receive antennas. Some works have been
done in the last years on the estimation and equalization of nonlinear ROF chan-
nels, specially by X. N. Fernando, S. Z. Pinter and A. B. Sesay. In the SISO
case, a Hammerstein-type decision feedback equalizer for a Wiener ROF uplink
channel was proposed in [57]. References [55, 54] developed a pre-distorter for the
downlink, while a post-compensation equalization technique was proposed for the
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uplink, assuming an Additive White Gaussian Noise (AWGN) wireless channel. A
pre-distortion technique for ROF links was also developed in [82].

In the MISO case, i.e. considering multiple users and a single antenna at the
reception, an estimation technique for a ROF uplink channel was presented in
[116, 114] for a CDMA system using pseudo-noise spreading codes. The same
authors have proposed an equalizer for the ROF downlink channel in a CDMA
environment using Walsh codes [117]. Although these estimation and equalization
techniques proposed for the MISO case could be applied in the MIMO case, they
are designed for CDMA systems, contrarily to the ones developed in this chapter.
The development of techniques for ROF channels in CDMA systems will be treated
in Chapter 6 of this thesis.

Other approaches have been considered for the mitigation of nonlinear distor-
tions on ROF links, like equivalent circuit model based solutions [29, 156], “post
nonlinearity recovery block” [125] and electronic pre-distortion schemes [58, 70].
However, as pointed out in [55], these solutions have many drawbacks, as the fact
that they are device dependent and that their accuracy depend on the knowledge
of physical parameters. In addition, these approaches can not take into account
nonlinear distortions due to other possible nonlinear devices, such as PAs.

This chapter is organized as follows. Section 4.1 presents the channel model consi-
dered in this chapter. In Section 4.2, the problem associated with the estimation
of Volterra systems by the LMS algorithm is presented. In Section 4.3, the set
of orthonormal polynomials is developed. In Section 4.4, MIMO Volterra chan-
nel estimation using orthonormal polynomials is addressed. Section 4.5 provides
some simulation results to illustrate the performance of the proposed methods and
Section 4.6 draws some conclusions about the work. Moreover, in Appendix B,
the procedure of construction of the orthonormal monomials used by the ortho-
normal polynomials is presented. The results presented in this chapter have been
published in [52, 46].
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4.1 Channel Model

The channel model used in this chapter is a noisy version of the discrete-time
equivalent baseband MIMO Volterra channel (2.57):

yr(n) = xr(n) + vr(n),

yr(n) =
K∑

k=0

M̄∑

m̄1=1

· · ·
M̄∑

m̄k+1=m̄k

M̄∑

m̄k+2=1

· · ·
M̄∑

m̄2k+1=m̄2k

h
(r)
2k+1(m̄1, . . . , m̄2k+1)

k+1∏

i=1

s̄m̄i
(n)

2k+1∏

i=k+2

s̄∗m̄i
(n) + vr(n), (4.1)

where yr(n) and xr(n) (1 ≤ r ≤ R) are respectively the noisy and noiseless versions
of the signal received by antenna r at the time instant n, R is the number of receive
antennas, (2K + 1) is the nonlinearity order of the model, h

(r)
2k+1(m̄1, . . . , m̄2k+1)

are the coefficients of the (2k + 1)th-order Volterra kernel of the rth sub-channel,
s̄m̄i

(n) corresponds to the m̄th
i component of the linear input vector given by (2.58),

υr(n) is the zero-mean AWGN component and M̄ = M1 + · · · + MT + T , Mt

being the channel memory with respect to the tth source and T the number of
users. In this chapter, we assume that the transmitted signals st(n) are known and
independent and identically-distributed (i.i.d.). Moreover, the noise components
υr(n) are assumed to be zero mean, independent from each other and from the
transmitted signals st(n).

Note that, in Chapter 2, triangular MIMO Volterra filters were denoted by
h̃

(r)
2k+1(m̄1, . . . , m̄2k+1). However, for simplifying the notation, henceforth they will

be denoted by h
(r)
2k+1(m̄1, . . . , m̄2k+1).

As described in Chapter 2, the MIMO Volterra model (4.1) can be expressed in a
compact form:

y(n) = x(n) + v(n) = Hw(n) + v(n), (4.2)

where y(n) = [y1(n) y2(n) . . . yR(n)]T ∈ C
R×1, v(n) = [v1(n) v2(n) . . . vR(n)]T ∈

C
R×1, w(n) ∈ C

Q×1 is given by (2.60), x(n) ∈ C
R×1 and H ∈ C

R×Q are defined
as in (2.59), and Q is given by (2.61).
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4.2 LMS Volterra Channel Estimation

As mentioned earlier, the adaptive estimation of Volterra systems is generally done
by the LMS algorithm due to its simplicity. The LMS estimation of the channel
matrix H is based on the minimization of the MMSE cost function:

J = E
[
‖y(n) − Hw(n)‖2

F )
]

= E
[
eH(n)e(n)

]
, (4.3)

where ‖ · ‖F denotes the Frobenius norm and e(n) = y(n) − Hw(n) ∈ C
R×1.

Denoting by hr ∈ C
Q×1 the transpose of the rth row of H, the gradient of (4.3)

with respect to hr is given by:

∇hr
J = E

[
−2yr(n)w∗(n) + 2[hT

r w(n)]w∗(n)
]
. (4.4)

The LMS algorithm tries to minimize the MMSE cost function based on the stee-
pest descent algorithm (or gradient descent algorithm) [74]. The steepest descent
algorithm is an iterative optimization technique that starts at an initial point and,
at each iteration, takes a step proportional to the negative of the gradient of the
cost function at the current point. The LMS algorithm can be viewed as a sto-
chastic version of the steepest descent algorithm that uses instantaneous estimates
of the gradient vector. The LMS estimation of the channel matrix hr is then given
by the following adaptation equation:

ĥr(n + 1) = ĥr(n) + µ
(

yr(n) − ĥ
T

r (n)w(n)
)

w∗(n), (4.5)

where µ is the step-size parameter and the vector ĥr(n) represents the estimate
value of hr at the nth time instant. Equivalently, we may write:

Ĥ(n + 1) = Ĥ(n) + µ
(

y(n) − Ĥ(n)w(n)
)

wH(n), (4.6)

where the matrix Ĥ(n) denotes the estimate value of H at the nth time instant.

Let us define the weight error vector for the rth received signal (1 ≤ r ≤ R) as:

e
(h)
r (n) ≡ ĥr(n) − hr ∈ C

Q×1, which leads to [108]:

E[e(h)(n + 1)] = (IQ − µRw) E[e(h)(n)], (4.7)

where Rw = E[w(n)wH(n)] is the covariance matrix of the nonlinear input vector
w(n). Let Q ∈ C

Q×Q be the matrix containing the eigenvectors of Rw. Thus, by
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defining:
v(h)(n) = QHe(h)(n), (4.8)

we may write:
E[v(h)(n + 1)] = (IQ − µΛ) E[v(h)(n)], (4.9)

where Λ ∈ C
Q×Q is a diagonal matrix containing the eigenvalues λq (1 ≤ q ≤ Q)

of Rw. Equation (4.9) can be rewritten in a scalar form as:

E[v(h)
q (n + 1)] = (1 − µλq) E[v(h)

q (n)], (4.10)

for q = 1, ..., Q, which leads to

E[v(h)
q (n)] = (1 − µλq)

n
E[v(h)

q (0)]. (4.11)

Hence, for convergence we must have:

0 < µ <
2

|λmax|
, (4.12)

where λmax is the eigenvalue of Rw with the highest magnitude. Moreover, the
equation (4.11) can be approximated by [108]:

E[v(h)
q (n)] ∼= e−τqn

E[v(h)
q (0)], (4.13)

with the time constants given by

τq =
1

2µλq

, (4.14)

for q = 1, ..., Q. It can then be concluded from (4.14) that the convergence speed
of the LMS algorithm is limited by the smallest eigenvalue λmin, the maximal time
constant being given by τmin = 1

2µλmin
.

On the other hand, a measure of the misadjustment of the LMS algorithm is
provided by the Excess Mean Square Error (EMSE) of the rth received signal,
defined as:

ξ
(r)
EMSE(n) = E[ξ̂(r)(n)] − ξ

(r)
min, 1 ≤ r ≤ R, (4.15)

where ξ̂(r)(n) = E[|yr(n) − frw(n)|2] is the mean square error of the rth received

signal provided by the LMS algorithm at iteration n and ξ
(r)
min is the corresponding

minimum mean square error provided by the Wiener solution. The EMSE provided
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by the LMS algorithm in steady state can be approximated by [108]:

ξ
(r)
EMSE(∞) ∼= µ ξ

(r)
min

Q
∑

q=1

λq. (4.16)

The ill-conditioning of the correlation matrix Rw means that its eigenvalues are
widely spread, i.e. some eigenvalues are much higher than some others. In this
case, it can be seen from (4.16) that the EMSE produced by the LMS algorithm is
mainly determined by the largest eigenvalues. Thus, if there exist some eigenvalues
with high values, the step-size parameter should have a small value in order to
obtain a low EMSE. On the other hand, small eigenvalues and a small step-size lead
to high time constants, which slows down the convergence of the LMS algorithm.
On other words, for an ill-conditioned matrix Rw, the smallest eigenvalues lead to
a slow convergence, while the highest eigenvalues lead to a high EMSE.

For Volterra systems, the covariance matrix Rw of the nonlinear input vector has
often a high eigenvalue spread [108], specially for QAM signals, as it can be viewed
in Table 4.1. This figure shows the eigenvalue spread of the matrix Rw associated
with a equivalent baseband MIMO Volterra channel for P-PSK, 16-QAM, 64-QAM
and 256-QAM constellations, assuming an uniform and i.i.d. distribution. Three
different cases are considered, according to the number of sources (T ) and channel
memory (M): (1) T = 2 and M = 1, (2) T = 3 and M = 1, (3) T = 2 and M = 2.
In Table 4.1, the input signals have unit power and the channel nonlinearity order is
three (K = 1), which means that these cases correspond respectively to Q = 4, 12
and 28 virtual sources for PSK sources and to Q = 8, 21 and 44 for QAM sources.
It can be viewed that the eigenvalue spread is much higher for QAM constellations
than for PSK constellations. In fact, the eigenvalue spread is equal to one for PSK
signals. This is due to the fact that the matrix Rw is diagonal for this kind of
signals [99].

Table 4.1: Eigenvalue spread of the covariance matrix of the nonlinear input
vector - uniform i.i.d. signals.

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤❤

Modulation
Eigenvalue spread

Case 1 Case 2 Case 3

P-PSK 1 1 1

16-QAM 63.27 94.41 131.76

64-QAM 51.46 77.55 108.90

256-QAM 49.48 74.67 104.93
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In the next section, a set of orthonormal polynomials is developed to decrease the
eigenvalue spread of the covariance matrix of the nonlinear input vector associated
with an equivalent baseband MIMO Volterra system, assuming that all the sources
transmit uniformly distributed i.i.d. QAM symbols. Besides, it is assumed that

Pt > 2K + 1, for t =, 1..., T, (4.17)

where Pt is the number of points of the QAM constellation of the tth source. Equa-
tion (4.17) corresponds to the well-known persistence of excitation condition for
a Volterra system of order 2K + 1 [107]. Moreover, for simplifying the develop-
ments, we also assume that Pt is even, for t = 1, ..., T , i.e. the signals transmitted
by all the sources belong to square QAM constellations. In this case, the following
property holds:

E[si
t(n)s∗

j

y (n)] = 0, ∀(i, j) i 6= j, i + j ≤ 2K + 1, (4.18)

where st(n) is the signal transmitted by the tth user, which means that the random
variables st(n) are circular of order 2K + 1, for t =, 1..., T .

Using an orthonormal basis, the covariance matrix Rw is equal to the identity
matrix and the eigenvalue spread is equal to 1, leading to a faster convergence of
the LMS algorithm. Several works have used similar orthogonalization approaches
for SISO Volterra systems [14, 108, 137, 134, 59, 84]. However, these techniques
can not be applied to the MIMO Volterra channel (4.1) as the received signals are
nonlinear mixture of the sources. The developments of the next sections extend
the procedure of construction and the use of orthonormal polynomials to the case
of MIMO Volterra systems, allowing different PDF’s for the source signals and
different channel memories with respect to the sources.

.

4.3 Orthonormal Polynomials

In this section, a set of orthonormal polynomials is developed for the discrete-
time equivalent baseband MIMO Volterra channel (4.1). The orthonormalization
problem considered here consists in finding a lower triangular matrix T ∈ C

Q×Q

so that w̆(n) = Tw(n), satisfying Rw̆ = TRwTH = IQ, where w̆(n) is a nonlinear
input vector in an orthonormal basis, Rw̆ = E[w̆(n)w̆H(n)] is the covariance matrix
of w̆(n) and IQ is the identity matrix of order Q. As pointed out in Section 4.2, this
orthonormalization procedure is not necessary in the case of uniformly distributed
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PSK signals.

The elements of the nonlinear input vector w(n), given by (2.60), are multiva-
riable functions of the delayed input signals that can be expressed as products of
monomials in s̄m̄(n). We recall that s̄m̄(n), for m̄ = 1, ..., M̄ , correspond to the
delayed signals transmitted by all the sources. The basic idea of the orthonor-
malization method is that by exploiting the hypothesis of independency between
the inputs and their i.i.d. characteristic, an orthonormalization can be carried out
by applying the Gram-Schmidt procedure to the set of monomials that composes
w(n). The orthonormal polynomials are then obtained as products of orthonormal
monomials. An advantage of this method is that the Gram-Schmidt orthonorma-
lization is applied to calculate only few monomials, even if the system has a high
number of nonlinear input terms.

Let C2K+1[s1, · · · , sM̄ ] = C2K+1 [S ], with S = {s1, · · · , sM̄}, be the space of
polynomials of order equal or smaller than 2K + 1 in the M̄ random variables
s1, s2, ..., sm̄, these variables being assumed to be complex-valued, persistently ex-
citing of order 2K +1 [107] and independent from each other. It it is important to
highlight that the random variables {s1, · · · , sM̄} does not need to have the same
PDF. In addition, it is considered that the polynomials have only odd-order ker-
nels with one more non-conjugated term than conjugated terms, i.e. polynomials
have the form

∏k+1
i=1 sm̄i

∏2k+1
i=k+2 s∗m̄i

, with 0 ≤ k ≤ K, 1 ≤ m̄1 ≤ ... ≤ m̄k+1 ≤ M̄
and 1 ≤ m̄k+2 ≤ ... ≤ m̄2k+1 ≤ M̄ .

Let us associate the space C2K+1 [S ] with the following scalar product:

< A(S), B(S) >≡ E[A(S)B∗(S)], (4.19)

where A(S) and B(S) are polynomials in C2K+1[S]. The canonical basis of the
space C2K+1[S] is constituted by the following components:

W
(2k+1)
m̄1,...,m̄2k+1

(S) ≡
≡ W

(2k+1)
m̄1,...,m̄2k+1

(sm̄1 , . . . , sm̄k+1
, s∗m̄k+2

, . . . , s∗m̄2k+1
), (4.20)

=
M̄∏

i=1

Tαi,βi
(si), (4.21)

where αi ( resp. βi) is the cardinality of si (resp. si
∗) in the set {sm̄1 , . . . , sm̄k+1

}
(resp. {s∗m̄k+2

, . . . , s∗m̄2k+1
}) and Tαi,βi

(si) are canonical monomials given by

Tαi,βi
(si) = (si)

αi (si
∗)βi . (4.22)
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Note that 0 ≤ αi ≤ k + 1, 0 ≤ βi ≤ k,
M̄∑

i=1

αi = k + 1 and
M̄∑

i=1

βi = k. Note that

the basis function W
(2k+1)
m̄1,··· ,m̄2k+1

(S) is equal to the term {sα1
1 s∗1

β1 . . . sαT

T s∗T
βT }. For

instance, for K = 1 (linear and cubic terms), the canonical basis is given by:

W
(1)
l (S) = T1,0(sl) = sl, (4.23)

W
(3)
l,l,l(S) = T2,1(sl) = s2

l s
∗
l , (4.24)

W
(3)
l,l,j(S) = T2,0(sl)T0,1(sj) = s2

l s
∗
j , l 6= j (4.25)

W
(3)
l,j,l(S) = T1,1(sl)T1,0(sj) = sls

∗
l sj, l < j (4.26)

W
(3)
l,j,k(S) = T1,0(sl)T1,0(sj)T0,1(sk) = slsjs

∗
k, l < j,

(4.27)

where l, j, k = 1, ..., M̄ .

The scalar product between two components of the canonical basis is equal to:

〈

W
(2k+1)
m̄1,··· ,m̄2k+1

(S),W
(2k

′

+1)

m̄
′

1,··· ,m̄′

2k
′
+1

(S)

〉

= E

[
M̄∏

i=1

Tαi,βi
(si)

M̄∏

i=1

T ∗
α
′

i,β
′

i

(si)

]

=
M̄∏

i=1

E

[

Tαi,βi
(si) T ∗

α
′

i,β
′

i

(si)
]

=
M̄∏

i=1

E

[

(si)
αi+β

′

i (si
∗)βi+α

′

i

]

. (4.28)

Note that if αi + β
′

i = βi + α
′

i for all i, the scalar product (4.28) is non-null. This

means that even if the bases W
(2k+1)
m̄1,··· ,m̄2k+1

(S) and W
(2k

′

+1)

m̄
′

1,··· ,m̄′

2k
′
+1

(S) are different,

their scalar product can be different of zero. That demonstrates that the canonical
basis is not orthogonal.

The set of canonical monomials {Tαi,βi
(yi)} can be orthonormalized by using the

Gram-Schmidt procedure, as described in Appendix B. That leads to a set of
orthonormal monomials, denoted by Pαi,βi

(si), 0 ≤ αi ≤ k + 1, 0 ≤ βi ≤ k,
i = 1, · · · , M̄ . For instance, for K = 1 (linear-cubic nonlinearity), we have (see
Appendix B):

P0,0(s) = 1, (4.29)

P1,0(s) =
s

√
ρs,1,1

, (4.30)
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P0,1(s) =
s∗

√
ρs,1,1

, (4.31)

P2,0(s) =
s2

√
ρs,2,2

, (4.32)

P1,1(s) =
|s|2 − ρs,1,1

√

ρs,2,2 − ρ2
s,1,1

, (4.33)

P2,1(s) =
ρs,1,1|s|2s − ρs,2,2s

√

ρ2
s,1,1ρs,3,3 − ρs,1,1ρ2

s,2,2

. (4.34)

where ρs,p,q = E[spsq∗ ]. Note that the orthonormal monomials Pαi,βi
(si) depend

on the statistics of the random variable si.

The multivariable orthonormal basis associated with the space C2K+1[S] is then
given by the following product of the orthonormal monomials:

Q
(2k+1)
m̄1,··· ,m̄2k+1

(S) =
M̄∏

i=1

Pαi,βi
(si) , (4.35)

where αi (resp. βi) is the cardinality of si (resp. si
∗) in the set {sm̄1 , . . . , sm̄k+1

}
(resp. {s∗m̄k+2

, . . . , s∗m̄2k+1
}). For instance, for K = 1, the orthonormal basis is

given by:

Q
(1)
l (S) = P1,0(sl), (4.36)

Q
(3)
l,l,l(S) = P2,1(sl), (4.37)

Q
(3)
l,l,j(S) = P2,0(sl)P0,1(sj), l 6= j (4.38)

Q
(3)
l,j,l(S) = P1,1(sl)P1,0(sj), l < j (4.39)

Q
(3)
l,j,k(S) = P1,0(sl)P1,0(sj)P0,1(sk), l < j, (4.40)

where l, j, k = 1, ..., M̄ . The above described polynomials are called the Q-
polynomials by Schetzen in the case of real-valued Gaussian variables [134].
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So, we have:

〈

Q
(2k+1)
m̄1,··· ,m̄2k+1

(S), Q

(

2k
′

+1
)

m̄
′

1,··· ,m̄′

2k
′
+1

(S)

〉

=
M̄∏

i=1

E

[

Pαi,βi
(si) P ∗

α
′

i,β
′

i

(si)
]

=
M̄∏

i=1

δ(αi − α
′

i)δ(βi − β
′

i), (4.41)

where δ(·) is the Kronecker symbol, i.e. δ(αi − α
′

i) = 1 if αi = α
′

i and
δ(αi − α

′

i) = 0 if αi 6= α
′

i. Equation (4.41) shows that the scalar product of
two components of the basis is non-null if and only if αi = α

′

i and βi = β
′

i, ∀ i,
(l = 1, 2, ..., M̄), which means that k = k

′

, {m̄′

1, . . . , m̄
′

k+1} is a permutation of
{m̄1, . . . , m̄k+1} and {m̄′

k+2, . . . , m̄
′

2k+1} is a permutation of {m̄k+2, . . . , m̄2k+1}.
As we have by definition m̄1 ≤ m̄2 ≤ · · · ≤ m̄k+1 and m̄k+2 ≤ m̄k+3 ≤
· · · ≤ m̄2k+1, we can conclude that {m̄′

1, . . . , m̄
′

k+1} = {m̄1, . . . , m̄k+1} and
{m̄′

k+2, . . . , m̄
′

2k+1} = {m̄k+2, . . . , m̄2k+1}. That demonstrates the orthonormality

of the basis {Q(2k+1)
m̄1,··· ,m̄2k+1

(S)}.

4.4 MIMO Volterra Channel Estimation Using

Orthonormal Polynomials

In this section, the set of orthonormal polynomials developed in the last section
is applied to the estimation of the MIMO Volterra channel (4.1). From (4.1),
it can be seen that the received signals xr(n) (1 ≤ r ≤ R) are complex poly-
nomial functions of S = {s1(n), ..., s1(n − M1 + 1), · · · , sT (n), ..., sT (n − MT +
1)} ={s̄1(n), s̄2(n), ..., s̄M̄(n)}, these polynomials having the form assumed in Sec-
tion 4.3:

∏k+1
i=1 sm̄i

(n)
∏2k+1

i=k+2 s∗m̄i
(n), with 0 ≤ k ≤ K, 1 ≤ m̄1 ≤ ... ≤ m̄k+1 ≤ M̄

and 1 ≤ m̄k+2 ≤ ... ≤ m̄2k+1 ≤ M̄ . Moreover, assuming that the signals trans-
mitted by the sources are uniformly distributed i.i.d. square QAM symbols, the
signals st(n) are circular of order 2K + 1, i.e. (4.18) holds.

The received outputs can then be expressed in the orthonormal basis
Q

(2k+1)
m̄1,··· ,m̄2k+1

(S) as:

xr(n) =
K∑

k=0

M̄∑

m̄1=1

· · ·
M̄∑

m̄k+1=m̄k

M̄∑

m̄k+2=1

· · ·
M̄∑

m̄2k+1=m̄2k

f
(r)
2k+1(m̄1, . . . , m̄2k+1)Q

(2k+1)
m̄1,··· ,m̄2k+1

(S), (4.42)
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where

f
(r)
2k+1(m̄1, . . . , m̄2k+1) =

〈

xr(n), Q
(2k+1)
m̄1,··· ,m̄2k+1

(S)
〉

(4.43)

are the channel coefficients in the orthonormal basis and Q
(2k+1)
m̄1,··· ,m̄2k+1

(S) is given
by (4.35). It should be highlighted that the polynomials Pαi,βi

(s̄i(n)) and, conse-

quently Q
(2k+1)
m̄1,··· ,m̄2k+1

(S), are functions of the input moments ρs̄i,p,q, which means
that the input signals may have different PDF’s.

Equation (4.42) can be written in a vector form as:

x(n) = Fw̆(n), (4.44)

where F ∈ C
R×Q, with F = [f1 f2 . . . fR]T , is the channel matrix in the

orthonormal basis, the vector fr ∈ C
Q×1 containing the channel parameters

f
(r)
2k+1(m̄1, . . . , m̄2k+1), and w̆(n) is the nonlinear input vector in the orthonormal

basis, containing the components Q
(2k+1)
m̄1,··· ,m̄2k+1

(S). The noisy version of (4.44) can
then be written as:

y(n) = Fw̆(n) + v(n). (4.45)

Adaptive Estimation

As pointed out earlier, the convergence speed of LMS algorithm when estimating
a MIMO Volterra channel can be very slow if the canonical basis is used, due to
the high eigenvalue spread of Rw. On the other hand, with an orthonormal basis,
the eigenvalue spread of Rw̆ is equal to 1. The LMS adaptation equation for the
estimation of the channel matrix in the orthonormal basis F is given by:

F̂(n + 1) = F̂(n) + µ
(

y(n) − F̂(n)w̆(n)
)

w̆H(n), (4.46)

where the matrix F̂(n) represents the estimate of F at the nth iteration.

As Rw̆w̆ = IQ, it can be deduced from (4.12) that the convergence of (4.46) is
assured if 0 < µ < 1. Moreover, the EMSE provided by the LMS algorithm using
the orthonormal basis can be obtained from (4.16) :

ξ
(r)
EMSE(∞) ∼= µ ξ

(r)
minQ. (4.47)
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MMSE Estimation

The orthonormal polynomials can also be used to provide a reduction of the com-
putational complexity associated with the calculus of the MMSE estimation of
the channel matrix in a block processing scheme. Indeed, the MMSE estimate
of the system coefficient matrix H in the canonical basis can be calculated as:

Ĥ = R̂ywR̂
−1

w , where R̂yw and R̂w are respectively the sample estimates of
Ryw = E

[
y(n)wH(n)

]
and Rw = E

[
w(n)wH(n)

]
. In the orthonormal basis,

the MMSE estimate becomes:

F̂ = R̂yw̆R̂
−1

w̆ , (4.48)

where R̂yw̆ and R̂w̆ are respectively the sample estimates of Ryw̆ = E[y(n)w̆H(n)]
and Rw̆ = E[w̆(n)w̆H(n)].

A low-complexity estimate of the channel matrix in the orthonormal basis can be
obtained by taking into account the fact that Rw̆ = IQ. From (4.48), F̂ can then
be estimated as:

F̂ = R̂yw̆. (4.49)

Thus, the orthonormal polynomials make possible a decoupled estimation of the
elements of F, avoiding the calculus of the inverse of the covariance matrix of the
nonlinear input vector. As Volterra system may have a large number of coeffi-
cients, this matrix inversion can be a hard computational task. For large values
of Q and N , the block estimation in the canonical basis requires approximatively
(RQ+Q2)N +(Q3/3) multiplications, (Q2/2) divisions and (RQ+Q2)N +(Q3/3)
additions, considering the Gauss elimination method for matrix inversion. In
the orthonormal basis, it requires only [RQ + (Q2/2)]N multiplications and
RQN + (Q2/2)N additions.

Information Recovery

Once the channel coefficients in the orthonormal basis are estimated, the estima-
tion of the transmitted signals can be carried out by a technique of maximum
likelihood sequence estimation (MLSE) such as the Viterbi algorithm [118]. This
means that the knowledge of the channel coefficients in the orthonormal basis is
sufficient to recover the transmitted symbols.

Nevertheless, if we are interested in finding the parameters in the canonical basis,
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they can be obtained from (4.49):

F̂ = E[y(n)w̆H(n)]

= E[Ĥw(n)w̆H(n)] + E[v(n)w̆H(n)], (4.50)

which gives

Ĥ = F̂T, (4.51)

with T = E[w(n)w̆H(n)]−1 being a lower triangular matrix. For uniformly distri-
buted i.i.d. QAM signals, the matrix T has many zeroes below the main diagonal,
which allows to develop simple relationships between the parameters in the two
bases.

4.5 Simulation Results

In this section, the proposed estimation method is evaluated by means of simu-
lations. A MIMO Wiener filter corresponding to the model of an uplink channel
of a Radio Over Fiber (ROF) multiuser communication system [114, 44] has been
considered for the simulations. The R × T wireless link, corresponding to an ar-
ray of R half-wavelength spaced antennas and T users, has a frequency selective
fading due to multipath propagation and is modeled as a convolutive R×T linear
mixer of memory M . The electrical-optical (E/O) conversion in each antenna is
modeled by the following third-order polynomial f1x+ f3|x|2x, with f1 = −0.2952
and f3 = 1.078. In a ROF channel, the received signals are subject to optical
and wireless channel noise, however, it is assumed that only the wireless noise
is significant. The results were obtained via Monte Carlo simulations using 100
independent data realizations and the amplitude of the signals transmitted by all
the users is equal to 1. In order to accentuate the averaging effect, the Normali-
zed Mean Squared Error (NMSE) curves of the adaptive algorithms were passed
through a low-pass filter of order equal to 2 and with a cut-off frequency equal to
10−2. For the adaptive algorithms, we adjusted the step-size parameter in such
a way that the orthonormal and the canonical bases provide approximately the
same steady-state error. The adaptive filters are initialized with zeroes in all the
components.

The adaptive channel estimation techniques are initially evaluated by means of
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Figure 4.1: NMSE of the received signals using the LMS algorithm - R = 4,
T = 4, Mt = 2 (t=1,2,3,4).

the NMSE of the estimated received signals parameters, defined as:

eS(n) =
1

NR

NR∑

i=1

‖ yi(n) − ŷi(n) ‖2
2

‖ yi(n) ‖2
2

, (4.52)

where ‖ · ‖2 denotes the l2 norm and ŷi(n) represents the estimate of the re-
ceived signal vector using the channel estimated at time instant n of the ith

Monte Carlo simulation, i.e. ŷi(n) = F̂i(n)w̆(n) for the orthonormal basis and
ŷi(n) = Ĥi(n)w(n) for the canonical basis, with F̂i(n) and Ĥi(n) denoting res-
pectively the channel matrix in the orthonormal and canonical bases estimated at
time instant n of ith Monte Carlo simulation.

Fig. 4.1 shows the evolution of the NMSE of the received signals eS(n), using
the LMS algorithm with the canonical and orthonormal bases, for R = 4, T = 4,
Mt = 2, for t = 1, 2, 3, 4 (Q = 296), and a fixed Signal-to-Noise-Ratio (SNR) of
30dB. The four users transmit uniformly distributed P-QAM signals, with P =
16, 16, 32 and 64 symbols respectively. The step-size parameter was set to 4 · 10−4

for the canonical basis and 10−3 for the orthonormal basis. The adaptation in
the orthonormal basis converges approximately after 5000 iterations and in the
canonical basis after 18000 iterations. The eigenvalue spread of the autocorrelation
matrix estimated using the 27000 transmitted symbols is equal to 368.31 in the
canonical basis and 2.03 in the orthonormal basis.
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Figure 4.2: NMSE of the received signals using the LMS algorithm - R = 3,
T = 3, Mt = 1 (t=1,2,3).

Similar results are found for 3 users and 3 antennae. Fig. 4.2 shows the evolution
of the NMSE of the received signals eS(n), for R = 3, T = 3, SNR = 30dB, Mt=1
for t = 1, 2, 3 (Q = 21). The four users transmit uniformly distributed 16-QAM
signals. In this case, the orthonormal basis provides a more significant gain in
performance, the adaptation in the orthonormal and canonical bases converging
approximately after 500 and 3000 iterations respectively. The step-size parameter
was set to 10−2 for the two bases.

Fig. 4.3 shows the evolution of the NMSE of the estimated channel coefficients,
defined as:

eP (n) =
1

NR

NR∑

i=1

‖ H − Ĥi(n) ‖2
F

‖ H ‖2
F

, (4.53)

where ‖ · ‖F denotes the Frobenius norm, using the LMS algorithm for R = 2,
T = 2, M1 = M2 = 1 (Q = 8) and a SNR of 30dB. The two users transmit
uniformly distributed 16-QAM signals. The step-size parameter was set to 4 ·10−2

for the canonical basis and 10−2 for the orthonormal basis. Once again, the gain
in the rate of convergence provided by the orthonormal basis is evident. The
adaptation in the orthonormal basis converges approximately after 550 iterations
and in the canonical basis after 2100 iterations. The eigenvalue spread of the
autocorrelation matrix estimated using the 2200 transmitted symbols is equal to
64.02 in the canonical basis and 1.17 in the orthonormal basis.



4.5 SIMULATION RESULTS 111

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−40

−35

−30

−25

−20

−15

−10

−5

0

Iterations

N
M

S
E

 o
f t

he
 C

ha
nn

el
 P

ar
am

. (
dB

)

Canonical Basis
Orthonormal Basis

Figure 4.3: NMSE of the channel coefficients using the LMS algorithm - R = 2,
T = 2, M1 = M2 = 1.

In what concerns the block processing, Fig. 4.4 shows the NMSE of the received
signals versus SNR provided by the MMSE estimator in the canonical and ortho-
normal bases, for R = 4, T = 4, M1 = M2 = 2, M3 = 1, M4 = 3 (Q = 296) and
N = 5000. In this figure, the MMSE estimate (4.48) is called “Orthonormal” and
the MMSE estimate (4.49) is called “Orthonormal-RC” (Orthonormal with Redu-
ced Complexity). The four users transmit uniformly distributed P-QAM signals,
with P = 16, 16, 32 and 64 symbols respectively. Note that the NMSEs provided
by MMSE estimator in the canonical basis and in the orthonormal basis (4.48) are
quite similar. However, the performance of the MMSE estimator (4.49) is worst
than the ones of other two techniques. It should be highlighted that the compu-
tational complexity of the orthonormal estimator (4.49) is much smaller than the
ones of the other two estimators.

In order to have another performance reference, we have also simulated the MIMO
Hammerstein system estimation technique proposed in [123], using a different si-
mulation scenario. Although this technique concerns real-valued systems, it can
also be applied to complex-valued systems. This technique estimates MIMO Ham-
merstein coefficients in the canonical basis using a block processing based on po-
lyspectra [123]. The system considered in the next figure is composed of T me-
moryless nonlinearities given by x + |x|2x, followed by a complex-valued T by R
linear convolutional mixer with a fixed memory M for all the inputs. The real and
imaginary parts of the input signals are uniformly generated from the set [−1, 1].
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Figure 4.4: NMSE of the received signals versus SNR provided by the MMSE
estimator in the orthonormal and canonical bases- R = 4, T = 4, N = 5000,
M1 = M2 = 2, M3 = 1 and M4 = 3.

Note that this signal satisfies the circularity condition (4.18). We have not used
a smooth function in the polyspectra estimations. Fig. 4.5 shows the NMSE of
the received signals versus SNR provided by the MMSE estimator in the ortho-
normal basis (4.49) and the polyspectra based technique, for M = 4, N = 2000
and T = R = 4, 6, 8, 10. For a Hammerstein system, the number of quasi-sources
is given by Q = 2TM . Note that the proposed method performs significantly
better than the other one for high values of Q. Moreover, the proposed technique
provides a better robustness to noise than the polyspectra based technique.

4.6 Conclusion

In this chapter, a method for supervised estimation of equivalent baseband MIMO
Volterra channels is developed. This method is based on the utilization of ortho-
normal polynomials to improve the conditioning of the covariance matrix of the
nonlinear input vector. The proposed orthonormalization technique can be viewed
as an extension of orthonormal polynomials to the case of MIMO Volterra systems,
allowing different PDFs for the input signals and different memories with respect
to the inputs, so that the orthonormal polynomials can be applied to a general
equivalent baseband MIMO Volterra channel. The proposed channel estimation
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Figure 4.5: NMSE of the received signals versus SNR provided by the MMSE
estimator in the orthonormal basis and the polyspectra based technique -
M = 4, N = 2000 and R = T = 4, 6, 8, 10 (Q=32,48,64,80).

method has been applied for identifying an uplink channel in a multiuser ROF
communication system, the main advantage of the orthonormalization approach
being the fact that it improves significantly the convergence speed of the LMS
algorithm.

In the next chapter, we also develop techniques for estimating MIMO Volterra
communication channels in the context of TDMA-SDMA systems. However, the
techniques proposed in Chapter 5 consider a blind scenario and memoryless MIMO
Volterra models. As the approach used by the channel estimation method develo-
ped in this chapter can not be used in a blind scenario, the MIMO Volterra tech-
niques developed in the next chapter make use of tensor decompositions, exploiting
the fact that Volterra models are linear with respect to the system coefficients. As
we will see, such decompositions are possible owing to a new precoding scheme
developed for PSK signals modeled as Markov chains.



CHAPTER 5

Blind Estimation of Memoryless MIMO
Volterra Channels Using Tensor

Decomposition and Precoding

This chapter proposes two blind estimation methods for memoryless MIMO
Volterra communication channels. As seen in Chapter 2, MIMO Volterra

models have important applications in the field of telecommunications, e.g. to
model multiuser nonlinear uplink channels in ROF communication systems. In
fact, up to several Mbps, the ROF channel can be considered as a memoryless
link [54]. This means that assuming that the nonlinearities are memoryless and
that the transmitted signals are narrowband with respect to the wireless channel’s
coherence bandwidth, i.e. the wireless channel frequency response is flat, the ROF
channel can be considered as memoryless MIMO Volterra model.

There are few works dealing with the problem of blind channel identification or
source separation in the context of multiuser or MIMO nonlinear communication
systems. Reference [127] proposes a blind zero forcing receiver for multiuser code
division multiple access (CDMA) systems with nonlinear channels and [113] de-
velops blind and semi-blind source separation algorithms for memoryless Volterra
channels in ultra-wide-band systems.

The proposed channel identification methods rely on the Parallel Factor (PA-
RAFAC) decomposition [73] of a tensor (multidimensional array) composed of
spatio-temporal covariances of the signals received by an antenna array. A great
advantage of using the PARAFAC decomposition is that it allows to work when
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the number of receive antennas is smaller than the number of virtual sources, i.e.
the number of nonlinear terms of the Volterra filter. This is particularly interesting
since the Volterra filters may have a large number of parameters. Indeed, working
with a number of receive antennas higher than or equal to the number of virtual
sources imposes a strong constraint on the number of antennas to be used; see
previous works [127, 43, 113].

In telecommunications, the transmitted signals are usually assumed to be white.
Thus, if we intend to exploit the temporal correlation of the sources for estimating
the channel, some strategy must be used to induce correlation on the transmit-
ted signals. It is shown that the input signals must satisfy some orthogonality
constraints associated with the channel nonlinearities in order to get the PARA-
FAC decomposition of the considered tensor. A precoding scheme is then proposed
so that these constraints be satisfied. In this scheme, PSK transmitted signals are
modeled as discrete time Markov chains (DTMC) inducing temporal correlation
in a controlled way and some orthogonality properties. The proposed precoding
scheme induces correlation by introducing temporal redundancy on the signals,
which is carried out by imposing some constraints on the symbol transitions. In
fact, the proposed transmission scheme can be viewed as a special case of diffe-
rential encoding. The introduction of redundancy in the transmitted signals is
sometimes used with bandwidth-constrained channels, where a performance gain
can be achieved without expanding the channel bandwidth or the transmission
power [118].

Some properties of nonlinearly distorted PSK signals established in [100] have
motivated the use of PSK signals in the present chapter. As PSK signals have
less envelope fluctuations than QAM signals, the PSK modulation provides less
nonlinear distortions than the QAM. In fact, when the input signals are PSK-
modulated, Volterra models can be rewritten with a smaller number of coefficients.
The performance of PSK signals over nonlinear satellite channels was investigated
by several authors, e.g. [9, 78].

Two algorithms are proposed to perform channel estimation: a two-step version of
the Alternating Least Squares (ALS) algorithm [73, 144] and a joint diagonalization
algorithm (JDA) [19, 7]. The second estimation method can be viewed as an
extension of the second order blind identification (SOBI) algorithm [7] to nonlinear
channels. The SOBI algorithm is a blind source separation and identification
technique for linear memoryless mixtures based on the joint diagonalization of
covariance matrices, and exploiting the temporal correlation of the sources.

Second-order statistics have been used for blind identification and equalization of
nonlinear single-input-multiple-output (SIMO) channels [60, 43, 99]. PARAFAC-
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based blind channel identification and source separation have also been addressed
in the case of linear channels in the context of CDMA systems [144, 142, 35, 143,
33, 53]. In [130], a time-varying user power loading was proposed to enable the
application of the PARAFAC analysis, in order to perform blind estimation of
spatial signatures. Blind source separation using a PARAFAC tensor composed of
covariance matrices was also proposed in [37]. In the case of nonlinear channels,
a deterministic blind PARAFAC-based receiver was presented for SIMO channels
in [87] and a blind identification method based on the PARAFAC decomposition
of a channel output data tensor was recently proposed for Wiener-Hammerstein
type channels [86].

The chapter is organized as follows. Section 5.1 presents the channel model used
in this chapter. In Section 5.2, a tensor composed of channel output covariances is
introduced. In Section 5.3, some orthogonality constraints are established to get
a PARAFAC decomposition of this tensor. In Section 5.4, these constraints are
rewritten in terms of the transition probability matrix (TPM) of a Markov chain
and a procedure to design TPMs satisfying such constraints is described. Section
5.5 presents the proposed blind channel estimation algorithms. In Section 5.6,
we evaluate the performance of these algorithms by means of simulation results.
Finally, some conclusions and perspectives are drawn in Section 5.7. The results
presented in this chapter have been published in [44, 45, 46, 47, 51].

5.1 The Channel Model

In this chapter, the discrete-time equivalent baseband model of the nonlinear com-
munication channel is assumed to be expressed as a memoryless MIMO Volterra
model:

yr(n) =
K∑

k=0

T∑

t1=1

· · ·
T∑

tk+1=tk

T∑

tk+2=1

· · ·
T∑

t2k+1=t2k
︸ ︷︷ ︸

{tk+2,...,t2k+1}∩{t1,...,tk+1}=∅

h
(r)
2k+1(t1, . . . , t2k+1)

k+1∏

i=1

sti(n)
2k+1∏

i=k+2

sti
∗(n) + υr(n), (5.1)

where yr(n) (1 ≤ r ≤ R) is the signal received by antenna r at the time instant n,
R is the number of receive antennas, (2K+1) is the nonlinearity order of the model,
st(n) (1 ≤ t ≤ T ) is the stationary signal transmitted by the tth user at the time

instant n, T is the number of users, h
(r)
2k+1(t1, . . . , t2k+1) are the coefficients of the
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(2k + 1)th-order Volterra kernel of the rth sub-channel and υr(n) is the zero-mean
additive white Gaussian noise (AWGN), with variance σ2 for r = 1, 2, ..., R.

It is assumed that st(n) and st′ (n), with t 6= t
′

, are independent and that the
noise component υr(n) is independent from υr

′ (n), with r 6= r
′

, and from st(n). It
should also be highlighted that the transmitted signals st(n) are colored, as we will
see later. Moreover, they are assumed to be P-PSK modulated, i.e. st(n) belongs
to the set {ap = A ej2π(p−1)/P , p = 1, 2, ..., P}, where j is the imaginary unit, A
is the amplitude of the transmitted signals and P is the number of points of the
PSK constellation. The parameters A and P are not necessarily the same for all
the users; however, for simplifying the notation, the user index t is omitted from
these parameters. Besides, it is assumed that

P > 2K + 1, (5.2)

which corresponds to the well-known persistence of excitation condition for a Vol-
terra system of order (2K + 1) [107].

The nonlinear terms corresponding to ti = tj, for all i ∈ {1, ..., k + 1} and j ∈
{k + 2, ..., 2k + 1}, are absent in (5.1) due to the fact that, for constant modulus
signals, the term |sti(n)|2 reduces to a multiplicative constant that can be absorbed
by the associated channel coefficient. As a consequence, some nonlinear terms
degenerate in terms of smaller order.

From (2.59), equation (5.1) can be expressed in a compact form:

y(n) = Hw(n) + v(n), (5.3)

where y(n) = [y1(n) . . . yR(n)]T ∈ C
R×1, H = [h1 . . . hR]T ∈ C

R×Q and v(n) =
[υ1(n) . . . υR(n)]T ∈ C

R×1, with Q representing the number of virtual sources ,
i.e. the number of linear and nonlinear terms in (5.1). For a linear-cubic channel

(2K + 1 = 3), we have Q = T + T 2(T−1)
2

. In this case, the nonlinear input vector
w(n) = [w1(n) . . . wQ(n)]T ∈ C

Q×1 contains all the linear and nonlinear terms in
st(n) and s∗t (n) of (5.1), and is constructed as follows:

w(n) = Θ w̃(n) (5.4)

where

w̃(n) = [sT (n) ⊗3
∗ sT (n) · · · ⊗2K+1

∗ sT (n)]T , (5.5)
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with s(n) = [s1(n) . . . sT (n)]T ∈ C
T×1 and the operator ⊗2k+1

∗ defined as:

⊗2k+1
∗ s(n) =

[
⊗k+1s(n)

]
⊗

[
⊗ks∗(n)

]
, (5.6)

⊗ denoting the Kronecker product and ⊗ks(n) = s(n) ⊗ · · · ⊗ s(n), with k − 1
Kronecker products. The matrix Θ is a row-selection matrix that selects all the
elements of w̃(n) corresponding to

∏k+1
i=1 sti(n)

∏2k+1
i=k+2 sti

∗(n) with t1 ≤ · · · ≤ tk+1,
tk+2 ≤ · · · ≤ t2k+1 and {tk+2, . . . , t2k+1} ∩ {t1, . . . , tk+1} = ∅, for k = 1, 2, ..., K.

5.2 PARAFAC Decomposition of a Channel

Output Covariance Tensor

The proposed identification methods rely on the PARAFAC decomposition of a
tensor composed of spatio-temporal covariances of the received signals. Assuming
that these signals are stationary and ergodic, we have:

Ry(d) = E
[
y(n + d)yH(n)

]
= HRw(d)HH + σ2IRδ(d) ∈ C

R×R, (5.7)

with

Rw(d) = E
[
w(n + d)wH(n)

]
∈ C

Q×Q, (5.8)

where 0 ≤ d ≤ D − 1, D is the number of delays (time lags) taken into account,
δ(·) is the Kronecker symbol and IR is the identity matrix of order R. In the
sequel, it is assumed that the noise variance σ2 is known, allowing the subtraction
of the noise term in (5.7). Then, from now on, the noise term will be omitted.
However, in practice, this noise variance has to be estimated [7, 27] or the proposed
identification methods can be applied without using the zero-lag covariance matrix
(d = 0).

A third-order tensor R ∈ C
D×R×R can be defined from the matrices Ry(d), with:

rd,r1,r2 = E[yr1(n + d − 1)y∗
r2

(n)], (5.9)

as entries, for 1 ≤ d ≤ D and 1 ≤ r1, r2 ≤ R. From (5.7), we get:

rd,r1,r2 =

Q
∑

q1=1

Q
∑

q2=1

hr1,q1h
∗
r2,q2

r̃d,q1,q2 , (5.10)

where hr,q = [H]r,q and r̃d,q1,q2 = E[wq1(n+d−1)w∗
q2

(n)], wq(n) (q = 1, ..., Q) being
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the qth component of the nonlinear input vector w(n). Note that equation (5.10)
corresponds to the scalar writing of a Tucker2 model [155].

If the covariance matrices Rw(d−1) of the nonlinear input vector are diagonal for
1 ≤ d ≤ D, the scalar writing (5.10) of R becomes:

rd,r1,r2 =

Q
∑

q=1

zd,qhr1,qh
∗
r2,q, (5.11)

which corresponds to the PARAFAC decomposition of R (see Appendix C) with
factor matrices equal to Z, H and H∗, the matrix Z ∈ C

D×Q being formed with
the diagonal elements of Rw(d − 1) for 1 ≤ d ≤ D, i.e.

Z =






r̃1,1,1 · · · r̃1,Q,Q
...

. . .
...

r̃D,1,1 · · · r̃D,Q,Q




 , (5.12)

or zd,q = r̃d,q,q. The main advantages of the PARAFAC model over the Tucker2
model are its simplicity and the essential uniqueness of its factors, assured if the
Kruskal’s condition is verified (see Appendix C):

2kH + kZ ≥ 2Q + 2, (5.13)

where kA is the k-rank of matrix A, i.e. the greatest integer kA such that every
set of kA columns of A is linearly independent. The essential uniqueness property
means that the matrices H, H∗ and Z are unique up to column scaling and per-
mutation ambiguities, i.e. any matrices Ĥa, Ĥb and Ẑ satisfying (5.11) are linked
to H, H∗ and Z by: Ĥa = HΠΛa, Ĥb = H∗ΠΛb and Ẑ = ZΠΛc, where Λa, Λb

and Λc are Q × Q diagonal matrices such that ΛaΛbΛc = IQ and Π is a Q × Q
permutation matrix.

When Z is known, we have Ẑ = Z and, hence, Π = IQ, Λc = IQ and Λb =

Λ−1
a = Λ−1. Thus, Ĥa = HΛ and Ĥb = H∗Λ−1. This means that the permutation

ambiguity is eliminated. Moreover, the scaling ambiguity does not represent an
effective problem, as it can be canceled by using a differential modulation [118].
Another possible solution consists in using a few pilot signals to estimate the
scaling ambiguity matrix Λ.

Assuming that the matrices H and Z are full k-rank, i.e. kH = min(R, Q) and kZ =
min(D,Q), the Kruskal’s condition becomes: 2 min(R, Q) + min(D,Q) ≥ 2Q + 2,
which implies that the tensor approach allows working even if R < Q, contrarily to
previous works that require R ≥ Q [127, 43, 113]. This is particularly interesting
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for identifying Volterra systems characterized by a large number of parameters.

In the next section, we establish some conditions for ensuring that the covariance
matrices Rw(d) be diagonal for 0 ≤ d ≤ D − 1, in order to get a PARAFAC
decomposition of the tensor R.

5.3 Orthogonality Conditions

The following theorem states sufficient conditions to ensure that the covariance
matrices of the nonlinear input vector Rw(d) (0 ≤ d ≤ D − 1) be diagonal when
the transmitted signals are PSK modulated.

Theorem 5.1 Assuming that the transmitted signals st(n) (1 ≤ t ≤ T ) are sta-
tionary and PSK modulated, with cardinality P > 2K +1, the covariance matrices
Rw(d) for 0 ≤ d ≤ D − 1, are diagonal if the following orthogonality conditions
are satisfied for (T − 1) users:

(i) µ
(i,j)
t (d) = 0, for all 0 ≤ i, j ≤ K + 1 with i 6= j;

(ii) ̺
(i,j)
t (d) = 0, for all 1 ≤ i ≤ K + 1, 1 ≤ j ≤ K;

where

µ
(i,j)
t (d) ≡ E

[

si
t(n + d)

[
sj

t(n)
]∗]

(5.14)

and

̺
(i,j)
t (d) ≡ E

[
si

t(n + d)sj
t(n)

]
. (5.15)

Proof :

The elements of Rw(d − 1) (1 ≤ d ≤ D) are defined as:

r̃d,q1,q2 = E[wq1(n + d − 1)w∗
q2

(n)], (5.16)
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where wq1(n) and wq2(n) can be written respectively as:

wq1(n) =
T∏

t=1

sαt

t (n)
[

sβt

t (n)
]∗

, (5.17)

wq2(n) =
T∏

t=1

s
α
′

t

t (n)

[

s
β
′

t

t (n)

]∗
, (5.18)

for some non negative integers αt, βt, α
′

t, β
′

t satisfying:

T∑

t=1

αt = k + 1,
T∑

t=1

βt = k,

T∑

t=1

α
′

t = k
′

+ 1 and
T∑

t=1

β
′

t = k
′

. (5.19)

Note that, due to the circularity property of PSK signals, we have sP
t (n) = 1 and,

consequently, 0 ≤ αt, α
′

t ≤ min(K + 1, P − 1) and 0 ≤ βt, β
′

t ≤ min(K, P − 1).
However, from the persistence of excitation condition (6.27), we have min(K +
1, P − 1) = K + 1 and min(K,P − 1) = K. Moreover, from the constraints
tk+2, ..., t2k+1 6= t1, ..., tk+1 in (5.1), it can be deduced that αt or βt (or both) equals
zero, as well as α

′

t or β
′

t (or both), for all t = 1, ..., T . Hence, (5.17) and (5.18) can
be rewritten respectively as:

wq1(n) =
T∏

t=1

ṡγt

t (n) and wq2(n) =
T∏

t=1

s̈
γ
′

t

t (n), (5.20)

where γt = max(αt, βt), γ
′

t = max(α
′

t, β
′

t),

ṡt(n) =

{
st(n), if βt = 0, γt = αt,
s∗t (n), if αt = 0, γt = βt,

s̈t(n) =

{
st(n), if β

′

t = 0, γ
′

t = α
′

t,
s∗t (n), if α

′

t = 0, γ
′

t = β
′

t.
(5.21)

Substituting (5.20) into (5.16), we get:

r̃d,q1,q2 =
T∏

t=1

E

[

ṡγt

t (n + d − 1)

[

s̈
γ
′

t

t (n)

]∗]

. (5.22)
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If q1 6= q2, there is at least two users t1 and t2 such that (αt1 , βt1) 6= (α
′

t1
, β

′

t1
) and

(αt2 , βt2) 6= (α
′

t2
, β

′

t2
). Thus, (5.22) can be rewritten as:

r̃d,q1,q2 =
T∏

t=1
t6=t1, t2

E

[

ṡγt

t (n + d − 1)

[

s̈
γ
′

t

t (n)

]∗]

E

[

ṡ
γt1
t1 (n + d − 1)

[

s̈
γ
′

t1
t1 (n)

]∗]

E

[

ṡ
γt2
t2 (n + d − 1)

[

s̈
γ
′

t2
t2 (n)

]∗]

. (5.23)

Depending on the different possible configurations of the couples (ṡt1(n), s̈t1(n))
and (ṡt2(n), s̈t2(n)), the two last factors of (5.23) can be expressed in terms of the
following quantities:

• µ
(i,j)
t (d − 1), with 0 ≤ i, j ≤ K + 1 and i 6= j;

• ̺
(i,j)
t (d − 1), with 1 ≤ i ≤ K + 1, 1 ≤ j ≤ K;

for d = 1, ..., D. Thus, for each couple of users, if at least one user satisfies
conditions (i) and (ii) of Theorem 5.1, we have r̃d,q1,q2 = 0. Therefore, if at
least (T − 1) users satisfy these conditions, the covariance matrices Rw(d − 1)
(1 ≤ d ≤ D) are diagonal. ¥

To illustrate Theorem 5.1, let us consider the covariance matrix Rw(d) for 2 users
(t = 1, 2) and K = 1, given by:

Rw(d) =






µ
(1,1)
1 (d) µ

(1,0)
1 (d)µ

(0,1)
2 (d) µ

(1,2)
1 (d)µ

(1,0)
2 (d) ̺

(1,1)
1 (d)µ

(0,2)
2 (d)

µ
(0,1)
1 (d)µ

(1,0)
2 (d) µ

(1,1)
2 (d) µ

(0,2)
1 (d)̺

(1,1)
2 (d) µ

(1,0)
1 (d)µ

(1,2)
2 (d)

µ
(2,1)
1 (d)µ

(0,1)
2 (d) µ

(2,0)
1 (d)

[

̺
(1,1)
2 (d)

]
∗

µ
(2,2)
1 (d)

[

µ
(1,1)
2 (d)

]
∗

̺
(2,1)
1 (d)

[

̺
(1,2)
2 (d)

]
∗

[

̺
(1,1)
1 (d)

]
∗

µ
(2,0)
2 (d) µ

(0,1)
1 (d)µ

(2,1)
2 (d)

[

̺
(1,2)
1 (d)

]
∗

̺
(2,1)
2 (d)

[

µ
(1,1)
1 (d)

]
∗

µ
(2,2)
2 (d)






and associated with the following nonlinear input vector:

w(n) = [s1(n) s2(n) s2
1(n)s∗2(n) s∗1(n)s2

2(n)]. (5.24)

Note that all the off-diagonal components of Rw(d) are the product of two terms
like (5.14) and (5.15), with t = 1 or 2. Then, if the conditions (i) and (ii) hold for
at least one user, the matrix Rw(d) is diagonal.
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5.4 Transmitted Signal Design

In this section, a precoding scheme is proposed so that the transmitted signals
satisfy the orthogonality constraints of Theorem 5.1. Each transmitted signal is
modeled as a discrete time Markov chain (DTMC), the states of the DTMC being
given by the P PSK symbols ap = Aej2π(p−1)/P , p = 1, 2, ..., P . The coding in-
duces time correlation by introducing redundancy on the signals, which is done
by imposing some constraints on the transition probability matrix (TPM) asso-
ciated with the DTMC. The correlation is introduced in a controlled way so that
the constraints of Theorem 5.1 are satisfied, the TPM playing a key role in this
scheme.

Let us denote by LB the number of input bits of the encoder, assumed to be
independent and identically distributed (i.i.d.) and uniformly distributed over
the set {0, 1}. Moreover, we assume that L = 2LB < P , which imposes some
restrictions on the symbol transitions. This means that, for each state, there are L
equiprobable possible transitions and (P − L) not assigned transitions. The code
rate is therefore equal to LB/ log2 P .

Let us denote by T = {Tp1,p2}, with p1, p2 ∈ {1, 2, ..., P}, the TPM for a given user,
Tp1,p2 being the probability of transition from the state ap1 to the state ap2 . Each
user is associated with a different TPM. However, for simplifying the notation, the
user index t will be omitted from T. Note that

∑P
p2=1 Tp1,p2 = 1, for 1 ≤ p1 ≤ P .

Hence, each row of the TPM has L = 2LB elements equal to 1/L = 2−LB and
(P − L) elements equal to zero. For instance, Fig. 5.1 shows the state transition
diagram of a DTMC corresponding to P = 4 and LB = 1, with the following TPM:

T =
1

2







0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0







. (5.25)

5.4.1 Orthogonality Constraints in Terms of the TPM

The orthogonality constraints of Theorem 5.1 are now rewritten in terms of the
TPM T of the DTMC associated with each user. Some important properties of
DTMC are first recalled [71]. In what follows, Tn,p1,p2 denotes the (p1, p2) element
of Tn = TT . . .T (n times the matrix T), which represents the probability of
being in the state ap2 after n transitions, supposing that the current state is ap1 .
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a1

•

•

•

•

•

•

•

•

a2

a3

a4

a1

a2

a3

a4

Current 
State 

Next 
State 

Figure 5.1: Example of state transition diagram for P = 4 and LB = 1.

Definition 5.1 A state ap of a DTMC is said to be aperiodic if the great common
divisor of the set of integers n such that Tn,p1,p2 > 0 is equal to 1. If all the states
are aperiodic, then the DTMC is also aperiodic.

Definition 5.2 A state ap2 of a DTMC is said to be accessible from the state ap1

if there exists some integer n such that Tn,p1,p2 > 0.

Definition 5.3 A DTMC is said to be irreducible if all the states are accessible
from each other.

Definition 5.4 The limiting probability θp2 (1 ≤ p2 ≤ P ) of a given state of a
DTMC is defined as:

θp2 = lim
n→∞

Tn,p1,p2 , ∀ p1 ∈ {1, 2, ..., P}. (5.26)

Definition 5.5 A probability distribution Φ = [φ1 φ2 ... φP ], 0 ≤ φ1, ..., φP ≤ 1,
is stationary if the following conditions are satisfied:

ΦT = Φ, (5.27)
P∑

p=1

φp = 1. (5.28)

Definition 5.6 An irreducible and aperiodic DTMC is said to be stationary if
the initial state is chosen according to the stationary distribution.
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In what follows, we reformulate the conditions of Theorem 5.1 in terms of the
TPM of a given user. For that, we first establish in Lemma 5.1 the conditions
to be satisfied by the TPM for generating a stationary and uniformly distributed
signal. Then, Theorem 5.2 expresses the quantities µ

(i,j)
t (d) and ̺

(i,j)
t (d) in terms

of the TPM. In what follows, the user index t will be omitted from these quantities
to simplify the notation.

Lemma 5.1 Let T be the TPM of a DTMC with P states. If the following
conditions hold:

(C1) the DTMC is irreducible and aperiodic;

(C2)
∑P

p2=1 Tp1,p2 = 1, for 1 ≤ p1 ≤ P ;

(C3)
∑P

p1=1 Tp1,p2 = 1, for 1 ≤ p2 ≤ P ;

then the corresponding signal is stationary and uniformly distributed.

Proof :

As already mentioned, Condition C2 must be satisfied by any TPM. Moreover, the
aperiodicity and irreducibility properties (condition C1) assure that [71]: (i) all
the limiting probabilities of the DTMC exist and are positive, (ii) the stationary
distribution exists and is unique, and (iii) the limiting probabilities distribution
is equal to the stationary distribution. Thus, the limiting probabilities can be
obtained by finding the stationary distribution, i.e. by solving equations (5.27)
and (5.28). It can be easily verified that if

∑P
p1=1 Tp1,p2 = 1 (condition C3), then

Φ = [1/P ... 1/P ] (5.29)

is solution of (5.27) and (5.28), which shows that the limiting probabilities corres-
pond to an uniform distribution. Hence, if the initial state is equiprobably drawn
from the set of PSK symbols {a1, ..., aP}, the DTMC is stationary with an uniform
distribution. ¥

Theorem 5.2 If conditions C1-C3 are satisfied, then the quantities (5.14) and
(5.15) can be rewritten as:

µ(i,j)(d) =
1

P

[

a•j
]H

Tda•i (5.30)
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and

̺(i,j)(d) =
1

P

[
a•j]T

Tda•i (5.31)

where a = [a1, a2, ... , aP ]T and a•i = [ai
1, ai

2, ... , ai
P ]

T
.

Proof :

From Lemma 5.1, conditions C1-C3 ensure that the DTMC is stationary with an
uniform distribution. Thus, we get

µ(i,j)(d) = E
[
si(n + d)

[
sj(n)

]∗]
=

P∑

p1=1

P∑

p2=1

p(αn = ap1)
[
aj

p1

]∗

p(αn+d = ap2|αn = ap1)a
i
p2

, (5.32)

where p(αn = ap1) is the probability of being in the state ap1 at the time instant
n and p(αn+d = ap2|αn = ap1) is the conditional probability of being in the state
ap2 at the time instant (n + d), given the state ap1 at the time instant n. Then,
we have:

µ(i,j)(d) =
P∑

p1=1

P∑

p2=1

1

P

[
aj

p1

]∗
Td,p1,p2a

i
p2

=
1

P

[

a•j
]H

Tda•i. (5.33)

Expression (5.31) can be derived in a similar way. ¥

Remark: Note that, when i or j = 0, Condition (i) of Theorem 5.1 becomes:

E
[
si(n)

]
= 0, (5.34)

for 1 ≤ i ≤ K + 1. On the other hand, for d = 0, Condition (i) becomes:

µ(i,j)(0) = E
[
si(n)

[
sj(n)

]∗]
=

{
A2j

E [si−j(n)] , if i > j,
A2i

E [sj−i(n)]
∗
, if i < j,

(5.35)
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with 1 ≤ |i− j| ≤ K + 1, which is equivalent to (5.34). Since for a stationary and
uniformly distributed P-PSK signal, we have:

E
[
si(n)

]
=

Ai

P

P∑

p=1

ej2π(p−1)i/P =
Ai

(
ej2πi − 1

)

P (ej2πi/P − 1)
= 0, (5.36)

for 1 ≤ i ≤ K + 1 < P , we can conclude that Condition (i) of Theorem 5.1 is
satisfied for d = 0, and i or j = 0.

In summary, combining Lemma 5.1, Theorem 5.2 and the above remark, the condi-
tions of Theorem 5.1 can be reformulated as follows:

(C1) the DTMC is irreducible and aperiodic;

(C2)
∑P

p2=1 Tp1,p2 = 1, for 1 ≤ p1 ≤ P ;

(C3)
∑P

p1=1 Tp1,p2 = 1, for 1 ≤ p2 ≤ P ;

(C4)
[

a•j
]H

Tda•i = 0, for all i and j such that 1 ≤ i, j ≤ K + 1 with i 6= j;

(C5) [a•j]
T
Tda•i = 0, for all i and j such that 1 ≤ i ≤ K + 1, 1 ≤ j ≤ K;

for 1 ≤ d ≤ D − 1 and at least (T − 1) users.

5.4.2 Determination of the Transition Probability Ma-
trices

For a given user, Conditions C2 and C3 can be written as the following set of
linear equations: [

Θ3

Θ4

]

vec(T) = 1
2P−1

, (5.37)

where vec(·) is the vectorization operator that stacks the columns of its matrix
argument, 1

2P−1
∈ R

(2P−1)×1 is the all ones vector of dimension 2P − 1 and the

matrices Θ3 ∈ R
P×P 2

and Θ4 ∈ R
(P−1)×P 2

are respectively given by:

Θ3 = 1T
P ⊗ IP (5.38)

and
Θ4 =

[
IP−1 0

P−1

] (
IP ⊗ 1T

P

)
, (5.39)
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where 0
P−1

is the zero vector of dimension P − 1. Note that each row of the left
side of (5.37) corresponds to the sum of the elements of one row or one column of
T. The sum of the elements of the last column of T is not included as it represents
a redundant constraint.

Moreover, for all (i, j) such that 1 ≤ i, j ≤ K + 1, conditions C4 and C5 can be
written in a matrix form respectively as:

AHTdA = 0
(K+1)×(K+1)

and ATTdA = 0
(K+1)×(K+1)

(5.40)

where

A =
[
a a•2 · · · a•K+1

]
∈ C

P×(K+1). (5.41)

Applying the vec(·) operator to the two members of equations (5.40) and using
the following property: vec (ABZ) =

(
ZT ⊗ A

)
vec (B), we get:

(
AT ⊗ AH

)
vec

(
Td

)
= 0

(K+1)2
(5.42)

and
(
AT ⊗ AT

)
vec

(
Td

)
= 0

(K+1)2
. (5.43)

By restricting the values of i and j as indicated in conditions C4 and C5, equations
(5.42) and (5.43) become:

[
Θ1

(
AT ⊗ AH

)

Θ2

(
AT ⊗ AT

)

]

vec(Td) =
[

0
2(K2+K)

]

, (5.44)

where Θ1 ∈ R
(K2+K)×(K+1)2 is a row selection matrix that eliminates the rows

of
(
AT ⊗ AH

)
corresponding to

(
aT

i ⊗ aH
i

)
, for i = 1, 2, ..., K + 1, and Θ2 ∈

R
(K2+K)×(K+1)2 is a row selection matrix that eliminates the rows of

(
AT ⊗ AT

)

corresponding to
(
aT

i ⊗ aT
K+1

)
, for i = 1, 2, ..., K + 1.

Thus, the TPMs must satisfy (5.37),(5.44) and Condition C1. It should be high-
lighted that, once chosen the values of K, P and LB, these constraints only depend
on the matrix T, which means that T can be a priori designed. By exploiting the
fact that Tp1,p2 ∈ {0, 1/L}, the next theorem proposes a procedure to determine
TPMs that verify (5.37) and (5.44) for any values of K, P and LB.

Definition 5.7 The pth circulant diagonal (p = 1, ..., P ) of a P ×P matrix is the
set of entries corresponding to the following indices: (k,mod(p + k − 2, P ) + 1),
for k = 1, ..., P , where mod(·, P ) denotes the modulo operation, i.e. the remainder
of the division of the argument by P.
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Definition 5.8 Let us define TP (p1, ..., pL) as the P × P matrix having entries
equal to 1/L on the circulant diagonals p1, ..., pL and to zero elsewhere, with L =
2LB < P .

For instance, for P = 4 and LB = 1 (L = 2), the TPM (5.25) is denoted by
T4(2, 3).

Theorem 5.3 The matrices TP (p1, ..., pL) satisfy (5.37) and (5.44) for all 1 ≤
p1 < p2 < ... < pL ≤ P .

Proof :

Each row and column of TP (p1, ..., pL) contains L elements equal to 1/L and
(P − L) elements equal to zero. Hence, Conditions C2 and C3, i.e. equation
(5.37), are always satisfied. In the sequel, it is proved that TP (p1, ..., pL) also
satisfies Condition C4 for all d ≥ 1.

For d ≥ 1, defining q = Ta•i ∈ C
P×1, Condition C4 can be rewritten as:

[

a•j
]H

Tda•i =
[

a•j
]H

Td−1q, (5.45)

The first element of the vector q can be developed as:

q1 =
P∑

p=1

T1,pa
i
p =

L∑

l=1

T1,pl
ai

pl
=

1

L

L∑

l=1

ai
pl
. (5.46)

By using Definition 5.8, the kth element (k = 2, ..., P ) of q can be expressed as:

qk =
P∑

p=1

Tk,pa
i
p =

L∑

l=1

Tk,[mod(pl+k−2,P )+1]a
i
[mod(pl+k−2,P )+1]. (5.47)

For PSK modulated symbols, we have:

ai
[mod(pl+k−2,P )+1] = Ai ej2π[mod(pl+k−2,P )]i/P = Ai ej2π(pl+k−2)i/P

=
ai

pl
ai

k

Ai
. (5.48)

Substituting (6.16) into (6.17) gives:

qk =
1

LAi

L∑

l=1

ai
pl
ai

k =
ai

kq1

Ai
. (5.49)
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Thus, the vector q can be written as:

q = Ta•i =
q1

Ai
a•i. (5.50)

By substituting (6.55) into (5.45), we get the following recursive equation:

[

a•j
]H

Tda•i =
q1

Ai

[

a•j
]H

Td−1a•i, (5.51)

which leads to:

[

a•j
]H

Tda•i =
( q1

Ai

)d [

a•j
]H

a•i

=
( q1

Ai

)d

Ai+j

P∑

p=1

ej2π(p−1)(i−j)/P

=
( q1

Ai

)d

Ai+j ej2π(i−j) − 1

ej2π(i−j)/P − 1
, (5.52)

which is equal to zero for i 6= j. That proves that the matrices TP (p1, ..., pL)
satisfy Condition C4. A similar proof can be made for Condition C5.

¥

Theorem 5.3 provides a set of TPMs satisfying (5.37) and (5.44) for all K, P and
LB. However, due to the complexity of (5.37) and (5.44), it is very difficult to
find an analytical expression for the TPMs. Note that (5.44) corresponds to a
system of nonlinear equations with respect to Tp1,p2 (1 ≤ p1, p2 ≤ P ). Moreover,
in order to find an analytical solution, one has to take into account that Ti,j ∈
{0, 1/L}. Thus, it may exist other TPMs satisfying these equations than the
matrices TP (p1, ..., pL). For linear-cubic Volterra systems (K = 1) and 4-PSK
input signals, due to the reduced dimension of the TPM, it is easy to verify by
an exhaustive search that the matrices given in Theorem 5.3 are the only TPMs
satisfying (5.37) and (5.44). Moreover, it can be verified that the matrices T4(1, 3)
and T4(2, 4) correspond respectively to a reducible and a periodical DTMC. Thus,
for 4-PSK signals, the matrices T4(1, 2), T4(2, 3), T4(3, 4) and T4(1, 4) are the
only matrices satisfying the orthogonality conditions C1-C5.

5.4.3 Interpretation of the TPM

An interesting characteristic of the matrix TP (p1, ..., pL) is that the corresponding
precoding can be viewed as a differential coding. For a given row of TP (p1, ..., pL),
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Table 5.1: Bit mapping for the TPM T4(2, 3).
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

Current State
Next State

a1 a2 a3 a4

a1 Bn = {0} Bn = {1}
a2 Bn = {0} Bn = {1}
a3 Bn = {1} Bn = {0}
a4 Bn = {0} Bn = {1} Bn = {0}

each non-zero element is associated with one of the L combinations of the LB input
bits of the encoder. From Definition 5.8, the difference between the row and the
column indices of an element of the pth circulant diagonal (1 ≤ p ≤ P ) is given
by (mod(p − 2, P ) + 1) = p − 1, which means that all the P elements of the pth

circulant diagonal correspond to the same phase shift 2π(p − 1)/P . Thus, if we
associate all the P elements of the pth circulant diagonal to the same combination
of the LB input bits, this combination will be associated with the same phase
shift, regardless of the input state. The symbols may then be decoded using only
the difference of phase of two consecutive symbols, which is the principle of a
differential coding. This characteristic simplifies the decoding process and makes
it insensitive to scaling ambiguities.

The difference between the proposed coding and the conventional differential co-
ding is that, in the proposed approach, there are some phase shifts that are not
allowed. The allowed phase shifts are determined by the circulant diagonals of the
TPM, the circulant diagonal p corresponding to a phase shift of (2π(p − 1)/P ).
For instance, let us consider the TPM T4(2, 3), given in (5.25), and corresponding
to the state transition diagram shown in Fig 5.1. If the bit mapping defined in
Table 5.1 is used, the symbols may then be decoded from the phase shift of two
consecutive symbols: if this phase shift is equal to π/2 (resp. π), the input bit of
the encoder is equal to 0 (resp. 1).

The choice of the circulant diagonals determines then an important characteristic
of the coding: the distance between the possible phase shifts. With respect to this
characteristic, it is desirable to choose the circulant diagonals so that the distance
between the allowed phase shifts 2π(p − 1)/P be high, due to the fact that close
phase shifts are more difficult to recover in presence of noise and interference. For
instance, for P = 8 and LB = 1, it is easy to verify that the matrices T8(i, i + 3)
(1 ≤ i ≤ 8) provide the maximal euclidean distance between the allowed phase
shifts. Note that the matrices T8(i, i + 4) (1 ≤ i ≤ 8) correspond to reducible
DTMCs. Moreover, for P = 8, LB = 2 and considering only irreducible and ape-
riodic DTMCs, we found by an exhaustive search for all the values of p1, p2, p3, p4

such that 1 ≤ p1 < p2 < p3 < p4 ≤ 8, that the TPMs maximizing the euclidean
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distance between the allowed phase shifts are T8(i, i + 2, i + 4, i + 5) (1 ≤ i ≤ 8).

5.5 Channel Estimation Algorithms

When conditions C1-C5 hold, i.e. when the tensor R admits the PARAFAC
decomposition (5.11), the following expressions for the first and third-mode slices
of R can be deduced from Appendix C:

Rd·· = Hdiagd[Z ]HH and R··r = Z diagr[H
∗]HT , (5.53)

where 1 ≤ d ≤ D, 1 ≤ r ≤ R, diagi[A] is the diagonal matrix formed from the
ith row of A and Rd·· (resp. R··r) is the first- (resp. third-) mode matrix slice of
R, obtained by fixing the first (resp. third) index of R and varying the indices
associated with the two other modes.

Let us denote respectively by R1 ∈ C
RD×R and R3 ∈ C

RD×R the first and third-
mode unfolded matrices of the tensor R, defined as:

R1 ≡






R1··
...

RD··




 , R3 ≡






R··1
...

R··R




 . (5.54)

These matrices are given by:

R1 = (Z ⋄ H)HH and R3 = (H∗ ⋄ Z )HT , (5.55)

where ⋄ denotes the Khatri-Rao (column-wise Kronecker) product.

In the sequel, two estimation methods are proposed for estimating the channel
based on (5.55): a two-steps Alternate Least Squares (ALS) algorithm [44] and a
joint diagonalization algorithm [45].

5.5.1 Alternating Least Squares (ALS) algorithm

The first proposed channel estimation method uses the ALS algorithm [73, 144],
the principle of which is to estimate, in the least square sense, a subset of the
parameters by using a previous estimation of other subsets of parameters. In fact,
a two-steps version of the ALS algorithm is used due to the fact that the matrix
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Z is assumed to be known, as it can be precomputed using the formula:

µ(i,i)(d) =
1

P

[

a•i
]H

Tda•i, (5.56)

for i = 0, ..., K + 1 and d = 1, ..., D. The channel estimation problem is solved
by minimizing the two following conditional least squares cost functions in an
alternate way:

J1 =
∥
∥
∥R̂1 −

(

Z ⋄ Ĥ
(it−1)

a

)

Ĥ
T

b

∥
∥
∥

2

F
, J2 =

∥
∥
∥R̂3 −

(

Ĥ
(it)

b ⋄ Z
)

Ĥ
T

a

∥
∥
∥

2

F
, (5.57)

where R̂1 and R̂3 are respectively the sample estimates of the unfolded matrices
R1 and R3, it and ‖·‖F denote respectively the iteration number and the Frobenius
norm. The covariances of the received signals are estimated in the following way:

r̂d,r1,r2 =
1

N

N∑

n=1

yr1(n + d − 1)y∗
r2

(n), (5.58)

where N is the number of data symbols.

The ALS algorithm is summarized in Table 5.2, where (·)† denotes the matrix

pseudo-inverse, ǫ is an arbitrary small positive constant and Ĥ
(it)

ab = 0.5 · [Ĥ(it)

a +

(Ĥ
(it)

b )∗]. At each iteration, two LS channel estimates, denoted by Ĥ
(it)

a and Ĥ
(it)

b ,
corresponding respectively to estimates of H and H∗, are calculated. This process
continues until the convergence of the parameters is achieved. After convergence,

three channel estimates can then be obtained: Ĥ
(it)

a , (Ĥ
(it)

b )∗ and Ĥ
(it)

ab , the final
channel estimate being chosen as the one that provides the smallest value of the
cost function (5.57).

One of the drawbacks of the ALS algorithm is that it may exhibit a slow conver-
gence speed if the number of factors is large relative to the tensor dimensions
[18, 122]. The ALS algorithm also works if the matrix Z is unknown. In this case,
three least squares estimates are calculated at each iteration.

Note that the ALS algorithm does not take the fact that Ĥa is the complex conju-
gate of Ĥb into account. In fact, we have tested by means of computer simulations
a modified version of the ALS algorithm taking the constraint Ĥb = Ĥ

∗
a into ac-

count. However, this algorithm presents some convergence problems and it does
not allow to improve the performance.
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Table 5.2: ALS algorithm

Initialization:

Ĥ
(0)
a → R × Q Gaussian random matrix

Iterations (it = it + 1) :

1) Ĥ
(it)
b =

[(

Z ⋄ Ĥ
(it−1)
a

)†
R̂1

]T

2) Ĥ
(it)
a =

[(

Ĥ
(it)
b ⋄ Z

)†
R̂3

]T

Stop Criteria:

∥
∥
∥Ĥ

(it)
ab − Ĥ

(it−1)
ab

∥
∥
∥

2

F
∥
∥
∥Ĥ

(it−1)
ab

∥
∥
∥

2

F

< ǫ

5.5.2 Joint Diagonalization Algorithm (JDA)

The channel matrix H can also be estimated from the set of covariance matrices
Ry(d) by using a joint diagonalization algorithm (JDA). The estimation algorithm
is summarized in Table 5.3 (for further details, see [7]). In the simulations of the
next section, the step 3 of this method is carried out by using the joint diagonali-
zation algorithm of [19]. The resulting identification method can then be viewed
as an extension of the SOBI algorithm [7] to nonlinear channels. Note that, unlike
the ALS algorithm, the joint diagonalization estimator requires R ≥ Q, i.e. it
does not work in the underdetermined case. Besides, the JDA does not assume
the knowledge of the source covariance matrix Rw(d).

The uniqueness of the joint diagonalizer based estimator is given by the following
theorem, due to [7]. Without loss of generality, this theorem assumes that the
covariation matrix Z(0) is normalized, i.e. Z(0) = IQ.

Theorem 5.4 Let B = {B1, ...,BD} be a set of D matrices Q × Q such that
Bd = MAdM

H , for d = 1, ..., D, where M ∈ C
Q×Q is a unitary matrix and

Ad ∈ C
Q×Q, for d = 1, ..., D, are diagonal matrices, the elements of which are
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Table 5.3: JDA algorithm

1) Calculate the whitening matrix U as:

U =

[

λ
− 1

2
1 u1 · · ·λ

− 1
2

Q uQ

]H

, (5.59)

where {λq}Q
q=1 are the Q largest eigenvalues of R̂y(0) and {uq}Q

q=1 are

the corresponding eigenvectors, R̂y(0) being the sample estimate of
Ry(0). It is considered that the estimated noise variance σ̂2 was sub-

tracted from R̂y(0), as mentioned earlier.

2) Calculate the following set of prewhitened matrices: R̂p(d) =

UR̂y(d)UH , for 0 ≤ d ≤ D − 1, where R̂y(d) is the sample estimate of
Ry(d).

3) Determine an unitary matrix M̂ as the joint diagonalizer of the matrices
R̂p(d), for 0 ≤ d ≤ D − 1.

4) Estimate the channel matrix as Ĥ = U†M̂.

denoted by ad(q) = [Ad]q,q. If

∀(q1, q2) such that 1 ≤ q1 6= q2 ≤ Q, ∃ d, 1 ≤ d ≤ D,

such that ad(q1) 6= ad(q2), (5.60)

then any joint diagonalizer of B is equal to ΠΛM, where Λ is a diagonal matrix
and Π a permutation matrix.

Note that, if the channel matrix is full column rank, the identifiability condition
(5.13) of the ALS algorithm becomes kZ ≥ 2, which is equivalent to condition
(5.60). Thus, for full column rank channel matrices, the identifiability conditions
of the ALS and JDA algorithms become equivalent.

5.6 Simulation Results

In this section, the proposed channel estimation methods are evaluated by means of
simulations. A memoryless linear-cubic MIMO Volterra system corresponding to a
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MIMO Wiener of an uplink channel of a radio over fiber multiuser communication
system [114, 44] has been considered for the simulations. The wireless link is
modeled as a Rayleigh R × T linear channel, with an array of R half-wavelength
spaced antennas and T = 2 or 3 users. The electrical-optical (E/O) conversion in
each antenna is modeled by the following polynomial f1x+f3|x|2x, with f1 = 1 and
f3 = −0.35, as in [114, 116]. In a ROF channel, the received signals are subject to
optical and wireless channel noise, however, it is assumed that only the wireless
noise is significant. The results were obtained with 8-PSK input signals (P = 8),
via Monte Carlo simulations using at least 100 independent data realizations. The
amplitude of the signals transmitted by all the users is equal to 1.

The proposed channel estimation methods are evaluated by means of the Norma-
lized Mean Squared Error (NMSE) of the estimated channel parameters, defined
as:

NMSE =
1

NR

NR∑

l=1

‖ H − Ĥl ‖2
F

‖ H ‖2
F

, (5.61)

where Ĥl represents the channel matrix estimated at the lth Monte Carlo simula-
tion after eliminating the ambiguities. As a performance reference for the proposed
channel estimation techniques, we also show the NMSE obtained with the Wiener
solution, given by:

Ĥ = R̂ywR̂
−1

ww, (5.62)

where R̂yw and R̂ww are the sample estimates of Ryw = E
[
y(n)wH(n)

]
and

Rww = E
[
w(n)wH(n)

]
, respectively, and w(n) is the nonlinear input vector defi-

ned in (5.4). This non-blind solution needs to known the input signals.

Table 5.4 describes the various tested simulation configurations, the matrices
T8(p1, ..., pL) being constructed as in Definition 5.8. All the configurations of
Table 5.4 provide matrices Z such that kZ = min(D,Q). Remark that Configu-
rations A, B, E and F correspond to a code rate of 1/3 while Configurations C
and D lead to a code rate of 2/3. In our simulations, we have remarked that, in
general, the best channel estimates are provided by the TPMs that induce high a
correlation on the transmitted signals, the correlation being calculated using the
following formula:

µ(1,1)(d) =
1

P
aHTd

P (p1, ..., pL)a. (5.63)

Indeed, if the induced correlation is low, the transmitted and received signals are
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Table 5.4: Simulation Configurations

Config. T Q LB TPM of user 1 TPM of user 2 TPM of user 3

A 2 4 1 T8(1, 4) T8(2, 5) -

B 2 4 1 T8(1, 2) T8(2, 3) -

C 2 4 2 T8(1, 3, 5, 6) T8(2, 4, 6, 7) -

D 2 4 2 T8(1, 4, 5, 6) T8(2, 5, 6, 7) -

E 3 12 1 T8(1, 4) T8(2, 5) T8(3, 6)

F 3 12 1 T8(1, 2) T8(2, 3) T8(3, 4)

“almost blind”, which means that a small value of D should be used due to an
inaccurate estimation of the correlations r̂d,r1,r2 . Thus, the circulant diagonals of
the TPMs of Configurations B, D and F were chosen so that the correlation of the
transmitted signals be maximized. By doing an exhaustive search for all the values
of p1, p2 such that 1 ≤ p1 < p2 ≤ 8, it was found that, for P = 8 and LB = 1, the
matrices T8(i, i + 1) (1 ≤ i ≤ 8) provide the maximal time correlation, i.e. this
choice of circulant diagonals maximizes

∑D−1
d=0 |µ(1,1)(d)|2, for D = 4. Similarly,

for P = 8, LB = 2 and D = 4, the TPMs that maximize the time correlation are
T8(i, i + 3, i + 4, i + 5) (1 ≤ i ≤ 8).

5.6.1 Simulations with a code rate of 1/3

The next three figures compare the performance of the two proposed estimation
algorithms using Configurations A and B of Table 5.4, i.e. for T = 2 users and a
code rate of 1/3 (LB = 1). Fig. 5.2 shows the NMSE versus signal-to-noise-ratio
(SNR) provided by the ALS and JDA algorithms and by the Wiener solution,
for R = 5, D = 4 and data blocks of N = 1024 symbols. It is also shown the
NMSE obtained with the ALS algorithm in the case of Configuration B and an
unknown noise variance (ALS-UNV), using covariances with delays d = 1, 2, ..., 4.
The following conclusions can be drawn from Fig. 5.2:

• Configuration B provides better performance than Configuration A, for both
ALS and JDA algorithms. As pointed out earlier, this is probably due to the
fact that Configuration B is the one that induces the highest correlation to
the transmitted signals.
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• The performance of JDA is better than that of ALS, except when Configu-
ration B is used and the SNR is lower than 15dB.

• The NMSE provided by the ALS-UNV algorithm is approximatively 3dB
higher than the one obtained with the ALS algorithm.

Fig. 5.3 evaluates the performance of the proposed channel identification methods
in terms of bit-error-rate (BER). It shows the BER versus SNR provided by the
Minimum Mean Square Error (MMSE) receiver:

Ŵ
MMSE

= Rww Ĥ
H

[

ĤRwwĤ
H

+ σ2IR

]−1

∈ C
Q×R, (5.64)

using the ALS and JDA channel estimates, with Configurations A and B, R = 5,
D = 4 and N = 1024. For comparison, it is also plotted the BER provided by the
MMSE receiver assuming an exact knowledge of the channel, using Configuration
A and Differential Binary PSK (DBPSK) input signals. The following conclusions
can be drawn from this figure:

• When JDA is used, Configuration A provides a lower BER than Configura-
tion B. As pointed out earlier, this is certainly due to the distance of the
allowed phase shifts of these configurations.

• Using the ALS algorithm, Configuration A provides a lower BER than Confi-
guration B when the SNR is smaller than 15dB. This is due to the poor
channel estimation performed by the ALS algorithm when Configuration A
is used and to the fact that the multiuser interference is the main source of
degradation when the SNR is high.

• Moreover, for a BER of 10−2 and considering the case of a known channel,
the SNR gap between Configuration A and DBPSK modulation is equal to
1.9dB. This result indicates the SNR lose provided by the proposed coding
with respect to DBPSK signals, regardless of the channel estimation.

The advantage of ALS over JDA is illustrated by evaluating the influence of the
antenna number R for a small value of SNR. Fig. 5.4 shows the NMSE versus R
provided by JDA and ALS using Configurations A and B, for D = 4, N = 1024
and SNR = 0dB. The following remarks can be highlighted from this figure:

• The ALS algorithm allows to work with R < Q = 4, the JDA requiring at
least Q = 4 antennas.
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Figure 5.2: NMSE versus SNR provided by the JDA, ALS, ALS-UNV and
Wiener solution for Configurations A and B.

• The ALS algorithm provides a good channel estimation even when the Krus-
kal’s condition is not satisfied, i.e. with R = 2 and D = 4.

• Using Configuration B, ALS performs better than JDA for SNR = 0dB.

Fig. 5.5 considers the case of T = 3 users (Q = 12) and rate 1/3 codes (LB = 1),
using Configurations E and F of Table 5.4, for R = 12, D = 8 and N = 1024.
It shows the NMSE versus SNR provided by the JDA and ALS. It is also shown
the NMSE obtained the ALS algorithm with R = 8. The conclusions that we can
draw from this figure are similar to those of Fig. 5.2:

• Configuration F provides better NMSE performances than Configuration E
for both ALS and JDA algorithms.

• The performance of JDA is better than that of ALS.

• The ALS algorithm with Configuration F and R = 8 ( R < Q) provides a
NMSE approximatively 1.8dB higher than the one obtained with R = 12.

Moreover, we have carried out some simulations concerning the BER corresponding
to Fig. 5.5, the results being similar to those of Fig. 5.3. This is expected as
Configurations A and E correspond to similar TPMs, as well as Configurations B
and F.



140
CHAPTER 5. BLIND ESTIMATION OF MEMORYLESS MIMO VOLTERRA CHANNELS USING

TENSOR DECOMPOSITION AND PRECODING

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

ALS − Config. A
JDA − Config. A
ALS − Config. B
JDA − Config. B
Known Chan. DBPSK
Known Chan. − Config. A

Figure 5.3: BER versus SNR provided by the MMSE receiver using the JDA
and ALS channel estimates, and the exact channel, for Configurations A and
B.
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Figure 5.4: NMSE versus R provided by ALS and JDA for SNR=0dB.

5.6.2 Simulations with a code rate of 2/3

The two next figures show the performance of the proposed estimation algorithms
using Configurations C and D of Table 5.4, i.e. for T = 2 users and a code rate of
2/3 (LB = 2). Fig. 5.6 and 5.7 plot respectively the NMSE and BER versus SNR,
for R = 5, D = 4 and N = 1024. The following conclusions can be drawn from
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Figure 5.5: NMSE versus SNR provided by the JDA and ALS for Configura-
tions E and F.

Fig. 5.6 :

• Configuration D provides lower NMSE than Configuration C, for both ALS
and JDA algorithms. This is certainly due to higher correlation induced by
Configuration D.

• The performance of JDA is always better than that of ALS.

From Fig. 5.7, we can conclude that:

• Configuration D provides lower BER than Configuration C. Although the
euclidean distance between the possible transitions of Configuration C is
higher than the one of Configuration D, this difference is not very significant.
The sum of all the euclidean distances between the possible transitions is
equal to 30.8 for Configuration C and to 28.0 for Configuration D. In this
case, the better channel estimate provided by Configuration D becomes more
relevant than the distance between the possible transitions.

• The MMSE receiver calculated with the JDA channel estimate gives better
performance than the one calculated with the ALS channel estimate.

The simulation results presented in Sections 5.6.1 and 5.6.2 allow to put in evi-
dence some interesting characteristics of the proposed tensor-based identification
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Figure 5.6: NMSE versus SNR provided by the JDA and ALS algorithms for
Configurations C and D.

methods. Configurations B, D and F provide better channel estimates, as they
induce a high correlation to the transmitted signals. On the other hand, Configu-
rations A, C and E, corresponding to greater distances between the phase shifts,
are more robust to channel noise and interference.

5.6.3 Semi-blind ALS algorithm

The objective of the next two figures is to illustrate the performance of a “semi-
blind ALS” (SB-ALS) algorithm, i.e. the ALS algorithm initialized by means
of the Wiener solution (5.62) calculated using 8 known symbols. In this case,
we consider a small data block composed of N = 256 symbols. Fig. 5.8 shows
the NMSE versus SNR provided by the ALS (blind) and SB-ALS algorithms for
Configuration B, with R = 5 and D = 4. From this figure, we draw the following
conclusions:

• For high SNRs, a NMSE performance improvement of about 2dB is obtained
when the SB-ALS algorithm is used instead of the ALS algorithm.

• The SB-ALS algorithm needs a smaller number of iterations than the ALS
algorithm to achieve the convergence, as shown in Fig. 5.9.
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Figure 5.7: BER versus SNR provided by MMSE receiver using the JDA and
ALS channel estimates for Configurations C and D.
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Figure 5.8: NMSE versus SNR provided by the ALS and SB-ALS algorithms
for Configuration B.

5.7 Conclusion

In this chapter, two tensor-based methods for estimating memoryless MIMO Vol-
terra channels have been proposed. These methods result from the PARAFAC
decomposition of an output covariance tensor. To get this PARAFAC decomposi-
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Figure 5.9: Number of iterations for convergence versus SNR for the ALS and
SB-ALS algorithms for Configuration B.

tion, a new precoding scheme has been developed so that the transmitted signals
satisfy some orthogonality constraints. In this scheme, the transmitted signals are
PSK modulated and modeled as DTMCs. A method for designing TPMs that
satisfy the orthogonality constraints has been proposed. The channel estimation
was carried out using two different algorithms: ALS and JDA.

The proposed identification methods have been applied for identifying an uplink
channel in a multiuser ROF communication system. The tested TPM configura-
tions can be divided into two groups: the ones that induce high temporal cor-
relation to the transmitted signals and the ones corresponding to spaced values
of phase shifts. The configurations of the first group provide better channel esti-
mates than the ones of the second group, whereas the configurations of the second
group lead to better robustness to noise and interference, due to higher distances
between the symbol phase shifts. A tradeoff between channel estimation accuracy
and equalization robustness to noise and interference is to be taken into account
in order to choose the best configurations in terms of BER performance.

In most of the cases, JDA outperforms ALS. However, the ALS algorithm is able to
work when the number of antennas is smaller than the number of virtual sources,
which is not the case for JDA. Besides, ALS has well performed using only 256
symbols to estimate the covariances. When a short training sequence is used for
initializing ALS, its convergence can be significantly accelerated with an improve-
ment of the channel estimation accuracy.
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In the next chapter, we deal with MIMO Volterra channels in the context of a
CDMA communication system. As well as the methods developed in the present
chapter, the techniques presented in Chapter 6 consider a blind scenario and are
based on a tensorial approach. The key aspect concerning these techniques is the
fact that the use of spreading codes induces a new diversity on the received signals.
The received signals can then be treated as as three-dimensional variables, with
indices corresponding to symbol, chip and space. The tensor-based techniques
exploit the diversity provided by the spreading codes by means of the PARAFAC
decomposition.



CHAPTER 6

Estimation and Equalization of MIMO
Volterra Channels in CDMA systems

In this chapter, techniques for estimation and equalization of discrete-time equi-
valent baseband MIMO Volterra channels in the context of a CDMA communi-

cation system are developed. As seen in Chapter 2, MIMO Volterra systems have
many applications in communication systems as, for instance, in the modeling of
uplink ROF multiuser channels. Several authors have considered ROF links in the
context of CDMA systems [56, 117, 116, 114]. Moreover, concerning this applica-
tion, a related work can be found in [112], with semiconductor laser’s nonlinearity
compensation being carried out for CDMA systems. It should be highlighted that
the equalizers proposed in this chapter are developed to cancel Inter-Chip In-
terference and Multiple-Access Interference, instead of traditional equalizers that
cancel inter-symbol interference (ISI).

As well as in Chapter 5, the techniques developed in this chapter are based on
tensor decompositions. The key aspect of the proposed algorithms is the fact that
the spreading codes induce a new diversity on the received signals. As a conse-
quence, the signals received by an antenna array can be viewed as 3-D variables,
with indices corresponding to symbol, chip and space. In this chapter, the terms
deterministic and stochastic are related to techniques that use tensors composed
of received signals and received signals statistics, respectively.

The main contributions of this chapter are divided in three parts. In the first
part (Section 6.1), two deterministic receivers are proposed for memoryless MIMO
Volterra channels in CDMA systems, one of them being blind and other one semi-
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blind. These techniques are based on the PARAFAC decomposition of a third-
order tensor composed of received signals with space, time and code diversities.
This tensor-based approach allows joint estimation of the channel coefficients and
transmitted signals. Two algorithms are considered for carrying out the PARAFAC
decomposition: the ALS and a modified version of the ALS that uses a short
training sequence and takes the structure of one of the factor matrices into account.
Channel estimation and equalization based on deterministic tensors have been
addressed by many authors in the case of linear CDMA channels [144, 143, 33, 34].
In the case of nonlinear channels, deterministic blind PARAFAC-based receivers for
Volterra channels were developed in [87, 83], but for single-user TDMA channels.
Moreover, a deterministic blind identification method based on the PARAFAC
decomposition was recently proposed for single-user Wiener-Hammerstein channels
[85], also in the context of a TDMA system.

In the second part (Section 6.2), blind techniques for memoryless MIMO Volterra
channel estimation in CDMA systems are developed. As well as the methods deve-
loped in Chapter 5, these techniques are based on a stochastic tensorial approach
considering that the transmitted signals are PSK modulated. They rely on the
PARAFAC decomposition of a fifth-order tensor composed of covariances of the
received signals. The PARAFAC model is estimated by three different algorithms,
the first one being the ALS algorithm. As the ALS algorithm may need many
iterations to achieve the convergence, two non-iterative estimation methods are
proposed. The first one is based on Eigenvalue Decompositions (EVD) and the
other one exploits a property of the Khatri-Rao product. These two algorithms
lead to relaxed restrictions on the number of receive antennas.

The third part of the chapter (Section 6.3) is dedicated to the proposition of a blind
estimation method for MIMO Volterra channels with short memory in a CDMA
system. The approach considered in this section can be viewed as an extension
of the one developed in Chapter 5 for channels with short memory. Indeed, this
proposed method is also based on the PARAFAC decomposition of a third-order
tensor composed of channel output covariances using PSK transmitted signals.

As mentioned earlier, a great advantage of these tensor-based approaches is that
they allow working with weak uniqueness conditions compared with previous works
[127, 43, 113], which require that the number of channel outputs be greater than
the number of virtual sources. The proposed tensorial techniques developed for
CDMA systems provide a great flexibility on the number of antennas and spreading
factor, leading to an interesting tradeoff between complexity and bandwidth.

This chapter is organized as follows. Section 6.1 develops deterministic techniques
for joint estimation and equalization of memoryless MIMO Volterra channels. In
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Section 6.2, stochastic techniques for estimation of memoryless MIMO Volterra
channels are proposed. In Section 6.3, a stochastic method for estimating MIMO
Volterra channels with short memory is presented. The performance of the pro-
posed techniques is evaluated by means of computer simulations in Section 6.4,
and Section 6.5 draws some conclusions about the chapter. Some of the results
presented in this chapter have been published in [48, 49, 50].

6.1 Deterministic approach for estimation and

equalization of memoryless channels

In this section, after presenting the considered MIMO Volterra CDMA channel,
two techniques for joint channel estimation and information recovery are developed
based on the PARAFAC decomposition of a deterministic tensor. Indeed, these
techniques use a third-order tensor composed of received signals considering space,
time and code diversities. The PARAFAC decomposition of this tensor allows
joint estimation of the channel, spreading codes and transmitted signals, using
only one known pilot symbol. Besides, as we will see, the Kruskal condition for
the PARAFAC uniqueness provides a great flexibility on the number of antennas,
spreading factor and length of the data block.

The estimation of the PARAFAC factors is first carried out by means of the ALS
algorithm, resulting in a technique that can be viewed as an extension of [144]
to nonlinear channels. A modified version of the ALS algorithm is also proposed
by taking the structure of one of the factor matrices into account and by using a
short training sequence. It should be mentioned that the techniques developed in
the present section can be used with PSK or QAM modulations.
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6.1.1 The CDMA system with memoryless MIMO Vol-
terra channel

The discrete-time equivalent baseband model of the communication channel is
assumed to be expressed as a memoryless MIMO Volterra model:

yr,n,p =
K∑

k=0

T∑

t1=1

· · ·
T∑

tk+1=tk

T∑

tk+2=1

· · ·
T∑

t2k+1=t2k

h
(r)
2k+1(t1, . . . , t2k+1)

k+1∏

i=1

uti,n,p

2k+1∏

i=k+2

u∗
ti,n,p + υr,n,p, (6.1)

with

yr,n,p = yr ((n − 1)P + p) , (6.2)

υr,n,p = υr ((n − 1)P + p) , (6.3)

ut,n,p = ut ((n − 1)P + p) , (6.4)

where yr,n,p (1 ≤ r ≤ R, 1 ≤ p ≤ P ) is the chip-rate sampled signal received by
antenna r at the pth chip period of the nth symbol period, i.e. received at the
[(n − 1)P + p]th chip period, R is the number of receive antennas, P is the length
of the spreading code (number of chips per symbol), (2K + 1) is the nonlinearity

order of the model, h
(r)
2k+1(t1, . . . , t2k+1) are the kernel coefficients of the rth sub-

channel, ut,n,p (1 ≤ t ≤ T ) is the spread signal transmitted by user t at the pth

chip period of the nth symbol period, T is the number of users and υr,n,p is the
Additive White Gaussian Noise (AWGN).

Equation (6.1) can be rewritten as:

yr,n,p =

Q
∑

q=0

hr,qũn,p,q + υr,n,p = hT
r ũn,p + υr,n,p , (6.5)

where the vector hr = [hr,1 hr,2 . . . hr,Q]T ∈ C
Q×1 contains the Volterra kernel

coefficients h
(r)
2k+1(t1, . . . , t2k+1) of the rth sub-channel, the number of parameters

of each sub-channel being given by Q =
∑K̄

k=0 CT,kCT,k+1, with CT,k = (T+k−1)!
(T−1)!k!

.

Moreover, ũn,p = [ũn,p,1 . . . ũn,p,Q]T ∈ C
Q×1 is the nonlinear input vector contai-

ning the products of the spread input signals uti,n,p in (6.1), having the following
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form:

ũn,p,q =
k+1∏

i=1

uti,n,p

2k+1∏

i=k+2

u∗
ti,n,p. (6.6)

where the index q depends on the indices t1, t2, ..., t2k+1. In fact, ũn,p,q is defined so

that the products
∏k+1

i=1 uti,n,p

∏2k+1
i=k+2 u∗

ti,n,p are placed at the vector ũn,p according
to the ordering defined by the sums of (6.1).

The spread signal ut,n,p is obtained by upsampling the information signal st(n) and
multiplying it by the spreading code ct(p) before transmission, leading to:

ut,n,p = st(n)ct(p), (6.7)

for p = 1, ..., P , where ct(p) is the pth element of the spreading code of the tth

user and st(n) is the nth information symbol of the tth user. The signal st(n)
(1 ≤ t ≤ T ) is assumed to be stationary and independent from st

′ (n), for t 6= t
′

.
Substituting (6.7) into (6.6), we get:

ũn,p,q = s̃n,q c̃p,q, (6.8)

where

s̃n,q =
k+1∏

i=1

sti(n)
2k+1∏

i=k+2

s∗ti(n) (6.9)

and

c̃p,q =
k+1∏

i=1

cti(p)
2k+1∏

i=k+2

c∗ti(p). (6.10)

Note that the signal s̃n,q is defined in a similar way to the qth element w(n) of the
nonlinear input vector (2.60). The signal s̃n,q (1 ≤ q ≤ Q) denotes a product of
information signals in a CDMA system and wq(n) (1 ≤ q ≤ Q) denotes a product
of transmitted signals in a TDMA system. Substituting (6.8) into (6.5), we get:

yr,n,p =

Q
∑

q=0

hr,qs̃n,q c̃p,q + υr,n,p. (6.11)

If the information signals st(n) are PSK modulated and the spreading codes ct(p)
have an unitary modulus, then the transmitted signals ut,n,p are constant modulus.
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In this case, as well as pointed out in Chapter 5, the nonlinear terms corresponding
to ti = tj, for all i ∈ {1, ..., k + 1} and j ∈ {k + 2, ..., 2k + 1}, are absent in (6.1)
due to the fact that the term |uti,n,p|2 reduces to a multiplicative constant that can
be absorbed by the associated channel coefficient. In this case, the memoryless
MIMO Volterra channel (6.1) becomes:

yr,n,p =
K∑

k=0

T∑

t1=1

· · ·
T∑

tk+1=tk

T∑

tk+2=1

· · ·
T∑

t2k+1=t2k
︸ ︷︷ ︸

tk+2,...,t2k+1 6=t1,...,tk+1

h
(r)
2k+1(t1, . . . , t2k+1)

k+1∏

i=1

uti,n,p

2k+1∏

i=k+2

u∗
ti,n,p + υr,n,p. (6.12)

Equation (6.12) can also be written as (6.11), with a smaller value of Q. For

instance, for a linear-cubic channel (2K + 1 = 3), we have Q = T + T 2(T−1)
2

.

6.1.2 Third-Order Received Signal Tensor

For simplifying the development of this section, we consider that there is no AWGN
term in the received signals. Let Y ∈ C

R×N×P be the third-order tensor composed
of received signals yr,n,p for 1 ≤ r ≤ R, 1 ≤ n ≤ N and 1 ≤ p ≤ P , with [Y ]r,n,p =
yr,n,p , where N is the number of data symbols. Equation (6.11) represents the
scalar writing of the PARAFAC decomposition of the third order-tensor Y with
rank ≤ Q and matrix components H ∈ C

R×Q, C̃ ∈ C
P×Q and S̃ ∈ C

N×Q, where

H = [h1 . . . hR]T ∈ C
R×Q (6.13)

is the channel matrix,

S̃ = [s̃1 · · · s̃N ]T , ∈ C
N×Q (6.14)

with s̃n = [s̃n,1 · · · s̃n,Q]T ∈ C
Q×1, is the matrix containing the products of the

information signals s̃n,q given in (6.9), and

C̃ = [c̃1 · · · c̃P ]T ∈ C
P×Q, (6.15)

with c̃p = [c̃p,1 · · · c̃p,Q]T ∈ C
Q×1, is the nonlinear code matrix, i.e. the matrix

containing the products of the spreading codes c̃p,q given in (6.10).

For instance, for T = 2, K = 1 and constant modulus transmitted signals, the
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matrices H, S̃ and C̃ are respectively given by:

H =






h
(1)
1 (1) h

(1)
1 (2) h

(1)
3 (1, 1, 2) h

(1)
3 (2, 2, 1)

...
...

...
...

h
(R)
1 (1) h

(R)
1 (2) h

(R)
3 (1, 1, 2) h

(R)
3 (2, 2, 1)




 ,

S̃ =






s1(1) s2(1) s2
1(1)s∗2(1) s2

2(1)s∗1(1)
...

...
...

...
s1(N) s2(N) s2

1(N)s∗2(N) s2
2(N)s∗1(N)






and

C̃ =






c1(1) c2(1) c2
1(1)c∗2(1) c2

2(1)c∗1(1)
...

...
...

...
c1(P ) c2(P ) c2

1(P )c∗2(P ) c2
2(P )c∗1(P )




 .

The matrix slices of the tensor Y are then given by (see Appendix C):

Yr,·,· = S̃ diagr[H] C̃
T ∈ C

N×P , (6.16)

Y·,n,· = C̃ diagn[S̃] HT ∈ C
P×R, (6.17)

Y·,·,p = H diagp[C̃] S̃
T ∈ C

R×N , (6.18)

where diagi[·] denotes the diagonal matrix formed from the ith row of the matrix
argument. The unfolded matrices of the tensor Y can be defined as:

Y[1] =






Y1,·,·
...

YR,·,·




 ∈ C

NR×P , (6.19)

Y[2] =






Y·,1,·
...

Y·,N,·




 ∈ C

PN×R, (6.20)

Y[3] =






Y·,·,1
...

Y·,·,P




 ∈ C

RP×N , (6.21)
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which leads to:

Y[1] =
(

H ⋄ S̃
)

C̃
T
, (6.22)

Y[2] =
(

S̃ ⋄ C̃
)

HT , (6.23)

Y[3] =
(

C̃ ⋄ H
)

S̃
T
, (6.24)

where ⋄ denotes the Khatri-Rao (column-wise Kronecker) product.

The essential uniqueness of the PARAFAC decomposition of Y is assured by the
Kruskal condition:

kH + kS̃ + kC̃ ≥ 2Q + 2, (6.25)

where kA denote the k-rank of the matrix A. In this case, the essential uniqueness

means that if any other set of matrices H
′

, S̃
′

and C̃
′

satisfies (6.22)-(6.24), then

H
′

= HΠΛ1, S̃
′

= S̃ΠΛ2 and C̃
′

= C̃ΠΛ3, where Λ1, Λ2 and Λ3 are diagonal
matrices such that Λ1Λ2Λ3 = IQ and Π is a permutation matrix. Assuming that
the matrices H, S̃ and C̃ are full k-rank, condition (6.25) becomes:

min(R,Q) + min(N, Q) + min(P,Q) ≥ 2Q + 2. (6.26)

In particular, if we choose N ≥ Q, we get:

min(R, Q) + min(P, Q) ≥ Q + 2. (6.27)

The flexibility on the choice of R, N and P provided by the Kruskal condition
is one of the main advantages of using this tensor-based approach. It leads to
an interesting tradeoff between complexity (number of receiver antennas R) and
capacity (spreading factor P ). In particular, note that it is possible to choose
R < Q and P < Q i.e. the number of receive antennas and spreading gain are
smaller than the number of virtual sources.

In the sequel, two algorithms are presented for carrying out the PARAFAC decom-
position of the tensor Y . In the following developments, the matrix C̃ is assumed
to be known, as it can be calculated if the codes are known. So, if the Krus-

kal condition (6.25) is satisfied, we have ˆ̃C = C̃ and, hence, Π = Λ3 = IQ and

Λ2 = Λ−1
1 . Therefore, Ĥ = HΛ1 and ˆ̃S = S̃Λ−1

1 . This means that the permutation
ambiguity is eliminated. Moreover, due to the structure of the matrix S̃, the sca-
ling ambiguity matrix Λ1 can be identified by using one known pilot symbol for
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each user (st(n), t = 1, .., T ), i.e. by assuming that the first row of S̃ is known, as:

Λ1 = diag





[

s̃1,1

ˆ̃s1,1

· · · s̃1,Q

ˆ̃s1,Q

]T


 , (6.28)

where diag[·] denotes the diagonal matrix formed from the vector argument.

6.1.3 Estimation Algorithms

In this section, two algorithms are proposed for carrying out the PARAFAC de-
composition of Y assuming that C̃ is known. It is important to highlight that,
if the matrix C̃ is unknown, the following algorithms are able to jointly estimate
the channel coefficients, transmitted signals and spreading codes. However, in this
case, the performance of these estimation algorithms is worst than in the case
where C̃ is known.

Alternating Least Squares algorithm

The first presented channel estimation algorithm is a two-steps version of the ALS
algorithm. In this case, the channel estimation problem is solved by minimizing
the two following cost functions:

J1 =
∥
∥
∥Ȳ[3] −

(

C̃ ⋄ Ĥ
(it−1)

)
ˆ̃ST

∥
∥
∥

2

F
, (6.29)

J2 =
∥
∥
∥Ȳ[2] −

(
ˆ̃S(it) ⋄ C̃

)

Ĥ
T
∥
∥
∥

2

F
, (6.30)

where Ȳ[3] and Ȳ[2] are noisy versions of Y[3] and Y[2], respectively. The ALS
algorithm is summarized in Table 6.1, where ǫ is a small positive constant, and

Ĥ
(it)

and ˆ̃S(it) denotes respectively the estimates of the matrices H and S̃ at

iteration it. The existence of the left inverse of the matrices (ˆ̃S(it−1) ⋄ C̃) and

(C̃ ⋄ Ĥ
(it)

) is asymptotically assured if the Kruskal condition (6.25) is satisfied
[98].

This technique can be viewed as a generalization of [144] to nonlinear channels.
Indeed, in [144], the factor matrices H, S̃ and C̃ contain only the elements corres-
ponding to the linear kernel.
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Table 6.1: ALS algorithm - deterministic tensor

Initialization:

ˆ̃H(0) → R × Q random matrix

Iterations (it = it + 1) :

1) ˆ̃S(it) =

[(

C̃ ⋄ Ĥ
(it−1)

)†
Ȳ[3]

]T

2) Ĥ
(it)

=

[(
ˆ̃S(it) ⋄ C̃

)†
Ȳ[2]

]T

Stop Criteria:

∥
∥
∥Ĥ

(it) − Ĥ
(it−1)

∥
∥
∥

2

F
∥
∥
∥Ĥ

(it−1)
∥
∥
∥

2

F

< ǫ and

∥
∥
∥
ˆ̃S(it) − ˆ̃S(it−1)

∥
∥
∥

2

F
∥
∥
∥
ˆ̃S(it−1)

∥
∥
∥

2

F

< ǫ

ALS with Direct Decision and Block Initialization (ALS-DD-BI) algo-
rithm

The performance of the ALS algorithm can be improved by taking into account the
structure of matrix S̃ and the fact that the transmitted symbols belong to a finite
alphabet. The second proposed estimation algorithm consists in a modified version

of the ALS algorithm where direct decisions are used to construct the matrix ˆ̃S(it)

and some known pilot symbols are used to obtain an initial estimate for Ĥ
(0)

.

Let us denote by ˆ̃S
(it)
L ∈ C

N×T the matrix composed of the T first columns of ˆ̃S(it),

i.e. the matrix containing the linear part of ˆ̃S(it), and by ˆ̃S
(it)
NL ∈ C

N×(Q−T ) the

matrix composed of the (Q − T ) last columns of ˆ̃S(it), i.e. the matrix containing

the nonlinear part of ˆ̃S(it). That gives ˆ̃S(it) = [ˆ̃S
(it)
L |ˆ̃S(it)

NL].

Moreover, let us define ˆ̃S
(it)
L,DD ∈ C

N×T as the matrix composed of the elements of
ˆ̃S

(it)
L after a decision device that projects its inputs into the alphabet of symbols.

Finally, let ˆ̃S
(it)
NL,DD ∈ C

N×(Q−T ) be the nonlinear part of the information signal
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Table 6.2: ALS-DD-BI algorithm - deterministic tensor

Initialization:

Calculate Ĥ
(0)

using (6.31).

Iterations (it = it + 1) :

1) ˆ̃S(it) =

[(

C̃ ⋄ Ĥ
(it−1)

)†
Ȳ[3]

]T

2) Eliminate the scaling ambiguity from ˆ̃S
(it)
L by using (6.28).

3) Construct ˆ̃S
(it)
L,DD by projecting the elements of ˆ̃S

(it)
L on the alphabet of user

symbols.

4) Reconstruct the nonlinear part of the information signal matrix ˆ̃S
(it)
NL,DD

from ˆ̃S
(it)
L,DD.

5) Ĥ
(it)

=

[(
ˆ̃S

(it)
DD ⋄ C̃

)†
Ȳ[2]

]T

Stop Criteria:

∥
∥
∥Ĥ

(it) − Ĥ
(it−1)

∥
∥
∥

2

F
∥
∥
∥Ĥ

(it−1)
∥
∥
∥

2

F

< ǫ and

∥
∥
∥
ˆ̃S(it) − ˆ̃S(it−1)

∥
∥
∥

2

F
∥
∥
∥
ˆ̃S(it−1)

∥
∥
∥

2

F

< ǫ

matrix reconstructed from ˆ̃S
(it)
L,DD.

The ALS-DD-BI algorithm is summarized in Table 6.2, where a short training

sequence is used to obtain an initial estimate of the channel matrix Ĥ
(0)

. Let
us denote by S̃0 ∈ C

Nt×Q the matrix composed of the Nt first rows of S̃ and by
Ȳ[2],0 ∈ C

PNt×R the corresponding unfolded matrix of the tensor Y , where Nt is
the length of the training sequence. The initial estimation of H is obtained as:

Ĥ
(0)

=

[(

S̃0 ⋄ C̃
)†

Ȳ[2],0

]T

. (6.31)

Note that a necessary identifiability condition for this initialization is r(S̃0⋄C̃) = Q,
which implies NtP ≥ Q.
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6.2 Stochastic approach for estimation of memo-

ryless channels

In this section, techniques for estimating MIMO Volterra channels are presented,
considering the channel model presented in Section 6.1.1. However, instead of using
tensor composed of channel outputs, the techniques developed in the present sec-
tion use a tensor composed of channel output covariances, similarly as in Chapter
5. In the sequel, the spatio-temporal covariances of the received signals are cha-
racterized, which allows the construction of a fifth-order tensor composed of such
covariances. The algorithms used to perform the PARAFAC decomposition of this
tensor are treated at the end of the section, with three estimation algorithms being
proposed.

It is assumed that the information signals st(n) (1 ≤ t ≤ T ) belong to a PSK
constellation and that the spreading codes ct(p) have an unitary modulus, which
lead to transmitted signals ut,n,p with constant modulus.

6.2.1 Covariance Matrices of the Received Signals

Equation (6.11) can be expressed in a vector form as:

y(n, p) = Hdiagp

[

C̃
]

s̃n + v(n, p). (6.32)

where y(n, p) = [y1,n,p . . . yR,n,p]
T ∈ C

R×1 and v(n, p) = [υ1,n,p . . . υR,n,p]
T ∈ C

R×1.
Let us define the spatio-temporal covariance matrices of the chip-rate sampled
received signals y(n, p) as:

Ry(d, p1, p2) ≡ E
[
y(n + d, p1)y

H(n, p2)
]
∈ C

R×R

= H diagp1

[

C̃
]

Rs̃(d) diagp2

[

C̃
∗]

HH + σ2IRδ(d)δ(p1 − p2),(6.33)

where 0 ≤ d ≤ D − 1, D is the number of delays taken into account and

Rs̃(d) = E
[
s̃(n + d)s̃H(n)

]
∈ C

Q×Q. (6.34)

Assuming that the noise variance σ2 is known, the noise covariance matrix can be
ignored in (6.33) as it can be subtracted from Ry(0, p1, p2). If the noise variance is
not known, the proposed methods can be carried out without using the covariance
matrices Ry(0, p, p), for p = 1, ..., P .
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When the transmitted signals are i.i.d. and have a PSK modulation, the covariance
matrix Rs̃(0) is non-null and diagonal, and the matrices Rs̃(d) are null for d > 0.
However, if the precoding scheme developed in Chapter 5 is used, the matrices
Rs̃(d) are non-null and diagonal for all d. Thus, if the matrices Rs̃(d) (d =
0, ..., D − 1) are diagonal, (6.33) can be rewritten as:

Ry(d, p1, p2) = H diagp1

[

C̃
]

diagd+1[Z ]diagp2

[

C̃
∗]

HH , (6.35)

where the rows of the matrix Z ∈ C
D×Q contain the diagonal elements of Rs̃(d)

for 0 ≤ d ≤ D − 1, i.e. zd+1,q = [Z]d+1,q = [Rs̃(d)]q,q.

As we will see later, the use of this precoding scheme is not mandatory for the
techniques proposed in this section, as the channel estimation algorithms may
work with D = 1, i.e. by using only the covariance matrices Ry(0, p1, p2), for
1 ≤ p1, p2 ≤ P . However, the precoding has the advantage of adding redundancy
to the transmitted signals, which induces a supplementary dimension to the tensor.

6.2.2 Fifth-Order Tensor of Covariances

Let us define R ∈ C
D×R×R×P×P as the fifth-order tensor composed of the cova-

riance matrices Ry(d, p1, p2), for 0 ≤ d ≤ D − 1 and 1 ≤ p1, p2 ≤ P , constructed
in such a way that the (r1, r2)

th element of the matrix Ry(d, p1, p2) corresponds
to the (d + 1, r1, r2, p1, p2)

th element of R, i.e. [Ry(d, p1, p2)]r1,r2 = [R]d+1,r1,r2,p1,p2 .
From (6.35), a typical element of the tensor can be expressed by:

rd+1,r1,r2,p1,p2 =

Q
∑

q=1

hr1,q c̃p1,qzd+1,q c̃
∗
p2,qh

∗
r2,q. (6.36)

where rd+1,r1,r2,p1,p2 = [R]d+1,r1,r2,p1,p2 . Equation (6.36) corresponds to the PARA-
FAC decomposition (see Appendix C) of a fifth-order tensor with rank ≤ Q and

matrix factors H ∈ C
R×Q, C̃ ∈ C

P×Q, Z ∈ C
D×Q, C̃

∗ ∈ C
P×Q and H∗ ∈ C

R×Q.

Its is possible to define the 10 types of matrix slices of the tensor R, depending
on which indexes are fixed. Using the notation introduced in Appendix C, some
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of these matrix slices are given by:

Rd+1,r1,·,p1,· = H∗ diagd+1 [Z] diagr1
[H] diagp1

[

C̃
]

C̃
H ∈ C

R×P , (6.37)

Rd+1,·,·,p1,p2 = H diagd+1 [Z] diagp1

[

C̃
]

diagp2

[

C̃
∗]

HH ∈ C
R×R, (6.38)

Rd+1,·,r2,p1,· = H diagd+1 [Z] diagr2
[H∗] diagp1

[

C̃
]

C̃
H ∈ C

R×P , (6.39)

for 0 ≤ d ≤ D − 1, 1 ≤ p1, p2 ≤ P and 1 ≤ r1, r2 ≤ R.

The unfolded matrices of the tensor R are constructed by stacking all the matrix
slices of a given type. The channel estimation algorithms presented in the next
section are based on the following unfolded matrices of R:

R[1] =
(

H ⋄ C̃ ⋄ Z ⋄ C̃
∗)

HH ∈ C
RP 2D×R, (6.40)

R[2] =
(

C̃ ⋄ Z ⋄ C̃
∗ ⋄ H∗

)

HT ∈ C
RP 2D×R, (6.41)

R[3] =
(

C̃ ⋄ Z ⋄ C̃
∗)

(H∗ ⋄ H)T ∈ C
P 2D×R2

. (6.42)

These unfolding matrices are constructed so that the element [R](d+1),r1,r2,p1,p2 of
the tensor is placed at the position (ilin, icol) of the unfolding matrix, with ilin and
icol defined as:

ilin = (r1 − 1)P 2D + (p1 − 1)PD + dP + p2, icol = r2, (6.43)

ilin = (p1 − 1)RPD + dRP + (p2 − 1)R + r2, icol = r1, (6.44)

ilin = (p1 − 1)PD + dP + p2, icol = (r2 − 1)R + r1, (6.45)

for the matrices R[1], R[2] and R[3], respectively.

The essential uniqueness of the PARAFAC decomposition of the tensor R is as-
sured by the Kruskal theorem. In this case, the Kruskal theorem implies that
if:

2kH + 2kC + kZ ≥ 2Q + 4, (6.46)

then the matrix factors H, H∗, C̃, C̃
∗

and Z are unique up to column scaling
and permutation ambiguities. That means that if any other set of matrices H

′

,
H

′′

, C
′

, C
′′

and Z
′

satisfy (6.36), then H
′

= HΠΛa, H
′′

= H∗ΠΛb, C
′

= C̃ΠΛc,
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C
′′

= C̃
∗
ΠΛd and Z

′

= ZΠΛe, where Λa, Λb, Λc, Λd and Λe are diagonal matrices
such that ΛaΛbΛcΛdΛe = IQ and Π is a permutation matrix. Assuming that the
matrices H, C and Z are full k-rank, equation (6.46) becomes:

min(R,Q) + min(P,Q) +
min(D, Q)

2
≥ Q + 2. (6.47)

The matrix Z, containing the information about the time correlation introduced
by the precoding scheme, can also be assumed to be known, as seen in Chapter 5.
It should be mentioned that the configurations of transition probability matrices
of Table 5.4 provide full k-rank matrices Z. Moreover, as mentioned in Section
6.1, the matrix C̃ containing the code products is assumed to be known, as it can
be calculated from the spreading codes ct(p). Thus, the spreading codes should be
chosen such that C is full k-rank. Thus, if the Kruskal condition (6.47) is verified,

we have C
′

= C̃, C
′′

= C̃
∗
, Z

′

= Z and, hence, Π = IQ, Λc = Λd = Λe = IQ

and Λb = Λ−1
a = Λ−1, where Λ is a Q × Q diagonal matrix. That gives H

′

= HΛ
and H

′′

= H∗Λ−1. The scaling ambiguity does not represent an effective problem,
as its effects can be canceled by using a differential modulation. Another possible
solution is to use a few pilot signals to estimate this ambiguity.

The uniqueness condition (6.47) is weaker than that associated with other estima-
tion methods [127, 43, 113] and that obtained in Chapter 5. The flexibility on the
choice of R and P provided by the Kruskal condition is one of the main advantages
of using a tensor-based approach, allowing an interesting tradeoff between com-
plexity and bandwidth. As well as in Section 6.1, it is possible to choose R < Q
and P < Q.

Moreover, the sufficient condition (6.46) is not necessary for the uniqueness of the
tensor decomposition. In the next section, we state alternative sufficient conditions
by taking into account the fact that some matrix factors are known.

6.2.3 Channel Estimation Algorithms

This section presents three blind algorithms to carry out the PARAFAC decompo-
sition. The first one is a two-steps ALS algorithm. As the ALS algorithm may need
many iterations to achieve the convergence, two non-iterative estimation methods
are also proposed. It is worth mentioning that these algorithms do not require
the use of the precoding if the number of used covariance matrices is set to one
(D = 1).
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Two-steps ALS algorithm

The first channel estimation method is a two-steps version of the ALS algorithm.
In the case of the fifth-order tensor R, the channel estimation problem is solved
by minimizing the two following least squares cost functions in an alternate way:

J1 =
∥
∥
∥R̂[1] −

(

Ĥ
(it−1)

a ⋄ C̃ ⋄ Z ⋄ C̃
∗)

HT
b

∥
∥
∥

2

F

J2 =
∥
∥
∥R̂[2] −

(

C̃ ⋄ Z ⋄ C̃
∗ ⋄ Ĥ

(it)

b

)

HT
a

∥
∥
∥

2

F
, (6.48)

where the matrices Ĥ
(it)

a and Ĥ
(it)

b denote respectively the estimates of H and H∗

at the itth iteration, R̂[1] and R̂[2] are respectively the sample estimates of R[1] and
R[2], the covariances of the received signals being estimated in the following way:

r̂d+1,r1,r2,p1,p2 =
1

N

N∑

n=1

yr1,(n+d−1),p1y
∗
r2,n,p2

, (6.49)

where N is the number of data symbols. The ALS algorithm is described in Table

6.3, where ǫ is an arbitrary small positive constant and Ĥ
(it)

ab = 0.5·[Ĥ(it)

a +(Ĥ
(it)

b )∗].

Three channel estimates are obtained: Ĥ
(it)

a , (Ĥ
(it)

b )∗ and Ĥ
(it)

ab ; the final channel
estimate being chosen as the one providing the smallest value of the cost function
(6.48).

The existence of the left inverse of the matrices (Ĥ
(it)

a ⋄ C̃ ⋄ Z ⋄ C̃
∗
) and (C̃ ⋄

Z ⋄ C̃
∗ ⋄ Ĥ

(it)

b ) is asymptotically assured if the if the Kruskal condition (6.46) is
verified. As well as in the deterministic approach, if the matrix C̃ is unknown, the
ALS algorithm is able to jointly estimate the matrices H and C̃. However, in our
simulations, the performance of the estimation algorithms for C̃ unknown is worst
than in the case where C̃ is known.

EVD-LS algorithm

In order to avoid possible convergence problems associated with the ALS algorithm,
we propose a non-iterative method to estimate the channel matrix H from the
tensor R, by using the unfolded matrix (6.42). This technique, called Eigenvalue
Decomposition-based Least Squares (EVD-LS) algorithm, takes into account the
fact that the matrices C̃ and Z are known and allows the development of an
alternative identifiability condition. In this case, the channel estimation algorithm
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Table 6.3: ALS algorithm - stochastic tensor

Initialization:

Ĥ
(0)

a → R × Q random matrix

Iterations (it = it + 1) :

1) Ĥ
(it)

b =

[(

Ĥ
(it−1)

a ⋄ C̃ ⋄ Z ⋄ C̃
∗)†

R̂[1]

]T

2) Ĥ
(it)

a =

[(

C̃ ⋄ Z ⋄ C̃
∗ ⋄ Ĥ

(it)

b

)†
R̂[2]

]T

Stop Criteria:

∥
∥
∥Ĥ

(it)

ab − Ĥ
(it−1)

ab

∥
∥
∥

2

F
∥
∥
∥Ĥ

(it−1)

ab

∥
∥
∥

2

F

< ǫ

is based on the minimization of the following cost function:

J =

∥
∥
∥
∥
R̂[3] −

(

C̃ ⋄ Z ⋄ C̃
∗)(

Ĥ
∗ ⋄ Ĥ

)T
∥
∥
∥
∥

2

F

, (6.50)

where R̂[3] is the sample estimate of R[3] calculated using N data symbols.

The EVD-LS algorithm is summarized in Table 6.4. The first step consists in the
LS estimation of the matrix W = (H∗ ⋄ H) ∈ C

R2×Q from the unfolding matrix
R̂[3]. In the second and third steps, the qth column of the channel matrix H is

estimated from a matrix formed from the qth column of Ŵ by means of the EVD,
as in [86]

Remark that the EVD-LS method requires that the following identifiability condi-
tion be satisfied: r(C̃⋄Z⋄C̃∗

) = Q, i.e. the matrix (C̃ ⋄ Z ⋄ C̃
∗
) must be full column

rank. A sufficient condition for assuring that the Khatri-Rao product of two ma-
trices is full column rank was established in [142]. This condition can be generalized
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Table 6.4: EVD-LS algorithm - stochastic tensor

1) Ŵ =

[(

C̃ ⋄ Z ⋄ C̃
∗)†

R̂[3]

]T

, where W = H∗ ⋄ H ∈ C
R2×Q.

2) For q = 1, ..., Q: Construct

Ŵ(q) = unvec(Ŵ· q) = unvec(Ĥ
∗
· q ⋄ Ĥ· q) = Ĥ· qĤ

H

· q,

where Ŵ· q and Ĥ· q denote the qth column of Ŵ and Ĥ respectively,
and the operator unvec (·) forms a R × R matrix from its vector
argument.

3) Calculate Ĥ·q as the eigenvector associated with the largest ei-

genvalue of Ŵ(q).

to multi Khatri-Rao products by using the following result due to [153]:

k(A1⋄A2) ≥ min (kA1 + kA2 − 1, Q) , (6.51)

where A1 ∈ C
L1×Q and A2 ∈ C

L2×Q do not contain an all-zero column. By
applying this result F − 1 times, we get [168]:

k(A1⋄···⋄AF ) ≥ min

(
F∑

f=1

kAf
− (F − 1), Q

)

, (6.52)

where Af ∈ C
Lf×Q, for f = 1, ..., F . Thus, if

F∑

f=1

kAf
≥ Q + (F − 1), (6.53)

then k(A1⋄···⋄AF ) = Q and, hence, r(A1⋄···⋄AF ) = Q. A sufficient identifiability
condition for the EVD-LS algorithm is therefore given by:

2kC̃ + kZ ≥ Q + 2. (6.54)

Assuming that the matrices C̃ and Z are full k-rank, this condition becomes:

2 min(P,Q) + min(D,Q) ≥ Q + 2. (6.55)
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Thus, an advantage of this approach is that it does not impose constraints on the
number R of antennas, contrarily to the ALS algorithm. This is due to the fact
that the uniqueness condition (6.55) takes into account the fact that the matrices
Z are C̃ are known.

Single-LS algorithm

The channel estimation technique proposed in this section, called Single-LS algo-
rithm, can be viewed as a simplified version of the EVD-LS algorithm. In fact, the
Single-LS algorithm uses the first step of the EVD-LS algorithm to estimate the
matrix W = (H∗ ⋄H). Then, it exploits a property of the Khatri-Rao product to
estimate the channel matrix H.

Indeed, the matrix W can be expressed as:

W = (H∗ ⋄ H) =






Hdiag1 [H∗]
...

HdiagR [H∗]




 . (6.56)

Thus, by defining Ŵ
(r) ∈ C

R×Q (1 ≤ r ≤ R) as the matrix formed from the rows
[(r−1)R+1] up to (rR) of Ŵ, the channel matrix Ĥ can then be estimated up to

a diagonal matrix as the mean of Ŵ
(r)

for r = 1, ..., R. The Single-LS algorithm is
summarized in Table 6.5. Note that the computational complexity of the Single-
LS algorithm is smaller than that of the EVD-LS algorithm, as it computes only
one LS operation and no EVD operation. Moreover, the identifiability condition
of the Single-LS algorithm is the same as the one of the EVD-LS algorithm, i.e.
r(C̃⋄Z⋄C̃∗

) = Q, which leads to the sufficient identifiability condition (6.54).

6.2.4 Comparison between the uniqueness conditions of
the stochastic and deterministic approaches

This section provides a brief comparison between the uniqueness conditions of the
proposed stochastic and deterministic tensor-based techniques. Table 6.6 shows the
uniqueness condition of the techniques developed in Sections 6.1 and 6.2, for K = 1
(third-order nonlinearity) with T = 2 and T = 3 sources, which corresponds to Q =
4 and Q = 12 virtual sources respectively. It is assumed that the factor matrices are
full k-rank. Moreover, for simplifying the comparison, we have made some realistic
assumptions about the number of delays D, symbols N , receive antennas R and
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Table 6.5: Single-LS algorithm - stochastic tensor

1) Ŵ =

[(

C̃ ⋄ Z ⋄ C̃
∗)†

R̂[3]

]T

, where W = H∗ ⋄ H ∈ C
R2×Q.

2) For r = 1, ..., R: Construct Ŵ
(r)

=












Ŵ(r−1)R+1,·

...

ŴrR,·












, where

Ŵr,· denotes the rrh row of Ŵ.

3) Ĥ = 1
R

∑R
r=1 Ŵ

(r)
.

Table 6.6: Uniqueness Conditions of the Proposed Techniques

Algorithm 2 users 3 users

ALS (deterministic) R + P ≥ 6 R + P ≥ 14

ALS-DD-BI (deterministic) R + P ≥ 6 R + P ≥ 14

NtP ≥ 4 NtP ≥ 12

ALS (stochastic) R + P ≥ 4 R + P ≥ 10

EVD-LS and P ≥ 1 P ≥ 3

Single-LS (stochastic)

spreading factor P . We considered that D, N ≥ 4 and R, P ≤ 4 in the case of
T = 2. For T = 3, we considered that D ≥ 8, N ≥ 12 and R,P ≤ 12. Note that the
EVD-LS and Single-LS algorithms provide the most relaxed uniqueness condition,
while the deterministic techniques provide the strongest uniqueness conditions.
This is due to the fact that these techniques doe not impose constraints on the
number of receive antennas.
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6.3 Stochastic approach for estimation of short

memory channels

In this section, a method for blind estimation of MIMO Volterra CDMA channels
with short memory is proposed. In fact, the zero-memory assumption considered
in Sections 6.1 and 6.1 represents a strong physical constraint if the spreading
gain P is large. The developed method can be viewed as an extension of the tech-
niques developed in Chapter 5 for channels with short memory. The information
signals st(n) (1 ≤ t ≤ T ) are assumed to be PSK modulated and generated using
the precoding scheme developed in Chapter 5. The key aspect of the approach
presented in this section is the use of spreading codes containing “guard-chips”
[144] that allow an equivalent memoryless writing of the MIMO Volterra channel.
As we will see, the joint use of PSK modulation and guard-chips leads to a great
simplification of the Volterra model.

6.3.1 The CDMA system with short memory MIMO Vol-
terra channel

The communication channel considered in this section is modeled as an equivalent
baseband MIMO Volterra system with memory:

yr,n,p =
K∑

k=0

T∑

t1=1

T∑

t3=1

· · ·
T∑

t2k+1=1

M∑

m1=0

M∑

m3=0

· · ·
M∑

m2k+1=0

h
(r)
2k+1(t1, t3, . . . , t2k+1,m1,m3, . . . , m2k+1)

k+1∏

i=1

uti(n̄ − mi)
2k+1∏

i=k+2

u∗
ti
(n̄ − mi)

+υr,n,p, (6.57)

where n̄ = (n − 1)P + p represents the pth chip period of the nth symbol period
and the spread signals ut(n̄) = ut,n,p are generated using (6.7).

In the sequel, we show that, if the channel memory M corresponds to a few
chips, i.e. M < P , nonlinear Inter-Symbol Interference (ISI) can be avoided by
considering that the spreading codes contain guard-chips [144]. However, as we
will see in the sequel, the use of guard-chips does not avoid nonlinear Inter-Chip
Interference. In this case, the M last elements of the spreading codes are equal to
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zero, i.e.

ct(p) = 0, for P − M + 1 ≤ p ≤ P and 1 ≤ t ≤ T. (6.58)

In the following development, we also consider that ct(p) = 0, for p ≤ 0. From
(6.7), we may write:

ut(n̄ − m) = ut((n − 1)P + p − m)

=

{
ct (p − m) st(n), if 1 ≤ p − m ≤ P,
ct (P + p − m) st(n − 1), if p − m ≤ 0.

(6.59)

Note that if p − m ≤ 0, then P − M + 1 ≤ P + p − m ≤ P . Thus, from (6.58),
we have ct(P + p − m) = 0, leading to ut(n̄ − m) = 0, which can be expressed as
ut(n̄ − m) = ct(p − m)st(n) = 0.

We can therefore replace ut(n̄ − m) by ct(p − m)st(n) in (6.57), leading to:

yr,n,p =
K∑

k=0

T∑

t1=1

· · ·
T∑

t2k+1=1

ḡ
(r,p)
2k+1(t1, . . . , t2k+1)

k+1∏

i=1

sti(n)
2k+1∏

i=k+2

s∗ti(n) + υr,n,p, (6.60)

where

ḡ
(r,p)
2k+1(t1, . . . , t2k+1) =

M∑

m1=0

· · ·
M∑

m2k+1=0

h
(r)
2k+1(t1, . . . , t2k+1,m1, . . . , m2k+1)

k+1∏

i=1

cti(p − mi)
2k+1∏

i=k+2

c∗ti(p − mi). (6.61)

Note that the use of guard-chips leads to an equivalent memoryless Volterra re-
presentation of the channel, the kernel coefficients ḡ

(r,p)
2k+1(t1, . . . , t2k+1), given by

(6.61), depending on the spreading codes ct(p) and the original kernel coefficients

h
(r)
2k+1(t1, . . . , t2k+1,m1, . . . , m2k+1). Note also that the linear kernel ḡ

(r,p)
1 (t) is given

by the convolution of the linear kernel h
(r)
1 (t,m) with the spreading code ct(p). It

should be also highlighted that each value of p generates a new output for the equi-
valent channel ḡ

(r,p)
2k+1(t1, . . . , t2k+1), leading to a Volterra system with RP outputs

at each symbol period n.

As the information signals st(n) are PSK modulated, the nonlinear terms corres-
ponding to ti = tj, for all i ∈ {1, ..., k + 1} and j ∈ {k + 2, ..., 2k + 1}, can be
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eliminated from (6.60), leading to the following triangular form:

yr,n,p =
K∑

k=0

T∑

t1=1

· · ·
T∑

tk+1=tk

T∑

tk+2=1

· · ·
T∑

t2k+1=t2k
︸ ︷︷ ︸

tk+2,...,t2k+1 6=t1,...,tk+1

g
(r,p)
2k+1(t1, . . . , t2k+1)

k+1∏

i=1

sti(n)
2k+1∏

i=k+2

s∗ti(n) + υr,n,p. (6.62)

The RP output signals at the nth symbol period can be expressed in the following
form:

y̌(n) = G s̃n + v̌(n), (6.63)

where y̌(n) = [y1,n,1 y2,n,1 . . . yR,n,1 · · · y1,n,P y2,n,P . . . yR,n,P ]T ∈ C
RP×1 is the vec-

tor composed of the signals received by the R antennas and P chips of the nth

symbol period, G = [g(1,1) g(2,1) . . . g(R,1) · · · g(1,P ) g(2,P ) . . . g(R,P )]T ∈ C
RP×Q is

the channel matrix, with g(r,p) = [g
(r,p)
1 g

(r,p)
2 . . . g

(r,p)
Q ]T ∈ C

Q×1 containing the Vol-

terra kernel coefficients g
(r,p)
2k+1(t1, . . . , t2k+1) of the ((p− 1)R+ r)th sub-channel and

v̌(n) = [v1,n,1 v2,n,1 . . . vR,n,1 · · · v1,n,P v2,n,P . . . vR,n,P ]T ∈ C
RP×1, with Q being

defined as in (6.12).

6.3.2 Third-Order Tensor of Covariances

The proposed tensor-based channel estimation method is based on the fact that
(6.63) is equivalent to the memoryless MIMO Volterra channel (5.3). However, in

(6.63), the channel g
(r,p)
2k+1(t1, . . . , t2k+1) has RP outputs, while in (5.3), the channel

h
(r)
2k+1(t1, . . . , t2k+1) has R outputs. The covariance matrix of y̌(n) can then be

expressed as:

Ry̌(d) = E
[
y̌(n + d)y̌H(n)

]
= GRs̃(d)GH ∈ C

RP×RP , (6.64)

for 0 ≤ d ≤ D − 1, where Rs̃(d) is given by (6.34).

A third-order tensor R ∈ C
D×RP×RP composed of received signal covariances can

be defined similarly as in Chapter 5. Let [R]d+1,i1,i2 = [Ry(d)]i1,i2 , for 0 ≤ d ≤ D−1
and 1 ≤ i1, i2 ≤ RP . Assuming that the information signals are generated using
the precoding scheme developed in Chapter 5, a typical element of R can be



6.3 STOCHASTIC APPROACH FOR ESTIMATION OF SHORT MEMORY CHANNELS 169

expressed by:

r(d+1),i1,i2 =

Q
∑

q=1

gi1,qg
∗
i2,qzd,q, (6.65)

where r(d+1),i1,i2 = [R]d+1,i1,i2 , zd+1,q = [Z]d+1,q = [Rs̃(d)]q,q and gi,q = [G]i,q =

g
(r,p)
q , with i = ((p − 1)R + r). Note that (6.65) corresponds to the PARAFAC

decomposition of the tensor R with rank ≤ Q and factor matrices equal to G, G∗

and Z. Hence, the slice matrices of the tensor R are given by:

R(d+1) · · = G diagd+1[Z ]GH ∈ C
RP×RP , (6.66)

R·r1· = G∗diagr1
[G]ZT ∈ C

RP×D, (6.67)

R· · r2 = Z diagr2
[G∗]GT ∈ C

D×RP . (6.68)

Thus, defining the unfolding matrices of R as:

R[1] ≡






R1··
...

RD··




 , R[2] ≡






R·1·
...

R·RP ·




 , R[3] ≡






R··1
...

R··RP




 , (6.69)

we get:

R[1] = (Z ⋄ G)GH ∈ C
RPD×RP , (6.70)

R[2] = (G ⋄ G∗)ZT ∈ C
R2P 2×D, (6.71)

R[3] = (G∗ ⋄ Z)GT ∈ C
RPD×RP . (6.72)

It is important to note that, in the case of a memoryless channel (M = 0), equation
(6.61) becomes:

ḡ
(r,p)
2k+1(t1, . . . , t2k+1) = h

(r)
2k+1(t1, . . . , t2k+1, 0, . . . , 0)

k+1∏

i=1

cti(p)
2k+1∏

i=k+2

c∗ti(p). (6.73)

As expected, the contributions of the channel coefficients h
(r)
2k+1(·) and spreading

codes ct(p) in the Volterra kernel coefficients ḡ
(r,p)
2k+1(·) can be decoupled, which allo-

wed us to construct a fifth-order PARAFAC tensor of channel output covariances
in Section 6.2.
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6.3.3 Channel Estimation

The estimation algorithms used for identifying the channel matrix G are the same
as in Section 6.2, that is: (i) the two-steps ALS algorithm, (ii) the EVD-LS al-
gorithm and (iii) the Single-LS algorithm. They are summarized respectively in

Tables 6.7, 6.8 and 6.9, where Ĝ
(it)

ab = 0.5[Ĝ
(it)

a + (Ĝ
(it)

b )∗] and W = (G ⋄ G∗) ∈
C

R2P 2×Q. These algorithms assume that the matrix Z is known. Moreover, all
these algorithms provide an estimate of the channel matrix G up to a diagonal
matrix. As well as in Section 6.2, this scaling ambiguity does not represent an
effective problem, as it can be removed by a gain control at the receiver or using
a differential modulation.

The Kruskal sufficient condition for the essential uniqueness of the PARAFAC
decomposition of R is given by:

2kG + kZ ≥ 2Q + 2. (6.74)

Assuming that the matrix factors are full k-rank, that leads to:

2 min(RP,Q) + min(D, Q) ≥ 2Q + 2. (6.75)

Note that this uniqueness condition allows working with R,P and D < Q.

Similarly as in Section 6.2, a sufficient identifiability condition for EVD-LS and
Single-LS algorithms is rZ = Q, i.e. the matrix Z is full column rank or, equi-
valently, Z has a left inverse. That implies D ≥ Q, which means that these two
algorithms do not impose constraints on R and P .

6.4 Simulation Results

In this section, the proposed channel estimation and equalization methods are
evaluated by means of simulations. A linear-cubic MIMO Volterra system corres-
ponding to a MIMO Wiener channel of an uplink radio over fiber multiuser com-
munication system [114, 44] is considered for the simulations. In Sections 6.4.1,
6.4.2 and 6.4.3, the R × T wireless link, corresponding to R receive antennas and
T users, has a frequency flat fading. In this case, the wireless link is modeled as a
memoryless R×T linear mixer. In Section 6.4.4, the wireless link has a frequency
selective fading and is modeled as a convolutive R × T linear mixer with memory
M = 1 chip period and spreading gain P = 3. The electrical-optical (E/O) conver-
sion in each antenna is modeled by the following polynomial f1x + f3|x|2x, with
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Table 6.7: ALS algorithm - short memory channel

Initialization:

Ĝ
(0)

a → RP × Q random matrix

Iterations (it = it + 1) :

1) Ĝ
(it)

b =

[(

Z ⋄ Ĝ
(it−1)

a

)†
R̂[1]

]T

2) Ĝ
(it)

a =

[(

Ĝ
(it)

b ⋄ Z
)†

R̂[3]

]T

Stop Criteria:

∥
∥
∥Ĝ

(it)

ab − Ĝ
(it−1)

ab

∥
∥
∥

2

F
∥
∥
∥Ĝ

(it−1)

ab

∥
∥
∥

2

F

< ǫ

f1 = 1 and f3 = −0.35 [114, 116]. The results were obtained via Monte Carlo
simulations using at least 100 independent data realizations and complex-valued
Walsh-Hadamard spreading codes [62].

6.4.1 Memoryless channels: deterministic approach

In this section, the performance of the proposed deterministic tensor-based tech-
niques for joint channel estimation and equalization are evaluated by means of
simulation results. The channel equalization is evaluated by means of the Bit-
Error-Rate (BER) and the channel estimation by means of the Normalized Mean
Square Error (NMSE) of the estimated channel parameters, defined as:

NMSE =
1

NR

NR∑

l=1

‖ H − Ĥl ‖2
F

‖ H ‖2
F

, (6.76)

where Ĥl represents the channel matrix estimated at the lth Monte Carlo simu-
lation. All the simulations concerning deterministic tensor-based techniques are
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Table 6.8: EVD-LS algorithm - short memory channel

1) Ŵ = R̂[2]

(
ZT

)†
, where W = (G ⋄ G∗) ∈ C

R2P 2×Q.

2) For q = 1, ..., Q: Construct

Ŵ(q) = unvec(Ŵ· q) = unvec(Ĝ· q ⋄ Ĝ
∗
· q) = Ĝ

∗
· qĜ

T

· q,

where Ŵ· q and Ĝ· q denote the qth column of Ŵ and Ĝ respectively,
and the operator unvec (·) forms a RP ×RP matrix from its vector
argument.

3) Calculate Ĝ·q as the conjugate of the eigenvector associated with

the largest eigenvalue of Ŵ(q).

Table 6.9: Single-LS algorithm - short memory channel

1) Ŵ = R̂[2]

(
ZT

)†
, where W = (G ⋄ G∗) ∈ C

R2P 2×Q.

2) For i = 1, ..., RP : Construct Ŵ
(i)

=












Ŵ(i−1)RP+1,·

...

ŴiRP,·












, where

Ŵi,· denotes the irh line of Ŵ.

3) Ĝ = 1
RP

∑RP
i=1

[

Ŵ
(i)

]∗
.

obtained with 4-PSK transmitted signals.

Fig. 6.1 shows the NMSE versus Signal to Noise Ratio (SNR) provided by the
ALS and ALS-DD-BI techniques for N = 32, Nt = 4, P = 3 R = 3 and T = 2.
For comparison, it is also shown the NMSE provided by the ALS algorithm with
N = 8 and by the ALS-DD algorithm with N = 32. This algorithm corresponds
to the ALS-DD-BI without the block-initialization (a random initialization is used
in this case). From this figure, it can be concluded that the NMSE provided by the
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Figure 6.1: NMSE versus SNR provided by the deterministic tensor-based
techniques.

ALS-DD-BI algorithm is significantly smaller than the one obtained with the ALS
algorithm. Moreover, it can be remarked that the proposed ALS method is able
to blindly estimate the channel using only 8 symbols. In fact, only 1 known pilot
symbol is used to remove the scaling ambiguity. Note also that the performance
of the ALS-DD technique is different to that of the ALS-DD-BI when the SNR
is equal to 30dB. This is certainly due to the fact that the ALS-DD-BI is not
monotonically convergent, contrarily to the ALS algorithm [18]. This means that
the use of direct decisions may deteriorate the convergence of the ALS algorithm.
However, as it can be viewed in this figure, the use of a block-initialization seems
to overcome this problem.

Fig. 6.2 shows the number of iterations needed to achieve the convergence versus
SNR for the ALS and ALS-DD-BI algorithms with N = 32, Nt = 4, P = 3, R = 3
and T = 2, and for the ALS algorithm with N = 8. It can be remarked that the
ALS-DD-BI technique converges more quickly than the ALS algorithm in most of
the cases. Note also that the ALS-DD-BI algorithm converges after approximately
2 iterations when the SNR is higher that 15dB.

Fig. 6.3 shows the BER versus SNR provided by the ALS and ALS-DD-BI algo-
rithms with N = 32, Nt = 4, P = 3, R = 3 and T = 2, and by the ALS algorithm
with N = 8. It is also shown the BER provided by the zero forcing (ZF) receiver
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Figure 6.2: Number of iterations needed to achieve the convergence versus
SNR for the deterministic tensor-based techniques.

assuming the channel knowledge:

ˆ̃S =

[(

C̃ ⋄ H
)†

Ȳ[3]

]T

. (6.77)

Note that (6.77) corresponds to the first step of the ALS algorithm with a known
channel. The conclusions that we can draw from Fig. 6.3 are similar to those of
Fig. 6.1, the ALS-DD-BI algorithm providing a BER smaller than that of the ALS
algorithm and close to that of the ZF receiver with a known channel.

6.4.2 Memoryless channels: stochastic approach

In this section, the proposed stochastic tensor-based techniques for estimating
memoryless MIMO Volterra channels are evaluated by means of simulations. Fig.
6.4 shows the NMSE versus SNR provided by the ALS, EVD-LS and Single-LS
algorithms for N = 256, D = 4, P = 3, R = 3 and T = 2, using Configurations
A and B of Table 5.4. It can be concluded from this figure that Configuration
B provides a better performance than Configuration A for the ALS and EVD-LS
algorithms, as well as in Chapter 5. It can also be viewed that the NMSE provided
by the EVD-LS is a little smaller than the one obtained with the ALS and much
smaller than the one obtained with the Single-LS. However, it should be highlighted
that the Single-LS algorithm has a computational cost significantly smaller than
the other two techniques. For instance, in Fig. 6.4, when Configuration B is
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Figure 6.3: BER versus SNR provided by the deterministic tensor-based tech-
niques.
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Figure 6.4: NMSE versus SNR provided by the stochastic tensor-based tech-
niques.

used and the SNR is equal to 0dB, the ALS algorithm needs approximatively 15
iterations to converge, with two LS estimate computations per step, while the
EVD-LS and Single-LS algorithms computes respectively 5 and 1 LS estimates.

The next figure evaluates the influence of spreading gain P and number of cova-
riance delays D on the channel estimation accuracy. Fig. 6.5 shows the NMSE
versus D provided by the ALS algorithm for P = 1, 2 and 3, with N = 256,
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Figure 6.5: NMSE versus the number of covariance delays D provided by the
ALS algorithm.

SNR = 20dB, R = 3 and T = 2. Note that the case P = 1 corresponds to the
ALS estimation technique developed in Chapter 5. When P = 3, we can see that
the accuracy of the ALS is quite similar for all the tested values of D. Indeed, for
P = R = 3, the uniqueness condition (6.47) becomes D ≥ 1. In this case, the use
of the precoding scheme is not very attractive. However, it can be viewed in Fig.
6.5 that, for P = 2 and P = 1, the ALS does not work well for D = 1. Indeed, in
these cases, condition (6.47) becomes D ≥ 2 and D ≥ 4, respectively. It can then
be concluded that the use of the precoding scheme is mandatory in such cases.

Fig. 6.6 shows the BER versus SNR provided by the following Minimum Mean
Square Error (MMSE) receiver based on (6.24):

Ŵ
MMSE

= Rs̃(0)
(

C̃ ⋄ Ĥ
)H

[(

C̃ ⋄ Ĥ
)

Rs̃(0)
(

C̃ ⋄ Ĥ
)H

+ σ2IRP

]−1

∈ C
Q×RP ,(6.78)

using ALS, EVD-LS and Single-LS channel estimates obtained with Configuration
A, and ALS channel estimates obtained with Configuration B, for N = 256, D = 4,
P = 3, R = 3 and T = 2. For comparison, it is also plotted the BER provided by
the MMSE receiver assuming an exact knowledge of the channel, using Configu-
ration A. Two main remarks should be highlighted from this figure. The first one
is that, by comparing the BER curves obtained with the ALS, one can see that
Configuration A performs better than Configuration B, as well as in Chapter 5.
The second one is that the BERs provided by the ALS and EVD-LS are very close
to that of the MMSE receiver with the known channel.
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Figure 6.6: BER versus SNR provided by the stochastic tensor-based tech-
niques.

6.4.3 Comparison between deterministic and stochastic
approaches

This section provides a comparison between the proposed deterministic and sto-
chastic tensor-based methods by means of simulations. Three techniques are com-
pared: the ALS with the deterministic tensor of received signals using 4-PSK
transmitted signals and the ALS with the stochastic tensor of received signal co-
variances using Configurations A and C of Table 5.4. We recall that code rates
associated with Configurations A and C are respectively 1/3 and 2/3. Thus, as
these configurations use 8-PSK signals, the transmission rate provided by Confi-
guration C is the same as the one of a 4-PSK signal, while the transmission rate
provided by Configuration A is the half of the one associated with a 4-PSK signal.
Figs. 6.7, 6.8 and 6.9 show respectively the NMSE, number of iterations needed
to achieve the convergence and BER versus SNR provided by these techniques,
for N = 128, D = 4, P = 3, R = 3 and T = 2. The BERs associated with the
stochastic tensor-based methods were calculated using the MMSE receiver (6.78).

It can be viewed from Fig. 6.7 that, for low SNRs, the NMSE provided by the
stochastic techniques is a little better than the one obtained with the deterministic
technique. However, for high SNRs, the deterministic technique provides smaller
NMSEs than other methods. That is due to the fact that the noise is main source
of performance degradation of the deterministic technique. On the other hand, in
the case of the stochastic techniques, the errors on the estimation of the covariances
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Figure 6.7: NMSE versus SNR provided by the deterministic and stochastic
tensor-based techniques.

are main source of performance degradation. Indeed, in our simulations, we found
that the performance of the stochastic techniques can be significantly improved if
a higher number of symbols N is used, which is not the case for the deterministic
technique.

From Fig. 6.8, it can be concluded that the stochastic techniques need a smaller
number of iterations to converge than the deterministic one. Moreover, it should
be highlighted that, in this case, each iteration of the deterministic ALS algorithm
computes the pseudo-inverse of 9 × 4 and 384 × 4 matrices, while the stochastic
ALS algorithm computes, in each iteration, the pseudo-inverse of two 108 × 4
matrices. Thus, it can be concluded that, for the case treated in Fig. 6.8, the
computational cost of the stochastic techniques is significantly smaller than the
one of the deterministic technique.

From Fig. 6.9, we can see that, when Configuration A is used, the stochastic
technique performs better than the deterministic one. However, as mentioned
earlier, the transmission rate provided by Configuration A is twice smaller than
the one of a 4-PSK signal. On the other hand, when Configuration C is used, the
deterministic technique performs better than the stochastic one. In this case, both
techniques have the same transmission rate.

Thus, we can conclude that the use of deterministic techniques is more interesting
when we have to use small blocks of data (small N). However, if a high value of
N can be used, then the stochastic techniques may be an interesting choice.
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Figure 6.8: Number of iterations needed to achieve the convergence versus
SNR provided by the deterministic and stochastic tensor-based techniques.
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Figure 6.9: BER versus SNR provided by the deterministic and stochastic
tensor-based techniques.

6.4.4 Short memory channels: stochastic approach

In this section, the proposed stochastic tensor-based techniques for estimating
MIMO Volterra channels with short memory are evaluated by means of simu-
lations. The channel equalization is evaluated by means of the NMSE of the
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Figure 6.10: NMSE versus SNR provided by the stochastic tensor-based tech-
niques - channel with short memory

estimated equivalent memoryless channel parameters, defined as:

NMSE =
1

NR

NR∑

l=1

‖ G − Ĝl ‖2
F

‖ H ‖2
F

, (6.79)

where Ĝl represents the channel matrix estimated at the lth Monte Carlo simula-
tion. Fig. 6.10 shows the NMSE versus SNR provided by the ALS, EVD-LS and
Single-LS algorithms for N = 256, D = 4, P = 3, R = 3 and T = 2, using Confi-
guration B of Table 5.4. As well as in Fig. 6.4, the performance of the EVD-LS
and ALS algorithms are close, the Single-LS providing worse NMSEs. Once again,
it should be highlighted that the Single-LS has a computational cost significantly
smaller than the other two algorithms. In this case, when the SNR is equal to
0dB, the ALS algorithm needs approximatively 15 iterations to converge.

Fig. 6.11 evaluates the influence of number of receive antennas R and length of
the data block N on the BER. It shows the BER versus SNR provided by the
MMSE receiver:

Ŵ
MMSE

= Rs̃(0)Ĝ
H

[

ĜRs̃(0)Ĝ
H

+ σ2IRP

]−1

∈ C
Q×RP , (6.80)

using ALS channel estimates obtained with Configuration B, for N = 256 and
N = 1024, R = 2 and R = 3, with D = 4, P = 3 and T = 2. For comparison, it is
also shown the BER provided by the MMSE receiver assuming that the channel
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Figure 6.11: NMSE versus SNR provided by the deterministic and stochastic
tensor-based techniques - channel with short memory.

is known, with R = 3. It can be concluded from this figure that the BER can be
significantly improve when N is increased. In particular, when N = 1024 and the
SNR is low, the BER provided by the proposed ALS method is relatively close
to that of the MMSE receiver with the known channel. Note also that the cases
corresponding to R = 3 provide little performance gains with respect to the cases
where R = 2.

6.5 Conclusion

This chapter has addressed the problem of blind estimation and equalization of
Volterra communication channels in a multiuser CDMA environment. The propo-
sed techniques are based on tensor decompositions, the key aspect of them being
the fact that the spreading codes induce a new diversity on the received signals.
The main advantage of these tensor-based approaches is that they allow for a great
flexibility on the number of antennas and spreading factor.

The theoretical contributions of the chapter are divided in three parts. In the first
part, a method for joint channel estimation and equalization is developed based on
the PARAFAC decomposition of a third-order tensor composed of received signals,
with two algorithms being considered for carrying out the tensor decomposition.
The first one is the classical ALS algorithm, while the second one, called the
ALS-DD-BI algorithm, includes a block initialization and a decision device, which
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implies a significant performance improvement in terms of channel estimation and
BER. In fact, the approach developed in this section can be viewed as an extension
of [144] to nonlinear channels.

In the second part of the chapter, MIMO Volterra channel estimation techniques
are developed based on the PARAFAC decomposition of a fifth-order tensor com-
posed of covariances of the received signals, assuming that the transmitted signals
have a PSK modulation. In particular, we should highlight that the EVD-LS
algorithm has performed similarly as the ALS algorithm, with a smaller computa-
tional cost. In the third part of the chapter, we have proposed a new method for
estimating MIMO Volterra communication channels with short memory, based on
the PARAFAC decomposition of a third-order tensor composed of channel output
covariances. In this case, the spreading codes are assumed to contain guard chips
and transmitted signals are generated using the precoding scheme developed in
Chapter 5. In fact, this approach can be considered as an extension of the one
developed in Chapter 5 for channels with short memory.

The proposed techniques were applied to an uplink channel of a nonlinear ROF-
CDMA multiuser communication system. Some simulation results have illustrated
the good performance of these algorithms. In general, the main advantage of the
deterministic approach is that it allowed joint blind channel estimation and equali-
zation with a small number of symbols. On the other hand, the main advantage of
the stochastic approaches is that they have provided weaker uniqueness conditions
and smaller computational cost.



CHAPTER 7

Conclusion

The main objective of this thesis is to study and develop techniques for chan-
nel estimation and information recovery in nonlinear MIMO communication

systems based on the use of Volterra models. Many devices in communication
systems are potential sources of nonlinearities. In this thesis, we were particularly
concerned with nonlinear distortions in MIMO systems due to power amplifiers
(PAs) and electrical-optical (E/O) conversion devices. Indeed, we have made use
of MIMO Volterra systems to model the channel behavior of three kinds of com-
munication systems: OFDM, ROF-TDMA and ROF-CDMA. The digital signal
processing techniques developed through this thesis are designed to eliminate or
reduce the effect of such nonlinear distortions. In the sequel, a brief conclusion of
each chapter is given:

• In Chapter 2, we have provided an overview of MIMO Volterra communica-
tion channels. The main system models used through this work are described
and relationships between several block structured nonlinear models and the
MIMO Volterra system are developed. In fact, these relationships are origi-
nal contributions of this chapter. Another contribution is the development
of general expressions for equivalent baseband discrete-time MIMO Volterra
channels. This chapter also presents the applications of MIMO Volterra
models in communication systems considered in this thesis.

• In Chapter 3, we have proposed techniques for estimation and equalization
of MIMO-OFDM channels with nonlinear PAs. The proposed techniques
are based on a global channel representation that characterizes the cascade
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of the PA and the wireless channel, with two PA models being considered:
the memoryless polynomial model and the memory polynomial model. For
the case of memoryless PAs, we have developed a supervised technique for
estimating the global channel coefficients, its main advantage being that it
does not require the knowledge of the PA parameters, contrarily to previous
methods. Then, still in the case of memoryless PAs, two channel equali-
zation techniques were developed based on the use of an antenna array at
the reception and on a proposed transmission scheme. Another important
contribution of this chapter is the demonstration that memoryless and me-
mory polynomial PAs provide identical expressions for the frequency domain
received signals in terms of the global channel parameters. Therefore, the
techniques developed for memoryless PAs can be applied to the case of me-
mory polynomial PAs. This was possible due to a theorem demonstrated
in this chapter, stating that a memory polynomial PA in a OFDM system
can be expressed as a memoryless polynomial PA with coefficients that vary
from one subcarrier to another.

• Chapter 4 deals with supervised estimation of MIMO Volterra channels in
the case of TDMA-SDMA systems. This chapter considers the most general
type of MIMO Volterra systems used in this thesis. The proposed estimation
method uses orthonormal polynomials to improve the eigenvalue spread of
the covariance matrix of the nonlinear input vector. The developed ortho-
normalization technique is an extension of existing methods to the case of
MIMO Volterra systems, with the property of allowing different PDFs for the
input signals and different memories with respect to the inputs. The propo-
sed supervised channel estimation method was applied to the estimation of
a multiuser nonlinear ROF channel, its main advantage being the significant
improvement of the convergence speed of the LMS algorithm with respect to
the case where canonical polynomials are used.

• In Chapter 5, two techniques for blind estimation of memoryless MIMO
Volterra channels have been proposed for TDMA-SDMA systems. These
methods are based on the PARAFAC decomposition of a tensor composed of
covariances of the received signals. Such a decomposition is possible owing
to a new precoding scheme developed so that the transmitted signals are
temporally correlated and satisfy some orthogonality constraints. A great
advantage of using the PARAFAC decomposition is that it provides relaxed
uniqueness conditions. In fact, the proposed estimation methods exploit the
redundancy introduced on the transmitted signal by the precoding. These
methods have been applied for estimating an uplink channel in a multiuser
ROF communication system, providing good and promising results. Some of
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the tested precoding configurations have provided good channel estimates,
while some others have shown good robustness to noise and interference. A
tradeoff between channel estimation accuracy and robustness to noise and
interference must then be taken into account in order to choose the best
configuration in terms of signal detection.

• Chapter 6 proposes estimation and equalization techniques for MIMO Vol-
terra channels in a CDMA communication system. The developed techniques
are based on the PARAFAC decomposition, the spreading codes being used
to induce a new diversity on the received signals. As well as in Chapter 5, the
main advantage of these tensor-based approaches is that they provide relaxed
uniqueness conditions. This chapter treated memoryless and short memory
channels. In the first case, two PARAFAC-based approaches were developed.
The first one allows joint blind channel estimation and information recovery,
considering a third-order tensor composed of received signals. The second
one allows blind estimation of the considered MIMO Volterra channel by
using a fifth-order tensor composed of covariances of the received signals.
In the case of short memory channels, an estimation method was developed
based on the PARAFAC decomposition of a third-order tensor composed of
channel output covariances, the spreading codes containing guard chips and
transmitted signals being generated using the precoding scheme developed in
Chapter 5. This approach can be viewed as an extension of the one developed
in Chapter 5 for channels with short memory. These techniques were applied
to an uplink channel of a nonlinear ROF-CDMA multiuser communication
system. The principal conclusion drawn from the simulations is that, in the
case of memoryless channels, the main advantage of the first approach is
that it works with a small number of data symbols. On the other hand, the
main advantage of the second approach is that it provides weaker uniqueness
conditions and smaller computational cost than the first approach.

It should be highlighted that the proposed techniques use different kinds of ap-
proaches, according to the considered application and kind of MIMO Volterra
system model. Moreover, it should be remarked that this thesis considers super-
vised transmission schemes (Chapters 3 and 4), as well as blind and semi-blind
scenarios (Chapters 5 and 6). A common point linking the channel estimation
techniques developed in Chapters 4 and 5 is that they make use of covariances and
are based on methods for orthogonalization of virtual sources. In Chapter 4, the
diagonalization of the zero-delay covariance matrix of the nonlinear input vector
is carried out in order to improve the convergence speed of the LMS algorithm.
In Chapter 5, the diagonalization of covariance matrices of the nonlinear input
vector for various delays is performed for satisfying some identifiability conditions.
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In fact, the stochastic channel estimation techniques of Chapter 6 also exploit the
orthogonality of the virtual sources.

Another common point linking different chapters of this thesis is the use of tensors
in Chapters 5 and 6. In these cases, tensor decompositions are used to exploit some
kind of redundancy of the received signals. It should also be highlighted that the
ZF and MMSE receivers used in Chapter 3 are also considered in Chapters 5 and
6. In all these chapters, once the channel is estimated, ZF and MMSE receivers
are used to separate the virtual sources, providing an estimate of the transmitted
signals. Furthermore, we should also mention that the transmission schemes of
Chapters 3 and 5 are based on the same principle of introducing redundancy on
the transmitted signals in order to induce a new diversity on the received signals.

Finally, we remark that, although there is a lack of works dealing with signal
processing techniques for nonlinear MIMO communication systems, the techniques
developed in the thesis have shown promising theoretical and simulation results.

Perspectives

In what follows, we provide a list of the main perspectives and future works related
to this thesis:

Chapter 3

• An interesting topic for a future work is the extension of the results of Section
3.4 to more general PA models. For instance, if the PA is represented by
a Volterra model, we believe that the PA model can be rewritten with a
much smaller number of virtual sources, the coefficients of which varying
from one subcarrier to another, as well as in Theorem 3.1. In this case, a
global channel representation would also be possible.

• Another perspective concerning Chapter 3 is the blind estimation and equali-
zation of nonlinear MIMO-OFDM systems using tensor decompositions. For
instance, by using (3.66), one could define a tensor composed of received
signals with space, frequency and time diversities, i.e. with indices corres-
ponding to receive antenna, sub-carrier and transmission block. In this case,
tensor decompositions more complex than the PARAFAC [34] could be used
to jointly estimate the channel and transmitted signals.

• A deeper comparative study between the proposed channel estimation and
equalization techniques and other methods is considered for a future work.
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Chapter 4

• It has been shown that all the coefficients of a Volterra system correspon-
ding to Wiener or Wiener-Hammerstein systems can be calculated uniquely
from the diagonal coefficients of the Volterra system [85]. This result was
demonstrated for the SISO case, but it can also be demonstrated for the
MIMO case in a similar way. In this case, one could develop a technique
that uses an orthonormal basis to estimate only the diagonal coefficients of
a MIMO Volterra system and, then, the non-diagonal coefficients are calcu-
lated using the results of [85]. The resulting technique would have a reduced
computational cost as it does not need to estimate all the MIMO Volterra
coefficients from the data.

• Concerning the ROF system considered in Chapter 4, an interesting perspec-
tive is to assume that the received signals are subject to optical and wireless
channel noise. ROF systems with nonlinearities due to electrical-optical
(E/O) conversion and PA will be also considered in a future work.

Chapter 5

• The main perspective concerning Chapter 5 is a deeper study about the
optimal choice of the transition probability matrices (TPMs). We believe
that a criterion based on the entropy of the precoded signals can be a good
idea to find the optimal TPMs and, as a consequence, minimize the bit-error-
rate (BER) provided by the proposed method.

• The application of the proposed tensor-based blind channel estimation me-
thods to the case of ROF-OFDM systems is to be considered in a future
work. Two cases will be considered: ROF systems with nonlinearities due
to E/O conversion only and due to E/O conversion and PA.

Chapter 6

• We believe that the approaches developed in Chapter 6 can be extended to
the case of CDMA systems with large memory. In this case, based on more
general channel propagation models, one could use general tensor decom-
positions [34] to provide channel estimation and equalization techniques for
nonlinear MIMO CDMA systems.
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APPENDIX A

The Kronecker, truncated Kronecker
and Khatri-Rao products

A.1 The Kronecker product

The Kronecker product of the matrices A ∈ C
L1×L2 and B ∈ C

L3×L4 is defined as:

A ⊗ B ≡








a1,1B a1,2B · · · a1,L2B
a2,1B a2,2B · · · a2,L2B

...
...

. . .
...

aL1,1B aL1,2B · · · aL1,L2B








∈ C
L1L3×L2L4 , (A.1)

where ai,j are the elements of A.

In particular, the Kronecker product of a vector a ∈ C
L×1 by itself is given by:

⊗2a ≡ a ⊗ a =








a1a
a2a
...

aLa








∈ C
L2×1, (A.2)

where ai are the elements of the vector a. Note that the [⊗2a]q = aiaj, with
q = (i− 1)L + j and 1 ≤ i, j ≤ L, where [⊗2a]q denotes the qthentry of the vector
⊗2a. The N th-order power of the Kronecker product of the vector a by itself is
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defined in a similar way: ⊗Na ≡ a ⊗ · · · ⊗ a C
LN×1 (N − 1 times the operator

⊗). In this case, we have [⊗Na]q = ai1ai2 . . . aiN , with

q = iN +(iN−1−1)L+· · ·+(i2−1)LN−2+(i1−1)LN−1 = 1+
N∑

n=1

(in−1)LN−n (A.3)

and 1 ≤ i1, ..., iN ≤ L.

A.2 The truncated Kronecker product

The truncated Kronecker product of the vector a by itself is defined in the following
way:

⊘2a ≡ a ⊘ a ≡










a1ā1

a2ā2
...

aL−1āL−1

a2
L










∈ C
L(L+1)

2
×1, (A.4)

where āi = [ai ai+1 . . . aL]T . The truncated Kronecker product does not consider
the redundant terms that are present in the Kronecker product of a vector by
itself, which means that the vector ⊘2a does not contain repeated components.

It is also possible to define the N th-order power of the truncated Kronecker product
of a vector a, denoted ⊘Na ≡ a⊘ · · · ⊘ a (N − 1 times the operator ⊘), by means
of the following recursion:

⊘Na ≡










a1 ⊘N−1 ā1

a2 ⊘N−1 ā2
...

aL−1 ⊘N−1 āL−1

ak
L










, (A.5)

with ⊘1a = a. The vector ⊘Na contains all the N th-order products of the elements
of a, with no repeated terms. The dimension of the vector ⊘Na is given by the
number of subsets of cardinality N with elements taken from a set of cardinality
L, i.e. the number of combinations with repetition of N elements drawn from a
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set of cardinality L:

CL,N = CL+N−1
N =

(L + N − 1)!

(L − 1)!N !
, (A.6)

where CL+N−1
N denotes the number of combinations without repetition of N ele-

ments drawn from a set of cardinality L + N − 1.

For instance, the vector ⊘3a, for L = 3, is given by:

⊘3a =



















a3
1

a2
1a2

a2
1a3

a1a
2
2

a1a2a3

a1a
2
3

a3
2

a2
2a3

a2a
2
3

a3
3



















, (A.7)

with C3,3 = 10.

A.3 The Khatri-Rao product

The Khatri-Rao (column-wise Kronecker) product of the matrices A ∈ C
L1×L and

B ∈ C
L2×L is defined as:

A ⋄ B ≡ [(a1 ⊗ b1) (a2 ⊗ b2) · · · (aL ⊗ bL)] ∈ C
L1L2×L, (A.8)

where al and bl (1 ≤ l ≤ L) denote the lth column of A and B, respectively. The
Khatri-Rao product of A and B can also be expressed as:

A ⋄ B =






B diag1[A ]
...

B diagL1
[A ]




 , (A.9)

here diagl[A] denotes the diagonal matrix formed from the lth row of A.
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An important relationship concerning the Khatri-Rao product is given by:

(A1A2) ⋄ (B1B2) = (A1 ⊗ B1) (A2 ⋄ B2) , (A.10)

where A1 ∈ C
L1×L2 , A2 ∈ C

L2×L, B1 ∈ C
L3×L4 and B2 ∈ C

L4×L.



APPENDIX B

Orthonormal Monomials

The set of orthonormal monomials Pα,β (y) used in Chapter 4 are constructed by
applying the Gram-Schmidt formula to the set of canonical monomials Tα,β(y) =
yαy∗β, for 0 ≤ k ≤ K, 0 ≤ α ≤ k+1 and 0 ≤ β ≤ k, as in [84]. The Gram-Schmidt
procedure assumes a pre-specified order of the canonical monomials. Let T be an
ordered set of pairs (α, β) associated with canonical monomials Tα,β(y) = yαy∗β, for
0 ≤ k ≤ K, 0 ≤ α ≤ k + 1 and 0 ≤ β ≤ k. Let us denote the canonical monomial
ordering as follows: (α1, β1) ≺ (α2, β2) means that (α1, β1) precedes (α2, β2) in the
set T . The canonical monomials are ordered according to the following criteria:

• (α1, β1) ≺ (α2, β2) if:

α1 + β1 < α2 + β2, or

α1 + β1 = α2 + β2 and α1 > α2,

otherwise we have (α2, β2) ≺ (α1, β1).

The orthonormal monomials are then calculated by using the following recursive
formula:

Pα,β(y) =
P̃α,β(y)

‖P̃α,β(y)‖
, (B.1)

with

P̃α,β(y) = Tα,β(y) −
∑

p,q∈T
< Tα,β(y), Pp,q(y) > Pp,q(y), (B.2)
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where Pα,β(y) is the orthonormal monomial associated with the term yαy∗β

,

< Tα,β(y), Pp,q(y) >= E
[
Tα,β(y)P ∗

p,q(y)
]
, (B.3)

‖P̃α,β(y)‖ =

√

E

[∣
∣
∣P̃α,β(y)

∣
∣
∣

2
]

(B.4)

and the sum in (B.2) is carried out according to the ordering defined by T
For instance, let us consider K = 1 (third-order monomials). The canonical mo-
nomials are given by:

T0,0(y) = 1 (B.5)

T1,0(y) = y (B.6)

T0,1(y) = y∗ (B.7)

T2,0(y) = y2 (B.8)

T1,1(y) = yy∗ (B.9)

T2,1(y) = y2y∗. (B.10)

The ordered set of pairs (α, β), for 0 ≤ k ≤ 1, 0 ≤ α ≤ k + 1 and 0 ≤ β ≤ k, is
therefore given by:

T = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (2, 1)}. (B.11)

In this case, the Gram-Schmidt formulas (B.1) and (B.2) are applied to the set of
monomials (B.5)-(B.10) using the ordered set T defined in (B.11). Thus, taking
into account the fact that the random variable y is assumed to be circular of order
2K + 1 and defining ρy,i,j = E[yiy∗j

] and k = i + j, we get:

• for k=0:

P0,0(y) = 1. (B.12)

• For k=1:

Ṗ1,0(y) = y − E[y] = y,

P1,0(y) =
y

√
ρy,1,1

. (B.13)
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Ṗ0,1(y) = y∗ − E[y∗] − E

[

y∗ y∗
√

ρy,1,1

]
y

√
ρy,1,1

= y∗,

P0,1(y) =
y∗

√
ρy,1,1

. (B.14)

• For k=2:

Ṗ2,0(y) = y2 − E[y2] − E

[
y2y∗

√
ρy,1,1

]
y

√
ρy,1,1

− E

[
y3

√
ρy,1,1

]
y∗

√
ρy,1,1

= y2,

P2,0(y) =
y2

√
ρy,2,2

. (B.15)

Ṗ1,1(y) = yy∗ − E[yy∗] − E

[

yy∗2

√
ρy,1,1

]

y
√

ρy,1,1

− E

[
y2y∗

√
ρy,1,1

]
y∗

√
ρy,1,1

− E

[

yy∗3

√
ρy,2,2

]

y2

√
ρy,2,2

= yy∗ − ρy,1,1,

P1,1(y) =
yy∗ − ρy,1,1

√

ρy,2,2 − ρ2
y,1,1

. (B.16)

• For k=3:

Ṗ2,1(y) = y2y∗ − E[y2y∗] − E

[

y2y∗2

√
ρy,1,1

]

y
√

ρy,1,1

− E

[
y3y∗

√
ρy,1,1

]
y∗

√
ρy,1,1

− E

[

y2y∗3

√
ρy,2,2

]

y2

√
ρy,2,2

− E




y3y∗2 − y2y∗ρy,1,1
√

ρy,2,2 − ρ2
y,1,1




yy∗ − ρy,1,1

√

ρy,2,2 − ρ2
y,1,1

,

Ṗ2,1(y) = y2y∗ − y
ρy,2,2

ρy,1,1

,
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P2,1(y) =
ρy,1,1y

2y∗ − ρy,2,2y
√

ρ2
y,1,1ρy,3,3 − ρy,1,1ρ2

y,2,2

. (B.17)



APPENDIX C

The PARAFAC Decomposition

Definition C.1 Let X ∈ C
I1×I2×···×IN be a N th-order tensor with entries xi1,i2,...,iN ,

for 1 ≤ in ≤ In, with n ∈ [1, N ]. The Parallel Factor (PARAFAC) decomposition,
also known as Canonical Decomposition (CANDECOMP), of the tensor X is given
by:

xi1,i2,...,iN =

Q
∑

q=1

a
(1)
i1,qa

(2)
i2,q . . . a

(N)
iN ,q , (C.1)

where a
(n)
in,q denotes the (in, q)

th element of the matrix factor A
(n) ∈ C

In×Q, with
n ∈ [1, N ], and Q is the rank of X .

The PARAFAC decomposition expresses a tensor as a sum of rank-1 tensors, a
N th-order rank-1 tensor A ∈ C

I1×I2×···×IN being defined as a tensor whose elements
ai1,i2,...,iN , for 1 ≤ in ≤ In, with n ∈ [1, N ], can be written as:

ai1,i2,...,iN = a
(1)
i1

a
(2)
i2

. . . a
(N)
iN

. (C.2)

The essential uniqueness of the PARAFAC decomposition of the tensor X is assu-
red by the Kruskal theorem [93]. It states that if:

N∑

n=1

kA(n) ≥ 2Q + N − 1, (C.3)
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then the matrix factors A(n) ∈ C
In×Q, with n ∈ [1, N ], are unique up to column

scaling and permutation ambiguities, with kA denoting the k-rank of the matrix
A, i.e. the greatest integer kA such that every set of kA columns of A is linearly

independent. That means that if any other set of matrices Ā
(n) ∈ C

In×Q, with
n ∈ [1, N ], satisfy (C.1), then

Ā
(n)

= A(n)ΠΛn, (C.4)

where Π is a permutation matrix and Λn, with n ∈ [1, N ], are diagonal matrices
such that

N∏

n=1

Λn = IQ. (C.5)

The uniqueness of the PARAFAC decomposition was addressed by several authors
[146, 97, 36].

A matrix slice or 2-D slice of the tensor X is obtained by fixing N −2 indices of X
and varying the two other indices. There are many ways of defining a matrix slice
of a tensor X , depending on which indexes are fixed. For instance, the matrix slice
obtained by varying the two first indices and fixing the nth index in, for n ∈ [3, N ],
is given by:

X·,·,i3,i4,...,iN = A(1) diagi3

[

A(3)
]

· · · diagiN

[

A(N)
]

A(2)T ∈ C
I1×I2 , (C.6)

with [X·,·,i3,i4,...,iN ]i,j = xi,j,i3,...,iN . Similarly, the matrix slice obtained by varying
the second and third indices, and fixing the nth index in, for n = 1, 4, 5, . . . , N , is
given by:

Xi1,·,·,i4,i5,...,iN = A(2) diagi1

[

A(1)
]

diagi4

[

A(4)
]

· · · diagiN

[

A(N)
]

A(3)T

∈ C
I2×I3 , (C.7)

with [Xi1,·,·,i4,i5,...,iN ]i,j = xi1,i,j,i4,...,iN .

An unfolded matrix of the tensor X is constructed by stacking all the matrix slices
of a given type so that all the tensor elements are placed in a matrix, which can
be done in many different ways. For instance, the most part of the tensor-based
techniques presented in this thesis are based on the unfolded matrices of the form:

X[1] =
(

A(1) ⋄ A(2) ⋄ · · · ⋄ A(N−1)
)

A(N)T ∈ C
I1I2...IN−1×IN , (C.8)
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where ⋄ denotes the Khatri-Rao product, with X[1] being constructed so that
xi1,i2,...,iN is placed at the position (ilin, iN) of X[1], with ilin given by:

ilin = (i1 − 1)I2I3 . . . IN−1 + · · · + (iN−3 − 1)IN−2IN−1

+(iN−2 − 1)IN−1 + iN−1. (C.9)

Similarly, we may construct an unfolded matrix as:

X[2] =
(

A(2) ⋄ A(3) ⋄ · · · ⋄ A(N)
)

A(1)T ∈ C
I2I3...IN×I1 , (C.10)

with xi1,i2,...,iN being placed at the position (ilin, i1) of X[2], with:

ilin = (i2 − 1)I3I4 . . . IN + · · · + (iN−2 − 1)IN−1IN + (iN−1 − 1)IN + iN . (C.11)

Another kind of unfolded matrix used in this thesis has the following form:

X[3] =
(

A(1) ⋄ A(2) ⋄ · · · ⋄ A(N−2)
)(

A(N−1) ⋄ A(N)
)T

∈ C
I1I2...IN−2×IN−1IN ,(C.12)

with xi1,i2,...,iN being placed at the position (ilin, icol) of X[3], with:

ilin = (i1 − 1)I2I3 . . . IN−2 + · · · + (iN−3 − 1)IN−2 + iN−2 (C.13)

and

icol = (iN−1 − 1)IN + iN . (C.14)
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