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Plan of the talk

@ The first-order theory of free and hyperbolic groups
© Hyperbolic towers

© Elementary embeddings in hyperbolic groups

@ Obtaining a non-injective preretraction

@ From preretraction to hyperbolic floor
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The first-order theory of free and hyperbolic groups

What is a first-order formula?

A first-order formula in the language of groups is a finite formula
using the following set of symbols

@ Usual mathematical symbols: =, #, -, V, AV, 3, = .
@ Some variables: x,y,...

@ Symbols specific to the language of groups: 1,x,71.

N.B: A variable always represents an element of the group we're
talking about.

(x*=1)AMKP£L)A(x#£1)
(Vyxy =yx) = (x =1)
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The first-order theory of free and hyperbolic groups

What is a first-order formula?

@ A variable x which appears in a formula ¢ is free if neither Vx
nor dx appears before it in ¢.
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The first-order theory of free and hyperbolic groups

What is a first-order formula?

@ A variable x which appears in a formula ¢ is free if neither Vx
nor dx appears before it in ¢.

¢: Yy Vx xy = yx
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The first-order theory of free and hyperbolic groups

What is a first-order formula?

@ A variable x which appears in a formula ¢ is free if neither Vx
nor dx appears before it in ¢.

¢: Yy Vx xy = yx

@ A first-order formula ¢ is a sentence, or a closed formula, if
none of the variables which appear in ¢ are free.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The first-order theory of free and hyperbolic groups

What is a first-order formula?

@ A variable x which appears in a formula ¢ is free if neither Vx
nor dx appears before it in ¢.

¢: Yy Vx xy = yx

@ A first-order formula ¢ is a sentence, or a closed formula, if
none of the variables which appear in ¢ are free.

@ A group G satisfies a sentence ¢ of the language of groups if
the interpretation of the formula holds in G. We denote this

by G = ¢.

G | ¢ < G is abelian.
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The first-order theory of free and hyperbolic groups

What is NOT a first-order formula?

Most important points to remember: a first-order formula is finite,
and we only quantify on one type of element (here, the elements of
the group).
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The first-order theory of free and hyperbolic groups

What is NOT a first-order formula?

Most important points to remember: a first-order formula is finite,
and we only quantify on one type of element (here, the elements of
the group).

e VH< G (VxxHx ' =H)= (H={1} VH = G)
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The first-order theory of free and hyperbolic groups

What is NOT a first-order formula?

Most important points to remember: a first-order formula is finite,
and we only quantify on one type of element (here, the elements of
the group).
o VH< G (VxxHx 1 =H)= (H={1}VH=G)is not
first-order.
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The first-order theory of free and hyperbolic groups

What is NOT a first-order formula?

Most important points to remember: a first-order formula is finite,
and we only quantify on one type of element (here, the elements of
the group).
o VH< G (VxxHx 1 =H)= (H={1}VH=G)is not
first-order.
e Vxdne N (x"=1)
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The first-order theory of free and hyperbolic groups

What is NOT a first-order formula?

Most important points to remember: a first-order formula is finite,
and we only quantify on one type of element (here, the elements of
the group).
o VH< G (VxxHx 1 =H)= (H={1}VH=G)is not
first-order.
e Vxdn € N (x" =1) is not first-order.
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The first-order theory of free and hyperbolic groups

What is NOT a first-order formula?

Most important points to remember: a first-order formula is finite,
and we only quantify on one type of element (here, the elements of
the group).
o VH< G (VxxHx 1 =H)= (H={1}VH=G)is not
first-order.
e Vxdn € N (x" =1) is not first-order.

o Vx \/72,(x"=1)

n=1
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The first-order theory of free and hyperbolic groups

What is NOT a first-order formula?

Most important points to remember: a first-order formula is finite,
and we only quantify on one type of element (here, the elements of
the group).
o VH< G (VxxHx 1 =H)= (H={1}VH=G)is not
first-order.
e Vxdn € N (x" =1) is not first-order.

e Vx \/°2(x" = 1) is not first-order.

n=1
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The first-order theory of free and hyperbolic groups

What is NOT a first-order formula?

Most important points to remember: a first-order formula is finite,
and we only quantify on one type of element (here, the elements of
the group).

o VH< G (VxxHx 1 =H)= (H={1}VH=G)is not

first-order.

e Vxdn € N (x" =1) is not first-order.

e Vx /72 (x" = 1) is not first-order.
Some properties of a group may be expressed by a first-order
formula, others not.
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The first-order theory of free and hyperbolic groups

The elementary theory of a group G is the set of first-order
sentences satisfied by G.
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The first-order theory of free and hyperbolic groups

The elementary theory of a group G is the set of first-order
sentences satisfied by G. If two groups G and G’ have the same
elementary theory, we say they are elementary equivalent and
denote this by G = G.
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The first-order theory of free and hyperbolic groups

The elementary theory of a group G is the set of first-order
sentences satisfied by G. If two groups G and G’ have the same
elementary theory, we say they are elementary equivalent and
denote this by G = G’. Suppose G = G'.

o If G is abelian, sois G'.

VxVy xy = yx
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The first-order theory of free and hyperbolic groups

The elementary theory of a group G is the set of first-order
sentences satisfied by G. If two groups G and G’ have the same
elementary theory, we say they are elementary equivalent and
denote this by G = G’. Suppose G = G'.

o If G is abelian, sois G'.
VxVy xy = yx
o If G is finite of order g, so is G’.
Ixa o 3xg (Nij iz xi # xi) A (Vx Vi x = x).
In fact, G and G’ must be isomorphic.
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The first-order theory of free and hyperbolic groups

The groups Z and Z? are not elementary equivalent. An element in
Z is either even or odd.

IxVy3z (y = 22) V (y = z°x).

This is not true in Z2. )
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The first-order theory of free and hyperbolic groups

Example

The groups Z and Z? are not elementary equivalent. An element in
Z is either even or odd.

IxVy3z (y = 22) V (y = z°x).

This is not true in Z2.

Tarski's problem, 1945

Let Fx be the free group on k generators. If k # n, are Fy and F,
elementary equivalent (for k,n > 2)7?
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The first-order theory of free and hyperbolic groups

Example

The groups Z and Z? are not elementary equivalent. An element in
Z is either even or odd.

IxVy3z (y = 22) V (y = z°x).

This is not true in Z2.

Tarski's problem, 1945

Let Fx be the free group on k generators. If k # n, are Fy and F,
elementary equivalent (for k,n > 2)7?

Answer (Sela, 2006)
Yes.
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The first-order theory of free and hyperbolic groups

If G is a finitely generated group, and G = Fy, what does G look
like?
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The first-order theory of free and hyperbolic groups

If G is a finitely generated group, and G = Fy, what does G look
like?

Sela also answers this question (more on this later). A consequence
of this is
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The first-order theory of free and hyperbolic groups

If G is a finitely generated group, and G = Fy, what does G look
like?

Sela also answers this question (more on this later). A consequence
of this is

Theorem (Sela, 2006)

The fundamental group of a closed surface whose Euler
characteristic is at most —2 is elementary equivalent to IF,.
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The first-order theory of free and hyperbolic groups

Suppose H < G. We extend the set of symbols we can use in
first-order formulas by adding a name [h] for every element h of H.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



The first-order theory of free and hyperbolic groups

Suppose H < G. We extend the set of symbols we can use in
first-order formulas by adding a name [h] for every element h of H.

Let h € H and let ¢ : Vx [h]x = x[h].

Such a formula can be interpreted both in G and H:
o G |=¢p <= hisin the centre of G;
 H = ¢p <= hisin the centre of H.
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The first-order theory of free and hyperbolic groups

We say that the embedding H C G is elementary, if for any
first-order sentence ¢ in this extended language,

HEo < GEo.

We denote this by H < G.

The group Z does not contain any proper elementary subgroups.

If Z = (z) and H = (h), with h = z¥, consider the formula

Ix xk = [h).
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The first-order theory of free and hyperbolic groups

Theorem (Sela, 2006)

The standard embedding F\, < IF,, for k < n is elementary.
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The first-order theory of free and hyperbolic groups

Theorem (Sela, 2006)
The standard embedding F\, < IF,, for k < n is elementary.

Suppose H < FF,,. What does H look like? In particular, does H
have to be a free factor of F,,?
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The first-order theory of free and hyperbolic groups

Theorem (Sela, 2006)
The standard embedding F\, < IF,, for k < n is elementary.

Suppose H < FF,,. What does H look like? In particular, does H
have to be a free factor of F,,?

Yes.
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The first-order theory of free and hyperbolic groups

This question is a special case of

Suppose H <X T, where I is a torsion-free hyperbolic group. What
does the embedding H < T look like?
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The first-order theory of free and hyperbolic groups

This question is a special case of

Suppose H <X T, where I is a torsion-free hyperbolic group. What
does the embedding H < T look like?

A hyperbolic tower.
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Hyperbolic towers

We say (G, G’, r) is a hyperbolic floor if
r: G — G’ is a retraction, G = 11(X) and
G’ = m1(X'), where X and X’ are complexes
such that
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Hyperbolic towers

We say (G, G',r) is a hyperbolic floor if

r: G — G'is a retraction, G = m1(X) and a
G’ = m(X'), where X and X’ are complexes NN R

such that

@ X is obtained by gluing hyperbolic
surfaces with boundary to X’ (gluing =
identifying boundary components to non
null-homotopic loops in X’),
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Hyperbolic towers

We say (G, G',r) is a hyperbolic floor if
r: G — G'is a retraction, G = m1(X) and
G’ = m(X'), where X and X’ are complexes
such that

@ X is obtained by gluing hyperbolic
surfaces with boundary to X’ (gluing =
identifying boundary components to non
null-homotopic loops in X’),

@ the image of the fundamental groups of X’
these surfaces by r is not abelian.
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Hyperbolic towers

A group G admits a structure of hyperbolic
tower over H if there exists a finite sequence
H< Gy <G <...<Gg = G such that
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Hyperbolic towers

A group G admits a structure of hyperbolic
tower over H if there exists a finite sequence
H< Gy <G <...<Gg = G such that
@ Gy is the free product of H with (possibly)
some fundamental groups of closed
hyperbolic surface groups, and (possibly)
a free group;
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Hyperbolic towers

A group G admits a structure of hyperbolic
tower over H if there exists a finite sequence
H< Gy <G <...<Gg = G such that
@ Gy is the free product of H with (possibly)
some fundamental groups of closed
hyperbolic surface groups, and (possibly)
a free group;

o for each i, there is a retraction ﬁ @

ri - Gi — Gj_1 such that (G,', G,',l, r,-) is
the floor of a hyperbolic tower. H * *F
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Hyperbolic towers

A group G admits a structure of hyperbolic
tower over H if there exists a finite sequence
H< Gy <G <...<Gg = G such that

@ Gy is the free product of H with (possibly)
some fundamental groups of closed e
hyperbolic surface groups, and (possibly) @ @ -
a free group;

@ for each i, there is a retraction
ri - Gi — Gj_1 such that (G,', G,',l, r,-) is
the floor of a hyperbolic tower.
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Hyperbolic towers

A group G admits a structure of hyperbolic

tower over H if there exists a finite sequence
H< Gy <G <...<Gg = G such that
@ Gy is the free product of H with (possibly) TTTT

some fundamental groups of closed @ @

hyperbolic surface groups, and (possibly)
a free group;

e for each i, there is a retraction
ri - Gi — Gj_1 such that (G,', G,',l, r,-) is
the floor of a hyperbolic tower.
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Hyperbolic towers

Hyperbolic towers appear in Sela’s work on the first-order theory of
free and hyperbolic groups.
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Hyperbolic towers

Hyperbolic towers appear in Sela’s work on the first-order theory of
free and hyperbolic groups.

If G is a finitely generated group, and G = 5, what does G look
like?
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Hyperbolic towers

Hyperbolic towers appear in Sela’s work on the first-order theory of
free and hyperbolic groups.

If G is a finitely generated group, and G = 5, what does G look
like?

Theorem (Sela, 2006)

A finitely generated group G is elementary equivalent to a free
group if and only if it is a hyperbolic tower over {1}.
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Elementary embeddings in hyperbolic groups

Let G be a torsion-free hyperbolic group, and suppose we have an
elementary embedding H — G. Then G has a structure of
hyperbolic tower over H.
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Elementary embeddings in hyperbolic groups

Theorem

Let G be a torsion-free hyperbolic group, and suppose we have an
elementary embedding H — G. Then G has a structure of
hyperbolic tower over H.

Theorem

| A

Let H be a subgroup of a f.g. free group F,. Then H is an
elementary subgroup of F,, if and only if it is a free factor.

A\
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Elementary embeddings in hyperbolic groups

Theorem

Let G be a torsion-free hyperbolic group, and suppose we have an
elementary embedding H — G. Then G has a structure of
hyperbolic tower over H.

Theorem

| A

Let H be a subgroup of a f.g. free group F,. Then H is an
elementary subgroup of F,, if and only if it is a free factor.

Possible generalisations: relatively hyperbolic groups, elementary
closed subgroups (weaker notion) in free/hyperbolic groups.
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Elementary embeddings in hyperbolic groups

Suppose we have an elementary embedding H — G, with G a
torsion-free hyperbolic group. We want to see if there is a top floor
for our tower.

G
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Elementary embeddings in hyperbolic groups

Suppose we have an elementary embedding H — G, with G a
torsion-free hyperbolic group. We want to see if there is a top floor
for our tower.

G
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Elementary embeddings in hyperbolic groups

The idea is to start with the cyclic JSJ decomposition of G relative
to H,
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Elementary embeddings in hyperbolic groups

The idea is to start with the cyclic JSJ decomposition of G relative
to H, and then to look for a subgraph of group with fundamental
group G,
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Elementary embeddings in hyperbolic groups

The idea is to start with the cyclic JSJ decomposition of G relative
to H, and then to look for a subgraph of group with fundamental
group G’, such that there is a retraction G — G’ which makes
(G, G',r) a hyperbolic floor.

G
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Elementary embeddings in hyperbolic groups

For this we use the following criterion

Theorem

Let G be a torsion-free hyperbolic group, freely indecomposable
with respect to H, and let \ be the JSJ decomposition of G with
respect to H.

If there exists a map f : G — G such that

then there is a retraction r : G — G’, with H < G’, such that
(G, G',r) is a hyperbolic floor.
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Elementary embeddings in hyperbolic groups

For this we use the following criterion

Theorem

Let G be a torsion-free hyperbolic group, freely indecomposable
with respect to H, and let \ be the JSJ decomposition of G with
respect to H.

If there exists a map f : G — G such that

© if R is a non surface type vertex group, f|gr = Conj (yr);

then there is a retraction r : G — G’, with H < G’, such that
(G, G',r) is a hyperbolic floor.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



Elementary embeddings in hyperbolic groups

For this we use the following criterion

Theorem

Let G be a torsion-free hyperbolic group, freely indecomposable
with respect to H, and let \ be the JSJ decomposition of G with
respect to H.
If there exists a map f : G — G such that

© if R is a non surface type vertex group, f|gr = Conj (yr);

@ if S is a surface type vertex group, f(S) is non-abelian;

then there is a retraction r : G — G’, with H < G’, such that
(G, G',r) is a hyperbolic floor.
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Elementary embeddings in hyperbolic groups

For this we use the following criterion

Theorem

Let G be a torsion-free hyperbolic group, freely indecomposable
with respect to H, and let \ be the JSJ decomposition of G with
respect to H.

If there exists a map f : G — G such that

© if R is a non surface type vertex group, f|gr = Conj (yr);
@ if S is a surface type vertex group, f(S) is non-abelian;
© f is non-injective;
then there is a retraction r : G — G’, with H < G’, such that
(G, G',r) is a hyperbolic floor.
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Elementary embeddings in hyperbolic groups

For this we use the following criterion

Theorem

Let G be a torsion-free hyperbolic group, freely indecomposable
with respect to H, and let \ be the JSJ decomposition of G with
respect to H.

If there exists a map f : G — G such that

© if R is a non surface type vertex group, f|gr = Conj (yr);
@ if S is a surface type vertex group, f(S) is non-abelian;
© f is non-injective;
then there is a retraction r : G — G’, with H < G’, such that
(G, G',r) is a hyperbolic floor.

We call a map f : G — G which satisfies 1 and 2 a preretraction
with respect to A.
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Elementary embeddings in hyperbolic groups

Proof strategy:

o Step 1: Build a non-injective preretraction f : G — G.
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Elementary embeddings in hyperbolic groups

Proof strategy:

o Step 1: Build a non-injective preretraction f : G — G.

o Step 2: By the theorem, get a retraction r : G — G’ such
that (G, G',r) is a hyperbolic floor.
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Elementary embeddings in hyperbolic groups

Proof strategy:

o Step 1: Build a non-injective preretraction f : G — G.

o Step 2: By the theorem, get a retraction r : G — G’ such
that (G, G',r) is a hyperbolic floor.

o Step 3: lterate the process.
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Elementary embeddings in hyperbolic groups

To simplify things, we suppose that:
@ H is finitely generated;
o G is freely indecomposable with respect to H;

@ the cyclic JSJ decomposition of G with respect to H has one
non surface type vertex group R, and one surface type vertex
group S.

S

Y\AE C ’ < <> < <
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Obtaining a non-injective preretraction

Show that there exists a non-injective preretraction G — G with
respect to the JSJ decomposition A of G relative to H.

How do we find a preretraction?
@ state the existence of a factor set for maps G — H;

@ weaken this statement to get rid of things that can't be
expressed by first-order theory;

© express this new statement as a first-order formula satisfied by
H;

Q interpret the formula on G, and apply it to the identity map to
obtain a non-injective preretraction.
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Obtaining a non-injective preretraction

Theorem (Sela, 2002)

G a t.f. hyperbolic group, freely indecomposable with respect to H.

There exists a finite number of proper quotients n; : G — G;, s.t.

if a morphism f : G — G is non-injective and fixes H,
then f o o factors through one of the maps n;,

for some modular automorphism o of G relative to H

@

//\

G, G,

We call the set {ny,...,nx} a factor set for Homy(G, G).
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Obtaining a non-injective preretraction

A modular automorphism of G relative to H is an automorphism
of G which preserves in some sense the cyclic JSJ decomposition of
G relative to H.
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Obtaining a non-injective preretraction

A modular automorphism of G relative to H is an automorphism
of G which preserves in some sense the cyclic JSJ decomposition of
G relative to H.

In our case, if 0 € Mody(G),
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Obtaining a non-injective preretraction

A modular automorphism of G relative to H is an automorphism
of G which preserves in some sense the cyclic JSJ decomposition of
G relative to H.

In our case, if 0 € Mody(G),

@ o|g is just the conjugation by some element fg.
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Obtaining a non-injective preretraction

A modular automorphism of G relative to H is an automorphism
of G which preserves in some sense the cyclic JSJ decomposition of
G relative to H.
In our case, if 0 € Mody(G),

@ o|g is just the conjugation by some element fg.

@ o|s sends S isomorphically to a conjugate of itself.
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Obtaining a non-injective preretraction

A statem

For any morphism f: G — G, if
f fixes H,
f is non-injective,

then 3 0 € Mody(G) such that

o f oo factors through one of the maps 7;.
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Obtaining a non-injective preretraction

A statement

For any morphism f: G — G, if
f fixes H,
f is non-injective,

then 3 0 € Mody(G) such that

o f oo factors through one of the maps 7;.

@ Replace G by H.
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Obtaining a non-injective preretraction

A statement

For any morphism f : G — H, if
f fixes H,
f is non-injective,

then 3 0 € Mody(G) such that

o f oo factors through one of the maps 7;.

@ Replace G by H.
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Obtaining a non-injective preretraction

A statement

For any morphism f : G — H, if
f fixes H,
f is non-injective,

then 3 0 € Mody(G) such that

e foo

@ Replace G by H.
@ Let v; be a non-trivial element of G such that 7;(v;) = 1.
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Obtaining a non-injective preretraction

A statement

For any morphism f : G — H, if
f fixes H,
f is non-injective,

then 3 0 € Mody(G) such that

e foo

@ Replace G by H.
@ Let v; be a non-trivial element of G such that 7;(v;) = 1.
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Obtaining a non-injective preretraction

A statem

For any morphism f : G — H, if
f fixes H,
f is non-injective,

then 3 such that

° kills one of the elements v;.

@ Replace G by H.
@ Let v; be a non-trivial element of G such that 7;(v;) = 1.
o Introduce f =foo.
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Obtaining a non-injective preretraction

A statement

For any morphism f : G — H, if
f fixes H,
f is non-injective,

then 3 such that

o 1’ kills one of the elements v;.

o f' = f oo for some element o of Mody(G).

@ Replace G by H.
@ Let v; be a non-trivial element of G such that 7;(v;) = 1.
o Introduce f =foo.
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Obtaining a non-injective preretraction

A statement

For any morphism f : G — H, if
f fixes H,

then 3 a morphism ' : G — H such that

o f' kills one of the elements v;.

o f' = f oo for some element o of Mody(G).

Replace G by H.

Let v; be a non-trivial element of G such that n;(v;) = 1.
Introduce f' = foo.

A map G — H which restricts to the identity on H cannot be
injective if H is a proper subgroup.
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Obtaining a non-injective preretraction

A statement

For any morphism f : G — H, if
f fixes H,

then 3 a morphism ' : G — H such that

o f' kills one of the elements v;.

o f' = f oo for some element o of Mody(G).

Replace G by H.

Let v; be a non-trivial element of G such that n;(v;) = 1.
Introduce f' = foo.

A map G — H which restricts to the identity on H cannot be
injective if H is a proper subgroup.
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Obtaining a non-injective preretraction

A statement

For any morphism f : G — H, if
f fixes H,
then 3f' : G — H a morphism such that

o f' kills one of the elements v;.
o f'=f oo for an element o of Mody(G);

We want to try and express this as a first-order sentence.
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Obtaining a non-injective preretraction

A statement

L if
f fixes H,
then such that
o f' kills one of the elements v;.

o f'=f oo for an element o of Mody(G);

We want to try and express this as a first-order sentence.
Question: How do we say 'For any morphism f : G — H’ or
'3f’ . G — H a morphism’ in first-order theory?
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Obtaining a non-injective preretraction

Morphisms in first-order

Giving a morphism f : Z2 — H for Z? = (a) @ (b) is the same as
giving x, y in H which commute: take f : a+— x,b — y.

Then the image of an element a*b/ is x¥y/.
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Obtaining a non-injective preretraction

Morphisms in first-order

Giving a morphism f : Z2 — H for Z? = (a) @ (b) is the same as
giving x, y in H which commute: take f : a+— x,b — y.

Then the image of an element a*b/ is x¥y/.

Giving a morphism f : G — H for a f.p. group
G = (g| Xs(g) =1) is the same as giving a tuple x in H which
satisfies X g(x) = 1: take fx : G — H defined by g — x.
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Obtaining a non-injective preretraction

Morphisms in first-order

Giving a morphism f : Z2 — H for Z? = (a) @ (b) is the same as
giving x, y in H which commute: take f : a+— x,b — y.

Then the image of an element a*b/ is x¥y/.

Giving a morphism f : G — H for a f.p. group
G = (g| Xs(g) =1) is the same as giving a tuple x in H which
satisfies X g(x) = 1: take fx : G — H defined by g — x.

Any element w of G is represented by a word w(g), then % (w) is
represented by w(x).
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Obtaining a non-injective preretraction

A statement

For any morphism f : G — H, if
f fixes H,
then 3" : G — H a morphism such that

o f' kills one of the elements v;.

o f' = f oo for some element o of Mody(G).
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Obtaining a non-injective preretraction

A statement

For any morphism f : G — H, if
f fixes H,
then 3" : G — H a morphism such that

o f' kills one of the elements v;.

Problem: we cannot express precomposition by an automorphism
in first-order theory.
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Obtaining a non-injective preretraction

Solution: express something weaker.
If f' = f oo for some o in Mody(G), then recall that

@ o|g is just conjugation by some element Bg. Thus

t'|r = Conj (f(Br)) o f|r-
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Obtaining a non-injective preretraction

Solution: express something weaker.
If f' = f oo for some o in Mody(G), then recall that

@ o|g is just conjugation by some element Bg. Thus
f'|r = Conj (f(Br)) o f|r.

@ o|s sends S isomorphically to a conjugate of itself. Thus if
f(S) is not abelian, f'(S) is not abelian.
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Obtaining a non-injective preretraction

A statement

For any morphism f : G — H, if
f fixes H,
then 3f' : G — H a morphism such that

o f' kills one of the elements v;.
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Obtaining a non-injective preretraction

A statement

For any morphism f : G — H, if
f fixes H,
then 3f' : G — H a morphism such that

o f' kills one of the elements v;.
()]
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Obtaining a non-injective preretraction

The first-order formula

Vx Zg(x) =1, if Apep,[h] = h(x), then Jy Y s(y) =1 s.t.
1.

e Jz¥(y) = z¥(x)z™
o AL, 5001 = 1} = ~{ Ay l5(y). 5] = 1%
o Vimy wily) =1.
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Obtaining a non-injective preretraction

Interpretation over H

For any morphism f : G — H, if
f fixes H,
then 3 a morphism ' : G — / such that

@ Jyg such that f'|g = Conj(yg) o f;
o if £(S) is not abelian, so is '(S);

o f' kills one of the elements v;.
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Obtaining a non-injective preretraction

Interpretation over G

For any morphism f : G — G, if
f fixes H,
then 3 a morphism ' : G — G such that

@ Jyg such that f'|g = Conj(yg) o f;
o if £(S) is not abelian, so is '(S);

o f' kills one of the elements v;.

For f = Idg, this gives us a morphism f' : G — G which is
precisely a non-injective preretraction.
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Obtaining a non-injective preretraction

How did we get a preretraction?
© state the existence of a factor set for maps G — H;

@ weaken this statement to get rid of things that can’t be
expressed by first-order theory;

© express this new statement as a first-order formula satisfied by
H;

Q interpret the formula on G, and apply it to the identity map to
get a non-injective preretraction.
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Obtaining a non-injective preretraction

Strategy of the proof:

o Step 1: Build a non-injective preretraction f : G — G.
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Obtaining a non-injective preretraction

Strategy of the proof:

o Step 1: Build a non-injective preretraction f : G — G.

e Step 2: Modify f to get a retraction r : G — G’ such that
(G, G’,r) is a hyperbolic floor.
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Obtaining a non-injective preretraction

Strategy of the proof:

o Step 1: Build a non-injective preretraction f : G — G.

e Step 2: Modify f to get a retraction r : G — G’ such that
(G, G’,r) is a hyperbolic floor.

o Step 3: lterate the process.
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From preretraction to hyperbolic floor

Modify the non-injective preretraction f to get a retraction
r: G — G’ such that (G, G', r) is a hyperbolic floor.
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From preretraction to hyperbolic floor

Modify the non-injective preretraction f to get a retraction
r: G — G’ such that (G, G', r) is a hyperbolic floor.

Recall that we assumed that the JSJ of G relative to H has only
two vertices with groups R and S, and one edge with group
C = (c).

S

\)‘AR C ’ O <> ’O O
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From preretraction to hyperbolic floor

Hypothesis: We have a morphism f : G — G such that

e f|g is just a conjugation;
e f(S) is not abelian;

@ f is non-injective.

\’\4R C ’ < < < <
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From preretraction to hyperbolic floor

Hypothesis: We have a morphism f : G — G such that

o ﬂR = IdR;
e f(S) is not abelian;

@ f is non-injective.

\’\4R C ’ < < < <
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From preretraction to hyperbolic floor

Hypothesis: We have a morphism f : G — G such that

o flg =1dg;

e f(S) is not abelian;

@ f is non-injective;

@ no element of S corresponding to a simple closed curve on &
is killed by f.

\,\LR
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From preretraction to hyperbolic floor

Hypothesis: We have a morphism f : G — G such that

o ﬂR = IdR;
e f(S) is not abelian;
@ f is non-injective;

@ no element of S corresponding to a simple closed curve on &
is killed by f.

\,\LR
[

We want to show: There exists a retraction G — G’ which makes
(G, G',r) a hyperbolic floor.
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From preretraction to hyperbolic floor

Hypothesis: We have a morphism f : G — G such that

o flg =1dg;
e f(S) is not abelian;
@ f is non-injective;
@ no element of S corresponding to a simple closed curve on &
is killed by f.
S

b oo 7
° d 0

We want to show: There exists a retraction G — G’ which makes
(G, G’, r) a hyperbolic floor.
We will show: (S) < R.
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From preretraction to hyperbolic floor

Hypothesis: We have a morphism f : G — G such that

o flg =1dg;
e f(S) is not abelian;
@ f is non-injective;
@ no element of S corresponding to a simple closed curve on &
is killed by f.
S

b oo 7
° d 0

We want to show: There exists a retraction G — G’ which makes
(G, G’, r) a hyperbolic floor.

We will show: f(S) < R. Thus the map f itself is a retraction

G — R, and (G, R, f) is a hyperbolic floor.
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From preretraction to hyperbolic floor

Let Tp be the G-tree corresponding to the decomposition A of G
as R*¢ S.
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From preretraction to hyperbolic floor

Let Tp be the G-tree corresponding to the decomposition A of G

as R*¢ S.

Remark: The tree Ty is
1-acylindrical next to surface type
vertices, i.e. if g stabilises
O—1—=CO theng=1.
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From preretraction to hyperbolic floor

Let Tp be the G-tree corresponding to the decomposition A of G
as R*¢ S.

Remark: The tree Ty is
1-acylindrical next to surface type
vertices, i.e. if g stabilises
O—1—=CO theng=1.

Let T,( be the same tree, but endowed with the action of G twisted
by f. Note that f(R) = R so R stabilises the vertex vg in this
action.
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From preretraction to hyperbolic floor

Let Tp be the G-tree corresponding to the decomposition A of G
as R*¢ S.

Remark: The tree Ty is
1-acylindrical next to surface type
vertices, i.e. if g stabilises
O—1—=CO theng=1.

Let T,( be the same tree, but endowed with the action of G twisted
by f. Note that f(R) = R so R stabilises the vertex vg in this
action.

Idea of the proof: look at the action of S on T/(.
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From preretraction to hyperbolic floor

Case 1: S stabilises vg in T£, i.e. f(S) < R. Then f(G) <R.
Thus f is a retraction G — R.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



From preretraction to hyperbolic floor

Case 1: S stabilises vg in T£, i.e. f(S) < R. Then f(G) <R.
Thus f is a retraction G — R.

Case 1': S stabilises g - vg in T, i.e. f(S) < gRg™!. Then c
stabilises both vg and g - vg in T1.

O~
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From preretraction to hyperbolic floor

Case 1: S stabilises vg in T£, i.e. f(S) < R. Then f(G) <R.
Thus f is a retraction G — R.

Case 1': S stabilises g - vg in T, i.e. f(S) < gRg™!. Then c
stabilises both vg and g - vg in Tf. So f(c) = c stabilises the
path between vg and g - vg in Tp. Contradiction.

gVr

. o
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From preretraction to hyperbolic floor

Case 2: S stabilises vs in Tf, i.e. f(S) <S.

If £(S) < S, then f(S) has finite index in S.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



From preretraction to hyperbolic floor

Case 2: S stabilises vs in T£, i.e. f(S) <S.

If £(S) < S, then f(S) has finite index in S.

Lemma

If ¥ is a surface with boundary, H f.g. and [r1(X) : H] = co then
H =B x...% By x F where

@ each B; is a boundary subgroup of S,

@ a boundary element of w1(X) contained in H can be
conjugated in H into one of the groups B;

o F is a (possibly trivial) free group.
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From preretraction to hyperbolic floor

If £(S) <S, then f(S) has finite index in S.
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From preretraction to hyperbolic floor

If £(S) <S, then f(S) has finite index in S.

Proof of the claim:

@ Suppose f(S) has infinite index in S. Then
f(§)=Cx Gy x...% C;x F and the decomposition is not
contained in C since f(S) is not abelian.
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From preretraction to hyperbolic floor

If £(S) <S, then f(S) has finite index in S.

Proof of the claim:
@ Suppose f(S) has infinite index in S. Then
f(§)=Cx Gy x...% C;x F and the decomposition is not
contained in C since f(S) is not abelian.
@ Let T be the f(S)-tree with trivial edge stabilisers
corresponding to this decomposition. Then S = 7;(X) acts on
T via f.
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From preretraction to hyperbolic floor

Lemma

If L is a surface with boundary, if m1(X) acts minimally on a tree T
so that boundary elements are elliptic, there exists a set of disjoint
simple closed curves C on ¥ such that:

o elements corresponding to curves of C stabilise edges of T;

@ the m of connected components of © — C are elliptic.

S

RCICICICD

/0<

—

>>0>o
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From preretraction to hyperbolic floor

Lemma

If L is a surface with boundary, if m1(X) acts minimally on a tree T
so that boundary elements are elliptic, there exists a set of disjoint
simple closed curves C on ¥ such that:

o elements corresponding to curves of C stabilise edges of T;

@ the m of connected components of © — C are elliptic.

S

[
DI

>>0>o
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From preretraction to hyperbolic floor

Lemma

If L is a surface with boundary, if m1(X) acts minimally on a tree T
so that boundary elements are elliptic, there exists a set of disjoint
simple closed curves C on ¥ such that:

o elements corresponding to curves of C stabilise edges of T;

@ the m of connected components of © — C are elliptic.
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From preretraction to hyperbolic floor

If £(S) <S, then f(S) has finite index in S.

Proof of the claim:
@ Suppose f(S) has infinite index in S. Then
f(S)=Cx* G *...x C;x F and the decomposition has at
least two factors since 7(S) is not abelian.
o Let T be the f(S)-tree with trivial edge stabilisers

corresponding to this decomposition. Then S = 7;(X) acts on
T via f.
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From preretraction to hyperbolic floor

If £(S) <S, then f(S) has finite index in S.

Proof of the claim:

@ Suppose f(S) has infinite index in S. Then
f(S) = Cx G *...% C x F and the decomposition has at
least two factors since 7(S) is not abelian.

o Let T be the f(S)-tree with trivial edge stabilisers
corresponding to this decomposition. Then S = 7;(X) acts on
T via f.

@ The lemma gives us a set of curves C whose corresponding
elements stabilise edges of T, so these elements have trivial
image by . But we assumed (additional hypothesis) that f
does not kill curves.

The claim is proved.
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From preretraction to hyperbolic floor

Case 2: S stabilises vs in Tf, i.e. f(S) < S.
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From preretraction to hyperbolic floor

S.
rk(7(S)) with equality iff

Case 2: S stabilises vs in T1, i.e. f(S)

e f(S) has finite index in S so rk(S)
the index is 1;

<
<

rk(S) < tk(f(S))
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From preretraction to hyperbolic floor

S.
rk(7(S)) with equality iff

Case 2: S stabilises vs in T1, i.e. f(S)

e f(S) has finite index in S so rk(S)
the index is 1;

@ on the other hand, rk(f(S)) < rk(S) with equality iff f|s is
injective (free groups are Hopfian).

<
<

rk(S) < 1k(f(S)) < tk(S)
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From preretraction to hyperbolic floor

S.
rk(7(S)) with equality iff

Case 2: S stabilises vs in T1, i.e. f(S)

e f(S) has finite index in S so rk(S)
the index is 1;

@ on the other hand, rk(f(S)) < rk(S) with equality iff f|s is
injective (free groups are Hopfian).

<
<

rk(S) < 1k(f(S)) < tk(S)
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From preretraction to hyperbolic floor

S.
rk(7(S)) with equality iff

Case 2: S stabilises vs in T1, i.e. f(S)

e f(S) has finite index in S so rk(S)
the index is 1;

@ on the other hand, rk(f(S)) < rk(S) with equality iff f|s is
injective (free groups are Hopfian).

<
<

rk(S) < 1k(f(S)) < tk(S)

So we have equality, f(S) = S and f|s is injective.
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From preretraction to hyperbolic floor

Case 2: S stabilises vs in Tf, i.e. f(S) < S.
e f(S) has finite index in S so rk(S) < rk(f(S)) with equality iff
the index is 1;

@ on the other hand, rk(f(S)) < rk(S) with equality iff f|s is
injective (free groups are Hopfian).

rk(S) < 1k(f(S)) < tk(S)

So we have equality, f(S) = S and f|s is injective.

Thus we see that f is an isomorphism G — G. This contradicts its
non-injectivity. Case 2 does not occur.

Chloé Perin Elementary subgroups of torsion-free hyperbolic groups



From preretraction to hyperbolic floor

S.
rk(7(S)) with equality iff

Case 2: S stabilises vs in T1, i.e. f(S)

e f(S) has finite index in S so rk(S)
the index is 1;

@ on the other hand, rk(f(S)) < rk(S) with equality iff f|s is
injective (free groups are Hopfian).

<
<

rk(S) < 1k(f(S)) < tk(S)

So we have equality, f(S) = S and f|s is injective.

Thus we see that f is an isomorphism G — G. This contradicts its
non-injectivity. Case 2 does not occur.

Case 2': S stabilises g - vs in T{. Similarly, this case does not
occur.
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From preretraction to hyperbolic floor

Case 3: General case, S = m1(X) acts on Tp via f, and f(C) = C
so C is elliptic in T/’\r: we get a set C of curves on &

such that S; = m1(X;) is elliptic in T,’\r.
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From preretraction to hyperbolic floor

Case 3: General case, S = m1(X) acts on Tp via f, and f(C) = C
so C is elliptic in T/’\r: we get a set C of curves on &

such that S; = m1(X;) is elliptic in T,’\r.

None of the subgroups f(S;) are non-abelian subgroups of (a
conjugate of) S.
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From preretraction to hyperbolic floor

None of the subgroups f(S;) is a non-abelian subgroup of (a
conjugate of) S.
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From preretraction to hyperbolic floor

None of the subgroups f(S;) is a non-abelian subgroup of (a
conjugate of) S.

o If f(5;) < S, we can see that 7(S5;) has finite index in S.
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From preretraction to hyperbolic floor

None of the subgroups f(S;) is a non-abelian subgroup of (a
conjugate of) S.

o If f(5;) < S, we can see that 7(S5;) has finite index in S.

o This implies that ¥; has greater complexity than X, with
equality iff f|s; is an isomorphism onto S.
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From preretraction to hyperbolic floor

None of the subgroups f(S;) is a non-abelian subgroup of (a
conjugate of) S.

o If f(5;) < S, we can see that 7(S5;) has finite index in S.

o This implies that ¥; has greater complexity than X, with
equality iff f|s; is an isomorphism onto S.

@ But X; is a subsurface of ¥, so its complexity is smaller, with
equality iff ¥ = X;.
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From preretraction to hyperbolic floor

None of the subgroups f(S;) is a non-abelian subgroup of (a
conjugate of) S.

o If f(5;) < S, we can see that 7(S5;) has finite index in S.

o This implies that ¥; has greater complexity than X, with
equality iff f|s; is an isomorphism onto S.

@ But X; is a subsurface of ¥, so its complexity is smaller, with
equality iff ¥ = X;.

Thus we get equality, so S = S; and f|s is an isomorphism S — S.
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From preretraction to hyperbolic floor

The S; are elliptic in T{, but they do not stabilise translates of vs.
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From preretraction to hyperbolic floor

The S; are elliptic in T{, but they do not stabilise translates of vs.

All the images (S;) lie in conjugates of R. In fact they must all lie
in R by l-acylindricity.
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From preretraction to hyperbolic floor

The S; are elliptic in T{, but they do not stabilise translates of vs.

All the images (S;) lie in conjugates of R. In fact they must all lie
in R by l-acylindricity. So f(G) < R, and f is a retraction G — R.
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From preretraction to hyperbolic floor

The S; are elliptic in T{, but they do not stabilise translates of vs.

All the images (S;) lie in conjugates of R. In fact they must all lie
in R by l-acylindricity. So f(G) < R, and f is a retraction G — R.
This finishes the proof of Step 2.
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