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Résumé

Ce travail de thèse concerne la photosynthèse oxygénique, le processus utilisé par les cyanobac-

téries, les algues et les plantes pour convertir la lumière solaire en énergie chimique et stocker

cette énergie. Lors des étapes initiales dépendant de la lumière, ce processus rejette de l’oxygène

et forme de l’ATP et du NADPH, qui sont produits lors d’un flux linéaire d’électrons. Ces deux

molécules énergétiques sont utilisées pour réduire le CO2 et l’assimiler sous forme de sucres. Des

modes alternatifs de transfert d’électrons, cyclique et pseudo-cyclique, conduisent seulement à la

formation d’ATP. Deux flux d’électrons cycliques majeurs ont été proposés: un flux qui dépend

de la ferrédoxine et un flux qui dépend du NADPH. Le premier et le deuxième flux sont respec-

tivement les flux cycliques majeurs dans les plantes et les cyanobactéries. D’une part, le transfert

cyclique implique chez les cyanobactéries le recyclage des excès de NADPH vers le pool des

plastoquinones (PQ) dans la membrane thylakoïdale. D’autre part, le transfert pseudo-cyclique

implique chez les cyanobactéries la formation de NADPH, dont les électrons ne sont pas recyclés

vers le pool de PQ mais "perdus" pour réduire l’oxygène en eau.

Dans les membranes photosynthétiques des cyanobactéries et également à un degré moin-

dre des chloroplastes se déroulent des transferts d’électrons respiratoires, producteurs d’ATP à

partir du NAD(P)H lui-même issu de la dégradation des sucres. La cyanobactérie étudiée ici

- Synechocystis sp. PCC6803 (Synechocystis) - est un organisme non seulement photoautotrophe

mais aussi hétérotrophe facultatif.

Le phycobilisome (PBS) est le complexe majeur collecteur de lumière chez les cyanobactéries.

Il transfert l’énergie capturée essentiellement vers le photosystème (PS) II. De plus, il constitue

jusqu’à 30% des protéines dans la cyanobactérie et peut être dégradé en conditions de carence

en nutriments. Le PS I (PSI) est responsable de la formation photosynthétique de NADPH, les

électrons étant transportés des accepteurs du PSI vers la ferrédoxine (Fd) et finalement vers le

NADP+ via la ferrédoxine:NADP oxydoréductase (FNR).

Chez les plantes, différentes isoformes de Fd et de FNR sont présentes dans différents tissus

et codées par différents gènes. Ainsi dans les chloroplastes de feuilles, des Fds réduisent la

FNR photosynthétique pour former le NADPH. Par contre, dans les plastes des racines, la FNR

xi



hétérotrophe réduit une autre Fd en oxydant le NADPH et la Fd ainsi réduite est impliquée

entre autres dans l’assimilation de l’azote. Chez Synechocystis, la Fd codée par le gène fed1 est

indispensable en conditions de croissance photoautotrophe aussi bien qu’hétérotrophe cependant

que trois autres gènes codant des Fd photosynthétiques sont faiblement exprimés. Le produit

du gène fed1 est donc probablement impliqué dans la réduction du NADP+ et l’oxydation du

NADPH.

A partir d’un seul gène, deux isoformes de FNR de taille différente ont été trouvées chez Syne-

chocystis. Grâce à un domaine de type linker, la plus grande, FNRL, est liée au PBS, contrairement

à la plus petite, FNRS, qui est dépourvue de ce domaine. Ces observations posent deux questions

qui ont motivé ce travail de thèse: quelle est la fonction de l’attachement de FNRL au PBS et

quelles sont les rôles respectifs des deux isoformes de FNR? Des mutants exprimant unique-

ment une des isoformes ont été récemment obtenus. De l’étude de la croissance des mutants

en différentes conditions a été formulée l’hypothèse de ce travail que FNRL est impliquée dans

la réduction du NADP+ (transfert d’électrons linéaire) et FNRS dans l’oxydation du NADPH

(transfert d’électrons respiratoire/cyclique).

Ce travail de thèse a fait l’objet de deux approches différentes. D’une part, les activités

catalytiques des deux isoformes ont été étudiées in vitro. D’autre part, les mutants de FNR ont

été comparés au type sauvage (WT) dans différentes études in vivo.

FNRL étant toujours liée au PBS in vivo et étant protéolysée lorsqu’elle n’est pas liée, nous

avons choisi de purifier un sous-complexe du PBS comprenant FNRL et un hexamère de phyco-

cyanine (PC) du PBS. Ce complexe, appelé FNRL-PC, est stable tout en présentant des propriétés

d’absorption compatibles avec des études de spectroscopie d’absorption. FNRL-PC a été purifié

à partir d’une souche mutée de Synechocystis possédant d’une part un seul hexamère de PC par

bâtonnet (au lieu de trois) et d’autre part une étiquette histidine insérée dans le domaine charnière

de la FNRL (situé entre le domaine linker et les domaines catalytiques). Puisqu’une à deux FNRL

sont attachées par PBS aussi bien dans le mutant que dans le WT, nous avons multiplié par trois

le rapport FNRL/PC dans le matériel de départ. De plus, la présence de l’étiquette histidine a

facilité la purification du complexe par l’utilisation d’une étape de chromatographie d’affinité au

nickel, les impuretés restantes étant ensuite éliminées par filtration sur tamis moléculaire.

Grâce à cette approche, nous avons atteint notre premier objectif qui était de purifier FNRL-PC

à l’homogénéité et d’augmenter son rendement de purification. Le complexe FNRL-PC contient

FNRL, un hexamère de PC et un linker bâtonnet-coeur appelé LRC, pour une masse moléculaire

d’environ 330 kDa. Il possède un groupe prosthétique FAD par FNRL et est stable à 4◦C, ce qui

confirme que la liaison à l’hexamère de PC protège FNRL de la protéolyse. Nous avons également

initié des études de reconstitution du PBS et de FNRL, ce qui permet d’envisager la production

de grandes quantités de complexe en vue d’une analyse structurale.

xii



Nous avons ensuite effectué une étude enzymologique détaillée des activités NADP+-

réductase et NADPH-oxydase de FNRL-PC que nous avons comparées à celles de FNRS. Nous

avons caractérisé l’activité d’oxydation du NADPH par des tests classiques d’enzymologie et

commencé l’étude de l’inhibition par le produit de la réaction. L’activité NADP+-réductase a été

mesurée par spectroscopie d’absorption différentielle résolue en temps en présence de PSI.

Bien que dans l’ensemble assez proches, les mesures d’activité présentent quelques différences

majeures entre FNRL-PC et FNRS. La différence la plus importante concerne l’affinité réduite

de la Fd oxydée (Fdox) pour FNRL-PC vs. FNRS lors de l’oxydation du NADPH. L’effet observé

peut s’expliquer par l’encombrement stérique de l’hexamère de PC dans le complexe FNRL-PC.

Comme il est généralement admis que la dissociation de Fdox est cinétiquement limitante lors

de la réduction du NADP+, cet effet pourrait favoriser la réduction du NADP+ par le complexe.

Ceci est en accord avec les caractéristiques de croissance des mutants de FNR, le mutant expri-

mant uniquement FNRL poussant mieux en photoautotrophie (réduction du NADP+). Cet effet

d’encombrement s’est aussi manifesté pour les cinétiques de réduction de la FNR par Fdred.

L’augmentation d’affinité pour le NADPH de FNRL-PC vs. FNRS a été également observée.

Cette augmentation pourrait ne pas avoir d’effet négatif sur l’oxydation in vivo du NADPH par

FNRS, car l’induction de FNRS chez le WT en conditions de stress ou d’hétérotrophie est corrélée

à une augmentation, au moins transitoire, de la concentration de NADPH. Une meilleure affinité

pour le substrat NADP+/NADPH pourrait par contre renforcer la réduction du NADP+ par

FNRL-PC. Nous avons de plus mis en évidence que dans les conditions de force ionique élevée

que nous utilisons pour garder intact FNRL-PC, la première réduction de la FNR par Fdred est

limitante pour la réduction du NADP+, ce qui n’est pas le cas à faible force ionique.

Les différences que nous avons observées sont en désaccord avec les différences observées

chez les isoformes de FNR de plantes (feuilles vs. racines). Les isoformes de Synechocystis

correspondent peut-être mieux aux différentes isoformes trouvées dans les feuilles d’un même

organisme. D’autres facteurs que les propriétés catalytiques, tels que la disponibilité des substrats

(Fdox/Fdred et NADP+/NADPH) et la localisation de la FNR, sont probablement essentiels pour

expliquer les rôles physiologiques respectifs des deux isoformes de la FNR de Synechocystis.

Ainsi FNRL est liée au PBS tandis que FNRS est soit soluble, soit liée à la membrane, soit liée à

des complexes membranaires (cytochrome b6f, NADPH déshydrogénase NDH-1).

C’est pourquoi nous avons commencé des études in vivo sur le WT ainsi que sur des mutants

appelés MI6 et FS1 qui expriment une seule isoforme, respectivement FNRL et FNRS. Nous avons

effectué trois types de mesure. D’abord nous avons caractérisé l’état rédox du pool de NADP par

la mesure du rapport NADP+/NADPH. Ensuite nous avons mesuré la réduction transitoire du

pool des PQ de la membrane, à l’obscurité juste après une période d’éclairement, par des mesures

de fluorescence chlorophyllienne. Enfin nous avons identifié le(s) mode(s) prédominant(s) de
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transfert d’électrons (linéaire vs. respiratoire/cyclique) par les cinétiques de photooxydation du

donneur primaire P700 du PSI lors d’une excitation sélective du PSI. L’interprétation de ces

dernières données requiert l’utilisation d’inhibiteurs qui bloquent sélectivement les transferts

d’électrons du PSII (DCMU) ou du cytochrome b6f (DBMIB) ou qui inhibent les réactions de

recombinaison du PSI (méthyl viologène).

Les trois souches (WT, MI6 et FS1) ont d’abord été étudiées en conditions de croissance pho-

toautotrophes en présence d’un excès de CO2/HCO−3 , conditions dans lesquelles seule FNRL est

exprimée dans le WT. Nous avons déterminé que le pool de NADP est plus oxydé dans FS1

que dans le WT et MI6, ce qui suggère que FNRS est soit peu apte à réduire le NADP+, soit

recycle efficacement les électrons du NADPH vers le pool de PQ. Les mesures de réduction

transitoire du pool de PQ à l’obscurité sont en plein accord avec la deuxième possibilité, avec

un signal de réduction plus élevé pour FS1 que pour WT/MI6. Les cinétiques de photooxyda-

tion du P700 sont également cohérentes avec les mesures précédentes: la photooxydation est

rapide chez WT/MI6 et beaucoup plus lente chez FS1. Ces résultats s’expliquent par un trans-

fert d’électrons linéaire (et peut-être pseudo-cyclique) dominant chez WT/MI6 et un transfert

d’électrons respiratoire/cyclique beaucoup plus efficace chez FS1.

Nous avons ensuite répété les mesures de photooxydation du P700 sur les trois souches

cultivées à faible CO2 (CO2 atmosphérique, pas de bicarbonate) car ces conditions sont connues

pour induire le transfert d’électrons cyclique/respiratoire. MI6 et FS1 montrent pas ou peu de

différences phénotypiques avec les observations précédentes tandis que le comportement du WT

se rapproche de celui du FS1: le P700 est beaucoup plus lentement photooxydé. Nous proposons

que cela est dû à l’accumulation de FNRS qui se produit généralement chez le WT en situation

de stress (manque d’azote, excès de lumière). La mesure de MI6 (comportement identique à

fort ou faible CO2) renforce cette interprétation car ce mutant est incapable d’exprimer FNRS.

L’accumulation de FNRS dans le WT favorise ainsi un transfert d’électrons respiratoire/cyclique,

en accord avec l’idée que ces modes de transfert d’électrons sont induits à faible CO2, lorsque le

cycle de Calvin est ralenti.

L’implication de FNRL dans le transfert d’électron linéaire/pseudo-cyclique et de FNRS dans le

transfert d’électron respiratoire/cyclique est donc confirmée par nos études in vivo. Pour remplir

son rôle, FNRS pourrait se lier à d’autres complexes membranaires comme le cytochrome b6f ou

les complexes NDH-1. Nous favorisons la dernière hypothèse car le mode dominant de transfert

cyclique ainsi que la respiration chez les cyanobactéries implique les complexes NDH-1 et qu’un

des complexes NDH-1 est fortement induit à faible CO2.

Les résultats in vitro ainsi que les mesures de l’état rédox du pool de NADP sont décrits dans

un article publié en 2009 dans "The Journal of Biological Chemistry" joint à la fin du manuscrit.

Ce travail ouvre de nombreuses perspectives pour des études in vitro et in vivo. Les études
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d’inhibition de l’oxydation du NADPH par le produit de la réaction (NADP+) permettront de

comparer les affinités relatives de FNRS pour le NADP+ et le NADPH. La production massive

d’une FNRL contenant une étiquette histidine favorisera l’obtention par reconstitution de grandes

quantités de complexes FNRL-PC pour des études structurales ou spectroscopiques. Les études

in vivo suivantes doivent être entreprises pour préciser le rôle de FNRS et ses partenaires dans

la réduction du pool de PQ chez les cyanobactéries hétérotrophes facultatives: accumulation

de FNRS dans le WT à faible CO2, étude de l’état rédox du pool de PQ à l’obscurité et de sa

réduction transitoire à fort et faible CO2, mesures en temps réel du NADPH par fluorescence.

L’étude transcriptomique des mutants de FNR permettra d’identifier les régulations induites par

l’accumulation d’une seule isoforme. Une étude génétique est en cours afin d’étudier le rôle de

la région 5’ non-codante de l’ARN messager du gène petH dans l’accumulation de FNRS.
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Abbreviations

A−0 Chlorophyll of PSI, reduced in the primary electron transfer

AL Actinic light

AP Allophycocyanin PB subunit of an phycobiliprotein, PB indicates the protein

ATP Adenosine 5’-triphosphate

αPC and βPC Subunits of phycocyanin

b6f Cytochrome b6f complex

chl Chlorophyll

CP43 Core antenna complex with apparent mass of 43 kDa

CP47 Core antenna complex with apparent mass of 47 kDa

Cys Cysteine

cyt c Cytochrome c

Da Dalton

DBMIB 2,5-Dibromo-3-methyl-6-isopropylbenzoquinone

DCMU 3-(3’,4’-Dichlorophenyl)-1,1-dimethylurea

DCPIP 2,6-Dichlorophenolindophenol

EDTA Ethylene diaminetetraacetic acid

Em Midpoint redox potential

ET Electron transfer

(FA,FB) (4Fe-4S) Clusters, the terminal acceptors of PSI

Fd Ferredoxin

(4Fe-4S) and (2Fe-2S) Iron sulfur clusters

FNR Ferredoxin-NADP(H)-oxidoreductase

FNRL Large Synechocystis FNR isoform, Synechocystis indicates the cyanobacterium

FNRS Small Synechocystis FNR isoform, Synechocystis indicates the cyanobacterium

FNRsq Singly reduced FNR/semiquinone form

FR Far red

GDH Glucose dehydrogenase

HC high CO2
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IMAC Immobilized metal affinity chromatography

LC low CO2

LC Core-linker polypeptide

LCM Core-membrane-linker polypeptide

LRC Rod-core-linker polypeptide

LR (LM
R ) Rod-linker polypeptide, M indicates its molecular mass

MES 2-Morpholinoethanesulfonic acid

MV Methylviologen

NADP+ (NADPH) Nicotinamide adenine dinucleotide phosphate (reduced form)

NDH NADPH dehydrogenase

OD Optical density

P680 Primary electron donor of photosystem II

P700 Primary electron donor of photosystem I

PAM Pulse amplitude modulation

PBP Phycobiliprotein

PBS Phycobilisome

Pc Plastocyanin

PC Phycocyanin, an αβ protomer

PCB Phycocyanobilin

PCC Pasteur Culture Collection

PCR Polymerase chain reaction

pdb protein data bank

PQ Plastoquinone

ps picosecond, 1 ps=10−12 s

PSI Photosystem I

PSII Photosystem II

QA Primary electron acceptor quinone of photosystem II

QB Secondary electron acceptor quinone of photosystem II

SDS Sodium dodecyl sulphate

SDS-PAGE Polyacrylamide gel electrophoresis in the presence of SDS

Synechocystis Synechocystis sp. PCC6803

TCA Trichloroacetic acid

Tricine N-[2-Hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine

Tris Tris hydroxymethyl methylamine

UV-Vis Ultraviolet-visible

YZ Tyrosine residue of photosystem II

WT Wild type
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Chapter 1

Introduction

The field of photosynthesis research is very broad and comprises research at various levels -

from eco-systems to isolated proteins [Messinger et al., 2009]. We will introduce in the following

sections photosynthesis and bioenergetics and present various pathways of electron transfer. The

antenna complexes and the photosystem I acceptor side are described in detail.

1.1 Photosynthesis and bioenergetics

Photosynthesis is the process that transforms light energy into electrochemical energy following

the basic stoichiometry shown in Reaction 1.1.1 [Kiang et al., 2007]:

CO2 + 2H2A + hνGGGGGGGGGA
pigments

(CH2O) +H2O + 2A (1.1.1)

When H2A is H2O, this reaction is called oxygen-evolving photosynthesis. This reaction is

divided in the photochemical reactions (formerly known as light reactions) and a series of enzy-

matic reactions involved in the Calvin-Benson-Bassham cycle (Calvin cycle) for CO2 assimilation

(formerly known as dark reactions) [Dubbs and Tabita, 2004]. The different stages of energy

storage will be detailed later. In the following, we will describe the photosynthetic organisms.

Autotrophs derive all their cellular carbon from CO2, whereas heterotrophs derive cellular

carbon from organic carbon compounds [Blankenship, 2002]. In this way, heterotrophs depend

on autotrophs to provide them with the organic carbon compounds. A further distinction can

be made concerning the energy source. Phototrophs derive their energy from sunlight, whereas

chemotrophs derive energy from different chemical compounds. Organisms that derive their
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Chapter 1 - Introduction

energy from the sunlight and derive all their cellular carbon from CO2 are called photoautotrophs.

Most of the photosynthetic organisms grow photoautotrophically. Species capable of performing

photosynthesis are among prokaryotes and eukaryotes.

Five distinct major groups of prokaryotes are found that are capable of photosynthesis. Four

of them are anoxygenic. H2A does not correspond to water in this case. Thus, oxygen is not

produced as a byproduct. The anoxygenic phototrophic bacteria include purple bacteria, green

sulfur bacteria, green nonsulfur bacteria and heliobacteria. The only oxygen-evolving group of

bacteria are called cyanobacteria (formerly known as blue-green algae).

Eukaryotic photosynthetic organisms such as plants and algae contain a subcellular organelle

(plastid) called chloroplast. Chloroplasts originated by endosymbiosis from cyanobacteria. Ini-

tially a cyanobacterial-like cell was a symbiont with a protoeukaryotic cell and became a semi-

autonomous part of the host cell. This explains the similar mechanism of photosynthesis of

cyanobacteria compared to that of photosynthetic eukaryotes.

In the chloroplast as well as in cyanobacteria an extensive internal membrane system called

the thylakoid contains chlorophyll and the electron transport chain that carries out initial light

energy capture and storage.

1.1.1 Linear electron transfer and membrane complexes

In oxygenic photosynthetic organisms, the major mode of electron transfer (ET) is the linear

ET (noncyclic). It involves water oxidation to molecular oxygen and the reduction of NADP+

into NADPH. This is achieved by two sequential photoreactions involving two photosystems

(Figure 1.1). We will further introduce the four integral membrane protein complexes involved

in photosynthetic electron transfer and ATP build-up that are photosystem II (PSII), cytochrome

b6f (cyt b6f ), photosystem I (PSI) and ATP-synthase (ATPase).

PSI and PSII contain numerous pigments that harvest light and funnel the excitation to

the primary electron donors, which can reduce an electron acceptor and accept electrons from

specific electron donors. The cyt b6f complex mediates electron transport between PSII and PSI

and converts redox energy into a high-energy intermediate (protonmotive force; pmf) for ATP

formation. The reaction catalyzed by PSII is shown in Equation 1.1.2:

2H2O + 2PQ + 4H+stromaGGGAO2 + 2PQH2 + 4H+lumen (1.1.2)

The reaction involves the reduction of plastoquinone (PQ) into plastoquinol (PQH2) and the

oxidation of water into molecular oxygen. The PSII reaction center is composed of two similar
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1.1. Photosynthesis and bioenergetics

Figure 1.1 The structures of the four large membrane-protein complexes in thy-
lakoid membranes that drive oxygenic photosynthesis taken from [Nelson and Ben-
Shem, 2004].

Figure 1.2 The structure of photosystem II from the cyanobacterium Thermosyne-
chococcus elongatus [Ferreira et al., 2004].
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Chapter 1 - Introduction

proteins (D1 and D2). These proteins coordinate both the manganese cluster of PSII and all

of the electron-transfer components involved in the main pathway of charge separation and

stabilization (Figure 1.2). Following photoexcitation, a charge separation involving P680+ and

a reduced pheophytin occurs rapidly. To avoid recombination of the charges, a series of fast

secondary electron transfer reactions is carried out. The main electron carriers in PSII include a

bound PQ, QA, and a dissociable PQ, QB, after the pheophytin (Figure 1.3). The oxygen-evolving

complex (OEC) via TyrZ reduces the P680+ back to P680 and accumulates in this way the oxidizing

equivalents necessary to oxidize water. The reduced QB then transfers electrons to the cyt b6f.

The widely used inhibitor 3-(3’,4’-dichlorophenyl)-1,1-dimethylurea (DCMU) displaces QB from

its PSII binding site.

Figure 1.3 The cofactors of photosystem II published in [Ferreira et al., 2004].

The cyt b6f complex (Figure 1.4a) is also called "plastoquinol-plastocyanin oxidoreductase".

The complex operates following the "Q-cycle" [Mitchell, 1976, Trumpower, 1990] and is similar in

structure and function to the cytochrome bc1 complex from the respiratory ET chain. It exhibits

two PQ binding sites, the Qo site close to haem bL binds quinol (lumenal side) and the Qi site close

to haem bH binds quinone (stromal side). The PQH2 looses a first electron, which is transferred

to the Rieske iron-sulfur protein, the cyt f and finally to plastocyanin. The second electron from

PQH2 is transferred via two cyt b to the Qi site where another PQ is reduced (Figure 1.4b). The

quinone analogue 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) acts as an inhibitor

of cyt b6f as it is thought to bind at the Qo site. The presence of a further haem group that is

covalently bound to cytochrome b6 is puzzling [Kurisu et al., 2003, Stroebel et al., 2003]. Overall,

two protons will be translocated across the thylakoid membrane for one electron that is passed

to PSI via plastocyanin.

Plastocyanin (Pc), a single copper containing protein, transfers its electron to PSI (Figure

1.5a). Controlled by the Cu availability in the growth media, cytochrome c6 can replace Pc in its

function in many algae and cyanobacteria. The bulk of the reaction center of PSI is built of two,
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1.1. Photosynthesis and bioenergetics

Figure 1.4 The structure of cytochrome-b6f complex (a) and its cofactors (b) from
the alga Chlamydomonas reinhardtii [Stroebel et al., 2003].
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Chapter 1 - Introduction

Figure 1.5 The model of a super-complex containing photosystem I, plastocyanin
and ferredoxin (a) and their cofactors (b) from a higher plant (Pisum sativum var.
alaska) [Ben-Shem et al., 2003].

homologous, large subunits (PsaA and PsaB) that harbor most of the PSI pigments and all of the

cofactors up to FX. Photoexcitation gives rapidly (ps time range) P700+ and A−1 . An electron

from Pc (or cyt c6) regenerates the special pair P700. The electron on the phylloquinone A1 is

passed through the FX and FA/FB iron sulfur centers (Figure 1.5b). The electrons at the acceptor

side of PSI are transferred to the soluble ferredoxin (Fd) and finally lead to NADP+ reduction.

This reaction is catalyzed by the enzyme ferredoxin-NADP+ oxidoreductase (FNR) which is the

subject of this thesis and will be described in section 1.3.3. N,N-dimethyl-4,4’-bipyridinium

dichloride (methylviologen; MV) is an efficient electron acceptor, from (FA,FB) and Fd. Reduced

MV reacts very rapidly with O2 (contrary to (FA,FB) and Fd which react much more slowly).

A total of six protons are translocated, for 2 PSII charge separations and cyt b6f ET, to the

lumen that lead to an electrochemical-potential gradient (proton motive force; pmf) across the

thylakoid membrane. The pmf will be used in the fourth complex, the ATPase, in order to

synthesize ATP. During this process, protons flow from the lumen to the stroma through the

integral membrane part of the ATPase CF0 and ATP is generated at the level of the soluble part

CF1 (Figure 1.6).

Most of the details shown so far concern the photosynthetic electron transfer in higher plants

and algae [Nelson and Ben-Shem, 2004]. All the complexes cited above are identical in cyanobac-

teria. Photosynthetic and respiratory electron transfers are carried out in the same compartment

in cyanobacteria. This phenomenon is also present in chloroplasts and is called chlororespiration

[Bennoun, 1982, Rumeau et al., 2007].
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1.1. Photosynthesis and bioenergetics

Figure 1.6 A composite model for the structure of the chloroplast F-ATPase. This
model was created by W. Frasch using available structural data for mitochondrial
F-ATPase subcomplexes [Abrahams et al., 1994, Stock et al., 1999, Gibbons et al.,
2000].
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1.1.2 Respiration

Both photosynthesis and respiration use membrane protein complexes located in the thylakoid

membrane (Figure 1.7). Several components such as PQ, the cyt b6f complex and soluble electron

transporters are common to both bioenergetic processes.

Figure 1.7 Scheme of the thylakoid membrane. The different electron translocating
complexes are shown. Respiratory complexes involve the COX: cytochrome oxidase
complex, NDH: NAD(P)H dehydrogenase (NDH-1) complex.

Succinate dehydrogenase (SDH) is the only enzyme of the tricarboxylic acid pathway which

is found attached to the membrane. This complex functions in the respiratory ET as complex II.

Evidence was found for the implication of SDH in the PQ pool reduction in Synechocystis [Cooley

et al., 2000].

In the thylakoids of both cyanobacteria and plastids, distinct NAD(P)H dehydrogenases are

found that oxidize NAD(P)H (NDH-1) and are equivalent to complex I involved in respiration.

In cyanobacteria, the NDH-1 is extensively studied and is involved in a variety of functions like

respiration, cyclic electron flow (introduced later) around PSI and CO2 uptake [Battchikova and

Aro, 2007].

In addition to that, three respiratory terminal oxidases (RTOs, complex IV) exist in Syne-

chocystis: cytochrome c oxidase (CCox), quinol oxidase (Cyd), and alternative RTO (ARTO) [Pils

and Schmetterer, 2001, Hart et al., 2005]. ET through the respiratory complexes lead to a proton

gradient, hence to ATP formation, at the expense of reductants (NADPH and succinate).

1.1.3 Alternative electron sinks and cyclic electron transfer

Light-induced linear electron transfer between the two photosystems generate ATP and reducing

equivalents in the form of NADPH. ATP and NADPH are used in a variety of metabolic processes.

Under photoautotrophic growth conditions, CO2 assimilation in the Calvin cycle constitutes the

major electron sink for NADPH. However, stress conditions may lead to electron redirection
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1.1. Photosynthesis and bioenergetics

toward alternative electron sinks. Alternative electron sinks involve essentially the Mehler-

reaction, cyclic electron transfer or respiration.

A substantial part of electrons can be transferred from PSI to molecular oxygen, which results

in photoreduction of O2 via superoxide anion to H2O2 in chloroplasts, i.e. the Mehler-reaction

[Mehler, 1951, Asada, 1999]. The produced reactive oxygen species (ROS) are quickly detoxified

by the combined action of superoxide dismutase and peroxidases. Thereby, the photoreduction

of O2 acts as an electron sink (pseudocyclic ET) under certain conditions, where up to 30% of

the electrons from the light reactions can be directed to oxygen [Hackenberg et al., 2009]. For

Synechocystis sp. PCC6803 (Synechocystis), it was shown that O2 is reduced directly to water in

one reaction mediated by A-type flavoproteins [Helman et al., 2003]. The genome of Synechocystis

encodes four putative A-type flavoproteins, but only two of them, Flv1 and Flv3, are apparently

involved in light-dependent O2 reduction activity [Helman et al., 2003]. Recently, a role in

the photoprotection of PSII has been shown for the two other Synechocystis flavoproteins, Flv2

and Flv4 [Zhang et al., 2009]. For pseudocyclic ET, which involves the Mehler-reaction or

photorespiration, redox poising was proposed as a plausible function [Allen, 2003].

Under CO2-limiting conditions, the Calvin cycle activity is strongly reduced and photorespi-

ration, a Rubisco oxygenase reaction, increases. The so-called photorespiratory 2PG-metabolism

helps to avoid depletion of Calvin-cycle intermediates. Due to the efficient inorganic carbon con-

centrating mechanism [Badger et al., 2006], it was assumed that cyanobacteria do not possess a

photorespiratory 2PG-metabolism. In contrast to this earlier view, it was recently demonstrated

that an active photorespiratory 2PG-metabolism involving three different pathways exists in

Synechocystis [Eisenhut et al., 2008]. The complete loss of all three pathways leads to a high-CO2-

requiring-phenotype and highlights the essential function of photorespiratory 2PG-metabolism

for cyanobacteria despite the carbon concentrating mechanism [Eisenhut et al., 2008]. The con-

tribution of the Mehler-reaction may be controlled by inorganic carbon [Badger et al., 2000].

Transcription of one of the A-type flavoproteins, Flv3, essential for photoreduction of O2 in

cyanobacteria, is increased under high-light and low-CO2 conditions [Eisenhut et al., 2007]. This

may indicate an increase in pseudocyclic ET under low CO2.

We will focus in the following especially on cyclic electron flow. This is an alternative

electron flow that generates exclusively a proton gradient to build up ATP without accumulation

of NADPH. It is assumed to involve PSI and the cyt b6f (Figure 1.8). In addition to that, several

partners are proposed to catalyze donation of electrons from the acceptor side of PSI (Fd, FNR,

NADPH) back into the PQ pool.

The assimilation of CO2 in the Calvin cycle requires ATP and NADPH in a 3:2 ratio [Allen,

2002]. The number of protons that are translocated through the membrane per ATP is function-

specific [Stock et al., 1999, Seelert et al., 2000]. On one side, it was recently calculated in spinach
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chloroplasts that the 3:2 ratio cannot be completely satisfied by linear electron transfer [Seelert

et al., 2000]. On the other side, a new reconstitution method and a chemiosmotic model system

were described to determine the H+/ATP ratio of the ATP synthase from spinach chloroplasts

and resulted in a value of exactly 3 ATP /2 NADPH [Turina et al., 2003]. Thus, the importance

of cyclic electron transfer to participate in building up an additional proton gradient without

accumulating NADPH is still not shown under non-stressed photoautotrophic growth. We

should however keep in mind that NADPH and ATP are both used for a variety of metabolic

processes (e.g. nitrogen, carbon and sulfur assimilation, transport).

Figure 1.8 Scheme of the thylakoid membrane. The different electron and proton
translocating complexes are shown. The two major pathways for cycling of electrons
are indicated with a blue and a black arrow. They involve the respiratory NDH-1
complex (NDH dependent; from NADPH) and a non-identified Ferredoxin:Quinone
reductase (FQR; from Ferredoxin).

Photophosphorylation requires a redox poise - a balance in its input and output of electrons.

Hence, photosynthetic systems try to maintain a poised plastoquinone pool. Over-reduction of

the plastoquinone pool is expected when the Calvin cycle is unable to use NADPH, and one

reason for this is insufficient ATP [Allen, 2003]. It was suggested that linear ET alone would not

be sufficient to generate the ATP required for CO2 fixation and an obligatory role for cyclic ET

was proposed [Golding et al., 2004]. Another role that has been postulated for cyclic ET in plants

is to generate a trans-thylakoid pH gradient (∆pH) [Heber and Walker, 1992]. The debate about

the role of cyclic ET is fuelled by the difficulty of measuring it directly. Two approaches have

been commonly used - P700+ steady-state measurements and P700+ relaxation following far-red

illumination.

What is for sure is the fact that cyclic electron transfer is triggered under excess of NADPH - for

example under high light or low CO2 [Miyake et al., 2005]. High light leads to a fast accumulation

of electrons on the acceptor side of PSI and the utilization of these reducing equivalents can be

limited through the Calvin cycle. Under low CO2 conditions, the Calvin cycle is limited by
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1.1. Photosynthesis and bioenergetics

substrate availability and NADPH accumulates. In addition to that, pseudocyclic ET involving

the Mehler-reaction is triggered under low CO2 [Hackenberg et al., 2009].

What is already known about the pathways of cyclic electron flow? According to Joliot [Joliot

and Joliot, 2005], it is generally believed that the pathway starting from ferredoxin, the ferre-

doxin:quinone reductase (FQR) dependent pathway, constitutes the major pathway for cycling

of electrons in plants (shown by the blue arrow in Figure 1.8). This pathway was originally

found by inhibiting cyclic electron transfer using the cyt bc1 specific inhibitor antimycin A and

no biochemical evidence for the FQR pathway was obtained so far. However, Pgr5 and Pgrl1

([DalCorso et al., 2008] and references therein) were found to participate in this cyclic electron

transfer. In plants, there are two partially redundant pathways taken by electrons in PSI cyclic

ET [Shikanai, 2007, Munekage et al., 2002, 2004, 2008].

In cyanobacteria, the FQR pathway is generally considered to be a minor pathway for cy-

cling of electrons whereas the NDH dependent pathway (Figure 1.8 black arrow) is believed to

constitute the major pathway.

In Synechocystis, a mutant called M55 was constructed, defective in ndhB which is the single

gene coding for the subunit NdhB of the NDH-1 complex. Due to this mutant the various

functions of NDH-1 complexes were discovered. M55 is characterized by impaired cyclic ET [Mi

et al., 1992b, 1994, 1995], impaired respiration and presents an impaired CO2 uptake [Ogawa,

1991]. Due to multiple copies of genes ndhD and ndhF, distinct NDH-1 complexes with distinct

functions were identified [Ohkawa et al., 2000].

NDH-1 is expressed only in low levels under high CO2 photoautotrophic growth. Two

distinct NDH-1 complexes are implicated in the carbon concentrating mechanism (CCM) and the

expression of one of these complexes is induced under low CO2 [Battchikova and Aro, 2007].

In addition to the major pathways, several other pathways have been proposed. In chloro-

plasts, association of FNR to PSI and/or cyt b6f has sometimes been taken as a structural evidence

for different pathways of cyclic ET [DalCorso et al., 2008]. Supercomplex formation - e.g. PSI/cyt

b6f /Fd - has also been proposed to support cyclic ET [Joliot and Joliot, 2005] but there is no clear

biochemical evidence yet for such supercomplexes in cyanobacteria (see [Peng et al., 2008] for

chloroplasts). During our study we wanted to address the issue of FNR involvement in these

different cycling routes.

1.1.4 Cyanobacteria

Cyanobacteria constitute a large and diverse group of photosynthetic prokaryotes. They inhabit

almost any illuminated environment (freshwater, marine or terrestrial). All cyanobacteria are

photoautotrophs and some species can grow as well photoheterotrophically.
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All oxygen-evolving photosynthetic bacteria are cyanobacteria. Many species of cyanobacte-

ria can fix nitrogen although the enzyme responsible for N2 fixation (nitrogenase) is sensitive to

O2. All cyanobacteria contain chlorophylls and carotenoids as photosynthetic pigments. They

generally use chlorophyll a and lack chlorophyll b.

Synechocystis sp. strain PCC6803

The unicellular, non-nitrogen-fixing cyanobacterium Synechocystis sp. strain PCC6803, hereafter

referred to as Synechocystis, was the first photosynthetic organism and the second bacterium to

have its genome fully sequenced [Kaneko et al., 1996]. The strain was originally isolated from a

freshwater lake in California (Figure 1.9) [Zhang, 2006].

Figure 1.9 Electron micrograph of a thin section through a Synechocystis 6803 cell.
Taken from www.nsf.gov/news/mmg/media/images/.

In addition to the cell envelope, these organisms have an internal system of thylakoid mem-

branes (closely spaced membranes in Figure 1.9) where the electron transfer reactions of photo-

synthesis and respiration occur. The three-dimensional organization of the cytoplasm has been

investigated using standard transmission electron microscopy and electron tomography. On one

hand, it was shown that the thylakoid membranes are physically discontinuous from the plasma

membrane [Liberton et al., 2006]. On the other hand, close connections between thylakoids and

cytoplasmic membrane systems were observed [van de Meene et al., 2006]. Therefore, this debate

is not closed yet.

We will now introduce the differences between cyanobacteria and chloroplasts that are im-

portant for the following study. We will start by a detailed description of the light-harvesting
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complex - the phycobilisome - in cyanobacteria followed by an introduction on structure and

function of FNR isoforms and the acceptor side of PSI in general.

1.2 Light-harvesting antenna

Prior to charge separation, a photon is absorbed by a pigment-protein (antenna) complex. The

resulting excitation energy is transferred using radiationless steps to the chlorophylls involved

in primary charge separation. These chlorophylls are generally associated to several hundred

pigment molecules serving as light harvesting. This is necessary so that photosynthesis is less

light-limited [Blankenship, 2002, Glazer, 1989].

Light-harvesting complexes can be divided into integral and external membrane complexes.

Furthermore, they can be classified into seven families. These families include the core antenna

complexes (e.g. CP47 and CP43 for PSII), the proteobacterial antenna complexes (e.g. LH1,

LH2 and LH3 of purple bacteria), the eucaryotic LHC superfamily (e.g. LHC1 associated to PSI

in algae and plants), the peridinin-Chl a protein (in Dinoflagellate algae), the chlorosome (in

green sulfur bacteria and green filamentous bacteria) and the phycobilisome (in cyanobacteria

and red algae) [Ughy, 2005]. The major difference between cyanobacteria/red-algae and green

algae/brown algae/plants is the presence of a giant antenna complex, the phycobilisome (PBS;

[Adir, 2005]).

1.2.1 Phycobilisome

The phycobilisome is an external membrane complex that is attached to the stromal side of

the photosynthetic membrane and constitutes an accessory antenna. It allows species bearing

these antennas to harvest light in the spectral gap (500-660 nm) between the major chlorophyll

absorbing bands and thus to utilize the entire visible range of sunlight [Glazer, 1989, Adir, 2005].

In the following, we will further detail some advances in (ultra)structure determination and

function of these large macromolecular protein complexes (7 to 15 Megadaltons).

Phycobilisome structure

Different types of PBS exist. We will focus on the hemidiscoidal PBS because they are present in

Synechocystis. They are composed of a core subdomain and peripheral rods. The hemidiscoidal

PBS are divided in three types (shown in Figure 1.10). They include bicylindrical, tricylindrical

and pentacylindrical PBS (Figure 1.10; [MacColl, 1998]). In Synechocystis, the common tricylin-

drical hemidiscoidal PBS is present (Figure 1.10b). In addition to these classical PBS, minor PBS

were identified in Synechocystis that do not contain core subunits [Kondo et al., 2005, 2007, 2009].
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Figure 1.10 Schematic representation of the three types of hemidiscoidal PBS. a,
bicylindrical; b, tricylindrical; c, pentacylindrical. Taken from [Ducret et al., 1998].

Phycobiliproteins The PBS is composed of phycobiliproteins (PBP) and mostly colorless linker

polypeptides. Four major subgroups of PBP are found. They include the allophycocyanin of

the core (AP, λmax
A =652 nm), phycocyanin that is always present close (proximal) to the core in

the rods (PC, λmax
A =620 nm), phycoerythrin (PE, λmax

A =560 nm) and phycoerythrocyanin (PEC,

λmax
A =575 nm) far away (distal) to the core in the rods when present. The PBPs are physically

arranged to favor an energy gradient from PE (or PEC) through PC to AP and finally to the

reaction center (λ=670-680 nm).

The smallest PBP unit are α and β (≈ 17 and 18 kDa) subunits that form a heterodimer - the

"(αβ) monomer (protomer)". Each subunit contains one or more covalently attached bilins. Bilins

are linear tetrapyrrole prosthetic groups. The covalent attachment of the bilins in the amino acid

sequence is conserved, α84 in the α monomer, β84 and β155 in the β monomer. An α subunit of

PC with the phycocyanobilin (PCB) covalently attached to a cysteinyl residue (ring A) is shown

in Figure 1.11. In Synechocystis, only AP and PC are present in the core and rod subdomains,

respectively. They are both composed of subunits that contain exclusively PCB.

Linker polypeptides In addition to the PBP, a variety of linker polypeptides are present. Except

for the LCM, these do not contain any chromophore. Different linkers are specifically responsible

for each level of PBP assembly and function to stabilize the PBS and optimize its absorption and

energy transfer characteristics. There exist linkers that anchor the core to the photosynthetic

membrane (LCM), linkers that connect the rods to the core (LRC) and linkers that are only present

in the core and the rods: LC and LR, respectively. CpcC2, cpcC1 and cpcD encode the rod linkers

L30
R , L33

R and L10
R (Figure 1.13). Two independent genes (cpcG1 and cpcG2) encode the rod-core

linker (LRC) [Ughy and Ajlani, 2004].

The core-membrane linker LCM is a high molecular weight polypeptide. This major linker is
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Figure 1.11 α subunit of phycocyanin (PC) with its chromophore phycocyanobilin
(PCB).

responsible for the assembly of AP discs into cylinders and core formation. LCM also plays a key

role in anchoring the PBS to the photosynthetic membrane and in tuning the properties of the

bound pigment cofactors such that absorbed light is funnelled towards the photosystems. Two

copies of this multifunctional polypeptide (mass 75-125 kDa) are present per PBS core [Capuano

et al., 1991, Arteni et al., 2009].

Phycobilisome Assembly PBS substructures are built up from stacked PBP discs made either of

trimers (AP) or of hexamers (PC) of PBP subunits. X-ray crystallography was used to determine

the structure of PBP discs. The crystal structure of allophycocyanin showed two loosely stacked

trimers [Liu et al., 1999]. C-phycocyanin is a hexameric disc of 110Å diameter and 60Å thickness

(Figure 1.12 and [Nield et al., 2003]). In many structures of PC, the two (αβ)3 trimers that form

a hexameric disk (αβ)6 were positioned face to face. The hexamer is easily disassembled in

(αβ) monomer in diluted solutions, indicating that just a limited number of salt-bridges and/or

hydrogen bonds are involved in monomer stability. Except in one case [Reuter et al., 1999], the

available structures do not contain any linker.

Each of the cylinders in the tri-cylindrical core is composed of four trimeric AP discs. These

discs have slightly different compositions. They involve simple AP trimers, LC-containing AP

trimers, trimers containing an alternative AP-B α subunit and trimers that possess a red-shifted

β isoform and an α subunit provided by the LCM. As indicated above, LCM together with the LC

assemble the AP discs into cylinders and into a core substructure.

The rod-core linkage position is always occupied by a PC hexamer that is attached due to
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Figure 1.12 S. elongatus C-PC hexameric cluster. The 3 chromophores of each αβ
heterodimer are depicted in the same color. Threeαβheterodimers form a disk around
the three-fold axis. Bar represents 25 Å. A, projection parallel to the three-fold axis;
B, projection normal to the three-fold axis. Taken from [Nield et al., 2003].

LRC. For each disc at a particular rod location there exists a specific linker. Six rods radiate in

a hemidiscoidal array from the core. In Synechocystis, rods are composed of three stacked PC

hexamers. The position of the rod linkers L10
R , L30

R , L33
R and LRC in the PC hexamers is indicated

in Figure 1.13.

Although many isolated components of different PBSs were crystallized, the structure of the

entire PBS and its association to PSII is only studied by electron microscopy [Arteni et al., 2009].

Phycobilisome function

Attached primarily to reaction centers of PSII, the PBS can functionally link more than 600 energy-

absorbing pigments to a single PSII dimer in addition to the PSII integral antenna subunits CP43

and CP47. On one side, direct measurements of fluorescence recovery after photobleaching

[Mullineaux, 2004] indicated that the 10 Megadalton PBS is quite mobile in vivo, much more

than the photosystems. On the other side, ultrastructures of the Synechocystis photosynthetic

membranes indicated that the width of the stromal space between two membranes matches the

PBS height (see Figure 1.9). Therefore, it seems difficult to imagine highly mobile PBS between

the closely spaced thylakoids.

In addition to light absorption, the PBS can function as a source of nutrients under starvation

conditions. There exists a mechanism of ordered PBS disassembly that requires the presence of

a number of gene products. Keeping in mind that the PBS can account for up to 30 % of the total

protein mass in a cyanobacterial cell, it constitutes a significant reservoir.
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Figure 1.13 Representation of a hemi-discoidal PBS, as seen from the side. Kindly
provided by Dr. Ajlani.

Energy transfer within the PBS The absorbed light energy harvested at the periphery of the PBS

is transferred to the PSII reaction center complex by radiationless excitation energy transfer with

an efficiency of > 95%. This implies that the energy-transfer mechanism must proceed rapidly

in order to avoid energy losses by competing radiative or non-radiative decay processes. Light

energy is absorbed mainly by the peripheral rods, where the shortest wavelength absorbing PBP

(PE or PEC) are located. The excitation energy is then transferred by a radiationless resonance

energy transfer to C-PC and then to AP. Energy is finally transmitted to PSII and partially to PSI

reaction centers through the terminal emitters of the PBS (Figure 1.14) [Sidler, 1994].

The spectroscopic properties of the bilins are modified by the protein in two ways which are

critical for their role in light absorption and energy transfer:

1. the bilins in all PBP are held rigidly in extended conformations,

2. the excited state lifetime of the pigment in the protein is long (vs. the isolated pigment).

The extended conformations allows the strong absorption in the visible part of the light

spectrum. The long excited-state lifetime avoids the loss of excitation energy by radiationless de-

excitation pathways. The absorption and transfer of light energy is performed by chromophores

that are called donors. Acceptors can both absorb excitation energy and fluoresce. Thus, the

steady state fluorescence emission originates almost exclusively from the acceptors.

In C-PC, the bilins at α84 and β155 are donors and the bilin at β84 is the acceptor. PCB

β84 extends into the center of the trimeric disc, whereas those at α84 and β155 lie toward the
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Figure 1.14 Energy flow in PBS of cyanobacteria and red algae. Radiationless
excitation energy transfer from short-wavelength (PE) to long-wavelength-absorbing
pigment-protein complexes (AP). Energy is finally transferred to and distributed
between PSII and PSI. Adapted from [Sidler, 1994].

periphery. In the face-to-face arrangement of double discs in the rods, the consecutive discs are

arranged to favor rapid energy transfer. Picosecond energy transfer measurements showed that

the excitation energy absorbed by any bilin at the periphery is rapidly localized on the centrally

located acceptor bilins (yellow and light blue chromophores in Figure 1.12A) [Glazer, 1989].

Directional energy transfer is promoted through the PBS. Between the PC discs, interaction

with different linker polypeptides confer distinctive spectroscopic properties to the acceptor

bilins. The absorption and emission spectra of the (αPCβPC)6LRC complex are shifted towards the

red relative to those of (αPCβPC)6L33
R . In consequence, the favored direction of transfer is from the

distal disc to the PC disc proximal to the core.

In summary, the energy absorbed by any of the bilins in the PBS localizes rapidly (< 8 ps) on

the four terminal acceptor bilins (APB and LCM) in the core. The emission of these bilins overlaps

precisely the absorption spectrum of the reaction center of PSII. The light-guide function of the

PBS is completed when energy is transferred radiationless from the terminal acceptors in the PBS

to the reaction center [Glazer, 1989].
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1.2.2 Phycobilisome rod mutants

PBS mutants were constructed in three rod-linker-coding genes located in the cpc operon of

Synechocystis [Ughy and Ajlani, 2004]. CpcC1 and cpcC2 encode L33
R and L30

R , respectively. L33
R and

L30
R are linker polypeptides that attach the middle and the distal PC hexamer of the rods (Figure

1.13). During in vitro studies, we used a mutant called CB in which cpcC1 and cpcC2 were deleted.

The PBS contained only one PC hexamer per rod (Figure 1.15) [Ughy and Ajlani, 2004].

Figure 1.15 Representation of the PBS in the CB mutant. WT PBS contains 3 hex-
amers of PC per rod, whereas CB contains only 1 hexamer of PC per rod. Kindly
provided by Dr. Ajlani.

1.3 Photosystem I and its electron acceptors

We were interested in the acceptor side of PSI. Electrons following the linear electron transfer are

designated to reduce NADP+, building up the reducing power NADPH. We will now further

introduce PSI, Fd and FNR.

1.3.1 Photosystem I

The three-dimensional structure of cyanobacterial PSI was solved by Jordan et al. in [2001]. It

provided atomic details of the 12 subunits and 127 cofactors comprising 96 chlorophylls, two

phylloquinones, three [4Fe-4S] clusters, carotenoids and lipids. The cofactors involved in ET are

located within the membrane subunits PsaA/PsaB and the stromal subunit PsaC (Figure 1.16).

It can be seen that the chlorophyll pairs are arranged in two branches labelled A and B. There

has been some controversy about whether the two branches work [Brettel and Leibl, 2001] and

this issue is now settled in favor of the theory that the two branches work. The first of the three

[4Fe-4S] cluster FX is located in the middle between PsaA and PsaB. The following two [4Fe-4S]

FA and FB are provided by the stromal subunit PsaC. We will now further introduce the ET

kinetics inside PSI.

Electron transfer in PSI was reviewed [2001] by Brettel and Leibl. Standard free energy levels

and kinetics of charge separation are shown in Figure 1.17. Charge recombination between P700+
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Figure 1.16 Cofactors of the electron transfer chain (ETC) and of PsaC. View parallel
to the membrane plane. The pairs of chlorophylls of the ETC are arranged in two
branches A and B. The chlorophylls a (P700 and A0), the phylloquinones (A1) and
the [4Fe-4S] clusters (FX, FA and FB according) are labelled to their spectroscopic
terms. The center-to-center distances between the cofactors (black lines) are given in
Å. Adapted from [Jordan et al., 2001].

and the reduced form of any one of the electron acceptors can be observed when forward electron

transfer to the subsequent acceptor is blocked. In addition to that, reduction midpoint potentials

are indicated on the right in Figure 1.17. The reduction midpoint potentials are very similar for

FA and FB and it is generally thought that FA and FB undergo fast (< 1 µs) redox equilibrium

[Setif, 2001]. They are both higher than the midpoint electron potential for FX/FX
−. We will

be furthermore interested in the stromal subunits of PSI as they provide the docking site for Fd

binding.

The three stromal subunits of PSI are shown in Figure 1.18. In addition to providing the two

terminal electron acceptors of PSI, they provide the docking side for Fd that is shown as a dashed

ellipse in Figure 1.18. This complex formation is important for efficient electron transfer. We will

now further introduce Fd structure and function in plants and cyanobacteria.

1.3.2 Ferredoxin

Ferredoxin (Fd) is a soluble, low molecular weight protein (ca. 11 kDa) that mediates transfer

of one electron from a donor to an acceptor. The redox active center is a [2Fe-2S] cluster with

a highly negative redox potential (-350 to -450 mV), making reduced Fd a powerful reductant.

The [2Fe-2S] cluster is ligated by four highly conserved Cys residues [Bottin and Lagoutte, 1992,
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Figure 1.17 Approximate standard free energy levels and kinetics of charge sepa-
ration in PSI. The standard free energy of the dark state (P700) was arbitrarily set to
zero. Reduction midpoint potentials (versus NHE) obtained by redox titrations of
intact PSI are indicated on the right-hand scale. Taken from Brettel and Leibl [2001].

Figure 1.18 View along the membrane normal from the stromal side showing sub-
units PsaC, PsaD and PsaE. They cover some of the loop regions and helices of PsaA
and PsaB (light grey). Dashed ellipse: putative docking site of ferredoxin, covering
loops of PsaA. Taken from [Jordan et al., 2001].
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Hanke et al., 2004b].

Fd is best known for its photosynthetic role by accepting electrons from PSI and donating

them to the enzyme FNR for photoreduction of NADP+. Donation of electrons by Fd has

been demonstrated to many other enzymes essential for cellular processes including nitrogen

assimilation (e.g. nitrite reductase), sulfur assimilation (sulfite reductase) and redox regulation

(Fd:thioredoxin reductase) [Knaff, 1996]. In addition to PSI, Fd may be reduced by NADPH

oxidation by FNR. Flavodoxin can substitute Fd under conditions of iron starvation in most

cyanobacteria and some algae and may be efficient in reducing most or all of the soluble electron

acceptors.

Fds are present as multiple isoforms in many plants and algae. We will further introduce the

isoforms existing in plants and cyanobacteria.

Plant isoforms Higher plants contain distinct leaf and root Fd isoforms with conserved differ-

ences, reflecting the different electron donors to Fd in photosynthetic and non-photosynthetic

tissues. Functional differences have been demonstrated between leaf and root Fds, with respect to

redox potential and activity in assays of NADP+ photoreduction and NADPH oxidation. These

differences are highly conserved among species: Leaf Fds have a redox potential around 50 mV

more negative than root Fds; during NADP+ photoreduction, leaf FNR has an affinity around

10-fold higher for leaf Fds than for root Fds, and during NADPH oxidation root FNR has an

affinity around five times higher for root Fds than for leaf Fds.

As the redox potential of leaf Fd is around -420 mV, a 50 mV difference may not appear

dramatic, but the flux through photosynthesis is so vast that small changes in efficiency are

likely to have a profound physiological impact. It was stated that the concentration of Fd in

the chloroplast is of the same order as the concentration of Fd-dependent enzymes, which could

therefore be in competition, giving great physiological significance to even small differences in

affinity and activity [Gou et al., 2006].

Cyanobacteria isoforms Analogously to plants, cyanobacteria also possess several molecular

forms of [2Fe-2S] Fd encoded by distinct genes. The most abundant protein form has been

termed Fd1 (Fed1). The fed1 gene (ssl0020 in Synechocystis) was found to be strongly expressed as

a light-induced transcript. The other fed-like genes appeared to be silent or moderately expressed.

fed1 was found to be critical to Synechocystis viability in spite of fed-like genes slr0150, sll1382

or flavodoxin induction, even after the addition of glucose that compensates for the loss of

photosynthesis [Poncelet et al., 1998]. We used during our studies only the major Fd isoform

assuming that it is involved in all the metabolic pathways under our conditions. This is in
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contrast to the plant isoforms, where tissue specificity ensures the function of distinct isoforms

in distinct metabolic pathways.

Kinetics of ferredoxin reduction After PSI photoexcitation, several fast kinetic components

(submicrosecond and microsecond) for Fd reduction have been identified in vitro. The rates of

the fast kinetic components did not depend on the concentration of the partners. In addition

to that, a slow kinetic component was also identified characterized by a rate that depends

linearly on the Fd concentration. The fast and slow kinetic components are thus called first-

order and second-order phases, respectively. The first-order phases are thought to correspond

to ET processes which occur within PSI/Fd complexes. The second-order phase corresponds to

a diffusion-limited ET which is observable in the fraction of PSI which does not bind Fd before

flash excitation [Setif, 2001].

At least two or three first-order components were necessary to describe the first-order kinetics

of Fd reduction. The spectra of the three phases obtained in Synechocystis were shown to be

consistent with Fd reduction from (FA,FB)−. At least 80% of Fd is reduced within the PSI/Fd

complex at pH 8 in Synechocystis. The two slower first-order processes might result from some

rate limitation either in ET from FB to Fd or during intramolecular PSI ET. The distal cluster

FB is photoreduced in the submicrosecond time range in PSI. Heterogeneity of ET kinetics is an

intrinsic property of Fd reduction, and was ascribed to different conformations of the PSI/Fd

complex.

Fd reduction should compete efficiently with the recombination reaction between P700+ and

(FA,FB)− and this would imply a t1/2 of several orders of magnitude faster than the recombination

(30-100 ms). Furthermore, a high efficiency of Fd may be required for avoiding reduction of

oxygen from (FA,FB)− which is potentially harmful for PSI. It has been speculated that, in vivo,

complex formation is useful, though not critical, for promoting efficient reduction of the soluble

acceptors and avoiding reduction of oxygen by (FA,FB)− [Karplus and Faber, 2004].

Complex formation was found to occur as well between Fd and the enzyme FNR in plants

and cyanobacteria [Hanke et al., 2004b]. As stated above, FNR receives two electrons from two

Fds to finally reduce NADP+ to NADPH during linear electron flow. We will now introduce the

structure and function of FNR that catalyzes the last step of the building up of the NADPH.

1.3.3 Ferredoxin:NADP oxidoreductase

Structure of ferredoxin:NADP oxidoreductase

From their primary sequences, the different ferredoxin:NADP oxidoreductases (FNRs) can be

grouped in three major branches. The plant-leaf chloroplast FNRs are on one branch, the widely
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Figure 1.19 Relationships among various FNR amino-acid sequences. In the un-
rooted dendrogram shown, each branch represents 1 of 30 known plastid FNR se-
quences. The lengths of the branches are proportional to the level of sequence
difference. Taken from [Karplus and Faber, 2004].

diverse cyanobacterial FNRs are on a second branch, and the root plastid enzymes together

with the enzymes from green algae chloroplasts are on the third branch (Figure 1.19). All of

the plastid type FNRs share sequence identities of over 40%. Crystallographic structures have

been determined for six different FNRs: four leaf-type enzymes, one root-type enzyme and

one cyanobacterial enzyme (Anabaena variabilis). These enzymes all have equivalent structures

including two classical structural domains (Figure 1.20A). The amino-terminal residues (ca. 150)

form the FAD-binding domain (blue in Figure 1.20A) and the carboxy-terminal residues (ca.

150) form the NADP+ binding domain (pink in Figure 1.20A). The plant chloroplast enzymes

are structurally similar and the root and cyanobacterial enzymes are structurally variable. One

major difference in the corn root enzyme structure compared to leaf is that the amino terminus

packs in a completely different position. Based on sequence comparisons, this amino-terminal

packing appears to be conserved among root-type enzymes. With regard to amino-acid residue

conservation, among the ca. 40 known FNR sequences, about 25% of the residues in the protein

are conserved. It was stated that this high level of conservation over such long evolutionary

distances implies a fairly stringent level of selection [Karplus and Faber, 2004].

FAD binding The FAD binding site in FNRs is quite highly conserved for the FMN half of

the prosthetic group that contains the isoalloxazine (upper part in Figure 1.20A). In contrast, the

adenosine portion of FAD (lower part in Figure 1.20A) shows significant variation in its position

of binding. The isoalloxazine moiety is the best defined portion of the FAD and the adenosine
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Figure 1.20 Ferredoxin:NADP oxidoreductase structure. A: The Cα polypeptide
backbone of plant-type ferredoxin:NADP oxidoreductase. FNR is a two-domain
flavoprotein. The computer graphic is based on X-ray diffraction data for the spinach
enzyme, with the FAD binding domain shown in blue, the NADP(H) binding domain
in pink, and the FAD prosthetic group in yellow. Taken from [Carrillo and Ceccarelli,
2003]. B: Geometry of the productive NADPH-FAD Michaelis charge transfer com-
plex. A view is shown including all atoms surrounding the locus of hydride transfer,
that is the nicotinamide C4- and the FAD N5-atoms. The model is that of the pea
FNR Y308S-NADPH complex (pdb entry 1QFZ chain A). Taken from [Karplus and
Faber, 2004].
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portion is highly mobile.

NADP(H) binding The originally published structures showed that the C-terminal Tyr residue

(shown in red in Figure 1.20A) was blocking nicotinamide access to the flavin. A technique

of crystal soaking with NADP+ had resulted only in clear density for the 2’-phospho-5’-AMP

(PAMP) part of the dinucleotide. The 2’-phosphate itself has been proposed to be the primary

recognition feature, with the adenine and 5’-phosphate being of secondary importance. Because

of how NADP binds to FNR, we will introduce the NADP as two halves, the PAMP half and

the nicotinamide-mononucleotide (NMN) half (in Figure 1.20B the NMN part is shown). From

crystallographic studies, it was observed that only in a small fraction of the enzyme (15% pea

FNR, [Piubelli et al., 2000]) and an even smaller fraction of cyanobacterial enzymes [Hermoso

et al., 2002] the C-terminal Tyr swings out of the way so that the NMN half of NADP binds

properly. A more complete understanding of nicotinamide binding was finally obtained using

a mutant of pea FNR with the C-terminal Tyr converted to Ser [Deng et al., 1999, Piubelli et al.,

2000]. A surprise compared to other NAD(P) dependent flavoenzymes was that the nicotinamide

was not co-planar with the flavin, but made a 30◦ angle with it [Karplus and Faber, 2004].

Roles of active site residues were proposed by Deng et al. [1999] and involved the boat-like

conformation of the nicotinamide ring to facilitate hydride transfer. In addition to that, the C-

terminal Tyr does not play an active role in hydride transfer, but is primarily a placeholder for

the nicotinamide that modulates the binding thermodynamics of NADP and protects the flavin

from reaction with oxygen. It was also speculated that reduction of the flavin or Fd binding

might promote the movement of Tyr, even if dynamics of Tyr movements may be sufficient to

support catalysis [Karplus and Faber, 2004].

Ferredoxin binding Protein-protein interaction is an important determinant for electron trans-

fer between Fd and FNR. The X-ray crystal structures of complexes formed between Fd and FNR

from the cyanobacterium Anabaena 7120 [Morales et al., 2000], maize leaf [Kurisu et al., 2001] and

maize root have been solved (see Figure 1.21 for the cyanobacterial Fd-FNR complex). In the

complex structure of Fd and FNR, Fd binds to a concave region on the FAD-binding domain of

FNR, bringing the [2Fe-2S] cluster into close proximity to that of FAD. Different orientations of

Fd relative to FNR have been found in cyanobacteria, plant-leaf and plant-root complexes. The

relative buried surface areas differ as well, the root complex having a decreased buried surface

area [Hanke et al., 2004b].

The complex in general is largely electrostatic in nature. The pattern of interaction between Fd

and FNR is composed of a core of hydrophobic interactions surrounding the prosthetic groups,

stabilized by a series of interactions between charged side chains and through hydrogen bonds.
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Hydrophobic effects originating from dehydration of water molecules in the protein-protein

interface may also give a significant contribution. In Anabaena, a total of ten hydrogen-bonding

and ionic-bridge interactions stabilize the complex [Morales et al., 2000]. The side chains involved

in intermolecular charge interactions concern mainly acidic Fd residues and basic FNR residues

[Hurley et al., 2002].

Figure 1.21 Ribbon drawing of Anabaena Fd : FNR complex (PDB code: 1EWY).
One intermolecular salt bridge is shown as ball-and-stick model: 1, FNRLys75-
FdGIu94. Taken from [Hanke et al., 2004b].

Redox potentials may change when binding occurs [Batie and Kamin, 1984b]. A negative

redox shift in the potential of the [2Fe-2S] cluster of Fd was observed that would be advantageous

to ET in the photosynthetic direction [Hanke et al., 2004b]. The more weakly binding complexes

seem to yield more rapid ET and catalytic turnover. Thus, it could be that effective in vivo

ET involves very short-lived (nearly collisional) complexes, rather than a tight, highly specific

complex [Karplus and Faber, 2004].

FNR superfamily Given the early origin of photosynthesis, FNRs would be expected to be

ancient proteins. Consistent with this, there exists a large and diverse family of oxidoreductases

which have as a catalytic core the two-domain FNR-like module [Karplus et al., 1991]. They are

diverse enough that some use FAD and others use FMN whereas some use NADP and others use

NAD. Structurally known members of the family are sulfite reductase, NO synthase, NADPH:

cytochrome P450 reductase, etc..
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Mechanism of ferredoxin:NADP oxidoreductase

Early studies [Shin and Arnon, 1965] showed that the physiological role of the chloroplast

oxidoreductase was to catalyze the final step of photosynthetic electron transfer, namely, the

electron transfer from the iron-sulfur protein Fd, reduced by PSI, to NADP+ (Equation 1.3.1).

2Fdred(Fe2+,Fe3+) +NADP+ +H+ 
 2Fdox(Fe3+,Fe3+) +NADPH (1.3.1)

Equation 1.3.1 shows the ability of FNR to exchange electrons between obligatory one- and

two-electron carriers, which is a direct consequence of its prosthetic group. FAD and other

flavins can exist in three different redox states: oxidized, one-electron reduced (semiquinone

radical) and fully reduced (hydroquinone), containing 18, 19 and 20 electrons in a π orbital

system, respectively. The isoalloxazine ring also provides lone electron pairs for protonation,

which results in tautomers. FNR functions are not confined to photosynthesis. The backreaction

of Equation 1.3.1 is actually more often found in nature in heterotrophic tissues such as plant

roots, heterotrophic bacteria, animal and yeast mitochondria, etc.. Following the backreaction,

NADPH is oxidized and reduced Fd is available for numerous metabolic pathways (detailed in

paragraph on Fd).

As indicated above, FNR forms complexes with NADP(H). The enzyme actually displays

a strong preference for NADP(H) and is a poor NAD(H) oxidoreductase. FNR was stated to

be characterized by its plasticity as a catalyst [Ceccarelli et al., 2004] and is ubiquitous among

living organisms. Steady-state and rapid kinetic measurements have resulted in a comprehensive

model describing the various reactions of Equation 1.3.1 [Batie and Kamin, 1984a].

The overall reaction was interpreted as an ordered two-substrate process, with NADP+ bind-

ing first (Reaction 1 in Figure 1.22). Under these assumptions, the kinetics were consistent with

the formation of ternary complexes as intermediates of the catalytic mechanism (Reaction 2 and

5 in Figure 1.22). We will first introduce the individual steps of the NADP+ reductase activity of

FNR and discuss the NADPH oxidation later in detail.

NADP(H) binding (Reactions 1 and 9 in Figure 1.22) NADP+ is probably the leading substrate

during FNR turnover even if no chemistry is expected to occur between the oxidized nicotinamide

and the oxidized flavin. For example, NADP+ greatly accelerates the full reduction of FNR

by reduced Fd [Batie and Kamin, 1984a]. Formation of the binary NADP:FNR complex was

studied using differential spectroscopy. As indicated above, the C-terminal Tyr must be displaced

to allow stacking of the nicotinamide ring onto the re-face of the isoalloxazine moiety. This
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Figure 1.22 The electron transfer mechanism of ferredoxin-NADP(H) reductase.
The various steps of the catalytic pathway were initially proposed by Batie and
Kamin [1984a] on the basis of kinetic and binding experiments on the spinach FNR.
Oxidized forms are white, one-electron reduced forms are light grey and two-electron
reduced forms are dark grey. An error was found in the present scheme, between
steps 5 and 6 the FNR should be in light grey as already one-electron reduced. Taken
from [Carrillo and Ceccarelli, 2003].
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thermodynamically unfavored process results in a decrease of the binding affinity for NADP(H)

[Carrillo and Ceccarelli, 2003].

Binding of NADP(H) to FNR might thus be interpreted as a two-step binding of the nucleotide

to a bipartite site. First, a strong interaction between the PAMP part and FNR is carried out and

is followed by isomerization that favors NMN part stacking onto the isoalloxazine moiety to

facilitate hydride transfer. The second step of NADP(H) binding is energetically costly and

weakens the entire interaction to a remarkable extent [Carrillo and Ceccarelli, 2003]. Reaction 9

in Figure 1.22 also represents the initial event of the reverse reaction, the reduction of Fd due to

NADPH oxidation.

ET from Fdred to FNR (Reactions 2-4 in Figure 1.22) First electron reduction of FNRox by

Fdred to the radical semiquinone is too fast to be measured by rapid mixing techniques. The

molecular association of FNR with its electron partners is steered by electrostatic interactions.

This could explain the interchangeable accommodation of Fd and flavodoxin to FNR, that share

very low sequence similarity. It was determined that the surface electrostatic potentials of Fd

and flavodoxin overlap completely [Ullmann et al., 2000].

As shown in Figure 1.21, binary complexes of oxidized FNR and Fd have been resolved by

X-ray crystallography for Anabaena and maize couples [Kurisu et al., 2001, Morales et al., 2000].

As indicated above, the FAD and [2Fe-2S] redox centers were sufficiently close for direct electron

transfer and the relevance of complementary patches of basic and acidic residues in FNR and

Fd was confirmed. It is believed that first a nonproductive complex is built up due to polar

interactions. Then, several fine adjustments stabilized by hydrogen bonds, salt bridges, van

der Waals interactions and hydrophobic packing forces originate from the dehydration of the

protein-protein interface [Carrillo and Ceccarelli, 2003].

Differences between maize and cyanobacterial complexes were found that indicate different

protein-protein interactions. Hurley et al. [2002] proposed that crucial parameters for Fd and

flavodoxin binding might be proximity of the prosthetic groups in a nonpolar environment to

facilitate direct electron transfer.

Building up of FNRred (Reactions 5-7 in Figure 1.22) First electron reduction of FNR by Fdred

on one hand was too fast to be observed [Batie and Kamin, 1984a]. The second electron reduction

on the other hand was too slow to be compatible with steady-state catalysis in the absence of

NADP+. This process actually involves various steps: dissociation of Fdox (Reaction 4 in Figure

1.22), binding of Fdred (Reaction 5) and flavin reduction (Reaction 6). The reaction is inhibited by

Fdox and stimulated by NADP+, indicating that Reaction 4 is the rate-limiting step. In addition
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to that, NADP+ seems to facilitate Fdox release which allows the entire reaction to proceed at a

rapid pace through Reactions 4 and 8 [Batie and Kamin, 1984a].

Furthermore, a ternary complex including Fdox, FNRox and NADPH is readily formed. A

strong case of negative cooperativity for binding was observed, that decreases Fd binding in

the presence of NADP(H) and vice versa. The reciprocal negative cooperativity is translated into

positive cooperativity at the kinetic level [Batie and Kamin, 1984a, 1986]. These observations are

compatible with the proposed mechanistic cycle shown in Figure 1.22.

NADP+ reduction and product release (Reactions 8 and 9 in Figure 1.22) The sequence of

Reactions 8 and 9 proposed in Figure 1.22 is one example. They involve NADP+ reduction prior

to Fdox dissociation and as the final step NADPH dissociation from the FNRox. Alternative

pathways such as first Fdox dissociation before NADP+ reduction might be envisaged. Again,

it was Batie and Kamin [1984a] that provided evidence that NADP+ reduction is faster than

dissociation of Fd from FNR.

NADPH oxidation - the backward reaction Ferredoxin reduction is the most widely distributed

function of FNR-type proteins. NADPH binding to oxidized FNR leads to rapid hydride exchange

between the nucleotide and the oxidoreductase, resulting in a succession of charge-transfer

complexes involving flavin and nicotinamide. The appearance of these species can be followed

by long-wavelength absorbance signals.

In Figure 1.23 two different mechanisms for FNR catalysis are shown. The reaction mechanism

in A corresponds to the mechanism discussed above during NADP+ reduction. The reaction

mechanism in B shows the same ordered mechanism for the NADPH oxidation (backward

reaction of FNR). It was proposed that the NADPH oxidation involves the same mechanism

as the NADP+ reduction as all the reactions involved are in principle reversible. The reaction

mechanism in C corresponds to a so-called ping-pong mechanism (two-step mechanism). No

ternary complexes are involved in this reaction mechanism. First, NADPH passes two electrons

on FNR, that are stored and NADP+ dissociates from FNR before the first Fdred is fixed. Two Fds

receive two electrons and thereby reoxidize FNR (see Figure 1.23C).

To distinguish between these two mechanisms during NADPH oxidation, the velocity of the

reactions are systematically plotted versus one of the two substrate concentrations in a double

reciprocal plot. This plot is called a Lineweaver-Burk plot and consists in a graphical method to

distinguish between mechanisms. Spinach Fd reduction was measured in vitro and resulted in

parallel lines by increasing the inhibitor concentration, NADP+. This indicates the mechanism

in Figure 1.23C to operate, without formation of a ternary complex [Forti and Sturani, 1968].
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Figure 1.23 The electron transfer mechanisms of ferredoxin-NADP(H) reductase.
A: NADP+ reduction following the mechanism proposed by Batie and Kamin [1984a].
B: NADPH oxidation following the same reaction mechanism as NADP+ reduction
in reverse order. C: NADPH oxidation following a two-step mechanism. NADP+

bright blue, NADPH dark blue, Fdox bright red, Fdred dark red, FNRox orange, FNRsq
bright green, FNRred dark green. Adapted from [Carrillo and Ceccarelli, 2003].
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This was surprising, as distinct kinetic constraints must operate to justify different reaction

mechanisms.

This could indeed be the case concerning Fdox release. This step may be rate-limiting during

NADP+ reduction. Ternary-complex formation prevents rate limitation via Fdox release during

this reaction. It was proposed that this requirement could be relieved in the reverse reaction if

Fdred dissociates from FNRsq and FNRox at rates compatible with steady-state catalysis [Carrillo

and Ceccarelli, 2003].

Product inhibition studies could also be revealing to obtain informations concerning the

kinetic mechanism of NADPH oxidation. Following an ordered pathway as determined for the

NADP+ reduction, a competitive inhibition by NADP+ is expected during NADPH oxidation

(product inhibition). If the mechanism on the other hand follows a two-step kinetic mechanism,

NADP+ inhibition is characterized by mixed-type inhibition (see Chapter 2).

Isoforms of ferredoxin:NADP oxidoreductase

We will first introduce the isoforms of FNR in plants and afterwards introduce similarities and

differences to cyanobacterial FNRs.

Plant isoforms These isoforms are tissue-specific, i.e. leaf isoforms (photosynthetic; pFNR) are

primarily required for the photoreduction of NADP+, and root isoforms (heterotrophic; hFNR)

generate reduced Fd following NADPH oxidation. Root FNR was observed in one early report

on radish roots [Morigasaki et al., 1990]. In plant roots, genetically distinct, soluble, root-type

FNRs were found and characterized e.g. from tomato [Green et al., 1991] and corn [Onda et al.,

2000, Aliverti et al., 2001] roots. Similar to Fd isoforms, root FNRs were found to be shifted in the

redox potential, being more adapted to provide physiological Fdred in nonphotosynthetic tissues

[Aliverti et al., 2001]. Best affinities were obtained between root Fd and root FNR and between

leaf Fd and leaf FNR isoforms [Onda et al., 2000].

Interestingly, the redox potentials of these oxidoreductases as those of their corresponding

Fds have been tuned by evolution to favor the physiological direction of electron transport.

However, the four proteins can be readily exchanged in vitro when assayed in a variety of

reactions, indicating that the major parameter driving NADP+ or Fd reduction in vivo would be

the substrate availability [Carrillo and Ceccarelli, 2003].

In addition to leaf-type and root-type FNR, different isoforms have been found in maize

[Okutani et al., 2005] and wheat leaves [Gummadova et al., 2007]. They vary in localization

and might be implicated in meeting changing metabolic capacity and reductant demands [Gum-

madova et al., 2007]. Concerning the localization, it is interesting to note that one isoenzyme
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was exclusively soluble in maize, a second isoenzyme was found only attached to the thylakoid

membrane and a third one had a dual location [Okutani et al., 2005].

Cyanobacterial isoforms The petH gene encoding FNR in the cyanobacterium Synechococcus sp.

PCC 7002 was cloned and sequenced [Schluchter and Bryant, 1992]. An additional N-terminal

domain was identified that was 78% similar to the phycocyanin associated linker protein CpcD.

The resulting molecular mass was around 45 kDa for this FNR versus 35 kDa for the plant plastid

FNR. Thus, the N-terminal extension of FNR serves to localize the protein on the rods of the

antenna complex in cyanobacteria, the PBS [Schluchter and Bryant, 1992].

Although the binding to PBS is now established, a controversy still exists concerning the exact

localization of FNR on the PBS. On one side, it was proposed that FNR attaches to the distal PC

hexamer due to the highest similarity of its N-terminus to the distal rod linker L10
R [Schluchter

and Bryant, 1992, Gómez-Lojero et al., 2003]. On the other side, a localization close to the core

on the proximal PC hexamer [Arteni et al., 2009] was proposed. It was also proposed that the

N-terminal extension may help localizing the FNR directly to the thylakoid membrane, providing

an anchor domain and the question was raised what may be the function of the attachment of

FNR to the antenna complex [van Thor et al., 2000].

It was recently established, that a second FNR isoform is generated by an in-frame initiation

of translation [Thomas et al., 2006] in Synechocystis. These two isoforms are encoded by a unique

petH gene and differ in size - 34 kDa and 46 kDa - for the small and the large isoforms, respectively.

The latter is the isoform identified by [Schluchter and Bryant, 1992]. The smaller isoform was

previously identified as a proteolytic degradation product. However, the authors in [Thomas

et al., 2006] identified the small isoform as a product of an internal ribosome entry site (IRES)

within the petH open reading frame (ORF). We denote the small isoform as FNRS and the large

isoform as FNRL.

As for plant-like FNR, FNRS is composed of the two catalytic domains (green): the NADP and

the FAD binding domains that are typical (Figure 1.24). In Figure 1.24, the N-terminal extension

of FNRL is shown in white and pink for the hinge- and the linker-like domain. The latter is

responsible for the attachment of FNRL to PBS.

The two isoforms are translated from distinct methionines (Met), Met1 and Met113 for FNRL

and FNRS, respectively. Thomas et al. [2006] showed that the linker-like domain of FNRL un-

dergoes proteolysis in the absence of PC, just as PBS linkers are known to be highly sensitive

to proteolysis when not attached to PBPs. They also showed that obligate photoautotrophic

cyanobacteria expressed only FNRL and FNRS accumulated in Synechocystis and most prob-

ably in other facultatively heterotrophic cyanobacteria under conditions where heterotrophic

metabolism was needed.
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Figure 1.24 Representation of FNRS and FNRL primary structures highlighting their
functional domains.

Therefore, Thomas et al. [2006] concluded that FNRL probably sustains photoautotrophic

growth (NADP+ reduction) and FNRS might be more adapted to provide electrons for het-

erotrophic growth (NADPH oxidation). Mutants were constructed in Synechocystis which trans-

late either the small or the large FNR isoform only. These mutations are introduced in the next

section.

Ferredoxin:NADP oxidoreductase mutants

In Figure 1.25A the representation of the FNRL polypeptide with the linker, hinge (H), and

enzymatic (FNR) domains is shown for the WT. As a consequence of the presence of the two

methionines Met-1 and Met-113, in principle both isoforms can be expressed in the WT under

different growth conditions. Under standard photoautotrophic conditions, the major isoform is

FNRL as indicated by the wider arrow in Figure 1.25A.

Missense and frame-shift mutations were introduced in petH to elucidate the function of the

two isoforms in facultative heterotrophic cyanobacteria. The missense mutation in MI6 changed

the Met113 into an isoleucine (see Figure 1.25B). Frame-shift mutations, created by a single base

deletion or insertion, caused premature translation stops upstream and downstream of Met-113

in FS1 and FS2, respectively (see Figure 1.25C) [Thomas et al., 2006].

As shown in Figure 1.26, cell extracts from WT contained FNRL as major isoform with only

trace amounts of FNRS. MI6 contained only FNRL (Figure 1.26), consistent with FNRS originating

from an internal ribosome entry site (IRES) at Met-113. In cell extracts from FS1, FNRS is present

at the WT FNRL level, whereas FNRL is absent (Figure 1.26). It was shown in [Thomas et al.,

2006], that FNRS does not bind to the PBS due to the missing linker-like domain.
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Figure 1.25 Synechocystis WT, FS1 (FNRS) mutant and MI6 (FNRL) mutant strains.

Figure 1.26 Immunoblot of total protein extracts for Synechocystis WT, FS1 and MI6
strains. Kindly provided by Dr. Ajlani.
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Figure 1.27 Immunoblot of total protein extracts for Synechocystis WT, FS1 and MI6
strains under low and high light from [Thomas et al., 2006].

Different growth conditions have been tested for the newly constructed mutants. First, under

photoautotrophic growth, the light intensity was varied and WT, FS1 and MI6 strains were tested

for their FNR isoforms by performing immunoblots on the total protein extracts. In Figure 1.27

are shown immunoblots for WT, FS1 and MI6 strains under low and high light. The WT exhibits

accumulation of FNRS under high light compared to low light [Thomas et al., 2006].

This may be explained by the stress conditions of high light. Normally, high light results in

increased turnover of the photosynthetic machinery, thus building up increased levels of NADPH.

The induction of FNRS may help evacuate the excess of NADPH by the reverse reaction catalyzed

by FNR. In this way, the excess NADPH is oxidized into NADP+ and the electrons are fed back

in the PQ pool by respiratory or cyclic electron flow. One interesting photoautotrophic condition

may be limiting CO2. If the main substrate for the Calvin-cycle is limiting, the electrons may

accumulate at the acceptor side of PSI, probably in the form of NADPH. We will summarize the

results of different growth characteristics tested by Dr. Ajlani for the WT, FS1 and MI6 strains.

Growth characteristics

Different growth conditions have been tested by Dr. Ajlani for the WT, MI6 and FS1 strains. WT

can grow under photoautotrophic (light and CO2), chemoheterotrophic (dark and glucose) as

well as bleaching (under N-starvation) conditions.

Under photoautotrophic conditions, mutant FS1 is characterized by a slower growth. The
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MI6 mutant grows just as the WT. This can be correlated to the FNR isoforms expressed under

these conditions. Both the WT and MI6 exhibit FNRL as the major isoform, whereas FS1 contains

only FNRS. Apparently, FNRS cannot sustain photoautotrophic growth to the same extent as

FNRL.

Under chemoheterotrophic conditions, FS1 exhibits an increased growth compared to WT.

MI6 failed to grow. Apparently, FNRS in the FS1 mutant is better adapted to sustain heterotrophic

growth which includes the oxidation of NADPH for reducing Fd just as in nonphotosynthetic

tissues in plants. MI6 seems to have become an obligatory photoautotroph due to the presence

of only FNRL. However the WT strain can adapt to heterotrophic growth but not to the same

extent as the FS1 mutant.

In the study of [Thomas et al., 2006], extensive studies under N-starvation have been carried

out. These growth conditions are characterized by the trimming of PBS using the rods as nitrogen

source. Analogously to the chemoheterotrophic growth but to a lesser extent, FS1 exhibits fast

PBS degradation compared to WT whereas MI6 exhibited a limited possibility to adapt to N-

starvation. Again, FNRS in FS1 allows a better adaptation to N-starvation conditions probably

due to the fact that FNRS participates to the heterotrophic metabolism induced in the early stages

of N-starvation. WT can still grow under these conditions, trimming the PBS and inducing

FNRS expression. There may be transformation of FNRL into FNRS due to proteolysis when the

linker-like domain is not protected due to PC association. MI6 cannot induce FNRS and thus will

only after extended bleaching get proteolysed into FNRS.

After this introduction, we can now state the objective of the PhD and briefly outline different

approaches.

1.4 Objective

The objective of this PhD is to determine the function of the attachment of FNR to PBS in

facultative heterotrophic cyanobacteria and the respective roles of the two FNR isoforms. First,

we compared the two FNR isoforms for their intrinsic, catalytic activities (Chapter 2). To approach

in vivo conditions, we purified an FNRL-PBS subunit complex and compared it to FNRS. In

addition to that, preliminary reconstitution studies of PBS-FNRL binding were carried out using

biochemical techniques. Second, we compared FNR mutants to WT following in vivo studies

(Chapter 3).
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In vitro studies

2.1 Results and discussion

We were interested in comparing the in vitro activities of the two FNR isoforms as different

roles were proposed for the FNR isoforms of Synechocystis [Thomas et al., 2006]. The small

isoform FNRS on one hand was shown to accumulate in the WT under heterotrophic or nitro-

gen starvation conditions. On the other hand, the large isoform FNRL is the major isoform

under photoautotrophic conditions. It was proposed that FNRL could be implicated in the linear

photosynthetic reactions (NADP+ reduction), whereas FNRS would be implicated in cyclic pho-

tosynthetic or respiratory reactions (NADPH oxidation, see Chapter 1). This was our working

hypothesis.

2.1.1 Purification of FNRL-PC

Previous studies [Schluchter and Bryant, 1992, Nakajima et al., 2002, Thomas et al., 2006] have

shown that when FNRL is not bound to PC, its N-terminal part is easily proteolysed just as the

PBS linkers. Therefore intact FNRL is not detected in vivo in mutants lacking PC [Thomas et al.,

2006]. One to two PC hexamers per PBS contained the native FNRL attached to it [van Thor

et al., 1999b, Gómez-Lojero et al., 2003] and we decided to purify a native complex composed of

FNRL and a PC hexamer in order to preserve the native conformation of FNRL. In the WT, the

PBS contains six rods composed of three PC hexamers each. For the purification, we used the CB

mutant, which contains only one PC hexamer per rod [Ughy and Ajlani, 2004]. Additionally, six

histidines were inserted between the catalytic domains (FAD- and NADP-binding domain) and

the linker-like domain, in the hinge domain (Figure 1.24 in Chapter 1). In this way, neither the

enzymatic activity nor the binding to PC was hindered by the His-tag insertion. This mutant is

named CBH. CBH grows normally and its PBS composition is not altered.
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A first step consisted in purifying sufficient amounts of homogeneous FNRL-PC to measure

the catalytic activities. The procedure, described in Chapter 5, started with PBS isolation on a

sucrose step gradient (Figure 2.1A). The lower blue band corresponds to the PBS complex and

an additional centrifugation was carried out to concentrate the PBS complex. The intact PBS

was then selectively dissociated into AP and PC (PBS fraction, lane CBH in Figure 2.1B). The

mixture was incubated with a Ni-resin where FNRL and associated polypeptides were bound

due to the His-Tag on FNRL (unbound fraction, lane UB in Figure 2.1B). After extensive washing

(lanes W1-W2), the sample was eluted via competitive binding of imidazole to the Ni-resin (lane

E). The eluted fraction was highly enriched in FNRL compared to entire PBS as shown in Figure

2.1B. Additionally, a linker called LRC and the α and β PC were found. Contamination by a linker

called LCM was also detected in the eluted fraction.

Figure 2.1 Phycobilisome isolation and IMAC purification of the FNRL-PC complex.
A: density gradient showing PC and PBS fractions. B: SDS-PAGE analysis of the
different fractions. Taken from [Bordot, 2005]. CBH: entire PBS from the mutant
CBH, UB: unbound fraction, W1 and W2: washing fractions, and E: elution fraction.
Polypeptides in CBH are indicated on the left. Polypeptides in E are indicated on the
right.

To determine the size of the complex and ensure its homogeneity, gel filtration was performed

on a preparative column and three fractions were recovered (Figure 2.2). The first and major

fraction F1 was recovered at 89 mL. The shape of the peak indicates a homogeneous complex. F1

had an estimated molecular mass of around 330 kDa. This is in agreement with a PC hexamer

(230 kDa) with FNRL (46 kDa) and LRC (28 kDa) attached to it. Furthermore, as shown in the
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inset of Figure 2.2, all three characteristic wavelengths for peptide-, FAD- and PC-absorption

were present in contrast to minor fractions, F2 and F3, that were recovered at 112 and 125 mL.

The inset of Figure 2.2 shows on one hand that F2 contains only a background absorption of

PC and on the other hand that F3 contains no FAD-characteristic absorption. In addition, these

fractions were found at a lower molecular mass. Therefore, we assigned F2 and F3 to dissociation

products of the FNRL-PC complex.

Figure 2.2 Gel filtration chromatogram. The chromatogram was followed at 620,
450 and 280 nm which corresponds to characteristic PC-, FAD-cofactor and peptide
absorption. The inset shows a zoom in low absorbance region (ma.u.) of the recovered
fractions F1, F2 and F3.

The different fractions were monitored via UV-Vis absorption spectroscopy and SDS-PAGE

(Figure 2.3). The specific absorption of the CBH PBS at 650 nm corresponding to AP strongly

decreased during the different purification steps. This absorption decreased significantly after

Ni-affinity chromatography (E vs. CBH in Figure 2.3). After gel filtration, the absorption at 650

nm was completely abolished (F1 fraction in Figure 2.3). This indicates that we purified an FNRL

complex that contains PC only.

In summary, we purified a homogeneous PBS subcomplex that contains a PC hexamer and

FNRL as well as LRC attached to it. Fraction F1 described above was used to carry out activity

measurements.

41



Chapter 2 - In vitro studies

Figure 2.3 Overview of the purification of the FNRL-PC complex. Absorption
spectroscopy for the CBH PBS, E (Ni-affinity: elution fraction) and F1 (gel filtration:
major fraction) are shown. In the inset, SDS-PAGE electrophoretic fractions are
shown. CBH: entire PBS from this mutant, M: molecular mass marker, E: elution
fraction during Ni-affinity chromatography, F1, F2 and F3: fractions obtained during
gel filtration chromatography. Polypeptides are indicated on the left.
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2.1.2 FNR quantification in FNRL-PC

Before performing in vitro activity measurements, the FNRL in the complex has to be quantified.

First, the apoenzyme quantification was carried out (Table 2.1). The density of the different bands

on SDS-PAGE was determined. A stoichiometry for the complex of about 1:1:1 for FNRL : (α PC

β PC)6 : LRC was found.

sample FNRL concentration FAD concentration FAD/FNRL
(µM) (µM)

1 0.43 ± 0.02 0.39 ± 0.02 0.91 ± 0.09
2 0.55 ± 0.04 0.49 ± 0.05 0.89 ± 0.16
3 1.22 ± 0.03 1.19 ± 0.04 0.98 ± 0.06

Table 2.1 Quantification of FNRL and FAD in FNRL-PC. Each sample represents an
average of three measurements.

The next step was the quantification of the holoenzyme (FAD concentration, see Table 2.1).

Only the FAD-containing enzyme can perform catalysis. This is why the quantification of the

holoenzyme is essential before starting in vitro activity measurements. For FNRS, several methods

were developed. First, a holoenzyme quantification can be determined via the FAD absorption at

450 nm. This method cannot be performed with the FNRL-PC complex, as the characteristic FAD

absorption is hidden behind the enormous absorption of the cyanobilin attached to PC (Table

2.2).

wavelength (nm) ε (M−1 cm−1)

620 (PBS cofactors) 14,400,000
620 (PC cofactors) 2,370,000
450 (free FAD) 11,300

Table 2.2 Extinction coefficients for cofactors.

For the same reason, the photochemical reduction with deazaflavin/EDTA was difficult to

perform [Massey et al., 1978]. We tried to obtain difference spectra under anaerobic conditions.

Instead, the PC absorption was altered under the action of blue light. This made FAD quantifica-

tions in the complex difficult. Holoenzyme quantification by extraction via SDS was hindered for

the same reason in FNRL-PC. Finally, the TCA extraction method was combined together with

standard apoprotein quantification (Micro-BCA) and absorption due to PC chromophore.

In summary, the TCA extraction method was the only holoenzyme quantification working

for the purified FNRL-PC. This is due to the covalently-linked bilins in PC and the non-covalently

linked FAD in FNRL. TCA treatment extracts selectively FAD and proteins containing bilins are

precipitated. Three independent samples were treated with TCA and the non-covalently bound
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FAD was extracted. The holoenzyme quantification is shown in Table 2.1. The procedure is

detailed in Chapter 5. A ratio between 0.92-1.00 for [FAD]/[FNRL-PC] was obtained (Table 2.1).

The FAD release from FNRL-PC is shown in Figure 2.4.

Figure 2.4 FAD release from the FNRL-PC complex. The blue trace (right y-scale)
shows the characteristic FNRL-PC absorption, at a concentration of 0.1 µM. The PC-
cofactor determines essentially the FNRL-PC absorption with an absorption maxi-
mum at 620 nm and an extinction coefficient shown in Table 2.2. The orange trace
(left y-scale) shows the FAD absorption, after extraction by TCA from FNRL-PC, at
a concentration of 0.81 µM (ε for FAD shown in Table 2.2). The characteristic FAD
absorption in solution exhibits absorption maxima at 450 and 378 nm.

2.1.3 Reconstitution of PBS-FNRL

We performed preliminary reconstitution measurements of PBS with FNRL. These biochemical

studies could provide us with higher amounts of entire PBS or subcomplexes, although not

native.

To do so, we isolated and purified the PBS of two mutant strains. We used two PBS and

FNR mutant strains called CBH and CBFS. CBFS contains the same mutation as CBH on the PBS

and, in addition to that, a FNR mutation equivalent to the one in FS1, resulting in the absence

of FNRL. In parallel, we purified, from E. coli, a recombinant FNRL and incubated FNRL with

PBS in different ratios of PBS:FNRL (1:0, 1:2, 1:8, 1:12). The next step consisted in performing a

second density step-gradient in order to purify the FNRL bound to the PBS as in [Gómez-Lojero

et al., 2003].

The authors in [Gómez-Lojero et al., 2003] studied sedimentation profiles of sucrose gradients

combined with diaphorase activity profiles (FNR activity) in Synechococcus sp. PCC 7002. They
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showed that binding of exogenously added FNRL to PBS was possible and that a maximum of

six binding sites are available for FNRL in the WT and the mutant similar to CB PBS. In the WT

PBS, one to two FNRL per PBS were found [Gómez-Lojero et al., 2003, van Thor et al., 1999b]. We

observed 1.2 FNRL per CBH PBS (lane CBH in Figure 2.5 and Table 2.3) which was in agreement

with [Gómez-Lojero et al., 2003] (1.0-1.6 FNRL/PBS in the WT).

CBFS did not contain FNR, as the unique FNRS isoform present in this mutant is missing

the linker-like domain responsible for the attachment to PBS (lane CBFS in Figure 2.5). The

latter mutant was used for reconstitution experiments with FNRL. A control was carried out by

incubating the PBS of CBFS with a 12-fold excess of FNRS per PBS. No bound FNRS was detected,

as observed (lanes CBFS FNRS 1:12). We observed a significant increase of FNRL amounts from

the CBFS PBS fraction of the density gradient (lanes CBFS PBS:FNRL 1:2, 1:8 and 1:12 in Figure

2.5). The density of the FNRL bands were analyzed and the data were normalized assuming

that there are six copies of LRC linker per PBS. The samples CBFS PBS:FNRL 1:2, 1:8 and 1:12

resulted in 4.5, 6.4 and 5.9 FNRL per PBS (Table 2.3) and indicated saturation of the binding sites.

Therefore, CBFS PBS seems to incorporate around 6 FNRL per PBS which is in agreement with 6

binding sites available for FNRL in Synechococcus PCC7002 [Gómez-Lojero et al., 2003].

Figure 2.5 Reconstitution of PBS-FNRL. CBH: PBS from a mutant that contains 1
PC hexamer per rod and FNRL in natural amounts; CBFS: PBS from a mutant that
in addition does not contain FNRL; PBS:FNRS 1:12; PBS:FNRL 1:2, PBS:FNRL 1:8 and
PBS:FNRL 1:12. All the reconstituted PBS:FNR samples are loaded twice in 2 different
amounts.

These measurements are very promising to finally answer the question about the possible

localization of FNRL in the PBS [van Thor et al., 1999b, 2000, Gómez-Lojero et al., 2003, Arteni

et al., 2009]. In the future, these reconstitution studies can be facilitated by the availability of a
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Lane FNRL per PBS

CBH 1.19
CBFS:FNRL 1:0 0
CBFS:FNRL 1:2 4.5
CBFS:FNRL 1:8 6.4
CBFS:FNRL 1:12 5.9

Table 2.3 Calculated FNRL stoichiometries for CBH- and CBFS PBS. The number of
FNRL was obtained by densitometric analysis of SDS-PAGE.

His-Tag containing FNRL that can be overexpressed in E.coli. This would result in a facilitated

and up-scaled purification of FNRL which is needed in high amounts for such studies.

2.1.4 NADPH oxidase activity

In order to test our working hypothesis, we wanted to compare the catalytic constants of FNRS

and FNRL-PC. For this, we were carrying out two different assays. The first assay is called

ferricyanide reductase activity. The second assay is called Fd-mediated cytochrome c reductase

activity.

Ferricyanide reductase activity

We performed the ferricyanide reductase activity assay (also called diaphorase activity) to mea-

sure the affinity to the substrate NADPH, to determine the catalytic turnover and the catalytic

efficiency during NADPH oxidation. This was done in the presence of an artificial electron

acceptor, potassium ferricyanide (K3[Fe(CN)6]). Ferricyanide in the oxidized state exhibits a

characteristic absorption with a maximum around 420 nm (ε 420nm= 1020 M−1cm−1). When this

external electron acceptor receives one electron, its absorption is abolished. Thus, the reaction

was followed spectrophotometrically.

The reaction starts with the addition of the substrate NADPH. After a hydride transfer, the

reduced FAD in the enzyme FNR reduces ferricyanide in two one-electron transfer reactions

(Figure 2.6). The initial velocity of the catalyzed reaction is recorded, analyzed and plotted

against the initial substrate concentration of NADPH (Figure 2.7). The only rate-limiting step is

hydride transfer from NADPH to FNRS/L as an excess of ferricyanide was used. By varying the

initial substrate concentration of NADPH, we obtained informations about the affinity to NADPH

and the catalytic turnover. We obtained the catalytic efficiency as well which is calculated from

these two values. The obtained Michaelis-Menten catalytic constants are listed in Table 2.4. The

Michaelis-Menten constant Km(NADPH) is shown for the two FNR isoforms. A 30% decrease
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Figure 2.6 Scheme of ferricyanide reduction.

was observed for FNRL-PC compared to FNRS. The Michaelis-Menten constant is related to the

affinity. Thus, an increase in affinity for NADPH of about 30% was observed in the FNRL-PC

complex compared to FNRS.

We want to recall that, following our working hypothesis, FNRS is catalyzing the NADPH

oxidation under heterotrophic growth. Heterotrophic growth is accompanied at least transiently

by increased NADPH concentrations where catabolism contributes to NADPH built-up. Thus,

the physiological conditions may not require a high affinity of NADPH to FNRS.

In contrast, FNRL is catalyzing the NADP+ reduction under photoautotrophic growth. These

conditions may require a better NADP+ affinity. If we assume that the NADP+ affinity is similar

to NADPH affinity, the increased affinity of FNRL-PC for NADPH may be correlated to a faster

turnover of NADP+ reduction. We have seen in Chapter 1 that Fdox dissociation can be rate-

limiting for NADP+ reduction. This limitation is decreased by prior NADP+ binding and by the

mechanism of positive kinetic cooperativity. Increased NADP+ affinity for FNRL-PC may thus

favor the physiologically catalyzed reaction, i.e. NADP+ reduction.

Furthermore, the catalytic turnover kcat is shown for the two FNR isoforms. A 30% decrease

was observed for FNRL-PC compared to FNRS. Apparently, the increase in affinity to NADPH

limits turnover. This is in agreement with the physiologically catalyzed reactions for the two

FNR isoforms (see above). The ratio of the catalytic turnover over the Michaelis-Menten constant

kcat/Km reflects the catalytic efficiency of the two FNR isoforms. Similar values were observed

for FNRL-PC and FNRS.

Ferredoxin-mediated cytochrome c reductase activity

We performed ferredoxin-mediated cytochrome c reductase activity tests to measure the affinity

to the second substrate Fd, to determine the catalytic turnover and the catalytic efficiency in
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Figure 2.7 Ferricyanide reductase activities of FNRS and FNRL-PC.

Ferricyanide reductase activity (unit) FNRL-PC FNRS

Km(NADPH) (µM) 40 ± 3 55 ± 5
kcat (s−1) 124 ± 3 174 ± 5
kcat/Km (µM−1 s−1) 3.1 ± 0.3 3.2 ± 0.4

Table 2.4 Ferricyanide reductase activity of FNRL-PC and FNRS.
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an alternative and more physiological NADPH oxidase activity using both natural substrates of

FNR (Fd and NADPH).

This was achieved in the presence of Fd as an intermediate and cytochrome c as the final

artificial electron acceptor. When cyt c receives an electron, a characteristic absorption maximum

builds up (∆ε 550nm= 21.1 mM−1 cm−1; Sigma Aldrich C2506). Thus, the absorption change

permitted us to follow the reaction spectrophotometrically [Shin and Pietro, 1971, Zanetti et al.,

1980].

The reaction is started by the addition of the substrate NADPH. After hydride transfer, the

reduced FAD in the FNR reduces the oxidized ferredoxin and finally the cytochrome c in two

one-electron transfer reactions (Figure 2.8).

Figure 2.8 Scheme of Fd-mediated cyt c reduction.

The initial velocity of the catalyzed reaction is plotted against the initial Fdox concentration

(Figure 2.9). The only rate-limiting step is the electron transfer from FNRS/L to Fd as both NADPH

and cyt c were used in excess. By varying the initial Fd concentration, we obtained information

about the affinity to Fdox, the catalytic turnover and the catalytic efficiency. The Michaelis-Menten

catalytic constants are listed in Table 2.5. The Michaelis-Menten constant Km(Fd) is shown for

the two FNR isoforms. A 70% increase was observed for FNRL-PC compared to FNRS. Thus, a

decrease of about 70% of the affinity to NADPH was observed for FNRL-PC compared to FNRS.

Such an important decrease in the affinity for FNRL-PC may be explained by the presence of the

additional PC hexamer. Due to its considerable size (230 kDa), it may cause steric hindrance and

thus complex formation of Fdox-FNRred or Fdox-FNRsq prior to electron transfer may be limited.

Furthermore, the catalytic turnover kcat was determined for the two FNR isoforms. No

significant decrease was observed for FNRL-PC compared to FNRS. Therefore, a change in
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Km(Fdox) is not correlated to a change in turnover, in contrast to the case of NADPH. A 44%

decrease was observed for the catalytic efficiency kcat/Km of the FNRL-PC complex compared

to FNRS . This would mean that FNRS is slightly better in performing NADPH oxidation than

FNRL-PC. This difference in the catalytic efficiency is in agreement with our working hypothesis.

Figure 2.9 Fd-mediated cyt c reductase activities of FNRS and FNRL-PC.

Cyt c reductase activity (unit) FNRL-PC FNRS

Km(Fd) (µM) 47 ± 6 28 ± 2
kcat (s−1) 202 ± 17 215 ± 9
kcat/Km (µM−1 s−1) 4.3 ± 0.9 7.7 ± 0.8

Table 2.5 Cyt c reductase activity of FNRL-PC and FNRS.

NADP+ inhibition of cyt c reduction

In order to get further informations about the mechanism of the catalysis, we measured the

apparent inhibition constant (see Chapter 1). To measure the inhibition of NADPH oxidation,

we repeated the Fd-mediated cyt c reductase reactions for FNRL-PC in the presence of 50 µM

NADP+. The results for the FNRL-PC are shown in Figure 2.10 together with Michaelis-Menten

fits and the obtained catalytic constants are shown in Table 2.6.

On one side, the apparent Michaelis-Menten constant Kmapp is almost doubled in the pres-

ence of NADP+. Thus, only about half the Fdox affinity is observed. On the other side, the
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catalytic turnover remains constant. This decreased the catalytic efficiency to almost half of the

catalytic efficiency in the absence of NADP+. The apparent inhibition constant KI for NADP+

was determined (Equation 2.1.1).

KI = [I] ·
Km

Kmapp − Km
(2.1.1)

We did not repeat this experiment at other NADP+ concentrations as these assays are very

Fd-consuming. We cannot exclude that the apparent inhibition constant might vary as a function

of the concentration of NADP+ used in the assay.

It has been shown that prior NADP+ binding to FNR inhibits NADPH oxidase activity [Carrillo

and Ceccarelli, 2003]. As introduced in the catalytic cycle (see Chapter 1), the binding of NADP+

is actually the first step of NADP+ reduction and may be as well considered as the last step of the

reverse reaction (NADPH oxidation). Therefore NADP+ inhibition could be ascribed to product

inhibition.

Cyt c reductase activity (unit) FNRL-PC FNRL-PC
NADP+ (µM) 0 50

Km(Fd) (µM) 47 ± 6 85 ± 32
kcat (s−1) 202 ± 17 207 ± 47
kcat/Km (µM−1 s−1) 4.3 ± 0.9 2.4
KI (µM) 46.6

Table 2.6 Inhibition of cyt c reductase activity for FNRL-PC.

Furthermore, we drew a Lineweaver-Burk plot of the inhibition data (Figure 2.11) which in

this case meant plotting the 1/v0 vs. 1/Fd0
ox. Details of the catalyzed reaction can be obtained

from such plots if different concentrations of the inhibitor result in parallel lines or intersecting

lines. Parallel lines indicate a simple two-reaction pathway (also called ping-pong mechanism) if

the two substrates are involved in an alternative manner (Figure 1.23). Intersecting lines indicate

the involvement of a ternary complex. In our case the ternary complex would contain FNR, Fd

and NADP(H). As the figure 2.11 presents intersecting lines (although for only one concentration

of NADP+), the involvement of a ternary complex is indicated. This is in contrast with results

obtained by Forti and Sturani on spinach FNR [Forti and Sturani, 1968]. Following the same

assay, they found parallel lines using different concentrations of NADP+ and thus proposed a

different mechanism during NADPH oxidation with no involvement of ternary complexes.

Involvement of ternary complexes have been found for FNRS-like plant FNR during NADP+

reduction [Batie and Kamin, 1984a, Carrillo and Ceccarelli, 2003]. Here, inhibition data were
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Figure 2.10 Inhibition of cyt c reductase activities of FNRL-PC.

Figure 2.11 Lineweaver-Burk plot of the inhibition of FNRL-PC cyt c reductase
activities.
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obtained for the first time for a native FNRL attached to a PBS subunit. The result indicates the

involvement of a ternary complex during NADPH oxidation. This would mean that the reaction

mechanism should be the same for NADP+ reduction and NADPH oxidation. Assuming that

reaction mechanisms are similar, the Fdox affinity may be smaller during NADP+ reduction

for FNRL-PC vs. FNRS. As this reaction is limited by Fd dissociation, this would result in

faster NADP+ reduction and by contrast, decreased Fdox affinity correlates with slower NADPH

oxidation.

2.1.5 NADP+ reductase activity

NADP+ reduction is the major reaction catalyzed by FNR during photoautotrophic growth.

Following this FNR activity, the reducing power is built up in the form of NADPH. In order to

test our working hypothesis, we wanted to compare FNRS and FNRL-PC catalytic constants. First,

catalytic constants can be determined for the one-electron reduction of FNR. Second, multiple

turnovers can be determined experimentally. Using the catalytic constants from single reduction,

turnover can be calculated for the case that the first one-electron reduction is limiting the overall

reaction. Experimental turnover can then be compared to the calculated turnover.

Compared to the NADPH oxidase activity, the assays for NADP+ reductase activity involved

an additional partner: PSI. The kinetics of FNR reduction and Fd reoxidation were measured in

the ternary mixture PSI/Fd/FNR by laser flash absorption spectroscopy [Cassan et al., 2005]. First,

a laser flash at 700 nm excites the reaction center of PSI. This results in oxidation of P700 and

in charge separation (scheme A in Figure 2.12). We will further regard especially the acceptor

side of PSI. At the end of the charge separation, the final acceptor in PSI, (FAFB), is reduced

(PSIred in Equation 2.1.2). Afterwards, a cascade of single electron transfers is occurring. The

first electron transfer occurs from the reduced acceptor of PSI, (FAFB)−, to oxidized Fd (first

reaction in Equation 2.1.2 and scheme B in Figure 2.12). This results in reduced Fd and oxidizes

the terminal acceptor. Electrons from reduced Fd are then transferred to FNR in single electron

transfers (reaction 2 in Equation 2.1.2 and scheme C in Figure 2.12). We were performing NADP+

reductase activity under two different conditions. The first condition permits only the first one-

electron reduction of FNRS/L by Fdred. The second condition is adapted for multiple turnover of

FNRS/L.

PSIredGGGAPSIox + Fdred

+ FNRox
GGGGGGGGGGGGGAFdox + FNRsq (2.1.2)
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Figure 2.12 Reaction and scheme of single FNR reduction.

Single reduction by reduced Fd

We performed measurements in the presence and the absence of the second substrate NADP+.

After the actinic laser flash (at t=0) has triggered a charge separation in PSI, an electron transfer

cascade is occurring towards FNR, via Fd. Concentrations of PSI (and the concentrations of

photoreduced Fd) are chosen inferior to FNR to transfer only one electron per FNR and single

electron transfer to FNR can be followed. The first one-electron reduction of oxidized FNR results

in the build-up of a radical species called semiquinone. This radical species exhibits a differential

absorption spectra with a maximum around 520 nm (Figure 5.1 in Chapter 5). We can thus follow

the build-up of the semiquinone radical by following the absorption changes at 520 nm.

The kinetics in Figure 2.13 show the events due to reduction of the PSI electron acceptors,

Fd and FNRS/L. The contribution of P700+ has been eliminated as explained in Chapter 5. In

the absence of FNRS/L (black traces in Figure 2.13A and B), only a single kinetic component is

observed. The reduction of the final electron acceptor of PSI, (FAFB), is not time-resolved on

this timescale. It corresponds to the decrease in absorption that is seen just after the flash. The

kinetic component that can be seen in the black trace is due to reduction of Fd. This results

in a further decrease of absorption at 520 nm. Fd reduction can be further divided in a fast

(submicrosecond and microsecond; small fraction) and a slower (millisecond) component (see

Chapter 1). The fast component accounts for less than 10% of the full Fd reduction signal. This

component corresponds to a fast electron transfer in the preformed PSI-Fd complex [Setif and

Bottin, 1994]. The slower component accounts for a second-order diffusion-limited reduction of

Fd.

Single reduction of FNRS in the presence of NADP+. In the presence of NADP+, we observed

the two isoforms acting according to the proposed catalytic cycle [Batie and Kamin, 1984a]. It
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has been shown in this article, that the NADP+ binds first to the FNR before binding Fd (ordered

binding). The red, green, blue and purple traces in Figure 2.13A correspond to increasing

concentrations of FNRS as indicated on the right. Here, the same initial fast decay is observed

but, in addition to that, an absorption increase is observed at 520 nm. This component is

ascribed to the reduction of FNRS by Fdred with rate constants k1 and k−1. The rates and the

final amplitudes of this absorption change increase with the FNRS concentration. We used the

following kinetic model to simulate the observed kinetics:

PSIred + Fdox

kr
GGGGGGAPSIox + Fdred (2.1.3)

Fdred + FNRox 
 Fdox + FNRsq Keq =
k1

k−1
(2.1.4)

In Equation 2.1.3, PSIred stands for PSI with the reduced terminal acceptor (FA,FB). Reduction

of this terminal acceptor of PSI is not considered on this time scale. Following Equation 2.1.3,

one electron is passed to Fd. In Equation 2.1.4, the FNR is reduced once by Fdred. This results

in the build-up of the radical species, the semiquinone FNR. In order to solve the kinetic model

analytically, it has to be further simplified. This has been done by considering all the reactions as

pseudo first-order. The solution equations are shown in detail in Chapter 5. By applying these

solution equations, we could perform a global fit analysis. We obtained the following values

for the rate constants: kr = 50.0 µM−1 s−1, k1 = 15.2 µM−1 s−1, k−1 = 5.4 µM−1 s−1 for FNRS.

Furthermore, we calculated the equilibrium constant Keq from Equation 2.1.4 (Keq =k1/k−1) and

obtained Keq = 2.84. From the equilibrium constant, the midpoint redox potential Em can be

calculated in the following way:

∆Em=Em(FNRox/FNRsq) - Em(Fdox/Fdred) = (RT/F) ln(Keq)

We wanted to obtain the midpoint redox potential for the first one-electron reduction of FNR,

Em(FNRox/FNRsq). We can assume that Em(Fdox/Fdred)=-412 mV for Synechocystis Fd as obtained

from [Bottin and Lagoutte, 1992]. With this, we calculated the midpoint redox potential for

the first one-electron reduction of FNR. We obtained Em(FNRox/FNRsq)=-385 mV for FNRS. In

previous studies, FNRsq was only hardly observed during redox titrations [Corrado et al., 1996]

because the semiquinone radical is thermodynamically unstable. The values of the rate constants,

equilibrium constant and the midpoint redox potential are summarized in Table 2.7.
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Single reduction of FNRL-PC in the presence of NADP+. The same experiment as for FNRS

was performed with FNRL-PC. Due to limited amounts of this complex, the kinetics were obtained

at lower concentrations of the complex. The kinetics are shown in Figure 2.13B in the absence

(black trace) and the presence of FNRL-PC (red, green, blue and purple traces).

The experimental data were fitted as for the FNRS and the obtained rate constants, equilibrium

constant and midpoint redox potential are shown in Table 2.7. On one side, a 25-30% decrease

of k1 and k−1 is obtained in FNRL-PC versus FNRS. This is in contradiction to our working

hypothesis, that the FNRL-PC might be more adapted to perform NADP+ reductase activity. The

FNR receives the electron from Fdred. As discussed above in 2.1.4, the presence of the additional

PC hexamer might result in steric hindrance when Fd is involved. This might explain the decrease

in rate constants for our complex compared to FNRS.

On the other side, the equilibrium constant and the midpoint redox potential for the first

one-electron reduction of FNR were quite similar. This indicates that in the presence of NADP+,

the electrostatic environment of FAD is not modified in our complex compared to FNRS. De-

duced from first one-electron FNR reduction, both isoforms seem to be able to perform NADP+

reduction.

Single reduction of FNRS/L in the absence of NADP+ We repeated the same measurements

in the absence of NADP+. This is in contrast to the proposed catalytic cycle [Batie and Kamin,

1984a]. Normally, the NADP+ is bound to FNR prior to Fd binding and electron transfer. This

condition might mimic a physiological stressed state, when NADPH is in excess and hence

NADP+ is limiting.

The kinetics are shown in Figure 2.14 in the absence (black trace) and the presence of FNRS

(red, green, blue and purple traces) and FNRL-PC (red, green and blue traces). It would be

interesting to compare single FNR reduction +/- NADP+. This is indeed possible for the k1 rate

constant. However, the rate constant k−1 and thus the derived values Keq and Em are obtained

with a large uncertainty (data not shown). This might result from the measurement itself,

favoring first one-electron reduction and thus unfavoring the back-reaction on a short timescale.

This results in overlapping uncertainties for k−1, Keq and Em. We will now discuss the differences

that are significant in our measurements.

The rates, equilibrium constants and midpoint electron potentials are summarized in Table

2.8. Overall, the rate constants for both FNR isoforms are larger without than with NADP+.

This agrees with a previous study [Cassan et al., 2005]. This effect was attributed in this article

to a repulsive electrostatic effect between the phosphate moiety of NADP+ and the negatively

charged Fd. The rates k1(+NADP+)/k1(no NADP+) are 0.77 and 0.61 for FNRL-PC and FNRS,
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Figure 2.13 Flash titration of FNRS (A) and FNRL-PC (B) in the presence of NADP+

under single reduction conditions. Thin line, data; bold line, fit.
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respectively. Compared to FNRS, FNRL-PC presents a decrease for k1 and k−1. Thus, FNRL-PC

exhibits steric hindrance due to PC in the complex in the absence and presence of NADP+.

As a summary, NADP+ reduction measurements does not seem to favor our working hypoth-

esis. Especially single FNR reduction may not be able to explain different growth characteristics

of the FNR mutants. It has to be noted that several steps are involved during catalysis following

first one-electron FNR reduction (see Chapter 1). Multiple turnover during NADP+ reduction

may help comparing the steps involved during catalysis after the first one-electron reduction of

FNR.

Figure 2.14 Flash titration of FNRS (A) and FNRL-PC (B) in the absence of NADP+

under single reduction conditions. Thin line, data; bold line, fit.
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Single reduction of FNR by Fdred (unit) FNRL-PC FNRS

+ NADP+ Second-order forward rate k1 (µM−1 s−1) 10.8 15.2
Second-order reverse rate k−1 (µM−1 s−1) 4.0 5.4
Keq = k1/k−1 - 2.73 2.84
Em(FNRox/FNRsq) (mV) -386 -385

Table 2.7 Single reduction of FNRL-PC and FNRS by Fdred in the presence of
NADP+.

Single reduction of FNR by Fdred (unit) FNRL-PC FNRS

- NADP+ Second-order forward rate k1 (µM−1 s−1) 14.1 24.9
Second-order reverse rate k−1 (µM−1 s−1) 4.6 10.6
Keq = k1/k−1 - 3.06 2.35
Em(FNRox/FNRsq) (mV) -384 -390

Table 2.8 Single reduction of FNRL-PC and FNRS by Fdred in the absence of NADP+.

Catalytic turnover of FNR isoforms during NADP+ reduction

We performed a second type of measurements on NADP+ reduction: the catalytic turnover of the

two FNR isoforms. We measured the kinetics obtained for a ternary mixture PSI/Fd/FNR in the

presence of NADP+. As the product of this reaction is NADPH, one might on one hand follow

the build-up of NADPH. This was however not easily possible in our set-up. On the other hand,

in our laboratory the redox changes of the second substrate Fd can be easily followed [Cassan

et al., 2005]. Electrons flow from PSI to Fd and, under the action of FNR, NADPH build-up is

followed. Alternative measurements using continuous light illumination during photoreduction

were performed with FNR in excess so that FNR catalysis is not rate-limiting. On the other side

our set-up is specifically adapted to determine rate-limitation due to FNR catalysis (see below).

Conditions for multiple catalytic turnover were characterized by PSI in large excess over FNR

(3.75 µM vs 0.15/0.3 µM). In addition to that, Fd is added in excess over PSI (Fdox concentration

8 µM). The reaction starts with photoexcitation of PSI (3.75 µM). The same concentration of Fdox

will get rapidly photoreduced from PSIred. The large excess of reduced Fd will afterwards doubly

reduce FNR. Following the catalytic cycle proposed by Batie and Kamin in [1984a], FNR reduction

by Fdred is involved at steps 3 and 6 (see Chapter 1). We can thus follow spectrophotometrically

the reoxidation of Fdred. Furthermore, we subtracted the decay rate in the absence of FNRS/L

(knoFNR) from the reoxidation in the presence of FNR (kFNR). Reoxidation of Fdred in the absence

of FNR is mainly due to slow reduction of oxygen. We would like to point out that no maximum

turnover rate (kcat) is measured via these measurements.
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Multiple turnover of FNRS. We obtained values of 2.2 and 4.1 s−1 for (kFNR - knoFNR) with 0.15

and 0.3 µM FNRS (Figure 2.15A). We calculated the monoexponential decay rate as indicated in

Chapter 5. This results in 55 and 51 reoxidized Fdred per second and per FNRS. The average

value of 53 is indicated in Table 2.9.

Multiple turnover of FNRL-PC. The same type of measurements were performed using FNRL-

PC. We obtained similar rates of 2.14 and 3.69 s−1 for (kFNR - knoFNR) with 0.15 and 0.3 µM

FNRL-PC (Figure 2.15B). This results in the averaged value of 50 reoxidized Fdred per second and

FNRL-PC (Table 2.9).

Overall, the multiple turnover rates for the two isoforms are similar. From these results, both

isoforms are equally capable of catalyzing the NADP+ reductase activity of FNR under multiple

turnover conditions. This was in contrast to our working hypothesis.

Figure 2.15 Flash titration of FNRS (A) and FNRL-PC (B) in the presence of NADP+

under catalytic turnover conditions.

Calculated turnover rate. In the previous paragraph, we have presented experimental catalytic

turnover rates for the two FNR isoforms. We have seen that these turnovers are relatively slow.

Due to special conditions during the measurements (discussed below), the first one-electron

reductions were observed to be slow, too. We wanted to check if the two observations might be

related, that is if first one-electron reduction might limit the overall reaction.

For this, we calculated a catalytic turnover rate by using the experimental rate k1 of single

FNR reduction and by supposing that this rate limits overall turnover. This calculation was

performed according to Equation 5.3.1 in Chapter 5. We obtained 40.5 and 57 reoxidized Fd per

second and FNRS/L for FNRS and FNRL-PC, respectively (Table 2.9). The smaller value obtained
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for FNRL-PC results from a smaller rate k1. These rates are in agreement with the experimental

turnovers (Table 2.9).

As explained in Chapter 1, rate limiting steps during NADP+ reduction were proposed to be

Fdox dissociation or NADPH release [Aliverti et al., 2001, Batie and Kamin, 1984a, Carrillo and

Ceccarelli, 2003] and, contrary to our results, no indications were found for a rate limitation by

ET from Fdred to FNR. We attribute our results to the high ionic strength which leads to a decrease

in k1 strong enough that it becomes the limiting rate.

Multiple turnover: Initial rate of reoxidation of 3.75 µM Fdred FNRL-PC FNRS

(reoxidized Fdred per second and per FNR)
Observed rate 50 53
Calculated rate (with limiting k1) 40.5 57

Table 2.9 Multiple turnover of FNRL-PC and FNRS.

2.1.6 Catalytic properties of cyanobacterial FNRS

Our first objective was the in vitro characterization of FNRS in comparison to FNRL-PC. These in

vitro activities were performed under high ionic strength (high salt) conditions that ensure the

stability of the purified FNRL-PC. The interprotein ET reactions depend on the salt concentration

(see Chapter 1). This makes comparison with previously obtained rate constants and catalytic

parameters not straightforward. However, comparison may be useful to understand which steps

or reactions are mostly affected by ionic strength. Thus, we will compare our results with results

obtained on cyanobacterial FNRS under low salt [Medina et al., 1998, Cassan et al., 2005].

NADPH oxidase activities

Extensive NADPH oxidation measurements were carried out on Anabaena sp. FNRS [Medina

et al., 1998]. We will compare catalytic parameters concerning ferricyanide reduction and Fd-

mediated cytochrome c reduction.

Ferricyanide reduction. On one hand, catalytic turnovers kcat were found to be quite similar to

high-salt results. On the other hand, affinities for NADPH were found to be two-fold decreased

in our case (Table 2.10). This indicates that high salt is not detrimental for this oxidase activity.

This also means that the affinity to NADPH is decreased in high salt.
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Fd-mediated cytochrome c reduction. On one hand, catalytic turnovers kcat were found to be

similar (Table 2.10). On the other hand, affinities to Fd were found to be 3-fold decreased in our

case (Table 2.10). Electrostatic interactions are known to be weakened in the presence of high

salt. This might explain the strong decrease in affinity to Fd in our conditions. The important

decrease in affinity to Fd might also explain the decreased catalytic efficiencies.

Ferricyanide reductase activity (unit) Anabaena FNRS

Km(NADPH) (µM) 23.0 ± 1.2
kcat (s−1) 225 ± 3
kcat/Km (µM−1 s−1) 9.82 ± 0.15

Cytochrome c reductase activity

Km(NADPH) (µM) 11.0 ± 2.0
kcat (s−1) 200 ± 10
kcat/Km (µM−1 s−1) 18.2 ± 1.0

Table 2.10 NADPH oxidation of the Anabaena FNRS.

NADP+ reductase activities

Extensive NADP+ reductase activities were carried out previously in our laboratory on Syne-

chocystis FNRS [Cassan et al., 2005] in low salt. We will compare catalytic parameters concerning

single FNR reduction and multiple turnover of FNR.

Single FNR reduction. Single FNR reduction by Fdred was strongly inhibited in high salt. The

second-order rate constant k1 was 27-fold decreased in our case compared to low salt (15.2 vs.

417 µM−1s−1 see Table 2.11). As it has been found in NADPH oxidase activities, electrostatic

interactions are known to be weakened in the presence of high salt and this results in this strong

decrease in the rate of single FNR reduction.

Multiple turnover of FNR. The data concerning multiple turnover of FNR in low salt were

recalculated using ε461nm(FNRS) = 9000 M−1cm−1. This results in 330 reoxidized Fdred per second

and FNR. The rate of Fdred reoxidation was 6 times smaller in our case (53 vs. 330; Table 2.11). This

indicates that high salt has a strong effect on overall turnover. However, the effect is smaller than

on single FNR reduction. The calculated turnover (calculated from the single FNR reduction) is

27 times smaller in our case (57 vs. 1564; Table 2.11).

Under low salt, catalytic turnover is increased. As can be seen in Table 2.11, single FNR

reduction works at an even more increased rate (k1 = 417 µM−1s−1) which results in a 4-5 times

increased calculated turnover rate (1564 vs. 330). This indicates that in low salt, first FNR
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reduction is not limiting. We have seen before that first electron reduction was limiting for both

FNR isoforms under high salt conditions whereas under low salt, another first-order process is

limiting. This may be Fdox dissociation, hydride transfer or NADPH release.

Single reduction of FNR by Fdred (unit) high salt low salt

Second-order forward rate k1 (µM−1 s−1) 15.2 417

Multiple turnover: Initial rate of reoxidation of 3.75 µM Fdred

(reoxidized Fdred per second and per FNR)
Observed rate 53 330
Calculated rate (with limiting k1) 57 1564

Table 2.11 Multiple turnover of FNRS under high and low salt.

2.1.7 Catalytic properties of plant FNRS

Previous work has been performed on different FNR isoforms in plants under low salt. These

FNR isoforms have a size corresponding to FNRS. They are encoded by different genes and thus

are composed of slightly different catalytic domains. They are called leaf (photosynthetic; p)

FNR and root (heterotrophic; h) FNR according to their respective localization. In plants there

are as well different Fd present in leaves and roots. Here we compare our results with results

obtained on different plant FNR isoforms under low salt.

NADPH oxidase activities

NADPH oxidase activities have been extensively studied in maize FNR [Onda et al., 2000] and

spinach and corn FNR isoforms [Aliverti et al., 2004]. The different Fd isoforms have been

compared in Arabidopsis thaliana [Hanke et al., 2004a, Gou et al., 2006]. A review summarizes

the knowledge on Fd:FNR electron transfer complexes [Hanke et al., 2004b]. We will compare

catalytic parameters concerning ferricyanide reduction and Fd-mediated cytochrome c reduction.

Ferricyanide reduction. The leaf and root FNR isoforms from plants differ mainly in four

catalytic or thermodynamic parameters. The first one implies ferricyanide reduction. The

Michaelis-Menten constant Km(NADPH) has been found 3-10 fold higher for leaf FNR compared

to root FNR. This indicated a decreased affinity of NADPH to the leaf FNR. According to our

working hypothesis, we will tentatively make the parallel between FNRL-PC from cyanobacteria

and leaf FNR from plants on the one hand, and between FNRS from cyanobacteria and root FNR

from plants on the other hand. We observed a 30% difference for the Km(NADPH) between the
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FNRL-PC and FNRS. However, the difference was observed in the direction opposite to what

was expected. This indicated in our case an increased affinity of NADPH to FNRL-PC.

Fd-mediated cytochrome c reduction. Two other differences between the plant isoforms have

been found. They imply the Fd-mediated cytochrome c reductase activity. First, the Michaelis-

Menten constant Km(leaf Fd) has been found 5-10 fold smaller for leaf FNR compared to root FNR.

This indicated an increased affinity of leaf Fd to the leaf FNR. We have found a 70% difference for

the Km(Fd) between the FNRL-PC and FNRS. Again, the difference was observed in the opposite

direction. This indicated in our case a decreased affinity of Fd to FNRL-PC. Second, the plants

isoforms differ in the catalytic turnover kcat. The kcat of cyt c reduction is 3-4 fold smaller for

leaf FNR compared to root FNR. In our case, we did not observe a significant difference for the

catalytic turnover of cyt c reduction.

NADP+ reductase activity

Another major difference observed between the plant isoforms concerns NADP+ reductase ac-

tivity. The midpoint potential Em(FNRox/FNRred) for the two-electron reduction has been found

20 mV higher for the corn root FNR than for spinach leaf FNR [Aliverti et al., 2001]. However,

we cannot compare the midpoint potential for two plant FNR isoforms from the same organism

as it is not yet available. We have obtained the midpoint potential for the first-electron reduction

only. No significant difference was found for the two cyanobacterial isoforms concerning the

Em(FNRox/FNRsq).

The differences in cyanobacterial FNR isoforms are in contrast with the differences observed in

plants. In addition to the presence of leaf or photosynthetic FNR (pFNR) and root or heterotrophic

FNR (hFNR) isoforms, multiple pFNR isoforms have been found e.g. in Arabidopsis (2 pFNR)

[Hanke et al., 2005], Oryza sativa (2 pFNR) [Ohyanagi et al., 2006] and Zea mays (maize; 3 pFNR)

[Okutani et al., 2005]. Another study was carried out in wheat [Gummadova et al., 2007]. This

study has identified the presence of multiple forms of FNR in wheat leaves with varied expression

and N-terminal processing. Two Arabidopsis mutant lines have been studied in detail, each lacking

one of the pFNR isoforms [Lintala et al., 2009]. The deficiency of FNR affected electron transfer

properties of the mutant plants, especially cyclic electron transfer around PSI. Moreover, a distinct

difference in the function of FNR1 and FNR2 became evident upon low-temperature acclimation

of Arabidopsis.

It is essential to consider different Fd isoforms that may interact with different FNR isoforms.

In plants, the midpoint potential of root Fd was found to be much higher compared to leaf Fd

(50-100 mV) [Hanke et al., 2004a, Gou et al., 2006, Aliverti et al., 1995, Akashi et al., 1999]. This
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might be an important factor favoring NADPH oxidation in roots compared to NADP+ reduction

in leaves. In Synechocystis, 4 genes have been identified for fed-like genes [Poncelet et al., 1998]. It

is usually considered that only one major isoform encoded by fed1 is responsible for bioenergetic

electron flows under photoautotrophic conditions. The Fd encoded by fed1 exhibits a similar

redox potential to leaf type Fd.

The differences between heterotrophic and photosynthetic plant FNR isoforms do not corre-

spond to the differences present in cyanobacterial FNR isoforms (see above). In addition to that,

there is no evidence that the two FNR isoforms present in cyanobacteria interact with different

Fd partners. The different leaf isoforms should interact exclusively with photoautotrophic Fd

(tissue specificity). Differences in membrane attachment were found for leaf FNR isoforms, too

[Hanke et al., 2005, Okutani et al., 2005]. Maybe the differences between the cyanobacterial

FNR isoforms resemble more the differences observed for different leaf FNR isoforms that are

summarized above.

2.2 Conclusion

In the first part of my PhD, we were interested in determining the catalytic properties of the FNR

isoforms of Synechocystis. Functional specificity of FNR was supported by a recent study [Thomas

et al., 2006]. In this article, it was proposed that FNRS is involved in oxidative metabolism

(NADPH oxidation) and that FNRL sustains NADPH production under reductive metabolism

(NADP+ reduction). This was our working hypothesis. Thus, we compared in vitro the two

isoforms: FNRS and FNRL. We wanted to approach as close as possible the in vivo situation.

FNRL is always bound to PBS in vivo and is degraded when it is not attached to PBS. Thus, we

purified a complex called FNRL-PC that is stable and compatible with absorption spectroscopy

studies. A first objective was to scale up the purification of FNRL-PC and to purify the complex

to homogeneity. We used a mutant that was composed only of one disk of PC hexamer per rod

(CB, [Ughy and Ajlani, 2004]). On average, one to two FNRL is found attached per PBS [van

Thor et al., 1999b, Gómez-Lojero et al., 2003]. By using the CB mutant, we increased the FNRL

amount per phycocyanin (total of 6 hexamers per PBS instead of 18 in the WT) in the starting

material by a factor of three. The purification was further facilitated due to a His-Tag inserted

in the hinge domain. This mutant was constructed by Dr. Ajlani and called CBH. Thus, we

could use IMAC (Immobilized Metal Affinity Chromatography) for the purification. Further

impurities were eliminated during preparative gel filtration. Our results indicated a pure and

homogeneous complex composed of a PC hexamer, FNRL and a rod-core linker LRC with a

stoichiometry of the apoproteins around 1:1:1 for FNRL:LRC:(α PC,β PC)6 (complex size 330 kDa).

Our complex was stable at 4◦C. It can thus be concluded that the purification of FNRL in our
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complex favors protection from proteolytic degradation, as previously observed [Schluchter and

Bryant, 1992, Nakajima et al., 2002]. We also carried out preliminary studies on reconstitution of

PBS with FNRL. These reconstitution studies open enormous possibilities in terms of up-scaled

purification and structure determination of the FNRL-PC complex.

Several articles discussed the exact localization of FNRL in the PBS and different proposals of

FNRL binding to core-proximal [van Thor et al., 1999b, Arteni et al., 2009], core-distal [Gómez-

Lojero et al., 2003] PC hexamers as well as attachment to the PBS core and thylakoid membrane

[van Thor et al., 1999a, 2000] were proposed. Little was known about the function of FNRL

attachment to the PBS. This study deals with the roles of the FNR isoforms and contributes to

determine the function of the attachment of FNRL to the PBS.

We have identified the exact composition of the FNRL-PC complex and quantified the holoen-

zyme in this complex. We wanted to elucidate the function of the selective attachment of the

FNRL isoform to the PBS. For this, we performed a detailed functional characterization and

observed differences in NADP+ reduction and NADPH oxidation between FNRS and FNRL-PC.

Catalytic properties of FNR isoforms

We have found several catalytic parameters that are similar for the two Synechocystis isoforms.

Most of the differences we have observed can be explained by steric hindrance brought by

the additional PC hexamer in the FNRL-PC complex. However, we have also observed some

differences that cannot be easily explained by steric hindrance.

The catalytic parameters that were similar for FNRS and FNRL-PC are as follows: During

NADPH oxidation, the presence of the PC did not prevent the NADPH/ferricyanide oxidore-

duction. The interaction with the second substrate Fd resulted in similar maximal velocities

during Fd-mediated NADPH oxidation. During first-electron FNR reduction, the electrostatic

environment of the FAD cofactor was not changed. In addition to that, the two isoforms seem to

be able to perform NADP+ reduction to the same extent under multiple turnover.

However, some significant differences were observed in the NADP+ reductase and NADPH

oxidase activities between FNRS and FNRL-PC. We will summarize now the catalytic parameters

that were different for FNRS and FNRL-PC and could be explained by steric hindrance brought

by the additional PC in the FNRL-PC complex. We found a decreased affinity of Fd for FNRL-PC

compared to FNRS during Fd-mediated NADPH oxidation. Furthermore, we obtained indica-

tions that the FNRL-PC complex was less able to perform Fd-mediated NADPH oxidation. This

was in agreement with our working hypothesis. The same effect of steric hindrance was observed

during NADP+ reduction during single electron reduction of FNR. The rate k1 for FNR single
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reduction by Fdred was smaller for FNRL-PC compared to FNRS. These effects might be alter-

natively explained by electrostatic repulsion. However, electrostatic interactions are expected to

be of limited importance at high salt. Overall, the rate k1 for FNR single reduction is in contrast

to our working hypothesis. This would mean that FNRL is less adapted to perform NADP+

reduction.

Finally, we will summarize the catalytic parameters that are different for FNRS and FNRL-PC

and cannot be explained by steric hindrance. The Km(NADPH) is decreased and the catalytic

turnover is decreased to the same extent for FNRL-PC compared to FNRS during NADPH oxi-

dation. The size of the substrate NADPH excludes the effect of steric hindrance brought by PC.

We propose that increased NADP+/NADPH affinity for FNRL-PC might favor the physiological

reaction. Following the working hypothesis, FNRL is catalyzing NADP+ reduction under pho-

toautotrophic growth. We have seen in Chapter 1 that Fdox dissociation can be rate-limiting for

NADP+ reduction. This limitation is decreased by prior NADP+ binding and by the mechanism

of positive kinetic cooperativity. Following the working hypothesis, the isoform FNRS is cat-

alyzing the NADPH oxidation under heterotrophic growth, starvation or high-light conditions.

These conditions are probably accompanied by an increased NADPH concentration. Therefore,

a higher affinity of NADPH to FNRS may not be necessary under physiological conditions.

To summarize, the results obtained for the Fd-mediated NADPH oxidation are in agreement

with the working hypothesis. In addition, the results for the ferricyanide-mediated NADPH

oxidation indicate adaptation to physiological conditions. Furthermore, both isoforms are capa-

ble of catalyzing the NADP+ reduction under multiple turnover conditions to the same extent.

Finally, by comparing calculated and experimental turnover for NADP+ reduction, we found

evidence, that under our conditions, the first electron reduction is rate-limiting.

The extent of the observed differences contrast with large differences between leaf and root

FNR isoforms in plants. The situation of the cyanobacterial isoforms might resemble more the

case of different leaf FNR isoforms present in plants. We propose that the main photosynthetic

Fd [Poncelet et al., 1998] is involved in vivo in electron transfer with both isoforms. Thus, the

observed in vitro differences of the two Synechocystis FNR isoforms might not fully explain the

in vivo properties of the mutants expressing only one of the isoforms. We have seen in Chapter

1 that FNR mutants that express only FNRL or FNRS show large differences in growth under

photoautotrophic and heterotrophic growth. These differences were explained by the hypothesis

of function specificity of FNR isoforms [Thomas et al., 2006]. This study proposed that FNRL

could be implicated in the photosynthetic reaction (NADP+ reduction), whereas the FNRS could

be implicated in the reverse reaction (NADPH oxidation).

Instead of their intrinsic catalytic properties, it would then be necessary to invoke their

localization and their association to other complexes. It can be e.g. speculated that FNRS is
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involved in cyclic/respiratory electron flow because it is free to bind to other membrane complexes

such as NADPH dehydrogenase (NDH-1) or cytochrome b6f. By contrast, PBS-bound FNRL

would not be able to play such a role but would be dedicated only to NADP+ photoreduction.

For both types of activities, substrate availability (Fdred/Fdox and NADP+/NADPH) might also be

key in vivo characteristics for the activity of the two isoforms. This situation would be reminiscent

of what has been described recently for the different plant leaf isoforms, where catalytic activities

appear to depend upon their variable attachment to the thylakoid membrane [Palatnik et al.,

1997, Hanke et al., 2008].
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In vivo studies

3.1 Results and discussion

We studied the implication of the FNR isoforms in linear-, cyclic-, pseudocyclic and respiratory ET

that are present in thylakoid membranes. In addition to that, recombination reactions involving

P700+ can occur under conditions where electrons cannot be evacuated on the acceptor side of

PSI.

As discussed in Chapter 2, substrate (Fd, NADP(H)) availability and enzyme localization

might well be important for the FNR isoforms to perform different roles in vivo. On one hand,

the localization of FNRL is always close to the thylakoid membrane because of the attachment

to the PBS. FNRS on the other hand may be mobile or attached to other complexes. Growth

characteristics of the mutants expressing only one FNR isoform (see Chapter 1) indicates specific

roles for each isoform: FNRL could be implicated in NADP+ reduction, whereas FNRS could be

implicated in NADPH oxidation (see Chapter 1) [Thomas et al., 2006]. However, from a detailed

functional characterization in vitro, we observed small differences in the NADP+ reductase and

NADPH oxidase activities of FNRS and FNRL-PC [Korn et al., 2009]. Thus, in vivo studies of the

FNR mutants compared to the WT should help to determine their respective roles in vivo.

We studied mutants containing either FNRL (MI6) or FNRS (FS1). We determined the phe-

notypes for these mutants by comparing P700 oxidation kinetics (purple in Figure 3.1) where

various ET processes in the FNR mutants and WT are analyzed. We also determined the redox

state of the NADP pool (green in Figure 3.1) where we obtained informations about the output of

PSI ET. Furthermore, NADPH can be reoxidized via the NDH-dependent cyclic ET (black arrow

in Figure 3.1). Finally, we measured in collaboration with D. Kirilovsky the PQ pool reduction

in the dark. The PQ pool (red arrow in Figure 3.1) is reduced by different cyclic electron transfer

pathways besides PSII. Reduced PQ represents the input to PSI electron transfer via the cyt b6f

complex.
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Figure 3.1 Scheme of the situation in vivo. Possible measurements are indicated.
Adapted from G. Ajlani.

The FNR mutants and WT have been analyzed under different growth conditions. First, they

were analyzed under standard photoautotrophic growth conditions. Synechocystis is usually

grown under high CO2 conditions (air enriched in CO2 and HCO−3 in the medium, detailed in

Chapter 5) in the presence of light, oxygen and minimal medium. Several reports suggest a

significant contribution of cyclic and pseudocyclic ET in the normal operation of photosynthesis

in plants and cyanobacteria [Badger et al., 2000, Rumeau et al., 2007, Mi et al., 1992a,b]. The

contribution of cyclic and pseudocyclic ET to overall ET was furthermore shown to be enhanced

in conditions such as low CO2 and high light in plants and cyanobacteria [Harbinson and Foyer,

1991, Miyake et al., 2005, Battchikova and Aro, 2007, Hackenberg et al., 2009, Eisenhut et al.,

2007]. We compared the FNR mutants and WT under high- (HC) and low-CO2 (LC) conditions.

3.1.1 NADP+/NADPH ratio

The NADP pool redox state was the first phenotype that we characterized for the FS1 and MI6

mutants, that contain only FNRS and FNRL, respectively. NADPH build-up represents the output

of PSI ET. A method has been previously used to determine NADPH fluorescence in Synechocystis

[Mi et al., 2000]. We used the quantification of the cellular NADP+ and NADPH to determine

the NADP pool redox state because no blue fluorescence device was available.

We adapted a commercial kit to carry out separate extraction of NADP+ and NADPH. Once

extracted, the concentration of NADP+ and NADPH were determined via colorimetric cycling

and the NADP+/NADPH ratio was calculated (see Chapter 5). We compared NADP+/NADPH

ratios in FS1 and MI6 mutants to WT.
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The NADP+/NADPH ratio in the WT was found to be 2.6 (see Table 3.1). This is in agreement

with previously published values of 3 [Mi et al., 2000]. FS1 showed an increased NADP+/NADPH

ratio (4.3) compared to WT while MI6 showed a slight decreased NADP+/NADPH ratio (2.0)

compared to WT (Table 3.1).

These results are in agreement with our working hypothesis that is based on previously

published results [Thomas et al., 2006]. On one side, FS1 showed a decreased growth under

photoautotrophic conditions. The increased NADP+/NADPH ratio indicates an insufficient

build-up of NADPH during photoautotrophic growth. On the other side, MI6 showed a similar

growth compared to WT.

Interestingly, previous work on mutant M55 in Synechocystis showed a lower redox state of

the NADP pool. Values from 80%- [Mi et al., 2000] to up to 100%-reduced NADP pool [Cooley

and Vermaas, 2001] were previously observed which corresponds to NADP+/NADPH ratios of

0.25 and < 0.01. This can be correlated to the absence of the NDH-1 complexes in the M55

mutant. The authors in [Mi et al., 2000] concluded that the NDH-1 is one major site of NADPH

reoxidation by respiratory or cyclic ETs. For FS1, we obtained differences in the redox state

of the NADP pool that are opposite to that of M55 compared to WT. This indicates that FS1 is

characterized by an increased level of NADPH reoxidation via respiratory or cyclic ETs. The

increased NADP+/NADPH ratio in FS1 may also be the result of an increased pseudocyclic

ET involving the Mehler-reaction. This pathway involves Flv1 and Flv3 that are NAD(P)H

dependent flavoproteins responsible for the light-dependent O2 reduction (Chapter 1).

NADP+/NADPH

WT 2.6 ± 0.2
FS1 4.3 ± 0.8
MI6 2.0 ± 0.4

Table 3.1 Averaged NADP+/NADPH molar ratios for WT, FS1 and MI6.

These measurements strengthen our working hypothesis assigning a specific role for each

of the isoforms. In MI6 on one hand, FNRL ensures a redox state of the NADP pool similar

to that of the WT. We have seen in Chapter 1 that under photoautotrophic conditions, FNRL is

the major isoform in the WT. In FS1 on the other hand, FNRS is unable of building up a similar

NADP+/NADPH ratio.

3.1.2 P700 oxidation kinetics using white light

Different actinic light qualities such as white light [Golding et al., 2004] and far-red (FR) light

[Mi et al., 1992b] are applied to drive photosynthesis and to follow P700 oxidation and reduction

kinetics. Also light quantities change from moderate continuous light to intense laser flashes.
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Here, we present results obtained with continuous light illumination. First, we performed

preliminary measurements on WT under white actinic light (white AL; Figure 3.2), which excites

both PSI and PSII and drives linear ET. Figure 3.2 shows the kinetics of P700+ formation and decay.

After switching on the light, the P700 oxidation kinetics is characterized by a first fast rise which is

followed by a dip phase and then a second slow rise results eventually in a steady-state. In Figure

3.2 the reduction kinetics of P700+ is also shown. When the light is switched off, the oxidized

P700 is reduced back to P700 rather quickly and the initial level of absorption is recovered. A

second light-induced P700 oxidation is shown which exhibits a much less-pronounced dip phase.

Figure 3.2 P700 oxidation and P700+ reduction kinetics of WT strain under high
CO2. Characteristic curves for white light illumination are shown. Arrows under the
trace indicate the light switch-on and switch-off. Horizontal bar represents 10 s.

Our observed complex kinetics of WT are in agreement with previously obtained traces of

P700 oxidation [Trubitsin et al., 2005] and with blue-green fluorescence kinetics [Mi et al., 2000].

The latter authors identified the changes in blue-green fluorescence as changes in the redox

state of the NADP pool. Dark-light-dark induction transients of blue-green fluorescence for

Synechocystis WT and the ndhB-defective mutant M55 are shown in Figure 3.3A. This represents

changes in the output of PSI ET and constitutes a complementary view to previous studies on

the NADP pool redox state (see above).

WT exhibited the same two different fast and slow rising phases separated by the dip phase.

The studies of [Mi et al., 2000] were carried out after repetitive dark-light-dark induction tran-

sients. This would explain why the amplitude of the dip resembles more the amplitude seen in

the second P700 oxidation kinetics in Figure 3.2. The authors in [Mi et al., 2000] proposed the

following explanations for the different phases upon onset of AL:

• First rapid rise: light driven accumulation of NADPH;

• Dip phase: oxidation of NADPH via Calvin cycle activity;
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• Secondary rise phase: accumulation of NADPH as its oxidation in the Calvin cycle becomes

limited, possibly going along with a limitation in ATP-supply;

• Stationary phase: matched rates of light-driven NADP+ reduction and NADPH oxidation

via the Calvin cycle.

Figure 3.3 Dark-light-dark induction transients of blue-green fluorescence of Syne-
chocystis WT and its ndhB-defective mutant M55. A: blue-green fluorescence of WT
and M55. B: blue-green fluorescence of WT and M55 in the presence of inhibitors
DCMU and DBMIB. Taken from [Mi et al., 2000].

P700 oxidation kinetics under white light observed in our study could also be explained in a

similar way. The different phases would then correspond to P700 oxidation events as followed:

• First rapid rise: oxidation of P700 resulting in accumulation of NADPH;

• Dip phase: reduction of P700+ results in decrease in light-driven NADP+ reduction;

• Secondary rise: further oxidation of P700 resulting in accumulation of NADPH; Calvin

cycle is limited by ATP;

• Stationary phase: matched rates of light-driven PSI oxidation and PSI reduction via lumenal

(Pc/cyt c6) and membrane (PQ) donors.

In Figure 3.3B dark-light-dark induction transients are shown in the presence of DCMU and

DBMIB for WT and M55 mutant. These inhibitors of PSII and cyt b6f, respectively, are widely
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used as control measurements. The authors proposed that, in the WT, the transient reduction

of NADPH in the presence of DCMU showed high capacity of cyclic electron flow around PSI

via the NDH-1 which ensured reduction of the intersystem electron chain even when electron

donation by PSII was abolished [Mi et al., 1992a,b]. The M55 mutant did not present a transient

reduction of NADPH due to deletion of all NDH-1. The transient NADPH build-up may also

be explained by the presence of prereduced donors of PSI. This reduced donor pool may be less

important in the M55 mutant.

Another approach for observing P700 oxidation kinetics consists in exciting preferentially PSI.

This can be achieved either by adding the PSII inhibitor DCMU or by changing the light quality

to FR (> 695 nm). These approaches are regularly performed for measuring P700 oxidation and

reduction kinetics in oxygen-evolving organisms [Mi et al., 1992b, Breyton et al., 2006, Ivanov

et al., 2007, Lintala et al., 2007, DalCorso et al., 2008, Lintala et al., 2009]. We have chosen the FR

light continuous illumination to characterize the WT and the FNR mutants.

3.1.3 P700 oxidation kinetics using far-red light

We have seen a clear increase in the NADP+/NADPH ratio for the FS1 mutant. Here, we

determined if the oxidized NADP pool in FS1 is due to an increase of an alternative electron

transfer. We performed P700 oxidation and reduction kinetics on cells grown under standard

photoautotrophic conditions. Under these conditions, the WT expresses FNRL as the major

isoform. The WT behavior should then be close to MI6, which can only express the FNRL

whereas FS1 may present differences in the kinetics as it contains only FNRS.

Characteristic curves for FNR-mutant- and WT strains under HC are shown in Figure 3.4.

Cells were dark adapted for 5’ and FR light was applied for 10 s. A very fast P700 oxidation rate

with a half time of less than 0.1 s was observed for WT (Figure 3.4, black trace). In comparison

with white-light illumination, no dip phase followed by a secondary slow rise were observed.

This gives indications that the participation of PSII in ET is negligible under these conditions.

This is explained by the use of FR light as actinic light source and the elevated PSI/PSII ratio in

Synechocystis (PSI/PSII = 3) in comparison with e.g. plants. The oxidized P700 under steady-

state conditions was around 80% in WT under HC, the WT exhibited the maximum amount of

oxidized P700 under steady-state conditions compared to both FNR mutants. The WT under

standard photoautotrophic growth is expected to perform linear ET as the major ET (see above).

However, up to 20% of oxidized P700 that are missing for the WT under steady state may

represent the contribution of cyclic and/or respiratory ET. We will in the following consider the

WT as a reference for mainly linear ET compared to FNR mutants.

MI6, that contains only FNRL, exhibits a similar P700 oxidation rate with a half-time of
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around 0.1 s (see Figure 3.4A and B). The oxidized P700 under steady-state conditions was

slightly decreased compared to wild type, around 75%. As MI6 is close to WT, we can conclude

that this mutant probably performs linear electron transfer as the major electron transfer. Note

that both strains contain FNRL as the major or only FNR isoform under these conditions. Linear

electron transfer is cartooned in Figure 3.5. We observed a quick rise in the signal corresponding

to oxidized P700 for WT and MI6. This is represented with a positive charge on P700 in Figure 3.5.

The electrons flow from P700 to NADP+ via Fd and FNRL. We will consider this flow of electrons

as the output of PSI ET. Electrons are further evacuated via NADPH to the major electron sink:

the Calvin cycle. We attribute this behavior to linear ET (Figure 3.5) but pseudocyclic ET may be

present. WT and MI6 may perform alternative ETs as respiratory or cyclic ET that account for

the difference with 100% oxidized P700 in the presence of DBMIB.

Figure 3.4 P700 oxidation and P700+ reduction kinetics in high CO2 of WT (black),
FS1 (red) and MI6 (green) mutant strains. A: overall P700 oxidation and reduction
kinetics. B: zoom on P700 oxidation kinetics. The three strains were shifted for their
onset of illumination with WT being the first, MI6 the second and FS1 the last strain.
The arrows indicate the FR light that was switched on and off. Switch-on and -off of
the light could not be determined precisely (see Chapter 5).

FS1, that contains only FNRS, showed very different P700 oxidation kinetics (Figure 3.4A and

B). First, a much smaller P700 oxidation rate was observed with a half time of around 0.6 s -6 times

increased compared to WT. Second, a decrease in the maximal P700+ signal on the same time

scale was observed. After 10 s of FR light, no real steady state was reached in this mutant under

HC (around 65% at a pseudo-steady state). P700 oxidation and reduction in FS1 are depicted in

Figure 3.6. In addition to the output of electrons by linear ET, P700+ may be rapidly reduced or

the output of PSI may be perturbed, leading to slowed P700 oxidation kinetics.

The P700 oxidation kinetics of WT, MI6 and FS1 are in agreement with the NADP pool redox

states found for the three strains. These measurements revealed a striking difference in the P700
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Figure 3.5 Representation of P700 oxidation by linear ET in WT and MI6.

Figure 3.6 Representation of P700 oxidation and reduction in FS1.
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oxidation kinetics of FS1 that has to be further studied by P700 oxidation measurements in the

presence of inhibitors and complementary in vivo measurements as PQ pool redox state and

immunoblots to determine the metabolic pathways involved.

P700 oxidation kinetics in the presence of inhibitors

The difference in the phenotype of FS1 compared to WT and MI6 was further investigated during

control measurements. This consisted in adding inhibitors of electron flow. Measurements with

sequential addition of DCMU, MV and finally DBMIB are shown in Figure 3.7 for WT. DCMU, MV

and DBMIB are known to inhibit PSII activity (PQ reduction), recombination reactions involving

P700+ and cyt b6f activity (PQ oxidation), respectively. In the presence of DCMU, the WT was

characterized by a small rate increase of P700 oxidation and similar P700+ reduction kinetics. We

concluded that the contribution of PSII photochemistry was very small under HC (FR light, high

PSI/PSII ratio in Synechocystis).

In the presence of DCMU and MV, the WT was characterized by a small rate increase in the

P700 oxidation kinetics and a significant rate decrease in the P700+ reduction kinetics (Figure

3.7). On one hand, we concluded that the contribution of recombination reactions involving

P700+ was rather small. On the other hand, the contribution of pseudocyclic and cyclic ET with

this control measurement was not possible (see Chapter 5). We focused on the P700 oxidation

kinetics as this step was especially affected in FS1.

In the presence of DCMU, MV and DBMIB, once the available reduced donors are exhausted,

a very fast P700 oxidation is observed. In addition, all oxidizable P700 should be observable in the

presence of DBMIB. Surprisingly, the WT was characterized by a somewhat lower steady-state

of the P700+ signal. We have no plausible explanation for this decrease in steady-state of P700+.

There may be some interference of the three different inhibitors. However, the P700 oxidation

kinetics was further accelerated and the P700+ reduction kinetics was slowed down (Figure 3.7).

The P700 oxidation kinetics for MI6 are shown in Figure 3.7. Overall, the kinetics in the

presence of DCMU, MV and DBMIB were similar for MI6 vs. WT. Only small increases in

the rate of P700 oxidation were observed in the presence of DCMU and MV. This indicated a

small contribution of PSII photochemistry and recombination reactions involving P700+ in this

mutant. In the presence of DBMIB, a further significant though small increase in the rate of P700

oxidation was observed. We have obtained evidence that WT and MI6 exhibit mainly linear ET

as the contribution of recombination reactions involving P700+ was rather small and the kinetics

in the presence of MV and DBMIB did not show much difference. The difference between MV

and DBMIB traces indicated that alternative ET such as cyclic and respiratory ET were poorly

inhibited in the presence of MV (see Chapter 5).
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The P700 oxidation kinetics for FS1 are shown in Figure 3.7. The sequential addition of

inhibitors (DCMU/MV/DBMIB) resulted in a sequential increase in the rate of P700 oxidation.

Thus a small contribution of PSII photochemistry is apparent in the FS1 P700 oxidation. Addition

of MV resulted in a significant increase of P700 oxidation kinetics (Figure 3.7). This increase can be

attributed to inhibition of recombination reactions and/or to partial inhibition of cyclic/respiratory

ET. The addition of DBMIB resulted in a strong increase in the rate of P700 oxidation (Figure 3.7).

The cyt b6f complex is involved in respiratory and cyclic ETs. The addition of DBMIB eliminates

all these ETs and thus very fast P700 oxidation kinetics were obtained. The difference between

MV and DBMIB indicated a major contribution of cyclic and/or respiratory ET in FS1.

Figure 3.7 P700 oxidation and P700+ reduction in the presence of inhibitors. WT
left: overall P700 oxidation and reduction kinetics shown. WT right: zoom on P700
oxidation kinetics. MI6 and FS1: zoom on P700 oxidation kinetics. Traces in black,
red, green and cyan correspond to no addition and sequential additions in the order
of DCMU, MV and DBMIB, respectively.
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Induction of cyclic ET under low CO2

We have obtained strong indications that FS1 may present increased respiratory or cyclic electron

flows. To further test this hypothesis, we repeated some of the measurements under LC. Several

reports presented evidence that LC induces cyclic and pseudocyclic ET [Harbinson and Foyer,

1991, Miyake et al., 2005, Hackenberg et al., 2009]. We may be able to confirm the involvement

of FNRS in the reoxidation of NADPH under LC.

LC decreases growth dramatically. We first checked the impact of LC on the pigments

composition and confirmed the expected phenotype of decrease in PBP content in the three

strains (Chapter 5). We will present detailed comparison of WT and mutant strains under LC

concerning the P700 oxidation kinetics. If cyclic/respiratory ET was observed under HC for the

FS1 mutant, we may be able to observe the same effect on WT under conditions of induced cyclic

and pseudocyclic ETs (LC).

We repeated the P700 oxidation and reduction kinetics under LC. First, we will present the

overall P700 oxidation and reduction kinetics and then focus on the P700 oxidation kinetics for

WT, FS1 and MI6. In Figure 3.8, characteristic curves for the WT and mutant strains are shown

after growth under LC for 24 hours. WT exhibited a rate decrease in P700 oxidation kinetics.

Furthermore, the steady-state of oxidized P700 was also significantly smaller. MI6 on the contrary

did not exhibit significant changes. Under LC, MI6 exhibited the largest steady-state amount

of oxidized P700. FS1 under LC exhibited enhancement of the phenotype present in HC, the

half time for the P700 oxidation rate almost doubled and kinetics had clearly two phases. The

steady-state oxidized P700 was slightly smaller and similar to that of the WT under the same

conditions. The oxidation kinetics for WT, MI6 and FS1 are now compared separately under HC

and LC.

WT was adapted to LC for 24 hours or for entire growth (8-9 days). Figure 3.9 shows WT

kinetics under HC and LC on a 1 s time scale. As a function of duration in CO2 limitation, the

rate of P700 oxidation decreased. The half time for P700 oxidation increased from 0.09 s to 0.12 s

and finally 0.29 s for HC, LC for 24h and entire growth, respectively (Table 3.2). The steady state

of oxidizable P700 decreased in the same way. The steady state decreased from initially 80% to

65% and finally to 45% (Table 3.2).

Under LC the WT P700 oxidation resembles that of FS1. Linear ET was hindered due to CO2

limitation. Alternative electron sinks may operate to evacuate the electrons accumulated on the

PSI acceptor side. If cyclic/respiratory ET was observed under HC in FS1, the WT may be able

to induce the same alternative ET under LC. We hypothesize that the induction of that behavior

in the WT correlates with FNRS accumulation in the WT. This would be in agreement with an

increased FNRS expression under high light [Thomas et al., 2006].
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Figure 3.8 P700 oxidation and reduction kinetics in low CO2 of WT (black), FS1
(red) and MI6 (green) mutant strains.

Figure 3.9 P700 oxidation kinetics under high and low CO2 for WT. WT kinetics in
high CO2 (black), low CO2 for 24h (blue) and in low CO2 for 8 days (dark cyan) are
shown.
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For the two mutants, we compared the P700 oxidation kinetics on a shorter time scale (1 s)

after 24 hours in LC to those in HC. Contrary to the WT, MI6 did not exhibit changes in the P700

oxidation rate under LC (Figure 3.10A). The half time for the P700 oxidation rate did not change

significantly and was 0.12 s and 0.104 s for HC and LC, respectively (Table 3.2). The steady state

of oxidized P700 was as well unmodified (75% under both conditions; Table 3.2). Overall, the

P700 oxidation kinetics of MI6 did not change under LC for 24 hours.

It is interesting to note that the mutant unable to produce FNRS (MI6) was unable to induce the

LC behavior as the WT. MI6 was still characterized by a major linear ET under LC. An alternative

electron sink may be pseudocyclic ET in the MI6 mutant. Under HC, only a small contribution

of pseudocyclic ET must occur in MI6 and WT. Flv3, that is responsible for the Mehler-reaction

in Synechocystis, is induced under LC [Eisenhut et al., 2007]. The pseudocyclic ET involving the

Mehler-reaction can thus result in fast P700 oxidation kinetics under CO2 limitation eventually

involving FNRL.

For FS1, oxidation kinetics are shown on a 1 s time scale in Figure 3.10B. Similar phenotypes

were observed for FS1 under HC and LC but the phenotype was more pronounced in LC. The

half time for the P700 oxidation rate increased about two-fold from 0.56 s to 1.1 s after 24 hours

under LC (Table 3.2). The oxidized P700 after 10 s of FR light under quasi-steady state was

decreased but to a lower extent than in the WT. In HC, the oxidized P700 under quasi-steady

state was about 70%, and decreased to about 65% in LC for 24 hours (Table 3.2).

Figure 3.10 P700 oxidation kinetics under high and low CO2 of MI6 (A) and FS1 (B)
mutant strains. A: MI6 in high CO2 (olive) and in low CO2 for 24h (green). B: FS1 in
high CO2 (red) and in low CO2 for 24h (orange).

We identified a clear phenotype for FS1 under HC which is accentuated under LC. FS1 is

characterized by a decreased rate of P700 oxidation and a decrease of the quasi-steady state of

oxidized P700. Under LC, the WT, contrary to MI6, exhibited a behavior similar to that of FS1.
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oxidation WT MI6 FS1

t1/2 P700+ t1/2 P700+ t1/2 P700+

(s) (%) (s) (%) (s) (%)

+CO2 0.09 ± 0.02 80 0.12 ± 0.01 75 0.56 ± 0.08 70
-CO2 24h 0.12 ± 0.02 65 0.104 ± 0.001 75 1.1 ± 0.23 65
-CO2 growth 0.29 ± 0.14 45 - - - -

Table 3.2 P700 oxidation kinetics and steady state of P700+ under high and low
CO2 for WT, MI6 and FS1.

These results could correlate with the accumulation of the two FNR isoforms in the three

different strains. MI6 does not contain FNRS. WT is expected to induce significant amounts

of FNRS under stress conditions as was observed under N-starvation and high-light conditions.

Further immunoblotting experiments are necessary to confirm this hypothesis. FS1 does not

contain FNRL and FNRS will be either mobile or attached to other complexes (cyt b6f or NDH-

1). Attachment to these membrane complexes may promote respiratory/cyclic ET via NADPH

oxidation with NADPH being accumulated by linear ET or catabolism.

3.1.4 PQ reduction in the dark

We compared ET from the stromal donors to PQ pool in the WT and FNR mutants. The electron

flow was monitored by the transient increase in chlorophyll fluorescence (apparent F0) which

occurs in darkness after a period of AL illumination [Schreiber et al., 1986]. This transient F0 rise is

attributed to reduction of the PQ pool by the stromal reductants accumulated during illumination

period. The WT and MI6 showed similar transient F0 increase with a maximum between 20-30 s

after AL was switched off but FS1 showed significantly larger transient F0 increases (Figure 3.11).

Figure 3.11 Transient PQ reduction for WT (A) and FS1 (B). Kindly provided by Dr.
Kirilovsky.
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This transient F0 increase was previously observed in cyanobacteria and plants [Shikanai

et al., 1998, Deng et al., 2003, Ma and Mi, 2005, Lintala et al., 2009]. It was also shown that this

transient increase was significantly reduced in M55 and in the ndhB-deficient Arabidopsis mutant

[Shikanai et al., 1998]. The authors concluded that the NDH-mediated cyclic ET was missing but

that Fd-mediated cyclic ET may contribute to remaining F0 increase. Thus, the increased PQ pool

reduction in the dark in FS1 may well be due to an increased NDH-mediated cyclic ET.

3.2 Conclusion

Different ET pathways are operating in WT, MI6 and FS1 and we will present a model for the

association of FNRL and FNRS in view of our in vivo results. We obtained evidence that cyclic

or respiratory ET is induced when FNRS accumulates. We propose that FNRS transfers electrons

to NDH-1 acting as the dehydrogenase module (Figure 3.12A). Binding of FNR to NDH-1 was

proposed previously [Vara and Gómez-Lojero, 1986, Guedeney et al., 1996, Matsuo et al., 1998]

and the NDH-1 dependent pathway is expected to be the major cyclic ET in cyanobacteria [Mi

et al., 1992a,b]. We propose that this cyclic/respiratory ET is NDH-1 dependent and involves

FNRS.

The increase of such an alternative electron flow will result in a reduced PQ pool, a slow-down

of the rate of P700 oxidation and an oxidized NADP pool. The NADP pool redox state gave indi-

cations that the mutant lacking FNRL (FS1) presents an increased reoxidation of NADPH. Slower

P700 oxidation excluded a large contribution of pseudocyclic ET and our control measurements

in the presence of inhibitors showed that recombination reactions involving P700+ are also not a

major contributor in the FS1 P700 oxidation phenotype. Studies on PQ pool reduction in the dark

resulted in an increased PQ pool reduction in FS1 compared to WT and MI6. These observations

strongly indicate an increase of NADPH oxidation and subsequent injection of electrons to the

PQ pool via NDH-1.

FNRL is known to be attached to the PBS and is probably tuned to perform NADP+ reduction

involved in linear ET (Figure 3.12B). WT under HC and MI6 that contain FNRL as the major and

the only isoform, respectively, performed essentially linear ET and maybe some pseudocyclic ET.

We analyzed the FNR mutants and the WT for their phenotypes under LC conditions that are

known to induce cyclic ET [Harbinson and Foyer, 1991, Miyake et al., 2005]. FS1 showed under

LC an enhancement of the phenotype present under HC thus indicating an induction of the

respiratory or cyclic ET. The WT under LC behaved like FS1 under HC and LC conditions and we

propose that the WT P700 oxidation correlates with FNRS accumulation under LC which would

be in agreement with previous results under other stress conditions (high light and N-starvation)

[Thomas et al., 2006].
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Figure 3.12 Representation of the possible association of FNRS with NDH-1 (A) and
the known association of FNRL with PBS (B).
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LC conditions also lead to Flv3 accumulation [Eisenhut et al., 2007] which promotes pseudo-

cyclic ET and we found evidence that, under LC conditions, MI6 presents pseudocyclic ET. The

absence of the LC behavior in MI6 further confirmed the involvement of FNRS in this alternative

ET present in FS1 and WT under LC.

To summarize, we obtained promising results from the in vivo studies indicating respiratory

or cyclic ET that is dependent on NDH-1 and involves FNRS. Further studies are necessary to

establish the mechanism of the backflow of electrons into the PQ pool and the exact partners

involved in addition to FNRS. First, we will perform immunoblotting on cells grown under

LC in order to confirm the accumulation of FNRS and of NDH-1 complexes in the WT. Second,

fluorescence induction measurements can confirm informations previously obtained about the

PQ pool redox state. These measurements are needed to compare the WT and the FNR mutant

strains. This will result in a more complete in vivo view and should help us understand the

mechanism of respiratory/cyclic ET.
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Chapter 4

Conclusions and Perspectives

4.1 Conclusions

We are interested in determining the respective roles of the two FNR isoforms in Synechocystis.

FNRL is attached to the PBS [Schluchter and Bryant, 1992] due to the linker-like domain that

FNRS is lacking [Thomas et al., 2006]. We wanted to determine the function of FNRL attachment

to the PBS. Previous studies strongly indicated that FNRL sustains photoautotrophic growth

(NADP+ reduction) and FNRS is expressed under stress conditions and during heterotrophic

growth (NADPH oxidation; working hypothesis) [Thomas et al., 2006].

We performed in vitro and in vivo studies to determine differences due to intrinsic activities

and differences due to e.g. enzyme localization. As FNR catalysis involves intermolecular ETs

involving various steps that are concentration-dependent, it is not straightforward to compare

the results obtained during in vitro and in vivo studies.

In vitro studies resulted in three major differences between FNRS and the purified FNRL-

phycobilisome subcomplex (FNRL-PC) beside overall similar enzymologic properties. The

strongest effect was observed for the affinity of Fdox to FNRL-PC vs. FNRS during NADPH

oxidation, with a decreased affinity for FNRL-PC. This effect was attributed to steric hindrance

in FNRL-PC. As the dissociation of Fdox can be rate-limiting for NADP+ reduction [Batie and

Kamin, 1984a, Carrillo and Ceccarelli, 2003], this difference may result in an increased NADP+

reduction for FNRL-PC. Fd affinities are in agreement with the growth characteristics of the FNR

mutants.

Steric hindrance was also observed during single FNR reduction involved in NADP+ reduc-

tion for FNRL-PC which was in contradiction with our working hypothesis. The third major

difference was a larger NADPH affinity for FNRL-PC. An increased NADPH affinity may result
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in an enhanced NADP+ reduction by FNRL whereas FNRS may still perform NADPH oxidation

under heterotrophic or stress conditions, when NADPH concentration is higher.

The differences we obtained for cyanobacterial FNR isoforms do not parallel the differences

obtained for plant root and leaf isoforms. In addition to different gene products that are present

in different tissues, several plant FNR isoforms were found that are present in the same tissues

[Okutani et al., 2005, Gummadova et al., 2007, Lintala et al., 2009]. These plant leaf isoforms may

parallel the situation in cyanobacteria as they are present in the same tissues and may catalyze

the different FNR reactions.

In parallel to the in vitro studies, we performed in vivo studies of the WT and FNR mutants

expressing only one isoform. It is clear that FNR localization is different for FNRS and FNRL.

FNRL is known to be attached to the PBS but FNRS may be soluble, membrane-attached [Palatnik

et al., 1997], attached to cyt b6f [Zhang et al., 2001] or NDH-1 [Vara and Gómez-Lojero, 1986,

Guedeney et al., 1996, Matsuo et al., 1998]. In addition to that, substrate availability (Fdox/Fdred

and NADP+/NADPH) is probably important for the catalyzed reaction. In vivo studies are

characterized by the presence of various metabolic pathways that interact with each other (cyt

b6f, PQ pool, NADP pool etc.).

Under photoautotrophic growth, the NADP pool was found to be more oxidized in the mutant

lacking FNRL (FS1) than in the mutant lacking FNRS (MI6) and the WT. We envisaged increased

NADPH oxidation by alternative electron flows in FS1 (cyclic, pseudocyclic or respiratory ET),

we excluded pseudocyclic ET and recombination reactions involving P700+ and found further

evidence for an increase of respiratory/cyclic ET by measuring P700 oxidation and PQ pool

reduction in the dark.

If the FS1 phenotype is FNRS-dependent, the WT should under conditions of FNRS induction

present the same phenotype. WT is known to induce FNRS under stress conditions as N-

starvation and high light [Thomas et al., 2006]. High light and LC are conditions known to

induce pseudocyclic and cyclic ET [Harbinson and Foyer, 1991, Miyake et al., 2005, Hackenberg

et al., 2009]. Thus we analyzed the P700 oxidation kinetics for WT, MI6 and FS1 under LC.

WT presented under LC a similar phenotype as FS1 under HC and LC. FS1 presents thus

an LC-phenotype. This indicates that the FS1 phenotype is due to the presence of FNRS. We

proposed the involvement of FNRS in the NDH-1-dependent NADPH oxidation that was pre-

viously accumulated from reductive (photosynthesis) or oxidative (carbohydrate) metabolism.

MI6 mutant under LC may present an increase of pseudocyclic ET.

We clarified the issue of intrinsic activities in vitro of the two isoforms and obtained promising

results from the in vivo studies indicating respiratory or cyclic ET that is dependent on NDH-1

and involves FNRS. Further studies are necessary in order to determine the mechanism of the

backflow of electrons into the PQ pool and the exact partners involved.
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4.2 Perspectives

Both in vitro and in vivo studies have perspectives. First of all, product inhibition of NADPH

oxidation and the corresponding KI may be measured for FNRS. The affinities for NADP+ and

NADPH are thought to be similar, but inhibition can provide more detailed informations on

this issue. Another idea for the in vitro studies is based on reconstitution studies. A scaled-up

purification of FNRL could be obtained using a His-tagged FNRL overexpressed in E.coli for

further biochemical and biophysical studies, e.g. crystallography. Crystallography may give

answers to the issue of conformation changes upon complex formation. This may validate

differences observed between the two isoforms. In Figure 4.1, the crystal structures for the

separately obtained subunit of phycobilisome - PC hexamer - and the oxidoreductase - FNRS -

are shown.

Figure 4.1 Crystal structures of FNRS and the PC hexamer are shown side by side
for size comparison and for giving a possible suggestion for the orientation of the
FNR-PC complex. This Figure was created by P. Sétif using available structural data
for PC hexamer and Anabaena FNR in the pdb.

Further in vivo studies are needed to determine the respective roles of the FNR isoforms

present in facultative heterotrophic cyanobacteria. To determine the mechanism of the NADPH-

dependent cyclic ET and the exact partners involved, several complementary studies might be

useful. First, we need to confirm the accumulation of FNRS in the WT under LC via immunoblot-

ting. Second, we must confirm the informations previously obtained about the PQ pool redox

state in the WT and mutants under HC and LC via chlorophyll fluorescence induction measure-

ments. Third, the NADP pool redox state under low CO2 conditions is expected to exhibit a
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more oxidized NADP pool in the WT and FS1 that can be determined using the commercial

kit. In addition, a module is now commercially available for the PAM spectrometer for real-time

measurements of NADPH fluorescence [Schreiber and Klughammer, 2009]. This would give

insights in the NADP+ reduction kinetics in vivo.

Finally, control measurements need to be carried out under LC via P700 absorption. In

addition, a saturating pulse method was developed to distinguish donor and acceptor side

limitation in PSI [Klughammer and Schreiber, 2008]. Thus, we may obtain further informations

to explain the phenotype of FS1.

In addition to the presented in vitro and in vivo perspectives, other techniques may be carried

out to study the role of the FNR isoforms. Approaches such as transcriptomic studies with

DNA microarrays may be used to determine differences between the mutants and WT. A genetic

approach is currently underway to determine the role of the 5’ region of the mRNA of the gene

petH for the accumulation of FNRS.

These studies would result in a more complete in vivo view and clarify the important issue of

the NADPH-dependent cyclic ET into the PQ pool that seems to be enhanced in FS1.
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5.1 Bacterial growth conditions

The cyanobacterium Synechocystis sp. PCC6803 was grown photoautotrophically in an orbital

incubator at 34◦C in a CO2-enriched atmosphere (5 L min−1) and under continuous light (60

µE m−2s−1). Allen’s medium [Allen, 1968] was modified as follows: 30 µM ferric citrate, 3 µM

disodium EDTA, 30 mM sodium nitrate, 250µM potassium phosphate, 250µM sodium carbonate,

10 mM sodium bicarbonate and microelements as in Allen’s medium [Ughy and Ajlani, 2004].

All chemicals were purchased from Sigma-Aldrich.

For NADP+/NADPH quantification, 50 mL were harvested during midexponential phase at

OD580nm=1.3. The growth conditions were photoautotrophic in the presence of high CO2 (HC)

or low CO2 (LC) (HC: bicarbonate 10 mM in the medium and 5 L min−1 in the incubator) which

resulted in doubling times of 8 or around 24 hours, respectively.

Complete growth under HC, LC for 24 hours and entire growth under LC was carried out.

For 24 hours under LC, cells were grown under HC until OD580nm(1 cm)=1.7. The cells were

harvested and transferred in LC conditions about 24 hours before P700 oxidation measurements.

After 8 to 9 days of exponential growth, the 50 mL cell cultures reached the OD needed to perform

P700 oxidation measurements. For all three conditions, 25-50 mL were harvested during mid-

exponential phase. They were transferred to fresh medium prior to in vivo P700 oxidation

measurements. The chlorophyll concentration was adjusted to 10 µg chlorophyll * mL−1.
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5.2 Biochemical techniques

5.2.1 Chlorophyll quantification

No difference in the chlorophyll a content per cell was found between the mutants and the WT

strain. This is why the calibration to a similar chlorophyll content permits a correct comparison

between mutant and WT strains.

10 to 50 µL culture was harvested in 1.5 mL eppendorff tubes and resuspended in 1 mL

100% methanol. Once in methanol, excess light should be avoided in order to avoid chlorophyll

to pheophytin conversion. Vortexing for a few seconds extracted 100% of the chlorophylls.

One minute of centrifugation at 21,400 g was performed to remove insoluble materials. The

supernatant was transferred into cuvettes and the absorbance was measured at 666 nm. The

absorbance was divided by 76 (extinction coefficient chlorophyll in 100% methanol in mL mg−1

cm −1) to obtain the chlorophyll concentration (mg/mL).

5.2.2 Purification of photosystem I, ferredoxin and short FNR isoform

Photosystem I (PSI) was purified according to [Rogner et al., 1990]. Thylakoid membranes

were obtained from French press broken cells after extensive washing with ice-cold 20 mM

Tricine, 1 mM EDTA, pH 7.8. PSI was obtained after solubilization with 1% (w/v) β-DM and

purified on a sucrose density gradient. The upper green band consisting of highly-enriched

monomeric PSI particles was dialyzed against 20 mM Tricine/NaOH, pH 7.8, and 0.03% β-DM

and concentrated by ultracentrifugation. The last step of the purification procedure was anion-

exchange chromatography on a Mono Q column. One modification to [Rogner et al., 1990] was

the substitution of ammonium sulfate for magnesium sulfate as eluting salt.

Synechocystis recombinant ferredoxin (Fd) was overexpressed in Escherichia coli according to

[Barth et al., 2000]. Ferredoxin was supplied thanks to Dr. B. Lagoutte and Ms. V. Mary. A Fd-rich

soluble fraction from Thermosynechococcus elongatus was a gift from Dr. A. Boussac. Fd from this

soluble fraction was purified to homogeneity using the same procedure as for Synechocystis Fd.

Recombinant Ferredoxin:NADP oxidoreductase (FNR) was overexpressed in Escherichia coli

according to [Cassan et al., 2005]. A construct with deletion was designed in a pQE 60 expression

vector for overproducing a 34-kDa FNR (corresponding to FNRS). Overexpressed FNRS was

precipitated between 50 and 70% ammonium sulfate saturation. The recovered pellet was solu-

bilized in 20 mM Tricine, pH 7.8, first roughly purified on DE52 (Whatman), and the FNR fraction

was further purified by anion exchange chromatography on a Hitrap Q-Sepharose (Amersham

Biosciences). The last purification step was performed by hydrophobic chromatography on a
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phenyl-Sepharose matrix (HiLoad phenyl-Sepharose 16/10 from Amersham Biosciences). The

reverse salt gradient was from 1.6 to 0 M ammonium sulfate in 80 mM Tricine, pH 7.8. FNR

fractions were extensively dialyzed against 10 mM Hepes buffer, pH 7.0.

5.2.3 Purification of FNRL-PC

Phycobilisome isolation

Phycobilisome (PBS) complexes were isolated [Elmorjani et al., 1986, Ajlani et al., 1995] from CBH

under conditions that are known to preserve inter-subunit interactions [Gantt and Lipschultz,

1972], i.e. high KP (potassium phosphate pH 8) concentrations. All steps were carried out at

room temperature except breaking of cells. An antiprotease cocktail (Complete, Roche) was used

during the isolation of FNRL-PC. The procedure was as follows.

18 L cultures of CBH were harvested at late exponential phase and washed twice in 0.5 M

KP buffer and resulted in more than 20 mg cells and about 5-6 g of cells were used as starting

material for each purification. The cells were resuspended in 15 mL 0.8 M KP, then vortexed 5-6

times for 40 s in an ice-cooled bead beater (Biospec) with half the volume of glass beads (0.1 mm

diameter). Triton X-100 was added to the broken cells to a final concentration of 2% (v/v). After

incubation for 30 min in the dark, unbroken cells and debris were removed by centrifugation at

25,000 g for 30 min at 18◦C. If necessary, a second cycle of Triton X-100 treatment was performed

to reduce chlorophyll contamination. 4-8 mL of supernatant were loaded onto sucrose step-

gradients prepared as follows in 35 mL ultracentrifuge tubes: 6 mL of 1.0 M, 9 mL of 0.75 M, 9

mL of 0.5 M, and 3 mL of 0.25 M sucrose in 0.9 M KP buffer. The gradients were spun for 12-16

h in a Beckman SW-27 rotor at 26,000 rpm at 20◦C. The PBS complex was collected in the 0.75 M

zone.

For reconstitution assays the purified PBS complex was mixed with a molar excess of purified

FNRL (c(PBS)=0.08 µM; 0.95 µM FNRS; 0, 0.16, 0.32, 0.64 and 0.95 µM FNRL) and incubated

for 1-2 hours. After this, a second run of sucrose step-gradients was performed overnight and

the fractions were analyzed for their contents in PBS complex and FNR enzyme via SDS-PAGE.

Densitometric analysis of SDS-PAGE were calibrated to LRC, assuming that each PBS contains 6

LRC.

An additional step to resuspend the PBS in a different buffer and to concentrate the sample

was performed. Harvested PBSs from the 0.75 M zone of sucrose were diluted four times with

0.9 M KP buffer and ultracentrifuged at 44,000 rpm for 6-12 h at 18◦C. The PBS complex, that

sedimented at the bottom of the tubes, was resuspended in 150 mM KP.
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IMAC purification of FNRL-PC

Thanks to previous work a His-tag was inserted between the enzymatic domain and the linker-

like domain of FNRL (between Gly 98 and Ser 99). Thus, the FNRL-PC complex could be purified

simply following an IMAC (Immobilized Metal Affinity Chromatography) on a Ni-resin column

in low phosphate conditions in order to separate PC from the PBS complex. All the following

steps were performed at 4◦C on ice.

The PBS complex was resuspended in 150 mM KP buffer in order to dissociate the complex

in its subunits: allophycocyanin from the core and phycocyanin from the rods. This dissociation

was performed overnight at 4◦C in the presence of a protease inhibitor without EDTA (Roche).

After preparation of the Ni-resin (ProBond, Invitrogen, France) by washing with milliQ water

and 250 mM KP, the Ni-resin was added to the sample. After 1h incubation (for binding), 2 steps

of washing in batch with 250 mM KP were performed. Then, the mixture of sample and Ni-resin

was transferred to a column and the resin was allowed to settle. Up to 20 times the bed volume

of the resin was used to wash. The elution was performed with 150 mM KP buffer containing

150 mM imidazole.

The eluted fractions were concentrated using Vivaspin concentrators (100 kDa cutoff). A

first estimation of the concentration was performed by UV-Vis spectroscopy. An absorption

coefficient ε620nm of 2,370,000 M−1cm−1 was used for the phycocyanin hexamer [Glazer, 1989].

SDS-PAGE was performed according to [Ughy and Ajlani, 2004] to control the purification. 12%

of acrylamide was used in a Tris/Tricine gel. The following fractions were loaded at 0.3 OD620nm ·

mL except the elution fraction which was loaded at about 0.03 OD620nm ·mL: entire PBS complex

(CBH), not-bound (NB), wash 1 (W1), wash 2 (W2), elution (E). The samples were concentrated

by TCA precipitation (10% w/v) prior to loading. Proteins were visualized using Coomassie Blue

stain (see Figure 2.1B in Chapter 2).

Gel filtration of FNRL-PC

A final step consisted in checking the size of the PC complex with FNRL bound to it and

eliminating smaller complexes on a Superdex 200 preparative grade (26/85, bed volume 165 mL,

void volume 64 mL) gel filtration column (GE Healthcare) with optimal separation of molecular

mass between 10 and 600 kDa.

The column was washed with 3 bed volumes of ethanol and distilled water at a flow rate

of 0.2 and 0.1 mL/min respectively. After this, the column was equilibrated with about 5 bed

volumes of 250 mM KP buffer at a flow rate of 0.5 mL/min. The sample was injected at a maximal

volume of 300 µL and was run at a flow rate of 0.5 mL/min. The peak was eluted with the same

buffer after 2 hours.

94



5.2. Biochemical techniques

The molecular mass of the purified FNRL-PC complex was determined using calibration of the

column by Vitamin B12 (1.35 kDa), myoglobin (17.0 kDa), ovalbumin (44.0 kDa), γ globulin (158

kDa) and thyroglobulin (670 kDa) as standards. Gel filtration was followed at three wavelengths

to check total protein, FAD and PC absorptions at 280 nm, 460 nm and 620 nm, respectively and

was further analyzed by SDS-PAGE and UV-Vis. The major fraction was pooled, concentrated

with Vivaspin (100 kDa cutoff) and used as the enzyme preparation. All the other fractions

were concentrated using Centricon (30 kDa cutoff) and analyzed on SDS-PAGE. Polypeptide

quantifications were achieved by measuring the Coomassie blue density of the different bands

using an Image scanner II (GE Healthcare). As a further control, different molar amounts of

FNRL-PC were loaded on an SDS-PAGE and the optical density of the FNRL polypeptide was

quantified with known concentrations of recombinant FNRL that were loaded in neighboring

lanes.

5.2.4 Quantification of apoprotein and active protein

FNR apoprotein quantification

Two samples of recombinant FNRS and recombinant FNRL were calibrated on the basis of the

absorption maximum of the FAD (ε461nm=9,000 M−1cm−1; see below) and analyzed for their

protein content using the micro-BCA protein assay (Pierce Biotechnology). The protein amounts

were found to be smaller than expected (92% and 91% of the calculated values for FNRS and

FNRL, respectively), which must be ascribed to some underestimation by the micro-BCA assay.

From these measurements, we conclude that there is practically no FAD-free protein in our FNR

samples. 461/280 nm absorbance ratios of 0.128 and 0.122 were measured for FNRS and FNRL,

respectively.

FNR holoenzyme quantification

Biochemical extraction is one approach to release the FAD from the holoenzyme using SDS for

denaturating the enzyme [Aliverti et al., 1999]. First, the concentration of the FNRS/L sample

was determined with an extinction coefficient of 10,500 M−1cm−1 at 461 nm [Forti, 1966, Foust

et al., 1969]. Then, a minimal volume of concentrated SDS was added directly in the spectrometer

cuvette (final concentration 0.2%). The molar extinction coefficient and the maximal wavelength

of the cofactor FAD was altered during denaturation. Released FAD after denaturation of the

protein is characterized by an extinction coefficient of 11,300 M−1cm−1 at 450 nm. A direct

comparison between native and denatured protein can be established in this way. Six different
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measurements on six different FNRS preparations have resulted in a corrected extinction coeffi-

cient in the native enzyme. Instead of 10,500 M−1cm−1 at 461 nm from [Forti, 1966][Foust et al.,

1969], a lower value of 9,000 ± 100 M−1cm−1 at 461 nm has been obtained.

The FAD can also be extracted by TCA precipitation of the proteins. First, the enzyme

concentration was determined using the same extinction coefficient as for the SDS denaturation.

Then, TCA was added to a final concentration of 5% (w/v) and the pellet was washed at the same

concentration of TCA. The collected supernatants were extracted three times with diethylether

to eliminate TCA. The sample was further neutralized by adding 0.1 M Na phosphate pH 7

[Engel and Massey, 1971]. Released FAD in the buffered solution was characterized by an

extinction coefficient of 11,300 M−1cm−1 at 450 nm. The obtained molar extinction coefficient

of 9,070 M−1cm−1 at 461 nm was similar to that obtained by SDS denaturation. Therefore, SDS

denaturation and TCA extraction give identical results.

5.3 In vitro studies

5.3.1 NADPH oxidase activities

NADPH and horse-heart cytochrome c (cyt c) were purchased from Sigma-Aldrich. The enzy-

matic reactions were monitored with an Uvikon-XL spectrophotometer. The initial velocities

were fitted with Origin 7.5 (OriginLab Corp., Northampton, MA) to obtain Michaelis-Menten

curves.

Ferricyanide reduction was measured at room temperature (RT) in duplicate with NADPH

and potassium ferricyanide (K3[Fe(CN)6]) as the electron donor and acceptor molecules, respec-

tively [Zanetti et al., 1980]. A range of different FNRS/L concentrations (0.025-0.1 µM) was mixed

with an excess of potassium ferricyanide (0.7 M) and 5 mM MgCl2 in 150 mM KP. The reac-

tions were initiated by the addition of a range of different NADPH concentrations (25-400 µM).

The absorption decrease at 420 nm (reduction of ferricyanide) was recorded to determine the

steady-state kinetic parameters. Reduction of two ferricyanide corresponds to oxidation of one

NADPH. This factor of two was taken into account for determining the rate of NADPH oxidation.

This rate of oxidized µM NADPH/(s × µM FNR; [s−1]) was plotted against the initial substrate

concentration of NADPH (µM).

The Fd-mediated cyt c reduction of FNRL-PC was measured at 25◦C in triplicate with Fd and

cyt c acting as intermediate and terminal electron acceptors [Shin and Pietro, 1971, Zanetti et al.,

1980]. Fd from Thermosynechococcus elongatus was used for these experiments as it was available

in large quantities. A few control measurements were performed with Synechocystis Fd giving

results identical to those obtained with Th. elongatus Fd. The reaction was started by the addition
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of an excess of NADPH (400 µM final concentration). Kinetic parameters for the Fd-dependent

cyt c reductase activity were determined. This was achieved by varying the concentrations of

Fd (2.5-40 µM) in the reaction mixtures and monitoring the resulting absorption increase at 550

nm, corresponding to the reduction of cyt c used in excess (40 µM final concentration). The same

type of measurements were performed in the presence of the inhibitor NADP+ in triplicates. A

concentration of 50 µM NADP+ was used and the Lineweaver-Burk plots of 1/v0 vs. 1/Fd0
ox were

analyzed for the FNRL-PC isoform.

5.3.2 NADP+ reductase activities

Flash-absorption measurements with a time resolution of 10 µs were performed as described

previously [Cassan et al., 2005] at 22◦C. Laser excitation (700 nm) was provided by a dye laser

(Continuum, Excel Technology, Villebon sur Yvette, France) pumped by a frequency-doubled

Nd-Yag laser and was saturating for P700 photochemistry. Conditions were chosen to eliminate

any actinic effect of measuring light.

All the spectroscopic measurements were performed under aerobic conditions in 150 mM KP

containing 30 mM NaCl and 0.03% (w/v) β-dodecyl maltoside (Biomol, Hamburg, Germany).

Sodium ascorbate (2 mM) and 2.6-dichlorophenolindophenol (5-25 µM) were used to reduce

the oxidized P700 between two consecutive flashes. The PSI concentration was estimated using

the absorption coefficient ε 800nm=7,740 M−1cm−1 for P700+ [Cassan et al., 2005]. For all flash

experiments, the kinetics are shown after substraction of the P700+ contribution. This was done

by measuring, in the absence of Fd, the differential absorption coefficients of P700+ at 520/540 nm

and at 800 nm, using methyl viologen (MV) as an electron acceptor that results in fast reoxidation

of the terminal PSI acceptor (FA,FB)−. Using this procedure, the differential absorption coefficient

of P700+ at 520/540 nm was found to be 50 %/34 % that of P700+ at 800 nm (∆ε520nm=3.9 mM−1cm−1

≈ 7.74 mM−1cm−1 x 0.50; ∆ε540nm= 2.6 mM−1cm−1
≈ 7.74 mM−1cm−1 x 0.34). The kinetics probed

at 800 nm were substracted, after multiplication by the normalization factor of 0.50/0.34. In this

way, all absorption changes are associated with the reduction of the electron acceptors, i.e. those

due to (FA,FB), Fd and FNR.

Single reduction of FNR

Single reduction of FNR by reduced Fd was triggered by flash excitation of PSI. These experiments

were performed in the presence/absence of NADP+ with FNR in excess over PSI. Under this

condition, a single reduction event is favored where the neutral protonated semiquinone is

produced. These measurements were performed at 520 nm, which corresponds to an absorption

minimum of the PSI/FNRL-mixture (Fd absorbance is small compared to those of PSI and PC).
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Moreover, a large signal is expected at 520 nm for formation of the FNR semireduced form

FNRsq as shown in the calculated differential absorption spectrum for FNR single reduction by

Fd (Figure 5.1) [Cassan et al., 2005].

Figure 5.1 Calculated differential absorption spectrum for FNR single reduction by
Fd.

Multiple catalytic turnover

In order to promote multiple catalytic turnover, the PSI concentration was more than 10-fold

greater than the enzyme under investigation (FNRS/L). Under these conditions FNR receives two

electrons from Fd and NADPH is formed via hydride transfer. This multiple turnover reaction

was monitored by the reoxidation of Fdred at 540 nm. This wavelength was chosen because of

the minimal PSI absorption, which allows actinic effects of the measuring light to be minimized

in these measurements made on a long time scale [Cassan et al., 2005].

5.3.3 Fittings and calculations

Single reduction of FNR

The kinetic model used to interpret the experiments of single FNR reduction is shown in Chapter

2. It involves two reactions, the first one describes Fd reduction by PSI and the second one

corresponds to the redox equilibrium of the first reduction of FNR by Fdred. Such a model does

not take into account complex formation and dissociation, because of the large ionic strength of

the medium, which impedes formation of complexes [Hurley et al., 2002, Setif et al., 2002] and

hence only considers second-order processes. We assume also that the PSI charge separation

leading to the formation of (FA,FB)− is much faster than the subsequent steps since it occurs in the

submicrosecond range [Brettel and Leibl, 2001]. The kinetic analysis is further simplified as the
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experiments were performed under conditions where one partner is in large excess over the other

one for each of the reactions: Fdox > PSIred, FNRox > Fdred, Fdox > FNRsq. This allows the system

of time-differential equations corresponding to the model to be solved analytically, using the

three following first-order rates: krFd=kr · [Fd] with [Fd] being the total Fd concentration ([Fdred]

< [Fdox]), kred=k1 · [FNR] with [FNR] being the total FNR concentration ([FNRsq] < [FNRox]),

kox=k−1 · [Fd]. The solution is then the following:

[PSIred](t)=[PSI] · e−krFdt

[Fdred](t)=[PSI] ·
[

krFd−kox
kox+kred−krFd

· e−krFdt
−

kredkrFd
(kox+kred−krFd)(kox+kred) · e

−(kox+kred)t + kox
kox+kred

]
[FNRsq](t)=[PSI] ·

[
−kred

kox+kred−krFd
· e−krFdt +

kredkrFd
(kox+kred−krFd)(kox+kred) · e

−(kox+kred)t +
kred

kox+kred

]
with [PSI] being the total PSI concentration. The Excel solver (V. 2003, Microsoft, USA) was

used to fit the experimental results with the above equations.

Multiple catalytic turnover

When measuring multiple turnover event from reoxidation of Fdred, the decay kinetics were able

to be fitted with a single exponential component [Cassan et al., 2005]:

[Fdred(t)]= [Fdred]t=0 · e −kFNRt(
d[Fdred(t)]

dt

)
= -kFNR [Fdred(t=0)] · e −kFNRt

Initial rate: -
(

d[Fdred]t=0
dt

)
= +kFNR [Fdred]t=0

Without FNR: -
(

d[Fdred]t=0
dt

)
= +knoFNR [Fdred]t=0

The initial decay rate knoFNR in the absence of FNR was substracted from the exponential

rates kFNR in its presence. The initial turnover rate was then calculated from the equation:

-

(
d[Fdred]

dt

)
t=0

[FNR] = (kFNR - knoFNR) · [PSI]
[FNR] as [PSI] = [Fdred]t=0

This rate can also be calculated from rate k1 of Equation 2.1.4 (Chapter 2) when this reaction

is rate-limiting. From Equation 2.1.4, the decay rate of Fdred is:

dFdred
dt = -k1 [Fdred] [FNRox] + k−1 [Fdox] [FNRsq]

which gives for t=0:

(d [Fdred]/dt)t=0 = -k1 [Fdred]t=0 [FNR] with [FNR] being the total concentration of FNR. With

[PSI] = [Fdred]t=0, one gets:

−

(
d[Fdred]

dt

)
t=0

[FNR]
= k1[PSI] (5.3.1)
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5.4 In vivo studies

5.4.1 NADP+/NADPH quantification

The EnzychromTM NADP+/NADPH assay kit (Gentaur, France) was used to quantify the

NADP+/NADPH ratio. NADP+ is transformed into NADPH by the enzyme glucose dehy-

drogenase (GDH) in the presence of an excess of glucose (electron donor; Reaction 5.4.1).

Two samples are used for separate extraction of NADP+ or NADPH. NADPH will reduce 5-

methylphenazinium methosulfate (PMS, electron transferring system; Reaction 5.4.2) and then

3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl-2/H/ -tetrazolium bromide (tetrazolium salt MTT) as

final electron acceptor (absorbing at 565 nm; Reaction 5.4.3). The oxidation of NADPH into

NADP+ is the only rate-limiting step (rls; Reaction 5.4.2).

NADP+ +H+
GDH, glucose

GGGGGGGGGGGGGGGGGGGANADPH (5.4.1)

NADPH + PMSoxGGGA
rls

NADP+ +H+ + PMSred (5.4.2)

PMSred +MTToxGGGAPMSox +MTTred (565 nm) (5.4.3)

The different steps for the calibration curve, the reconstitution of the working reagent and

the sample preparation were performed as indicated by the supplier. We first tried to optimize

the assay for cuvette based measurements. Then we calibrated the assay using NADP+. Finally,

we measured the NADP+ and NADPH. From these values we could calculate the respective

NADP+/NADPH ratio for WT and the mutants. Ratios were calculated for five independent

measurements, averaged and standard deviations were calculated.

The calibration curve was done using a NADP+ standard from 0-10 µM in duplicates. The

difference in optical density at 565 nm t=30’ - t=0’ was linear up to 10 µM (∆OD565nm=0.2-1.6)

and up to 6 µM, the best linearity was obtained. This corresponded to ∆OD=1.1 (Figure 5.2).

Values for [NADP+] above 10 µM (∆OD565nm > 1.73) led to saturation and could not be fitted.

In this way, the mutants and the WT were quantified for their NADP pool redox state. These

measurements were performed with cells in their mid-exponential growth phase.
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Figure 5.2 Calibration curve of NADP+ quantification.

5.4.2 Absorption spectra +/- CO2

The phycobiliprotein-antenna (PBP-antenna) -, chlorophyll- and carotenoid-content in the cells

can be determined by their characteristic absorbance maxima. Whole cell absorption spectra were

recorded for two different growth conditions. In order to limit scattering, several precautions

were taken. First, cells were harvested and suspended carefully in a solution of 2 M sucrose in

0.9 M KP. Second, the spectra were recorded on a AmincoTM DW 2 spectrometer (OLIS INC.,

Bogart, Georgia, USA). Here, the detector is very close to the sample in order to minimize light

scattering. We measured absorption spectra of HC- and LC grown cells for the WT, MI6 and FS1

strains. Absorption spectra give us informations on the impact of the CO2 limitation on the cell

pigment composition in the WT and the mutants.

Spectra were normalized as follows. First, the absorbance of 750 nm was set to zero. Second,

the spectra of the mutant and WT strains were normalized at 680 nm to the same chlorophyll

a absorption maximum. In this way, we determined the difference in absorbance at 620 nm,

characteristic for PBP in the PBS antenna.

Absorption spectra under high and low CO2 For WT, the absorption spectra under HC and

LC are shown in Figure 5.3. The absorbance at 620 nm was found to be 86% under LC compared

to HC. This means that LC conditions result in a decrease in PBP content.

For MI6 and FS1, the absorption spectra under HC and LC are shown in Figure 5.4A and B.

Compared to HC, the absorbance at 620 nm under LC was found to be 87% and 80% for MI6 and

FS1, respectively. These values are very close to WT. Thus, all the three strains exhibit a similar
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Figure 5.3 Normalized absorbance spectra of WT in high (black) and low (red) CO2.

decrease in PBP content under LC. No significant difference is thus expected concerning PBP

degradation and the strains seem to be equally stressed. They can be further compared in their

P700 oxidation phenotypes under LC.

Figure 5.4 Normalized absorbance spectra of MI6 (A) and FS1 (B) in high (black)
and low (red) CO2.

5.4.3 P700 oxidation and reduction kinetics

FS1, MI6 and WT were characterized by measuring in vivo P700 oxidation and P700+ reduction.

The P700+ absorption changes around 810 nm were measured with a pulse amplitude modulated

fluorometer [Schreiber, 1986, Schreiber et al., 1986].

The pulse amplitude modulated system (PAM 101, 102, 103 chlorophyll fluorometer, H.

Walz, Effeltrich, Germany) is equipped with fiber-optics connecting a suspension cuvette with

a LED emitter, a photodiode detector and a source for continuous actinic light [Schreiber, 1986,

Schreiber et al., 1986]. A modulate measuring beam (1 µs intense pulses from LED applied

repetitively at 1.6/100 kHz) was used in addition to the non-modulated actinic light. The amplifier

system selected the modulated signal, so that actinic illumination can be varied within wide

ranges without corresponding artefactual signal changes. The obtained signal reflects relative
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fluorescence yield (fluorescence intensity/light intensity). Figure 5.5 taken from [Schreiber, 1986]

shows a schematic diagram of the measuring system.

Figure 5.5 Schematic diagram of the pulse amplitude modulation (PAM) chloro-
phyll fluorometer

The only unit that needs to be exchanged when changing from fluorescence to absorbance

measurements is the emitter-detector unit of the fluorometer [Schreiber et al., 1988]. The redox

changes of P700 were measured via the broad band increase in absorbance caused by the P700+

cation-radical at 810 nm.

In detail, the changes concern:

• 650 nm LED for fluorescence excitation is substituted by a 830 nm LED (Type HE 8811,

Hitachi)

• Short-pass filter in front of the LED is exchanged with a high-pass filter (RG 780, Schott).

This filter eliminates the short wavelength tail emission of the 830 nm LED

• The RG 9 filter in front of the photodiode is exchanged with a RG 780 filter. With this filter,

the photodetector is protected against all visible and photosynthetically active light.

Sample preparation and analysis Measurements were performed with dark-adapted (5’) cells.

The cell suspensions were stirred and thermostated at 32◦C. Actinic light illumination used was

white light (2800 µmol s−1 m−2) and FR light (100 µmol s−1 m−2; about 25 photons absorbed per

PSI and per s). P700 oxidation kinetics were carried out under HC and LC. Control measurements
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were carried out by sequential addition of inhibitors DCMU (20 µM), MV (2 mM) and DBMIB

(20 µM).

P700+ exhibits an absorption around 800 nm. The contribution of plastocyanin (Pc) is expected

to be the same between 810 and 870 nm. By substracting the 870 nm signal from the 810 nm

signal, Pc contribution at 810 nm should be efficiently substracted by the set-up. Curves were

analyzed and normalized to the maximum amount of oxidizable P700 in the presence of DBMIB.

The set-up used for our measurements did not permit to define exactly the starting point. Thus,

short lags before rising signals occurred could not be identified between mutant and WT strains.

We will assume that addition of MV in our experiments fully inhibits the recombination processes

involving P700+. Moreover, our experiments with MV addition on FS1 show that, in that case,

MV does not or only partially inhibits cyclic ET.

5.4.4 Monitoring of the transient increase in chlorophyll fluorescence

Cyclic ET around PSI was monitored by the transient increase of dark-level chlorophyll fluores-

cence after actinic light (AL) [Shikanai et al., 1998]. The PAM spectrometer introduced above was

used in the chlorophyll fluorescence mode (repetitive pulses at 1.6 kHz). The saturation pulse

method of chlorophyll fluorescence was used for these studies. Cell suspensions were calibrated

to 3 µg chlorophyll mL−1.

After 5’ dark adaptation, strong white AL was applied for around 2’ and NADPH was

accumulated [Schreiber et al., 1986]. After switching off AL, a transient PQ pool reduction in the

dark was observed in the mutants and WT.
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Ferredoxin:NADP� Oxidoreductase Association with
Phycocyanin Modulates Its Properties*□S
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In photosynthetic organisms, ferredoxin:NADP� oxidore-
ductase (FNR) is known to provide NADPH for CO2 assimila-
tion, but it also utilizes NADPH to provide reduced ferredoxin.
The cyanobacteriumSynechocystis sp. strainPCC6803produces
two FNR isoforms, a small one (FNRS) similar to the one found
in plant plastids and a large one (FNRL) that is associated with
the phycobilisome, a light-harvesting complex. Here we show
that a mutant lacking FNRL exhibits a higher NADP�/NADPH
ratio. We also purified to homogeneity a phycobilisome sub-
complex comprising FNRL, named FNRL-PC. The enzymatic
activities of FNRL-PC were compared with those of FNRS.
During NADPH oxidation, FNRL-PC exhibits a 30% decrease in
the Michaelis constant Km(NADPH), and a 70% increase in
Km(ferredoxin), which is in agreement with its predicted lower
activity of ferredoxin reduction. During NADP� reduction, the
FNRL-PC shows a 29/43% decrease in the rate of single electron
transfer from reduced ferredoxin in the presence/absence of
NADP�. The increase in Km(ferredoxin) and the rate decrease of
single reduction are attributed to steric hindrance by the phyco-
cyanin moiety of FNRL-PC. Both isoforms are capable of cata-
lyzing the NADP� reduction under multiple turnover condi-
tions. Furthermore, we obtained evidence that, under high ionic
strength conditions, electron transfer from reduced ferredoxin
is rate limiting during this process. The differences that we
observemight not fully explain the in vivo properties of the Syn-
echocystis mutants expressing only one of the isoforms. There-
fore, we advocate that FNR localization and/or substrates avail-
ability are essential in vivo.

In cyanobacteria and plastids, ferredoxin:NADP� oxi-
doreductase (FNR)3 catalyzes the exchange of electrons

between the one-electron carrier ferredoxin (Fd) and the two-
electron carrier NADP� (1–5): 2 Fdred � NADP� � H�% 2
Fdox � NADPH. FNR contains the noncovalently bound FAD
cofactor. The NADP�-reductase catalytic cycle involves the
reduction of FAD to the neutral semiquinone FADH� (FNRsq)
followed by its further reduction to the fully reduced FADH�

(FNRred), with reduced Fd (Fdred) binding at a single site (4, 6).
Hydride transfer from FADH� to NADP� completes the cata-
lytic cycle (7) and NADPH is then released. Ternary complexes
between the three partners FNR, NADP� and Fd have been
shown to be involved in NADP�-reductase activity (1, 8). This
is in line with the fact that fast turnover requires NADP� bind-
ing before Fdred binding, FAD reduction, and Fdox release (1).
Such ternary complexes may not be required during the
NADPH-oxidase catalytic cycle (7, 9), although this has yet to
be established. In the final step of linear photosynthetic elec-
tron flow, FNR is involved in NADPH production, which in
turn is used in the Calvin cycle. In plant plastids several FNR
isoforms are encoded by different genes (10–12). The
expressed enzymes are processed to give molecular masses of
�35 kDa. The different isoforms are differentially expressed in
roots and leaves (13). The root enzyme is involved in NADPH
consumption, reducing Fd for nitrogen fixation, while the leaf
enzyme is involved in NADPH formation (14–17).
The biochemical and structural properties of cyanobacterial

and plastid FNR are highly similar except that in most phyco-
bilisome (PBS)-containing cyanobacteria, FNR contains an
N-terminal domain whose sequence is similar to PBS-linker
polypeptides (18). This extension is responsible for FNRL
attachment to the PBS (18). The conventional PBS is composed
of two substructures, the core and the rods. In Synechocystis sp.
strain PCC6803 (hereafter named Synechocystis), the core is
composed of allophycocyanin (AP) and each rod contains three
phycocyanin (PC) discs. Different linkers are specifically
responsible for each level of phycobiliprotein assembly and
function to stabilize the PBS and optimize its absorption and
energy transfer characteristics (19). FNRL has been shown to
bind to the PBS rods but its precise binding site is still contro-
versial (20–22). Smaller FNR isoforms have been purified from
several cyanobacteria and this was attributed to proteolytic
degradation of the N-terminal domain (18, 23). However, it has
been recently demonstrated that in Synechocystis the small iso-
form (FNRS, �34 kDa) results from an internal translation ini-
tiation and not from proteolysis of the large isoform (24). The
same authors proposed that FNRL functions as an NADP�

reductase whereas FNRS is a better NADPHoxidase.More pre-
cisely, FNRLwas shown to support photoautotrophic growth in
Synechocystis whereas it is the only isoform found in obligate
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□S The on-line version of this article (available at http://www.jbc.org) contains
supplemental Figs. S1 and S2 and Table S1.
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phototrophic cyanobacteria. Conversely, FNRS accumulates
when photosynthesis is slowed down, i.e. under heterotrophic
or starvation conditions (24). These observations support the
idea that the two isoforms differ in their NADP�-reductase/
NADPH-oxidase activities. This can be regarded as analogous
to the leaf and root isoforms of plants.
Both Synechocystis isoforms being encoded by the same gene,

they share identical catalytic domains. The N-terminal exten-
sion of FNRL or its association to PBS could somehow modify
its catalytic properties. As FNRL is bound in vivo to the core-
containing PBS and undergoes proteolysis when not bound to it
(25), it is crucial to compare the enzymatic properties of FNRS
to those of PBS-bound FNRL. However, in practical terms, the
large extinction coefficient of the PBSmakes such experiments
virtually impossible since they are based on absorption meas-
urements. This was circumvented by the purification of a PBS
subcomplex, termed FNRL-PC that contained FNRL, a PC hex-
amer and a PBS rod-core linker (LRC). The FNRL-PC complex
possesses a lower extinction coefficient than that of the whole
PBS and thus permits absorption measurements to be
undertaken.
In this work, we established that the NADP�/NADPH ratio

is higher in a mutant containing only FNRS. An FNRL-PC com-
plex was purified to homogeneity and shown to be stable for
several days in 150 mM phosphate buffer. Finally, the catalytic
activities and kinetic constants of the two FNR isoforms are
compared with each other and to their plant homologues.

EXPERIMENTAL PROCEDURES

Materials—Synechocystis strains were grown at 34 °C in a
CO2 enriched atmosphere under 60�Em�2 s�1 illumination in
a modified Allen’s medium (26). Photosystem I (PSI) was puri-
fied from Synechocystis wild type (27), whereas Fd, FNRS, and
FNRL were overexpressed in Escherichia coli and purified as
previously described (5, 28). NADPH and horse-heart cyto-
chrome c (cyt c) were purchased from Sigma-Aldrich. ProBond
Ni-resin was obtained from Invitrogen. An antiprotease mix-
ture (Complete, Roche Applied Sciences) was used during the
isolation of FNRL-PC.
NADP�/NADPH Quantification—Absolute and relative

amounts of pyridine nucleotides were obtained using an Enzy-
Chrom™ NADP�/NADPH assay kit (Gentaur, France) for the
wild type and the two mutants where only one FNR isoform is
expressed, i.e. FNRS and FNRL in the FS1 and MI6 mutants,
respectively (24). These measurements were performed with
cells in their exponential growth phase under photoautotrophic
conditions.
Construction and Purification of His-tagged FNRL in

Synechocystis—Because the N- and C-terminal domains of the
enzyme are buried in the PC hexamer and the NADP binding
site of the FNR, respectively, a His tag was inserted into the
exposed hinge domain preceding the catalytic FNRS domain
(Fig. 1). PCR mutagenesis was performed on the petH gene of
Synechocystis to introduce 6 histidines (between Gly-98 and
Ser-99). The mutagenic primers were HIF (5�-CCATCAT-
CACCATCACTCAGGAGCGGTGGC-3�) and HIR (5�-GAT-
GGTGATGATGGTGACCACTTCCCTCGG-3�). The overall
method was similar to that used in Ref. 24. The modified gene

was introduced in CB, a Synechocystis mutant that contains
only one PC hexamer per rod instead of three as expressed in
the wild type (26). The resulting strain was named CBH.
Phycobilisomes were purified from CBH under conditions

that are known (29–31) to preserve PBS-subunit interactions,
i.e. 0.8 M phosphate (KP: potassium phosphate buffer, pH 8.0).
Membranes and chlorophylls were eliminated by Triton X-100
extraction. The PBS complex was then allowed to dissociate
overnight at 4 °C by lowering the phosphate concentration to
150 mM KP. The sample was then added to a Ni-resin equili-
brated in 250 mM KP and allowed to bind for 1 h. After two
washes in the same buffer, the resin was poured into a column.
After extensive washing with 150 mM KP, FNRL was eluted in
the presence of 150 mM imidazole. The eluted fractions were
concentrated using Vivaspin concentrators (100 kDa cut-off).
For each fraction, the PC hexamer concentration was deter-
mined by absorption spectroscopy (�620 nm � 2.37 �M�1 cm�1,
Ref. 32) prior to gel filtration chromatography (250 mM KP,
26/85 Superdex 200, GE Healthcare). Elution profiles were
obtained by monitoring the absorbance at 280, 460, and 620
nm, which are indicative of the relative amounts of protein,
FAD, and PC, respectively (supplemental Fig. S1). The polypep-
tide composition of each fraction was analyzed by SDS-PAGE.
Polypeptide quantifications were achieved by measuring the
Coomassie Blue density of the different bands using an Image
scanner II (GE Healthcare). Different amounts of FNRL-PC
were loaded and the staining of the FNRL polypeptidewas com-
pared with known amounts of recombinant FNRL that were
loaded in neighboring lanes.
Measurements of FAD Content in the FNRL-PC Complex—

The polypeptides of FNRL-PC from three different batches
were precipitated by the addition of trichloroacetic acid (5%
w/v). Under these conditions, the released FAD cofactor is
recovered in the supernatant (33). FAD concentrations were
calculated from the absorption maxima at 450 nm (�450 nm �
11,300 M�1 cm�1, Ref. 34). This is illustrated in supplemental
Fig. S2. In parallel, the pelleted polypeptides were solubilized
for SDS-PAGE, and FNRL quantified after electrophoretic sep-
aration. These two approaches allowed us to compare the FNRL
and FAD contents.
Determination of the Absorption Coefficients of FNRS and

FNRL—As detailed in supplemental data, the FAD cofactor
from recombinant FNRS and FNRL was released and quantified
in the presence of 0.02% SDS (w/v). This allowed us to reevalu-
ate the absorption coefficients of both FNR isoforms. They
were determined to be 9,000 M�1 cm�1 at 461 nm instead of
10,800 M�1 cm�1 that was previously reported for plant FNR
(35).
Oxidase Activities—Enzymatic reactions were monitored

with a Uvikon-XL spectrophotometer. The initial velocities
were fitted with Origin 7.5 (OriginLab Corp., Northampton,
MA) to obtain Henri-Michaelis-Menten curves. Ferricyanide
reductase activity was measured at room temperature in dupli-
cate with NADPH and potassium ferricyanide as the electron
donor and acceptor molecules, respectively (36). A series of
FNRS/FNRL-PC concentrations (0.025–0.1 �M) was mixed
with 0.7mMpotassium ferricyanide and 5mMMgCl2 in 150mM

KP. The reactions were initiated by the addition of a range of
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different NADPH concentrations (25–400 �M). The absorp-
tion decrease at 420 nm (reduction of ferricyanide) was
recorded to determine the steady-state kinetic parameters.
The Fd-mediated cyt c reductase activity of FNRS/FNRL-PC

was measured at 25 °C in triplicate with Fd and cyt c acting as
intermediate and terminal electron acceptors (35, 36). The
reaction was started by the addition of NADPH (400 �M final
concentration). Steady-state kinetic parameters for the Fd-de-
pendent cyt c reductase activity were determined by varying the
concentrations of Fd (2.5–40 �M) in the reaction mixtures and
monitoring the resulting absorption increases at 550 nm
(reduction of cyt c). Fd from Thermosynechococcus elongatus
was used for these experiments as it was available in large quan-
tities. A few control measurements were performed with Syn-
echocystis Fd giving results identical to those obtained with
T. elongatus Fd.
Flash Absorption Experiments for the Measurements of

Reductase Activities—Flash absorption measurements with a
time resolution of 10 �s were performed as described previ-
ously (5) at 22 °C. Laser excitation (700 nm) was provided by a
dye laser (Continuum, Excel Technology, Villebon sur Yvette,
France) pumped by a frequency-doubled Nd-Yag laser and was
saturating for PSI photochemistry. Conditions were chosen to
eliminate any actinic effect of the measuring light.
All spectroscopic measurements were performed under aer-

obic conditions in 150 mM KP containing 30 mM NaCl and
0.03% (w/v) �-dodecyl maltoside (Biomol, Hamburg, Ger-
many). Sodium ascorbate (2 mM) and 2.6-dichlorophenolindo-
phenol (5–25 �M) were used to reduce the oxidized P700
between two consecutive flashes. The PSI concentration was
estimated using the absorption coefficient �800 nm � 7.74mM�1

cm�1 for P700� (5). For all flash experiments, the kinetics is
shown after subtraction of the P700� contribution. This was
achieved by measuring, in the absence of Fd, the differential
absorption coefficients of P700� at 520/540 nm and at 800 nm,
usingmethyl viologen as an electron acceptor that results in fast
reoxidation of the terminal PSI acceptor (FA,FB)�. Using this
procedure, the differential absorption coefficient of P700� at
520/540 nm was found to be 50%/34% that of P700� at 800 nm
(��520 nm � 3.9 mM�1 cm�1 � 7.74 mM�1 cm�1 � 0.50;
��540 nm � 2.6 mM�1 cm�1 � 7.74 mM�1 cm�1 � 0.34). The
kinetics probed at 800 nm was subtracted, after multiplication
by the normalization factor of 0.50/0.34. In this way, all absorp-
tion changes are associated with the reduction of the electron
acceptors, i.e. those due to (FA, FB), Fd, and FNR.
Single reduction of FNR by reduced Fdwas triggered by flash

excitation of PSI. These experiments were performed in the
presence/absence of NADP� with FNR in excess over PSI.
Under this condition, a single reduction event is favored where
the neutral protonated semiquinone is produced. These meas-
urements were performed at 520 nm, which corresponds to an
absorption minimum of the PSI/FNRL-PCmixture (Fd absorb-
ance is small compared with those of PSI and PC). Moreover, a
large signal is expected at 520 nm for formation of the FNR
semireduced form FNRsq.
To promote multiple catalytic turnover, the PSI concentra-

tion was 	10-fold greater than that of the investigated enzyme
(either FNRS or FNRL-PC). Under these conditions, FNR

receives two electrons from Fd and NADPH is formed via
hydride transfer. This multiple turnover reaction was moni-
tored by the reoxidation of Fdred at 540 nm. This wavelength
was chosen because of the minimal PSI absorption, which
allows actinic effects of the measuring light to be minimized in
these measurements made on a long time scale (5).
Fittings and Calculations—The kinetic model used to inter-

pret the single FNR reduction experiments is shown under
“Results.” It involves two reactions, the first one describes Fd
reduction by PSI and the second one corresponds to the redox
equilibrium of the first FNR reduction by Fdred. Such a model
does not take into account complex formation and dissociation,
because of the large ionic strength of the medium, which
impedes formation of complexes (2, 37) and hence only consid-
ers second-order processes.We assume also that the PSI charge
separation leading to the formation of (FA, FB)� is much faster
than the subsequent steps since it occurs in the submicrosec-
ond range (38). The kinetic analysis is further simplified as the
experiments were performed under conditions where one part-
ner is in large excess over the other one for each of the reactions:
[Fdox] 		 [PSIred], [FNRox] 		 [Fdred], [Fdox] 		 [FNRsq]. This
allows the system of time-differential equations corresponding
to the model to be solved analytically, using the three following
first-order rate Equations 1–3,

krFd � kr � 
Fd� (Eq. 1)

with [Fd] as the total Fd concentration ([Fdred] �� [Fdox]),

kred � k1 � 
FNR� (Eq. 2)

with [FNR] as the total FNR concentration ([FNRsq] ��
[FNRox]).

kox � k�1 � 
Fd� (Eq. 3)

The solution is then shown in Equations 4–6,


PSIred�t� � 
PSI� � e�krFdt (Eq. 4)


Fdred�t� � 
PSI� � � krFd � kox

kox � kred � krFd
� e�krFdt

�
kred krFd

kox � kred � krFd�kox � kred�
� e�kox � kred�t �

kox

kox � kred
�

(Eq. 5)


FNRsq�t� � 
PSI� � � �kred

kox � kred � krFd
� e�krFdt

�
kred krFd

kox � kred � krFd�kox � kred�
� e�kox � kred�t �

kred

kox � kred
�

(Eq. 6)

with [PSI] as the total PSI concentration. The Excel solver (V.
2003, Microsoft) was used to fit the experimental results with
the above equations.
When measuring multiple turnover event from reoxidation of

Fdred, the decay kinetics were able to be fitted with a single expo-
nential component (5).The initial decay rate knoFNR in the absence
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of FNR was subtracted from the exponential rate kFNR in its pres-
ence. The initial turnover ratewas then calculated fromEquation 7,

�d
Fdred�/dt�t�0/
FNR� � kFNR � knoFNR� � 
PSI�/
FNR�

(Eq. 7)

as [PSI] � [Fdred]t�0.
This rate can also be calculated from rate k1 of Reaction 2 (see

“Results”) when this reaction is rate limiting. From Reaction 2,
the decay rate of Fdred is shown in Equation 8,

d
Fdred�/dt � �k1
Fdred�
FNRox� � k�1
Fdox�
FNRsq�

(Eq. 8)

which gives, for t � 0, Equation 9,

d
Fdred�/dt�t�0 � �k1
Fdred�t�0
FNR� (Eq. 9)

with [FNR] as the total concentration of FNR. With [PSI] �
[Fdred]t�0 one gets Equation 10.

�d
Fdred�/dt�t�0/
FNR� � k1
PSI� (Eq. 10)

RESULTS

Quantification of NADP� andNADPH inCell Extracts—The
cellular contents of NADP� and NADPH were measured in
three Synechocystis strains grownunder photoautotrophic con-
ditions, the wild type and two mutants containing only one of
the FNR isoforms, i.e. FNRL and FNRS in MI6 and FS1, respec-
tively (24). The NADP�/NADPH ratios were 2.6 � 0.2, 2.0 �
0.4, and 4.3� 0.8 for thewild type,MI6, and FS1 strains, respec-
tively. Whereas the wild type and MI6 strains exhibit similar
NADP�/NADPH ratios, FS1 contained a significantly more
oxidizedNADPpool. As theNADP�/NADPH ratio is expected
to depend on the PSI/PSII content, we measured the PSI/PSII
ratios in the thylakoids by EPR (39). The ratios were found to be
similar in the three strains in the 2.5–2.9 range (data not
shown).
Purification of an FNRL-PC Complex—To study FNRL under

conditions as close as possible to its native conformation, we
purified an FNRL-PBS subcomplex from CBH, a Synechocystis
mutant that contained aHis tag in FNRL (Fig. 1). The tag had no
effect on either the cell growth characteristics or its PBS com-
position (data not shown).

Fig. 2 illustrates the purification protocol as followed both by
UV/visible absorption spectroscopy and by SDS-PAGE. The
specific absorption of the PBS starting material at 650 nm (AP
contribution) strongly decreases during the different purifica-
tion steps (PBS gradient, Ni-affinity chromatography, and gel
filtration). Denaturing electrophoresis clearly shows an enrich-
ment of FNRL after the Ni-column (lane E) but the complex
contained minor impurities that are ascribed to LCM (the core
membrane linker of the phycobilisome) and AP subunits as
evidenced by the shoulder at 650 nm in the corresponding spec-
trum. The impurities were then eliminated from FNRL-PC by
gel filtration. Indeed only Fraction F1 corresponds to pure
FNRL-PC as it contained only FNRL, �PC, �PC, and LRC, as
observed by SDS-PAGE (Fig. 2, lane F1). Themolecularmass of
FNRL-PC was determined to be 330 kDa. F2 and F3 are minor
fractions of lower molecular weight (supplemental Fig. S1).
The polypeptide composition of the purified FNRL-PC was

evaluated by densitometry of the Coomassie Blue-stained SDS-
PAGE bands and indicates that the protein partners, FNRL:
LRC: (�PC,�PC)6, are in a 1:1:1 stoichiometry. The estimated
mass of the complex (330 kDa) closely matches its theoretical
mass (303 kDa), which takes into account one phycocyanin
hexamer (229 kDa) binding one FNRL (46 kDa) and one LRC (28
kDa). A direct measurement of the FAD content at 461 nmwas
impossible due to the large PC absorption. Therefore, an
extraction procedure was applied (see “Experimental Proce-
dures” and supplemental Fig. S2), leading to an occupancy value
from 92 to 100% for the FAD cofactor in FNRL-PC (Table 1).

FIGURE 1. Representation of the FNR primary structures highlighting
their functional domains. FNRS is restricted to the catalytic part that is
divided into the FAD binding domain and the NADP binding domain. FNRL
contains an N-terminal extension that comprises the PBS-linker domain and a
hinge domain, whose length and primary sequence are variable depending
on the cyanobacterium. Because the N- and C-terminal domains of the
enzyme are buried in the PBS and the NADP binding site, respectively, the His
tag was inserted into the hinge domain.

FIGURE 2. Purification of the FNRL-PC complex. Absorption spectra of sam-
ple fractions during the purification steps, CBH: PBS preparation (dotted line)
where AP (	max, 650 nm) and PC (	max, 620 nm) peaks are visible, E, the sample
after Ni-affinity chromatography contains PC and a shoulder at 650 nm due to
traces of AP; F1, the major fraction from gel filtration chromatography exhib-
its a PC spectrum with a shoulder at 580 nm indicating the presence of LRC.
The polypeptide composition of the samples was analyzed by SDS-PAGE.
Inset, CBH; M, molecular markers, E1, after Ni-affinity chromatography; F1, first
and major fraction; F2 and F3, minor fractions from gel filtration chromatog-
raphy. The identities of the polypeptides are indicated on the left.
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It has been recently reported that two types of PBS could be
found in Synechocystis, the conventional one that contains LRC1
encoded by cpcG1 and another one that lacks the core substruc-
ture and contains the cpcG2 encoded LRC2 (40, 41). We ana-
lyzed the LRC polypeptide contained in the FNRL-PC complex
by MALDI-TOF mass spectrometry, and this polypeptide was
identified as LRC1.
Ferricyanide Reductase Activity—NADPH oxidase activity

(also called diaphorase activity) was used to measure the FNR
turnover and its affinity for NADPH, in the presence of the
artificial electron acceptor potassium ferricyanide. The diapho-
rase reaction starts with binding of NADPH to FNR, which is
followed by the formation of a charge-transfer complex and
then hydride transfer from NADPH to FAD (42). Electrons are
then transferred to ferricyanide in a non-rate-limiting one-
electron reaction. Initial enzyme velocities were plotted as a
function of NADPH concentration and fitted according to the
Henri-Michaelis-Menten equation (Fig. 3). Both Km(NADPH)
and kcat were found to be 30% smaller in FNRL-PC than in
FNRS, which results in similar catalytic efficiencies (Table 2).
Ferredoxin-mediatedCytochrome c Reductase Activity—This

NADPHoxidase activity was used tomeasure the affinity for Fd
and the turnover of FNR in the presence of its natural electron
acceptor Fd. After hydride transfer fromNADPH to FNR, elec-
trons flow to Fd, which is then reoxidized by cyt c. To obtain
specific information about the Fd reduction step, the initial

enzyme velocities were obtained by varying the amount of Fd
under saturating concentrations of NADPH and cyt c. The ini-
tial rates of cyt c reduction were plotted as a function of Fd
concentrations (Fig. 4) and fitted after the Henri-Michaelis-
Menten equation. Table 2 highlights the similarities and differ-
ences between the two FNR isoforms: similar kcat values in both
isoforms,Km(Fd) 70% larger and catalytic efficiency 44% smaller
in FNRL-PC than in FNRS were found.
Single Electron Transfer from Reduced Ferredoxin—The

kinetics of FNR reduction in the ternary mixture PSI/Fd/FNR
were measured by flash absorption spectroscopy (5). After the
actinic flash has triggered a charge separation in PSI, an elec-
tron transfer cascade is occurring toward FNR, via Fd. The

FIGURE 3. Ferricyanide reductase activities of FNRS and FNRL-PC.
K3[Fe(CN)6] was premixed with 0.025– 0.1 �M FNRS/L in 150 mM KP pH 8 and 5
mM MgCl2 at room temperature. The reaction was started by addition of
25– 400 �M NADPH. For the FNRL-PC preparation, at least two measurements
have been carried out at each given point. The data were normalized to an
FNRS/L concentration of 0.1 �M and were fitted with the Henri-Michaelis-Men-
ten equation: For FNRS (open circles) and FNRL-PC (open squares), Km(NADPH)
values were 55 � 5 �M and 40 � 3 �M, respectively. The turnover number kcat
for FNRS and FNRL-PC were 174 � 5 s�1 and 124 � 3 s�1, respectively.

FIGURE 4. Fd-mediated cyt c reductase activities of FNRS and FNRL-PC.
FNRL/S was mixed with 2.5– 40 �M Fd from T. elongatus and 40 �M cyt c in 150
mM KP buffer pH 8 at 25 °C. The reaction was started by injection of 400 �M

NADPH. The data were normalized to an FNRS/L concentration of 0.1 �M. For
FNRS (open circles) and FNRL-PC (open squares), the Km(Fd) values were 28 � 2
�M and 47 � 6 �M, respectively. The turnover number kcat for FNRS and
FNRL-PC were 154 � 6 s�1 and 144 � 12 s�1, respectively.

TABLE 1
Quantification of FNRL and FAD in FNRL-PC
Three different FNRL-PC samples have been trichloroacetic acid precipitated, and
analyzed for their FNRL and FAD contents. For each sample, the result is an average
of three measurements. Taking together the results of the three samples, one gets a

FAD�/
FNRL� ratio of between 0.92 and 1.00.

Sample FNRL concentration FAD concentration 
FAD�/
FNRL�

�M �M

A 0.43 � 0.02 0.39 � 0.02 0.91 � 0.09
B 0.55 � 0.04 0.49 � 0.05 0.89 � 0.16
C 1.22 � 0.03 1.19 � 0.04 0.98 � 0.06

TABLE 2
Catalytic properties of the FNRL-PC and FNRS isoforms

FNR catalytic properties (unit) FNRL-PC FNRS

Ferricyanide reductase activity
Km(NADPH) (�M) 40 � 3 55 � 5
kcat (s�1) 124 � 3 174 � 5
kcat/Km (�M�1s�1) 3.1 � 0.3 3.2 � 0.4

Cytochrome c reductase activity
Km(Fd) (�M) 47 � 6 28 � 2
kcat (s�1) 144 � 12 154 � 6
kcat/Km (�M�1s�1) 3.1 � 0.7 5.5 � 0.6

Single reduction of FNR by Fdred
no NADP�

Second-order forward rate k1 (�M�1s�1) 14.1 24.9
Second-order reverse rate k�1 (�M�1s�1) 4.6 10.6
Keq � k1/k�1 3.06 2.35
Em(FNRox/FNRsq)

a (mV) �384 �390
1 mM NADP�

Second-order forward rate k1 (�M�1s�1) 10.8 15.2
Second-order reverse rate k�1 (�M�1s�1) 4.0 5.4
Keq � k1/k�1 2.73 2.84
Em(FNRox/FNRsq)

a (mV) �386 �385
Multiple turnover: Initial rate of reoxidation

of 3.75 �M Fdred (reoxidized Fdred
per second and per FNR)

Observed rate 50 53/(330)b
Calculated rate (with limiting k1) 40.5 57/(1564)b

a Vs NHE. Calculated assuming Em(Fdox/Fdred) � �412 mV (44).
b Numbers in italics were obtained at low ionic strength and recalculated from Ref.
5 by using an absorption coefficient of 9,000 M�1cm�1 for FNRS at 461 nm instead
of 10,800 M�1cm�1 (giving e.g. k1 � 417 �M�1s�1).
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measurements were performed in the absence/presence of
NADP� and, in order to favor single FNR reduction, FNR was
in large excess over PSI (and therefore over photoreduced Fd).
The kinetics in the presence of 1 mMNADP� are shown in Fig.
5A for different FNRS concentrations, together with a control
experiment without FNRS. The signals are only due to reduc-
tion of the PSI electron acceptors, Fd and FNR as the P700�

contribution has been eliminated (see “Experimental Proce-
dures”). In the control experiment (bottom trace), two different
kinetic components are present. The fastest component is not
time resolved and is attributed to the formation of the reduced
PSI terminal acceptor (FA, FB)�, as confirmed by a samplewith-
out Fd (data not shown). A very small and fast submicrosecond
to microsecond signal due to Fd reduction (�10% of the full Fd
reduction signal) was observed, corresponding to a small
amount of PSI:Fd complex present before flash excitation (data
not shown; see also Ref. 43). This is in line with the large disso-
ciation constant Kd that is expected for the PSI:Fd complex
under our conditions (150 mM potassium phosphate, pH 8).
The slowest millisecond absorption decrease is due to Fd
reduction by a second-order diffusion-limited process. In the
presence of FNRS, the same initial fast decay is observed but a
signal increase, which is ascribed to the reduction of FNRS by
Fdred, dominates the subsequent absorption changes. The rates
and the final amplitudes of this signal increase when FNRS con-

centration increases. The kineticmodel we used to simulate the
observed kinetics is shown in Reactions 1 and 2.

PSIred � FdoxO¡
kr

PSIox � Fdred

REACTION 1

Fdred � FNRox -|0
k1

k�1

Fdox � FNRsq

REACTION 2

In Reaction 1, PSIred stands for PSI with the terminal acceptor
(FA, FB) reduced. Reduction of (FA, FB) occurs in the submicro-
second time range and thus does not need to be considered.
This kinetic model can be analytically solved in a simplified
version when all reactions are considered as pseudo first-order
(see “Experimental Procedures” for the solution equations).
This allowed us to perform a global fit analysis resulting in the
following values: kr � 50.0�M�1 s�1, k1 � 15.2�M�1 s�1, k-1 �
5.4 �M�1 s�1. The redox equilibrium constant Keq � 2.84 can
be calculated for Reaction 2 (k1/k-1). This constant is related to
the difference inmidpoint redox potentials (Em) of the reaction
partners in Equation 11.

�Em � EmFNRox/FNRsq� � EmFdox/Fdred� � RT/F�lnKeq�

(Eq. 11)

Assuming Em � �412 mV for Synechocystis Fd (44), one gets
�385mV for Em(FNRox/FNRsq), which is very close to the value of
�382mVpreviously determined under conditions ofmoderate
ionic strength (30mMNaCl, 5mMMgCl2; the value of�378mV
in Ref. 5 has been recalculated using �461 nm � 9,000 M�1 cm�1

for FNR). It should be noted that measuring Em(FNRox/FNRsq) by
standard methods is fairly difficult because the thermodynam-
ically unstable semiquinone (45) is only marginally observed
during a redox titration.
The same experiment was performed with FNRL-PC and the

corresponding kinetics are shown in Fig. 5B. Fitting these data
gave similar values ofKeq and hence ofEm(FNRox/FNRsq), whereas
the second-order rate constants were 25–30% smaller than
with FNRS (Table 2). The smaller rate constants measured with
FNRL-PC are in accordance with its larger Km(Fd) observed in
the ferredoxin-mediated cyt c reduction assay. The above
experiments were repeated in the absence of NADP�, to com-
pare the kinetics in the presence or absence of a ternary com-
plex Fd/FNR/NADP�. These results are summarized in Table
2: For both isoforms the Em is very similar to those measured in
the presence of NADP�. This indicates that the electrostatic
environment of FAD is not modified by NADP�. In contrast,
the k1 and k-1 rates are larger in the absence of NADP�, in
agreement with a previous study, where this effect was attrib-
uted to a repulsive electrostatic effect between the phosphate
moiety of NADP� and the negatively charged Fd (5).
Catalytic Turnover of the Two FNR Isoforms during NADP�

Reduction—We also measured FNR-reduction kinetics ob-
tained for a ternary mixture PSI/Fd/FNR in the presence of

FIGURE 5. Flash titration of FNRS and FNRL-PC in the presence of 1 mM

NADP� under single reduction conditions. The absorption changes at 520
nm are attributed to electron acceptors as the P700� formation and decay
have been subtracted. The solid line at zero level corresponds to the baseline
before the flash. Concentrations of PSI and Fd were 0.475 �M and 3.96 �M.
A, concentrations of FNRS were 0, 2.0, 4.0, 8.0, and 16.0 �M for curves from
bottom to top. The best fit resulted in kr � 50 �M

�1 s�1, k1 � 15.2 �M
�1 s�1,

and k�1 � 5.4 �M
�1 s�1. B, concentrations of FNRL-PC were 0, 1.6, 2.1, 3.0, and

3.7 �M for curves from bottom to top. The best fit resulted in kr � 50 �M
�1 s�1,

k1 � 10.8 �M
�1 s�1, and k�1 � 4.0 �M

�1 s�1.

FNRL-Phycocyanin Complex

31794 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 284 • NUMBER 46 • NOVEMBER 13, 2009

 at C
N

R
S

, on D
ecem

ber 5, 2009
w

w
w

.jbc.org
D

ow
nloaded from

 
http://www.jbc.org/content/suppl/2009/09/15/M109.024638.DC1.html
Supplemental Material can be found at:

http://www.jbc.org/


NADP� under multiple catalytic turnover conditions (5).
These conditions were met by using PSI in large excess over
FNR (3.75 �M versus 0.15/0.3 �M). Fd (8 �M) is also added in
excess over PSI so that Fdred, at a PSI equivalent concentration,
is rapidly formed after PSI photoexcitation. Fdred is then slowly
monoexponentially reoxidized by FNR (rate kFNR). Taking into
account the decay without FNR (rate kno FNR), we obtained val-
ues of 2.2 and 4.1 s�1 for (kFNR � kno FNR) with 0.15 and 0.30�M

FNRS, respectively. This corresponds to 55 and 51 reoxidized
Fdred per second and per FNRS, respectively and the average
value of 53 is indicated in Table 2. Using the same enzyme
concentrations, the (kFNR � kno FNR) rates are quite similar to
those of FNRL-PC (2.14 and 3.69 s�1). This corresponds to an
averaged value of 50 reoxidized Fdred per second and per
FNRL-PC (Table 2). Overall, the multiple turnover rates are
similar for the two isoforms.
As the second-order rate constants k1 measured for the first

FNR reduction are rather small under our conditions (see “Dis-
cussion”), it is worth checking if this process could be rate lim-
iting during the catalysis (see Equation 10 under “Experimental
Procedures”). The similarity between the calculated and meas-
ured turnover rates (Table 2) indicates that this is indeed the
case. Thus we have identified under our conditions a limiting
step which has not been identified previously. As a control, we
also considered FNRS under low ionic strength conditions (5) in
order to compare the measured and calculated turnovers
(bracketed values in Table 2). The 5-fold excess in calculated
versusmeasured turnover shows that in this case of faster turn-
over, FNRS reduction by Fdred is not rate limiting.

DISCUSSION

Based on the observation that in Synechocystis FNRS accu-
mulates only under heterotrophic or starvation conditions
whereas FNRL is the major isoform detected under photoau-
totrophic conditions (24), it was proposed that each isoform
plays a specific role. In this work, we have shown that under
photoautotrophic conditions the NADP�/NADPH ratio is
higher in a mutant containing only FNRS. Furthermore this
observation cannot be attributed to a different PSI/PSII ratio as
the ratiowas shown to be unchanged in FS1 comparedwith that
of the wild type. This reinforces the hypothesis that the FNR
isoforms have different roles. FS1 seems unable to accumulate
the NADPH amounts produced in the strains (wild type and
MI6) where FNRL is the main isoform. This also explains the
fact that photoautotrophic growth is impaired in FS1, while
MI6 growth is similar to that of the wild type (24). We decided
to check whether the in vivo differences could be explained by
the in vitro properties of the two FNR isoforms. In other words,
is there any selectivity of the two isolated FNR isoforms for
NADP� reductase versus NADPH oxidase activities? Such a
selectivity has been observed in the case of root and leaf FNR
isoforms in plants (3, 12, 14–17, 46).
Purification of an LRC-containing FNRL:PC Complex—The

best compromise between approaching the in vivo situation
and feasibility (stability, compatibility with absorption-spec-
troscopy studies) was to obtain a PBS subcomplex containing
FNRL and a PC hexamer (�PC,�PC)6. The purificationwas facil-
itated by a His tag in the hinge domain of FNRL.We obtained a

pure and homogeneous complex, as judged by gel filtration,
SDS-PAGE analysis, and FAD content. The stoichiometry of
FNRL:LRC:(�PC, �PC)6 in the 300-kDa complex was found to be
1:1:1. Furthermore it was verified that the LRC polypeptide
present in FNRL-PC was encoded by cpcG1, which was
expected since conventional PBS were used for its purification.
It was recently proposed, using single particle analysis of CBH
PBS, that FNRL is located at the interface between the rod and
the core (22). From our purification data, it can be further con-
cluded that FNRL is bound at only one of the PChexamers, with
nomajor involvement of the other hexamers. The complex was
stable, for at least 2 weeks at 4 °C, with no proteolysis of FNRL.
This is probably due to protection of the FNRL linker-domain
by the PC hexamer.
Effect of High Ionic Strength on the Catalytic Properties of

FNRS—With the aim of comparing FNRS and FNRL-PC, we
performed a broad set of measurements on NADPH-oxidase
and NADP�-reductase activities of the two isoforms as sum-
marized in Table 2. These measurements were performed
under high ionic strength conditions (150mM potassium phos-
phate) because such conditions are necessary to stabilize the
FNRL-PC complex. We compared our data to those previously
obtained for cyanobacterial FNRS at lower ionic strength. The
NADPH-oxidase catalytic parameters (measured via ferricya-
nide reduction) are quite similar to those previously reported
for FNRS from Anabaena sp. (kcat 20% smaller, Km(NADPH)
about 2-fold greater in our case; Ref. 47). This implies that this
ionic strength is not detrimental for diaphorase activity.
Regarding the ferredoxin-mediated NADPH-oxidase activity,
we found a 3-fold increase in Km(Fd) and only a 25% decrease in
kcat, between our measurements and those previously meas-
ured in the same report with Anabaena FNRS (47). The Km(Fd)
increase can be attributed to the screening of electrostatic
interactions occurring at high ionic strength between FNR and
Fd (2). A similar screening effect explains our data concerning
FNRS reduction by Fdred when comparedwith a previous study,
conducted under lower ionic strength (5): the second-order
rate constant k1 of single FNRS reduction by Fdred is 28-fold
smaller and duringmultiple turnover, the rate of Fdred reoxida-
tion is 6 times smaller in the present study. We also obtained
evidence that at high ionic strength, k1 is rate limiting during
multiple turnover, which is not the case at lower ionic strength.
Under these last conditions, the enzyme turnover is much
faster and is limited by one of the first-order processes (Fdox
dissociation, hydride transfer, or NADPH release).
Comparison of the Catalytic Properties of FNRS and FNRL-

PC: an Analogous System to Leaf and Root FNR Isoforms?—The
following catalytic parameters are quite similar for the two Syn-
echocystis isoforms: the catalytic efficiency (kcat/Km) of
NADPH/ferricyanide oxidoreduction, the kcat of the Fd-medi-
ated cyt c reduction, the Em (FNRox/FNRsq) in the presence/
absence of NADP� and the initial reoxidation rate of Fdred by
FNR during multiple catalytic turnover. Differences between
the two isoforms were observed: 30% smallerKm(NADPH) and
kcat of FNRL-PC versus FNRS during NADPH/ferricyanide oxi-
doreduction, a 70% larger Km(Fd) and a 44% smaller catalytic
efficiency of FNRL-PC for the Fd-mediated cyt c reductase
activity, and a 29/43% (NADP� present/absent) decrease in k1,
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the rate of single FNR reduction by Fdred, for FNRL-PC (Table
2). The slight decrease in Km(NADPH) and kcat during ferricya-
nide reduction indicates that the presence of the PC hexamer
slightly modifies the association of NADPH to FNR and/or the
following steps leading to FAD reduction. The increase in
Km(Fd) and the decrease in k1 are likely due to a steric hindrance
by, or a conformational effect due to, the PC hexamermoiety of
FNRL-PC. We favor these explanations over electrostatic
repulsion brought by PC, because electrostatic interactions
are expected to be of limited importance at high ionic
strength. Moreover, the electrostatic environment of FAD
appears to be unmodified in FNRL-PC as judged by the sim-
ilar Em(FNRox/FNRsq) measured for the two isoforms. Overall,
the results obtained for the Fd-mediated cyt c reductase activity
are in agreement with the different predicted roles for the FNR
isoforms. Both isoforms are capable of catalyzing NADP�

reduction under multiple turnover conditions. Furthermore,
we obtained indications that in our conditions electron transfer
from Fdred is rate limiting.

The leaf and root FNR isoforms from plants differ mainly in
four catalytic or thermodynamic parameters (supplemental
Table S1): 1) Km(NADPH), measured via ferricyanide reduction,
is 3–10-fold higher, depending on the authors, for leaf FNR
compared with root FNR (14, 16). We observed a 30% decrease
in FNRL-PC versus FNRS. If we tentatively make the parallel
between FNRL-PC and leaf FNR on the one hand, and between
FNRS and root FNR on the other hand, the situation seems
reversed; 2) Km(leaf Fd), measured by Fd-mediated cyt c reduc-
tion, is 5–10-fold smaller for leaf FNR than for to root FNR (3,
14, 17, 46). The 70% difference that we observe is also in the
unexpected direction; 3) kcat of the Fd-mediated cyt c reduction
is 3–4-fold smaller for leaf FNR than for root FNR (3, 14, 17,
46). We observed no significant difference in this parameter; 4)
The Em(FNRox/FNRred couple, 2-electron reduction) of corn root
FNR is 20 mV higher than the midpoint potential of spinach
leaf FNR (15).Unfortunately, no comparison is available for two
FNR isoforms from the same plant, to our knowledge. We
observed no significant difference for Em(FNRox/FNRsq) between
the two Synechocystis isoforms.
Contrary to the case of Synechocystis, there are some differ-

ences in the catalytic domains of the plant FNR isoforms.More-
over, the existence of Fd isoforms is essential when comparing
the processes of NADP� reduction and NADPH oxidation in
leaves and roots. The Em of root Fd was found to be much
higher than that of leaf Fd (50–100 mV difference; Refs 17, 46,
48, 49). This probably favors NADPH oxidation in roots versus
NADP� reduction in leaves. Many different Fd encoding genes
have been identified in Synechocystis (50). In the present work
we studied the major Fd encoded by fed1. This Fd shares with
the leaf Fd a similar redox potential but both root and leaf Fds
appear to be phylogenetically equally distant to the Synechocys-
tis Fd (17). At our present state of knowledge, there is no equiv-
alent of the root Fd in cyanobacteria, in terms of redox poten-
tial, and the major photosynthetic Fd is generally thought to be
involved in all bioenergetically significant electron flows. This
was also a basic assumption in our approach. However, the
involvement of other Fd isoforms under heterotrophic condi-
tions cannot be excluded.

CONCLUSION

From recent data (24), specific roles were proposed for the
two Synechocystis FNR isoforms, which seem to parallel the
enzymatic selectivity of plant FNR root and leaf isoforms. Such
specificity is also supported by the change in the NADP�/
NADPH ratios that wemeasured in Synechocystis cells contain-
ing only one of the isoforms. However, from a detailed func-
tional characterization, we observed small differences in the
NADP� reductase and NADPH oxidase activities of FNRS and
FNRL-PC complex. This contrasts with themuch larger in vitro
differences observed between leaf and root FNR isoforms from
plants.
If the main photosynthetic Fd (50) is involved in vivo in elec-

tron transfer with both isoforms (see above), the differences
that we observe might not fully explain the in vivo properties of
the Synechocystismutants expressing only one of the isoforms.
Besides the intrinsic catalytic properties of those isoforms, it
would be necessary to invoke their localization or association to
other complexes. For example, it can be speculated that FNRS is
involved in cyclic/respiratory electron flow because it is free to
bind to other membrane complexes such as NADPH dehydro-
genase or cytochrome b6 f. Conversely, PBS-bound FNRL can-
not play such a role and is therefore dedicated to NADP� pho-
toreduction. For both types of activities, substrates availability
(Fdred/Fdox and NADP�/NADPH) might also be key in vivo
characteristics for the activity of the two isoforms. This situa-
tion would be reminiscent of what has been described recently
for the different leaf isoforms, where catalytic activities appear
to depend upon their variable attachment to the thylakoid
membrane (51, 52).
In this context, it would be worth studying the involvement

of CpcG2-PBS, which lacks the PBS core, in binding FNRL, as it
has been hypothesized to be directly bound to PSI (53). How-
ever the small amount of CpcG2-PBS versusCpcG1-PBS in the
wild type (40) and the effect of cpcG2 disruption on the PSI/
PSII ratio (41) are obstacles, which have to be surmounted for
such studies. Further in vivomeasurements are needed to bet-
ter understand the reason for which FNR binds the PBS in the
majority of PBS-containing cyanobacteria.
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21. Gómez-Lojero, C., Pérez-Gómez, B., Shen, G. Z., Schluchter, W. M., and

Bryant, D. A. (2003) Biochemistry 42, 13800–13811
22. Arteni, A. A., Ajlani, G., and Boekema, E. J. (2009) Biochim. Biophys. Acta

1787, 272–279
23. van Thor, J. J., Jeanjean, R., Havaux, M., Sjollema, K. A., Joset, F., Helling-

werf, K. J., and Matthijs, H. C. P. (2000) Biochim. Biophys. Acta 1457,
129–144

24. Thomas, J. C., Ughy, B., Lagoutte, B., and Ajlani, G. (2006) Proc. Natl.
Acad. Sci. U.S.A. 103, 18368–18373

25. Nakajima, M., Sakamoto, T., and Wada, K. (2002) Plant Cell Physiol. 43,
484–493

26. Ughy, B., and Ajlani, G. (2004)Microbiology 150, 4147–4156
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Abstract

In photosynthetic organisms, ferredoxin:NADP oxidoreductase (FNR) provides NADPH
for CO2 assimilation, but it also utilizes NADPH to provide reduced ferredoxin (Fd). The
cyanobacterium Synechocystis sp. strain PCC6803 contains two FNR isoforms, a small (FNRS,
34 kDa) and a large one (FNRL, 46 kDa) that is associated with the phycobilisome (PBS), a
light-harvesting complex. We purified a PBS subcomplex comprising FNRL (FNRL-PC) and
compared the enzymatic properties of FNRL-PC to FNRS. FNRL-PC exhibits an increased
NADPH affinity, and a decreased Fd affinity in agreement with its predicted lower activity of
Fd reduction. FNRL-PC shows also a decrease in the rate of single electron transfer (ET) from
Fdred. Most of the obtained differences are attributed to steric hindrance by the phycocyanin
moiety of FNRL-PC. Both isoforms seem to catalyze the NADP+ reduction under multiple
turnover conditions to the same extent and we obtained evidence that, under our high ionic
strength conditions, ET from Fdred is rate limiting. During in vivo studies, we presented
evidence supporting an increase of NADPH oxidation by respiratory or cyclic ET in a mutant
lacking FNRL and a similar behavior was observed for the wild type under low CO2. The
measurements clearly showed that FNRS is implicated in this alternative ET and we propose
that FNRS attaches to NDH-1 acting as the dehydrogenase module. FNR localization and/or
substrate availability seem to be essential so that FNR isoforms perform their respective roles
in vivo. Future studies should result in a more complete in vivo view and clarify the important
issue of the NADPH-dependent ET into the PQ pool that seems to be enhanced by FNRS.

Résumé

Dans les organismes photosynthétiques, la ferrédoxine:NADP oxydoréductase (FNR) fournit
le NADPH nécessaire à l’assimilation du CO2, mais elle réduit aussi la ferrédoxine (Fd) à
partir du NADPH. La cyanobactérie Synechocystis sp. PCC6803 contient deux isoformes de
FNR: une forme courte (FNRS, 34 kDa) et une forme longue (FNRL, 46 kDa) qui est liée au
phycobilisome (PBS), un complexe collecteur de lumière. Nous avons purifié un sous-complexe
du PBS qui contient la FNRL (FNRL-PC) et comparé les propriétés enzymatiques de FNRL-PC à
FNRS. Par rapport à FNRS, FNRL-PC présente des affinités plus faible/forte pour le NADPH/la
Fd, conformément aux prédictions des activités relatives des deux isoformes. La plupart des
différences observées sont attribuées à l’encombrement stérique amené par la phycocyanine
dans FNRL-PC. En conditions de turnover multiple, les deux isoformes catalysent de la même
manière la réduction de NADP+ et de plus le transfert d’électrons (TE) depuis Fdred est limitant à
force ionique élevée. Lors d’études in vivo, nous avons observé une augmentation de l’oxydation
du NADPH par TE respiratoire ou cyclique chez un mutant ne contenant que la FNRS et chez
le type sauvage à faible CO2. Les mesures ont montré clairement que FNRS est impliqué dans
ce TE alternative et nous proposons que FNRS constitue le module déshydrogénase de NDH-1.
La localisation de la FNR et/ou la présence de substrats semblent être essentiels dans les rôles
respectifs des isoformes de FNR in vivo. Des études futures devraient nous donner une vue plus
complète des processus de TE in vivo et clarifier le rôle du TE dépendant du NADPH et favorisé
par FNRS dans la réduction du pool de PQ.
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