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"Science is like sex. Sure, it may give some practical results,
but that’s not why we do it."

Richard Phillips Feynman
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Résumé
La plupart des applications industrielles de la simulation numérique mettent en oeuvre des objets,
des frontières ou de façon plus générique des interfaces de formes complexes. Concrètement, ces
interfaces correspondent à des discontinuités des variables physiques telles que la masse volumique
ou la viscosité des �uides, la conductivité thermique de deux matériaux ou encore les propriétés
de la matière dans le cas d'une interface �uide-solide. En plus de séparer deux milieux, ces
interfaces font apparaître des phénomènes physiques spéci�ques comme les tensions de surface
ou des propriétés thermodynamiques particulières dans le cadre d'un changement de phase.
Ainsi, l'importance des interfaces exige une attention particulière quand à leur modélisation et
leur discrétisation. De ce point de vue, deux di�cultés principales sont à surmonter. D'une part,
une interface a une épaisseur que l'on peut la plupart du temps considérer comme nulle, alors
que la discrétisation spatiale standard des méthodes de simulation repose sur un découpage en
volume. On pourra s'accommoder de cela dans certains cas, quand l'interface passe exactement
entre deux volumes discrets, ou encore au milieu des volumes de discrétisation. Toutefois, cette
con�guration ne peut pas toujours être obtenue ce qui est le second problème lié à la discrétisation
des interfaces. Les cas industriels que l'on souhaite simuler mettent souvent en jeu des interfaces
de formes complexes, comme des pneus, des véhicules ou tout simplement des surfaces libres. Il
est souvent di�cile d'obtenir une discrétisation spatiale conforme à ces interfaces. La méthode des
éléments �nis par exemple, donne naturellement une grand liberté dans la discrétisation spatiale
mais nécessite un e�ort de maillage conséquent voir pénalisant en terme de performances si les
interfaces sont mobiles et exigent donc la création d'un nouveau maillage à chaque itération. Une
autre approche consiste à utiliser un maillage �xe non-conforme aux interfaces. La discrétisation
spatiale est bien plus simple mais ne correspond pas aux interfaces, et ce au détriment de la
précision.

Les méthodes de domaines �ctifs proposent d'améliorer la précision de la discrétisation aux
interfaces en modi�ant de façon plus ou moins directe la discrétisation des équations au voisi-
nage de l'interface. On peut ainsi retrouver l'ordre des schémas initiaux malgré la présence de
discontinuités sur des interfaces non-conformes complexes et mobiles.

Toutefois, la simulation de cas industriels complexes ne requiert pas uniquement une dis-
crétisation précise des équations à proximité des interfaces. Une première étape consiste tout
d'abord à détecter l'interface et les sous-domaines qu'elle délimite. Ces opérations requièrent la
plupart du temps des algorithmes tirés de l'informatique graphique dont la vitesse d'exécution
peut aller du simple au centuple selon l'implémentation ou la méthode utilisée. L'interprétation
spatiale des interfaces permet alors une application des méthodes de domaines �ctifs. Il se peut
qu'une physique particulière soit nécessaire à l'intérieur d'un sous-domaine, un objet immergé
par exemple. On parle dans ce cas de couplage �uide-structure et une modélisation du mouve-
ment solide, qu'il soit rigide ou déformable, doit être mise en oeuvre. Au �nal, la multitude des
méthodes numériques peut nécessiter un e�ort de post-traitement particulier à des �ns de visual-
isation spéci�que ou pour produite des �lms de vulgarisation. Le présent document traite de tous
ces domaines et propose ainsi une démarche globale pour la simulation des interactions �uides-
structures et des transferts thermiques. Les méthodes proposées ont pour objectif l'obtention
d'une précision spatiale générale à l'ordre deux.

Méthodes existantes de domaines �ctifs
La première partie du document traite de di�érentes méthodes de la littérature. Trois catégories
sont considérées :

• Les méthodes de pénalisation. De nombreuses méthodes de pénalisation ont été développées
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au laboratoire TREFLE. Elles font ainsi l'objet d'un chapitre. Le principe de ces méthodes
est de conserver une même équation dans tous le domaine et d'obtenir divers comportements
locaux (frontière, interface, mouvement rigide...) en modi�ant localement certains termes
des équations.

• Les méthodes de frontières immergées. Sont traitées ici toutes les méthodes qui ne prennent
en compte la solution que d'un côté d'une interface. Elles permettent d'imposer des condi-
tions de Dirichlet, Neumann ou Stefan sur une interface immergée qui devient une nouvelle
frontière du domaine résolu. Nous décrivons ainsi les méthodes IBM (Immersed Boundary
Method) de type Peskin et Direct-Forcing, DLM (Distributed Lagrange Multiplier), les
méthodes Cartesian Cell ainsi que la méthode Ghost-Fluid pour les frontières.

• Les méthode d'interfaces immergées. Ces méthodes permettent d'imposer précisément des
conditions de saut et de transmission sur une interface immergée. Nous décrivons ici les
méthodes IIM (Immersed Interface Method), Ghost-Fluid et MIB (Matched Interface and
Boundary).

Gestion de formes lagrangiennes sur maillages curvilignes
Cette partie décrit une nouvelles méthodologie de projection de formes sur maillage curviligne.
La première étape consiste à "déplier" le maillage eulerien curviligne vers un maillage cartésien
à pas unitaire. Les interfaces discrétisées à l'aide de surfaces triangularisées sont projetées dans
le nouveau repère en utilisant les mêmes facteurs de transformations que les cellules du maillage
eulerien. Ce nouveau maillage permet l'utilisation d'une méthode rapide de Ray-Casting qui
fournit ligne par ligne l'appartenance ou non des points euleriens au domaine dé�ni par l'objet
immergée. D'une façon générale, le maillage cartésien à pas unitaires permet l'accélération de
nombreux calculs comme celui des e�orts sur la surface d'un objet immergé. De nombreuses
propriétés étant conservées d'un maillage à un autre, l'application de méthodes de domaines
�ctifs peut parfois se faire de façon transparente dans l'ancien repère curviligne ou le nouveau
repère cartésien. Dans le cas des méthodes de suivi d'interface, une transformation simple du
champ de vitesse est nécessaire. La précision et la rapidité de ces méthodes sont aussi étudiées

Nouvelles méthodes de domaines �ctifs
Deux nouvelles méthodes de domaines �ctifs sont décrites dans cette partie. La méthode de
pénalisation de sous-maille (PSM, ou SMP pour Sub-Mesh Penalty) permet d'imposer une con-
dition de Dirichlet à l'ordre deux pour la norme L2 sur une frontière immergée non-conforme.
C'est la première discrétisation de la pénalisation L2 à atteindre un ordre deux en espace. La
méthode permet aussi d'imposer des conditions de Neumann à l'ordre un. Elle remplace le terme
de pénalisation volumique habituel [Ango 99] βi(ui − uD) par βi

∑
xj∈V ois(xi)

(αjuj − uD). En

conséquence, la contrainte de pénalisation pour un noeud xi prend en compte les valeurs de la
solution au voisinage de ce point. Les coe�cients αi sont construits à partir d'interpolations de
Lagrange. L'imposition de la contrainte est totalement implicite et ne nécessite pas d'inversion
de matrices supplémentaire. Cette méthode est applicable directement aux équations scalaires
elliptiques. Pour les équations de Navier-Stokes, la mise en place de la méthode est directe si
le couplage vitesse-pression s'e�ectue avec une méthode de lagrangien augmenté. Dans le cas
d'une méthode de projection scalaire, une correction de l'étape de projection de pression et de
correction de vitesse doit être mise en place.

La seconde méthode, dite Algebraic Immersed Interface and Boundary (AIIB) étend le
principe de la PSM aux interfaces. Au noeud qui était précédemment pénalisé a�n de porter la
contrainte de frontière est ajouté une inconnue dite auxiliaire car elle cohabite avec l'inconnue
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d'origine qui est physique. Ainsi, une équation physique et une contrainte d'interface cohabitent
en un même n÷ud du maillage. L'imposition de conditions de Dirichlet ou Neumann sur une
interface �ne est directe. Une manipulation des contraintes de pénalisation et des conditions
d'interface permet de traiter des cas de transmission et de saut au travers de cette dernière. Ces
cas sont simulés à l'ordre deux en espace pour un cas de conduction thermique. L'objectif à
terme est d'utiliser cette méthode dans le cadre des équations de Navier-Stokes pour traiter les
problèmes à surface libre ou des cas de couplage �uide-structure implicite.

Le dernier chapitre de cette partie est dédié à la validation des deux précédentes méthodes.
Les validations pour les cas frontière sont en partie communes aux deux méthodes.

Mécanique du solide et couplage �uide-structure
La première partie est dédiée à la modélisation du mouvement des solides isolés par une appli-
cation classique du principe fondamental de la dynamique. Un modèle simple de collision est
implémenté et couplé à une visualisation OpenGL.

Nous présentons ensuite une méthode de couplage �uide-structure. La discrétisation en temps
est une marche alternée classique. La nouveauté consiste en l'utilisation de la méthode de pé-
nalisation d'ordre deux pour prendre en compte les frontières objets lors de la résolution �uide.
Les méthodes de projection de maillage présentées dans ce document sont utilisées à chaque pas
de temps.

Applications industrielles
A�n d'illustrer notre démarche, nous présentons trois applications complexes qui ont été traitées
durant la thèse.

Nous montrons d'abord les résultats du projet mené avec Varel Europe. Cette entreprise
conçoit et fabrique des têtes de forage pour le milieu pétrolier. La durée de vie de ces têtes dépend
entre autre de la bonne évacuation des copeaux de roche. A cet e�et, de la boue est en permanence
injectée à haut débit dans la tête. La bonne évacuation des copeaux dépend donc énormément
des caractéristiques de l'écoulement. Ainsi, la présence de grandes recirculations favorise la
création d'agglomérats de copeaux qui rendent la tête inutilisable. Le but du projet était de
concevoir à partir du code de calcul Thétis un simulateur prenant en compte l'hydrodynamique
de la boue ainsi que la génération et l'évacuation des copeaux. Une méthode de suivi lagrangien
des copeaux a été développée spécialement à cet e�et.

L'application suivante concerne l'étude de l'hydroplanage d'un pneu. L'objectif était de
fournir à l'entreprise Michelin un simulateur pouvant caractériser la force verticale induite par une
masse d'eau impactant un pneu en roulement. Ce cas a nécessité la prise en compte d'obstacles
en rotation de forme complexe et détaillée. La géométrie du pneu étant modi�ée à chaque pas
de temps (rotation et déformation), il a été nécessaire d'avoir des méthodes de projection de
maillage rapides et robustes. Une méthode surfacique de calculs d'e�orts a de plus été mise au
point.

Le troisième cas est la simulation des écoulements de convection naturelle dans la grotte de
Lascaux. Le but est de prédire ou d'expliquer l'impact des di�érents choix de conservation ou
d'une présence humaine dans la grotte. La simulation prend en compte l'écoulement �uide, les
échanges thermiques ainsi qu'un modèle d'humidité.
Annexes
Une première annexe décrit les di�érentes équations et méthodes numériques utilisées dans ce
document. On y décrit en particulier l'approche volume �nie sur grille décalée et le couplage
vitesse-pression par les méthodes de projection scalaire et de lagrangien augmenté.

La seconde annexe décrit l'application des résultats aux images de synthèse en expliquant la
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méthode de couplage et en présentant quelques cas.
En�n, nous expliquons la construction de diverses interpolations, notamment les fonctions

Kernel.
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Notations

Geometry

n Normal unit outward vector to Ω0 on Σ
d Dimension of space
E Set of index of the Eulerian structured mesh
h Eulerian mesh step de�ned as h = supI∈E hI

hI Maximum length of a VI

I Set of index of the intersection points between σe and the faces σl

Lf Set of index of the Lagrangian mesh
Lv Set of index of vertices
N0,N1 Set of index of the Eulerian interface points
O Set of index of immersed objects
Ω Main physical domain
Ω0 The �uid domain
Ωi, i > 0 The solid domain corresponding to the ith object
σe Faces of the Eulerian dual mesh
σl Faces of the Lagrangian mesh
Σ Immersed interface
Σh Piecewise linear approximation of Σ such as Σh = {σl ∈ Pd−1

1 , l ∈ Lf}
(VI) Set of cell-centered �nite volume
(V ′I) Set of dual �nite volume
xl,i Vertices of face σl for i = 1, d

Eulerian volume functions
C Color Phase function
φ Level-set function
χ Heaviside function

Physical variables

D rate-of-strain tensor N.m−2

F Wall forces applied to the solid domain N
H0 Angular momentum kg.m2.s−1

I Inertia matrix of the solid kg.m2

m Mass kg
M Torque N.m
µ Dynamic viscosity Pa.s
ω Rotation vector of the solid rad.s−1

p Fluid pressure Pa
ρ Fluid density kg.m−3

σ stress tensor N.m−2

t Time s
T Temperature K
u Fluid velocity m.s−1



2 Notations

Superscripts
∗ Auxiliary entities

Parameters
ε Penalty parameter

Abreviations
AIIB Algebraic immersed interface and boundary
AL Augmented Lagrangian
BC Boundary condition
DF Direct-forcing
DLM Distributed Lagrange multipliers
FT Front-tracking
FV Finite volume
IB Immersed boundary
IBM Immersed boundary method
II Immersed interface
IIM Immersed interface method
LS Level-set
MIB Matched interface and boundary
SMP Sub-mesh penalty
SMPM Sub-mesh penalty method
TVD Total variation diminushing
VOF Volume of �uid

Function spaces, norms
The following function spaces and normes are de�ned on an open Ω ⊂ Rd for a measurable
function v.

|x| = the Euclidian norm of x ∈ Rd

a.e. = almost everywhere
dx : Lebesgue measure on Rd

Lp(Ω) = { v : Ω → R; v measurable and ‖v‖Lp(Ω) < ∞}
‖v‖Lp(Ω) =

(∫

Ω
|v(x)|pdx

)1/p

, 1 ≤ p < ∞
‖v‖L∞(Ω) = Inf{C; |v(x)| ≤ C a.e. on Ω}
Hp(Ω) = {v ∈ L2(Ω), ∂αv ∈ L2(Ω), α ∈ Nd, α ≤ p}, Hilbert space
Hp

0 (Ω) = {v ∈ Hp(Ω), v|∂Ω = 0}

Error norms
We de�ne uh the computed solution such as

∀VI ∈ Th, ∀x ∈ VI , uh(x) = uI (1)



3

The discrete relative L2 error is de�ned as:

‖uh − ũ‖L2
rel(Ω) =

‖uh − ũ‖L2(Ω)

‖ũ‖L2(Ω)
=

( ∑

xI∈Ω

meas(VI)|uI − ũ(xI)|2
) 1

2
/
( ∑

xI∈Ω

meas(VI)|ũ(xI)|2
) 1

2

(2)
with ũ the analytical solution.
The discrete L∞ error is de�ned as:

‖uh − ũ‖L∞(Ω) = maxI∈N |uI − ũ(xI)| (3)
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La valeur de la simulation numérique en tant qu'aide à l'ingénierie ou à la compréhension des
phénomènes physiques n'est plus à démontrer. Cet outil relativement jeune possède bien

sûr ses limitations et ses di�cultés d'emploi. Le premier pas dans la conduite d'une simulation
complexe est l'obtention d'un résultat a priori plausible. Ce dernier point étant toutefois très
subjectif, les indicateurs numériques et les études de convergence permettent souvent de tendre
vers l'objectivité. Celle-ci peut toutefois être illusoire si les phénomènes physiques mis en jeux
sont mal compris ou trop �ns pour être captés par la simulation. On prendra l'exemple de cas de
réservoirs remplis de �uide en rotation-precession [Lamb 09] dont la déstabilisation dépend de
modes résonnants totalement masqués, dans le cas de géométries trop complexes, par la di�usion
numérique. On citera aussi les simulations en 6D des équations de Vlasov-Maxwell dont la crois-
sance en maillage laisse peu de latitudes dans le ra�nement et donc dans l'étude de convergence.
Ainsi, tout ne peut pas être simulé avec pertinence. Les possibilités de la simulation dépendent
fortement de la puissance de calcul disponible, mais on ne peut que naïvement se reposer sur
celle-ci pour espérer résoudre à plus ou moins brève échéance des problèmes de plus en plus
complexes. L'évolution de la structure des machines qui voit poindre la �n des machines mono-
processeur (et donc du calcul séquentielles) et l'ordre de complexité des algorithmes montrent
l'importance du développement de méthodes et de modèles toujours mieux pensés. Des résultats
certes impressionnants sont obtenus à l'aide de super calculateurs mais peu de structures dis-
posent de telles machines. Dans beaucoup d'entreprises, petites ou mêmes parfois très grandes,
la simulation n'est pas la priorité et les bureaux d'études ne disposent parfois que d'ordinateurs
personnels pour réaliser des calculs.

Ce travail parle de méthodes numériques plus que de modélisation. Les équations considérées
ici sont bien connues de même que les phénomènes physiques traités. Notre objectif est de
développer des méthodes plus rapides, robustes et précises a�n de mieux simuler ce que l'on
simule déjà de façon limitée et biaisée. Le champ d'application de ces méthodes est résolument
la simulation de cas industriels. Encore une fois, les phénomènes mis en jeux dans l'hydroplanage
d'un pneu, le vol d'un planeur ou la convection naturelle dans une grotte sont assez bien connus,
voir totalement appréhendés dans le cadre d'études de cas académiques simples. La di�culté
à prévoir précisément le comportement �uide pour les cas industriels est tout autre et trouve
en grande partie sa source dans la complexité des formes en présence. Ce saut de di�culté se
transpose en simulation numérique, où reproduire avec précision l'écoulement autour d'un avion
demande bien plus de développements et de puissance de calcul que la simulation de l'écoulement
autour d'une sphère. D'une part, la complexité accrue de l'écoulement impose l'utilisation de
méthodes plus précises et/ou d'un maillage plus �n. D'autre part, la gestion de formes complexes
non-triviales (avion, éolienne, pneu) nécessite de nombreux développements informatiques.

Nous proposons ici un ensemble de méthodes permettant le passage de la sphère à l'avion.
Le choix fondamental qui sous-tend ce travail est celui de l'utilisation d'un maillage de calcul
structuré simple et �xe. Notre approche globale sera celle des domaines �ctifs. Ce parti-pris
s'oppose à l'approche classique de la simulation industrielle qui consiste à utiliser un maillage
non-structuré permettant une gestion directe des formes complexes. Nous tacherons de montrer
que notre approche se montre viable sur de tels cas même sans l'utilisation d'une grande puissance
de calcul.

Objectifs et �nancement du travail
Ce travail a été �nancé par divers biais.

• Un tiers vient d'une collaboration avec EDF R&D (Châtou, en collaboration avec Marc
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Sakiz et David Montfort) qui consistait à étendre à l'ordre 2 la méthode de pénalisation
L2 et à l'implémenter dans Code_Saturne.

• L'équipe de recherche Mécanique des Fluides et Énergétique Numérique du laboratoire
TREFLE a �nancé un tiers supplémentaire.

• La dernière partie a été assurée par la réalisation de contrats industriels pour Michelin
(Pierre Février et Fabien Sonilhac), et Varel Europe (Alfazazi Dourfaye) en collaboration
avec Laurent Gerbau (Armines) et la Région Aquitaine.

Ce travail a aussi mené à une collaboration avec Delphine Lacanette et Philippe Malaurent
portant sur la grotte de Lascaux. En�n, une collaboration avec Philippe Angot (LATP) a
permis de traiter des aspects plus théoriques.

L'objectif initial de ce travail était donc le développement d'une méthode de pénalisation
d'ordre élevée pour des obstacles �xes puis son extension aux objets mobiles. L'intérêt limité
d'une telle méthode de frontière pour l'équation de l'énergie a motivé son évolution vers une
méthode d'interface immergée. A�n de pouvoir traiter les cas industriels, notamment ceux
qui ont co-�nancé cette thèse, il s'est vite révélé indispensable de développer des méthodes de
projection de maillages performantes et cet aspect est devenu un des sujets principaux de ce
travail.

Concernant la partie visualisation et images de synthèse, nous menons ce travail depuis un
certain temps déjà et il s'enrichira vite des possibilités qu'o�rent les travaux de cette thèse.
Notons aussi une collaboration avec SVG sur l'aspect visualisation.

Mis à part l'introduction et la conclusion, ce mémoire a été rédigé en anglais.

Organisation du mémoire
Le but de ce document est de présenter une méthodologie globale de simulation d'écoulements
et de transferts thermiques mettant en jeu des objets ou interfaces de formes complexes. Les
principales étapes de la gestion des objets sont les suivantes:

• Les objets représentés par des maillages triangularisés surfaciques sont projetés sur le mail-
lage eulérien à l'aide de diverses méthodes.

• Une méthode de domaines �ctifs permet ensuite de modi�er la discrétisation initiale des
opérateurs spatiaux pour permettre une meilleur prise en compte des objets.

• Les objets sont mis en mouvement par une fonction analytique ou sous l'e�et de l'e�ort
�uide.

Une dernière partie illustre cette démarche par la présentation de cas industriels traités durant
cette thèse.

Part II: Overview of the �ctitious domain methods La première partie compare les
approches à maillages structurés et non-structurés, et présente les méthodes de domaines �ctifs
les plus couramment utilisées. Nous présentons aussi les deux grandes classes de problèmes
rencontrés, les problèmes de frontières immergées et ceux d'interfaces immergées.
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Part III: Management of Lagrangian shapes on curvilinear grids Cette partie décrit
une nouvelle méthode globale de traitement d'objets qui trouve son originalité dans l'utilisation
systématique d'une grille cartésienne duale à pas unitaires. Cette approche est validée sur des
problèmes d'advection diphasique et de frontières immergées.

Part IV: High-order �ctitious domain methods La troisième partie constitue le c÷ur du
document et présente deux méthodes originales de domaines �ctifs. La méthode de pénalisa-
tion de sous-maille est la première méthode de pénalisation d'ordre élevé en espace et permet
d'imposer des conditions de Dirichlet ou de Neumann sur une frontière. La méthode d'interface et
de frontière immergée algébrique est quand à elle une extension de la pénalisation de sous-maille
aux cas des interfaces. Ce n'est plus une méthode de pénalisation mais une méthode algébrique
se basant sur la création d'inconnues auxiliaires. De nombreuses validations pour des équations
elliptiques et les équations de Navier-Stokes sont présentées.

Part V: Solid mechanics and �uid-structure coupling Nous décrivons la modélisation du
mouvement d'un objet solide et du couplage �uide structure. Un code temps réel d'interaction
de particules est présenté et la méthode de couplage est appliquée à la sédimentation d'une
particule.

Part VI: Industrial applications Cette partie présente di�érents cas complexes traités avec
notre méthodologie. Nous présentons d'abord deux cas industriels concernent l'hydroplanage
d'un pneu avec Michelin, et les écoulements dans des têtes de forage avec Varel Europe. Le
troisième cas est la simulation de la convection naturelle dans la grotte de Lascaux. Quelques
autres illustrations sont données.

Appendix A: Conservation equations and related numerical context Cette annexe
présente les modèles et méthodes numériques utilisées.

Appendix B: Application to the image synthesis Nous exposons ici notre méthodologie
de création d'images de synthèse.

Appendix C: Analytical solutions La construction de quelques solutions analytiques util-
isées est expliquée.

Appendix D: Interpolation Nous décrivons les di�érentes interpolations de type polynomi-
ales ou Kernel utilisées.
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Chapter 1

Base principle and motivations

1.1 A short story of mesh

The resolution of a complex physical problem by the numerical simulation leads generally to
a discretization in space and time of the initial modeling. Phenomena changing along the

time will be solved step by step. When the solution is required on a non singular domain or when
the problem cannot be solved by considering an averaging in space of the physical quantities,
the space is discretized, that is to said cut into pieces, boxes, squares, rectangle, polyhedra etc...
The spatial discretization generates a mesh, composed of cells, faces, vertices and nodes. The
discretization of the operators, and consequently the accuracy of the solution, will depends on
the discretization of the space and time.

A �rst classi�cation of a calculation volume mesh is based on the number of neighbors of
each cell and node (their valence). If this number is constant over the whole domain, the mesh
is de�ned as structured, otherwise unstructured. Each class of mesh can be divided into many
sub classes.
Let us now introduce some de�nitions :

Element An element is the elementary volume in which the conservation equations are dis-
cretized. The set of elements Ki of a domain Ωh are such that

⋃

Ki∈Th

Ki = Ωh (1.1)

with Th a given tessellation of Ωh. Furthermore,
⋂

Ki∈Th

◦
Ki= ∅. (1.2)

Hence, an element has the same dimension as Ωh and is generally a polygon.

Node The nodes are the vertices of the elements Ki. They are generally the centers of the
control volumes when a �nite volume discretization is considered.

Face The faces are elements of dimension d− 1 and are the boundaries of the elements. When
the elements are polygons, the faces are segments for a 2D tessellation and 2D polygons for a
3D tessellation.
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Orthogonal A tessellation is denoted as orthogonal if all faces which have a common node are
orthogonal or parallel in a su�ciently close vicinity of the node.

1.1.1 Structured grid
A regular grid is a tessellation of the Euclidian space Rd by rectangles in 2D and boxes in 3D.
Each cell can be indexed by a coe�cient, or (i, j) in 2D and (i, j, k) in 3D. Structured grids can
be classi�ed in sub categories:

Regular grid A regular grid is composed of rectangles or parallelepipeds that all have the
same proportions. One can �nd a translation of the grid such as each vertex indexed (i, j, k) has
coordinates (i.∆x, j.∆y, k.∆z), where ∆x, ∆y and ∆z are the grid spacing, or the space steps.

Cartesian grid A Cartesian grid is composed of unit squares or unit cubes, i.e. ∆x = ∆y =
∆z = 1. One can �nd a translation of the grid such as each vertex indexed (i, j, k) has coordinates
(i, j, k). Hence, it is straightforward to determine which cell a Lagrangian point belongs to.

Rectilinear grid A rectilinear grid is composed of rectangles or parallelepipeds that can have
di�erent dimensions.

Curvilinear grid A curvilinear grid is a grid with the same combinatorial structure as a
regular grid, in which the cells are quadrilaterals or cuboids rather than rectangles or rectangular
parallelepipeds.

1.1.2 Unstructured grids
Although the valence of each elements of an unstructured mesh is not constrained, it is common
to use a unique kind of elements to perform computations. In 3D, tetrahedral and hexahe-
dral elements are generally used. One advantage of these elements is their convexity, so the
discretization of the equations is easier and more robust than with non-convex elements.

1.1.3 Structured and unstructured grids
The following aspects have to be considered:

• The discretization of the space is not always trivial, especially if the shape of the domain
(i.e. its boundaries) is complex. The construction of a mesh from a complex shape requires
complex algorithms and has often to be performed on external meshers such as Gambit
(ANSYS) or Gridgen (Pointwise).

• The discretization of the spatial operators will be easier with a simple discretization. Cen-
tered second-order operators are trivial to build and accurate on Cartesian meshes. Con-
versely, on unstructured meshes of poor quality (if, for instance, the perpendicular bisectors
of each faces do not intersect in a single point), complex operations are required to build
discrete operators.

• As the grid is composed of simple geometrical entities, the boundary of the discretized
domain does not generally conform with the boundary of the original domain. As will be
exposed many times in this document, if the segment size of the reconstruction depends
on the size of the discrete elements, a stair-step reconstruction (Fig. 1.1.left) is of �rst
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order only while a linear piecewise reconstruction (Fig. 1.1.right) provides a second order
of approximation. More complex reconstructions with splines are not considered here.

Figure 1.1: First order (left) and second order (right) reconstruction (dashed line) of an interface
(solid line)

• The accurate discretization of the space using particular rules of cutting is not always
possible. This points is a priori the greatest weakness of the structured meshes. For
instance, a sphere cannot be meshed with Cartesian structured mesh without exaggerated
distortions.

• The mesh generated with a given discretization has to be stored or has to be easy to deduce.
Simple structured meshes, such as Cartesian grids, are easy to create and store. In this
case, the generation of the mesh is a bijection from the space step and the number of cell
in each directions, and the coordinates of a �rst point. Hence, the storage of a Cartesian
mesh can be reduced to some values. Conversely, unstructured meshes are often uneasy to
store and operate on, as the position of a cell and its sub elements have to be stored, as
well as the connectivities.

Thereby, the structured meshes are generally easy to generate and o�er an accurate and
simple discretization of spatial operators but cannot accurately approximate complex domains.
With unstructured grids, the discretization of the spatial operators is more complex and often
produces a less accurate result for a given size of element. However such grids are able to discretize
complex domains and thus to treat industrial problems. Furthermore, the loss of accuracy can
be counterbalanced by an adapted mesh re�nement. Conversely, the ability of structured grids
to be re�ned in the critical parts of the domain (boundary layers, interfaces,...) is very limited.
One may distinguish two di�erent needs of re�nement. A �rst one is the consequence of the non-
conformity between the boundaries of the domain or an immersed interface and the Eulerian
mesh. The aim of the �ctitious domain method presented in the present work is to treat this
non-conformity. The second need of re�nement is due to the general irregularity of the solution
and its gradient. Ideally, the mesh has to be re�ned according to the magnitude of the gradients of
the solution. This last point can be treated on structured grids with Adaptive Mesh Re�nement
methods (AMR) [Dela 06] but they need a great implementation e�ort and lead to a locally
structured grid but a globally unstructured grid.

An important point is that an additional problem occurs when the simulation implies moving
objects and moving interfaces. In this case, an initially well-adapted unstructured mesh is no
more relevant at the next time steps. In case of multiphase �ows, it happens almost systemati-
cally. The mesh can be reconstructed at each time step, but such a procedure is very expensive
in computational time and hard to implement.
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As a conclusion, the adaptivity of unstructured grids is limited in practical terms by the
movements of the discontinuities of the solution and the physical quantities. Its initial advantage
on the structured grids concerning the �xed boundaries is counterbalanced by the use of �ctitious
domain methods. Next to it, the interest of the �ctitious domain methods is extended to the
unstructured grids when a moving obstacles is involved.

1.2 The �ctitious domains
1.2.1 Immersed boundaries and interfaces
Immersed boundary problems Let us consider the following model Dirichlet problem:

{ −∇ · (a∇u) = f in Ω0

u = u|Σ on Σ
(1.3)

and the model Neumann problem:
{ −∇ · (a∇u) = f in Ω0

(a · ∇u).n = g on Σ
(1.4)

As they only consider one side of the interface Σ = ∂Ω0, both problems are quali�ed as boundary
problems. Let us now consider a domain discretized with a Cartesian structured grid. As no
particular constraint is imposed on the shape of Σ (only being continuous), one can suppose that
Σ is not conform to the Cartesian grid. The computational domain is denoted as Ω, and the
supplementary domain is Ω1 such as Ω = Ω0∪Σ∪Ω1. The present problems are called immersed
boundary problems. Even if the problem is numerically solved in Ω0 and Ω1, the solution is only
required in the �rst one. Hence, the initial equations can be partially or totally removed in Ω1.
Many methods change the discretization in Ω1 to increase the accuracy in Ω0.

Immersed interface problems Let us consider the following interface problem:




−∇ · (a∇u) = f in Ω
u−|Σ = uD on Σ
u+
|Σ = uG on Σ

(1.5)

The solution is now required in the whole numerical domain. However, the solutions on both
sides of the interface are independent, and two immersed boundary sub-problems in Ω0 and Ω1

can be solved independently. We consider now an other problem:
{ −∇ · (a∇u) = f in Ω

+ Interface condition on Σ
(1.6)

where the interface conditions are :

JuKΣ = ϕ on Σ (1.7)
J(a · ∇u) · nKΣ = ψ on Σ (1.8)

The notation JuKΣ = (u+ − u−) denotes the jump of a quantity over the interface Σ. These
transmission and jump conditions are called the immersed interface conditions as they are used
for the IIM methods1 (see section 4.1).

1According to [Li 06] a method cannot be designated as an IIM if an other set of interface conditions is used.
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A more general formulation has been proposed by Angot[Ango 03, Ango 05]:

Ja · ∇u) · nKΣ = αu|Σ − h on Σ (1.9)
(a · ∇u) · nΣ = βJuK− g on Σ (1.10)

where uΣ = (u+ − u−)/2 denotes the arithmetic mean of the traces of a quantity on both sides
of the interface, and α, β, h and g scalar values which can be chosen to obtain various types
of immersed BC such as Dirichlet, Neumann, Stefan or Fourier conditions on the immersed
interface. These conditions are called the embedded boundary conditions

1.2.2 The �ctitious domain approach
Let us consider a mesh Th composed of elements Ki. The previous problems, e.g. (2.11) or (1.6)
are considered. Ideally, we have

Ω0 =
⋃

i∈I
Ki (1.11)

with I the set of indices of the elements of Th. One can �nd two sets of indices I0 and I1 such
as

Ω0 =
⋃

i∈I0

Ki (1.12)

and
Ω1 =

⋃

i∈I1

Ki. (1.13)

In this case, I0 ∪ I1 = ∅. Generally, the elements of the meshes are polygons, and except if
the boundaries of the original domains are piecewise linear, the conditions (1.11), (1.12) and
(1.13) cannot be ful�lled. If an unstructured mesh is used, the discrete boundary ∂Ωh of the
discretization Ωh of Ω and the discretization Σh of the interface Σ can be approximated with a
second-order piecewise reconstruction (see Fig. 1.2 right). In this case, the nodes of the discrete
interfaces are generally on the original interfaces and no particular attention is paid to correct
this approximation.

For structured meshes, the spatial approximation of the boundary is generally of �rst order
only (see Fig. 1.2 left). Due to the constraints of the meshing, the spatial discretization does not
take the shapes of the interfaces and boundaries into account. The only requirement is Ω ⊂ Ωh.
As the domains of the original problems are not "visible" on the mesh, such domains are quali�ed
as �ctitious when considered toward the mesh. Consequently, all the methods allowing such
domains to exist during the numerical resolution are called �ctitious domain methods.

Figure 1.2: Approximation of a continuous interface. First (left) and second order (right)
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Chapter 2

The penalty methods

The penalty methods for conservation equations are a set of method originally presented in
[Arqu 84, Calt 86] for the Navier-Stokes equations and in [Ango 89] for Poisson equation.

The basic idea is to use a unique equation in the whole numerical domain which is divided in
sub-domains of di�erent kinds. A penalty term describing a penalty constraint (or a penalty
equation) is added to the original physical equation. The penalty term is multiplied by a penalty
parameter which may vary according to the subdomain. In the subdomains where the physical
equation is relevant, the penalty parameter is equal to zero and the penalty term has no in�uence.
In the subdomains where the penalty equation is relevant, the penalty term tends to in�nity and
the physical equation becomes negligible. The penalization of the solution is called the L2

penalization, whereas the penalization of the gradient is called the H1 penalization [Ango 99].

2.1 Darcy penalty method

The Darcy penalty method (DPM) was �rst presented in [Arqu 84, Calt 86] to treat porous
media in �uid �ows and extended to solid obstacles in [Ango 90, Khad 00]. The principle is to
add a Darcy term µ

K u into the Navier-Stokes equations. Hence, original equations become:





ρ

(
∂u
∂t

+ (u · ∇)u
)

+
µ

K
u = −∇p + µ∆u

∇ · u = 0
(2.1)

One can notice that contrary to some other �ctitious domain methods, the penalty term is
derived from the Darcy equation and then has a physical meaning. Practically, K is the local
permeability and tends to in�nity in the �uid media. A solid permeability K → 0 is chosen in the
solid media to impose u = 0. Other values can be used to impose a porous media and an interest
of the method lies in the possible modeling of �uid-porous �ow interaction. Even if practically
the behavior of the Darcy equation is obtained in this case [Calt 86, Laca 09], the presence of
the convective and di�usive terms in the NS equations makes a formal di�erence between these
equations.

If discretized such as the permeability K is piecewise constant per control volumes, the
method reaches a �rst-order accuracy for the L2 norm. Moreover, the DPM allows only static
obstacles to be modeled as only a null velocity can be imposed.
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2.2 Volume penalty method
The volume penalty method (VPM) was �rst presented in [Ango 89] and applied to heat transfers
in electronic components. The penalty term is Bi(T −T∞) and is derived from the Biot number
so the penalty parameter is sometimes denoted as Bi. For an elliptic equation, the penalized
problem is { −∇ · (a∇u) + Bi(u− uD) = f in Ω

with Bi|Ω0
= 0, Bi|Ω1

= 1
ε , for 0 < ε ¿ 1

(2.2)

where ε denotes the penalty parameter which tends to 0. As for the DPM, the VPM has a physical
meaning when applied to heat transfers. The method can be applied to di�erent equations but
looses its physical meaning so the penalty parameter has to be almost zero or almost in�nity
(the physical and the non-physical penalty equations cannot be used at the same time for a
same location). Applied to the Navier-Stokes equations, the VPM allows moving objects to be
immersed. If uD = 0, the method is equivalent to the DPM. If the discretization considers a
piecewise constant penalty term per control volume, the method is of �rst order too.

The present document shows applications of the method to the heat equation and to the
incompressible Navier-Stokes equations. The method has been applied to large Mach number
�ows [Boir 09], the wave equation [Pacc 05] or to pseudo-spectral methods [Keet 07].

2.3 Implicit tensorial penalty method
This method is devoted to the resolution of the Navier-Stokes equations. It is based on a
new formulation of the stress tensor σ which reads for a Newtonian �uid (see [Ryhm 85] and
[Happ 63]):

σij = −p δij + λ∇ · u δij + 2µ Dij (2.3)
where λ et µ are respectively the compression and shearing viscosities and D is the tensor of
deforming rate.
The introduction of the volumic viscosity ξ allows to highlight the spherical contribution of the
viscous stresses. It can be expressed according to the compression and the shearing viscosities
assuming ξ = 0 for an imcompressible �ow:

ξ = λ +
2µ

3

σij = −pδij − 2
3
µ∇ · uδij + 2µDij

Usually, this formulation of the stress tensor assumes that the �uid is homogeneous and the
components of the stress tensor are null for a constant �ow or a uniform rotation �ow u = Ω×r.
Moreover, the components of σij are linearly expressed according to velocity derivatives and are
exactly equal and of opposite sign to the hydrostatic pressure when the �uid is at rest. This
supposes that no direction is favoured in the �uid. In this way, the velocity and the corresponding
viscous stresses are bind through an isotropic relation.
Starting from the Navier-Stokes equations in their conservative and compressible formulation
dedicated to newtonian �uids, we can write:

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu
∂t

+∇ · (ρu⊗ u) = ρ g +∇ · σ (2.4)
(2.5)
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The aim is here to reformulate the problem so as to make appear several natural contributions
of the stress tensor dealing with compression, tearing, shearing and rotation. The interest of this
decomposition is then to distinctly penalize each term in order to strongly impose the associated
stress (see[Calt 01]). If we assume that Navier-Stokes equations for a Newtonian �uid contain
all physical contributions traducing compressibility e�ects, shearing or rotation, their splitting
permits to act di�erentially on their e�ects by modifying the orders of magnitude of each term
directly in the motion equations.
We �rst break up the second-order tensor ∇ij , which corresponds to the gradient of a vectorial
variable, in a symmetrical part Dij and in an antisymmetrical part Ωij (Ryhming [Ryhm 85])

∇ij =
1
2

(∇ij +∇ji) +
1
2

(∇ij −∇ji) = Dij + Ωij (2.6)

Then the stress tensor ( 2.3) can be rewritten as follows

σij = −p δij + λ∇ · u δij + 2 µDij = −p δij + λ∇ · u δij + 2 µ (∇ij − Ωij)

Decomposing σij according to the partial derivative of the velocity in Cartesian coordinates

σ =



−p + λ∇ · u 0 0

0 −p + λ∇ · u 0
0 0 −p + λ∇ · u


 + κ




∂u
∂x 0 0

0 ∂v
∂y 0

0 0 ∂w
∂z




+ ζ




0 ∂u
∂y

∂u
∂z

∂v
∂x 0 ∂v

∂z
∂w
∂x

∂w
∂y 0


− η




0 ∂u
∂y − ∂v

∂x
∂u
∂z − ∂w

∂x
∂v
∂x − ∂u

∂y 0 ∂v
∂z − ∂w

∂y
∂w
∂x − ∂u

∂z
∂w
∂y − ∂v

∂z 0


 (2.7)

we thus obtain an original decomposition of the stress tensor in which new viscosity coe�cients
appear arti�cially

σij = (−p + λ∇ · u) δij + κ Λij + ζ Θij − η Γij (2.8)

where

λ is the compression viscosity

κ is the tearing viscosity

ζ is the shearing viscosity

η is the rotation viscosity

The usual form of σ can be recovered allocating the following values to the new viscosities:

λ = −2/3µ, κ = 2µ, ζ = 2µ, η = µ. (2.9)

Several values of the viscosity coe�cients appearing in the new formulation (2.8) can be veri�ed
experimentally or theoretically in the works of Bird et al [Bird 77] or Ryhming [Ryhm 85].
Four di�erent terms appear in the divergence of the stress tensor σ, corresponding to the com-
pression tensor ∇ · u, the tearing tensor Λ, the pure shearing tensor Θ and the rotation tensor
Γ, which are associated to four characteristic phenomena of a �ow:

∇ · σ = −∇ (p− λ∇ · u) +∇ · (κ Λ) +∇ · (ζ Θ)−∇ · (η Γ) (2.10)
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The main interest of the formulation (2.10) is to dissociate stresses operating in a Newtonian
viscous �ow and then to make the implementation of a numerical penalty method easier. The
use of the viscosities λ, κ, ζ et η permits to satisfy accurately each kind of stress for both
compressible and incompressible �ows.
The new decomposition of the viscous stress tensor must be integrated in the energy equation
for a coherent formulation. The terms − β

χT
T∇ · u + µΦ(u) are replaced by the generic tensor

σ : ∇u written according to the previous theory.
This method has been applied to particle sedimentation [Pian 05, Rand 05, Vinc 07] and

coupled to phase change [Maun 08].

2.4 Jump Embedded Boundray Condition methods
Angot and Ramière have proposed two methods to deal with various type of BC such as Dirich-
let, Neumann, Stefan or Robin.

In [Rami 07b], the authors use a spread interface representation. We consider a closed domain
Ω̃ of boundary Σ embedded in a domain Ω. The shape of Ω is supposed to be simple. We de�ne
the complementary domain Ωe such as Ω = Ω̃ ∪ ωΣ ∪ Ωe (see Fig. (2.1) left). The following
problems is considered: { −∇ · (ã∇u) + b̃u = f̃ in Ω̃

BC on Σ
(2.11)

The discretization Ω̃h of Ω̃ is embedded in the computational domain Ωh such that Ωh =
Ω̃h ∪ ωh,Σ ∪ Ωe,h. If a cell K is cut by the interface Σ, then K ∈ ωh,Σ. If K ⊂ Ω̃, then K ⊂ Ω̃h.
The other cells are in Ωe,h (see Fig. 2.1.right). The following equation is considered in Ω:

Figure 2.1: De�nition of the domains for the spread interface method [Rami 07b]

−∇ · (a∇u) + bu = f (2.12)

and the various parameters a, b and f are chosen according to the desired BC (see Tab. 2.1).
The constants αR and gR are related to the Robin BC. The parameter εh is a local correcting
factor which depends on the cell size.

The Neumann BC can be retrieved with αR ≡ 0. Concerning the Dirichlet BC, two methods
are considered depending on the location of the penalty terms (exterior domain Ωe,h or spread
interface ωh,Σ).
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Parameters in Ωh,Σ Parameters in Ωe,h

Dirichlet BC

Spread interface penalization a =





ã (L2 penalty)
1
η
Id (H1 penalty) , a = Id,

b =
1
η
, f =

1
η
uD b = 0, f = 0

Dirichlet BC

Exterior penalization a = ã, a =




Id (L2 penalty)
1
η
Id (H1 penalty) ,

b = b̃, f = f̃ b =
1
η
, f =

1
η
uD

Robin BC
with di�erent approximations of εh a = ã, a = ηId,

b = b̃ +
αR

εh
, f = f̃ − gR

εh
b = 0, f = 0

Table 2.1: Parameters in ωh,Σ and Ωe,h for [Rami 07b]

A second method has been developed in [Rami 07c] which is a sharp interface approach
combined with the JEBC of [Ango 03, Ango 05]:

Ja · ∇u) · nKΣ = αu|Σ − h on Σ (2.13)
(a · ∇u) · nΣ = βJuK− g on Σ (2.14)

The di�erent parameters a, b and f in Ωe and on Σ are chosen according to Tab. 2.2 to imposed
the desired interface condition.

Two approaches are considered for the Dirichlet BC. For the surface penalty, the condition
is imposed with the interface parameters whereas the condition is imposed in Ωe for the volume
penalty. Since this approach considers a sharp interface, the parameters are de�ned on Σ instead
of in ωh,Σ. This approach is more di�cult to implement than for the spread interface approach
since the penalization on Σ requires a modi�cation of the discretization of the spatial operators.
The interface actually taken into account is a stairstep reconstruction from the faces of the cells
crossed by the interfaces (however, the correcting factor ε considers a piecewise linear reconstruc-
tion of Σ). Hence, this method, as well as the �rst one have only a �rst order of spatial accuracy
for the L2 norm and a 1/2 order for the H1 norm [Rami 07a]. The JEBC (2.13)-(2.14) can be
also generalized for vector elliptic problems such as Stokes-Brinkman problems.
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Parameters in Ωe Parameters in Σ
Dirichlet BC
Surface penalty a|Ωe

= 1, v|Ωe
= 0, α = 4β =

2
η
,

b|Ωe
= f|Ωe

= 0
q

2
− g =

1
η
uD

Dirichlet BC

Exterior penalization a =




Id (L2 penalty)
1
η
Id (H1 penalty) , v|Ωe

= 0, β =
1
η
,

b|Ωe
=

1
η
, f|Ωe

=
1
η
ue α = q = g = 0

Robin BC
no exterior control a|Ωe

= 1, v|Ωe
= 0, α = 4β = 2αR,

b|Ωe
= f|Ωe

= 0 g − q

2
= gR

Table 2.2: Parameters in Ωe and on Σ for [Rami 07a]
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Chapter 3

Other methods for immersed boundary
problems

Immersed boundary method is a generic appellation for the methods dealing with immersed
obstacles. However, this term often speci�cally designates the method designed by Charles

S. Peskin in 1972. In the present document, the acronym IBM will always denotes the method
itself while the immersed boundary problems will be designated as IB problems. The IBM Direct-
forcing (DF) approaches are sometimes totaly di�erent from the original Peskin method but are
also designated as a particular class of the IBM. The common principle of the IBM is to use a
forcing term and a Cartesian grid. A good review can be found in [Mitt 05].

3.1 The immersed boundary method

3.1.1 Continuous forcing IBM

In [Pesk 72], Peskin simulated blood �ows in beating heart valves. The method was originally
designed for moving �exible boundaries and has been adapted later to rigid boundaries. The
principal idea is to use forces to account for the presence of immersed boundaries or interfaces.
As the immersed Lagrangian mesh discretizing interfaces does not generally match the Eulerian
grid, the interface forces are spread from the Lagrangian point to the neighbor Eulerian nodes
using discrete Dirac functions, or Peskin functions. The discrete Dirac function can be discretized
as triangle, trigonometric or more complex functions, such as:

δh =





1
8∆x(3− 2|r|/h +

√
1 + 4|r|/h− 4(|r|/h)2 |r| ≤ ∆x

1
8∆x(5− 2|r|/h +

√
−7 + 12|r|/h− 4(|r|/h)2 ∆x ≤ |r| ≤ 2∆x

0 otherwise
(3.1)

This approach is quite simple to implement and robust, and has been used to treat many applied
problems, especially in biomechanics [Mill 05, Hopp 02]. However, the method is generally �rst-
order accurate in space only due to the smooth representation of the interface. Higher orders
can only be reached for the particular case of su�ciently smooth problems [Lai 00, Grif 05].

A formulation of the Peskin approach for the Navier-Stokes equations can be written as
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Figure 3.1: Simulation of heart �ows using the Peskin immersed boundary method - Study of
vortices near insect wings

follows:

ρ
(∂u

∂t
+ (u.∇)u

)
= −∇p + µ∇2u + f in Ω (3.2)

∇.u = 0 in Ω (3.3)

f(x, t) =
∫ Lb

0
F(s, t)δ(x−X(s, t)) ds (3.4)

∂X(s, t)
∂t

= u(X(s, t), t) =
∫

Ω
u(x, t)δ(x−X(s, t)) dx (3.5)

F(s, t) = S(X(·, t), t) (3.6)

Here, the immersed boundary Σ is given in parametric form: X(s, t), 0 ≤ s ≤ Lb, X(0, t) =
X(Lb, t), where s tracks a material point of Σ. The force density (with respect to dx = dx dy)
acting on the �uid is f(x, t) while the boundary force density (with respect to ds) is F(s, t). Eqs.
(3.2)-(3.3) are the Navier-Stokes equations for a viscous incompressible �uid, Eqs. (3.4)-(3.5)
represent the interaction between the immersed boundary and the �uid. In Eq. (3.4), the force
density is applied to the �uid by the immersed boundary. In Eq. (3.5), the immersed boundary
is carried along with the �uid. The last Eq. (3.6) states that the boundary force on a particular
interface element at time t is determined by the boundary con�guration at time t, where the
function S satis�es the generalized Hooke's law if the boundary is elastic.

This formulation is very attractive for �ows with elastic boundaries and can be easily adapted
to rigid boundaries by considering the boundary as elastic but extremely sti�. However, this ap-
proach implies many stability constraints [Mitt 05] while lower values of sti�ness lead to spurious
elastic e�ects [Lai 00].
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3.1.2 Direct-forcing IBM
In these methods, the physical forcing term of the Peskin approach is replaced by a non-physical
term. The numerical instabilities encountered with the Peskin method when a rigid boundary is
considered are no more present. The �rst direct forcing IBM has been presented in [Mohd 97] for
pseudo-spectral elements and extended in [Fadl 00] to a 3D FD method on a Cartesian staggered
grid. The following Navier-Stokes momentum equation is solved:

ρ
(un+1 − un

∆t
+

(
un+1.∇)

un+1
)

= −∇pn + µ∇2un+1 + δ(x−X(s, t))f (3.7)

Contrary to the Peskin approach, the forcing term is not physical and there is no constant to
set:

f = ρ
(V − un

∆
+

(
un+1.∇)

un+1
)

+∇pn − µ∇2un+1 (3.8)

where V is typically the Dirichlet value. The discrete Dirac function δ(x−X(s, t)) forcing term is
only activated for nodes near the boundary. The implementation of this method in Thétis shown
that as the forcing term is not physical, it is hazardous to mix it with the a physical equation for
a same node (a factor has to be determined). Hence, the δ is generally not smooth so its value is
binary. If V is the desired velocity at the boundary, these approaches have a �rst-order accuracy
in space. In [Fadl 00, Tsen 03], V is no more a constant but a linear combination of the solution
near the interface, and V =

∑
ωiui with wi weighting coe�cients depending on the interpolation.

[Fadl 00] activates the forcing term in the �uid region while [Tsen 03, Mark 08] uses the nodes in
the solid region. The advantage of this last approach is to conserve the original equation one node
closer to the interface, increasing the accuracy of the simulation. The direct forcing approach
has been widely applied to turbulent �ows at the Center for Turbulence Research, Stanford (see,
e.g. [Verz 01, Maju 01]). Concerning the velocity-pressure coupling, these methods are generally
used with a pressure projection method. As will be demonstrated later [Iken 07, Dome 08], the
standard projection is not well-suited to the forcing term.

Figure 3.2: Flow simulation in a non-conforming piston [Fadl 00]
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3.2 The Cartesian grid FV methods
The aim of these methods is to strictly keep the conservation laws at the close vicinity of the
interface. The idea is to reshape the cells crossed by the interface and to build ad hoc FV schemes
in them. The interface is approximated as a line or a plane in each cut cell.

3.2.1 The cut-cell method
First designed to treat inviscid �ows around airfoils [Clar 86], the Cut-cell approach modi�es the
shape of the control volumes near the interface by cutting and merging them. Quantities such
as mass, convective and di�usive �ux integrals and pressure gradients have to be estimated on
each face of these new cells. Ye et al. [Ye 99] proposed to express a given �ow variable in terms
of polynomial interpolating function in an appropriate region and evaluate the �uxes based on
this interpolating functions. In this approach, the solution inside the obstacle is not used. Fig.
3.3 from [Ye 99] shows how the cells are cut and merged to de�ne new cells which are conform
to the immersed interface.

Figure 3.3: Cutting of the CV with the cut cell method and associated new face �uxes[Ye 99]

3.2.2 The embedded boundary method
First presented by Johansen and Colella [Joha 98], the Cartesian Grid Embedded Boundary
method is based on a FV formulation and a modi�cation of the control volumes to take into
account the immersed interface. Contrary to the Cut-cell method, the solution is computed at
the center of the cells, even the ones out of the physical domain. On the other hand, the �uxes
are calculated at the new faces of the mesh, i. e. the position of the immersed interface is taken
into account. Initially presented for the Poisson equation, the method has been used to solve the
heat equation in 2D [Schw 06] and 3D [McCo 01]. An application to vessel segmentation and
blood �ow simulation can be found in [Desc 04].

3.3 The distributed Lagrange multipliers
The Distributed Lagrange Multipliers method has been formulated by Glowinski and Pan to
simulate the sedimentation of a large amount of particles in 2D [Glow 99] and 3D [Glow 01]
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(see Fig. 3.4) and has been applied to particle motion in non-newtonian �ows [Sing 00, Hao 09]
or to ellipsoidal particles [Pan 02, Pan 06]. The method uses Lagrange multipliers to enforce
solid-body motion in �uid in order to simulate the presence of immersed objects.

Figure 3.4: Fluidization of 1024 spherical particles

The method is presented for an immersed particle represented by a domain Ω1. The principle
of the DLM method is to couple the �uid equations:

ρL

( du
dt

)
= ρLg +∇ · σ in Ω0 (3.9)

∇.u = 0 in Ω0 (3.10)
(3.11)

and the rigid body equations:

m
du
dt

= F (3.12)

I
dω

dt
+ ω ∧ Iω = M (3.13)

with ρL the �uid density, m the body mass, ω its rotation vector, F the external resulting force
applied to the solid, M the resulting torque. The force F is composed of physical forces and a
repulsive force related to the other particles. The stress tensor σ takes the form:

σ = −pId + 2µD(u) (3.14)

The velocity of a particle i is such that

u = Ui + ω × r (3.15)

with U the translational velocity, and r the distance to the center of the concerned particles.
Equation (3.15) is combined to the weak form of (3.9), (3.12) and (3.13):
∫

Ω
ρ

( du
dt
− g

)
· v dx +

(
1− ρL

ρd

)(
M

( dU
dt

− g
)
·V + I

dω

dt
ξ

)
−F · V = −

∫

Ω
σ : D(v) dx

(3.16)
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with ρd the particle density and where (v,V, ξ) is a combined variation from the combined
variation space

V0(t) = {(v,V, ξ) |v ∈ H1(Ω)2,V ∈ Rd, ξ ∈ R,

v = V + ξ × r in Ω1, and v = 0 on ∂Ω} (3.17)

while (u,U, ω) is taken in the combined velocity space

VuΣ(t) = {(v,V, ξ) |v ∈ H1(Ω)2,V ∈ Rd, ξ ∈ R,

v = V + ξ × r in Ω1, and v = u∂Ω on ∂Ω} (3.18)

The �uid pressure p is required to lie in the space

L2
0(Ω0) = {q ∈ L2(Ω0)|

∫

Ω0

q dx = 0} (3.19)

Concerning the equation (3.10), its weak form gives
∫

Ω
q∇ · u dx = 0 for all q ∈ L2(Ω) (3.20)

The rigid-body motion constraint is enforced via the de�nition of the combined velocity spaces.
Such a formulation is not well-adapted to the methods used to solve the standard Navier-Stokes
equations. As for the augmented Lagrangian method (see section A.3.4), this constraint is relaxed
thanks to a side constraint using an appropriate distributed Lagrange multiplier. The resulting
formulation is the following one:
For a.e. t > 0, �nd u ∈WuΣ , p ∈ L2

0(Ω), λ ∈ Λ(t), U ∈ R satisfying
∫

Ω
ρL

(
∂u
∂t

+ (u · ∇)u− g
)
· v dx−

∫

Ω
p∇ · v dx +

∫

Ω
2ηD(u) : D(v) dx (3.21)

+
(

1− ρL

ρd

)(
M

( dU
dt

− g
)
·V + I

dω

dt
ξ

)
− F · V = 〈λ,v − (V + ξ × r)〉Ω1 (3.22)

for all v ∈W0, V ∈ Rd, and ξ ∈ R, (3.23)∫

Ω
q∇ · u dx = 0 for all q ∈ L2(Ω) (3.24)

〈µ,u− (U + ω × r)〉Ω1 = 0 for all µ ∈ Λ(t) (3.25)
(3.26)

where

WuΣ = {v ∈ H1
0 (Ω)2|v = u∂Ω on ∂Ω} (3.27)

W0 = H1
0 (Ω)2 (3.28)

and Λ(t) is H1(Ω1)2 with 〈., .〉 an appropriate inner product. An alternative formulation consists
in replacing the volume forcing term 〈λ,v − (V + ξ × r)〉Ω1 by a surface forcing term 〈λ,v −
(V + ξ × r)〉∂Ω1
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3.4 The Boundary Ghost Fluid method
In [Gibo 02, Gibo 05], Gibou et al. uses the same principles as the Ghost Fluid method (see
section 4.2.1) to impose boundary conditions for elliptic equations.

The 1D principle is described. The model Dirichlet problem is solved in a domain Ω0 of
boundary ∂Ω: { −∇ · (a∇u) = f in Ω0

u = u|∂Ω on ∂Ω0
(3.29)

Let us consider the location of three regular grid nodes xi−1, xi and xi+1. The interface
location is α such as xi−1 < xi < α < xi+1. We choose xi+1 /∈ Ω0 so the solution at this point is
written uG

i+1. It does not exist in the initial problem and is then denoted as a ghost node with
the superscript G.

The standard three-point discretization of the Laplacian yields

{∇ · (a∇u)}i =

ai+ 1
2

(
uG

i+1 − ui

∆x

)
− ai− 1

2

(
ui − ui−1

∆x

)

∆x
. (3.30)

The value uG
i+1 is then considered as the linear extrapolation of the solution past the interface.

One can write

u|Γ =
(α− xi)uG

i+1 + (xi+1 − α)ui

∆x
⇔ uG

i+1 =
∆x

α− xi
u|Γ −

xi+1 − α

α− xi
ui. (3.31)

Finally, the following discretization of the operator near the interface is obtained:

{∇ · (a∇u)}i =
1

∆x


ai+ 1

2




∆x
α−xi

u|Γ −
(

xi+1 − α

α− xi
− 1

)
ui

∆x


− ai− 1

2

(
ui − ui−1

∆x

)

 . (3.32)

The same principle is applied direction by direction in higher dimensions. As showed latter, the
discretized operators obtained with this method is quite similar to the SMP and AIIB methods for
Dirichlet problems. However, the two latter methods do not require a by-hand re-discretization
of the operators as this modi�cation is performed algebraically.
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Chapter 4

Other methods for immersed interface
problems

4.1 The immersed interface method

4.1.1 Standard approach

The original IIM has been proposed by Leveque and Li in [Leve 94, Li 94]. Let us consider the
following 1D problem:




−∇ · (a∇u) = f in Ω
JuKΣ = ϕ on Σ
J(a · ∇u) · nKΣ = ψ on Σ

(4.1)

The equation is discretized using a three-point �nite di�erence scheme. The criterion in deter-
mining the �nite di�erence coe�cients is to minimize the magnitude of the local truncation error
for a given location xi

Ti = γi,1u(xi−1) + γi,2u(xi) + γi,3u(xi+1)− f(xi) + Ci (4.2)

where γi,k are linear coe�cients and Cj a source term. The main idea is to expand the solution
u(xi−1), u(xi), u(xi+1), f(xi) at the interface for x = α from each side of the interface and then
use the interface relations to express u±(α), u±x (α) and u±xx(α) in terms of quantities from one
particular side. The three locations xi−1, xi and xi+1 are such that xi−1 < xi < α < xi+1.
Finally, we match the expansion against the di�erential equation to the leading terms to get a
system of equations for the �nite di�erence coe�cients. Using the Taylor expansion for u(xi+1)
at α, we have

u(xi+1) = u+(α) + (xi+1 − α)u+
x (α) +

1
2
(xi+1 − α)2u+

xx(α) +O(h3). (4.3)

Using the jump relations, the expression above can be written as

u(xi+1) = u−(α) + ϕ + (xi+1 − α)
(

a−

a+
u−x (α) +

ψ

a+

)
+

1
2
(xi+1 − α)2

a−

a+
u−xx(α) +O(h3) (4.4)
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The Taylor expansion is then written for ui−1 and ui. Thus, the local truncation error can be
written at x = xi

Ti = γi,1u(xi−1) + γi,2u(xi) + γi,3u(xi+1)− f(xi) + Ci

= ϕ + (γi,1 + γi,2 + γi,3)u−(α) + γi,3(xi+1 − α)
ψ

a+

+
(

(xi−1 − α)γi,1 + (xi − α)γi,2 +
β−

β+
(xi−1 − α)γi,3

)
u−x (α)

+
1
2

(
(xi−1 − α)2γi,1 + (xi − α)2γi,2 +

a−

a+
(xi−1 − α)2γi,3

)
u−xx(α)

−f(α)−O(h) +O
(

max
1≤l≤3

|γi,l|h3

)
.

(4.5)

The system of equations for the γi,k is then obtained by minimizing each terms of the previous
equation:





(γi,1 + γi,2 + γi,3) = 0

(xi−1 − α)γi,1 + (xi − α)γi,2 +
a−

a+
(xi−1 − α)γi,3 = 0

1
2
(xi−1 − α)2γi,1 +

1
2
(xi − α)2γi,2 +

1
2

a−

a+
(xi−1 − α)2γi,3 = a−

(4.6)

and the correcting term Ci yields

Ci = ϕ + γi,3(xi+1 − α)
ψ

a+
. (4.7)

As can be seen, the construction of such a �nite di�erence scheme is not easy and is strongly
dependent on the initial equation. The method has been extended to the Stokes [Leve 97, Li 04]
and Navier-Stokes equations [Li 01, Li 03, Tan 09].

4.1.2 Augmented strategy
First introduced by Li in [Li 98], this approach considers a set of interface points Xi. The
jump conditions are written for these points and expressed from the Eulerian points thanks to a
least square interpolation and Taylor series expansions. An augmented equation system is then
obtained and solved using the Schur complement method. The augmented strategy has been
extended to the generalized Helmoltz equations [Li 99] and the incompressible Stokes equations
[Li 04]. An advantage of the augmented approach is to provide an algorithm which allows using
fast Poisson solvers such as the FFT [Adam 99].

4.2 Ghost node methods
4.2.1 The ghost �uid method
The Ghost Fluid (GF) method has been originally designed to deal with �uid-�uid interfaces for
the Euler equations [Fedk 99] and has been adapted to the elliptic equations [Liu 00, Liu 03].
The GF method is simpler than the IIM as it decomposes the �ux jump in each axis direction
so the problem can be treated dimension by dimension. The result is a lower accuracy than the
IIM and a generally �rst-order accurate on the maximum norm only.
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The 1D principle is described. The model interface problem is solved in a domain Ω. The
transmission conditions are considered



−∇ · (a∇u) = f in Ω
JuKΣ = ϕ on Σ
J(a · ∇u) · nKΣ = ψ on Σ

(4.8)

Let us consider an Eulerian point xi. The interface passes between xi and its neighbor xi+1.
One can consider that xi is in the − side and xi+1 is in the + side. To discretize a quantity
on the interface on a given + or − side, a combination of physical and �ctitious nodes are used
(as for the boundary GFM of Gibou et al., see section 3.4). The interface coordinate is α and
xi−1 < xi < α < xi+1 < xi+2. The physical solution in Ω1 is denoted u− and u+ in Ω0. The
solution u± is extended from its subdomain to the other subdomain. From a discrete point of
view, this extension de�nes new unknowns which collocates with the existing solution. Hence,
two solutions u+

i and u−iui coexist at xi. The classic discretization of ∇ · (a∇u) is not designed
for a discontinuous solution and using a combination of u+ and u− leads to numerical troubles.
Hence, each operator is written with only + or only − unknowns. At xi we have

{∇ · (a∇u)}i =

ai+ 1
2

(
u+

i+1 − u+
i

∆x

)
− ai− 1

2

(
u+

i − u+
i−1

∆x

)

∆x
. (4.9)

Here, u+
i+1 is the ghost node and is not a physical value. The solution jump condition yields

u+
i+1 = u−i+1 + ϕ (4.10)

and the discretization of ∇ · (a∇u) can be rewritten

{∇ · (a∇u)}i =

ai+ 1
2

(
u−i+1 + ϕ− u+

i

∆x

)
− ai− 1

2

(
u+

i − u+
i−1

∆x

)

∆x
(4.11)

and only physical unknowns are used. As can be seen, this method is easier to formulate than
the IIM. However, the discretization of the operator has still to be rewritten by-hand.

The GF method has been used for many practical applications such as the fragmentation of
a liquid jet [Coud 07], the implosion of bubbles under ultrasonic waves [Coud 09] (see Fig. 4.1)
or the turbulent atomization [Desj 08].

4.2.2 The matched interface and boundary method
As for the augmented IIM, the Matched Interface and Boundary (MIB) method [Zhou 06b,
Zhou 06a, Yu 07] formulates an augmented system. Instead of using Taylor extension, authors
consider as in [Tsen 03, Gibo 02, Fedk 99, Sart 08b] �ctitious nodes to discretize the jump con-
ditions. The standard IIM set of jump equations on an interface Γ

JuKΓ = ϕ (4.12)
JaunKΓ = ψ (4.13)

are not used as they are and the authors obtain a third jump conditions by di�erentiating Eq.
(4.13) along the tangential direction of the interface. Thus, the three jump conditions are

JuKΓ = u+ − u− = ϕ (4.14)
Juτ KΓ = u+

τ − u−τ = ψτ (4.15)
JaunKΓ = a+u+

n − a−u−n = ψ. (4.16)
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Figure 4.1: Interaction between a wave and a bubble with a Level-set and Ghost Fluid approach
[Coud 09]. Comparison with experimentation

Let us consider θ, the orientation of the interface such as the normal vector of the interface is
n = (cos θ, sin θ) and its tangent vector is τ = (− sin θ, cos θ). The three interface conditions
above can be reformulated as

JuKΓ = u+ − u− = ϕ (4.17)
Juτ KΓ = (−u+

x sin θ + u+
y cos θ)− (u−x sin θ + u−y cos θ) = ψτ (4.18)

JaunKΓ = a+(u+
x cos θ + u+

y sin θ)− a−(u+
− cos θ + u−y sin θ) = ψ. (4.19)

These relations are considered at each intersection between the interface and the calculation grid.
Let us consider an Eulerian point xi,j . The interface passes between xi,j and its neighbors in
the x-direction xi+1,j . One can consider that xi,j is in the + side and xi+1,j is in the − side.
To discretize a quantity on the interface in a given + or − side, a combination of physical and
�ctitious nodes is used (see section 3.4). In our case, the two considered nodes are in a x-direction
grid line. Hence, u+, u−, u+

x and u−x are easily obtained while u+
y and u−y are not naturally

calculated. However, one can combine Eqs. (4.18) and (4.19) and avoid the computation of u+
y

or u−y . Thus, if u+
y is easier to evalute, one will cancel u+

y from (4.18) and (4.19) to obtain

JuKΓ = u+ − u− (4.20)
JaunKΓ − a− tan θJuτ KΓ = C+

x u+
x − C−

x u−x + C+
y u+

y (4.21)
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with

C+
x = a+ cos θ + a− tan θ sin θ

C−
x = a− cos θ + a− tan θ sin θ

C+
y = a+ sin θ − a− sin θ.

These two jump conditions are used in the new augmented system. Practically, the corresponding
matrix is never built as the additional constraints are related by peers to two �ctitious nodes,
allowing the local small equation system to be solved (the �ctitious solutions are the unknowns).
This easy reduction is a consequence of the dissociation of the components of the interface
quantities. Contrary to the GF method and the IIM, the MIB approach dissociates the interface
constraints and the discretization of the conservation equations.

Another advantage of the method is its ability to reach higher orders. The standard method
is �rst performed. The expressions of the solution for the �ctitious nodes are then combined
with an higher-order discretization of the jump conditions using additional �ctitious nodes. A
second order is reached for the standard method (two �ctitious nodes, one on each side of the
interface), a fourth order is obtained with four auxiliary nodes etc... The only limitation of this
approach is topological. A 16th-order scheme has been for instance build in 2D for a straight
interface [Zhou 06b].

One of its drawback seems to be the size of the discretization stencil. Fig. 4.2 from [Zhou 06b]
shows the stencil considered for a 2D case and the standard second-order method. All the nodes
are not considered but eight physical nodes are required.

Figure 4.2: Illustration of the discretization of the MIB method from [Zhou 06b]. The four nodes
in the x-direction, and the four other nodes around x0,j+1 and x0,j+2 are used
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Discussion and conclusion of Part I
Immersed boundary problems
As can be seen, the forcing term of the IBM and the penalty constraint of the penalty methods can
be quite similar. The fondamental di�erence lies in the way the boundary constraint is imposed.
Let us consider an equation L(u) = f . The discretization of this equation on a Cartesian grid
leads to the following equation:

LU = F (4.22)

with L the discrete linear operator, U the discrete solution and F the discrete source term.
The penalty method consists in adding a term 1/ε(PU − Fp) where PU is the linear part of a
boundary constraint and Fp its source term. The �nal equation is

LU = F +
1
ε
(PU − Fp) (4.23)

and ε varies according to the domain. Here, the penalty term does not depend on the discrete
equation. For the IBM, one can dissociate two approaches. The continuous approach of the IBM
adds a source term Fb

LU = F + Fb. (4.24)

As the additional term is only a source term, this approach su�ers from many limitations and
cannot generally reach a second order in space.

In the Direct-forcing approach, a term D(BU − Fb) is added where D is a discrete Dirac
function, B = L + P and Fb = Fp − F . The factor D is equal to zero everywhere except at the
nodes close to the interface. For such nodes, the discrete equation is

LU = F + (BU − Fb) ⇔ PU = Fp (4.25)

The terms Fp and P can be the same as for the penalty method and will have the same e�ect. The
fondamental di�erence is that here the original equation is canceled while the penalty methods
make it negligible.

One can notice that the IBM have been almost systematically applied to the �uid �ows
simulation. For some methods, especially the direct forcing class, the application to the elliptic
equations seems to be straightforward. Concerning the DLM method, its initial formulation is
strongly linked to a �uid-structure modeling, but an application of the Lagrange multipliers to
the elliptic equation could be possible. To our knowledge the Boundary GFM has only been
applied as it is to the elliptic equations (while the GFM has been applied to many equations).
The Cartesian grid methods have been applied to elliptic and Navier-Stokes equations.

All these methods reach high orders in space accuracy, except for the Peskin IBM (which
is very robust and well adapted to elastic boundaries) and the DLM method (well suited to
rigid moving obstacles). The order of the penalty method depends on the penalty constraint.
More generally, a �rst order only is obtained for non-smooth problems if the precise location of
the boundary is not taken into account or if the in�uence of the boundary is smoothed. More
precisely, the distance and the direction has to be considered by the model.

Among all these approaches, the Cartesian Cells method seems to be the hardest to implement
as the Eulerian grid cells have to be modi�ed. Furthermore, unstructured FV schemes has to be
built. At a smaller scale, �nding the intersection point between the Eulerian and the Lagrangian
grids (for high-order Direct-forcing IBM, the Boundary GFM and the Sub-Mesh Penalty method)
requires too an implementation e�ort which can be avoided with the Peskin IBM or the DLM
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methods. Concerning the computational performances of the methods, the high-order methods
generally push down the matrix conditioning and require more solver iterations. However, these
methods are almost always fully implicit and allow higher time steps to be used. The DLM
method requires additional sub time steps to impose a solid behavior in the object through a
minimization procedure.

Immersed interface problems
The IIM and GFM have been applied to many equations, while the recent MIB method has only
been applied to elliptic and Maxwell equations. The IIM and GFM are quite complicated to
formulate as the discretization of the operators has to be modi�ed by-hand. The formulation of
the GFM using ghost nodes is nevertheless simpler than the IIM formulation using Taylor series
expansions. Contrary to the IIM and GFM, the MIB method proposes an automatic correction
of the discretization of the space operator. However, such a correction need an implementation
e�ort itself. The same thing occurs with the Augmented IIM method. To our knowledge, the
IIM and MIB methods systematically reach high orders in accuracy. That is not always the case
for the GF method (especially for the maximum norm). However, the MIB method has only
been applied to a short range of application.

As for the IB methods, higher orders are reached if the interface position is accurately ac-
counted for. The Continuum Surface Force (CSF) method of Brackbill et al. [Brac 92] is an
extension of the Peskin IBM to the interface. As the interface properties are smoothed with
discrete Dirac functions, only a �rst-order accuracy is generally obtained.

Conclusion
As can be seen, the literature related to the �ctitious domains is wide, and our presentation
does not pretend to be exhaustive (one can cite the Fat Boundary Method [Maur 01] of Maury).
Many methods still propose to reach high-order accuracy and the actual challenge is rather to
obtain robust schemes, when complex geometries with singular points are involved. One can
cite the work of [Yu 07] for the MIB method. However, the immersed interface schemes are
generally quite complex to formulate and to implement, and are generally non-conservative at
the interface. Hence, �nding simple, robust and conservative schemes is the interesting objective,
especially for the Stokes and the Navier-Stokes problems.

Building an e�cient �ctitious domain method requires one of the previous methods, but also
a set of algorithms to pre-treat the considered boundary/interface. This part is not negligible
in term of implementation e�ort and computational time. The next part presents a complete
treatment of the Lagrangian shape and its projection onto the Eulerian grid.
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Part III

Management of Lagrangian shapes on
curvilinear grid
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Introduction

The simulation of realistic �uid mechanics and thermal transfers problems always involves
varying physical values, such as density, viscosity or thermal conductivity. Generally,

discontinuities are present on interfaces which can sometimes be considered as boundaries. De-
pending on the way the interface is de�ned and numerically stored, the di�erent steps of the
calculation requiring interface informations will be more or less easy to perform. The most com-
mon input format for an interface, a d − 1 manifold in a space of dimension d, is the explicit
Lagrangian representation. In 2D, the interface is a curve discretized as a set of segments. In
3D, the interface is a surface discretized as a set of triangles.

The �rst issue for the shape management is to couple the surface information of the interface
to the volume information of the Eulerian discretization grid. This operation allows the physical
quantities to be initialized in the physical Eulerian calculation grid, e.g. the di�erent viscosities
and densities for a two-phase �ow.

Moreover, this exemple contraries the classic assumption of the basic discretization of the
conservation equations which is that the physical quantities, if not constant, are smoothly vary-
ing. This assumption is false in many other cases: heat transfers between two materials, �uid-
structure interactions, jump conditions, surface tension on an interface... The treatment of these
discontinuities is a major issue when the discretization is based on an Eulerian structured grid,
where the irregularities of the physical quantities are rarely matching the grid. The �ctitious
domain methods propose to deal with discontinuities on structured grids. The two last decades
have been particularly creative in this domain and many methods have been invented, such as
the Immersed Boundary methods, the Penalty methods, the Ghost-Fluid methods or the Im-
mersed Interface methods. The accuracy of such approach requires many operations related to
the interface position and its representation.

Hence, complex problems involve complex interfaces which have to be accurately and quickly
managed. The present work proposes a global methodology to manage interfaces of complex
shapes on Eulerian grids. The present part �rst explains di�erent methods performing the
Eulerian-Lagrangian grid coupling. The aim is to project Lagrangian surface informations on
an Eulerian grid. This step allows to construct the common implicit volume functions: the
binary Heaviside, the level-set and the volume of �uid (VOF) functions. A fast thread ray-
casting method is presented to build the Heaviside function. As this method works only for
Cartesian grids, a curvilinear to Cartesian transformation is required to generalize the approach
to orthogonal curvilinear grids. This method unfold the curvilinear grid to a Cartesian grid.
Many operations are then quickly performed on this new grid.

The fourth section is composed of tests and validation of the algorithms and the overall
method. The last section summarizes the current methodology and describes some possible
optimizations .
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Chapter 5

Global methodology

5.1 Surface representation
A surface in a space of dimension d is a d − 1 topological manifold. Its practical storage and
representation depends on the application. An explicit representation gives directly the position
of the points of the surface. Triangularized meshes or parametric surfaces are explicit surface
representations. With an implicit representation, the position of the points of the interface are
deduced as the iso-surface of a volume �eld or as the location of the solution of an equation. Our
aim here is to simulate physics using complex surfaces (boundary or interface).

5.1.1 Explicit surface: the triangularized mesh
The natural and intuitive representation of a surface is explicit, and the easiest way to create a
complex surface "by hand" is to work explicitly with it. Furthermore, a digital tool (a software)
is needed to build such virtual entities, and the most used of them uses explicit representation.
One can de�ne two classes of softwares used to create explicit surfaces:

• Computed assisted design (CAD) softwares: Such softwares are designed for indus-
trial applications: CATIA (Dassault System), Solidworks (SolidWorks corp.), ProEngineer
(Parametric Technology Corporation)...

• Computer graphics (CG) softwares: Computer graphics tools are image oriented.
They are less precise than CAD tools, but more intuitive. The most used are 3D Studio
Max, Maya, Softimage (Autodesk), Lighwave 3D (NewTek) and Blender (Blender Founda-
tion). One can notice that Blender is a free software under GPL licence.

The shape which de�nes an immersed boundary or an immersed interface is a key point in the
�ctitious domain approach. Methods can be built and studied using analytical interfaces, such
as circles, spheres or boxes. However, a more general description of the interface is needed to
treat more complex problems. The Lagrangian meshes are often used to explicitly de�ne generic
discrete shapes. Such meshes are composed of segments in 2D and triangles in 3D (Fig. 5.1).

Generally, the Lagrangian mesh is de�ned with the following constraints:

• The shape has to be closed. Each segment of the mesh must be side of two triangles.

• Two elements of the shapes cannot intersect themselves

Fig. 5.2 shows invalid meshes.
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Figure 5.1: A triangularized Lagrangian mesh of the Stanford bunny

Figure 5.2: Invalid Lagrangian meshes. Overlapping triangles (left) and non closed shape (right)

5.1.2 Implicit surfaces with Heaviside, Level-Set and Color functions
Once the discrete shape is de�ned, the Lagrangian surface information has to be coupled with
the volume Eulerian information. To know which part of the Eulerian mesh is inside the La-
grangian mesh is generally the most important information to obtain. The Fig. 5.3 shows the
initial Lagrangian and Eulerian grids and the basic projection of the �rst on the second. This
projection de�ne a �rst implicit representation of the initially explicit surface. A adequate im-
plicit representation can be accurate enough and can avoid to use the Lagrangian mesh during
the rest of the simulation. An implicit representation is de�ned by a volume function such as
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Figure 5.3: The Eulerian and Lagrangian grids and the resulting projection

χ : Rd 7→ R. Three volume functions are de�ned according to their return value:

• The discrete binary Heaviside function χ, de�ned as:

χ(x) =





1 if x ∈ Ω1

0.5 if x ∈ Σ
0 otherwise

(5.1)

This function is the basic indicator of the presence of an Eulerian point in Ω1 and is build
with a point in solid method presented below. An Eulerian node is near the interface if
one of its neighbor has a χ function di�erent to its value. However, a precise location of
the interface cannot be retrieved with the χ function only.

• The level-set function φ, with :

φ(x) =
{ −distΣ(x) if x ∈ Ω1

distΣ(x) otherwise (5.2)

and distΣ(x) = infp∈Σ ‖x−p‖. The unsigned distance is computed geometrically. The sign
is directly obtained from the discrete Heaviside function χ. In 1D, the level-set function
gives the exact location of the interface. For higher dimensions, a good average location
of the interface can be found in φ = 0. A major advantage of the Level-set approach is to
allow the normal n and the curvature κ to be easily computed:

n =
∇φ

‖∇φ‖ (5.3)

κ = ∇ ·
( ∇φ

‖∇φ‖
)

(5.4)

• The volume of �uid (VOF) function C, also called the color or phase function, is the
volume ratio of a given phase in an elementary volume Vx centered in x of boundary ∂Vx.
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For Vx ⊃ x we denote C(x) the phase ratio in Vx. This function is obtained from the
normalized integration of the Heaviside function on Vx

C(x) =
1

meas(Vx)

∫

Vx

χ dV (5.5)

One can notice that

meas(Vx ∪ Ω0) = 0 ⇔ C(x) = 1 (5.6)
meas(Vx ∪ Ω1) = 0 ⇔ C(x) = 0. (5.7)

The local value C(x) of the volume function is a �ltered heaviside function representing
the volume average of χ over Vx. This function is typically used to localize a �uid phase
in multiphase-�ows and is the base of the 1-�uid model.

The Fig. 5.4 summarizes the three functions. The VOF functions can be seen as a smoothed
Heaviside function and implicitly de�nes the interface with more accuracy.

Figure 5.4: Heaviside (left), level-set (middle) and VOF (right) functions for a same geometry

5.2 The global methodology
The key point of the present methodology is to work as much as possible in a Cartesian frame-
work instead of a curvilinear one. Many optimisations can be performed when the grid lines of
the Eulerian mesh are straight and when the space step is unit. Hence, it is very easy to know in
which cell a Lagrangian point is when such a grid is used. Furthermore, the Thread Ray-casting,
a fast way to obtain the Heaviside function, works only on Cartesian grids.

The main idea is to �rst unfold the orthogonal curvilinear grid Th to obtain a dual Cartesian
grid T̂h. Then, the interfaces are projected onto this new grid. The Cartesian grid and the
deformed interfaces are used as much as possible to perform various steps of the calculation,
including the shape initialization, the �ctitious domain methods and the interface tracking.

The 2D shape of the rabbit is projected on a curvilinear grid. The Fig. 5.5 shows the interface
and the grid. The Fig. 5.6 shows now the initial interface in the curvilinear workframe and its
transformed into a Cartesian workframe. As can be seen, the shape of the interface in the
Cartesian frame is displaced, scaled and deformed.
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Figure 5.6: Original interface and its transformed onto the Cartesian framework

5.3 Interface tracking on curvilinear grids

The numerical simulation of interface motion and two-phase �ows on �xed Cartesian grids re-
quires an interface tracking with speci�c numerical methods such as the volume of �uid (VOF)
approach [Hirt 81, Youn 82], the Level-set method [Suss 94] or the Front-tracking techniques
[Unve 92, Shin 02b]. Among the wide variety of methods and articles published the last �fteen
years, very few works were devoted to the extension of the previous methods to �xed orthogonal
curvilinear grids. An adaptation of the VOF-PLIC method on curvilinear grids can be found in
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[Jang 08]. In [Mura 06], Muradoglu and Kayaalp use an auxiliary Cartesian grid superimposed
to the curvilinear one to manage the front tracking operations. Kernel functions are used to
interpolate the velocity from one grid to another. In [Huan 07], Huang et al. extend the ghost
�uid method [Fedk 99, Kang 00, Liu 00] to curvilinear grids. The jump conditions are enforced
on the pressure and velocity and on the pressure gradient. To be complete, such a ghost �uid
method would have to be extended to velocity gradient, viscosity and turbulence quantities. The
approximation of the interface tracking on curvilinear grids for two-phase �ows is conside*red in
this section. The extension and the generalization of the curvilinear features for more than two
�uids is straightforward. It is considered that the curvilinear velocity �eld representing the �uid
motion is known. One can notice that in the present work, the Cartesian grid is not superimposed
to the curvilinear grid as in [Mura 06], but is an unfolding of the curvilinear grid.

5.3.1 The VOF-PLIC method
The VOF is by de�nition associated to the use of a volume characteristic function C which is
equal to 1 in one phase and 0 in the other phase. The interface is classically located by the
iso-surface C = 0.5. A material equation on C, which correspond to the Lagrangian trajectory
of �ctitious particles placed on the interface, is added to the standard conservation equations,
i.e. the Navier-Stokes and energy equations [Scar 99a], in order to follow the phase evolutions
during time:

dC

dt
=

∂C

∂t
+ u · ∇C = 0 (5.8)

where u is the �uid velocity when no phase change occurs and t is the time.

Equation (5.8) is correct for every orthogonal coordinate system. However, discretizing the
gradient operator in a curvilinear orthogonal grid G and simulating the corresponding velocity
�eld in such a grid is a complex task, in particular in three dimensions. Moreover, as soon
as (5.8) is approximated by means of a geometrical approach such as the VOF-PLIC method
[Youn 82], the curvilinear extension of the approach becomes impossible in the real coordinate
system as it requires to estimate the intersection between a segment in 2D or a plan in 3D with
the curvilinear control volumes of the grid. Our idea lies in the use of a transformed auxiliary
grid T̂h, as previously explained for object shape projection, to solve the advection equation on
C with the standard VOF-PLIC technique.

A staggered Cartesian grid of constant space step is considered with space steps such as
∆x = ∆y = ∆z = 1. In this auxiliary grid, Eq. (5.8) can be written in a new form

∂C

∂t
+ û · ∇̂C = 0 (5.9)

where û and ∇̂ are the velocity and the gradient operator in the auxiliary coordinate system.
The curvilinear metrics applied on C through ∇ in G disappear in Ĝ and ∇̂ is the standard
Cartesian operator ( ∂

∂x , ∂
∂y , ∂

∂z )T .
Eq. (5.8) is then written as

∂C

∂t
+ ux

∂C

∂x

∂x

∂ξ
+ uy

∂C

∂y

∂y

∂η
+ uz

∂C

∂z

∂z

∂ζ
= 0 (5.10)

where ξ, η, ζ are the curvilinear coordinates. For each cells, ∂x
∂ξ ,

∂y
∂η and ∂z

∂ζ are replaced by the
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ratios of the local space steps :
∂C

∂t
+

ux

∆ξ

∂C

∂x
+

uy

∆η

∂C

∂y
+

uz

∆ζ

∂C

∂z
= 0. (5.11)

Eq. (5.9) is then recovered with

ûi =




uξi

∆ξ iuηi

∆η iuζi

∆ζ i




(5.12)

By solving Eq. (5.9), the VOF-PLIC method can be used in T̂h, the Lagrangian advection of
linear interface construction being achieved with velocity (5.12) without any modi�cation of the
implementation of the method. It has to be noticed that the initial values of C are obtained
with the Lagrangian-Eulerian transformation on curvilinear grids as the physics and so the real
interface shape are known in the curvilinear coordinate system. The discrete value C(i, j, k) of
C, as a binary scalar are the same in the two spaces Th and T̂h.

5.3.2 The LCR Front Tracking method
Among the various variant of the Front Tracking approaches, the Level Contour Reconstruction
(LCR) method of Shin and Juric [Shin 02b] is interesting as it allows the coalescence and break-
up of interfacial structures to be automatically managed by using a Heaviside function χ to
reseed the marker over time by estimating the intersections between each Lagrangian elements
of the interface Γi(t) and the control volumes of the Eulerian grid. The function χ is built with
the position of the markers located on Γi(t) . The χ function is a pseudo VOF function which
is equal to 1 in the interior phase bounded by the interface and 0 elsewhere. The resolution of a
Poisson equation is required to obtain χ such that

∇2χ = ∇ ·
∫

Γi(t)
nδ(x− xi)dγ (5.13)

In equation (5.13), n is the unit normal to the interface, δ a Dirac function centered on the
interface, x is a position on the Eulerian grid and xi a marker position on Γi(t).

In the LCR approach, the interface evolutions are estimated in a Lagrangian manner as
follows:

dxi

dt
· n = u · n (5.14)

The interpolation of the Eulerian velocity �eld u at the Lagrangian positions and the approxima-
tion of the Dirac function appearing in (5.13) correspond to Eulerian to Lagrangian projection
of variable, or conversely. These operations require smooth distribution functions [Shin 02b] as
the Lagrangian positions xi do not generally coincide with the Eulerian grid nodes x.
The main interest of LCR method is linked to the automatic management of interface merging
and rupture by using the intersection of the χ = 0.5 iso-surface with the control volumes of
the calculation grid. To our knowledge, no curvilinear version of LCR exists in the literature,
for the same reason as for the VOF-PLIC method: the estimate of geometrical intersections on
curvilinear grids is complex. The idea of using an auxiliary Cartesian grid Ĝ is also a valid idea
for the Front-Tracking method.
The curvilinear extension of LCR lies in the use of velocity û(5.12) for interpolating ûi in Ĝ with
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the discrete Dirac function proposed by Shin and Juric. This velocity �eld is used for advecting
the markers and in the transformation of the Lagrangian interface shape Γi(t), through its coor-
dinate vectors xi, as proposed in the section devoted to interface initialization on the auxiliary
grid Ĝ. The coordinates of the markers so obtained are called x̂i. The new equation describing
the Lagrangian interface evolution reads

dx̂i

dt
· n̂ = ûi · n̂ (5.15)

where n̂ is the local unit normal to the transformed interface Γ̂i(t). Once x̂i and so Γ̂i(t), is
known, the Heaviside function χ is obtained by solving the following equation

∇2χ = ∇ ·
∫

Γ̂i(t)
n̂δ(x̂− x̂i)dγ (5.16)

As for the VOF function C, χ is the same in Th and T̂h.

5.3.3 The Level-set method
As for the other volume functions which consider an implicit representation of the interface, the
initialization and the time evolution of the level-set function is performed in the Cartesian frame.
The level-set function is denoted φ̂ in the Cartesian grid. As for the VOF function, φ̂ is advected
according to

∂φ̂

∂t
+ û · ∇̂φ̂ = 0 (5.17)

The VOF-PLIC method solves Eq. (5.9) geometrically. For the Level-set method, the hyperbolic
equation (5.17) is solved explicitly with a �nite-volume method. In [Tang 04], Tanguy shows that
high orders schemes have to be used to obtain acceptable results. Here, the time advancement
is performed with a Runke-Kutta 3 scheme [Shu 98] while the spatial derivatives are discretized
with a WENO 5 scheme [Shu 96]. The fonction thus obtained is no more a distance function
as its fundamental properties are not conserved. Hence, a reinitialization procedure is needed.
Proposed by Sussman et al [Suss 94], the idea is to use the only valid iso φ̂ = 0 to rebuild the
function. Amongst the numerous method to reinitialize the Level-Set, the one used here solved
the following PDE: 




∂φ̂

∂t′
= sign(φ̂(x, t)(1− ‖∇φ̂‖

φ̂(x, t′ = 0) = φ̂(x, t)
(5.18)

Details on the numerical discretization can be found in [Jian 00, Coud 07]. One can notice that
some geometric properties of the level-set function in the Cartesian frame are no more veri�ed
in the curvilinear frame. However, the interface normal as well as the curvature can be retrieved
with a suitable modi�cation of the gradient:

∇φ

‖∇φ‖ =




1
∆ξ
1

∆η
1

∆ζ




∇̂φ̂

‖∇̂φ̂‖ . (5.19)

Thus, the curvature κ can then be obtained with

κ = ∇ ·
( ∇φ

‖∇φ‖
)

. (5.20)
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5.4 The �ctitious domain methods
Generally, the �ctitious domain methods modify the original discretization of the conservation
equations near the interface or in a given sub-domain. The spatial accuracy of these methods
depends on the accuracy of the interface localization. If only the discrete Heaviside χ is used, one
cannot obtain more than a �rst order of accuracy in space. Higher orders are obtained when the
accurate location of the interface is used. A second order can be reached both using the explicit
surface (i.e. the Lagrangian mesh) or the implicit surface provided by the level-set function.
Various results are obtained with the di�erent VOF functions.
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Chapter 6

Detailed algorithms of the methodology

The algorithms used to performed our strategy are presented in this chapter. Point-in-solid
algorithms, a Level-set construction and a Cartesian to curvilinear transformation are de-

scribed as well as their optimization using geometric arguments and advanced data-structures.
Physical problems implying interfaces are then simulated to evaluate the accuracy of our ap-
proach.

The computational domain Ω is approximated with a curvilinear mesh Th composed of N×M
(×L in 3D) cell-centered �nite volumes (VI).

6.1 Point in solid algorithm
Some algorithms used to initialize implicit representation of the interface are presented here. A
huge literature can be found in the computer graphics community. A good review can be found
in [Ogay 05].

6.1.1 A continuous method
The method presented here has been �rst introduced by Shin and Juric in [Shin 02b]. As usual,
we are looking for χ such as χ is the indicator of the sub-domain bounded by Σ. Contrary to
many point-in-solid methods where geometrical properties are used, this approach deals with the
resolution of a Poisson equation: { ∇2χ = ∇ · FΣ

χ = 0 on ∂Ω
(6.1)

with FΣ =
∫

Σ
nδi (x− xf ) ds a vector normalized interface contribution, xf the interface po-

sition and δi the Dirac function. This equation can be seen as the modeling of a heat transfer
problem where χ is the temperature. The source term of (6.1) is the divergence of a normal �ux
which is discretized on the staggered grid. The term FΣ is located on the velocity nodes and
∇ · FΣ is naturally obtained with a centered scheme on the scalar grid.

Concerning the calculation of FΣ itself, it has to be integrated over the whole interface for
each Eulerian point. Practically, the interface contribution is considered as constant for each
element σl, l ∈ Lf which de�nes the discrete interface Σh. The center of σl is denoted as xl and
∆σl is the measure of σl in Rd−1. For an Eulerian point xi, the following approximation is used:

∫

σl

nδi (x− xf ) ds ≈ nlDi(xl)∆σl (6.2)
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The Dirac function δi is approximated using the distribution functions Di introduced by
Peskin [Pesk 02]. In 2D, the distribution function is:

Di(xl) =
δh ((xl − xi)/hx) δh ((yl − yi)/hy)

hxhy
(6.3)

where (xi, yi) are the coordinates of the Eulerian point xi, (xl, yl) are the coordinates of the
Lagrangian point xl, and δh is a discrete Dirac function. In our case, we use the same function
as Shin and Juric [Shin 02b]:

δh(r) =





δ1(r), |r| 6 h
1/2− δ1(2− |r|), h < |r| 6 2h
0, |r| > 2h

(6.4)

with
δ1(r) =

3− 2|r|+
√

1 + 4|r| − 4r2

8
(6.5)

where h is generally the local space step of the discrete grid. Hence, we �nally obtain
∫

Σ
nδi (x− xf ) ds ≈

∑

σl, l∈Lf

nlDi(xl)∆σl (6.6)

and the divergence of FΣh
can be obtained. As for the IBM of Peskin [Pesk 72], the Dirac

discrete function δh spreads the interface contribution to the neighbor Eulerian nodes. With the
present discretization (6.4), the support of δh is two cells width on each side of the interface in
the normal direction. As the Dirac function has a limited support, each contribution is computed
only if the Eulerian point is in the vicinity of Σh.

Once the source term is discretized, the equation can be solved using a fast FISHPACK
Poisson solver [Adam 99] based on spectral methods, or a standard �nite volume discretization
with a second-order centered scheme. In this case, the matrix inversion is performed with a
BiCG-Stab II solver [Vors 92] and an ILU preconditioning [Gust 78a].

The approach of Shin and Juric su�ers from some drawbacks:
• As only the Lagrangian points generates the source term, they have to be dense enough

compared to the Eulerian node. Practically, the Lagrangian mesh has to be re�ned adap-
tively such that ∆σl 6 h.

• The method does not perceive the inner holes, so the surface must separate the space in
only two connected sub-spaces. In 2D, a circle is a valid interface, a ring is not (see Fig.
6.1).

• The method does not work properly when the Lagrangian mesh is not entirely in the
computational domain. The method requires reconstruction of the Lagrangian interface
near the boundary to work properly.

Even if the computational drawbacks can be solved thanks to an implementation e�ort, the
limitation on the topology of the surface are very restrictive. As will be demonstrated later,
the accuracy of the method in term of implicit surface representation is not as good as with a
level-set function.

However, the intrinsic approximations of the method provide an advantage for some cases.
If the curvature of the interface is too high compared to the Eulerian mesh, this continuous
method smoothes the interface and gives an appropriate representation while other methods
could produce a non-valid implicit surface (e.g. a non-closed surface).
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Figure 6.1: Surfaces for 2D problems. The left one is valid, the right one is not

6.1.2 Geometrical methods
6.1.2.1 Ray-casting method
A �rst issue is to determine which Eulerian points are inside the object de�ned by the Lagrangian
surface. We use a Ray-casting method based on the Jordan Curve theorem. The principle is to
cast a ray from each Eulerian point to in�nity and to test the number of intersections between
the ray and the Lagrangian mesh. If the number of intersections is odd, the Eulerian point is
inside the object, either outside. Ray-casting methods can be enhanced by classifying elements of
the Lagrangian mesh with an octree sub-structure (see section 6.5.2). If a ray does not intersect
a cube, it does not intersect the triangles inside. More generally, a fast test to classify a point
as outside or inside is to see if the point is in a box bounding the Lagrangian mesh. If the
point is outside, one can be certain that the point is not inside the object. Some details of the
implementation of the method can be found in [Ogay 05].

Algorithm 1 describes a pseudo-code performing a basic computation of the color function
C. To avoid numerical errors due to the presence of great numbers to simulate the in�nity, the
ray is only cast to a point x∞i which is far enough to be outside of the object and the grid. To
optimize the intersections calculation, x∞i is di�erent for all xi and parallel to a grid line. One
recall that M and K are the number of Eulerian cells in the second and third directions.

Algorithm 1 Ray-casting algorithm
for i = 1,M do

nsect := 0
for k = 1,K do
if Segment [xi; x∞i] intersects σk then

nsect := nsect + 1
end if

end for
if nsect is even then

C(xi) := 0
else

C(xi) := 1
end if

end for

Concerning the ray-triangle intersection, [Ogay 05] announces that Feito-Torres [Feit 97] al-
gorithm seems to be the faster.
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6.1.2.2 Thread Ray-casting method

We propose now an optimization of the Jordan-based method on orthogonal structured grids
that greatly improves the performances of the algorithm. This optimization seems to be known
in the computer graphics community but to our knowledge have never been applied to numerical
simulation. In Jordan based-method, the direction of the ray is indi�erent. If all rays are
launched in the same direction, for instance Ox, many intersection tests are done more than one
time for a set of point in a same Eulerian mesh row in the Ox direction. Hence, only one ray can
be cast for a row. If rays are casted in the more re�ned direction, computational cost is simply
divided by the number of cells in this direction. This method is called the Thread Ray-Casting
(TRC).

Alg. 2 describes our TRC algorithm. Rays are cast from points xi included in a boundary
slice Sxy of the Eulerian mesh. For each starting point xi, the intersections are stored and sorted
according to their z component in a two entry structure PTZ(i, nsecti). For each xi ∈ Sxy,
nsect is not known a priori. If PTZ is an array, a �rst pass has to be performed to determine
the size of PTZ. A best choice is to use chained lists.

Algorithm 2 Thread Ray-casting algorithm
for i = 1,M with xi ∈ Sxy do

nsect := 0
for k = 1,K do
if Segment [xi; x∞i] intersects σk then

Store the intersection in PTZ(i, nsect)
nsect := nsect + 1

end if
end for
if nsect is even then

C(xi) := 0
else

C(xi) := 1
end if
In_state := C(xi)
nsecttmp := 0
for j = 1, mz do
while nsecttmp < nsect and xj(3) > PTZ(i, nsecttmp) do

Switch In_state
nsecttmp := nsecttmp + 1

end while
C(xj) := In_state

end for
end for

For the sake of clarity, the two algorithms (Ray-casting and TRC) are not fully optimized
(no bounding box test for instance).

The binary Ci function so obtained can be used to build an Eulerian Level-set function near
the interface by estimating the Eulerian distance between the Eulerian points and the neighbor
Lagrangian points.
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6.2 Cartesian to curvilinear transformation
The key point of our methodology is to work in a Cartesian framework instead of a curvilinear
one. Many optimisation in computing Eulerian functions can be performed when the grid lines
of the Eulerian mesh are straight.
The main idea is to �rst unfold the orthogonal curvilinear grid to obtain a dual Cartesian grid.
Then, the objects are projected onto this new grid. The method is presented in 2D but can be
generalized in 3D without di�culties.

Let T̂h be the Cartesian structured mesh composed of elements V̂ ′i = Ki, Th being the initial
primal orthogonal curvilinear grid (in the �nite volume sense). Let P be the projector from Th to
T̂h. Hence, the discrete interface Σ̂h is the projected interface such as Σ̂h = P (Σh). Each element
V̂ ′i is an unit square, such as Ω̂h = [ 0 , N ] × [ 0 ,M ]. The transformation of Σh is performed by
displacing each node of elements σi, denoted by σij , j = 1, 2. Let (xl, yl) be the position of a node
σij and (xk, yk), k = 1, .., 4 the position of each node Kij of the element Ki containing σij (see
Fig. 6.2 for notations). Two Q1 interpolations Qx and Qy are de�ned such as Qx(xk, yk) = x̂k

and Qy(xk, yk) = ŷk. The determination of the coe�cients requires to solve two linear systems.
The analytical solution is used in 2D and a BiCG-Stab method is used in 3D to obtain the
projector coe�cients. At last, (Qx(xl), Qy(yl)) gives the position of σ̂ij .

Figure 6.2: Notations and principle of the curvilinear to Cartesian transformation. Original
element Kij and projected element K̂ij are described

6.3 Level-set function
6.3.1 Computing the Level-Set function
A good review of the methodologies used to compute the distance function has been performed
by Jones et. al. [Jone 06]. A global method can be found in [Baer 05]. The Level-set function
results from the calculation of the local sign and the calculation of the unsigned distance to the
interface.

In the present work, the sign is obtained with the Heaviside function χ. If the purpose of the
Level-Set is only to build a VOF function, the Level-Set function is only required at the nodes
close to the interface. To locate such nodes, an explicit Laplacian is applied several times to the
Heaviside function χ∆. Nodes where 0 < χ∆ < 1 are at the vicinity of the interface.
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The calculation of the unsigned distance between a point x and a triangle T is now described.
The idea is globally the same as [Jone 05]. The main di�culty of the computation of the distance
from a point to a segment or a triangle is to determine which part of the element (vertex, edge,
face) is the closest.

2D computation The segment σl is de�ned by two vertices p1 and p2. We de�ne two vectors
v1 = p2 − p1 and vx = x− p1. The position of the orthogonal projection of x on σl is deduced
from the quantity E = vx · v1:

• E < 0 ⇒ the closest part is the point p1

• 0 < E < 1 ⇒ the closest part is the segment σl

• E > 1 ⇒ the closest part is the point p2

and the distance to the closest element is computed.

3D computation Thee triangles σl are de�ned by three vertices p1, p2 and p3. We de�ne
two vectors v2 = p2 − p1 and v3 = p3 − p1. The normal vector n of σl is

n =
v2 × v3

‖v2 × v3‖ (6.7)

The point x′ is the orthogonal projection of x on the plane containing σl. The problem is now
reduced to a 2D problem. The next step is to determine which part of the triangle is the closest.
If x′ is in σl, the closest part is the face. If x′ is exterior, six other cases appears (Fig. 6.3). To

Figure 6.3: The seven di�erent regions delimiting the closest element to a point

localize the region, we de�ne oriented lines overlapping the triangle edges and the lines orthogonal
to the edges passing by the vertices (see Fig. 6.4).

The edge equation [Pine 88] is used to determine in which side of the line the point is. The
edge equation is

E(x, y) = (x−X)dY − (y − Y )dX (6.8)
for a line passing through (X; Y ) with gradient dX

dY with respect to a point (x, y). If E < 0, the
point is to the left of the line, if E > 0 to the right, and if E = 0 it is on the line. Knowing the
planar distance to the triangle, the distance in 3D is easily retrieved.
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Figure 6.4: Lines used to �nd the region of a point

6.3.2 Optimizations
As for the other geometrical algorithms, many optimizations can be implemented:

• The search for the minimal distance has to be done with squared distances. Hence, a square
root is only applied to the �nal distance.

• For points far enough from the interface, one can compute the distance to the points of
the interface only. Such points are located using the smoothed Heaviside function χ∆. If
all the elements are smaller than the Eulerian cells, such a method gives a good approxi-
mation. New points can be temporarily created and the elements re�ned for the need of
this computation.

• An octree data-structure (see section 6.5.2) is used to sort the elements spatially. If a given
leaf of the octree (i.e. the closest box containing elements of the interface) is the closest to
x, the closest element of the interface is in this leaf or in a neighbor leaf.

• For each element, a sphere containing the element is computed. Its center is pc and its
radius is r. If ‖x − pc‖ − r is greater than the actual closest computed distance, there is
non need to compute the real distance from x to the element.

The formula commonly used to retrieve the location xΣ of the interface between two nodes x1

and x2 from φ1 = φ(x1) and φ2 = φ(x2) is

xΣ =
x1|φ2|+ x2|φ1|
|φ1|+ |φ2| . (6.9)

6.4 VOF function
A �rst approximation of the VOF function is the Heaviside function χ. In our approach, the VOF
function is generally build from the level-set function φ. In [Suss 98], Sussman and coauthors
propose the following function:

C(x) =





0 if φ < −ε
1
2

(
1 +

φ

ε
− 1

π
sin(πφ/ε)

)
if |φ| 6 ε

1 if φ > ε

(6.10)
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where ε is a characteristic distance, e.g the cell size. The resulting interface has a thickness (the
nature of this thickness will be discussed later) of about

2ε

|∇φ| . (6.11)

If the level-set is the distance function, the thickness is then 2ε. This smooth function has good
regularity properties.

The formula commonly used to retrieve the location xΣ of the interface between two nodes
x1 and x2 from C1 = C(x1) and C2 = C(x2) is

xΣ =
x1|0.5− C2|+ x2|0.5− C1|
|0.5− C1|+ |0.5− C2| . (6.12)

However, this interpolation is designed for a VOF function which is linear for 0 6 C 6 1 and
a loss of accuracy is encountered when the interface is described by a VOF function build with
the Sussman function (6.10). If only a C0 the regularity of the VOF function is required, the
following function is more desirable:

C(x) =





0 if φ < −ε
1
2

(
1 +

φ

ε

)
if |φ| 6 ε

1 if φ > ε

(6.13)

With this function, the same surface as for the level-set function can be retrieved. For the level-
set function, the iso φ = 0 is the location of the interface. For the VOF function, two approaches
are generally used. A �rst approach considers that the interface is the zone where 0 < C < 1,
so the interface has a thickness. When di�usive advection schemes are used, the thickness of the
interface will eventually grow.

Another point of view considers that the interface is located in C = 0.5. The numerical
thickness of the interface is a way to increase the accuracy of the implicit representation of the
surface (the Heaviside function which is binary does not allow the sub-mesh position of the
interface to be retrieved). In this way, the interface position is as accurately de�ned as for a
level-set function.

6.5 Validation and global convergence
6.5.1 Accuracy of the method
6.5.1.1 Interface location for a circle with an immersed boundary method
An accuracy test of the Lagrangian to Eulerian projections coupled with the curvilinear to
Eulerian projection is performed here. The resolution of the Laplace equation with an immersed
boundary is considered. The IB is accounted for using the Sub-Mesh Penalty (SMP) method
(see 7). It allows a Dirichlet boundary condition on a complex interface to be imposed with a
second order of spatial accuracy. This accuracy is directly bind to the accuracy of the interface
localization. The SMP method can consider implicit and explicit representations of the interface
and the di�erent approaches are compared. As usual, computational time is saved by performing
all the related calculations of the SMP method in the Cartesian transformed frame. Validations
for the IB problem are performed on two curvilinear grids (see Fig. 6.5). Grid A is an orthogonal
mesh with exponential periodic steps. Grid B is a converging pipe. The homogenous Laplace
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Figure 6.5: Curvilinear grids used for validation : Grid A (left) - Grid B (right)

equation between two circles of radius R1 = 0.5 and R2 = 4 is solved. The solution is u1 = 10
on the �rst circle and u2 = 0 on the second circle. The boundary condition on the inner circle is
imposed with the SMP method and the analytical solution which account for the exterior circle
is imposed on the boundary of the Eulerian grid. The position is obtained with the following
representations:

• GI: The geometric intersection between the projected interface and the Cartesian grid is
used

• LS-CUR: The level-set function for the curvilinear grid is used to locate the interface

• LS: The level-set function for the Cartesian grid is used to locate the interface

• SUS: The Sussman Heaviside function for Cartesian grid is used to locate the interface

• FT: The Front-Tracking projection algorithm for Cartesian grid is used to locate the in-
terface

The Tables (6.7) and (6.7) shows the convergence results for grids A and B. As expected, the
more accurate method is the GI. The LS-CUR and LS have a quite similar accuracy. The three
functions almost reach a second order in space accuracy for the L2 and L∞ error norms. The
level-set function calculated on the curvilinear grid is more accurate than the one calculated on
the transformed Cartesian grid. However, the level of error is quite similar.

The FT method, which solves an elliptic equation to obtain the color function reach an order 2
in L2 norm for the �rst meshes. Then, the performances go down. The same phenomenon occurs
for the L∞ norm where an order of 1.5 is found for the �rst meshes. An implementation error
is perhaps involved. Nevertheless, for the meshes for which the method has a good convergence
rate, the level of error is much more higher than for the GI or the LS.

For the SUS method, which uses a smooth Heaviside (6.10) constructed from the level-set
function, an average order of 1.55 is found for the grid A and 1.36 for the grid B for the L2 norm.
For the L∞ norm, the convergence orders are about 0.9 If the Sussman function is replaced by
a linear function (6.13), the same results as for the level-set function are retrieved. Hence, the
regularity of the Sussman function impacts on the order of convergence1.

1A solution to retrieve a second order of convergence would be to build an ad hoc interpolation for the Sussman
function.
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Figure 6.6: Relative L2 and L∞ errors for some implicit representations of the interfaces on the
Grid A

Figure 6.7: Relative L2 and L∞ errors for some implicit representations of the interfaces on the
Grid B
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6.5.1.2 Interface tracking

Description of the curvilinear grid The curvilinear grid used in the two following sections
is a converging-diverging or contracted channel used by Friess et al. [Frie 04] in their test case
number 27 on interface tracking in complex geometries. The grid has been generated with the
Computational Fluid Dynamics CFD meshing Gridgen [Chaw 92] from Pointwise which enables
to manage the orthogonality of curvilinear grids in an accurate manner. An example of con-
tracted channel is provided in �gure 6.8. Its dimensions are [ 2.5 ; 2.5 ] × [−1 ; 1 ] The ability

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

Figure 6.8: The 128× 32 contracted channel mesh for the interface tracking cases

of our method to deal with multiphase �ow methods is studied. A phase is initialized in the
domain. Two di�erent shapes are considered, a circle and a cross (see Fig. 6.9. Convergence
study on the volume conservation are �rst performed. The di�erence between the initialized and
the �nal volume is calculated. We do not use the analytical volume but the volume initialize as
described previously. For each cases, a velocity �eld is initialised. A certain number of iterations
is performed, then the velocity �eld is inverted and the same number of iterations is performed.

Advection of a shape in a horizontal velocity �eld (Field A)
The phase is advected with a constant velocity in the x-direction. In the transformed space, the
velocity is not null for its two components. A circle of radius 0.225m centered in (−1.45, 0) is
�rst considered. For the second case, a cross of width 0.225m centered in (−1.45, 0) is used.

The Fig. 6.12 shows the convergence in mesh of the error on the volume conservation for the
four advection methods on the �eld A for the circle and the cross cases. The Fig. 6.11 shows
the implicit surfaces reconstructed at the end of the simulations.

Advection of a shape in a parabolic velocity �eld (Field B)
For this case, the streamlines follows the mesh lines so the velocity �eld is null in the y-direction
in the transformed Cartesian frame and the �eld is sheared. A circle of radius 0.5m centered in
(−1.95, 0) is �rst considered. For the second case, a cross of width 0.5m centered in (−1.95, 0)
is used.

The Fig. 6.13 shows the convergence in mesh of the error on the volume conservation for the
four advection methods on the �eld B for the circle and the cross cases. The Fig. 6.11 shows the
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Figure 6.9: The Lagrangian shape of the cross for the curvilinear advection tsets

implicit surfaces reconstructed at the end of the simulations.

Discussion
The convergence of the error for the Front-Tracking is regular except for the case of the cross for
the B �eld and reach a second order. The convergence of the Level-Set is less regular, especially
for the circle. The LS always reach a second order, and more with the circle. For the �eld A, the
LS is less accurate than the FT. The inverse is observed with the �eld B. The convergence of the
VOF-PLIC and the VOF-TVD methods is more irregular. For the �eld A, the error is always
decreasing except for one value for the TVD) and globally shows good performances compared
to the other methods, especially the Level-Set. For the �eld B, even if the error levels are
quite good compared to the other methods, the error is almost never decreasing with the mesh.
Concerning the computational time for these cases, the VOF-PLIC and VOF-TVD methods are
about �ve time faster than the Front-tracking and the Level-set. Concerning the Front-tracking,
its computational cost depends directly on the number of Lagrangian elements.
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Figure 6.10: Iso-lines of the �nal position of the phase for the FT (solid), LS (dashed),
TVD(dotted) and PLIC (long-dashed) for 128×32 (up, with the Eulerian mesh nodes), 256×64
(middle) and 512× 128 (down, details) meshes on the �eld A
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Figure 6.11: Iso-lines of the �nal position of the phase for the FT (solid), LS (dashed),
TVD(dotted) and PLIC (long-dashed) for 128 × 32 (up), 256 × 64 (middle) and 512 × 128
(down, details) meshes on the �eld B
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Figure 6.12: Convergence of the error on the volume conservation for the four advection methods
on the �eld A for the circle case (up) and the cross case (down)
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Figure 6.13: Convergence of the error on the volume conservation for the four advection methods
on the �eld B for the circle case (up) and the cross case (down)

Concerning the iso-lines, the �rst mesh (128×32) with the �eld A shows that the cross is not
accurately retrieved by the four methods, but as the Lagrangian mesh takes a small part of the
domain, the Eulerian mesh is comparatively very coarse in this case. However, one can see that
the FT method produces the best result. The Fig. 6.14 shows the Lagrangian shape managed
by the FT method in the transformed space (explaining the slight twisting of the cross). As can
be seen, the cross is very accurately retrieved, and the lack of precision of the �nal result is only
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due to the projection [Shin 02b]. It can be observed on Fig. 6.15 which shows the horizontal
advection of the cross on a 256 × 64 with the FT method. Five �eld are superimposed. The
extreme-left cross is obtained for the �rst time while the extreme-right one is obtained after.
The two extreme �elds seems to be identical. Due to the re�nement of the Eulerian mesh in the
central part, the middle cross (intermediate time) describes the interface with more accuracy. It
would be interesting to calculate the volume conservation using the Lagrangian mesh instead of
the Eulerian projection.

Figure 6.14: Lagrangian mesh managed by the FT method in the transformed space for a 128×32
mesh

On �nest meshes, the Front-tracking gives a very regular result which is slightly smoothed by
the projection. The LS gives a less regular result while the VOF-TVD smoothes a lot the lower
and upper corners. For the second case on the �led B, the initial size of the cross is two times
larger. The simulations show the good performances of the VOF-PLIC method. The VOF-TVD
and Level-set methods show quite good results. However, one can see on the 512 × 128 mesh
that the LS is less e�cient on some corners. Concerning the FT, the method produces the more
regular results which is one time again smoothed by the projection. As this latter produce a
less accurate implicit interface than the Level-set, the VOF method retrieves the shape of the
interface more accurately. However, the FT method shows a better volume conservation than
the other methods for this case (Fig. 6.13).

6.5.2 Optimisation using a octree data structure
An octree is a tree data structure in which each internal node has up to eight children. Octrees
are used in the present work to partition the 3D space by recursively subdividing it into eight
octants. In 2D, the equivalent is a quadtree where the 2D space is recursively subdivided into
quadrants.

To build the octree, the space is �rst divided in eight octants, generally eight boxes. Each
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Figure 6.15: Advected phase for the �eld A on a 256× 64 mesh for various time steps

triangle of the mesh is classi�ed according to its belonging to one octant or more. Then, for
each octant, the same process is repeated recursively. The depth of subdivision depends on the
complexity of the mesh and is not the same for each part of the mesh (each leaf of the octree
have not necessarily the same depth). Generally, the construction is stopped for a given octant
if it contains a low limit number of elements. If an octant of the initial bounding box does
not contain any elements, it is a priori useless to subdivide again this octant. However, some
implementations are based on well-balanced trees and all leaves must have the same depth.

To sort a cloud of points, a kD-tree structure is generally used and allows to �nd quickly
the closest point to an other . Here, the space is recursively cut into two sub-spaces by a
median plan. Once again, the number of points in the �nal subdivisions is crucial for the per-
formance. The Fig. 6.16 shows, for a random �eld of points, the average time to �nd the closest
neighbor of a random point with respect to the size of the �eld and the number of points in
the smallest sub-divisions. As can be seen, the optimal size for the smallest sub-divisions is
about 20 points while the performances fall dramatically if too few elements are present in the
smallest sub-divisions. These results can of-course vary according to the implementation choices.

This space subdivisions allows many optimisation of the previous algorithms to be performed
and generally modify the complexity of a spatial search from O(n) to O(log n).

6.5.2.1 Application to the curvilinear to Cartesian algorithm

In this algorithm, one have to �nd inside which Eulerian cell each vertex of the Lagrangian mesh
is. The nodes of the Eulerian mesh are sorted with a kD-tree. Then, the closest pair of Eulerian-
Lagrangian nodes is found and the belonging of the Lagrangian node to the cells containing the
Eulerian cell is performed.
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Figure 6.16: Time in second to �nd a closest point with respect to the size of the �eld and the
number of points in the smallest sub-divisions for a kD-tree

6.5.2.2 Application to the Ray-casting algorithm
The basic optimisation of the Ray-casting algorithm is to test the intersection between a ray and
a box bounding the object. One can use the octree to perform recursively this test. The octree
gives boxes bounding a set of elements of the object, so one can disquali�ed such a set of elements
by testing the intersection between a ray and their bounding box. If an intersection is detected,
the ray will possibly intersect an element of the set, and intersection tests are performed with
the eight octants which compose the previous octant.

6.5.2.3 Application to the Level-set algorithm
As the location of the elements inside a given octant is generally irregular, the closest element to
a node in an octant is not necessarily inside this octant. Hence, for an Eulerian node in a given
octant, the closest element to the node is searched in the octant and its neighbors.

6.5.3 Performance tests
Speed tests have been performed on a P4 2.4 GHz for several meshes with and without the octree.
Three Lagrangian meshes are used, a sphere (18000 triangles, regular), the Stanford bunny (10122
triangles, irregular) and the Lascaux cave (271136 triangles, irregular. See section 14). The Tab.
6.1 shows the performances of the octree for these three meshes and a 1003 Eulerian mesh. As
expected, all the routines are faster with the octree. The gain for the curvilinear-Cartesian
projection is between 1.35 and 1.73 only. However, the computational cost of this algorithm is
negligible. For the Ray-casting, the gain is smaller than 2 on small meshes, and more than 10
for the Lascaux cave, where a deeper octree is used. For the computation of the Level-set, the
gain ratio is from 35 to 75.

One can notice that as the size of the Eulerian grid is 1003, the time ratio between the
standard Ray-casting (not tested here) and the Thread Ray-casting would be about 100.

The most important result is that the maximum computational time for the whole method is
shorter than a minute on a P4 2.4 GHz. This time is negligible against the computational time
required to solve the linear system resulting from the discretization of a conservation equation
in a 1003 mesh.
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Mesh Method curvi-Cart projection Ray-casting Level-set

Sphere
Standard 2.06 0.536 270
Optimized 1.37 0.332 5.79

Ratio 1.50 1.61 46.6

Bunny
Standard 1.19 0.172 123
Optimized 0.88 0.132 1.63

Ratio 1.35 1.30 75.5

Lascaux
Standard 45.4 35.9 1970
Optimized 26.1 3.32 56.1

Ratio 1.73 10.8 35.1

Table 6.1: Duration in second and performance ratio for three di�erent meshes with and without
octree
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Discussion and conclusion of Part II
As can be seen, dealing with immersed interfaces or boundaries is not trivial when the consid-
ered shapes are not analytical. An e�cient strategy for the Eulerian-Lagrangian grid coupling
has been devised here. This methodology works for curvilinear grids thanks to a curvilinear to
Cartesian projection, and the computational cost of this phase is negligible and is fully counter-
balanced by the possibility to use the Thread Ray-casting method. For a 3D mesh composed by
M3 elements, the computational cost of the Ray-casting is divided by M .

The construction of some implicit representations of a surface has been presented. The
accuracy of these methods has been compared with a �ctitious domain test case. For the mul-
tiphase �ows, the classic methods (VOF-PLIC, VOF-TVD, Level-Set, Front-Tracking) can be
used without modi�cation (for the FT, an implementation error seems to be involved). However,
the unusual convergency results suggests that a more deep study has to be performed.

For moving objects and �uid-structure coupling, the initial mesh of the object can be used
for each time step if the methods are optimized enough. For such objects, several approaches
use VOF or Level-set functions. As our approach is based on the use of Lagrangian meshes, it is
de facto the more accurate as the exact shape is always conserved. The case of moving object
will be detailed in the Part IV. Concerning the computational cost of our approach, it would be
interesting to compare it with the VOF and Level-set methods. However, the objective of any
method is to reach a computational cost which is negligible in comparison to the solver cost.
This aim can be reached with our Lagrangian mesh approach if enough e�orts are putted into
the optimization of the involved algorithms. The Thread Ray-casting as well as the octree and
kD-tree data structures have shown their ability to highly decrease the cost of such operations.
Furthermore, these algorithms are highly and simply parallelizable and a huge further gain can
be obtained using GPUs or multicore CPUs.

This methodology is a prerequisite for many immersed boundary and interface methods
which require to know the exterior and the interior of an object. As demonstrated in this part,
the implicit representation as well as the explicit representation of a surface can be used to
build �ctitious domain method. The next part, which deal with such methods, will use the
present methodology to enhance the resolution of the conservation equations near interfaces and
boundaries.
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Part IV

High-order �ctitious domain methods
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Introduction

In this part, two high-order �ctitious domain methods are presented. The �rst, the sub-mesh
penalty method (SMP), is the extension to higher orders of the VPM [Ango 89]. The second,

the algebraic immersed interface and boundary (AIIB) method, can be seen as an extension of the
SMP method to the augmented system approach (see section 4.1.2). Algebraically, the penalty
methods, more than penalizing equations, penalizes matrix lines. The AIIB method proposes
to add new lines to the inverted matrix. This approach allows to treat immersed interface
problems, when SMP method can treat immersed boundary problems only. These two methods
are designated as high-order method as they are of second order in space for various problems
and they can be extended to higher order for these problems straightforwardly.

De�nitions and notations
Let us consider the original domain of interest denoted by Ω0, typically the �uid domain, which
is embedded inside a simple computational domain Ω ⊂ Rd, d being the spatial dimension of
the problem. The auxiliary domain Ω1, typically a solid particle or an obstacle, is such that :
Ω = Ω0 ∪ Σ ∪ Ω1 where Σ is an immersed interface (see Fig. 6.17). Let n be the unit outward
normal vector to Ω0 on Σ. Our objective is to numerically impose the adequate boundary
conditions on the interface Σ. These conditions will be discretized in space on an Eulerian
structured mesh covering Ω.
The computational domain Ω is approximated with a curvilinear mesh Th composed of N ×M

Figure 6.17: De�nition of the domains and discretization kernels

(×L in 3D) cell-centered �nite volumes (VI) for I ∈ E , E being the set of index of the Eulerian
orthogonal curvilinear structured mesh. Let xI be the vector coordinates of the center of each
volume VI . In 2D, the horizontal and vertical mesh steps are respectively hx and hy This grid
is used to discretized the conservation equations. A dual grid is introduced for the management
of the AIIB method. The grid lines of this dual cell-vertex mesh are de�ned by the network of
the cell centers xI . The volumes of the dual mesh are denoted by (V ′I). The Eulerian unknowns
are noted uI which are the approximated values of u(xI), i.e. the solution at the cell centers xI .
The discrete interface Σh, hereafter called the Lagrangian mesh, is given by a discretization of
the original interface Σ. It is described by a piecewise linear approximation of Σ : Σh = {σl ⊂
Rd−1, l ∈ Lf}, Lf being the set of index of the Lagrangian mesh and K being the cardinal of Lf .
Typically, σl are segments in 2D and triangles in 3D. The vertices of each face σl are denoted
by xl,i for i = 1, d and the set of all vertices is {xl, l ∈ Lv}. The intersection points between
the grid lines of the Eulerian dual mesh and the faces σl of the Lagrangian mesh are denoted by
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{xi, i ∈ I} (see Fig. 6.17). Our objective is to discretize Dirichlet, Neumann, transmission and
jump conditions at these interface points to build a general �ctitious domain approach. This
method is expected to reach a global second-order spatial accuracy.
New sets of Eulerian points xI are de�ned near the interface so that each one has a neighbor xJ

verifying χJ 6= χI (with χI = χ(xI) and χJ = χ(xJ)), i. e. the segment [xI ; xJ ] is cut by Σh.
These Eulerian "interface" points are also sorted according to their location inside Ω0 or Ω1. Two
sets {xI , I ∈ N0} and {xI , I ∈ N1} are thus obtained, whereN0 = {I, xI ∈ Ω0, χI 6= χJ , xJ ∈ Ω1}
and N1 = {I, xI ∈ Ω1, χI 6= χJ , xJ ∈ Ω0}.
For each xI , I ∈ N 0 or I ∈ N 1, we associate two unknowns : the physical one denoted as uI

and the auxiliary one u∗I .
The various interpolations used in the present document, L2

1, P2
1 and Q2

1, are described in
section C.
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Chapter 7

The Sub-Mesh Penalty method

7.1 Principle of the method for a scalar equation
7.1.1 1D method for a Dirichlet boundary condition
The application �eld of the sub-mesh penalty (SMP) method concerns the problems with a
Dirichlet or Neumann BC on an immersed interface. As exposed before, such problems can
be treated with many existing methods. The SMP method is the �rst discretization of the L2

penalization to reach a general second order of accuracy in space. The lack of accuracy of the
�rst-order discretizations is primarily due to their approximative treatment of the interface. Such
methods impose the interface solution ul on whole control volumes, so the solution across the
interface is piecewise constant. Hence, the shape of the interface Σ is rasterized, i.e. its shape
is composed of segments which are oriented in the principal directions (Ox, Oy and Oz) only.
The term rasterization comes from computer graphics, where any picture is generally composed
of squared pixel and is therefore approximated.

To retrieve a more accurate shape of the interface, one had to impose the correct interface
value ul at the location xl of a piecewise linear reconstruction of the original interface. The
generic �rst-order penalty term for a node xI in the immersed domain is χ

ε (u − ul) with χ the
indicator of Ω1. To reach higher orders, the interpolation of the solution has to be considered
instead of the solution at the discrete points. To impose that the interpolated approximation of
the solution had to take the value ul in xl, the penalty term χ

ε (u− ul) is discretized at xI by

χI

ε
(

∑

k∈N0∪N1

αkuk − ul). (7.1)

As can be seen, the constraint is a linear combination of uI and of the solution near the interface.
Practically, the nodes xk are in the discrete neighborhood of xI .

First, let us study the 1D case for the following scalar model problem:
{ −∇ · (a∇u) = f in Ω0

u|Σ = uD on Σ
(7.2)

Let Ω = [0; 1] be the computational domain discretized in N control volumes of measure hx.
Let Σ be an immersed interface located at xl separating the domain in two subdomains Ω0 and
Ω1. The solution in Ω1 is a constant uD, and an associated Dirichlet BC is imposed on Σ. Let us
consider two nodes I and J located at xI and xJ , with xI < xl < xJ , xI ∈ Ω0 and xJ ∈ Ω1. The
�rst-order penalty constraint which can be used to impose the solution in Ω1 is simply uI = uD.
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This constant constraint is replaced by a linear one:

|xJ − xl|uI + |xI − xl|uJ

hx
= uD (7.3)

The solutions uI and uJ are not directly imposed, but the linear interpolation of the solution
between xI and xJ will be equal to uD, no matter what values uI and uJ take. We can now
de�ne the high-order penalty term in xJ and modify the original Laplace equation:

{∇2u}J +
χJ

ε
(
|xJ − xl|uI + |xI − xl|uJ

hx
− uD) = 0 (7.4)

where {.}I denotes the discretization of a quantity at the location xI . The resolution of a �rst
problem is now detailed to simply expose some properties and implications of the method. Let
us consider the following problem in Ω = [0; 1]:





∇2u(x) = 0 on Ω
u(0) = T1

u(xl) = T2

u(1) = T3

(7.5)

with its solution:

u(x) =





T2 − T1

xl
x + T1 − (T2 − T1)

R1

xl
if 0 ≤ x ≤ xl

T3 − T2

1− xl
x + T2 − (T3 − T2)

R2

1− xl
if xl ≤ x ≤ 1

(7.6)

The solution is piecewise linear. As xJ is the node of Ω1 which is the closest to Σ, the penalty
term is activated for the discretization of the conservation equation at this node. The constraint
is de�ned as:

αIuI + αI+1uI+1 = T2 (7.7)

and the initial matrix used to discretize the Laplace problem is now:

A =




1
1/hx −2/hx 1/hx

. . . 0
1/hx −2/hx 1/hx

1/hx + 1
εαI 1/hx + 1

εαI+1 1/hx

1/hx
1
ε − 2/hx 1/hx

0
. . .

1/hx
1
ε − 2/hx 1/hx

1




(7.8)
with the following second member: b =

(
T1, 0 · · · 0, 1

εT2,
1
εT2 · · · 1

εT2,
1
εT2

)T . Except in xJ , the
�rst-order discretization is still used inside Ω1. The parameter ε is chosen such as ε ¿ 1 so the
limit penalized problem is considered. The penalty term is always active for the nodes in Ω1 and
the computer accuracy totally erase the terms of the initial equation. Hence for these nodes, the
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terms 1/hx are negligible. Consequently, an independent sub-matrix can be extracted. Let us
consider this upper submatrix denoted as A1 and its associated second member:

A1 =




1
1/hx −2/hx 1/hx 0

. . .
0 1/hx −2/hx 1/hx

1
εαI

1
εαI+1




b1 =




T1

0
...
0

1
εT2




(7.9)

where u1 is the part of u related to Ω0 and the penalized node of Ω1. The new problem A1u1 = b1

can be solved independently. Hence, the solution in Ω1, far from the interface, does not impact
on the solution in Ω0 where the solution is not known a priori.

Concerning the properties of the matrix, one can notice that if |αI | ≥ |αI+1| the matrix looses
its diagonal dominance, and its invertibility is no more easy to deduce. Practically, any matrix
with a penalization term built with the SMP method can be inverted with an appropriate solver
such as a BiCG-Stab with an ILU preconditioner.

7.1.2 General method for a Dirichlet boundary condition
Let us now describe the 2D SMP method for the model scalar problem (7.2) with a Dirichlet
boundary condition on the interface Σ. Let us consider a point xI , I ∈ N1. We �rst describe
the case when xI has only one neighbor xJ in Ω0. The Lagrangian point xl is the intersection
between [xI ;xJ ] and Σh (Fig. 6.17 right). Then, the solution ul = uD(xl) at the interface is
approximated by the P1

1 interpolation between the Eulerian unknowns uI and uJ :

ul = αIuI + αJuJ with 0 < αI , αJ < 1 and αI + αJ = 1 (7.10)

As noticed in [Tsen 03, Gibo 05], a linear interpolation only is required to reach a second order
of accuracy. If now xI has a second neighbor xK in Ω0, the intersection xm between [xI ;xK ] and
Σh is considered with um = uD(xm). We choose xp, a new point of Σh between xl and xm (see
Fig. 8.1 left). The solution up = uD(xp) is then imposed using a P2

1-interpolation of the values
uI , uJ and uK :

up = αIuI + αJuJ + αKuK , 0 < αI , αJ , αK < 1 , αI + αJ + αK = 1 (7.11)

A Q2
1 interpolation of uI , uJ , uK and uL can be also used by extending the interpolation stencil

with the point xL which is the fourth point of the cell of the dual mesh de�ned by xI , xJ and
xK (see Fig. 8.1 left). As a third choice, two independent linear 1D interpolations are �rst
considered (one for each direction). It produces :

{
ul = αIu

∗
I + αJuJ with 0 < αI , αJ < 1 and αI + αJ = 1

um = α′Iu
∗′
I + αKuK with 0 < α′I , αK < 1 and α′I + αJ = 1

(7.12)

Then, a simple choice for xp is the barycenter between xl and xm where up = (ul + um)/2. This
particular case enables an easy implementation since we have :

αIuI + αJuJ = ul (7.13)
α′IuI + αKuK = um (7.14)

A summation of these two constraints gives :

αIuI + αJuJ + α′IuI + αKuK = ul + um (7.15)
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what is equivalent to build a constraint imposing up at xp with a P2
1 interpolation :

(αI + α′I)uI + αJuJ + αKuK

2
= up ,

with 0 <
αI + α′I

2
,
αJ

2
,
αK

2
< 1 , αI + α′I

2
+

αJ

2
+

αK

2
= 1 (7.16)

Hence, an easy general implementation consists in summing the constraints corresponding to
each direction, no matter the number of neighbors of xI . If the elements σl of Σh used to de�ne
xl and xm are not the same, the barycenter xp of these two points is not necessarily on Σh,
especially for interfaces of strong curvature. However, the distance d(xp, Σh) between xp and Σh

varies like O(h2) and so this additional error does not spoil the second-order precision of our
discretization. The convergence of this additional error is numerically tested in section (9.1.2).
If the curvature of Σh is small enough relatively to the Eulerian mesh, i.e. if the Eulerian mesh
is su�ciently �ne, xI almost never has a third or a fourth neighbor in Ω0. However, if this case
appears, a simple constraint uI = uB is used with uB being an average of uD at the neighbor
intersection points. In any case, by decreasing the Eulerian mesh step h, the number of points
xI having more than two neighbors in Ω0 also decreases.
Hence, the present method is suitable to impose a Dirichlet boundary condition on Σ for Ω0,
when the solution in Ω1 has no interest.

7.1.3 General method for a Neumann boundary condition
Let us now consider the following model scalar problem with a Neumann BC on the interface Σ
: { −∇ · (a∇u) = f in Ω0

(a · ∇u) · n = gN on Σ
(7.17)

The principle is about the same as for Dirichlet BC, and the same interpolations, once derived,
can be used to approximate the quantity (a · ∇u) ·n. Hence, at any point xl, l ∈ I on Σh we use

(a · ∇ul) · n ≈ (a · ∇p(xl) · n). (7.18)

For p ∈ Q2
1, we get ∇p(x, y) ·n = (p3y + p2)nx + (p3x + p1)ny whereas for p ∈ P2

1, ∇p(x, y) ·n =
p2nx + p1ny is obtained which means that the normal gradient is approximated by a constant
over the whole support. For example, in the con�guration of Fig. 8.1.left, with p ∈ P2

1, we have :

∇p(x, y) · n =
uI − uJ

hx
nx +

uK − uI

hy
ny = uI(

nx

hx
− ny

hy
) + uJ

nx

hx
+ uK

ny

hy
(7.19)

The diagonal coe�cient of the constraint for the matrix raw related to uI is (nx
hx
− ny

hy
). The

case when nx
hx

≈ ny

hy
leads to numerical instabilities. If we consider the con�guration of Fig.

8.1.left, using the normal vector of the segment [xl, xm] implies that the signs of nx and ny are
always di�erent so the diagonal coe�cient is always dominant. The same property occurs for the
other cases. When xI has only one neighbor xJ in Ω0, the Q2

1 and P2
1 interpolations degenerate to

L1
1 interpolations which suit for Dirichlet BC. For Neumann BC, this loss of dimension no longer

allows the interface orientation to be accurately taken into account, as one of the components
of the normal unit vector disappears from the interfacial constraint. Hence, a third point xK in
Ω0 is caught to build P2

1 interpolations (see Fig. 8.1 right). This point is a neighbor of xJ and
is taken as [xI , xJ ]⊥[xJ , xK ]. As in 2D two choices generally appear, the point being so that the
angle (n, xK − xJ) is in [−π/2;π/2] is taken.
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Figure 7.1: Example of selection of points for Dirichlet (left) and Neumann (right) constraints

7.1.4 Treatment of the solution in Ω1

As shown in the 1D example, the solution uI for I ∈ N1 is an extrapolation of the solution in Ω0

in order to satisfy the boundary condition on Σ and thus is non-physical. Hence, the solution at
the nodes of Ω1 far from the interface does not impact on the solution in Ω0. Nevertheless, the
�ctitious domain approach computes a non-physical solution in Ω1. It is naturally obtained with
the initial set of equations together with a volume penalty method such as VPM. The imposed
solution can be analytical when possible, or an arbitrary constant value. The computational
cost of this approach can be reduced by switching the solving of uI , xI ∈ Ω1 o�, or by totally
removing these nodes in the solving matrix.
One can scan the initial penalized matrix and remove the useless lines. The criterion can be
deduced from the VOF function C or from an analysis of the matrix structure. A line I can be
removed if it has no link with the nodes impacting on the solution of interest, i.e. if xI ∈ Ω1 and
I /∈ N1. This have been demonstrated with the 1D example above where a matrix A1 can be
extracted from the initial matrix A. A non negligible gain of speed can be obtained if only A1 is
inverted instead of A. Furthermore, as the peak of memory is often reached during the matrix
inversion, this method reduces the total memory requirement of the simulation for a given case.
As the other parts of the code are not modi�ed to take the reduction into account, a solution
vector of initial size has to be retrieved and a solution has to be chosen where xI ∈ Ω1 and
I /∈ N1. This complementary solution is easy to �nd using the initial penalized values (which is
generally the analytical solution in Ω1).

7.2 Application to the Navier-Stokes equations
7.2.1 The augmented Lagrangian method
The augmented Lagrangien (AL) method (see section A.3.4) consists in adding the term ∇(dr∇·
u) to the momentum equation of the NS equations so as to obtain the divergence free constraint.
The parameter dr set the magnitude of the constraint and must be chosen according to the
magnitude of the other terms of the equation. Iterative solvers can be very sensitive to the
magnitude of dr and a high parameter implies an increase of the number of required internal
iteration of the solver. A too high parameter penalizes the initial equation and leads to a strictly
incompressible velocity �eld with no respect to the initial momentum equation. However, as one
step only is required to solve the NS equations (contrary to the projection methods), the AL
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methods allows large time steps to be used. The penalized momentum equation with AL yields:

ρ

(
un+1 − un

∆t
+ un · ∇un+1

)
−∇(dr∇ · un+1)

= −∇pn + ρg +∇ · [µ(∇un+1 +∇Tun+1)] +
χi

ε
(

∑

k∈N0∪N1

αkun+1
k − uD).

(7.20)

The AL and the penalty terms are fully compatible in Ω0 and no particular manipulation is
required. The AL term is not active for the equations where the penalty term is activated
(uI , I ∈ N1). However, the stencil of the AL term is large enough to take all the penalized nodes
into account.

7.2.2 The scalar projection method
When the AL method is used, an IB method designed for an elliptic equation can generally be
applied directly. However, the AL method is not the most commonly used method to ensure the
divergence free constraint. Most of the FV CFD codes on Eulerian grids use the scalar projection
method (or fractional step method). The base method is described in section A.3.3.1. One of
the key points is to solve the pressure projection

∇ · u∗i = ∇ · ∆t

ρ
∇ip

′ (7.21)

where u∗ is predicted �eld for which generally ∇ · u∗ 6= 0. Once the pressure increment is
obtained, velocity and pressure are updated:

pn+1 = p′ + pn (7.22)

un+1
i = u∗i −

∆t

ρ
∇ip

′ (7.23)

or, with the correction of [Timm 96] on the pressure increment

pn+1 = p′ + pn − µ∇ · u∗. (7.24)

The IB methods for the NS equations are generally designed for the projector step only. As no
modi�cation of the corrector step is performed, the additional boundary constraint is not taken
into account and is then violated. This problem is not frequently tackled in the literature, and
satisfactory solutions have only appeared recently. In [Tair 07], authors modify the boundary
force method of Peskin to correct the projection step. In [Dome 08], Domenichini analyzes
in details the application of the DF-IBM to the fractional step solution of the Navier-Stokes
equations. As can be expected, he notices that the boundary condition is not accurately imposed.
In [Iken 07], authors propose a consistant correction for a second-order DF-IBM.

7.2.2.1 First-order correction
For a �rst-order penalty term, such a correction is easy to performed. Let us now write the
momentum Navier-Stokes equation with a �rst-order penalty term:

ρ
∂u
∂t

= RHS −∇p +
χ

ε
(u− uD) (7.25)

The same process as for the equation without penalty term is performed. The equation (7.21)
becomes:

∇ · u∗i = ∇ · ( ρ

∆t
− χi

ε
)−1∇ip

′ (7.26)
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One can notice that the source term of the penalty term has disappeared. The magnitude of
the gradient inside the solid is reduced, but not vanished, with this formulation, and the classic
velocity increment (7.23) gives a non-zero velocity inside the object. However, the consistant
addition of the �rst-order penalty term in (7.23) gives:

un+1
i = u∗i − (

ρ

∆t
− χi

ε
)−1∇ip

′ (7.27)

which induces a null velocity inside the solid. Hence, whatever the pressure gradient obtained
during the pressure correction step, (7.27) cancels the velocity inside the solid and satisfy the
penalty constraint as well as ∇ · un+1 = 0 everywhere.

7.2.2.2 Higher-order correction
Correction A: A consistant correction following the precedent walkthrough when a penalty
term of higher order is present is much more delicate. We consider the penalty term as always
linear. The �rst-order term χi

ε (ui − ul) is replaced by χi

ε (Piu − ul) with Piu =
∑

j∈N0∪N1

αjuj .

The pressure equation becomes:

∇ · u∗i = ∇ · ( ρ

∆t
− χi

ε
Pi)−1∇ip

′ (7.28)

and the velocity correction is then:

un+1
i = u∗i − (

ρ

∆t
− χi

ε
Pi)−1∇p′ (7.29)

which requires the calculation of the matrix ( ρ
∆tId − χ

ε P )−1 before the inversion of the resulting
system.

Correction B: This approach has been proposed by [Iken 07] for an DF-IBM method for which
the boundary term is expressed at the raw i, i ∈ N0 of the discretization matrix. We propose an
adaptation of this method to the SMPM. Let us �rst rewrite (7.27) (RHS′ is neglected) with
the high-order discretization of the penalty term:

(
un+1

i − u∗i
)

= −∆t

ρ
∇ip

′ +
∆t

ρ

χi

ε
Pi(un+1 − u∗). (7.30)

The �rst idea is to keep χi
ε Pi in front of un+1 − u∗. If the divergence operator is applied, we

obtain
∇ · u∗i = ∇ · ∆t

ρ
∇ip

′ +∇ ·
(

∆t

ρ

χi

ε
Pi(un+1 − u∗)

)
. (7.31)

As un+1 is not known (and the primal variable is p′), (7.31) cannot be solved yet for xi ∈ Ω1

(where χi 6= 0). However, one can use Eq. (7.30) to write the corrections of the velocity (u′)
and the pressure (p′). First, we introduce P ′

i , a new interpolator such as:

P ′
iu =

∑

j∈N0

αjuj (7.32)

and Piu = αiui + P ′
iu. Eq. (7.30) can be written as

un+1
i − u∗i = −∆t

ρ
∇ip

′ − ∆t

ρ

χi

ε
(αi(un+1

i − u∗i )− P ′
i (u

n+1 − u∗)). (7.33)
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As the limit penalized problem is considered, one can write the velocity correction: (7.33):

un+1
i = u∗i −

∆t

ρ
∇ip

′ if xi ∈ Ω0 (7.34)

un+1
i = u∗i −

P ′
i (u

n+1 − u∗)
αi

if xi ∈ Ω1 (7.35)

As P ′
i (u

n+1
i − u∗i ) is a linear combination of solutions at nodes in Ω0 only, so one can use (7.34)

in (7.35) to obtain

un+1
i = u∗i −

∆t

ρ
∇ip

′ if xi ∈ Ω0 (7.36)

un+1
i = u∗i −

P ′
i
∆t
ρ ∇p′

αi
if xi ∈ Ω1 (7.37)

One can write a uni�ed form of (7.36)-(7.37):

un+1
i = u∗i −

(
(1− χi)

∆t

ρ
∇ip

′ + χi

P ′
i
∆t
ρ ∇p′

αi

)
. (7.38)

The �nal pressure projection equation is obtained with the divergence of (7.38):

∇ · u∗i = ∇ ·
(

(1− χi)
∆t

ρ
∇ip

′ + χi

P ′
i
∆t
ρ ∇ip

′

αi

)
. (7.39)

The pressure is updated as in the standard method
pn+1 = p′ + pn. (7.40)

Remark 7.2.1 The velocity in Ω1 is updated as

un+1
i = u∗i −

P ′
i
∆t
ρ ∇p′

αi
(7.41)

By construction of the interpolator Piu = αiui + P ′
iu, no node of Ω1 is involved in the stencil of

P ′
i . Hence, as the pressure correction in Ω0 is

un+1
i = u∗i −

∆t

ρ
∇ip

′ (7.42)

one can replace ∆t
ρ ∇ip

′ by (u∗i − un+1
i ) in (7.41)to obtain

un+1
i = u∗i −

P ′
i (u

∗ − un+1)
αi

. (7.43)

Using the initial interpolator Pi, we obtain
Piun+1 = Piu∗. (7.44)

which means that the boundary constraint obtained in the predictor step is conserved.
Remark 7.2.2 For the solution at the nodes xi ∈ Ω, i 6∈ N1 (i.e. far from Σ). In this situation,
P ′

i = 0 and the �rst-order correction is retrieved.
This method induces a more complex discretization with a larger stencil but seems preferable
than a computation of ( ρ

∆tId − χ
ε P )−1 which leads to an extended stencil too.

Concerning the accuracy of the method, the same results as with the AL method are obtained
for the velocity and the pressure if the correction of Timmermans et al. [Timm 96] is used for
the projection method. However, the AL method generally allows higher time step to be used.



99

7.3 Application to Code_Saturne (EDF R&D)
One of the aim of this part is to show that the SMP method can be applied without fondamental
modi�cations to an unstructured code.

7.3.1 Code_Saturne
Code_Saturne [Arch 04] is a CFD code principally developed by EDF R&D at Châtou. The
basic capabilities of Code_Saturne enable the handling of either incompressible or expandable
�ows with or without heat transfer and turbulence. Dedicated modules are available for speci�c
physics such as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...), magneto-
hydrodynamics, compressible �ows, two-phase �ows (Euler-Lagrange approach with two-way
coupling), extensions to speci�c applications (e.g. Mercure_Saturne for atmospheric environ-
ment). Code_Saturne is portable on Linux PCs and all UNIX platforms tested so far (HP-UX,
Solaris, Cray, OSF1, ...). It runs in parallel with MPI on distributed memory machines (Origin
2000 and 3000, PC clusters, Cray XT-3, IBM Power PC p575, IBM Blue Gene, IBM Power PC
970 Marenostrum...). Developed since 1997 at EDF R&D, it is based on a co-located Finite
Volume approach that accepts meshes with any type of cell (tetrahedral, hexahedral, prismatic,
pyramidal, polyhedral...) and any type of grid structure (unstructured, block structured, hy-
brid, conforming or with hanging nodes,...). Compatible mesh generators include I-DEASr,
GMSH, Gambitr, Simailr, Salomé, Harpoonr, ICEMr,... Post-processing output is available
in EnSightr, CGNS and MED_�chier formats, with advanced data management capabilities
by the FVM library (EDF's "Finite Volume Mesh" library, under LGPL licence). Parallel code
coupling capabilities are also provided by the FVM library. Code_Saturne is property of EDF
and distributed under the GNU GPL licence. Code_Saturne can be coupled to EDF's thermal
software SYRTHES (conjugate heat transfer). It can also be used jointly with EDF's structural
analysis software Code_Aster, in particular in the Salomé platform. SYRTHES and Code_Aster
are developed by EDF and distributed under GNU GPL licence.

7.3.2 Developments
7.3.2.1 Shape management

As Code_Saturne mainly works with unstructured meshes, the Thread Cay-casting method
(6.1.2.2) has not been developed in this context and only the basic Ray-casting algorithm has
been developed. Can the TRC be applied to the unstructured grids? One can considers nodes by
peers instead of rows and use rays de�ned by peers of nodes. Theoretically, the cost of the base
algorithm is divided by two if the cost of �nding peers is negligible. However, the implementation
of any of our Ray-casting method uses rays which are parallel to the main frame axes to avoid
some computations. If the direction of the rays is random, many low-level optimisations cannot
be used. One can imagine a frame transformation (following the same idea of the curvilinear
to Cartesian projection) which produces a new frame where the nodes are as often as possible
aligned.

7.3.2.2 SMP algorithm

The algorithm has been implemented. We choose to build the interpolations by summing the
contributions of each neighbor of a penalized node. The main advantage here is that the method
works directly, no matter the number of neighbors of a penalized node.
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7.3.2.3 Heat equation
The heat equation is solved in structured grids in Code_Saturne with about the same discretiza-
tion as for Thétis. The principal di�erence is that Code_Saturne increments progressively the
solution by solving successive linear systems. The initial penalty term Piun+1

i − ul becomes
Piuk+1,n+1 − ul + Piu

n+1,k
D where k is the number of the sub-iterations (k + 1 being the current

iteration) and Pi the interpolator.
The solvers available in Code_Saturne during the project was not able to solve a penalized

matrix (which is not diagonal dominant). The solution has been to couple Code_Saturne with
a solver of thétis (BiCG-Stab and ILU factorization). An alternate solution consists in replacing
the iterative penalty term Piuk+1,n+1 − ul + Piu

n+1,k
D by P ∗

i uk+1,n+1 − ul + Piu
n+1,k
D where P ∗

i

is a new interpolator such as the resulting matrix line P ∗
i uk+1,n+1 is diagonal dominant. As the

source term −ul + Piu
n+1,k
D is still de�ned with the original interpolator, the method converges

to the desired solution.
On unstructured grids, the solution does not converge, even if the solution seems good at �rst

sight. The reconstruction of the operators for the unstructured meshes seems to be involved.

7.3.2.4 Navier-Stokes equations
The method has been applied to the Navier-Stokes equations. The di�culty is to couple the
SMPM with the scalar projection method. The correction proposed in the previous section
works very well in thétis and has not been implemented yet in Code_Saturne . The Fig. 7.2.left
shows the positive and the negative parts of ux after the prediction step. One can see that the
iso-line ux = 0 matches the boundary of the particle. Concerning the pressure correction, the
simulation diverge if the projection is not modi�ed. A �rst try has been to cancel the source
term of the projection equation in the solid. The Fig. 7.2.right shows the resulting streamlines
and pressure �eld for the same case. An incorrect boundary layer is present around the particle.

Figure 7.2: Positive and negative parts of ux

7.3.3 Results
7.3.3.1 2D method on structured grid
The method is validated for a Poisson equation. We consider two disks of radii R1 and R2

with Dirichlet BC T1 and T2. The �rst circle is included in the numerical domain of dimensions
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[−0.5 ; 0.5 ]× [−0.5 ; 0.5 ]. The second bounds the domain and de�nes the boundary condition
of the numerical domain. The Laplace equation is solved. The solution at a radius r with
R1 ≤ r ≤ R2 is:

T (r) =
T2 − T1

ln(R2)− ln(R1)
ln(r) + T1 − (T2 − T1)

ln(R1)
ln(R2)− ln(R1)

(7.45)

The calculations are performed with R1 = 0.2m, R2 = 2m, T1 = 20, T2 = 0. The results in Fig.

Figure 7.3: L2 relative error for the SMP method with Thétis and Code_Saturne for a 2D case

(7.3) shows a second-order accuracy for Thétis and Code_Saturne .

7.3.3.2 3D method on structured grid
The equation ∆T = 6 is solved on a 3D domain (a unit cube). The analytical solution is
T (x, y, z) = x2 + y2 + z2. The solution is penalized on a sphere of radius 0.2m. The Fig. 7.4
shows a very satisfactory convergence for Thétis and Code_Saturne .

Figure 7.4: L2 relative error for the SMP method with Thétis and Code_Saturne for a 3D case
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Chapter 8

The Algebraic Immersed Interface
method

8.1 General principle
Once the shape informations are available on the Eulerian grid, the problem discretization has to
be modi�ed to take into account the �ctitious domain (an immersed boundary or an immersed
interface). The sub-mesh penalty (SMP) method [Sart 08b, Sart 08a] was originally designed to
treat immersed boundary problems. It could be extended to treat immersed interface problems
by symmetrization of the algorithm with introduction of auxiliary unknowns as in the AIIB
method presented here. This new method is an enhancement of the SMP method which is also
able to solve immersed interface problems. The main idea of the AIIB method is to embed an
interface into a given domain by modifying the �nal matrix only. As no modi�cation of the
discretization of the operators is required (contrary to [Gibo 02, Gibo 05] and the immersed
interface methods [Leve 94]), the AIIB method is thus simple to implement.

Let P be a model problem discretized in the whole domain Ω as Au = b where A is a square
matrix of order m, u the solution vector and b a source term. The basic idea of the AIIB method
is to add new unknowns and equations to the initial linear system so as to take into account ad-
ditional interface constraints. The new unknowns, so-called the auxiliary or �ctitious unknowns
and labeled with ∗, are de�ned as being the extrapolation of the solution from one side of the
interface to the other, and are used to discretize the interface conditions. Hence, the orignal
problem Au = b becomes A′u′ = b′, with A′ a square matrix of order m + n, with n the number
of auxiliary constraints related to the interface conditions. The solution u′ is decomposed such
as u′ = (u, u∗)T and the source term as b′ = (b, b∗)T . The interface constraints are discretized
with a (n,m + n) block matrix C and the source term b∗.

According to the interface conditions, the regularity of the solution on the interface is often
lower than in the rest of the domain. Hence, the discretization of operators with a stencil cutting
the interface can induce a great loss of accuracy. The �rst idea is to consider unknowns u∗I , I ∈ N1

(resp. u∗I , I ∈ N0) as the extension of the solution in Ω0 (resp. Ω1). The initial algebraic link
between unknowns from both sides of the interface is cut, and the new link over the interface
is obtained thanks to auxiliary unknowns. Practically, matrix coe�cients must be modi�ed to
take into account the new connectivities. Let αI,J be a coe�cient of A at row I, column J and
α′I,J the new coe�cient in A′. If I ∈ N0 and J ∈ N1 , α′I,J = 0 and α′I,J∗ = αI,J , where J∗ is
the index corresponding to u∗J .
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This is exactly the way how we proceed for the practical algorithm. However, this modi�ca-
tion can be expressed algebraically with permutation and mask matrices as follows.

We de�ne the two following mask matrices I1 of dimensions (m,m+n) and I2 of size (n,m+n)
:

I1 =




1 0 · · · 0 · · · · · · 0

0
. . . ... . . . ...

... . . . 0
. . . ...

0 . . . 0 1 0 · · · 0




, I2 =




0 · · · 0 1 0 · · · 0

0
. . . 0

. . . ...
... . . . ... . . . 0
0 . . . 0 0 · · · 0 1




(8.1)

The matrices A0 and A1 are de�ned such as A0 + A1 = A, A0(I, J) = A(I, J) if I ∈ N0, else
A0(I, J) = 0. Similarly A1(I, J) = A(I, J) if I ∈ N1 else A1(I, J) = 0. Finally, the connectivities
are changed using the permutation matrices P0 and P1: P0 is de�ned to switch row I with row
J if I ∈ N0, J ∈ N1 and P1 to switch row I with row J if I ∈ N1, J ∈ N0. Hence, the new
problem matrix is now de�ned by:

A′ = IT
1 (P0(A0I1) + P1(A1I1)) + IT

2 C (8.2)

The new problem is A′u′ = b′ with A′ written with 4 blocks of various sizes: Ã(m,m), B(m, n),
C1(n,m), C2(n, n). The matrix Ã is thus the modi�cation of the initial matrix A by setting to
zero the coe�cient αI,J if χ(xI) 6= χ(xJ), and C1 and C2 are the two sub-matrices of the matrix
C. The problem can be written as:

(
Ã B
C1 C2

)(
u
u∗

)
=

(
b
b∗

)
(8.3)

The entire problem can be then solved to obtain u′ = (u, u∗)T . However, u∗ being the auxiliary
solution is not required to be computed explicitly . Hence, the Schur complement method can
be used to calculate the solution for the physical unknowns only. The �nal problem is now:

(Ã−BC−1
2 C1)u = b−BC−1

2 b∗ (8.4)

The opportunity of such a reduction will be discussed later.

8.2 AIIB method for immersed boundary problems
8.2.1 Scalar equation with Dirichlet boundary conditions
For sake of clarity, let us �rst describe in 2D the AIIB method for the model scalar problem Pb

with a Dirichlet boundary condition on the interface Σ. For this version of the AIIB algorithm,
Ω0 is the domain of interest and auxiliary unknowns are created in Ω1 only. Let us consider a
point xI , I ∈ N1. At location xI , two unknowns coexist: a physical one uI and an auxiliary one
u∗I . We �rst describe the case when xI has only one neighbor xJ in Ω0. The Lagrangian point
xl is the intersection between [xI ;xJ ] and Σh (Fig. 6.17 right). Then, the solution ul = uD(xl)
at the interface is approximated by the P1

1 interpolation between the Eulerian unknowns u∗I and
uJ :

ul = αIu
∗
I + αJuJ with 0 < αI , αJ < 1 and αI + αJ = 1 (8.5)

As noticed in [Tsen 03, Gibo 05], a linear interpolation only is required to reach a second order
of accuracy. If now xI has a second neighbor xK in Ω0, the intersection xm between [xI ;xK ] and
Σh is considered with um = uD(xm). We choose xp, a new point of Σh between xl and xm (see
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Fig. 8.1 left). The solution up = uD(xp) is then imposed using a P2
1-interpolation of the values

u∗I , uJ and uK :

up = αIu
∗
I + αJuJ + αKuK , 0 < αI , αJ , αK < 1 , αI + αJ + αK = 1 (8.6)

A Q2
1 interpolation of uI , uJ , uK and uL can be also used by extending the interpolation stencil

with the point xL which is the fourth point of the cell of the dual mesh de�ned by xI , xJ and
xK (see Fig. 8.1 left). As a third choice, two independent linear 1D interpolations can be used
(one for each direction) for an almost equivalent result. It produces :

{
ul = αIu

∗
I + αJuJ with 0 < αI , αJ < 1 and αI + αJ = 1

um = α′Iu
∗′
I + αKuK with 0 < α′I , αK < 1 and α′I + αJ = 1

(8.7)

In this case, two auxiliary unknowns are created.
A simple choice for xp is the barycenter between xl and xm where up = (ul + um)/2. This

particular case enables an easy implementation since we have :

αIu
∗
I + αJuJ = ul (8.8)

α′Iu
∗
I + αKuK = um (8.9)

A summation of these two constraints gives :

αIu
∗
I + αJuJ + α′Iu

∗
I + αKuK = ul + um (8.10)

what is equivalent to build a constraint imposing up at xp with a P2
1 interpolation :

(αI + α′I)u
∗
I + αJuJ + αKuK

2
= up ,

with 0 <
αI + α′I

2
,
αJ

2
,
αK

2
< 1 , αI + α′I

2
+

αJ

2
+

αK

2
= 1 (8.11)

Hence, an easy general implementation consists in summing the constraints corresponding to
each direction, no matter the number of neighbors of xI . If the elements σl of Σh used to de�ne
xl and xm are not the same, the barycenter xp of these two points is not necessarily on Σh,
especially for interfaces of strong curvature. However, the distance d(xp, Σh) between xp and Σh

varies like O(h2) and so this additional error does not spoil the second-order precision of our
discretization. The convergence of this additional error is numerically tested in section (9.1.2).
If the curvature of Σh is small enough relatively to the Eulerian mesh, i.e. if the Eulerian mesh
is su�ciently �ne, xI almost never has a third or a fourth neighbor in Ω0. However, if this case
appears, a simple constraint u∗I = uB is used with uB being an average of uD at the neighbor
intersection points. In any case, by decreasing the Eulerian mesh step h, the number of points
xI having more than two neighbors in Ω0 also decreases.
Hence, the present method is suitable to impose a Dirichlet boundary condition on Σ for Ω0,
when the solution in Ω1 has no interest. The solution u∗I for I ∈ N1 is an extrapolation of
the solution in Ω0 in order to satisfy the boundary condition on Σ and thus is non-physical.
Hence, the solution at the nodes of Ω1 far from the interface does not impact on the solution
in Ω0. Nevertheless, the �ctitious domain approach computes a non-physical solution in Ω1. It
is naturally obtained with the initial set of equations together with a volume penalty method
such as VPM [Khad 00]. The imposed solution can be analytical when possible, or an arbitrary
constant value. The computational cost of this approach can be reduced by switching the solving
of uI , xI ∈ Ω1 o�, or by totally removing these nodes in the solving matrix.
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8.2.1.1 Symmetric version for Dirichlet interface conditions
The next step is to allow for multiple Dirichlet boundary conditions on both sides of the immersed
interface. Thin objects could be treated with this approach. The problem is now :





−∇ · (a∇u) = f in Ω
u−|Σ = uD on Σ
u+
|Σ = uG on Σ

(8.12)

The problem (8.12) requires for each point xI a physical unknown uI as well as an auxiliary
unknown u∗I on both sides of the interface.

Practically, the AIIB algorithm for a Dirichlet BC is applied a �rst time with Ω0 as domain
of interest, and auxiliary unknowns are created near Σh in Ω1. As a second step, the Heaviside
function is modi�ed as χ := 1 − χ and the algorithm is applied a second time. Now, Ω1 is the
domain of interest and auxiliary unknowns are created near Σ in Ω0.

8.2.2 Scalar equation with Neumann boundary conditions
Let us now consider the following model scalar problem with a Neumann BC on the interface Σ
: { −∇ · (a∇u) = f in Ω0

(a · ∇u) · n = gN on Σ
(8.13)

The principle is about the same as for Dirichlet BC, and the same interpolations, once derived,
can be used to approximate the quantity (a · ∇u) ·n. Hence, at any point xl, l ∈ I on Σh we use

(a · ∇ul) · n ≈ (a · ∇p(xl) · n). (8.14)

For p ∈ Q2
1, we get ∇p(x, y) ·n = (p3y + p2)nx + (p3x + p1)ny whereas for p ∈ P2

1, ∇p(x, y) ·n =
p2nx + p1ny is obtained which means that the normal gradient is approximated by a constant
over the whole support. For example, in the con�guration of Fig. 8.1.left, with p ∈ P2

1, we have :

∇p(x, y) · n =
u∗I − uJ

hx
nx +

uK − u∗I
hy

ny = u∗I(
nx

hx
− ny

hy
) + uJ

nx

hx
+ uK

ny

hy
(8.15)

The diagonal coe�cient of the raw related to u∗I in C2 is (nx
hx
− ny

hy
). The case when nx

hx
≈ ny

hy

leads to numerical instabilities. If we consider the con�guration of Fig. 8.1.left, using the normal
vector of the segment [xl, xm] implies that the signs of nx and ny are always di�erent so the
diagonal coe�cient is always dominant. The same property occurs for the other cases. When xI

has only one neighbor xJ in Ω0, the Q2
1 and P2

1 interpolations degenerate to L1
1 interpolations

which suit for Dirichlet BC. For Neumann BC, this loss of dimension no longer allows the interface
orientation to be accurately taken into account, as one of the components of the normal unit
vector disappears from the interfacial constraint. Hence, a third point xK in Ω0 is caught to
build P2

1 interpolations (see Fig. 8.1 right). This point is a neighbor of xJ and is taken as
[xI , xJ ]⊥[xJ , xK ]. As in 2D two choices generally appear, the point being so that the angle
(n, xK − xJ) is in [−π/2;π/2] is taken.

8.2.3 Algebraic elimination using the Schur complement
The Schur complement method allows an algebraic reduction to be performed. For a Dirichlet
or Neumann BC, each constraint is written such as only one auxiliary unknown is needed:

u∗I =
∑

J∈N
αJuJ + uS (8.16)
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Figure 8.1: Example of selection of points for Dirichlet (left) and Neumann (right) constraints

where uS is the source term. In this case, the matrix C2 in (8.3) is diagonal and thus the Schur
complement (Ã − BC−1

2 C1) is easy to calculate. Practically, when the algebraic reduction is
made, Ã is built directly by the suitable modi�cation of A without considering the extended
matrix A′. The part −BC−1

2 C1 is then added to Ã whereas −BC−1
2 b∗ is added to b. As will

be subsequently demonstrated, the algebraic reduction decreases the computational cost of the
solver by 10− 20%.

If only L1
1 interpolations are used with the algebraic elimination, the matrix obtained with

this method is similar to the one obtained in [Gibo 02] for a Dirichlet problem. However in this
last paper the auxiliary unknowns are taken into account before the discretization of the operator
which requires additional calculations for each discretization scheme.

If P2
1 interpolations are used, the computed solution in Ω0 is the same as for the SMP

[Sart 08a] method (when the penalty parameter tends to zero) and the DF-IB method [Tsen 03].
These methods change the discretization of the initial equation for the nodes xI , I ∈ N1. The
SMP method uses a penalty term and the DF-IB method uses terms of opposite signs to erase
some part of the initial equation. The discretization matrix obtained with both methods is not
equivalent to the one obtained with the AIIB method, with or without algebraic reduction. With
algebraic reduction, the discretization for the nodes xI , I ∈ N0 is modi�ed, and without algebraic
reduction, both auxiliary and physical unknowns coexist at xI , I ∈ N1. The accuracy of these
methods will be discussed in the next section.

The present algorithm seems simpler, as the standard discretization of the operators is au-
tomatically modi�ed in an algebraic manner. So, various discretization schemes of the spatial
operators can be used. However, the discretization of an operator at xI ∈ Ω0 can only use in
Ω1 the �ctitious unknowns and not the physical ones. Hence, the only limitation concerns the
stencil of these operators which have to be limited, if centered, to three points by direction.

8.2.4 A word on the application to the Navier-Stokes equations
The SMP method has been applied to the Navier-Stokes equations in [Sart 08a]. For immersed
boundary problems, the SMP and the AIIB methods give equivalent results and the AIIB method
can be used to immerse obstacles in �uid �ows. Both methods can be used for the scalar and
the Navier-Stokes equations. In the latter, the procedure is done componentwise for the velocity
vector. However, the AIIB method, with L1

1 interpolations only, cannot be applied to the Navier-
Stokes equations on staggered grid (no tests have been performed for a collocated approach).
An illustration is given Fig. 8.2. With such interpolations, two auxiliary unknowns u∗I and



108 8. The Algebraic Immersed Interface method

u∗′I , I ∈ N1 can coexist at the same location xI . Hence, u∗I is the natural neighbor of uJ and
u∗′I is the natural neighbor of uK . So a problem occurs for the discretization of the inertial term
since a node of a given velocity component has to use an auxiliary unknown of an other velocity
component. In this case, neither u∗I nor u∗′I are natural neighbors for vl, a velocity unknown in
the y direction. No matter which unknown is used, or an average of the two collocated unknowns,
the simulation is instable outside 'the Stokes regime.

Figure 8.2: Illustration of the application to the Navier-Stokes equations on staggered grid

A particular attention has also to be given to the velocity pressure coupling. If a fractional
step method is used, the prediction step is modi�ed by any �ctitious domain method to impose
an immersed boundary condition for the velocity. Thus, the projection step has to be modi�ed
according to the prediction step to remain consistent with the overall problem.

However, some authors do not consider at all this modi�cation of the correction step [Tsen 03]
or have only made minor modi�cations. In fact, the projection step has to be rewritten con-
sidering the forcing term, as can be seen in [Iken 07, Dome 08]. In [Sart 08a], the authors use
an iterative augmented Lagrangian method [Vinc] which adds a penalty term in the momentum
equation to enforce the divergence free constraint.

8.3 AIIB for immersed interface problems
With the symmetric method described in (8.2.1.1), the problem can be solved on both sides of
the interface when explicit Dirichlet BC are imposed. For many problems, the solution is not
a priori known on the interface and some jump transmission conditions on the interface Σ are
required. Let us now consider the problem :

(Pi)
{ −∇ · (a∇u) = f in Ω

+ Interface conditions on Σ

where the interface conditions are :

JuKΣ = ϕ on Σ (8.17)
J(a · ∇u) · nKΣ = ψ on Σ (8.18)

The notation J KΣ denotes the jump of a quantity over the interface Σ. In the symmetric version of
the AIIB method, a given intersection point xl, l ∈ I, is associated with two auxiliary unknowns
on both sides of the interface. Hence, the interface constraints (8.17) and (8.18) of (Pi) can be
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imposed at each intersection point xl by using the two auxiliary unknowns. For example, the
Inth row of the matrix A′ with u∗I , I ∈ N0 can be used to impose the constraint (8.17) and the
Jnth line of the matrix with u∗J , J ∈ N1 is then used to impose the constraint (8.18).

8.3.1 The solution constraint
The symmetrized AIIB methods for Dirichlet BC reads :

{
u+

Σ = α1uI + α2u
∗
J

u−Σ = α1u
∗
I + α2uJ

(8.19)

when L1
1 interpolations are used. With JuKΣ = u+

Σ − u−Σ = ϕ, we obtain :

α1uI + α2u
∗
J − α1u

∗
I − α2uJ = ϕ (8.20)

which is the �rst constraint to be imposed.

8.3.2 The �ux constraint
Following the same idea and using P2

1 interpolations,
{

(a · ∇u+
Σ) · n = a+(uI−u∗J

hx
nx + u∗K−uI

hy
ny)

(a · ∇u−Σ) · n = a−(u∗I−uJ

hx
nx + uK−u∗I

hy
ny)

(8.21)

for the case presented in Fig. 8.1.left. Using (8.18), we get:

a+

(
uI − u∗J

hx
nx +

u∗K − uI

hy
ny

)
− a−

(
u∗I − uJ

hx
nx − uK − u∗I

hy
ny

)
= ψ (8.22)

which is the second constraint to be imposed. With such an interpolation, the solution gradient
is constant over the whole stencil. As demonstrated later, the second-order accuracy can be
reached on Cartesian grids when ψ = 0.

Three auxiliary unknowns are thus involved in the discretizations (8.20) and (8.22). The
auxiliary unknown u∗K is also involved in the discretization of (8.17) and (8.18) at another
intersection point on Σh. Hence, the whole system A′u′ = b′ is closed.Since we need more than
one auxiliary unknown to discretize each constraint, the matrix C2 is not diagonal and a solver
has to be used to compute C−1

2 .
For the matched interface and boundary (MIB) method, Zhou et al. [Zhou 06b] use a di�erent

discretization of the interface conditions which allows an easy algebraic reduction which is directly
performed raw by raw.

The algebraic reduction for the immersed interface problems has not been yet implemented.
However, the standard discretization of the AIIB method requires a more compact stencil than
for the MIB method, and the additional computational time generated by the auxiliary nodes is
small. Hence, the lack of algebraic reduction does not seem to be problematic.
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Chapter 9

Validation

9.1 Elliptic equations
Elliptic equations are discretized using the standard second-order centered Laplacian. For all
problems, similar results have been obtained with a PARDISO direct solver [Sche 04], and an
iterative BiCGSTAB solver [Gust 78a], preconditioned under a ILUK method [Saad 86]. Unless
otherwise mentioned, a numerical domain [−1; 1]× [−1; 1] is used for every simulation. Only Ω0

is taken into account for the immersed boundary problems.

9.1.1 Immersed boundary problems
The immersed boundary problems are treated here with the SMP and the AIIB method. One
can notice that for P2

1 and Q2
1 interpolations, both method are equivalent. The L2

1 interpolations
cannot be used with the SMP method since two constraints have to coexist in a same node
involving two auxiliary unknowns.

Problem 1 The homogenous 2D Laplace equation is solved. The interface Σ is a centered
circle of radius R1 = 0.5 with a Dirichlet condition of U1 = 10. An analytical solution which
accounts for the presence of a second circle with a radius R2 = 2 and U2 = 0 is imposed on the
boundary conditions. The analytical solution is:

u(r) =
U2 − U1

ln(R2)− ln(R1)
ln(r) + U1 − (U2 − U1)

ln(R1)
ln(R2)− ln(R1)

(9.1)

Accuracy tests are performed with L1
1, P2

1 and Q2
1 interpolations. Fig. 9.1 shows the solution

and the error map for a 32×32 mesh with P2
1 interpolations. The same results are always obtained

with and without algebraic reduction. Fig. 9.2 shows the convergence of the error for the L2 and
L∞ norms. For all interpolations, the convergence slopes are approximatively 2 for the relative
L2 error. For the L∞ error, the slopes are about 1.8. The P2

1 interpolation is the more accurate,
followed by the L1

1 interpolation although it uses more auxiliary points (but a smaller stencil).
However, the di�erences of accuracy between the di�erent interpolations remain small. The same
cases with algebraic reduction give the same accuracy. The performances of the ILUK-BiCG-Stab
solver are now benchmarked for the three interpolations with and without algebraic reduction
and for the SMP method. Tab. 9.1 shows the computational times of the matrix inversions
(average time in seconds for 25 matrix inversions) and Tab. 9.2 shows the time ratio between
the standard and the reduced matrix. Except for the Q1

1 interpolation on the 1024× 1024 mesh,
the di�erences between the two methods seem to decrease with the size of the matrix. In fact,
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Figure 9.1: Solution and error map for problem 1

as interfaces are d − 1 manifolds, the number of intersection points does not increase as fast as
the Eulerian points. Hence, the ratio between the size of a reduced and a complete matrix tends
to 1. The computational time for the SMP method is quite similar to the one obtained AIIB
method with algebraic reduction. Figures 9.3, 9.4, 9.5, 9.6 shows the convergence of the ILUK-
BiCG-Stab solver for the seven con�gurations. The type of interpolation does not signi�cantly
impact on solver performances.

Figure 9.2: Curves of errors for section 9.1.1



113

Mesh L1
1 std L1

1 red P2
1 std P2

1 red Q2
1 std Q2

1 red P2
1 SMP

128 0.215 0.189 0.216 0.182 0.208 0.181 0.181
256 2.18 1.89 2.14 1.83 2.14 1.88 1.88
512 19.7 17.6 19.5 17.1 20.3 18.4 16.9
1024 168 159 171 156 173 141 168

Table 9.1: Computational times in seconds for problem 1. Tests are performed with three
di�erent interpolations with (red) and without (std) algebraic reduction, and compared to the
SMP method

Mesh L1
1 P2

1 Q2
1 std

128 88.3% 84.5% 87.3%
256 86.9% 85.5% 88.2%
512 89.4% 87.5% 90.9%
1024 94.6% 91.2% 81.5%

Table 9.2: Ratio of computational times for reduced and standard matrices for section 9.1.1
Mesh L1 std L1 red P1 std P1 red Q1 std Q1 red P1 SMP

Dimension
128 16640 16384 16560 16384 16560 16384 16384
256 66048 65536 65896 65536 65896 65536 65536
512 328704 327168 328552 327472 328704 327472 326752

Non-zero
elements

128 82432 81664 82352 81824 82432 81824 81472
256 263168 262144 262864 262144 262864 262144 262144
512 1312768 1309696 1312464 1310304 1312768 1310304 1308864

Table 9.3: Rank and number of non-zero coe�cients of the computed matrix for section 9.1.1.
Tests are performed with three di�erent interpolations with and without algebraic reduction,
and compared to the SMP method

Figure 9.3: Residual against iterations of ILUK solver for problem 1 with a 128× 128 mesh
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Figure 9.4: Residual against iterations of ILUK solver for problem 1 with a 256× 256 mesh

Figure 9.5: Residual against iterations of ILUK solver for problem 1 with a 512× 512 mesh
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Figure 9.6: Residual against iterations of ILUK solver for problem 1 with a 1024× 1024 mesh



116 9. Validation

Problem 2 The 3D equation ∆T = 6 is solved. The solution is T (r) = r2. The solution is
imposed on an immersed centered sphere of radius 0.2. As expected, the second-order code gives
the exact solution to almost computer-error accuracy without this inner boundary. Results of the
numerical accuracy test with the spherical inner boundary are presented in Fig. 9.7. The results

Figure 9.7: Curves of errors for problem 2

are presented in Fig. 9.8. For the L∞ norm, the second order is regularly obtained. For the L2

norm, the second order is not obtained for the coarsest meshes as the code has not reached its
asymptotical convergence domain. As can be noticed by comparing results with and without the
AIIB method, this last one does not spoil the convergence order of the code, and the presence
of the immersed interface with an analytical solution imposed in Σh improves the accuracy. For
both cases the numerical solution tends to a second order in space.
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Problem 3 The 3D equation ∆T = 12r2 is solved in a unit box. The solution is T (r) =
x4 + y4 + z4. The results are presented in Fig. 9.8. For the L∞ norm, the second order is

Figure 9.8: Curves of errors for problem 3

regularly obtained. For the L2 norm, the second order is not obtained for the coarsest meshes as
the code has not reached its asymptotical convergence domain. As can be noticed by comparing
results with and without the AIIB method, this last method does not spoil the convergence order
of the code, and the presence of the immersed interface with an analytical solution imposed in
Σh improves the accuracy of the code. For both cases the numerical solution tends to an order
two in space.
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Problem 4 The 2D equation ∆T = 4 is solved. The analytical solution is imposed on the
boundaries of the domain and a Neuman BC is imposed on a centered circle of radius R = 0.5.
As can be seen in Fig. 9.9, the global convergence has an average slope of 1.10. However, the
convergence for the three biggest meshes reaches a slope of 2.

Figure 9.9: Curves of errors for problem 4
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9.1.2 Convergence with the number of interface elements
Our aim here is to measure the sensibility of the method with the accuracy of the Lagrangian
mesh discretizing the immersed interface. Problem 1 is solved on 32× 32 and 128× 128 meshes.
Fig. 9.10 shows the accuracy of the solution with respect to the number of points used to
discretized the interface which is here a circle. The reference solutions (Fig. 9.2) have been
computed with an analytical circle. As can be seen, a second order in space is globally obtained.
The reference numerical solutions for the 32 × 32 and 128 × 128 meshes are di�erent but the
sensitivity of the error to the number of points in the lagrangian mesh is almost the same.

Figure 9.10: Convergence of the error with respect to the accuracy of the lagrangian shape
problem 1

9.1.3 The Stanford bunny
This last case demonstrates how a second-order method enhances the representation of the
boundary condition compared to a �rst-order method. The homogenous Laplace problem with a
Dirichlet BC TΣ = 10 is solved on a 60×60×50 mesh bounding an obstacle of complex shape (the
Stanford bunny). The extension of the solution in Ω1 is used for the post treatment. Thus, all
uJ , J ∈ N1 are replaced by u∗J . Then, the iso-surface T = TΣ gives an idea of the approximation
of the boundary condition. Fig. 9.11 shows the iso-surface for a �rst order method. As can be
seen, the shape of the obstacle endures a rasterization e�ect as the solution is imposed in the
entire control volumes. Fig. 9.12 shows the iso-surface for the second order AIIB method. Fig.
9.13 shows a slice of the solution passing through the bunny. As can be seen, overshoots are
present inside the shape which corresponds to the auxiliary values allowing the correct solution
at the Lagrangian interface points to be obtained.
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Figure 9.11: Iso-surface T = 10 for the Stanford bunny with a �rst-order method

Figure 9.12: Iso-surface T = 10 for the Stanford bunny with a second-order method
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Figure 9.13: Iso-surface T = 10 and a slice of the solution
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9.1.4 Immersed interface problems
Problem 5 The 2D problem Pii with f = −4 and a = 1 is solved. As the equation remains
the same in both domains, this problem can be solved without immersed interface method. The
analytical solution is u = r2. As can be expected with our second order code, computer error is
reached for all meshes with or without AIIB method. The di�erence with problem 2, where the
solution is a second-order polynomial too, is that the solution is not explicitly imposed at a given
location. In the present case, the interface condition is still correct anywhere in the domain so
the approximation of the interface position does not generate errors.

Fig. 9.14 shows that the same result is obtained with an interface jump such as u = r2 for
r > 0.5 and u = r2 + 1 otherwise.

An equivalent quality of result is obtained with Σ such as:
{

x(α) = (.5 + .2 sin(5α)) cos(α)
y(α) = (.5 + .2 sin(5α)) sin(α)

(9.2)

with α ∈ [0, 2π]. The small stencil of the method allows interfaces with relatively strong

Figure 9.14: The solution and the error for problem 5 with a 32× 32 mesh

curvatures to be used.
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Figure 9.15: The solution and the error for problem 5 with a 64× 64 mesh
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Problem 6 The same problem as in 9.1.4 is now considered with a discontinuous coe�cient a
such as a = 10 in Ω0 and a = 1 in Ω1, involving the following analytical solution:

u(r) =
{

r2 in Ω0
r2

10 + 0.9
4 in Ω1

(9.3)

Accuracy tests are �rst performed with the interface almost passing by some grid points (called
odd mesh). The interface does not strictly lies on these points, as the shape is shifted by an
ε. This con�guration is di�cult as the interpolations degenerates. Accuracy tests are then
performed with a box of length 1.0001 (called even mesh). In this con�guration, the interface
never passes by a grid point. The results of the numerical accuracy test are presented in Fig.
9.16. For the odd series of test, the slope is 1.86 for the L2 and L∞ errors. For the even series,
where no geometrical singularity is present, the slope for both errors is 2.04.

Figures 9.17 shows the solution and the L2 relative error for a 32×32 mesh. As the analytical
solution is imposed on the numerical boundary, the error is principally located in the interior
subdomain.

Figure 9.16: Curves of errors for odd and even meshes the problem 6
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Figure 9.17: The solution and the error for problem 6 with a 33× 33 mesh
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Problem 7 The homogenous 2D Laplace equation is considered with the following analytical
solution:

u(x, y) =
{

0 in Ω0

ex cos(y) in Ω1
(9.4)

where Ω0 and Ω1 are delimited by Σ a centered circle of radius 0.5. Fig. 9.18 shows that the
convergence for both L2 and L∞ error are of �rst order only. The Fig. 9.19 shows the numerical
solution (which is not so di�erent from the analytical solution) and the error map for a 32× 32
mesh. In section (9.1.1), a �rst global order is observed too, even if a second order is reached for
the three last meshes. Hence, the convergence is not as good as expected when a condition on
the normal �ux with a source term (ψ 6= 0) is imposed. Numerous trials implying interpolations
of higher orders have lead to similar results, so, for now, we cannot explain the �rst order of
convergence.

In [Tsen 03], the authors seems to have encountered the same di�culties as they explain how
to impose Neumann BC with a quite similar method without performing showing a convergence
test.

Figure 9.18: Convergence of the L2 relative error and the L∞ error for problem 7
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Figure 9.19: The solution and the L2 relative error for problem 7 with a 32× 32 mesh
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9.1.5 Some remarks about the solvers
The kind of interpolation function used and the position of the interface have an impact on the
�nal discretization matrix C ′, especially on its conditionning. Let us consider an intersection xl

of Σh between two points xJ , J ∈ N0 and xI , I ∈ N1. A Dirichlet BC ul is imposed on it. The
constraint constructed with a L1

1 interpolation is (1− α)uJ + αu∗I , with α = xl−xJ
xI−xJ

. Hence, α
1−α

tends to 0 when xl tends to xJ . As the matrix loses its diagonal dominance, solver problems can
be encountered. Tseng et al. [Tsen 03] proposed changing the interpolation by using a new node
which is the image of xI through the interface. In [Gibo 02, Gibo 05], authors pointed out this
problem and suggest to slightly move the interface to a neighboring point (in our case xJ) if xI

is too close to Σh.
In this case, for the Dirichlet BC, an unknown u∗J is created, and the equation in xJ is simply

uJ = ul. For the Neumann BC, the standard interpolation is written in xJ with u∗J and its
neighbor unknowns in Ω0.

For the transmission conditions (8.17)-(8.18), if φ = 0 and ψ = 0, no auxiliary unknown is
created and the standard �nite-volume centered discretization is used. However, for this case,
or for φ 6= 0 and ψ 6= 0, our implementation using ILUK preconditionner or a PARDISO direct
solver does not necessarily require such methods, even if α

1−α ≈ 10−10.



129

9.2 Navier-Stokes equations
All these cases are treated with the SMP method. The related discretization and solvers are
described in the Appendix A of the present document.

9.2.1 Cylindrical Couette �ow
We consider a Couette �ow between two cylinders of radius R1 = 0.5m and R2 = 3 m. Their
angular velocities are ω1 = 0 rad.s−1 and ω2 = 2 rad.s−1. The solution is

vθ(r) =
ω2R

2
2 − ω1R

2
1

R2
2 −R2

1

r +
(ω1 − ω2)R2

2R
2
1

R2
2 −R2

1

1
r

(9.5)

The NS equations are solved in a domain Ω = [−0.15 ; 0.15 ] × [−0.15 ; 0.15 ]. The analytical
solution is imposed on ∂Ω. A penalty method is used to impose a Dirichlet BC on the inner
circle. The solution for the SMPM and the VPM are compared in Fig. (9.20) with the same case
simulated without IB method in polar coordinates. As expected, the SMPM reaches a second

Figure 9.20: L2 relative error on the velocity for the cylindrical Couette �ow

order in space, the VPM a �rst order and the case in polar coordinates reach a second order.
This case is 20 times more accurate than the Cartesian case with the SMPM. However, the polar
mesh is boddy-�tted in this con�guration and the mesh lines are colinear with the �ow.

9.2.2 Flow past a cylinder
The case of the cylinder in an unbounded uniform �ow is a common test for the IB methods. For
very low Reynolds numbers, the �ow is creepy and the streamlines are symmetric. For higher
Reynolds numbers, (up to ∼ 47) two symmetric steady vortices appears (see Fig. 9.21). For still
higher Reynolds numbers, the vortices are no more symmetric and a wavy tail is observed (but
the vortices are still attached to the particle). For even higher Reynolds numbers, an alternative
shedding of the vortices, the Kàrmàn vortex street, occurs. A cylindrical particle of diameter
D = 0.1 is immersed in a computational domain Ω = [ 0 ; 10 ] × [−4 ; 4 ]. An uniform �ow
U = (U∞, 0) is imposed at the left boundary. The center of the particle is located in (1.5, 0).
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Figure 9.21: Streamlines and pressure �eld for a �ow past a cylinder at Re = 20 (up) and
Re = 40 (down)

For Re = 20 and Re = 40, a convergence study is presented in for the �rst (VPM) (Tab. (9.4)-
(9.5)) and second-order (SMPM) (Tab. (9.6)-(9.7)) penalty method, where L is the recirculation
length, a the horizontal distance between the particle and the center of the vortices, b the distance
between the center of the vortices, θS the separation angle (see Fig. (9.22))and CD the drag
coe�cient given by

CD =
2FD

ρU2∞D
(9.6)

with FD the drag force.
The mesh has a constant space step in [ 1.4 ; 1.8 ]× [−0.1 ; 0.1 ]. The number of cells for each

directions in the constant zone is the power of 2 which is directly under half of the number of
cells for this direction. For the 94× 52 mesh the constant zone has 32× 16 cells and the number
of cells by directions follows a power of 2. For the other exterior zone, an exponential re�nement
is used.

The numerical error cannot be computed as there is no analytical solutions and the case
theoretically requires an in�nite domain. Hence, the results are generally compared with di�erent
works of the literature. The Fig. 9.4-9.7 shows a convergence study for Re = 20 and Re = 40.
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Figure 9.22: Notations for the case of the �ow past a cylinder

The simulations with the SMPM seem to converge more quickly than for the VPM toward the
asymptotic values.

Maillage L
D

a
D

b
D CD θS

94× 52 0.7373 0.2758 0.3779 1.9076 140.8◦

158× 84 0.8540 0.3283 0.4052 2.0114 137.5◦

286× 148 0.9073 0.3495 0.4206 2.0371 136.8◦

542× 276 0.9317 0.3586 0.4281 2.0355 136.4◦

1054× 532 0.9454 0.3633 0.4314 2.0370 136.0◦

Table 9.4: Convergence study for the �ow past a cylinder at Re = 20 for the VPM

Maillage L
D

a
D

b
D CD θS

94× 52 1.790 0.5729 0.5139 1.3817 138.1◦

158× 84 2.0874 0.6665 0.5644 1.4892 130.4◦

286× 148 2.2135 0.7043 0.5849 1.5141 127.8◦

542× 276 2.2777 0.7230 0.5957 1.5152 126.8◦

1054× 532 2.3089 0.7324 0.6011 1.5174 126.3◦

Table 9.5: Convergence study for the �ow past a cylinder at Re = 40 for the VPM

Maillage L
D

a
D

b
D CD θS

94× 52 0.9397 0.358 0.4269 1.9868 141.2◦

158× 84 0.9423 0.3620 0.43063 2.038 137.6◦

286× 148 0.9473 0.3638 0.43215 2.04818 136.7◦

542× 276 0.9487 0.3646 0.43289 2.04788 136.5◦

1054× 532 0.9534 0.3661 0.4336 2.04875 135.9◦

Table 9.6: Results for the �ow past a cylinder at Re = 20 for the SMPM
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Maillage L
D

a
D

b
D CD ΘS

94× 52 2.2647 0.7172 0.594097 1.45948 130.2◦

158× 84 2.2976 0.7275 0.5989 1.51499 126.3◦

286× 148 2.3122 0.7332 0.6014 1.52539 126.4◦

542× 276 2.3200 0.7349 0.60275 1.52790 126.3◦

1054× 532 2.3253 0.7371 0.6036 1.52366 126.1◦

Table 9.7: Results for the �ow past a cylinder at Re = 40 for the SMPM

The physical properties are compared with the literature in Tab. (9.8) for a mesh size of
1984× 1152. All our results are in good agreement with the literature. The drag coe�cient CD

is slightly upside the other values. The value of CD is almost the same for the �rst and second-
order methods. Practically, both methods are quite di�erent but produce quite similar results,
so the treatment of the �ow near the boundary seems correct. The di�erences with the literature
can come from the con�guration of the case as the domain has to be theoretically unbounded.
However, CD is the only result of our study which is overestimated. As this parameters depends
on the calculation of the wall forces our routine possibly overestimates the drag force.

L
D

a
D

b
D CD ΘS

Re = 20
Coutanceau et Bouard [Cout 77] 0.93 0.33 0.46 � 135◦

Dennis et Chang [Denn 70] 0.94 � � 2.05 136.3◦

Le et al. [Le 06] 0.93 � � 2.05 �
Ye et al. [Ye 99] 0.92 � � 2.03 �
Russell and Wang [Russ 71] 0.94 � � 2.13 �
Linnick et Fasel [Linn 05] 0.93 0.36 0.43 2.06 136.5◦

He et al. [He 97] 0.921 � � 2.152 137.04◦

Patil et al. [Pati 09] 0.942 � � 1.949 137.19◦

Taira et al. [Tair 07] 0.94 0.37 0.43 2.06 136.7◦

VPM 0.9454 0.3633 0.4314 2.037 136.0◦

SMPM 0.9534 0.3661 0.4336 2.04875 135.9◦

Re = 40
Coutanceau et Bouard [Cout 77] 2.13 0.76 0.59 � 126.2◦

Dennis et Chang [Denn 70] 2.35 � � 1.522 126.2
Le et al. [Le 06] 2.22 � � 1.56 �
Ye et al. [Ye 99] 2.27 � � 1.52 �
Russell et Wang [Russ 71] 2.29 � � 1.60 �
Linnick et Fasel [Linn 05] 2.28 0.72 0.60 1.54 126.4◦

He et al. [He 97] 2.245 � � 1.499 127.16◦

Patil et al. [Pati 09] 2.142 � � 1.558 127.26◦

Taira et al. [Tair 07] 2.30 0.73 0.60 1.54 126.3◦

Tseng et a. [Tsen 03] 2.21 � � 1.53 �
VPM 2.309 0.732 0.601 1.517 126.3◦

SMPM 2.325 0.737 0.604 1.524 126.1◦

Table 9.8: Results for the �ow past a cylinder at Re = 20 and Re = 40 and comparison with the
literature
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The next case is simulated for a Reynold number of 100. For this regime, the �ow is periodic
and its frequency is caracterized through the Strouhal number St:

St =
fD

U∞
(9.7)

with f the vortex shedding frequency. A convergence study for the VPM and the SMPM is
presented in Tab. (9.9)-(9.10)). The drag and lift coe�cients converge more quickly with the
SMPM. The convergence of the forces shows that the local convergence of the �ow around the
particle is faster with the SMPM. The convergence of the Strouhal number is quite the same for
both methods but seems still far from its asymptotical value. The global �ow (characterized by
the Strouhal number) seems more in�uenced by the calculation mesh than by the treatment of
the immersed boundary.

The results are compared with the literature in Tab. (9.8). The drag coe�cient CD varies not
much for the literature and our approach underestimates this coe�cient. For the lift coe�cient
CL, the results are more varying and our results are in the same range as for the literature.
Concerning the Strouhal number, it is underestimated in our approaches. As shows by the
convergence study, the setting of the calculation mesh could be involved.

Maillage CD CL St

124× 72 0.96± 0.01 ±0.147 0.117
248× 144 1.19± 0.01 ±0.264 0.134
496× 288 1.27± 0.01 ±0.3081 0.147
992× 576 1.31± 0.01 ±0.3271 0.155

Table 9.9: Convergence study for the �ow past a cylinder at Re = 100 for the VPM

Maillage CD CL St

124× 72 1.08± 0.01 ±0.2413 0.113
248× 144 1.24± 0.01 ±0.3185 0.132
496× 288 1.30± 0.01 ±0.338 0.146
992× 576 1.33± 0.01 ±0.340 0.155

Table 9.10: Convergence study for the �ow past a cylinder at Re = 100 for the SMPM

CD CL St

Re = 100 Braza et al. [Braz 86] 1.36± 0.015 ±0.25 �
Kim et al. [Kim 01] 1.33 ±0.32 0.165
Liu et al. [Liu 98] 1.35± 0.012 ±0.339 0.164
Le et al. [Le 06] 1.37± 0.009 ±0.323 0.16
VPM 1.31± 0.01 ±0.327 0.156
SMPM 1.33± 0.01 ±0.340 0.155

Table 9.11: Results for the �ow past a cylinder at Re = 100 and comparison with the literature
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Discussion and conclusion of Part III
Two new �ctitious domain methods have been proposed. The SMP method is the �rst second-
order discretization of the L2 penalty method and is fully implicit. The method can be applied to
elliptic equations or to Navier-Stokes equations. Concerning this last case, a particular attention
has been paid to the velocity-pressure coupling. No modi�cation has been required for the stan-
dard augmented Lagrangian method as the divergence free constraint and the penalty constraint
can coexist without interference in a unique discretization matrix. That is not enough for the
case of a pressure projection approach where the velocity is corrected afterwards which removes
the penalty constraint. However, a similar correction approach to [Iken 07] has been used and
the same results have been obtained with both velocity-pressure coupling method. Concerning
the application of the method to the curvilinear grids, the Part II of the present document has
demonstrated that the second-order accuracy is retrieved on curvilinear grids for a Dirichlet
problem.

It as been shown that the SMP method was not well suited to the interface problem. By
replacing penalty terms with constraints on auxiliary nodes, a new simple immersed interface
method, the AIIB method, using algebraic manipulations has been presented. This method is
able to treat elliptic equations with discontinuous coe�cients and solution jumps over complex
interfaces. A second order in space is reached for several con�gurations with minor modi�cations
of the original code. The interface conditions are dicretized with a compact stencil, so the AIIB
approach is directly able to treat interfaces with strong curvatures even if a particular treatment
of geometric singularities can be required. As the modi�ed matrix looses its diagonal dominance,
e�cient solvers are required.

For the immersed boundary problems with a Dirichlet BC, the method has shown a second
order of convergence in space for various kinds of interpolations. For some interpolations, the
method is equivalent to the SMP method. An algebraic reduction has been applied to accelerate
the convergence of the solver. For the Neumann BC, a second order seems to be reachable for
the densest meshes.

For the immersed interfaces, a second order of convergence in space is obtained when the
jump of the normal �ux is null, even if the equation has discontinuous coe�cients. An algebraic
reduction is not possible, but compared to the MIB method [Zhou 06b] or to the IIM [Leve 94],
this new method has a simplest formulation and uses a smaller stencil.

Future works will be devoted to extend the accuracy of the method when the jump of the
normal �ux is not zero, and to extend the method to the Navier-Stokes equations with immersed
interfaces. Our general aim is to treat complex moving �uid/solid and �uid/�uid interfaces using
both AIIB method and ITP method [Rand 05] to obtain an accurate two-way coupling.

The next part of this document will show an application of the SMP to the moving objects.
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Part V

Solid mechanics and �uid-structure
coupling
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Chapter 10

Solid mechanics

The present work proposes a quite complete study of the cases of immobile interfaces. An
extension to moving interfaces involves additional aspects:

• The �ctitious domain method and its associated algorithms (Ray-Casting, Level-Set, etc...)
used to treat the object have to be very robust. When thousands of time steps are involved,
the slightest bug in the repeated algorithms has a good chance to appear through the time.

• Concerning the computational cost, the methodology can be quite slow for immobile ob-
stacles as the algorithms are repeated one time only. For moving objects, the methodology
has to be highly optimized.

• Depending on the methodology, modeling moving interfaces is more than repeating the
algorithms at each time step. As will be shown latter, the nodes passing from one side of
the interfaces to the other one have to be treated speci�cally.

• The interface movement at each time step has to be modeled. Analytical functions or
physical laws can be used.
The �rst point is treated in details in the other parts of this document. This chapter deals
with the physical laws involved in the displacement of interfaces, the related modeling and

the adaptation of the initial static algorithms.

10.1 Base principles
Let us consider solid objects at a given time t. Their interior is denoted as Ωi(t) and their
frontier ∂Ωi(t). The position of their center of mass is Xi(t), their velocity is Ui(t) = Ẋi(t),
their acceleration Ai(t) = U̇i(t). Their angular position is denoted θi(t) and their angular
velocity ωi(t) = θ̇i(t). External resulting force applied to the objects are denoted as Fi(t) and
the external torque is denoted as Ti(t). Under the rigid-body motion assumption, the velocity
u at a point x ∈ Ωi(t) is

u(t,x) = Ui(t) + ωi(t)× r(t,x) in Ωi(t) (10.1)

with r(t,x) = x − Xi(t) and Xi(t) = (Xi(t), Yi(t), Zi(t)). The evolution of the ith object is
described by the Euler-Newton equations:





miAi(t) = Fi(t) (10.2a)
dHi(t)
dt

= Ti(t) (10.2b)
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with Hi(t) = Ii(t)ωi(t) and Ii(t) the inertia tensor de�ned as

Ii(t) =
∫

Ω1

ρi(r2(t,x)Id − r(t,x)⊗ r(t,x)) dx. (10.3)

For the next formulation, the time dependance (t) is not noti�ed. Practically, the following form
of (10.3) is used:

I =
∫

Ωi

ρi




(y − Yi)2 + (z − Zi)2 −(y − Yi)(x−Xi) −(z − Zi)(x−Xi)
−(x−Xi)(y − Yi) (x−Xi)2 + (z − Zi)2 −(z − Zi)(y − Yi)
−(z − Zi)(x−Xi) −(y − Yi)(x−Xi) (x−Xi)2 + (y − Yi)2


 dV.

(10.4)
Using

dIi

dt
ωi = ωi × (Ii.ωi) (10.5)

the Eq. (10.2b)) can be expanded as

Ii
dωi

dt
= Ti − ωi × (Ii.ωi). (10.6)

The demonstration of (10.5)[Bost 08b] uses the following property for 3 vectors a,b, c:

(a⊗ b).c = (b.c)a. (10.7)
dIi(t)
dt

ωi(t) =
d
dt

(∫

Ωi

ρi(r2(t,x)Id − r(t,x)⊗ r(t,x)) dx
)

ωi(t)

=
∫

Ωi

ρi
d
dt

(r2(t,x)Id − r(t,x)⊗ r(t,x))ωi(t) dx

=
∫

Ωi

ρi

(
2

(
r
dr
dt

)
ωi −

(
r⊗ dr

dt

)
ωi −

( dr
dt
⊗ r

)
ωi

)
dx

=
∫

Ωi

ρi

(
2

(
r
dr
dt

)
ωi −

(
ωi

dr
dt

)
r− (ωir)

dr
dt

)
dx.

(10.8)

Yet,
dr(t,x)

dt
=

d(x−Xi(t))
dt

= −∂Xi(t)
∂t

+ (Ẋi(t) + ωi(t)× r(t, x)).∇(x−Xi(t))

= −Ẋi(t) + (Ẋi(t) + ωi × r(t,x)).I
= ωi(t)× r(t,x).

(10.9)

Hence,
dIi(t)
dt

ωi(t) = −
∫

Ωi(t)
ρi(ωi(t).r(t,x))(ωi(t)× r(t,x) dx

= −ωi(t)×
∫

Ωi(t)
ρi(ωi(t).r(t,x))r(t,x) dx

= −ωi(t)×
∫

Ωi(t)
ρi((r(t,x)⊗ r(t,x)).ωi(t)) dx

= −ωi(t)×
(∫

Ωi(t)
ρi(r(t,x)⊗ r(t,x)) dx.ωi(t)

)

= ωi(t)× (Ii(t).ωi(t))− ωi(t)×
(∫

Ωi(t)
ρi(r(t,x))2I dx.ωi(t)

)

= ωi(t)× (Ii(t).ωi(t))

(10.10)
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as the form of the last term is a× (Ca) and so is equal to zero. Hence,(10.5) is recovered.
For solids with three orthogonal symmetry planes (sphere, ellipsoid, cube, box...), one can �nd
a frame for which only the diagonal terms of the inertia matrix are non-zero. These diagonal
terms are denoted as I1, I2 and I3. Hence, one can develop the ω ×H term:

ω ×H =




(I3 − I2)ω2ω3

(I1 − I3)ω3ω1

(I2 − I1)ω1ω2


 (10.11)

Hence, ωi ×Hi is null1 for a solid with I1 = I2 = I3, such as spheres or cubes. Eq. (10.2b) can
be written as: 




Ai =
Fi

mi

ω̇i =
Ti

Ii

(10.12)

For the other types of objects, the system (10.2) is written as:




Ai =
Fi

mi

ω̇i =
Ti − ωi × (Ii.ωi)

Ii

(10.13)

With such a formulation, the velocity V and rotation θ are easily computed through thanks to
a time integration scheme. From V, the same scheme can be used to �nd X. With a �rst-order
Euler scheme, we obtain:





Vn+1 = Vn + ∆t
F
m

n+1

Xn+1 = Xn + ∆tVn+1

ωn+1 = ωn + ∆t
Tn+1 − ωn ×Hn

I
θn+1

i = θn
i + ∆tωn+1

(10.14)

The external forces applied to an object are

• The gravity

• The air resistance

• The friction with the other moving objects

• The friction with the ground

• The impulsion generated by solid-solid contact

10.2 Numerical computation of the inertia matrix
A numerical computation of the inertia matrix and the volume of a polyhedron can be found
in [Mirt 96] where the triangularized surface is used. As the purpose here is to perform a �uid-
structure coupling, some volume fonctions of the objects are always available, especially the VOF

1In 2D, the third component only is considered and ω1 = ω2 = 0, so ω ×H is null too.
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function Ci of the solid media. The mass of a solid i is calculated as follows:

mi = ρi

∑

Kj∈Th

meas(Kj)Ci(xj). (10.15)

For the inertia matrix,
I = ρi

∑

Kj∈Th

meas(Kj)Ci(xj)Ij (10.16)

with

Ij =




(yj − Yi)2 + (zj − Zi)2 −(yj − Yi)(xj −Xi) −(zj − Zi)(xj −Xi)
−(xj −Xi)(yj − Yi) (xj −Xi)2 + (zj − Zi)2 −(zj − Zi)(yj − Yi)
−(zj − Zi)(xj −Xi) −(yj − Yi)(xj −Xi) (xj −Xi)2 + (yj − Yi)2


 . (10.17)

This matrix is symmetric, so invertible and one can �nd a frame for which I is the diagonal
matrix Id (its diagonal terms are denoted in this case I1, I2 and I3). As the solid generally
rotates, the inertia matrix has to be calculated at each time step. However, the full computation
of the inertia matrix can be avoided using a transformation matrix R(t) such that at any time,
we have I = RIdR

T .

10.3 Solid-solid collisions modeling
10.3.1 Model
10.3.1.1 Time advancement

The only moving object treated here are spheres so ω ×H is null. Hence, the time integration
of the position and rotation for the ith particle with an Euler scheme is





Vn+1
i = Vn

i + ∆t
Fi

mi

n+1

Xn+1
i = Xn

i + ∆tVn+1
i

ωn+1
i = ωn

i + ∆t
Tn+1

i

Ii
θn+1

i = θn
i + ∆tωn+1

(10.18)

10.3.1.2 External forces and torques

Gravity The gravity is a simple force term Fg
i = mig where g = 9.81m.s−1 is the standard

gravity acceleration.

Friction with the other objects This force is produced by the di�erential of the tangential
velocities of two objects at the contact point. Let us consider two particles Pi and Pj . Their
contact point is x. The di�erential tangential velocity is Vt

ij = (Vj − Vi)(Id − n) for the
translation part. For the rotation part, Vr

ij = ωj × rj − ωi × ri where ri = x−Xi. Hence, the
friction force is

Ft
i = µs(Vt

ij + Vr
ij) (10.19)

with µs the friction coe�cient between the two surfaces.
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10.3.1.3 Collisions
A simple algorithm is used. At the beginning of each time step, a collision test is performed
between all the objects. If two spheres of radii ri and rj collides, their center of mass Xi and
Xj are such that |Xi −Xj | < |(ri + rj)|/2. Concerning the collisions between a sphere and the
ground, the distance is calculated using the distance from a point to a triangle algorithm (see
sction 6.3.1). In this �rst implementation, all particles have the same mass. When a collision
occurs between two spheres, the velocity of each particles is modi�ed by the normal component
of the relative velocity, (Vj −Vi)nij and a bounce coe�cient cb. Hence,

Vi := Vi − 1 + cb

2
(Vj −Vi)nij (10.20)

Vj := Vj +
1 + cb

2
(Vj −Vi)nij (10.21)

and the distance between the center of mass of the sphere is increased such as |Xi − Xj | =
|(ri + rj)|/2. For a sphere-ground collision, the resulting velocity of the sphere is

Vi := Vi − cb(Vi)n (10.22)

where n is the normal of the ground at the contact point.

10.3.2 Implementation of a solid mechanics code: Dresden
De�ning an e�cient model for the solid-solid collision is not trivial, even for simple solids such
as spheres. The hardest point is the detection and the management of the collisions. Various
methods can be found in [Guen 03]

Implementing a model directly in a complex CFD code such as Thétis is not the simplest
way to build step-by-step a solid mechanics code. A new solid mechanics code Dresden has been
developed with the following requirements:

1: management of objects of di�erent kind (primitives or complex meshes)

2: easy testing of collision models between many objects of di�erent kind,

3: easy visualization.

The �rst point implies the use of an oriented object programming language. The third require-
ment can be ful�lled thanks to the OpenGL library. Hence, the C ++ language has been chosen.

10.4 Illustration
Two cases are presented. For each, particles with random positions are dropped over a triangu-
larized mesh.

10.4.1 Gathering
The principle of this case is to drop particles in a bowl. The topography will gather them,
and at the �nal time, all the particles would have to be immobile. As the particles are in
horizontal stacking, forces are constantly exerted on them. As in the algorithm a force produce a
movement, it is quite hard to converge to an immobile state. The Fig. 10.1 shows the evolution
of the particles for this case. A quasi immobile state is obtained.
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Figure 10.1: View of the gathering case for 100 particles

10.4.2 Stacking
One of the hardest things to obtain with solid simulation is a static stacking. The explicit collision
algorithms moves the objects one by one. If an object is moved to correct an intersection with
a second object, the �rst can then intersect a third object. With a stacking, many object are in
contact with more than one other object. The Fig. (10.2) shows the evolution of the particles
for this stacking case. The evolution of the kinetic energy is plotted in Fig. 10.4.2 for a case
with 50 particles and two time steps ∆t = 0.005s and ∆t = 0.0025s. As the bounce coe�cient
are set as quite small here, the kinetic energy has to reach quickly a null value. The parasitic
movements are reduced with the smaller time step. The same kind of time step is used for �uid
simulation, but the solid simulation performed here is almost at real-time, so if a coupling with
�uid simulation is required, very smaller time steps can be used for the solid part. However, we
have use a quite simple method and the algorithm has to be revised till an absolutely null energy
is obtained. The algorithm of [Guen 03] could be considered. One of its slight drawback is that
the transition between a slow motion and immobility is sharp.
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Figure 10.2: View of the stacking case for 100 particles

Figure 10.3: Time evolution of the kinetic energy (logarithmic axis) of a 50 particle system
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Chapter 11

Fluid-structure interaction

11.1 Formulation and time coupling
The �uid-structure coupling is one of the major aims of the �ctitious domain methods for the
Navier-Stokes equations. The �rst di�culty lies in the amount and the diversity of the numerical
methods required to treat the coupling. The coupling method itself is one of the key point and
determines which complementary methods will be implied. In a one-way coupling, the solution
is desired in one media only (the �uid or the solid). The case where an object has an analytical
velocity is considered as a one-way coupling. Methods allowing a one-way coupling to be fully
performed have been treated in the previous chapters of the present document. In a two-way
coupling, both �uid and solid are dynamically interacting each other. The two media are governed
by a priori di�erent physical laws and a simultaneous resolution of all the equations involved is
a priori a delicate issue. For instance, the incompressible Navier-Stokes equations with Dirichlet
boundary conditions are used in the �uid domain Ω0





ρ

(
∂u
∂t

+ (u · ∇)u
)

= ρg +∇ · σ in Ω0 (11.1a)

∇ · u = 0 in Ω0 (11.1b)
u = u|∂Ω on ∂Ω (11.1c)
u = u|∂Ωi

on ∂Ωi (11.1d)

with σ = 2µD − pI the stress tensor and D = 1
2(∇u + ∇Tu) the deformation tensor. The

constraint (11.1d) is a consequence of the non-slip condition required on the boundary ∂Ωi of
the objects.

In the solid domain, the equations of the solid dynamic can be used:




mi
dUi

dt
= Fi

Ii
dωi

dt
= Ti − ωi × (Ii.ωi)

(11.2a)

where Fi and Ti are de�ned in the present case as

Fi =
∫

Ωi

g dx +
∫

∂Ωi

σ.n dx (11.3)

Ti =
∫

∂Ωi

(x−Xi)× σ.n dx. (11.4)
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This formulation requires two alternate resolution steps. The Eqs. (11.1) are solved with a
Dirichlet condition on ∂Ωi given by the velocity of the solids at the precedent time step. The
resulting wall forces exerted on ∂Ωi are then used to solve Eqs (11.2). This method is used in
[John 96] and seems to have the worst temporal accuracy. However, an iterative process can be
performed inside a same time step to increase the temporal accuracy [Hu 92]. Concerning the
solution on the Eulerian grid inside the solid, one can impose the solid velocity for u in Ωi with
the rigid motion relation

u(x) = Ui + ωi × (x−Xi) (11.5)
This approach is used in [Shar 05]. In [Coqu 08], authors use this method with a penalization
formulation while the Navier-Stokes equations are solved with a vortex method [Cott 04]. A
theoretical study of the method is presented in [Bost 08a, Bost 08b]. In [Lamb 09], authors
simulate �ows inside an isolated rotating tank and its destabilization. As a rotating frame is used,
the walls are immobile while complementary terms are added to the Navier-Stokes equations.

The DLM method of Glowinski (see section 3.3) proposes a time implicit formulation of the
coupling by using a variational formulation. However, a time-splitting method is used to solve
the unique set of equations and the coupling cannot be considered as implicit.

A fully implicit method is obtained with the ITP method (see section 2.3) where the stress
tensor is penalized while the divergence free constraint is ensured with an augmented Lagragian
method.

For the spatial coupling, see the part II of the present document.
All these approaches use the following property:

Property 11.1.1 u(x) = Ui + ωi × (x−Xi) ⇔ D = 0

The proof of this classical result can be found in [Tema 01, Bost 08b, Lefe 07].
In the present work, the coupling approach of [Coqu 08] is combined with the SMP method

(section 7)and the AL method (section A.3.4). The following walkthrough is performed
• The penalized NS equations are solved

ρ

(
ũn+1 − un

∆t
+ un · ∇ũn+1

)
−∇(dr∇ · ũn+1)

= −∇pn + ρg +∇ · [µ(∇ũn+1 +∇T ũn+1)] + β(
∑

k/xk∈N ∗
1

αkũn+1
k − u|∂Ωi

)
(11.6)

The pressure is then updated using

p̃n+1 = pn − dr∇ · ũn+1 (11.7)

with (ũn+1, p̃n+1) the solution of this �rst step.

• The �uid wall forces Ff
i and torques Tf

i applied to the solids are computed

• The solid dynamic is updated with

∀i ∈ O,





Un+1
i = Un

i + ∆t
Fi

mi

n+1

Xn+1
i = Xn

i + ∆tUn+1
i

ωn+1
i = ωn

i + ∆t
Tn+1

i − ωn
i ×Hn

i

Ii
θn+1

i = θn
i + ∆tωn+1

i

(11.8)

with O the set of indexes of the solids.
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• The Eulerian implicit surface functions of each objects (χi, φi, and Ci) are updated

• The Eulerian velocity and pressure in the objects are updated. At the Eulerian nodes x in
Ωi(tn+1), the new solution is

ūn+1(x) = Un+1
i + ωn+1

i × (x−Xn+1
i ) (11.9)

pn+1 = 0 (11.10)

An additional correction has to be done. Here comes the main di�erence with the �rst-
order penalty algorithm. As explained in chapter 7, the solution (ũn+1, p̃n+1) is not physical
for the nodes in Ωi near ∂Ωi. At time tn+1 the previous step put a physical solution in
the solids. However, the �eld (ũn+1, p̃n+1) is obtained for solids located at Ωi(t) while
the correction is applied in Ωi(tn+1). Hence, the correction has to be extended to the
nodes for which |χi(tn)(x)|.|1 − χi(tn+1)(x)| = 1. We de�ne a new Heaviside function
χ̄i(tn+1). = max(χi(tn+1), |χi(tn)(x)|.|1− χi(tn+1)(x)|) The velocity ūn+1(x) in the whole
domain is

ūn+1(x) =
∑

j∈O
χ̄j

(
Un+1

j + ωn+1
j × (x−Xn+1

j )
)

. (11.11)

The �nal correction consists in solving

∂u
∂t

= βχ̄(ū− u) (11.12)

with χ̄ =
∑
j∈O

χ̄j . As in [Coqu 08], we choose β = 1/∆t so the following semi-discrete form

is obtained:
un+1 − ũn+1

∆t
=

χ̄n+1(ūn+1 − ũn+1)
∆t

. (11.13)

Hence,

un+1 =
{

ūn+1 where χ̄ = 1 (11.14)
ũn+1 elsewhere (11.15)

One can notice that the algorithm for the �rst-order method is retrieved if for all objects
χ̄i = χi.

Remark 11.1.1 The solution is divergence-free inside each subdomains. However, the
solution is not generally divergence-free for the whole domain as its derivatives are not
continue at the solid-�uid interfaces.

11.2 Wall force calculation
11.2.1 Theoretical de�nitions
The �uid force Ff

i applied to a particle Pi is

Ff
i =

∫

∂Ωi

σ.n dS =
∫

∂Ωi

(2µD− pId) .n dS (11.16)
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The resulting force is decomposed in two parts:

Fp
i = −

∫

∂Ωi

(pId) .n dS (11.17)

Fv
i =

∫

∂Ωi

(2µD) .n dS (11.18)

with Fp
i the pressure force and Fv

i the viscous force.

11.2.2 Numerical method
The numerical computation of the wall forces are often used in the literature of the �ctitious
domain methods where the accuracy of the drag force of a particle is a common test case.
Nonetheless, the details of such a calculation are rarely explained. For the �rst-order methods, the
integral method proposed by Caltagirone [Calt 94] is simple and well suited. When higher orders
�ctitious methods are used, a more accurate calculation is desirable. The approach described
here is close to the one explained in [Mark 08]. One can suppose that many authors use the same
approach.

The theoretical force calculation requires to know the pressure and the deformation tensor
of the velocity on the �uid-solid interface. The tire surface is discretized as a Lagrangian surface
composed of triangular elements. The �uid �eld is only de�ned outside of the object (excep-
tions will be discussed later) and the interface does not generally match the location where the
quantities are discreetly expressed (the Eulerian nodes). As a consequence, a quantity has to be
extrapolated from the �uid domain to the interface and the �rst step is to de�ne points in the
�uid to build the interpolations. For each element σi of Σh (the discretization of Σ), we de�ne
xi the barycenter of the element and ñi its outward local normal at xi. Fluid points are then
de�ned at the locations

xik = xi + k
ñi

max(∆x, ∆y, ∆z)
, k = 1, .., 3 (11.19)

The discrete values of a given �eld Φ (pressure, derivative...) are then interpolated on the
Lagrangian points xik. For each xik, the Eulerian points used to interpolate Φ in xik are denoted
xj

ik, j = 1, ..., Smax with Smax the number of Eulerian points of the stencil of the considered
interpolation function. Using two or three Lagrangian points and more related Eulerian points to
interpolate Φ on σi produces an interpolation with a large stencil. Furthermore, each extrapolated
value of a component of D is itself a centered derivative which enlarges again the stencil. Hence,
two constraints opposed themselves:

• The calculation and the interpolation on the points xik of the stress tensor requires a large
stencil, so the tensor has not to be taken too close to the considered element σi.

• A point inside the solid could be accidently used to compute the extrapolated values of D
if the Lagrangian points xik is taken too far from σi.

To a smaller degree, these constraints remain valid for the computation of the pressure at the
interface. The occurrences of such problems varies according to the complexity of the interface.
A convex shape does not generally induces such e�ects and the study of the wall forces on a
sphere is easily performed. For shapes with concavity such as a tire with complex patterns, the
troubles increases with the curvature of the shape.
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However, if the ratio of the magnitudes of the pressure forces and the viscous forces is such
that the viscous forces are negligible, the wall forces calculation is easier to perform. The pressure
�eld is directly available on the grid, and one can simply take its value at the closest �uid node.
If a calculation of higher order of the pressure is required, two methods can be used to prevent
the troubles induced by the curvature of the interface.

Here are some methods to increase the robustness and the accuracy of the method:
• A simple solution is to use adaptive interpolations such as the kernel functions (see appendix

C.2). The kernel functions are commonly used to interpolate a quantity from a Lagrangian
grid such as a particle �eld. Hence, they are well designed to take only valid nodes. The
same e�ect can be obtained by using a combination of polynomial interpolations which
requires an additional implementation e�ort.

• Each quantity cannot be directly interpolated from the Eulerian grid to the interface as
the quantities does not numerically exists, or are not relevant, in the solid media. The idea
is to extend the quantities from the �uid domain to the solid domain. Let us consider a
quantity Φ. The �eld Φn+1 is obtained from the resolution of the Navier-Stokes equations
at time n + 1. The �uid domain is Ω0 and Ω1 is the solid one. The following problem is
solved:

∇2Φ′ +
1
ε
(Φ′ − Φn+1) = 0 (11.20)

with ε a penalty parameter such as
ε → 0 in Ω0

ε → +∞ in Ω1

The resulting property,

Property 11.2.1 Φn+1 ∈ C0(Ω) ⇒ Φ′ ∈ C0(Ω)

allows us to interpolate Φ′ from the Eulerian grid to Σh. As a Neumann condition is not
imposed on Σ for the problem (11.20), Φ′ is not in C1. Hence, if Φ′ is the velocity, one
cannot use it to calculate D.

• The number of points xik involved in the extrapolation has to be chosen according to the
global topology. If two elements σl of Σh are face to face, taking a xik to compute a
quantity for a �rst element is not ideal if xik is closer to the other element. The Level-Set
function φ can be used to detect such a situation. For a given element, the points xik are
taken on the ray R parametrized as:

xR(t) = xl + tn, t ∈ R+ (11.21)
For a �xed element σl of Σh, let us consider two variable parameters t1, t2 ∈ R+ such as
0 < t1 < t2, two constants tab, tbc ∈ R+ such as 0 < t1 < t2 and three subsets of R+: Ra,
Rb and Rc de�ned as follows:

∀t ∈ Ra, ∀t′ ∈ Rb, t < t′ (11.22)
∀t ∈ Rb, ∀t′ ∈ Rc, t < t′ (11.23)

Ra = {t ∈ R+, φ(t2) < φ(t1) and φ(t2)− φ(t1) = |xR(t2)− xR(t1)|} (11.24)
Rb = {t ∈ R+, φ(t2) < φ(t1) and φ(t2)− φ(t1) 6= |xR(t2)− xR(t1)|} (11.25)

Rc = {t ∈ R+, φ(t2) > φ(t1)} (11.26)
the following properties are deduced:
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Property 11.2.2 t ∈ Ra ⇒ |xR(t) − xl| = φ(xR(t)), i.e. σl is the closest element to
xR(t).

Property 11.2.3 φ is generally not di�erentiable in xR(tab).

Property 11.2.4 φ is generally not di�erentiable in xR(tbc) and xR(tbc) is a local ex-
tremum of φ.

Hence, using a point xR(t) when t ∈ Ra is relevant, and is irrelevant if t ∈ Rc as the
physics in xR(t) cannot be considered as local from the point of view of σl. The property
11.2.3 can be used to build a surface Tb. The property 11.2.4 can be used to build a surface
Tc. Then, a point xR(t) can be taken for the extrapolation of Φ while the ray R has not
crossed Tc (i.e. t < tbc) and eventually Tb (i.e. t < tab). This last point has to be studied
further.

As a conclusion, if the �eld Φ is prolonged, the Qd
1 functions can be directly used. If the initial

�eld Φn+1 is used, the kernel functions are more designated.
The locations of the various requested quantities are not the same if a staggered grid is used

(which is the case in the present work). Let us write the 2D deformation tensor:

D =




∂u

∂x

∂v

∂x
∂u

∂y

∂v

∂y


 (11.27)

On a staggered grid, the natural position (when centered derivative are used) of the diagonal
terms are the pressure nodes. For the extra-diagonal terms, their natural locations is neither at
the pressure nodes nor at the velocity nodes. The Fig. 11.1 shows the natural location of the
components of the tensor. In Thétis, these nodes are called viscosity nodes (One can notice that
the combination of the locations of the pressure, velocity and viscosity nodes de�nes a new regular
grid). These components can be interpolated to the pressure nodes to obtain D in a unique node

Figure 11.1: Location of the components of the deformation tensor

in order to use a unique extrapolation per elements to �nd all the physical quantities at the
interface. However, as each quantity is interpolated then extrapolated, additional interpolation
must be avoided. Hence, the extrapolation of D on Σh is done component by component from
their natural location.
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11.3 Validation
11.3.1 Settling of a cylinder
We �rst study the spatial convergence of the method which is expected to be of second order. A
cylindrical particle is dropped in a tank of dimensions l×L = [−0.005 ; 0.005 ]× [−0.02 ; 0.005 ]
in meters. The initial velocity is zero and its coordinates are Xi = (0, 0). The cylinder has a
radius r = 0.001m so the con�nement k = 2r/l = 0.2. The Faxen theory (see [Happ 63]) gives
the resistance force of the �uid on a cylindrical particle with respect to the terminal velocity U∞:

F =
4πµfU∞

ln(1/k)− 0.9157 + 1.7244(k)2 − 1.7302(k)4
(11.28)

whereas the buoyancy force is F = (ρf − ρp)π4r2g. The physical parameters are chosen such as
Re = 1.85 × 10−4. The Faxen theory is de�ned for Re < 1 and for a tunnel of in�nite length.
Practically, a no-slip boundary condition is imposed for all the walls. As proven by the good
and regular obtained results, the presence of an upper and a lower wall does not in�uence the
behavior of the particle.

The Fig. 11.2 shows that the convergence of the terminal velocity U∞ reach a second order in
space. As can be seen, the ITPM is more accurate for the coarsest meshes but does not converge

Figure 11.2: Relative error on the terminal velocity for the SMPM and the ITPM

to the desired solution (even if the di�erence is slight). In fact, the SMP methods can impose
the penalty constraint to machine error accuracy. The ITPM penalizes the viscosity in the solid.
Due to the numerical deterioration of the matrix conditioning, the ratio of magnitude between
�uid and solid viscosities has to be limited. Even with a direct solver, the solid cannot have an
in�nite viscosity and the calculation cannot converge to the real value. The Fig. 11.3 shows the
evolution of U∞ through the time. For coarsest meshes, the displacement from a cell to an
other produces a periodic noise on the terminal velocity which oscillates (for the convergence,
the average value is considered). The Fig. 11.4 shows the velocity magnitude for the �rst four
meshes at t = 4s. The velocity �eld near the particle is qualitatively quite similar for the four
meshes. Globally, the position of the particle di�ers, especially for the two �rst meshes. By
experience, we know that the force calculation for a given surface element is dependant to its
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Figure 11.3: Time evolution of the terminal velocity of the particle for various meshes

Figure 11.4: Velocity magnitude in m.s−1 at t = 2s for 25×62, 50×125, 100×250 and 200×500
meshes

relative position in a given grid cell. Fig. 11.5 shows the evolution of the settling velocity on a
25 × 62 mesh for SMPM and ITPM. As can be seen, the solution is very regular for the ITPM
and closer to the analytical result.
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Figure 11.5: Comparison between the SMPM and the ITPM for the time evolution of the terminal
velocity

11.3.2 Calculation of the wall force in a spherical particle
A convergence test for the calculation of the hydrodynamic force on a particle is performed. A
sphere of radius 0.25m is immersed and centered in an unit box. The analytical solution of the
unbounded �ow for Re = 0.01 is imposed [Happ 63]. The Fig. 11.6 shows the convergence of the
draft coe�cient CD. The global convergence order is 1.50. However, the order tends to 2 when
the mesh step size decrease. One can see that the accuracy for the coarsest meshes is quite poor.
However, the error goes under 10% quite quickly. Furthermore, a separate convergence for the
viscous and the pressure forces would be desirable as the two quantities are not obtained in a
same manner.
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Figure 11.6: Convergence of the drag coe�cient for a sphere at Re = 0.02
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Discussion and conclusion of Part IV
A real-time code for the simulation of solid interaction, Dresden, has been created. The aim
was to easily de�ne a collision algorithm to implement it in our CFD code. Dresden provides
promising results for the cases involving a large amount of objects. The algorithm has to be
enhanced for the case of the static stacking. An additional model of viscous interactions for the
case of �uid-solid coupling would be desirable [Lefe 07].

A �uid-structure coupling has been designed by combining the SMP method and a high-order
computation of the hydrodynamical forces on objects. A second order of spatial accuracy has
been reached. Concerning the time accuracy, a classical time-splitting approach coupled with
a �rst Euler scheme has been considered. However, settling of the particle tends to a constant
terminal velocity, so constant hydrodynamical forces, and a time scheme of higher order cannot
enhanced a constant velocity. In [Vinc 07], the time splitting is avoided by using the ITP method
(see section 2.3) so the solid velocity is implicitly computed simultaneously with the �uid velocity.
The spatial accuracy is of �rst order only at the vicinity of the objects. The performances of both
method has been compared on a simple case. The ITPM has clearly shown the best accuracy
except for the �nest meshes. In fact, the ITPM does not consider a perfectly rigid movement
inside objects so the model does not converge to the physical solution. However, the di�erence
between the physical solution and the converged numerical solution is very small. The SMPM
method with its time-splitting is more accurate for the �nest meshes on our simple case (the
settling of a cylinder in a Stokes �ow). However, such a ratio mesh-quality/complexity of �ow is
practically never reached in realistic cases.

Concerning the wall forces calculation, this high-order method su�ers from many limitations,
especially time oscillations of the calculated forces for the coarsest meshes. Its application to
complex geometries is sometimes di�cult, especially for convex meshes with high curvature.
Some ideas to enhance this point have been proposed.

To conclude, the ITPM is clearly the most interesting method and the next step will be to
couple our Eulerian-Lagrangian mesh projections with the ITPM so as to use it with complex
meshes (only cylinders in 2D and spheres in 3D have been treated for now with the ITPM). The
�nal step would be to increase the spatial accuracy of the ITPM thanks to the AIIB method.
The Dirichlet BC imposed with the SMPM could be replaced by interface conditions to obtain
an implicit resolution and an accurate imposition of the jump conditions. Furthermore, the ITP
formulation implicitly transmit the forces from a media to an other and so does not require
a complex calculation of the hydrodynamical forces on the objects (as explained before, this
process su�ers from robustness problems when the considered object is non-convex or is close to
an other object).
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Part VI

Industrial applications
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Introduction

The industrial application is one of the motivations of the present work. The step between
the basic validation of a method on academic cases and its application to real case is

sometimes huge. The �uid simulation often involves very high turbulent �ows requiring dense
calculation meshes. The immersed objects are sometimes composed of millions of elements. For
this last point, it is critical to treat these Lagrangian meshes with fast algorithms and naive
methods cannot be used practically. The ability of our methodology to treat complex cases is
demonstrated through the following realistic cases. The �rst one, the �ow inside a drilling bit, is a
one-phase turbulent �ow. The next case studies the hydroplaning of a tire. Two-phase turbulent
�ows are involved while a complex moving mesh is used for the tire. The last case details the
simulation of the natural convection in the cave of Lascaux. In a last chapter, illustrative cases
are presented. These simulations have been carried out by members of the laboratory TREFLE
with Thétis and the present methodology.
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Chapter 12

Simulation of a drilling head

This work was a part of a project founded by the Aquitaine Region Council and leaded by
Varel (Alfazazi Dourfaye). Varel manufactures drill bits for the global oil & gas drilling

community as well as for the blasthole mining, industrial, construction and water well drilling
communities. The other participants was the laboratory TREFLE (Arthur Sarthou, Stéphane
Vincent and Jean-Paul Caltagirone) and Armines (Laurent Gerbau).

The aim of the project was to enhance the performances of the Varel drill bits used for the
oil extraction. The part of the work related to this thesis was the simulation of the mud �ows in
the drill bits and the removal of the rock chips.

The �nal report is presented here. For the second part, where a parametric study is per-
formed on �ve di�erent drill bits, the �gures with the considered drill bits have been removed for
con�dentiality reasons. The shape of these bits is about the same as for the three �rsts presented
in the �rst part.



166 12. Simulation of a drilling head



167



168 12. Simulation of a drilling head



169



170 12. Simulation of a drilling head



171



172 12. Simulation of a drilling head



173



174 12. Simulation of a drilling head



175



176 12. Simulation of a drilling head



177



178 12. Simulation of a drilling head



179



180 12. Simulation of a drilling head



181

Chapter 13

Aquaplaning of a tire

13.1 Introduction
The hydroplaning is a phenomenon resulting from the lost of contact between a tire and the road
when a vehicle is moving at a certain speed on a wet road. For a given velocity, the interaction
between the water laying on the road and the tire generates a water reserve in front of the
tire which is larger than the initial water depth. A resulting pressure is generated at the tire
surface around the contact area between the tire and the water reserve. When the vertical e�ort
generated by this pressure becomes superior to the weight of the vehicle, the contact between this
vehicle and the road is no more maintained and the hydroplaning occurs: the adherence between
the vehicle and the road is lost and the trajectory of the vehicle is no more controled. From
the literature, it is well known that the link between the vehicle velocity and the hydroplaning
pressure follows at �rst order [Tunn 06]

Ph = KV 2
v (13.1)

where Ph is the hydroplaning pressure, Vv is the velocity of the vehicle and K is a constant equal
to half the density of water. This law is obtained under Bernouilli's assumptions of perfect �uid
behavior. From the tire manufacturer experience, it is well known that the more e�cient way
to increase Ph for given wetting conditions of roads is to incorporate speci�c structures at the
tire surface. In this way, more incoming water is evacuated laterally, the water reserve generated
in front the tire is reduced for a given velocity and the hydroplaning e�ect appears for higher
vehicle velocities. This e�ect of the tire structure has been studied for example by Masataka and
Toshihiko [Masa] .

No existing experimental or theoretical studies are able to predict qualitatively the improve-
ment brought by the choice of a tire structure on the hydroplaning compared to a reference �at
tire whereas building a tire is very expansive. The aim of the present article is to propose a
numerical modeling dedicated to the prediction of hydroplaning e�ects and to the classi�cation
of tire structures. This objective requires to account for three-dimensional turbulent free surface
air-water �ows interacting with complex tire geometries.

Among the rare existing literature works in the �eld of the numerical simulation of hy-
droplaning, two studies are of interest. The �rst one concerns the three-dimension simulation of
the interaction between a free surface �ow and a tire [Akse 96] . The second interesting work
[Cho 06]
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The numerical simulation of unsteady and incompressible isothermal multi-phase �ows in-
volving macroscopic interfaces is classically achieved thanks to the single-�uid Navier-Stokes
equations [Kata 86, Scar 99b] and to Eulerian interface tracking methods such as the Volume
Of Fluid (VOF) method [Youn 82] , the Level-Set technique [Oshe 01] or the Front Tracking
approaches [Shin 02a] . These methods have been extensively compared and evaluated in the
last ten years and have demonstrated their qualities and drawbacks [Ride 95] . Once an interface
tracking method has been chosen, the major di�culty consists in solving the motion equations
for high density or viscosity ratios and large interface distortions. Near the interface, parasitic
currents or unphysical �ow behavior occur when using, for example, time splitting projection
methods for simulating air-water or particulate unsteady �ows. In these problems, the resolution
of the coupling between the incompressibility constraint and the Navier-Stokes equations is not
ensured in one of the phases due to the ill conditionning of the linear system or to the boundary
condition treatment. Consequently, this gives a wrong �ow solution.

13.2 Numerical modeling of two-phase �ows interacting with ob-
stacles of complex shape

13.2.1 The 1-�uid model
The modeling of incompressible two-phase �ows involving separated phases can be achieved by
convolving the incompressible Navier-Stokes equations with a phase function C. As explained by
Kataoka [Kata 86] , the resulting model takes implicitly into account the jumps relations at the
interface [Delh 74, Scar 99b] and the interface evolutions are described by an advection equation
on function C:

∇ · u = 0 (13.2)

ρ(
∂u
∂t

+ (u · ∇)u) = −∇p + ρg +∇ · ((µ + µt)(∇u +∇tu)) + Fst (13.3)
∂Ci

∂t
+ u · ∇Ci = 0 (13.4)

where u is the velocity, p the pressure, t the time, g the gravity vector, ρ and µ respectively
the density and the viscosity of the equivalent �uid. A mixed scale turbulence model is added
through the turbulent viscosity µt [Saga 98, Laro 08]. The surface tension forces are taken into
account thanks to a volume force Fst = σκniδi. The surface tension coe�cient σ is assumed
constant. The local curvature of the interface is κ whereas the normal to the interface is ni and
δi is a Dirac function indicating interface.

The 1-�uid model is almost identical to the classical incompressible Navier-Stokes equations,
except that the local properties of the equivalent �uid (ρ and µ) depends on C, that the interface
location requires the solving of an additional equation and that a speci�c volume force is added
at the interface to account of capillary e�ects.

13.2.2 Discretization and solvers
The 1-�uid Navier-Stokes equations are discretized with �nite volumes on an irregular staggered
Cartesian grid. The coupling between velocity and pressure is ensured with an implicit algebraic
adaptive augmented Lagrangian 3AL method (see section A.3.4.2). The augmented Lagrangian
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methods presented in this work are independent on the chosen discretization and could be im-
plemented for example in a �nite element framework [Bert 97]. The linear system is inverted
with a BiCGSTAB II solver [Gust 78b], preconditionned under a Modi�ed and incomplete LU
method [Vors 92].

Concerning the interface tracking, a Volume Of Fluid (VOF) approach is used with a Piece-
wise Linear Interface construction (PLIC) [Youn 82]. This approach ensures the mass conserva-
tion while maintaining the interface width on one grid cell.

The numerical methods and the 1-�uid model have been widely validated by the authors
concerning jet �ows [Vinc 99, Laro 09], capillary �ows [Vinc 00, Leba 04, Tron 08] , wave break-
ing [Lubi 06, Vinc 04, Vinc 07], material processes [Laca 06], plasma to water jet interaction
[Vinc 09] and more generally turbulent two-phase �ows [Labo 07, Vinc 08].

13.3 Three-dimensional simulation of hydroplaning �ows

13.3.1 Description of the problem

The three-dimensional air-water �ow interacting with a tire is considered for a road and tire
rotation velocity of 50km.h−1. The tire is a �ctitious domain of imposed velocity which is ac-
counted for into the calculation grid by means of penalty terms imposing the velocity in all the
tire zone. As presented in �gure 13.1, three tire geometries, called tires T1, T2 and T3, are
considered, in order to evaluate the e�ect of the tire structures on the �ow-structure interaction
and resulting forces exerted on on tire during hydroplaning. The tires are shown as they are
really projected onto the simulation grid. It is observed that only their bottom part is considered
in the simulation. On the road, the tire is in contact with the bottom boundary of the simulation
domain (empty parts of the tire surface in �gure 13.1). It can be pointed that the tire structured
is not accurately described in the upper part of the calculation domain, due to grid coarsening
in these zones. However, the two-phase �ow does not provide important features in these part of
the simulation, so their in�uence on the hydroplaning motion can be solved in a coarse manner.
At each time step, the movement of the tire structures, as well as the deformation of the tire,
are calculated thanks to a home-made software by MICHELIN, which provides us the triangular
surface elements de�ning the tire topology. The e�ect of the �ow on the tire deformation are
not currently taken into account. The tire deformations are only due to the force exerted by the
vehicle.
The �uid characteristics are 1000kg.m−3 and 1.1768kg.m−3 for the densities in water and air

and 10−3Pa.s and 1.8510−5Pa.s for the dynamic viscosities in water and air respectively. The
surface tension coe�cient σ between water and air is assumed to be equal to 0.075N.m−1. Ini-
tially, a water layer lays upward onto the road with a height of 8mm on the total width of the road.

The simulation grid is exponential, with a re�ned area in the zone where the tire is in contact
with a road. The total number of cells in each directions is 270 x 110 x 80. The size of the cells
in the re�ned zone is 1mm in each direction, while the macroscopic dimensions of the simulation
domain are 1.4m x 0.291m x 0.6m. The grid structure in vertical and horizontal slice views is
presented in �gure 13.2. All the simulations are computed on the same grid, which provides the
required cell density to obtain results independent on the numerical parameters. The calculation
time step is chosen constant and equal to 10−4s.
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Figure 13.1: Topology of the three considered tires called T1, T2 and T3 (from left to right and
top to bottom) - the tire structures are provided by MICHELIN.

13.3.2 Study of three-dimensional �ows
The three-dimensional two-phase unsteady �ow occurring when a water-air free surface hits and
interacts with a tire has never been studied numerically with a full unsteady description of the
two-phase motion and the corresponding e�orts exerted on the tire. The typical �ow structures
that are observed when the tire geometry changes are presented in �gure 13.3. The free-surface
is represented by iso-surface C = 0.5. The simulations are considered after the �ow has reached
a stabilized state, i.e. the global shape of the free surface does not evolve during time. Whatever
the type of tire topology, the macroscopic �ow structure is almost the same. A V-like free surface
form develops downstream the tire, a lot of water droplets are generated in the vicinity of the
rotating obstacle and a pressure peak is created on the forward face of the tire near the road.
The pressure projected onto the tire surface is described in �gure 13.4. The �ow is observed
with a bottom view perpendicular to the road. The simulated values of the maximum pressure
on the tire are in the range 80000 to 100000Pa. These values are in good agreement with the
experimental measurements of MICHELIN and the theoretical predictions provided by equation
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Figure 13.2: Structure of the calculation grid in an horizontal (top) and a vertical slice (bottom).

13.1:

Ph = KV 2
v = 96466Pa (13.5)

with the constant K is equal to 500 and the velocity of the vehicle Vv is 13.89m.s−1. On a
two-phase point of view, it is observed that air tubes are generated when the water touches the
tire on the side and in the wake of the obstacle. Under surface tension and shearing e�ects,
these gas tubes break and generate bubbles and droplets, as can be observed in hydroplaning
experiments.
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Figure 13.3: Two-phase �ow interacting with tires T1, T2 and T3 - the tire iso-surface is plotted
in grey whereas the free surface is represented in blue.
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13.3.3 Analysis of forces exerted on a tire by water

In this section, the vertical component of the normal force Fn exerted by the two-phase �ow
on the tire is �rst studied. The positive and negative contributions of Fn, de�ned as F+

n and
F−

n , are introduced in order to estimate and discriminate the tire structure e�ect on the �ow-
structure interaction. The behavior of F+

n and F−
n is proposed in �gure 13.5. For the three tires,

the positive contribution of the vertical component of force Fn is 7 to 8 orders of magnitude
higher than the negative part F−

n . This observation illustrates the hydroplaning character of the
�uid-structure interaction considered in this work.
The time evolution of F+

n admits a similar characteristic behavior for T1, T2 and T3. For
0s ≤ t ≤ 0.01s, F+

n increases until a maximum value between 800N and 900N . This time inter-
val correspond to time required for the incident water layer to wet the tire surface near the road.
For 0.01s ≤ t ≤ 0.02s, the positive part of the vertical force component decreases, corresponding
to the obtention of an almost equilibrium state between the incident water �ow and the tire and
road dynamics. After this time, the e�ort reaches an average asymptotic value included in the
range 750N to 850N . The main di�erence between the �at and structured tires is observed in
the asymptotic region, for which the vertical force exerted by the two-phase �ow is constant for
T1 (�at tire) whereas regular oscillations are numerically measured for T2 and T3, characteristic
of the tire structure.

The discrimination of the tire is now investigated by considering the evolution of the total
vertical force Fn during time. These results are presented in �gure 13.6. It is observed that
building a structure on a tire reduces by 20% the e�ort exerted by water on the tire, as observed
experimentally by tire manufacturers. As for F+

n and F+
n , after the �uid-structure interaction

has reach a stabilized state for t ≥ 0.02s, Fn linearly increases over time. This results in the
correlated increase of the ambient pressure in the calculation domain. The real e�ort exerted
on the tire after t = 0.02s no more increases. This could be veri�ed numerically by subtracting
the ambient pressure to the pressure calculated locally. The di�culty lies in the choice of the
ambient pressure in our simulations. However, the important feature here lies in the classi�cation
of the forces resulting from the �uid-structure interaction according to the tire structure, which
is nicely established by the simulations. Contrary to the classi�cation brought by F+

n , the Fn

curve demonstrates that the tire T3 involves a 5 to 10% in average lower e�ort than T2. For
these to tire geometries, the main di�erence lies in the opportunity provided by T3, due to its
shape design, to exert a negative vertical e�ort which compensate the value of F+

n and allows
Fn to be lower for T3 than for T2.

A last interesting parameter can be extracted from the simulated e�orts: the characteristic
frequencies arising when the tires are structured. It is recalled and observed in the simulations
that no typical periodic variations are observed for a �at tire, as expected. The best variable
allowing to measure the characteristic time variations of e�orts is F+

n , as observed in �gure 13.5.
A zoom of the positive vertical contributions of Fn is presented in �gure 13.7. The analysis of
the F+

n signals allows to extract the characteristic frequencies fT2 and fT3 of tires T2 and T3:

{
fT2 = 25/0.0892545 = 280Hz
fT3 = 32/0.0910765 = 351Hz

(13.6)

It can be tried to correlate fT2 and fT3 to the typical tire structures presented in �gure 13.8. A
frequency can be estimated by dividing the velocity of the road Vv = 13.89m/s by a characteristic
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distance. If the vertical distance between the tire structures is used, it can be demonstrated that
{

fT2 = 13.89/0.048 = 289Hz
fT3 = 13.89/0.04 = 347Hz

(13.7)

As a conclusion, it has been demonstrated that the �uctuations observed on the time evolution
of the e�orts are directly dependent on the size of the larger structure of the considered tire.

13.4 Concluding remarks
The three-dimensional two-phase �ow structure interacting with the tire are clearly simulated.
The corresponding e�orts exerted on the tire are compared for three di�erent tires. A classi�ca-
tion of the tire topologies is proposed with respect to the magnitude of the total vertical normal
forces, i.e. the �at tire involves a 20% higher e�ort than the structure tire. This demonstrates
that using structure tire clearly reduces the vertical force exerted on the tire and that in this case,
the hydroplaning will occur for higher road velocities. To �nish with, characteristic frequencies
of structured tires are clearly observed. They are related to the size of the larger tire structure.
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Figure 13.4: Two-phase �ow interacting with tires T1, T2 and T3 - the free surface is represented
in blue with translucency whereas the iso-colors describe the pressure projected onto the tire
surface.
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Figure 13.5: Time evolution of F−
n and F+

n for tires T1, T2 and T3 (from left to right and top
to bottom
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Figure 13.6: Time evolution of Fn for tires T1, T2 and T3

Figure 13.7: Zoom on the time evolution of F+
n for tires T2 and T3
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Figure 13.8: Typical structure of tires T2 (top) and T3 (bottom) - a downside view of the tires
is presented at the contact area with the road.
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Chapter 14

The Lascaux cave

14.1 Context

Lascaux is the setting of a complex of caves in southwestern France famous for its Paleolithic
cave paintings (Fig. 14.1). The original caves are located near the village of Montignac, in

the Dordogne département. They contain some of the most well-known Upper Paleolithic art.
These paintings are estimated to be 16,000 years old. They primarily consist of realistic images
of large animals, most of which are known from fossil evidence to have lived in the area at the
time. In 1979, Lascaux was added to the UNESCO World Heritage Sites list along with other
prehistoric sites in the Vézère valley. Since its discovery, several problems have occurred, due
to the huge amount of visitors, and their release of vapor and carbon dioxide by their breath,
causing the formation of calcite and the apparition of green algae and mosses. The Minister of
Cultural A�airs (André Malraux) had the cave closed in 1963. The closure solved some of the
problems for a while and the Lascaux cave art returned to the state it was in the day of the
discovery. Since then, prehistorians, archeologists, geologists, hydrogeologists, have tried hard to
maintain the cavity in the most stable state possible, using remote metering to record the vari-
ations in temperature, hygrometry, and carbon dioxide gas pressure. The biological equilibrium
remained fragile and in 2001 colonies of micro- organisms, fungi and bacteria developed on the
rock edges and on the �oor. This attack made the authorities and the Minister of Culture and
Communication create an international committee of the Lascaux cave. This multidisciplinary
committee is composed of archeologists, physicists, geologists, hydrogeologists and conservators
working altogether to understand the mechanisms of apparition of the micro-organisms in or-
der to stop their propagation. Since then, biologists have developed treatments and complex
processes to eradicate these micro-organisms.

In the process of time the temperatures and hydric conditions have often changed. Under the
in�uence of exchanges and energy transfers with the outside, the system formed by the Lascaux
cave evolved and its state variables have been modi�ed. Climate change had consequences which
occurred before its discovery which can be observed in the paintings on various places of the
cave.

Among the measures taken by the committee, a better understanding of the �ows in the
cave was deemed a paramount importance, and has induced the creation of a simulation tool,
the "Lascaux Simulator". The non intrusive character of the simulation is one of the major
assets of this method. Thus, the numerical simulation in �uid mechanics is here dedicated to the
conservation of the Lascaux cave. The project is conducted by Delphine Lacanette (TREFLE).

Two articles are now presented. The �rst one explain the methodology employed to simulate
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Figure 14.1: Paintings in the Lascaux cave - Room of the Bulls, �rst and second bulls

the natural convection in the Lascaux cave on Cartesian grid. The moisture is taken into ac-
count. The second article propose to carry out the same simulations on curvilinear grids. Both
approaches are validated on academic cases. The Sierpinski carpet case is presented in each
articles with the methodology employed therein.

14.2 The article in International Journal of Heat and Mass Trans-
fer
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14.3 Proceeding of the Société Française de Thermique 2009 (in
French)
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Discussion and conclusion of Part V
Complex simulations have been realized with our methodology. The simulation in the drill
bits would have required more validations, but there is no accurate experimental results to
compare with. However, it is generally know that a greater blade angles induces a less e�cient
evacuation of the coppers. Our parametric study with �ve di�erent drill bits shows the same
tendency. Concerning the simulation of the hydroplaning of tires, the classi�cation obtained by
the experiments of Michelin has been retrieved.

Hence, our methodology has been successfully on realistic simulation cases. The adaptation
of our home-made code Th�étis is currently used on personal computers by Michelin and Varel
for their study.

Some illustrations are now quickly presented. Many of them have been realized in collab-
oration with members of our laboratory. In fact, another di�culty when implementing a new
method is to make it usable by almost anyone.

Thermal cooling with a jet (with Ludovic Osmar)
The impact of an oil jet injected through a nozzle on a heating square of copper is simulated.
The injection speed is 1m.s−1. The domain size is 32mm × 24mm and the quare has a side
of 8mm. The properties of the oil are ρ = 864.1kg.m−2 and µ = 0.1Pa.s while rest of the
domain is �lled by air. The mesh size is 240× 180. The oil phase is managed with a VOF-PLIC
method. The Fig. (14.2) shows the phase location and the temperature in the domain for a long
time simulation. The �ow is almost stationary. The SMP method is used to impose a Dirichlet

Figure 14.2: Position of the oil jet (left) and temperature �eld (right)

condition for the �uid �ow on the solids. The AIIB method imposes the interface conditions on
the surface of the cube. This case emphasize the need of an interface method for thermal transfer
while many cases can be treated with only a boundary method for �uid �ows. As can be seen,
the maximum temperature is obtained near the middle of the heating square. The temperature
is lower near the lowest side thanks to the cooling e�ect of the oil jet.

Subaquatic harrow (with Pierre Lubin)
The aim of these simulations is to study the impact of subaquatic harrows on the sedimentary
transport. Fig. (14.3) shows the e�ect of a single harrow (of height h = 1.80m) on an oceanic
�ow. The recirculation created by the presence of the obstacle generates a dead zone and slows
down the displacement of sediment. These images have been created with a computer graphics
software from the results of the simulation.

Other illustrations
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Figure 14.3: Streamlines of the oceanic �ow around a subaquatic harrow

Some type cases are presented. The Fig. (14.4) show a simulation of the interaction of a ship
hull and the water. The Fig. (14.5) is a case of thermal di�usion in a brain-like cavity.

Figure 14.4: Preliminary simulation of �uid �ows around a ship hull
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Figure 14.5: Thermal di�usion in a brain-like cavity
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Part VII

Conclusion générale et perspectives
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Au début de ce travail, le code Aquilon, devenu par la suite Thétis, permettait une utilisation
limitée d'obstacles ou d'interfaces. Seuls des objets de formes simples et analytiques

pouvait être utilisés, et avec une précision spatiale au premier ordre. Concernant les objets
mobiles, un couplage �uide-structure e�cace (la méthode ITP) existait déjà mais ne fonctionnait
que pour des particules cylindriques en 2D et sphériques en 3D.

Par le présent travail, nous avons permis l'initialisation de phases, d'interfaces ou encore
d'obstacles de formes quelconques à l'aide d'algorithmes robustes et rapides. La précision spatiale
du traitement de ces éléments a été dans de nombreux cas portée à l'ordre deux. La gestion des
objets mobiles a de plus été étendue aux formes quelconques.

A�n de mettre en valeur ces nouvelles possibilités, le code Thétis a été couplé à un logiciel
d'image de synthèse professionnel permettant un rendu bien plus réaliste des simulations. Ce
dernier est d'ailleurs couramment utilisé au laboratoire pour créer ou pré-traiter le maillage des
objets et interfaces.

L'objectif premier de cette thèse était de développer une méthode de pénalisation au sec-
ond ordre et son extension aux objets mobiles. Cette nouvelle méthode a été validée dans de
nombreuses con�gurations et a montré sa robustesse. Elle reste d'après nos connaissances, la
seule méthode d'ordre élevée a avoir été couplée au lagrangien augmenté. Nous avons d'ailleurs
exposé les facilités qu'o�re cette approche par rapport à une méthode de projection scalaire
de pression. Le principal défaut de cette méthode de pénalisation est qu'elle exige des solveurs
performants traitant des matrices à diagonales non-dominantes. Concernant son implémentation
dans Code_Saturne, les résultats en maillage structuré sont similaires à ceux obtenus avec le code
Thétis. En non-structuré, les méthodes de correction d'opérateurs posent toujours problème.

A�n d'obtenir un couplage �uide-structure implicite, il était initialement prévu de coupler la
méthode avec l'ITPM ([Rand 05]). Il s'est révélé impossible d'étendre la pénalisation de sous-
mailles aux problèmes d'interfaces, ce qui a conduit à la conception d'une méthode de frontière-
interface immergée. Cette nouvelle méthode a montré sa capacité a traiter des cas typiques de
transferts thermiques avec un ordre deux en espace. Son principal avantage par rapport aux
méthode concurrentes est sa formulation simple engendrant une implémentation facile, ainsi que
son stencil de discrétisation très réduit. Cette méthode reste toutefois au premier ordre pour
certains problèmes elliptiques, notamment pour une condition de �ux d'interface ou de frontière
inhomogène. Ce point devra rapidement être amélioré. L'objectif suivant sera d'étendre la
méthode aux équations de Navier-Stokes a�n de permettre une utilisation conjointe à l'ITPM
o�rant ainsi un couplage implicite en temps et un ordre deux en espace. A terme, un traitement
d'interfaces �uide-�uide, bien que complexe de par la nature des conditions de sauts concernées,
semble réalisable.

A�n d'utiliser ces méthodes pour des cas industriels complexes, nous avons développé des
méthodes de projections de maillage. Notre nouvelle stratégie, qui consiste à ramener le maillage
curviligne à un maillage cartésien, a montré son e�cacité. La projection curviligne-eulerienne
est quelque peu complexe à implémenter mais facilite énormément l'implémentation d'autres
méthodes (projections surfacique-volumique, calcul d'e�orts, advection...) ainsi que leur rapid-
ité d'exécution (tout particulièrement pour la méthode de Ray-Casting). Sur ces aspects, les
futurs développement porteront sur l'adaptation de ces méthodes à un environnement parallèle
a mémoire partagée de type OpenMP ou GPU. Les diverses méthodes de projection de maillage
e�ectuent beaucoup d'opérations indépendantes et sont donc faciles à paralléliser. Pour ce qui
est du MPI, le code Thétis procède par décomposition de domaines ce qui n'in�uence pas les
routines de projection qui fonctionnent ainsi naturellement en parallèle MPI. Un autre aspect
important sera de trouver une correction adéquate des propriétés géométriques de la fonction
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distance. Ces dernières sont un des principaux intérêts de la méthode Level-set mais ne sont pas
valables dans l'espace réel si la fonction distance a été construite dans un espace transformé.

Concernant les objets mobiles, nous avons étendu l'approche de [Coqu 08] à la pénalisation de
sous-maille et au lagrangien augmenté. Nous avons choisi d'advecter le maillage des objets plutôt
qu'une fonction volumique. Cette approche permet de conserver exactement la forme de l'objet
et reste très performante en terme de temps de calcul pour peu que l'e�ort d'implémentation
nécessaire soit déployé (Thread Ray-Casting, Octree...). Il est toutefois apparu que l'ITPM était
généralement plus précise. Elle est également plus robuste dans de nombreux cas. Cela renforce
l'idée que la voie à suivre est de coupler cette méthode avec la méthode d'interface immergée
algébrique. Pour ce qui est des interactions solide-solide, un code de calcul temps réel avec
visualisation OpenGL a été construit a�n de faciliter l'étude d'un algorithme de collision. Les
résultats sont satisfaisants sauf pour les cas raides de type empilements.

Toutes ces méthodes ont permis de traiter des cas industriels complexes. Les simulations
d'hydroplanage ont produit des résultats en cohérence avec des expérimentations. Nous avons
aussi développé pour Varel un simulateur d'écoulements dans les têtes de forage avec une gestion
de copeaux. Ce dernier point peut encore être grandement amélioré par l'ajout de propriétés
physiques dans la dynamique des copeaux. Le troisième cas, la grotte de Lascaux, est un bon
exemple d'aide à la conservation du patrimoine. De nombreux médias (Libération, JT TF1,
France 2, France 3) se sont fait écho du simulateur et ont di�usé les images de synthèses réalisées
par nos soins ce qui montre le potentiel de communication et de vulgarisation de cette approche.
Concernant l'imagerie de synthèse, les cas présentés en annexe ont été réalisés avant que ce tra-
vail ne commence. Les di�érents outils et améliorations développées ici permettront d'obtenir
rapidement de nouvelles séquences plus intéressantes.

Tout ceci démontre la capacité d'une approche "tout cartésien" a mener des simulations pour
l'industrie ou l'environnement avec une puissance de calcul réduite, et malgré leur complexité, les
cas industriels de Michelin et Varel ont été traités sur des machines standards. Des cas similaires
continuent à être traités par ces entreprises avec notre simulateur, et ce toujours sur des machines
de bureau. Quand à l'évolution de ces dernières, la tendance est résolument une augmentation
soutenue du nombre de processeurs pour une évolution relativement moindre de la mémoire vive.
Ce dernier point nous pousse �pour ce qui est des perspectives a plus long terme� à considérer
sérieusement un portage complet de notre approche aux architectures multi-c÷urs (CPU comme
GPU) a mémoire partagée.
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Appendix A

Conservation equations and related
numerical context

A.1 Preamble
In this section, the numerical methods used in the home made code Thetis (formerly Aquilon)
are presented. This document has been written at the laboratory TREFLE which is composed of
both mathematicians and physicists. Hence, each element of the following chapter will possibly
be considered as evidence by one of the two communities.

A.2 Equations
Let us consider �rst a second-order linear PDE:

auxx + 2buxy + cuxx + 2dux + 2euy + fu = 0 (A.1)

Three kinds of equations can be identi�ed according to the value of b2 − ac:

• b2 − ac > 0, the equation is hyperbolic (wave equation)

• b2 − ac = 0, the equation is parabolic (di�usion equation)

• b2 − ac < 0, the equation is elliptic (Poisson equation)

A.2.1 Conservation equations
Conservation equations are all based on the consideration of the �ux of some state variable
�owing into and out of some region of the domain. In general the sources and sinks within this
region are also considered in arriving at a conservation equation. These �uxes generally depend
on position, but they may also depend on the state variable itself, or they may represent �uxes
of state variable carried into the region by moving material. Let us consider a physical quantity
Φ. The following PDE is a generic scalar transport equation :

∂Φ
∂t

+∇ · f(t,x, Φ,∇Φ) = g(t,x, Φ) (A.2)

where f is called the �ux and g the source.
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A.2.2 General elliptic equations
An operator P is de�ned as elliptic is the equation Pu = 0 is elliptic. An important case of
elliptic operator is the Laplacian, or Laplace operator, denoted as ∆ = ∇2. In non-Euclidian
spaces, the Laplace operator can be generalized and is not necessarily elliptic (e.g. the Laplace
operator becomes the d'Alembert operator ¤ = ∂2

t − ∂2
x− ∂2

y − ∂2
z in the Minkowski space). The

Laplace equation is ∆u = 0. With a source term f , the Laplace equation becomes the Poisson
equation ∆u = f . One can notice that the heat equation, ut− a∆u = f , is a parabolic equation
but its steady state solution solves the corresponding elliptic equation. When no particular
physical application is considered, the present work generally considers the following model
elliptic equation:

−∇ · (a∇u) + bu = f (A.3)
Let us consider the following model problem:
For ã ∈ (L∞(Ω̃))d×d, b̃ ∈ L∞(Ω̃) and f̃ ∈ L2(Ω), �nd a function ũ de�ned on Ω̃ such that:

{ −∇ · (ã∇ũ) = f̃ in Ω̃
B.C. on ∂Ω̃

(A.4)

where B.C. represent several types of boundary conditions:

• A Dirichlet condition ũ = uD with uD ∈ H1/2(∂Ω̃),

• A Robin (or Fourier) condition: −(ã.∇).n = αRũ + gR, with αR ∈ L∞(∂Ω̃); αR ≥ 0, and
gR ∈ L2(∂Ω̃)

• A Neumann condition, −(ã.∇).n = g, considered as a particular case of the Robin condition
where αR ≡ 0 and gR ≡ g̃

Moreover, the tensor of di�usion ã ≡ (ãij)1≤i,j≤d and the reaction coe�cient b̃ verify the classical
ellipticity assumptions:

∃a0 > 0, ∀ξ ∈ Rd, ã(x).ξ.ξ ≥ a0|ξ|2 a.e. in Ω̃
where |.| is the Euclidian norm in Rd

∃b0 ≥ 0, b̃(x) ≥ b0 a.e. in Ω̃

In this case, the classical variational techniques (e.g. [Ravi 82]) prove that the solution ũ of
the original problem exists and is the unique solution ũ in the space H1(Ω̃) satisfying the weak
formulation of the problem.

A.2.3 The incompressible Navier-Stokes equation
The Navier-Stokes (NS) equations are named after Claude-Louis Navier and George Gabriel
Stokes. They describe the motion of �uid substances, i.e substances which can �ow. Extremely
useful, they can describe a large amount of phenomena, such as weather, �ow around a car or a
plane, or blood �ows.
The unknowns of the NS equations are generally the velocity and the pressure. The nonlinear
term due to convective acceleration provides a time dependent chaotic behavior called turbulence.
The NS equations are often extremely di�cult to solve numerically when turbulence appears.
Mathematically, the existence and the smoothness of the 3D NS equations is not demonstrated.
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Let us consider the domain of interest Ω of boundary ∂Ω.

∇ · u = 0 in Ω (A.5)

ρ

(
∂u
∂t

+ (u · ∇)u
)

= ρg −∇p +∇ · [µ(∇u +∇Tu)] + σkniδi in Ω (A.6)

∂C

∂t
+ u · ∇C = 0 in Ω (A.7)

A.3 Numerical methods
A.3.1 The �nite volume method
We consider the integral form of (A.2) for the whole domain Ω :

∫

Ω

∂Φ
∂t

dV +
∫

Ω
∇ · f(t,x, Φ,∇Φ) dV =

∫

Ω
g(t,x, Φ) dV. (A.8)

One can notice that the equation (A.8) is the �ux balance for the whole domain Ω. The integral
form of the equation is now rewritten for all CVs Vi of measure vi compounding the domain Ω:

∫

Vi

∂Φ
∂t

dV +
∫

Vi

∇ · f(t,x,Φ,∇Φ) dV =
∫

Vi

g(t,x,Φ) dV. (A.9)

Numerous numerical schemes can be used to discretize each of the terms. On integrating the
�rst term to get the volume average and applying the divergence theorem to the second, this
yields

vi
∂Φ
∂t

+
∮

Si

f(t,x, Φ,∇Φ).n dS =
∫

Vi

g(t,x, Φ) dV. (A.10)

Hence, the discretization of the second term is based on the �uxes at the faces of the CVs. As the
FV method uses the integral form of the conservation equations, the conservation of the physical
properties is straightforwardly obtained.

A.3.2 The staggered grid
Our methodology uses four primary variables (u, v, w, p) to solve the incompressible Navier-
Stokes equations. The intuitive discretization consists in putting the variables four by four at
the same location. The calculation of derivatives in such a "colocative" grid leads to major
di�culties. Let us consider a cell-centered pressure variable pC and his left and right neighbors
pW and pE . The location of the faces of the control volume are pw and pe. The calculation of the
1D pressure gradient dp

dx gives the quantity pe − pw. Using the cell-centered variable, we obtain:

pe − pw =
pW − pC

2
− pC − pE

2
=

pW − pE

2
(A.11)

This means that the momentum equation will contain the pressure di�erence between two al-
ternate grid points, and not between adjacent ones. First, the pressure is taken from a coarser
grid than the one actually employed. The same problem occurs with discretization of ∇ · u in
the pressure correction equation or in the Uzawa algorithm. But this discretization has a far
more serious problem. Let us consider a zig-zag pressure �eld alternating between two constant
values p1 and p2. If pW = p1, pC = p2 and pE = p1, the calculated pressure gradient in pC is
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null. Hence, the gradient of a pressure �eld will be seen as constant so the pressure �eld will be
perceived as constant. The same e�ect is obtained in 2D with a checkboard-like pressure �eld.
And if a given pressure �eld is obtained as a solution, any number of additional solutions can be
constructed by adding a checkboard pressure �eld to that solution.

Hence, an alternative interpolation method, such as the Rhie and Chow method [Rhie 83] is
commonly used. This discretization uses a weighting factor to take into account the value of the
pressure in pC when calculating the pressure gradient at this location.

Harlow and Welch proposed, combined with their MAC method, to use a di�erent grid for
each variable [Harl 65]. In this staggered grid, the velocity components are calculated for the
points that lie on the faces of the control volumes. Thus, the x-direction velocity is calculated
at the faces that are normal to the x direction. In Fig. A.1, the location of the velocity variables
is shown as arrows while circles shows the location of the pressure points. With such a grid,

Figure A.1: Location of the unknowns for the staggered grid

the mass �ow rates across the CVs can be calculated without any interpolations for the relevant
velocity component. Moreover, the discretization of the pressure gradient in the momentum
equation and the discretization of the divergence of the velocity for the pressure correction and
for the Uzawa algorithm use adjacent grid points. Hence, the checkboard e�ect and its related
problems observed with a colocative approach are no more. However, as 1 + d grids are used
instead of a unique one, the staggered grid method require a larger amount of memory and some
additional computation e�orts to determine the location of the velocity nodes. Nevertheless, the
bene�ts of such an approach are well worth the additional troubles.
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A.3.3 The velocity-pressure coupling
A.3.3.1 The scalar projection method
A �rst common way to obtain the pressure when solving the Navier-Stokes equation is the
SIMPLE algorithm of Patankar and Spalding [Pata 72].

The idea is to obtain �rst a predicted velocity from the momentum equation. This velocity is
not divergence free. In a second step, the projection step, the pressure is risen with respect to the
divergence of the velocity obtained in the prediction step. The third step consists in updating
the velocity according to the pressure gradient obtained with the second step.
Let write the momentum Navier-Stokes equation:

∂u

∂t
= +RHS −∇p (A.12)

with RHS the convective, di�usive and source terms. The half discretization in time gives:

ρ

(
un+1

i − un
i

∆t

)
= RHSn+1

i −∇ip
n+1 (A.13)

This equation is solved, but as here ∇ · un+1 6= 0, a �rst predicted solution u∗ can only be
obtained. We de�ne u′ such as un+1 = u′ + u∗ and p′ such as pn+1 = p′ + p∗. Hence, the
predictor step solves:

ρ

(
u∗i − un

i

∆t

)
= RHS∗i −∇ip

n (A.14)

One can write now (A.13)-(A.14):

ρ

(
un+1

i − u∗

∆t

)
= RHS′ −∇ip

′ (A.15)

(
un+1

i − u∗
)

=
∆t

ρ
RHS′ − ∆t

ρ
∇ip

′ (A.16)

The correction equations is then de�ned by writing the divergence of (A.16). The term ∇ ·
∆t
ρ RHS′ is neglicted. We obtain :

∇ · u∗i = ∇ · ∆t

ρ
∇ip

′. (A.17)

Once the pressure increment is obtained, velocity and pressure are updated:

pn+1 = p′ + pn (A.18)

un+1
i = u∗i −

∆t

ρ
∇ip

′ (A.19)

In [Timm 96], Timmermans et al. proposes a correction of this last step replacing (A.18 by

pn+1 = p′ + pn − µ∇ · u∗. (A.20)

This correction gives better results with the pressure Neumann BC. One can �nd an overview of
the di�erent projection methods in [Guer 06].
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A.3.3.2 The Uzawa operator
The discrete Navier-Stokes equations are written as:

Aun+1 + Gpn+1 = F (A.21)
Dun+1 = 0 (A.22)

where D is the discrete divergence matrix and G the discrete gradient matrix. If A is inversible,
one can rewrite (A.21) as

Dun+1 + DA−1Gpn+1 = DA−1F (A.23)

As Dun+1 = 0, the pressure can be solved with

DA−1Gpn+1 = DA−1F (A.24)

and DA−1G is the Uzawa operator. The system (A.24) can be solved with an iterative method.
We choose pn+1

0 = pn and m is the current iteration of the iterative algorithm. The Richardson
method gives:

pn+1
m+1 = pn+1

m − dp(DA−1F −DA−1Gpn+1
m ) (A.25)

and using DA−1F −DA−1Gpn+1 = Dun+1,

pn+1
m+1 = pn+1

m − dpDun+1
m+1 (A.26)

A.3.4 The augmented Lagrangian method
A.3.4.1 Theoretical formulation
Let us consider the incompressible Navier-Stokes equation on a domain Ω ∈ Rd:

ρ

(
∂u
∂t

+ (u · ∇)u
)

= ρg −∇p +∇ · [µ(∇u +∇Tu)] + σkniδi in Ω (A.27)

∇ · u = 0 in Ω (A.28)

Contrary to scalar projection methods, the augmented Lagrangian (AL) [Fort 82] proposes to
satisfy the two equations (A.28) and (A.27) at the same time, resulting a divergence free �ow
u after only one matrix inversion. The method uses at the same time a minimisation under
constraint and a penalty term to accelerate the convergence. The pressure p is here a Lagrange
multiplier which allow the constraint to be ensured.
For all v ∈ (H1

0 (Ω))d, let J(v) be a functional built from the weak formulation of the momentum
equation (A.27). This functional has to be minimized under the constraint u,v ∈ M = {v ∈
(H1

0 (Ω))d,∇ · v = 0}. This problem is equivalent to the following one:
{

J(u) ≤ J(v), ∀v ∈ M
u ∈ M

(A.29)

Practically, a solution in a constrained space such as M cannot be easily computed. This
problem of minimization under constraint is transformed into a problem of minimization without
constraint introducing a pressure q as a Lagrange multiplier. We de�ne the following Lagrangian:

L(v, q) = J(v)−
∫

Ω
q∇ · v dΩ (A.30)
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The minimization problem (A.29) consists in �nding a saddle-point (u, p) ∈ (H1
0 (Ω))d × L2(Ω)

of the Lagrangian (A.30):
{

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀v ∈ (H1
0 (Ω))d, ∀q ∈ L2(Ω),

u ∈ (H1
0 (Ω))d, ∀p ∈ L2(Ω)

(A.31)

which implies
L(u, p) = minv∈(H1

0 (Ω))d maxq∈L2(Ω) L(v, q)
= maxq∈L2(Ω) minv∈(H1

0 (Ω))d L(v, q)
(A.32)

In order to increase the convergence rate [Fort 82], the constraint is used to build a penalty term
1
2dr|∇ · v|2, dr ∈ R. The augmented Lagrangian is denoted as:

Lr(v, q) = J(v)−
∫

Ω
q∇ · v dΩ +

∫

Ω

dr

2
|∇ · v|2 dΩ (A.33)

and the relation (A.31) can be applied to Lr too.
We admit that the solution of saddle-point problem for the weak formulation of the initial equa-
tions is the solution of the strong formulation of the problem (proven for the Stokes equations,
admitted for the Navier-Stokes equation). The resulting Navier-Stokes equations are:

ρ

(
∂u
∂t

+ (u · ∇)u
)

= ρg −∇p +∇ · [µ(∇u +∇Tu)] + σkniδi − dr∇(∇ · v) in Ω (A.34)

∇ · u = 0 in Ω (A.35)
As the value of dr is for now arbitrary, dr

2 has been replaced by dr for the sake of simplicity.

A.3.4.2 Numerical application
The base methodology The numerical resolution is an iterative process. The equation (A.34)
is solved with an explicite pressure which is then updated with (A.26). For the sake of simplicity,
the method is �rst written for one iteration per time step only. Hence, the following implicit
problem is solved:

ρ

(
un+1 − un

∆t
+ un · ∇un+1

)
− dr∇(∇ · un+1)

= −∇pn + ρg +∇ · [µ(∇un+1 +∇Tun+1)] + σkniδi

(A.36)

The pressure is then updated using

pn+1 = pn − dp∇ · un+1 (A.37)

The equations (A.36) and (A.37) can be rewritten as:

Aun+1 − drDGun+1 + Gpn = F (A.38)

pn+1 = pn − dpDun+1
m+1 (A.39)

Ideally, one want to solve
Aun+1 + Gpn+1 = F (A.40)

Using (A.39) on (A.40), we obtain

Aun+1 −GdpDun+1 + Gpn = F (A.41)
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The augmented Lagrangian terms in (A.38) and (A.41) di�ers and are not equivalent, even if
dp = dr. The term drDGun+1 is inherited from the mathematical formulation and comes from
the penalty term

∫

Ω

dr

2
|∇ ·v|2 dΩ for the weak problem. The solution is to integrate by part the

weak term considering dr

2
∇·v as the integrated term instead of ∇·v which is the standard choice

in [Fort 82]. The resulting penalty term is −
∫

Ω
(∇dr

2
∇·v)v dΩ and the consistant penalty term

−GdpDun+1 can be retrieved for a good choice of dr. In all our algorithms, we choose dp = dr.

Standard Augmented Lagrangian (SAL) Starting with u∗,0 = un and p∗,0 = pn, the
predictor solution reads while ||∇ · u∗,m|| > ε , solve





(u∗,0, p∗,0) = (un, pn)

ρ

(
u∗,m − u∗,0

∆t
+ u∗,m−1 · ∇u∗,m

)
− r∇(∇ · u∗,m)

= −∇p∗,m−1 + ρg +∇ · [µ(∇u∗,m +∇Tu∗,m)] + σkniδi

p∗,m = p∗,m−1 − r∇ · u∗,m

(A.42)

where r is the augmented Lagrangian parameter used to impose the incompressibility con-
straint, m is an iterative convergence index and ε a numerical threshold controlling the constraint.
Usually, a constant value of r is used. From numerical experiments, optimal values are found
to be of the order of ρi and µi to accurately solve the motion equations in the related zone
[Vinc 07] . The momentum, as well as the continuity equations are accurately described by the
predictor solution (u∗, p∗) coming from (A.42) in the medium, where the value of r is adapted.
However, high values of r in the other zones act as penalty terms inducing the numerical solution
to satisfy the divergence free property only. Indeed, if we consider for example ρ1/ρ0 = 1000
(characteristic of water and air problems) and a constant r = ρ1 to impose the divergence free
property in the denser �uid, the asymptotic equation system solved in the the predictor step is:





ρ

(
u∗ − un

∆t
+ (un · ∇)u∗

)
− r∇(∇ · u∗)

= ρg −∇pn +∇ · [µ(∇u∗ +∇Tu∗)] + σkniδi in Ω1

u∗ − un

∆t
− r∇(∇ · u∗) = 0 in Ω0

(A.43)

Our idea is to locally estimate the augmented Lagrangian parameter in order to obtain satisfac-
tory equivalent models and solutions in all the media.

Adaptive Augmented Lagrangian (2AL) Instead of choosing an empirical constant value
of r �xed at the beginning of the simulations, we propose at each time step to locally estimate
the augmented Lagrangian parameter r. Then, r(t, M) becomes a function of time t and space
position M . It must be two to three orders of magnitude higher than the most important term
in the conservation equations.
Let L0, t0, u0 and p0 be reference space length, time, velocity and pressure respectively. If we
consider one iterative step of the augmented Lagrangian procedure (A.42), the non-dimensional
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form of the momentum equations can be rewritten as

ρ
u0

t0

u∗,m − un

∆t
+ ρ

u2
0

L0
(u∗,m−1 · ∇)u∗,m

−u0

L2
0

∇(r∇ · u∗,m) = ρg − p0

L0
∇p∗,m−1

+
u0

L2
0

∇ · [µ(∇u∗,m +∇Tu∗,m)] +
σ

L2
0

kniδi

(A.44)

Multiplying the right and left parts of equation (A.44) by L2
0/u0, we can compare the aug-

mented Lagrangian parameter r to all the contributions of the �ow (inertia, gravity, pressure
and viscosity). We obtain

ρ
L2

0

t0

u∗,m − un

∆t
+ ρu0L0(u∗,m−1 · ∇)u∗,m

−∇(r∇ · u∗,m) = ρ
L2

0

u0
g − p0L0

u0
∇p∗,m−1

+∇ · [µ(∇u∗,m +∇Tu∗,m)] +
σ

u0
kniδi

(A.45)

It can be noticed that r is comparable to a viscosity coe�cient. It is then de�ned as

r(t,M) = K max

(
ρ(t,M)

L2
0

t0
, ρ(t,M)u0L0,

ρ(t,M)
L2

0

u0
g,

p0L0

u0
, µ(t,M),

σ

u0

) (A.46)

If ρ1

ρ0
= 1000 and µ0 < µ1 << ρ0 << ρ1 for example, the semi-discrete form of the momentum

equations resulting from the new values of r(t,M) given by (A.46) then becomes

ρ1

(
u∗,m − un

∆t
+ (u∗,m−1 · ∇)u∗,m

)
−∇(r∇ · u∗,m)

= ρ1g −∇p∗,m−1 +∇ · [µ1(∇u∗,m +∇Tu∗,m)] + σkniδi

in Ω1 with r = K1ρ1L
2
0u0

ρ0

(
u∗,m − un

∆t
+ (u∗,m−1 · ∇)u∗,m

)
−∇(r∇ · u∗,m)

= ρ0g −∇p∗,m−1 +∇ · [µ0(∇u∗,m +∇Tu∗,m)] + σkniδi

in Ω0 with r = K0ρ0L
2
0u0

(A.47)

where K0 and K1 are in between 10 and 1000. In this way, thanks to expression (A.45), the
adaptive Lagrangian parameter is at least 10 to 1000 times the order of magnitude of the most
important term between inertia, viscosity, pressure or gravity in both Ω1 and Ω0 domains. Com-
pared to the SAL approach (A.43), the 2AL is consistent with the Navier-Stokes equations in
each phase [Vinc 07] . The new method (A.46) can be easily extended to other forces such as
surface tension and Coriolis or speci�c source terms. Comparisons between standard and adap-
tive augmented Lagrangian (2AL) methods are presented in the next section. In particular, the
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in�uence of the penalty parameter on the convergence speed of the BiCGSTAB solver and time
and space variations of r(M) are discussed.

As a summary, the complete time-marching procedure of the predictor-corrector algorithm
including the 2AL method is the following:

⊗ Step 1: de�nes initial values u0 and p0 and boundary conditions on Γ,

⊗ Step 2: knowing un, pn and a divergence threshold ε, estimates the predictor values u∗ and
p∗ with the Uzawa algorithm (A.42) associated to the local estimate of r(t,M) de�ned in ex-
pression (A.46), so that u∗ = u∗,m and p∗ = p∗,m when m veri�es ||∇ · u∗,m|| < ε

⊗ Step 3: projects the solution (u∗, p∗) on a divergence free subspace thanks, for example, to
projection approaches [Goda 78, Calt 99] to get the correction solution (u,, p,). Then, the nu-
merical solution at time (n + 1)∆t is (un+1, pn+1) = (u∗ + u,, p∗ + p,),

⊗ Step 4: iterates n in steps 3 and 4 until the physical time is reached.

Algebraic adaptive Augmented Lagrangian (3AL) It has been demonstrated that es-
timating a local and adapted augmented Lagrangian parameter is crucial for simulating multi-
phase �ows [Vinc 07] . The main remaining drawback of the 2AL method is linked to the a priori
de�nition of dimensionless parameters for de�ning r(t,M). The augmented Lagrangian approach
is based on the concept of a penalty method. As a consequence, the augmented Lagrangian pa-
rameter acts as an algebraic parameter which increases the magnitude of speci�c coe�cients in
the linear system in order to verify a speci�c constraint, while solving at same time the con-
servation equations. In this section, an estimate of r(t,M) which is based on a scanning of the
linear system is proposed. The main interests of the algebraic adaptive augmented Lagrangian
method (3AL) are the following: it does not require any a priori physical information, it applies
to any kind of geometry and grid and it takes into account the residual of the linear solver and
the ful�lment of incompressible and solid constraints.

At each time step and in two-dimensions, the 3AL method determines r(t,M) as follows:

⊗ Step 1: Two matrix A and A∗ are built corresponding respectively to the discretization of the
momentum equations with r(t,M) = 0 and r(t,M) = 1. In order to optimize computer memory,
a compressed storage raw (CSR) structure is chosen to store only the non null coe�cients of each
matrix,

⊗ Step 2: On the �xed staggered Cartesian grid, r(t)i,j is evaluated according to the discretiza-
tion coe�cients of the surrounding velocity ux,i− 1

2
,j , ux,i+ 1

2
,j , uy,i,j− 1

2
and uy,i,j+ 1

2
components,

as presented on �gure A.2.
The discretization of each velocity component, ux,i− 1

2
,j for example, requires the use of 9

neighboring velocity nodes, i.e. ux,i− 1
2
,j , ux,i+ 1

2
,j ,ux,i− 3

2
,j , ux,i− 1

2
,j+1 and ux,i− 1

2
,j−1 for the dis-

cretization of the inertial and viscous terms and uy,i−1,j− 1
2
, uy,i−1,j+ 1

2
, uy,i,j− 1

2
and uy,i,j+ 1

2
for

the viscous and augmented Lagrangian terms. In this way, we estimate the maximum values of
the discretization coe�cients AI(u), 1 ≤ I ≤ 9 associated to velocities ux,i− 1

2
,j , ux,i+ 1

2
,j , uy,i,j− 1

2

and uy,i,j+ 1
2
. We de�ne:
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Figure A.2: Typical distribution of discretization variables on a 2D �xed staggered Cartesian
grid
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⊗ Step 3: In the same way, the coe�cient C∗
i− 1

2
,j
, C∗

i+ 1
2
,j
, C∗

i,j− 1
2

and C∗
i,j+ 1

2

, corresponding to
A∗, are estimated,

⊗ Step 4: The minimum and maximum discrete coe�cient Rmini,j and Rmaxi,j at the scalar
position of r(t)i,j are then de�ned as:





Rmini,j = min(‖
C

i− 1
2 ,j

C∗
i− 1

2 ,j

‖, ‖
C

i+1
2 ,j

C∗
i+1

2 ,j

‖, ‖
C

i,j− 1
2

C∗
i,j− 1

2

‖, ‖
C

i,j+1
2

C∗
i,j+1

2

‖)

Rmaxi,j = max(‖
C

i− 1
2 ,j

C∗
i− 1

2 ,j

‖, ‖
C

i+1
2 ,j

C∗
i+1

2 ,j

‖, ‖
C

i,j− 1
2

C∗
i,j− 1

2

‖, ‖
C

i,j+1
2

C∗
i,j+1

2

‖)

⊗ Step 5: If Rmaxi,j

Rmini,j
≤ 1010 and max(∆x,i,j ,∆y,i,j)

min(∆x,i,j ,∆y,i,j)
≤ 1000, r(t)i,j = Rmini,j . Else, r(t)i,j =

Rmaxi,j unless the penalty of the incompressible or solid constraint is not ensured due to grid
irregularity or strong local variation of physical or penalty parameters (at the interface between
�uid and solid media for example),

⊗ Step 6: Once r(t)i,j has been estimated for all i and j, 1 ≤ i ≤ nx and 1 ≤ j ≤ ny, we
normalize the local values of the algebraic penalty parameters by r(t)i,j = Kr(t)i,j

rmin+10−40 , where
rmin = mini=1..nx,j=1..ny(r(t)i,j). The constant K is equal to 1 except at the �rst calculation
step where K = 100 if Rmaxi,j

Rmini,j
≤ 1010 or if during the �ve �rst calculation steps the norm of

the residual of the linear solver divided by the norm of the divergence, obtained at the previous
calculation step, is grower than 106. This last particular case can be obtained when a �ow
simulation is initialized without any imposed velocity �eld.
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Steps 1 to 6 are repeated at each calculation step corresponding to a physical time incremented
of ∆t seconds.

A.3.5 Solvers
A.3.5.1 Direct solvers
For 2D simulations, we have generally used the PARDISO solver of [Sche 04]. The advantage of
a direct solver is to always solve a linear system with a computer error residual (of course, the
matrix has to be inversible matrix). PARDISO can use more than one core for one inversion on
multicore CPU. For linear systems describing a 3D problem, the direct solvers required a too
large amount of memory and are generally not used.

A.3.5.2 Iterative solvers
The iterative solvers employed here is a Bi-Conjugate Gradient Stabilized [Vors 92]. Let us con-
sider a linear system A.x = b of rank N . From an initial guess x0, iterations are performed until
the residual rk is below a chosen value

Initialization : ∥∥∥∥∥∥∥∥

x0 ∈ RN ,
r0 = b−Ax0,
r̂0 = r0,
p0 = r0

(A.48)

Itérations : For k = 1 to K,
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

αk−1 = (r̂0,rk−1)
(r̂0,Apk−1)

,

sk−1 = rk−1 − αk−1Apk−1,

λk−1 = (Ask−1,sk−1)
(Ask−1,Ask−1)

,

xk = xk−1 + αk−1pk−1 + λk−1sk−1,
rk = sk−1 − λk−1Ask−1,

βk = αk−1

λk−1
(r̂0,rk)

(r̂0,rk−1)
,

pk = rk + βk(pk−1 − λk−1Apk−1)

(A.49)

The convergence rate of the system generally depends on the conditionner. When not pre-
cised, an incomplete LU (ILU) factorisation [Gust 78a] has been used. An ILUK factorization
[Saad 86] has been generally used for the AIIB method for immersed interface cases.

A.3.6 Multiphase �ows
labeltvd A wide litterature is devoted to interface tracking on Eulerian grids: the front tracking
method of [Unve 92], the Volume Of Fluid method (VOF) of [Hirt 81], improved for example by
[Guey 99], the level set method of [Oshe 88] and [Fedk 99] or the explicit Total Variation De-
creasing (TVD) Lax-Wendro� (LW) scheme of [Vinc 99]. In our work, the interface advection is
directly handled by a Piecewise Linear Interface Reconstruction PLIC VOF method of [Youn 82],
which lies on a Lagrangian advection of planar pieces of interfaces. The main advantages of the
PLIC-VOF approach is to be accurate for tracking tearing and stretching interfaces and to avoid
numerical di�usion.
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The surface tension force FST = σκniδi is modelled by a volume force proposed by [Brac 92].
The Continuous Surface Force (CSF) evaluates FST according to the variations of the phase
function C as follows:

FST = σ∇ ·
( ∇C

‖∇C‖
)
∇C (A.50)

In the CSF approach, the interface is spread on several mesh cells. The discretization of the
surface tension force can be found for example in [Brac 92] or [Vinc 00].
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Appendix B

Application to the image synthesis

During the twenty past years, image synthesis have invaded our every day life. The �rst
step was to draw objects. First, single frames were rendered. Then, many methods such

as the inverse cinematics and the keyframing have been developed to give life to more or less
deformable objects. Objects were �rst rigid by parts, and then were fully deformable.

The image synthesis of �ows is a quite recent thing. The graphical rendering is not the
biggest problem since the well-known ray-tracing methods allow to render translucent materials.
Animation is the big issue. The �rst occurrence of CG �ow appears in the James Cameron
blockbuster movie "Abyss" (1989). However, the �uid motion was not performed thanks to
CFD but animated "by hand". Ten years after, animation of �uid was still a big deal. If we
look at the recent SIGGRAPH publications, basic realistic non real-time animation of �uid �ow
has stopped to be itself a subject of publications only a few years ago. The new challenges
concern complex �uid properties such as foams [Losa 08], multiphase �ows [Losa 06], real-time
optimization [Treu 06] or motion control.

Many studies have been devoted to the �uid-structure coupling for CG. In one-way meth-
ods, the interaction between �uid and solid domain is not mutual. In solid-to-�uid methods,
the motions of solids are predetermined [Fost 97] and [Fost 01]. In �uid-to-solid method, the
�uid can move objects, but the object do not change the motion of the �uid [Fost 96]. These
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methods can be used to simulate phenomenons for which the force generated by the two domains
is disproportionate.
Two way-methods consider the mutual interaction between the two domains. Some recent works
have created methods for speci�c cases. Coupling between in�nitesimally thin objects and �uid or
smoke [Guen 05], coupling between breaking solids and compressible �uid in explosion [Yngv 00].
[Feld 05] have used hybrid meshes to animate gases around irregularly shaped obstacles. In
[Carl 04], Carlson et al. have developed a new coupling method using DLM called Rigid Fluid.
The objects are treated as �uids, but their velocities are constrained to be rigid motion.

The �rst aim of the CFD for special e�ects is to provide a motion that seels realistic to
the viewer. The physical rightness is a good way to obtain a good aspect but is not a priority.
However, we believe that a realistic �ow, from a CG point of view is as well a realistic �ow from
a physical point of view.

Hence, the coupling between the CFD code Thétis and the CG software 3D Studio Max
(Autodesk) has been performed to ful�ll two objectives. First, the visual aspect of the physical
simulations is not always suitable for general public. The enhancement of the graphic quality of
the results is a good way to impress an audience and can make a di�erence. It is a good way
to lead the student to the CFD. Secondly, the graphical simulation of �uid �ows has both an
academic and economic interest. The real-time simulation (especially on GPUs) is currently in
fast expansion [Cran 07].

B.1 Global methodology
According to the type of �ow, di�erent properties or entities has to be displayed.

B.1.1 Case setting
The surface data are then read by the CFD code which uses it as interfaces for �ctitious domain
methods.

The �ow is then computed with a constant time step to allow future image-per-image ani-
mations. According to the physical case simulated, di�erent informations can be extracted such
as velocity �eld, phase function, free surface, concentration etc...

B.1.2 Free surface animation
B.1.3 Strategy of Eulerian/Lagrangian grid coupling
B.1.3.1 Volume and surface data
Fundamentally, the numerical simulation codes uses volume date while CG softwares use surfacic
data. The two approaches are well suited to de�ne an interface, e.g. a �uid free surface. The vol-
ume approach consider an implicit representation of the interface considering a volume function,
Heaviside(χ), VOF(C), level-set(φ), etc...The surface approach uses an explicit representation of
the interface which is generally a triangularized mesh.

The volumic approach is well-suited for CFD codes while the surfacic approach is more
natural in a CG software context. In fact, the rendering techniques used by the CG softwares
use generally surfaces only. However, medical, geological or thermal applications such as MRI
requires the representation of volume data. Hence, volume shaders are currently developed in
some visualization softwares such as Avizo(SVG). The recent graphic cards have a hardware
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acceleration of volume shaders. However, the CG softwares used for non-real time realistic
rendering are not initially designed to treat volume data, so the volume shaders are not currently
present in the CG software we use.

Hence, coupling a CFD code and a CG software implies a coupling between the two approach.
The projection from a volume data to a surface data is done with the extraction of an iso-surface.
If the VOF function C is considered, we consider the iso surface such as C = 0.5 as being the most
relevant as 0 ≤ C ≤ 1. The extraction can be performed directly in the CFD code. However, the
implementation of a robust extractor is not simple, and the parameters of the extraction have to
be set one time for all while the simulation is running. To increase the �exibility of the processus,
we choose to extract the iso surfaces after the simulation using output data. The extraction is
performed in the scienti�c visualization software Tecplot.

The algorithms used to obtain a volume data from a surface data are described in section 6.1
and are directly implemented in the CFD code Thétis.

B.1.3.2 Walkthrough

The proposed method consists in 6 distinct steps :
⊗ A scene is �rst designed with 3D Studio Max (Autodesk) or Blender (see Fig. B.1)

Figure B.1: Design of a 3D dam break scene.

⊗ The triangular surface elements of each object which interacts with the �ow motion are
then generated (see �gure B.2),

⊗ The lagrangian description of the solid objects is projected onto the �xed Eulerian �ow
grid. Figure B.3 shows the Eulerian projection of the topography and the dam.

⊗ The characteristics of the whole �uid/solid medium are de�ned, such as the density and
the viscosity, according to C and the unsteady �ow motion (see �gure B.4) is calculated with a
single �uid model coupled to penalty methods for the treatment of solids.

⊗ The lagrangian iso-surfaces describing the free surface (see �gure B.5) C = 0.5 for each
�uid are generated.
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Figure B.2: Sketch of a dam topography on the Lagrangian grid extracted thanks to the 3D
software.

⊗ Finally, the lagrangian iso-surfaces of �uid interfaces are loaded into the 3D CG software
to perform scienti�c visualisation or computer design. An example is provided in �gure B.6.

B.1.3.3 Animation

In CG softwares, animations are created image per image. The movement of objects can be
de�ned at each time step, or key positions can be de�ned for some time steps only. In this
last case, the global movement is interpolated from the key where the position is explicitly
de�ned. This method is called the keyframing. Once the animation is de�ned, the CG software
render the animation for all the time steps. Hence, the animation of a triangularized surface
can be performed by moving its elements (vertices, polygons...), a constraint being that the
connectivities cannot be modi�ed. During the simulation of a two phase simulation, the interface
between the two �uids can undergoes topological modi�cation such as coalescence or formation
of droplets. For this reason, the interface cannot be considered as an unique object through the
whole simulation time. As consequence, the rendering process itself has to be modi�ed. The
interface has to be reloaded at each time step as a new object. For technical reasons, the ability
of the software to render an entire animation cannot be used if a new object is loaded. Instead
of launching the rendering of each frame by hand, a script recreating the rendering process of an
animation has been written and coupled to the script loading the iso surface.

B.1.3.4 Rendering

Many rendering methods can be used to recreate realistic �uids. The two main rendering engines
of 3D Studio Max are the Scanline Renderer which is the original default renderer and Mental
Ray. The �rst one is fast, easy to con�gure and give good results. Refraction, re�ection and
radiosity are available. Mental ray is harder to con�gure and slower but can simulate caustic
phenomena and gives a more realistic rendering. However, problems have been encountered with
mental ray when rendering iso surfaces of poor quality (self intersecting or non closed surfaces).
In this case, the light rays trajectory can change drastically from one frame to an other generating
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Figure B.3: Sketch of a dam topography on the eulerian grid after equation (6.1) solving.

a blinking or the refracted image.

B.1.4 Moving complex objects
Contrary to free surface �ow, the moving mesh is not deformable, so only the position and rotation
angle of each objects is written for some regular time step in the exchange �le. Each object is
then created in the CG software. Its global trajectory is interpolated from the informations of
the exchange �le.

B.1.5 Passively advected particles
The main di�erence with the last case is that the particle rotation is not considered, the number
of particles can be huge and particles can be created during the time. Two approaches have been
experimented :

• The movement of the particles is computed in the CFD code. At each time step, the
position of all particles is written in a �le. Once the simulation is complete, the rendering
of the animation is performed in a quite similar way as in (B.1.2). For each frame, the
�le containing the position of the particles is loaded and the particles are generated, then
rendered and destroyed. The main drawback of this method is the size of the �les containing
the particles positions.

• The particles are directly created in the CG software from the velocity �eld. This approach
is more �exible as the injector position or the particle amount can be set in the CG
software. However, a particle generation and advection system must be entirely rewritten.
3D Studio Max has a particle system which can be highly scripted. Unfortunately, the
scriptable particle system was highly unstable in the version 7 of 3D Studio Max. The
other drawback is again the size of the output required �les if the velocity �eld is unsteady
and needed at each time step.
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Figure B.4: Topology of the Eulerian water-air surface during dam break.

B.2 Results
B.2.1 Dam break over letters
In a 3D tank, a column of viscous water (µ = 0.01Pa.s and ρ = 1000kg.m−3), initially at rest,
breaks over a �xed obstacle of 'Aquilon' letters shape in an air medium (µ = 1.85 · 10−5Pa.s
and ρ = 1.1768kg.m−3). As demonstrated in �gure B.7, the �ow is turbulent and the surface
tension (σ = 0.075N.m−1) is taken into account. This still academic problem is interesting as it
involves complex interfacial structures as well as strong interactions between the free surface and
the obstacle. In particular, the dynamics of gaz pocket rupture and coalescence can be observed.

B.2.2 Dam break over a realistic topologie
As last illustration test case, a real dam break �ow is considered in order to show the simplicity
and power of the Aulerian/Lagrangian coupling associated to penalty methods. The scene pre-
sented in �gures B.1 and B.6 is calculated considering real water and air and a dam of almost
30 meter height. Figure B.8 illustrates the potential of the DNS simulation associated to 3D
softwares for movie or video games design.

B.2.3 Particulate �ows
The �rst illustration of the interest of the coupled Eulerian/lagrangian grid technique associated
to penalty methods is related to the sedimentation of 147 particles in a liquid tank. All the
particle/particle and particle/wall interactions are solved, with an explicit modeling if the local
mesh re�nement is not enough. A serie of particle motion pictures is proposed in �gure B.9.

B.2.4 Flow around a tire
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Figure B.5: Topology of the Lagrangian water-air surface during dam break after Level Contour
Reconstruction.

Figure B.6: Final vue after the rendering process of the dam break.
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Figure B.7: Dam break �ow over a complex obstacle.
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Figure B.8: Real dam break �ow over a complex topography.
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Figure B.9: Rigid particle sedimentation in water.
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Appendix C

Interpolations

The interpolations used for the present work are described.

C.1 Polynomial interpolations
The interpolations polynomials are �rst denoted according to their support. In 2D, the support
of a L interpolation is a line, the support of P is a triangle and the support of Q is a rectangle.
Ld

D indicates that the interpolation is in dimension d and of order D. For instance:

L1(x) = ax + b (C.1)

P 2
1 (x) = ax + by + c (C.2)

Q2
1(x) = axy + bx + cy + d (C.3)

C.1.1 Construction of the Q2
1 element

The considered grid cell is mapped to a D = [0, 1] × [0, 1] cell. For the penalty methods, the
penalized point is the origin. The Q2

1 element is de�ned by

Q1(x, y) = ax + by + cxy + d (C.4)

with a, b, c and d scalar coe�cient determined with the following constraints:




Q1(0, 0) = uC

Q1(1, 0) = uE

Q1(0, 1) = uN

Q1(1, 1) = uNE

(C.5)

where the indices of u indicate the position of a node according to its direction (E is east, N is
north, etc...). We obtain the following expression for the Q1 :

Q1(x, y) = (−uC + uE)x + (−uC + uN )y + (−uC + uE + uN − uNE)xy + uC (C.6)

one can write

Q1(x, y) = u1(1− x− y − xy) + u2(x + xy) + u3(y + xy) + u4(−xy) (C.7)

and the coe�cient for each ui is then deducted.
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C.1.2 Construction of the Q2
2 element

For a Q2
2 interpolation, the function is

Q2(x, y) = ax2y2 + bx2y + cxy2 + dx2 + ey2 + fxy + gx + hy + k. (C.8)

The following constraints are considered:





Q2(0, 0) = uC

Q2(−1, 0) = uW

Q2(1, 0) = uE

Q2(0,−1) = uS

Q2(0, 1) = uN

Q2(−1,−1) = uSW

Q2(1,−1) = uSE

Q2(−1, 1) = uNW

Q2(1, 1) = uNE

(C.9)

We obtain a linear combination such as

coefi = αi

∑
Ciui (C.10)

with the following coe�cients:

Coef facteur uC uW uE uS uN uSW uSE uNW uNE

a 1/4 4 −2 −2 −2 −2 1 1 1 1
b 1/4 0 0 0 −2 −2 −1 1 −1 1
c 1/4 0 −2 −2 0 0 −1 −1 1 1
d 1/2 −2 1 1 0 0 0 0 0 0
e 1/2 −2 0 0 1 1 0 0 0 0
f 1/4 0 0 0 0 0 1 −1 −1 1
g 1/2 0 −1 1 0 0 0 0 0 0
h 1/2 0 0 0 −1 1 0 0 0 0
k 1 1 0 0 0 0 0 0 0 0

Table C.1: Coe�cient for the Q2 interpolation
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The resulting function is

Q2(x0, y0) = uc

(
x2

0y
2
0 − x2

0 − y2
0 + 1

)

+uW
1
2
(− x2

0y
2
0 − x0y

2
0 + x2

0 − x0

)

+uE
1
2
(− x2

0y
2
0 − x0y

2
0 + x2

0 + x0

)

+uS
1
2
(− x2

0y
2
0 − x2

0y0 + y2
0 − y0

)

+uN
1
2
(− x2

0y
2
0 − x2

0y0 + y2
0 + y0

)

+uSW
1
4
(
x2

0y
2
0 − x2

0y0 − x0y
2
0 + x0y0

)

+uSE
1
4
(
x2

0y
2
0 + x2

0y0 − x0y
2
0 − x0y0

)

+uNW
1
4
(
x2

0y
2
0 − x2

0y0 + x0y
2
0 − x0y0

)

+uNE
1
4
(
x2

0y
2
0 + x2

0y0 + x0y
2
0 + x0y0

)
. (C.11)

C.2 Kernel functions
The kernel function is a weighting function used in nonparametric function estimation. It gives
the weights of the nearby data points in making an estimate. They can be probability density
functions.

Compared to classical interpolations, the formulation of the kernel functions allows any stencil
to be used. Let us consider a quantity φ which has to be interpolated from nodes xj to a node
xi. The kernel function method gives

φi =
1
ni

∑

i6=j

w(|ri − rj |)φj (C.12)

with
ni =

∑

i6=j

w(|ri − rj |) (C.13)

and w a weighting function. These functions are generally piecewise continuous, bounded, sym-
metric around zero, concave at zero, real valued, and for convenience often integrate to one. For
instance, we have

w(r) =





1− 6
r

re

2
+ 8

r

re

3
+ 3

r

re

4
0 6 r 6 re

0 re 6 r
(C.14)

with re a cuto� radius. Many weighting functions are presented in [Atai 06, RM 08] where
authors applied kernel functions to a smoothed particle hydrodynamics (SPH) method.
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