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Science is liKe sex. Sure, it may give some practical results,
but that's not why we do it."
Richard Phillips Feynman
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Résumé

La plupart des applications industrielles de la simulation numérique mettent en oeuvre des objets,
des frontieres ou de fagon plus générique des interfaces de formes complexes. Concrétement, ces
interfaces correspondent a des discontinuités des variables physiques telles que la masse volumique
ou la viscosité des fluides, la conductivité thermique de deux matériaux ou encore les propriétés
de la matiére dans le cas d’une interface fluide-solide. En plus de séparer deux milieux, ces
interfaces font apparaitre des phénoménes physiques spécifiques comme les tensions de surface
ou des propriétés thermodynamiques particuliéres dans le cadre d’'un changement de phase.
Ainsi, 'importance des interfaces exige une attention particuliére quand a leur modélisation et
leur discrétisation. De ce point de vue, deux difficultés principales sont & surmonter. D’une part,
une interface a une épaisseur que 'on peut la plupart du temps considérer comme nulle, alors
que la discrétisation spatiale standard des méthodes de simulation repose sur un découpage en
volume. On pourra s’accommoder de cela dans certains cas, quand l'interface passe exactement
entre deux volumes discrets, ou encore au milieu des volumes de discrétisation. Toutefois, cette
configuration ne peut pas toujours étre obtenue ce qui est le second probléme lié a la discrétisation
des interfaces. Les cas industriels que I'on souhaite simuler mettent souvent en jeu des interfaces
de formes complexes, comme des pneus, des véhicules ou tout simplement des surfaces libres. II
est souvent difficile d’obtenir une discrétisation spatiale conforme a ces interfaces. La méthode des
éléments finis par exemple, donne naturellement une grand liberté dans la discrétisation spatiale
mais nécessite un effort de maillage conséquent voir pénalisant en terme de performances si les
interfaces sont mobiles et exigent donc la création d’un nouveau maillage & chaque itération. Une
autre approche consiste a utiliser un maillage fixe non-conforme aux interfaces. La discrétisation
spatiale est bien plus simple mais ne correspond pas aux interfaces, et ce au détriment de la
précision.

Les méthodes de domaines fictifs proposent d’améliorer la précision de la discrétisation aux
interfaces en modifiant de fagon plus ou moins directe la discrétisation des équations au voisi-
nage de l'interface. On peut ainsi retrouver 'ordre des schémas initiaux malgré la présence de
discontinuités sur des interfaces non-conformes complexes et mobiles.

Toutefois, la simulation de cas industriels complexes ne requiert pas uniquement une dis-
crétisation précise des équations & proximité des interfaces. Une premiére étape consiste tout
d’abord & détecter l'interface et les sous-domaines qu’elle délimite. Ces opérations requiérent la
plupart du temps des algorithmes tirés de l'informatique graphique dont la vitesse d’exécution
peut aller du simple au centuple selon I'implémentation ou la méthode utilisée. L’interprétation
spatiale des interfaces permet alors une application des méthodes de domaines fictifs. Il se peut
qu’une physique particuliére soit nécessaire & l'intérieur d’un sous-domaine, un objet immergé
par exemple. On parle dans ce cas de couplage fluide-structure et une modélisation du mouve-
ment solide, qu’il soit rigide ou déformable, doit étre mise en oeuvre. Au final, la multitude des
méthodes numériques peut nécessiter un effort de post-traitement particulier & des fins de visual-
isation spécifique ou pour produite des films de vulgarisation. Le présent document traite de tous
ces domaines et propose ainsi une démarche globale pour la simulation des interactions fluides-
structures et des transferts thermiques. Les méthodes proposées ont pour objectif I’obtention
d’une précision spatiale générale & I'ordre deux.

Méthodes existantes de domaines fictifs
La premiére partie du document traite de différentes méthodes de la littérature. Trois catégories
sont considérées :

e Les méthodes de pénalisation. De nombreuses méthodes de pénalisation ont été développées



au laboratoire TREFLE. Elles font ainsi I’objet d’un chapitre. Le principe de ces méthodes
est de conserver une méme équation dans tous le domaine et d’obtenir divers comportements
locaux (frontiére, interface, mouvement rigide...) en modifiant localement certains termes
des équations.

e Les méthodes de frontiéres immergées. Sont traitées ici toutes les méthodes qui ne prennent
en compte la solution que d’un coété d’une interface. Elles permettent d’imposer des condi-
tions de Dirichlet, Neumann ou Stefan sur une interface immergée qui devient une nouvelle
frontiére du domaine résolu. Nous décrivons ainsi les méthodes IBM (Immersed Boundary
Method) de type Peskin et Direct-Forcing, DLM (Distributed Lagrange Multiplier), les
méthodes Cartesian Cell ainsi que la méthode Ghost-Fluid pour les frontiéres.

e Les méthode d’interfaces immergées. Ces méthodes permettent d’imposer précisément des
conditions de saut et de transmission sur une interface immergée. Nous décrivons ici les
méthodes IIM (Immersed Interface Method), Ghost-Fluid et MIB (Matched Interface and
Boundary).

Gestion de formes lagrangiennes sur maillages curvilignes
Cette partie décrit une nouvelles méthodologie de projection de formes sur maillage curviligne.
La premiére étape consiste & "déplier" le maillage eulerien curviligne vers un maillage cartésien
a pas unitaire. Les interfaces discrétisées a ’aide de surfaces triangularisées sont projetées dans
le nouveau repére en utilisant les mémes facteurs de transformations que les cellules du maillage
eulerien. Ce nouveau maillage permet 'utilisation d’une méthode rapide de Ray-Casting qui
fournit ligne par ligne I’appartenance ou non des points euleriens au domaine défini par 'objet
immergée. D’une fagon générale, le maillage cartésien & pas unitaires permet 'accélération de
nombreux calculs comme celui des efforts sur la surface d’'un objet immergé. De nombreuses
propriétés étant conservées d’un maillage & un autre, ’application de méthodes de domaines
fictifs peut parfois se faire de fagon transparente dans ’ancien repére curviligne ou le nouveau
repére cartésien. Dans le cas des méthodes de suivi d’interface, une transformation simple du
champ de vitesse est nécessaire. La précision et la rapidité de ces méthodes sont aussi étudiées

Nouvelles méthodes de domaines fictifs
Deux nouvelles méthodes de domaines fictifs sont décrites dans cette partie. La méthode de
pénalisation de sous-maille (PSM, ou SMP pour Sub-Mesh Penalty) permet d’imposer une con-
dition de Dirichlet a I'ordre deux pour la norme L? sur une frontiére immergée non-conforme.
C’est la premiére discrétisation de la pénalisation L? & atteindre un ordre deux en espace. La
méthode permet aussi d’imposer des conditions de Neumann & ’ordre un. Elle remplace le terme
de pénalisation volumique habituel [Ango 99| Bi(u; — up) par 5; > (ajuj —up). En

x;€Vois(x;)

conséquence, la contrainte de pénalisation pour un noeud x; prend en compte les valeurs de la
solution au voisinage de ce point. Les coefficients a; sont construits & partir d’interpolations de
Lagrange. L’imposition de la contrainte est totalement implicite et ne nécessite pas d’inversion
de matrices supplémentaire. Cette méthode est applicable directement aux équations scalaires
elliptiques. Pour les équations de Navier-Stokes, la mise en place de la méthode est directe si
le couplage vitesse-pression s’effectue avec une méthode de lagrangien augmenté. Dans le cas
d’une méthode de projection scalaire, une correction de ’étape de projection de pression et de
correction de vitesse doit étre mise en place.

La seconde méthode, dite Algebraic Immersed Interface and Boundary (AIIB) étend le
principe de la PSM aux interfaces. Au noeud qui était précédemment pénalisé afin de porter la
contrainte de frontiére est ajouté une inconnue dite auxiliaire car elle cohabite avec 'inconnue
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d’origine qui est physique. Ainsi, une équation physique et une contrainte d’interface cohabitent
en un méme nceud du maillage. L’imposition de conditions de Dirichlet ou Neumann sur une
interface fine est directe. Une manipulation des contraintes de pénalisation et des conditions
d’interface permet de traiter des cas de transmission et de saut au travers de cette derniére. Ces
cas sont simulés & I'ordre deux en espace pour un cas de conduction thermique. L’objectif a
terme est d’utiliser cette méthode dans le cadre des équations de Navier-Stokes pour traiter les
problémes a surface libre ou des cas de couplage fluide-structure implicite.

Le dernier chapitre de cette partie est dédié a la validation des deux précédentes méthodes.
Les validations pour les cas frontiére sont en partie communes aux deux méthodes.

Mécanique du solide et couplage fluide-structure
La premiére partie est dédiée & la modélisation du mouvement des solides isolés par une appli-
cation classique du principe fondamental de la dynamique. Un modéle simple de collision est
implémenté et couplé a une visualisation OpenGL.

Nous présentons ensuite une méthode de couplage fluide-structure. La discrétisation en temps
est une marche alternée classique. La nouveauté consiste en 'utilisation de la méthode de pé-
nalisation d’ordre deux pour prendre en compte les frontiéres objets lors de la résolution fluide.
Les méthodes de projection de maillage présentées dans ce document sont utilisées & chaque pas
de temps.

Applications industrielles
Afin d’illustrer notre démarche, nous présentons trois applications complexes qui ont été traitées
durant la thése.

Nous montrons d’abord les résultats du projet mené avec Varel Europe. Cette entreprise
congoit et fabrique des tétes de forage pour le milieu pétrolier. La durée de vie de ces tétes dépend
entre autre de la bonne évacuation des copeaux de roche. A cet effet, de la boue est en permanence
injectée a haut débit dans la téte. La bonne évacuation des copeaux dépend donc énormément
des caractéristiques de l’écoulement. Ainsi, la présence de grandes recirculations favorise la
création d’agglomérats de copeaux qui rendent la téte inutilisable. Le but du projet était de
concevoir & partir du code de calcul Thétis un simulateur prenant en compte I’hydrodynamique
de la boue ainsi que la génération et I’évacuation des copeaux. Une méthode de suivi lagrangien
des copeaux a été développée spécialement a cet effet.

L’application suivante concerne 1’étude de I'hydroplanage d’un pneu. L’objectif était de
fournir a ’entreprise Michelin un simulateur pouvant caractériser la force verticale induite par une
masse d’eau impactant un pneu en roulement. Ce cas a nécessité la prise en compte d’obstacles
en rotation de forme complexe et détaillée. La géométrie du pneu étant modifiée & chaque pas
de temps (rotation et déformation), il a été nécessaire d’avoir des méthodes de projection de
maillage rapides et robustes. Une méthode surfacique de calculs d’efforts a de plus été mise au
point.

Le troisiéme cas est la simulation des écoulements de convection naturelle dans la grotte de
Lascaux. Le but est de prédire ou d’expliquer 'impact des différents choix de conservation ou
d’une présence humaine dans la grotte. La simulation prend en compte 1’écoulement fluide, les
échanges thermiques ainsi qu'un modéle d’humidité.

Annexes

Une premiére annexe décrit les différentes équations et méthodes numériques utilisées dans ce
document. On y décrit en particulier ’approche volume finie sur grille décalée et le couplage
vitesse-pression par les méthodes de projection scalaire et de lagrangien augmenté.

La seconde annexe décrit ’application des résultats aux images de synthése en expliquant la
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méthode de couplage et en présentant quelques cas.
Enfin, nous expliquons la construction de diverses interpolations, notamment les fonctions
Kernel.
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Notations

Geometry

Vr)
%)

L,i

)

Normal unit outward vector to Qg on 2

Dimension of space

Set of index of the Eulerian structured mesh

Eulerian mesh step defined as h = sup;c¢ hy

Maximum length of a Vr

Set of index of the intersection points between o, and the faces o;
Set of index of the Lagrangian mesh

Set of index of vertices

Set of index of the Eulerian interface points

Set of index of immersed objects

Main physical domain

The fluid domain

The solid domain corresponding to the ¢th object

Faces of the Eulerian dual mesh

Faces of the Lagrangian mesh

Immersed interface

Piecewise linear approximation of 3 such as X5 = {0} € IP‘ll_l,l €Ly}
Set of cell-centered finite volume

Set of dual finite volume

Vertices of face o; for i = 1,d

FEulerian volume functions

C Color Phase function

¢ Level-s

et function

x Heaviside function

Physical variables

D  rate-of-strain tensor N.m™2
F Wall forces applied to the solid domain N

Hy  Angular momentum kg.m?.s71
1 Inertia matrix of the solid kg.m?
m  Mass kg

M Torque N.m

¢ Dynamic viscosity Pa.s

w  Rotation vector of the solid rad.s™
D Fluid pressure Pa

p Fluid density kg.m™3
o stress tensor N.m™2
t Time S

T Temperature K

u  Fluid velocity m.s~!




2 NOTATIONS

Superscripts

*  Auxiliary entities

Parameters

e Penalty parameter

Abreviations
AlIB Algebraic immersed interface and boundary
AL Augmented Lagrangian
BC Boundary condition
DF Direct-forcing
DLM Distributed Lagrange multipliers
FT Front-tracking
FVv Finite volume
1B Immersed boundary
IBM Immersed boundary method
11 Immersed interface
1IM Immersed interface method
LS Level-set

MIB Matched interface and boundary
SMP Sub-mesh penalty

SMPM  Sub-mesh penalty method

TVD Total variation diminushing
VOF Volume of fluid

Function spaces, norms

The following function spaces and normes are defined on an open Q C RY for a measurable
function v.

x| = the Buclidian norm of x € R?
a.e. = almost everywhere
dx . Lebesgue measure on R?
LP(Q) = {v:Q— R; v measurable and |[v|[zr(q) < oo}
1/p
e, = ([ prar) " 1<p<oc
[vllLe@) = Inf{C; Jv(z)| < C a.e. on Q}
HP(Q) = {veL*Q), 0% € L*(), a € N? o < p}, Hilbert space
Hy(Q) = {ve HP(Q),vpq =0}

Error norms

We define uy, the computed solution such as

YVr € T,V € Vi, up(x) = ug (1)




The discrete relative L? error is defined as:

N
[N

lun — @l 12 () = un = @2y _ ( 3" meas(Vr)lus - a(x,)yQ) /( 3 meas(v,)\a(xl)ﬁ)

el 22 @) fer 210
(2)

with % the analytical solution.
The discrete L°° error is defined as:

[un — | oo () = mazrenlur — ()| (3)
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LA valeur de la simulation numérique en tant qu’aide & l'ingénierie ou a la compréhension des
phénomeénes physiques n’est plus & démontrer. Cet outil relativement jeune posséde bien
sir ses limitations et ses difficultés d’emploi. Le premier pas dans la conduite d’'une simulation
complexe est 'obtention d’un résultat a priori plausible. Ce dernier point étant toutefois trés
subjectif, les indicateurs numériques et les études de convergence permettent souvent de tendre
vers 'objectivité. Celle-ci peut toutefois étre illusoire si les phénomeénes physiques mis en jeux
sont mal compris ou trop fins pour étre captés par la simulation. On prendra ’exemple de cas de
réservoirs remplis de fluide en rotation-precession [Lamb 09] dont la déstabilisation dépend de
modes résonnants totalement masqués, dans le cas de géométries trop complexes, par la diffusion
numérique. On citera aussi les simulations en 6D des équations de Vlasov-Maxwell dont la crois-
sance en maillage laisse peu de latitudes dans le raffinement et donc dans I’étude de convergence.
Ainsi, tout ne peut pas étre simulé avec pertinence. Les possibilités de la simulation dépendent
fortement de la puissance de calcul disponible, mais on ne peut que naivement se reposer sur
celle-ci pour espérer résoudre a plus ou moins bréve échéance des problémes de plus en plus
complexes. L’évolution de la structure des machines qui voit poindre la fin des machines mono-
processeur (et donc du calcul séquentielles) et I'ordre de complexité des algorithmes montrent
I'importance du développement de méthodes et de modéles toujours mieux pensés. Des résultats
certes impressionnants sont obtenus & l'aide de super calculateurs mais peu de structures dis-
posent de telles machines. Dans beaucoup d’entreprises, petites ou mémes parfois trés grandes,
la. simulation n’est pas la priorité et les bureaux d’études ne disposent parfois que d’ordinateurs
personnels pour réaliser des calculs.

Ce travail parle de méthodes numériques plus que de modélisation. Les équations considérées
ici sont bien connues de méme que les phénomeénes physiques traités. Notre objectif est de
développer des méthodes plus rapides, robustes et précises afin de mieux simuler ce que 1’on
simule déja de facon limitée et biaisée. Le champ d’application de ces méthodes est résolument
la simulation de cas industriels. Encore une fois, les phénoménes mis en jeux dans ’hydroplanage
d’un pneu, le vol d’'un planeur ou la convection naturelle dans une grotte sont assez bien connus,
voir totalement appréhendés dans le cadre d’études de cas académiques simples. La difficulté
& prévoir précisément le comportement fluide pour les cas industriels est tout autre et trouve
en grande partie sa source dans la complexité des formes en présence. Ce saut de difficulté se
transpose en simulation numérique, ot reproduire avec précision 1’écoulement autour d’un avion
demande bien plus de développements et de puissance de calcul que la simulation de 1’écoulement
autour d’une sphére. D’une part, la complexité accrue de ’écoulement impose 1'utilisation de
méthodes plus précises et /ou d’un maillage plus fin. D’autre part, la gestion de formes complexes
non-triviales (avion, éolienne, pneu) nécessite de nombreux développements informatiques.

Nous proposons ici un ensemble de méthodes permettant le passage de la sphére & ’avion.
Le choix fondamental qui sous-tend ce travail est celui de l'utilisation d’un maillage de calcul
structuré simple et fixe. Notre approche globale sera celle des domaines fictifs. Ce parti-pris
s’oppose & ’approche classique de la simulation industrielle qui consiste & utiliser un maillage
non-structuré permettant une gestion directe des formes complexes. Nous tacherons de montrer
que notre approche se montre viable sur de tels cas méme sans l'utilisation d’une grande puissance
de calcul.

Objectifs et financement du travail
Ce travail a été financé par divers biais.

e Un tiers vient d'une collaboration avec EDF R&D (Chatou, en collaboration avec Marc
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Sakiz et David Montfort) qui consistait & étendre a l’ordre 2 la méthode de pénalisation
L? et a I'implémenter dans Code_ Saturne.

o L’équipe de recherche Mécanique des Fluides et Energétique Numeérique du laboratoire
TREFLE a financé un tiers supplémentaire.

e La derniére partie a été assurée par la réalisation de contrats industriels pour Michelin
(Pierre Février et Fabien Sonilhac), et Varel Europe (Alfazazi Dourfaye) en collaboration
avec Laurent Gerbau (Armines) et la Région Aquitaine.

Ce travail a aussi mené a une collaboration avec Delphine Lacanette et Philippe Malaurent
portant sur la grotte de Lascaux. Enfin, une collaboration avec Philippe Angot (LATP) a
permis de traiter des aspects plus théoriques.

L’objectif initial de ce travail était donc le développement d’une méthode de pénalisation
d’ordre élevée pour des obstacles fixes puis son extension aux objets mobiles. L’intérét limité
d’une telle méthode de frontiére pour I’équation de I’énergie a motivé son évolution vers une
méthode d’interface immergée. Afin de pouvoir traiter les cas industriels, notamment ceux
qui ont co-financé cette thése, il s’est vite révélé indispensable de développer des méthodes de
projection de maillages performantes et cet aspect est devenu un des sujets principaux de ce
travail.

Concernant la partie visualisation et images de synthése, nous menons ce travail depuis un
certain temps déja et il s’enrichira vite des possibilités qu’offrent les travaux de cette thése.
Notons aussi une collaboration avec SVG sur 'aspect visualisation.

Mis & part l'introduction et la conclusion, ce mémoire a été rédigé en anglais.

Organisation du mémoire

Le but de ce document est de présenter une méthodologie globale de simulation d’écoulements
et de transferts thermiques mettant en jeu des objets ou interfaces de formes complexes. Les
principales étapes de la gestion des objets sont les suivantes:

e Les objets représentés par des maillages triangularisés surfaciques sont projetés sur le mail-
lage eulérien a l’aide de diverses méthodes.

e Une méthode de domaines fictifs permet ensuite de modifier la discrétisation initiale des
opérateurs spatiaux pour permettre une meilleur prise en compte des objets.

e Les objets sont mis en mouvement par une fonction analytique ou sous l'effet de 'effort
fluide.

Une derniére partie illustre cette démarche par la présentation de cas industriels traités durant
cette thése.

Part II: Overview of the fictitious domain methods La premiére partie compare les
approches a maillages structurés et non-structurés, et présente les méthodes de domaines fictifs
les plus couramment utilisées. Nous présentons aussi les deux grandes classes de problémes
rencontrés, les problémes de frontiéres immergées et ceux d’interfaces immergées.
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Part III: Management of Lagrangian shapes on curvilinear grids Cette partie décrit
une nouvelle méthode globale de traitement d’objets qui trouve son originalité dans l'utilisation
systématique d’une grille cartésienne duale & pas unitaires. Cette approche est validée sur des
problémes d’advection diphasique et de frontiéres immergées.

Part IV: High-order fictitious domain methods La troisiéme partie constitue le coeur du
document et présente deux méthodes originales de domaines fictifs. La méthode de pénalisa-
tion de sous-maille est la premiére méthode de pénalisation d’ordre élevé en espace et permet
d’imposer des conditions de Dirichlet ou de Neumann sur une frontiére. La méthode d’interface et
de frontiére immergée algébrique est quand a elle une extension de la pénalisation de sous-maille
aux cas des interfaces. Ce n’est plus une méthode de pénalisation mais une méthode algébrique
se basant sur la création d’inconnues auxiliaires. De nombreuses validations pour des équations
elliptiques et les équations de Navier-Stokes sont présentées.

Part V: Solid mechanics and fluid-structure coupling Nous décrivons la modélisation du
mouvement d’'un objet solide et du couplage fluide structure. Un code temps réel d’interaction
de particules est présenté et la méthode de couplage est appliquée & la sédimentation d’une
particule.

Part VI: Industrial applications Cette partie présente différents cas complexes traités avec
notre méthodologie. Nous présentons d’abord deux cas industriels concernent I'hydroplanage
d’un pneu avec Michelin, et les écoulements dans des tétes de forage avec Varel Europe. Le
troisiéme cas est la simulation de la convection naturelle dans la grotte de Lascaux. Quelques
autres illustrations sont données.

Appendix A: Conservation equations and related numerical context Cette annexe
présente les modeéles et méthodes numériques utilisées.

Appendix B: Application to the image synthesis Nous exposons ici notre méthodologie
de création d’images de synthése.

Appendix C: Analytical solutions La construction de quelques solutions analytiques util-
isées est expliquée.

Appendix D: Interpolation Nous décrivons les différentes interpolations de type polynomi-
ales ou Kernel utilisées.
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Part 11

Overview of the fictitious domain
methods
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Chapter 1

Base principle and motivations

1.1 A short story of mesh

THE resolution of a complex physical problem by the numerical simulation leads generally to

a discretization in space and time of the initial modeling. Phenomena changing along the
time will be solved step by step. When the solution is required on a non singular domain or when
the problem cannot be solved by considering an averaging in space of the physical quantities,
the space is discretized, that is to said cut into pieces, boxes, squares, rectangle, polyhedra etc...
The spatial discretization generates a mesh, composed of cells, faces, vertices and nodes. The
discretization of the operators, and consequently the accuracy of the solution, will depends on
the discretization of the space and time.

A first classification of a calculation volume mesh is based on the number of neighbors of
each cell and node (their valence). If this number is constant over the whole domain, the mesh
is defined as structured, otherwise unstructured. Fach class of mesh can be divided into many
sub classes.

Let us now introduce some definitions :

Element An element is the elementary volume in which the conservation equations are dis-
cretized. The set of elements K; of a domain €j, are such that

Hence, an element has the same dimension as 2, and is generally a polygon.

Node The nodes are the vertices of the elements K;. They are generally the centers of the
control volumes when a finite volume discretization is considered.

Face The faces are elements of dimension d — 1 and are the boundaries of the elements. When
the elements are polygons, the faces are segments for a 2D tessellation and 2D polygons for a
3D tessellation.
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Orthogonal A tessellation is denoted as orthogonal if all faces which have a common node are
orthogonal or parallel in a sufficiently close vicinity of the node.

1.1.1 Structured grid

A regular grid is a tessellation of the Euclidian space R? by rectangles in 2D and boxes in 3D.
Each cell can be indexed by a coefficient, or (i, 7) in 2D and (4, j, k) in 3D. Structured grids can
be classified in sub categories:

Regular grid A regular grid is composed of rectangles or parallelepipeds that all have the
same proportions. One can find a translation of the grid such as each vertex indexed (i, j, k) has
coordinates (i.Ax, j.Ay, k.Az), where Az, Ay and Az are the grid spacing, or the space steps.

Cartesian grid A Cartesian grid is composed of unit squares or unit cubes, i.e. Az = Ay =
Az = 1. One can find a translation of the grid such as each vertex indexed (i, j, k) has coordinates
(i,4,k). Hence, it is straightforward to determine which cell a Lagrangian point belongs to.

Rectilinear grid A rectilinear grid is composed of rectangles or parallelepipeds that can have
different dimensions.

Curvilinear grid A curvilinear grid is a grid with the same combinatorial structure as a
regular grid, in which the cells are quadrilaterals or cuboids rather than rectangles or rectangular
parallelepipeds.

1.1.2 Unstructured grids

Although the valence of each elements of an unstructured mesh is not constrained, it is common
to use a unique kind of elements to perform computations. In 3D, tetrahedral and hexahe-
dral elements are generally used. One advantage of these elements is their convexity, so the
discretization of the equations is easier and more robust than with non-convex elements.

1.1.3 Structured and unstructured grids
The following aspects have to be considered:

e The discretization of the space is not always trivial, especially if the shape of the domain
(i.e. its boundaries) is complex. The construction of a mesh from a complex shape requires
complex algorithms and has often to be performed on external meshers such as Gambit
(ANSYS) or Gridgen (Pointwise).

e The discretization of the spatial operators will be easier with a simple discretization. Cen-
tered second-order operators are trivial to build and accurate on Cartesian meshes. Con-
versely, on unstructured meshes of poor quality (if, for instance, the perpendicular bisectors
of each faces do not intersect in a single point), complex operations are required to build
discrete operators.

e Ag the grid is composed of simple geometrical entities, the boundary of the discretized
domain does not generally conform with the boundary of the original domain. As will be
exposed many times in this document, if the segment size of the reconstruction depends
on the size of the discrete elements, a stair-step reconstruction (Fig. 1.1.eft) is of first
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order only while a linear piecewise reconstruction (Fig. 1.1.right) provides a second order
of approximation. More complex reconstructions with splines are not considered here.

Figure 1.1: First order (left) and second order (right) reconstruction (dashed line) of an interface
(solid line)

e The accurate discretization of the space using particular rules of cutting is not always
possible. This points is a priori the greatest weakness of the structured meshes. For
instance, a sphere cannot be meshed with Cartesian structured mesh without exaggerated
distortions.

e The mesh generated with a given discretization has to be stored or has to be easy to deduce.
Simple structured meshes, such as Cartesian grids, are easy to create and store. In this
case, the generation of the mesh is a bijection from the space step and the number of cell
in each directions, and the coordinates of a first point. Hence, the storage of a Cartesian
mesh can be reduced to some values. Conversely, unstructured meshes are often uneasy to
store and operate on, as the position of a cell and its sub elements have to be stored, as
well as the connectivities.

Thereby, the structured meshes are generally easy to generate and offer an accurate and
simple discretization of spatial operators but cannot accurately approximate complex domains.
With unstructured grids, the discretization of the spatial operators is more complex and often
produces a less accurate result for a given size of element. However such grids are able to discretize
complex domains and thus to treat industrial problems. Furthermore, the loss of accuracy can
be counterbalanced by an adapted mesh refinement. Conversely, the ability of structured grids
to be refined in the critical parts of the domain (boundary layers, interfaces,...) is very limited.
One may distinguish two different needs of refinement. A first one is the consequence of the non-
conformity between the boundaries of the domain or an immersed interface and the Eulerian
mesh. The aim of the fictitious domain method presented in the present work is to treat this
non-conformity. The second need of refinement is due to the general irregularity of the solution
and its gradient. Ideally, the mesh has to be refined according to the magnitude of the gradients of
the solution. This last point can be treated on structured grids with Adaptive Mesh Refinement
methods (AMR) [Dela 06] but they need a great implementation effort and lead to a locally
structured grid but a globally unstructured grid.

An important point is that an additional problem occurs when the simulation implies moving
objects and moving interfaces. In this case, an initially well-adapted unstructured mesh is no
more relevant at the next time steps. In case of multiphase flows, it happens almost systemati-
cally. The mesh can be reconstructed at each time step, but such a procedure is very expensive
in computational time and hard to implement.
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As a conclusion, the adaptivity of unstructured grids is limited in practical terms by the
movements of the discontinuities of the solution and the physical quantities. Its initial advantage
on the structured grids concerning the fixed boundaries is counterbalanced by the use of fictitious
domain methods. Next to it, the interest of the fictitious domain methods is extended to the
unstructured grids when a moving obstacles is involved.

1.2 The fictitious domains

1.2.1 Immersed boundaries and interfaces

Immersed boundary problems Let us consider the following model Dirichlet problem:

-V .-(aVu)=f in Qo
{ u=uy on % (1.3)
and the model Neumann problem:
-V -(aVu)=f in Qo (1.4)
(a-Vu)n=g on X

As they only consider one side of the interface ¥ = 0€, both problems are qualified as boundary
problems. Let us now consider a domain discretized with a Cartesian structured grid. As no
particular constraint is imposed on the shape of ¥ (only being continuous), one can suppose that
3 is not conform to the Cartesian grid. The computational domain is denoted as €2, and the
supplementary domain is 1 such as 2 = QoUX U, The present problems are called immersed
boundary problems. Even if the problem is numerically solved in £y and €2y, the solution is only
required in the first one. Hence, the initial equations can be partially or totally removed in €.
Many methods change the discretization in €21 to increase the accuracy in €)g.

Immersed interface problems Let us consider the following interface problem:

—V-(aVu)=f inQ
U\E =up onx (1.5)
uE =ug onx
The solution is now required in the whole numerical domain. However, the solutions on both
sides of the interface are independent, and two immersed boundary sub-problems in ¢ and €
can be solved independently. We consider now an other problem:

-V (aVu) = f in Q (1.6)
+ Interface condition on X ’
where the interface conditions are :
[uls=¢ onX (1.7)
[(a-Vu) -ny=1v% onX (1.8)

The notation [ul]ys, = (u™ — u™) denotes the jump of a quantity over the interface . These

transmission and jump conditions are called the immersed interface conditions as they are used
for the IIM methods! (see section 4.1).

! According to [Li 06] a method cannot be designated as an ITM if an other set of interface conditions is used.
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A more general formulation has been proposed by Angot|Ango 03, Ango 05]:

[a-Vu) n]s =atxy —h onX (1.9)
(a-Vu) -ngy=p0Ju]—g oni (1.10)

where uy, = (u™ — u™)/2 denotes the arithmetic mean of the traces of a quantity on both sides
of the interface, and «, 8, h and g scalar values which can be chosen to obtain various types
of immersed BC such as Dirichlet, Neumann, Stefan or Fourier conditions on the immersed
interface. These conditions are called the embedded boundary conditions

1.2.2 The fictitious domain approach

Let us consider a mesh 75, composed of elements K;. The previous problems, e.g. (2.11) or (1.6)
are considered. Ideally, we have
Qo = J K (1.11)
i€
with 7 the set of indices of the elements of 7;,. One can find two sets of indices Zp and Z7 such
as

Qo= |J K (1.12)
i€Zp
and
o= K (1.13)
1€y

In this case, Zo UZ; = (). Generally, the elements of the meshes are polygons, and except if
the boundaries of the original domains are piecewise linear, the conditions (1.11), (1.12) and
(1.13) cannot be fulfilled. If an unstructured mesh is used, the discrete boundary 92, of the
discretization € of € and the discretization X5, of the interface 3 can be approximated with a
second-order piecewise reconstruction (see Fig. 1.2 right). In this case, the nodes of the discrete
interfaces are generally on the original interfaces and no particular attention is paid to correct
this approximation.

For structured meshes, the spatial approximation of the boundary is generally of first order
only (see Fig. 1.2 left). Due to the constraints of the meshing, the spatial discretization does not
take the shapes of the interfaces and boundaries into account. The only requirement is 2 C €.
As the domains of the original problems are not "visible" on the mesh, such domains are qualified
as fictitious when considered toward the mesh. Consequently, all the methods allowing such
domains to exist during the numerical resolution are called fictitious domain methods.

-2
1
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1
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Figure 1.2: Approximation of a continuous interface. First (left) and second order (right)
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Chapter 2

The penalty methods

HE penalty methods for conservation equations are a set of method originally presented in
[Arqu 84, Calt 86| for the Navier-Stokes equations and in [Ango 89| for Poisson equation.
The basic idea is to use a unique equation in the whole numerical domain which is divided in
sub-domains of different kinds. A penalty term describing a penalty constraint (or a penalty
equation) is added to the original physical equation. The penalty term is multiplied by a penalty
parameter which may vary according to the subdomain. In the subdomains where the physical
equation is relevant, the penalty parameter is equal to zero and the penalty term has no influence.
In the subdomains where the penalty equation is relevant, the penalty term tends to infinity and
the physical equation becomes negligible. The penalization of the solution is called the L2
penalization, whereas the penalization of the gradient is called the H'! penalization [Ango 99].

2.1 Darcy penalty method

The Darcy penalty method (DPM) was first presented in [Arqu 84, Calt 86| to treat porous
media in fluid flows and extended to solid obstacles in [Ango 90, Khad 00]. The principle is to
add a Darcy term %u into the Navier-Stokes equations. Hence, original equations become:

p(aat:—k(u‘V)u)—i- u=—-Vp+ pAu

V-u=0

==

(2.1)

One can notice that contrary to some other fictitious domain methods, the penalty term is
derived from the Darcy equation and then has a physical meaning. Practically, K is the local
permeability and tends to infinity in the fluid media. A solid permeability K — 0 is chosen in the
solid media to impose u = 0. Other values can be used to impose a porous media and an interest
of the method lies in the possible modeling of fluid-porous flow interaction. Even if practically
the behavior of the Darcy equation is obtained in this case [Calt 86, Laca 09], the presence of
the convective and diffusive terms in the NS equations makes a formal difference between these
equations.

If discretized such as the permeability K is piecewise constant per control volumes, the
method reaches a first-order accuracy for the L? norm. Moreover, the DPM allows only static
obstacles to be modeled as only a null velocity can be imposed.
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2.2 Volume penalty method

The volume penalty method (VPM) was first presented in [Ango 89| and applied to heat transfers
in electronic components. The penalty term is Bi(T — T ) and is derived from the Biot number
so the penalty parameter is sometimes denoted as Bi. For an elliptic equation, the penalized
problem is
{ —V - (aVu) + Bi(u —up) = f in Q (2.2)
with Bijg, =0, Bijg, =1, for 0 <e < 1 '
where € denotes the penalty parameter which tends to 0. As for the DPM, the VPM has a physical
meaning when applied to heat transfers. The method can be applied to different equations but
looses its physical meaning so the penalty parameter has to be almost zero or almost infinity
(the physical and the non-physical penalty equations cannot be used at the same time for a
same location). Applied to the Navier-Stokes equations, the VPM allows moving objects to be
immersed. If up = 0, the method is equivalent to the DPM. If the discretization considers a
piecewise constant penalty term per control volume, the method is of first order too.
The present document shows applications of the method to the heat equation and to the
incompressible Navier-Stokes equations. The method has been applied to large Mach number
flows [Boir 09], the wave equation [Pacc 05] or to pseudo-spectral methods [Keet 07].

2.3 Implicit tensorial penalty method

This method is devoted to the resolution of the Navier-Stokes equations. It is based on a
new formulation of the stress tensor o which reads for a Newtonian fluid (see [Ryhm 85] and
[Happ 63]):

Oij =—D 5@']’ + AV -u 5ij +2u Dij (23)

where A et p are respectively the compression and shearing viscosities and D is the tensor of
deforming rate.

The introduction of the volumic viscosity &£ allows to highlight the spherical contribution of the
viscous stresses. It can be expressed according to the compression and the shearing viscosities
assuming & = 0 for an imcompressible flow:

20
= )\ —_—
3 +t3

2
g = —p(sl-j — g,uV . uéij + QIUDZ‘J'

Usually, this formulation of the stress tensor assumes that the fluid is homogeneous and the
components of the stress tensor are null for a constant flow or a uniform rotation flow u = €2 xr.
Moreover, the components of ;; are linearly expressed according to velocity derivatives and are
exactly equal and of opposite sign to the hydrostatic pressure when the fluid is at rest. This
supposes that no direction is favoured in the fluid. In this way, the velocity and the corresponding
viscous stresses are bind through an isotropic relation.

Starting from the Navier-Stokes equations in their conservative and compressible formulation
dedicated to newtonian fluids, we can write:

ap B

E‘FV'(pu) = 0

0

L4V (uow) = pg+V-o (2.4)
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The aim is here to reformulate the problem so as to make appear several natural contributions
of the stress tensor dealing with compression, tearing, shearing and rotation. The interest of this
decomposition is then to distinctly penalize each term in order to strongly impose the associated
stress (see[Calt 01]). If we assume that Navier-Stokes equations for a Newtonian fluid contain
all physical contributions traducing compressibility effects, shearing or rotation, their splitting
permits to act differentially on their effects by modifying the orders of magnitude of each term
directly in the motion equations.
We first break up the second-order tensor V;;, which corresponds to the gradient of a vectorial
variable, in a symmetrical part D;; and in an antisymmetrical part ;; (Ryhming [Ryhm 85])

1 1

Vij = 5 (Vij + Vji) + 2

(Vij = Vji) = Dij + Qi (2.6)
Then the stress tensor ( 2.3) can be rewritten as follows
o = —p5ij +/\V-u5ij+2,U,Dij = —p(sij—i-)\v-u&ij +2u (Vz‘j —Qij)

Decomposing o;; according to the partial derivative of the velocity in Cartesian coordinates

9
—p+AV-u 0 0 70 0
o = 0 —p+AV-u 0 +Kx | 0 g—; 0
0 0 —-p+AV-u 0 0 C’L;
0 o ou 0 fu_ o ou_ow
dy Oz Jy or 0z ox
¢ 0 0 0 0
RN - LAk A a7 (2.7)
ow ow dw_du dw_ v
or Oy Ox 0z Oy 0z

we thus obtain an original decomposition of the stress tensor in which new viscosity coefficients
appear artificially

0ij=(—p+AV-u)dy; +kNjj +( O —nTy; (2.8)
where
A is the compression viscosity
K is the tearing viscosity
( is the shearing viscosity
71 is the rotation viscosity
The usual form of o can be recovered allocating the following values to the new viscosities:
A=—=2/3u, k =2u, ¢ =2u, n=p. (2.9)

Several values of the viscosity coefficients appearing in the new formulation (2.8) can be verified
experimentally or theoretically in the works of Bird et al [Bird 77| or Ryhming [Ryhm 85].
Four different terms appear in the divergence of the stress tensor o, corresponding to the com-
pression tensor V - u, the tearing tensor A, the pure shearing tensor ® and the rotation tensor
T, which are associated to four characteristic phenomena of a flow:

V-o=-V(p-AV-u)+V-(kA)+V-((O)—V-(yT) (2.10)
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The main interest of the formulation (2.10) is to dissociate stresses operating in a Newtonian
viscous flow and then to make the implementation of a numerical penalty method easier. The
use of the viscosities A, k, ¢ et 1 permits to satisfy accurately each kind of stress for both
compressible and incompressible flows.
The new decomposition of the viscous stress tensor must be integrated in the energy equation
for a coherent formulation. The terms —X%T V -u + p®(u) are replaced by the generic tensor
o : Vu written according to the previous theory.

This method has been applied to particle sedimentation [Pian 05, Rand 05, Vinc 07] and
coupled to phase change [Maun 08].

2.4 Jump Embedded Boundray Condition methods

Angot and Ramiére have proposed two methods to deal with various type of BC such as Dirich-
let, Neumann, Stefan or Robin.

In [Rami 07b], the authors use a spread interface representation. We consider a closed domain
Q of boundary ¥ embedded in a domain €. The shape of € is supposed to be simple. We define
the complementary domain Q. such as Q = Q Uws U Q, (see Fig. (2.1) left). The following
problems is considered:

(2.11)

—V.-(aVu)+bu=f inQ
BC on %

The discretization ), of Q is embedded in the computational domain €, such that Q=
Qp, Uwy, 5 UQp. If acell K is cut by the interface X, then K € wy,». If K C Q then K C Q.
The other cells are in € (see Fig. 2.1.right). The followmg equation is considered in 2

QO [Q

Figure 2.1: Definition of the domains for the spread interface method [Rami 07b]

-V - (aVu) +bu=f (2.12)

and the various parameters a, b and f are chosen according to the desired BC (see Tab. 2.1).
The constants ar and gr are related to the Robin BC. The parameter € is a local correcting
factor which depends on the cell size.

The Neumann BC can be retrieved with ap = 0. Concerning the Dirichlet BC, two methods
are considered depending on the location of the penalty terms (exterior domain €. or spread
interface wpx).
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‘ Parameters in 2, » ‘ Parameters in €2 j
Dirichlet BC
a (L? penalty)
Spread interface penalization a= L1, (H! penalty) a=1I,,
n
1 1
bz*afzqu bZO,fZO
n n

Dirichlet BC
Iy (L? penalty)

. . _ = 1
Exterior penalization a=a, 1y (HY penalty)
77
b=b,f=f b= ,f—qu
Robin BC
with different approximations of ¢, a=a, a =l
€h €h

Table 2.1: Parameters in wy, »; and €., for [Rami 07b|

A second method has been developed in [Rami 07c| which is a sharp interface approach
combined with the JEBC of [Ango 03, Ango 05]:

[a-Vu) n]s =atx —h onX (2.13)
(a-Vu) -ngy=p0ul—g on (2.14)

The different parameters a, b and f in €2, and on X are chosen according to Tab. 2.2 to imposed
the desired interface condition.

Two approaches are considered for the Dirichlet BC. For the surface penalty, the condition
is imposed with the interface parameters whereas the condition is imposed in €. for the volume
penalty. Since this approach considers a sharp interface, the parameters are defined on % instead
of in wy 2. This approach is more difficult to implement than for the spread interface approach
since the penalization on ¥ requires a modification of the discretization of the spatial operators.
The interface actually taken into account is a stairstep reconstruction from the faces of the cells
crossed by the interfaces (however, the correcting factor € considers a piecewise linear reconstruc-
tion of 3). Hence, this method, as well as the first one have only a first order of spatial accuracy
for the L? norm and a 1/2 order for the H' norm [Rami 07a]. The JEBC (2.13)-(2.14) can be
also generalized for vector elliptic problems such as Stokes-Brinkman problems.




2. THE PENALTY METHODS

Parameters in X ‘

Parameters in €,

Dirichlet BC
2
Surface penalty a, =1, v, =0, a=408=—,
n
q 1
bia, = flo. =0 5 9= _up
n
Dirichlet BC
I (L? penalty) 1
1 1 i = 1 = e
Exterior penalization | a 1, (H? penalty) , Vg, =0, 15} n
1 1
bo. = = flo. = ~ue a=q¢g=9g=0
n n
Robin BC
no exterior control a, =1, vig. =0, a =48 =2ap,
q
ba. = fio. =0 9-5=9r

Table 2.2: Parameters in €2, and on X for [Rami 07a]
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Chapter 3

Other methods for immersed boundary
problems

MMERSED boundary method is a generic appellation for the methods dealing with immersed

obstacles. However, this term often specifically designates the method designed by Charles

S. Peskin in 1972. In the present document, the acronym IBM will always denotes the method

itself while the immersed boundary problems will be designated as IB problems. The IBM Direct-

forcing (DF) approaches are sometimes totaly different from the original Peskin method but are

also designated as a particular class of the IBM. The common principle of the IBM is to use a
forcing term and a Cartesian grid. A good review can be found in [Mitt 05].

3.1 The immersed boundary method

3.1.1 Continuous forcing IBM

In [Pesk 72|, Peskin simulated blood flows in beating heart valves. The method was originally
designed for moving flexible boundaries and has been adapted later to rigid boundaries. The
principal idea is to use forces to account for the presence of immersed boundaries or interfaces.
As the immersed Lagrangian mesh discretizing interfaces does not generally match the Eulerian
grid, the interface forces are spread from the Lagrangian point to the neighbor Eulerian nodes
using discrete Dirac functions, or Peskin functions. The discrete Dirac function can be discretized
as triangle, trigonometric or more complex functions, such as:

M%(3—2[7"]/h+\/1+4\7']/h—4(\7']/h)2 Ir| < Ax
op = ﬁ(5—2]r|/h+\/—7+ 12|r|/h — 4(|r|/h)? Az <|r| <2Az (3.1)
0 otherwise

This approach is quite simple to implement and robust, and has been used to treat many applied
problems, especially in biomechanics [Mill 05, Hopp 02]. However, the method is generally first-
order accurate in space only due to the smooth representation of the interface. Higher orders
can only be reached for the particular case of sufficiently smooth problems [Lai 00, Grif 05].

A formulation of the Peskin approach for the Navier-Stokes equations can be written as
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Figure 3.1: Simulation of heart flows using the Peskin immersed boundary method - Study of
vortices near insect wings

follows:
p(%: + (u.V)u) = -Vp+uViu+fin Q (3.2)
Vo =0inQ (3.3)
Ly
f(x,t) = /0 F(s,t)0(x — X(s,t)) ds (3.4)
‘”‘éi”f) — u(X(s,0), 1) = /Q u(x, )3(x — X(s,1)) dx (3.5)
F(s,t) = S(X(-,t),t) (3.6)

Here, the immersed boundary ¥ is given in parametric form: X(s,t),0 < s < L, X(0,t) =
X(Ly,t), where s tracks a material point of 3. The force density (with respect to dx = dz dy)
acting on the fluid is f(x, t) while the boundary force density (with respect to ds) is F(s,t). Egs.
(3.2)-(3.3) are the Navier-Stokes equations for a viscous incompressible fluid, Egs. (3.4)-(3.5)
represent the interaction between the immersed boundary and the fluid. In Eq. (3.4), the force
density is applied to the fluid by the immersed boundary. In Eq. (3.5), the immersed boundary
is carried along with the fluid. The last Eq. (3.6) states that the boundary force on a particular
interface element at time ¢ is determined by the boundary configuration at time ¢, where the
function S satisfies the generalized Hooke’s law if the boundary is elastic.

This formulation is very attractive for lows with elastic boundaries and can be easily adapted
to rigid boundaries by considering the boundary as elastic but extremely stiff. However, this ap-
proach implies many stability constraints [Mitt 05] while lower values of stiffness lead to spurious
elastic effects [Lai 00].
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3.1.2 Direct-forcing IBM

In these methods, the physical forcing term of the Peskin approach is replaced by a non-physical
term. The numerical instabilities encountered with the Peskin method when a rigid boundary is
considered are no more present. The first direct forcing IBM has been presented in [Mohd 97] for
pseudo-spectral elements and extended in [Fadl 00] to a 3D FD method on a Cartesian staggered
grid. The following Navier-Stokes momentum equation is solved:

un+1 —u”
(4
Contrary to the Peskin approach, the forcing term is not physical and there is no constant to
set:

+ (WHLY) u) = V" 4 pVRu ! 4 5(x — X(s,1)F (3.7)

n

f= p(iv A“ + (uLV) u" ) + V' — piu ! (3.8)
where V is typically the Dirichlet value. The discrete Dirac function 6(x—X(s, t)) forcing term is
only activated for nodes near the boundary. The implementation of this method in Thétis shown
that as the forcing term is not physical, it is hazardous to mix it with the a physical equation for
a same node (a factor has to be determined). Hence, the § is generally not smooth so its value is
binary. If V is the desired velocity at the boundary, these approaches have a first-order accuracy
in space. In [Fadl 00, Tsen 03], V is no more a constant but a linear combination of the solution
near the interface, and V = > wj;u; with w; weighting coefficients depending on the interpolation.
|[Fadl 00] activates the forcing term in the fluid region while [Tsen 03, Mark 08] uses the nodes in
the solid region. The advantage of this last approach is to conserve the original equation one node
closer to the interface, increasing the accuracy of the simulation. The direct forcing approach
has been widely applied to turbulent flows at the Center for Turbulence Research, Stanford (see,
e.g. [Verz 01, Maju 01]). Concerning the velocity-pressure coupling, these methods are generally
used with a pressure projection method. As will be demonstrated later [Iken 07, Dome 08|, the
standard projection is not well-suited to the forcing term.
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Figure 3.2: Flow simulation in a non-conforming piston [Fadl 00]
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3.2 The Cartesian grid FV methods

The aim of these methods is to strictly keep the conservation laws at the close vicinity of the
interface. The idea is to reshape the cells crossed by the interface and to build ad hoc FV schemes
in them. The interface is approximated as a line or a plane in each cut cell.

3.2.1 The cut-cell method

First designed to treat inviscid flows around airfoils [Clar 86|, the Cut-cell approach modifies the
shape of the control volumes near the interface by cutting and merging them. Quantities such
as mass, convective and diffusive flux integrals and pressure gradients have to be estimated on
each face of these new cells. Ye et al. [Ye 99| proposed to express a given flow variable in terms
of polynomial interpolating function in an appropriate region and evaluate the fluxes based on
this interpolating functions. In this approach, the solution inside the obstacle is not used. Fig.
3.3 from [Ye 99| shows how the cells are cut and merged to define new cells which are conform
to the immersed interface.

@ |i]i]: ®
PO NG
77NN — N7
*_\2////,?\%* b XA 4
INN/Z RS

Figure 3.3: Cutting of the CV with the cut cell method and associated new face fluxes|Ye 99|

3.2.2 The embedded boundary method

First presented by Johansen and Colella [Joha 98], the Cartesian Grid Embedded Boundary
method is based on a FV formulation and a modification of the control volumes to take into
account the immersed interface. Contrary to the Cut-cell method, the solution is computed at
the center of the cells, even the ones out of the physical domain. On the other hand, the fluxes
are calculated at the new faces of the mesh, 7. e. the position of the immersed interface is taken
into account. Initially presented for the Poisson equation, the method has been used to solve the
heat equation in 2D [Schw 06] and 3D [McCo 01]. An application to vessel segmentation and
blood flow simulation can be found in [Desc 04].

3.3 The distributed Lagrange multipliers

The Distributed Lagrange Multipliers method has been formulated by Glowingki and Pan to
simulate the sedimentation of a large amount of particles in 2D [Glow 99] and 3D [Glow 01]
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(see Fig. 3.4) and has been applied to particle motion in non-newtonian flows [Sing 00, Hao 09|
or to ellipsoidal particles [Pan 02, Pan 06]. The method uses Lagrange multipliers to enforce
solid-body motion in fluid in order to simulate the presence of immersed objects.

Figure 3.4: Fluidization of 1024 spherical particles

The method is presented for an immersed particle represented by a domain ;. The principle
of the DLM method is to couple the fluid equations:

du .
pL(E) =pLg+ V.o in (39)
Vau=0inQ (3.10)
3.11)

and the rigid body equations:
du

— =F 12
m— (3.12)
I%—l—w/\lsz (3.13)

with pr, the fluid density, m the body mass, w its rotation vector, F the external resulting force
applied to the solid, M the resulting torque. The force F is composed of physical forces and a
repulsive force related to the other particles. The stress tensor o takes the form:

o = —plg+2puD(u) (3.14)
The velocity of a particle 7 is such that
u=U,+wxr (3.15)

with U the translational velocity, and r the distance to the center of the concerned particles.
Equation (3.15) is combined to the weak form of (3.9), (3.12) and (3.13):

/Qp<(3;tl—g>-vdx+<l—[p)z> (M(?j—g)-V+I(i;J£>—F-V:—/Qo-:D(:3).fl6};
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with pg the particle density and where (v, V,§) is a combined variation from the combined
variation space

Vo(t) ={(v, V&) [ve H'(2)*,V ERTEER,
v=V+¢xrin Q, and v =0 on 00} (3.17)

while (u, U,w) is taken in the combined velocity space

Vug (t) = {(v, V,€) [v € H' ()%, V e RLE €R,
v=V+¢xrin Q, and v = ugg on 002} (3.18)

The fluid pressure p is required to lie in the space
L3(0) = {0 € L3(@0)| | qdx=0) (3.19)
0
Concerning the equation (3.10), its weak form gives
/QqV ~udx =0 for all ¢ € L*(Q) (3.20)

The rigid-body motion constraint is enforced via the definition of the combined velocity spaces.
Such a formulation is not well-adapted to the methods used to solve the standard Navier-Stokes
equations. As for the augmented Lagrangian method (see section A.3.4), this constraint is relaxed
thanks to a side constraint using an appropriate distributed Lagrange multiplier. The resulting
formulation is the following one:

For a.e. t > 0, find u € Wy, p € LZ(Q), A € A(t), U € R satisfying

/QpL <8altl+(u-V)ug) -vdx/QpV~vdx+/9277D(u):D(v) dx (3.21)

+<1—pL> (M <dU—g> -V+I(i;:£) P V=(v—(V4+Ext)a  (322)

pPd de
for all ve Wy, Ve R?, and € € R, (3.23)
/ qV -u dx = 0 for all ¢ € L*(Q) (3.24)
Q
(,u— (U+wxr))g, =0 for all p e A(t) (3.25)
(3.26)
where
Wy = {v € HY(Q)?|v = upq on 90} (3.27)
Wo = H(Q)? (3.28)

and A(t) is H'(Q)? with (.,.) an appropriate inner product. An alternative formulation consists
in replacing the volume forcing term (A, v — (V 4+ ¢ X 1)), by a surface forcing term (A, v —
(V +&xr))oq,
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3.4 The Boundary Ghost Fluid method

In [Gibo 02, Gibo 05|, Gibou et al. uses the same principles as the Ghost Fluid method (see
section 4.2.1) to impose boundary conditions for elliptic equations.
The 1D principle is described. The model Dirichlet problem is solved in a domain ¢ of
boundary 0%2:
V. (aVu) = f in QO
{ U = ujpq on 0 (3.29)

Let us consider the location of three regular grid nodes z;—1, x; and z;y1. The interface
location is v such as x;_1 < x; < o < 211 We choose x; 11 ¢ Qg so the solution at this point is
written ufil. It does not exist in the initial problem and is then denoted as a ghost node with
the superscript G.

The standard three-point discretization of the Laplacian yields

uicil — U U — Uj—1
i\ T ar )T A
{V-(aVu)}, = AL . (3.30)

The value uﬁrl is then considered as the linear extrapolation of the solution past the interface.
One can write
(o — xl)uﬁl + (i1 — )y G Az Tig] —

Az = Ui+1 = o — :Eiuuﬂ — Wuz (331)

U\F =

Finally, the following discretization of the operator near the interface is obtained:

Ax Ti+1 — &
1 a—a; 40— ( o — 2 _1) i Uj — Ui

The same principle is applied direction by direction in higher dimensions. As showed latter, the
discretized operators obtained with this method is quite similar to the SMP and AIIB methods for
Dirichlet problems. However, the two latter methods do not require a by-hand re-discretization
of the operators as this modification is performed algebraically.
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Chapter 4

Other methods for immersed interface
problems

4.1 The immersed interface method

4.1.1 Standard approach

The original IIM has been proposed by Leveque and Li in [Leve 94, Li 94|. Let us consider the
following 1D problem:

—V . (aVu) = f in
[uls = ¢ on X (4.1)
[(a-Vu) -njy=1v% onX

The equation is discretized using a three-point finite difference scheme. The criterion in deter-
mining the finite difference coefficients is to minimize the magnitude of the local truncation error
for a given location x;

T = vigu(xi—1) + vigu(x:) + vigu(zis1) — f(xi) + C; (4.2)

where ; 1, are linear coefficients and C} a source term. The main idea is to expand the solution
u(wi—1), w(z;), u(xiy1), f(z;) at the interface for x = « from each side of the interface and then
use the interface relations to express u*(a), uf (a) and ui,(a) in terms of quantities from one
particular side. The three locations x;—1, x; and z;;11 are such that z;—; < z; < a < Zj41.
Finally, we match the expansion against the differential equation to the leading terms to get a
system of equations for the finite difference coefficients. Using the Taylor expansion for u(x;41)

at a, we have

ulzisn) = (@) + (ri1 — 0)uf (0) + g (i — 0)ufy (0) + O(h?). (4.3)

Using the jump relations, the expression above can be written as

uaian) = (@) 9+ (i ) (S (@) 4 5 )+ 5l - )i (@) + O (1)
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The Taylor expansion is then written for u;—; and u;. Thus, the local truncation error can be
written at x = x;

T, = viagu(xio1) +vigu(w) + vigu(wip) — f(xi) + C;
= o+ (yig +7i2 +vi3)u (@) +viz(xipr — Oé)aj

+ <($i—1 —a)vi1+ ( — o)y + B;(Ii—l - 04)%‘,3) uy (o)

G+ (4.5)
. _
+5 <(a:z-1 —a)%yi1 + (2 — @) *yi2 + Zj(mm - a)271,3> u, ()
_ _ . 3
fla) =01+ 0 (bl )

The system of equations for the v; j is then obtained by minimizing each terms of the previous
equation:

(Vi1 + %2 +7i3) B = 0
(Tim1 — a)yin + (T — a)vip + Zj(l‘i—l — )i = 0 (4.6)
%(xi—l —a)*yi1 + %(%‘ —a)*yi2 + %%(xi_l —a)ys = a”
and the correcting term Cj yields
Ci = o+ 7i,3(®it1 — a)%- (4.7)
a

As can be seen, the construction of such a finite difference scheme is not easy and is strongly
dependent on the initial equation. The method has been extended to the Stokes |Leve 97, Li 04]
and Navier-Stokes equations [Li 01, Li 03, Tan 09].

4.1.2 Augmented strategy

First introduced by Li in [Li 98], this approach considers a set of interface points X;. The
jump conditions are written for these points and expressed from the Eulerian points thanks to a
least square interpolation and Taylor series expansions. An augmented equation system is then
obtained and solved using the Schur complement method. The augmented strategy has been
extended to the generalized Helmoltz equations [Li 99] and the incompressible Stokes equations
[Li 04]. An advantage of the augmented approach is to provide an algorithm which allows using
fast Poisson solvers such as the FFT [Adam 99].

4.2 Ghost node methods

4.2.1 The ghost fluid method

The Ghost Fluid (GF) method has been originally designed to deal with fluid-fluid interfaces for
the Euler equations [Fedk 99| and has been adapted to the elliptic equations [Liu 00, Liu 03].
The GF method is simpler than the IIM as it decomposes the flux jump in each axis direction
so the problem can be treated dimension by dimension. The result is a lower accuracy than the
IIM and a generally first-order accurate on the maximum norm only.
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The 1D principle is described. The model interface problem is solved in a domain 2. The
transmission conditions are considered
-V - (aVu)=f in Q
[uls = ¢ on X (4.8)
[(a-Vu) n]xy=v% on¥%

Let us consider an Eulerian point x;. The interface passes between z; and its neighbor x;4.
One can consider that z; is in the — side and x;41 is in the + side. To discretize a quantity
on the interface on a given + or — side, a combination of physical and fictitious nodes are used
(as for the boundary GFM of Gibou et al., see section 3.4). The interface coordinate is o and
i1 < o < a < Tiy1 < xiro. The physical solution in Q is denoted = and u™ in Qp. The
solution u¥ is extended from its subdomain to the other subdomain. From a discrete point of
view, this extension defines new unknowns which collocates with the existing solution. Hence,
two solutions u;” and u™iu; coexist at x;. The classic discretization of V- (aVu) is not designed
for a discontinuous solution and using a combination of u™ and u~ leads to numerical troubles.
Hence, each operator is written with only + or only — unknowns. At x; we have

“;:1 —u; u —ul
a;, 1 —_— —a. 1 _
i+3 Azx =3 Az
{V-(aVu)}, = Az ) (4.9)

1 is the ghost node and is not a physical value. The solution jump condition yields

I
Here, u;’,

Uy = U+ (4.10)

and the discretization of V - (aVu) can be rewritten

- + +_ .t
Yipr Tl (U T Ui
Ax H) Ax

Ax
and only physical unknowns are used. As can be seen, this method is easier to formulate than
the IIM. However, the discretization of the operator has still to be rewritten by-hand.

The GF method has been used for many practical applications such as the fragmentation of
a liquid jet [Coud 07|, the implosion of bubbles under ultrasonic waves [Coud 09] (see Fig. 4.1)
or the turbulent atomization [Desj 08].

@iyl (
{V-(aVu)};, = (4.11)

4.2.2 The matched interface and boundary method

As for the augmented IIM, the Matched Interface and Boundary (MIB) method [Zhou 06b,
Zhou 06a, Yu 07] formulates an augmented system. Instead of using Taylor extension, authors
consider as in [Tsen 03, Gibo 02, Fedk 99, Sart 08b] fictitious nodes to discretize the jump con-
ditions. The standard IIM set of jump equations on an interface I

[lr = ¢ (112)
[aunJr = (4.13)

are not used as they are and the authors obtain a third jump conditions by differentiating Eq.
(4.13) along the tangential direction of the interface. Thus, the three jump conditions are

[ulr =ut —u” = (4.14)
[urlr = uf —u; =, (4.15)
[aw,]r = atul —a™u, = . (4.16)
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Figure 4.1: Interaction between a wave and a bubble with a Level-set and Ghost Fluid approach
[Coud 09]. Comparison with experimentation

Let us consider 0, the orientation of the interface such as the normal vector of the interface is
n = (cos#,sinf) and its tangent vector is 7 = (—sin#,cosf). The three interface conditions
above can be reformulated as

[ulr =ut —u” = (4.17)
[ur]r = (—uy sin 6 + w,} cos 0) — (uy sin6 + u, cosf) = ¢, (4.18)
law,]r = a™t (u; cos 6 + u; sinf) —a” (uf cos @ + u, sinf) = 1. (4.19)

These relations are considered at each intersection between the interface and the calculation grid.
Let us consider an Eulerian point x; ;. The interface passes between x;; and its neighbors in
the z-direction x;11,;. One can consider that x;; is in the + side and x;11; is in the — side.
To discretize a quantity on the interface in a given + or — side, a combination of physical and
fictitious nodes is used (see section 3.4). In our case, the two considered nodes are in a 2-direction
grid line. Hence, u™, u™, uf and u; are easily obtained while u,” and u, are not naturally
calculated. However, one can combine Egs. (4.18) and (4.19) and avoid the computation of u,
or u, . Thus, if u; is easier to evalute, one will cancel u; from (4.18) and (4.19) to obtain

[ulp = vt —u~ (4.20)

[aun]r — o™ tan Ou.Jr = Cjuf — Cruy + Cyfuf (4.21)
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with

Ct =atcosf+a tanfsinf

C. =a cosf +a tanfsinb
C’; =aTsinf — a” siné.

These two jump conditions are used in the new augmented system. Practically, the corresponding
matrix is never built as the additional constraints are related by peers to two fictitious nodes,
allowing the local small equation system to be solved (the fictitious solutions are the unknowns).
This easy reduction is a consequence of the dissociation of the components of the interface
quantities. Contrary to the GF method and the ITM, the MIB approach dissociates the interface
constraints and the discretization of the conservation equations.

Another advantage of the method is its ability to reach higher orders. The standard method
is first performed. The expressions of the solution for the fictitious nodes are then combined
with an higher-order discretization of the jump conditions using additional fictitious nodes. A
second order is reached for the standard method (two fictitious nodes, one on each side of the
interface), a fourth order is obtained with four auxiliary nodes etc... The only limitation of this
approach is topological. A 16th-order scheme has been for instance build in 2D for a straight
interface [Zhou 06b)].

One of its drawback seems to be the size of the discretization stencil. Fig. 4.2 from |Zhou 06b]
shows the stencil considered for a 2D case and the standard second-order method. All the nodes
are not considered but eight physical nodes are required.

1(0,j+2
o ¢(@J )

y 9 ;'%jﬂ)
L | 7

Figure 4.2: Illustration of the discretization of the MIB method from [Zhou 06b]|. The four nodes
in the z-direction, and the four other nodes around g j+1 and g j42 are used
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Discussion and conclusion of Part 1

Immersed boundary problems

As can be seen, the forcing term of the IBM and the penalty constraint of the penalty methods can
be quite similar. The fondamental difference lies in the way the boundary constraint is imposed.
Let us consider an equation £(u) = f. The discretization of this equation on a Cartesian grid
leads to the following equation:

LU =F (4.22)

with L the discrete linear operator, U the discrete solution and F' the discrete source term.
The penalty method consists in adding a term 1/e(PU — F,) where PU is the linear part of a
boundary constraint and Fj, its source term. The final equation is

1
LU =F + _(PU~F) (4.23)

and ¢ varies according to the domain. Here, the penalty term does not depend on the discrete
equation. For the IBM, one can dissociate two approaches. The continuous approach of the IBM
adds a source term Fy

LU = F + F,. (4.24)

As the additional term is only a source term, this approach suffers from many limitations and
cannot generally reach a second order in space.

In the Direct-forcing approach, a term D(BU — Fp) is added where D is a discrete Dirac
function, B = L + P and F, = F}, — F. The factor D is equal to zero everywhere except at the
nodes close to the interface. For such nodes, the discrete equation is

LU =F+ (BU — Fy) < PU =F, (4.25)

The terms Fj, and P can be the same as for the penalty method and will have the same effect. The
fondamental difference is that here the original equation is canceled while the penalty methods
make it negligible.

One can notice that the IBM have been almost systematically applied to the fluid flows
simulation. For some methods, especially the direct forcing class, the application to the elliptic
equations seems to be straightforward. Concerning the DLM method, its initial formulation is
strongly linked to a fluid-structure modeling, but an application of the Lagrange multipliers to
the elliptic equation could be possible. To our knowledge the Boundary GFM has only been
applied as it is to the elliptic equations (while the GFM has been applied to many equations).
The Cartesian grid methods have been applied to elliptic and Navier-Stokes equations.

All these methods reach high orders in space accuracy, except for the Peskin IBM (which
is very robust and well adapted to elastic boundaries) and the DLM method (well suited to
rigid moving obstacles). The order of the penalty method depends on the penalty constraint.
More generally, a first order only is obtained for non-smooth problems if the precise location of
the boundary is not taken into account or if the influence of the boundary is smoothed. More
precisely, the distance and the direction has to be considered by the model.

Among all these approaches, the Cartesian Cells method seems to be the hardest to implement
as the Fulerian grid cells have to be modified. Furthermore, unstructured FV schemes has to be
built. At a smaller scale, finding the intersection point between the Eulerian and the Lagrangian
grids (for high-order Direct-forcing IBM, the Boundary GFM and the Sub-Mesh Penalty method)
requires too an implementation effort which can be avoided with the Peskin IBM or the DLM




methods. Concerning the computational performances of the methods, the high-order methods
generally push down the matrix conditioning and require more solver iterations. However, these
methods are almost always fully implicit and allow higher time steps to be used. The DLM
method requires additional sub time steps to impose a solid behavior in the object through a
minimization procedure.

Immersed interface problems

The IIM and GFM have been applied to many equations, while the recent MIB method has only
been applied to elliptic and Maxwell equations. The IIM and GFM are quite complicated to
formulate as the discretization of the operators has to be modified by-hand. The formulation of
the GFM using ghost nodes is nevertheless simpler than the IIM formulation using Taylor series
expansions. Contrary to the IIM and GFM, the MIB method proposes an automatic correction
of the discretization of the space operator. However, such a correction need an implementation
effort itself. The same thing occurs with the Augmented IIM method. To our knowledge, the
ITM and MIB methods systematically reach high orders in accuracy. That is not always the case
for the GF method (especially for the maximum norm). However, the MIB method has only
been applied to a short range of application.

As for the IB methods, higher orders are reached if the interface position is accurately ac-
counted for. The Continuum Surface Force (CSF) method of Brackbill et al. [Brac 92| is an
extension of the Peskin IBM to the interface. As the interface properties are smoothed with
discrete Dirac functions, only a first-order accuracy is generally obtained.

Conclusion

As can be seen, the literature related to the fictitious domains is wide, and our presentation
does not pretend to be exhaustive (one can cite the Fat Boundary Method [Maur 01| of Maury).
Many methods still propose to reach high-order accuracy and the actual challenge is rather to
obtain robust schemes, when complex geometries with singular points are involved. Omne can
cite the work of [Yu 07] for the MIB method. However, the immersed interface schemes are
generally quite complex to formulate and to implement, and are generally non-conservative at
the interface. Hence, finding simple, robust and conservative schemes is the interesting objective,
especially for the Stokes and the Navier-Stokes problems.

Building an efficient fictitious domain method requires one of the previous methods, but also
a set of algorithms to pre-treat the considered boundary/interface. This part is not negligible
in term of implementation effort and computational time. The next part presents a complete
treatment of the Lagrangian shape and its projection onto the Eulerian grid.
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Introduction

THE simulation of realistic fluid mechanics and thermal transfers problems always involves
varying physical values, such as density, viscosity or thermal conductivity. Generally,
discontinuities are present on interfaces which can sometimes be considered as boundaries. De-
pending on the way the interface is defined and numerically stored, the different steps of the
calculation requiring interface informations will be more or less easy to perform. The most com-
mon input format for an interface, a d — 1 manifold in a space of dimension d, is the explicit
Lagrangian representation. In 2D, the interface is a curve discretized as a set of segments. In
3D, the interface is a surface discretized as a set of triangles.

The first issue for the shape management is to couple the surface information of the interface
to the volume information of the Eulerian discretization grid. This operation allows the physical
quantities to be initialized in the physical Eulerian calculation grid, e.g. the different viscosities
and densities for a two-phase flow.

Moreover, this exemple contraries the classic assumption of the basic discretization of the
conservation equations which is that the physical quantities, if not constant, are smoothly vary-
ing. This agsumption is false in many other cases: heat transfers between two materials, fluid-
structure interactions, jump conditions, surface tension on an interface... The treatment of these
discontinuities is a major issue when the discretization is based on an Eulerian structured grid,
where the irregularities of the physical quantities are rarely matching the grid. The fictitious
domain methods propose to deal with discontinuities on structured grids. The two last decades
have been particularly creative in this domain and many methods have been invented, such as
the Immersed Boundary methods, the Penalty methods, the Ghost-Fluid methods or the Im-
mersed Interface methods. The accuracy of such approach requires many operations related to
the interface position and its representation.

Hence, complex problems involve complex interfaces which have to be accurately and quickly
managed. The present work proposes a global methodology to manage interfaces of complex
shapes on Fulerian grids. The present part first explains different methods performing the
Eulerian-Lagrangian grid coupling. The aim is to project Lagrangian surface informations on
an Eulerian grid. This step allows to construct the common implicit volume functions: the
binary Heaviside, the level-set and the volume of fluid (VOF) functions. A fast thread ray-
casting method is presented to build the Heaviside function. As this method works only for
Cartesian grids, a curvilinear to Cartesian transformation is required to generalize the approach
to orthogonal curvilinear grids. This method unfold the curvilinear grid to a Cartesian grid.
Many operations are then quickly performed on this new grid.

The fourth section is composed of tests and validation of the algorithms and the overall
method. The last section summarizes the current methodology and describes some possible
optimizations .
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Chapter 5

Global methodology

5.1 Surface representation

A surface in a space of dimension d is a d — 1 topological manifold. Its practical storage and
representation depends on the application. An explicit representation gives directly the position
of the points of the surface. Triangularized meshes or parametric surfaces are explicit surface
representations. With an implicit representation, the position of the points of the interface are
deduced as the iso-surface of a volume field or as the location of the solution of an equation. Our
aim here is to simulate physics using complex surfaces (boundary or interface).

5.1.1 Explicit surface: the triangularized mesh

The natural and intuitive representation of a surface is explicit, and the easiest way to create a
complex surface "by hand" is to work explicitly with it. Furthermore, a digital tool (a software)
is needed to build such virtual entities, and the most used of them uses explicit representation.
One can define two classes of softwares used to create explicit surfaces:

e Computed assisted design (CAD) softwares: Such softwares are designed for indus-
trial applications: CATTA (Dassault System), Solidworks (SolidWorks corp.), ProEngineer
(Parametric Technology Corporation)...

e Computer graphics (CG) softwares: Computer graphics tools are image oriented.
They are less precise than CAD tools, but more intuitive. The most used are 3D Studio
Max, Maya, Softimage (Autodesk), Lighwave 3D (NewTek) and Blender (Blender Founda-
tion). One can notice that Blender is a free software under GPL licence.

The shape which defines an immersed boundary or an immersed interface is a key point in the
fictitious domain approach. Methods can be built and studied using analytical interfaces, such
as circles, spheres or boxes. However, a more general description of the interface is needed to
treat more complex problems. The Lagrangian meshes are often used to explicitly define generic
discrete shapes. Such meshes are composed of segments in 2D and triangles in 3D (Fig. 5.1).

Generally, the Lagrangian mesh is defined with the following constraints:

e The shape has to be closed. Each segment of the mesh must be side of two triangles.
e Two elements of the shapes cannot intersect themselves

Fig. 5.2 shows invalid meshes.




54 5. GLOBAL METHODOLOGY

Figure 5.2: Invalid Lagrangian meshes. Overlapping triangles (left) and non closed shape (right)

5.1.2 Implicit surfaces with Heaviside, Level-Set and Color functions

Once the discrete shape is defined, the Lagrangian surface information has to be coupled with
the volume Eulerian information. To know which part of the Fulerian mesh is inside the La-
grangian mesh is generally the most important information to obtain. The Fig. 5.3 shows the
initial Lagrangian and Eulerian grids and the basic projection of the first on the second. This
projection define a first implicit representation of the initially explicit surface. A adequate im-
plicit representation can be accurate enough and can avoid to use the Lagrangian mesh during
the rest of the simulation. An implicit representation is defined by a volume function such as




%)

‘¥—> .

Figure 5.3: The Eulerian and Lagrangian grids and the resulting projection

x : RY— R. Three volume functions are defined according to their return value:

e The discrete binary Heaviside function x, defined as:

1 ifxe Ql
x(x)=¢ 05 ifxeX (5.1)
0 otherwise

This function is the basic indicator of the presence of an Eulerian point in €4 and is build
with a point in solid method presented below. An Eulerian node is near the interface if
one of its neighbor has a x function different to its value. However, a precise location of
the interface cannot be retrieved with the x function only.

e The level-set function ¢, with :

—diStE(X) if x €y

disty(x)  otherwise (5-2)

o0 = {

and disty(x) = infpey ||[x—p||. The unsigned distance is computed geometrically. The sign
is directly obtained from the discrete Heaviside function x. In 1D, the level-set function
gives the exact location of the interface. For higher dimensions, a good average location
of the interface can be found in ¢ = 0. A major advantage of the Level-set approach is to
allow the normal n and the curvature s to be easily computed:

_ Vo
"= Vel (5:3)
_o. (N
=V (HWH) 54

e The volume of fluid (VOF) function C, also called the color or phase function, is the
volume ratio of a given phase in an elementary volume Vy centered in x of boundary dVx.
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For Vx D x we denote C(x) the phase ratio in Vx. This function is obtained from the
normalized integration of the Heaviside function on Vx

Clx) = 1/ Y dv (5.5)

meas(Vy)
One can notice that

meas(Vx UQy) =0 C(x) =1 (5.6)
meas(Vx UQ;) =0« C(x) =0.
The local value C'(x) of the volume function is a filtered heaviside function representing

the volume average of x over Vx. This function is typically used to localize a fluid phase
in multiphase-flows and is the base of the 1-fluid model.

The Fig. 5.4 summarizes the three functions. The VOF functions can be seen as a smoothed
Heaviside function and implicitly defines the interface with more accuracy.

Figure 5.4: Heaviside (left), level-set (middle) and VOF (right) functions for a same geometry

5.2 The global methodology

The key point of the present methodology is to work as much as possible in a Cartesian frame-
work instead of a curvilinear one. Many optimisations can be performed when the grid lines of
the Eulerian mesh are straight and when the space step is unit. Hence, it is very easy to know in
which cell a Lagrangian point is when such a grid is used. Furthermore, the Thread Ray-casting,
a fast way to obtain the Heaviside function, works only on Cartesian grids.

The main idea is to first unfold the orthogonal curvilinear grid T} to obtain a dual Cartesian
grid Th. Then, the interfaces are projected onto this new grid. The Cartesian grid and the
deformed interfaces are used as much as possible to perform various steps of the calculation,
including the shape initialization, the fictitious domain methods and the interface tracking.

The 2D shape of the rabbit is projected on a curvilinear grid. The Fig. 5.5 shows the interface
and the grid. The Fig. 5.6 shows now the initial interface in the curvilinear workframe and its
transformed into a Cartesian workframe.  As can be seen, the shape of the interface in the
Cartesian frame is displaced, scaled and deformed.
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Figure 5.5: Original interface and the curvilinear mesh
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Figure 5.6: Original interface and its transformed onto the Cartesian framework

5.3 Interface tracking on curvilinear grids

The numerical simulation of interface motion and two-phase flows on fixed Cartesian grids re-
quires an interface tracking with specific numerical methods such as the volume of fluid (VOF)
approach [Hirt 81, Youn 82|, the Level-set method [Suss 94| or the Front-tracking techniques
|[Unve 92, Shin 02b]. Among the wide variety of methods and articles published the last fifteen
years, very few works were devoted to the extension of the previous methods to fixed orthogonal
curvilinear grids. An adaptation of the VOF-PLIC method on curvilinear grids can be found in
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[Jang 08]. In [Mura 06|, Muradoglu and Kayaalp use an auxiliary Cartesian grid superimposed
to the curvilinear one to manage the front tracking operations. Kernel functions are used to
interpolate the velocity from one grid to another. In [Huan 07], Huang et al. extend the ghost
fluid method [Fedk 99, Kang 00, Liu 00| to curvilinear grids. The jump conditions are enforced
on the pressure and velocity and on the pressure gradient. To be complete, such a ghost fluid
method would have to be extended to velocity gradient, viscosity and turbulence quantities. The
approximation of the interface tracking on curvilinear grids for two-phase flows is conside*red in
this section. The extension and the generalization of the curvilinear features for more than two
fluids is straightforward. It is considered that the curvilinear velocity field representing the fluid
motion is known. One can notice that in the present work, the Cartesian grid is not superimposed
to the curvilinear grid as in [Mura 06|, but is an unfolding of the curvilinear grid.

5.3.1 The VOF-PLIC method

The VOF is by definition associated to the use of a volume characteristic function C which is
equal to 1 in one phase and 0 in the other phase. The interface is classically located by the
iso-surface C' = 0.5. A material equation on C, which correspond to the Lagrangian trajectory
of fictitious particles placed on the interface, is added to the standard conservation equations,
i.e. the Navier-Stokes and energy equations [Scar 99a|, in order to follow the phase evolutions
during time:

dC oC

where u is the fluid velocity when no phase change occurs and ¢ is the time.

Equation (5.8) is correct for every orthogonal coordinate system. However, discretizing the
gradient operator in a curvilinear orthogonal grid G and simulating the corresponding velocity
field in such a grid is a complex task, in particular in three dimensions. Moreover, as soon
as (5.8) is approximated by means of a geometrical approach such as the VOF-PLIC method
[Youn 82|, the curvilinear extension of the approach becomes impossible in the real coordinate
system as it requires to estimate the intersection between a segment in 2D or a plan in 3D with
the curvilinear control volumes of the grid. Our idea lies in the use of a transformed auxiliary
grid Th, as previously explained for object shape projection, to solve the advection equation on
C with the standard VOF-PLIC technique.

A staggered Cartesian grid of constant space step is considered with space steps such as
Az = Ay = Az = 1. In this auxiliary grid, Eq. (5.8) can be written in a new form

oCc . -

where @ and V are the velocity and the gradient operator in the auxiliary coordinate system.
The curvilinear metrics applied on C through V in G disappear in G and V is the standard
: 0 0 O\NT
Cartesian operator (g, L 5)
Eq. (5.8) is then written as

oC 0C Ox oC Oy 0C 0z

where &, 1, ¢ are the curvilinear coordinates. For each cells, ‘g—fg, g—z and g—z are replaced by the




ratios of the local space steps :
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Eq. (5.9) is then recovered with

Ues
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By solving Eq. (5.9), the VOF-PLIC method can be used in Th, the Lagrangian advection of
linear interface construction being achieved with velocity (5.12) without any modification of the
implementation of the method. It has to be noticed that the initial values of C are obtained
with the Lagrangian-Fulerian transformation on curvilinear grids as the physics and so the real
interface shape are known in the curvilinear coordinate system. The discrete value C(i, j, k) of
C, as a binary scalar are the same in the two spaces T} and Th.

(5.12)

5.3.2 The LCR Front Tracking method

Among the various variant of the Front Tracking approaches, the Level Contour Reconstruction
(LCR) method of Shin and Juric [Shin 02b] is interesting as it allows the coalescence and break-
up of interfacial structures to be automatically managed by using a Heaviside function x to
reseed the marker over time by estimating the intersections between each Lagrangian elements
of the interface I';(¢) and the control volumes of the Eulerian grid. The function x is built with
the position of the markers located on T';(¢) . The x function is a pseudo VOF function which
is equal to 1 in the interior phase bounded by the interface and 0 elsewhere. The resolution of a
Poisson equation is required to obtain x such that

Vix=V- / né(x — x;)dy (5.13)
Li(t)

In equation (5.13), n is the unit normal to the interface, § a Dirac function centered on the
interface, X is a position on the Eulerian grid and x; a marker position on I';().

In the LCR approach, the interface evolutions are estimated in a Lagrangian manner as

follows:
dXi

dt
The interpolation of the Eulerian velocity field u at the Lagrangian positions and the approxima-
tion of the Dirac function appearing in (5.13) correspond to Eulerian to Lagrangian projection
of variable, or conversely. These operations require smooth distribution functions [Shin 02b| as
the Lagrangian positions x; do not generally coincide with the Eulerian grid nodes x.
The main interest of LCR method is linked to the automatic management of interface merging
and rupture by using the intersection of the x = 0.5 iso-surface with the control volumes of
the calculation grid. To our knowledge, no curvilinear version of LCR exists in the literature,
for the same reason as for the VOF-PLIC method: the estimate of geometrical intersections on
curvilinear grids is complex. The idea of using an auxiliary Cartesian grid G is also a valid idea
for the Front-Tracking method.
The curvilinear extension of LCR lies in the use of velocity 1(5.12) for interpolating ; in G with

‘n=u-n (5.14)
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the discrete Dirac function proposed by Shin and Juric. This velocity field is used for advecting
the markers and in the transformation of the Lagrangian interface shape I';(¢), through its coor-
dinate vectors x;, as proposed in the section devoted to interface initialization on the auxiliary
grid G. The coordinates of the markers so obtained are called X;. The new equation describing
the Lagrangian interface evolution reads

dx;

dt
where 1 is the local unit normal to the transformed interface T';(t). Once %; and so I;(t), is
known, the Heaviside function x is obtained by solving the following equation

Viy=V- / no(x — %;)dy (5.16)
I';(¢)

A=14;-n (5.15)

As for the VOF function C, x is the same in T} and T),.

5.3.3 The Level-set method

As for the other volume functions which consider an implicit representation of the interface, the
initialization and the time evolution of the level-set function is performed in the Cartesian frame.
The level-set function is denoted gg in the Cartesian grid. As for the VOF function, (3 is advected
according to R
0p . o=

5t +0-Vop=0 (5.17)
The VOF-PLIC method solves Eq. (5.9) geometrically. For the Level-set method, the hyperbolic
equation (5.17) is solved explicitly with a finite-volume method. In [Tang 04], Tanguy shows that
high orders schemes have to be used to obtain acceptable results. Here, the time advancement
is performed with a Runke-Kutta 3 scheme [Shu 98| while the spatial derivatives are discretized
with a WENO 5 scheme [Shu 96]. The fonction thus obtained is no more a distance function
as its fundamental properties are not conserved. Hence, a reinitialization procedure is needed.
Proposed by Sussman et al [Suss 94], the idea is to use the only valid iso qAﬁ = 0 to rebuild the
function. Amongst the numerous method to reinitialize the Level-Set, the one used here solved
the following PDE:

) A A
o = sign(6(x.)(1 ~ V4] (5.18)

d(x,t' = 0) = p(x, 1)
Details on the numerical discretization can be found in [Jian 00, Coud 07]. One can notice that
some geometric properties of the level-set function in the Cartesian frame are no more verified
in the curvilinear frame. However, the interface normal as well as the curvature can be retrieved
with a suitable modification of the gradient:

1

Vo ¥ Vo

A M 5.19

Vel Aln Vo 519
A

Thus, the curvature x can then be obtained with

K=V" (ngn) . (5.20)
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5.4 The fictitious domain methods

Generally, the fictitious domain methods modify the original discretization of the conservation
equations near the interface or in a given sub-domain. The spatial accuracy of these methods
depends on the accuracy of the interface localization. If only the discrete Heaviside y is used, one
cannot obtain more than a first order of accuracy in space. Higher orders are obtained when the
accurate location of the interface is used. A second order can be reached both using the explicit
surface (i.e. the Lagrangian mesh) or the implicit surface provided by the level-set function.
Various results are obtained with the different VOF functions.
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Chapter 6

Detailed algorithms of the methodology

HE algorithms used to performed our strategy are presented in this chapter. Point-in-solid
T algorithms, a Level-set construction and a Cartesian to curvilinear transformation are de-
scribed as well as their optimization using geometric arguments and advanced data-structures.
Physical problems implying interfaces are then simulated to evaluate the accuracy of our ap-
proach.
The computational domain (2 is approximated with a curvilinear mesh T}, composed of N x M
(xL in 3D) cell-centered finite volumes (Vr).

6.1 Point in solid algorithm

Some algorithms used to initialize implicit representation of the interface are presented here. A
huge literature can be found in the computer graphics community. A good review can be found
in [Ogay 05].

6.1.1 A continuous method

The method presented here has been first introduced by Shin and Juric in [Shin 02b]. As usual,

we are looking for x such as x is the indicator of the sub-domain bounded by 3. Contrary to

many point-in-solid methods where geometrical properties are used, this approach deals with the
resolution of a Poisson equation: ,

{VX:V-FE (6.1)

x = 0 on 9N

with Fy = / nd; (x —xs) ds a vector normalized interface contribution, x; the interface po-

sition and §; %he Dirac function. This equation can be seen as the modeling of a heat transfer
problem where x is the temperature. The source term of (6.1) is the divergence of a normal flux
which is discretized on the staggered grid. The term Fy is located on the velocity nodes and
V - Fy is naturally obtained with a centered scheme on the scalar grid.

Concerning the calculation of Fy, itself, it has to be integrated over the whole interface for
each Fulerian point. Practically, the interface contribution is considered as constant for each
element 0y, | € Ly which defines the discrete interface ¥j,. The center of 0; is denoted as x; and
Aoy is the measure of o7 in R4, For an Eulerian point x;, the following approximation is used:

/ nj; (x —xy) ds = mD;(x;)Aoy (6.2)
oy
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The Dirac function §; is approximated using the distribution functions D; introduced by
Peskin [Pesk 02]. In 2D, the distribution function is:

D) = S (21 — xi)/h}ish ((yr = wi)/hy)

(6.3)

where (z;,y;) are the coordinates of the Eulerian point x;, (x;,%;) are the coordinates of the
Lagrangian point x;, and Jy, is a discrete Dirac function. In our case, we use the same function
as Shin and Juric [Shin 02b]:

91(r), Ir| < h
Su(r) =< 1/2—=61(2—|r]), h<|r|<2h (6.4)
0, Ir| > 2h

with

3—2|r| 4+ /1 +4|r| — 4r2
d1(r) = I S I (6.5)

where h is generally the local space step of the discrete grid. Hence, we finally obtain

/Enéi(x—Xf) ds ~ Z n; D;(x;) Aoy (6.6)

Ul,lef,f

and the divergence of Fy, can be obtained. As for the IBM of Peskin [Pesk 72|, the Dirac
discrete function dj spreads the interface contribution to the neighbor Eulerian nodes. With the
present discretization (6.4), the support of d; is two cells width on each side of the interface in
the normal direction. As the Dirac function has a limited support, each contribution is computed
only if the Fulerian point is in the vicinity of 3.

Once the source term is discretized, the equation can be solved using a fast FISHPACK
Poisson solver [Adam 99| based on spectral methods, or a standard finite volume discretization
with a second-order centered scheme. In this case, the matrix inversion is performed with a
BiCG-Stab II solver [Vors 92| and an ILU preconditioning [Gust 78a).

The approach of Shin and Juric suffers from some drawbacks:

e Ags only the Lagrangian points generates the source term, they have to be dense enough
compared to the Eulerian node. Practically, the Lagrangian mesh has to be refined adap-
tively such that Aoy < h.

e The method does not perceive the inner holes, so the surface must separate the space in
only two connected sub-spaces. In 2D, a circle is a valid interface, a ring is not (see Fig.
6.1).

e The method does not work properly when the Lagrangian mesh is not entirely in the
computational domain. The method requires reconstruction of the Lagrangian interface
near the boundary to work properly.

Even if the computational drawbacks can be solved thanks to an implementation effort, the
limitation on the topology of the surface are very restrictive. As will be demonstrated later,
the accuracy of the method in term of implicit surface representation is not as good as with a
level-set function.

However, the intrinsic approximations of the method provide an advantage for some cases.
If the curvature of the interface is too high compared to the Eulerian mesh, this continuous
method smoothes the interface and gives an appropriate representation while other methods
could produce a non-valid implicit surface (e.g. a non-closed surface).




Figure 6.1: Surfaces for 2D problems. The left one is valid, the right one is not

6.1.2 Geometrical methods
6.1.2.1 Ray-casting method

A first issue is to determine which FEulerian points are inside the object defined by the Lagrangian
surface. We use a Ray-casting method based on the Jordan Curve theorem. The principle is to
cast a ray from each Fulerian point to infinity and to test the number of intersections between
the ray and the Lagrangian mesh. If the number of intersections is odd, the Eulerian point is
inside the object, either outside. Ray-casting methods can be enhanced by classifying elements of
the Lagrangian mesh with an octree sub-structure (see section 6.5.2). If a ray does not intersect
a cube, it does not intersect the triangles inside. More generally, a fast test to classify a point
as outside or inside is to see if the point is in a box bounding the Lagrangian mesh. If the
point is outside, one can be certain that the point is not inside the object. Some details of the
implementation of the method can be found in |Ogay 05].

Algorithm 1 describes a pseudo-code performing a basic computation of the color function
C. To avoid numerical errors due to the presence of great numbers to simulate the infinity, the
ray is only cast to a point x; which is far enough to be outside of the object and the grid. To
optimize the intersections calculation, x.; is different for all x; and parallel to a grid line. One
recall that M and K are the number of Fulerian cells in the second and third directions.

Algorithm 1 Ray-casting algorithm
for i =1, M do
nsect := 0
for k=1,K do
if Segment [x;; xoo;] intersects oy then
nsect := nsect + 1
end if
end for
if nsect is even then
else
C(z;) =1
end if
end for

Concerning the ray-triangle intersection, [Ogay 05] announces that Feito-Torres [Feit 97] al-
gorithm seems to be the faster.
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6.1.2.2 Thread Ray-casting method

We propose now an optimization of the Jordan-based method on orthogonal structured grids
that greatly improves the performances of the algorithm. This optimization seems to be known
in the computer graphics community but to our knowledge have never been applied to numerical
simulation. In Jordan based-method, the direction of the ray is indifferent. If all rays are
launched in the same direction, for instance Ox, many intersection tests are done more than one
time for a set of point in a same Eulerian mesh row in the Oz direction. Hence, only one ray can
be cast for a row. If rays are casted in the more refined direction, computational cost is simply
divided by the number of cells in this direction. This method is called the Thread Ray-Casting
(TRC).

Alg. 2 describes our TRC algorithm. Rays are cast from points z; included in a boundary
slice Syy of the Eulerian mesh. For each starting point x;, the intersections are stored and sorted
according to their z component in a two entry structure PTZ(i,nsect;). For each x; € Sy,
nsect is not known a priori. If PTZ is an array, a first pass has to be performed to determine
the size of PT'Z. A best choice is to use chained lists.

Algorithm 2 Thread Ray-casting algorithm
for i =1, M with z; € S, do
nsect : =0
for k=1,K do
if Segment [x;; o] intersects oy then
Store the intersection in PTZ(i, nsect)
nsect := nsect + 1
end if
end for
if nsect is even then
else
C(z;) =1
end if
In_state :== C(x;)
nsectymy = 0
for j =1, m, do
while nsectin, < nsect and z;(3) > PTZ(i,nsectymy) do
Switch In_ state
nsectymp = nsectymp + 1

end while
C(zj;) := In_state
end for
end for

For the sake of clarity, the two algorithms (Ray-casting and TRC) are not fully optimized
(no bounding box test for instance).

The binary C; function so obtained can be used to build an Eulerian Level-set function near
the interface by estimating the Eulerian distance between the Eulerian points and the neighbor
Lagrangian points.
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6.2 Cartesian to curvilinear transformation

The key point of our methodology is to work in a Cartesian framework instead of a curvilinear
one. Many optimisation in computing Eulerian functions can be performed when the grid lines
of the Eulerian mesh are straight.
The main idea is to first unfold the orthogonal curvilinear grid to obtain a dual Cartesian grid.
Then, the objects are projected onto this new grid. The method is presented in 2D but can be
generalized in 3D without difficulties. A

Let Th be the Cartesian structured mesh composed of elements V! = K;, Tj, being the initial
primal orthogonal curvilinear grid (in the finite volume sense). Let P be the projector from T}, to
Tp. Hence, the discrete interface 3, is the projected interface such as 3, = P(Xy). Each element
1}{ is an unit square, such as Q, = [0, N] x [0, M]. The transformation of ¥ is performed by
displacing each node of elements o;, denoted by o5, j = 1,2. Let (27, y;) be the position of a node
oij and (2, yk),k = 1,..,4 the position of each node Kj; of the element K; containing o;; (see
Fig. 6.2 for notations). Two Q; interpolations @, and @, are defined such as Q. (xk, yx) = T
and Qy(zk,yx) = Ux. The determination of the coefficients requires to solve two linear systems.
The analytical solution is used in 2D and a BiCG-Stab method is used in 3D to obtain the
projector coefficients. At last, (Qz(x;), Qy(y1)) gives the position of &;;.

(x4>y4)

(F.90)  Gdy)

(x3:y3) e 2

(R D)

N

Kij
(2.02) (2,5 (%.5,)

(X, 1)

Figure 6.2: Notations and principle of the curvilinear to Cartesian transformation. Original
element K;; and projected element Kj;; are described

6.3 Level-set function

6.3.1 Computing the Level-Set function

A good review of the methodologies used to compute the distance function has been performed
by Jones et. al. [Jone 06]. A global method can be found in [Baer 05]. The Level-set function
results from the calculation of the local sign and the calculation of the unsigned distance to the
interface.

In the present work, the sign is obtained with the Heaviside function x. If the purpose of the
Level-Set is only to build a VOF function, the Level-Set function is only required at the nodes
close to the interface. To locate such nodes, an explicit Laplacian is applied several times to the
Heaviside function xaA. Nodes where 0 < ya < 1 are at the vicinity of the interface.
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The calculation of the unsigned distance between a point x and a triangle T" is now described.
The idea is globally the same as [Jone 05]. The main difficulty of the computation of the distance
from a point to a segment or a triangle is to determine which part of the element (vertex, edge,
face) is the closest.

2D computation The segment o; is defined by two vertices p1 and p2. We define two vectors
vi = p2 — p1 and vx = x — p1. The position of the orthogonal projection of x on o; is deduced
from the quantity ' = vx - vi:

e F < 0 = the closest part is the point p;
e 0 < E <1 = the closest part is the segment oy
e F > 1= the closest part is the point p2

and the distance to the closest element is computed.

3D computation Thee triangles o; are defined by three vertices p1, p2 and ps. We define
two vectors vo = p2 — p1 and vy = p3 — p1. The normal vector n of o is
Vo X V3

The point x is the orthogonal projection of x on the plane containing ¢;. The problem is now
reduced to a 2D problem. The next step is to determine which part of the triangle is the closest.
If x' is in oy, the closest part is the face. If X" is exterior, six other cases appears (Fig. 6.3). To

R, R

Figure 6.3: The seven different regions delimiting the closest element to a point

localize the region, we define oriented lines overlapping the triangle edges and the lines orthogonal
to the edges passing by the vertices (see Fig. 6.4).
The edge equation [Pine 88| is used to determine in which side of the line the point is. The
edge equation is
E(z,y) = (x — X)dY — (y = Y)dX (6.8)

for a line passing through (X;Y") with gradient % with respect to a point (z,y). If E < 0, the

point is to the left of the line, if & > 0 to the right, and if £ = 0 it is on the line. Knowing the
planar distance to the triangle, the distance in 3D is easily retrieved.
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Figure 6.4: Lines used to find the region of a point

6.3.2 Optimizations

As for the other geometrical algorithms, many optimizations can be implemented:

e The search for the minimal distance has to be done with squared distances. Hence, a square
root is only applied to the final distance.

e For points far enough from the interface, one can compute the distance to the points of
the interface only. Such points are located using the smoothed Heaviside function xa. If
all the elements are smaller than the Eulerian cells, such a method gives a good approxi-
mation. New points can be temporarily created and the elements refined for the need of
this computation.

e An octree data-structure (see section 6.5.2) is used to sort the elements spatially. If a given
leaf of the octree (i.e. the closest box containing elements of the interface) is the closest to
x, the closest element of the interface is in this leaf or in a neighbor leaf.

e For each element, a sphere containing the element is computed. Its center is p. and its
radius is 7. If ||x — p¢|| — r is greater than the actual closest computed distance, there is
non need to compute the real distance from x to the element.

The formula commonly used to retrieve the location xy of the interface between two nodes x;
and x2 from ¢1 = ¢(x1) and @3 = P(x2) is

_ Xu|¢a| + x2|d|

|p1| + |p2] (6.9)

6.4 VOF function

A first approximation of the VOF function is the Heaviside function x. In our approach, the VOF
function is generally build from the level-set function ¢. In [Suss 98], Sussman and coauthors
propose the following function:

if p < —e€
<1 + % _ isin(mﬁ/e)) if 6] < e (6.10)
if o > ¢

C(x) =

— o= O
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where € is a characteristic distance, e.g the cell size. The resulting interface has a thickness (the
nature of this thickness will be discussed later) of about

2¢

Vol (6.11)

If the level-set is the distance function, the thickness is then 2e. This smooth function has good
regularity properties.

The formula commonly used to retrieve the location xx of the interface between two nodes
x1 and x2 from C; = C(x1) and Cy = C(x2) is

X1|0.5 — 02‘ -+ X2|0.5 — Cl|
|0.5—Cl‘+’0.5—02| '

Xy = (6.12)
However, this interpolation is designed for a VOF function which is linear for 0 < C' < 1 and
a loss of accuracy is encountered when the interface is described by a VOF function build with
the Sussman function (6.10). If only a C° the regularity of the VOF function is required, the
following function is more desirable:

0 if o < —e
C(x) = % (1 + f) if 6] < e (6.13)
1 if > €

With this function, the same surface as for the level-set function can be retrieved. For the level-
set function, the iso ¢ = 0 is the location of the interface. For the VOF function, two approaches
are generally used. A first approach considers that the interface is the zone where 0 < C' < 1,
so the interface has a thickness. When diffusive advection schemes are used, the thickness of the
interface will eventually grow.

Another point of view considers that the interface is located in C = 0.5. The numerical
thickness of the interface is a way to increase the accuracy of the implicit representation of the
surface (the Heaviside function which is binary does not allow the sub-mesh position of the
interface to be retrieved). In this way, the interface position is as accurately defined as for a
level-set function.

6.5 Validation and global convergence

6.5.1 Accuracy of the method
6.5.1.1 Interface location for a circle with an immersed boundary method

An accuracy test of the Lagrangian to Eulerian projections coupled with the curvilinear to
Eulerian projection is performed here. The resolution of the Laplace equation with an immersed
boundary is considered. The IB is accounted for using the Sub-Mesh Penalty (SMP) method
(see 7). It allows a Dirichlet boundary condition on a complex interface to be imposed with a
second order of spatial accuracy. This accuracy is directly bind to the accuracy of the interface
localization. The SMP method can consider implicit and explicit representations of the interface
and the different approaches are compared. As usual, computational time is saved by performing
all the related calculations of the SMP method in the Cartesian transformed frame. Validations
for the IB problem are performed on two curvilinear grids (see Fig. 6.5). Grid A is an orthogonal
mesh with exponential periodic steps. Grid B is a converging pipe. The homogenous Laplace
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Figure 6.5: Curvilinear grids used for validation : Grid A (left) - Grid B (right)

equation between two circles of radius R; = 0.5 and Rs = 4 is solved. The solution is u; = 10
on the first circle and ug = 0 on the second circle. The boundary condition on the inner circle is
imposed with the SMP method and the analytical solution which account for the exterior circle
is imposed on the boundary of the Eulerian grid. The position is obtained with the following
representations:

e GI: The geometric intersection between the projected interface and the Cartesian grid is
used

e LS-CUR: The level-set function for the curvilinear grid is used to locate the interface
e LS: The level-set function for the Cartesian grid is used to locate the interface
e SUS: The Sussman Heaviside function for Cartesian grid is used to locate the interface

e F'T: The Front-Tracking projection algorithm for Cartesian grid is used to locate the in-
terface

The Tables (6.7) and (6.7) shows the convergence results for grids A and B. As expected, the
more accurate method is the GI. The LS-CUR and LS have a quite similar accuracy. The three
functions almost reach a second order in space accuracy for the L? and L> error norms. The
level-set function calculated on the curvilinear grid is more accurate than the one calculated on
the transformed Cartesian grid. However, the level of error is quite similar.

The FT method, which solves an elliptic equation to obtain the color function reach an order 2
in L? norm for the first meshes. Then, the performances go down. The same phenomenon occurs
for the L norm where an order of 1.5 is found for the first meshes. An implementation error
is perhaps involved. Nevertheless, for the meshes for which the method has a good convergence
rate, the level of error is much more higher than for the GI or the LS.

For the SUS method, which uses a smooth Heaviside (6.10) constructed from the level-set
function, an average order of 1.55 is found for the grid A and 1.36 for the grid B for the L? norm.
For the L* norm, the convergence orders are about 0.9 If the Sussman function is replaced by
a linear function (6.13), the same results as for the level-set function are retrieved. Hence, the

regularity of the Sussman function impacts on the order of convergence'.

! A solution to retrieve a second order of convergence would be to build an ad hoc interpolation for the Sussman
function.
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Figure 6.6: Relative L? and L™ errors for some implicit representations of the interfaces on the
Grid A
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Figure 6.7: Relative L? and L* errors for some implicit representations of the interfaces on the
Grid B
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6.5.1.2 Interface tracking

Description of the curvilinear grid The curvilinear grid used in the two following sections
is a converging-diverging or contracted channel used by Friess et al. |Frie 04] in their test case
number 27 on interface tracking in complex geometries. The grid has been generated with the
Computational Fluid Dynamics CFD meshing Gridgen [Chaw 92] from Pointwise which enables
to manage the orthogonality of curvilinear grids in an accurate manner. An example of con-
tracted channel is provided in figure 6.8. Its dimensions are [2.5; 2.5] x [—1; 1] The ability

05 |-

05 F HH

IS ENREVE SYRVIETIS SATATETEY AYSTTEN STATATTE STRTETETES SRR SYRTET SR A
25 2 15 1 05 0 0.5 1 15 2 2.5

Figure 6.8: The 128 x 32 contracted channel mesh for the interface tracking cases

of our method to deal with multiphase flow methods is studied. A phase is initialized in the
domain. Two different shapes are considered, a circle and a cross (see Fig. 6.9. Convergence
study on the volume conservation are first performed. The difference between the initialized and
the final volume is calculated. We do not use the analytical volume but the volume initialize as
described previously. For each cases, a velocity field is initialised. A certain number of iterations
is performed, then the velocity field is inverted and the same number of iterations is performed.

Advection of a shape in a horizontal velocity field (Field A)

The phase is advected with a constant velocity in the z-direction. In the transformed space, the

velocity is not null for its two components. A circle of radius 0.225m centered in (—1.45,0) is

first considered. For the second case, a cross of width 0.225m centered in (—1.45,0) is used.
The Fig. 6.12 shows the convergence in mesh of the error on the volume conservation for the

four advection methods on the field A for the circle and the cross cases. The Fig. 6.11 shows

the implicit surfaces reconstructed at the end of the simulations.

Advection of a shape in a parabolic velocity field (Field B)
For this case, the streamlines follows the mesh lines so the velocity field is null in the y-direction
in the transformed Cartesian frame and the field is sheared. A circle of radius 0.5m centered in
(—1.95,0) is first considered. For the second case, a cross of width 0.5m centered in (—1.95,0)
is used.

The Fig. 6.13 shows the convergence in mesh of the error on the volume conservation for the
four advection methods on the field B for the circle and the cross cases. The Fig. 6.11 shows the
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Figure 6.9: The Lagrangian shape of the cross for the curvilinear advection tsets

implicit surfaces reconstructed at the end of the simulations.

Discussion

The convergence of the error for the Front-Tracking is regular except for the case of the cross for
the B field and reach a second order. The convergence of the Level-Set is less regular, especially
for the circle. The LS always reach a second order, and more with the circle. For the field A, the
LS is less accurate than the F'T. The inverse is observed with the field B. The convergence of the
VOF-PLIC and the VOF-TVD methods is more irregular. For the field A, the error is always
decreasing except for one value for the TVD) and globally shows good performances compared
to the other methods, especially the Level-Set. For the field B, even if the error levels are
quite good compared to the other methods, the error is almost never decreasing with the mesh.
Concerning the computational time for these cases, the VOF-PLIC and VOF-TVD methods are
about five time faster than the Front-tracking and the Level-set. Concerning the Front-tracking,
its computational cost depends directly on the number of Lagrangian elements.
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Figure 6.10:

Iso-lines of the final position of the phase for the FT (solid), LS (dashed),
TVD(dotted) and PLIC (long-dashed) for 128 x 32 (up, with the Eulerian mesh nodes), 256 x 64
(middle) and 512 x 128 (down, details) meshes on the field A
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Figure 6.11: Iso-lines of the final position of the phase for the FT (solid), LS (dashed),
TVD(dotted) and PLIC (long-dashed) for 128 x 32 (up), 256 x 64 (middle) and 512 x 128
(down, details) meshes on the field B
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Figure 6.12: Convergence of the error on the volume conservation for the four advection methods
on the field A for the circle case (up) and the cross case (down)
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Figure 6.13: Convergence of the error on the volume conservation for the four advection methods
on the field B for the circle case (up) and the cross case (down)

Concerning the iso-lines, the first mesh (128 x 32) with the field A shows that the cross is not
accurately retrieved by the four methods, but as the Lagrangian mesh takes a small part of the
domain, the Eulerian mesh is comparatively very coarse in this case. However, one can see that
the F'I' method produces the best result. The Fig. 6.14 shows the Lagrangian shape managed
by the FT method in the transformed space (explaining the slight twisting of the cross). As can
be seen, the cross is very accurately retrieved, and the lack of precision of the final result is only
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due to the projection [Shin 02b]. It can be observed on Fig. 6.15 which shows the horizontal
advection of the cross on a 256 x 64 with the F'T method. Five field are superimposed. The
extreme-left cross is obtained for the first time while the extreme-right one is obtained after.
The two extreme fields seems to be identical. Due to the refinement of the Eulerian mesh in the
central part, the middle cross (intermediate time) describes the interface with more accuracy. It
would be interesting to calculate the volume conservation using the Lagrangian mesh instead of
the Eulerian projection.

Figure 6.14: Lagrangian mesh managed by the F'T method in the transformed space for a 128 x 32
mesh

On finest meshes, the Front-tracking gives a very regular result which is slightly smoothed by
the projection. The LS gives a less regular result while the VOF-TVD smoothes a lot the lower
and upper corners. For the second case on the filed B, the initial size of the cross is two times
larger. The simulations show the good performances of the VOF-PLIC method. The VOF-TVD
and Level-set methods show quite good results. However, one can see on the 512 x 128 mesh
that the LS is less efficient on some corners. Concerning the F'T', the method produces the more
regular results which is one time again smoothed by the projection. As this latter produce a
less accurate implicit interface than the Level-set, the VOF method retrieves the shape of the
interface more accurately. However, the FT method shows a better volume conservation than
the other methods for this case (Fig. 6.13).

6.5.2 Optimisation using a octree data structure

An octree is a tree data structure in which each internal node has up to eight children. Octrees
are used in the present work to partition the 3D space by recursively subdividing it into eight
octants. In 2D, the equivalent is a quadtree where the 2D space is recursively subdivided into
quadrants.

To build the octree, the space is first divided in eight octants, generally eight boxes. Each
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Figure 6.15: Advected phase for the field A on a 256 x 64 mesh for various time steps

triangle of the mesh is classified according to its belonging to one octant or more. Then, for
each octant, the same process is repeated recursively. The depth of subdivision depends on the
complexity of the mesh and is not the same for each part of the mesh (each leaf of the octree
have not necessarily the same depth). Generally, the construction is stopped for a given octant
if it contains a low limit number of elements. If an octant of the initial bounding box does
not contain any elements, it is a prior: useless to subdivide again this octant. However, some
implementations are based on well-balanced trees and all leaves must have the same depth.

To sort a cloud of points, a kD-tree structure is generally used and allows to find quickly
the closest point to an other . Here, the space is recursively cut into two sub-spaces by a
median plan. Once again, the number of points in the final subdivisions is crucial for the per-
formance. The Fig. 6.16 shows, for a random field of points, the average time to find the closest
neighbor of a random point with respect to the size of the field and the number of points in
the smallest sub-divisions. As can be seen, the optimal size for the smallest sub-divisions is
about 20 points while the performances fall dramatically if too few elements are present in the
smallest sub-divisions. These results can of-course vary according to the implementation choices.

This space subdivisions allows many optimisation of the previous algorithms to be performed
and generally modify the complexity of a spatial search from O(n) to O(logn).

6.5.2.1 Application to the curvilinear to Cartesian algorithm

In this algorithm, one have to find inside which Eulerian cell each vertex of the Lagrangian mesh
is. The nodes of the Eulerian mesh are sorted with a kD-tree. Then, the closest pair of Eulerian-
Lagrangian nodes is found and the belonging of the Lagrangian node to the cells containing the
Eulerian cell is performed.
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Figure 6.16: Time in second to find a closest point with respect to the size of the field and the
number of points in the smallest sub-divisions for a kD-tree

6.5.2.2 Application to the Ray-casting algorithm

The basic optimisation of the Ray-casting algorithm is to test the intersection between a ray and
a box bounding the object. One can use the octree to perform recursively this test. The octree
gives boxes bounding a set of elements of the object, so one can disqualified such a set of elements
by testing the intersection between a ray and their bounding box. If an intersection is detected,
the ray will possibly intersect an element of the set, and intersection tests are performed with
the eight octants which compose the previous octant.

6.5.2.3 Application to the Level-set algorithm

As the location of the elements inside a given octant is generally irregular, the closest element to
a node in an octant is not necessarily inside this octant. Hence, for an Fulerian node in a given
octant, the closest element to the node is searched in the octant and its neighbors.

6.5.3 Performance tests

Speed tests have been performed on a P4 2.4 GHz for several meshes with and without the octree.
Three Lagrangian meshes are used, a sphere (18000 triangles, regular), the Stanford bunny (10122
triangles, irregular) and the Lascaux cave (271136 triangles, irregular. See section 14). The Tab.
6.1 shows the performances of the octree for these three meshes and a 100% Eulerian mesh. As
expected, all the routines are faster with the octree. The gain for the curvilinear-Cartesian
projection is between 1.35 and 1.73 only. However, the computational cost of this algorithm is
negligible. For the Ray-casting, the gain is smaller than 2 on small meshes, and more than 10
for the Lascaux cave, where a deeper octree is used. For the computation of the Level-set, the
gain ratio is from 35 to 75.

One can notice that as the size of the Eulerian grid is 100, the time ratio between the
standard Ray-casting (not tested here) and the Thread Ray-casting would be about 100.

The most important result is that the maximum computational time for the whole method is
shorter than a minute on a P4 2.4 GHz. This time is negligible against the computational time
required to solve the linear system resulting from the discretization of a conservation equation
in a 100% mesh.
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’ Mesh H Method H curvi-Cart projection | Ray-casting | Level-set

Standard 2.06 0.536 270

Sphere Optimized 1.37 0.332 5.79
Ratio 1.50 1.61 46.6

Standard 1.19 0.172 123

Bunny Optimized 0.88 0.132 1.63
Ratio 1.35 1.30 75.5

Standard 454 35.9 1970

Lascaux Optimized 26.1 3.32 56.1
Ratio 1.73 10.8 35.1

Table 6.1: Duration in second and performance ratio for three different meshes with and without
octree
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Discussion and conclusion of Part 11

As can be seen, dealing with immersed interfaces or boundaries is not trivial when the consid-
ered shapes are not analytical. An efficient strategy for the Eulerian-Lagrangian grid coupling
has been devised here. This methodology works for curvilinear grids thanks to a curvilinear to
Cartesian projection, and the computational cost of this phase is negligible and is fully counter-
balanced by the possibility to use the Thread Ray-casting method. For a 3D mesh composed by
M? elements, the computational cost of the Ray-casting is divided by M.

The construction of some implicit representations of a surface has been presented. The
accuracy of these methods has been compared with a fictitious domain test case. For the mul-
tiphase flows, the classic methods (VOF-PLIC, VOF-TVD, Level-Set, Front-Tracking) can be
used without modification (for the FT, an implementation error seems to be involved). However,
the unusual convergency results suggests that a more deep study has to be performed.

For moving objects and fluid-structure coupling, the initial mesh of the object can be used
for each time step if the methods are optimized enough. For such objects, several approaches
use VOF or Level-set functions. As our approach is based on the use of Lagrangian meshes, it is
de facto the more accurate as the exact shape is always conserved. The case of moving object
will be detailed in the Part IV. Concerning the computational cost of our approach, it would be
interesting to compare it with the VOF and Level-set methods. However, the objective of any
method is to reach a computational cost which is negligible in comparison to the solver cost.
This aim can be reached with our Lagrangian mesh approach if enough efforts are putted into
the optimization of the involved algorithms. The Thread Ray-casting as well as the octree and
kD-tree data structures have shown their ability to highly decrease the cost of such operations.
Furthermore, these algorithms are highly and simply parallelizable and a huge further gain can
be obtained using GPUs or multicore CPUs.

This methodology is a prerequisite for many immersed boundary and interface methods
which require to know the exterior and the interior of an object. As demonstrated in this part,
the implicit representation as well as the explicit representation of a surface can be used to
build fictitious domain method. The next part, which deal with such methods, will use the
present methodology to enhance the resolution of the conservation equations near interfaces and
boundaries.
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6. DETAILED ALGORITHMS OF THE METHODOLOGY
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Part IV

High-order fictitious domain methods
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Introduction

IN this part, two high-order fictitious domain methods are presented. The first, the sub-mesh
penalty method (SMP), is the extension to higher orders of the VPM [Ango 89]. The second,
the algebraic immersed interface and boundary (AIIB) method, can be seen as an extension of the
SMP method to the augmented system approach (see section 4.1.2). Algebraically, the penalty
methods, more than penalizing equations, penalizes matrix lines. The AIIB method proposes
to add new lines to the inverted matrix. This approach allows to treat immersed interface
problems, when SMP method can treat immersed boundary problems only. These two methods
are designated as high-order method as they are of second order in space for various problems
and they can be extended to higher order for these problems straightforwardly.

Definitions and notations

Let us consider the original domain of interest denoted by 2o, typically the fluid domain, which
is embedded inside a simple computational domain Q C R¢, d being the spatial dimension of
the problem. The auxiliary domain €2y, typically a solid particle or an obstacle, is such that :
Q= QoUXUQ; where ¥ is an immersed interface (see Fig. 6.17). Let n be the unit outward
normal vector to £ on X. Our objective is to numerically impose the adequate boundary
conditions on the interface ¥. These conditions will be discretized in space on an Eulerian
structured mesh covering €.

The computational domain €2 is approximated with a curvilinear mesh T}, composed of N x M

Qo 0

0 X, (
0 ¥ Sk
L, 1

Vi

Dual mesh
Vr
Primal mesh
0

Figure 6.17: Definition of the domains and discretization kernels

(xL in 3D) cell-centered finite volumes (Vr) for I € &£, € being the set of index of the Eulerian
orthogonal curvilinear structured mesh. Let x; be the vector coordinates of the center of each
volume V. In 2D, the horizontal and vertical mesh steps are respectively h, and h, This grid
is used to discretized the conservation equations. A dual grid is introduced for the management
of the AIIB method. The grid lines of this dual cell-vertex mesh are defined by the network of
the cell centers x7. The volumes of the dual mesh are denoted by (V). The Eulerian unknowns
are noted u; which are the approximated values of u(zy), i.e. the solution at the cell centers ;.
The discrete interface X, hereafter called the Lagrangian mesh, is given by a discretization of
the original interface ¥. It is described by a piecewise linear approximation of ¥ : ¥j = {0} C
R 1 e Ly}, L being the set of index of the Lagrangian mesh and K being the cardinal of L.
Typically, o; are segments in 2D and triangles in 3D. The vertices of each face o; are denoted
by x;; for i = 1,d and the set of all vertices is {z;,l € L,}. The intersection points between
the grid lines of the Eulerian dual mesh and the faces o7 of the Lagrangian mesh are denoted by
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{zi,i € T} (see Fig. 6.17). Our objective is to discretize Dirichlet, Neumann, transmission and
jump conditions at these interface points to build a general fictitious domain approach. This
method is expected to reach a global second-order spatial accuracy.
New sets of Kulerian points 7 are defined near the interface so that each one has a neighbor z;
verifying x7 # xr (with x; = x(xs) and x5 = x(xs)), 7. e. the segment [z;z ;] is cut by .
These Eulerian "interface" points are also sorted according to their location inside Qg or €21. Two
sets {z7, I € No} and {x;, I € N1} are thus obtained, where Ny = {I,x; € Qo, x1 # xJ, 25 € 1}
and ./\/1 = {1,1‘[ S Ql,xj 7& XJ,TJ €< Qg}.
For each 27, I € NV or I € N'!, we associate two unknowns : the physical one denoted as uy
and the auziliary one uj.

The various interpolations used in the present document, ]L%, P% and Q%, are described in
section C.
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Chapter 7

The Sub-Mesh Penalty method

7.1 Principle of the method for a scalar equation

7.1.1 1D method for a Dirichlet boundary condition

The application field of the sub-mesh penalty (SMP) method concerns the problems with a
Dirichlet or Neumann BC on an immersed interface. As exposed before, such problems can
be treated with many existing methods. The SMP method is the first discretization of the L2
penalization to reach a general second order of accuracy in space. The lack of accuracy of the
first-order discretizations is primarily due to their approximative treatment of the interface. Such
methods impose the interface solution u; on whole control volumes, so the solution across the
interface is piecewise constant. Hence, the shape of the interface X is rasterized, i.e. its shape
is composed of segments which are oriented in the principal directions (Ox, Oy and Oz) only.
The term rasterization comes from computer graphics, where any picture is generally composed
of squared pixel and is therefore approximated.

To retrieve a more accurate shape of the interface, one had to impose the correct interface
value u; at the location x; of a piecewise linear reconstruction of the original interface. The
generic first-order penalty term for a node x; in the immersed domain is *(u — ;) with x the
indicator of €21. To reach higher orders, the interpolation of the solution has to be considered
instead of the solution at the discrete points. To impose that the interpolated approximation of

the solution had to take the value u; in x;, the penalty term %(u — uy) is discretized at x7 by

%( Z QU — Uup). (7.1)

kENQUN7

As can be seen, the constraint is a linear combination of u; and of the solution near the interface.
Practically, the nodes xj are in the discrete neighborhood of x;.
First, let us study the 1D case for the following scalar model problem:

{ -V - (aVu)=f in Qo (7.2)

Uy =up onx

Let 2 = [0;1] be the computational domain discretized in N control volumes of measure h,.
Let ¥ be an immersed interface located at z; separating the domain in two subdomains 2y and
Q1. The solution in £2; is a constant up, and an associated Dirichlet BC is imposed on 3. Let us
consider two nodes I and J located at 7 and z 7, with 7 < x; < xj, x7 € Qo and x5 € 1. The
first-order penalty constraint which can be used to impose the solution in €21 is simply u; = up.
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This constant constraint is replaced by a linear one:

’[EJ — xl"U,] + ’w'[ — .’I]l”LLJ _
Py

(7.3)

The solutions uy and uy are not directly imposed, but the linear interpolation of the solution
between x; and xy will be equal to up, no matter what values u; and uy take. We can now
define the high-order penalty term in x; and modify the original Laplace equation:

|£CJ — :cﬂul + ‘13[ — $l’U]
ha

(V2ul; + XJ( —up) =0 (7.4)

where {.}; denotes the discretization of a quantity at the location x;. The resolution of a first
problem is now detailed to simply expose some properties and implications of the method. Let
us consider the following problem in £ = [0;1]:

V2u(z) =0 on Q

U(O) T1
7.5
ular) = (75)
u(l) T3
with its solution:
Ty —T R
2 T — (-T2 f0< 2 <y
T I
T3 — T
3 2$+T2—(T3—T2) 2 ify <zx<l1
1—a 1—a

The solution is piecewise linear. As x; is the node of 1 which is the closest to X, the penalty
term is activated for the discretization of the conservation equation at this node. The constraint
is defined as:

arur + arpiur+1 = 1o (77)

and the initial matrix used to discretize the Laplace problem is now:

1
1/hy —2/hy 1/h,
0
1/hy  —2/hg 1/hg
A= 1/hy+ Loy 1/he+tapy 1/he
1/hx 5_2/}% 1/hx
0 -
1/hx %_2/}11‘ 1/hx
1
(7.8)

with the following second member: b = (Tl,O-‘-O, %TQ, %Tg e %Tg, %TQ)T. Except in xj, the
first-order discretization is still used inside €2;. The parameter ¢ is chosen such as € < 1 so the
limit penalized problem is considered. The penalty term is always active for the nodes in €2 and
the computer accuracy totally erase the terms of the initial equation. Hence for these nodes, the
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terms 1/h, are negligible. Consequently, an independent sub-matrix can be extracted. Let us
consider this upper submatrix denoted as A; and its associated second member:

1 T
1/hy —2/hy 1/hy 0 0
A = by = (7.9)
0 1/hy —2/hy 1/hy 0
la;  lary T

where u; is the part of u related to Qg and the penalized node of ). The new problem Aju; = by
can be solved independently. Hence, the solution in 4, far from the interface, does not impact
on the solution in €y where the solution is not known a priori.

Concerning the properties of the matrix, one can notice that if |az| > |as4+1| the matrix looses
its diagonal dominance, and its invertibility is no more easy to deduce. Practically, any matrix
with a penalization term built with the SMP method can be inverted with an appropriate solver
such as a BiCG-Stab with an ILU preconditioner.

7.1.2 General method for a Dirichlet boundary condition

Let us now describe the 2D SMP method for the model scalar problem (7.2) with a Dirichlet
boundary condition on the interface ¥. Let us consider a point 7, € N7. We first describe
the case when x5 has only one neighbor xj in 9. The Lagrangian point z; is the intersection
between [z;x ] and Xp, (Fig. 6.17 right). Then, the solution u; = up(x;) at the interface is
approximated by the IP’% interpolation between the Eulerian unknowns uy and uy :

w =amur +ajyuy with 0 < aj,ay<land aj+ay=1 (7.10)

As noticed in [Tsen 03, Gibo 05], a linear interpolation only is required to reach a second order
of accuracy. If now x; has a second neighbor zx in g, the intersection x,, between [z; x| and
Yy, is considered with wu,, = up(z,,). We choose Tp, a new point of ¥, between x; and x,, (see
Fig. 8.1 left). The solution u, = up(,) is then imposed using a P3-interpolation of the values
ur, uy and ug :

up, = arqur + ayuy +agug , 0<ar,aj,ag <1,ar+aj+ag =1 (7.11)

A Q% interpolation of uy, uy, ux and wuy, can be also used by extending the interpolation stencil
with the point x; which is the fourth point of the cell of the dual mesh defined by z;, x; and
zi (see Fig. 8.1 left). As a third choice, two independent linear 1D interpolations are first
considered (one for each direction). It produces :

{UZZO[]U?—{—O[J’LLJWith0<a],O[J<1andO[]+()éJ:1 (712)

um:o/ju},—i—ozKuK with 0 < oj,ax <1 and of +ay =1

Then, a simple choice for z), is the barycenter between x; and z,, where u, = (u; + u,,)/2. This
particular case enables an easy implementation since we have :

arur + aguy = ug (7.13)
aur + agug = un (7.14)

A summation of these two constraints gives :

aqur + agug + Qpur + agug = U+ Up, (7.15)
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what is equivalent to build a constraint imposing u, at x, with a P? interpolation :

(ar + o )ur + ayuy + agug
= U
2 P
Oz]—i-all ay ok Oé[—i-O/I oy Qi

B R A 1
2 2 2 Ty Tty (7.16)

with 0 <

Hence, an easy general implementation consists in summing the constraints corresponding to
each direction, no matter the number of neighbors of xy. If the elements o; of X, used to define
x; and T, are not the same, the barycenter x;, of these two points is not necessarily on X,
especially for interfaces of strong curvature. However, the distance d(xp, Xp,) between x, and Xj,
varies like O(h?) and so this additional error does not spoil the second-order precision of our
discretization. The convergence of this additional error is numerically tested in section (9.1.2).
If the curvature of ¥, is small enough relatively to the Eulerian mesh, ¢.e. if the Eulerian mesh
is sufficiently fine, 7 almost never has a third or a fourth neighbor in €. However, if this case
appears, a simple constraint u; = up is used with up being an average of up at the neighbor
intersection points. In any case, by decreasing the Eulerian mesh step h, the number of points
21 having more than two neighbors in )¢ also decreases.

Hence, the present method is suitable to impose a Dirichlet boundary condition on ¥ for g,
when the solution in €27 has no interest.

7.1.3 General method for a Neumann boundary condition

Let us now consider the following model scalar problem with a Neumann BC on the interface X

{ V. (aVu) = f in Q (7.17)

(a-Vu) - n=gny onX
The principle is about the same as for Dirichlet BC, and the same interpolations, once derived,
can be used to approximate the quantity (a-Vu)-n. Hence, at any point x;,1 € Z on X, we use

(a-Vu) -n=(a-Vp(x;) - n). (7.18)

For p € Q2, we get Vp(z,y) - n = (p3y + p2)nz + (p3z + p1)n, whereas for p € P}, Vp(z,y) -n =

pang + p1ny is obtained which means that the normal gradient is approximated by a constant

over the whole support. For example, in the configuration of Fig. 8.1.left, with p € ]P’%, we have :
ur —uyj UK — Uy Ny Toy

Ny Ny
n— N —u (i =z Y 1
V(o) n= =g + iy = wi(G n =g ) g kg (7.19)

The diagonal coefficient of the constraint for the matrix raw related to uy is (Z—z — Z—z) The

case when Z—z ~ Z—;’ leads to numerical instabilities. If we consider the configuration of Fig.
8.1.left, using the normal vector of the segment [z, z,,| implies that the signs of n, and n, are
always different so the diagonal coefficient is always dominant. The same property occurs for the
other cases. When x has only one neighbor z 7 in Qo, the Q2 and P? interpolations degenerate to
L1 interpolations which suit for Dirichlet BC. For Neumann BC, this loss of dimension no longer
allows the interface orientation to be accurately taken into account, as one of the components
of the normal unit vector disappears from the interfacial constraint. Hence, a third point zx in
Qp is caught to build P? interpolations (see Fig. 8.1 right). This point is a neighbor of x; and
is taken as [z7,z 5] L[z, xk]|. Asin 2D two choices generally appear, the point being so that the
angle (n,xg —xy) is in [—7/2;7/2] is taken.




L
X X
QO b d __Zh
)n//
xJ —
x]

Figure 7.1: Example of selection of points for Dirichlet (left) and Neumann (right) constraints

7.1.4 Treatment of the solution in {);

As shown in the 1D example, the solution uy for I € N7 is an extrapolation of the solution in g
in order to satisfy the boundary condition on ¥ and thus is non-physical. Hence, the solution at
the nodes of € far from the interface does not impact on the solution in . Nevertheless, the
fictitious domain approach computes a non-physical solution in €2y. It is naturally obtained with
the initial set of equations together with a volume penalty method such as VPM. The imposed
solution can be analytical when possible, or an arbitrary constant value. The computational
cost of this approach can be reduced by switching the solving of ur,z; € ;1 off, or by totally
removing these nodes in the solving matrix.

One can scan the initial penalized matrix and remove the useless lines. The criterion can be
deduced from the VOF function C' or from an analysis of the matrix structure. A line I can be
removed if it has no link with the nodes impacting on the solution of interest, i.e. if z; € 2 and
I ¢ Ni. This have been demonstrated with the 1D example above where a matrix A; can be
extracted from the initial matrix A. A non negligible gain of speed can be obtained if only A; is
inverted instead of A. Furthermore, as the peak of memory is often reached during the matrix
inversion, this method reduces the total memory requirement of the simulation for a given case.
As the other parts of the code are not modified to take the reduction into account, a solution
vector of initial size has to be retrieved and a solution has to be chosen where z; € Q; and
I ¢ Ni. This complementary solution is easy to find using the initial penalized values (which is
generally the analytical solution in Q).

7.2 Application to the Navier-Stokes equations

7.2.1 The augmented Lagrangian method

The augmented Lagrangien (AL) method (see section A.3.4) consists in adding the term V(drV -
u) to the momentum equation of the NS equations so as to obtain the divergence free constraint.
The parameter dr set the magnitude of the constraint and must be chosen according to the
magnitude of the other terms of the equation. Iterative solvers can be very sensitive to the
magnitude of dr and a high parameter implies an increase of the number of required internal
iteration of the solver. A too high parameter penalizes the initial equation and leads to a strictly
incompressible velocity field with no respect to the initial momentum equation. However, as one
step only is required to solve the NS equations (contrary to the projection methods), the AL
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methods allows large time steps to be used. The penalized momentum equation with AL yields:
n+1l _ . in
P (“At“ +un vu”“) —V(drV - utY

= V" 4 pg + V- [u(Vart 4 v )] 4 A > apuptt —up).
€ kENoUN

(7.20)

The AL and the penalty terms are fully compatible in €y and no particular manipulation is
required. The AL term is not active for the equations where the penalty term is activated
(ur, I € N7). However, the stencil of the AL term is large enough to take all the penalized nodes
into account.

7.2.2 The scalar projection method

When the AL method is used, an IB method designed for an elliptic equation can generally be
applied directly. However, the AL method is not the most commonly used method to ensure the
divergence free constraint. Most of the FV CFD codes on Eulerian grids use the scalar projection
method (or fractional step method). The base method is described in section A.3.3.1. One of
the key points is to solve the pressure projection

Voui =V Aptviﬁ (7.21)

where u* is predicted field for which generally V - u* # 0. Once the pressure increment is
obtained, velocity and pressure are updated:

Pt =p' 4" (7.22)
At
e (7.23)

or, with the correction of [Timm 96] on the pressure increment
p"H=p +p" — uV - ut (7.24)

The IB methods for the NS equations are generally designed for the projector step only. As no
modification of the corrector step is performed, the additional boundary constraint is not taken
into account and is then violated. This problem is not frequently tackled in the literature, and
satisfactory solutions have only appeared recently. In [Tair 07], authors modify the boundary
force method of Peskin to correct the projection step. In [Dome 08], Domenichini analyzes
in details the application of the DF-IBM to the fractional step solution of the Navier-Stokes
equations. As can be expected, he notices that the boundary condition is not accurately imposed.
In [Iken 07], authors propose a consistant correction for a second-order DF-IBM.

7.2.2.1 First-order correction

For a first-order penalty term, such a correction is easy to performed. Let us now write the
momentum Navier-Stokes equation with a first-order penalty term:

ou

P ot

The same process as for the equation without penalty term is performed. The equation (7.21)
becomes:

— RHS — Vp+ %(u —up) (7.25)

Vou =V (£ - %)’lvm’ (7.26)




97

One can notice that the source term of the penalty term has disappeared. The magnitude of
the gradient inside the solid is reduced, but not vanished, with this formulation, and the classic
velocity increment (7.23) gives a non-zero velocity inside the object. However, the consistant
addition of the first-order penalty term in (7.23) gives:

wtl = ur — (é - %)*W,ﬁ (7.27)

which induces a null velocity inside the solid. Hence, whatever the pressure gradient obtained
during the pressure correction step, (7.27) cancels the velocity inside the solid and satisfy the
penalty constraint as well as V - u"*t! = 0 everywhere.

7.2.2.2 Higher-order correction

Correction A: A consistant correction following the precedent walkthrough when a penalty
term of higher order is present is much more delicate. We consider the penalty term as always

linear. The first-order term X (u; — w;) is replaced by X (Pu — w) with Pu= Y oju;.
FENUNT
The pressure equation becomes:
* P Xi -1 /
V-ou, =V (——-=F) "V, 7.28
W=V (L Xp)vy (7.28)
and the velocity correction is then:
it = — (Aﬁt - %PZ-)_IV;D’ (7.29)
which requires the calculation of the matrix (£;1q — £ P)~! before the inversion of the resulting

system.

Correction B: This approach has been proposed by [Iken 07] for an DF-IBM method for which
the boundary term is expressed at the raw 4,7 € Ny of the discretization matrix. We propose an
adaptation of this method to the SMPM. Let us first rewrite (7.27) (RHS’ is neglected) with
the high-order discretization of the penalty term:

At At ;i
(et wi) =~ 2hwg ¢ SN Rt ) (7.30)

7
The first idea is to keep %Pi in front of u"”*! — u*. If the divergence operator is applied, we
obtain

At At v;
V-u =V- 7V¢p/ +V. <p>2]’32-(u"+1 - u*)> . (7.31)

As u™! is not known (and the primal variable is p’), (7.31) cannot be solved yet for z; € Q4
(where x; # 0). However, one can use Eq. (7.30) to write the corrections of the velocity (u’)
and the pressure (p’). First, we introduce P/, a new interpolator such as:

Plu= Z aju; (7.32)
JENo

and Pyu = a;u; + P/u. Eq. (7.30) can be written as

— P/(u"™ —u%)). (7.33)
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As the limit penalized problem is considered, one can write the velocity correction: (7.33):

A
u?+1 = uZ‘ — —tvip, if x; € Qo (7‘34)
P

n+1 P{(u""‘l —u’)

)

u'mt =u; — if x; € (7.35)

o7

As P/(u?™ —u}) is a linear combination of solutions at nodes in Qg only, so one can use (7.34)
in (7.35) to obtain

At
u/ =l - 7V¢p/ if ; € Qo (7.36)
P/AtYY
W= - L ifa e (7.37)
@;

One can write a unified form of (7.36)-(7.37):

. At Pty
ut =y - ((1 =XV x| (7.38)
The final pressure projection equation is obtained with the divergence of (7.38):
At P/8V
Vou; = V- ((1 _Xi)jvip/+Xi7p . (7.39)
3

The pressure is updated as in the standard method
pn+1 — p/ _|_pn. (740)
Remark 7.2.1 The velocity in 1 is updated as

P/ALyy

w =i - (7.41)
(67}

By construction of the interpolator Pju = oyu; + P/u, no node of Qy is involved in the stencil of

P!. Hence, as the pressure correction in Qg is

it At

u; = u;‘k - 7vip/ (742)
p

one can replace %Vip’ by (0 —ul) in (7.41)to obtain

ntl _ s Pluf —urth
i Uy :

u (7.43)

6%}
Using the initial interpolator P;, we obtain
Pu"t! = Pu*. (7.44)
which means that the boundary constraint obtained in the predictor step is conserved.

Remark 7.2.2 For the solution at the nodes x; € Q,i &€ N7 (i.e. far from X). In this situation,
P! =0 and the first-order correction is retrieved.

This method induces a more complex discretization with a larger stencil but seems preferable
than a computation of (£1q — %P)_1 which leads to an extended stencil too.

Concerning the accuracy of the method, the same results as with the AL method are obtained
for the velocity and the pressure if the correction of Timmermans et al. [Timm 96] is used for
the projection method. However, the AL method generally allows higher time step to be used.
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7.3 Application to Code_ Saturne (EDF R&D)

One of the aim of this part is to show that the SMP method can be applied without fondamental
modifications to an unstructured code.

7.3.1 Code_ Saturne

Code_ Saturne [Arch 04] is a CFD code principally developed by EDF R&D at Chatou. The
basic capabilities of Code Saturne enable the handling of either incompressible or expandable
flows with or without heat transfer and turbulence. Dedicated modules are available for specific
physics such as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...), magneto-
hydrodynamics, compressible flows, two-phase flows (Euler-Lagrange approach with two-way
coupling), extensions to specific applications (e.g. Mercure Saturne for atmospheric environ-
ment). Code_ Saturne is portable on Linux PCs and all UNIX platforms tested so far (HP-UX,
Solaris, Cray, OSF1, ...). Tt runs in parallel with MPT on distributed memory machines (Origin
2000 and 3000, PC clusters, Cray XT-3, IBM Power PC p575, IBM Blue Gene, IBM Power PC
970 Marenostrum...). Developed since 1997 at EDF R&D, it is based on a co-located Finite
Volume approach that accepts meshes with any type of cell (tetrahedral, hexahedral, prismatic,
pyramidal, polyhedral...) and any type of grid structure (unstructured, block structured, hy-
brid, conforming or with hanging nodes,...). Compatible mesh generators include I-DEAS®,
GMSH, Gambit®, Simail®, Salomé, Harpoon®, ICEM® ... Post-processing output is available
in EnSight®, CGNS and MED fichier formats, with advanced data management capabilities
by the FVM library (EDF’s "Finite Volume Mesh" library, under LGPL licence). Parallel code
coupling capabilities are also provided by the FVM library. Code Saturne is property of EDF
and distributed under the GNU GPL licence. Code_ Saturne can be coupled to EDF’s thermal
software SYRTHES (conjugate heat transfer). It can also be used jointly with EDF’s structural
analysis software Code Aster, in particular in the Salomé platform. SYRTHES and Code  Aster
are developed by EDF and distributed under GNU GPL licence.

7.3.2 Developments
7.3.2.1 Shape management

As Code_ Saturne mainly works with unstructured meshes, the Thread Cay-casting method
(6.1.2.2) has not been developed in this context and only the basic Ray-casting algorithm has
been developed. Can the TRC be applied to the unstructured grids? One can considers nodes by
peers instead of rows and use rays defined by peers of nodes. Theoretically, the cost of the base
algorithm is divided by two if the cost of finding peers is negligible. However, the implementation
of any of our Ray-casting method uses rays which are parallel to the main frame axes to avoid
some computations. If the direction of the rays is random, many low-level optimisations cannot
be used. One can imagine a frame transformation (following the same idea of the curvilinear
to Cartesian projection) which produces a new frame where the nodes are as often as possible
aligned.

7.3.2.2 SMP algorithm

The algorithm has been implemented. We choose to build the interpolations by summing the
contributions of each neighbor of a penalized node. The main advantage here is that the method
works directly, no matter the number of neighbors of a penalized node.
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7.3.2.3 Heat equation

The heat equation is solved in structured grids in Code Saturne with about the same discretiza-
tion as for Thétis. The principal difference is that Code Saturne increments progressively the
solution by solving successive linear systems. The initial penalty term Piu?H — w; becomes
PuFtlntl _ gy, + Piugrl’k where k is the number of the sub-iterations (k + 1 being the current
iteration) and P; the interpolator.

The solvers available in Code_ Saturne during the project was not able to solve a penalized
matrix (which is not diagonal dominant). The solution has been to couple Code_Saturne with
a solver of thétis (BiCG-Stab and ILU factorization). An alternate solution consists in replacing
the iterative penalty term Pyu*tlrtl —y; 4 Piurgrl’k by Pruftbntl ;4 Piugrl’k where P
is a new interpolator such as the resulting matrix line P;u**1"+! is diagonal dominant. As the
source term —u; + Piugrl’k is still defined with the original interpolator, the method converges
to the desired solution.

On unstructured grids, the solution does not converge, even if the solution seems good at first
sight. The reconstruction of the operators for the unstructured meshes seems to be involved.

7.3.2.4 Navier-Stokes equations

The method has been applied to the Navier-Stokes equations. The difficulty is to couple the
SMPM with the scalar projection method. The correction proposed in the previous section
works very well in thétis and has not been implemented yet in Code_ Saturne . The Fig. 7.2 left
shows the positive and the negative parts of u, after the prediction step. One can see that the
iso-line u, = 0 matches the boundary of the particle. Concerning the pressure correction, the
simulation diverge if the projection is not modified. A first try has been to cancel the source
term of the projection equation in the solid. The Fig. 7.2.right shows the resulting streamlines
and pressure field for the same case. An incorrect boundary layer is present around the particle.

BT [ e |

s s =

A

Figure 7.2: Positive and negative parts of wu,

7.3.3 Results
7.3.3.1 2D method on structured grid

The method is validated for a Poisson equation. We consider two disks of radii R; and Ra
with Dirichlet BC T7 and T5. The first circle is included in the numerical domain of dimensions
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[—0.5; 0.5] x [—0.5; 0.5]. The second bounds the domain and defines the boundary condition
of the numerical domain. The Laplace equation is solved. The solution at a radius r with
R1 S T S R2 is:

In(Ry)
In(Ry) — In(Ry)

Ty —1T

In(R2) — In(Ry) (7.45)

ln(r) + 17 — (TQ — Tl)

T(r)=

The calculations are performed with Ry = 0.2m, Ry = 2m, T1 = 20, T = 0. The results in Fig.
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Figure 7.3: L? relative error for the SMP method with Thétis and Code_ Saturne for a 2D case

(7.3) shows a second-order accuracy for Thétis and Code_ Saturne .

7.3.3.2 3D method on structured grid

The equation AT = 6 is solved on a 3D domain (a unit cube). The analytical solution is
T(z,y,2) = 2 + y? + 22. The solution is penalized on a sphere of radius 0.2m. The Fig. 7.4
shows a very satisfactory convergence for Thétis and Code_ Saturne .
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Figure 7.4: L? relative error for the SMP method with Thétis and Code_ Saturne for a 3D case
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Chapter 8

The Algebraic Immersed Interface
method

8.1 General principle

Once the shape informations are available on the Fulerian grid, the problem discretization has to
be modified to take into account the fictitious domain (an immersed boundary or an immersed
interface). The sub-mesh penalty (SMP) method [Sart 08b, Sart 08a] was originally designed to
treat immersed boundary problems. It could be extended to treat immersed interface problems
by symmetrization of the algorithm with introduction of auxiliary unknowns as in the AIIB
method presented here. This new method is an enhancement of the SMP method which is also
able to solve immersed interface problems. The main idea of the ATIB method is to embed an
interface into a given domain by modifying the final matrix only. As no modification of the
discretization of the operators is required (contrary to [Gibo 02, Gibo 05| and the immersed
interface methods |Leve 94]), the AIIB method is thus simple to implement.

Let P be a model problem discretized in the whole domain 2 as Au = b where A is a square
matrix of order m, u the solution vector and b a source term. The basic idea of the AIIB method
is to add new unknowns and equations to the initial linear system so as to take into account ad-
ditional interface constraints. The new unknowns, so-called the auxiliary or fictitious unknowns
and labeled with *, are defined as being the extrapolation of the solution from one side of the
interface to the other, and are used to discretize the interface conditions. Hence, the orignal
problem Au = b becomes A'v’ = b, with A" a square matrix of order m + n, with n the number
of auxiliary constraints related to the interface conditions. The solution v’ is decomposed such
as u' = (u,u*)T and the source term as b = (b,b*)T. The interface constraints are discretized
with a (n,m + n) block matrix C and the source term b*.

According to the interface conditions, the regularity of the solution on the interface is often
lower than in the rest of the domain. Hence, the discretization of operators with a stencil cutting
the interface can induce a great loss of accuracy. The first idea is to consider unknowns uj, I € NV;
(resp. u},I € Np) as the extension of the solution in Qg (resp. Q). The initial algebraic link
between unknowns from both sides of the interface is cut, and the new link over the interface
is obtained thanks to auxiliary unknowns. Practically, matrix coefficients must be modified to
take into account the new connectivities. Let o ; be a coefficient of A at row I, column J and
o 5 the new coefficient in A’ If I € Np and J € V7, o} ; = 0 and af ;. = oy, where J* is
the index corresponding to u%.
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This is exactly the way how we proceed for the practical algorithm. However, this modifica-
tion can be expressed algebraically with permutation and mask matrices as follows.
We define the two following mask matrices I; of dimensions (m, m+n) and I of size (n, m+n)

1 0 v 0 «o - 0 O --- 0 1 0 --- 0

T L | P L
: o0 IR : B o0
o ... o1 0 --- 0 o ... 0 0 --- 0 1

The matrices Ag and A; are defined such as Ao+ A1 = A, Ao(I,J) = A(I,J) if I € Ny, else
Aop(I,J) =0. Similarly A;(I,J) = A(I,J)if I € N else A1(I,J) = 0. Finally, the connectivities
are changed using the permutation matrices Py and P;: Py is defined to switch row I with row
Jif I € Ny, J € N7 and P; to switch row I with row J if I € N7, J € Ny. Hence, the new
problem matrix is now defined by:

A =TT (Py(AoLL) + Py (A L)) + IFC (8.2)

The new problem is A’u’ = b" with A’ written with 4 blocks of various sizes: A(m,m), B(m,n),
C1(n,m), Ca(n,n). The matrix A is thus the modification of the initial matrix A by setting to
zero the coefficient oy j if x(z7) # x(x7), and C; and Cy are the two sub-matrices of the matrix
C. The problem can be written as:

(& e)()- () o

The entire problem can be then solved to obtain v’ = (u,u*)’. However, u* being the auxiliary
solution is not required to be computed explicitly . Hence, the Schur complement method can
be used to calculate the solution for the physical unknowns only. The final problem is now:

(A — BC;'Cy)u =b— BCy 'b* (8.4)

The opportunity of such a reduction will be discussed later.

8.2 AIIB method for immersed boundary problems

8.2.1 Scalar equation with Dirichlet boundary conditions

For sake of clarity, let us first describe in 2D the ATIB method for the model scalar problem P,
with a Dirichlet boundary condition on the interface . For this version of the AIIB algorithm,
Qo is the domain of interest and auxiliary unknowns are created in €; only. Let us consider a
point zy, I € Ni. At location x;, two unknowns coexist: a physical one u; and an auxiliary one
uy. We first describe the case when x; has only one neighbor x; in 9. The Lagrangian point
x; is the intersection between [z; ;] and Xp, (Fig. 6.17 right). Then, the solution w; = up(x;)
at the interface is approximated by the P% interpolation between the Eulerian unknowns u} and
Uy

w = aqur + aguy with 0 < aj,ay <land ar+ay =1 (8.5)
As noticed in [Tsen 03, Gibo 05|, a linear interpolation only is required to reach a second order

of accuracy. If now 1 has a second neighbor x i in g, the intersection z,, between [z1; x| and
Yy, is considered with u,, = up(x,,). We choose x,, a new point of ¥, between z; and x, (see
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Fig. 8.1 left). The solution u, = up(w,) is then imposed using a P2-interpolation of the values
uy, uy and ug :

up:aju?—FaJuJ—l—aKuK,0<a1,aJ,aK<1,a1—|—aJ+aK:1 (8.6)

A Q7% interpolation of ur, uy, ux and uy, can be also used by extending the interpolation stencil
with the point xy, which is the fourth point of the cell of the dual mesh defined by xy, x; and
xk (see Fig. 8.1 left). As a third choice, two independent linear 1D interpolations can be used
(one for each direction) for an almost equivalent result. It produces :

{ul:oqu?—i—aJuJwith0<0q,ou<1anda1+aJ:1 (87)

um:a’[u?l—i—oeKuK with 0 < o/f,ag <land o + oy =1

In this case, two auxiliary unknowns are created.
A simple choice for z, is the barycenter between x; and z,, where u, = (u; + up,)/2. This
particular case enables an easy implementation since we have :

aqur + agug =y (8.8)
aul + agug = um (8.9)

A summation of these two constraints gives :
aquy + aguy + QU + agug = U+ U, (8.10)
what is equivalent to build a constraint imposing w, at x, with a }P’% interpolation :

(ar + o )uy + ajuy + agug

2 — o

a1+a}’%7al ’a1+o/l | ax (8.11)
2 27 2 2 2 2

Hence, an easy general implementation consists in summing the constraints corresponding to
each direction, no matter the number of neighbors of 7. If the elements o; of ¥, used to define
z; and T, are not the same, the barycenter x, of these two points is not necessarily on ¥y,
especially for interfaces of strong curvature. However, the distance d(zp, Xp) between z, and X,
varies like O(h?) and so this additional error does not spoil the second-order precision of our
discretization. The convergence of this additional error is numerically tested in section (9.1.2).
If the curvature of X, is small enough relatively to the Fulerian mesh, ¢.e. if the Eulerian mesh
is sufficiently fine, x; almost never has a third or a fourth neighbor in €y. However, if this case
appears, a simple constraint u; = up is used with up being an average of up at the neighbor
intersection points. In any case, by decreasing the Eulerian mesh step h, the number of points
z1 having more than two neighbors in )¢ also decreases.
Hence, the present method is suitable to impose a Dirichlet boundary condition on X for g,
when the solution in €21 has no interest. The solution u} for I € Nj is an extrapolation of
the solution in € in order to satisfy the boundary condition on ¥ and thus is non-physical.
Hence, the solution at the nodes of 2 far from the interface does not impact on the solution
in €. Nevertheless, the fictitious domain approach computes a non-physical solution in ;. It
is naturally obtained with the initial set of equations together with a volume penalty method
such as VPM [Khad 00]. The imposed solution can be analytical when possible, or an arbitrary
constant value. The computational cost of this approach can be reduced by switching the solving
of ur,xy € € off, or by totally removing these nodes in the solving matrix.

with 0 <
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8.2.1.1 Symmetric version for Dirichlet interface conditions

The next step is to allow for multiple Dirichlet boundary conditions on both sides of the immersed
interface. Thin objects could be treated with this approach. The problem is now :

—V-(aVu)=f inQ
Uy, =up on X (8.12)
U\Jrz =ug on X

The problem (8.12) requires for each point z; a physical unknown u; as well as an auxiliary
unknown u} on both sides of the interface.

Practically, the AIIB algorithm for a Dirichlet BC is applied a first time with Qg as domain
of interest, and auxiliary unknowns are created near ¥ in €21. As a second step, the Heaviside
function is modified as x := 1 — x and the algorithm is applied a second time. Now, ; is the
domain of interest and auxiliary unknowns are created near X in ).

8.2.2 Scalar equation with Neumann boundary conditions

Let us now consider the following model scalar problem with a Neumann BC on the interface

(8.13)

-V .- (aVu)=f in Qo
(a-Vu) - n=gny on

The principle is about the same as for Dirichlet BC, and the same interpolations, once derived,
can be used to approximate the quantity (a- Vu)-n. Hence, at any point x;,0 € Z on ), we use

(a-Vu) -n=(a-Vp(x)) - n). (8.14)

For p € Q2, we get Vp(z,y) - n = (p3y + p2)nz + (p3z + p1)n, whereas for p € P}, Vp(z,y) -n =
pang + piny is obtained which means that the normal gradient is approximated by a constant
over the whole support. For example, in the configuration of Fig. 8.1.left, with p € IP)%, we have :

ur—uy U — uy W Mz Ny o Ny
Vp(z,y) -n= -1 =ui(—= -2 8.15
p(z,y) n W Ny s Ny ul(hx hy)—i-UJhx +uKhy (8.15)
The diagonal coefficient of the raw related to u7 in Cs is (h— — h—) The case when 7% ~ Zy
Y 15 Y

leads to numerical instabilities. If we consider the configuration of Fig. 8.1.left, using the normal
vector of the segment [z}, x,,] implies that the signs of n, and n, are always different so the
diagonal coefficient is always dominant. The same property occurs for the other cases. When z;
has only one neighbor z; in g, the Q% and IP’% interpolations degenerate to IL& interpolations
which suit for Dirichlet BC. For Neumann BC, this loss of dimension no longer allows the interface
orientation to be accurately taken into account, as one of the components of the normal unit
vector disappears from the interfacial constraint. Hence, a third point xx in 2 is caught to
build P? interpolations (see Fig. 8.1 right). This point is a neighbor of x; and is taken as
[xr,z5]L{xs, xKk]. As in 2D two choices generally appear, the point being so that the angle
(n,zx —xy) is in [—7/2;7/2] is taken.

8.2.3 Algebraic elimination using the Schur complement

The Schur complement method allows an algebraic reduction to be performed. For a Dirichlet
or Neumann BC, each constraint is written such as only one auxiliary unknown is needed:

uy = Z ajuy +ug (8.16)
JeN
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Figure 8.1: Example of selection of points for Dirichlet (left) and Neumann (right) constraints

where ug is the source term. In this case, the matrix Co in (8.3) is diagonal and thus the Schur
complement (zzl — BCy 101) is easy to calculate. Practically, when the algebraic reduction is
made, A is built directly by the suitable modification of A without considering the extended
matrix A’. The part —BC;'C} is then added to A whereas —BC, 'b* is added to b. As will
be subsequently demonstrated, the algebraic reduction decreases the computational cost of the
solver by 10 — 20%.

If only L} interpolations are used with the algebraic elimination, the matrix obtained with
this method is similar to the one obtained in [Gibo 02| for a Dirichlet problem. However in this
last paper the auxiliary unknowns are taken into account before the discretization of the operator
which requires additional calculations for each discretization scheme.

If P? interpolations are used, the computed solution in Qg is the same as for the SMP
[Sart 08a] method (when the penalty parameter tends to zero) and the DF-IB method [Tsen 03].
These methods change the discretization of the initial equation for the nodes zy, I € N7. The
SMP method uses a penalty term and the DF-IB method uses terms of opposite signs to erase
some part of the initial equation. The discretization matrix obtained with both methods is not
equivalent to the one obtained with the AIIB method, with or without algebraic reduction. With
algebraic reduction, the discretization for the nodes x;, I € N is modified, and without algebraic
reduction, both auxiliary and physical unknowns coexist at x7,I € N7. The accuracy of these
methods will be discussed in the next section.

The present algorithm seems simpler, as the standard discretization of the operators is au-
tomatically modified in an algebraic manner. So, various discretization schemes of the spatial
operators can be used. However, the discretization of an operator at x; € €y can only use in
Q1 the fictitious unknowns and not the physical ones. Hence, the only limitation concerns the
stencil of these operators which have to be limited, if centered, to three points by direction.

8.2.4 A word on the application to the Navier-Stokes equations

The SMP method has been applied to the Navier-Stokes equations in [Sart 08a]. For immersed
boundary problems, the SMP and the ATIB methods give equivalent results and the AIIB method
can be used to immerse obstacles in fluid flows. Both methods can be used for the scalar and
the Navier-Stokes equations. In the latter, the procedure is done componentwise for the velocity
vector. However, the AIIB method, with IL{ interpolations only, cannot be applied to the Navier-
Stokes equations on staggered grid (no tests have been performed for a collocated approach).
An illustration is given Fig. 8.2. With such interpolations, two auxiliary unknowns u} and
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u?l,l € N1 can coexist at the same location z;. Hence, u7 is the natural neighbor of u; and
u}/ is the natural neighbor of ugx. So a problem occurs for the discretization of the inertial term
since a node of a given velocity component has to use an auxiliary unknown of an other velocity
component. In this case, neither u7 nor uf are natural neighbors for v;, a velocity unknown in
the y direction. No matter which unknown is used, or an average of the two collocated unknowns,
the simulation is instable outside 'the Stokes regime.

Figure 8.2: Mlustration of the application to the Navier-Stokes equations on staggered grid

A particular attention has also to be given to the velocity pressure coupling. If a fractional
step method is used, the prediction step is modified by any fictitious domain method to impose
an immersed boundary condition for the velocity. Thus, the projection step has to be modified
according to the prediction step to remain consistent with the overall problem.

However, some authors do not consider at all this modification of the correction step |Tsen 03]
or have only made minor modifications. In fact, the projection step has to be rewritten con-
sidering the forcing term, as can be seen in [Iken 07, Dome 08]. In [Sart 08a], the authors use
an iterative augmented Lagrangian method [Vinc| which adds a penalty term in the momentum
equation to enforce the divergence free constraint.

8.3 AIIB for immersed interface problems

With the symmetric method described in (8.2.1.1), the problem can be solved on both sides of
the interface when explicit Dirichlet BC are imposed. For many problems, the solution is not
a priori known on the interface and some jump transmission conditions on the interface 3 are
required. Let us now consider the problem :

P) { -V - (aVu) = f in Q

+ Interface conditions on X
where the interface conditions are :

[uls=¢ onX (8.17)
[(a-Vu) -n]ys =1 onX (8.18)
The notation [ [y denotes the jump of a quantity over the interface ¥. In the symmetric version of

the AIIB method, a given intersection point x;,l € Z, is associated with two auxiliary unknowns
on both sides of the interface. Hence, the interface constraints (8.17) and (8.18) of (P;) can be
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imposed at each intersection point z; by using the two auxiliary unknowns. For example, the
I vow of the matrix A’ with uf, I € Ny can be used to impose the constraint (8.17) and the
J"" line of the matrix with u¥,J € Ni is then used to impose the constraint (8.18).

8.3.1 The solution constraint

The symmetrized AIIB methods for Dirichlet BC reads :

ugzalw—i—aguj (8.19)
Uy, = Qru] + aouy )
when L} interpolations are used. With [u]y = ui, — uy; = ¢, we obtain :
a1ur + aeu’y — aquy — agug =@ (8.20)
which is the first constraint to be imposed.
8.3.2 The flux constraint
Following the same idea and using ]P)% interpolations,
(a-Vug) - n=a* (0, + " n,) (8.21)
(a-Vug) -n= a‘(u’hzu']nx + 25", '
for the case presented in Fig. 8.1.left. Using (8.18), we get:
a+<u1_u§n +u;(_uln>—a<u7_ujn —uK_u?n>—¢ (8.22)
he * hy Y he * hy v ’

which is the second constraint to be imposed. With such an interpolation, the solution gradient
is constant over the whole stencil. As demonstrated later, the second-order accuracy can be
reached on Cartesian grids when ¢ = 0.

Three auxiliary unknowns are thus involved in the discretizations (8.20) and (8.22). The
auxiliary unknown uj, is also involved in the discretization of (8.17) and (8.18) at another
intersection point on Y. Hence, the whole system A’vw’ = b’ is closed.Since we need more than
one auxiliary unknown to discretize each constraint, the matrix Cy is not diagonal and a solver
has to be used to compute C;*.

For the matched interface and boundary (MIB) method, Zhou et al. [Zhou 06b] use a different
discretization of the interface conditions which allows an easy algebraic reduction which is directly
performed raw by raw.

The algebraic reduction for the immersed interface problems has not been yet implemented.
However, the standard discretization of the AIIB method requires a more compact stencil than
for the MIB method, and the additional computational time generated by the auxiliary nodes is
small. Hence, the lack of algebraic reduction does not seem to be problematic.
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Chapter 9

Validation

9.1 Elliptic equations

Elliptic equations are discretized using the standard second-order centered Laplacian. For all
problems, similar results have been obtained with a PARDISO direct solver [Sche 04|, and an
iterative BICGSTAB solver |Gust 78a/, preconditioned under a ILUK method [Saad 86]. Unless
otherwise mentioned, a numerical domain [—1;1] x [—1; 1] is used for every simulation. Only €
is taken into account for the immersed boundary problems.

9.1.1 Immersed boundary problems

The immersed boundary problems are treated here with the SMP and the AIIB method. One
can notice that for P? and Q? interpolations, both method are equivalent. The IL? interpolations
cannot be used with the SMP method since two constraints have to coexist in a same node
involving two auxiliary unknowns.

Problem 1 The homogenous 2D Laplace equation is solved. The interface ¥ is a centered
circle of radius R; = 0.5 with a Dirichlet condition of U; = 10. An analytical solution which
accounts for the presence of a second circle with a radius Ro = 2 and Uy = 0 is imposed on the
boundary conditions. The analytical solution is:

U1y
- ln(Rg) — ln(Rl)

ln(Rl)
ln(Rg) — ln(Rl)

u(r) In(r)+U; — (Us — Uy) (9.1)

Accuracy tests are performed with L1, P and Q7 interpolations. Fig. 9.1 shows the solution
and the error map for a 32 x 32 mesh with P? interpolations. The same results are always obtained
with and without algebraic reduction. Fig. 9.2 shows the convergence of the error for the L? and
L*> norms. For all interpolations, the convergence slopes are approximatively 2 for the relative
L? error. For the L™ error, the slopes are about 1.8. The P? interpolation is the more accurate,
followed by the L1 interpolation although it uses more auxiliary points (but a smaller stencil).
However, the differences of accuracy between the different interpolations remain small. The same
cases with algebraic reduction give the same accuracy. The performances of the ILUK-BiCG-Stab
solver are now benchmarked for the three interpolations with and without algebraic reduction
and for the SMP method. Tab. 9.1 shows the computational times of the matrix inversions
(average time in seconds for 25 matrix inversions) and Tab. 9.2 shows the time ratio between
the standard and the reduced matrix. Except for the Q} interpolation on the 1024 x 1024 mesh,
the differences between the two methods seem to decrease with the size of the matrix. In fact,
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9. VALIDATION

temperature

Figure 9.1: Solution and error map for problem 1
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as interfaces are d — 1 manifolds, the number of intersection points does not increase as fast as
the Eulerian points. Hence, the ratio between the size of a reduced and a complete matrix tends
to 1. The computational time for the SMP method is quite similar to the one obtained AIIB
method with algebraic reduction. Figures 9.3, 9.4, 9.5, 9.6 shows the convergence of the ILUK-
BiCG-Stab solver for the seven configurations. The type of interpolation does not significantly
impact on solver performances.
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Figure 9.2: Curves of errors for
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Mesh [[ LT std [ L red | P? std | P2 red | QF std | QF red | P? SMP
128 0.215 | 0.189 | 0.216 | 0.182 | 0.208 [ 0.181 0.181

256 2.18 1.89 2.14 1.83 2.14 1.88 1.88
512 19.7 17.6 19.5 17.1 20.3 18.4 16.9
1024 168 159 171 156 173 141 168

Table 9.1: Computational times in seconds for problem 1. Tests are performed with three
different interpolations with (red) and without (std) algebraic reduction, and compared to the
SMP method

Mesh IL% P% Q% std
128 88.3% | 84.5% | 87.3%
256 86.9% | 85.5% | 88.2%
512 89.4% | 87.5% | 90.9%
1024 94.6% | 91.2% 81.5%

Table 9.2: Ratio of computational times for reduced and standard matrices for section 9.1.1
Mesh [[ LTstd | LT red PT std Plred [ Q'std | Q'red [ PTSMP

128 16640 16384 16560 16384 16560 16384 16384
Dimension | 256 66048 65536 65896 65536 65896 65536 65536
512 328704 327168 328552 327472 328704 327472 326752
Non-zero 128 82432 81664 82352 81824 82432 81824 81472

elements 256 263168 262144 262864 262144 262864 262144 262144
512 1312768 | 1309696 | 1312464 | 1310304 | 1312768 | 1310304 | 1308864

Table 9.3: Rank and number of non-zero coefficients of the computed matrix for section 9.1.1.
Tests are performed with three different interpolations with and without algebraic reduction,
and compared to the SMP method

10 '—\'5-\.
0.1 1
0.001 L1 standard
000001 - - Ll reduced
© = P1 standard
:50.000000
4 ====P]reduced
[ 1E-09
Q1 standard
1E-11
Q1 reduced
1E-13
........ P]_ SMP
1E-15
1E-17

Iterations

Figure 9.3: Residual against iterations of ILUK solver for problem 1 with a 128 x 128 mesh
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Figure 9.4: Residual against iterations of ILUK solver for problem 1 with a 256 x 256 mesh
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Figure 9.5: Residual against iterations of ILUK solver for problem 1 with a 512 X 512 mesh
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Figure 9.6: Residual against iterations of ILUK solver for problem 1 with a 1024 x 1024 mesh
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Problem 2 The 3D equation AT = 6 is solved. The solution is T(r) = 2. The solution is
imposed on an immersed centered sphere of radius 0.2. As expected, the second-order code gives
the exact solution to almost computer-error accuracy without this inner boundary. Results of the
numerical accuracy test with the spherical inner boundary are presented in Fig. 9.7. The results

1.00E-02 : )
| 10 100 1000
1.00E-03 R
—4—L2 relative error
y=0.381x233
2 1.00E-04
w
Linf error
y=0.140x"193
1.00E-05
1.00E-06
Mesh

Figure 9.7: Curves of errors for problem 2

are presented in Fig. 9.8. For the L> norm, the second order is regularly obtained. For the L?
norm, the second order is not obtained for the coarsest meshes as the code has not reached its
asymptotical convergence domain. As can be noticed by comparing results with and without the
AIIB method, this last one does not spoil the convergence order of the code, and the presence
of the immersed interface with an analytical solution imposed in ¥, improves the accuracy. For
both cases the numerical solution tends to a second order in space.
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Problem 3 The 3D equation AT = 1272 is solved in a unit box. The solution is T(r) =
% 4+ y* + 2. The results are presented in Fig. 9.8. For the L> norm, the second order is

1.00E-01

1.00E-02

1.00E-03

Error

1.00E-04

1.00E-05

1.00E-06

;\ 100
\

1000

§
N

N
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Figure 9.8: Curves of errors for problem 3

—¢— L2 error with All

Linf error

=% error

—>&=Slope 2

regularly obtained. For the L? norm, the second order is not obtained for the coarsest meshes as
the code has not reached its asymptotical convergence domain. As can be noticed by comparing
results with and without the AIIB method, this last method does not spoil the convergence order
of the code, and the presence of the immersed interface with an analytical solution imposed in
Y, improves the accuracy of the code. For both cases the numerical solution tends to an order

two in space.
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Problem 4 The 2D equation AT = 4 is solved. The analytical solution is imposed on the
boundaries of the domain and a Neuman BC is imposed on a centered circle of radius R = 0.5.
As can be seen in Fig. 9.9, the global convergence has an average slope of 1.10. However, the
convergence for the three biggest meshes reaches a slope of 2.

1.00E+00 T T 1
10 100 1000 10000
—4—L? relative error
1.00E-01
y =0.388x116 Linf error
1.00E-02 -
== Slope 2
LOgE08 Puissance (L2 relative
error)
1.00E-04 Puissance (Linf error)
1.00E-05

Figure 9.9: Curves of errors for problem 4
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9.1.2 Convergence with the number of interface elements

Our aim here is to measure the sensibility of the method with the accuracy of the Lagrangian
mesh discretizing the immersed interface. Problem 1 is solved on 32 x 32 and 128 x 128 meshes.
Fig. 9.10 shows the accuracy of the solution with respect to the number of points used to
discretized the interface which is here a circle. The reference solutions (Fig. 9.2) have been
computed with an analytical circle. As can be seen, a second order in space is globally obtained.
The reference numerical solutions for the 32 x 32 and 128 x 128 meshes are different but the
sensitivity of the error to the number of points in the lagrangian mesh is almost the same.

1.00E+00 ; T ; 1
1 10 100 1000 10000

1.00E-01

1.00E-02 \
y =6.726x%% —t=—L2rel. error 32x32
1.00E-03 .
Linf error 32x32

1.00E-04 &=2rel. error 128x128

E\k\ == Linf error 128x128
1.00E-05 X(\
1.00E-06

y= 0.471x’:&

Mesh

Error

1.00E-07

Figure 9.10: Convergence of the error with respect to the accuracy of the lagrangian shape
problem 1

9.1.3 The Stanford bunny

This last case demonstrates how a second-order method enhances the representation of the
boundary condition compared to a first-order method. The homogenous Laplace problem with a
Dirichlet BC T = 10 is solved on a 60 x 60 x 50 mesh bounding an obstacle of complex shape (the
Stanford bunny). The extension of the solution in €; is used for the post treatment. Thus, all
uy,J € Ni are replaced by u%. Then, the iso-surface T' = T¥ gives an idea of the approximation
of the boundary condition. Fig. 9.11 shows the iso-surface for a first order method. As can be
seen, the shape of the obstacle endures a rasterization effect as the solution is imposed in the
entire control volumes. Fig. 9.12 shows the iso-surface for the second order AIIB method. Fig.
9.13 shows a slice of the solution passing through the bunny. As can be seen, overshoots are
present inside the shape which corresponds to the auxiliary values allowing the correct solution
at the Lagrangian interface points to be obtained.
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Figure 9.11: Iso-surface T' = 10 for the Stanford bunny with a first-order method

Figure 9.12: Iso-surface T' = 10 for the Stanford bunny with a second-order method
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Figure 9.13: Iso-surface T' = 10 and a slice of the solution

Solution
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9.1.4 Immersed interface problems

Problem 5 The 2D problem P;; with f = —4 and a = 1 is solved. As the equation remains
the same in both domains, this problem can be solved without immersed interface method. The
analytical solution is v = r2. As can be expected with our second order code, computer error is
reached for all meshes with or without AIIB method. The difference with problem 2, where the
solution is a second-order polynomial too, is that the solution is not explicitly imposed at a given
location. In the present case, the interface condition is still correct anywhere in the domain so
the approximation of the interface position does not generate errors.

Fig. 9.14 shows that the same result is obtained with an interface jump such as u = r2 for
r > 0.5 and u = r? + 1 otherwise.

An equivalent quality of result is obtained with 3 such as:

z(a) = (.5 + .2s8in(ba)) cos(w) 9.2)
y(a) = (.5 + .2sin(ba)) sin(«) ’
with a € [0,27].  The small stencil of the method allows interfaces with relatively strong
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Figure 9.14: The solution and the error for problem 5 with a 32 x 32 mesh

curvatures to be used.
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Figure 9.15: The solution and the error for problem 5 with a 64 x 64 mesh
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Problem 6 The same problem as in 9.1.4 is now considered with a discontinuous coefficient a
such as a = 10 in Q¢ and a = 1 in €, involving the following analytical solution:

r2 in Qo
u(r) = . 9.3
() {1{3+%9an1 ( )

Accuracy tests are first performed with the interface almost passing by some grid points (called
odd mesh). The interface does not strictly lies on these points, as the shape is shifted by an
€. This configuration is difficult as the interpolations degenerates. Accuracy tests are then
performed with a box of length 1.0001 (called even mesh). In this configuration, the interface
never passes by a grid point. The results of the numerical accuracy test are presented in Fig.
9.16. For the odd series of test, the slope is 1.86 for the L? and L™ errors. For the even series,
where no geometrical singularity is present, the slope for both errors is 2.04.

Figures 9.17 shows the solution and the L? relative error for a 32 x 32 mesh. As the analytical
solution is imposed on the numerical boundary, the error is principally located in the interior
subdomain.
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Figure 9.16: Curves of errors for odd and even meshes the problem 6
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Figure 9.17: The solution and the error for problem 6 with a 33 x 33 mesh
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Problem 7 The homogenous 2D Laplace equation is considered with the following analytical
solution:

0 in QQ

e” cos(y) in

u(z,y) = {

where 0y and €2 are delimited by ¥ a centered circle of radius 0.5. Fig. 9.18 shows that the
convergence for both L? and L™ error are of first order only. The Fig. 9.19 shows the numerical
solution (which is not so different from the analytical solution) and the error map for a 32 x 32
mesh. In section (9.1.1), a first global order is observed too, even if a second order is reached for
the three last meshes. Hence, the convergence is not as good as expected when a condition on
the normal flux with a source term (1) # 0) is imposed. Numerous trials implying interpolations
of higher orders have lead to similar results, so, for now, we cannot explain the first order of
convergence.

In [Tsen 03], the authors seems to have encountered the same difficulties as they explain how
to impose Neumann BC with a quite similar method without performing showing a convergence
test.

(9.4)
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Figure 9.18: Convergence of the L? relative error and the L* error for problem 7
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Figure 9.19: The solution and the L? relative error for problem 7 with a 32 x 32 mesh
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9.1.5 Some remarks about the solvers

The kind of interpolation function used and the position of the interface have an impact on the
final discretization matrix C’, especially on its conditionning. Let us consider an intersection z;
of ¥j, between two points z;,J € Ny and z7,I € N7. A Dirichlet BC wu; is imposed on it. The
constraint constructed with a L} interpolation is (1 — a)uy + qu}, with o = % Hence, 1%
tends to 0 when z; tends to z 7. As the matrix loses its diagonal dominance, solver problems can
be encountered. Tseng et al. [Tsen 03] proposed changing the interpolation by using a new node
which is the image of z; through the interface. In [Gibo 02, Gibo 05|, authors pointed out this
problem and suggest to slightly move the interface to a neighboring point (in our case xy) if zy
is too close to Xp,.

In this case, for the Dirichlet BC, an unknown % is created, and the equation in x; is simply
uy = wu. For the Neumann BC, the standard interpolation is written in x; with v’ and its
neighbor unknowns in €.

For the transmission conditions (8.17)-(8.18), if ¢ = 0 and ¢ = 0, no auxiliary unknown is
created and the standard finite-volume centered discretization is used. However, for this case,
or for ¢ # 0 and ¢ # 0, our implementation using ILUK preconditionner or a PARDISO direct
solver does not necessarily require such methods, even if ;2 ~ 10710,
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9.2 Navier-Stokes equations

All these cases are treated with the SMP method. The related discretization and solvers are
described in the Appendix A of the present document.

9.2.1 Cylindrical Couette flow

We consider a Couette flow between two cylinders of radius Ry = 0.5m and R = 3m. Their
angular velocities are w; = 0rad.s~! and wy = 27ad.s~!. The solution is

_ WQR% — wlR% (w1 — UJQ)R%R% 1

= 9.5
vg(r) R-R r R_-r & (9.5)

The NS equations are solved in a domain = [—0.15; 0.15] x [—0.15; 0.15]. The analytical
solution is imposed on 9. A penalty method is used to impose a Dirichlet BC on the inner
circle. The solution for the SMPM and the VPM are compared in Fig. (9.20) with the same case
simulated without IB method in polar coordinates. As expected, the SMPM reaches a second
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Mesh
Figure 9.20: L? relative error on the velocity for the cylindrical Couette flow

order in space, the VPM a first order and the case in polar coordinates reach a second order.
This case is 20 times more accurate than the Cartesian case with the SMPM. However, the polar
mesh is boddy-fitted in this configuration and the mesh lines are colinear with the flow.

9.2.2 Flow past a cylinder

The case of the cylinder in an unbounded uniform flow is a common test for the IB methods. For
very low Reynolds numbers, the flow is creepy and the streamlines are symmetric. For higher
Reynolds numbers, (up to ~ 47) two symmetric steady vortices appears (see Fig. 9.21). For still
higher Reynolds numbers, the vortices are no more symmetric and a wavy tail is observed (but
the vortices are still attached to the particle). For even higher Reynolds numbers, an alternative
shedding of the vortices, the Karman vortex street, occurs. A cylindrical particle of diameter
D = 0.1 is immersed in a computational domain Q@ = [0; 10] x [—4; 4]. An uniform flow
U = (U, 0) is imposed at the left boundary. The center of the particle is located in (1.5,0).
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Figure 9.21: Streamlines and pressure field for a flow past a cylinder at Re = 20 (up) and
Re = 40 (down)

For Re = 20 and Re = 40, a convergence study is presented in for the first (VPM) (Tab. (9.4)-
(9.5)) and second-order (SMPM) (Tab. (9.6)-(9.7)) penalty method, where L is the recirculation
length, a the horizontal distance between the particle and the center of the vortices, b the distance
between the center of the vortices, s the separation angle (see Fig. (9.22))and Cp the drag
coefficient given by

2Fp

D= JUZD (9.6)

with Fp the drag force.

The mesh has a constant space step in [1.4; 1.8] x [—0.1; 0.1]. The number of cells for each
directions in the constant zone is the power of 2 which is directly under half of the number of
cells for this direction. For the 94 x 52 mesh the constant zone has 32 x 16 cells and the number
of cells by directions follows a power of 2. For the other exterior zone, an exponential refinement
is used.

The numerical error cannot be computed as there is no analytical solutions and the case
theoretically requires an infinite domain. Hence, the results are generally compared with different
works of the literature. The Fig. 9.4-9.7 shows a convergence study for Re = 20 and Re = 40.
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\

K

Figure 9.22: Notations for the case of the flow past a cylinder

The simulations with the SMPM seem to converge more quickly than for the VPM toward the
asymptotic values.

Vallge | % [ % | % [ Co [ O ]
94 x 52 0.7373 | 0.2758 | 0.3779 | 1.9076 | 140.8°
158 x 84 0.8540 | 0.3283 | 0.4052 | 2.0114 | 137.5°

286 x 148 | 0.9073 | 0.3495 | 0.4206 | 2.0371 | 136.8°

542 x 276 | 0.9317 | 0.3586 | 0.4281 | 2.0355 | 136.4°

1054 x 532 | 0.9454 | 0.3633 | 0.4314 | 2.0370 | 136.0°

Table 9.4: Convergence study for the flow past a cylinder at Re = 20 for the VPM

Vallee | % | 5 [ 5 [ Co [ 05 ]
94 x 52 1.790 | 0.5729 | 0.5139 | 1.3817 | 138.1°
158 x 84 2.0874 | 0.6665 | 0.5644 | 1.4892 | 130.4°
286 x 148 | 2.2135 | 0.7043 | 0.5849 | 1.5141 | 127.8°
542 x 276 | 2.2777 | 0.7230 | 0.5957 | 1.5152 | 126.8°
1054 x 532 | 2.3089 | 0.7324 | 0.6011 | 1.5174 | 126.3°

Table 9.5: Convergence study for the flow past a cylinder at Re = 40 for the VPM

Maillage ‘ % ‘ o ‘ % Ch ‘ Os ‘
94 x 52 | 0.9397 | 0.358 | 0.4269 | 1.9868 | 141.2°
158 x 84 | 0.9423 | 0.3620 | 0.43063 | 2.038 | 137.6°
286 x 148 | 0.9473 | 0.3638 | 0.43215 | 2.04818 | 136.7°
542 x 276 | 0.9487 | 0.3646 | 0.43289 | 2.04788 | 136.5°
1054 x 532 | 0.9534 | 0.3661 | 0.4336 | 2.04875 | 135.9°

Table 9.6: Results for the flow past a cylinder at Re = 20 for the SMPM
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Maillage ‘ % ‘ ol ‘ % Ch ‘ Og ‘

94 x 52 | 2.2647 | 0.7172 | 0.594097 | 1.45948 | 130.2°
158 x 84 | 2.2976 | 0.7275 | 0.5989 | 1.51499 | 126.3°
286 x 148 | 2.3122 | 0.7332 | 0.6014 | 1.52539 | 126.4°
542 x 276 | 2.3200 | 0.7349 | 0.60275 | 1.52790 | 126.3°
1054 x 532 | 2.3253 | 0.7371 | 0.6036 | 1.52366 | 126.1°

Table 9.7: Results for the flow past a cylinder at Re = 40 for the SMPM

The physical properties are compared with the literature in Tab. (9.8) for a mesh size of
1984 x 1152. All our results are in good agreement with the literature. The drag coefficient Cp
is slightly upside the other values. The value of Cp is almost the same for the first and second-
order methods. Practically, both methods are quite different but produce quite similar results,
so the treatment of the flow near the boundary seems correct. The differences with the literature
can come from the configuration of the case as the domain has to be theoretically unbounded.
However, C'p is the only result of our study which is overestimated. As this parameters depends
on the calculation of the wall forces our routine possibly overestimates the drag force.

5 5 5 Cp O
Re =20
Coutanceau et Bouard [Cout 77| | 0.93 0.33 0.46 - 135°
Dennis et Chang [Denn 70| 0.94 - - 2.05 136.3°
Le et al. [Le 06] 0.93 - - 2.05 -
Ye et al. [Ye 99] 0.92 - - 2.03 -
Russell and Wang |Russ 71| 0.94 - - 2.13 -
Linnick et Fasel [Linn 05] 0.93 0.36 0.43 2.06 136.5°
He et al. [He 97] 0921 - - 2.152  137.04°
Patil et al. [Pati 09] 0.942 - - 1.949  137.19°
Taira et al. [Tair 07] 0.94 0.37 0.43 2.06 136.7°
VPM 0.9454 0.3633 0.4314  2.037 136.0°
SMPM 0.9534 0.3661 0.4336 2.04875 135.9°
Re =40

Coutanceau et Bouard [Cout 77| | 2.13 0.76 0.59 - 126.2°
Dennis et Chang [Denn 70| 2.35 - - 1.522 126.2
Le et al. [Le 06] 2.22 - - 1.56 -
Ye et al. [Ye 99] 2.27 - - 1.52 -
Russell et Wang [Russ 71] 2.29 - - 1.60 -
Linnick et Fasel [Linn 05| 2.28 0.72 0.60 1.54 126.4°
He et al. [He 97] 2.245 - - 1.499  127.16°
Patil et al. [Pati 09] 2.142 - - 1.558  127.26°
Taira et al. [Tair 07] 2.30 0.73 0.60 1.54 126.3°
Tseng et a. [Tsen 03] 2.21 - - 1.53 -
VPM 2309  0.732  0.601 1.517 126.3°
SMPM 2.325 0.737  0.604 1.524 126.1°

Table 9.8: Results for the flow past a cylinder at Re = 20 and Re = 40 and comparison with the

literature
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The next case is simulated for a Reynold number of 100. For this regime, the flow is periodic
and its frequency is caracterized through the Strouhal number St:

_ID

St
Uso

(9.7)
with f the vortex shedding frequency. A convergence study for the VPM and the SMPM is
presented in Tab. (9.9)-(9.10)). The drag and lift coefficients converge more quickly with the
SMPM. The convergence of the forces shows that the local convergence of the flow around the
particle is faster with the SMPM. The convergence of the Strouhal number is quite the same for
both methods but seems still far from its asymptotical value. The global flow (characterized by
the Strouhal number) seems more influenced by the calculation mesh than by the treatment of
the immersed boundary.

The results are compared with the literature in Tab. (9.8). The drag coefficient Cp varies not
much for the literature and our approach underestimates this coefficient. For the lift coefficient
Cr, the results are more varying and our results are in the same range as for the literature.
Concerning the Strouhal number, it is underestimated in our approaches. As shows by the
convergence study, the setting of the calculation mesh could be involved.

‘ Maillage ‘

Cp

Cr

E

124 x 72

0.96 £ 0.01

+0.147

0.117

248 x 144

1.19£0.01

+0.264

0.134

496 x 288

1.27+0.01

£0.3081

0.147

992 x 576

1.31£0.01

+0.3271

0.155

‘ Maillage ‘

Cp

Cr

I

124 x 72

1.08 £0.01

+0.2413

0.113

248 x 144

1.24 £0.01

+0.3185

0.132

496 x 288

1.30 £0.01

£0.338

0.146

992 x 576

1.33£0.01

+0.340

0.155

Table 9.9: Convergence study for the flow past a cylinder at Re = 100 for the VPM

Table 9.10: Convergence study for the flow past a cylinder at Re = 100 for the SMPM

| Cp CL St
Re =100 Braza et al. [Braz 86| | 1.36 £0.015  +0.25 -
Kim et al. [Kim 01] 1.33 +£0.32 0.165
Liu et al. [Liu 98] 1.35+£0.012 £0.339 0.164
Le et al. [Le 06] 1.37£0.009 +£0.323 0.16
VPM 1.31+£0.01 £0.327 0.156
SMPM 1.33£0.01 +£0.340 0.155

Table 9.11: Results for the flow past a cylinder at Re = 100 and comparison with the literature
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Discussion and conclusion of Part 111

Two new fictitious domain methods have been proposed. The SMP method is the first second-
order discretization of the L? penalty method and is fully implicit. The method can be applied to
elliptic equations or to Navier-Stokes equations. Concerning this last case, a particular attention
has been paid to the velocity-pressure coupling. No modification has been required for the stan-
dard augmented Lagrangian method as the divergence free constraint and the penalty constraint
can coexist without interference in a unique discretization matrix. That is not enough for the
case of a pressure projection approach where the velocity is corrected afterwards which removes
the penalty constraint. However, a similar correction approach to [Tken 07| has been used and
the same results have been obtained with both velocity-pressure coupling method. Concerning
the application of the method to the curvilinear grids, the Part II of the present document has
demonstrated that the second-order accuracy is retrieved on curvilinear grids for a Dirichlet
problem.

It as been shown that the SMP method was not well suited to the interface problem. By
replacing penalty terms with constraints on auxiliary nodes, a new simple immersed interface
method, the AIIB method, using algebraic manipulations has been presented. This method is
able to treat elliptic equations with discontinuous coefficients and solution jumps over complex
interfaces. A second order in space is reached for several configurations with minor modifications
of the original code. The interface conditions are dicretized with a compact stencil, so the AIIB
approach is directly able to treat interfaces with strong curvatures even if a particular treatment
of geometric singularities can be required. As the modified matrix looses its diagonal dominance,
efficient solvers are required.

For the immersed boundary problems with a Dirichlet BC, the method has shown a second
order of convergence in space for various kinds of interpolations. For some interpolations, the
method is equivalent to the SMP method. An algebraic reduction has been applied to accelerate
the convergence of the solver. For the Neumann BC, a second order seems to be reachable for
the densest meshes.

For the immersed interfaces, a second order of convergence in space is obtained when the
jump of the normal flux is null, even if the equation has discontinuous coefficients. An algebraic
reduction is not possible, but compared to the MIB method [Zhou 06b] or to the IIM [Leve 94|,
this new method has a simplest formulation and uses a smaller stencil.

Future works will be devoted to extend the accuracy of the method when the jump of the
normal flux is not zero, and to extend the method to the Navier-Stokes equations with immersed
interfaces. Our general aim is to treat complex moving fluid /solid and fluid/fluid interfaces using
both AIIB method and ITP method [Rand 05] to obtain an accurate two-way coupling.

The next part of this document will show an application of the SMP to the moving objects.
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Part V

Solid mechanics and fluid-structure
coupling
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Chapter 10

Solid mechanics

r I 1YHE present work proposes a quite complete study of the cases of immobile interfaces. An
extension to moving interfaces involves additional aspects:

e The fictitious domain method and its associated algorithms (Ray-Casting, Level-Set, etc...)
used to treat the object have to be very robust. When thousands of time steps are involved,
the slightest bug in the repeated algorithms has a good chance to appear through the time.

e Concerning the computational cost, the methodology can be quite slow for immobile ob-
stacles as the algorithms are repeated one time only. For moving objects, the methodology
has to be highly optimized.

e Depending on the methodology, modeling moving interfaces is more than repeating the
algorithms at each time step. As will be shown latter, the nodes passing from one side of
the interfaces to the other one have to be treated specifically.

e The interface movement at each time step has to be modeled. Analytical functions or
physical laws can be used.

The first point is treated in details in the other parts of this document. This chapter deals
with the physical laws involved in the displacement of interfaces, the related modeling and
the adaptation of the initial static algorithms.

10.1 Base principles

Let us consider solid objects at a given time ¢t. Their interior is denoted as ;(t) and their
frontier 9Q;(t). The position of their center of mass is X;(t), their velocity is U;(t) = X;(t),
their acceleration A;(t) = U;(t). Their angular position is denoted 0;(t) and their angular
velocity w;(t) = 6;(t). External resulting force applied to the objects are denoted as F;(t) and
the external torque is denoted as T;(t). Under the rigid-body motion assumption, the velocity
u at a point x € Q;(t) is

u(t,x) = U;(t) + w;(t) x r(t,x) in Q;(¢) (10.1)

with r(t,x) = x — X;(¢) and X;(t) = (X;(t),Yi(t), Zi(t)). The evolution of the ith object is
described by the Euler-Newton equations:

mZAZ(t) = Fz(t) (10.2&)

dH;(t)

=Ty (10.2b)
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with H;(t) = L;(t)w;(t) and I;(¢) the inertia tensor defined as
Li(t) = / pi(r%(t, x)Ig — r(t,x) @ r(t,x)) dx. (10.3)
951

For the next formulation, the time dependance (t) is not notified. Practically, the following form
of (10.3) is used:

(y=Yi)’+(:=2)" ~(y-Y)e—X)  —(2=Z)(x~X;)
IZ/QV/% —(z-X)y-Y) (@-X)2+(E=-2)? —(-Z)y-Y) av.

~(z=Z)(z-X;)  —(y-Y)=z-X) (v2-X)+(y-Y)’
(10.4)
Using
I;
the Eq. (10.2b)) can be expanded as
dw;
The demonstration of (10.5)[Bost 08b] uses the following property for 3 vectors a, b, c:
(a®b).c = (b.c)a. (10.7)

wilt) = = ( [ a0t = ) 051t dx) wilt)

dt d
_ /Q pi%(r2(t,x)ﬂd — (1 %) ® 1(t, x))wi(t) dx
' dr dr dr (10.8)
— /Qipi 2<rdt> w; — <r®dt> w; — (dt®r> wi> dx
dr dr dr
= /Q Pi <2 <rdt> Wi — (w’dt) r (wz‘r)dt) dx.
Yet,
dr(t,x) _ d(x — X;(t))
dt oxi(f .
= =T (Klt) + wilt) X r(t, )V (x — (1) (10.9)
X0 + (K1) + w, X x(tx)) ]
= w;(t) x r(t,x).
Hence,
dL;() _ oy .
Doty = - /Q P00 (D) > x(1) e
— —wilt) x /Q pi(wi()x(t,%))r(t, x) da
_ it / @ r(t,x))wi(t)) dz
o (10.10)
= —wi(t) x ( o ) @r(t,x)) dx.wi(t)>

= w;(t) x (Li(t).wi(t)) — wi(t) x (/ pi(r(t,x))°I dﬂf-wi(t))
Q;(t)
= wi(t) x (Li(t).wi(t))
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as the form of the last term is a x (Ca) and so is equal to zero. Hence,(10.5) is recovered.

For solids with three orthogonal symmetry planes (sphere, ellipsoid, cube, box...), one can find
a frame for which only the diagonal terms of the inertia matrix are non-zero. These diagonal
terms are denoted as I7, I» and I3. Hence, one can develop the w x H term:

(I3 — Iy)wows
wxH= (Il — Ig)u)gwl (10.11)
(I3 — I1)wiws

Hence, w; x H; is null! for a solid with I; = Iy = I3, such as spheres or cubes. Eq. (10.2b) can
be written as:

F;
A= —°
Lomi (10.12)
) T; ’
o = i
% I7,

For the other types of objects, the system (10.2) is written as:

FA
A=
m;
10.13
w; =

I

With such a formulation, the velocity V and rotation 6 are easily computed through thanks to
a time integration scheme. From V, the same scheme can be used to find X. With a first-order
Euler scheme, we obtain:
n+1
Vit =V 4 At—
Xn+1 = X"+ At{?n—i—l

Tl (10.14)

w't = w4+ At
07t =07 + Atw !
The external forces applied to an object are
e The gravity
e The air resistance

The friction with the other moving objects

The friction with the ground

The impulsion generated by solid-solid contact

10.2 Numerical computation of the inertia matrix

A numerical computation of the inertia matrix and the volume of a polyhedron can be found
in [Mirt 96] where the triangularized surface is used. As the purpose here is to perform a fluid-
structure coupling, some volume fonctions of the objects are always available, especially the VOF

Tn 2D, the third component only is considered and w; = w2 = 0, so w x H is null too.
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function C; of the solid media. The mass of a solid 7 is calculated as follows:

m; = p; Z meas(K;)Ci(x;). (10.15)
KjETh,
For the inertia matrix,
I=p; Z meas(K;)Ci(x;)1; (10.16)
KjGTh
with
(i =Y+ (25— Z)*  —(y =Yz = Xi) (2 — Zi)(w; — Xa)
L= —(-X)-Y) (5-X)+(5-2) —(5-Z)y-Y) |. (1017)
(2 = Zi)(zj - X)) —(y =Yz = Xq) (25— Xi)* + (y; — ¥3)?

This matrix is symmetric, so invertible and one can find a frame for which I is the diagonal
matrix Iy (its diagonal terms are denoted in this case I, Io and I3). As the solid generally
rotates, the inertia matrix has to be calculated at each time step. However, the full computation
of the inertia matrix can be avoided using a transformation matrix R(¢) such that at any time,
we have I = RI;RT.

10.3 Solid-solid collisions modeling

10.3.1 Model
10.3.1.1 Time advancement

The only moving object treated here are spheres so w x H is null. Hence, the time integration
of the position and rotation for the ith particle with an Euler scheme is

F. n+1
Vit —vr o A

my
Xt — xXn 4 Apvtl
i It (10.18)

Wit =Wl + At I

T
67" = 67 + Atw !

10.3.1.2 External forces and torques

Gravity The gravity is a simple force term FY = m;g where g = 9.81m.s~ ! is the standard
gravity acceleration.

Friction with the other objects This force is produced by the differential of the tangential
velocities of two objects at the contact point. Let us consider two particles P; and P;. Their
contact point is x. The differential tangential velocity is Vf-j = (V; = V;)(Iz — n) for the
translation part. For the rotation part, ij = wj X rj —w; X r; where r; = x — X;. Hence, the
friction force is

Fi = us(Vi; + Vi) (10.19)

with ps the friction coefficient between the two surfaces.
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10.3.1.3 Collisions

A simple algorithm is used. At the beginning of each time step, a collision test is performed
between all the objects. If two spheres of radii r; and r; collides, their center of mass X; and
X are such that |X; — X;| < |(r; + rj)|/2. Concerning the collisions between a sphere and the
ground, the distance is calculated using the distance from a point to a triangle algorithm (see
sction 6.3.1). In this first implementation, all particles have the same mass. When a collision
occurs between two spheres, the velocity of each particles is modified by the normal component
of the relative velocity, (V; — V;)n;; and a bounce coefficient ¢,. Hence,

1

Vi=Vi- v, - Vn (10.20)
1

Vj = Vj + —;Cb (Vj - Vi)nij (10.21)

and the distance between the center of mass of the sphere is increased such as |X; — X;| =
|(r; +rj)|/2. For a sphere-ground collision, the resulting velocity of the sphere is

Vi = Vz — cb(VZ-)n (1022)

where n is the normal of the ground at the contact point.

10.3.2 Implementation of a solid mechanics code: Dresden

Defining an efficient model for the solid-solid collision is not trivial, even for simple solids such
as spheres. The hardest point is the detection and the management of the collisions. Various
methods can be found in [Guen 03]

Implementing a model directly in a complex CFD code such as Thétis is not the simplest
way to build step-by-step a solid mechanics code. A new solid mechanics code Dresden has been
developed with the following requirements:

1: management of objects of different kind (primitives or complex meshes)
2: easy testing of collision models between many objects of different kind,
3: easy visualization.

The first point implies the use of an oriented object programming language. The third require-
ment can be fulfilled thanks to the OpenGL library. Hence, the C'+ + language has been chosen.

10.4 Illustration

Two cases are presented. For each, particles with random positions are dropped over a triangu-
larized mesh.

10.4.1 Gathering

The principle of this case is to drop particles in a bowl. The topography will gather them,
and at the final time, all the particles would have to be immobile. As the particles are in
horizontal stacking, forces are constantly exerted on them. As in the algorithm a force produce a
movement, it is quite hard to converge to an immobile state. The Fig. 10.1 shows the evolution
of the particles for this case. A quasi immobile state is obtained.
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Figure 10.1: View of the gathering case for 100 particles

10.4.2 Stacking

One of the hardest things to obtain with solid simulation is a static stacking. The explicit collision
algorithms moves the objects one by one. If an object is moved to correct an intersection with
a second object, the first can then intersect a third object. With a stacking, many object are in
contact with more than one other object. The Fig. (10.2) shows the evolution of the particles
for this stacking case. The evolution of the kinetic energy is plotted in Fig. 10.4.2 for a case
with 50 particles and two time steps At = 0.005s and At = 0.0025s. As the bounce coefficient
are set as quite small here, the kinetic energy has to reach quickly a null value. The parasitic
movements are reduced with the smaller time step. The same kind of time step is used for fluid
simulation, but the solid simulation performed here is almost at real-time, so if a coupling with
fluid simulation is required, very smaller time steps can be used for the solid part. However, we
have use a quite simple method and the algorithm has to be revised till an absolutely null energy
is obtained. The algorithm of [Guen 03] could be considered. One of its slight drawback is that
the transition between a slow motion and immobility is sharp.




Figure 10.2: View of the stacking case for 100 particles
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Figure 10.3: Time evolution of the kinetic energy (logarithmic axis) of a 50 particle system
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Chapter 11

Fluid-structure interaction

11.1 Formulation and time coupling

The fluid-structure coupling is one of the major aims of the fictitious domain methods for the
Navier-Stokes equations. The first difficulty lies in the amount and the diversity of the numerical
methods required to treat the coupling. The coupling method itself is one of the key point and
determines which complementary methods will be implied. In a one-way coupling, the solution
is desired in one media only (the fluid or the solid). The case where an object has an analytical
velocity is considered as a one-way coupling. Methods allowing a one-way coupling to be fully
performed have been treated in the previous chapters of the present document. In a two-way
coupling, both fluid and solid are dynamically interacting each other. The two media are governed
by a priori different physical laws and a simultaneous resolution of all the equations involved is
a priori a delicate issue. For instance, the incompressible Navier-Stokes equations with Dirichlet
boundary conditions are used in the fluid domain €2

0
p(altl—k(u-V)u) =pg+V-oin Q
V'HIOinQO
u = upq on I

u = upg, on 0

with & = 2uD — pl the stress tensor and D = 1(Vu + V7u) the deformation tensor. The
constraint (11.1d) is a consequence of the non-slip condition required on the boundary 0f2; of
the objects.

In the solid domain, the equations of the solid dynamic can be used:

dU;
mi—— =F;
4 f? (11.2a)
Ii dtl = Ti —w; X (Ilwl)
where F; and T; are defined in the present case as
F; :/ g d:z:+/ ondx (11.3)
Q; o8

T, = / (x —X;) x o.n dz. (11.4)
o9
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This formulation requires two alternate resolution steps. The Egs. (11.1) are solved with a
Dirichlet condition on 0€); given by the velocity of the solids at the precedent time step. The
resulting wall forces exerted on 0f2; are then used to solve Eqs (11.2). This method is used in
[John 96| and seems to have the worst temporal accuracy. However, an iterative process can be
performed inside a same time step to increase the temporal accuracy [Hu 92|. Concerning the
solution on the Eulerian grid inside the solid, one can impose the solid velocity for u in €2; with
the rigid motion relation

u(z) =U; +w; x (x—X;) (11.5)

This approach is used in [Shar 05]. In [Coqu 08|, authors use this method with a penalization
formulation while the Navier-Stokes equations are solved with a vortex method [Cott 04]. A
theoretical study of the method is presented in [Bost 08a, Bost 08b]. In [Lamb 09], authors
simulate flows inside an isolated rotating tank and its destabilization. As a rotating frame is used,
the walls are immobile while complementary terms are added to the Navier-Stokes equations.

The DLM method of Glowinski (see section 3.3) proposes a time implicit formulation of the
coupling by using a variational formulation. However, a time-splitting method is used to solve
the unique set of equations and the coupling cannot be considered as implicit.

A fully implicit method is obtained with the ITP method (see section 2.3) where the stress
tensor is penalized while the divergence free constraint is ensured with an augmented Lagragian
method.

For the spatial coupling, see the part II of the present document.

All these approaches use the following property:

Property 11.1.1 u(x) =U;+w; x (x—X;) & D=0

The proof of this classical result can be found in [Tema 01, Bost 08b, Lefe 07].
In the present work, the coupling approach of [Coqu 08| is combined with the SMP method
(section 7)and the AL method (section A.3.4). The following walkthrough is performed

e The penalized NS equations are solved

~n+1 _ ..n
p (“At“ Fut - vart!) - v(dr - artt)

- . . 11.6
U g+ - (TE T ) 1Y it w0
k/xkENl*
The pressure is then updated using
= pt —drv ot (11.7)
with (@™t!, 5"t1) the solution of this first step.
e The fluid wall forces F,{ and torques Tlf applied to the solids are computed
e The solid dynamic is updated with
/ . F’L n+1
n _ 711N -
U’ B = U} + Atmiﬂ
Xnrrl — X 4 AtUT
Vi e O, ¢ i T tUn”H _ (11.8)

n n
wi x Hf

)

Wit = WP + At

o't =07 + Atwit!

with O the set of indexes of the solids.
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e The Eulerian implicit surface functions of each objects (x;, ¢i, and C;) are updated

e The Eulerian velocity and pressure in the objects are updated. At the Eulerian nodes x in
Q;(¢"*1), the new solution is

0"t (x) = UM 4 Pl x (x — X (11.9)
p"t=0 (11.10)

An additional correction has to be done. Here comes the main difference with the first-
order penalty algorithm. As explained in chapter 7, the solution (a"*!, 5" *1) is not physical
for the nodes in Q; near 9€Q;. At time t"*! the previous step put a physical solution in
the solids. However, the field ("™t p"t1) is obtained for solids located at €;(t) while
the correction is applied in Q;(¢"*1). Hence, the correction has to be extended to the
nodes for which |x;(t")(x)].|]1 — x:(t""1)(x)| = 1. We define a new Heaviside function
i ("), = max(y; ("), [ (87) (%) ].]1 — x: (87 T1)(x)]) The velocity "1 (x) in the whole
domain is

) =Yy (U;?“ + Wit (x—xgﬂ)). (11.11)

jeo

The final correction consists in solving

0
84; = Bx(@ — u) (11.12)
with X = > X;. Asin [Coqu 08|, we choose # = 1/At so the following semi-discrete form
jeoO
is obtained:
un+1 _ ﬁn+1 >—<n+1 (ﬁn+1 _ ﬁn+1)

= . 11.13
At At ( )
Hence,
ntl { a" ! where y =1 (11.14)
u =
a" ! elsewhere (11.15)

One can notice that the algorithm for the first-order method is retrieved if for all objects
Xi = Xi-

Remark 11.1.1 The solution is divergence-free inside each subdomains. Howewver, the
solution is not generally divergence-free for the whole domain as its derivatives are not
continue at the solid-fluid interfaces.

11.2 Wall force calculation

11.2.1 Theoretical definitions

The fluid force F{ applied to a particle P; is

7

F/ = / ondS = (2uD —plId) .n dS (11.16)
6Q¢ aﬂi
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The resulting force is decomposed in two parts:
P — —/ (pId) . dS (11.17)
o0
F; = / (2uD) .n dS (11.18)
0Q;
with F¥ the pressure force and FY the viscous force.

11.2.2 Numerical method

The numerical computation of the wall forces are often used in the literature of the fictitious
domain methods where the accuracy of the drag force of a particle is a common test case.
Nonetheless, the details of such a calculation are rarely explained. For the first-order methods, the
integral method proposed by Caltagirone [Calt 94] is simple and well suited. When higher orders
fictitious methods are used, a more accurate calculation is desirable. The approach described
here is close to the one explained in [Mark 08]. One can suppose that many authors use the same
approach.

The theoretical force calculation requires to know the pressure and the deformation tensor
of the velocity on the fluid-solid interface. The tire surface is discretized as a Lagrangian surface
composed of triangular elements. The fluid field is only defined outside of the object (excep-
tions will be discussed later) and the interface does not generally match the location where the
quantities are discreetly expressed (the Eulerian nodes). As a consequence, a quantity has to be
extrapolated from the fluid domain to the interface and the first step is to define points in the
fluid to build the interpolations. For each element o; of ¥, (the discretization of X), we define
x; the barycenter of the element and n; its outward local normal at x;. Fluid points are then
defined at the locations

n,
Xik:xi—i_kmax(Ax,Ay,Az)’ k=1,.,3 (11.19)

The discrete values of a given field ® (pressure, derivative...) are then interpolated on the
Lagrangian points x;;. For each x;;, the Eulerian points used to interpolate ® in x;; are denoted
xgk, 7 =1,..., 8maz With S;,q. the number of Eulerian points of the stencil of the considered
interpolation function. Using two or three Lagrangian points and more related Eulerian points to
interpolate ® on o; produces an interpolation with a large stencil. Furthermore, each extrapolated
value of a component of D is itself a centered derivative which enlarges again the stencil. Hence,
two constraints opposed themselves:

e The calculation and the interpolation on the points z;; of the stress tensor requires a large
stencil, so the tensor has not to be taken too close to the considered element o;.

e A point inside the solid could be accidently used to compute the extrapolated values of D
if the Lagrangian points x;; is taken too far from o;.

To a smaller degree, these constraints remain valid for the computation of the pressure at the
interface. The occurrences of such problems varies according to the complexity of the interface.
A convex shape does not generally induces such effects and the study of the wall forces on a
sphere is easily performed. For shapes with concavity such as a tire with complex patterns, the
troubles increases with the curvature of the shape.
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However, if the ratio of the magnitudes of the pressure forces and the viscous forces is such
that the viscous forces are negligible, the wall forces calculation is easier to perform. The pressure
field is directly available on the grid, and one can simply take its value at the closest fluid node.
If a calculation of higher order of the pressure is required, two methods can be used to prevent
the troubles induced by the curvature of the interface.

Here are some methods to increase the robustness and the accuracy of the method:

e A simple solution is to use adaptive interpolations such as the kernel functions (see appendix
C.2). The kernel functions are commonly used to interpolate a quantity from a Lagrangian
grid such as a particle field. Hence, they are well designed to take only valid nodes. The
same effect can be obtained by using a combination of polynomial interpolations which
requires an additional implementation effort.

e Fach quantity cannot be directly interpolated from the Eulerian grid to the interface as
the quantities does not numerically exists, or are not relevant, in the solid media. The idea
is to extend the quantities from the fluid domain to the solid domain. Let us consider a
quantity ®. The field ®"*1! is obtained from the resolution of the Navier-Stokes equations
at time n + 1. The fluid domain is Qg and €25 is the solid one. The following problem is
solved:

1
V3o + g(<1>’ — "ty =0 (11.20)

with € a penalty parameter such as

€—>OinQQ

€ — +ooin

The resulting property,
Property 11.2.1 "1 € C%(Q) = & € C°(Q)

allows us to interpolate ®' from the Eulerian grid to X;. As a Neumann condition is not
imposed on ¥ for the problem (11.20), ®’ is not in C'. Hence, if ® is the velocity, one
cannot use it to calculate D.

e The number of points x;; involved in the extrapolation has to be chosen according to the
global topology. If two elements o; of ¥p are face to face, taking a x;; to compute a
quantity for a first element is not ideal if X;; is closer to the other element. The Level-Set
function ¢ can be used to detect such a situation. For a given element, the points x;; are
taken on the ray R parametrized as:

xg(t) =x,+tn, t € RT (11.21)

For a fixed element o; of ¥}, let us consider two variable parameters t1, to € R* such as

0 < t1 < to, two constants tep, the € RT such as 0 < t; < to and three subsets of RT: R,
Ry and R. defined as follows:

YVt € Ry, V' € Ry, t <t ( )

Vt € Ry, Vt' € Re,t <t/ ( )

Ra = {t € RT ¢(t2) < ¢(t1) and ¢(t2) — d(t1) = |xr(t2) — xr(t1)|} (11.24)

Ry = {t € R*,0(t2) < 6(t1) and 6(ts) — 6(t1) # Ixr(ts) —xp(t)]}  (11.25)

Re={t € RT, ¢(t2) > ¢(t1)} (11.26)

the following properties are deduced:
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Property 11.2.2 t € R, = |xr(t) — x| = ¢(xr(t)), i.e. oy is the closest element to
XR(t).

Property 11.2.3 ¢ is generally not differentiable in xR (tap).

Property 11.2.4 ¢ is generally not differentiable in xg(tp.) and xg(tpe) is a local ex-
tremum of ¢.

Hence, using a point xz(t) when ¢t € R, is relevant, and is irrelevant if ¢ € R, as the
physics in xg(t) cannot be considered as local from the point of view of ;. The property
11.2.3 can be used to build a surface 7,. The property 11.2.4 can be used to build a surface
7. Then, a point xz(t) can be taken for the extrapolation of ® while the ray R has not
crossed 7. (i.e. t < tp.) and eventually 7y (i.e. t < tq). This last point has to be studied
further.

As a conclusion, if the field @ is prolonged, the chl functions can be directly used. If the initial
field ®"*! is used, the kernel functions are more designated.

The locations of the various requested quantities are not the same if a staggered grid is used

(which is the case in the present work). Let us write the 2D deformation tensor:

ou o
ox Oz
Oy Oy

On a staggered grid, the natural position (when centered derivative are used) of the diagonal
terms are the pressure nodes. For the extra-diagonal terms, their natural locations is neither at
the pressure nodes nor at the velocity nodes. The Fig. 11.1 shows the natural location of the
components of the tensor. In Thétis, these nodes are called viscosity nodes (One can notice that
the combination of the locations of the pressure, velocity and viscosity nodes defines a new regular
grid). These components can be interpolated to the pressure nodes to obtain D in a unique node

ou | py f ou | ay
Y[ ox Y | ox

Ou _ Ov
» a‘a »

ov f ov

au o
| o (o

Figure 11.1: Location of the components of the deformation tensor

in order to use a unique extrapolation per elements to find all the physical quantities at the
interface. However, as each quantity is interpolated then extrapolated, additional interpolation
must be avoided. Hence, the extrapolation of D on ¥}, is done component by component from
their natural location.
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11.3 Validation

11.3.1 Settling of a cylinder

We first study the spatial convergence of the method which is expected to be of second order. A
cylindrical particle is dropped in a tank of dimensions [ x L = [—0.005; 0.005] x [ —0.02; 0.005]
in meters. The initial velocity is zero and its coordinates are X; = (0,0). The cylinder has a
radius 7 = 0.001m so the confinement k = 2r/l = 0.2. The Faxen theory (see [Happ 63]) gives
the resistance force of the fluid on a cylindrical particle with respect to the terminal velocity Us:

B A pUso
~ In(1/k) — 0.9157 + 1.7244(k)? — 1.7302(k)4

F (11.28)

whereas the buoyancy force is F' = (py — pp)7r47°2g. The physical parameters are chosen such as
Re = 1.85 x 107*. The Faxen theory is defined for Re < 1 and for a tunnel of infinite length.
Practically, a no-slip boundary condition is imposed for all the walls. As proven by the good
and regular obtained results, the presence of an upper and a lower wall does not influence the
behavior of the particle.

The Fig. 11.2 shows that the convergence of the terminal velocity Uy reach a second order in
space. As can be seen, the I'TPM is more accurate for the coarsest meshes but does not converge

1.00E+00 . .
10 100 1000
o
£
S  1.00E-01
c
o
S
@
(]
2
& 1.00E-02
(]
o
y=273.8x18
1.00E-03
Mesh

Figure 11.2: Relative error on the terminal velocity for the SMPM and the ITPM

to the desired solution (even if the difference is slight). In fact, the SMP methods can impose
the penalty constraint to machine error accuracy. The ITPM penalizes the viscosity in the solid.
Due to the numerical deterioration of the matrix conditioning, the ratio of magnitude between
fluid and solid viscosities has to be limited. Even with a direct solver, the solid cannot have an
infinite viscosity and the calculation cannot converge to the real value. The Fig. 11.3 shows the
evolution of Uy through the time. For coarsest meshes, the displacement from a cell to an
other produces a periodic noise on the terminal velocity which oscillates (for the convergence,
the average value is considered). The Fig. 11.4 shows the velocity magnitude for the first four
meshes at ¢t = 4s. The velocity field near the particle is qualitatively quite similar for the four
meshes. Globally, the position of the particle differs, especially for the two first meshes. By
experience, we know that the force calculation for a given surface element is dependant to its
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Figure 11.3: Time evolution of the terminal velocity of the particle for various meshes

| | | l | | I

2E-05 4E-05 6E-05 8E-05 0.0001 0.00012 0.00014 0.00016 0.00018 0.0002

Figure 11.4: Velocity magnitude in m.s~! at t = 2s for 25 x 62, 50 x 125, 100 x 250 and 200 x 500
meshes

relative position in a given grid cell. Fig. 11.5 shows the evolution of the settling velocity on a
25 x 62 mesh for SMPM and ITPM. As can be seen, the solution is very regular for the ITPM
and closer to the analytical result.
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Figure 11.5: Comparison between the SMPM and the I'TPM for the time evolution of the terminal

velocity

11.3.2 Calculation of the wall force in a spherical particle

A convergence test for the calculation of the hydrodynamic force on a particle is performed. A
sphere of radius 0.25m is immersed and centered in an unit box. The analytical solution of the
unbounded flow for Re = 0.01 is imposed [Happ 63]. The Fig. 11.6 shows the convergence of the
draft coefficient Cp. The global convergence order is 1.50. However, the order tends to 2 when
the mesh step size decrease. One can see that the accuracy for the coarsest meshes is quite poor.
However, the error goes under 10% quite quickly. Furthermore, a separate convergence for the
viscous and the pressure forces would be desirable as the two quantities are not obtained in a

Salne manner.
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Figure 11.6: Convergence of the drag coefficient for a sphere at Re = 0.02
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Discussion and conclusion of Part IV

A real-time code for the simulation of solid interaction, Dresden, has been created. The aim
was to easily define a collision algorithm to implement it in our CFD code. Dresden provides
promising results for the cases involving a large amount of objects. The algorithm has to be
enhanced for the case of the static stacking. An additional model of viscous interactions for the
case of fluid-solid coupling would be desirable [Lefe 07].

A fluid-structure coupling has been designed by combining the SMP method and a high-order
computation of the hydrodynamical forces on objects. A second order of spatial accuracy has
been reached. Concerning the time accuracy, a classical time-splitting approach coupled with
a first Euler scheme has been considered. However, settling of the particle tends to a constant
terminal velocity, so constant hydrodynamical forces, and a time scheme of higher order cannot
enhanced a constant velocity. In [Vinc 07], the time splitting is avoided by using the I'TP method
(see section 2.3) so the solid velocity is implicitly computed simultaneously with the fluid velocity.
The spatial accuracy is of first order only at the vicinity of the objects. The performances of both
method has been compared on a simple case. The ITPM has clearly shown the best accuracy
except for the finest meshes. In fact, the ITPM does not consider a perfectly rigid movement
inside objects so the model does not converge to the physical solution. However, the difference
between the physical solution and the converged numerical solution is very small. The SMPM
method with its time-splitting is more accurate for the finest meshes on our simple case (the
settling of a cylinder in a Stokes flow). However, such a ratio mesh-quality /complexity of flow is
practically never reached in realistic cases.

Concerning the wall forces calculation, this high-order method suffers from many limitations,
especially time oscillations of the calculated forces for the coarsest meshes. Its application to
complex geometries is sometimes difficult, especially for convex meshes with high curvature.
Some ideas to enhance this point have been proposed.

To conclude, the ITPM is clearly the most interesting method and the next step will be to
couple our Eulerian-Lagrangian mesh projections with the ITPM so as to use it with complex
meshes (only cylinders in 2D and spheres in 3D have been treated for now with the ITPM). The
final step would be to increase the spatial accuracy of the ITPM thanks to the AIIB method.
The Dirichlet BC imposed with the SMPM could be replaced by interface conditions to obtain
an implicit resolution and an accurate imposition of the jump conditions. Furthermore, the ITP
formulation implicitly transmit the forces from a media to an other and so does not require
a complex calculation of the hydrodynamical forces on the objects (as explained before, this
process suffers from robustness problems when the considered object is non-convex or is close to
an other object).
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Part VI

Industrial applications
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Introduction

HE industrial application is one of the motivations of the present work. The step between
the basic validation of a method on academic cases and its application to real case is
sometimes huge. The fluid simulation often involves very high turbulent flows requiring dense
calculation meshes. The immersed objects are sometimes composed of millions of elements. For
this last point, it is critical to treat these Lagrangian meshes with fast algorithms and naive
methods cannot be used practically. The ability of our methodology to treat complex cases is
demonstrated through the following realistic cases. The first one, the flow inside a drilling bit, is a
one-phase turbulent flow. The next case studies the hydroplaning of a tire. Two-phase turbulent
flows are involved while a complex moving mesh is used for the tire. The last case details the
simulation of the natural convection in the cave of Lascaux. In a last chapter, illustrative cases
are presented. These simulations have been carried out by members of the laboratory TREFLE
with Thétis and the present methodology.
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Chapter 12

Simulation of a drilling head

HIS work was a part of a project founded by the Aquitaine Region Council and leaded by
Varel (Alfazazi Dourfaye). Varel manufactures drill bits for the global oil & gas drilling
community as well as for the blasthole mining, industrial, construction and water well drilling
communities. The other participants was the laboratory TREFLE (Arthur Sarthou, Stéphane
Vincent and Jean-Paul Caltagirone) and Armines (Laurent Gerbau).

The aim of the project was to enhance the performances of the Varel drill bits used for the
oil extraction. The part of the work related to this thesis was the simulation of the mud flows in
the drill bits and the removal of the rock chips.

The final report is presented here. For the second part, where a parametric study is per-
formed on five different drill bits, the figures with the considered drill bits have been removed for
confidentiality reasons. The shape of these bits is about the same as for the three firsts presented
in the first part.
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12. SIMULATION OF A DRILLING HEAD

/\
VAREL Ui MOd

Projet Varel — Aquilon

Rapport final

Présentation du projet

L’objectif de la partie TREFLE du projet est de simuler les écoulements de boues dans
des tétes de forages, puis d’étudier I’évacuation de copeaux de roche. Ce projet nécessite
I’utilisation d’un outil de mécanique des fluides basé sur des modélisations compressibles
capables de gérer des obstacles de forme complexe (té€te de forage) et leur mouvement. Nous
avons décidé d’utiliser Aquilon (appelé maintenant Thétis depuis Novembre 2008),
bibliothéque de calcul scientifique en mécanique des fluides et transferts développée dans
I’équipe MFEN du TREFLE. Certains développements ont ¢té nécessaires dans le code
Aquilon pour mener a bien le projet :

e L’écoulement dans les tétes se fait a haute vitesse a des nombres de Mach pouvant
atteindre 0.3. Ainsi, nous sommes partis d’un modéle de résolution incompressible
existant dans Aquilon. Celui-ci doit cependant pouvoir prendre en compte les effets
compressibles isothermes au travers de termes de dilatation.

e Aquilon utilise des maillages structurés fixes. Les tétes sont des objets complexes en
mouvement qui nécessitent donc le développement d’outils et de méthodologies
spécifiques de gestion de maillages pour pouvoir représenter les effets de la téte a
chaque instant sur un maillage qui n’est pas adapté a la géométrie. Nous avons ainsi
mis en ceuvre des méthodes de domaines fictifs.

e Le suivi des copeaux dans 1’écoulement a I’intérieur du forage prés de la téte a été
réalisé par une méthode lagrangienne. A partir du champ de vitesse eulérien on suit les
copeaux dans leur mouvement grace a une méthode mixte eulérienne/lagrangienne. Un
module lagrangien a été développé pour traiter la génération et du suivi des copeaux
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Hydrodynamique

Une boue aux caractéristiques proche de I’eau est injectée dans la téte par la zone
rouge et ressort par la zone bleue (Figure 1). La téte de forage est en rotation a vitesse
constante. Des copeaux de roches apparaissent au niveau des taillants et sont entrainés par le
fluide. La vitesse d’injection est de I’ordre de la dizaine de m/s ce qui rend 1’écoulement
fortement turbulent dans certaines zones. Les Reynolds sont ainsi de I’ordre de la dizaine de
milliers tandis que le nombre de Mach peut atteindre 0.3. Dans les zones de resserrement la
vitesse peut étre de I’ordre de la centaine de m/s. L’écoulement reste laminaire au niveau de
I’injection avant d’€tre turbulent au niveau des taillants. L’intensité turbulente décroit
généralement au niveau des canaux latéraux d’évacuation.

Relaminarisation Zone fortement

turbulente

Injection laminaire

Figure 2 : Caractérisation de [’écoulement
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Advection de copeaux
Modeles numériques

La bibliothéque de calcul scientifique Aquilon

@quilon |

L’outil Aquilon est un simulateur volumes finis sur maillages structurés. Ses
caractéristiques principales sont les suivantes :

e Un schéma d’Euler du premier et du second ordre est utilisé¢ pour les dérivées en
temps et un schéma centré du second ordre pour les dérivées en espace

e Larésolution du systéme linéaire est effectuée par divers solveurs :

o Solveur itératif : Bi-Conjugate Gradient Stabilised (BICGSTAB) [VAN 92]
pour la résolution de la matrice preconditionnée avec une méthode LU
incomplete modifiée

o Solveurs directs : PARDISO, MUMPS

o Solveur parallele : HYPRE

e Le suivi d’interface est effectué¢ principalement par une méthode VOF Piecewise
Linear Interface Construction (PLIC) [SCA 99] pour la résolution de I’advection de
fractions volumiques et implique une faible diffusion numérique

e La résolution du couplage vitesse-pression et de la contrainte d’incompressibilité des
équations de Navier-Stokes est obtenue par une méthode de Lagrangien Augmenté
[VIN 04]. La discrétisation des équations devient :

n+l n
p [711 A;u +V-(U“®u"”)J+b(u—uD)=—Vp”+V-(y [V + (v w4 V(v -um)

pn+l - pn _rv . un+l

ou u est la vitesse, ¢ le temps, p la pression, p la masse volumique, 4 la viscosité dynamique et
n I’indice de I’itération temporelle correspondant au temps n At.

Le terme V(rV~u"”) est un terme de pénalisation associé a un lagrangien (la pression) qui

force I’incompressibilité de 1’écoulement. La seconde équation permet d’accumuler une
contrainte de divergence dans la pression par la méthode d’Uzawa. L’utilisation du
Lagrangien Augmenté permet de s’affranchir d’une étape de correction de pression et rend
ainsi totalement implicite la résolution fluide au cours d’un pas de temps. Son principal défaut
est de rendre la matrice plus difficile a inverser. Un bon choix du parameétre r est crucial. Plus
r est grand et plus ’incompressibilité est assurée, mais plus les autres termes de 1’équation
deviennent petits et donc leurs effets risquent de disparaitre au cours des itérations si un
solveur itératif est utilisé.
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Le suivi lagrangien d’especes est effectué avec une méthode VOF Sous Maille (VOF-
SM) qui couple des aspects lagrangiens et eulériens et assure un trés bon transport des
especes. [BAL 07]

La gestion des objets

Diverses méthodes de domaines fictifs dites de pénalisation permettent de prendre
efficacement en compte les objets. La méthode VPM (Volumic Penalty Method) consiste a
ajouter un terme b(u —u,) aux équations de Navier-Stokes qui deviennent :

n+l1 n
» (u -u +V,(uﬂ®u“+l))+b(u"”—uD)z—Vp"+V-(,U [Vu™ +(V w7 )+ V(v - u)

At

On pose h=0dans le milieu fluide et »=10"dans le milieu solide. Ainsi, dans le solide,
I’équation de conservation de quantité de mouvement devient simplement :
unﬂ — uD

La vitesse est imposée a I’ensemble de la maille méme si celle-ci n’appartient que
partiellement au domaine solide. De par cette approximation, la méthode VPM est d’une
précision en espace du premier ordre seulement. La méthode de pénalisation de sous-maille,
ou SMPM [SAR 08], améliore la VPM en proposant une précision du second ordre.
Toutefois, I’impact de la complexité de I’écoulement dans le cas qui nous intéresse sur la
SMPM n’a pas encore été étudié. Nous utiliserons donc uniquement la méthode VPM pour le
moment, sa relative imprécision étant compensée par la forte densité du maillage utilisé.

La méthode VPM nécessite une localisation des mailles appartenant au milieu solide.
Elle est ainsi couplée a une méthode de Ray-Casting qui permet de projeter sur une grille
eulérienne un objet défini par une surface lagrangienne, c'est-a-dire un maillage triangularisé
de la peau de la téte de forage. La méthode de Ray-Casting nécessite le calcul de nombreuses
intersections rayon/triangle et peut donc demander énormément de temps de calcul dans sa
version naive. Une méthode « colonne par colonne » a été développée afin d’accélérer le
processus.

Modélisation

La rotation différentielle de la téte par rapport a la paroi pose localement des
problémes de divergence discrete. La vitesse de rotation étant petite par rapport a la vitesse de
I’écoulement, on négligera la rotation différentielle téte/paroi. On utilisera les équations de
Navier-Stokes en repére mobile pour prendre en compte une rotation globale du domaine de
calcul a la vitesse de rotation de la téte.

La condition d’entrée est de type Dirichlet constante, la condition de sortie impose un gradient
de vitesse normal nul et une vitesse tangentielle nulle.




170 12. SIMULATION OF A DRILLING HEAD

Gestion des copeaux

Les copeaux sont de petits morceaux de roche de taille millimétrique. On fait les
hypothéses réductrices suivantes :
e Les copeaux n’influencent pas I’écoulement et on travaille donc avec un champ de
vitesse stationnaire pré-calculé
e Les copeaux sont advectés passivement sans prise en compte de leur inertie
e Les copeaux n’interagissent pas entre eux. Rien ne limite le nombre de copeaux dans
une zone.
e Tous les copeaux sont de taille et de masse identiques
Ainsi, il n’est pas possible de modéliser le phénomeéne en temps long de « cake » engendré
par une agglomération de copeaux. Le modele défini ici permet toutefois d’étudier la
dynamique instantanée des copeaux et de cibler les potentielles zones mortes ou
d’accumulation. Il permet aussi d’utiliser un unique champ de vitesse calculé au préalable.

Les copeaux sont représentés par des particules auxquelles un volume égal a celui de la maille
de calcul est associé. A chaque pas de temps, les particules sont advectées puis la quantité
qu’elles transportent est projetée sur le maillage eulérien pour obtenir la concentration
eulérienne. Cette projection facilite la visualisation des zones de forte concentration et offre
un post traitement plus aisé.

Zone de génération des copeaux

La génération des copeaux est faite dans une zone située a proximité des taillants.
Cette zone doit étre définie explicitement a I’aide d’un maillage lagrangien surfacique
triangularisé. La définition de cette zone comme étant un ensemble de tubes a proximité des
taillants (Figure 3) a été initialement utilisée puis abandonnée car la définition des tubes était
complexe. La méthode nouvellement retenue consiste a extruder la surface des taillants afin
de générer un volume d’injection. (Figure 4)

Figure 3 : Zone de génération de copeaux créée avec I’ancienne méthode
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Figure 4 : Nouvelle méthode de définition de la zone de génération de copeaux

L’injection est effectuée en initialisant des particules dans les zones d’injection. Ces injections
se font par salves. Les copeaux étant advectés passivement, le fait d’injecter en continu ou par
salves n’a pas d’influence sur les résultats.
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Résultats

Premiers tests hydrodynamiques

Les premiers tests sur I’hydrodynamique ont été menés sur 3 tétes de diametre 6°,
8.12°,12.14°.

Configuration téte 6’
Caractéristiques physiques du cas :

Q=12.56-209rad.s™
1=0.025kg.m s

p =1300kg.m™

d =2000/. min"' =3.33.107m’.s™
Vig = 29.4m.s™

Ro,, =V, /1QL,, =100

Re,, =60000

pression

BE+06
TE+06
BE+06
5 SE+06
AE+068
3E+06
2E+06
1E+06

-1E+06
-2E+06
-3E+06

Figure 5 : Lignes de courant norme de vitesse et pression pour la téte 6°
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Configuration téte 8.12’

Caractéristiques physiques du cas :

Q=12.56-20.9rad.s™'
1 =0.025kg.m™ s

p =1250kg.m™

d =2800/.min"' =4.6.10m’ s
V,y =18.9m.s™

Ro,, =V, /QL,; =323

Re,, = 26400

f
S

X Pression

2A4E+07
2.25882E+07
| 2.11765E+07

1 57647E+07
= 1.83529E+07
7 1.69412E+07
1.55284E+07
1.41176E+07
127058E+07
1.12841E+07
©.88235E+06
8 4T059E+06
7.05882E+06
564706E+06
423528E+06
2.82353E+06

1.41176E+06
o

Figure 6 : Lignes de courant, norme de vitesse et pression pour la téte 8’12
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Configuration téte 12.25’

Caractéristiques physiques du cas :

Q=8.37-20.9rad.s
1=0.026kg.m™.s™

p =1150kg.m™

d =3500/.min" =5.83.107°m’.s™"
Vg = 13.5m.s™"

Ro,, =V, 1QL,; =10

Re,, =22000

Figure 7 : Lignes de courant, norme de vitesse et pression pour la téte 12.25°
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Ecoulement

Quelles que soient les té€tes, on remarque plusieurs caractéristiques communes.
L’injection se fait dans une premiére zone cylindrique dans laquelle I’écoulement reste
laminaire. On observe dans certains cas une recirculation quand le rayon du tube augmente a
une de ses extrémités (tétes 6 et 8.12°). L’écoulement se divise ensuite en trois ou six tubes
de plus faible section ce qui induit une forte perte de charge et une augmentation de la vitesse.
C’est dans cette zone que I’écoulement est le plus rapide. On observe une surpression sur la
paroi supérieure du domaine 1a ou impactent les jets sortants de ces tubes (Figure 8). La
présence de ces jets a tres forte vitesse dans la partie supérieure de la téte dont la forme est
trés irréguliere rend I’écoulement trés turbulent. Les nombreuses recirculations peuvent
générer des zones mortes qui perturbent la bonne évacuation des copeaux. Le fluide s’échappe
ensuite le long des parois latérales de la téte. La régularité de cette zone engendre une
relaminarisation de 1’écoulement.

pression

24E+07
2.25882E+07
2.11765E+07

1.97647E+07
1.83529E+07
1.69412E+07
1.55294E+07
| 1.41176E+07
1.27059E+07
1.12941E+07
9.88235E+06
8.47059E+06
7.05882E+06
5.64706E+06
B 4.23529E+06
2.82353E+06
1.41176E+06

0

Figure 8 : Pression a la surface du domaine. Mis en évidence des surpressions dues
aux jets impactants

Zone fortement

Relaminarisation turbulente

Injection laminaire

Figure 8 : Caractérisation de [’écoulement
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Etude paramétrique de cinq tétes

Afin de valider notre modélisation, nous effectuons maintenant une étude complete
comparée de cinq tétes différentes. Les comparaisons concernent I’hydrodynamique dans un
premier temps, puis I’évacuation des copeaux. Les paramétres physiques sont trés similaires a
ceux des études précédentes :

Q=12.56rad.s™

1 =0.026kg.m™ s
p =1150kg.m™
d=2.8/.min"'

Vg = 18.947m.s™
Ro,, =V, 1QL, =50
Re,, =47000

Le taux d’injection des copeaux est de 7%.

Présentation des tétes

Les parametres d’injection, de rotation ou de rhéologie sont les mémes pour les cinq
tetes. La seule différence réside dans I’angle d’incidence des lames (Figures 9 et 10).

Ratio des différentes
parties des lames

Dénomination

m 812_waveblade_01
m 812_waveblade_02
m 812_waveblade_03
® 812_waveblade_04

812_waveblade_05

Figure 9 : Schéma des angles d’incidence des lames pour les cing tétes

Hydrodynamique

Les conditions de simulation sont similaires aux cas précédent de téte 8’. Les
simulations sont effectuées sur deux maillages 60x60x70 (dit maillage 60) et 120x120x140
(dit maillage 120) avec des pas temps respectivement de 2x107s et 107s.
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La dynamique globale est la méme pour les cinq tétes et reste trés similaire a celle observée
avec le premier lot de trois tétes. Le tableau 1 montre les moyennes spatiales de la valeur
absolue de la vitesse ainsi que de la vorticité pour les cinq tétes :

Téte 1 2 3 4 5
Vitesse (m/s) | 10.0 9.95 9.98 9.72 9.91
Vorticité (1/s) | 232 227 229 223 230

Tableau 1 : Moyenne spatiale de vitesse et de vorticité pour le maillage 120 et t=0.017s

Les différences entre les tétes sont minimes, que ce soit pour la vitesse ou la vorticité. Le tracé
des iso-surfaces de vorticité montre que la vorticité maximale est toujours située dans les
canaux d’injections et se propage jusqu’aux zones d’impact des jets. On peut relever que la
différence de vorticité au niveau des zones d’impact entre les injecteurs primaires et
secondaires est plus grande pour les tétes 1,4 et 5.

Convergence

Nous étudions la convergence de la simulation en temps et en espace en utilisant les
criteres de vitesse moyenne et de vorticité moyenne pour la téte 1. Les figures 10 et 11
montrent la convergence au cours du temps de ces critéres pour ces deux maillages.
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Figure 10 : Convergence de la vitesse moyenne pour des maillages 60%60%70 et
120%x120%140 pour la téte 1
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Figure 11 : Convergence de la vorticité moyenne pour des maillages 60%60x70 et
120x120%140 pour la téte 1

La convergence de la vitesse est atteinte a t=0.015s pour le maillage 120 et a t=0.012s environ
pour le maillage 60. Le temps de convergence pour la vorticité est plus grand, de 1’ordre de
t=0.027s pour le maillage 120 et de t=0.017s pour le maillage 60. Concernant la magnitude
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des données physiques, on remarque d’assez fortes différences entre les deux maillages. Alors
que la vitesse moyenne est plus élevée de 15% environ sur le maillage 120, la vorticité est
presque deux fois plus grande sur le maillage 120 que sur le maillage 60. Les cas simulés sont
a trés haut Reynolds donc les plus petites échelles de la turbulence ne sont pas directement
simulées quelque soit le maillage (un mode¢le particulier de turbulence prend toutefois le relais
et permet de capter dans une certaine mesure le reste de la turbulence. Il s’agit d’une
modélisation des grande échelles, SGE ou LES en anglais, qui se base sur une séparation
d’échelles entre les grandes structures turbulentes qui sont résolues et les petites qui sont
mod¢lisées). Le maillage 120 capte donc des échelles de turbulence que le maillage 60 ne
capte pas ce qui réduit d’autant la vorticité sur ce dernier. Le but ici est de simuler
I’écoulement de copeaux et c’est justement cette turbulence qui provoque des zones mortes et
pénalise I’évacuation des copeaux. On ne peut donc pas se satisfaire d’un point de vue
physique d’un maillage trop grossier captant correctement la dynamique générale mais ne
produisant pas une vorticité suffisante. Malheureusement, la convergence de 1’écoulement
nécessite pour le maillage 120 prés de deux semaines de calcul en mono processeur ce qui est
trop long a 1’échelle des temps d’étude mis en place chez Varel Europe. Idéalement le temps
de calcul ne devrait pas dépasser 10 heures.

Copeaux

Une simulation de génération et d’évacuation de copeaux est menée sur les 5 tétes a
particr du champ de vitesse calculé précédemment. Ce champ étant stationnaire et les
particules n’interagissant pas entre elles, il n’est pas nécessaire de simuler les mouvements de
copeaux sur un temps long. Toutefois, la position des particules ajoutées dans les zones de
création est aléatoire, et I’augmentation du temps de simulation permet d’obtenir des
moyennes statistiques mieux convergées
Les quantités obtenues en sortie de calcul sont la vitesse et la position de chaque particule
ainsi que son age. Cette derni¢re donnée permet de repérer les zones ou les particules sont
piégées. Le tableau 2 montre le volume total de particules présentes dans les tétes au bout de
0.5s de calcul.

Téte 1 2 3 4 5
Volume (m°) | 1.40x10™ 1.22x10™ 1.21x10™ 1.41x10™ 1.77x10™
Tableau 2 : Volume de copeaux présent par tétes pour t=0.5s

Plus le volume est important et moins 1’évacuation est bonne. La différence de volume de
copeaux est au maximum de 30% entre la téte 3 et la 5. On constate aussi que 1’évacuation
diminue avec I’angle des lames.

La figure 15 montre la répartition des particules et leur dge pour la téte 3 au bout de 0.5s.
Dans les deux cas, on remarque la présence de zones mortes au niveau de I’évacuation ainsi
que dans la partie supérieure périphérique de la téte. Cette vue ne permet pas de discerner les
qualités d’évacuation des tétes et sert seulement a repérer les zones mortes.
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Figure 12 : Position et dge des particules au bout de 0.5s pour la téte 3

Conclusion de la partie simulation

L’objectif était d’obtenir un simulateur d’hydrodynamique dans les tétes de forage
avec une prise en compte de la dynamique et de I’évacuation des copeaux de roche.

La partie simulation hydrodynamique s’est appuyée sur le simulateur Aquilon/Thétis qui est
depuis longtemps utilisé pour traiter des cas industriels. Le projet a tout de méme nécessité le
développement d’outils de gestion d’objets complexes qui sont maintenant intégrés a la
version standard du code de calcul. Les résultats des simulations hydrodynamiques obtenues
sont ainsi totalement satisfaisants. Seule la durée des simulations en calcul mono-processeur
semble encore destiner 1’outil a une utilisation non R&D.

Pour ce qui est de la dynamique des copeaux, la marge d’amélioration du modéle est assez
grande pour les phénomenes émergeants aux temps longs, comme les effets d’agglomération.
En I’état, le simulateur donne toutefois une bonne évaluation des qualités d’évacuation en
temps court des tétes et permet en particulier de cibler les zones mortes.

Une nouvelle piste d’amélioration serait le développement d’un modele d’usure de la téte. On
peut en effet calculer I’effort fluide sur la téte. Ce dernier peut se traduire par une érosion de
la téte au cours du temps et donc une modification de la dynamique de I’écoulement. Cette
partie demande toutefois des développements supplémentaires assez techniques.
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Chapter 13

Aquaplaning of a tire

13.1 Introduction

The hydroplaning is a phenomenon resulting from the lost of contact between a tire and the road
when a vehicle is moving at a certain speed on a wet road. For a given velocity, the interaction
between the water laying on the road and the tire generates a water reserve in front of the
tire which is larger than the initial water depth. A resulting pressure is generated at the tire
surface around the contact area between the tire and the water reserve. When the vertical effort
generated by this pressure becomes superior to the weight of the vehicle, the contact between this
vehicle and the road is no more maintained and the hydroplaning occurs: the adherence between
the vehicle and the road is lost and the trajectory of the vehicle is no more controled. From
the literature, it is well known that the link between the vehicle velocity and the hydroplaning
pressure follows at first order [Tunn 06]

P, = KV? (13.1)

where Py is the hydroplaning pressure, V,, is the velocity of the vehicle and K is a constant equal
to half the density of water. This law is obtained under Bernouilli’s assumptions of perfect fluid
behavior. From the tire manufacturer experience, it is well known that the more efficient way
to increase P, for given wetting conditions of roads is to incorporate specific structures at the
tire surface. In this way, more incoming water is evacuated laterally, the water reserve generated
in front the tire is reduced for a given velocity and the hydroplaning effect appears for higher
vehicle velocities. This effect of the tire structure has been studied for example by Masataka and
Toshihiko [Masa] .

No existing experimental or theoretical studies are able to predict qualitatively the improve-
ment brought by the choice of a tire structure on the hydroplaning compared to a reference flat
tire whereas building a tire is very expansive. The aim of the present article is to propose a
numerical modeling dedicated to the prediction of hydroplaning effects and to the classification
of tire structures. This objective requires to account for three-dimensional turbulent free surface
air-water flows interacting with complex tire geometries.

Among the rare existing literature works in the field of the numerical simulation of hy-
droplaning, two studies are of interest. The first one concerns the three-dimension simulation of
the interaction between a free surface flow and a tire [Akse 96| . The second interesting work
[Cho 06]
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The numerical simulation of unsteady and incompressible isothermal multi-phase flows in-
volving macroscopic interfaces is classically achieved thanks to the single-fluid Navier-Stokes
equations [Kata 86, Scar 99b] and to Eulerian interface tracking methods such as the Volume
Of Fluid (VOF) method [Youn 82| , the Level-Set technique [Oshe 01] or the Front Tracking
approaches [Shin 02a] . These methods have been extensively compared and evaluated in the
last ten years and have demonstrated their qualities and drawbacks [Ride 95] . Once an interface
tracking method has been chosen, the major difficulty consists in solving the motion equations
for high density or viscosity ratios and large interface distortions. Near the interface, parasitic
currents or unphysical flow behavior occur when using, for example, time splitting projection
methods for simulating air-water or particulate unsteady flows. In these problems, the resolution
of the coupling between the incompressibility constraint and the Navier-Stokes equations is not
ensured in one of the phases due to the ill conditionning of the linear system or to the boundary
condition treatment. Consequently, this gives a wrong flow solution.

13.2 Numerical modeling of two-phase flows interacting with ob-
stacles of complex shape

13.2.1 The 1-fluid model

The modeling of incompressible two-phase flows involving separated phases can be achieved by
convolving the incompressible Navier-Stokes equations with a phase function C. As explained by
Kataoka [Kata 86] , the resulting model takes implicitly into account the jumps relations at the
interface [Delh 74, Scar 99b] and the interface evolutions are described by an advection equation
on function C":

V-u=0 (13.2)
0
p(aflt1 +(u-V)u) = =Vp+pg + V- (1 + m)(Vu+ V'u)) + Fy (13.3)
e B
o Hu-V0i =0 (13.4)

where u is the velocity, p the pressure, ¢ the time, g the gravity vector, p and p respectively
the density and the viscosity of the equivalent fluid. A mixed scale turbulence model is added
through the turbulent viscosity p; [Saga 98, Laro 08]. The surface tension forces are taken into
account thanks to a volume force Fy; = okn;d;. The surface tension coefficient o is assumed
constant. The local curvature of the interface is k whereas the normal to the interface is n; and
0; is a Dirac function indicating interface.

The 1-fluid model is almost identical to the classical incompressible Navier-Stokes equations,
except that the local properties of the equivalent fluid (p and p) depends on C| that the interface
location requires the solving of an additional equation and that a specific volume force is added
at the interface to account of capillary effects.

13.2.2 Discretization and solvers

The 1-fluid Navier-Stokes equations are discretized with finite volumes on an irregular staggered
Cartesian grid. The coupling between velocity and pressure is ensured with an implicit algebraic
adaptive augmented Lagrangian 3AL method (see section A.3.4.2). The augmented Lagrangian
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methods presented in this work are independent on the chosen discretization and could be im-
plemented for example in a finite element framework [Bert 97|. The linear system is inverted
with a BiCGSTAB II solver [Gust 78b|, preconditionned under a Modified and incomplete LU
method [Vors 92].

Concerning the interface tracking, a Volume Of Fluid (VOF) approach is used with a Piece-
wise Linear Interface construction (PLIC) [Youn 82]. This approach ensures the mass conserva-
tion while maintaining the interface width on one grid cell.

The numerical methods and the 1-fluid model have been widely validated by the authors
concerning jet flows [Vinc 99, Laro 09|, capillary flows [Vinc 00, Leba 04, Tron 08] , wave break-
ing [Lubi 06, Vinc 04, Vinc 07], material processes [Laca 06|, plasma to water jet interaction
[Vinc 09] and more generally turbulent two-phase flows [Labo 07, Vinc 08].

13.3 Three-dimensional simulation of hydroplaning flows

13.3.1 Description of the problem

The three-dimensional air-water flow interacting with a tire is considered for a road and tire
rotation velocity of 50km.h~!. The tire is a fictitious domain of imposed velocity which is ac-
counted for into the calculation grid by means of penalty terms imposing the velocity in all the
tire zone. As presented in figure 13.1, three tire geometries, called tires T'1, T2 and T3, are
considered, in order to evaluate the effect of the tire structures on the flow-structure interaction
and resulting forces exerted on on tire during hydroplaning. The tires are shown as they are
really projected onto the simulation grid. It is observed that only their bottom part is considered
in the simulation. On the road, the tire is in contact with the bottom boundary of the simulation
domain (empty parts of the tire surface in figure 13.1). It can be pointed that the tire structured
is not accurately described in the upper part of the calculation domain, due to grid coarsening
in these zones. However, the two-phase flow does not provide important features in these part of
the simulation, so their influence on the hydroplaning motion can be solved in a coarse manner.
At each time step, the movement of the tire structures, as well as the deformation of the tire,
are calculated thanks to a home-made software by MICHELIN, which provides us the triangular
surface elements defining the tire topology. The effect of the flow on the tire deformation are
not currently taken into account. The tire deformations are only due to the force exerted by the
vehicle.

The fluid characteristics are 1000kg.m ™2 and 1.1768kg.m =3 for the densities in water and air
and 1073 Pa.s and 1.85107°Pa.s for the dynamic viscosities in water and air respectively. The
surface tension coefficient o between water and air is assumed to be equal to 0.075N.m™!. Ini-
tially, a water layer lays upward onto the road with a height of 8mm on the total width of the road.

The simulation grid is exponential, with a refined area in the zone where the tire is in contact
with a road. The total number of cells in each directions is 270 x 110 x 80. The size of the cells
in the refined zone is 1mm in each direction, while the macroscopic dimensions of the simulation
domain are 1.4m x 0.291m x 0.6m. The grid structure in vertical and horizontal slice views is
presented in figure 13.2. All the simulations are computed on the same grid, which provides the
required cell density to obtain results independent on the numerical parameters. The calculation
time step is chosen constant and equal to 10™%s.
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Figure 13.1: Topology of the three considered tires called T'1, T2 and T'3 (from left to right and
top to bottom) - the tire structures are provided by MICHELIN.

13.3.2 Study of three-dimensional flows

The three-dimensional two-phase unsteady flow occurring when a water-air free surface hits and
interacts with a tire has never been studied numerically with a full unsteady description of the
two-phase motion and the corresponding efforts exerted on the tire. The typical flow structures
that are observed when the tire geometry changes are presented in figure 13.3. The free-surface
is represented by iso-surface C' = 0.5. The simulations are considered after the flow has reached
a stabilized state, i.e. the global shape of the free surface does not evolve during time. Whatever
the type of tire topology, the macroscopic flow structure is almost the same. A V-like free surface
form develops downstream the tire, a lot of water droplets are generated in the vicinity of the
rotating obstacle and a pressure peak is created on the forward face of the tire near the road.
The pressure projected onto the tire surface is described in figure 13.4. The flow is observed
with a bottom view perpendicular to the road. The simulated values of the maximum pressure
on the tire are in the range 80000 to 100000Pa. These values are in good agreement with the
experimental measurements of MICHELIN and the theoretical predictions provided by equation
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Figure 13.2: Structure of the calculation grid in an horizontal (top) and a vertical slice (bottom).

13.1:

P, = KV? = 96466 Pa (13.5)

with the constant K is equal to 500 and the velocity of the vehicle V,, is 13.89m.s~!. On a
two-phase point of view, it is observed that air tubes are generated when the water touches the
tire on the side and in the wake of the obstacle. Under surface tension and shearing effects,

these gas tubes break and generate bubbles and droplets, as can be observed in hydroplaning
experiments.
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Figure 13.3: Two-phase flow interacting with tires 7T'1, T2 and T'3 - the tire iso-surface is plotted
in grey whereas the free surface is represented in blue.
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13.3.3 Analysis of forces exerted on a tire by water

In this section, the vertical component of the normal force F,, exerted by the two-phase flow
on the tire is first studied. The positive and negative contributions of F,,, defined as F) and
F,, are introduced in order to estimate and discriminate the tire structure effect on the flow-
structure interaction. The behavior of F) and F), is proposed in figure 13.5. For the three tires,
the positive contribution of the vertical component of force F,, is 7 to 8 orders of magnitude
higher than the negative part F,, . This observation illustrates the hydroplaning character of the
fluid-structure interaction considered in this work.

The time evolution of F) admits a similar characteristic behavior for 71, T2 and T3. For
0s <t <0.01s, F increases until a maximum value between 800N and 900N. This time inter-
val correspond to time required for the incident water layer to wet the tire surface near the road.
For 0.01s <t < 0.02s, the positive part of the vertical force component decreases, corresponding
to the obtention of an almost equilibrium state between the incident water flow and the tire and
road dynamics. After this time, the effort reaches an average asymptotic value included in the
range 750N to 850N. The main difference between the flat and structured tires is observed in
the asymptotic region, for which the vertical force exerted by the two-phase flow is constant for
T1 (flat tire) whereas regular oscillations are numerically measured for 72 and 7'3, characteristic
of the tire structure.

The discrimination of the tire is now investigated by considering the evolution of the total
vertical force F), during time. These results are presented in figure 13.6. It is observed that
building a structure on a tire reduces by 20% the effort exerted by water on the tire, as observed
experimentally by tire manufacturers. As for F and F,, after the fluid-structure interaction
has reach a stabilized state for ¢ > 0.02s, F), linearly increases over time. This results in the
correlated increase of the ambient pressure in the calculation domain. The real effort exerted
on the tire after ¢ = 0.02s no more increases. This could be verified numerically by subtracting
the ambient pressure to the pressure calculated locally. The difficulty lies in the choice of the
ambient pressure in our simulations. However, the important feature here lies in the classification
of the forces resulting from the fluid-structure interaction according to the tire structure, which
is nicely established by the simulations. Contrary to the classification brought by F.f, the F,
curve demonstrates that the tire T3 involves a 5 to 10% in average lower effort than 72. For
these to tire geometries, the main difference lies in the opportunity provided by T3, due to its
shape design, to exert a negative vertical effort which compensate the value of F) and allows
F,, to be lower for T'3 than for T2.

A last interesting parameter can be extracted from the simulated efforts: the characteristic
frequencies arising when the tires are structured. It is recalled and observed in the simulations
that no typical periodic variations are observed for a flat tire, as expected. The best variable
allowing to measure the characteristic time variations of efforts is ), as observed in figure 13.5.
A zoom of the positive vertical contributions of F, is presented in figure 13.7. The analysis of
the F; signals allows to extract the characteristic frequencies fro and frs of tires 72 and T'3:

{ fr2 = 25/0.0892545 = 280H = (13.6)

frs = 32/0.0910765 = 351 H 2

It can be tried to correlate fro and frs to the typical tire structures presented in figure 13.8. A
frequency can be estimated by dividing the velocity of the road V,, = 13.89m/s by a characteristic
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distance. If the vertical distance between the tire structures is used, it can be demonstrated that

{ fro = 13.89/0.048 = 289H z

frs =13.89/0.04 = 347H 2 (13.7)

As a conclusion, it has been demonstrated that the fluctuations observed on the time evolution
of the efforts are directly dependent on the size of the larger structure of the considered tire.

13.4 Concluding remarks

The three-dimensional two-phase flow structure interacting with the tire are clearly simulated.
The corresponding efforts exerted on the tire are compared for three different tires. A classifica-
tion of the tire topologies is proposed with respect to the magnitude of the total vertical normal
forces, i.e. the flat tire involves a 20% higher effort than the structure tire. This demonstrates
that using structure tire clearly reduces the vertical force exerted on the tire and that in this case,
the hydroplaning will occur for higher road velocities. To finish with, characteristic frequencies
of structured tires are clearly observed. They are related to the size of the larger tire structure.
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Figure 13.4: Two-phase flow interacting with tires 11, 72 and 1'3 - the free surface is represented
in blue with translucency whereas the iso-colors describe the pressure projected onto the tire
surface.



190 13. AQUAPLANING OF A TIRE

| 800
800 |-
L 600
600 |-
g I 2400
§ P ib g Py ib
iti tributi iti tributi
5400 Negative contribution 5 Negative contribution
w w
200
200
= 0 -
0 -
) ‘ L P R T L
0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.1 0.12
Time (s) Time (s)
800
600
Z400
@
15 Positive contribution
° Negative contribution
e
200
0 -

1 | I
0.06 0.08 0.1 0.12
Time (s)

1
0.02 0.04

Figure 13.5: Time evolution of F,; and F, for tires T'1, T2 and T3 (from left to right and top
to bottom




191

1000 [~
800 |- j MUY
| W f"‘-‘“ " \
¥ WWMW it
i
i / \
=600
78' i
e
[T |
400
Tire T1
Tire T2
Tire T3
200
L I L I L I L
0.05 0.1 0.15

Time (s)
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Figure 13.8: Typical structure of tires 72 (top) and 73 (bottom) - a downside view of the tires
is presented at the contact area with the road.
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Chapter 14

The Lascaux cave

14.1 Context

ASCAUX is the setting of a complex of caves in southwestern France famous for its Paleolithic
L cave paintings (Fig. 14.1). The original caves are located near the village of Montignac, in
the Dordogne département. They contain some of the most well-known Upper Paleolithic art.
These paintings are estimated to be 16,000 years old. They primarily consist of realistic images
of large animals, most of which are known from fossil evidence to have lived in the area at the
time. In 1979, Lascaux was added to the UNESCO World Heritage Sites list along with other
prehistoric sites in the Vézére valley. Since its discovery, several problems have occurred, due
to the huge amount of visitors, and their release of vapor and carbon dioxide by their breath,
causing the formation of calcite and the apparition of green algae and mosses. The Minister of
Cultural Affairs (André Malraux) had the cave closed in 1963. The closure solved some of the
problems for a while and the Lascaux cave art returned to the state it was in the day of the
discovery. Since then, prehistorians, archeologists, geologists, hydrogeologists, have tried hard to
maintain the cavity in the most stable state possible, using remote metering to record the vari-
ations in temperature, hygrometry, and carbon dioxide gas pressure. The biological equilibrium
remained fragile and in 2001 colonies of micro- organisms, fungi and bacteria developed on the
rock edges and on the floor. This attack made the authorities and the Minister of Culture and
Communication create an international committee of the Lascaux cave. This multidisciplinary
committee is composed of archeologists, physicists, geologists, hydrogeologists and conservators
working altogether to understand the mechanisms of apparition of the micro-organisms in or-
der to stop their propagation. Since then, biologists have developed treatments and complex
processes to eradicate these micro-organisms.

In the process of time the temperatures and hydric conditions have often changed. Under the
influence of exchanges and energy transfers with the outside, the system formed by the Lascaux
cave evolved and its state variables have been modified. Climate change had consequences which
occurred before its discovery which can be observed in the paintings on various places of the
cave.

Among the measures taken by the committee, a better understanding of the flows in the
cave was deemed a paramount importance, and has induced the creation of a simulation tool,
the "Lascaux Simulator". The non intrusive character of the simulation is one of the major
assets of this method. Thus, the numerical simulation in fluid mechanics is here dedicated to the
conservation of the Lascaux cave. The project is conducted by Delphine Lacanette (TREFLE).

Two articles are now presented. The first one explain the methodology employed to simulate
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Figure 14.1: Paintings in the Lascaux cave - Room of the Bulls, first and second bulls

the natural convection in the Lascaux cave on Cartesian grid. The moisture is taken into ac-
count. The second article propose to carry out the same simulations on curvilinear grids. Both
approaches are validated on academic cases. The Sierpinski carpet case is presented in each
articles with the methodology employed therein.

14.2 The article in International Journal of Heat and Mass Trans-
fer
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An Eulerian/Lagrangian method for the numerical simulation of incompressible convection flows inter-
acting with complex obstacles is developed in this article. This method is successfully validated on nat-
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accurately into account complex topologies allows its application to natural convection in the Lascaux
cave, in order to give information on velocities, temperature and moisture content values and to provide
helpful details to the conservators of the cave.
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1. Introduction

Designing a numerical model to deal with natural convection in
cavities as well as the conduction into the rock surrounding the
cave is of major importance for the conservation of confined areas.
Moreover, the complex topology of the cave has to be accurately
taken into account by the numerical tool. Two approaches are cur-
rently encountered. On the one hand, using body-fitted unstruc-
tured grid [1,2] the method consists in considering two
subdomains with their own grids. They are connected by a bound-
ary condition corresponding to the interface between the solid and
the fluid media. The solutions in each subdomain are connected
thanks to jump conditions on mass, momentum and energy. The
main advantages of unstructured methods are that they naturally
take into account the complex shape of the objects and they pro-
vide an explicit description of the interface between the media,
in order to apply the real physical jump or transmission conditions.
Concerning the drawbacks of this method, the grid generation is
complex and even impossible due to the strong irregularities of
the fluid-solid interface. On the other hand, another numerical
methodology for treating the fluid-solid interaction is the fictitious
domain approach developed during the last 15 years by many
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authors [3-6] or [7]. This technique is based on the concept of
using a structured grid for dealing with conservation equations
such as the Navier-Stokes or energy equations. The obstacles or
solids are drawn into the structured simulation grid and specific
terms are added to the conservation equations in order to account
for the presence of obstacles. The major advantages of this method
are its readiness to implement, even in three dimensions and its
ability to be integrated to existing CFD tools. Furthermore, it can
deal with moving solids and several approaches have been ex-
tended to high order [7] or [8]. The main drawback is the relative
lack of accuracy in the description of the boundary layers as the
grid is not a priori adapted to the shape of the obstacles.

The management of complex shaped objects, such as those in-
volved in the last section of this paper, requires months of work
with grid generators in order to build unstructured meshes of good
quality in the fluid and solid media. In addition, if moving solid ob-
jects interact with the flow motion, the 3D unstructured grid must
be updated by means of an automatic procedure. This operation is
not possible in certain situations. For all these reasons, we have
chosen to simulate the natural convection in a complex shape cave
using the fictitious domain approach and penalty methods, follow-
ing the works [3,4,9,8].

The Lascaux cave, discovered in 1940 and located in the Dordo-
gne area in France, is inscribed on the Unesco World Heritage List.
It is considered as one world’s major prehistoric caves. Since its
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Nomenclature

Latin letters ¢ absolute moisture content (g/kg dry air)

a thermal diffusivity (m?/s) o density (kg/m?3)

Cp specific heat (J/kg K) x color function

dr augmented Lagrangian parameter (Pa.s)

b diffusion coefficient (m?/s) Subscripts and superscripts

Dy, hydraullc_dl_amt_eter (m) f fluid medium

E cha_racterlstlc dimension (m) ) s solid medium

Fc m01§ture source term (g/kg dry air's) I interface

g gravity vector (m/s?)

h exchange coefficient (W/m? K) . .

K permeability (m?) Non-dimensional

P pressure (Pa) Ra = £GEATE  Rayleigh number

T temperature (K) i ”i') b

" time (s) a =" Darcy 1'{um er

u velocity (m/s) Le=g witha= e Lewis number

Nu =% Nusselt number

Greek symbols ict Pr =% prandtl number

'f gzg;ﬂiﬁ\r/lit;oﬁwjﬁrﬁ)(l() Ra’ = Ra Da = 7"%%“’? X filtration Rayleigh number

u dynamic viscosity (Pa s) Sc=7p Schmidt number
discovery, several problems have occurred, due to the huge Among the measures taken by the committee, a better under-
amount of visitors [10], and their release of vapor and carbon standing of the flows in the cave was deemed a paramount
dioxide by their breath, causing the formation of calcite and the importance, and has induced the creation of a simulation tool,
apparition of green algae and mosses. The Minister of Cultural Af- the “Lascaux Simulator”. The nonintrusive character of the simu-
fairs (André Malraux) had the cave closed in 1963. lation is one of the major assets of this method. Thus, the

The closure solved some of the problems for a while and the numerical simulation in fluid mechanics is here dedicated to
Lascaux cave art returned to the state it was in the day of the dis- the conservation of the Lascaux cave. It has previously been

covery. Since then, prehistorians, archeologists, geologists, hydrog- studied by Ferchal [14,15] with the CFD code developed by
eologists, have tried hard to maintain the cavity in the most stable EDF on an unstructured grid. The present work constitutes a dif-
state possible, using remote metering to record the variations in ferent view of the problem, using a fictitious domain approach
temperature, hygrometry, and carbon dioxide gas pressure. The [16,17].

biological equilibrium remained fragile and in 2001 colonies of mi- The numerical methodology used in this paper is first exposed.
cro-organisms, fungi and bacteria developed on the rock edges and The governing equations and the numerical modeling of solid walls
on the floor. This attack made the authorities and the Minister of are detailed. Then the method is validated on two different cases,
Culture and Communication create an international committee of the natural convection in a porous medium, and the case of Sirpin-
the Lascaux cave. This multidisciplinary committee is composed ski carpet. Finally, the method is applied to the study of the natural

of archeologists, physicists, geologists, hydrogeologists and conser- convection in the Lascaux cave, and information about the distri-
vators working altogether to understand the mechanisms of appa- bution of temperature and moisture contents considering different
rition of the micro-organisms in order to stop their propagation. thermal configurations is provided.

Since then, biologists have developed treatments and complex pro-
cesses to eradicate these micro-organisms [11,12].

In the process of time the temperatures and hydric conditions
have often changed [13]. Under the influence of exchanges and en-
ergy transfers with the outside, the system formed by the Lascaux
cave evolved and its state variables have been modified. Climate
change had consequences which occurred before its discovery which
can be observed in the paintings on various places of the cave.

2. Numerical methodology
2.1. Conservation equations

In the fluid medium (see Fig. 1) @, the conservation equations
describing the unsteady incompressible convection flows of a

I;

Rock

Fluid cavity

Fig. 1. Definition sketch.
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Fig. 2. Example of Lagrangian grid and corresponding projected solid fraction y (the y = 0.5 isosurface and isocontours of y in a slice are plotted).

Newtonian fluid and the evolution of the moisture concentration,
under the Boussinesq approximation, are the Navier-Stokes, en-
ergy and transport of moisture concentration equations written
in terms of velocity and temperature:

P(%ltlJrV.(u@u)):*Vp+Pg+V~(H[V“+VT“]) )
V-u=0 2)
pCp<%+U'VT> =V.IVT ©)
(%—f+u~v¢) =V . (DV¢) )

It is assumed that 4,Cp, D and u are constant with respect to T.
The density variations are described by the following linear
expression:

p(T) = po(1 = BT = To)) (5)

In the solid part €, the velocity is assumed to be negligible. Only
conduction effects drive the thermal exchanges in this case. We
have

u=0 and ¢=0 (6)
oT
pCrp =V VT (7)

The boundary conditions for the velocity, temperature fields and
moisture content concentration are the following:

Ty T,

u=0 and —q%:—ls% and
¢ =0.5545 x T+ 1.8909 on I’ (8)
u=0 and %—7,;5:0 and ¢=0onT, 9)

2.2. Numerical modeling of solid walls

2.2.1. Management of the fluid/solid interface

The present work aims at proposing a numerical method which
is able to deal with fluid/solid interaction while using structured
grids non conforming to the complex shape of the obstacles. The
main idea is a continuation of the previous works of Caltagirone
et al. [18,3] concerning fictitious domains. The method is struc-
tured as follows:

® the simulation domain Q = Q; U @y which includes both the
fluid and solid zones is discretized with a global structured grid a

priori not adapted to I's. On this Eulerian grid, standard numerical
methods apply (see below).

® the topology of the fluid/solid interfaces is not explicitly known
on the Eulerian structured grid which doest not fit to I's. As a conse-
quence, the jump conditions cannot be explicitly implemented in
Egs.(5)-(9). The fictitious domain approach consists in introducing lo-
cal volume effects in the conservation equations so as to account for
the volume effect of the solid medium in €. In a first step, a triangular
Lagrangian grid X, of the solid zones is projected onto the Eulerian grid
(see Fig. 2) by solving a diffusion equations as follows [19]:
A;{:V-/ n;(X — X)d;ds (10)

T

where y is the local volume fraction of the solid, n; is the normal to
I's, X is a location on the Eulerian grid and §; is the Dirac function
indicating the interface. After solving Eq. (10), y =1 in ©; and 0
elsewhere. The interface I'; between Qf and ©; is defined as y = 0.5.

® function y allows us to locate the solid and fluid part on the
Eulerian grid. A Darcy term is added to the momentum equations
in order to penalize the solid behavior through the conservation
equations. The new penalty Navier-Stokes Brinkman model so ob-
tained, which replaces Eq. (1), reads:

p(%—l:+V~(u®u)> +%u: —Vp+pg+ V- (u[Vu+ V')
(11)

where K = +o00 if ¥y < 0.5 and K = 0 if ¥ > 0.5. To sum up, our ficti-
tious domain method uses penalty terms added to the momentum
conservation equations to model the presence of solid obstacles.

2.2.2. Management of humidity transfer

The humidity transfer is estimated directly on the real Lagrang-
ian surface rather than the projected Eulerian one. It is made of two
steps.

1. The temperature gradient in the normal direction for each sur-

face triangle S is first calculated as follows:

® a normal vector N; to S; is defined. It is oriented toward the
fluid medium, starting from the barycenter of S; and its
length is the local grid space.

® the temperatures T, and Ty, respectively, at the barycenter
and in the fluid, i.e. at the edges of N, are evaluated by lin-
early interpolating the Eulerian field.

® the temperature gradient is directly obtained by
v.T, =1t

[INg |-
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2. A specific penalty term is added in Eq. (4) in order to impose the
moisture content in the cell cut by the air/rock interface:

n+1 n
d) _4) +un+l _v¢n+1 :v_(Dv¢n+l)+B(¢n+l _f(VLTD)

At
(12)

where B is a penalty coefficient equal to 10% in the cells cut by
the interface and O elsewhere, and f is a function based on an
energetic balance between the heat driven by the conduction
through each triangle and the energy necessary to evaporate
or condensate all the vapor contained in an elementary volume
of the Eulerian grid. The normal temperature gradient to the
interface is V. T,. It is calculated on the Lagrangian interface
and is projected on the Eulerian grid to build f.

2.3. Discretization and solvers

The system of Eqs. (1)-(9) which describes the interaction be-
tween the natural convection in a cavity and the conduction in
the rock is discretized thanks to implicit finite volumes [20] on a
fixed staggered Cartesian Marker And Cell (MAC [21]) grid. In @,
the coupling between pressure and velocity, as well as the incom-
pressibility constraint, are fulfilled by using a minimization algo-
rithm called augmented Lagrangian [22]. The time derivatives are
discretized by first order Euler schemes, whereas the spatial deriv-
atives are approximated by centered schemes.

The implicit discretization of the momentum and energy equa-
tions involves the solving of a linear system A"X""! = F" by using
an iterative BiCGSTAB solver [23], preconditioned under a Modified
and Incomplete LU (MILU) method [24]. The index n is related to
time nAt for which At is the time step. The mass and momentum
equations are first solved by the augmented Lagrangian method
in order to obtain (u™',p™1) as follows:

k=0,p°=p" and u’=u"

Solve

k=k+1

o <Uk;tu” LV (uk’I ® l.lk)>
= -Vpt! +drv(V-u)

_H
K

pf=p' —drv.du*

WhileV - u* > ¢

(13)

ut + pg+ V- (u[Vu* + VTu)

where € is chosen equal to almost zero computer error (€ = 107"°
in double precision calculations). At the end of the minimization
procedure, we assume that u"! = u* and p™*! = p*. The minimiza-
tion parameter dr can be set constant or determined automatically
by analyzing the physical or numerical parameters of the problem
[25,26]. In our simulations, the augmented Lagrangian parameter
dr =1 as the local variations of density and viscosity are small.
In addition, the permeability is chosen equal to 10%° in the fluid
and 10 in the solid. The magnitude of K has no effect on the
efficiency of the iterative solver as the permeability only affects
diagonal coefficients in the linear system. More details on the con-
vergence order and behavior of the penalty method are given for
example in [3].
Then, the temperature T™*' is obtained by:

Tn+l _ Tn
p"CP <T+ ut. VTM]) =V .V

To finish with, the vapor concentration ¢"*! is obtained by:

¢"=¢" +At«B(¢" —f(V.T}))

1 *

¢n+ - ¢ + “n+1 . V(}f)"ﬂ = \7 ~DV¢"+1
At

More information, details and validations about the discretizations

and solvers have been extensively investigated in previous works

[3.27]

3. Validation
3.1. Natural convection in a porous medium

Following the works of Arquis [28], the interest and accuracy of
the Brinkman penalty method can be illustrated by simulating on a
local scale the natural convection in a square cavity, differentially
heated between a cold temperature wall T. and a hot one Ty, in
which cylindrical inclusions are placed following a square shaped
periodical network (see Fig. 3). It is assumed that the conductivity
of the cylindrical obstacle is the same as the fluid. Under the action
of gravity, natural convection flows develop in the cavity between
the cylinders. The main dimensionless parameter of the problem is
the Rayleigh number Ra. The Prandtl number of the problem is as-
sumed to be equal to 1.

It is proposed to consider several configurations in which the
porosity is constant and equal to 0.615 and the number of cylin-
ders N is increased progressively from 4? to 322 Due to the pres-
ence of the obstacles, the flow velocities are decreased and the
cavity behaves as a porous medium. In order to take into account
the effects of the cylinders on the convection, a modified Rayleigh
number, called the filtration Rayleigh number, is introduced. Ra" is
equal to the product between the classical Rayleigh and the Darcy
number. In the following simulations, Ra* is assumed constant and
equal to 122.6.

We consider three convection cases where N of 42, 8 and 322,
are associated to 64°, 2567 and 512% simulation grids, respec-
tively. The stationary results of temperatures, streamlines and
obstacles are presented in Fig. 5. For N = 42, the isotherms are
irregular, demonstrating a different thermal behavior in fluid and
solid media. In this case, a macroscopic analysis of the results is
not possible. On the contrary, for higher values of N, the flow and
temperature isolines are smoother. A macroscopic study is suitable
in these configurations.

A quantitative exploitation of the simulations is interesting by
analyzing the evolution of the global thermal exchanges in the
cavity in terms of Nusselt number Nu. The values of Nu accord-
ing to 1/N are presented in Fig. 4. They all have been obtained
with the penalty Brinkman method, except for 1/N =0 where
a Darcy model has been used to simulate this case in particular,
assuming a full porous cavity. As a reference, the limit value of
the Nusselt number is obtained by simulating with our model
a porous medium throughout the whole cavity. This case can
be compared to a cavity containing an infinity of cylinder, such
as N — +oo. It can be observed that when N takes large values,
the asymptotic value of the Nusselt number tends to the refer-
ence value of Nu = 3.574 obtained with the Darcy penalty model
(Ra Da = 122.6).

To sum up, it has been demonstrated that the Darcy penalty
method is able to provide a local description of the interaction be-
tween natural convection flows and obstacles in a closed cavity. In
terms of thermal exchange, the numerical model is accurate and
the reference value of 3.574 of a porous medium is recovered in
terms of Nusselt number. This test case validates the choice of
the Darcy penalty method for simulating the convection flows in
the Lascaux cave which highly depend on the fluid-solid
interactions.
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Isothermal condition
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l Fluid .
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Fig. 3. Definition sketch of the natural convection in a cavity.
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Fig. 4. Evolution of the Nusselt number according to the number N of obstacles in
the cavity.

3.2. The Sierpinski carpet

Our purpose in this section is to validate the methodology
used to simulate the thermal convection in a 3D cavity comparing
simulations with experimental measurements. In [29], Amine
et al. compare their numerical results for the Sierpinski carpet
case obtained with both experiments and simulations. As the case

is not exactly the same for the two methods, experimental and
numerical results agree concerning the shape, temperature and
velocity profiles. However, the magnitude of the maxima varies
in the 20-30% range. Our aim here is to compare the results in
[29] with our results in order to demonstrate the validity of our
penalty approach.

The Sierpinski carpet is a fractal model composed of squares of
various sizes. Fig. 6 illustrates the first three generations of the
model. The empty cell is a 100 x 100 mm? box. We impose adia-
batic conditions on the upper and lower walls, and a Dirichlet con-
dition of 20 °C and 25 °C on the left and right walls. For all
simulations, the liquid used has the following properties:
1 =0.0815kg/(ms), p =857 kg/m?, Cp =1880]/(kgK) and
/r = 0.132 W/(m K). Hence, the Prandtl number Pr is equal to
1160. Obstacles are in plexiglas for which the thermal conductivity
is 4, =0.19 W/(m K).

3.2.1. First generation

The obstacle is located between 33.3 mm < x < 66.7 mm and
333 mm <y <66.7mm. 2D and 3D simulations are first per-
formed. Fig. 7 shows the vertical velocity profile V,(x) from exper-
iments [29] and our 2D (100° mesh) and 3D (70° mesh with
z =50 mm) computations. Results for 2D configuration are very
similar to the numerical simulations of Amine et al. (not repre-
sented) which are relatively far from experiments. In this paper,
the authors have some suppositions about the differences between
experimental and numerical results. First, contrary to their initial
assumption, the lower and upper walls are not really adiabatic.
Amine et al. have tried to change the upper and lower boundary
conditions to the Stefan condition. The gain for V, was counterbal-
anced by a loss of quality for V,. Another difference between exper-
iments and simulations lies in the real size of the obstacles used in
experiments. Commercially available bars used for the experiment
had dimensions changing by steps of 1 mm.

The box used for the experiment has a depth of only 85 mm. In
our opinion the flow can have some 3D structures that cannot be
represented by 2D simulations due to confinement effects. As can
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Fig. 5. 2D simulation of the natural convection in a cavity filled with various amounts N of cylinders-N = 4 x 4 with a 64 grid, N = 16 x 16 with a 2567 grid, N = 32 x 32
with a 512 grid-left column: streamlines, right column: temperature profiles.

Fig. 6. Sierpinski carpet of 1st, 2nd and 3rd generation.

be seen on Fig. 7, the results obtained with our 3D simulation are flow is then studied. Fig. 7 shows the evolution of V,, V, and T
closer to the experiment. The difference between the 2D and 3D along the y axis for z=10 mm and x = 50 mm. The velocity Vi
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Fig. 7. 3D simulation for the Sierpinski carpet of 1st generation. Horizontal velocity profile V,(z) at x = 50 mm for experiments and numerical simulations (top), values

Vi), Vy(). T(y) for z=10 mm and x = 50 mm (bottom).

and the temperature T along the y axis for y ~ 42.5 mm are quite
stable. This is observed in Fig. 9. The transverse velocity V, is about
two magnitudes smaller than V,. Hence, the flow is mainly 2D but
the effect of the 3D structures is not negligible.

3.2.2. Second generation

A new set of eight additional blocks is considered. The new
obstacles are quite small, but the mesh is not chosen to match per-
fectly with obstacles. The purpose here is to demonstrate the inter-
est of our penalty method even if obstacles do not match the grid.
Fig. 8 compares the vertical velocity profile V,(x) at z= 17 mm ob-
tained with experiment and simulation. The 2D (with a 150? mesh)
and 3D (with a 70° mesh) simulations are close to the results ob-
tained by experiment. However, the 3D calculation provides a bet-
ter agreement.

Fig. 8 shows the velocity profile Vy(z) at x = 50 mm. As for the
first generation carpet, the correspondence between experiment

and simulations is not very good for 2D, even if the results ob-
tained with the 3D simulation on a relatively coarse grid are closer
to experiment. The results with an additional 2D simulation with a
300% mesh are slightly improved.

Streamlines and sensors position is shown in Fig. 9. As in [29],
we observe a negative velocity V, between the 2nd and 3rd lower
obstacles.

3.2.3. Conclusion for the Sierpinski carpet

The experiments of Amine et al. [29] and our numerical simula-
tions have been compared. Even on coarse grids, the main struc-
tures of the experimental flows have been well reproduced by
our methodology and it has been demonstrated that the 3D char-
acter of the flow improves the accuracy of the simulations, com-
pared to the 2D computations of Amine et al. However, for
various reasons, for instance the inaccurate modeling of the real
boundary conditions, differences on velocities have been observed.
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Fig. 8. Sierpinski carpet of 2nd generation. Horizontal velocity profile V,(x) at z= 17 mm (left), horizontal velocity profile V,(z) at x = 50 mm (right) for experiments and

numerical simulations.

4. Application to the Lascaux cave

The numerical methodology is applied here to the study of the
natural convection in the Lascaux cave. The accurate description of
the cavity allows a fine analysis of the flow as well as the moisture
content distribution in the cave.

4.1. Initial conditions

The reversal time has been evaluated to 1 h, thus the total sim-
ulation time has been fixed to 7 h. The boundary conditions are
steady, considering the temperature in the cave is stable during
7 h. Nevertheless, the flow is unsteady, due to the complex geom-
etry and the thermal gradients, as it can be checked in Fig. 10.

4.1.1. Geometry

A three-dimensional survey of the Lascaux cave was made by
the land surveyor Perazio using laser scanning. Triangular surface
elements of each object interacting with the flow motion are gen-
erated. A detail of this surface is shown in Fig. 11. In the following,
the gravity acceleration is directed towards the Y-axis.

The Lagrangian description of the solid objects is projected onto
the fixed Eulerian flow grid as detailed in Section 2.2. The Eulerian
view of the geometry as well as reference marks of the Lascaux
cave are given in Fig. 11. The global domain of computation is com-
posed of 3.5 million points.

4.1.2. Thermal conditions

Concerning the Rayleigh number, simulations on a differen-
tially heated square cavity are achieved in order to get the
evolution of the Nusselt number with the Rayleigh number
and to compare the values of velocities with the theoretical
ones.

The order of magnitude of the velocity in the boundary layer for
high Rayleigh numbers is given by V, = \/gBATD,. The Table 1
shows a comparison between simulated values of velocity and the-
oretical ones for a given Rayleigh number.

This comparison is valid for a Rayleigh higher or equal to 10°, at
this point the boundary layers are separated. The order of magni-
tude of the velocities is the same, the CFD code used as a basis
for the simulation in the Lascaux cave gives classical results of nat-
ural convection.
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temperature

24
23
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z=17 mm

Fig. 9. Isosurfaces of temperature for 3D simulations (top), streamlines for the Sierpinski carpet of 2nd generation (bottom).

The Nusselt numbers corresponding to the simulated velocities
have been calculated on a 256 x 256 Chebyshev grid and compared
to reference spectral solutions [30] in Table 2. The calculated val-
ues are in good agreement with the benchmark results. Plotting
its evolution with the Rayleigh number, the relation (14) is found
for a differentially heated square cavity.

Nu = 0.17Ra****! (14)

For a vertical plate, the evolution of the Nusselt number follows
the relation (15) [31]:

Nu = 0.59Ra’* (15)

This expression is slightly different from the relation (14) due to
the containment of the geometry, the boundary layer is finite in the
cavity whereas it is considered as infinite in the vertical plate case.
Nevertheless the expression (14) is characteristic of a separated
boundary layer flow.

In the Lascaux cave, in the thermal configuration of 1981, and
without human disturbances, the measured velocities are approx-
imately 5 x 1072 m/s. Referring to the previous relation, an equiv-
alent Rayleigh number of 10® can be given, which corresponds to a
differentially heated cavity. This number indicates a laminar flow
regime.

The Lewis, Prandtl and Schmidt numbers are, respectively,
equal to 1.015, 0.71 and 0.721. The heat, mass and momentum dif-
fusion are of the same order. Thus, the characteristic time and
space scales of the involved physical phenomena are compatible;
the same time steps and the same grid can be used for all the equa-
tions. Our unsteady and deterministic modeling strategy is con-
firmed by the previous remarks.

The initial conditions in temperature are calculated on a one-
dimensional heat conduction model in the floor, based on the tem-
perature measured by Météo France [32] during more than 50
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Fig. 10. Evolution of temperature (left) and vertical component of the velocity (right) as a function of time.
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Fig. 11. Detail of the triangularized surface on the Lagrangian grid (top), topology of the Lascaux cave as considered in the simulation - several reference marks (bottom).
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Table 1

Comparison between theoretical V, and simulated V values of velocities in the boundary layer of a differentially heated square cavity.

Ra 10° 10° 10* 10° 10° 107 10°

Vo (m/s) 1.86102 274102 402102 59102 8.610 2 1.2710°! 1.8710"
V (m/s) 87104 3.810°3 94107 1.5107% 221072 33102 491072
Table 2

Comparison between reference Nu,,; and our simulated values Nu of Nusselt numbers
in the boundary layer of a differentially heated square cavity.

Ra 10* 10° 104 10° 10° 107 16®
Nuyr [30] 4521 88252 16523 30.225
Nu 1.0015 11178 22448 45217 88252 16523  30.225

years above the cave, and those taken in the cave since 1963. A
computerized system using a remote metering has been set up in
the cave to record the variations in temperature, hygrometry and
carbon dioxide gas pressure.

Two climatic configurations are chosen, corresponding to two
different periods, September 1981, during which the cavity re-
mains in a stable state, and December 1999, before the work of
replacement of the air treatment machine [33]. Profiles of temper-
ature are given in Fig. 12 as a function of depth. These two periods
are representative of two very different configurations. September
1981 represents the typical behavior of the 1980s, while December
1999 corresponds to the 1990s and early 2000s, whatever is the
season in the year.

Fig. 13 shows the different distribution of temperature depend-
ing on the climatic configuration along the Y direction.

In September 1981, the slope of temperature is positive, inside
the cave the vaults are colder than the cave floor. In December
1999, the slope is negative, the cave floor being colder than the
vaults.

Once the temperature gradient is introduced in the calculation
domain (including the cave and the surrounding rock) the flow in-
duced by natural convection is established in the cavity.

4.1.3. Physical characteristics

The humidity is initialized to a value of 98% of relative moisture
content in the whole cave. The calculations are made on the abso-
lute moisture content, related to the temperature at each point.
The diffusion coefficient of the moisture in air is D =2.18x
107> m/s.

September 81
December 99

Sl
S

Temperature (°C)
=

-
N

L3 L
0 5 10 15 20 25 30
Depth (m)

"

Fig. 12. Temperatures following a one-dimensional heat conduction model in the
rock as a function of depth.

The characteristics of the rock and air are the following:
ps = 1800 kg/m3, Cps = 1000]/kgK, 4, =1W/mK, p, = 1.1768
kg/m?, p1,=1.85 x 10 ° Pas, Cp, = 1006 /kg K, 2, =0.0263 W/mK.

4.2. Results and analysis

The simulation is dedicated here to measure the impact of the
local outside climate change on the management of the climate
in the cave. Between 1965 and 1981, the temperature gradient in
the cave met the requirements of the operational plan as set out
by the Scientific Commission. In winter, the air temperature in-
creases from the surface to the lower areas of the cave, whereas
in summer this order is maintained artificially by deliberately low-
ering the air in the Machine Room, located before the Great Hall of
the Bulls. Since 1981, temperature distribution changed, tempera-
tures in the lower parts of the cave became lower than the mean
surface temperatures (the thermal inertia of the ground increases
as its thickness increases). The natural temperature gradient is in-
verted. This phenomenon is independent of the artificial control
system of the cave and is related only to the outside weather
pattern.

The temperature distribution in the cave is homogeneous in the
thermal configuration of September 1981, as it can be seen in
Fig. 14, where are exhibited zones of convective currents. The
mean velocity values are approximately 1072 m/s. Whereas in
December 1999, in Fig. 14, the temperature is stratified, and no
major convection current is noticed, due to the inversion of the
temperature gradient between the two dates (Fig. 13). In this case,
velocities are 100 times lower, around 10~ m/s.

One of the major problem concerning the conservation of the
Lascaux cave is its evolving state. A porous rock in equilibrium
with a humid atmosphere is classically more or less saturated with
water. Under certain conditions, the water vapor contained in the
air present in the network of rock pores can condense. This liquid
water is fixed by capillary action in the smallest pores, the pores
for which the radius is less than a function of the relative moisture
of the air. The condensed water contained in the pores is aggressive
and a chemical equilibrium is reached by dissolution of carbonate
minerals in the rock. Once saturated, this water remains inert as
long as the atmospheric pressure, the temperature and the partial
pressure of carbon dioxide is unchanged. When this equilibrium is
broken, a drop would evaporate and this process would then result
in precipitation of calcite. The condensation-evaporation cycle can
occur repeatedly and lead to a loss of carbonates from the porous
matrix, causing a major issue of conservation. These observations
have demonstrated the need to avoid creating conditions in which
rock dissolution and calcite deposition are promoted and to strive
to maintain the most stable possible air conditions, while taking
into account the natural rhythms of the cave.

The aim of the simulation is to give information about the pre-
cise location of the condensation risk zones. The case presented
here corresponds to the configuration without anthropogenic ef-
fects. It is meant to serve as a basis for further studies, as the intro-
duction of a machinery, human presence, and hot and cold points.

The moisture content distribution on the walls of the cave for
the two climatic conditions described before is given in Fig. 16.
Its distribution in a view of the right gallery, from the lateral Pas-
sage towards the Chamber of Felines for the two previous climatic
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Fig. 13. Visualization of the temperature profiles for both climatic configurations, September 1981 (a) and December 1999 (b).

configurations is given in Fig. 17. In the case of September 1981
(Figs. 16 and 17) the absolute moisture content is higher in the
vaults than on the floor, whereas in December 1999 (Figs. 16 and
17) the moisture is concentrated in the floor. This accurate descrip-
tion allows to know the places where the condensation risk is high-
er, before any introduction of external disturbance. The slice
concerning the right gallery shows the spatial evolution of the
absolute moisture content depending on the thermal configura-
tion. In 1981, there are homogeneous zones, while in 1999, we
found layers of different absolute moisture contents, due to the
inversion of temperature.

Moreover, the climatic configuration of December 1999 corre-
sponds to a higher global absolute moisture content than the one
of September 1981.

The distribution of temperature and their values directly influ-
ence the moisture content field. In September 1981, the vaults are
colder than the floor, inducing a concentration of moisture in the
vaults with a higher value. In December 1999, the distribution of
temperature is reversed, thus the distribution of moisture is also
reversed, following the value of temperature. Nevertheless, inside
the cave, concentration lines do not follow iso-temperatures, as it

can be observed in Fig. 18. The moisture content is transported
by the air.

Furthermore, the inversion of temperature implies a drastic
modification of natural convection, and of the intensity of the
velocities. Indeed, in September 1981, the air flows from the floor
to the vaults increase the moisture concentration in this zone,
whereas in December 1999 the very low velocities lead to a stag-
nation of the layers of moisture, on the floor of the cave.

The convective currents are closer studied in Fig. 15. A slice taken
from the right part of the cave, in the Main Gallery, presents the nor-
malized velocity and several streamlines. The velocity is higher on
the walls, and distinct convective currents can be observed. A differ-
ent view of the situation is also presented in this figure, virtual par-
ticles are released in the right part of the cave, and their trajectory is
related to the temperature by the color of the ribbon. The natural
convection occurs both from the ground to the vaults and from the
Great Hall of the Bulls to the end of the Main Gallery. The resulting
currents are complex and fully three-dimensional, with a general
convection from the lateral Chamber of Felines towards the Lateral
Passage, and several smaller ones, isolated and corresponding to a
convection going from the ground to the vaults.

temperature

. 118

11.775
11.756
11.725
17
11.675
11.65
11.625
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. 121
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12.0625
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11.9875
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11.95

Fig. 14. Temperature distribution on a view of the right gallery, from the lateral Passage towards the Chamber of Felines for the climatic configuration of September 1981 in

which V ~ 1072 m/s (top) and December 1999 in which V ~ 10~* m/s (bottom).
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Fig. 15. Velocity distribution on the right gallery of Lascaux cave for the climatic configuration of September 1981, on a slice with the convective currents in red (top) and on a
general view with the trajectory of a virtual particle on a ribbon colored with the temperature of the air crossed (bottom).

Finally, these numerical results have been validated by observa- a spread of micro-organisms caused conservation issues. It can
tions in the cave at the two climatic periods. In 1981, no major be assumed that the consequences of the increase and reverse of
problem was noticed, whereas in the late 1990s and early 2000s, temperatures, i.e. drastic decrease of velocities and increase of
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Fig. 16. Absolute moisture content on the walls of the cave for the climatic configuration of September 1981 (top) and December 1999 (bottom).
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Fig. 17. Absolute moisture content on a view of the right gallery, from the lateral Passage towards the Chamber of Felines for the climatic configuration of September 1981

(top) and December 1999 (bottom).
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Fig. 18. Superposition of temperature and concentration distribution on a view of the right gallery, from the lateral Passage towards the Chamber of Felines for the climatic

configuration of December 1999.

absolute moisture content, implied a stagnation of the air among
the cavity and favored the development of micro-organisms.

5. Conclusions

An Eulerian/Lagrangian method for the numerical simulation of
incompressible convection flows interacting with complex obsta-
cles has been successfully validated on several natural convection
cases, then applied here to the conservation of the Lascaux cave.

It has been shown in this article that a fictitious domain ap-
proach method coupled to a Lagrangian grid of obstacles allowed
the correct description of the interaction between the natural con-
vection flows and these obstacles. For example, a cavity filled with
a large amount of cylinders shows the thermal comportment of a
porous medium. Compared to experiments of natural convection
(Sierpinski carpet) interacting with obstacles set according to frac-
tal patterns, experimental measurements are found in good agree-
ment with the penalization method with a precision lower than
20%. It can be due to the fact that the numerical boundary limits
are slightly different than the experimental ones. Moreover, it
has been pointed out that the two dimension hypothesis was not
entirely valid and that three dimension simulations brought better
results.

Concerning the application to the Lascaux cave, the article pro-
vided the first simulations of the entire geometry of the cavity,
with a fictitious domain approach method. The results are con-
firmed by the observations made in the cave: it is more confined

in the present thermal configuration than in the 1980s. The climate
change made the cave more sensitive to disturbances. For example,
the influence of humans entering the cave will be more devastating
for the paintings in the present configuration than before.

Numerical perspectives are numerous. Higher order penaliza-
tion will be implemented, by a technology currently under devel-
opment, in order to better take into account the complex
geometry of the objects at a scale lower than the grid. Our purpose
is also to integrate moving obstacles in our simulations in order to
take into account the impact of the moving of a human visiting the
cave for example.
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Résumé — Des techniques de pénalisation sur maillage curviligne sont présentées et validées sur un
cas de convection naturelle bidimensionnelle en interaction avec des obstacles. Ces techniques sont
utilisées pour simuler les transferts de masse et de chaleur dans la grotte de Lascaux, qui constitue un
obstacle de forme complexe. L’outil de simulation permet de différencier des scenarios climatiques
avec pour objectif I’aide a la décision dans le cadre de la conservation du patrimoine.

Nomenclature

G fonction de présence Symboles grec

Cp  chaleur spécifique, J kg” K B coefficient de dilatation, K

g accélération de la gravité, m.s? A conductivité thermique, w.m' K
K perméabilité, m’ u  viscosité dynamique, Pa.s

p pression, Pa Jol masse volumique, kg.m™

! temps, & 3,  maillage des objets

r tefmperature:,l K Indices et exposants

u vitesse, m.s 0

état thermodynamique de référence
1. Introduction

La réalisation d’un mod¢le numérique pour traiter de la convection naturelle dans les
cavités et de la conduction dans la roche environnante est importante pour la conservation des
milieux confinés. Pour étre pertinent, 1'outil numérique doit prendre en compte la géométrie
souvent complexe de la grotte avec suffisamment de précision. Deux approches sont
communément employées. La premiere consiste a considérer deux sous domaines avec leur
propre maillage non structuré (body fitted grid) connectés par une condition limite a
I’interface entre les deux milieux solide et fluide. L’avantage des méthodes non structurées est
leur prise en compte naturelle de la forme complexe des objets, ainsi que leur description
explicite a I’interface. Cependant la génération du maillage est complexe voire parfois
impossible a cause des fortes irrégularités de 1’interface. La seconde méthode numérique pour
la gestion de I’interface est I’approche des domaines fictifs. Cette technique est basée sur le
concept de l’utilisation d’un maillage structuré pour gérer les équations de conservation
(Navier-Stokes, ¢énergie). Les obstacles solides sont projetés sur le maillage structuré de la
simulation et des termes spécifiques, dits de pénalisation, sont ajoutés aux équations de
conservation pour tenir compte de la présence d’obstacles. Cette méthode posséde 1’avantage
d’étre facile a implémenter méme en 3D et de pouvoir intégrer des outils CFD existants. En
outre, elle peut s’appliquer a des objets mobiles et plusieurs approches ont été étendues a des
ordres élevés.
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Les travaux proposés ici présentent les premieres pénalisations avec 1’approche des
domaines fictifs sur des maillages curvilignes en 3D, avec pour objectif la simulation des
écoulements de convection naturelle dans la grotte de Lascaux. Aprés une validation sur un
cas de convection naturelle sur un tapis de Sierpinski avec un maillage curviligne, 1’outil
numérique est utilisé afin de comprendre le comportement de la grotte de Lascaux lorsqu’elle
est soumise a différentes conditions limites thermiques, avec un objectif d’aide a la
conservation de ce patrimoine. L’aspect non intrusif et prédictif de cet outil, appelé
Simulateur Lascaux, en fait une technique conservative originale.

2. Modéeles et méthodes numériques

La modélisation des écoulements de convection naturelle en interaction avec des obstacles
est basée sur les équations de Navier-Stokes Brinkman incompressibles [1] et I’hypothése de
Boussinesq :

V-u=0 (D)

Ju u T
p(5+ (u.V)u)+ cu= pg-Vp+V(u(Vu+V'w) ()
pCp(% + (u.V)T) =V.(AVT) 3)

p=po(1-B(T-T,)) )

Dans ce modele, les obstacles sont vus comme un milieu poreux au travers de la
perméabilité K. La propriété de non-déformabilité est imposée par un terme de Darcy qui est
ajouté dans 1’équation de conservation de la quantit¢é de mouvement : il s’agit ici d’une
méthode de domaines fictifs dans laquelle le milieu solide est vu comme un fluide de
propriétés spécifiques. Concernant les méthodes numériques, les schémas et les solveurs, le
détail est donné dans [2]. L’ensemble est basé sur des volumes finis et des maillages
structurés.

La principale difficulté lorsque 1’on souhaite traiter de I’interaction d’un fluide avec un
obstacle de géométrie non triviale (grotte de Lascaux par exemple) est la définition a priori de
la perméabilité en fonction de la géométrie de I’obstacle. Pour réaliser ceci, nous nous
appuyons sur les techniques écrites dans [2] qui utilisent une fonction de présence C, égale a 1
dans le solide et 0 ailleurs. Connaissant cette fonction C, K est définie par K=10*" si C<0.5
(totalement perméable), K=10"* sinon.

Dans [2], les auteurs proposent d’utiliser un maillage surfacique lagrangien Z;, des objets et
des méthodes issues des techniques de Immersed Boundary Method (IBM) de [3] pour
projeter le maillage surfacique sur la grille de calcul des équations de conservation (1-4).
Cette démarche est efficace mais comporte deux désavantages majeurs :

- On résout une équation de diffusion sur C pour obtenir cette fonction de phase en
fonction du maillage ;. Cette étape ne peut gérer les configurations ou I’enveloppe de
I’objet n’est pas totalement incluse dans le maillage de calcul.

- Les techniques IBM sont difficilement transposables sur des maillages de calcul
curvilignes orthogonaux car elles requicrent des étapes d’intersection géométriques
entre les éléments du maillage surfacique de 1’objet Z;, et le maillage de calcul.
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Nous proposons ici de remplacer les deux étapes précédentes afin de pouvoir gérer des
obstacles partiellement inclus dans le maillage de calcul quand celui-ci est curviligne. Nous
avons basé notre démarche sur I'utilisation d’une méthode de Ray-Casting [4] qui permet de
générer automatiquement C connaissant Xj,.

Le principe est le suivant : on parcourt le maillage de calcul et on détermine 1’appartenance
de chaque nceud a I’obstacle ou non en langant un rayon dont la source est située sur le point
du maillage. On compte ensuite le nombre d’intersections entre ce rayon et les éléments de .
Si ce nombre est impair, le point du maillage de calcul est dans 1’objet, si le nombre est pair, il
est a ’extérieur. Connaissant C, on construit automatiquement K avec les formules introduites
précédemment.

La méthode de Ray-Casting est tres efficace, elle voit les objets méme lorsqu’ils débordent
du maillage de calcul. La technique fonctionne sur des maillages structurés ou non. Par
contre, I’efficacité de la méthode est grandement améliorée sur des maillages structurés a pas
constants car les nceuds du maillage de calcul et le rayon sont directement localisés par les
indices I,JLK des cellules et non par leurs coordonnées. Pour continuer a utiliser le Ray-
Casting sur des grilles a pas constant cartésiennes, méme lorsque le maillage de calcul est
curviligne orthogonal, nous avons opéré des transformations de coordonnées. Il existe une
bijection f(X,y,z) qui permet de transformer un maillage curviligne orthogonal en un maillage
a pas constant. Nous avons utilisé des approximations polynomiales bilinéaires de f pour
réaliser les changements de grille. Cette fonction a été utilisée pour projeter les coordonnées
de X, d’un repere a ’autre. Ainsi, on obtient un objet d’enveloppe transformée, compatible
avec le maillage a pas constant, lui-méme étant la transformée du maillage curviligne
orthogonal initial. On utilise ensuite le Ray-Casting sur le maillage a pas constant pour définir
C. 1l se trouve que les sommets des cellules de ce maillage gardent leurs valeurs lorsque I’on
revient sur le maillage curviligne, il n’est donc pas utile dutiliser .

3. Validation : le tapis de Sierpinski

Le cas dit du tapis de Sierpinski est un cas de convection naturelle dans une boite
contenant des obstacles carrés. La disposition des obstacles suit le motif fractal du tapis de
Sierpinski dont quelques itérations sont présentées figures 1, 2 et 3.

Figure 1 : Premiere itération du  Figure 2 . Deuxiéme itération Figure 3 : Troisiéme itération
tapis de Sierpinski du tapis de Sierpinski du tapis de Sierpinski

Un différentiel de température de 5 degrés est impos¢€ aux parois gauche et droite. Les
parois supérieures et inférieures sont considérées comme adiabatiques. Le fluide est une huile
aux propriétés suivantes :

u=0.0815kg- m™" 5,0 =857kg" m_3,Cp =1880J kg ' K,A=0.132W -m™' K

Les résultats obtenus avec notre approche sur un maillage curviligne sont comparés avec
ceux obtenus avec le méme code sur un maillage cartésien, ainsi qu’avec les résultats
expérimentaux de Amine et al. [S]. Seule la seconde itération du motif est traitée. La boite de
simulation est un carré de 100 mm de c6té. L’obstacle central a un c6té de 33 mm et les
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obstacles périphériques un c6té de 11 mm. La figure 4 montre le type de maillage curviligne
utilisé. Afin d’obtenir un maillage curviligne non trivial, les c6tés de la boite sont étirés et la
nouvelle zone ainsi créée est pénalisée afin de retrouver un domaine de calcul carré.

I osg 1 Lol 1 T
0 0.02 0.04 X 0.06 0.08 0.1
Figure 4 : Exemple de maillage curviligne Figure 5 : Lignes de courant pour
pour le cas du tapis de Sierpinski. Les zones ["écoulement stationnaire

pénalisées sont coloriées en noir
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Figure 6 : Comparaison des résultats Figure 7 : Comparaison des résultats
expérimentaux d’Amine et al et des résultats expérimentaux d’Amine et al et des résultats
numériques sur maillages cartésiens et numériques sur maillages cartésiens et
curvilignes Vz pour z=17mm curvilignes Vx pour x=50mm

Les résultats numériques obtenus pour des maillages 150 x 150 sont présentés figures 5, 6
et 7. Les valeurs observées sont les vitesses Vz(x) pour z=17mm et Vx(z) pour x=50mm. On
observe une corrélation assez moyenne entre les résultats numériques et les résultats
expérimentaux. Toutefois, les auteurs exposent dans [2] de bien meilleurs résultats en menant
un calcul 3D. Quoiqu’il en soit, les résultats sur maillage curviligne sont trés proches des
résultats obtenus avec un maillage cartésien.

4. Application a la convection naturelle dans la grotte de Lascaux

La méthode présentée dans le paragraphe 2. est utilisée pour prendre en compte la
géométrie complexe de la grotte de Lascaux, et résoudre les écoulements de convection
naturelle s’y tenant.

4.1. Position du probléme

La méthode de pénalisation est utilisée sur un maillage curviligne, la grotte de Lascaux est
ainsi présentée dans le massif environnant. L’utilisation d’un maillage curviligne présente
plusieurs intéréts, celui d’économiser le nombre de points en ne résolvant pas des zones dans
lesquelles seul le massif est présent, il permet en outre de se rapprocher de la géométrie réelle
du massif.
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Cabinet des félins

Abside

Diverticule axial

Salle des taureaux

Figure 8 : Grotte de Lascaux telle qu’elle est prise en compte dans le simulateur

Le nombre de Rayleigh relatif a ’écoulement dans la grotte de Lascaux est de 10°. Ce
Rayleigh est transitionnel entre un écoulement laminaire et turbulent. Les gradients de
température sont de 0,1°C. Ce nombre de Rayleigh élevé est lié aux grandes dimensions
rencontrées dans la cavité, jusqu’a 10 m de hauteur.

4.2. Phénomeéne d’inversion des températures

L’un des intéréts du simulateur Lascaux réside dans son aspect prédictif des écoulements.
Il permet de se situer a différentes époques en fonction de la configuration thermique
correspondante. Les températures sont relevées au-dessus de la colline environnant la grotte
depuis les années 1940, ce qui permet de déduire les températures dans la profondeur de la
colline et dans la grotte par une loi de conduction. Ainsi on se place a différentes époques afin
de retrouver les écoulements correspondants. Les figures 9 et 10 montrent les distributions de
températures a deux époques bien distinctes, septembre 1981 et février 2008, sur une coupe
longitudinale dans la nef (figure 8). Ces deux époques sont caractéristiques de deux régimes
tres différents, en septembre 1981 la température augmente lorsqu’on s’enfonce dans les
profondeurs, tandis qu’en février 2008, c’est le contraire.

temperature

temperature

121
12.0812
12,0625
12.0437
12,025
12.0063
11.9875
11.9688
11.95

Figure 9 : Distribution des températures dans Figure 10 : Distribution des températures
la configuration thermique de septembre 1981 dans la configuration thermique de février 2008

Les gammes de vitesse sont différentes selon la configuration thermique. En septembre
1981, elles étaient de 1’ordre du cm/s, tandis qu’en février 2008, elles sont 10 fois plus faibles,
comme représenté sur les figures 11 et 12 sur une coupe longitudinale dans la nef.

Vitesse (mis)

0.05
0.042
0.034
0.026
0.018
0.01

Figure 11 : Distribution des vitesses dans la Figure 12 : Distribution des vitesses dans la
configuration thermique de septembre 1981 configuration thermique de février 2008
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La trajectoire d’un traceur dans la partie droite de la grotte de Lascaux pour la

configuration climatique de septembre 1981 est présentée a la figure 13, elle montre 1’aspect
tridimensionnel de I’écoulement de convection naturelle.

e

Figure 13 : Trajectoire d’un traceur dans la configuration thermique de septembre 1981

Conclusion

Les méthodes de domaines fictifs présentées dans [2] sont étendues pour la premiere fois

aux maillages curvilignes grace a des algorithmes de Ray-Casting. Une validation 2D a
démontré le potentiel de la méthode sur un écoulement de convection naturelle interagissant
avec un tapis de Sierpinski. Des simulations 3D ont montré I’intérét de la méthodologie pour
¢tudier les écoulements dans des milieux a géométrie complexe comme la grotte de Lascaux.
Ces simulations s’inscrivent dans le projet de conservation préventive innovante qu’est le
simulateur Lascaux [6].
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Discussion and conclusion of Part V

Complex simulations have been realized with our methodology. The simulation in the drill
bits would have required more validations, but there is no accurate experimental results to
compare with. However, it is generally know that a greater blade angles induces a less efficient
evacuation of the coppers. Our parametric study with five different drill bits shows the same
tendency. Concerning the simulation of the hydroplaning of tires, the classification obtained by
the experiments of Michelin has been retrieved.

Hence, our methodology has been successfully on realistic simulation cases. The adaptation
of our home-made code Thétis is currently used on personal computers by Michelin and Varel
for their study.

Some illustrations are now quickly presented. Many of them have been realized in collab-
oration with members of our laboratory. In fact, another difficulty when implementing a new
method is to make it usable by almost anyone.

Thermal cooling with a jet (with Ludovic Osmar)

The impact of an oil jet injected through a nozzle on a heating square of copper is simulated.
The injection speed is 1m.s~!. The domain size is 32mm x 24mm and the quare has a side
of 8mm. The properties of the oil are p = 864.1kg.m~2 and p = 0.1Pa.s while rest of the
domain is filled by air. The mesh size is 240 x 180. The oil phase is managed with a VOF-PLIC
method. The Fig. (14.2) shows the phase location and the temperature in the domain for a long
time simulation. The flow is almost stationary. The SMP method is used to impose a Dirichlet

Temp.(°K)

1250
1200
1150
1100

1050
1000
| 950
| 900

| 850
800
| 700

650
“’ 600

| 550
500
450
400
350

Figure 14.2: Position of the oil jet (left) and temperature field (right)

condition for the fluid flow on the solids. The AIIB method imposes the interface conditions on
the surface of the cube. This case emphasize the need of an interface method for thermal transfer
while many cagses can be treated with only a boundary method for fluid flows. As can be seen,
the maximum temperature is obtained near the middle of the heating square. The temperature
is lower near the lowest side thanks to the cooling effect of the oil jet.

Subaquatic harrow (with Pierre Lubin)
The aim of these simulations is to study the impact of subaquatic harrows on the sedimentary
transport. Fig. (14.3) shows the effect of a single harrow (of height h = 1.80m) on an oceanic
flow. The recirculation created by the presence of the obstacle generates a dead zone and slows
down the displacement of sediment. These images have been created with a computer graphics
software from the results of the simulation.

Other illustrations
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Infographle : Ardur SARTHOU

Figure 14.3: Streamlines of the oceanic flow around a subaquatic harrow

Some type cases are presented. The Fig. (14.4) show a simulation of the interaction of a ship
hull and the water. The Fig. (14.5) is a case of thermal diffusion in a brain-like cavity.

Figure 14.4: Preliminary simulation of fluid flows around a ship hull
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Figure 14.5: Thermal diffusion in a brain-like cavity
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Part VII

Conclusion générale et perspectives
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U début de ce travail, le code Aquilon, devenu par la suite Thétis, permettait une utilisation
limitée d’obstacles ou d’interfaces. Seuls des objets de formes simples et analytiques
pouvait étre utilisés, et avec une précision spatiale au premier ordre. Concernant les objets
mobiles, un couplage fluide-structure efficace (la méthode ITP) existait déja mais ne fonctionnait
que pour des particules cylindriques en 2D et sphériques en 3D.

Par le présent travail, nous avons permis l'initialisation de phases, d’interfaces ou encore
d’obstacles de formes quelconques a I’aide d’algorithmes robustes et rapides. La précision spatiale
du traitement de ces éléments a été dans de nombreux cas portée a I'ordre deux. La gestion des
objets mobiles a de plus été étendue aux formes quelconques.

Afin de mettre en valeur ces nouvelles possibilités, le code Thétis a été couplé a un logiciel
d’image de synthése professionnel permettant un rendu bien plus réaliste des simulations. Ce
dernier est d’ailleurs couramment utilisé au laboratoire pour créer ou pré-traiter le maillage des
objets et interfaces.

L’objectif premier de cette thése était de développer une méthode de pénalisation au sec-
ond ordre et son extension aux objets mobiles. Cette nouvelle méthode a été validée dans de
nombreuses configurations et a montré sa robustesse. Elle reste d’aprés nos connaissances, la
seule méthode d’ordre élevée a avoir été couplée au lagrangien augmenté. Nous avons d’ailleurs
exposé les facilités qu’offre cette approche par rapport & une méthode de projection scalaire
de pression. Le principal défaut de cette méthode de pénalisation est qu’elle exige des solveurs
performants traitant des matrices a diagonales non-dominantes. Concernant son implémentation
dans Code_ Saturne, les résultats en maillage structuré sont similaires a ceux obtenus avec le code
Theétis. En non-structuré, les méthodes de correction d’opérateurs posent toujours probléme.

Afin d’obtenir un couplage fluide-structure implicite, il était initialement prévu de coupler la
méthode avec 'ITPM (|Rand 05]). Il s’est révélé impossible d’étendre la pénalisation de sous-
mailles aux problémes d’interfaces, ce qui a conduit & la conception d’'une méthode de frontiére-
interface immergée. Cette nouvelle méthode a montré sa capacité a traiter des cas typiques de
transferts thermiques avec un ordre deux en espace. Son principal avantage par rapport aux
méthode concurrentes est sa formulation simple engendrant une implémentation facile, ainsi que
son stencil de discrétisation trés réduit. Cette méthode reste toutefois au premier ordre pour
certaing problémes elliptiques, notamment pour une condition de flux d’interface ou de frontiére
inhomogeéne. Ce point devra rapidement étre amélioré. L’objectif suivant sera d’étendre la
méthode aux équations de Navier-Stokes afin de permettre une utilisation conjointe a I'I'TPM
offrant ainsi un couplage implicite en temps et un ordre deux en espace. A terme, un traitement
d’interfaces fluide-fluide, bien que complexe de par la nature des conditions de sauts concernées,
semble réalisable.

Afin d’utiliser ces méthodes pour des cas industriels complexes, nous avons développé des
méthodes de projections de maillage. Notre nouvelle stratégie, qui consiste & ramener le maillage
curviligne & un maillage cartésien, a montré son efficacité. La projection curviligne-eulerienne
est quelque peu complexe & implémenter mais facilite énormément 'implémentation d’autres
méthodes (projections surfacique-volumique, calcul d’efforts, advection...) ainsi que leur rapid-
ité d’exécution (tout particuliérement pour la méthode de Ray-Casting). Sur ces aspects, les
futurs développement porteront sur ’adaptation de ces méthodes & un environnement paralléle
a mémoire partagée de type OpenMP ou GPU. Les diverses méthodes de projection de maillage
effectuent beaucoup d’opérations indépendantes et sont donc faciles & paralléliser. Pour ce qui
est du MPI, le code Thétis procéde par décomposition de domaines ce qui n’influence pas les
routines de projection qui fonctionnent ainsi naturellement en parallele MPI. Un autre aspect
important sera de trouver une correction adéquate des propriétés géométriques de la fonction
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distance. Ces derniéres sont un des principaux intéréts de la méthode Level-set mais ne sont pas
valables dans I’espace réel si la fonction distance a été construite dans un espace transformé.

Concernant les objets mobiles, nous avons étendu l'approche de [Coqu 08] & la pénalisation de
sous-maille et au lagrangien augmenté. Nous avons choisi d’advecter le maillage des objets plutot
qu’une fonction volumique. Cette approche permet de conserver exactement la forme de I'objet
et reste trés performante en terme de temps de calcul pour peu que 'effort d’implémentation
nécessaire soit déployé (Thread Ray-Casting, Octree...). Il est toutefois apparu que 'ITPM était
généralement plus précise. Elle est également plus robuste dans de nombreux cas. Cela renforce
I’idée que la voie & suivre est de coupler cette méthode avec la méthode d’interface immergée
algébrique. Pour ce qui est des interactions solide-solide, un code de calcul temps réel avec
visualisation OpenGL a été construit afin de faciliter I’étude d’un algorithme de collision. Les
résultats sont satisfaisants sauf pour les cas raides de type empilements.

Toutes ces méthodes ont permis de traiter des cas industriels complexes. Les simulations
d’hydroplanage ont produit des résultats en cohérence avec des expérimentations. Nous avons
aussi développé pour Varel un simulateur d’écoulements dans les tétes de forage avec une gestion
de copeaux. Ce dernier point peut encore étre grandement amélioré par 1’ajout de propriétés
physiques dans la dynamique des copeaux. Le troisiéme cas, la grotte de Lascaux, est un bon
exemple d’aide a la conservation du patrimoine. De nombreux médias (Libération, JT TF1,
France 2, France 3) se sont fait écho du simulateur et ont diffusé les images de synthéses réalisées
par nos soins ce qui montre le potentiel de communication et de vulgarisation de cette approche.
Concernant 'imagerie de syntheése, les cas présentés en annexe ont été réalisés avant que ce tra-
vail ne commence. Les différents outils et améliorations développées ici permettront d’obtenir
rapidement de nouvelles séquences plus intéressantes.

Tout ceci démontre la capacité d’une approche "tout cartésien" a mener des simulations pour
I'industrie ou I’environnement avec une puissance de calcul réduite, et malgré leur complexité, les
cas industriels de Michelin et Varel ont été traités sur des machines standards. Des cas similaires
continuent & étre traités par ces entreprises avec notre simulateur, et ce toujours sur des machines
de bureau. Quand a I’évolution de ces derniéres, la tendance est résolument une augmentation
soutenue du nombre de processeurs pour une évolution relativement moindre de la mémoire vive.
Ce dernier point nous pousse —pour ce qui est des perspectives a plus long terme— a considérer
sérieusement un portage complet de notre approche aux architectures multi-ceceurs (CPU comme
GPU) a mémoire partagée.
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Appendix A

Conservation equations and related
numerical context

A.1 Preamble

In this section, the numerical methods used in the home made code Thetis (formerly Aquilon)
are presented. This document has been written at the laboratory TREFLE which is composed of
both mathematicians and physicists. Hence, each element of the following chapter will possibly
be considered as evidence by one of the two communities.

A.2 Equations
Let us consider first a second-order linear PDE:
AUgy + 20Uzy + CUgy + 2duy + 2euy + fu =0 (A1)
Three kinds of equations can be identified according to the value of b? — ac:
e b2 —ac > 0, the equation is hyperbolic (wave equation)
e b2 — ac = 0, the equation is parabolic (diffusion equation)

e b? —ac < 0, the equation is elliptic (Poisson equation)

A.2.1 Conservation equations

Conservation equations are all based on the consideration of the flux of some state variable
flowing into and out of some region of the domain. In general the sources and sinks within this
region are also considered in arriving at a conservation equation. These fluxes generally depend
on position, but they may also depend on the state variable itself, or they may represent fluxes
of state variable carried into the region by moving material. Let us consider a physical quantity
®. The following PDE is a generic scalar transport equation :

P
%7 +V - f(t,x,®, V) = g(t,x,P) (A.2)

where f is called the flux and g the source.
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A.2.2 General elliptic equations

An operator P is defined as elliptic is the equation Pu = 0 is elliptic. An important case of
elliptic operator is the Laplacian, or Laplace operator, denoted as A = V2. In non-Euclidian
spaces, the Laplace operator can be generalized and is not necessarily elliptic (e.g. the Laplace
operator becomes the d’Alembert operator O = 82 — 92 — 85 — 02 in the Minkowski space). The
Laplace equation is Au = 0. With a source term f, the Laplace equation becomes the Poisson
equation Au = f. One can notice that the heat equation, u; — aAu = f, is a parabolic equation
but its steady state solution solves the corresponding elliptic equation. When no particular
physical application is considered, the present work generally considers the following model
elliptic equation:

—V . (aVu) +bu=f (A.3)

Let us consider the following model problem: .
For a € (L>®(Q))¥9, b e L>®(Q) and f € L*(Q), find a function @ defined on Q such that:

{ —V-@ava)=f inQ

B.C. on 99 (A4)

where B.C. represent several types of boundary conditions:
e A Dirichlet condition @ = up with up € H/2(09Q),

e A Robin (or Fourier) condition: —(a.V).n = art + gr, with ag € L>®(09Q); ar > 0, and
gr € L*(9Q)

e A Neumann condition, —(a.V).n = g, considered as a particular case of the Robin condition
where ap =0 and gr =g

Moreover, the tensor of diffusion & = (@;;)1<; j<q and the reaction coefficient b verify the classical
ellipticity assumptions:

Jag > 0,V€ € RY, a(z).£.€ > aplé|? a.e. in Q

where |.| is the Euclidian norm in RY

Jbg > 0, b(z) > bo a.e. in Q

In this case, the classical variational techniques (e.g. [Ravi 82]) prove that the solution @ of
the original problem exists and is the unique solution @ in the space H'(() satisfying the weak
formulation of the problem.

A.2.3 The incompressible Navier-Stokes equation

The Navier-Stokes (NS) equations are named after Claude-Louis Navier and George Gabriel
Stokes. They describe the motion of fluid substances, i.e substances which can flow. Extremely
useful, they can describe a large amount of phenomena, such as weather, flow around a car or a
plane, or blood flows.

The unknowns of the NS equations are generally the velocity and the pressure. The nonlinear
term due to convective acceleration provides a time dependent chaotic behavior called turbulence.
The NS equations are often extremely difficult to solve numerically when turbulence appears.
Mathematically, the existence and the smoothness of the 3D NS equations is not demonstrated.
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Let us consider the domain of interest €2 of boundary 0f2.

V-u=0in (A.5)
p (881; +(u- V)u) =pg — Vp+ V- [u(Vu+ V)] + ckn;d; in Q (A.6)
aaeru.vczomQ (A7)

A.3 Numerical methods

A.3.1 The finite volume method
We consider the integral form of (A.2) for the whole domain €2 :

oP
< dv+/v-f(t,x7q>7v¢) dV:/g(t,x,fb) av. (A.8)
Q Ot Q Q

One can notice that the equation (A.8) is the flux balance for the whole domain €. The integral
form of the equation is now rewritten for all CVs V; of measure v; compounding the domain 2

P
oe dV+/ V- f(t,x,®,VP) de/ g(t,x,®) dV. (A.9)
7 ot V; Vi

Numerous numerical schemes can be used to discretize each of the terms. On integrating the
first term to get the volume average and applying the divergence theorem to the second, this
yields

0P

vi—+ ¢ f(t,x,®,V®)ndS= | g(t,x,®)dV. (A.10)

ot S; Vi
Hence, the discretization of the second term is based on the fluxes at the faces of the CVs. As the
FV method uses the integral form of the conservation equations, the conservation of the physical

properties is straightforwardly obtained.

A.3.2 The staggered grid

Our methodology uses four primary variables (u,v,w,p) to solve the incompressible Navier-
Stokes equations. The intuitive discretization consists in putting the variables four by four at
the same location. The calculation of derivatives in such a "colocative" grid leads to major
difficulties. Let us consider a cell-centered pressure variable pc and his left and right neighbors
pw and pg. The location of the faces of the control volume are p,, and p.. The calculation of the
1D pressure gradient 3—5 gives the quantity pe — py. Using the cell-centered variable, we obtain:

e po— _
pe_pw:pw2p P 2pE:pw2pE (A1)

This means that the momentum equation will contain the pressure difference between two al-
ternate grid points, and not between adjacent ones. First, the pressure is taken from a coarser
grid than the one actually employed. The same problem occurs with discretization of V - u in
the pressure correction equation or in the Uzawa algorithm. But this discretization has a far
more serious problem. Let us consider a zig-zag pressure field alternating between two constant
values p1 and po. If pyw = p1, pc = p2 and pg = p1, the calculated pressure gradient in po is




230 A. CONSERVATION EQUATIONS AND RELATED NUMERICAL CONTEXT

null. Hence, the gradient of a pressure field will be seen as constant so the pressure field will be
perceived as constant. The same effect is obtained in 2D with a checkboard-like pressure field.
And if a given pressure field is obtained as a solution, any number of additional solutions can be
constructed by adding a checkboard pressure field to that solution.

Hence, an alternative interpolation method, such as the Rhie and Chow method [Rhie 83] is
commonly used. This discretization uses a weighting factor to take into account the value of the
pressure in po when calculating the pressure gradient at this location.

Harlow and Welch proposed, combined with their MAC method, to use a different grid for
each variable [Harl 65]. In this staggered grid, the velocity components are calculated for the
points that lie on the faces of the control volumes. Thus, the x-direction velocity is calculated
at the faces that are normal to the x direction. In Fig. A.1, the location of the velocity variables
is shown as arrows while circles shows the location of the pressure points. With such a grid,

Figure A.1: Location of the unknowns for the staggered grid

the mass flow rates across the CVs can be calculated without any interpolations for the relevant
velocity component. Moreover, the discretization of the pressure gradient in the momentum
equation and the discretization of the divergence of the velocity for the pressure correction and
for the Uzawa algorithm use adjacent grid points. Hence, the checkboard effect and its related
problems observed with a colocative approach are no more. However, as 1 4 d grids are used
instead of a unique one, the staggered grid method require a larger amount of memory and some
additional computation efforts to determine the location of the velocity nodes. Nevertheless, the
benefits of such an approach are well worth the additional troubles.
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A.3.3 The velocity-pressure coupling
A.3.3.1 The scalar projection method

A first common way to obtain the pressure when solving the Navier-Stokes equation is the
SIMPLE algorithm of Patankar and Spalding [Pata 72].

The idea is to obtain first a predicted velocity from the momentum equation. This velocity is
not divergence free. In a second step, the projection step, the pressure is risen with respect to the
divergence of the velocity obtained in the prediction step. The third step consists in updating
the velocity according to the pressure gradient obtained with the second step.

Let write the momentum Navier-Stokes equation:

% = +RHS — Vp (A.12)

with RHS the convective, diffusive and source terms. The half discretization in time gives:

n+1

p <uA;u> = RHSM — vyt (A.13)

This equation is solved, but as here V - u™t! # 0, a first predicted solution u* can only be
obtained. We define u’ such as u"*! = u’ + u* and p’ such as p"*!' = p’ + p*. Hence, the
predictor step solves:

u;'k — u? _ R v )

One can write now (A.13)-(A.14):

u’tt — u*
—i__ — ) =RHS -V Al
p< A7 ) RHS"—V;p (A.15)
A A
(u! — ) = ptRHS’ - ptvip’ (A.16)

The correction equations is then defined by writing the divergence of (A.16). The term V -
%RHS’ is neglicted. We obtain :

At
Voui=V- 7V¢p/. (A.17)

Once the pressure increment is obtained, velocity and pressure are updated:

Pt =p +p" (A.18)
At
it =uf - =SV (A.19)

In [Timm 96|, Timmermans et al. proposes a correction of this last step replacing (A.18 by
Pt =p 4 p" — uV - ut (A.20)

This correction gives better results with the pressure Neumann BC. One can find an overview of
the different projection methods in [Guer 06].
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A.3.3.2 The Uzawa operator
The discrete Navier-Stokes equations are written as:

Au™tt 4 Gptt = F (A.21)
Du™™ =0 (A.22)

where D is the discrete divergence matrix and G the discrete gradient matrix. If A is inversible,
one can rewrite (A.21) as
Du™™ + DATIGp"T = DATIF (A.23)

As Du™t! = 0, the pressure can be solved with

DA7'Gp"™ = DAT'F (A.24)
and DA™'G is the Uzawa operator. The system (A.24) can be solved with an iterative method.
We choose pSH = p" and m is the current iteration of the iterative algorithm. The Richardson
method gives:

pfntll = ptt —dp(DAT'F — DAT'Gpl) (A.25)

and using DA™'F — DA-'Gp"*! = Du™t!,
iy = Pt = dpDuith (A.26)

A.3.4 The augmented Lagrangian method
A.3.4.1 Theoretical formulation

Let us consider the incompressible Navier-Stokes equation on a domain Q € R%:

p @‘; +(u- v)u> = pg = Vp+ V- [u(Vu+ V)] + oknig; in Q (A.27)

V-u=0inQ (A.28)

Contrary to scalar projection methods, the augmented Lagrangian (AL) [Fort 82] proposes to
satisfy the two equations (A.28) and (A.27) at the same time, resulting a divergence free flow
u after only one matrix inversion. The method uses at the same time a minimisation under
constraint and a penalty term to accelerate the convergence. The pressure p is here a Lagrange
multiplier which allow the constraint to be ensured.

For all v € (H(Q))%, let J(v) be a functional built from the weak formulation of the momentum
equation (A.27). This functional has to be minimized under the constraint u,v € M = {v €
(H(9))4,V - v = 0}. This problem is equivalent to the following one:

{ Ju) < J(v), VWweM

L (A.29)

Practically, a solution in a constrained space such as M cannot be easily computed. This
problem of minimization under constraint is transformed into a problem of minimization without
constraint introducing a pressure g as a Lagrange multiplier. We define the following Lagrangian:

L(v,q) =J(v)— /qu -v dQ2 (A.30)
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The minimization problem (A.29) consists in finding a saddle-point (u,p) € (H} ()¢ x L3(Q)
of the Lagrangian (A.30):

L(u,q) < L(u,p) < L(v,p) Vv € (Hy(Q))?, Vg € L*(9), (A31)
u € (Hg()?, vp € L*(Q) '
which implies
L(u,p) = miny e (f71(Q))d MaXge2(0) L(v,q) (A32)

= maXger2(q) minve(Hé(Q))d L(v,q)

In order to increase the convergence rate [Fort 82|, the constraint is used to build a penalty term
%dr\v -v|?, dr € R. The augmented Lagrangian is denoted as:

d
L.(v,q) =J(v)— / qV - v dQ +/ §|V v[? dQ (A.33)
Q Q

and the relation (A.31) can be applied to £, too.

We admit that the solution of saddle-point problem for the weak formulation of the initial equa-
tions is the solution of the strong formulation of the problem (proven for the Stokes equations,
admitted for the Navier-Stokes equation). The resulting Navier-Stokes equations are:

p (861; +(u- V)u) =pg—Vp+ V- [u(Vu+ Vi) +oknd; —drvV(V-v)in Q  (A.34)

V-u=0inQ (A.35)

As the value of dr is for now arbitrary, % has been replaced by dr for the sake of simplicity.

A.3.4.2 Numerical application

The base methodology The numerical resolution is an iterative process. The equation (A.34)
is solved with an explicite pressure which is then updated with (A.26). For the sake of simplicity,
the method is first written for one iteration per time step only. Hence, the following implicit
problem is solved:

n+l _ .in
p <u“ Fut - vutt) - v (v urt)

At (A.36)
= —Vp" + pg + V- [u(Vu" + VIu")] + oknd;
The pressure is then updated using
p" Tt =p" — dpV - u" ! (A.37)
The equations (A.36) and (A.37) can be rewritten as:
Au" — drDGUT + Gpt = F (A.38)
pitl=pn — dpDuZ;;ll (A.39)
Ideally, one want to solve
Au™tt L Gpttt = F (A.40)

Using (A.39) on (A.40), we obtain

Au™™! — GdpDu" ! 4 Gp" = F (A.41)
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The augmented Lagrangian terms in (A.38) and (A.41) differs and are not equivalent, even if
dp = dr. The term drDGu™"! is inherited from the mathematical formulation and comes from

dr
the penalty term / ?|V -v|? d€ for the weak problem. The solution is to integrate by part the
Q

r
weak term considering ?V‘V as the integrated term instead of V-v which is the standard choice

d
in [Fort 82]. The resulting penalty term is — /Q(V;V'V)V dQ and the consistant penalty term

—GdpDu™*! can be retrieved for a good choice of dr. In all our algorithms, we choose dp = dr.

Standard Augmented Lagrangian (SAL) Starting with u*? = u” and p*? = p", the
predictor solution reads while ||V - u*™|| > € , solve

(u*,pr*,O) — (un?pn)

*,MM *,0
u’ —u” *,m—1 * *
— +u™" -Vu”“)—rvv-u’m
g < At ( ) (A.42)
= —Vp" 4 pg 4+ V- [u(Vut™ + Viu™)] + okngd;

p*,m — p*,mfl . Y’V . u*,m

where 7 is the augmented Lagrangian parameter used to impose the incompressibility con-
straint, m is an iterative convergence index and € a numerical threshold controlling the constraint.
Usually, a constant value of r is used. From numerical experiments, optimal values are found
to be of the order of p; and u; to accurately solve the motion equations in the related zone
[Vinc 07] . The momentum, as well as the continuity equations are accurately described by the
predictor solution (u*,p*) coming from (A.42) in the medium, where the value of r is adapted.
However, high values of r in the other zones act as penalty terms inducing the numerical solution
to satisfy the divergence free property only. Indeed, if we consider for example pi/po = 1000
(characteristic of water and air problems) and a constant r = p; to impose the divergence free
property in the denser fluid, the asymptotic equation system solved in the the predictor step is:

P V>u*2 V(Y w)
= pg — Vp" + V- [w(Vu* + VTu")] + okn;d; in Q4 (A.43)
u—7“V(V'u*)=Oin Qo

At

Our idea is to locally estimate the augmented Lagrangian parameter in order to obtain satisfac-
tory equivalent models and solutions in all the media.

Adaptive Augmented Lagrangian (2AL) Instead of choosing an empirical constant value
of r fixed at the beginning of the simulations, we propose at each time step to locally estimate
the augmented Lagrangian parameter . Then, r(t, M) becomes a function of time ¢ and space
position M. It must be two to three orders of magnitude higher than the most important term
in the conservation equations.

Let Lo, to, up and pg be reference space length, time, velocity and pressure respectively. If we
consider one iterative step of the augmented Lagrangian procedure (A.42), the non-dimensional




form of the momentum equations can be rewritten as

*,Mm n 2
upum’t —u U, _
774_[)?0(11*17” I.V)u*’m
0

Py At
] Aty = pg — Ly A4
VOV = g~ 0y (A4
+%v (Va4 v Tty 4 %k‘niéi
0 0

Multiplying the right and left parts of equation (A.44) by L3/ug, we can compare the aug-
mented Lagrangian parameter r to all the contributions of the flow (inertia, gravity, pressure
and viscosity). We obtain

L% u*,m —u"

- - L *m—1 *,1M
e AL T Pu02 o(u V)u
L L
~V(rV . -u"™) =pLg - MVp*’m_l (A.45)
() ug
V- [p(Vutm o+ VT atm)] uik:niéi
0

It can be noticed that r is comparable to a viscosity coefficient. It is then defined as

L2
r(t, M) = K max (p(t,M)tO,p(t, M)ugLy,
0 A.46)
L§  poLo o (A
p(taM)Jg7 mu(t)M)77
ug Ug Ug

1f 2L = 1000 and o < p1 << po << pp for example, the semi-discrete form of the momentum
Po
equations resulting from the new values of r(t, M) given by (A.46) then becomes

o <11 ? A; u + (u*7m—1 . v)u*,m> - V(Tv . u*,m)

=p1g — Vp" L 4 V- [ (Vus™ 4+ VIu™)] + oknyd;

in Qq with r = KlplL%uO
(A.47)
Po (u 7 A; 24 (u*mt. V)u*’m> - V(rV.-u"m)
= pog — V""" + V- [uo(Vut™ + VIut™)] + okn;d;

in QU with r = Kong(QJuO

where Ky and K, are in between 10 and 1000. In this way, thanks to expression (A.45), the
adaptive Lagrangian parameter is at least 10 to 1000 times the order of magnitude of the most
important term between inertia, viscosity, pressure or gravity in both €7 and Qg domains. Com-
pared to the SAL approach (A.43), the 2AL is consistent with the Navier-Stokes equations in
each phase [Vinc 07] . The new method (A.46) can be easily extended to other forces such as
surface tension and Coriolis or specific source terms. Comparisons between standard and adap-
tive augmented Lagrangian (2AL) methods are presented in the next section. In particular, the
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influence of the penalty parameter on the convergence speed of the BICGSTAB solver and time
and space variations of r(M) are discussed.

As a summary, the complete time-marching procedure of the predictor-corrector algorithm
including the 2AL method is the following:

® Step 1: defines initial values u’ and p° and boundary conditions on T,
® Step 2: knowing u”, p" and a divergence threshold e, estimates the predictor values u* and

p* with the Uzawa algorithm (A.42) associated to the local estimate of r(t, M) defined in ex-
pression (A.46), so that u* = u™™ and p* = p*™ when m verifies ||V - u*™|| < €

® Step 3: projects the solution (u*,p*) on a divergence free subspace thanks, for example, to
projection approaches [Goda 78, Calt 99| to get the correction solution (w,p’). Then, the nu-
merical solution at time (n + 1)At is (w1, p" ™) = (u* + w,p* + p),

® Step 4: iterates n in steps 3 and 4 until the physical time is reached.

Algebraic adaptive Augmented Lagrangian (3AL) It has been demonstrated that es-
timating a local and adapted augmented Lagrangian parameter is crucial for simulating multi-
phase flows [Vinc 07| . The main remaining drawback of the 2AL method is linked to the a priori
definition of dimensionless parameters for defining r(¢, M). The augmented Lagrangian approach
is based on the concept of a penalty method. As a consequence, the augmented Lagrangian pa-
rameter acts as an algebraic parameter which increases the magnitude of specific coefficients in
the linear system in order to verify a specific constraint, while solving at same time the con-
servation equations. In this section, an estimate of r(¢, M) which is based on a scanning of the
linear system is proposed. The main interests of the algebraic adaptive augmented Lagrangian
method (3AL) are the following: it does not require any a priori physical information, it applies
to any kind of geometry and grid and it takes into account the residual of the linear solver and
the fulfilment of incompressible and solid constraints.

At each time step and in two-dimensions, the 3AL method determines r(t, M) as follows:

® Step 1: Two matrix A and A* are built corresponding respectively to the discretization of the
momentum equations with r(¢, M) = 0 and r(¢, M) = 1. In order to optimize computer memory,
a compressed storage raw (CSR) structure is chosen to store only the non null coefficients of each
matrix,

® Step 2: On the fixed staggered Cartesian grid, r(t); ; is evaluated according to the discretiza-

tion coefficients of the surrounding velocity u_, . u, .._1 and w, .. 1 components,
z,0 Yl —3 Y07+ 5

—53.50 Yait.0
as presented on figure A.2.
The discretization of each velocity component, u, ;1 j for example, requires the use of 9
b 27

neighboring velocity nodes, i.e. Ug i1 s Ug i d ol i3 j> Ui 111 and Ui 11 for the dis-
cretization of the inertial and viscous terms and uy,i_Lj_%, uy7i_17j+%, uy,i,j—% and “y,i,j+% for

the viscous and augmented Lagrangian terms. In this way, we estimate the maximum values of

the discretization coefficients Ar(u), 1 < I <9 associated to velocities Ug i1 js Ugig Lo Uy i1
and Uy ijil- We define:
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Figure A.2: Typical distribution of discretization variables on a 2D fixed staggered Cartesian
grid

C. 1.=marj=1.9 |Ar(u

i3 ( W—%’j)_
Cip1j=mazi=i. 9 -AI(U‘,M_;_%J)_
C'Z.’j_% = maxr=1._9 :A[(uyﬂ.’j_%):
\ C’j+1 = maxr=1._9 :A[(uy7i7j+%):
® Step 3: In the same way, the coefficient C;_%,y C’;_%’j, Cz‘*,j , and 07 41 corresponding to

A* are estimated,

® Step 4: The minimum and maximum discrete coefficient Rmin;; and Rmax; ; at the scalar
position of r(t); ; are then defined as:

Rmin;,; —mm(ll(j 2’|| | ”Q’H | ”"H Ho*”jll)
2779 z 2] 74]*§ w+2
z 27 1+2J 1]** ¢ J+2

Rmazij = maz(|lg—= I o= I e e 1)
1773 1 21 1177 +§

® Step 5: I fners < 1010 and ZefResrfuiil < 1000, r(t);; = Rming;. Else, r(t)i; =
Rmax; ; unless the penalty of the incompressible or solid constraint is not ensured due to grid
irregularity or strong local variation of physical or penalty parameters (at the interface between

fluid and solid media for example),

® Step 6: Once 7(t);; has been estimated for all 4 and j, 1 < i < ng and 1 < j < ny, we

normalize the local values of the algebraic penalty parameters by r(t);; = %, where

Tmin = MANi=1.n,,j=1.n,(T(t)ij). The constant K is equal to 1 except at the first calculation
step where K = 100 if R%x’; < 10'° or if during the five first calculation steps the norm of
the residual of the linear solver divided by the norm of the divergence, obtained at the previous
calculation step, is grower than 10°. This last particular case can be obtained when a flow
simulation is initialized without any imposed velocity field.
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Steps 1 to 6 are repeated at each calculation step corresponding to a physical time incremented
of At seconds.

A.3.5 Solvers
A.3.5.1 Direct solvers

For 2D simulations, we have generally used the PARDISO solver of [Sche 04]. The advantage of
a direct solver is to always solve a linear system with a computer error residual (of course, the
matrix has to be inversible matrix). PARDISO can use more than one core for one inversion on
multicore CPU. For linear systems describing a 3D problem, the direct solvers required a too
large amount of memory and are generally not used.

A.3.5.2 Iterative solvers

The iterative solvers employed here is a Bi-Conjugate Gradient Stabilized [Vors 92]. Let us con-
sider a linear system A.xz = b of rank N. From an initial guess 2°, iterations are performed until
the residual 7* is below a chosen value

Initialization :
20 e RV,
0 0
r’ =b— Ax
. ’ A4
70— 40, (A.48)
0 = 70

Itérations : For k=1 to K,

k—1 _ _(P00F 1)
«a = 0, ApE—1y»
sF=1 = ph—1 _ k=1 gpk—1
Ak*l N (Ask_l,sk_l)

k 714&1&1&“5}“_1"1?3]61_113771 k=1 _k—1 A.49

=" 4 av TP T AT ST (A.49)

T‘k — Sk_l _ )\k_lAsk_l,

k _ okt (#00F)
/B — \k-1 (fo’rk—l )

pF =k BE(pEL N1 Aph Ty

The convergence rate of the system generally depends on the conditionner. When not pre-
cised, an incomplete LU (ILU) factorisation [Gust 78a| has been used. An ILUK factorization
[Saad 86| has been generally used for the AIIB method for immersed interface cases.

A.3.6 Multiphase flows

labeltvd A wide litterature is devoted to interface tracking on Eulerian grids: the front tracking
method of [Unve 92|, the Volume Of Fluid method (VOF) of [Hirt 81], improved for example by
[Guey 99|, the level set method of [Oshe 88] and [Fedk 99| or the explicit Total Variation De-
creasing (TVD) Lax-Wendroff (LW) scheme of [Vinc 99|. In our work, the interface advection is
directly handled by a Piecewise Linear Interface Reconstruction PLIC VOF method of [Youn 82|,
which lies on a Lagrangian advection of planar pieces of interfaces. The main advantages of the
PLIC-VOF approach is to be accurate for tracking tearing and stretching interfaces and to avoid
numerical diffusion.
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The surface tension force F gr = okn;d; is modelled by a volume force proposed by |Brac 92].
The Continuous Surface Force (CSF) evaluates Fgr according to the variations of the phase
function C as follows:

Fsr=0V- <VC > vc (A.50)
o Vel |
In the CSF approach, the interface is spread on several mesh cells. The discretization of the
surface tension force can be found for example in [Brac 92| or [Vinc 00].
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Appendix B

Application to the image synthesis

DURING the twenty past years, image synthesis have invaded our every day life. The first
step was to draw objects. First, single frames were rendered. Then, many methods such
as the inverse cinematics and the keyframing have been developed to give life to more or less
deformable objects. Objects were first rigid by parts, and then were fully deformable.

The image synthesis of flows is a quite recent thing. The graphical rendering is not the
biggest problem since the well-known ray-tracing methods allow to render translucent materials.
Animation is the big issue. The first occurrence of CG flow appears in the James Cameron
blockbuster movie "Abyss" (1989). However, the fluid motion was not performed thanks to
CFD but animated "by hand". Ten years after, animation of fluid was still a big deal. If we
look at the recent SIGGRAPH publications, basic realistic non real-time animation of fluid flow
has stopped to be itself a subject of publications only a few years ago. The new challenges
concern complex fluid properties such as foams [Losa 08], multiphase flows [Losa 06|, real-time
optimization |Treu 06] or motion control.

Many studies have been devoted to the fluid-structure coupling for CG. In one-way meth-
ods, the interaction between fluid and solid domain is not mutual. In solid-to-fluid methods,
the motions of solids are predetermined [Fost 97| and [Fost 01]. In fluid-to-solid method, the
fluid can move objects, but the object do not change the motion of the fluid [Fost 96]. These
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methods can be used to simulate phenomenons for which the force generated by the two domains
is disproportionate.

Two way-methods consider the mutual interaction between the two domains. Some recent works
have created methods for specific cases. Coupling between infinitesimally thin objects and fluid or
smoke [Guen 05], coupling between breaking solids and compressible fluid in explosion [Yngv 00].
[Feld 05] have used hybrid meshes to animate gases around irregularly shaped obstacles. In
[Carl 04], Carlson et al. have developed a new coupling method using DLM called Rigid Fluid.
The objects are treated as fluids, but their velocities are constrained to be rigid motion.

The first aim of the CFD for special effects is to provide a motion that seels realistic to
the viewer. The physical rightness is a good way to obtain a good aspect but is not a priority.
However, we believe that a realistic flow, from a CG point of view is as well a realistic flow from
a physical point of view.

Hence, the coupling between the CFD code Thétis and the CG software 3D Studio Max
(Autodesk) has been performed to fulfill two objectives. First, the visual aspect of the physical
simulations is not always suitable for general public. The enhancement of the graphic quality of
the results is a good way to impress an audience and can make a difference. It is a good way
to lead the student to the CFD. Secondly, the graphical simulation of fluid flows has both an
academic and economic interest. The real-time simulation (especially on GPUs) is currently in
fast expansion [Cran 07].

B.1 Global methodology

According to the type of flow, different properties or entities has to be displayed.

B.1.1 Case setting

The surface data are then read by the CFD code which uses it as interfaces for fictitious domain
methods.

The flow is then computed with a constant time step to allow future image-per-image ani-
mations. According to the physical case simulated, different informations can be extracted such
as velocity field, phase function, free surface, concentration etc...

B.1.2 Free surface animation
B.1.3 Strategy of Eulerian/Lagrangian grid coupling
B.1.3.1 Volume and surface data

Fundamentally, the numerical simulation codes uses volume date while CG softwares use surfacic
data. The two approaches are well suited to define an interface, e.g. a fluid free surface. The vol-
ume approach consider an implicit representation of the interface considering a volume function,
Heaviside(x), VOF(C), level-set(¢), etc... The surface approach uses an explicit representation of
the interface which is generally a triangularized mesh.

The volumic approach is well-suited for CFD codes while the surfacic approach is more
natural in a CG software context. In fact, the rendering techniques used by the CG softwares
use generally surfaces only. However, medical, geological or thermal applications such as MRI
requires the representation of volume data. Hence, volume shaders are currently developed in
some visualization softwares such as Avizo(SVG). The recent graphic cards have a hardware
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acceleration of volume shaders. However, the CG softwares used for non-real time realistic
rendering are not initially designed to treat volume data, so the volume shaders are not currently
present in the CG software we use.

Hence, coupling a CFD code and a CG software implies a coupling between the two approach.
The projection from a volume data to a surface data is done with the extraction of an iso-surface.
If the VOF function C'is considered, we consider the iso surface such as C' = 0.5 as being the most
relevant as 0 < C' < 1. The extraction can be performed directly in the CFD code. However, the
implementation of a robust extractor is not simple, and the parameters of the extraction have to
be set one time for all while the simulation is running. To increase the flexibility of the processus,
we choose to extract the iso surfaces after the simulation using output data. The extraction is
performed in the scientific visualization software Tecplot.

The algorithms used to obtain a volume data from a surface data are described in section 6.1
and are directly implemented in the CFD code Thétis.

B.1.3.2 Walkthrough

The proposed method consists in 6 distinct steps :
® A scene is first designed with 3D Studio Max (Autodesk) or Blender (see Fig. B.1)

Figure B.1: Design of a 3D dam break scene.

® The triangular surface elements of each object which interacts with the flow motion are
then generated (see figure B.2),

® The lagrangian description of the solid objects is projected onto the fixed Fulerian flow
grid. Figure B.3 shows the Eulerian projection of the topography and the dam.

® The characteristics of the whole fluid /solid medium are defined, such as the density and
the viscosity, according to C' and the unsteady flow motion (see figure B.4) is calculated with a
single fluid model coupled to penalty methods for the treatment of solids.

® The lagrangian iso-surfaces describing the free surface (see figure B.5) C' = 0.5 for each
fluid are generated.
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Figure B.2: Sketch of a dam topography on the Lagrangian grid extracted thanks to the 3D
software.

® Finally, the lagrangian iso-surfaces of fluid interfaces are loaded into the 3D CG software
to perform scientific visualisation or computer design. An example is provided in figure B.6.

B.1.3.3 Animation

In CG softwares, animations are created image per image. The movement of objects can be
defined at each time step, or key positions can be defined for some time steps only. In this
last case, the global movement is interpolated from the key where the position is explicitly
defined. This method is called the keyframing. Once the animation is defined, the CG software
render the animation for all the time steps. Hence, the animation of a triangularized surface
can be performed by moving its elements (vertices, polygons...), a constraint being that the
connectivities cannot be modified. During the simulation of a two phase simulation, the interface
between the two fluids can undergoes topological modification such as coalescence or formation
of droplets. For this reason, the interface cannot be considered as an unique object through the
whole simulation time. As consequence, the rendering process itself has to be modified. The
interface has to be reloaded at each time step as a new object. For technical reasons, the ability
of the software to render an entire animation cannot be used if a new object is loaded. Instead
of launching the rendering of each frame by hand, a script recreating the rendering process of an
animation has been written and coupled to the script loading the iso surface.

B.1.3.4 Rendering

Many rendering methods can be used to recreate realistic fluids. The two main rendering engines
of 3D Studio Max are the Scanline Renderer which is the original default renderer and Mental
Ray. The first one is fast, easy to configure and give good results. Refraction, reflection and
radiosity are available. Mental ray is harder to configure and slower but can simulate caustic
phenomena and gives a more realistic rendering. However, problems have been encountered with
mental ray when rendering iso surfaces of poor quality (self intersecting or non closed surfaces).
In this case, the light rays trajectory can change drastically from one frame to an other generating
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Figure B.3: Sketch of a dam topography on the eulerian grid after equation (6.1) solving.

a blinking or the refracted image.

B.1.4 Moving complex objects

Contrary to free surface flow, the moving mesh is not deformable, so only the position and rotation
angle of each objects is written for some regular time step in the exchange file. Each object is
then created in the CG software. Its global trajectory is interpolated from the informations of
the exchange file.

B.1.5 Passively advected particles

The main difference with the last case is that the particle rotation is not considered, the number
of particles can be huge and particles can be created during the time. Two approaches have been
experimented :

e The movement of the particles is computed in the CFD code. At each time step, the
position of all particles is written in a file. Once the simulation is complete, the rendering
of the animation is performed in a quite similar way as in (B.1.2). For each frame, the
file containing the position of the particles is loaded and the particles are generated, then
rendered and destroyed. The main drawback of this method is the size of the files containing
the particles positions.

e The particles are directly created in the CG software from the velocity field. This approach
is more flexible as the injector position or the particle amount can be set in the CG
software. However, a particle generation and advection system must be entirely rewritten.
3D Studio Max has a particle system which can be highly scripted. Unfortunately, the
scriptable particle system was highly unstable in the version 7 of 3D Studio Max. The
other drawback is again the size of the output required files if the velocity field is unsteady
and needed at each time step.
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Figure B.4: Topology of the Eulerian water-air surface during dam break.

B.2 Results

B.2.1 Dam break over letters

In a 3D tank, a column of viscous water (u = 0.01Pa.s and p = 1000kg.m~3), initially at rest,
breaks over a fixed obstacle of ’Aquilon’ letters shape in an air medium (u = 1.85 - 1075 Pa.s
and p = 1.1768kg.m™3). As demonstrated in figure B.7, the flow is turbulent and the surface
tension (o0 = 0.075N.m~1) is taken into account. This still academic problem is interesting as it
involves complex interfacial structures as well as strong interactions between the free surface and
the obstacle. In particular, the dynamics of gaz pocket rupture and coalescence can be observed.

B.2.2 Dam break over a realistic topologie

As last illustration test case, a real dam break flow is considered in order to show the simplicity
and power of the Aulerian/Lagrangian coupling associated to penalty methods. The scene pre-
sented in figures B.1 and B.6 is calculated considering real water and air and a dam of almost
30 meter height. Figure B.8 illustrates the potential of the DNS simulation associated to 3D
softwares for movie or video games design.

B.2.3 Particulate flows

The first illustration of the interest of the coupled Eulerian/lagrangian grid technique associated
to penalty methods is related to the sedimentation of 147 particles in a liquid tank. All the
particle/particle and particle/wall interactions are solved, with an explicit modeling if the local
mesh refinement is not enough. A serie of particle motion pictures is proposed in figure B.9.

B.2.4 Flow around a tire
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Figure B.5: Topology of the Lagrangian water-air surface during dam break after Level Contour
Reconstruction.

Figure B.6: Final vue after the rendering process of the dam break.
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Figure B.7: Dam break flow over a complex obstacle.




249

Figure B.8: Real dam break flow over a complex topography.
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Figure B.9: Rigid particle sedimentation in water.
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Appendix C

Interpolations

The interpolations used for the present work are described.

C.1 Polynomial interpolations

The interpolations polynomials are first denoted according to their support. In 2D, the support
of a L interpolation is a line, the support of P is a triangle and the support of Q is a rectangle.
IL% indicates that the interpolation is in dimension d and of order D. For instance:

Li(z)=az+Db (C.1)
Pi(x) = ax +by +c (C.2)
Qi(x) = axy +br +cy+d (C.3)

C.1.1 Construction of the Q? element

The considered grid cell is mapped to a D = [0,1] x [0,1] cell. For the penalty methods, the
penalized point is the origin. The Q% element is defined by

Q1(z,y) = ax + by + cxy +d (C.4)

with a, b, ¢ and d scalar coefficient determined with the following constraints:

Q1(0,0) = uc

Q1(1,0) =u

01(01) = ux (©5)
Ql(l? 1) = UNE

where the indices of u indicate the position of a node according to its direction (E is east, N is
north, etc...). We obtain the following expression for the Q; :

Qi(z,y) = (—uc +ug)xr + (—uc + un)y + (—uc + ug + uy — ung)zy + uc (C.6)
one can write
Qu(z,y) =ui(l —z —y —ay) + uz(z + zy) + uz(y + 2y) + ua(—zy) (C.7)

and the coefficient for each w; is then deducted.
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C.1.2 Construction of the Q2 element

For a Q3 interpolation, the function is

Q2(z,y) = az’y® + ba’y + cxy® + da® + ey® + fay + gz + hy + k. (C.8)

The following constraints are considered:

We obtain a linear combination such as

with the following coeflicients:

( Q2(0,0) = uc
QQ(—l,O = Uuw
QQ(l,O) = Uug
QQ(O, —1) =us
QQ(O, 1) = UnN (09)
Q2(—1,-1) = usw
Q2(1,-1) = usp
Q2(-1,1) = unw
\ @2(1,1) = ung
coefi = o ZQ’U@' (C.10)

’ Coef H facteur ‘ uc ‘

uw | up | us | un | usw | usp | unw | une |

a 1/4 4 2| =2 -2] =2 1 1 1 1
b 1/4 0 0 0 |-2|-2| -1 1 —1 1
c 1/4 0 —21-210 0 —1 —1 1 1
d 1/2 -2 1 1 1 0 0 0 0 0
e 1/2 -21 0 0 1 1 0 0 0 0
i /4 |00 000 1 | =1]-1]1
g 1/2 0| —-11]1 0 0 0 0 0 0
h 1/2 0 0 0 | -1 1 0 0 0 0
k 1 1 0 0 0 0 0 0 0 0
Table C.1: Coefficient for the Q)2 interpolation
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The resulting function is

Q2(z0,y ue(gys — 2§ —vg + 1

) =

( — x%yo xoyo + :L‘O — X
(— =3yp — woys + x5 + o
(= 8vs — 5y0 + 45 — vo
(

+usw

)

)

)

vo)

— T3y — xdyo + U3 + o)

)

+ugp )
)

(
(55(2).@3 + 23y — Toys — ToYo
(

e Rl e N

$3y3 - 370?/0 + onyo — ZoYo

+
<
2
S

(2395 + xyo + Toyh + ToYo)- (C.11)

=~ =

+UNE

C.2 Kernel functions

The kernel function is a weighting function used in nonparametric function estimation. It gives
the weights of the nearby data points in making an estimate. They can be probability density
functions.

Compared to classical interpolations, the formulation of the kernel functions allows any stencil
to be used. Let us consider a quantity ¢ which has to be interpolated from nodes x; to a node
x;. The kernel function method gives

1
di = — > “w(lri — ), (C.12)
b ity

with
= w(ri =) (C.13)
i#]
and w a weighting function. These functions are generally piecewise continuous, bounded, sym-
metric around zero, concave at zero, real valued, and for convenience often integrate to one. For

instance, we have

r4
I—Gf 8* 3— 0<<r<r
w(r): Te * Te * Te " e (C14)
<

0 Te

r

with 7. a cutoff radius. Many weighting functions are presented in [Atai 06, RM 08| where
authors applied kernel functions to a smoothed particle hydrodynamics (SPH) method.
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