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What is a �rst-order formula?

A �rst-order formula in the language of groups is a �nite formula
using the following set of symbols

Usual mathematical symbols: =, 6=,¬,∨,∧,∀,∃,⇒ .

Some variables: x , y , . . .

Symbols speci�c to the language of groups: 1, ∗,−1 .
N.B: A variable always represents an element of the group we're
talking about.

Example

(x4 = 1) ∧ (x2 6= 1) ∧ (x 6= 1)
(∀y xy = yx)⇒ (x = 1)
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What is a �rst-order formula?

A variable x which appears in a formula φ is free if neither ∀x
nor ∃x appears before it in φ.

Example

φ :

∀y ∀x

xy = yx

A �rst-order formula φ is a sentence, or a closed formula, if
none of the variables which appear in φ are free.

A group G satis�es a sentence φ of the language of groups if
the interpretation of the formula holds in G . We denote this
by G |= φ.

Example

G |= φ ⇐⇒ G is abelian.
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What is NOT a �rst-order formula?

Most important points to remember: a �rst-order formula is �nite,
and we only quantify on one type of element (here, the elements of
the group).

∀H ≤ G (∀x xHx−1 = H)⇒ (H = {1} ∨ H = G ) is not
�rst-order.

∀x ∃n ∈ N (xn = 1) is not �rst-order.

∀x
∨∞

n=1(xn = 1) is not �rst-order.

Some properties of a group may be expressed by a �rst-order
formula, others not.
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The elementary theory of a group G is the set of �rst-order
sentences satis�ed by G .

If two groups G and G ′ have the same
elementary theory, we say they are elementary equivalent and
denote this by G ≡ G ′. Suppose G ≡ G ′.

If G is abelian, so is G ′.

∀x∀y xy = yx

If G is �nite of order q, so is G ′.

∃x1 . . . ∃xq (
∧

i ,j i 6=j xi 6= xj) ∧ (∀x
∨q

i=1 x = xi ).

In fact, G and G ′ must be isomorphic.
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Example

The groups Z and Z2 are not elementary equivalent. An element in
Z is either even or odd.

∃x∀y∃z (y = z2) ∨ (y = z2x).

This is not true in Z2.

Tarski's problem, 1945

Let Fk be the free group on k generators. If k 6= n, are Fk and Fn

elementary equivalent (for k , n ≥ 2)?

Answer (Sela, 2006)

Yes.
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Question

If G is a �nitely generated group, and G ≡ F2, what does G look
like?

Sela also answers this question (more on this later). A consequence
of this is

Theorem (Sela, 2006)

The fundamental group of a closed surface whose Euler

characteristic is at most −2 is elementary equivalent to F2.
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Suppose H ≤ G . We extend the set of symbols we can use in
�rst-order formulas by adding a name dhe for every element h of H.

Example

Let h ∈ H and let φh : ∀x dhex = xdhe.

Such a formula can be interpreted both in G and H:

G |= φh ⇐⇒ h is in the centre of G ;

H |= φh ⇐⇒ h is in the centre of H.
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De�nition

We say that the embedding H ⊆ G is elementary, if for any
�rst-order sentence φ in this extended language,

H |= φ ⇐⇒ G |= φ.

We denote this by H � G .

Example

The group Z does not contain any proper elementary subgroups.

If Z = 〈z〉 and H = 〈h〉, with h = zk , consider the formula

∃x xk = dhe.
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Theorem (Sela, 2006)

The standard embedding Fk ≤ Fn for k ≤ n is elementary.

Question

Suppose H � Fn. What does H look like? In particular, does H
have to be a free factor of Fn?

Theorem

Yes.
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This question is a special case of

Question

Suppose H � Γ, where Γ is a torsion-free hyperbolic group. What
does the embedding H ↪→ Γ look like?

Theorem

A hyperbolic tower.
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We say (G ,G ′, r) is a hyperbolic �oor if
r : G → G ′ is a retraction, G = π1(X ) and
G ′ = π1(X ′), where X and X ′ are complexes
such that

X is obtained by gluing hyperbolic
surfaces with boundary to X ′ (gluing =
identifying boundary components to non
null-homotopic loops in X ′),

the image of the fundamental groups of
these surfaces by r is not abelian.
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A group G admits a structure of hyperbolic
tower over H if there exists a �nite sequence
H ≤ G0 ≤ G1 ≤ . . . ≤ Gk = G such that

G0 is the free product of H with (possibly)
some fundamental groups of closed
hyperbolic surface groups, and (possibly)
a free group;

for each i , there is a retraction
ri : Gi → Gi−1 such that (Gi ,Gi−1, ri ) is
the �oor of a hyperbolic tower.

H
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Hyperbolic towers appear in Sela's work on the �rst-order theory of
free and hyperbolic groups.

Question

If G is a �nitely generated group, and G ≡ F2, what does G look
like?

Theorem (Sela, 2006)

A �nitely generated group G is elementary equivalent to a free

group if and only if it is a hyperbolic tower over {1}.
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Theorem

Let G be a torsion-free hyperbolic group, and suppose we have an

elementary embedding H ↪→ G. Then G has a structure of

hyperbolic tower over H.

Theorem

Let H be a subgroup of a f.g. free group Fn. Then H is an

elementary subgroup of Fn if and only if it is a free factor.

Possible generalisations: relatively hyperbolic groups, elementary
closed subgroups (weaker notion) in free/hyperbolic groups.
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Suppose we have an elementary embedding H ↪→ G , with G a
torsion-free hyperbolic group. We want to see if there is a top �oor
for our tower.

H

G
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Suppose we have an elementary embedding H ↪→ G , with G a
torsion-free hyperbolic group. We want to see if there is a top �oor
for our tower.

G’

H

?

G
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The idea is to start with the cyclic JSJ decomposition of G relative
to H,

and then to look for a subgraph of group with fundamental
group G ′, such that there is a retraction G → G ′ which makes
(G ,G ′, r) a hyperbolic �oor.

H
 <

G

r

H
 <

G’
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For this we use the following criterion

Theorem

Let G be a torsion-free hyperbolic group, freely indecomposable

with respect to H, and let Λ be the JSJ decomposition of G with

respect to H.

If there exists a map f : G → G such that

1 if R is a non surface type vertex group, f |R = Conj (γR);

2 if S is a surface type vertex group, f (S) is non-abelian;

3 f is non-injective;

then there is a retraction r : G → G ′, with H ≤ G ′, such that

(G ,G ′, r) is a hyperbolic �oor.

We call a map f : G → G which satis�es 1 and 2 a preretraction
with respect to Λ.
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Proof strategy:

Step 1: Build a non-injective preretraction f : G → G .

Step 2: By the theorem, get a retraction r : G → G ′ such
that (G ,G ′, r) is a hyperbolic �oor.

Step 3: Iterate the process.
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To simplify things, we suppose that:

H is �nitely generated;

G is freely indecomposable with respect to H;

the cyclic JSJ decomposition of G with respect to H has one
non surface type vertex group R , and one surface type vertex
group S .

C
R

S

H <
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Step 1:

Show that there exists a non-injective preretraction G → G with
respect to the JSJ decomposition Λ of G relative to H.

How do we �nd a preretraction?

1 state the existence of a factor set for maps G → H;

2 weaken this statement to get rid of things that can't be
expressed by �rst-order theory;

3 express this new statement as a �rst-order formula satis�ed by
H;

4 interpret the formula on G , and apply it to the identity map to
obtain a non-injective preretraction.
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Theorem (Sela, 2002)

G a t.f. hyperbolic group, freely indecomposable with respect to H.

There exists a �nite number of proper quotients ηi : G → Gi , s.t.

if a morphism f : G → G is non-injective and �xes H,

then f ◦ σ factors through one of the maps ηi ,
for some modular automorphism σ of G relative to H.

...

G

G G G
2 k1

We call the set {η1, . . . , ηk} a factor set for HomH(G ,G ).
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A modular automorphism of G relative to H is an automorphism
of G which preserves in some sense the cyclic JSJ decomposition of
G relative to H.

In our case, if σ ∈ ModH(G ),

σ|R is just the conjugation by some element βR .

σ|S sends S isomorphically to a conjugate of itself.
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A statement

For any morphism f : G → G , if
f �xes H,
f is non-injective,

then ∃ σ ∈ ModH(G ) such that

f ◦ σ factors through one of the maps ηi .

Replace G by H.

Let vi be a non-trivial element of G such that ηi (vi ) = 1.

Introduce f ′ = f ◦ σ.
A map G → H which restricts to the identity on H cannot be
injective if H is a proper subgroup.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The �rst-order theory of free and hyperbolic groups
Hyperbolic towers

Elementary embeddings in hyperbolic groups
Obtaining a non-injective preretraction
From preretraction to hyperbolic �oor

A statement

For any morphism f : G → G , if
f �xes H,
f is non-injective,

then ∃ σ ∈ ModH(G ) such that

f ◦ σ factors through one of the maps ηi .

Replace G by H.

Let vi be a non-trivial element of G such that ηi (vi ) = 1.

Introduce f ′ = f ◦ σ.
A map G → H which restricts to the identity on H cannot be
injective if H is a proper subgroup.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The �rst-order theory of free and hyperbolic groups
Hyperbolic towers

Elementary embeddings in hyperbolic groups
Obtaining a non-injective preretraction
From preretraction to hyperbolic �oor

A statement

For any morphism f : G → H, if
f �xes H,
f is non-injective,

then ∃ σ ∈ ModH(G ) such that

f ◦ σ factors through one of the maps ηi .

Replace G by H.

Let vi be a non-trivial element of G such that ηi (vi ) = 1.

Introduce f ′ = f ◦ σ.
A map G → H which restricts to the identity on H cannot be
injective if H is a proper subgroup.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The �rst-order theory of free and hyperbolic groups
Hyperbolic towers

Elementary embeddings in hyperbolic groups
Obtaining a non-injective preretraction
From preretraction to hyperbolic �oor

A statement

For any morphism f : G → H, if
f �xes H,
f is non-injective,

then ∃ σ ∈ ModH(G ) such that

f ◦ σ factors through one of the maps ηi .

Replace G by H.

Let vi be a non-trivial element of G such that ηi (vi ) = 1.

Introduce f ′ = f ◦ σ.
A map G → H which restricts to the identity on H cannot be
injective if H is a proper subgroup.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The �rst-order theory of free and hyperbolic groups
Hyperbolic towers

Elementary embeddings in hyperbolic groups
Obtaining a non-injective preretraction
From preretraction to hyperbolic �oor

A statement

For any morphism f : G → H, if
f �xes H,
f is non-injective,

then ∃ σ ∈ ModH(G ) such that

f ◦ σ kills one of the elements vi .

Replace G by H.

Let vi be a non-trivial element of G such that ηi (vi ) = 1.

Introduce f ′ = f ◦ σ.
A map G → H which restricts to the identity on H cannot be
injective if H is a proper subgroup.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The �rst-order theory of free and hyperbolic groups
Hyperbolic towers

Elementary embeddings in hyperbolic groups
Obtaining a non-injective preretraction
From preretraction to hyperbolic �oor

A statement

For any morphism f : G → H, if
f �xes H,
f is non-injective,

then ∃ σ ∈ ModH(G ) such that

f ◦ σ kills one of the elements vi .

Replace G by H.

Let vi be a non-trivial element of G such that ηi (vi ) = 1.

Introduce f ′ = f ◦ σ.

A map G → H which restricts to the identity on H cannot be
injective if H is a proper subgroup.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The �rst-order theory of free and hyperbolic groups
Hyperbolic towers

Elementary embeddings in hyperbolic groups
Obtaining a non-injective preretraction
From preretraction to hyperbolic �oor

A statement

For any morphism f : G → H, if
f �xes H,
f is non-injective,

then ∃ a morphism f ′ : G → H such that

f ′ kills one of the elements vi .

f ′ = f ◦ σ for some element σ of ModH(G ).

Replace G by H.

Let vi be a non-trivial element of G such that ηi (vi ) = 1.

Introduce f ′ = f ◦ σ.

A map G → H which restricts to the identity on H cannot be
injective if H is a proper subgroup.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The �rst-order theory of free and hyperbolic groups
Hyperbolic towers

Elementary embeddings in hyperbolic groups
Obtaining a non-injective preretraction
From preretraction to hyperbolic �oor

A statement

For any morphism f : G → H, if
f �xes H,
f is non-injective,

then ∃ a morphism f ′ : G → H such that

f ′ kills one of the elements vi .

f ′ = f ◦ σ for some element σ of ModH(G ).

Replace G by H.

Let vi be a non-trivial element of G such that ηi (vi ) = 1.

Introduce f ′ = f ◦ σ.
A map G → H which restricts to the identity on H cannot be
injective if H is a proper subgroup.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The �rst-order theory of free and hyperbolic groups
Hyperbolic towers

Elementary embeddings in hyperbolic groups
Obtaining a non-injective preretraction
From preretraction to hyperbolic �oor

A statement

For any morphism f : G → H, if
f �xes H,

f is non-injective,

then ∃ a morphism f ′ : G → H such that

f ′ kills one of the elements vi .

f ′ = f ◦ σ for some element σ of ModH(G ).

Replace G by H.

Let vi be a non-trivial element of G such that ηi (vi ) = 1.

Introduce f ′ = f ◦ σ.
A map G → H which restricts to the identity on H cannot be
injective if H is a proper subgroup.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The �rst-order theory of free and hyperbolic groups
Hyperbolic towers

Elementary embeddings in hyperbolic groups
Obtaining a non-injective preretraction
From preretraction to hyperbolic �oor

A statement

For any morphism f : G → H, if
f �xes H,

then ∃f ′ : G → H a morphism such that

f ′ kills one of the elements vi .

f ′ = f ◦ σ for an element σ of ModH(G );

We want to try and express this as a �rst-order sentence.

Question: How do we say 'For any morphism f : G → H' or
'∃f ′ : G → H a morphism' in �rst-order theory?
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Morphisms in �rst-order

Example

Giving a morphism f : Z2 → H for Z2 = 〈a〉 ⊕ 〈b〉 is the same as
giving x , y in H which commute: take f : a 7→ x , b 7→ y .

Then the image of an element akbj is xky j .

Remark

Giving a morphism f : G → H for a f.p. group
G = 〈g | ΣG (g) = 1〉 is the same as giving a tuple x in H which
satis�es ΣG (x) = 1: take fx : G → H de�ned by g 7→ x.

Any element w of G is represented by a word w̄(g), then fx(w) is
represented by w̄(x).
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A statement

For any morphism f : G → H, if
f �xes H,

then ∃f ′ : G → H a morphism such that

f ′ kills one of the elements vi .

f ′ = f ◦ σ for some element σ of ModH(G ).

Problem: we cannot express precomposition by an automorphism
in �rst-order theory.
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Solution: express something weaker.
If f ′ = f ◦ σ for some σ in ModH(G ), then recall that

σ|R is just conjugation by some element βR . Thus
f ′|R = Conj (f (βR)) ◦ f |R .

σ|S sends S isomorphically to a conjugate of itself. Thus if
f (S) is not abelian, f ′(S) is not abelian.
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Solution: express something weaker.
If f ′ = f ◦ σ for some σ in ModH(G ), then recall that

σ|R is just conjugation by some element βR . Thus
f ′|R = Conj (f (βR)) ◦ f |R .
σ|S sends S isomorphically to a conjugate of itself. Thus if
f (S) is not abelian, f ′(S) is not abelian.
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A statement

For any morphism f : G → H, if
f �xes H,

then ∃f ′ : G → H a morphism such that

f ′ kills one of the elements vi .

f ′ = f ◦ σ for an element σ of ModH(G );
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A statement

For any morphism f : G → H, if
f �xes H,

then ∃f ′ : G → H a morphism such that

f ′ kills one of the elements vi .

∃γR such that f ′|R = Conj (γR) ◦ f ;
if f (S) is not abelian, neither is f ′(S);
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The �rst-order formula

∀x ΣG (x) = 1, if
∧

h∈H0
dhe = h̄(x), then ∃y ΣG (y) = 1 s.t.

∃z r̄(y) = z r̄(x)z−1;

¬{
∧

i ,j [s̄i (x), s̄j(x)] = 1} ⇒ ¬{
∧

i ,j [s̄i (y), s̄j(y)] = 1};∨l
i=1 v̄i (y) = 1.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The �rst-order theory of free and hyperbolic groups
Hyperbolic towers

Elementary embeddings in hyperbolic groups
Obtaining a non-injective preretraction
From preretraction to hyperbolic �oor

Interpretation over H

For any morphism f : G → H, if
f �xes H,

then ∃ a morphism f ′ : G → H such that

∃γR such that f ′|R = Conj (γR) ◦ f ;
if f (S) is not abelian, so is f ′(S);

f ′ kills one of the elements vi .

For f = IdG , this gives us a morphism f ′ : G → G which is
precisely a non-injective preretraction.
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Interpretation over G

For any morphism f : G → G , if
f �xes H,

then ∃ a morphism f ′ : G → G such that

∃γR such that f ′|R = Conj (γR) ◦ f ;
if f (S) is not abelian, so is f ′(S);

f ′ kills one of the elements vi .

For f = IdG , this gives us a morphism f ′ : G → G which is
precisely a non-injective preretraction.
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How did we get a preretraction?

1 state the existence of a factor set for maps G → H;

2 weaken this statement to get rid of things that can't be
expressed by �rst-order theory;

3 express this new statement as a �rst-order formula satis�ed by
H;

4 interpret the formula on G , and apply it to the identity map to
get a non-injective preretraction.
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Strategy of the proof:

Step 1: Build a non-injective preretraction f : G → G .

Step 2: Modify f to get a retraction r : G → G ′ such that
(G ,G ′, r) is a hyperbolic �oor.

Step 3: Iterate the process.
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Strategy of the proof:

Step 1: Build a non-injective preretraction f : G → G .

Step 2: Modify f to get a retraction r : G → G ′ such that
(G ,G ′, r) is a hyperbolic �oor.

Step 3: Iterate the process.
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Step 2:

Modify the non-injective preretraction f to get a retraction
r : G → G ′ such that (G ,G ′, r) is a hyperbolic �oor.

Recall that we assumed that the JSJ of G relative to H has only
two vertices with groups R and S , and one edge with group
C = 〈c〉.

C
R

S

H <
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Step 2:

Modify the non-injective preretraction f to get a retraction
r : G → G ′ such that (G ,G ′, r) is a hyperbolic �oor.

Recall that we assumed that the JSJ of G relative to H has only
two vertices with groups R and S , and one edge with group
C = 〈c〉.

C
R

S

H <
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Hypothesis: We have a morphism f : G → G such that

f |R is just a conjugation;

f (S) is not abelian;

f is non-injective.

C
R

S

H <

We want to show: There exists a retraction G → G ′ which makes
(G ,G ′, r) a hyperbolic �oor.
We will show: f (S) ≤ R . Thus the map f itself is a retraction
G → R , and (G ,R, f ) is a hyperbolic �oor.
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Hypothesis: We have a morphism f : G → G such that

f |R = IdR ;

f (S) is not abelian;

f is non-injective.

C
R

S

H <

We want to show: There exists a retraction G → G ′ which makes
(G ,G ′, r) a hyperbolic �oor.
We will show: f (S) ≤ R . Thus the map f itself is a retraction
G → R , and (G ,R, f ) is a hyperbolic �oor.
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Hypothesis: We have a morphism f : G → G such that

f |R = IdR ;

f (S) is not abelian;

f is non-injective;

no element of S corresponding to a simple closed curve on Σ
is killed by f .

C
R

S

H <

We want to show: There exists a retraction G → G ′ which makes
(G ,G ′, r) a hyperbolic �oor.
We will show: f (S) ≤ R . Thus the map f itself is a retraction
G → R , and (G ,R, f ) is a hyperbolic �oor.
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Hypothesis: We have a morphism f : G → G such that

f |R = IdR ;

f (S) is not abelian;

f is non-injective;

no element of S corresponding to a simple closed curve on Σ
is killed by f .

C
R

S

H <

We want to show: There exists a retraction G → G ′ which makes
(G ,G ′, r) a hyperbolic �oor.

We will show: f (S) ≤ R . Thus the map f itself is a retraction
G → R , and (G ,R, f ) is a hyperbolic �oor.
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Hypothesis: We have a morphism f : G → G such that

f |R = IdR ;

f (S) is not abelian;

f is non-injective;

no element of S corresponding to a simple closed curve on Σ
is killed by f .

C
R

S

H <

We want to show: There exists a retraction G → G ′ which makes
(G ,G ′, r) a hyperbolic �oor.
We will show: f (S) ≤ R .

Thus the map f itself is a retraction
G → R , and (G ,R, f ) is a hyperbolic �oor.
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Hypothesis: We have a morphism f : G → G such that

f |R = IdR ;

f (S) is not abelian;

f is non-injective;

no element of S corresponding to a simple closed curve on Σ
is killed by f .

C
R

S

H <

We want to show: There exists a retraction G → G ′ which makes
(G ,G ′, r) a hyperbolic �oor.
We will show: f (S) ≤ R . Thus the map f itself is a retraction
G → R , and (G ,R, f ) is a hyperbolic �oor.
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Let TΛ be the G -tree corresponding to the decomposition Λ of G
as R ∗C S .

R
v v

S

Remark: The tree TΛ is
1-acylindrical next to surface type
vertices, i.e. if g stabilises

then g = 1.

Let T f
Λ be the same tree, but endowed with the action of G twisted

by f . Note that f (R) = R so R stabilises the vertex vR in this
action.

Idea of the proof: look at the action of S on T f
Λ .
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Let TΛ be the G -tree corresponding to the decomposition Λ of G
as R ∗C S .

R
v v

S

Remark: The tree TΛ is
1-acylindrical next to surface type
vertices, i.e. if g stabilises

then g = 1.

Let T f
Λ be the same tree, but endowed with the action of G twisted

by f . Note that f (R) = R so R stabilises the vertex vR in this
action.

Idea of the proof: look at the action of S on T f
Λ .
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Case 1: S stabilises vR in T f
Λ , i.e. f (S) ≤ R . Then f (G ) ≤ R .

Thus f is a retraction G → R .

Case 1': S stabilises g · vR in T f
Λ , i.e. f (S) ≤ gRg−1. Then c

stabilises both vR and g · vR in T f
Λ .

So f (c) = c stabilises the
path between vR and g · vR in TΛ. Contradiction.
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Case 1: S stabilises vR in T f
Λ , i.e. f (S) ≤ R . Then f (G ) ≤ R .

Thus f is a retraction G → R .

Case 1': S stabilises g · vR in T f
Λ , i.e. f (S) ≤ gRg−1. Then c

stabilises both vR and g · vR in T f
Λ .

So f (c) = c stabilises the
path between vR and g · vR in TΛ. Contradiction.

v

Rvg

R
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Case 1: S stabilises vR in T f
Λ , i.e. f (S) ≤ R . Then f (G ) ≤ R .

Thus f is a retraction G → R .

Case 1': S stabilises g · vR in T f
Λ , i.e. f (S) ≤ gRg−1. Then c

stabilises both vR and g · vR in T f
Λ . So f (c) = c stabilises the

path between vR and g · vR in TΛ. Contradiction.

Rv

Rvg
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Case 2: S stabilises vS in T f
Λ , i.e. f (S) ≤ S .

Claim

If f (S) ≤ S , then f (S) has �nite index in S .

Lemma

If Σ is a surface with boundary, H f.g. and [π1(Σ) : H] =∞ then

H = B1 ∗ . . . ∗ Bl ∗ F where

each Bi is a boundary subgroup of S,

a boundary element of π1(Σ) contained in H can be

conjugated in H into one of the groups Bi

F is a (possibly trivial) free group.
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Claim

If f (S) ≤ S , then f (S) has �nite index in S .

Proof of the claim:

Suppose f (S) has in�nite index in S . Then
f (S) = C ∗ C1 ∗ . . . ∗ Cl ∗ F and the decomposition is not
contained in C since f (S) is not abelian.

Let T be the f (S)-tree with trivial edge stabilisers
corresponding to this decomposition. Then S = π1(Σ) acts on
T via f .
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contained in C since f (S) is not abelian.
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Lemma

If Σ is a surface with boundary, if π1(Σ) acts minimally on a tree T

so that boundary elements are elliptic, there exists a set of disjoint

simple closed curves C on Σ such that:

elements corresponding to curves of C stabilise edges of T ;

the π1 of connected components of Σ− C are elliptic.

S
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so that boundary elements are elliptic, there exists a set of disjoint

simple closed curves C on Σ such that:
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the π1 of connected components of Σ− C are elliptic.
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Lemma

If Σ is a surface with boundary, if π1(Σ) acts minimally on a tree T

so that boundary elements are elliptic, there exists a set of disjoint

simple closed curves C on Σ such that:

elements corresponding to curves of C stabilise edges of T ;

the π1 of connected components of Σ− C are elliptic.

S
2S

0

S
1
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Claim

If f (S) ≤ S , then f (S) has �nite index in S .

Proof of the claim:

Suppose f (S) has in�nite index in S . Then
f (S) = C ∗ C1 ∗ . . . ∗ Cl ∗ F and the decomposition has at
least two factors since f (S) is not abelian.

Let T be the f (S)-tree with trivial edge stabilisers
corresponding to this decomposition. Then S = π1(Σ) acts on
T via f .

The lemma gives us a set of curves C whose corresponding
elements stabilise edges of T , so these elements have trivial
image by f . But we assumed (additional hypothesis) that f
does not kill curves.

The claim is proved.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The �rst-order theory of free and hyperbolic groups
Hyperbolic towers

Elementary embeddings in hyperbolic groups
Obtaining a non-injective preretraction
From preretraction to hyperbolic �oor

Claim

If f (S) ≤ S , then f (S) has �nite index in S .

Proof of the claim:

Suppose f (S) has in�nite index in S . Then
f (S) = C ∗ C1 ∗ . . . ∗ Cl ∗ F and the decomposition has at
least two factors since f (S) is not abelian.

Let T be the f (S)-tree with trivial edge stabilisers
corresponding to this decomposition. Then S = π1(Σ) acts on
T via f .

The lemma gives us a set of curves C whose corresponding
elements stabilise edges of T , so these elements have trivial
image by f . But we assumed (additional hypothesis) that f
does not kill curves.
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Case 2: S stabilises vS in T f
Λ , i.e. f (S) ≤ S .

f (S) has �nite index in S so rk(S) ≤ rk(f (S)) with equality i�
the index is 1;

on the other hand, rk(f (S)) ≤ rk(S) with equality i� f |S is
injective (free groups are Hop�an).

So we have equality, f (S) = S and f |S is injective.

Thus we see that f is an isomorphism G → G . This contradicts its
non-injectivity. Case 2 does not occur.

Case 2': S stabilises g · vS in T f
Λ . Similarly, this case does not

occur.
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Case 3: General case, S = π1(Σ) acts on TΛ via f , and f (C ) = C

so C is elliptic in T f
Λ : we get a set C of curves on Σ

S
0 S

1
S

2

such that Si = π1(Σi ) is elliptic in T f
Λ .

Claim

None of the subgroups f (Si ) are non-abelian subgroups of (a
conjugate of) S .
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Claim

None of the subgroups f (Si ) is a non-abelian subgroup of (a
conjugate of) S .

If f (Si ) ≤ S , we can see that f (Si ) has �nite index in S .

This implies that Σi has greater complexity than Σ, with
equality i� f |Si

is an isomorphism onto S .

But Σi is a subsurface of Σ, so its complexity is smaller, with
equality i� Σ = Σi .

Thus we get equality, so S = Si and f |S is an isomorphism S → S .
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The Si are elliptic in T f
Λ , but they do not stabilise translates of vS .

S
0 S

1
S

2

R
v v

S

All the images f (Si ) lie in conjugates of R . In fact they must all lie
in R by 1-acylindricity. So f (G ) ≤ R , and f is a retraction G → R .
This �nishes the proof of Step 2.
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