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Titre
Régularité fractionnaire et analyse stochastique de discrétisations; Algorithme adap-
tatif de simulation en risque de crédit.

Résumé

Cette theése concerne trois sujets de probabilités numériques et de mathématiques
financiéres. D’abord, nous étudions le module de régularité Lo en temps de la com-
posante Z d’'une EDSR markovienne a coefficients lipschitziens, mais dont la fonction
terminale g est irréguliére. Ce module est lié a l'erreur d’approximation par schéma
d’Euler. Nous montrons, de fagon optimale, que l'ordre de convergence est explicite-
ment lié & la régularité fractionnaire de g. Ensuite, nous proposons une méthode de
Monte-Carlo séquentielle pour le calcul efficace du prix d’une tranche de CDO, basée
sur des variables de controle séquentielles, dans un cadre ou les taux de recouvre-
ment sont aléatoires et i.i.d. Enfin, nous analysons I’erreur de couverture associée a
la stratégie en Delta-Gamma. La régularité fractionnaire de la fonction payoff joue
un role crucial dans le choix des dates de rebalancement, afin d’atteindre des vitesses
de convergence optimales.
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Probabilités numériques, mathématiques financiéres, équations différentielles stochas-
tiques rétrogrades, régularité fractionnaire, Monte-Carlo séquentiel, erreur de cou-
verture

Title
Fractional regularity and stochastic analysis of discretizations; Adaptive simulation
algorithm in credit risk.

Abstract

This thesis deals with three issues from numerical probability and mathematical
finance. First, we study the Ls-time regularity modulus of the Z-component of a
Markovian BSDE with Lipschitz-continuous coefficients, but with irregular terminal
function g. This modulus is linked to the approximation error of the Euler scheme.
We show, in an optimal way, that the order of convergence is explicitly connected to
the fractional regularity of g. Second, we propose a sequential Monte-Carlo method
in order to efficiently compute the price of a CDO tranche, based on sequential
control variates. The recoveries are supposed to be i.i.d. random variables. Third,
we analyze the tracking error related to the Delta-Gamma hedging strategy. The
fractional regularity of the payoff function plays a crucial role in the choice of the
trading dates, in order to achieve optimal rates of convergence.
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Numerical probability, mathematical finance, backward stochastic differential equa-
tions, fractional regularity, sequential control variates, tracking error
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Chapter 1

Introduction (in English)

This thesis consists of three parts dealing with three issues from numerical probability
and mathematical finance : Lo-time regularity of BSDEs with irregular terminal
functions, efficient computation of CDO tranches prices and the tracking error related
to Delta-Gamma hedging strategy.

1.1 Lo-time regularity of BSDEs with irregular terminal
functions

1.1.1 What is a BSDE ?

In few words, a backward stochastic differential equation (BSDE for short) is a kind
of stochastic differential equation (SDE) for which the terminal value is specified
instead of the initial one. The main point is to select a solution that is adapted to
the underlying filtration.
BSDEs have been first introduced in 1973 by Bismut in [Bis73| for the linear case,
in order to give a probabilistic interpretation of Pontryagin maximum principle, in
an optimal stochastic control framework.
In 1990, Pardoux and Peng gave in [PP90] the first general result: they proved an
existence and uniqueness result for nonlinear BSDEs, defined by

{ —dYy = f(t,Ys, Zy)dt — ZydWy, (1.1)

Yr = 55 '

under the following assumptions: W is a standard Brownian motion, f (a random
generator or driver) is Lipschitz continuous in the space variables y and z, and both
the terminal condition § and the process {f(t,0,0)}scio,r) are square integrable.

The solution is a pair of adapted processes (Y, Z) such that Y is continuous, Z is
predictable, and

T
E[ sup |Y;|?] —i—E[/ | Zs|*ds] < oc.
te[0,7 0

7



8 1.1 La-time regularity of BSDEs with irregular terminal functions

Here the filtration is the augmented natural filtration of the Brownian motion W.
Notice that, in the case where f = 0, the solution (Y, Z) is simply given by Y; =
E(¢|F:), and Z is given by the predictable representation theorem.

Later, existence and uniqueness results have been developed under weaker assump-
tions and in different spaces (see Chapter 3, section 3.1). In 1997, El Karoui, Peng
and Quenez [KPQ97b| have studied some other related subjects, namely the com-
parison theorem (in the one-dimensional case), concave BSDEs, continuity and dif-
ferentiablity of Markovian BSDEs and differentiation of BSDEs in Malliavin sense.
Besides, they have described some applications of BSDEs in finance. For instance,
in a complete market, and within the Black-Scholes model, the price process of a
positive contingent claim £, with maturity time 7', solves a linear BSDE (i.e. the
driver f is linear w.r.t. y and z). Non-linear BSDEs appear when the trading strat-
egy is subject to additional constraints, or in incomplete market models. Recursive
utilities can be also represented by BSDEs.

BSDEs have other applications in stochastic zero-sum differential games (see [HL95]),
and in the switching problem (called also the starting and stopping problem), which
involves reflected BSDEs (RBSDEs for short), see [HJ07]. RBSDESs have been intro-
duced by El Karoui et al. in [KKPT97], and their development has been motivated
by pricing American contingent claims (see [KPQ97al).

Besides, a BSDE can be viewed as a stochastic representation of a non-linear parabolic
PDE (see paragraph 1.1.2).

1.1.2 Framework and challenges

We will focus in our work on Markovian BSDEs with a multidimensional forward
component and a Lipschitz-continuous driver:

Xo = o,
dX; =0b(t,Xy)dt + o(t, Xy)dWy,
—dYy = f(t,X4,Ys, Zy)dt — ZidWy,
Yr =g(Xr),

(1.2)

where g(X7) € Lp and W is a standard g-dimensional Brownian motion. The R%-
valued process X; is the forward component, and (Y;, Z;) € R x RY*4 is the backward
component. The functions b, o, f and g are deterministic.

Just as SDEs are connected to linear parabolic PDEs via the Feynman-Kac formula,
BSDE (1.2) is linked to a semilinear parabolic PDE: if, for fixed (¢,z), one defines
(Y&, Zﬁ’x)se[t7T] to be the solution of

XMt =g 0<s<t,
AXE" = b(s, X5")ds + o(s, XL")dW,,
—dYST = f(s, X7, Y, Z57)ds — ZoT AW,
Yt = g(Xp0),

(1.3)
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and u to be the solution (in some sense) of

{ Owu(t, ) + Lu(t,z) + f(t, x,u(t,z), Vyu(t,x)o(t,z)) =0 for t < T, (1.4)

u(T, x) = g(x),

then
(ij? Z?x) = (u(87 X?x)? qu(s, X?x)a(sv X?x))

In particular,
(u(t, ), Voult, z)o(t,2)) = (", Z,7).

For more details, see paragraph 3.2.2 of Chapter 3.

Therefore, this part of the thesis lies within the framework of the probabilistic meth-
ods for solving non-linear PDEs. Indeed, the challenge behind the stochastic rep-
resentation of PDEs (suitable for Monte-Carlo methods) is to remedy the curse of
(high) dimensionality from which the deterministic methods suffer.

More precisely, we are interested in some discretization error associated to the BSDE

(1.2). It is what we will call the Lo-time regularity of the Z-component, and is defined

by
N-—1

tit1 B
E(Z,n) = ZE/t |Z; — Zy,|?dt,

where Z;, = ti+11—tiEfti fé”l Zgds,and m ={0 =ty < --- < t; < - <ty =T}
is a given (deterministic) partition of the time interval [0,7] with a fixed number
of subintervals (equal to N), and with size |7| := supg<;on(tit1 — t;). E(Z,7) is
the square of the Lo-distance between Z and its best adapted Lo-piecewise constant
approximation.

The quantity £(Z, ) appears in the study of the rate of convergence of some nu-
merical schemes used in solving the BSDE (1.2), in particular the one defined by the

following dynamic programming equation (for i < N), in explicit form,

{ YT =B (YT (fi — ) f (6, XTL YT ZE)), (1.5)

Zr = o B (Y, (W, = Wa)),

= (ir1—ts) it+1

and Y;, = g(X7) (* denotes the transposition). The forward component X is ap-
proximated by X7 (using an Euler scheme for example).

Indeed, the order of convergence of (1.5) reduces to that of £(Z, ), up to the approx-
imation error of the terminal condition and to the time net size |r| (see paragraph
3.4.1 of Chapter 3). In other terms, obtaining a good rate for £(Z, 7) implies a good
approximation of the BSDE (1.2).

It is well known that £(Z, ) is of order |7r| when the terminal function ¢ is Lipschitz-
continuous (|Zha04]). Our goal is to study the rate of convergence of £(Z, ) when
g is irregular. This is the case, for instance, where ¢ is the indicator function of a
domain (corresponding to binary options in finance). The rate of convergence has to
be expressed according to some fractional regularity of the terminal function g and
to the time mesh size |r|.
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1.1.3 Main results and tools

Inspired by the works of Geiss et al. (|[GG04][GHO7]) and Gobet and Munos (|[GMO05b]),
we define the fractional regularity of g by the order a € (0, 1] of decreasing of the
expected conditional variance of g(Xr) given X; as t goes to T. We introduce the
space Lo o, which is a kind of stochastic equivalent of the fractional Sobolev space,
defined by

Vir(g)

Lo, = {g s.t. E(g(X7)?) + sup e < +00}, (1.6)
o<t<t (T’ —1)
equipped with the squared norm
@ V,T g
K%(g) = Blg(Xp)[? + sup 19 (1.7

tejo,ry (T — 1)

where

Vir(g) = E |g(Xr) — B (9(xr))[*
We will make regularity and boundedness assumptions for the coefficients b and o,
as well as the uniform ellipticity assumption for o.
Our proofs rely on stochastic analysis techniques combining PDEs, martingales, 1t6
calculus and BSDEs in L, (p € (1,2]).
We mention that usually with these tools, g is supposed to have a polynomial growth,
ensuring that ¢g(X7) is in any Ly, for p > 0. Here we stress the fact that we only
assume ¢(X7) € Lo which is the minimal condition to discuss the existence and
uniqueness of the solution of (1.2) in Lo spaces.
Moreover, our main results hold for g € Uae(O,l} Ly ,. We emphasize that this space
is very large: it contains not only regular functions like the Holder-continuous ones,
but also irregular functions. For instance, the indicator function of a smooth domain
belongs to LQ’%.

(1.8)

We first study the case of null driver (f = 0), for which the Z-component is denoted
by z. We establish the link between £(z,7) and the second derivative of the (linear)
PDE solution u(t,z) := E(g(X7)|X; = =) by showing that

N1 tht1 C NZL oty
> E/ |7 = 2 [Pds < =+ C ) / (ths1 — 7)E|D?u(r, X, )[Pdr
k=0 7tk k=0 "tk

(and we have equivalence if (X}); is the Brownian motion).
We characterize the regularity of g in terms of some Lo-estimates of the derivatives
of u:

Lemma 1.1.1. Let « € (0,1]. Then the three following assertions are equivalent:

(Z) g € L2,a-
(1) 3C“(g) > 0, such that, Vt € [0,T),

t co
/0 E|D?u(s, X,)|* ds < %.
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(111) 3C*(g) > 0, such that, Vt € [0,T),

C*(9)

E X)) < ———2 .

‘qu(t, t)‘ = (T—t)l_a

And, if g € Ly, one can take C*(g) = CK(g) in (ii) and (iii).

If « < 1 (resp. a = 1), the previous three assertions are also equivalent to (resp.
lead to) the following one:

(iv) 3C*(g) > 0, such that, ¥t € [0,T),

E|D2u(t, X;)| <

(and one can take C*(g) = CK*(g)).

Thanks to these equivalences, Lemma 1.1.1 is crucial (although its proof is
not technical) to show the optimality of our results. It states that the assump-
tion "g € La," is natural in our framework, if we want a rate of convergence for
ZkN;Ol Eﬁt:“ lzs — Ztk|2ds which is polynomial with respect to the time-step |r]|.
Indeed, Geiss and Hujo [GHO7] (Theorem 1.3 and Theorem 2.1) showed that, if X
is the Brownian motion or the geometric Brownian motion, then the following asser-
tions are equivalent (v € (0,1)):

(GH-i) 3C > 0,vt € [0,T),
<7

(GH-ii) 3C > 0 such that, for all time-nets m = (¢x)k=0...N,

N-1 tha1 C
z : = |2

E/ ’ZS—Ztk’ dsgm
k= b

And Lemma 1.1.1 shows that the assertion (GH-i) is equivalent to the assertion "g €
Lo ," (even for a = 1). For related works with one-dimensional time-homogeneous
diffusions, see [GG04].

Owing to Lemma 1.1.1, we prove that £(Z, 7) is of order |7|* when 7 is the uniform
grid.

However, for non-equidistant time nets, we state the following theorem.

Theorem 1.1.1. Assume that g € Lg o, for some a € (0,1].
Take =1, ifa =1, and B < «a otherwise. Then, 3C' > 0 such that, for any time
net m = {tg,k =0..N},

tot1 — tg
E(z,m) <Clr|+C  su <7>
(z,m) I M (T — tp)t=7
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Now, we state that one can reach the optimal bound % by using the time net
defined for 8 € (0,1] by
k1
7B = [ (VF) =T -T(1-5)".0<k<N} (1.9)

(note that 7(1) = (t,(CN’l)) coincides with the equidistant net, and that, for § < 1, the
points in 7% are more concentrated near T).

Corollary 1.1.1. Assume that g € Lg o, for some o € (0,1]. Let 3 be as in Theorem
1.1.1. Then,
((N.B)

N-1
E(za®) = T E /(;:
k=0 Yt

k

- 2 1
zs — th(cN’ﬁ)‘ ds = O(N)

We mention that, with the equidistant time net, the order % cannot be achieved

for some functions g € Lg, with a < 1; the optimal order in this case is equal to
~=, as showed in [GTO1| in some examples.
Then, for the non-null driver case, we show that Z; — z; = Uo(t, X;), where U is
itself solution to a linear BSDE (see Chapter 5, section 5.8). The idea is to use the
representation of the Z-component as a Malliavin derivative of the Y-component.
However, because of the blow-up of the derivatives of u at time 1", we proceed by
time localization, and we state some technical stability lemmas. After estimating U,
it turns out that the non-null driver case is just a perturbation of the null driver one,
which means that £(Z, ) behaves like £(z,7) (up to the time net size):

Theorem 1.1.2. Assume that g € Ly o, for some o € (0,1]. Then, there is a positive
constant C' such that, for any time net m = {tx, : k =0..N}
N-1 th -
§Zm) =Y E/ |2, — 2y, > ds < CE(z,m) + Clal.
— ty

This readily leads to our main result, which states that £(Z, ) is of order % if

7 is the equidistant time net, and % if 7 is equal to a suitable 7(%).
Theorem 1.1.3. Assume that g € Lo o, for some o € (0,1]. Then,

a) for the choice of the equidistant time net @),
1

£(z,7W) = Olya

);

b) for the choice of 7B with 8 as in Corollary 1.1.1,

A 1
£(2.77) = 0()-

The significance of our results is threefold. First, we have succeeded, through a
good choice of the time net, to obtain an order of convergence for £(Z, ) that is
equal to %, in spite of the irregularity of the terminal function g. Second, this holds
for the general framework of multidimensional forward component of a BSDE with
Lipschitz-continuous driver. Third, the results are optimal.
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1.2 Efficient evaluation of CDOs with stochastic recover-
ies

1.2.1 Modeling and valuation of Collateralized Debt Obligations
(CDOs)

A CDO tranche, based on an underlying multi-name porfolio of assets (corporate
bonds, bank loans, credit swaps, ...), is a bilateral contract consisting of a protection
against the default losses in the portfolio, within an interval [K7, K3], over some time
period [0,T]. The (fixed) values K; and K5 are respectively called the lower attach-
ment point (or attachment point) and the upper attachment point (or detachment
point) of the tranche.

When a name ¢ of the underlying pool defaults, only a part of its notional v, can be
recovered, and we denote by R, the corresponding recovery rate (which may be non
deterministic). Thus, the loss caused by the default of the name ¢, called the loss
gwen default, is equal to I, := v4(1 — R,), and the total portfolio loss over a time
period [0, ¢] is equal to

Li:= Y lglr<e =Y vy(l = Ry)ly <,
q q

where 7, denotes the default time of the name q.

It is known that the valuation of the CDO tranche amounts to evaluating the ex-
pected tranche notionals E((Lr — K)™), for different values of T and of K. For more
details, see e.g. [Das05].

Two main approaches have been developed for the valuation of credit derivatives:
the so-called bottom-up and top-down approaches (see |Gie08§]).

In the bottom-up models, one starts from the description of each individual name
dynamics (default time, default intensity, loss given default,...), as well as the pos-
sible dependencies between them; then, the accumulated loss dynamics implicitely
follows. On the contrary, within the top-down approach, one first explicitely mod-
els the portfolio loss process (without reference to the underlying constituents), and
then tries to come back up to the dynamics of the individual names. Note that,
within both models, some auziliary factor processes may be introduced in order to
take into account some additional information.

Each of the two approaches has its advantages and drawbacks, depending on the pur-
pose for which it is developed. In practice, the bottom-up models are the best suited
for hedging issues, whereas the top-down models are the best suited for fast valuation
and calibration. We refer to [Gie08] and [BCJ08] for more detailed comparison and
critic of both approaches.
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1.2.2 Owur model
The portfolio loss and default processes

We consider a credit portfolio composed of ng names (that range from 50 to 150 in
practice), and we assume that each name (firm) ¢ may default at most once in the
time interval [0, 77, at a random time 7.

We define the (normalized) portfolio loss process (Lt)iejo,r) by

1 &

Lt = Z(l - Rq)]lq—qgt,

n
0 g=1

where the (stochastic) recoveries (Rq)i1<q<n, are ii.d. random variables (also in-
dependent of the default times (7;),) taking values in [0,1] (which implies that
L, € [0,1]). The names notionals (v,) are supposed to be equal.

In order to take into account a possible default contagion, we introduce, as a factor
process, the default process (Ni)ic[o, 1], where Ny represents the number of defaults

occuring before time ¢:
70
Nt = Z ]lq—qgt.
q=1

The intensity process A

We will assume that the compensator of the (non-decreasing and adapted) process
N is time-differentiable. We denote its time derivative, which represents the default
intensity process, by (At)iefo,r] (this means that (Vg —fg Asds)q is a local martingale).
Different models for the intensity process A have been suggested in the literature,
attempting to take into account some contagion phenomena that may appear in the
markets reality. The main models that express the intensity process \; as a function
of N are the linear model (A := ¢o + ¢1Vy, see Frey and Backhaus [FBO08]) and the
exponential model (\; := cpe*™Vt| see Davis and Lo [DLO1]).

We choose a kind of intermediate model between the linear description and the
exponential one, that has been introduced by Frey and Backhaus in [FBO08|. It is
defined by

At = A(t, L, Ni) := co + Z—l <ecQ(Nt_“(t))+ - 1) ,
2

where cg, c1,co are positive constants, and p represents the number of defaults one
can a priori expect. This means that there is no contagion if the observed number
of defaults is less than the expected one (if Ny < u, Ay = ¢p), otherwise, the conta-
gion grows exponentially with respect to the number of defaults (in a catastrophic
scenario, for example). Note also the flexibility of this model, since one can make it
almost linear by choosing co "small" (indeed, when ¢y ~ 0, A\; =~ co + c1(N; — p) ™).
In addition, we assume that A(¢,1,n) vanishes as soon as n > ng (since each of the
no names is supposed to default at most once).
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The recoveries (R;),

In the literature devoted to the valuation and hedging of CDOs, the recoveries (Ry),
are often supposed to be deterministic, for the sake of simplicity, and equal to a
constant (40%, for example). However, this assumption may not be realistic, and, as
pointed out in [Ron04], the impact of the recovery rate on the defaults distribution
may be very important. It is also showed in [DGO1] that the recoveries distribution
may differ from one type of debt to another.
In our study, the recoveries (R,)q are i.i.d. random variables, also independent of the
default times (7;),, and we assume, as in [Ron04|, that they follow a beta distribution
n (0, 1), with parameters a > 0 and b > 0. The density of this distribution is defined

by
1

B (z) = mzaﬂ(l - Z)bflll(o,n(z),
1 a— 11— 2)b-1dz = L(a)T'(b) ; ;
where B(a,b) f dz = T(ath) and I' is the gamma function.

This prov1des a versatlle famlly of distributions with bounded support and different
shapes. Besides, the main advantage of taking a beta distribution for the recoveries
is to be able to calibrate the parameters a and b from the knowledge of the mean
@ = E(R) and the variance o2 := Var(R) of the recoveries.

1.2.3 Our contribution

Within a top-down Markovian approach, and allowing the recoveries to be non-
deterministic (we only suppose that they are i.i.d random variables), we propose
a sequential Monte-Carlo method in order to efficiently compute the CDO tranche
price. We apply the sequential control variates (SCV for short) algorithm, introduced
by Gobet and Maire [GMO05a| for the computation of solutions of second order linear
PDEs that have a Feynman-Kac-type representation (see Chapter 7).

1.2.4 The price function
We define the defaults proportion process (Py)icpo,r) (taking values in [0,1]) by

N, 1
Pi="t=— 1<t
no o =1
The defaults proportion process and the loss process started resp. from p and [ at
time ¢ are denoted resp. by (Pr'P),c,<p and (LEYP)

We denote by X the Markov process (L, P):

t<s<T-

Xt = (Lta Pt), X?Lp = (L?LP?P;J’I))‘

Let D :=[0,7]x[0,1] x [0,1]. We assume now that \; = A(¢, Ly, P;) with X uniformly
bounded on D, and that A(t,l,p) = 0 when p > 1 — nio (i.e. when n > ng—1) or
when [ > p (which is natural, since L; < P;).
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For generic uniformly bounded functions f and g, defined on D, and for f (t,l,p):=0
and g(I,p) := (I — K)T, we set (for (t,1,p) € D)

W(F, 5, XH7) = GXHT) - / Fs, XH7)ds
o(t1p) = E[¥(f, g, X0, (1.10)
u(t,1,p) == EW(f, g, X"'P)] = E[(Lr — K)¥|L; = I, P, = p].

We show (see Theorem 8.2.1) that v is the classic solution (i.e. uniformly bounded
w.r.t. (¢,1,p) and differentiable w.r.t. to t) of

{Av = f whent<T, (1.11)

Bv = g whent="T,

where

1
.Av(t, l,p) = atv(t,lap) + A(t’ l’p)/ <U(t,l + ’I’Li’p +
0 0

Bu(t,l,p) :=v(t,l,p),

iﬁ—UWLm>ﬂ”@M%

no

and so is the price function u we aim to compute, with f = f and § = g. This will
enable us to use the SCV method in order to compute wu.

1.2.5 Computation of the price function using SCV

The well-known Monte-Carlo method is especially convenient for high-dimensional
problems, but it suffers from the slow convergence. Two major variance-reduction
techniques have been used in order to minimize the convergence error: the control
variates approach and the importance sampling technique (see e.g. Halton [Hal70]
and Glasserman |Gla04]). Moreover, sequential Monte-Carlo algorithms, using iter-
atively the two previous techniques, have been developed (see, for instance, [Hal62]
and [Hal70]).

Gobet and Maire have introduced in [GMO04| the sequential control variate algo-
rithm in order to solve the Poisson equation with Dirichlet boundary conditions over
square domains. Then, in [GMO05al, they have extended their approach to general
Markov processes (including diffusion and jump processes) related to linear elliptic
and parabolic second order PDEs, with linear boundary conditions.

The idea of the SCV algorithm is to approximate the solution u by a sequence (uy,),
such that, at the nth step,

Un (2;) = Un—1(Ti) + Yn(Ti),

where (z;)1<i<n are some points of D (interpolation knots, for example), and %y, (z;)
is a Monte-Carlo evaluation of the correction term y,(z;) := u(z;) — up—1(2;), rep-
resented as an expectation: indeed, from (1.10) and (1.11), and from the linearity of
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the functional ¥, one has
Yn(z) = E[¥(f — Aup—1,9 — Bun—1, X (2))].
A global approximation based on the values on the points (z;); is then obtained by
Up = Up—1 + PUn,

where P is a linear approximation operator (an interpolation operator, for example)
based on the points (x;);, i.e., for any function ¢ and for some basis functions (C;);,

N

Po() =3 ol@)Cil.).

i=1

The operator P is assumed to have the stability property:
P(Pe) =Pe.

This property is satisfied by the interpolation and the projection operators.
Here is the algorithm.

Algorithm 1.2.1 (SCV).
1. Initialization: ug := 0.

2. At iteration n: for each x;, simulate M independent paths (X™™(z;))1<m<m
of X(z;) (independently of anything else also), and set

M
1
(i) = 57 S U(f = Aup-1,9 = Bun_1, X" ().

m=1

3. Always at iteration n: build the global solution using the linear approximation
of the correction term.:

N

Up = Up—1 + Pgn = Up—1+ Zgn(xz)cz
i=1

We mention that, in their paper, Gobet and Maire have presented the general
case where the process X () is obtained by a discretization procedure X2 (z), with
A being the discretization parameter (for example, the time step for the Euler pro-
cedure). In our framework, the simulation of X = (L, P) is exact.

Besides, Gobet and Maire have studied the bias m,, 1= sup;<;«n [E(un(z;) — u(x;))|
and the variance v, := sup;<;<y [Var(u,(z;))|. They have mainly established that
these two errors converge geometrically with the number of iterations of the algo-
rithm, up to an error term related to the quality of approximation of u by the
operator P (we do not detail the required assumptions on the basis functions (C;);):
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Theorem 1.2.1. (Theorems 3.1 and 3.2 in [GM05a])
i)
my < PmMnp—1 + 5m(7)u - u)7

where p,, < 1 (and depends on A, N and P) when A is small enough, and
Em(Pu — u) is some norm (depending on A and on N ) related to the approxi-
mation error Pu — u. And, consequently,

limsupm,, <
n — Pm

Em(Pu —u).

1
Up < PvUn—1 + MSU(PU - u),
where p, < 1 (and depends on A, N, M and P) when A is small enough and M
large enough, and &,(Pu—u) is some norm (depending on A and on N ) related
to the approzimation error Pu — u. And, consequently,

1 1
limsupv,, < —&,(Pu — u).
SUpUn S T w )

Remark 1.2.1. If u belongs to the chosen approrimation space, i.e. Pu = u, then
Em(Pu—u) = E,(Pu—u) =0, and the bias and the variance converge geometrically
to 0 (when A is small enough and M is large enough,).

The above estimates show that we do not need to take M large to have an accurate
evaluation, since small values of M may be compensated by small approximation
error Pu — u. This is the key feature of SCV method.

1.2.6 Numerical results

We first give exact simulation methods for the process X = (L, P) and for the
recoveries (with beta distribution). For the interpolation procedure, we use a Gauss-
Lobatto-Tchebychev interpolation w.r.t. each of the three variables ¢, [ and p, in
order to include the boundaries of the respective intervals [0,77], [0,1] and |0, 1]
(since we want to compute the value of u(0,0,0)).

Through numerical results, we first show, with K = 0 and A constant (which is a
case where the exact solution is explicitely known), that the SCV algorithm turns to
be about 10 times more efficient than the crude Monte-Carlo method. Then, within
our general model, we show that SCV is faster and more accurate than the crude
Monte-Carlo method when the attachment point K is not too much bigger than the
average loss (see Chapter 8, Section 8.4).
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1.3 Delta-Gamma hedging

1.3.1 Delta hedging

The contrast between the time-continuous nature of the models in finance and the
obvious time-discrete nature of the transactions leads to an inevitable tracking error
when trying to replicate a derivative security (with a self-financing strategy).
Within the Black-Scholes model, the well-known Delta hedging strategy (DHS for
short) consists in holding a fixed number §;, of assets S between two rebalancing
times ¢; and t;41, for 0 < i < N — 1, where NN is the number of the time intervals.
The quantity d;, is equal to dsu(t;, S, ), where w is the price function. At the maturity
time 7', the terminal value VTA N of the portfolio constructed in this way may differ
from the payoff to hedge ¢(Sr), inducing the tracking error £5 := VTA’N —g(Sr).
Under the risk-neutral measure, the discounted trackning error 5?]% = e*rTEﬁ is a
martingale which writes

. N-1 4, B
En=> / (8;, — 6,)dS;, (1.12)
i=0 7t

where 7 is the (constant) interest rate and S; := e~"T'S; (which is also a martingale
under the risk-neutral probability).

Zhang |Zha99| showed that, if ¢ is Lipschitz-continuous, the Ly error (E|5J%|2)% has
a convergence rate N'/2 with uniform rebalancing dates t; = iT/N. In Gobet and
Temam [GTO1], it is shown that the rate of convergence actually strongly depends
on the smoothness of the payoff function g: for instance for digital options, the order
of convergence becomes 1/4 instead of 1/2. Geiss and coauthors deeply investigated
these features: in a series of papers initiated by Geiss |Gei02], they paved the way
to connect the fractional regularity of the payoff and the rate of convergence of the
related discrete time delta-hedging strategy. Moreover, they showed that for a given
payoff, a suitable non-uniform grid with IV dates can be chosen to achieve the rate
N1/2: the more irregular the payoff, the more concentrated near T' the points. These
ideas have been extended in this thesis (Part I) to BSDEs and to multidimensional
diffusion models.

1.3.2 Delta-Gamma hedging

In all the above works (and also from expression (1.12)), one can see that estimat-
ing (‘:’]% amounts to estimating a suitable weighted integral of the so-called Gamma
(02u(t, St))o<t<T of the option. Thus, in order to reduce the tracking error, one
can think of reducing the portfolio Gamma by incorporating in the hedging portfolio
another instrument, the price of which is (C(t, S¢))o<t<7: in practice, it is a liquid
vanilla option (At-The-Money Call/Put). The resulting strategy is called Delta-
Gamma hedging strategy (DGHS in short) and is well-known from practionners (see
Hull [Hul09], p.371). It is obtained by equalizing the second sensitivity of the hedg-
ing portfolio and that of the option value. It follows that the numbers of options C
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and assets to hold at time ¢; are equal to (in the one-dimensional setting)

8§u(ti, Sti )

50 o agu(tl’stz) _
ti 9%C (t;, St,)

= O, := 0 ti,S.
201 5,) e Ol S

aSC(ti, Stz)

This specification of piecewise-constant strategy on each interval [t;,t;11] leads to a
final wealth process V%V hopefully closer to g(St) compared with that of the simple
DHS. The purpose of our work is to quantify how much the resulting tracking error
ERT := VN — g(S7) is reduced with respect to the number of rebalancing dates.
More precisely, we aim at connecting the Ls-convergence rate of 5]%1“ to the payoff
regularity, regarding the choice of rebalancing dates.

1.3.3 Framework

Within a multidimensional setting, we only consider geometric Brownian motions
for the modeling of S = (S, ..., S%) (however, we believe that our results hold for a
wider class of SDE model on S). It writes for 1 < j < d:

So. =5 o
ds] = p;Sldt 4 o;5]dWy,

where Sg , sé and o; are positive, and W = (Wl, . Wd) is a d-dimensional Brownian
motion, defined on a filtered probability space (2, F,[P), where P is the historical
probability and (F;)o<¢<7 is the natural filtration of W, augmented with P-null sets.
We assume that the components of W are correlated, with <W3 , Wk>t = pj;it, and
that the matrix (p;x)i1<jr<q has a full rank.

As hedging instruments, we propose to use Calls to handle the individual gammas
and exchange options (spread option with strike zero) to handle the cross gammas,
with common maturity time 75 > T'. The price function of each of these instruments
writes

CIk(t, 7, 5%) i= By |e "B O(SE, — K;u80,)418] = 7, 5F = 5|,

where Q is the risk-neutral measure. Since the models for S are correlated geometric
Brownian motions, one can take advantage of the closed Black-Scholes and Margrabe
formulas for such options (see Appendix 10.A.1). The number of each of these
intruments that has to be handled between times ¢; and ;1 will be denoted by 5%/“
In the spirit of section 1.1, we want to use the fractional regularity of g € Lg,
(with Lg o, K%(g) and V; 7(g) defined by (1.6), (1.7) and (1.8)) in order to estimate

the error (E|E§F(g,7r)|2)1/2 and to find a time grid that achieves an optimal rate.
Besides, we will suppose that Ep |g(S7)|*"° < oo for some pg > 1, and we set

o Vir(g)
a,po — 2po \ Po r\g)
K7 () i= (Belg(Sn)[™)™ + sup 7o,



CHAPTER 1 : Introduction (in English) 21

1.3.4 Main results and tools

A key tool in our work is to use the martingale property (under the risk-neutral mea-
sure) of the discounted price process (denoted by @(t)) and its derivatives (denoted,

up to multiplicative constants, by ﬂl(l)(t) for the first derivative w.r.t. S, ﬂl(il(t)
for the second derivative w.r.t. (S%,S™), and ﬂl(izm(t) for the third derivative w.r.t.
(S',8™,5m™)).

We begin by decomposing the (discounted) traAcking error Eﬁr (g,7) as a sum of triple
stochastic integrals w.r.t. W, where (W} := W}/ +A;t)1<;<q is a Q-Brownian motion
(the correlations remaining unchanged). This decomposition consists of a principal
part, related to the third derivatives of the option price function, and some residual
terms.

Theorem 1.3.1. Assume that Ep |g(S7)|*"° < oo for some py > 1. We have

N-1 d tiv1 t s
SAT _ i, n m
Som=-% X [T [ (@00 B w)avawra

=0 [,m,n=1

(1.13)
where
gl
+ o? (ﬂz(l)(t) - S_ltﬂz(l)(ti)> | -
t
D IR K E 0
0<j<k<d
= Y (omCE OO + G O+ G (1)1
0<j<k<d
, ik g .
ot S (000 - E et ) w14
0<j<k<d t;

Let us formally comment the consequences of (1.13). Set TZ’T(ri)n(r) = ﬂl(i)mn(r) +

R;’S)n(r). At first sight, if T;SL(T) had a Q-Ly moment uniformly bounded in r, we

would deduce that

N-1 d . s
EolEar 2 o R aup TP (12 drdsdt
Q| N (g’ﬂ-)| —_ Z Z ¢ ¢ ¢ b.up | l7m7n("ﬂ)|L2 ras

i=0 Lmn=1"ti O=r=T

<O swp (T ()l
i,l,mymn; 0<r<T Y
i.e. the tracking error would have a Q-Ly norm of the order of the time step |7|. In

particular, N regular trading dates would lead to an optimal rate of convergence.
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Actually, this argumentation is not complete because the moments of ﬂzrf’)n(r) may
explode as r goes to T' (indeed, for non smooth payoff, the Greeks may go to oo
as the time to maturity 7' — r shrinks to 0). It illustrates that a significant piece of
work in the Delta-Gamma error analysis lies in the understanding of the behavior
of |Tl17$13n( )|L as r — T. This feature is tightly estimated through the fractional

regularlty of g (see Proposition 1.3.1 and Corollary 1.3.1).
Proposition 1.3.1. The following estimates hold:

EP‘EQF(Q, ‘ SCZ Z /ZH/ / Ep‘ulmn ;S?n(r)2drdsdt.
(1.15)

o Forlmmn=1.dand0<t<T,

<0 Vir(g)

Ep |27, .( )‘2_ ) (1.16)
! (T — )3

o There exists a positive 7 (depending on po, T and Ty) such that, if
|| < mthreshold ypen, for 0 <t; <t <ty <T,

(1.17)

I,m,mn )

2 Vir(g) + <E]P \Q(ST)IQPO);O
Be | 0] <€ (T 1)

A straightforward estimate is the following:

Corollary 1.3.1. Let o € (0,1]. Suppose that g € Lo and that Ep |g(S7)[*° < oo
for some pg > 1. Then, when |r| < wthreshold and for 0 <t < T,

2 K po (g)

3 3
Ep [Ty, () + Ry (1) <O e

(1.18)
In order to get the estimate (1.16), we use the usual representation of Greeks
in terms of Malliavin calculus weights. One has just to express this representation
under the historical probability P.
However, the estimate (1.17) is more intricate. Indeed, one can see from the ex-
pression (1.14) that Lp-estimates for quotients of the hedging instruments Greeks
have to be made. If the numerator and the denominator are expressed at the same
time point ¢, then their respective Gaussian exponentials parts cancel (using the
Margrabe formula). The difficulty appears when the two times are different, as in
G2 (1)

W, for instance (with ¢; <t <t;11). Indeed, if t —¢; is too large, the quantity

[|CJ ok ( )|P|Ft;] becomes too heavy-tailed in comparison with the denominator
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C_’i fl’(Q)(ti), and the quotient blows up. Thus, we care about the condition that the
time net size || must satisfy in order this explosure does not take place. This leads
to an upper threshold size that we denote by gthreshold,

The estimates (1.15) and (1.18) enable us to establish our main result. The time net
7 is still defined by (1.9).

Theorem 1.3.2. Let a € (0,1]. Assume g € Lo and Ep |g(S7)|[*° < co for some
po > 1.

1. Regular grid 7). For N sufficiently large to ensure |7(1)| = L < pthreshold

one has
1

Na/2

_ 2
(Bp |2 (9, 7)) = O (1.19)
2. Non regular grid 7%, 3 € (0,1). Taking N sufficiently large to ensure |7(®| <
7.‘.threshold’ one has

(O(—x) e,

N?23

— 2
(Be [E3 (9.7 )1 = { o BN

) Q
N )/Lfﬁzga

| o) #8e0.9).

We mention that, for the regular grid, the estimate (1.19) of the rate of conver-
gence N®/? is in general tight for o < 1 (because the estimate (1.18) is tight, see
the discussions in Geiss and Hujo [GHO7] and Gobet and Makhlouf [GMO0S|). In
addition, it coincides with the rate of convergence of the Delta hedging strategy: in
other words, for non-smooth payoffs, the DGHS used with regular grids does not
improve the rate of convergence of the tracking error. The use of irregular grids cru-
cially helps to increase the convergence rate of the tracking error, for any fractional
regularity o € (0, 1], up to the rate N. This is confirmed by our numerical results
(see Chapter 10, Section 10.7): in Figure 1.1, we illustrate, for a digital Call (whose
regularity degree « is equal to 0.5), how the choice of the time net may improve the
convergence order.

In conclusion, as an application, our results may be used in order to reduce the risk
inherent in hedging European contingent claims.
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Delta hedging of a DIGITAL CALL
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Figure 1.1: For a digital Call: at the top (Delta hedging strategy),
log(EpEﬁ(g,w(ﬁ))P) vs log(N). At the bottom (Delta-Gamma hedging strategy),
log(Ep[Ex (g, 7(M)[2) vs log(N).



Chapter 2

Introduction (en frangais)

Cette thése est composée de trois parties concernant trois problémes issus des do-
maines des probabilités numériques et des mathématiques financiéres: la régularité
Lo en temps d’EDSR & fonction terminale irréguliére, le calcul efficace des prix de
tranches de CDO et 'erreur de couverture (tracking error) inhérente a la stratégie
de couverture en Delta-Gamma.

2.1 Reégularité L; en temps d’EDSRs a fonction terminale
irréguliére
2.1.1 Qu’est ce qu’'une EDSR?

En quelques mots, une équation différentielle stochastique rétrograde (EDSR) est
une sorte d’équation différentielle stochastique (EDS) ou ¢’est la condition terminale
qui est spécifiée & la place de la condition initiale, tout en veillant & choisir une so-
lution qui soit adaptée a la filtration sous-jacente.

Les EDSR ont été initialement introduites en 1973 par Bismut [Bis73|, dans le cas
linéaire, dans le but de donner une interprétation probabiliste du principe du maxi-
mum de Pontryagin dans un cadre de contréle stochastique optimal.

En 1990, Pardoux et Peng [PP90] ont énoncé le premier résultat général: ils ont
prouvé l'existence et 1'unicité de solution d’EDSR non linéaires, définies par

{ Y, = [(1,Y0, Z)dt — ZudWs,
Yr = 55

sous les hypothéses suivantes: T est un mouvement brownien standard, f (un
générateur ou driver aléatoire) est lipschitzien par rapport aux variables d’espace
y et 2, et la condition terminale §, ainsi que le processus {f(t,0,0)},c[0 7], sont de
carré intégrable. La solution est un couple de processus adaptés (Y, Z) tels que YV
est continu, Z est prévisible, et

(2.1)

T
E[ sup |Y;|?] —HE[/ | Zs|*ds] < oc.
te[0,7 0
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Ici, la filtration correspond a la filtration naturelle augmentée du mouvement brown-
ien W.

Par exemple, dans le cas ou f = 0, la solution (Y, Z) est donnée par Y; = E(¢|F),
et Z est donné par la propriété de représentation prévisible.

Plus tard, des résultats d’existence et d’unicité ont été énoncés sous des hypothéses
plus faibles et dans des espaces différents (voir Chapitre 3, section 3.1). En 1997, El
Karoui, Peng et Quenez |[KPQ97b| ont étudié d’autres problématiques, telles que le
théoréme de comparaison (dans le cas unidimensionnel), les EDSR concaves, la con-
tinuité et la différentiabilité des EDSR markoviennes, et la différentiation des EDSR
au sens de Malliavin. D’autre part, ils ont décrit quelques applications des EDSR
en finance. Par exemple, dans un marché complet, et dans un modéle de type 1to,
le processus de prix d’une option européenne de payoff £ et de maturité T satisfait
une EDSR linéaire (c.-a-d. le driver f est linéaire en (y, z)). Les EDSR non linéaires
apparaissent quand la stratégie d’exercice est sujette & des contraintes, ou dans les
modéles de marchés incomplets. Les fonctions d’utilité récursives peuvent étre aussi
représentées par des EDSR.

Les EDSR possédent d’autres applications en jeux différentiels stochastiques de
somme nulle (cf. [HL95|) et pour le probléme de “switching” ot les EDSR réfléchies
(EDSRR) interviennent (cf. [HJO07]). Les EDSRR ont été introduites par El Karoui
et al. in [KKP197], et leur développement a été motivé par la valorisation des options
américaines (cf. [KPQ97a]).

D’autre part, une EDSR peut étre vue comme une représentation stochastique d’une
EDP parabolique non linéaire (voir paragraphe 2.1.2).

2.1.2 Cadre et défis

Nous nous intéressons aux EDSR markoviennes & composante progressive multidi-
mensionnelle et & driver lipschitzien:

Xo = o,
dXt = b(t,Xt)dt + O'(t,Xt)th,
—dY; = f(t, X, Yy, Zy)dt — ZydWy,
Yr =g(Xr),

(2.2)

ou g(Xr) € Lo et W est un mouvement brownien standard de dimension ¢. La
composante progressive Xy est a valeurs dans RY, et la composante rétrograde (Y, Zy)
est & valeurs dans R x R'¥9. Les fonctions b, o, f et ¢ sont déterministes.

De la méme maniére qu’'une EDS est liée aux EDP paraboliques linéaires via la
formule de Feynman-Kac, 'EDSR (2.2) est liée & une EDP parabolique semi-linéaire:
si, pour (¢, z) fixé, on définit (Y, Zﬁ’x)se[tﬁp] comme la solution de

XMt =g 0<s<t,
AXE" = b(s, X5")ds + o(s, X2")dW,,
—dYST = f(s, X7, YT, Z97)ds — ZoT AW,
Vit = g(Xp0),

(2.3)
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et u comme la solution (en un certain sens) de

{ ou(t,x) + Lu(t,z) + f(t, z,u(t,x), Vou(t,z)o(t,z)) =0 for t < T, (2.4)

u(T,x) = g(x),

alors
(Yst’x7 Z;f,:v) = (u(87 X;ﬁ,x)7 qu(s, Xg’x)o'(sv X;ﬁ,x))

En particulier,

(u(tv z), Vyul(t, .%')O’(t, .%')) = (}/;ft7$7 Z:7x)'

Pour plus de détails, voir le paragraphe 3.2.2 du Chapitre 3.

Ainsi, cette partie de la thése s’inscrit dans le cadre des méthodes probabilistes de
résolution des EDP non linéaires. En effet, le défi que la représentation stochastique
des EDPs (qui convient bien aux méthodes de Monte-Carlo) cherche a relever est
de remédier au probléme de la grande dimension qui se pose pour les méthodes
déterministes.

Plus précisément, nous nous intéressons & une erreur de discrétisation associée a
I'EDSR (2.2). C’est ce qu'on désigne par régularité Lo en temps de la composante
Z, et qu’on définit par

N-1

tit1 B
g(Z,ﬂ') = Z E/ |Zt — Zti|2dt,
i=0
ot Z;, = ti+11_tiEffz‘ ftt;“ Zgds,et m ={0 =ty < -+ < t; < - <ty =T} est
une subdivision (déterministe) de U'intervalle de temps [0,7"] en un nombre fixé de
sous-intervalles (égal & N), de taille |7| := supg<; n(tix1 —t;). E(Z,m) est le carré

de la distance Lo entre Z et sa meilleure approximation Lo par un processus adapté
constant par morceaux.
La quantité £(Z, ) apparait dans I’étude de la vitesse de convergence de certains
schémas numeériques d’approximation de 'EDSR (2.2), en particulier celui défini par
I’équation de programmation dynamique suivante, dans une forme explicite (pour
i < N):

oy (i — ) f (6, X5 YT, 21))s

Z

" 2.5
EZ (Y7, (Wi, — W), (25)

141

}/;Zr e Eftl (Yﬂ—
= (ir1—ts)

et Y\ = g(XF) (* désigne la transposée). La composante progressive X est ap-
prochée par X7 (en utilisant un schéma d’Euler par exemple).

En effet, l'ordre de convergence de (2.5) se réduit a celui de £(Z, 7), auquel s’ajoutent
I'erreur d’approximation de la condition terminale et la taille |7| de la grille en temps
(voir le paragraphe 3.4.1 du Chapitre 3). En d’autres termes, obtenir une bonne
vitesse de convergence pour £(Z, ) permet de bien approcher 'EDSR (2.2).

Il est déja connu que E(Z, ) est d’ordre || quand la fonction terminale g est lips-
chitzienne ([Zha04]). Notre objectif est d’étudier 'ordre de convergence de £(Z, )
quand g est irréguliere. C’est le cas, par exemple, de la fonction indicatrice d’un
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domaine (qui correspond aux options digitales en finance). Nous cherchons a ex-
primer la vitesse de convergence en fonction d’une certaine régularité fractionnaire
de la fonction terminale g et de la taille |7| de la grille en temps.

2.1.3 Principaux résultats et outils

En s’inspirant des travaux de Geiss et al. (|GGO04|[GHO7]) et de Gobet et Munos
(|[GMO5b]), nous définissons la régularité fractionnaire de g par 'ordre « € (0,1] de
décroissance de la variance conditionnelle moyenne de g(X7) sachant Xy, quand ¢
tend vers T'. Nous introduisons ’espace Ls ., qui est une sorte d’équivalent stochas-
tique de 'espace de Sobolev fractionnaire, et nous le définissons par

Vi
Lo = {g t.q. E(g(X7)?) + sup 17(9)

S 7 < ook .

équipé d’une norme dont le carré est

« L 2 su ‘/t,T(g)
K%(g) := Elg(Xr)| +t€[og) T =t (2.7)
Vir(g) = E|g(Xr) — E% (g(X1))|*. (2.8)

Nous nous placerons sous des hypothéses de régularité et de bornitude pour les co-
efficients b et o, ainsi que d’ellipticité uniforme pour o.

Nos preuves reposent sur des techniques d’analyse stochastique combinant EDP,
martingales, calcul d’Ito et EDSR dans L, (p € (1,2]).

Nous signalons que généralement, avec ces outils, g est supposée de croissance polynoémi-
ale, assurant a g(Xr) d’appartenir a tous les L, pour p > 0. Ici, nous soulignons
que nous supposons seulement g(X7) € Lo, ce qui représente la condition minimale
pour discuter de l'existence et de l'unicité de solution de (2.2) dans les espaces Lo.
De plus, nos résultats principaux sont valables pour g € |J, ¢ 0,1] Lo . Nous signalons
que cet espace est trés large: il contient non seulement les fonctions réguliéres telles
que les fonctions holderiennes, mais aussi des fonctions irréguliéres. Par exemple, la
fonction indicatrice d’'un domaine régulier appartient & L27% .

Nous étudions d’abord le cas de driver nul (f = 0), ou on note la composante Z
par z. Nous établissons le lien entre £(z,m) et la dérivée seconde de la solution
u(t,z) := E(g(X7)|X; = ) de PEDP linéaire correspondante, en montrant que

N-1 tht1 C N=Lortgn
SE [T alas < GO Y [T e - nEDr )
k=0 tk k=0 te

(et il y a équivalence si (X;); est le mouvement brownien).
Ensuite, nous caractérisons la régularité de g en termes d’estimations Lo des dérivées
de u:
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Lemme 2.1.1. Soit o € (0,1]. Les trois assertions suivantes sont équivalentes:

(7’) g € L2,a'
(i) 3C*(g) > 0, telle que, ¥Vt € [0,T),

t ce
/0 E‘D2u(s,Xs)|2ds < %

(111) 3C*(g) > 0, telle que, ¥t € [0,T),

C*(9)

E |V ult, X,)[* < T

Et, si g € La o, on peut prendre C*(g) = CK*(g) en (it) et (iii).
Sia <1 (resp. a = 1), les trois assertions précédentes sont aussi équivalentes a

(resp. impliquent) la suivante:
(iv) 3C*(g) > 0, telle que, ¥t € [0,T),

E|D?u(t, X;)|” <

(et on peut prendre C*(g) = CK%(g)).

Grace a ces équivalences, le lemme 2.1.1 s’avére crucial (bien que sa preuve ne
soit pas trés technique) pour montrer 'optimalité de nos résultats. Avec ce lemme,

I'hypothése "g € Lo ," apparait naturellement dans notre cadre de travail, si on

veut un ordre de convergence de Zi\;_ol E ftl:““ |zs — Z,, 2 ds qui soit polynomial par
rapport au pas de discrétisation |r|. En effet, Geiss et Hujo [GHO7| (Théoréme 1.3
et Théoréme 2.1) ont montré que, si X est le mouvement brownien ou le mouvement

brownien géométrique, alors les assertions suivantes sont équivalentes (a € (0,1)):

(GH-i) 3C > 0,Vt € [0,T),
~ 12 C

(GH-ii) 3C > 0 telle que, pour toutes les subdivisions ™ = (t)k=0.. N,

tht1 C
= 2
]E/ |Zs—Ztk| dSSW
k=0

N-1

Et Lemme 2.1.1 montre que I’assertion (GH-i) est équivalente a I’assertion "g € Ly "
(méme pour av = 1). Pour des travaux connexes, avec des diffusions scalaires et ho-
mogenes en temps, cf. [GGO4].

Grace & Lemme 2.1.1, nous montrons que £(Z, ) est d’ordre |7|® lorsque 7 est la
grille réguliére.

Cependant, pour des grilles en temps quelconques, nous énongons le théoréme suiv-
ant.
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Théoréme 2.1.1. Supposons que g € Ly o, pour un certain o € (0, 1].
On prend 3 =1, sia =1, et B < « sinon. Alors, 3C > 0 telle que, pour toute
subdivision m = {ty,k = 0...N},

thr1 — g
E(z,m) <Cln|+C su <7>
(z,) i k:O...R—l (T —ty) =8

Maintenant, nous pouvons affirmer que la borne optimale % peut étre atteinte
avec l'utilisation de la subdivision définie, pour 3 € (0, 1], par

7@ = N0 _r(1- 2)5 o<k < N} (2.9)

Remarque: (1) = (t( )) coincide avec la grille réguliére, et pour 8 < 1, les points
de 7(®) sont plus concentrés prés de T

Corollaire 2.1.1. Supposons que g € La o, pour un certain o € (0,1]. On prend 3
comme dans Théoreme 2.1.1. Alors,

£(N.5)

k+1
z [ |

Nous signalons que, avec la grille réguliére, 1'ordre % ne peut pas étre atteint
avec certaines fonctions g € Lg, de régularité o < 1; l'ordre optimal dans ce cas
vaut ﬁ, comme montré dans [GTO01] a travers quelques exemples.

Ensuite, dans le cas général de driver non nul, nous montrons que Z;—z; = Uo(t, Xy),
ou U est lui-méme solution d’'une EDSR linéaire (voir Chapitre 5, section 5.8). L’idée
est d’utiliser la représentation de la composante Z comme dérivée au sens de Malli-

_ 2 1
zs Ztlizv,ﬁ)‘ ds = O(5)-

avin de la composante Y. Cependant, a cause de l'explosion des dérivées de u en
T, nous procédons par localisation en temps, et nous énoncons quelques lemmes
techniques assurant la stabilité. Aprés avoir estimé U, le cas de driver non nul
s’avére n’étre qu’'une perturbation du cas de driver nul, ce qui signifie que £(Z, ) se
comporte comme &(z,7) (au pas de discrétisation prés):

Théoréme 2.1.2. Supposons que g € Lo, pour un certain o € (0,1]. Alors, il
existe une constante positive C' telle que, pour toute subdivision m = {t; : k = 0...N}

N-1 thin o
IE/ | Zs — Zy,|” ds < CE(z,7) + Ol
k=0 1tk

Ceci nous permet d’énoncer notre résultat principal: £(Z, ) est d’ordre W sim

est la grille réguliére, et d’ordre % si 7 est une subdivision 7(%) convenable.

Théoréme 2.1.3. Supposons que g € Lg o, pour un certain o € (0,1]. Alors,
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a) avec le choix de la grille réguliére @),

1

£(2,xW) = Olya

);

b) avec le choiz de 708 avec B comme dans Corollaire 2.1.1,

A\ 1
E(2,7xP) = O(+)-

L’intérét de nos résultats est triple. D’abord, nous avons réussi, grace & un bon
choix de la subdivision en temps, & obtenir un ordre de convergence de % pour
E(Z,m), malgré lirrégularité de la fonction terminale g. Ensuite, ceci est valable
dans le cadre général d’EDSR & composante progressive multi-dimensionnelle et &
driver lipschitzien. Enfin, les résultats sont optimaux.

2.2 Calcul efficace des prix de tranches de CDO

2.2.1 Modélisation et pricing des CDO

Une tranche de CDO (Collateralized Debt Obligation), basée sur un portefeuille sous-
jacent de noms (entreprises) regroupant plusieurs actifs (obligations, préts, CDO,...)
est un contrat bilatéral qui consiste en une protection contre les pertes occasionnées
par des défauts dans le portefeuille, dans une tranche [K7, K3], sur une période [0, T'].
Les valeurs (fixées) K et Ky s’appellent respectivement le point d’attachement (ou
strike bas) et le point de détachement (ou strike haut).

Lorsqu’un nom ¢ du portefeuille fait défaut, une partie seulement de son nominal
vy peut étre récupérée, et on note R, le taux de recouvrement correspondant (qui
peut étre non déterministe). Ainsi, la perte causée par le défaut du nom ¢ est égale
aly :=14(1 — Ry), et la perte totale du portefeuille sur une période [0,t] vaut

L= lglpc = vg(l = Rl <,
q q

ou 7, désigne le temps de défaut du nom gq.

Il est connu que le calcul du prix d’une tranche de CDO se raméne au calcul de
E((Ly — K)™), pour différentes valeurs de T et de K. Pour plus de détails, voir, par
exemple, [Das05].

Deux approches principales ont été développées pour modéliser la perte du porte-
feuille: ce sont les approches bottom-up et top-down (cf. [Gie08|).

Dans les modéles bottom-up, on part de la description de la dynamique individu-
elle de chaque nom (temps de défaut, intensité de défaut, perte, ...), ainsi que les
dépendances éventuelles entre eux. La dynamique de la perte agrégée s’en déduit
implicitement. Au contraire, dans ’approche top-down, on modélise d’abord le pro-
cessus de perte du portefeuille (sans faire appel a ses constituants sous-jacents), pour
ensuite restituer la dynamique individuelle de chaque nom. Dans chacun des deux
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modéles, quelques facteurs auxiliaires peuvent étre ajoutés dans le but de prendre
en compte des informations supplémentaires.

Chacune des deux approches a ses avantages et ses inconvénients, en fonction de
I’objectif pour lequel elle est suivie. En pratique, les modéles bottom-up conviennent
plus & la couverture, alors que les modéles top-down conviennent plutoét au pricing
et a la calibration rapides. On renvoie a [Gie08] et [BCJ08] pour une comparaison
et une critique plus détaillées des deux approches.

2.2.2 Notre modéle
Les processus de défaut et de perte du portefeuille

On considére un portefeuille de crédit composé de ny noms (ng varie de 50 a 150 en
pratique), et on suppose que chaque nom ¢ peut faire défaut au plus une seule fois
sur la période [0,77, & un temps aléatoire 7.

On définit le processus (Ly)iejo,r) de perte (normalisée) du portefeuille par

1 &

Ly = = 2(1 — Ry, <,
q=1

ou les tauzr de recouvrement (stochastiques) (Rq)1<q<n, sont des variables aléatoires
iid. (indépendantes aussi des temps de défauts (7),) & valeurs dans [0,1] (ce qui
implique que L; € [0, 1]). Les nominaux (v,) sont supposés égaux.

Afin de prendre en compte un éventuel phénomeéne de contagion, on introduit, comme
facteur auxiliaire, le processus de défaut (Nt)te[O,T]a ou Ny représente le nombre de
défauts qui se sont produits avant la date ¢:

no
Nt = E ]quSt.
=1

L’intensité de défaut A\

On suppose que le compensateur du processus (croissant et adapté) N est dérivable
en temps. On note sa dérivée, qui représente I'intensité de défaut, par ()‘t)te[O,T] (ce
qui signifie que (N; — fg Asds); est une martingale locale).

Différents modéles pour I'intensité A\ ont été abordés dans la littérature, avec la ten-
tative de prendre en compte des phénoménes de contagion qui peuvent se manifester
dans la réalité des marchés. Les principaux modéles qui expriment l'intensité A;
comme fonction de Ny sont le modeéle linéaire (A; := ¢o + ¢1 1V, cf. Frey et Backhaus
[FBO0S|) et le modéle exponentiel (A; := coe™t, cf. Davis et Lo [DLO1]).

Nous optons pour un modéle intermédiaire entre les modéles linéaire et exponentiel,
introduit par Frey et Backhaus [FB0S§|. Il est défini par

At = A(t, Le, Ni) := co + = <e‘32(Nt*H(t))+ _ 1) ,
C2
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ol cp, €1 et co sont des constantes positives, et u représente le nombre moyen de
défauts auquel on s’attend a priori. Ainsi, il n'y a pas de contagion si le nombre
de défauts observé est inférieur a u (si Ny < p, Ay = ¢p), sinon, la contagion pro-
lifére exponentiellement en fonction du nombre de défauts (dans un scénario catas-
trophique, par exemple). On fait remarquer aussi la flexibilité de ce modéle, car on
peut le rendre presque linéaire en choisissant ¢ "petit" (en effet, lorsque co ~ 0,
At =~ co + c1(Ny — p)™). De plus, on suppose que A(t,l,n) = 0 dés que n > ng
(puisque chacun des ng noms est supposé faire défaut une seule fois au plus).

Les taux de recouvrement (R,),

Dans la littérature traitant de la valorisation et de la couverture des CDO, les taux
de recouvrement (R;), sont souvent supposés déterministes, dans un but de simpli-
fication, et égaux & une constante (40%, par exemple). Cependant, cette hypothése
peut ne pas étre assez réaliste, et, comme indiqué dans [Ron04|, 'impact du taux
de recouvrement sur la loi des défauts peut étre trés important. Il est montré aussi
dans [DGO1| que la loi des taux de recouvrement peut varier d’un type de dette a un
autre.

Dans notre étude, les taux de recouvrement (R,), sont des variables aléatoires i.i.d.,
indépendantes aussi des temps de défauts (74)4, et on suppose, comme dans [Ron04],
qu’ils suivent la loi béta sur (0, 1), de paramétres a > 0 et b > 0. La densité de cette
loi est définie par

1

) = e ™ (=D o),

ou B(a,b) = 01 20711 = 2)b7lde = Fr(?czi(bl;), et I' est la fonction gamma.

Ceci nous donne une famille variée de lois & support borné et prenant différentes
formes. De plus, 'avantage principal de prendre une loi beta pour les taux de recou-
vrement est de pouvoir calibrer les paramétres a et b & partir de la connaissance de

la moyenne y := E(R) et de la variance 0% := Var(R) de ces taux.

2.2.3 Notre apport

Dans le cadre d’'une approche markovienne de type top down, et autorisant les taux
de recouvrement a étre non déterministes (nous supposons seulement qu’ils sont
des variables aléatoires i.i.d.), nous proposons une méthode de Monte-Carlo séquen-
tielle afin de calculer efficacement le prix d’une tranche de CDO. Nous appliquons
lalgorithme des variables de controle séquentielles (VCS en abrégé), introduit par
Gobet et Maire [GMO05a] pour le calcul des solutions d’EDP linéaires de second ordre
ayant une représentation de type Feynman-Kac (voir Chapitre 7).
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2.2.4 La fonction prix

Nous définissons le processus de proportion de défauts (P;);c(o,1) (& valeurs dans [0, 1])

par

Ny 1

Pi=—= _Z]qugt-
nyg  No
g>1

Le processus de proportion de défauts et le processus de perte partant resp. de p et
I au temps ¢ sont désignés resp. par (P;’l’p)tgng et (L?l’p
Nous notons le processus de Markov (L, P) par X:

)tgng'

X, := (L, P,), X?l,p — (L?l,p’p;vlvp).

Soit D := [0,T] x [0,1] x [0,1]. Nous supposons maintenant que \; = (¢, L, P;),
avec \ uniformément bornée sur D, et que \(t,l,p) =0sip > 1 — nio (c.-a-d. deés
que n > ng — 1) ou sil > p (ce qui est naturel, puisque L; < P;).

Pour des fonctions génériques uniformément bornées f et §, definies sur D, et pour
f(t,1,p):=0et g(I,p) := (I — K)T, nous posons (pour (t,1,p) € D)

~ T ~
W(F, g, XHP) = XL - / Fls, XUIP)ds,
t

v(t,1,p) == E[¥(f, g, X"P), (2.10)
u(t,l,p) = B[U(f,g, X""P)] = E[(Ly — K)¥|L; =, P, = p].

Nous montrons (cf. Théoréme 8.2.1) que v est la solution classique (c.-a-d. unifor-
mément bornée par rapport a (t,1,p) et dérivable par rapport a t) de

(2.11)

Av = f  whent<T,
Bv = g whent="T,

ol

1 1
Avlt,1.p) = 0l p) + At L) [ (v<t,z R v<t,z,p>) B4 (y)dy,
0 no no
Bu(t,l,p) := v(t,l,p),

et ainsi Pest la fonction prix u qu’on cherche a calculer, avec f = f et § = g. Ceci
nous permettra d’utiliser la méthode VCS pour calculer w.

2.2.5 Calcul de la fonction prix en utilisant VCS

La méthode de Monte-Carlo standard convient particulierement aux problémes de
grande dimension, mais présente une convergence lente. Deux techniques principales
de réduction de variance sont souvent utilisées pour minimiser I'erreur de conver-
gence: la technique des variables de contréle et celle des fonctions d’importance (cf.
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Halton [Hal70| et Glasserman [Gla04], par exemple). De plus, des méthodes de
Monte-Carlo séquentielles, utilisant itérativement les deux techniques précédentes,
ont été développées (cf. [Hal62] et [Hal70], par exemple).

Gobet et Maire ont introduit dans [GMO04| 'algorithme de wariables de controle
séquentielles dans le but de résoudre 1’équation de Poisson avec conditions aux bords
de type Dirichlet sur des domaines carrés. Ensuite, ils ont étendu leur approche a
des processus de Markov généraux (tels que les diffusions et les processus a sauts)
liés & des EDP elliptiques et paraboliques linéaires de second ordre, avec conditions
aux bords linéaires.

L’idée de P'algorithme VCS est d’approcher la solution u par une suite (uy,), telle
que, & la nl°™€ itération,

oil les (z;)1<i<n sont des points de D (nceuds d’interpolation, par exemple), et
Un(x;) est une approximation par Monte-Carlo du terme de correction y,(x;) =
u(z;) — up—1(x;), représenté comme une espérance: en effet, a partir de (2.10) et
(2.11), et par linéarité de la fonctionnelle ¥, on a

yn(x) = E[\I](f — Aup—1,9 — Bup—1, X(CE))]
Une approximation globale basée sur les valeurs aux points (z;); est obtenue par
Up = Up—1 + Pln,

ol P est un opérateur d’approximation linéaire (un opérateur d’interpolation, par
exemple), basé sur les points (x;);, c.-a-d. , pour toute fonction ¢ et pour certaines
fonctions de base (C;); données,

N

Po() =3 o@i)Cil.).

=1

L’opérateur P est supposé avoir la propriété de stabilité suivante
P(Pe) = Peyp.

Cette propriété est satisfaite par les opérateurs d’interpolation et de projection.
Voici I'algorithme:
Algorithme 2.2.1 (VCS).

1. Initialisation: ug := 0.

2. A Uitération n: pour chaque z;, simuler M trajectoires indépendantes (X™™(x;))1<m<m

de X (x;) (indépendamment de tout le reste), et poser
| M
gn(i) = 37 ) W(f = Aun—1,9 = Bun—1, X" (2;)).

m=1
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3. Toujours a l'itération n: construire la solution globale en utilisant l’approzimation
linéaire du terme de correction:

N

Up, = Up—1 + Pgn = Up—1+ Zgn(xl)cz
i=1

Signalons que, dans leur article, Gobet et Maire ont présenté le cas général ol

le processus X (z) est obtenu par une procédure de discrétisation X2 (z), avec A le
paramétre de discrétisation (par exemple, le pas de temps pour le schéma d’Euler).
Dans notre cadre, la simulation de X = (L, P) est exacte.
De plus, Gobet et Maire ont étudié le biais my, := sup;«;<n |E(un(z;) — u(z;))| et la
variance v, = supy<;<y |Var(u,(z;))|. Essentiellement, ils ont montré que ces deux
erreurs convergent géométriquement avec le nombre d’itérations de l'algorithme, &
un terme d’erreur prés, qui est lié & la qualité d’approximation de u par 'opérateur
P (nous ne détaillons pas les conditions requises pour les fonctions de base (C;);):

Théoréme 2.2.1. (Théorémes 3.1 et 3.2 dans [GM05a/)
i)
My < PrmMp—1 + gm(Pu - u),
ot pm, < 1 (et dépend de A, N et P) quand A est assez petit, et E,(Pu—u) est

une norme (dependant de A et de N ) liée a Uerreur d’approximation Pu — u.
Et, par conséquent,

Em(Pu — u).

limsupm,, <
n — Pm

1
Up < PvUn—1 + MSU(PU - u),

ot py < 1 (et dépend de A, N, M et P) quand A est assez petit et M est assez
grand, et E,(Pu — u) est une norme (dépendant de A et de N) liée a l’erreur
d’approximation Pu — u. Et, par conséquent,

1 1
limsupv,, < —&,(Pu — u).
SUPUn S T T it )

Remarque 2.2.1. Si u appartient a Uespace d’approximation choisi, c.-a-d. Pu =
u, alors Ep(Pu —u) = E,(Pu —wu) = 0, et et le biais et la variance convergent
géométriquement vers 0 (lorsque A est assez petit et M est assez grand).

Les estimations ci-dessus montrent qu’on n’a pas besoin de prendre M grand pour
avoir une valeur précise, puisque de petites valeurs de M peuvent étre compensées
par une faible erreur d’approximation Pu — u: c’est la propriété essentielle de la
méthode VCS.
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2.2.6 Reésultats numériques

Nous présentons d’abord des méthodes de simulation exacte du processus X = (L, P)
et des taux de recouvrement (de loi béta). Pour la procédure d’interpolation, nous
utilisons l'interpolation de Gauss-Lobatto-Tchebychev par rapport & chacune des
trois variables ¢, [ et p, qui permet d’inclure les bornes des intervalles respectifs
[0, 77, [0,1] et [0,1] (puisqu’on veut calculer la valeur de u(0,0,0)).

A travers des résultats numériques, nous montrons d’abord, avec K = 0 et A con-
stante (qui est un cas ol on connait explicitement la solution exacte), que 'algorithme
VCS s’avére étre environ 10 fois plus efficace que la méthode de Monte-Carlo brute.
Ensuite, avec notre modéle général, nous montrons que VCS est plus rapide et précis
que la méthode de Monte-Carlo brute quand le point d’attachement K n’est pas trop
grand par rapport & la perte moyenne (voir Chapitre 8, section 8.4).

2.3 La couverture en Delta-Gamma

2.3.1 La couverture en Delta

Le contraste entre la nature continue en temps des modéles en finance et la nature
évidemment discréte en temps des transactions entraine une erreur de couverture
(dite tracking error) inévitable dés qu’on essaie de couvrir un produit dérivé (avec
une stratégie autofinancante).

Dans le modele de Black-Scholes, la stratégie de couverture en Delta (SCD en abrégé)
consiste & détenir un nombre fixe ¢, d’actifs S entre deux dates de rebalancement t;
et t;y1, pour 0 <¢ < N —1, ou N est le nombre d’intervalles de temps. La quantité
0y, est égale & Osu(t;, St;), ot w est la fonction prix. A la date de maturité T, la
valeur terminale VTA N qu portefeuille ainsi construit peut étre différente du payoff a

répliquer g(S7), entrainant la tracking error £5 = VTA N _g(S7). Sous la probabilité
risque-neutre, la tracking error actualisée 5]% = e_’"TEJ% est une martingale qui

s’écrit comme

A N-1 tir1 B
En=>_ /t (8, — 6,)dS,, (2.12)
=0 ¢

oil 7 est le taux d’intérét (constant) et Sy := e~ "1, (qui est aussi une martingale
sous la probabilité risque-neutre).

Zhang [Zha99] a montré que, si g est lipschitzienne, alors lerreur Lo, (E\Eﬁﬁ)%,
converge avec la vitesse N'/2 avec des dates de rebalancement uniformes ¢; = iT'/N.
Gobet et Temam [GT01] ont montré que la vitesse de convergence dépend fortement,
en fait, de la régularité de la fonction payoff g: par exemple, pour les options digitales,
I'ordre de convergence vaut 1/4 au lieu de 1/2. Geiss et al. ont étudié cet aspect en
profondeur: dans une série d’articles commencée par Geiss |Gei02], ils ont préparé le
terrain pour relier la vitesse de convergence de la tracking error de SCD a la régularité
fractionnaire du payoff. De plus, ils ont montré que, pour un payoff donné, on peut
choisir une grille en temps non uniforme avec N dates de facon a atteindre la vitesse
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N1/2: plus le payoff est irrégulier, plus les points de la grille sont concentrés prés de
T. Ces idées ont été étendues dans cette these (Partie I) aux EDSR et aux modéles
de diffusion multidimensionnels.

2.3.2 La couverture en Delta-Gamma

Dans tous les travaux ci-dessus (et aussi a travers 'expression (2.12)), on peut voir
que 'estimation de g]% se raméne a l'estimation d’une certaine intégrale pondérée
de ce qu’on appelle le Gamma (8§~u(t, St))o<t<T de 'option. Ainsi, afin de réduire
la tracking error, on peut penser a réduire le Gamma du portefeuille en incorporant
un autre instrument, de prix (C(¢, S¢))o<t<T, dans le portefeuille de couverture: en
pratique, c’est une option vanilla liquide (Call/Put dans la monnaie). Cette stratégie
est appelée stratégie de couverture en Delta-Gamma (SCDG en abrégé), et est connue
des praticiens (cf. Hull [Hul09], p.371). Elle est obtenue en égalisant la sensibilité
de second ordre du portefeuille de couverture avec celle de la valeur de l'option.
Il s’en suit que les quantités d’options C' et d’actifs & détenir & la date t; vallent
respectivement (dans le cadre unidimensionnel)

_ O%ulti, Si,) OFulti, Si,)

5C = S8R PL) s feu(t, §y,) — st
S Rcw s T M) T o s,

0sC(t;, St, ).

Cette spécification d’une stratégie constante par morceaux sur chaque intervalle
[ti,ti+1] méne & une valeur finale du portefeuille, V%V , qu’on espére plus proche de

g(ST) comparée avec celle obtenue par SCD. Note objectif est de quantifier de com-
bien la tracking error inhérente £ o = V¥ —g(St) est réduite en fonction du nombre
de dates de rebalancement. Plus premsement, nous cherchons & lier la vitesse de con-
vergence (au sens Ly) de EJ%F a la régularité du payoff, tout en examinant I'impact
du choix des dates de rebalancement.

2.3.3 Cadre

Dans un cadre multidimensionnel, nous considérons seulement des mouvements brown-
iens géométriques pour la modélisation de S = (S, ..., Sd) (cependant, nous pensons
que nos résultats sont valables pour une classe plus large de modéles d’EDS pour S).
Notre modéle s’écrit alors comme (1 < j < d)

So =50, .y
dS] = p;S)dt 4 o8] dW7,

ol Sg, s% et o; sont positifs, et W = (Wl, ey Wd) est un mouvement brownien de
dimension d, défini sur un espace probabilisé filtré (2, F,P), ou P est la probabilité
historique, et (F;)o<i<r est la filtration naturelle augmentée de W. Nous supposons
que les composantes de W sont corrélées, avec (W] Wk>t = pjit, et que la matrice

(pjk)1<jk<d est de rang plein.
Concernant les instruments de couverture, nous proposons d’utiliser des Calls pour
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gérer les gammas individuels, et des options d’échange (option spread avec strike
nul) pour gérer les gammas croisés, avec une date de maturité commune 75 > T'. La
fonction prix de chacun de ces instruments s’écrit:

CIk(1, 89, 5%) = Eg | (P70 (5}, -

, = KGS0,) 4157 = 59, 8F = 5*

ol Q est la probabilité risque-neutre. Puisque les modéles pour S sont des mouve-
ments browniens géométriques corrélés, on peut tirer profit des formules fermées de
Black-Scholes et de Margrabe pour de telles options (cf. Appendice 10.A.1). Nous
désignons par 5§zk le nombre de chacun de ces instruments qui doit étre détenu entre
les dates t; et t;11.

Dans I'esprit de la section 2.1, nous cherchons & utiliser la régularité fractionnaire de
g € Lo, (avec Lo o, K%(g) et Vir(g) definis par (2.6), (2.7) et (2.8)) pour estimer

lerreur (E|E§F(g,7r)|2)1/2 et trouver une grille en temps permettant d’atteindre la
vitesse optimale.

De plus, nous supposons que Ep [g(S7)|*° < oo pour un certain pg > 1, et nous
définissons

1
%0 Vir(g)
JQPo — (E 2po \ Po tvi.
(9) ( P l9(57)] ) T T e

2.3.4 Principaux résultats et outils

Un outil clé de notre étude est I'utilisation de la propriété de martingale (sous la
probabilité risque-neutre) satisfaite par le processus de prix actualisé (que nous no-
tons par @(t)) et par ses dérivées (que nous notons, a des constantes multiplicatives
prés, par ﬂl(l) (t) pour la dérivée premiére par rapport a St, par ﬂl(?gl(t) pour la dérivée

3)

1 (t) pour la dérivée troisiéme par rapport

seconde par rapport a (S!, S™), et par @
a (St 8™, sm)).

Nous commencons par décomposer la tracking error (actuahsee) comme somme
d’intégrales stochastiques triples par rapport a W, ou (W} := Wj + A\jt)i<j<d est
un Q-mouvement brownien (les corrélations restant inchangées). Cette décomposi-
tion consiste en un terme principal, lié aux dérivées troisiémes de la fonction prix de
I’option, et des termes résiduels.

Théoréme 2.3.1. Supposons que Ep |g(S7)[*° < 0o pour un certain py > 1. On a

—A[‘ N-—1 d tiv1
En (g, Z > /t /t /t +R()n(r)> dWrdw™mdwy,
=0 I,mn=1""% i

(2.13)



40 2.3 La couverture en Delta-Gamma

ol

Ry® () = <ama§2(z&)nn:m + ortiy o () + v} ) (t)]lm:l>

Sg :

Z 5Jk lmn ( )
0<j<k<d

Z 5]k< C—«j7k,(2)(t)]ln m+0_lcjk( )( )1n=z+az@ff’(2)(t)]lm:l)
0<j<k<d

ik Adk (1 St ~dik,(1
I CLUTES- ) P 210
0<j<k<d ti

Commentons, de maniére schématique, les conséquences de (2.13). Posons T, T(n )n(r) =

ﬁl(?;)n () + Ry 1(7?:)”( ). A premiére vue, si Tllr(r?)n(r) avait un moment Lo (Q) uniformé-
ment borné en r, on déduirait que

Ap , N-1 d tig1 gt
Eol€n (gm)P <> > /t /t/t sup \Tl ()\Lerdsdt

=0 l,m,n=1 Osr<T

<C s T (R,
i,l,mmn; 0<r<T

c.-a-d. la tracking error aurait une norme Lo(Q) de l'ordre du pas de temps |7|. En
particulier, N dates uniformes de rebalancement assureraient une vitesse de conver-
gence optimale. Toutefois, cette argumentation n’est pas valable dans notre cadre,
car les moments de T} T(n?’ )n( ) peuvent exploser quand r tend vers T (en effet, pour un
payoff irrégulier, les grécques peuvent tendre vers +oo quand r tend vers T). Ainsi,
un aspect important de notre analyse de 'erreur de SCDG consiste & comprendre le
comportement de |Tll7$13 )n
fines & travers la regularlté fractionnaire de g (cf. Proposition 2.3.1 et Corollaire

2.3.1).

2 Jorsque r — T. Nous en établissons des estimations
Ly q

Proposition 2.3.1. On a les estimations suivantes:

[ ]
_ tit1 2
Ep‘gﬁf(g’ ‘ gCZ Z / / / Ep‘ulmn lfj)n(r) drdsdt.
=0 I,m,n= ti ti Jt;

(2.15)

o Pourlimn=1.det0<t<T,

2 Vi

Ep l()nn(t)‘ < o Yerl) (2.16)

(Tt
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o Il existe une constante positive 7 (dependant de py, T et Ty ) telle que,
si |m| < wthreshold qlors pour 0 < t; <t <t < T,

Virlg) + (Eelg(Sn)™) ™

=¢ GEDE

(2.17)

lmn

B 2.0

L’estimation suivante en est une conséquence directe.

Corollaire 2.3.1. Soit o € (0,1]. Supposons que g € Ly o et que Ep |g(S7)|*° < oo
pour un certain py > 1. Alors, si |m| < gthreshold "ot poyr 0 <t < T,

()()2<C K*Po(g) .
— (T _ t)Bfa
Afin d’obtenir l'estimation (2.16), nous utilisons la représentation usuelle des
grécques en termes de poids issus du calcul de Malliavin. Il faut juste exprimer cette
représentation sous la probabilité risque-neutre P.
Cependant, l'estimation (2.17) est plus délicate. En effet, on peut voir a travers
I'expression (2.14) qu’on a besoin d’estimer, dans L,, des quotients de grécques des
instruments de couverture. Dans le cas ou le numérateur et le dénominateur sont
évalués a la méme date ¢, leurs parties exponentielles gaussiennes se simplifient (en

utilisant la formule de Margrabe). La difficulté apparait dés que les deux dates sont
C‘j’k’@)(t)

Ep a® ()+R

ulmn

(2.18)

I,m,n

différentes, comme pour , par exemple (avec t; < t < t;41). En effet, si

l,m
P (1))
t —t; est trop grand, la quantité Ep[|é{i’(2)(t)|p|fti] devient & queue trop lourde par
rapport au dénominateur Cj ok, (2)( t;), et le quotient explose. Ainsi, nous devons faire
attention a la condition que la taille |7r| de la grille en temps doit satisfaire pour
éviter cette explosion. Ceci méne & un seuil maximal qu’on désigne par rthreshold,
Les estimations (2.15) et (2.18) nous permettent d’établir notre résultat principal.
La grille en temps 7( est toujours définie par (2.9).

Théoréme 2.3.2. Soit o € (0,1]. Supposons que g € Lo o et que Ep \g(ST)IZPO < 00
pour un certain pg > 1.

1. Grille réguliere 7). Pour N assez grand pour assurer |7T(1)| = % < prthreshold
on a ) 1
AT 1/2
(Ee [EN" (9.7 ) = O(575)- (2.19)

2. Grille non réguliere 7%, g € (0,1). En prenant N assez grand pour assurer
‘ﬂ.(ﬁ)’ < 7.[.threshold} on a

1 . a
O(N%) SZBG (551)5

(5))‘2)1/2: O(\/logN
N

(Ez [EX' (9.

) si =73
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Nous signalons qu’avec la grille réguliére, Iestimation (2.19) de la vitesse de
convergence N2 est en générale optimale pour a < 1 (car lestimation (2.18) est
optimale, cf. les discussions dans Geiss et Hujo [GHO7| et dans Gobet et Makhlouf
[GMO08]). De plus, elle coincide avec la vitesse de convergence de la stratégie de
couverture en Delta: en d’autres termes, pour des payoffs non réguliers, la stratégie
de couverture en Delta-Gamma, utilisée avec une grille réguliére, n’améliore pas la
vitesse de convergence de la tracking error. L’utilisation de grilles non réguliéres
est cruciale pour I'augmentation de cette vitesse, pour toute régularité fractionnaire
a € (0, 1], pour atteindre la vitesse N. Ceci est confirmé par nos résultats numériques
(voir Chapitre 10, section 10.7): & travers la figure 2.1, nous montrons, pour un Call
digital (dont le degré de régularité « est égal a 0.5), qu’on peut améliorer la vitesse
de convergence grace & un bon choix de la grille en temps.

En conclusion, et comme application, nos résultats peuvent étre utilisés dans le but

Delta hedging of a DIGITAL CALL

_’_
/

— — = Dbeta=1
beta=0.

kLo
i S B B

log (DeltaErr~2)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
log (N)

Delta-Gamma hedging of a DIGITAL CALL

— — — Dbeta=l
beta=0.5
beta=0.2
23

-_
———_
- _
.

L4

log (DeltaGammaErr~2)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
log (N)

Figure 2.1: Pour un Call digital: en haut (stratégie de couverture en Delta),
log(EpEﬁ(g, 7(#))|2) vs log(N). En bas (stratégie de couverture en Delta-Gamma),
log(Ez[E (9.7)) vs log(N).

de réduire les risques inhérents & la couverture des options européennes.



Part 1

Lo-time regularity of BSDEs with
irregular terminal functions
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Chapter 3

Background results for BSDEs and
motivations

Hereafter, W is a ¢-dimensional Brownian motion, defined on a filtered probability
space (2, F,P), where (F;)o<t<7 (T is a fixed terminal time) is the natural filtration
of W, augmented with P-null sets.

We denote the conditional expectation E(X|F;) of a random variable X by E7*(X).
We will mainly consider Markovian BSDEs with Lipschitz-continuous driver:

Xo =,
dXy  =b(t, Xy)dt + o(t, X3)dW,,
—-dY; = f(t,X4,Ys, Zy)dt — Z;dWs,
Yr =g(Xr),

(3.1)

with X, 29 € R?, b:[0,T] x R* = R, o :[0,T] x R* — R¥% and f : [0,T] x R% x
R x R4 - R.

3.1 Existence and uniqueness results

The existence and uniqueness of square-integrable solutions to BSDE (3.1) were first
investigated in [PP90] and in [KPQ97b|. Then, the assumptions have been relaxed,
and the Ly-integrability (for p > 1) has been studied. We give here a result stated
by Briand et al. [BDHT03], for the general BSDE

—dYy = f(t, Yy, Ze)dt — ZdWr,

(3.2)
Yr =¢

Although this wider framework seems to be a bit too general to study (3.1), it will

be useful in our analysis when exploding drivers will be involved (see Chapter 5,
paragraph 5.8.2).

45
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Assumption 3.1.1. (i) For some p > 1,

T p
E\g!erE(/O \f(t,0,0)]dt) < 0.

(ii) There exist constants C1 > 0 and Cy € R such that, P-a.s., for every (t,y,y',2,2') €
[0,T] x R x R x R1*4 x R*9,

1z =2,

oly — /)2

‘f(tayv )_f(t Y,z )’
<y_y,7f(t7y7 ) f(ty Z)>

<C
<C

(iii) P-a.s., for every (t,z) € [0, T] x RYX4, the function y — f(t,y, z) is continuous.
(iv) VR >0, ¢R(t) := supp,<g [f(t,y,0) — f(¢,0,0)] € L1 ([0,T] x Q,dt ® dP).

The space SP is defined to be the set of adapted and cadlag processes Y such
that

E[ sup |Y}|p] < +oo,
t€[0,T]

and MP the set of predictable processes Z such that

E[( /OT |Z,[2ds)"?] < +o0.

Theorem 3.1.1 (see Theorem 4.2 and Proposition 3.2 in [BDHT03]). Under As-
sumption 3.1.1, BSDE (3.2) has a unique solution in SP x MP. Moreover, one has
the following a priori estimate, for some constant c, depending only on p, and for

ct .
anyaZCQ‘i‘m.

T

T 2 p
B e yil)+8 ([ 1z, Par) < e e ([ i 0.0ir) )
t 0 0

Besides, the Y -component is clearly time continuous.

In particular, with a Lipschitz-continuous driver f, and if Assumption 3.1.1-(i) is
fulfilled with p = 2 (and ¢ = g(X7)), BSDE (3.1) has a unique solution in 82 x M?.
Existence and uniqueness results have been stated for a non-Lipschitz driver f: see

[BLMO7] for f monotonic in y and non-Lipschitz in z, [Kob00| for f having
quadratic growth in z and for bounded terminal conditions, and [BHO6] for driver
with quadratic growth and unbounded terminal condition (but with bounded expo-
nential moment).
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3.2 Applications

3.2.1 Finance

In finance, in a complete market model, and considering It6 dynamics for the risky
assets prices S}, ..., S¢ (dS] = S} (bldt + Zzzl Jg’def)), with predictable bounded
processes b = (b',...,0%)* and o = (aj’k)lgj,kgd, and W = (W1, ...,W%* is a standard
Brownian motion), the price process of a positive contingent claim £, with maturity
T, solves a linear BSDE (LBSDE for short).

Indeed, if one holds a self-financing portfolio (see definition in [KPQ97b]) whose
value process is V, and invests an amount & of the wealth V; in the jth stock (the
pair (V,d), with 6 = (61, ...,0%)*, is called a self-financing trading strategy), then the
aim is to hedge against &, i.e. to make a self-financing trading strategy (V,J) such
that Vp = ¢ (and (V,9) is called a hedging strategy).

The fair price Y; at time ¢ of the hedgeable claim £ is the smallest endowment needed
at time ¢ to hedge &:

Y; :=inf{y > 0:3(V,0) a hedging strategy with initial value V; = y}.

The following theorem shows that the proces Y satisfies a LBSDE with terminal
condition £ (under some assumptions on the coefficients b and o). For the proof, see
e.g. [KS91] and [KPQ97b].

Theorem 3.2.1. Let £ be a positive square-integrable contingent claim. There exists
a hedging strategy (Y,0) against & such that

{ dY;g :’I“tY;gdt—F(SZ(O'tQtdt—{—(;;O'tth,
Yr =¢

(ry being the bond rate and 6 is a risk premium defined by by — ry1 = 040y, dP ® dt-
a.s., 1 is the vector whose every component is 1), and such that the portfolio value
Y is the fair price of the claim.

Moreover, one has the following explicit expression a.s. for Y :

Yy = 7 (HEE), (3.3)
where (HY)s>¢ is the deflator started at time t, defined by

dH! = —H!(rsds+ 0:dWy),
o=

Remark 3.2.1. Such a process Y is not unique in general under the assumptions
of the theorem. However, if one considers only square-integrable, self-financing
strategies (with a square-integrable contingent claim), there exists a unique square-
integrable hedging strategy.

The representation (3.3) is equivalent to the usual risk-neutral rule (see Harrison
and Pliska [HP81]).
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Nonlinear BSDEs appear when the trading strategy (V, d) is subject to additional
constraints. Indeed, if the investor is allowed to borrow money at time ¢ at an interest
rate R; > ¢, a nonlinear term is to be added to the driver, and a corresponding
hedging strategy (Y, d) against £ satisfies

{ dY; = rYydt + 6fou0dt — (R — ) (Ve — Y0_, 6])~dt + 6Ford W,
Yr =C¢.

In incomplete markets, where only some primary securities (say the first d ones,
d < d, instead of all the d securities) can be traded, the vector § has to be con-
strainted to (6971,...,6¢) = (0, ...,0), which makes the related BSDE nonlinear also.
Furthermore, always in incomplete markets, for the so-called Féllmer-Schweizer strat-
egy, a tracking error —¢; is introduced in order to measure the gap between £ and
Vr (this gap is equal to 0 in a complete market). The process ¢ is assumed to be
a cadlag semimartingale satisfying ¢g = 0. It turns out that the Follmer-Schweizer
strategy is the solution to a LBSDE (see Proposition 1.1 in [KPQ97b]).
In addition, in the continuous-time, non-deterministic case, recursive utilities are
solutions of BSDEs. Duffie and Epstein [DE92] introduced two classes of recursive
utilities Y:

—AY; = f(t, e, Y)dt — Z;dW,
and

1
—dY; = [f(er, Yi) — A(Y)5Z; Zi]dt — Z; AW,

where ¢; is the consumption rate at time ¢ and f is a concave gemerator. A more
general class of recursive utilities, defined by BSDEs with concave generator f de-
pending on ¢, ¢;, ¥; and Z;, has been studied in [KPQ97b].

BSDEs have other applications in stochastic zero-sum differential games (see [HL95]),
and in the switching problem (called also the starting and stopping problem), which
involves reflected BSDEs (RBSDEs for short), see [HJ07]. RBSDEs have been intro-
duced by El Karoui et al. in [KKP197|, and their development has been motivated
by pricing American contingent claims (see [KPQ97al).

More details on this section and on other applications of BSDEs can be found, for
instance, in [KPQ97b| and in [KHMO09|.

3.2.2 Semilinear PDEs

In the Markovian case, it turns out that there is a link between BSDEs and semilinear
parabolic partial differential equations, generalizing the well-known Feynman-Kac
formula.

Let us illustrate this link. The framework is the following (it is similar to that of
BSDE (3.1), with a SDE starting from z at time ¢):

XMt =g 0<s<t,
AXE" = b(s, X5")ds + o(s, X2")dW,,
—dYST = f(s, X7, Y, Z57)ds — ZoT AW,
it = g(Xp).

(3.4)
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The assumptions are the following:

Assumption 3.2.1. i) The functions b and o are uniformly Lipschitz continuous
w.r.t. T.

it) The function f is uniformly Lipschitz continuous w.r.t. y and z.
i11) There exists a constant C' such that, for any (t,z), |b(t,x)|+|o(t, z)| < C(1+]|z]).

1w) There exists a constant C' such that, for any (t,z,vy, 2 t,x,y,2)| + |glx)| <
) ) y M 9 y? 2 7 b y? g
C(1+ |z[P), for real p > 1.

Let us consider the following system of parabolic PDEs:

(3.5)

{ Owu(t, ) + Lu(t,z) + f(t, x,u(t,z), Vyu(t,x)o(t,z)) =0 for t < T,
u(T,z) = g(),

where L is the second-order differential operator given by

d d

Cult,z) == 3 bt 2)0pult, 7) + % S o0 i 2)02, , ut, @),

i=1 ij=1

If one supposes that v is the unique solution of PDE (3.5) of class C!*? and such that

(t, z)|+|o(t, 2)*Vo(t, )| < C(1+]|x]), then v(t, 2) = Y, where (Y&, Z6™)cs<t

is the unique solution of BSDE (3.4), and (Y¢™*, Z&™) = (v(s, X&), Vau(s, Xe™)o (s, X40)),
for t < s <T. This result was stated by Pardoux and Peng [PP92]|, and readily fol-

lows from an application of It6’s rule.

Conversely, if f and g are uniformly continuous w.r.t. x, then the function (¢, x) —

Y;t’x is a viscosity solution of PDE (3.5), whose definition is as follows.

Definition 3.2.1. Let u € C([0,T] x RY) such that u(T,z) = g(x),Yr € RZ

i) w is said to be a viscosity subsolution (resp. supersolution) of PDE (3.5) if, for
any (t,z) € [0,T] x R and ¢ € C2([0,T] x R?) such that ¢(t,z) = u(t,x) and
(t,x) is a mazimum (resp. minimum) of u — ¢,

- 8t¢(t7 x) - £¢(t7 x) - f(ta z, ¢(t7 x)7 Vx¢(t7 x)o'(tv x))
(resp. — Owp(t,x) — Lo(t,z) — f(t,x,p(t,x), Vap(t,z)o(t, x

IN

0
0).

v

i1) u is a viscosity solution of PDE (8.5) if it is both a viscosity subsolution and a
viscosity supersolution of PDE (3.5).

For the following result, we refer to [PP92] or to [KPQ97b]).

Theorem 3.2.2. Suppose that Assumption 3.2.1 holds, and that f and g are uni-
formly continuous w.r.t. x. Then, the function u defined by u(t,x) = Ytt’m s a
viscosity solution of (3.5).
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3.3 Lo-time regularity of 7
In the sequel, we focus on the markovian setting:

Xo = o,
dXt = b(t,Xt)dt +O'(t,Xt)th,
—dY; = f(t, Xy, Yy, Zy)dt — Z,dWr,
YT = g(XT)

(3.6)

For a time partition 7 = {0 =ty < -+ < t; < --- < ty =T} of [0,T], the Lo-time
regularity of Z is defined by

N—-1 tiv1 ~
E(Zm)= IE/ | Zy — Zy,|2dt, (3.7)
i=0 i
where
_ 1 tit1
Zy, = ——— T / Zyds (3.8)
liv1 — U t;

is the projection of (Zs)t,<s<t, .1 on the space of Fi,-measurable random variables,
according to the scalar product < u,v >=E ftii“ UV dS.
Besides, we will consider the following backward dynamic programming equation (for

0 < i < N) associated to (3.6):

(3.9)

YE =B (YT + (ti — ) f (6, XL YT ZE)),
Zzg = (ti+117ti)Efti(YZ~r+1(Wti+l - Wti)*)?

where * denotes the transposition, YT := g(X7) and (X7 )o<i<n is the Euler ap-

proximation of the forward component (X;)o<t<7.

It is known that when one wants to study the convergence of (3.9) for the purpose

of the numerical simulation of BSDE (3.2), one has to examine the regularity of Z

(see section 3.4).

In the framework of the studies devoted to the path regularity and discretization er-

rors of the Z-component, Zhang|Zha04| studied not exactly £(Z, 7), but the similar

quantity

5 N-1 trt+1 9 9
&)= Y B [ {12 2P + |2 2, s
k=0 k

Zhang showed that, when the terminal function g is Lipschitz continuous (and more
generally if g is an L®°-Lipschitz continuous functional, see [Zha04]), and under some
regularity assumptions on the different coefficients, & (Z,m) is of order the time mesh
size |w|. Here is the theorem.

Assumption 3.3.1. For some constant K,

(i) £,b,0 € CY2, and, forh = f,b and o, [h(t, %)~ h(s,y)| < K([t—s[* +]z—y]).
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(i) supsefor{[b(t; 0) + [0 (£, 0)| + |£(2,0,0,0)[} + |g(0)] < K.
(iii) g is Lipschitz continuous and |g(x) — g(y)| < K|z — y|.

Theorem 3.3.1. Under assumption 3.3.1, and if Z is cadlag, then, there exists a
positive constant C such that, for any partition w of [0,T], the following estimate
holds:

N-1 tha1

= 2

EZm =3 :E/t (120~ 2y | + |20 — Ziy, P}s < C (1 + zol?) |-
k=0 k

Two types of sufficient conditions for the path regularity of Z are given by Zhang:
(i) If d = ¢ (i.e. dim(X) = dim(W)) and oo* > §I; for some constant § > 0
(ellipticity condition) and g is Lipschitz continuous, then Z admits a cadlag version.
(ii) If, in addition to the assumption 3.3.1, o is uniformly Lipschitz continuous w.r.t.
t, then Z is cadlag.
Moreover, Zhang gives some other estimates for (X,Y, Z):

Theorem 3.3.2. Assume Assumption 3.3.1. Then, for all p > 2, there exists a
constant Cp, depending only on T, K and p, such that

1Zlsp = (E[ sup IZtI”]> < Cp(1 + |zol)-
t€[0,T]

Moreover, there exists a positive constant C' (depending only on T, K, but not on the
partition ) such that, for any time partition w,

max  sup E{|X;— Xy, [P+ Vi =Y, [’} < CQ + |wof?)|n].
1<i<N te(ti—1,t:]

3.4 Application to time discretization of BSDEs

Zhang has given an application of these different estimates to the study of the rate of
convergence of a numerical approximation of BSDEs. The numerical (still explicit)
scheme that he considered was a continuous version of (3.9): fori =N —1,...,0

v =,
{ Y7 =YT (i — O f (i, XE, YT 200 = [ Z5dW,, ¢ € [t tig),
(3.10)
where €™ € Lo (Fr) is an approximation of £ = g(X7), ~t7?1 = AltiE {ftiiﬂ Z;rdr]]-}z}
and At; = t;41 — ;.
By It6 isometry, one has

1 1 T ™ T 77,1 W, W)™
ZZ: - At E((Y;Z+l + Atlf(t2+1? Xt,H,l Y }/;'H»l ? ZZ:+1 ))( ti+1 - ti) |ftz)
7
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Then, one neglects the term "At; f(...)” in the above equality to recognize Z7, defined
by (3.9). Besides, one writes

YT

3

= E( tir1 + At f( i+1, t1+1’YVt7:—+1’ t+1)|ft )

. 57,1l . .
Since ZZ:; | is close to Z[, one writes

VI~ BT 4 Atif (ti1, XT YT

tiy1?

Zi ) Fr)

to recognize Y;T also defined by (3.9).

3.4.1 The key role of the Ljy-time regularity of 7

In the proof of the convergence of (3.10), Zhang proved the following intermediate
estimate, that emphasizes the importance of the quantity &€ (Z,7) in the approxi-
mation of BSDEs. Note that, since we consider an Euler scheme for the forward
component X, the related approximation error of X is of order |7T|%

Proposition 3.4.1. Assume (i) and (ii) of Assumption 3.53.1. Suppose moreover

that there exists a constant K > 0 such that, Vi = 1...N,t; —t,_1 > ‘—;;l (the partition
7 1s then called K-uniform). Then

T
e(Y™ ~Y,Z" — Z,7t) := sup E(Y] —Y;,)? —i—E/ |ZT — Z,|*dr
0<i<N ’ 0

< C(E(Z,m) +E§ = & + (L + |zof*) ).

However, the above result only holds for K-uniform time grids in the paper of
Zhang. In fact, this condition is not needed to obtain the same kind of result. Either
in [BT04] or in [GLO6], the authors have showed it holds true for the approximation
(Y™, Z™), with any partition 7 with size |7| < £.

Proposition 3.4.2. Assume (i) and (i1) of Assumption 3.3.1, and that there exists
a constant C such that |7| < $. Then

N [
e(Y" -Y,Z" — Z,7) := sup E(Y] —Y)? + / |Zg, — Z|?dt
0<i<N t;

< C(&(Z,m) +El¢ - £’T|2 + (1 + [o[*)|7]).

Consequently, if £ = g(XT) and g is Lipschitz-continuous, then (from Theorem
3.3.1), one has
e(Y" =Y, 2" — Z, ) < C(1+ |zo[*)|x].

Here is the proof from [GL06|. For the sake of notational simplicity, we present
it in a one-dimensional setting, but the proof is the same in the multidimensional
case.
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Proof. One has
tit1
Yy, =Y = ETt <Y}i+1 — }/;?+1)+E}—ti (/t {f(s,XS,Y;,ZS) — f(ti,XZ;,}/;Zl,Zg)}ds) .

Using Young’s inequality (i.e. (a +b)* < (14 v|7|)a® + (1 + ﬁ)bQ, with a positive

parameter y to be chosen later) together with Cauchy-Schwartz inequality and the
Lipschitz property of f, one obtains

2
ElY;, - Y{2 < (1 +le)E [E% (Y, - V7, )|
G A

+ (|7 + = IE/

v t;

2
< L+l DE B (Vi — ¥, )|

2
f(SaXSaY;aZS)_f(tianayﬂ ds

tit1?

Zy)

1 5 tit1 9
# 0+ 2 (1B [ |, - X7 as)

1 tit1 2 tit1 9
+C(|r| + =) (E/ ds+E/ |Zy — 77| ds>.
v ti t;

(3.11)
Now, since Zy, is the projection of (Zs)y,<s<t,,, on the space of Fy,-measurable ran-
dom variables, according to the scalar product < u,v >=E f:f'“ usvsds, Pythagore’s

theorem yield

Y, - Y]

tiy1

tit1 9 tit1 _ 9 _ 9
E/ |Zs — Z]| ds:E/ |Zs — Zy,|" ds + |7|E | Zy, — ZT|” . (3.12)

ti ti

From the definitions of Z;, (3.8) and ZT (3.9),

1 1 Lit1
Zti_ZtZ = WEFti {(ni-ﬁ—l - 3@7;1) AWi}+WEFti {</t f(s, X, Y, Zs)ds> AW@'} )
where we set AW, := W, |
One applies Cauchy-Schwartz inequality to both terms to have (denoting E7t|X —
E7t X|? by Var’t)

— Wy,.

7

‘E}—ti {(Y;fiﬂ - Ygﬂ) AWi}‘Q < Varfti (Kfi+1 - Ygﬂ) Varfti (AWZ)

2 2
< Inl {&" - B (Y - )|}

T
YZHI - Y;fiﬂ

and

F tit1
7 ([ e xv zgas) aw
t;

2 2

tit1
< |n|E% ( / f(s,Xs,Ys,Zs>ds)
t;

tit1
- lﬂzEﬂi/ [ (s, X, Yo, Zs)|2ds.
t;
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Therefore

tit1

7|E | Zy, — ZF|* < 2E {Efti (‘th Y7

2 2
) — ‘Eftz <}/ti+1 - }/;7111)‘ }

tit1
—|—2|7T|E/ |f (s, Xs,Ys, Zs)|2ds. (3.13)

ti

Plugging (3.13) into (3.12), then into (3.11), one gets

2
E|Y, - Y72 < (1+1n)E [E7 (e, - 77, )|

it+1

1 tit1 _ 9
+C(\w\+;)E/ |Zs — Zy,|" ds
t;

Y, -V

tit1

1 5 tit1
+C(|7T|+;) <|7T| +/ E
t;

)
2) - ‘E}}i (th - Yf;l)‘Q}

i+1 2
| Xs — XT| ds>

1

i+1

+O(n|+ %) (w? + E/t

3

1 tit1
+ Clr (7] + ;)E/ \F(5, X, Vs, Z,) 2ds.

t;

Taking v = C, the term E ‘E]:fz' <Y}i+l -Y"

2
i ) ‘ above cancels.

Then, for || small enough, and using sup;, <<, E|Xs — X7 |* < Clr|,

141

2 2
-Y" | +C|n|

it1 tit1

E|Y;, - Y7 * < (14 Clr)E|¥;

tit1 _ 5 tit1 9
+CE/ | Zs — Zy,| ds+C/ E|Ys —Y,,| ds
t;

t;
tit1
—{—C|7T|E/ £ (s, Xs, Y5, Zs)|2ds. (3.14)
t;

. ) : : C
Discrete Gronwall’s lemma gives (using |7 < %)

max E|Y, — Y/[? <E|¢ - €2 + O]

0<k<N
N-1 tit1 _ 9 tit1 9
+CZ<E/ |Zs — Zy,| ds—l—/ E|Y, - Y,,| ds>
i=0 ti ti

T
+CI7TIE/ (s, X, Ys, Zs)Pds. (3.15)
0
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Now, from the BSDE satisfied by Y, one has

tit1

N-1 g, N-1
> [Tep-vifaseY [
i=0 i i—0 Jti
N-1 tit1 tit1
+2Z/ (/ E|Zu|2du>ds
i=0 't s

T T
< 2| <|7T|E/ |f(u,Xu,Yu,Zu)|2du+E/ |Zu|2du>.
0 0

tit1
<(ti+1 - s)/ E|f(u, Xy, Yy, Zu)|2du> ds

Using the Lipschitz property of f, one has
1f (5, Xs, Ye, Zo)IP < C(1£(5,0,0,0)* + | X, |* + |Ya|* + | Z[?),

and since (X,Y, Z) € M2, one obtains

N-1 g, )
Z/ E|Y, - Y, | ds < Cln| (3.16)
i=0 7t
and
T
E/ |f (s, Xs,Ys, Zs)2ds < C. (3.17)
0

Plugging (3.16) and (3.17) into (3.15) yields the estimate of maxo<p<n E|Y;, — Y{7|?
in Proposition 3.4.2.
For the second estimate, one has, from (3.13),

N-1 , N-1 5 9
7l Z E {th‘ o Zﬂ =2 {E ‘Y;fiﬂ o Y;Zfl —E ‘Eﬂ" (Ytiﬂ - YZJF+1>‘ }
i=0 i=0
N-1 tiv1
2l S [ (5, X, Ve, Z2) s
i=0 i

N-1 2
2 Y {E - v -2 (v, - v )
=1

+ 2B [E7 (Vi — Y7)|* — 2B [E% (v, - ¥i7)|”

T
+ 2|7T|E/ £ (s, X5, Ys, Zs)[Pds.
0
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From (3.14), we obtain

2
+ C|n| + CE ¢ — €™

N-1 ~ ) N-1
nl S E|Z, - 7P <Clx| Y E ‘Y;+ —Y7
=0 1=0

7

N—1 tit1 N1 i
+CZE/ \ZS_Zti|2ds+CZ/ E|Y, - Yi,,,|" ds
=0 ti i=0 Yti
T
+2]wa/ |f (s, X5, Ys, Z5)|2ds.
0

The estimate that we have established for maxo<<n E|Y;, — Y{T|?, together with the
estimates (3.16), (3.17), readily yield

N-1
7| Y E|Z, - ZF|? < C&(Z,7) + Cln| + CE |¢ — €7 (3.18)

1=0
Recalling the equality (3.12), we have proved the estimate of Zf\ialE tii“ |Z] —
Z4|?dt in Proposition 3.4.2. O

3.4.2 Other related results

In [GLWO06], it is shown that Proposition 3.4.2 can be extended to jump diffusion
forward component X and Markovian BSDEs with a non Brownian filtration, of the
form —dY; = f(t, X4, Ys, Zy)dt — Z;dW, — dLy, where L is a scalar cadlag martingale
orthogonal to W (with Ly = 0). An additional contribution related to the approxi-
mation of X by X™ has to be put.

The previous results show the importance of controling the Z-component regularity.
Similar studies have been done for BSDEs with reflection (see Chassagneux [Cha09|,
Bouchard and Chassagneux [BCO08|), for BSDEs with random terminal time (see
[BMO08|) and for BSDEs with jump forward diffusion (see [BE08|). In all these
works, the regularity of Z is crucial.

We mention another point of view regarding the weak convergence: in Gobet and

Labart [GLOT], the convergence in law of the process <\/N(Yt7r -Y)),VN(ZF - Zt))

is established ((Y;", Z]")o<i<T being a continuous version of (Y7, Z] )o<i<n).

0<t<T

3.5 Numerical computations of the dynamic program-
ming equation (3.9)

One of the challenging issues is how to compute the conditional expectations in (3.9).
In [BT04], the authors used a Malliavin calculus approach in order to compute the
regression functions E7* (Y7, ,) and E7 (Y, (W — Wi )™).

For a real-valued mapping p and a vector random variable { independent of o(X/,1 <
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i < N), we set R = p(X]  ,&)a(Wy,, —Wi) for some affine function a defined on
RY (so that R can be either Y7, or V{7 (Wi, , — Wy,)*). The main idea is to use a
Malliavin integration by parts technique to rewrite the conditional expectation of R
as a ratio of non-conditional expectations (see Corollary 3.1 in [BET04] or a slight
extension of it, Theorem 6.1 in [BT04]):

E (Q%[hi, ¢l (x))

E (RIX], =) = E (Q'[h;, ¢](z))’

where
Q[hi, @l(x) = Ho(XT)p(XT, . O)S™ [a(Whyy, — Wi )o(XT — o)),

H, is the Heaviside function (H,(y) = H;l:l 1.,<y;), ¢ and ¥ are smooth localizing
functions (bounded continuous functions mapping from Ri to R, as well as their
derivatives), S“[F] := [;* Fu;.dW; whenever it exists in the Skorohod sense, and the
h;’s are suitable processes involving the derivative VX of X. Such a representation
imposes an extra non degeneracy condition (ellipticity for instance).

Then, for each discretization time ¢;, one computes the expectations using the usual
Monte-Carlo method by simulating a set of M paths of X7, all the sets of simulations
(each relative to a discretization time) being independent.

Let (ff”, Z ™) be the approximation obtained by means of the above algorithm. Under
some conditions on the localizing functions, the authors stated the following estimate
of the regression error (Theorem 6.2 in [BT04]).

Theorem 3.5.1. Forp > 1,

P
< Q.
LP

}A/;ﬂ

1

limsup max ‘ﬂ‘er%M%

s
. Y,
o O0<i<N

|| —

Taking p = 2 in the above theorem, the squared regression error is of order
N3,
However, as mentioned in [GL06], in the most favorable case where X is the geomet-
ric Brownian motion and the Malliavin weights are easy to compute, the complexity
is C = O(NM?)!. If one wants the squared regression error to be of order || (which

is the order of the squared discretization error HY;% -Y7 iQ in general), the resulting

order is Ciﬁ, which means that one has to multiply the computational time by
213+d if one wants to divide the squared error by 2.

In [GLWO06], the authors propose an algorithm using an empirical regression method.
It consists in approximating the conditional expectations in the dynamic program-
ming equation (3.9), which are regression functions of X7', by their projections on
finite-dimensional bases. The projection coefficients are computed using the stan-
dard Monte-Carlo method with a fixed set of M simulations of X, and solving a

! Actually, using sorting techniques, coupled with a “divide to conquer” approach, one can reach
a better complexity C = O(NM (In M)~V
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least squares problem at each discretization time. The difference with [BT04] is that
only one set of independent paths are needed, and no non degeneracy condition is

~ 1 ~
required. The related squared error is of order C 4+24, where C is the complexity
of this algorithm (and, with a slightly modified algorithm, one can even reach the

order C~_Wld). In the case of geometric Brownian motion, this cost is cheaper than
that obtained by [BT04] only if d < 9, but the approach of [GLWO06| remains much
more model-free, so is more suitable for the general models of the diffusion X.

In [BP03] and [Che97|, quantization techniques have been explored, but the driver
f does not depend on the z variable.

Remark 3.5.1. Numerical schemes similar to (3.9) have been developed for forward-
backward stochastic differential equations (FBSDEs, for short), that represent an
SDE which is fully-coupled to a BSDE:

Xo = o,

dXy =0b(t, X, Y, Zy)dt + o(t, Xy, Yy, Zy)dWy,
—dYy = f(t,Xs,Ys, Zy)dt — Z;dWy,

Yr =g(Xr),

(3.19)

(see, for example, [DMOG]). The corresponding convergence analysis relies on the
use of the quasi-linear PDE associated to (3.19), and so requires strong regularity
assumptions on the coefficients.

3.6 Approximation of the terminal condition

The second problem related to (3.9) concerns the numerical approximation of the
terminal condition &, when { = ¢g(X7). The natural approximation is £" = g(X7),
and one is interested in the resulting error (E|{ — {“!2)%.

Let X™F (resp. X™M) be the approximation of X by the Euler scheme (resp.
Milstein scheme, if d = 1). If g is Lipschitz-continuous, the approximation error is
of order ]77]% with the Euler scheme, and of order |r| with the Milstein scheme.

In [Avi09], the approximation error is studied in the one-dimensional framework for
functions g of bounded variation. Let us recall the definition of this class of functions.

Definition 3.6.1. For x € R, let A(x) be the set of all partitions (z})}_q such that
—0o <y <2 < ... <xp =1, forn>1. The total variation function of a function

g is defined by
Ty(z):= sup Y |g(z}) —g(a}_)l.

(z})eA(z) j=1
The function g is said to be of bounded variation (g € BV ) if V(g) = limg_.o Ty ()
is finite (V(g) is called the total variation of g).

Here is the result from [Avi09] (Corollary 4.2 and Theorem 5.4), for these two
most common approximation schemes of X (under some (standard) assumptions on
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the coefficients b and o that we do not give here). However, this result holds only
for one-dimensional diffusions.

Theorem 3.6.1. Let g € BV and 1 < p < oo. Then, for 0 <e < %,

1_
Elg(Xr) — g(X77)P < 37(sup px, V /5D pxy ) VP(9)Celm| 275,
and for 0 <e <1,

Elg(X7) — g(Xp")P < 3P (sup px, V /Suppxs )V (9)CLlm| 5,

where px,. is the density of Xp, and C. and CL depend on e and the constants of the
corresponding schemes.

This theorem obviously includes the case of indicator functions. The case of
intermediate smoothness (between Lipschitz and step functions) is an open issue to
our knowledge.
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Chapter 4

Fractional regularity

4.1 First results on irregular terminal conditions

The results of Chapter 3, dealing with the rate of convergence of the dynamic pro-
gramming equation (3.9), have been stated assuming always some regularity on the
terminal function g, namely Lipschitz continuity. Our aim is to relax this assumption
and study the related Lo-regularity of Z, £(Z, ).

The first works in this direction were carried out, to our knowledge, by Gobet and
Temam [GTO1|, but only in the specific framework of linear driver (w.r.t. y and
z), which is technically equivalent to the null driver case (f = 0). They considered
general one-dimensional SDEs for X (under regularity and ellipticity assumptions on
the coefficients):

Xo = zo,
{ dX; = p(Xy)Xpdt + o(Xy) XedWr,

but particular expressions of the terminal function g, in order to study the rate of
convergence of the traking error when hedging, discretely in time, European options
with standard payoffs: g(x) = 1,>x (digital option) or g(z) = (z — K)4, for a €
(0, %) Their mathematical analysis is based upon explicit computations.

In the above paper, the authors considered only equidistant time nets, and showed
that the optimal rates for £(z,m) associated to the above functions g are related
to their Holder regularity, and vary from N 3 to N. Here are their main results
(Theorems 1 and 2 in [GTO01]), when u(x) = r (r is the interest rate and the error is
computed under the risk-neutral measure).

Theorem 4.1.1. Let m = (T %)Y be the equidistant time net.

(1) For g(x) = 1,>K, one has

1
T\2 C 1
E(z,m) = (ﬁ) ﬁ[(a?’(f()e*QerT(xo,K) +o0 <N5> ,

where Cy is a universal constant and py(.,.) is the transition density of the
process (X¢)t.
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(ii) For g(z) = (x — K)%, a € (0, 3), one has

T\t | 1
5(;2,71’) — <N> CaK1+2aO.3+2a(K)B—QT'TPT(LL‘O,K) + 0] (Nl-i-a) 5
2

where C, is a universal constant.

4.2 Generalization using fractional regularity

The above results have been extended in a series of papers by Geiss et al., and were
essentially presented in [GHO7|. In this paper, the authors studied the discrete Lo-
approximation of stochastic integrals, that arises for instance in finance when one
replaces a continuously time-adjusted porfolio by a discretely time-adjusted one, and
wants to estimate the resulting hedging error. They have characterized the rate of
this error according to the number of the time net points by some weak regularity
of the terminal function (related to the terminal value of the portfolio), expressed as
a fractional smoothness by means of a real interpolation between the Sobolev space
D1 2(7y) and La(7y) (see definitions below), where ~ is the standard Gaussian measure
on the real line (dvy(x) = \/%e_ﬁﬂdx). In [GHOT7], the choice of the diffusion process
is limited to either the standard Brownian motion or the geometric Brownian motion,
so that all the calculations use explicit Hermite polynomials expansions in order
to carry out a deterministic analysis of the expansion coefficients instead of using
stochastic techniques. In [GG04], more general, but only one-dimensional SDEs are
considered. Let us present the work of [GHO7] in more details.

Following again the notations of [GH07|, we denote by La(7) the space of functions
that are square-integrable with respect to the scalar Gaussian measure v, and (hy)32,
the orthonormal basis of Hermite polynomials of La(7):

The associated norm of a function ¢ = > 77 s aghy € La(7y) is then

1
00 2
[Nl == <Z 0‘%) < 0.
k=0

The space D 2() is defined by the subspace of La(y) composed of all the functions
¢ = peparhy € La(y) such that

o0

HqﬁHDl,Q(»y) = <Z(/€ + 1)04%) < 00.

k=0
Definition 4.2.1. 1. Let Ey and Eq be compatible Banach spaces. For e € Ey +
FEq and A > 0, the K-functional is defined by

K (e, X: Bo, Ey) = inf{leol i, + Alleall, : ¢ = eo + e},
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2. Given 6 € (0,1) and q € [1,00], the interpolation space (Ey, E1)g,q of the spaces
(Ey, E1) is defined to be the subspace of Ey+ Fy such that, for e € Ey+ Ex,

lell s 13, = [ A B e, A B, )|

LQ((Ovoo)v%
3. For 6 € (0,1) and q € [1,00|, the Besov spaces are defined by

Bg,q(’y) = (La(7), D1,2(7))o.4-

The previous fractional smoothness will be shown to be in relation with the
behaviour of an approximation a(&;7), on a time net 7, of £ = g(W7) (that will
be viewed as the sum of its expectation with a stochastic integral). Here is the
definition.

Definition 4.2.2. Let X be the Brownian motion or the geometric Brownian motion.
Given a deterministic time net T = (t;), such that 0 =ty < ... < ty = 1 and a

random variable £ € La(Q, F1,P),

N

(€ —E& =Y via(Xe, — Xoy)

i=1

ax (& m) = inf , (4.1)

Lo

where the infimum s taken over all Fy, | -measurable random variables v;—1 such that
E‘Ui—l(Xti - Xti—l)‘Q < 0.

Let £ = g(X1) and (yt, 2t)o<t<1 be the solution of the linear BSDE:

T
v = g(X1) — / 2V,
t

Then £ —E§ = & —yg = fol 2sdWs, and one has v; = z;, = ti+11_ti EF Li_i“ zsds,
which means that (see the definition (3.7) of £(Z, 7))

lax (&) = £(z, 7).
Let u(t,x) := E(g9(X1)|X¢ = z). Then
Yt = u(t,Xt), Zt = Vmu(t,Xt)a(t,Xt).

The following theorem (Corollary 2.3 in [GHO7]) characterizes the fractional regular-
ity of the function g by the rate of decreasing of the expected conditional variance
of g(X1) given X; as t goes to T. The notation A ~. B is an abbreviation for
4 < B <cA).

Theorem 4.2.1. Assume X to be either the Brownian motion or the geometric
Brownian motion. Let q € [1,00] and 6 € (0,1). Then

_9
lollng ) ~e 9oy + [ (1= 075 NoXr) =l [
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One of the main results of [GHO7] shows the link between the fractional regularity
of the function g and the behavior of ax(£;7) when 7 is an equidistant time net:
it is stated in the following theorem. For a sequence a = (ay);, of elements of a

1
Banach space, |l = (3232 [lak[?)q.

Theorem 4.2.2. Assume X to be either the Brownian motion or the geometric
Brownian motion, and T = 1. Let q € [1,00] and 6 € (0,1). Then

[e o]

6_1
lollmg ) ~e Nollagsy + || (N3 Sax (o))

where ¢ = c(0) > 1 and 7y == (£)N,.

Taking ¢ = oo in Theorem 4.2.2, the two following assertions are equivalent:

(i) g € B ().

(ii) There exists ¢ > 0 such that, for all N > 1 and 7y = (%)~,,

aX(g(Xl); 7TN) < cNfg.

The rate N~ % in the assertion (ii) above can be improved by choosing non-equidistant
time nets. Indeed, in [GGO4| (Theorems 2.3, 2.5), it is shown that assertion (ii)
implies

sup VNax(g(X1); 7)) < oo,

.1
where, for some g € (0, 6), 77% = (tVP)N, is defined by tiv’ﬁ :=1—(1—)?, which
makes the time knots more and more concentrated near the terminal time (equal to
1 here).

As stated in [GHO7], it is not clear that one can obtain a natural characterization (and
not just an implication as previously) of B% q(w) when g # 2 by time nets realizing the

optimal rate v N. For ¢ = 2, the authors showed that the three following assertions
are equivalent:

(i) g €Bj,(7).

(ii) There exists ¢y > 0 such that, for all N > 1 and 7 = (t;)Y,

N

t, —t;_
ax(g(X1);m) <cz sup (2—211)_
i=1,...,N (1 — ti_l)T

(iii) There exists c3 > 0 such that, for all N > 1,
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Either in the results of Gobet et al. [GT01] or Geiss et al. [GHO7|[GGO04], the con-
stants depend on some suitable integral of the second moment of the second derivative
of the function u. Indeed, Lemma 3.10 in [GHO7| states that, for g € La(7) and a
time net m = (t;)X,,

N t; 2'LL
ax(9(X1);m) ~e¢ <Z/ (ti —T)E‘%(T, W)
i=1"ti-1

That is why the study of the order of £(z,7) often reduces to that of the rate of
inreasing in time of the Lo-moment of the second derivative of u.

4.3 Other related works on sensitivities involving frac-
tional regularity

This issue was investigated by Gobet and Munos [GMO5b]. In this paper, they gave
some sensitivity formulae for the expected cost J(a) := Eg(X$), where (X{*)o<i<7 is
a multidimensional diffusion process with initial value Xy = x, and whose dynamics
depends on a parameter a:

XQ =, ‘ (4 9
dXy = 0b(t, Xy, a)dt + 375, 0;(t, X, )dWy. 2)

The terminal functions g that were considered were the bounded measurable func-
tions satisfying the following fractional regularity for pg > 1:

/T |g(X7T) —Eft(g(XT))HL,,O gt < (4.3)
0 , .

T—-1

which is satisfied for instance by uniformly Hélder continuous functions and by the
indicator function of a domain (under some conditions on this domain). It is also
satisfied, in the case of X = W and pg = 2, by functions g € ﬁ0<9<1Bg72(7) given
by Theorem 4.2.1.

Using It6-Malliavin integration-by-parts techniques, the authors gave representation
formulae for V,u(t, X;) and D?u(t, X;) (u(t, ) still stands for E(g(X7)|X; = z))
in terms of g, assumed to be only bounded (see Theorem 2.11 in [GMO05b| and its
proof):

Vault, X,) = B7 [g(Xr) B3] |

D2u(t, X;) = B" |g(Xr) 7|,
where H t(lT) and H t(QT) are suitable Malliavin weights that have explicit forms (see
formulae (5.47) and (5.48) in Appendix 5.A, valid when d = ¢), and that can be

then estimated using the condition (4.3). We will refer to these techniques in our
work, using a bit different type of fractional regularity instead of that given by (4.3).
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4.4 Conclusion

Our objective is threefold: to extend the results of [GT01] to any terminal function g
having some fractional smoothness, to take a multidimensional diffusion X instead of
the one-dimensional one in [GHO7]|, and to study the associated Lo-regularity of the
Z-component of general BSDEs with non null generator, according to the fractional
regularity of the function g.

We first establish, in the null driver case, the equivalence between the fractional
regularity of g and some estimates on the Lo-moments of the derivatives of the
function w, from which we deduce the behaviour of £(z, 7). Then, showing that the
non null driver case is just a perturbation of the null driver one, we state the results
for £(Z, ).



Chapter 5

Lo-time regularity of BSDEs with
irregular terminal functions

This chapter corresponds to an article submitted for publication in “Stochas-
tic Processes and their Applications*, currently under minor revision.

5.1 Abstract

We study the Lo-time regularity of the Z-component of a Markovian BSDE, whose
terminal condition is a function g of a forward SDE (X;)o<;<7. When g is Lipschitz
continuous, Zhang [Zha0O4| proved that the related squared Lo-time regularity is of
order one with respect to the size of the time mesh. We extend this type of result to
any function g, including irregular functions such as indicator functions for instance.
We show that the order of convergence is explicitly connected to the rate of decreasing
of the expected conditional variance of g(Xr) given X; as t goes to 7. This holds
true for any Lipschitz continuous generator. The results are optimal.

5.2 Framework

In the past decade, a lot of attention has been paid to the numerical resolution of
Backward Stochastic Differential Equations (BSDEs in short). In this work, we focus
on Markovian BSDESs, that is the case where the BSDE is coupled to a forward SDE.
For fixed initial condition xg and terminal time 7" > 0, it writes

Xo =,
dX; =0b(t, Xy)dt + o(t, Xy)dWr,
—aYy = f(t, X, Ys, Zy)dt — Z;dWy,
Yr =g(Xr),

(5.1)

where g(X7) € Lo, W is a standard Brownian motion. A solution to (5.1) is a
triplet (X,Y,Z) adapted to the filtration of the Brownian motion, and in some
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appropriate Lo spaces (defined later). When the generator f equals 0, Y is given by
the conditional expectation Y; = E7t(g(Xr)) and Z is the predictable process arising
from the predictable representation theorem. This type of closed representation can
be extended to f that are linear w.r.t. the variables y and z (called linear BSDEs). In
the other cases (truly non linear), usually no closed representation is available and one
needs to compute numerical solutions. As explained later, the corner stone to derive
a rate of convergence for numerical schemes solving (5.1) is the Lo-time regularity
of Z. Tt is defined for a given time mesh 7 = {0 =ty < --- <t; <--- <ty =T} by

N-1 tivt B
E(Zm)=> E/t' | Zy — Zy,|%dt (5.2)

where Z;, = tiﬂl—ti FFt; ftii+1 Zsds. Note that Z;, is the projection of (Zs)ti<s<tis
on the space of F;,-measurable random variables, according to the scalar product
< u v >= Eftii“ usvsds. The objective of this work is to provide tight esti-
mates of £(Z, ), according to the regularity of the function g and the mesh size
|| = supg<;<n(tit1 — t;). In all the sequel, we only consider time mesh with N

deterministic points.

5.3 A brief account on numerical methods for BSDEs

There are three main approaches for the numerical solution of (Y, Z) (the simula-
tion of forward component X is standard). Firstly, under appropriate conditions,
Y: = v(t, Xy) where v solves a semi-linear PDE (and Z is analogously related to the
gradient of v) (see [Par98] for instance): hence one may solve this PDE by determin-
istic methods and then, we get Y by simulating X. Secondly, one may approach the
BSDE by a sequence of linear BSDEs (Picard iteration scheme): this is efficiently
achieved by Gobet and Labart [GL09], by coupling the resolution with iterative con-
trol variates that drastically improves the accuracy. The third approach is strongly
related to the motivation of this work: it uses a backward dynamic programming
equation of the form (i < N)
YT =B (YT |+ (ti — ) f (6, X0, YiT L ZE)), (5.3)
Zg; = mEfti(}/vt?+l(Wti+1 - Wti)*)7 -
where * denotes the transposition and Y;7 = g(Xr). In addition, possibly X can
be replaced by a process easier to simulate (Euler scheme for instance) and close to
X. The equations (5.3) defines an explicit scheme but it could be implicit as well,
replacing in f the quantity Y by Y;T: this does not modify the convergence results.
The next big issue would be how to compute the conditional expectations: we do
not discuss these aspects here and we refer to [BP03| for quantization techniques,
to [BT04] for Malliavin calculus tools, to [GLWO06] for empirical regression methods.
Let us focus on the error estimate between (Y™, Z™) and (Y, Z). Actually under
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standard Lipschitz assumptions on f, it is now well known (even in the more general
case where jumps are included in the equations, see [GL06|) that the error can be
estimated as follows:

N-1
e(YT =Y, Z" — Z,m) = sup E(Y] -Y,)*+ Z E/ ZT — Zy|*dt
0<i<N —  Ju

< C(|n|+&(Z,m)).

Thus, it is clear that the Lo-time regularity of Z plays a crucial role in the rate of
convergence of the dynamic programming equation (5.3).

5.4 Known results on the Lj-regularity of 7

In the BSDE framework, the best result to our knowledge has been obtained by
Zhang |ZhaO4]: £(Z,n) is of order |r| when g is a Lipschitz continuous function.
Consequently, e(Y™ — Y, Z™ — Z,m) is also of order || and uniform time grids (¢; =
iT/N) are sufficient for the approximation scheme. However, in practice g may be an
indicator function: in that case, one expects that it worsens the rate of convergence
E(Z, ) to 0. Actually, this downgrade phenomenon is well known when the generator
f is null. This problem is related to the approximation of stochastic integrals and
of hedging strategy in finance. In [GTO01], it is proved for instance that for indicator
functions in dimension 1, one gets £(Z, ) = O(N~1/2) for an uniform time grid.
In fact, any rate N~ with « € (0,1) can be obtained, by picking an appropriate
non smooth function g,. The larger « is, the smoother g, is. The above results
are extended by Geiss and his coauthors (see [GHO7| and references therein) by
considering functions g in a Besov space BY, (a € (0,1]). For a uniform time
grid, they prove that the regularity index « exactly gives the rate of convergence:
E(Z,m) = O(N~%). In addition, to get the rate N~! using a grid with N points,
one has to consider points appropriately concentrated near T. However, their results
are restricted either to the Brownian motion case for X (as in [GHO7]) or to one-
dimensional time-homogeneous SDEs (as in [GG04]).

The purpose of this work is twofold: firstly, to extend this type of results to
general SDEs; secondly, to deal with general BSDEs (i.e. with non null generator).

5.5 Summary of our results
For general SDE model, the characterization of the rate of convergence of £(Z, ) in

terms of Besov space is no more relevant. It appears more natural to consider the
following space (« € (0,1])

Lo, = {g s:t. E(g(X7)?) + sup Elg(Xr) — B (9(X7)))" < 400} (5.4)

0<t<T (T —t)~
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It describes the rate of decreasing of the expected conditional variance of g(Xr)
given F; as t goes to T'. If X is a Brownian motion and 7" =1, g € La , is equivalent
to g € B, provided a # 1 (see Corollary 2.3 in [GHO7|). However, the current
characterization is more flexible because it is adapted to the process and the time
horizon T (see [GGO4] in dimension 1). In addition, we show that this quantity is
intrinsic to the the time regularity of Z (even in the BSDE case). For uniform grids,
the rate of convergence is of order N~ (Theorem 5.9.2, (a)). Also, one can take non
uniform grids to get the rate N=! (Theorem 5.9.2, (b)). To achieve these results,
we first estimate the error in the null generator case (thus extending the results by
Geiss et al. in a non trivial way) (Theorem 5.7.1, Theorem 5.7.2 and Corollary 5.7.2).
Then we prove that the non null generator case (involving (Z;);) is a perturbation
of the null case (with (z;);), so that the former results still apply (Theorem 5.9.1):

E(Z,m) < C(E(z,m) + |7|).

More precisely, we establish that Z is the superposition of z plus a time smoother
term (Theorem 5.8.1). This result seems to be original in our framework. It allows
us to reduce the study of the Ly time regularity of Z to that of z (the former case)
and that of the smoother term (which is easier). The decomposition may be also
interesting to get tight estimates on the behavior of Z as t goes to T' (Corollary 5.8.1).
Our proof relies on stochastic analysis techniques combining PDEs, martingales, 1t6
calculus and BSDEs in L, (p € (1,2]). We mention that usually with these tools,
g is supposed to have a polynomial growth, ensuring that g(Xr) is in any L, for
p > 0. Here we stress the fact that we only assume g(X7) € Ly which is the minimal
condition to discuss the existence and uniqueness of the solution of (5.1) in Ly spaces.

We finally discuss the choice of time grids (uniform or alpha dependent) and the
optimality of the results.

5.6 Preliminaries

Hereafter, W is a ¢-dimensional Brownian motion, defined on a filtered probability
space (€2, F,P), where (F;)o<t<r (T is a fixed terminal time) is the natural filtration
of W, augmented with P-null sets.

We denote the conditional expectation E(X|F;) of a random variable X by E¥*(X).
A <. B means A < ¢B with a constant ¢ depending on T,b,0, f and universal
constants.

For a r x ¢ matrix A (r,¢c > 1), that will be considered as an element of R"*¢,
A* stands for its transpose, A; for its jth column, and |A| for its Euclidean norm
(|A] := /Tr(AA*)).

If ¢ : RPT — RP? ig a differentiable function, its gradient V,p(z) = (95, ¢(2), ...,
Oz, p(x)) takes values in RP2*P1.

If pp = 1, D?p(z) := (8%1,@]_@(1'))@'7]':1___(1 stands for the Hessian matrix of ¢ and takes
values in RP1*P1,
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a) The forward component:

XO = Xy, (5 5)
dXt = b(t, Xt)dt + O'(t, Xt)th, '

where X,z9 € R?, b:[0,T] x R — R4, o :[0,T] x R? — R4, We will assume
that the coefficients of this SDE satisfy the following assumption:

(Ap) The functions b and o are bounded and twice continuously differentiable
with respect to the space variable, with uniformly bounded and ~-Hélder con-
tinuous derivatives, for some v € (0,1]. In addition, b and o are %—Hélder
continuous in time. o is also assumed to be uniformly elliptic: there exists
§ > 0 such that, V(t,x) € [0,T] x R, [oo*](t,z) > 614

We denote by VX, the gradient of X with respect to zg, and by (DyX;)o<i<s its
Malliavin derivative (see [Nua05]). It is known that (VXy)s>0 and (D;X)s>¢ satisfy
the following linear SDEs

s q s )
VX, =1+ / Vab(r, X, )V Xpdr + / V.0;(r, X, )V X, dW7; (5.6)
0 . 0
7=1

s q s )
Dth:U(t,Xt)—{—/ V. b(r, X, ) Dy X, dr + E / VxO'j(T,XT)DterWﬂ. (5.7)
t t
7=1

The following estimates are standard results in SDE literature.

Lemma 5.6.1. Assume (Ap,). For any p > 2, there exits a constant C), such that
E sup [X. < Gyl + Jzol?),
0<s<T
E|X, — X [P < Cpls — t]2.

From equation (5.6), one gets the following estimate, that will be used in this
work (it is a standard estimate if ¢ = 0; one can deduce the estimate for ¢ # 0 since
VX,[VX;]~!is the derivative of X, with respect to X;):

E** sup |[VX,[VX,]7'P < C,. (5.8)
t<s<T
Since
DX, = VX (VX)) Lot, Xi)l<s (5.9)

and o is bounded, the same estimate applies to (DyXs)i<s<7-
b) The backward component:

{ _d}/t = f(thh}/;fa Zt)dt - thWt7 (5 10)

Yr =g(Xr).
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We define the space SP to be the set of continuous adapted processes Y such that

E[ sup \Y}]p] < —o00,
te[0,7

and MP the set of predictable processes Z such that
T 2
B( [ 12Pd)") < +oc,
0

In the following, Y is always considered as a one dimensional process, but we think
that all our study would remain valid if it were multidimensional (the analysis,
however, would be more intricate since we have a system of coupled PDEs in this
case).

A solution to (5.10) is a triplet (X,Y, Z), where X is a continuous adapted R%-
valued process with E(sup,«p | X;|?) < +00, solution to the SDE (5.5), and (Y, Z) €
82 x M2. We make use of the following assumption on the generator:

(Af) The function f is continuous with respect to its four arguments, and
continuously differentiable with respect to (x,y,z) with uniformly bounded
derivatives. Moreover, fOTIf(s,O,O,O)]ds < +00.

In Theorem 5.9.3, f is assumed to be only Lipschitz continuous in (z,y, z), but not
necessarily continuously differentiable.

Under the assumptions (Ap,) and (Ay), and when E|g(X7)[* < +o0, the FB-
SDE (5.1) has a unique solution (X,Y,Z) € §? x 82 x M2

c) Linear PDE and linear BSDE. Some of our intermediate results require
the following boundedness assumption on the terminal function g:

(Agy) g is a bounded measurable function.

Under the assumptions (A ) and (Ag), and setting u(t,z) :=E {g(X%m)}, one has
u(t,z) = [gap(t,z;T,y)g(y)dy where p is the probability transition density function
of X. It is well known that p is a smooth function for ¢ < T' (see Friedman [Fri64]) and
this regularity transfers to w since g is bounded. Indeed, Gaussian type estimates on
p and its derivatives enable us to apply the Lebesgue derivation theorem. Of course,
boundedness assumptions are too strong for this statement, and sub-exponential
growth would be enough. However, assuming only at this stage that g is such that
E(g?(X7)) < +00 leads to technicalities that we have not been able to overcome.
To sum up, under (Ay), V,u, D?u, &2u, dyu, 0;Vu exist and are continuous for
t < T, and u is the smooth solution (on [0, T) x R?) of the partial differential equation
(PDE)

d d
1
Ou(t, ) + E bi(t, 2)0y,u(t, z) + 3 g [aa*]i7j(t,x)@ii@ju(t,x) =0fort<T,
i=1 ij=1

u(T,x) = g(x). (5.11)
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Let (y¢, 2t)o<t<T be the solution of the linear BSDE:

T
Yt = g(XT) - / 2sdW. (512)
t

Then
Yt = u(t, Xt), 2t = Vmu(t, Xt)O'(t, Xt) (513)

d) The space Ly,. For a measurable function g satisfying E|g(X7)|? < +o0,
we set

2
Vir(g) = E|g(Xr) — E™ (9(X7))|", (5.14)
and, when g belongs to Ly ., we define K*(g) as

e! L 2 . Vt,T (9)

K%(g) == Elg(X7)|” + teb[tolg) T =05
Notice that |J ac(0,1] Ly , obviously contains uniformly Holder continuous functions,
but also some non-smooth functions, such as the indicator function of a domain
(under some conditions on the functions b and ¢ and on the domain: see Gobet and
Munos [GMO05b]).
Examples:
- If g is 3-Holder continuous, then g € Lo g.
-lfd=g=1, X =W and g(z) = 19 4o0)(z), then g € Lz,% (see paragraph 5.7.2).
- More generally, for an indicator function of a smooth domain (a domain whose
boundary is compact and of class C?), g € LZ%.

e) The time net. In all what follows, 7 := (tx)k—0..n is a deterministic time
net, such that 0 =ty < t; < ... <ty =T, and || := supp_y_ n(tx+1 — tx). We shall
use the following net (3 € (0, 1])

7 = [V ::T—T(l—%)%,ogng}. (5.15)
Note that 7)) = (tlgN’l)) coincides with the equidistant net. For 8 < 1, the points in
7(#) are more concentrated near 7.

f) The constants. We emphasize the fact that, whenever a constant depends on
the function g, the dependence will be expressed explicitly, so that all the constants
such as C' or ¢ do not depend on g, but may depend on b, o, f, @ and other universal
constants. They may also depend on T', but remain bounded when 7" — 0.

5.7 The BSDE with null generator (f = 0) and bounded
terminal condition g

5.7.1 Main results

In this section, we study the solution (v, 2¢)o<t<7 of the BSDE with null generator,
and with terminal condition g(X7). We derive estimates that will be usefull for the
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next sections, and in particular we study the Lo-regularity of the integrand (z;)o<¢<7-
It is known for years that the Lo-time regularity of z is strongly related to the rate of
explosion of the derivatives of u(t, x) as t goes to T' (see [GT01], [GG04] and [GHOT7]).
We give below standard and also new related estimates, that will be useful in the
proofs.

The following estimate is standard:

T
B sup |+ B [ [aPds < Blg(Xr)P, (5.16)
0<t<T 0
and, it follows from (5.13) and (5.16), under the ellipticity assumption,

T
B sup [ult, X)P 4B [ [Vouls, X)Pds <. BlgCXnP, (6.7
0

0<t<T

We now bring together different estimates on V,u and D?u in terms of the suitable
integrability of V; r(g) as t goes to T'.

Lemma 5.7.1 (Lo-estimates for v and its derivatives). Assume (Ap o) and (Ag).
Then, there exists a positive constant C, such that, for allt € [0,T),

Elu(t, X;)[* < E|lg(X7)[%,

Vi
E|V,u(t, X,)|? < CL@,
T—1
Vir(g)
E|D?u(t, X;)|? < Cmm22s
| u(’ t)| = (T—t)2
For the proof, see section 5.7.3. The powers of (T' — t) appearing in Lemma
5.7.1 are standard, but note that the Lo-norms depend on Vi r(g) but not on the
supremum norm of g.
The following estimate, which is a consequence of Lemma 5.7.1, will be usefull

in our work:

Corollary 5.7.1. Assume (Ap,)and (Ag). Assume moreover that g € Lo, for
some a € (0,1]. Then, there exists a positive constant C, such that

T 2
E</ |Vmu(t,Xt)|+|D2u(t,Xt)|dt> < CT*K“(g).
0

For the proof, see section 5.7.3. We will show (see the proof of Theorem 5.7.2),
that

N-1

T+ 1 N1 ety
SB[ alds g+ [ ten - EID (X, Par
k=0 7tk k=0 vtk
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(and we have equivalence if (X;); is the Brownian motion).
Now, Geiss and Hujo [GHO7| (Lemma 3.8) showed that, if ¢ : [0,7) — [0,00) is a
non-decreasing continuous function, then

N=1 (N0 . .
N —

Z /t(N’B) (téhﬁ) —r)e(r)dr < ~ = /0 (T — ) Pp(r)dr < cc. (5.18)

k=0 """k

If (X¢); is a Brownian Motion, (D?u(r, X,.)),<7 is an Lo-martingale, which easily
implies that o(r) = E|D?u(r, X,)|? defines a non-decreasing continuous function.

In the following proposition, we give two (more explicit) new characterizations of the
integrability of (T — 7)™ Py(r).

Proposition 5.7.1. Let 3 € (0,1), and assume (Apy), (Ag). Then the following
assertions are equivalent:

T
(i) / (T — 1) PE|D?u(r, X,)Pdr < +oc.
0
T
(ii) / (T = r)PE|Vyu(r, X,)Pdr < +oc.
0

T
(iii) / (T — ) 1PV, 1 (g)dr < 4o0.
0
For the proof, see section 5.7.3.

Remark 5.7.1. Actually, in the above result, the boundedness assumptions of g can
be relazed into a sub-exponential growth condition.

The characterizations given by Proposition 5.7.1 are no longer true when § = 1.
A counterezample is given by g(x) = x with (Xy) = (W), which gives u(t,x) = x
:assertion(i) is satisfied, but neither (ii) nor (i) are. In fact, it can easily be
seen that if we take any infinitely smooth but non constant function g (always with
(Xt) = (Wh)), the assertion (iii) is never satisfied with = 1.

That’s why we did not define the space Lg g as the space of functions satisfying the
assertion (iii) : otherwise, a Lipschitz continuous function such that g(z) = x would
belong to Lo g with § < 1 but not to Ly 1. Thus, it would imply (see below) to work
with the non equidistant time grid 78 instead of the equidistant one as it has usually
been done when one has a Lipschitz continuous terminal condition.

And it is clear that, if g € Lo o (o < 1), then all the three assertions of Proposition
5.7.1 are satisfied with 8 < a.

Now, we state tight estimates on V,u and D?u according to g € Ly for a € (0,1]
(note that o = 1 is allowed).

Lemma 5.7.2. Let a € (0,1], and assume (Ap,) and (Ay). Then the three follow-
ing assertions are equivalent:

(Z) g < Lg,a,

(i1) 3C*(g) > 0, such that, Vt € [0,T),

t co
/0 E |D2u(s, X,)|* ds < %.
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(111) 3C*(g) > 0, such that, Vt € [0,T),
C*(g)
(T —t)l—o
And, if g € Ly, one can take C*(g) = CK*(g) in (1) and (iii).
If a < 1 (resp. o = 1), the previous three assertions are also equivalent to (resp.

lead to) the following one:
(iv) 3C*(g) > 0, such that, ¥t € [0,T),

E |V u(t, X,)]* <

E|Du(t, X;)|* <

(and one can take C*(g) = CK*(g)).

Remark 5.7.2. The assumption "g € Lg o " is natural in our framework, if we want

a rate of convergence for ij\f:—ol E fti’““ |25 — Z,, |2 ds which is polynomial with respect

to the time-step ||. In fact, Geiss and Hujo [GHO7] (Theorem 1.3 and Theorem 2.1)
showed that, if B is either the Brownian motion or the geometric Brownian motion,
then the following assertions are equivalent (o € (0,1)):

(GH-i) 3C > 0,Vt € [0,T),

E |V u(t, Bt)|2 < m.

(GH-ii) 3C > 0 such that, for all time-nets T = (tg)k=0..N,

N-1 b1 C
z : = |2

E/ |Z3_Ztk| dSS m
k= b

Lemma 5.7.2 shows that the assertion (GH-i), written with a general diffusion X
instead of B, is equivalent to the assertion "g € Lo " (even for ao=1).

The previous estimates are sufficient to assert that, if g € Lg 4, then the equidis-
tant time net provides an £(z, 7)) of order .

Theorem 5.7.1. Assume (Ap,) and (Ag). Assume moreover that g € Lo, for
some « € (0,1]. Then, with the choice of the equidistant time net,

gy Hy 2 T\
E(z, 7V = Z E/(N ., ds < CK%(g) <—>
k=0 “h

N
(where C' does not depend on N ).

Proof. One knows by (5.13) that zs = V,u(s, Xs)o(s, Xs). Thus, by a projection
argument, one has

tei1 th+1
IE/ |25 — 2, |2ds < IE/ |25 — 21, |2ds

ty ty

Zs — Z,(N,1)
iy

tet+1
= IE/ |Vau(s, Xs)o(s, Xs) — Vau(te, X, )o(te, th)|2ds.

g
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Now, write Vou(s, Xs)o(s,Xs) —  Vaulty, Xy, )o(te, Xt,) =
Vaou(ty, Xe,) {o(s, Xs) — o(tr, X3,)} + {Vau(s, Xs) — Vau(te, Xt )} o(s, Xs). Then,
using the assumptions (Aj ), and for s € [ty, tgp41],

E|V,u(s, Xs)o(s, Xs) — Vaeulty, Xi,)o(te, Xy, )|

1 2
<.E { <|5 X, — th|) |V$u(tk,th)|2} +E|Vau(s, Xs) — Vau(ty, Xy, )2
= F1 + FEs.

Clearly, and by means of Lemma 5.7.1,

K(g) K*(9)
El Sc ‘W‘E‘qu(thth)‘Q S ‘ﬂ-‘ (T _ tk)l_a S ‘ﬂ-‘ (T _ S)l—a'

As in the proof of Proposition 5.7.1 (see (5.22)), one gets the general estimate (under

(Ag))

Es gc/ E\vxu(r,Xr)dewr/ E|D?u(r, X,)|?dr

ty ty

“(9) /8 2 2
< |r|—F— + E|D?u(r, X,.)|*dr
e | EID%u(r, X))

using (iii) Lemma 5.7.2. Therefore

T 1 N-1 tei1 S
E(z,m) <. |7T|Ka(g)/ ﬁds+z/ / E|D?u(r, X,)|*drds
0 (T_S tE tr

tet+1

= |7|K%(g)T* + Z/ (tps1 — 7)E|D?u(r, X,)|*dr, (5.19)

where we have used an integration by parts. Note that the above upper bound is
available for any time net .
Now, if 7 is the equidistant time net, £(z,7(1)) is bounded (up to a constant ¢) by

Ta+1 T Tf% T
K%(g) + = E|D?u(r, X,)|?dr + (T — r)E|D*u(r, X,)|*dr.
N N Jo -z

Using Lemma 5.7.1, one gets

£(em M) <, Ko () o N/T L(g)d +/T _K*9)

N —r)? T (T —r)l-«
o (5] o 5
K%(9) (%)a
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To get the rate % in the case a € (0,1), one should consider time nets with a
higher concentration of points near 7' to compensate the faster rate of explosion of
(D%u). For non equidistant time nets, we state the following universal bounds.

Theorem 5.7.2. Assume (Ap,) and (Ag). Assume moreover that g € Lo, for
some « € (0,1].

Now, take =1, if a = 1, and B < « otherwise. Then, AC' > 0 such that, for any
time net m = {tg, k = 0...N},

_ tpr1 — g
E(z,m) < CK%(g)T% x| + CKY(¢)T*® su <7>
(2.7 < CRO T | + CK* )T sup (A=

Proof. Owing to inequality (5.19), £(z,m) is bounded by

_ T
C| |7 K“(g)T* + sup sup <7tk+1 1Tﬁ> / (T - r)lfﬁE]DQU(r, X,)|dr | .
k=0..N—1reltg,tpt1) (T—r) 0

Now, for r € [tg, tgt1),

tk+1 - - tk+1
— ’I“ 1 T8 <1 ) (T — 7’)5
— tk—i—l 8 le+1 — Uk
1-— T — ¢ = _fT. R
<(1- T oy -
which leads to sup,cs, 1, ) <(;k Tllrﬁ> _ (;k+t1)tk Then,

tpoiq —t T
E(m) <o 7K (9)T* + sup (7’“*1 ig) | @ = mntue xR
k=0..N—1 \ (T —t) 0

If 3=« =1, then, from Lemma 5.7.2, one has fOTE]D2u(7°, X)) [2dr <. K%(g).
And, if § < a < 1, then, from Lemma 5.7.1,

T T Ka(g)
| @ Ente xR <. @ - N e dr < K (g) T
0 0 -

~—
[\

We conclude that, in both cases,

T
/ (T =)' PE| D2u(r, X,)[2dr <, K(g)T*".
0

The proof is complete. O

Corollary 5.7.2. Assume (Aps), (Ag), and that g € Lo, for some a € (0,1]. Let
B be as in Theorem 5.7.2. Then, with the choice 7%) (defined in (5.15))

N-1 +(N.06)
k+1
=Xz
LN8)

k=0

e L Te
Zs — Ztlgv,ﬁ)‘ ds < CK*(9) %~

(where C' does not depend on N ).
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@l

Proof. Recall that téN’ﬁ) =T-T(1- . Since the function r +— T — T'(1 — ’I“)%

is concave on [0, 1], one has

S |
T B
(o) e o T (1_£> .

k+1 ~ BN N
Therefore,
N,3 N,3 1_
Tty S A (et O LN i
T = .
(T_tlgNﬁ)) ﬁNTl 5(1_%)5(1 B8) BN
This, combined with Theorem 5.7.2, proves Corollary 5.7.2. U

5.7.2 Optimality of the time net

One may raise the following question: if o < 1 and g € Lo,, is the time net

7B) = {t,gN’B) :0 <k < N}, with 8 < «, optimal? In other words, can we take
[ = « s0 as to have a rate of convergence of %? It follows from the previous results
that the answer is no. Let us give a counterexample.

Let g(x) = 1jg,0)(2) and (X;) = (W;). Then

u(t,z) =P(x + Wpr — W, >0),

/ 1 z?
uy(t,x) = = eXp_Q(T—t)’
) 1
BV, ult, X’ = /R S P b e (s
T+t
= = v o e
1

T oI L tT — ¢t

which is equivalent to (T — t)_l/Q, up to a constant, when ¢ — 7. Then, it follows
from Lemma 5.7.2 that g € Lo, with o = 3 (but not with a > 3).

However, assertion (ii) of Proposition 5.7.1 cannot be satisfied, for this example, with
f=a= %, so neither assertion (i) (which is necessary to have the rate %, in view
of the equivalence (5.18)) is

Remark 5.7.3. If the assertion (iii) of Proposition 5.7.1 is satisfied for some 3 < 1,
using analogous arguments we obtain that the rate of convergence is ﬁ with the

equidistant time net 74, and % with the non equidistant net 7).
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5.7.3 Proofs

Proof of Lemma 5.7.1.

- Estimate on u. One has u(t, X;) = E7tg(X7), so Elu(t, X})|? < E(EFt|g(X7)])? <
Elg(Xr)|*

- First derivative of u.

Suppose first that d = ¢q. Then, under the ellipticity assumption, o is invertible. It
is known that, V¢t € [0,T"), Vu(t,.) can be represented as a conditional expectation
(see Gobet and Munos [GMO05b| among others):

Vault, Xi) = E7 [g(xr)HY)]

where HST) is the random variable (called Malliavin weight) given by

1 T
HY = — [ o7\ (s, X,)VX,[VX,] " dW,.

One uses the estimate (5.8) to get

1 T _
Eft|H§}T)|2 < m/t EFH VX, [VX,] Y 2ds <. it

Now, since Eft(Ht(lT)) = 0, one can write V u(t, X;) = Eft[(g(XT)—Eftg(XT))Hfljz].

The Cauchy-Schwartz inequality yields

E”t|g(Xr) — E7tg(X7p)|?

|vmu(t,Xt)|2 <c T _¢

(5.20)

So, we obtains E|V u(t, X;)|? <. WT’L_(;C’).

If d # q (and always under the ellipticity assumption on o), there exists a d x
d symmetric invertible matrix ¥ such that oco* = Y2 (see Stroock and Varadhan
[SV79], Lemma 5.2.1, to define a square root of o0o*). In addition, ¥ satisfies the
same regularity estimates as 0. Then, one can carry on the proof above, replacing o
by ¥, since the PDE (5.11) satisfied by u depends on o only through oo*.

Second derivative of wu.

Suppose first that d = ¢, hence o invertible. It is also known (see again Gobet and

Munos [GMO5b]) that Vt € [0,T), there exists a random variable HéQT) such that

D2u(t, X;) = B"* |g(Xr) 7|,

and we can prove (as for the previous estimate) that Ht(? satisfies,
1
E7HZ =0,  ETHZP <

(T —1)*
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Then the proof of the estimate of E|D?u(t, X;)|? is the same as for E|V u(t, X;)|?.
Note that the existence of Ht(zT) relies on the existence of V(V.X), which holds under

(Ap) because b and o are both of class C*™7 (v > 0).
If d # q and oo™ is elliptic, we proceed as for V, u using the matrix 3 = (O‘U*)_l/z.

O

Proof of Corollary 5.7.1.
First, note that

T
E(/ Vou(t, X)| + |D?ult, X,)|dt)*
0

NI
=

T 2 2 4 2 2 2
§2{/0 (E|Vau(t, Xy)|?) 2 dt} +2{/0 (E|D?u(t, X;)[?)2dt}",

using the generalized Minkowski inequality. Besides, from Lemma 5.7.1, and using
that g € Lo o, one obtains

K(9) 2 K%(g)

2 2

E|Vu(t, X¢)|” <. [(EDE E ‘D u(t,Xt)‘ <c (T —1)p2a

Now, the required result easily follows. O

Proof of Proposition 5.7.1.
We prove that (i)= (ii)= (iii)= (i).
(i)= (ii). By Ito’s rule,

t
O, u(t, Xt) = O0g, u(0, Xo) +/ {V(0z,u)o} (s, Xs)dWs
0
t
+ / {atamku + V(0z,u)b + %Tr [00* D (9, 1)) } (s, Xs)ds.
0

In order to get rid of the terms 0;0,, u and D?(d;,u), differentiate the PDE (5.11)
solved by w:

0 =0y, (atu + Vub + %Tr [O‘U*DZU])

1 1
= (00p,u+ V(9 u)b + ETr [00*D* (95, 1)]) + (Vudyb + §Tr [0z, (00*) D?ul).
Consequently
t
O, u(t, X3) = 0y, u(0, Xo) — /0 {Vu@xkb + %Tr [0, (00*) D?u] } (s, Xs)ds

n /t (V(0y, u)o} (5, X )dWs. (5.21)
0
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Then,

E |V u(t, X;)[? ZE\@MU t, X))
k=1

t 2 t
SCE!VgCu(O,Xo)!QJrE(/ {\VxUI+\D2u\}(S,Xs)dS> +/ E|D?u(s, X,)[*ds
0 0

t t
chyvggu(o,Xo)y%r/ E\qu(s,XS)\st—i—/ E|D?u(s, X,)|*ds (5.22)
0
Ka( ) 2 ! 2 2 o
<c Ti-a +Elg(X7)|*+ | E|D*u(s, Xs)|"ds := ¢(t). (5.23)
0

Then, by integrating by parts, one has

T s
/ (T — ) PE|Vu(r, X,)2dr <. E / (T — ) Po(r)dr
0

([T ol i),

Note that the first term in the limit is bounded by % (Ka,(g) + E]g(XT)P).

Tl—«a
The second term is bounded by ﬁ fOT(T — r)'=PE|D?u(r, X,.)|?dr, which is finite
because assertion (i) is in force.

(ii)= (iii): the proof is similar to the previous one. In view of (5.12-5.13), one
has

5 T
E|g(X7r) — EF(9(X7))] gc/ E|V,u(s, X,)[?ds := U(r).

Then, using an integration by parts, one gets

/OT(T —r) PR |g(Xr) — EF (Q(XT))|2 dr

S

< Jdm [ (T —r)" 1 Pu(r)dr

STT 0

— ([(T—r)B ]8 1/3 -3 9 >
<clm|[||————Y(r)| + = T —r) PE|V u(r, X,)|“dr ] .

i (| v +5 [@ -0 Emwa.x)

The second term is finite according to assertion (ii). The first one is bounded by
L ar <t (-0 :
lim— E|V u(r, X;)|[?dr < lim— T —r) PE|Vu(r, X,)|"dr,
i | BV Xo)Par < (7= ) VB[Vl o)

because (T' — r)~? is increasing with respect to r. The limit above equals then to 0
since the related integral is convergent.
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iii)= (i). From Lemma 5.7.1, one has E|D?u(r, X,)|? <. VTE(@, from which we
) (T—r)
deduce (using assertion (iii)) that

T T
| =R X <. [0 =) V(g < +oc.
0 0

Proof of Lemma 5.7.2.
We prove that (i)= (ii)= (iii)=(i).
()= (ii):

t d t
/E|D2u(s,Xs)|2ds:Z/ E|V (9, u)*(s, Xs)ds
0 k=1 0
d ¢
ch/ E|V(05, w)o (s, X, )ds
k=170

by the ellipticity assumption. Then, by the isometry property and equality (5.21),
one gets that f(fE|D2u(s,Xs)|2ds is bounded (up to a constant) by

d t
ZE(/ V(O )0 (s, Xo)dWs)?
k=
d
Z Bxku (t, Xt) — Oz, u(0, Xo) / {Vu@xkb—i— Tr[@xk(aa )D2 ]}(s X )ds)
k=1
ch|v$u(t,Xt)|2+E|v$u(o,X0)\2+E(/ {IVaul + [D?u|} (s, X, )ds)*
0

K“(g)
—C (T _ t)lia

K*(9)
+ Tlfa + Ka(g)Ta?
where we have used Lemma 5.7.1 and Corollary 5.7.1.
(ii)= (iii): this is an immediate consequence of the inequality (5.23).
(iii)= (i): from equation (5.12), one gets

T T o
Vt,T(g) Sc/ E’VQCU(S’XS)’Q ds Sc/ Lgl)i
t ‘ (T ) a

ds <. C*(g)(T — )%,

which means that g € Lo ,.
The fact that (i) leads to (iv) follows from Lemma 5.7.1, and it is clear that,
when a < 1, (iv) leads to (i). O
In the following section, we state some results on Z; — z; that, put together with
those of section 5.7, will be crucial to study the Lo-regularity of the Z-component of
BSDEs with non null generator.
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5.8 A representation and an estimate of Z; — z; when the
terminal condition g is bounded and belongs to L,

5.8.1 The main result
We define
V=Y —y, L =Zi—
Then, the process (Y, Z°) is the solution, in S? x M? (because (Y, Z) and (y, ) are
in such spaces), of the BSDE with null terminal condition and generator
Ot z,y,2) = f (t,x,y +ult,z), 2 + Veoult,z)o(t, z)),
ie.
T T
YP = / fOs, X5, YO, Z2%)ds — / Z2dws.
t t
We set

ag = vxfO(T', X7"7 Yr07 29)7
b? = Vyfo(ﬁ X, Yr07 Zg);
0

&L=V X, Y° Z%.

These quantities play a key role in the further estimates.
Note that

]ag\ <C (1 + |Vau(r, X,)| + ]DQu(r, Xr)\) : (5.24)
b < C;
|c(r]| < (.

Hence, f° is Lipschitz continuous with respect to y and z, but not with respect to x
because V,u and D?u may explode as ¢ goes to T.

Our purpose is to estimate Z—z = Z9, and it is known that usually the Z°-component
is related to the Malliavin derivative of the Y%-component (see Proposition 5.3.
in [KPQ97b|). But this is stated under strong integrability conditions: namely in
Prop.5.3.[KPQ97b], it is required that EfOT fOT]Dng(s,XS,y, 2)|?dsdf < oo, for
any y and z. This is not satisfied in our case (since it essentially means that
EfOT |D?u(s, X5)|?ds < +00). However, we are going to prove that the expected
result (relating Z° to Malliavin derivatives) holds in our setting (¢ € La,). We
proceed by a localization of the generator (see paragraph 5.8.2).

Before giving our main result, we introduce (U, V') the solution of the linear BSDE

T q
U, = / U (02 + b+ 2ot |+ SV <c?77"[d v aN) dr
t X X
7j=1 7=1

—Z/ ViAW, (5.25)
j=17*
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where b;, and a;»,,, denote respectively V b(r, X;) and Vgo;(r, X;), and c%r is the
j-th component of ¢!. It is well defined in S? x M? (see Lemma 5.A.1 in Appendix

5.A) because it follows from Lemma 5.7.1 and inequality (5.24) that

T 2
E </ \a?!dr) < TK%(g) < +00. (5.26)
0

Our main result is stated as follows:

Theorem 5.8.1. Assume (Ap), (Ag) and (Ay). Assume moreover that g € Lo 4,
for some o € (0,1]. Then, dP ® dt — a.s., one has

Zt — Zt = UtO'(t,Xt).

In particular, since z; + Uyo(t, X;) is continuous, Z has a continuous version :
this extends the results by Ma and Zhang [MZ02|, in the case when g is continuously
differentiable with bounded derivative. We work with this version in the sequel.

Remark 5.8.1. Z; — z; has also a closed representation as a conditional expectation:
see equation (5.38) in the proof.

It is now easy to derive pointwise and Lo-estimates of Z; — z; as t goes to T.
We will not use the following estimates in the sequel, but we guess that they are
interesting for themselves.

Corollary 5.8.1. Assume (Ay,), (Ag) and (Ay). Assume moreover that g € Lo o,
for some o € (0,1]. Then, for all t € [0,T), the following pointwise estimate and
Los-estimate hold:

Fi — EFs 2
nenizof JE [(Q(X?j Gl PN

E|Z; — %> < CK*(g)(T — t)* + C(T — ).

Remark 5.8.2. When g is bounded and a-Hélder continuous (i.e. |g(x) — g(y)| <
C(g)|x—y|*), the pointwise estimate in Corollary 5.8.1 leads to |Zy — z| <. C(g)(T—
)2 + (T —1).

Since (z¢)o<t<r may explode at time T, this is a way to assert that Z and z are
equivalent for times close to T.

Proof of Corollary 5.8.1. Theorem 5.8.1 and the conditional version of esti-
mate (5.50) yield

T T
7l < 0 < (57 [ ol < [ (R ) b
t t
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using the generalized Minkowski inequality for the last inequality. From (5.24), one
has
E"*|al|? <. 14+ E7|V,u(r, X,)|* + B Du(r, X,) %

Therefore, by means of the pointwise estimates obtained in the proof of Lemma 5.7.1
(see inequality (5.20) for V, u(r, X)), one gets (for t <r < T)

E7[(9(X1) — BT g(X1))?]
(T —r)? ’

EFal? <. 1+

and

Zi-ul< [ "y G "EF T,

proving the pointwise estimate. Consequently, using the generalized Minkowski in-
equality and g € Lg o, one has

" VE[(g(XT) —EZrg(X7))?] | 1o
E’Zt—ZtIQSC(/t T, dr)”+ (T —t)*

T
<. (VE / ) (Tt

(T —r)'=2
<o K(g)(T = )" + (T - t)*.

5.8.2 Proof of Theorem 5.8.1
Since a2 = V,f9(r, X,-, Y,?, Z%) may explode as t goes to T, we proceed by a time

localization of f© as follows: for € > 0, we define:

fe(ta €,Y, Z) = fo(t’ z,Y, Z)]ltSTfe

and (Y, Z§) the solution, in §2 x M2, of the localized BSDE:

T T
Yf:/ fs(s,Xs,Yf,Zg)ds—/ ZEdW,.
t t

0

012 and ¥, we define

As for a

as =V f(s, X5, Y, Z7),
bi = vyf€(37XS7Y:9€7Z§)7
(3
S

&&=V, f (s, X, YE, Z2).

We assume (Ap ), (Ag), (Ay), and that g € Lo, for some o € (0, 1].

The idea of our proof of Theorem 5.8.1 is the following: we prove that Z¢ converges
to ZY as € goes to 0 (Lemma 5.8.1) and that D;Y,° converges to some D;Y;? satisfying
a linear BSDE (Lemma 5.8.4). Then, since Z; = D,Y (Lemma 5.8.2), we conclude
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that ZY = D;Y,’. Finally, we derive the BSDE (5.25) satisfied by (U;)o<i<r from
that satisfied by (D;Y,?)o<i<T-

Step 1: Stability

Lemma 5.8.1.

lim E

e—0

T
sup Y2 - YO 4 /0 25— 201%ds| =o.

s€[0,T]

Proof. We denote Y — Y2 by 6Y; and Z — Z0 by 6Zs. Then (8Ys,0Zs)o<s<r is the
solution in 8% x M? to the BSDE with a null terminal condition and the (random)
generator

6f(t’y, Z) = fe(taXt’y + YVtO’ z+ Zto) - fo(t’Xta YVtO, Zto)
= [fo(t’Xtay + Y;toa Z+ Zz?) - fo(taXta Y;EO’ Zz?)] ]ltSTfs
- fo(t7 Xt7 }/;507 Zz?)]lt>T—€-

Since the function fO(t,z,.,.) is Lipschitz continuous (and its Lipschitz constant is
the same as that of f),

0f(t,y,2)| < Cly| + Clz| + Lisr—c| f°(t, X¢, Y2, Z7)).

Then, thanks to a standard stability result (see Proposition 3.2 in [BDHT03]), one
obtains the following estimate:

2

T T
E[sup |5y;|2+/ 62,|2ds| < CE </ 113>T5|f°(s,Xs,Y;°,ZE)Ids>
0 0

s€[0,T]

Now, one has f0(s, X,, Y2, Z%) = f(s, Xs, Ys, Zs), which is square integrable, since

(Y, Z) is the solution in S? x M2 of BSDE (5.1). Then, by the monotone convergence
theorem, the above upper bound converges to 0 as € goes to 0. ]

Step 2: Malliavin derivatives

Lemma 5.8.2. For any fized ¢ > 0, (Y*, Z%) belongs to L? ((0,T),D%? x (D12)9).
Denoting their Malliavin derivatives by (DY, Dy Z%), one has, a.s., for allt € [0,T)
(see [KPQITY]),

78 = D,YF.

Proof. This is a direct application of Proposition 5.9 of [KPQ97b]. It remains to
show that f€ has bounded derivatives w.r.t (z,y,z). One has, for w = z,y, z,

Vufe(t,xz,y,z) = wao(t, z,y, 2) i<,
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and, if one defines 0 := (t,z,y + u(t, z), z + Vyu(t, z)o(t, z)), then

vmfo(ta x,y, Z) = vmf(a) + vyf(e)v:vu(ta CC) + vzf(e)vx[(vmug)*](ta x)a
vyfo(ta CE, ya Z) = vyf(a)a
vzfo(tv z,Y, Z) = vzf(e)

Hence, only the boundedness of V, f%(t,x,y, z) needs to be justified. This readily
follows from |Vyu(t,z)| +|D?u(t,z)| < C gl /(T —t) < Cllglly, /e, for t < T —e,
where the first inequality is proved as in Lemma 5.7.1 (using the boundedness of g).
Then, dt ® dP-a.s., one has Zf = D,YF. In addition, in Ma and Zhang|MZ02], it is
proved that the above processes have a continuous version, which enables to pass to
an a.s. equality for any t. O

Note that, always from [KPQI7b]|, (D;YE)s>+ (¢ > 0) satisfies to the following
linear BSDE:
T a 9 T ‘
DY = / (66D X, + 00D +> 5, Do Z5, bdr — > | DyZ5,.dW). (5.27)
S .]:1 ]:1 S

and, for s € [0,t), (D, YE, D, Z¢) = (0,0).
We introduce (D; YL, D Z9)i<s<r, as the unique solution, in S? x MP (for p € (1,2))
to the following BSDE:

T q q T
DY = / Al Dy X, + DY+ 9, D20, b dr — / D,Z),dWi. (5.28)
s j=1 j=17%

For s € [0,t), (D;Y?, D Z9) := (0,0).
Note that BSDE (5.28) is well defined, applying Lemma 5.A.1. In fact, b2 et O are
uniformly bounded, and from (5.24),

E ' a’D;X,| dr ’ <.E
([ atoifar)
t (5.29)

This upper bound is finite using Hélder’s inequality. Indeed, supg<,<r | D X, |P is
in any L, (see remark after inequality (5.9)) and the integral term is in Ly (Corollary
5.7.1).

Note that D;Y? is given by the following closed formula (which is standard for linear
BSDES, see e.g. [KPQ97b])

p

T
sup |DyX,.|P (/ 1+ |Veu(r, X,)| + |D2u(r, Xr)|dr>
0<r<T 0

T
D, YQ = B / I$a’Dy X, dr, (5.30)

s

where (I'?),> is the adjoint process defined by the forward linear SDE

drs =T (b0dr + 2dw,),  Ti=1.

S
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Furthermore, define (VY?,VZ?)g<s<r, to be the unique solution, in S x MP (1 <
p < 2), to the following BSDE:

T q q T
vy? :/ alVX, +WIVY) +> 8 V2D, b dr - Z/ VZ},dW}.  (5.31)
s j=17%

j=1

This is a slight abuse of notation because (VY VZ?) solves the BSDE obtained
by differentiating with respect to xg the BSDE solved by (Y, Z°), but we do not
prove that (VY VZ9) are the gradients of (Y, Z%) with respect to xg (however,
this is true, using extra computations as before).

Then, from (5.9) it follows that

D,Y2 = VY VX ot Xy),  DiZ° =VZO VX lo(t, Xy). (5.32)

Step 3: Convergence of D;Y¢ to D;Y? as ¢ goes to 0
To justify this step, we repeatedly use the lemma below.

Lemma 5.8.3. Let ¢ be a bounded continuous deterministic function. Let (©F),
(©%) and (v) be predictable processes such that

T
(1) E/ 10%2ds < +o0;
0
T
(1) limE/ |0 — 0Y%2ds = 0;
e—0 0
T
(z31) Ip € (1,2) such that E(/ [ys|ds)” < +o0.
0

T
Then, i E( [ 16(62) - (©%4[ds)” =0
E—> 0

Proof. Let K1, K9 and J be positive constants. It is clear that
T
B( [ 10(09) - o(€)|ulds)”
’ T T
< @10l B[ ulnoreds) + K2 ol "E( | Liogisrds)”
0 . 0
+ K1l B[ Bios-opp-sds)”

T
+ KfE(/O |0(03) = ¢(09)|Lje0< K, Jos —60|<55)" (5.33)

Let n > 0. Firstly, by assumption (iii), Kj can be chosen large enough to ensure
that the first term is bounded by 7. Besides, from Chebyshev inequality, one has

L S (S
K22/p 52/p ’

Eligo)>k, + Eljoc—go)>5 <



5.8 A representation and an estimate of Z; — z; when the terminal
90 condition g is bounded and belongs to Ls ,

so that, owing to assumption (i), one can choose Ky large enough to make the
second term in (5.33) bounded by 7. Thirdly, since ¢ is continuous on the compact
[-Ky — 1, Ky + 1], it is also uniformly continuous on the same compact, and one
can choose ¢ small enough to ensure that the last term in (5.33) is bounded by 7.
Finally, owing to assumption (i), one can choose ¢ small enough to make the third
term in (5.33) bounded by 7.

Therefore, we have proved that for any n > 0, E(fOT lp(0%) — p(©9)|7s]ds)” < m,
provided that € is small enough. O

Lemma 5.8.4.
lim E[ sup |D;YE — DyY|P] = 0.
=0 selt,7)

Proof. (DyYE — DY, Dy Z5 — thg)tgng satisfies the linear BSDE:

T q
DY: - DY0 = / (0 — DX, + (b — DY + 3 (5, — 2,)Dy 20, Jdr
S

j=1

& (D25 — Dthqr)]dr

T
+ / b (DY — DY0) +
s 1

q

J

q T )

—Z/ (D25 — Dy 2Y,)dW.
j=17¢

b
Set 0 := (a7 — a2) Dy X, 7 = (0 = B)DiY? and 0 = 370, (65, — o] )Di 23,
Using the a priori L,-estimate in Lemma 5.A.1, one has

T T T
E[ sup [D.YE — DYP] <o E( /0 g ldr)? + E( /0 nstldr)? + E( /0 05l dr)?.

s€[t,T]
(5.34)
Let us prove that each contribution with 75, 1n*? and 7°¢ converges to 0.
Contribution with n*®. It is clear that

’ni,a’ S‘vl‘fo(ra XT‘7 Yrea Zf) - fo0(7"7 XT’7 }/roa Zy(«))HDtXT’
o+ Losg—e| Vo fO>r, X0, Y2, Z9)|| Dy X |.

First, note that |V,fO(t,z,y,2)| <. 1+ |Vau(t,z)| + |D?u(t,r)|. This implies

that, uniformly in e, Lsp_o|VofO>r, X, Y0, Z0)||D: X, | <. (1 + |Vau(r, X,)| +

|D?u(r, X;)|)| D¢ Xr|, whose integral w.r.t. 7 belongs to L, (this has been established

in the proof of the existence of BSDE (5.28)), and is consequently a.s. finite. It read-

ily follows from the dominated convergence theorem that E( fOT Losr—e| Vo fO(r, X0, Y0, Z0)|| Dy X, |)”
converges to 0 as € goes to 0.

Next, setting ©% := (r, X, V5 +u(r, X;), ZE4+Vu(r, X, )o(r, X)), ow(0) := Vi, f(0),

for w = z,y,2, and v, := (14 |Vu(r, X;)| + |D?*u(r, X;)|)| D¢ X, |, one has

Vo f2(05) = Vi FAONDX | < D 1uw(O5) = u(OD)

W=T,Y,z



CHAPTER 5 : Lo-time regularity of BSDEs with irregular terminal
functions 91

Owing to assumption (A ), ¢, is continuous and bounded. Assumptions (i) and (i)
of Lemma 5.8.3 hold thanks to Lemma 5.8.1 and to the fact that 00 = (r, X,., Y., Z,.).
Assumption (iii) is checked since E( fOT vsds)P < +oo, for p € (1,2) (see inequality
(5.29) previously proved). It follows from Lemma 5.8.3 that E(fOT V. f0(e5) —
V. fO(O)|| Dy X, |dr)P converges to 0 as e goes to 0.

Finally,

T
E(/ In2%|dr)? — 0. (5.35)
0

Contribution with n*?. One has

!nf’b! <c ‘Vyf(@i) - Vyf(@g)HDtYTO\ + ]lr>T_5]Vyf0(r, XerOa ZS)HDtYrO‘-

Then, we follow exactly the same proof as that of the contribution of n*®. One
has only to check that v, := |D;Y,?| satisfies assumption (4ii) of Lemma 5.8.3. This
readily follows from (D;Y,?);<,<1 € SP, which ensures that

T
E(/ Yrdr)’ <. E sup |DYP < +oc.
0 relt,T]
Thus,
T
IE(/ Inzbldr)” — 0. (5.36)
0

Contribution with n*¢. One has

17 <c IV2£(05) = Vaf(OODLZ)] + Lyor—e| Vy fO(r, X0, Y2, Z7) | D 2.

Similarly, we check the integrability of 7, := |D;Z?|. Since (D;Z?)i< <1 € MP,

T T »
E(/ Ypdr)” ch(/ 1D Z)|dr) 2 < +o0.
0 0
This gives
T
IE(/ In2|dr)” — 0. (5.37)
0
From (5.34), (5.35), (5.36) and (5.37), the proof is complete. O

Step 4: Proof of Theorem 5.8.1
From Lemma 5.8.2 and Lemma 5.8.4, we know that lim. oE|Zf — D;Y’|P = 0.
Besides, from Lemma 5.8.1, there is a subsequence (&,),>1 decreasing to 0 such that
lim, 1o Z;" = Z7, (AP ® dt) — a.s. . Thus, we conclude that, (dP ® dt) — a.s.,

T
70 = D;Y? =E" / ItalD; X, dr, (5.38)
t

taking advantage of the explicit representation of D;Y;? in (5.30).
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Then, from (5.32) and setting U; := VY}? [VXt] 1 we have proved Z = Ujo(t, X3).
It remains to show that U satisfies the BSDE (5.2 ) It is clear that
—dU;, = (—dVYQ) VX L+ VY2(—d[VX,] ™) —d < VY2, [VX,] ! >
Besides, it is known (see e.g. [GMO5b]) that

q

—d[VX,] ™ = VX (6, =D (074) dt—i—ZajtdW]}

7=1 7=1

Then, from the expression of dVY,? in (5.31), it follows that

—dU; = (af + B)VYL[VX,]~ +thvz VX~ dt—ZV 0,[VX;]taw]
7=1
q

+ VYV (b = Y (054) dt+Zatth}
7=1 7j=1

Zv (VX ot

= afdt + Uy (001, + b, +Z &0 )dt
7=1

q
+Y (VZYLIVX] T = Uoy ) () da + 0, )dt
J

)
—

(V22 VX" — Uyoy,)dW .

'M@

Il
—

J

By setting V{ := VZ, VX~ - Uta/- +» We obtain

q . ’ q . .
—dUy = {a + Uy (W14 + b, + Z S05) + Y VIS Iy +0y,) bt = > V7AW
j=1 j=1 j=1
O

5.9 Lg-regularity of Z; when the terminal condition g €
Ly, but is not necessarily bounded

5.9.1 The main results

In this section, we aim to establish an Lo-regularity of the process (Zt)t, more pre-
cisely, to have a good rate of convergence of )}’ _01 E [ tk“ ‘Z Ztk‘ ds, where

_ 1 tet1
Zy, = ——— T / Zydu.
le+1 — tk t
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In Zhang [Zha04], it was shown that, for BSDEs with Lipschitz continuous terminal
conditions, this rate is linear with respect to the time step |r|.

Here, we extend this result to non-Lipschitz terminal functions ¢g: we show that,
if we suppose that g € Uae(o,l] L3 o, we can obtain the same rate |7|* for the equidis-
tant time net 7(1) or the rate || for an appropriate choice of the time net.

In fact, we show that this Lo-regularity of (Z;)o<t<7 can be deduced, under the
assumption above on g, from that of the process (z;)o<t<7 (Theorem 5.9.1).

This is an interesting fact, since the study of the martingale integrand of the
initial nonlinear BSDE can be reduced to that of the martingale integrand of the
linear simpler BSDE with a null generator. We can then derive the desired rate
(Theorem 5.9.2). We state below these two main results, that hold even if g is not
bounded. Their proofs are postponed to the next paragraph.

Theorem 5.9.1. Assume (Apy), (Af) and that g € Lo, for some a € (0,1].
Then, there is a positive constant C' such that, for any time net m = {ty : k =0...N}

N-1 th o ,
EZm) =Y E/t |2, — Zy,|* ds < CE(z,m) + C(K*(g)T* + T?)|x|.
k=0

k

Theorem 5.9.2. Assume (Ay,), (Af) and that g € Lo, for some a € (0,1].
Then, there is a positive constant C (which does not depend on N ) such that

a) for the choice of the equidistant time net ),

K*(g)T* + T3N 1t
N« ’

£z, <

b) for the choice of 7B with 8 as in Corollary 5.7.2,

K*(g)T*+T?
E(Z,TF(B)) < C@—+.
N
Since all the bounds depend on the regularity of f only through ||V, fl| ., [|Vy ]l
and ||V, f|| ., we can state the following theorem.

Theorem 5.9.3. Assume (Ap,) and that g € Lo, for some o € (0,1]. Then,
Theorem 5.9.2 still holds when the generator f is uniformly Lipschitz continuous in
x, y and z (but not necessarily continuously differentiable).

The above theorem is derived from Theorem 5.9.2 using standard stability results,
we omit details.
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5.9.2 Proof of Theorem 5.9.1

In order to be able to use the results of the previous sections, we begin by assuming
that g is bounded.

Step 1: Proof when ¢ is bounded
Suppose for the moment that g is bounded (and belongs to Lg ).
Recalling that Z? = Z; — 2z = Uyo(t, X;), we are going to exploit the BSDE (5.25)
satisfied by U in order to bound E ft’““ |29 — Z} |°ds.
From the BSDE (5.25) satisfied by (Ut, Vi)t (Theorem 5.8.1), and using Lemma 5.A.1,
one obtains the following estimate:

T T
E[ sup \Ur]2+/ Vi |dr] <. E(/ ]a?!dr)%
0 0

rel0,T]

Since |a?| <. 1+ |Vau(r, X,.)| + |D?u(r, X,)|, we use Corollary 5.7.1 to obtain

T
E[ sup |Ur|2+/ \V,|2dr] <. T“K“(g) + T*. (5.39)
r€[0,T] 0

Let 0 <t < s <T. Always from BSDE (5.25), and using the estimate (5.39), one
has

E|Us—Uy|? écE(/ |a9|dr)2+<s—t>2Esup|Ur|2+E/ |V, [Pdr
t r t
E(/ ]ag\dr)2+[Ka(g)Ta—i—TQ](s—t)Q—i—E/ \V,.|2dr. (5.40)
t t

We go back to the regularity of Z. As we did in the proof of Theorem 5.7.1, we
write, using Theorem 5.8.1 to have Z° = Uso (s, X;), (dP ® dt) — a.s.,

trei1 _ tht+1
E/ 120 — Z} |Pds < E/ \Uso (s, Xs) — Up,o(tr, Xy, )2 ds.
ti g

Now, for s € [tg, tgt1],

E’USU(&XS) - Utko'(thth)’Q - E’(US - Utk)a(stS) - Utlc (U(tkvth) - U(S7X8)) ’2
< E|U, — Uy, |2 + | [EIU;, 2.

Then, using (5.39) and (5.40),
thet1

let1 +
E|Uso (s, Xs)— U, o (te, Xy, )|? ch(/ |a9|dr)2+ﬂ«:/ \V,|2dr+ [T K*(9)+T7] |x|.
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Therefore,

N-1

t
> / o E|Z0 - Z0 |ds

k=0 Ytk

N-1 tet1 0 9 tet1 5 0
<l Y {E(/t 1a0dr) +E/ Vi 2drY + [TK(g) + T?] ||
k=0 k

tk

T T
SAWHEpA k£w02+myé IV, [2dr + (T°K°(g) + T%))}

<o Im|(TOK(g) + T%).
Now, since clearly ‘Zs—Ztk|2 = ‘(zs—l—Zg)—(Ztk—|—Z,?k)|2 < Q‘zs—étk|2+2{Zg—Z?k‘2

we conclude that

N-1 tht o N-1 tht ) ,
ZIE/ Z, — Z,,] dschIE/ |25 — 21, |* ds + || (T*K(g) + T?).
k=0 7t k=0 7tk

(5.41)

O

Now, we suppose that g is not necessarily bounded (and g belongs to La o). We
use the following bounded approximation of g. For M > 0 and y € R, we set

)

om(y) :=—MVyANM, (5.42)

and

gMm = ¢m ©g. (5.43)
It is clear that, when M — 400, gpr(z) — g(x) for all z € R such that |g(z)| < +o0,
and gy (X7) — ¢g(X7) in Lo.
We denote by (YM  ZM) (vesp. (yM,2M)) the solution to BSDE (5.1) (resp. BSDE
(5.12)) with gps(X7) as terminal condition instead of g(Xr).

Step 2: Some stability results when M goes to +oo

Lemma 5.9.1. Assume (Ap,) and that g € Lo, for some a € (0,1].
Then, gnr € Lo and
K*(gm) < K%(g).

Proof. Recall that y; = EZtg(X7), and set yM = EFt gy (X7) = EXt ¢ (yr), where
¢ is the function already defined by (5.42). Note that ¢ is Lipschitz-continuous,
with a Lipschitz constant equal to 1. One has

Vir(gnr) = Bl — yM” = Eloar(yr) — E™ onr(yr)|”
< E|om(yr) — ¢M(yt)|2 < Elyr — w|* = Vir(g),

where we used a projection property on Lo(F;) for the first inequality.
In addition, clearly |gns(X7)| < |g(X7)|, which readily finishes the proof. O
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96 necessarily bounded

Lemma 5.9.2.

tet1 tet1
Mlirﬂoo Z:: / -z | ds = Z /tk |25 — 21, | ds; (5.44)
i Z / |ZM — ZM|? s = Z / |Zs — Zy, | ds. (5.45)

Proof. We only prove (5.44), since for (5.45), the arguments are the same. Write

tr tht+1
[ aPe e [ apa
k

N-1

k+1
=|) E (l2s = 26, | = [22" = 20 ) (|25 = 20, | + 23" = 20 [)ds|
k=0 7tk
N-1 tk+1
< B [ = 2 = (= (= |22 s
k=0 ik
N-1 tet1 tet1
< E/ ‘(zs—zé‘/f) Ztk—Zt |ds / ‘Zs—ztk‘+‘2 _Ztk‘
k=0 te
Now,

thi1 u M2 T e T
E/ [(zs — 22") — (21, — 7)) )| ds§2E/ |26 — 2, ‘ds—i—QE/ |2, — ztk *ds
t 0 0
T 2
§4IE/ ‘zs—zé\/l‘ ds,
0

where we used a projection argument. By classical stability results for BSDEs, the
term above tends to 0 when M — +o00. Besides,

i1 T
A R e A G N E U e
< CElg(X1)[*,

where C' does not depend on M (still using the classical a priori estimate for BSDEs).
Thus, we have proved (5.44). O

Step 3: Proof when g is not necessarily bounded

Applying (5.41) in Step 1 with gz, one has

N—-1 tha1 ~ ) N—-1 tha1 )
ZE/ |ZM — ZM | ds <. ZE/ |2 — 2" ds + 7| (T* K (gur) + T?),
k=0 7tk

=0
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and, since K*(gpr) < K%(g) (Lemma 5.9.1),

trei1
Z / |ZM — ZM | ds <, Z / M _ M2 ds 4 x| (TOK*(g) + T?).
(5.46)
Passing to the limit when M — +o00 and using Lemma 5.9.2, we prove Theorem
5.9.1. O

5.9.3 Proof of Theorem 5.9.2

a) Equidistant time net 7M. As a direct consequence of Theorem 5.9.1 and
Theorem 5.7.1, one has

N— t(Nl) 14+« 3
T® T T
kz_: /,QNM ““>| ds <e K)o + ) +
T T3
<K' wat

using Lemma 5.9.1. Passing to the limit when M — +oo (Lemma 5.9.2), we prove
estimate (a) of Theorem 5.9.2.

b) Time net 78). The proof is the same, using Theorem 5.9.1, Corollary 5.7.2 and
Lemma 5.9.1. U

5.A Appendix

5.A.1 Malliavin weights expressions

These expressions are given by Gobet and Munos [GMO05b].

(i) Veu(t,X;) = E* [Q(XT)HST)} ,where

HY) = [/tT[al(s,Xs)VXs[VXt]1]*dWs} *. (5.47)

B = [H(TQT] e, [HSA] +ek.V$0{[H5}T)2ﬂ} }[VXt]_l, (5.48)

and ¥ = (0...010...0)*, 1 being in the kth coordinate.
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5.A.2 An estimate for linear BSDEs

The following lemma gives an a priori estimate for linear BSDEs, and is a direct
consequence of Proposition 3.2 in [BDHT03] (applied with f(w,t,y,2) of the form
ar + by + ¢2).

Lemma 5.A.1. Consider the linear BSDE
T q 9 T .
Ut = 5 + / (ar + Urbr + Z ‘/j,rcj,r)dr - Z/ ijﬂ«dWﬂ (549)
t X X t
Jj=1 7j=1

where € € R4 q, € RI*4 b, € R4 ¢; . € R4 U, € R4V, € R4 W, € RY,
for some progressively measurable coefficients (ar)y, (by)r, (¢7)r and a Fr-measurable
terminal condition &.

If |br|, |cj | are uniformly bounded, and if E|£[P + E(fOT |a,|dr)? < 400, then there
exists an unique solution (U,V') in SP x MP to BSDE (5.49), and the following
estimate holds:

T , T
E sup ]Ur]erE(/ Vi [2dr) 8 gC{E[é‘\erE(/ la|dr)?). (5.50)
re[0,7] 0 0
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Chapter 6

A brief account on CDO pricing

6.1 Collateralized Debt Obligations (CDOs)

A CDO tranche, based on an underlying multi-name porfolio of assets (corporate
bonds, bank loans, credit swaps, ...), is a bilateral contract consisting of a protection
against the default losses in the portfolio, within an interval [K, K], over some time
period [0,7]. The (fixed) values K; and Ky are respectively called the lower attach-
ment point (or attachment point) and the upper attachment point (or detachment
point) of the tranche. One can roughly distinguish the Equity tranche (that absorbs
the first proportion, say 7%, of the losses in the underlying pool, and is then the
first to be exposed), the Mezzanine tranche (that absorbs the next proportion, say
18%=25%-7%) and the Senior tranches (that absorb the last 75%=100%-25%, and
are then the less exposed to risk).

When a name ¢ of the underlying pool defaults, only a part of its notional v, can be
recovered, and we denote by R, the corresponding recovery rate (which may be non
deterministic). Thus, the loss caused by the default of the name ¢, called the loss
giwen default, is equal to [, := v4(1 — R,), and the total portfolio loss over a time
period [0, ¢] is equal to

Ly = Zlq]quSt = qu(l - Rq)]quéh
q q

where 7, denotes the default time of the name q.

At each time T; € [0, T of the ith coupon paid by the protection buyer, the protection
seller covers (up to the coupon rate) the accumulated loss within the tranche [K7, K9],
denoted by L[jfjl’KQ]: it is equal to 0 if Ly, < K1, to Ly, — Ky if K1 < Ly, < Ko, and
to Ko — K7 if LTz’ > K. Thus,

L[jfthQ] = (LT'L - Kl)Jr - (LT¢ - K2)+’

and the valuation of the CDO tranche amounts to evaluating the expected tranche
notionals E((Lr — K)*), for different values of T' (namely, the CDO maturities) and
of K (namely, the attachment and detachment points). For more details, see e.g.
[Das05].
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6.2 The main loss modeling approaches

There are two main approaches that have been developed for the valuation of credit
derivatives: the so-called bottom-up and top-down approaches (see [Gie08|).

In the bottom-up models, one starts from the description of each individual name
dynamics (default time, default intensity, loss given default,...), as well as the possible
dependencies between them; then, the accumulated loss dynamics implicitely follows.
On the contrary, within the top-down approach, one first explicitely models the
portfolio loss process (without reference to the underlying constituents), and then
tries to find the dynamics of the individual names. This is usually done with the help
of the random thinning technique, introduced (in the credit derivatives framework)
by Giesecke and Goldberg [GG09]. Note that, within both models, some auziliary
factor processes may be introduced in order to take into account some additional
information.

Each of the two approaches has its advantages and drawbacks, depending on the
purpose for which it is developed. In practice, the bottom-up models are the best
suited for hedging issues (since they enable one to compute single name sensitivities,
see [HT09]), whereas the top-down models are the best suited for fast valuation and
calibration (since the accumulated loss is the only underlying process, possibly in
addititon to few factor processes). We refer to [Gie08| and [BCJO08| for more detailed
comparison and critic of both approaches.

6.3 Numerical valuation of CDOs

Depending on the adopted model, there exist a variety of numerical methods for
pricing CDO tranches. Hereafter, we give a brief (and non exhaustive) enumeration
of such methods.

6.3.1 In bottom-up models

Within bottom-up models, it is often assumed that the time defaults (7,) are con-
ditionally independent given a common known market factor U, and that the losses
given default (;) are mutually independent (and independent of the default times).
Under such assumptions, a FFT (Fast Fourier Transform) algorithm has been used
by Gregory and Laurent [GLO5], relying on the inversion of the characteristic func-
tion of the loss L.

A recursive algorithm has been suggested by Andersen et al. [ASB03| and [HWO04].
At the first step, it computes the loss distribution of a single-name portfolio, and
then, it iteratively computes the loss distribution related to ¢ + 1 names starting
from the one related to ¢ names.

Recently, an approximation method, based on Stein’s method, has been proposed by
El Karoui et al. in [KJK09] and [KJ09]. It consists in approximating the loss con-
ditional distribution by a known distribution, namely the Gaussian or the Poisson
distribution.
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In addition, within a dependent-obligor model (namely, a multifactor Normal Copula
model), but under the assumption that the recoveries are deterministic, Glasserman
and Suchintabandid [GS07]| have suggested a method based on a power series expan-
sion of the CDO tranche price into the sum of independent-obligor tranche prices
that are easy to compute.

A more detailed account on the previous methods and some others can be found in
[Cou08](Section 1.1.2).

6.3.2 In top-down models

In the contexts where the loss process, together with the default intensity, are spec-
ified (possibly in addition to some factor processes, the whole defining a Markovian
setting), either deterministic or Monte-Carlo methods have been developed in order
to compute the CDO tranche price.

The deterministic methods rely on the discretization of the partial integro-differential
equation (PIDE, for short) satisfied by the price function u(t,l) = E[(Ly — K)*|L; =
[] (this PIDE arises from the Ité formula). Finite-difference schemes for the deriva-
tives terms, and quadrature approximations for the integral term(s) can then be
performed!. Such methods have been used for pricing derivatives whose driving pro-
cess has jumps, possibly added to a diffusion component. We refer for instance to
[Duf] , [Duf06], [Vol05] and [SS08|, among others.

In the particular case of homogeneous portfolio, where the losses given defaut (I,)
are assumed to be constant and all equal to ¢ (so that the loss process is given by
L; = cN;, where N; := Zq 1,,<¢ is the default process), Cont and Savescu [CSO8|
have derived the forward Dupire-type equation satisfied by the price function, that
can be efficiently solved using high-order time stepping schemes. Indeed, benefitting
from the discrete nature of the losses, this equation is just a bi-diagonal system of
ordinary differential equations (ODEs, for short). This approach has also been used
for the calibration of the default portfolio intensities (see [CS08] and [CMO08]).
Always in the case of constant and equal losses to default, one can compute the CDO
tranche price by inverting the Fourier transform of the default process N (expressed
in terms of a Laplace transform of its compensator process): see Giesecke [Gie07].
In the general multifactor Markovian framework, the deterministic methods (relying
on PDEs or PIDEs) are inadequate because of the curse of dimensionality (as soon
as the model dimension is greater than 3 or 4 !). Then, Monte-Carlo methods, ac-
companied with variance reduction techniques (in order to remedy the slowness of
the crude Monte-Carlo method, see section 7.1), seem to be imperative.

The main Monte-Carlo-type method proposed for the purpose of computing CDO
prices has been the interacting particle systems (IPS for short) approach, developed
by Carmona and Crepey [CC09] and Carmona et al. [CFV09]. It consists in a more
sophisticated variant of the importance sampling (IS for short) approach (see section
7.1), that is essentially suited for the computation of rare events (here, defaults)

'Note that, in our context, there is no partial derivatives w.r.t. I, since (L;); is a jump process,
which is a simplification for the PIDE.
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probabilities. The TIPS based method has been analyzed in full generality by Del
Moral and Garnier [MGO05]. However, the IPS approach becomes inappropiate in a
strong contagion situation, where the defaults probabilities are no more "small".

6.3.3 Our contribution

Within a top-down Markovian approach, and without assuming homogeneity on the
underlying portfolio (we will only suppose that the losses to default (l;) are i.i.d ran-
dom variables), we propose a sequential Monte-Carlo method in order to efficiently
compute the CDO tranche price. We apply the sequential control variates algorithm,
introduced by Gobet and Maire [GM05a| for the computation of solutions of second
order linear PDEs that have a Feynman-Kac-type representation (see chapter 7).
The case of stochastic, non identically distributed losses to default, is left to a future
research.



Chapter 7

Sequential control variates for
linear Markov processes

7.1 Introduction

Our aim is to evaluate efficiently the price of CDO tranches, through the computation
of quantities like E[(Lp — K], where (L) is the loss process. In such a situation,
and in many others (for example, in finance, in the pricing of European options, or
in physics, in diffusion equations), one has to numerically compute expectations of
the form E(U(X; : s > t)|X; = x), where (X;); is a Markov process, that generally
arise as the Feynman-Kac representations of the solutions of linear PDEs.

The well-known Monte-Carlo method consists in approximating the expectation of a
random variable Y by its empirical mean Yy, := ﬁ Zi‘il Y;, where Y1, ..., Yy, are M
independent simulated copies of Y. This method is especially convenient for high-
dimensional problems, but the Lo-norm of the related convergence error is equal to
\/LM’ where o is the standard deviation of Y, which makes the convergence slow.
Two major variance-reduction techniques have been used in order to minimize the
convergence error. The first is the so-called control variates approach, and uses simu-
lations of Y — Z instead of Y, where Z is a random variable (called the control variate)
such that E(Z) = 0. It is more efficient if Z is such that Var(Y — Z) << Var(Y).
The second is the so-called importance sampling technique, and is based on a change
of probability measure: one simulates Y% under a new probability measure Q in-
stead of simulating Y under the initial probability P (since EQ(Y%) = Ep(Y)).
The efficiency is achieved if VarQ(Y%) << Varp(Y). We refer to Halton [Hal70|,
Glasserman [Gla04] and to references therein. Moreover, sequential Monte-Carlo al-
gorithms, using iteratively the two previous techniques, have been developed (see,
for instance, [Hal62| and [Hal70]).

Gobet and Maire have introduced in [GMO04] a sequential Monte-Carlo algorithm to
solve the Poisson equation with Dirichlet boundary conditions over square domains.
Then, in [GMO05a|, they have extended their approach to general Markov processes
(including diffusion and jump processes) related to linear elliptic and parabolic sec-
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ond order PDEs, with linear boundary conditions. Recently, Gobet and Labart
[GLO9| have applied this technique, together with Picard’s type iterations, to the
numerical approximation of (nonlinear) BSDEs.

Since we will rely on the sequential control variate approach in order to compute
the price of CDO tranches, let us describe this approach in detail (we use the same
notations as in [GMO05a]).

7.2 Framework

Let X(z) = (Xi(z))i>0 be a Markov process with initial value x belonging to a
domain D C R?, and let f and ¢ be two continuous functions, respectively defined
on D and 0D. Consider the following quantity to approximate:

u(z) = E(¥(f, 9, X(x))), (7.1)

where VU is a functional that is linear w.r.t. the data (f,g).
Suppose moreover that u is a classic solution of the following PDE

{Au = f inD,

Bu = g ondD, (7.2)

where A and B are second order linear operators. This is the elliptic problem, but
one can as well consider parabolic problems, where the operator A has to be replaced
by 0; + A, with a time-space process (¢, X¢), in the domain [0,7) x D instead of D.
For instance, if X is a Brownian SDE: X; = x + fg b(s, Xs)ds+ fg o(s, Xs)dWs, and

u(t,z) =E <g(XT) — ftT f(s, Xs)ds| Xy = m), then dyu + Lu = f and u(T,.) = g(.),

where £ is the infinitesimal generator of the diffusion X (Lu(t,z) := Zf’l:1 b(t, )0y, u(t, z)+
d *
5 2ij1l00™ij(t,2)07, 4 ult,x)).

7.3 Sequential control variates

The idea of the sequential control variates (SCV, for short) algorithm is to approxi-
mate the solution u by a sequence (u, ), such that, at the nth step,

where (z;)1<i<n are some points of D (interpolation knots, for example), and %y, (z;)
is a Monte-Carlo evaluation of the correction term y,(z;) := u(z;) — up—1(z;), rep-
resented as an expectation: indeed, from (7.1) and (7.2), and from the linearity of
the functional ¥, one has

yn(x) = E[V(f — Aup—1,9 — Buy—1, X (2))].
A global approximation based on the values on the points (x;); is then obtained by

Up = Up—1 + P,
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where P is a linear approximation operator (an interpolation operator, for example)
based on the points (z;);, i.e., for any function ¢ and for some basis functions (C;);
(assumed to be in C*(D)),

Here is the algorithm. X?(z) denotes a discretization procedure for the process
X (x), with A being the discretization parameter (for example, the time step for the
Euler procedure).

Algorithm 7.3.1 (SCV).
1. Initialization: ug := 0.

2. At iteration n: for each x;, simulate M independent paths (X ™™ (1)) 1<m<
of X2 (x;) (independently of anything else also), and set

1 M

Un(x;) = i Z U(f — Atn_1,9 — Bup_1, X2 (x5)).

m=1

3. Always at iteration n: build the global solution using the linear approximation
of the correction term.:

N

Up = Up—1 + Pgn = Up—1+ Zgn(xz)cz
i=1

Remark 7.3.1. The operator P is assumed to have the stability property:
P(Pg) = Pe.

This property is satisfied by the interpolation and the projection operators.

Under this assumption, it is easy to see that, for all n, u, = Pu, = leil un (z;)C;.

The numerical computation of Auy,_1 in the step 2 of Algorithm 7.3.1 is then per-
formed through that of (AC;);: indeed, by linearity of the operator A, one has Auy,_1 =
Z£i1 Un—1(x;)AC;. The computation of Bu,—1 is similar.

In their paper, Gobet and Maire have studied the bias m,, := sup;«;<n |E(un(z;)—
u(z;))| and the variance v, := sup; ;< |Var(u,(z;))|. They have mainly established
that these two errors converge geometrically with the number of iterations of the al-
gorithm, up to an error term related to the quality of approximation of w by the
operator P (we do not detail the required assumptions on the basis functions (C;);):

Theorem 7.3.1. (Theorems 3.1 and 3.2 in [GM05a/)
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My < PrMp—1 + gm(Pu - u),

where py, < 1 (and depends on A, N and P) when A is small enough, and
Em(Pu — u) is some norm (depending on A and on N ) related to the approxi-
mation error Pu — u. And, consequently,

Em(Pu — u).

limsupm,, <
n — Pm

1
Up < PoUn—1 + MEU(PU - u),
where p, < 1 (and depends on A, N, M and P) when A is small enough and M
large enough, and &,(Pu—u) is some norm (depending on A and on N ) related

to the approrimation error Pu — u. And, consequently,

1
limsupv,, < —&,(Pu — u).
SupUn S T T it )

Remark 7.3.2. If u belongs to the chosen approrimation space, i.e. Pu = u, then
Em(Pu—u) =&, (Pu—u) =0, and the bias and the variance converge geometrically
to 0 (when A is small enough and M is large enough).

The above estimates show that we do not need to take M large to have an accurate
evaluation, since small values of M may be compensated by small approximation
error Pu — w. This is the key feature of SCV method.



Chapter 8

Valuation of CDOs with stochastic
recoveries using sequential control
variates

Hereafter, (2, F,P) is a filtered probability space , where F = (Fi)o<i<r (T is a
fixed terminal time) is the filtration (satisfying the usual conditions) that represents
the flow of information we handle for our pricing purpose.

For a given Feller process X = (X;);, we denote by F*X its natural filtration, aug-
mented with the P-null sets (which also satisfies the usual conditions, see [RY94]).
We denote the conditional expectation E(Y|F;) of a random variable Y by E7t(Y).

8.1 The model

8.1.1 The portfolio loss and default processes

We consider a credit portfolio composed of ny names (that range from 50 to 150 in
practice), and we assume that each name (firm) ¢ may default at most once in the
time interval [0,77], at a random time 7.

We define the (normalized) portfolio loss process (Li)icpo,r] by

1 &

Lt = TL_O Z(l - Rq)]quSta
q=1

where the (stochastic) recoveries (Ry)1<q<n, are i.i.d. random variables (also in-
dependent of the default times (7;)4) taking values in [0,1] (which implies that
L; € [0,1]). The names notionals (v,) are supposed to be equal.

As pointed out in [BCJ08|(Section 2.3), the loss process L may not be a sufficient
statistic for pricing credit derivatives in practice. As an additional factor on which
our model will depend (in order to take into account a possible default contagion, see
the paragraph 8.1.2), we introduce the default process (Nt)te[O,T]a where IV represents
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the number of defaults occuring before time t:

10
Nt = E ]lq—qgt.
q=1

In this way, we have a one-factor model, and we adopt a top approach taking as a
filtration F the one generated by both the loss process L and the default process NV:
F.=FLvFN,

8.1.2 The choice of the parameters
The intensity process A\

We will assume that the compensator of the (non-decreasing and adapted) process
N is time-differentiable. We denote its time derivative, which represents the default
intensity process, by (At)iefo,r] (this means that (Nt—fot Asds)y is a local martingale).
Different models for the intensity process A have been suggested in the literature,
attempting to take into account some contagion phenomena that may appear in the
markets reality.

The so-called affine model was proposed by Duffie and Garleanu in [DGO1]| (follow-
ing a bottom-up approach). They supposed that A is a basic affine process with
parameters (k,0,0, u,l), defined by the following SDE

Ay = k(0 — M) dt + o/ N dW; + duJ;,

where J is a compound Poisson process, independent of the Brownian motion W,
with intensity [ and exponentially distributed jumps with mean p. The class of such
processes has the advantages of being stable by summation (under some restrictions
on the parameters) and of providing a computationally tractable model for portfolio
default and loss. The default intensity process of each name ¢ is supposed to be equal
to Aq := X + X, where X and X, are independent basic affine processes. Within
this model (and other variants of it, where some dependence on the loss process L is
introduced: we refer, for instance, to [LM07], [EGG09] and [GG09]), the contagion is
expressed only through correlation in the changes of the obligors’ default intensities
(see section 3 in [DGO1]), but not according to the number of defaults.

A proposal of a model in this direction, motivated by that of Duffie and Géarleanu,
has been made by Longstaff and Rajan in [LRO8|. In this paper, the authors assume

that
Li=1- e_'YlNl,te_'YQNZte_'YSNS,t’

where 71, 72 and 73 are positive constants defining jump sizes, and where the three
factors (N14), (N2¢) and (N3) are independent Poisson processes with respective
intensities (A1), (A2¢) and (A34) that are independent Cox-Ingersoll-Ross (CIR)
processes (i.e. basic affine processes with no jumps). These three factors can be seen
as three levels of defaults spread: suppose that the recoveries are all equal to 0, then,
when a jump of the ith Poisson process N;; occurs (i = 1, 2 or 3), a proportion ~;
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of the available firms in the portfolio defaults.

In addition, a variety of models that express the intensity process ) as a function of
N (although sometimes introduced in a bottom-up framework) have been considered,
especially linear and exponential models.

A linear model has been mentioned by Frey and Backhaus in [FB08| (corresponding
to the linear counterparty risk model of Jarrow and Yu [JY01]), where A, := co+c1 Ny
for some positive constants ¢y and c;. A variant of this model, using an additional
time change, has been suggested by Ding et al. in [DGT09]|, and another variant has
been presented by Arnsdorff and Halperin [AHO08| and by Lopatin and Misirpashayev
[LMO7], where an additional stochastic factor is substituted for the constants ¢y and
Cq.

An exponential model has been suggested by Davis and Lo [DL01| (also used by
Carmona and Crepey in [CC09]), where \; := coe'™Vt, expressing a fast contagion
growth with respect to the number of defaults.

A kind of intermediate model between the linear description and the exponential one
has been introduced by Frey and Backhaus in [FBO8| (the convexr counterparty risk
model). It is defined by

o C e (M)t
o= ot (e 1) , (8.1)

where cg, 1, co are positive constants, and p represents the number of defaults one
can a priori expect. This means that there is no contagion if the observed number
of defaults is less than the expected one (if Ny < u, Ay = ¢p), otherwise, the conta-
gion grows exponentially with respect to the number of defaults (in a catastrophic
scenario, for example). Note also that one can make this model almost linear by
choosing co "small" (indeed, when co ~ 0, A\; =~ cg + c1(Ny — p) ).

Our choice. Thanks to the Markovian projection theorem (or the "mimicking the-
orem", see Proposition 1 of [CM08]), we can assume (w.l.o.g. concerning the law of
(L, N), and so the CDO tranche spreads: see Corollary 1 and Remark 2 of the same
reference [CMO08|) that \; is a (deterministic) function of (¢, L;—, N;-):

)‘t = A(ta Lt* ) Nt*)

(and A(¢,1,n) vanishes when n > ng). Indeed, for the purpose of computation of
E((Ly — K)™), only the one-dimensional marginal laws of (L, N;) have to be speci-
fied. These marginal laws coincide with those of a Markovian process (L, Ni)ie[o,1]
with an intensity of the above type.

Besides, we adopt the Frey-Backhaus model (8.1) for its flexibility.

The recoveries (R,),

In the literature devoted to the valuation and hedging of CDOs, the recoveries (Rg)q
are often supposed to be deterministic, for the sake of simplicity, and equal to a
constant (40%, for example). However, this assumption may not be realistic, and, as
pointed out in [Ron04]|, the impact of the recovery rate on the defaults distribution
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may be very important. It is also showed in [DGO1] that the recoveries distribution
may differ from one type of debt to another (but then, for simplicity, the authors
assumed a uniform distribution).

In our study, the recoveries (R;), are i.i.d. random variables, also independent of the
default times (74),, and we assume, as in [Ron04|, that they follow a beta distribution
on (0, 1), with parameters a > 0 and b > 0. The density of this distribution is defined
by

() = gy (12 o () (32)

where B(a,b) = 01 22711 = 2)P7ldz = Fr(zgf_g;), and T' is the gamma function.

This provides a versatile family of distributions with bounded support. Indeed, if one
varies the parameters a and b, one obtains different shapes of distributions (Figure
8.1):

the case a = b = 1 corresponds to the uniform distribution,

the case a = b= % corresponds to the arcsine distribution,

e if ¢ = b, it is a symmetric distribution, and it is asymmetric otherwise.

Beta distributions with a=b Beta distributions with a<b Beta distributions with a>b

20
20
20

a=0.7!
--- a=15,
a=2.5

0.0 0.2 0.4 0.6 o.8 1.0 0.0 0.2 0.4 0.6 o8 1.0 0.0 0.2 0.4 0.6 o8 1.0

Figure 8.1: The beta distribution.

For the numerical simulation of the beta distribution, see paragraph 8.3.4.
The main advantage of taking a beta distribution for the recoveries is to be able to
calibrate the parameters a and b from the knowledge of the mean p := E(R) and the
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variance o2 := Var(R) of the recoveries. Indeed (see [Ron04]),

2

po(l—p
a:%_ﬂa

p(l = p)?
b:T—(l—ﬂ)-

Remark 8.1.1. It is easy to see that 1 — Ry follows the beta distribution (on (0,1))
with density function %®.

8.2 The price function

We recall (see section 6.1) that pricing CDO tranches amounts to evaluating ex-
pectations of the form E((Ly — K)*), for different dates T (that may be equal to
1,2,...,10 years, for example) and different attachment points K (that typically may
be equal to 0%, 3%, 6%, 9%, 12%, 22% and 100%, for example).
For fixed T' and K, we introduce the price function u, defined on [0,7] x [0,00) x N
by

u(t,l,n) == Elg(Ly, Np)|Ly = I, Ny = n, (8.3)

where g(I,n) := (I — K)*. We state the following result, showing that, under our
model, the definition (8.3) of the function v may be interpreted as a representation
of Feynman-Kac type of the solution of a linear partial integro-differential equation
(PIDE for short).

Proposition 8.2.1 (Feynman-Kac representation). Let A, f and § be uniformly
bounded functions such that the following PIDE

Ouo(t L) + At m) Jy (v(t 0+ 2, n+1) = v(t,1,n)) B (y)dy = f(t,1n), ¢ <T.
o(T,l,n) =g(l,n).
(8.4)
has a uniformly bounded solution v(t,l,n) : [0,T] x [0,00) X N — R, which is differ-
entiable w.r.t. to t (we will call this solution a classic solution). Then, this solution
s unique, and is given by

T
v(t,1,n) = E[g(Ly, Nt) —/ f(s,Lg, Ny)ds|L; = I, N, = n], (8.5)
t

for (t,l,n) € [0,T] x [0,00) x N.

Proof. We denote by (N;’l’n)t<s<T and (Ll;’l’n)t<s<T (the default process and the
loss process, started, resp., from n and [ at time_t)_, the jump (Cox) processes such
that Nf bm — 5 and Li’l’" = [, with simultaneous jumps, and with default intensity
process (A(S,Li’i’”,N;f’"))KSgT. The jumps of (Nﬁ’l’")s, denoted by (ANﬁ’l’”)S =
(N — N;f’n)s, follow the distribution of 6, (unit mass at 1), and those of (L5"™),,
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denoted by (AL?Z’") = (LE — Li’f’")s, follow the distribution of 1;—0}%, where R
follows the beta distribution 5.

One can decompose each of the processes (L"), and (N2M™), into the sum of its
jumps. Then, noting that both processes always jump simultaneously, one writes the
"Ttd formula" between times ¢t and 7' to obtain

T
o(t, LY NPy = o(T, LB, LR — / dgv(s, LM NEb™Yds
t

— ) (w(s, LY 4 ALLER NEV 4 ANEEM) — o(s, LA NEE™Y),

o
t<s<T

Thus, taking the expectation of both sides,
T
ot 1,n) =BG NP B[ 0(s, Ly, NEW)ds)
t

s

—E( Y (u(s, LA+ ALE NEET 4 ANEE) — (s, LYE" NTD™)))
t<s<T

T
_ B(§(LL, N — B / Dyv(s, L™, NH™)d)
t

T 1
CE( / ds {A(s, LEb, Nbbm) / dy
t 0

B (y)lo(t, L + n% NM 1) = o(t, LY NP,

where we have used, in the last equality, the independence between the jumps of L
and the other variables, Remark 8.1.1 and the fact that {s: ANLE™ # 0} has a null
Lebesgue-measure.

Now, using the equation (8.4) satisfied by v, we obtain

T
o(t,l,n) = E[g(LY", NEH™) — / f(s, LA™ N ds),
t

which proves the proposition (using the Markov property of the process (L, N)). O

Now, in our model, A(t,[,n) vanishes as soon as n > ng. In this case, it turns out
that the PIDE (8.4) has a classic solution (and it is the unique solution), assuming
that the equation parameters are bounded.

Theorem 8.2.1. Suppose that the functions X\, f and § are uniformly bounded.
Moreover, assume that, when n > ng, \(t,l,n) = 0. Then, the PIDE (8.4) has a
unique classic solution, and (from Proposition 8.2.1) the Feynman-Kac representa-

tion (8.5) holds.

Proof. The PIDE (8.4) can be viewed as a system of linear ODEs (ordinary differen-
tial equations). Indeed, denoting v(t,1,n) by v, (¢,1), and [f(¢,1,n)—A(t,1,n) fol v(t, I+
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Y+ 1) (y)dy] by I(vne1)(t,1,n), (8.4) writes

{ Opon(t, 1) —

At Ln)oy(t,1) = (vn+1)(t,l,n), t<T,
Un(Tvl7n) = g( )

(8.6)

When n > ng, A(t,l,n) = 0, and it is clear that v, (¢,1) = g(I,n) ft s,l,n )ds
is the unique solution. When n < ng, the system (8.6) can be solved backwardly
in n: starting from the knowledge of v,,, one can express v, in terms of v,4;, for
n =mng—1,...,0, by solving explicitly (and the solution is unique) the recursive linear
equation (8.6).

un(t,1) = <§(l,n)—/tTI~(vn+1)(s,l,n) eXp(/ST A(r,l,n)dr)ds) exp(— /tT)\(s,l,n)ds).

Now, it is easy to check that v, is time-differentiable and uniformly bounded (inde-
pendently of n). O

8.3 Computation of the price function using SCV

Actually, the proof of Theorem 8.2.1 gives an iterative method to compute the
price function. However, at each iteration n, one has to evaluate the integral term
I(vp41)(s,1,n), which requires the knowledge of the value of v,,,1(t,1) at many points
[ of [0,1]. In addition, one has errors due to the discretization of the space integrals
and of the time integrals that spread from an iteration to the next. We will prefer to
consider the system (8.4) as a single PIDE equation, with three continuous variables
(t,1,p), where p := 7o, that we will solve in D :=[0,T] x [0,1] x [0,1]. The domain
D being bounded, it is well adapted for interpolation, and we will apply the SCV
algorithm to compute the solution.

8.3.1 Notations

From now on, u, v, A, f and § are bounded functions of (t,1,p) € D (p:= ).
We define the defaults proportion process (Pt)te[O,T} by

Ny
P, = = _n g 17 <t
0 0 q>1

The defaults proportion process and the loss process started resp. from p and [ at
time ¢ are denoted resp. by (PP);co<r and (LY'P)<s<r, and are defined in the
same way as in the proof of Proposition 8.2.1.

We denote by X the Markov process (L, P):

X = (L, P), XUbp .= (Lbbp phbey,

We will assume that A is uniformly bounded on D, and that A(t,l,p) = 0 when
p>1—-1 (ie. when n >ng— 1) or when [ > p (which is natural, since L; < P;).

no
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For generic uniformly bounded (on D) functions f and g, and for f (t,1,p) :== 0 and
g(l,p) == (I — K)™, we set

T
. o i
(f, g, XHP) = g(XpP) — [ f(s, XLMP)ds,
t

[W(f,g, X)),
[W(f, 9, X"P)] =E[(Ly — K)"|L, =1, P, = p).

u(t,l,p) =
u(t,l,p) :==

From Theorem 8.2.1, v is the classic solution of

Av = f  whent<T,
Bv = g whent="T,

where

1 1
Avlt1.p) = 0t 1,p) + At L) [ (v<t,z R v<t,z,p>) B4 (y)dy,
0 no no
(8.7)
Bu(t,l,p) :=v(t,l,p),

and so is the price function u we aim to compute, with f = f and § = ¢.

8.3.2 Interpolation operator and points

Since one wants to evaluate u(0,0,0), we will choose the Gauss-Lobatto-Tchebychev
interpolation points: (t;)o<i<nt, (Ij)o<j<nt and (pi)o<p<nye (where NT, N1 and
NT are fixed integer numbers) in order to include the boundaries of the respective
intervals [0, 77, [0,1] and [0, 1]. These points are defined by

T 1 1
ti= 5, = g1+ a)), pe= 51+ a),

where (2} O)Oéqg no (for some fixed integer NV) denote the Gauss-Lobatto points on
[—1,1], defined by

N "4 <g<N°
Ty = cCos N0 ], 0<qg< .

The related Gauss-Tchebychev interpolation basis functions on [—1, 1] are defined by
NO
0 0
Co ()= agyTy(), 0< g <N,
q'=0

where (7;)o<,<no are the Tchebychev polynomials (74(x) = cos(qarccos(x))), and
NO NO

(O‘q,q’)OSq,q’SNO are constant coefficients (depending only on the points (z," ) and on
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the (7)), given by (see e.g. [GMO05al)

(%ﬁ ifC_h:OandqQ:(),
T if g =0and 0 < g2 < NO,
0 .
_Zfl\g 01 éVL(])g lf q1 = 0 and qo = NO’
No if0<q1<N0andq2:()’
NO T NO
Cqr.q0 = qz(x ) fo< g < NO and 0 < g < NO,
0
_Zl];ﬁi 01 1]1\17(7)% fo<qr < NO and g2 = NO’
Q{V lfqlzNO and q2:O’
if g = N%and 0 < ¢o < NY,
0 .
_Zé\g ()1 %g,q?) + 1 if q1 = NO and Qo = NO.

The related interpolation operator is then given by

PNO Z (P CNO Z aql,qg(p QQ ()

91,492

For (t,1,p) € [0,T] x [0,1] x [0,1], and for (i,4,k) € {0,...,NT} x {0,...,NF} x
{0,..., NP}, we set

(1) == Tt~ 1), THD) = T2~ 1), TE(p) = T2~ 1),

)

T (t) = CNT(%t 1), CE(1) = CN (21— 1), EF(p) =l (2p— 1),

(3 3

Our interpolation operator P then writes

(P)(t,1,p) = _ @(ti,1j, pr)Ci jx(t,1,p)
0,5,k

_ NT NI NP
= Z Qi io Xy jin & kl,]’CQSO( i1 Uivs Pk ) Tig o ko (8,1, D),

i1,J1,k1,12,52,k2
where

Cijw(t,1,p) :==Cl(t) }(0@5(?),
Toglto1op) = T (OTHOTE (). (53)

8.3.3 Algorithm

Here is the sequential control variates (SCV) algorithm, applied to the computation
of the price function wu:

Algorithm 8.3.1. 1. Initialization: ug := 0.
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2. At iterationn: for each (t;,1;,py), simulate M independent paths (X" (t;, lj, pr))i<m<m
= (L™™(t;, 1, P (1 of Xtilipe = ([tolipe_ ptolipe) (indeven-
( s b5y Pk )y y Uiy Dk s 74
dently of anything else), and set

(tZ,l],pk; Z \II f Aun 1,9 — Bun 15 (tlal_]apk‘))

m=1

3. Always at iteration n: build the global solution using the interpolation of the
correction term:
Up = Up—1 + PYn.

Remark 8.3.1. When approximating the correction term y, in step 2 of the algo-
rithm above, one needs a Monte-Carlo simulation of quantities of the form ey (t,1,p) :

E[ftT fuls, Xs(t,1,p))ds] (that come from W). Now, it is easy to check that

en(ta l’p) = (T - t)E[fn (T - (T - t)Ua XT—(T—t)U(t’ lap))],

where U is a [0, 1]-uniformly distributed random variable, independent of X. Then,
one can approximate e, (t,1,p) by

W1, p) - MZ ( —(T—t)U”’m,X;’T(Tft)Umm(t,l,p)>,

where (U™™)y, m are independent copies of U (and independent of anything else).

Now, all what we need to know is how to simulate the process X = (L, P), and
how to compute the functions 7; ; ;, and (as mentioned in Remark 7.3.1) the functions
AT; j - There are no extra computations to perform for B7; j = 7; j .

8.3.4 Simulation of the loss and the defaults proportion processes

We denote the jump times by 0 < 77 < ... <7/ <. <T.
We first give a simulation algorithm for the beta distribution, since the jump sizes
(LT;+1 — LT;)q of the loss process L are i.i.d. random variables distributed as nlo,
where Y is a random variable with beta distribution density 3%%. Then, we give an

algorithm to generate the jump times and the process X = (L, P).

Simulation of the beta distribution

Different algorithms for generating a random variable Y of beta distribution (on
(0,1)) with positive parameters (a,b) (defined by its density 3%°, see (8.2)) have
been proposed in the literature.

When a,b > 1, one can think about the pure acceptance-rejection method (see
Example 2.2.6 in [Gla04]). Indeed, in this case, one can show that sup, 3%°(z) =
b2 L ) := ¢, so B%* < ¢!, where B! is the density of the uniform distribution

a+b—2
on [0,1]. Then, the acceptance-rejection algorithm is the following (for a,b > 1):
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1. Generate Z and U of uniform distribution on [0, 1] until 3%*(Z) > cU.
2. Return Z.

More sophisticated algorithms, available for a,b > 0, and based on change of variables
with a more careful use of the acceptance-rejection technique, have been designed
(see [Dev86| or [JKB95]). We present the following (and it is the one we will adopt),
which, as mentioned in [JKB95|, has the advantage of being reasonably fast (faster
than the acceptance-rejection algorithm above) for values of a and b down to about
0.5.

Algorithm 8.3.2. (Simulation of the beta distribution with parameters a,b > 0,
Chen(1978)) Initialization: set o := a+b. If min(a,b) < 1 then set 3 := max(L, 1),

else set 3 := ,/23‘1;_2&, Set v :=a+ %

1. Generate uniform (on (0,1)) random variables Uy and Ua, and set V := 3 log( 19,51 )
W = aeV.

2. If alog(3) +7V — 1.3862944 < log(UZUy) then return to step 1.

3. Return Z := IH—iW

We propose, in addition, an algorithm consisting in generating Z as éa’b(U). U
denotes a uniform (on [0, 1]) random variable, and G*® is an approximation (when-
ever one has not the exact expression) of G%* := [F®*]71 where F%? is the cumu-
lative distribution function of Z (F®*(z) := [*  B%!(z)dz), and [F**]~! denotes
its inverse function. This approximation is based on a series expansion of G%?: for
w € (0,1),

I
G4 (w) = [F**] Y (w) ~ G (w) = 20 + Z ci(?uo) (w — wp)’, (8.9)

7!

i=1

where zg € (0,1) is a fixed initial approximation, wg := F®’(zy), and c¢;(wg) :=
dg’:’b(wo) are constant coefficients (depending only on a, b and wg). Actually, this
series expansion method for the inverse of the beta distribution has been proposed by
Abernathy and Smith [AS93| with the aim of finding percentiles of the F-distribution.
They have given an iterative method for the exact computation of the series coeffi-
cients (¢;(wp)) (see [AS93]).

This algorithm turns to be fast for values of a and b between about 0.5 and 1 (with
these values, it is even three to four times faster than Algorithm 8.3.2), but it may
either slow down or diverge for other values of @ and b. In fact, as mentioned also in
[AS93|, the accuracy of the algorithm depends on the initial approximation zy: if 2o
is too far from G*°(w), then the partial sum in (8.9) may diverge.
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Simulation of X = (L, P)

Conditioned on (Lzx ,Npx ) (we recall that Ny = ngP; is the default process),
the process (Nt)r;_1§t<n; is a non-homogeneous Poisson process, with intensity
)\(t7LT;_1,PT;_1)- We then apply the simulation algorithm mentioned by Burnecki
et al. in [BHWO04] (also known as the fictitious chock technique, used in neutronics,
see [LPS98|, page 84), based on the acceptance-rejection method.

This algorithm assumes the intensity 5\(15) of the non-homogeneous Poisson process
to simulate to be uniformly bounded, which is the case in our framework. We set

A= sup \(¢,1,p).
(t.L.p)
Algorithm 8.3.3 (Simulation of (L, P)). 1. Set 75 := 0, 7" := 0, N;= := 0 and
L.~ :=0.
0

2. Forq=1,2,... do

2a. Generate an exponential random variable E with intensity .
2b. Set F =1+ F.
2c. Generate a random variable U distributed uniformly on (0,1).

2d. If \U > A7 Ly,
time), else generate a random variable Y with beta distribution (on (0,1))
of parameters (b,a) (using Algorithm 8.3.2), and set 7, := 7" (i.e. accept

the jump time), PT; = PT;_I + n—lo and LT; = LT;_I + nLo

Pnjll) then return to step 2a (i.e. reject the jump

8.3.5 Computation of 7, and AT,
The (7; ;1)’s

From the definition of 7; ;5 (8.8), it is clear that all one needs for its computation
is to calculate the Tchebychev polynomials 7,. This can be performed iteratively on
g =0,1,... in an exact way (instead of using the expression 7;(x) = cos(qarccos(z)),
where one is faced with the numerical approximation errors of the functions cos and
arccos), using the following recursive relation (see e.g. [AS64|):

{ Dol@) =1, Tifw) = (8.10)
Ty(w) = 20Tp1(@) — Tyma(a), q > 2.
The (A7 ;1)’s
From the definitions of A (8.7) and 7; ;1. (8.8), we have

Taltolp) = T T T LT T o+ L) [ TE+ Lygtagya
AT, jult p) = S OTFOTE @) + 2L T OT G4 o) [ TH+ s ay

— At Lp) T T ()T (p).
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Thus, one only needs to compute dgiT (t) and I;(l) := fol ’]}L(Z + %)ﬁb’“(y)dy.

Now, ddTliT (t) = &(T;(3t — 1)) = 2D;(3t — 1), where D;(z) := %(m) Then, one
computes the derivatives (D,) of the Tchebychev polynomials, using the following
relation (see e.g. [AS64|), combined with (8.10):

{ DO(x) = 0’
(1 = 2*)Dy(2) = —qaTg(x) + qTg-1(x), ¢ = 1.

Concerning the integral I;(1), one has

1
1,0) = /0 T - 1+ 2205 )y

1 1 z+1
= T:(20 — 1 1 b=1(1 — p)o1g
2a+b—QB(b7 a) /_1 J( + o )L +2)"( ) x,

which represents (up to the constant 2“‘”’—+B(ba)) the integral on [—1,1] of the

function z/)é cxo— 120 -1+ "”n—J;l) (I is fixed) with the Jacobi weight w(z) :=
(1 + )11 — )2 L. Since ¢é(m) is a polynomial of degree j, one can compute
the exact value of I;(l) using the following Gauss-Jacobi quadrature formula (that is
actually exact for any polynomial of degree less or equal to 2N% — 1, instead of z/)é
see [Fun92]).

NL

1 b,a 1/ ba
B0 = o35, ) 2 Voo V3T e

ZZ(JIVL) (the Gauss-Jacobi weights) and (xZ:(JIVL) (the Gauss-Jacobi abscissae)

are constant coefficients (related to the zeros of the Jacobi polynomials) that do not
depend on the function z/)é Numerical routines for the exact computation of these
coefficients can be found, for instance, in [PTVF92.

where (w

Remark 8.3.2. At first sight, one can think that we should have chosen the (7;)’s to
be the Jacobi interpolation polynomials (with parameters b, a) instead of the Tcheby-
chev ones, in order to be able to interprete the integral I;(1) as the inner product
(with Jacobi weight w(.)) of a Jacobi polynomial T; and 1, and then use the orthogo-
nal property... However, this interpretation cannot hold, because, inside the integral
I;(1), the polynomial T;(.) and the weight w(.) are not evaluated at the same point x.

8.4 Numerical results

8.4.1 Preliminary tests

We want here to test the efficiency of the SCV algorithm in our framework. Whenever
one explicitly knows the exact expression of u(t,l,p) = E[(Ly — K)"|L; =1, P, = p],
one can compare the solution computed by SCV with u, and examine the convergence
speed.
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This is the case when K = 0 and \(¢,1,p) = A is constant for p € [0, 1] (and vanishes
for p > 1): the default process (N;’n)tgng (starting from n at time ¢, and stopped
at ng) is given by

N;’n = (n + Ns—t) A ng,

where N is an homogeneous Poisson process with intensity \g. Then, one has (with
p = -, and with the convention Y2 ag:=0if g1 > q2)

q=q1
N%n t,n
tlp 1 tlp NT7
LY _z+n—02(1—Rq), P} =
q=n+1
and
u(t,1,p) :=E[Lp|L; =1,P, = p| = E(L%LP)
1
=1+ —E(1 - R)E(N;" —n)
no
1 -
=1+ n_E(l — R)E(Np—¢ A (ng —n))
0
1 b o Ao(T — £))k
=4 ——— (Tt kA (no — n)]( o ) .
noa-+b — k!

Therefore, the exact expression of u is given by

b (Tt (Mo(T — 1))
0 = —n— e M(T-1) _y )20 )
w(t,l,p) =1+ P <n0 n—e kgzo (ng —n—k) o .

For the SCV algorithm that we use to compute u?, we use a Gauss-Lobatto-Tchebychev
(GLT for short) interpolation of degree N7 = 4 for the variable ¢ (since u° is in-
finitely smooth w.r.t. ¢, this is satisfying enough), a GLT interpolation of degree
N' =1 for the variable I (this is an exact interpolation since u° is linear w.r.t.
[). For the variable p, we will compare the GLT interpolation of degree 3 with the
piecewise-constant (PC for short) interpolation with a (N + 1)-points equidistant
grid (if N P = ng, the latter is an exact interpolation, since n takes the discrete values
0, 1, ceey TL()).

We take 7' =1 (and K = 0), and we compute a sequence (u})r>o by SCV. We only
focus on the value of u°(0, 0,0): we stop the sequence when [u%(0, 0,0)—u°(0,0,0)| <
10~*, and we denote by I,,q, the corresponding number of performed iterations.
Concerning the number M; of Monte-Carlo simulations at each iteration I, we start
from My = 100, and, if within 10 successive iterations the convergence is not reached
yet, we multiply M by 2. We compare My, . with the observed minimal number
M%g of crude Monte-Carlo simulations required for an error less than 1074, as well
as the CPU times spent by both methods (as with SCV, the crude Monte-Carlo
computations are made for all the grid points).
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SCV Crude MC
Interpolation (t,1,p) || Lnaz | Mi,.,, | CPU time || MMC | CPU time
(GLT,GLT,PC) 21 400 between 0 || 5.10° 90 sec
with (4,2,4) points and 10 sec
(GLT,GLT,GLT) >40 | >2000 | >1mn || 5.10% | 130 sec
with (4,2,4) points

Table 8.1: ng =3 and A\g = 1.5.

SCV Crude MC
Interpolation (t,1,p) || Lmaz | Mr,,., | CPU time || MMC [ CPU time
(GLT,GLT,PC) 00 00 00 00 00
with (4,2,101) points
(GLT,GLT,PC) 00 00 00 00 00
with (4,2,10) points
(GLT,GLT,PC) 31 800 | between 0 || 5.10° | 110 sec
with (4,2,3) points and 10 sec
(GLT,GLT,PC) 23 400 | between 0 || 5.10° 60 sec
with (4,2,2) points and 4 sec

Table 8.2: ng = 100 and A9 = 50.

In the case of ng = 3 and Ay = 1.5, Table 8.1 shows that, in this particular

example (but not in general; see Remark 8.4.1), the PC interpolation w.r.t. p is
more suitable than the GLT interpolation: this is obvious, since we have made an
exact interpolation (N =4 = ng + 1).
In the case of ny = 100 and A9 = 50, Table 8.2 shows that it is not necessary (and it
is even not recommended when ng is greater than 10) to take N¥ equal to ng+ 1 in
this example: 2 or 3 knots are sufficient. After taking into account these remarks,
the SCV algorithm applied to the present example turns to be about 10 times more
efficient than the crude Monte-Carlo method.

Remark 8.4.1. From the study of the above particular example, one may think that
we should, in general, adopt a PC interpolation w.r.t. the variable p. However, we
have just been "lucky" because, for fived t and I, the function u°(t,l,p) is almost
constant when p is in some "large" interval [0, pol, so that a PC interpolation w.r.t.
p induces a very good approzimation of u°(0,0,0). Moreover, globally on the interval
[0,1], the GLT interpolation performs a much better approzimation of u®(0,0,p) than
the PC interpolation (see Figure 8.2, where we have taken T =1, ng = 100, Ao = 50,
and 3 knots for each of the two interpolations).

8.4.2 Numerical results for CDO tranches pricing

We fix T = 1, ng = 100, and we adopt the Frey-Backhaus model (8.1) for the intensity
function A, with ¢g = 20, ¢; = 1, co = 0.0001 and g = 10. These values mean that
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Figure 8.2: PC interpolation vs GLT interpolation, w.r.t. p.

the initial average number of defaults is 20 per year, but contagion appears as soon
as 10 defaults occur, and then the default intensity grows almost linearly (see Figure
8.3). We fix also @ = 0.5 and b = 0.5. One obtains (by Monte-Carlo simulations)

lambda(0,0,p)

100{
ao{
ec{
40{

20—

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8.3: A(0,0,p).

the distributions of the loss L1 and the defaults proportion Pr given by Figure 8.4.
One can see that the loss is concentrated around about 0.1, between 0 and about
0.2. This will obviously have an impact on the computation of E(Ly — K)* when K
becomes large. Indeed, when we perform our SCV algorithm with a (GLT,GLT,GLT)
interpolation with (3,3,3) knots, and we compare the result the the "quasi-exact"
solution (computed by quite long Monte-Carlo simulations at 101 equidistant points
of each of the intervals [0, T, [0, 1] and [0, 1]), we obtain a better global approximation
with K = 0 (Figure 8.5) than with K = 0.2 (Figure 8.6).

Our goal is to use SCV to perform an accurate and fast computation of «(0,0,0) =
E(Lr — K)*. We take a (GLT,GLT,GLT) interpolation grid with (2,2,2) knots,
and we fix the number of simulations at each iteration to M = 100. Concerning
the stopping criterion, we fix an absolute precision threshold ¢ = 1073, and we
decide to stop at iteration I when |u7(0,0,0) —u7(0,0,0)| < e, where u;(0,0,0) :=
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L_T distribution P_T distribution

12

104

Figure 8.4: Distributions of L7 and Pr, based on 10000 samples.

% Zi[:l u;(0,0,0) is the average value of the set of computed values between iteration
1 and iteration I. Then, we stop also as soon as the number of iterations reaches
10 (and, whenever this occurs, we take the final u;(0,0,0)). We have chosen this
convergence criterion because we think it can express the ergodic property of the
sequence of the (ur)’s, viewed as a discrete first-order autoregressive (AR(1)) process.
The study of this property, as well as the possible related optimal choice of the
interpolation grid and of M, are left to a future research. From an empirical point
of view, our choice seems to be quite efficient. Indeed, we have compared the final
value u7(0,0,0) we obtain by SCV (using our criteria) with that obtained by 108
crude Monte-Carlo simulations (we assume that they lead to an almost exact value,
but note that they take some hours!), and the difference between the two values is
of order 10™2 most of the time.

In Table 8.3, we have reported the numerical results and the CPU times taken by the
SCV and the crude Monte-Carlo methods. For the latter, we perform a number M of
simulations that is approximately equal to (M)Q, in order to approximately
reach (with about 95% chance) the precision e = 1073, The quantity o[(L7 — K)¥]
denotes the standard deviation of (Lt — K)™, and is computed by standard Monte-
Carlo simulations.

Crude MC SCV

K E[(Ly — K)*] | o[(LT — K)*] M CPU M CPU

0% 0.1169 5.1072 10000 | 1 sec 100 | 0.3 sec
3% 0.0869 41072 6400 | 0.6 sec || 100 | 0.3 sec
6% 0.0573 41072 6400 | 0.6 sec || 100 | 0.3 sec
9% 0.0316 3.1072 3600 | 0.4 sec || 100 | 0.3 sec
12% 0.0142 3.1072 3600 | 0.4 sec || 100 | 0.3 sec
20% 0.00068 5.1073 100 0 sec 100 | 0.3 sec
22% 0.00029 4.1073 64 0 sec 100 | 0.3 sec

Table 8.3: SCV, compared with crude Monte-Carlo, for different values of K.
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Figure 8.5: K = 0: u, obtained by MC (with 10® samples) and by SCV with (3,3,3)
points of a (GLT,GLT,GLT) grid.

We see again that SCV is more suitable for values of K less than 0.2, otherwise crude
Monte-Carlo simulations are faster and more accurate. This is due the fact that the
standard deviation o[(L7 — K)*] decreases when we increase K, and becomes of
order 10~3 when K reaches 20%.
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Chapter 9

Delta and Delta-Gamma hedging
errors

Most of the models in finance are continuous in time, in contrast with the real
practice of the markets where the transactions and the computations are carried
out discretely in time. In particular, this means that one cannot make a perfect
replication of a financial derivative security by a self-financing strategy, and might
care about the related hedging error. Let us make a review of the literature devoted
to the study of two common hedging strategies: the Delta hedging strategy (DHS
for short) and the Delta-Gamma hedging strategy (DGHS for short).

9.1 Delta hedging

9.1.1 The Lsy-tracking error

In the Black-Scholes model, a continuous strategy to perfectly replicate a payoff
g(St) (S is a risky asset) is well known: it consists in holding at time ¢ a number
0; of assets S given by &; = dsu(t, S¢), where u is the price function (see Black and
Scholes [BS73]). This is the so-called Delta hedging strategy. In the corresponding
discrete strategy, one holds a fixed number ¢, of assets between two rebalancing
times ¢; and t;41, for 0 < ¢ < N — 1, where N is the number of the time intervals.
At the maturity time T', the terminal value of such a portfolio, denoted by VI{V , may
differ from the payoff to hedge ¢(St), inducing a tracking error £5 = VI{V —g(St).
In |Zha99|, Zhang studied the order of convergence of the quadratic residual risk
Rﬁ = E[S_]%P (under both the historical probability and the risk-neutral one, we
omit here the dependence of the expectation E on the measure), where

_ NZL ot _
En = TEN =) / (8;, — 6;)d5S,
i=0 7t

is the discounted tracking error, 7 is the (constant) interest rate and Sy := e~ 1S,
(which is a martingale under the risk-neutral probability). We only present the

131



132 9.1 Delta hedging

results in the one-dimensional framework (those of the multidimensional case are
similar but stated under more restrictive assumptions, see chapter 3 in [Zha99]).
The model that was considered for the non-risky asset X and the risky asset X was
the following, under the risk-neutral probability Q:

Cg)((; = rdt,
Xt + ot X)W,

We do not detail the regularity assumptions assumed for the volatility coefficient
o(.,.). The payoff function g is supposed to be differentiable with polynomial growth,
as well as its derivative:

lg()| +1g'(x)] < LA+ |=[7),

where L and y are positive constants.

The time grid considered is the equidistant one: ¢; = %z’, 0<s<N.

The following result (in [Zha99], it corresponds to Theorem 2.1.2 under the risk-
neutral probability and to Theorem 2.4.1 under the historical one) states that the
residual risk RJ% is of order of the time step %, when the number N of the rebalancing
dates goes to infinity.

Theorem 9.1.1. Under the above assumptions, one has

A T T tyd 4 &u ’
]\}Enoo NRN = E]E /0 (& XtO' (taXt) (@(taXt)> dt | .

Remark 9.1.1.

(i) Under extra assumptions, the author moreover shows that the difference be-
tween N RS and the limit above is of order of (’)(N_%).

(ii) The author compared the quadratic residual risk R of the Delta hedging (or
what he called "the elementary approximative hedging") with that of what he
called "the optimal approximative hedging”, which consists in following the best
time piecewise-constant strategy (677%) (57 = 6%’;, fort € [£i, L(i+1))) that

N

minimizes the corresponding quadratic residual risk Rﬁ’oz) b= E\é_ﬁ"w "2, the
number N of rebalancing times being fized (see Proposition 1.4.5 in [Zha99),
or Martini and Patry [MP99]). It is stated (see Theorem 2.1.4 in [Zha99]) that
]R]% — Rﬁ’oz) t] < %, which means (taking into account the above theorem) that
both strategies are asymptotically equally efficient.

Then, Gobet and Temam [GTO01] focused on some examples of more irregular
payoffs in order to show that the order of convergence strongly depends on the
regularity properties of the payoff function. Considering always uniform rebalancing
dates (%)Y, they stated (see Theorems 1 and 2 in [GTO1])
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Theorem 9.1.2.

(i) For g(x) =1,>k, one has

1
_ T\2 C 1
A 0 3 —2rT
— (=) 2L ko (K K
i (N) T e e pr(zo, )+O<N%>’

where Cy is an universal constant and py(.,.) is the transition density function
of the process (Xy)t.

(ii) For g(z) = (z— K)%, a € (0,1), one has

_ A T\t . 142a _3+2a —2rT 1
RS = ~ Co K0 (K)e™ ™" pr(20, K) + 0 Nita)’

where C, is an universal constant.

Remark 9.1.2. The above theorem was stated in [GTO01] for a one-dimensional time-
homogeneous diffusion model. It has been extended to the multidimensional model by
Temam[Tem03] using Malliavin calculus techniques.

The role played by the (fractional) regularity of the payoff function g has been

then more systematically investigated by Geiss et al. , but mainly within the Brow-
nian motion and the geometric Brownian motion model for the diffusion X (see e.g.
|Gei02], [GGO4] and [GHO7|). The case of one-dimensional SDE has been studied in
[GGO4]. The authors have showed moreover that one can adapt the concentration
of the time grid knots according to the fractional regularity of g in order to obtain
a convergence rate for RJ% of N. For the details of Geiss et al. results, see Part I,
Chapter 4.
This study has been recently extended by Gobet and Makhlouf [GMO08] to the gen-
eral multidimensional diffusion model (and also to BSDEs with non null generator).
In this paper, the fractional regularity of the payoff function g is measured by the
rate of decreasing of the expected conditional variance of g(Xr) given F; (denoted
by Vir(g) := E |g(X7) — E”? (g(XT))‘Q) as t goes to T'. The corresponding space is
defined by (for some a € (0,1])

Vi
Lo, = {g s.t. E[g(X7)]*+ sup t7(9)

- 7 < s
o<t<r (T —1)* ool

and a related squared-norm is defined by

Vir(9)
K*(g) :=Elg(Xp)]* + sup .
tejo,r) (T —1)*
The authors stated the following result (see Theorem 8 and Corollary 10 in [GMO0S§]),

under ellipticity and smoothness assumptions on the SDE coefficients of X that we
do not detail. Notice the effect of the time net choice on the convergence rate.
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Here, zs corresponds to ds05. The error related to the discrete time approximation
of z is defined by

N1 tit1
Ezm) =Y E/t 2 — 2. |2dt, (9.1)
=0 i

where

1 tit1
Zy, = — = EFu / Zsds (9.2)
liv1 — U t;

is the projection of (zg)¢,<s<t, .1 on the space of F; -measurable random variables,
according to the scalar product < u,v >=E ftt;“ usvsds. The result still holds for

the error E|E4|? instead of £(z,7), under mild assumptions on o.

Theorem 9.1.3. Assume that g € Lo o, for some o € (0,1]. Then,

(i) with the choice of the equidistant time net 7V := (%)M one has

T e
< CK“ il
e < CK%o) ()
(where C' does not depend on N ).

(ii) with the choice of the nlon—equzdzstant time net 78 = (tz( 6)»]\;0 defined by
thﬁ) :T—T(l—%)E,O < i <N, and taking B =1 ifa =1 and f < «
otherwise, one has

TCM

E(Z’ 7T) < CKO{(Q)W

(where C' does not depend on N ).

9.1.2 The weak convergence

In all the above results, the convergence criterion that has been considered is in the
Ly sense. Instead, one may investigate the weak convergence rate of the (discounted)
tracking error g]%.

One already knows that gﬁ converges in probability to 0 as N goes to infinity (see
[RY94], Proposition 1V-2.13). Surprisingly, as pointed out in [GTO01]|, this weak
convergence occurs at rate N 3 even with irregular payoffs (the rebalancing dates are
assumed to be equidistant):

Theorem 9.1.4 (Theorem 3 in [GTO01]). Assume that X solves the driftless and
time-homogeneous Black-Scholes equation dX; = o X;dWy. Then

\/N(‘j]% —q WT, N — o0,

1T
where T 1= : fo

pendent of T.

2 -
(%(t,Xt)) o*X}dt, and W is an extra Brownian motion inde-



CHAPTER 9 : Delta and Delta-Gamma hedging errors 135

Remark 9.1.3.

(1) The above theorem is derived from a general convergence result for the approx-
imation of stochastic integrals, already given by Rootzen[Roo80]. Actually, it
is related to the convergence of conditional Gaussian martingales, as definitely
studied by Jacod [Jac97].

(ii) The random variable W, may not be square-integrable even with irreqular pay-
offs. As stated in [GTO01], it is possible to check that E(T) = oo in the cases
9(z) = 1,5k and g(z) = (z — K) (a € (0,3)). Thus, these are nontrivial
situations where convergence in law does not necessarily lead to convergence in
Lo sense. The choice of the convergence criterion is then significant.

(iii) The above result has been extended by Hayashi and Mykland [HMO05] to more
general diffusions (namely positive Ité processes d Xy = bydt 4+ oydWy, where by
and oy are adapted, suitably integrable processes, and o > 0 for all t) and to
more general payoffs Cp > 0 (and dCy = 0,d Xy, where (C}) is the price process
of the (European) derivative to hedge, and (0;) is a self-financing strategy which
is an adapted and suitably integrable process).

(iv) The asymptotic distribution of the tracking error when the rebalancing dates
are non-equidistant is studied by Liang [Lia97] in the Black-Scholes framework.

(v) Geiss and Toivola [GTO08] investigated the connection between the fractional
smoothness of the payoff function and the weak convergence, for X being either
the Brownian motion or the geometric Brownian motion. They also studied the
L, -integrability of the limit (p > 2), and showed how a proper choice of the
time net can ensure this integrability (contrary to the choice of the uniform
grid as mentioned in (ii) above).

9.1.3 Transaction costs

The transaction costs generally have an impact on the tracking error, and also urge
the hedger to trade as least frequently as possible. Then, the influence of these costs
have been investigated in some studies dealing with discrete-time hedging.

In the Black-Scholes context of the replication of a European Call, Leland [Lel85]
was the first to suggest a hedging portfolio based on modified Black-Scholes Greeks
(we omit the details). The cost of a single transaction is assumed to be proportional
to its trading volume, with coefficient ky (IV is still the number of the rebalancing
intervals). Denoting by St the number of shares of the stock (whose price process is
S) held at time ¢, the portfolio value process is then given by

t
0

t; <t

The new initial wealth %N and the new deltas are usually computed using a Black-
Scholes model with larger volatility (depending on ky ).
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Kabanov and Safarian [KS97| showed that, depending on the transaction level kp,
Leland’s strategy may lead to a hedging error that is asymptotically (when the
rebalancing frequency goes to infinity) not equal to zero. Indeed, one can make a
perfect asymptotic replication when ky = kg/N ™7 (with v € (0, %] and kg is a positive
constant), but when ky = kg > 0 is a constant, the option is always underpriced
(contrary to Leland’s conjecture in [Lel85]). Here is the result from [KS97] (Theorems
1 and 2). H denotes the option payoff with maturity T'=1 (H = (51 — K)4).

Theorem 9.1.5.
(i) If ky = koN™7, with v € (0, 1] and ko > 0,

171N—>dH, N — oo.

(ii) If kn = ko > 0 is a constant,
VN -4 H—J, N — o0,
with 0 < J < Ckg and C a constant depending on S1 and K.
Remark 9.1.4.

(1) In [Per03], Pergamenshchikov showed that the rate of convergence in Kabanov-

Safarian theorem is Ni, and that the asymptotic distribution of ‘71N 1S @ miz-
ture of Gaussian distributions.

(ii) In [Den08], Denis has studied Leland’s starteqy with more general payoffs.

In [Zha99|, the author studied the expected transactions cost, Cl, according
to the number N of rebalancing intervals. Considering more general European op-
tions with regular payoff functions, and assuming that the transaction level ky is a
constant, it is stated that Ciy ~ /N (see Proposition 2.5.1 in [Zha99]).

9.2 Delta-Gamma hedging

As one can notice through the previous results on the asymptotic Delta hedging
error, the limit (either in the Ly sense or in distribution) involves a suitable inte-
gral of the second spatial derivative %(t,Xt) (called Gamma) of the option (see
Theorems 9.1.1 and 9.1.4). Thus, while the DHS reduces the portfolio Delta (in
such a way that, in the Black-Scholes model, the tracking error 5?]% can be de-
composed as Zi]if)l fé”l THM()dW; with T5M(¢;) = 0 for 0 < i < N, see e.g.
the proof of Proposition 1.4.2), one may think of reducing in addition the portfolio
Gamma (so that the related tracking error gj%r can hopefully be decomposed as
SR [ T ) dWw Wy with T3)(¢;) = 0 for 0 < i < N). This additional
condition obviously requires to introduce another hedging instrument in the hedging
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portfolio in addition to the underlying asset S. This strategy is the so-called Delta-
Gamma hedging strategy (see [Hul09], p.371).

In practice, the extra instrument used is either a Call or a Put, with a time maturity
T5 higher than that of the option to hedge (T"). The practioners have used DGHS
and noticed that it was more efficient in general than DHS (if trading in the same
number N of rebalancing times), but no rigorous mathematical proof in this direc-
tion has been provided, so far as we are aware.

However, we point out that Brodén and Wiktorsson [BWO08| have investigated the
DGHS of a European Call whose price process is Cy(t, X;), with a payoff equal
to (X, — Ki)4+, using a one-dimensional asset X with local volatility (dX; =
rXdt + o(X;) X dWy, under the risk-neutral probability Q) and a European Call
whose price process is Cs(t, X;), with a payoff equal to (X7, — K3)4, where T > T.
Following equidistant rebalancing dates (t; = %i,O < i < N), the hedging porfolio
consists of d;, assets X and 55 2 Calls Cy, to hold on each time interval [¢;,¢;41), with

Cy . M
92Ot Xy,)

0% C1(ti, Xt,)

S 1= OxC1(t;, X4, —
hm OO ) = G, X,

axcg(ti,Xti).

Denoting the induced (discounted) tracking error by g}%r’ the main result of Brodén
and Wiktorsson states that the convergence of the quadratic residual risk E|EQT|?

occurs at rate N 2. Notice however that their proofs present gaps when deriving some

8§(Cg(t,Xt) 8;’(02(25,Xt) .
n . Here is th
X, 2 o0,y Hereis the

result (we do not give details of the required regularity and ellipticity assumptions
on the diffusion coefficient o(.))

crucial estimates, namely those of the ratios

Theorem 9.2.1 (Proposition 2.1 in [BWO0§]).

3 3
_ T 2 1\2
EN IF=C <N> Jim () +o <N> :
where C' is a universal constant (= 0.65), and
3 _ 2
o(t) == (T —t)2E(e 2t (93.C4 (t, X)) XfaG(Xt)).
Remark 9.2.1.

(1) One notices that, in order to investigate the tracking error order of DGHS,
one needs estimates for the first three spatial derivatives of the price function
to hedge, while only estimates of the first two spatial derivatives are required
with DHS.

(ii) Compared with the (optimal) rate N obtained by Zhang [Zha99] for DHS, the
above result shows the asymptotic efficiency of DGHS in comparison to DHS.
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9.3 Our contribution

We consider a mutidimensional Black-Scholes model for S = (S, ..., 59), with con-
stant volatilities (log-normal model) and constant correlations. The hedging instru-
ments that we use are Calls and exchange options (whose price functions are, within
our model, explicitely given by the Black-Scholes and Margrabe formulas).

We write the Delta-Gamma tracking error gj%r as a (multiple) stochastic integral,
involving the derivatives of the option price function up to order 3. Then, establish-
ing estimates on the option Greeks and on ratios of the hedging instruments Greeks,
we study the Lg-convergence order of & ]%F, according to the number of rebalancing
dates and to the regularity degree o of the payoff g(S7). Besides, we show that one
can choose the trading dates so as to achieve an optimal convergence rate (of order
the number of dates N).



Chapter 10

The tracking error rate of the
Delta-Gamma hedging strategy

This chapter corresponds to an article submitted for publication in “Math-
ematical Finance*.

10.1 Abstract

We analyse the convergence rate of the quadratic tracking error, when a Delta-
Gamma hedging strategy is used at N discrete times. The fractional regularity of
the payoff function plays a crucial role in the choice of the trading dates, in order to
achieve optimal rates of convergence.

10.2 Statement of the problem

An investor who sells an option should hedge against the variations of the underlying
asset price, either by making a static replication, or by making a dynamic hedging
strategy, i.e. trading continuously in time in the hedging instruments. In practice,
this is often done through the so-called delta hedging strategy (DHS in short), which
ensures that the investor’s portfolio remains delta-neutral (i.e. equalizing the first
sensitivity 0 of the hedging portfolio and that of the option value). When the market
is complete (we assume this in all what follows), in a Markovian setting where the
asset is modeled through a stochastic differential equation and the payoff at time T
is of the form ¢(St), it is known (cf Karatzas and Shreve [KS98|) that the number
of assets to hold at time ¢ is given by §; = 9su(t, S;) where u is the price function
(solution of a valuation PDE). Theoretically, it means that the investor must trade,
continuously at each time ¢ between 0 and the maturity, in order to obtain zero
residual risk.

However, due to practical considerations and to the transaction costs, one can only
use discrete-time hedging strategies. Here we do not consider the impact of trans-
action costs (we refer to Kabanov and Safarian [KS97|, Pergamenshchikov |[Per03]
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and references therein) and we focus only on the impact of discrete-time rebalanc-
ing. Thus, the number of assets between two successive rebalancing dates t; and ¢;11
is fixed to dy,, and the associate hedging portfolio has a terminal value VIN which
may differ from the required payoff g(S7). In other words, this induces a tracking
error £5 := V¥ — g(St), which has been intensively studied in the literature. For
Call/Put option, in Zhang [Zha99] it is shown that the Ly error has a convergence
rate N'/2 for uniform rebalancing dates t; = iT/N. In Gobet and Temam [GT01], it
is shown that the rate of convergence actually strongly depends on the smoothness
of the payoff function g: for instance for digital options, the order of convergence
becomes 1/4 instead of 1/2. Geiss and coauthors deeply investigated these features:
in a series of papers initiated by Geiss [Gei02], they paved the way to connect the
fractional regularity of the payoff and the rate of convergence of the related dis-
crete time delta-hedging strategy. Moreover, they showed that for a given payoff,
a suitable non-uniform grid with N dates can be chosen to achieve the rate N/2:
the more irregular the payoff, the more concentrated near T the points. Recently
in Gobet and Makhlouf [GMO0S]|, these ideas have been extended to BSDEs and to
multidimensional diffusion models. One could alternatively measure the error using
weak convergence techniques, instead of Lo norm. Surprisingly, the convergence rate
may be N2 even for non-smooth payoffs, i.e. N/ 2&% weakly converges as N goes
to infinity to a non trivial random variable, which may not be square-integrable!
for non-smooth payoffs. This convergence phenomenon has been noticed in Gobet
and Temam [GTO1] for digital options, then more systematically studied in Hayashi
and Mykland [HMO05]. The integrability of the weak limit for non-smooth payoffs is
investigated in details in Geiss and Toivola |[GT08].

In all these works, it is pointed out that the weak limit is related to a suitably
weighted integral of the so-called Gamma (03u(t, St))o<i<r of the option®. Thus, in
order to reduce the tracking error, one can think of reducing the portfolio Gamma
by incorporating in the hedging portfolio another instrument, the price of which is
(C(t, St))o<t<T: in practice, it is a liquid vanilla option (At-The-Money Call/Put).
The resulting strategy is called Delta-Gamma hedging strategy (DGHS in short) and
is well-known from practitioners (see Hull [Hul09] p.371). It is obtained by equalizing
the second sensitivity of the hedging portfolio and that of the option value. It follows
that the numbers of options C' and assets to hold at time ¢; are equal to

_ Q%ulti, Sy,)
- 92C (4, Sy)’

aéu(ti, Stl)

6 - 25
g OSC(ti, Stl)

6252. = asu(ti,Sti) aSC(tZ,StZ) (101)

This specification of piecewise-constant strategy on each interval [t;,t;11] leads to a
final wealth process V%V hopefully closer to g(St) compared with that of the simple
DHS.

IThis gives a non trivial situation where the rate of convergence depends on the convergence
criterion (L2 convergence or weak convergence).

2Similar integrals of the Gamma also appear in the measure of robustness of the Black and
Scholes formula, cf El Karoui, Jeanblanc-Picqué and Shreve [KJS98|.
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10.3 Objectives

The purpose of this work is to quantify how much the resulting tracking error £ ]%F =
VI{V — ¢g(S7) is reduced with respect to the number of rebalancing dates. More
precisely, we aim at connecting the convergence rate of 5]%1“ to the payoff regularity,
regarding the choice of rebalancing dates. These issues can be investigated under
several points of view.

e Choice of the convergence criterion. We conjecture that in the usual cases, the

rate of weak convergence of £§ is N (instead of N'/2), extending the results
in Hayashi and Mykland [HMO05|, with a possible non square-integrable limit
(our numerical experiments support this phenomenon). We leave the proof of
this conjecture to further research and in this work, we prefer to investigate
the Lo convergence because it leads to a more intuitive dispersion measure
of the tracking error. Our results below state that equidistant trading dates
with DGHS do not systematically yield a better convergence order w.r.t. N
compared with DHS (see Theorem 10.6.2). But an appropriate choice of trading
dates leads to a quadratic error equal to a O(N~!). The choice of the trading
dates is explicit and depends on the fractional regularity of the payoff.

e Specification of the model for S. In this work, we emphasize the tuning of the
trading dates according to the payoff regularity. Analogously to the results in
Geiss |Gei02] or Gobet and Makhlouf [GMO§|, we believe that the results on
the rate of convergence (and thus the choice of trading dates) hold for a wide
class of SDE model on S. To simplify the analysis, we only consider geometric
Brownian motions for the modeling of S (see (10.2)). Nevertheless, the analysis
remains rather intricate, but we hope that this model simplification will help
the reader to focus on the measure of the payoff regularity, which is driven
by the behavior of the expected conditional variance Vir(g) = E|g(St) —
E7t(g(S7))|? as t goes to T. On the other hand, we allow the payoff to depend
on several assets (basket options for instance). For this, we extend the single-
asset formula (10.1) for DGHS to the multi-asset case, involving the cross-
Gammas of the options.

e Choice of hedging instruments. Obviously, the instruments C' used for DGHS
have to yield non-zero gammas, in order to well define the strategy (see (10.1)
for the single-asset case and Definition 10.6.1 for the multi-asset case). To
manage the individual gammas, the most natural choice is Call/Put options
whose price are convex in the spot variable (see Martini [Mar99| for general
results on the propagation of convexity, ). To handle cross gammas, we propose
to use exchange options (spread option with strike zero). Since the models for
S are correlated geometric Brownian motions, whenever needed we can take
advantage of the closed Margrabe formula for such an exchange option (see
Appendix 10.A.1).
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The closest related work to ours is the one by Brodén and Wiktorsson [BWO0S§|. In
this reference, S is a one-dimensional asset, following a local volatility model. The
payoff function g is the Call payoff and uniform trading dates are studied. They state
that the Lo convergence holds at rate N3/%. However, there are some gaps in their
proofs, in particular regarding some key estimates related to lower /upper bounds for
the second derivatives of the price function. The differences between their work and
ours are the following: we restrict to log-normal modelling; we extend the study of
DGHS to a multidimensional framework; we study the connection between the payoff
regularity and the choice of the trading dates in order to achieve optimal convergence
rates. Furthermore, our proofs leverage the intrinsic martingale properties of price
processes (see Lemma 10.5.2), which leads to simplified computations.

10.4 Organization of the paper

In the next section, we define the stochastic model for the underlying assets, the
payoff option to hegde and the other instruments used in the hedging portfolio.
We state some preliminary results related to the Greeks’ processes as martingales.
We also introduce notations used in all the paper, in particular for the fractional
regularity of the payoff function. The section 10.6 contains our main results: we
define the DGHS strategy, show that the Lo norm of the tracking error is essentially
measured by a suitable integral of the third derivatives of the price function, which
can be accurately estimated through the payoff regularity. Then, we give sufficient
conditions on the N trading dates to yield a tracking error of order 1/N as the
number N of dates goes to infinity. In section 10.7, we present numerical results
which corroborate these features. Section 10.8 is devoted to the proofs of the main
results.

10.5 Preliminaries

10.5.1 Asset stochastic model, payoff, additional hedging instru-
ments

Hereafter, W = (Wl, ey Wd) is a d-dimensional Brownian motion, defined on a fil-
tered probability space (€2, F,P), where P is the historical probability and (F;)o<¢<T
(T is a fixed terminal time) is the natural filtration of W, augmented with P-null
sets. We assume that the components of W are correlated, with <Wj, Wk>t = pjkt,
and that the matrix (p;x)1<jr<a has a full rank.

Assets. We denote the non-risky asset by S° (bank account) and the risky assets by
(87)1<j<a. Although not essential for our results, we assume that the risky assets do
not pay dividends and that the interest rates are constant and equal to r. Morever,
we assume that the risky assets (S7 )i<j<d are lognormal processes with constant
volatilities (0;)1<j<q, constant historical drifts (uj)1<j<q and correlations equal to
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k)i 1t writes for 1 < 5 < d:
(Pj)j, J

So =50, o (10.2)
dS] = p;Sidt + 0, S]dWy,

where Sg , 5% and o; are positive. Set \; = BiT. then, we can define the so-called
gj

risk-neutral measure Q such that (Wt] = Wt] + Ajt)i<j<d is a Q-Brownian motion
(the correlations remaining unchanged). Up to the correlation factor, A is the market
price of risk. Under Q, the model writes

SJ — sl
0
dS] = TS]dt +0; S]dW]

By a slight abuse of notation by setting oy := 0 and 58 := 1, we make the above
equation also valid for j = 0, which might be useful in the following when short
notations are needed.

At least, note that S] =e rtSJ is a Q-martingale (for any 0 < j < d), and dS]
oj SJ dW] More generally, if U is a stochastic process, U denotes its discounted value:

Ut = e_”Ut.

When an expectation is computed under P, we write Ep(.), while under Q we write
Eg(.). We add the superscript F; to indicate the conditional expectations given F3,
i.e. EZ*(.) and Egt()

The payoff g. In what follows, g denotes the payoff function that defines the
option to hedge. The price function of this option is then defined by u(t,S) :=
Eg [e T =Yg(S7)|S, = S], for S = (S1,...,5%) € RL. We assume that Ep lg(ST)|?° <
oo for some pg > 1 (for instance, |g(S)| < C(1+|S|"+|S|™") for some n € N). With-
out additional regularity assumption on g, it is easy to check that u is a C*° function
for t < T. In particular, for I[,m,n = 1...d, dyu, Oqiu, (9sl gml and (9sl S 5n
and are continuous for ¢ < 7.

As in Geiss |Gei02] and Gobet and Makhlouf [GMO08|, the fractional regularity of
the payoff function g is measured through

u exist

Vir(g) == E |9(X7) — E7 (g(X7)[

and we consider the following space (a € (0, 1])

v
Ly, = {g s.t. BElg(X7)]> + sup ur(9)

— < .
o<t<T (T —1)* oo}

It describes the rate of decreasing of the expected conditional variance of g(St) given
Fi as t goes to T. When g belongs to Lo, and ¢g(St) € Lgp, (for some py > 1), we
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can define K“(g) and K*P(g) as

Vir(9)
K%g) = Ep|g(S7)|* + sup —=—I,
(9) := Eplg(S7)| e Tt
a
Ko (g) i= (B lg(Sr)[#) ™ + sup L) (103
t€[0,T) (T - t)

Notice that ac(0,1] Ls o, obviously contains uniformly Hélder continuous functions,
but also some non-smooth functions. Some examples are given in the lemma below,
whose proof is done in Appendix 10.A.2.

Lemma 10.5.1. e Call/Put options. If g(S) = (87— K) 1 or g(S) = (K —57),
(for 1 < j <d), then g € Ly, with a = 1.

e Digital options. If g(S) = Lgiwx or g(S) = Lgjiox (for 1 < j < d), then
g € Ly with o =1/2.

e Stability by summation and product. Let g1 and ga belong resp. to L, and
Lo ,. Then

— g1+ 92 € Loy withao = oy A ag;
— If in addition g1 and go are bounded, then gig2 € Lo o with a = oy A aa.

A straightforward application of the above rules shows for instance that Put
payoffs with digital triggers (of the form g(S) = lg1 g, .. ga-1cx, ,(Kq — Sh.)
belong to Ly o with o =1/2.

The additional instruments. To perform the DGHS, we need d(d + 1)/2 extra
financial instruments that have non vanishing gammas. To simplify the exposure,
we assume that these instruments are options with the same time maturity 75 > T
Their payoffs are given by (for 0 < j < k < d)

(S5, — K;S%,)+ (10.4)
(Kjr >0). If j=0and 1 <k < d, it corresponds to a Call on the asset S* with

strike Ko,kerTQ. If 1 <j <k <d,itis an exchange option between S7 and S*. The
price function of each of these instruments writes

CoHF(t, 57, 8%) i=Bg e " 0(SF, — K;157,)41S] = 7, SF = Sk] '
Since the model is log-normal with constant correlation, the price functions are

explicit and are given by the Black-Scholes and Margrabe formulas (see Appendix
10.A.1).
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10.5.2 Greeks and martingales

In this paragraph, we introduce some specific martingales which are related to the
option Greeks. These properties are quite standard, but to our knowledge their
importance in the analysis of the tracking error has not been emphasized so far:
in particular, leveraging this property, we will deduce that the tracking error is an
iterated stochastic integral w.r.t. the Q-Brownian motion W (see Theorem 10.6.1).
Notation. For any function ¢(t, S, ..., 5%) and a multi-index (ly,...,1,) € {1,...,d}?,
we will denote agllw’slpi/)(t, S}, ..., S3) by alp;’___’lp?/)(t).

For I,m,n = 1...d, we define

a(t) = e "u(t); (10.5)
" (t) = e oS ioult); (10.6)
ﬁl(?m(t) =e UlamSlSlnal%m (t) (10.7)

al(izm,n(t) =e€ to-lo-mo-nsésgnsnal m.an (t) (108)

In the same way, we define, for 0 < j < k < d and [,m,n = 1...d,

CIk(t) i= *wﬂm

CIPW (1) .= e oy Sl IR (1);

ok (1) i= e 010,518 07, CVF (1);
iif(ﬂ = ¢ 0100 SLST SOy n OV (2).

The lemma below will be useful.

Lemma 10.5.2. The processes above are Q-martingales on [0,T), and their It6 de-
compositions w.r.t. the Q-Brownian motions W write

da(t) =Y aM (t)aw; (10.9)
(a2(0) + v () L ) A (10.10)

d
=3 <a§f’;}mn(t) Ot () L + alal(z(t)nn:Q awr. (10.11)
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Similarly, one has

d
07k (1) = Y~ M yaw;
=1
d
de* Wy = 3 (C;;;’;’(?)(t) + JlC'lj’k’(l)(t)]lm:l) awm, (10.12)
m=1
d
Al @ (1) =3 (D ) + onClon @ ) + o Cl P (1) AW

i
I

Proof. We show the result for the martingales involving u. The proof is the
same for those involving C7:*.
Let us define u(t, S) := e "u(t,S), for S = (91,...,8%) € RL. Since a(t,S;) =
Egt [e=™Tg(ST)], clearly (u(t, St))s<r 18 a Q-martingale for any initial values (s)1<;j<a-
Then (see e.g Gobet and Munos [GMO05b]), for a multi-index | = ({1, ...,14), the pro-

l _ 1 d . . St SEp, Al
(!(1))11,___,(5(%)1(1”(75’ Sy, ..., S¢), which is equal to (é) 1(%) d(?l‘l"__

S/ is linear w.r.t. s}), is a martingale (the estimates on the regularity for ¢t < T are
given later in Lemma 10.8.1). Taking |/| equal to 1 (resp. 2, resp. 3), we obtain that
the process in (10.6) (resp. (10.7), resp. (10.8)) is a Q-martingale on [0, 7.
Concerning the differentials, it is clear that, if (¢(¢)), = (¥(¢, S}, ...,Sf))t is a Q-
martingale where 1 is a smooth function, then its [t6 decomposition contains only
terms w.r.t. dW:

u(t) (since

cess 0 e
b

d
dyp(t) = > ouStop(t)dw.
=1

By taking ¢ (t) = u(t) (resp. ﬂl(l)(t), resp. al? (t)), the relation (10.9) (resp. (10.10),

I,m

t
resp. (10.11)) follows. O

10.5.3 Other notations

The time net. In all what follows, 7 := (tx)k—0..n is a deterministic time net,
such that 0 = tp < t1 < ... <ty = T, and |7| := supp—o. n_1(tk+1 — tx). This
defines the N trading dates of the DGHS. We shall use the following net (5 € (0, 1])

7= (VD o p(1- )5 0< k< N}

Note that 7(1) = (téN’l)) coincides with the equidistant net. For 8 < 1, the points in
78 are more concentrated near T.

The constants. In our estimates, we use numerous constants that will be generi-
cally denoted by C or c. We emphasize the fact that, whenever a constant depends on
the function g, the dependence will be expressed explicitly, so that all the constants
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such as C or ¢ do not depend on g, but may depend on 7, (145), (75), (P.k) ks (k) j ks (sé)j, o'
and other universal constants. They may also depend on T" and on 75, but remain
bounded when 7" — 0.

A <. B means A < ¢B with a generic constant c.

10.6 The Delta-Gamma hedging strategy

10.6.1 Decomposition of the tracking error as multiple It6 integrals

In order to illustrate the ideas and results of the multidimensional case, which will
be studied in paragraph 10.6.1, let us show what happens in the one-dimensional
case (d = 1), with a single asset S.

The one-dimensional case

In that case, the additional hedging instrument is simply a Call on S' with strike
Ko,159, at maturity T5 (see (10.4)). The related price function C%*(t, 5%, S) is the
Black-Scholes formula, where the usual variables are ¢t and S!.

Now let us decompose the tracking error. Taking advantage of the self-financing
condition, the discounted terminal value of the hedging portfolio VIN = e*rTVj{V is

N—-1
i=0
N-1 ~ B
+ 35 (COM tign, S SEL) = COMEL S SL)), (10.13)
=0
where
_(2)
uyq ()
e p— (10.14)
% ~0,1,(2 ?
11 @ (t;)
I @ 1 01401,01)
ol = — @V (t) — ——=—5"1 bWy, 10.15
ti Ulstliul (t:) 015% . Y1 (t:) ( )

02, u(t,Sh)
sl g1 It 1 1 0,1 0.1 0 1
921 51CO1(t.SP.8)) and 03, = Ogiu(t, Sp) — 0, 051 C™ (1, 57, 57,

which shows that the above representation is equivalent to that mentioned in the
introduction (see identities (10.1)). However, representations (10.14) and (10.15) are
more convenient for the mathematical analysis below.

The discounted tracking error is defined by

—AT _ .,
En (g.m) =V —eTg(Sr)
= V%V - E(T’ ST)

Note that 5?1_’1 =

T
— VY — (a(0, So) + / Al ()dwy),
0
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where we have used the It6 decomposition (10.9). Combining this with (10.13), one
has

—AT - tit1 (1)
S em=-3 [ rOma, (10.16)
where
700 (t) := a (t) — 8t 1 S} — 60 PV (h).
Then, using (10.15), we observe that

_(1) 0,1,50,1,(1) /,
; u t; 6, C t; _ _
70 (6) = at () - ( ;hél) - 01151 ( )> 015}, - o ey () = o.
t; t;

This is the usual Delta-hedging condition. Applying Itd’s rule and using Lemma
10.5.2, one obtains

t
oW (t) = / T3 (5)dW, (10.17)
t;
for t € [ti, ti+1), with
g _(2 _(1 1 ~0,1,(2 1,31
T3 (s) = a3 (s) + o1t (5) = 0L o125} = 0 (VD) + o Y s) )

Then, using (10.15), we obtain

_(1) 0,1,50,1,(1) 1,
: ) opteyt M) _
THO) (1) =a?) (1 a ¢ U gz 0 Gr >

_50.71 <CO’1’(2( Do C,0,1,(1)( ))
=a?) (t;) — o' Oy @ (1),

Using (10.14), it leads to T%(®)(;) = 0: this is the Gamma-hedging condition. We
apply once again It6’s rule and Lemma 10.5.2 to obtain

T2 (5) = / T0) (1) AW, (10.18)
t

i

where T%() (r) can be explicitly written using ﬂﬁ,l, _g i, ug ) and the similar Greeks
for C%!. For the purpose of the current discussion, the exact espression of T%() (t)
is not important (it is given in the general case in Theorem 10.6.1). More interesting
is to identify the form of the tracking error as a triple iterated stochastic integral

w.r.t. W. Indeed, from (10.16), (10.17) and (10.18), one obtains

1+1
3 (g, 7) / //T@(3 )AW,dWdW,. (10.19)
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The generalization of such a decomposition to the multidimensional asset model will
be given in Theorem 10.6.1.

Now, let us formally comment the consequences of (10.19). At first sight, if
T%®) (1) had a Q-Ly moment uniformly bounded in 7, we would deduce that

—AT N=l otinq pt ops )
EolEx (g,m)]* < E / / / sup |T”(3)(r)|i2drdsdt
i=0 t; t; Jt; 0<r<T

, T
< sup T ()}, I * =
0<i<N—1, 0<r<T

(10.20)

i.e. the tracking error has a Q-Lo norm of the order of the time step |7|. In particular,
N regular trading dates would lead to an optimal rate of convergence. Actually, this
argumentation is not complete because the moments of 7%) (r) may explode as r
goes to 1" (because for non smooth payoff, the Greeks may go to oo as the time to
maturity shrinks to 0). It illustrates that a significant piece of work in the Delta-
Gamma error analysis lies in the understanding of the behavior of |T7%(3) (r)lf, as
r — T. This feature is tightly estimated through the fractional regularity of g (see
Proposition 10.6.1 and Corollary 10.6.1).

The multidimensional case

Following the previous decomposition for a single asset, we can handle the general
case as well. The discounted terminal value of the hedging portfolio is

N-1 d
7= u(0,8) + Y Y 6.(5],, - S7)
=0 j=1
+Z > IMCHR (g, 8L L SEL) = CTR (L 81LSE)). (10.21)
i=0 0<j<k<d

Definition 10.6.1 (Delta-Gamma hedging strategy). We define the DGHS by

2
Jk a7 (t)

7 CJTQ)() (1 < j <k <d, Exchange options),
gk

(10.22)
-(2)
u (tz) 1 L k(2
5?’1 L — Z el )(t) (1 <1<d, Call options)
i ~0,1,(2 ~0,1,(2 ti “ i Si>aq, )
Cl ) G ) 1<j<k<d
(10.23)
1
ol = — ﬂ(l) - Z 5] kC’]k (1) (t;) (1<1<d, assets).

1S}, 0<j<k<d
(10.24)
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These are natural extensions of (10.14) and (10.15). Then, similarly, the dis-
counted tracking error is defined by

=AT = _
En (g.m) =V —eTg(Sr).
Using expression (10.21) and Lemma 10.5.2, one has

N-1 d

. 1+1
EA (g, -y Z/ 70D (1)awy, (10.25)
=0 [=1
where - 1 _ ik ~d.k, (1
0@ =a @) — oS- S sk (10.26)

0<j<k<d
for t € [ti,ti+1).

10.6.2 Main results

In the general case, the (discounted) tracking error can be decomposed as a triple
stochastic integral w.r.t. W, analogously to (10.19) in dimension 1. In the decompo-
sition below, there are a principal part (related to the third derivative of the option
price) and some residual terms.

Theorem 10.6.1. Assume that Ep |g(S7)|?P° < oo for some po > 1. We have

N-1 i1
3 n m l
gN g, Z Z 1 /t /t ul m n Rl 1(7L)n( )) dWT’ dWs th7

=0 I,m

(10.27)
where
B9 (8) = (omfon (O lnem + o1 () s + i) (D))
_ St
+0o; ( RO 5—;%(1)(7%)) Lymm=i
ti
SED DR el ()
o<jok<d
- Z 5i;k <Umélj;f{(2)(t)]ln:m + O'lé;;f;(Q)(t)]ln:l + UlC_'l];f’(Q)(t)]lm:l)
0<j<k<d
—at D 5”( ) - Sf e )) j — (10.28)
0<j<k<d S

In addition, the following estimate holds:

Ep ‘?@F(g, ‘ SC'Z Z /ZH/ / Ep ulmn —i—Rh(n)n(r) erdsdt.

=0 I,m,n=1

(10.29)
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The proof is postponed to Section 10.8. We now bring in the next proposition
several estimates, as key ingredients of our main results. These estimates are proved
in Section 10.8.

Proposition 10.6.1. Assume that Ep |g(S7)[*"° < 0o for some py > 1.

e Forlim,n=1.dand0<t<T,

<0 Vir(9)

Ep‘a@) 0] < xR

2
I,m,n ‘

(10.30)

o There exists a positive 7l (depending on py, T and Ty) such that, if
|| < mtbreshold “yhen for 0 <t; <t <ty <T,

‘2 . CVt,T(g) + (EIP ’g(ST)\Qp())plo

e (10.31)

Ep ‘Ri’(3) (t)

I,m,n

Thus, an easy and direct consequence of Proposition 10.6.1 and the definition
(10.3) of K*Po(g) is the following corollary.

Corollary 10.6.1. Let a € (0,1]. Suppose that g € Ly and that Ep |g(S7)|*° < oo
for some pg > 1. Then, when |r| < wthreshold “and for 0 <t < T,

N )

Ep 2> )+ R"® )] <c

mn Lna V)| = O Tysma (10.32)

Now we are in a position to expose our main results.

Theorem 10.6.2. Let a € (0,1]. Assume g € Ly and Ep|g(S7)[*° < 0o for some
po > 1.

1. Regular grid 7). For N sufficiently large to ensure |7()| = % < grthreshold

one has

@,po 1/2 pa/2

— 2
(Ep [E3" (0, 70)| )* < e

(10.33)

2. Non regular grid 7%, 3 € (0,1). Taking N sufficiently large to ensure |7(®)| <

7.‘.threshold , one has

( a,po 1/2 /2
oK () 7 T

~—

yBe (G0,

a,po / o/
P d QT s

=
Qe

(Ep (?ﬁr(gu ﬂ(ﬁ))f

U (g) V2 7o
N

if B € (0, %).
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Before proving these results, we give few comments.

1. The use of irregular grids crucially helps to increase the convergence rate of
the tracking error, for any fractional regularity o € (0, 1], up to the rate N.

2. For the regular grid, in general the estimate (10.33) of the rate of convergence
N/2 is tight for a < 1 (because the estimate (10.32) is tight, see the discussions
in Geiss and Hujo [GHO7] and Gobet and Makhlouf [GMO08|). In addition, it
coincides with the rate of convergence of the Delta hedging strategy: in other
words, for non-smooth payoffs, the DGHS used with regular grids does not
improve the rate of convergence of the tracking error. This is confirmed by our
numerical results in Section 10.7.

3. In the case a = 1, our estimate (10.33) is not optimal. Indeed, for Call options,
from Brodén and Wiktorsson [BWO0S| we expect the rate to be equal to N3/4.
For smoother payoffs (say Cg’, leading also to a = 1), the first three spatial
derivatives of u are bounded and our computations lead to a convergence rate
equal to N (see the estimates (10.20)).

Hence, the case a = 1 is a singular point, for which the convergence rate may

_ 2
go from N'/2 to N. Tight estimates on (Ep ‘Eﬁr(g, W(l))‘ )1/2 can not be given
only by assuming g € Lo 1: presumably, an extra condition on Vg would be

necessary. We leave this issue for further investigations.

Proof of Theorem 10.6.2. Put T"" )( ) = u(3) (1) + Ry (3) (r) and define

I,m,n l,m,n

DT ft ftz ftz ‘ T r)‘ drdsdt. The Taylor expansion of order 2, with

lmn

mtegral remainder term, of the function f(.) between 7 =t; and 7 = t; 41 gives

tiv1 ft rs i.(3) ) 1 tit1 Z (3 2
/ //Ep‘Tl’mn(T)‘ drdsdtzi/ (tisr =" Be [T, (1) at.
t; t; Ji; Y t;

Then, from Theorem 10.6.1 and Corollary 10.6.1, one obtains

_AT 1) 2 K*Po(g)

The term ¢ = N — 1 in the above summation is equal to

T
K*Po CK*Po T«
c / 9) 4 (9) = (10.35)
70 (T — 1) o N«
where we have used T — t%v 61) = N?/B' Furthermore, it is known (see Gobet and

Makhlouf [GMO08]) that

-t \_ 1’
sup sup <=
i=0..N=1,¢,® )y \ (T = 1)} 8]~ BN
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From this, (10.34) and (10.35), it follows that

2 a,P0 o
o CK*(g) T

E]P’ gﬁp (ga 77(6))

- o No/B
(N,B)
T'G 2 [N dt
[£2y2(0] — 2_2/87
+CK (g)(BN) /0 (T —t) T (10.36)

To complete the proof, note that it remains to upper bound the above integral in the
three cases € («/2,1], 8 = «/2 and ( € (0,/2). Denote by I the second term in
the r.h.s. of (10.36).

1. If 8 > «/2, the function f : ¢ +— %

easily derive

is not integrable at ¢ = T and we

726 T 1

77 = CKP(g)—
B V3@eg—a) NG

2
ﬁ—N) (26 — ) N(a=208)/8

I < CK™Po (g)(

2. If B = «/2, the function f is still not integrable at ¢ = T and we obtain

3
I< CKO"pO(g)(;—N)Z log(N'/7).

3. If 8 < /2, the function f is integrable and it gives

T8 o To—28 T 1

1< K0 5R) =2 ~ X" O pa g v

10.7 Numerical Results

In this section, we present some experiments of Delta and Delta-Gamma hedging
strategies, of both a European Call option (g(S) = (S— K)4) and a European digital
Call option (g(S) = 1g>x) on asingle asset (d = 1). The two payoff functions belong
respectively to Lo and L, 1. In our experiments, we rely on the known explicit
formulas for the prices of these two options. In the following tests, we take r = 2%,
w= 1%, o = 25%, 8(1] = 100, T' = 1 year and K = 100. The additional hedging
instrument is a Call with strike Ky; = 100 and maturity 7o = 1.25 year. All the
experiments are carried out with 10000 simulations under the historical probability.
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Delta hedging of a CALL

2.0
— — — Dbeta=1

beta=0.

1.57

5

0.57

log (DeltaErr~2)
o
1

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
log (N)

Delta-Gamma hedging of a CALL

-T
b " — — - beta=1
beta=0.

log (DeltaGammaErr~2)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
log (N)

%)

Figure 10.1: For a Call: at the top (Delta hedging strategy), log(EpE@(g,w(ﬁ))
N[?)

vs log(N). At the bottom (Delta-Gamma hedging strategy), log(EpEﬁF(g,w(ﬁ )
vs log(N).

Comparison of the order of Ls-convergence. For the figures 10.1 and 10.2,
the simulations are made with N = 12, 25, 50, 100, 200, 400, 800 rebalancing dates,
following different 3’s, i.e. different time nets. Note that, in practice, N = 12,
N =25 and N = 50 correspond approximately to a monthly, fortnightly and weekly
rebalancing respectively.

Log-log plots. These figures are the log-log plots of the second moment of the track-
ing error versus the number of rebalancing dates (i.e. log(Ep|€n (g, 7(?)[?) versus
log(N)). We observe that they give straight lines, suggesting that not only upper
bounds are available but presumably expansion results are also valid in these cases.
The resulting slopes of the log-log plots represent twice the convergence order of
(Ep|En (g, 7@)|?)1/2: these empirical convergence orders are reported in Table 10.1
for the Call and in Table 10.2 for the digital Call.

Theoretical order of convergence. In these tabulars, we also indicate the convergence
order that one can expect from theoretical estimates, together with the reference.
Empirical order of convergence. The high convergence orders are not accurately es-
timated, possibly because of the relatively large statistical error due to simulations.
Generally speaking, we notice that the rate of the Delta-Gamma tracking error is
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Delta hedging Delta-Gamma hedging
Beta 1.00 0.50 1.00 0.50
Expected order 0.50 0.50 0.75 1.00
see Zhang | see Geiss see Brodén and (up to a log factor)
[Zha99] [Gei02]| || Wiktorsson [BWOS| | see our Theorem 10.6.2
Empirical order 0.49 0.49 0.68 0.95

Table 10.1: For a Call: order of convergence of the Lo-norm of tracking errors

(Ez[En(g, 7722,

Delta hedging Delta-Gamma hedging

Beta 1.00 0.50 1.00 0.50 0.25
Expected 0.25 0.50 0.25 0.50 1.00
order see Gobet and | (up to a log see our see our (up to a log

Temam [GTO1] | factor) see || Theorem 10.6.2 | Theorem 10.6.2 factor) see

Geiss [Gei02] our Theorem 10.6.:

Empirical 0.24 0.40 0.25 0.49 0.88
order

Table 10.2: For a Digital Call: order of convergence of the Lo-norm of tracking errors

(Ez[En(g, 722,

better than that of the Delta tracking error. However, when § = 1 (equidistant
time net), there may be no significative difference between the two rates: consider
for instance the digital Call (see Table 10.2). This shows the advantage of hedging
at non equidistant rebalancing dates when the fractional regularity index « of the
payoff function is smaller than 1.

Furthermore, the smaller 3, the better the rate of convergence of the tracking error,
either for the hedging of the Call or for that of the digital Call. However, one should
not take 3 too small since the time net points become too close to each other near
the maturity, which might cause numerical instabilities in the simulations or might
lead to unrealistic trading dates. From Tables 10.1 and 10.2, observe that one ob-
tains approximately the right convergence order for the Lo-norm of tracking errors
(order 1/2 with Delta hedging and order 1 with Delta-Gamma hedging) by taking
the critical threshold for 3, i.e. « for Delta hedging and § for Delta-Gamma hedging.

Comparison of convergence in distribution. Figures 10.3 and 10.4 show, for
each option and for different 3’s, the histogram of the tracking error, superposed to
the Gaussian density with mean zero and variance equal to the observed empirical
variance of the error. It is obtained for N = 1000 trading dates. This comparison is
aimed at checking two features:

1. is the asymptotic distribution Gaussian? the answer is generally no, as it can be
easily observed in the figures. Additionally, it is known (cf Gobet and Temam
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Figure 10.2: For a digital Call: at the top (Delta hedging strategy),
log(EpEﬁ(g,w(ﬁ))P) vs log(N). At the bottom (Delta-Gamma hedging strategy),
log(Ep[Ex (g, 7(M)[2) vs log(N).

[GTO01], Hayashi and Mykland [HMO5]) that the limiting distribution is not
Gaussian but mixed Gaussian. Hence, we should consider the Gaussian distri-
bution with the right variance as a benchmark and not as the true distribution:
this representation helps to answer the next item.

2. do the convergence rates in Lo and in distribution differ? In introduction, we
mention that it can happen.

When 8 > § with Delta-Gamma hedging and 3 > « with Delta hedging, one notices
from Figures 10.3 and 10.4 that the empirical distribution of the tracking error and
the related Gaussian distribution seem to be not in the same scale, which corroborates
the fact that the convergence in Lo and in distribution hold at different rates.
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Figure 10.3: Distributions of the tracking errors for a Call

10.8 Proofs

10.8.1 Proof of Theorem 10.6.1.

Decomposition (10.27). It is clear that the definition of 5%1, given by (10.24)
ensures that 7}” (1 )( t;) = 0 for any | = 1...d, where T}’ (1 )( t) is defined by (10.26).
Thus Tli’(l)(t) = *[;/z dTlZ (1)( ), t € [ti,tiv1). Applying It6’s rule and using Lemma
10.5.2, one obtains

d

2(1 Z 1(2 th 7

m=1

with

T2 (t) = a2 (t) + ovy” () Ly — 8,07 Sy
DA OB Ol S

0<j<k<d

Now, as in the one-dimensional case (see paragraph 10.6.1), we can check that the

definitions of 5,{1]“ given by (10.22) (resp. (10.23)) ensure that T (2 )( t;) = 0 for
1<l#m<d (resp. 1 <l=m <d) (in the previous cancellations, We strongly use
that the price function C7* depends on S only through the variables S7 and S¥).
We apply once again [t6’s rule and Lemma 10.5.2 to obtain

d
Z lmn de
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Delta hedging of a DIGITAL CALL: tracking error distribution. Beta= 0.5, N= 1000

12 25
107 20
8 1
] 157 M
6 ]
] 10
4i 7
] L " M\
] /A o
-0.8 -06 -0.4 -0.2 00 02 04 06 -03 0.2 -0.1 00 01 02 03 04
Delta-Gamma hedging of a DIGITAL CALL : tracking error distribution. Beta= 1, N= 1000 Delta-Gamma hedging of a DIGITAL CALL : tracking error distribution. Beta= 0.5, N= 1000
50
257 ]
] 1 It
20 407 I
] |
] ] I
15 %] I
] ] I
|
10 207 “‘ |
7] 4 |
] \
] /TN 10 [
| / \ ] |
1 ] \
o
-0.8 0.6 -0.4 -0.2 00 02 04 0.4 -0.3 -0.2 -0.1 00 01 02
Delta hedging of a DIGITAL CALL: tracking eror distribution. Beta= 0.25, N= 1000
25
20
159
10
5]
o
-01 00 01 02 03 04
Delta-Gamma hedging of a DIGITAL CALL : tracking error distribution. Beta= 0.25, N= 1000
N “V‘
1 I§
|
] i
100 l “
] |
] I
50 \‘ \
] I
] |
| |
] )
1\
o

-0.05 0.00 0.05 0.10 0.15

Figure 10.4: Distributions of the tracking errors for a Digital Call

fort € [ti, tiy1), with

7i)

I,m,n

(t) =

~—

=(3)

=Y ,m, n( ) + Umﬁ(Q) (t)]ln:m + O'la(Q) (t)]ln:l

Im l,m

+ <0 ul( )( t) + 02 a )(t)]ln:l) 1,
- 5£10l Si]ln:m:l

D IR (CAIOR

0<j<k<d

= > 3 (ali P + Y01 L

0<j<k<d

(10.37)

nCI O ()L + Ol ()1, )

Substituting the expression (10.24) for &, in line (10.37) above, and rearranging the
different terms, one readily obtains (10.28).
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Estimate (10.29). The required estimate is computed under the historical prob-
ability . Note that an estimation of the Lo-norm under the risk-neutral measure Q
is straightforward using the It6 isometry.

Writing dW} = dW}+X\dt in (10.25) yields (using the inequality (a+b)? < 2(a®4b?))

d tz+1 .
> / (t)dW}
i=0 =1t
i+1
Z/

i=0 =1 "t

N-1 2

EIP"EﬁF(ga ‘ < 2Ep

N—1 2

+2( sup A?)Ep
I=1..d

70 )‘dt

One can apply [t6’s isometry to the first term ((Wt)t being a P-Brownian motion)
and Cauchy-Schwartz inequality to the second to obtain

_ 2 N-1 d i+1 . 2
Ep(sﬁr(g,w)( (2+ 2Td( sup A2)) ZZ/ EP‘T;’(I)(t)‘ dt.  (10.38)
[=1...d =0 1=1
Now, since TZ (1) => 1ft Z(Q s)dW™ and TZ (2) = 1ft ;Sn )dWw?
with T, SL( )= ul(:?n (r)+ R, fn)n( ), using the same arguments as above, we show
that
(1 2 .t (9 2
EP‘T;,( )(t)‘ <. Z/ EP‘J}Z;&L)(S) ds,
m=1"t
0.(2) |2 B i(3) ;1|2
Be [T (0) <o Y | Be |1 ar.
n=1"ti o
Plugging these inequalities into (10.38) leads to (10.29). O

10.8.2 Proof of Proposition 10.6.1.

Estimate (10.30). It is part of the statement of the following lemma.

Lemma 10.8.1. For1 <Im,n<dand0<t<T,

2 W
ool

Ep ‘ul | <o (jf’i(f))? (10.40)
2

Ep ‘ul(?;jm(t) < C%. (10.41)

Proof of Lemma 10.8.1. For 1 <[ < d, set X! :=1InS! and X; := (X}, ..., X?):
this defines the log-price process. We define the function v(t, X) for ¢ > 0 and
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X = (X',.., X% e R by v(t, X) = u(t,eX,...,eX"). Then v(t,X;) = u(t, S;). For
notation simplicity, (eXl, . eXd) will be denoted by eX. For 1 <1,m,n <d,
otv(t, X) = eXlﬁllu(t, eX),
o v(t, X) = eXleXmafmu(t, eX) + eXlallu(t, ),
o vt X) = eXleXmeXnﬁl?’mnu(t, eX) + eXleXmafmu(t, X)Ly + Tpem)
+ eXleXnﬁlQnu(t, Ny + eXlﬁllu(t, o )
Previous relations yield
eXlallu(t, eX) = djv(t, X),
eXleXmalQmu(t, eX) =02 v(t, X) — ofv(t, X)L ey,
l m n
X e e AR u(t, ™) =03, X) — 02,0t X)(Tney 4+ Toem)
— 02 u(t, X )1y + 20} v(t, X )1y (10.42)
We only prove (10.41), the proof is exactly the same for (10.39) and (10.40).
From (10.42), we readily get

(3 2 _ 2 2
E]P’ ‘ul(,r?q,,n(t)‘ < 16 1i11'5d’0j’6€ 2t (E]P’ |8l3mnv(taXt)‘ + E]P ‘afmv(t7Xt)|
YA

+Bp |02,0(t, X0) | + Ee |0} o(t, X1)|). (10.43)

Now, write v(t,z) = e "7t Jza g( e ,exlﬂr*%”?)(T*t)*”’yl, e )p(t, x;T,y)dy, where
p(t,z;T,y) denotes the transition density function of the d-dimensional Q-Brownian
motion W. Thus we can explicitly differentiate this Gaussian density with respect
to any component of x, and show that

Ou(t, Xo) = e TIRE (g(Sr)H{Y)
o (T— 2
Ot X0) = T TORT (g(5r)H)

Oo(t, X0) = " TVES: (g(Sr)H )

(this is the usual representation of Greeks using Malliavin calculus weights, see
Fournié et al. [FLL199|). In the one dimensional case (d = 1), one has:

1y Wr—-W,;
Hyp ==
2
g® _ (Wr —Wy) 1
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In our more general setting, the random variables H t(lT), H t(QT) and H f’g are indepen-
dent of F4, have zero mean and satisfy to the following estimates (for ¢ > 1):

o' < G

o 1<i<3. (10.44)

f
Eg'

To pass to P-conditional expectations, we introduce Z; = ‘31%\ 7, the Radon-Nikodym

density of Q w.r.t. P on F;. Therefore, using the zero-mean property of the weights
Ht(f%, one can write

o (T—=F [

ofv(t,X;) =e T t)EQt |

_ e—T(T—t) Eﬂfpt

8l3mnv(t7 Xt) - e_r(T_t)Egt

( )
I )

OB u(t, X,) = e~ T-ORZ _<g(ST) - E]{D—tg(ST)) HY)
( )

N[ N[F N[

Thus, using (10.44) (together with the standard inequality IEE],f—t ‘ ZZ—:: {q < (g, forg>1)
and applying Cauchy-Schwartz inequality, one readily obtains

E]—'t (S )_E]-'t (S )‘2
Bho(e, X|? < o TR TT
1 s A3t = T — ¢ )
1 2 Vt,T(g)
Similarly,
2 2 Vt,T(g) 3 2 W,T(Q)
]E]P {almv(t,Xt)‘ S Cm, EP {8lmn’l)(t,Xt){ S Cm (1046)
Then, (10.45), (10.46), together with (10.43), yield (10.41). O

Estimate (10.31). According to (10.28), one can write

By = 000+ 00 — 37 (0OO(0) + 09520 + 040 ),
0<j<k<d
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with

T (1) = (0w () e + 01y o () Lnq + o184 () L)
S|

ﬁ(l)(t) = 0,12 (ﬁl(l)(t) - S_lal(l)(ti))]lnzm:h
t;

UC,j,k,(B)(t) 5] ok G ks (3)( t),

I,mm
TOHRO1) 1= 5% (00 CE ) L + G () Ly + 1O (0)1,0),
oy ik Agks (1 St ik
GG = ot (O~ S 0] Ly

Then,
Ep ‘len )‘ <c <EP‘U(Q)(t)‘QﬂLEP‘U(l)(’f)F)

_ . 2 _ . 2 _ . 2
+ sup <EP‘UC’J”“(3)(t)‘ +EP‘UC’J”“’(2)(t)‘ +EP‘UC’J”“’(1)(75)‘ > (10.47)
0<j<k<d

Let us upper bound each term appearing in (10.47). From Lemma 10.8.1, one has

Vir(g)
(T —1)*

Ep [0 (t)‘Q <30(c2 4 02) (10.48)

_ 2
!

St

gl

2 _r

Ep ‘U(l)(t)‘2 < 20!Ep ‘al(”(t)f n 20?Ep(‘a§1)(ti) jould

)

<o Be [ 0)] + e [a0(1)|

Vir(9)
(T —1t)’

—~

<e (10.49)

2 5%2

Sp

where we have used the fact that EH]:“ o

t
To handle the terms US7EM(¢) UC3#2)(t), TCIHRG)(#) in (10.47), we need

extra intermediate results, that we present as lemmas.

<C.

Lemma 10.8.2. For1 <l m,n<d and 0 <t <T, one has

< CE]P’ ‘Q(ST)’%O’
=TT —m

I,m

‘2170 < CE]P’ lg(ST)[*°

Ep ‘ul(l)(t)‘zpo = (T — t)Zp()

Ep ‘ QTL(Q) (t)

The proof of this lemma is very similar to that of Lemma 10.8.1. One has just
to substitute the Lgpy,-norm for the Lo-norm and Ep |g(S7)[*° for Vir(g). We skip
details.
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Lemma 10.8.3. For 0 < j <k <d, (I,m,n) € {(4,4,7),(J, 4, k), (J, k, k), (k, k, k) },
p>1and0<t; <t <ty <T, one has

i

p|l | <C. (10.50)
)

Proof of Lemma 10.8.3. Estimate (10.50) is a direct consequence from (10.63),
(10.64), (10.65), together with \/% < —L— and the fact that

VIo2=T
Ep ‘S{‘q +Ep \sg\‘q <, (10.51)
for 0 < j<d, te]0,T] and g > 0. O

Lemma 10.8.4. For 0 < j < k <d, (I,m,n) € {(4,7,7), (4,3, k), (4, k, k), (k, k, k)}
and p > 1, there exists a positive constant wt'reshold (yhich depends on p, T and Ty )
such that, for any time net whose size |m| < wthreshold gnd for any 0 < t; <t <
tit1 < T,

i |
Ep | <c, (10.52)
cle ()
p
Ep 12”5)(75) <. (10.53)
Cly ()

Proof of Lemma 10.8.4. We only detail the proof of (10.52), the proof of
(10.53) is similar. The proof is divided into two steps. We first establish intermediate
controls, then we complete the proof.

Step 1. In the following, ¢ is a real number greater than p. One has

, 1 k 1
djl’k(t, St) = In ( St ) + —O'j,k\/TQ -1

O'J"k\/TQ —1 Kj,kSg 2

1 1 .
= (Isk+ (up — =Dt + oxWF
0T — 1 <n50 (s 2%) Ok Ve
1 1
(K +1 t+ oW ) + =0 /To — ¢
m@(“ w1y = 0]t oy t) 27TV
1 ( ird:k j ke
= o Wi —m» (t)> ,
O-j7k-\/T2—t J t

where 01, = \/O'JQ- + ‘71% — 2pj 0oy (see 10.62), and
. . L
Wi = (o, W — o WY) /a1,

, k 1 1
mk(t) = — (111 + (Nk — i+ 5“]2‘ - 501%) ) 2 o7 (Tz — 1).

J K.
SoKjk
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Ny _al|gik 2 :
Note that (Wtjk)t is a P-Brownian motion. We will denote e g‘dl (t’st)‘ by ¢JF4(t).
Then,
/o LR k)

o (gz&’kq(t)> V270 VT —t]E]-'ti Va exp 05, kW{ m

’ NG Yo\ Vero T — 1 2 (00v/T — 1) /g

Vemo; /1o —t . .
= — (fx % ) (P () = o3k WEE),
Vi
where fx and fy are the respective probability density functions of two indepen-
A\ 2

dent random variables X and Y having normal distributions A (0; w) and

N(0; Jg?,k(t —t;)). Therefore,

_ vV 27T0'j7k\/T2 —t
Va

Foi ' Vi
Eptz (¢]7k7Q(t)) fX—}—Y(m],k(t) - 0'.77kWi]'L7k)
. , 2
—q (Jj7kWé’k - m]’k(t))

2 <a]27k(T2 — 1) +qo7,(t - ti)>

= c(t;,t) exp
with
05 kV T2 —t
\/U?,R(B — 1) +qo7(t = t;)

which is uniformly bounded by 1. Then

C(ti, t) =

P

Ep" (¢7(1)) _ (bt W)

_— " = C(ti, t)e K
)

where, for 0 <t¢; <t <t;41 <T and y € R,

)

o, -
—q(oky —m?* (1)) q (ojky — mi*(t;))
2( 2Tt eyl —1)) | 2T

= CQ(ti, t)y2 + Cl(ti, t)y + CO(ti, t)’

o(ti, t,y) ==

and cy(t;,t), c1(t;,t), co(ti,t) are uniformly bounded and deterministic, with

-— q q
) =5, 8 T 2T a1

By (70(1)
$Ika(t;)
t; <t <t;jy; <T if and only if

Then, the quantity Ep ] is finite (and uniformly bounded also) for all

1
Cz(ti,t) — g <0O,Vt; <t < tir1 < T. (1054)

2
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From the expression of co(t;,t) taken at ¢t = t;41, we see that, with a mesh size
|| > (tiy1 — t;) large enough, the condition (10.54) may fail. A sufficient condition

: T : s
on |r| is |r| < (T;(q i) ;= qrthreshold “Tndeed, under this condition, we have

qlg — Dt —t) - q(qg —1)|7|

tit) = =
200 = Sl 1) (T~ t+alt—t) ~ 2AL—TP =T = 2

Step 2. Now, it is clear from (10.63), (10.64) and (10.65), together with (10.51)
that, for (I,m) € {(4,7), (4, k), (k, k)}, one can apply Holder’s inequality to obtain

P
q

E;—ti ((bj,k,q(t)) ] >

C’j’k7(2) t g K, g
o e O (EP <¢f a(t) >> —C (Ep poTre

C{’;lj;v(2) (tl) ¢]7k7q(ti)

(where 1 < p < g), which has just been shown to be finite under the condition above
on the time net size. The lemma is proved. O

Completion of the upper bounds of (10.47). Let 0 < j < k <d.
If 7 # 0, use (10.22) to obtain

EP‘Uc,j,k,(s)(t)‘ — Ep ‘ykcjk(fﬂ)()‘ —Ep ﬁf;i(t) lmn

I,m,n

where pg and ¢ are conjugate real numbers. Thus, from Lemma 10.8.2 and Lemma
10.8.4, and for a time net m whose size is sufficiently small, we readily obtain

> (Evla(s)™) ™

Ee [063+ 00" < 0
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If 7 =0, by using (10.23) we derive

Ep ‘UC,O,IC,(B.) (t)‘ ‘50 k 102 S)(t)‘
. 2
~0,k,(3 0,k,(3 ~d1,925(2
— Ep Cl,m,gm)(t) e (1) — Cl,m,gm)(t) Z Cljc,lkp ( )(ti)ﬁ(g)’ ()
C,O,k,(Q) (tz) k,k\" C,O,k,(Z) (tz) ~J1,92,(2) (tz) J1,J2\"*

kK k.k i) 1<j1<g2<d ~ j1,52

FOR(3) 0 2q

<9 Ep | bmn 27

. )
2po \ Po

_ Ep |a\%)(t;) > (10.55)

G (t) (5 i

1
_07k,(3) (t) 2q1 q1

+2d* | Ep | b 2 (10.56)
~0,k, (2
Ck,k ( )(ti)
1
L 2q e
X sup W EP j17j2(ti) s (1057)
1<j1<j2<d C]1:J27 (t;)
where po, ¢, ¢1 and g are positive real numbers such that - + L Ly L —|— =1.

Now, we apply Lemma 10.8.4 and Lemma 10.8.2 for term (10.55), Li:mm% 10. 8 4 for
term (10.56) and Lemmas 10.8.3 and 10.8.2 for term (10.57) to conclude that, for |r|
small enough, Ep {(_]C’O’k’(?’)(t) ‘2 has the same bound as Ep {Uc’j’k’(‘?’)(t) ‘2 with j # 0.
Then, for every 0 < j < k <d,

1

2 (Belo(sr)™)™

e |00 m
[0 D] < A (1058
The same arguments yield, for every 0 < j < k < d,
1
i (Eelg(Sp)Pm)
Ep ‘UC’J’k’@)(t)‘ < (10.59)

B (T —1)?

To handle Ucvj’k’(l)(t), we need to proceed a bit differently. We take advantage of
the linear SDE satisfied by U%7%(1). Indeed, using (10.12), one has

py ; ~j k(1 _j’k’(l)(t') G
AR D (1) = o267y | dCTH D) - %dsg
t;
R I Z (C{r’;, @4 —i—alC_’;’k’(l)(t)]lm,:l) dw;™
m/=1
Aok, (1)
t) -
_015]’ n= mllT()Ulséthl
t;

= AVOIE@ () 4 TSI D (1)aw},
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where

VOIR (1) = 6?50,y zz / Clyl? (s)aw™.

m/=1
Since UC7%(M)(t;) = 0, we obtain

_ 2 P 2 t I 2
EP‘UC’Jvk’(l)(t)‘ ngp‘vCJv’“(?)(t)‘ + 207 / EP‘UC’]’k’(l)(S)‘ ds.  (10.60)
ti

Following the ideas used to establish (10.29), we prove that

2
EP‘VC’]k @)t Z/ 5“0;7’;, (s )‘ ds.
mi=1"ti

Then, the same arguments used for the proof of (10.58) and (10.59) yield

(B la(Sn) ™) (Bela(SP)”

, 2
P ( ) =c " (T — 5)2 S >c¢ (T _ t)2 ‘ﬂ-‘
Therefore, by invoking Gronwall’s lemma in (10.60), we get
1
2po \ Po
s (Belg(sn)
E ‘UC7JJ<~‘7(1) " ‘ < )
P ( ) —C (T _ t)2 |7T|
Plugging this estimate, the inequalities (10.48), (10.49), (10.58) and (10.59) into
(10.47), we complete the proof of (10.31) and that of Proposition 10.6.1. O

10.A Appendix

10.A.1 Margrabe formula

The following result is the so-called Margrabe formula (cf Margrabe (1978)): it is a
generalization of the Black-Scholes formula, and gives an explicit expression for the
Call and Exchange options.

Proposition 10.A.1 (The Margrabe Formula). For t € [0,T5) and positive initial
spot values S7,S*, one has

CIk(t, 89, 8%) = SEN (¥ (t, S)) — K pS N (d5 (2, S)), (10.61)

where N(.) is the cumulative distribution function of the standard Gaussian distri-
bution, and

A 1 k
d]fk(t, S) = 1I1< 5 > + O']k\/TQ t,

ojrVI —t kS]
. 1 Sk
a*(t,9) = 1 ,>—— /Ty — t,
2 ( ) O-jJ{;\/TQ —t . (Kj,kSJ QUj’k 2

Ojk = \/sz + 0,% — 2p; kOO (10.62)
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W jik ik Q)2 - Lol
e note that |d}" (t,9)|? = |&" (¢, S)[*~21In K S] , or equivalently, e P =
N T
ﬁe‘ 2 . Then, straightforward computations give the following derivatives
J’ .
expressions for C7F
a) For 0 <j <k <d,
OLCTH(t, 57, 8%) = N(df" (1, 5));
2, CIk(t, 57, SF ! L el 10.63)
t 2 ; .
kk ) /_27_1_0_‘7 B /—TQ — Sk; (
B i 1 1 dk (¢, S) Id’i”“<t’3>l2
O, CIF(t, 87, %) = W - e e 2 .
2o VI —1|S | ojrVIe —
b) For 1 <j <k <d,
j j ‘7k .
0;C7K(t, 87, 8%) = —KjpN (a5 (¢, 5));
| st _|wtes |
%07 (4,57, 57) = V2ro /Ty — 11992 B (10.64)
J, 2~
. . 1 1 _|#*es]
92,07k (1,57 SF) = — —eT 2 10.65
Jk ( ) \/%O'%k\/m S] ( )
5 ik i gk 1 g el
1 dr,s) |4tes|’
OB O (t, 59, 5%) = Vo T 15557'? ) 5 :
Aot LS @) ) el
7 210/ T — 1| S7]° oV 12 — '

10.A.2 Proof of Lemma 10.5.1

e Suppose that g is Lipschitz (including the case of Call/Put payoffs). Then observe
that

Vir(9) = Eelg(St) — E3*(9(S1))|* < Eplg(Sr) — 9(S)?
< CEp|Sr — S¢* < C(T —t)

proving that g € La o, with o = 1. The first item of Lemma 10.5.1 is proved.
e Now, consider g(S) = 1g>k and a single log-normal asset S. Then, passing to the
log variables, we set

v(t, ) = P(log(St) > log(K)|log(S;) = z)

e’ 1
= N( Og(K@‘M(T—t)) D)

1
Uml oVT —t).
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An application of It6 formula to the P-martingale [v(s, log(Ss)) = P¥+ (St > K)]o<s<T
leads to

T 1 —(—A— log( s V—1oy/T—5s)2
V = Ep(— o/T—s g e— k(T —s) 2 d .
t,1(9) /t P(QTI'(T — S)e v K ) s

Then, standard computations give Vi r(g) < ftT \/%_Sds < C+/T —t, which shows
that g € Lg o with a =1/2.
e The stability by summation is obvious. Regarding the stability by product, write

)I?
)) = B¢ (91(S7))Eg" (92(S7))

Vir(9) = Eplg1(S7)92(ST) — B2 (91(ST)92(
< Ep|g1(S7)92(S7) £ 91(ST)EZ" (g2(
< 2|g112Var(92) + 2|92 2% Vaer (91)-

St
St

Our statement readily follows from this. 0.
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