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Dr. Fabrice Wallois Université de Picardie, France
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CONTEXTE DE CE TRAVAIL
L’étude des mécanismes du cerveau qui sous-tendent la cognition (perception, motri-
cité, langage, mémoire) est un domaine de recherche couramment désigné sous le
nom de neurosciences cognitives. Dans ce domaine, un enjeu important pour la
compréhension du cerveau est de mettre en relation la fonction avec la localisa-
tion, autrement dit de comprendre quelles zones du cerveau sont impliquées dans
le traitement d’une tâche bien précise. Les premiers résultats de localisation provi-
ennent de la neuropsychologie, grâce a l’étude des changements comportementaux
dues à une lésion cérébrale bien localisée, et des techniques d’électrophysiologie, qui
consistent à mesurer l’activité électrique des neurones par l’implant d’électrodes
dans le cerveau (le plus souvent chez l’animal). Les progrès dans la localisation des
fonctions cérébrales sont aujourd’hui fortement liés à l’utilisation de plusieurs tech-
niques d’imagerie cérébrale qui permettent d’étudier le cerveau humain de manière
quasi non-invasive, et donc de procéder à des expériences sur de nombreux sujets,
même sains.

Les techniques de neuroimagerie structurelle sont apparues au début des années
70 avec le scanner à rayons X, puis se sont développées avec l’apparition de l’IRM
dans les années 80. Ces modalités génèrent une image 3d contrastée des différentes
parties de l’anatomie du cerveau, et en particulier permettent d’identifier la local-
isation et l’extension d’une lésion cérébrale. Dans le cadre de la recherche en neu-
rosciences cognitives, l’imagerie structurelle apporte des éléments pour interpréter
les observations comportementales en neuropsychologie. En déterminant à quelles
lésions correspond un déficit cognitif donné, il est possible d’établir que la région
cérébrale lésée intervient dans le mécanisme sous-jacent.

La neuroimagerie fonctionnelle dépasse la simple image anatomique et cherche
à caractériser le cerveau en action. Son utilisation classique en neurosciences cogni-
tives consiste à faire effectuer une tâche à un sujet et à mesurer l’activité cérébrale
corrélée à cette tâche. Suivant les techniques d’imagerie fonctionnelle, il est possi-
ble de retrouver plus ou moins précisément quelle region du cerveau etait activée et
à quel moment. Sachant que l’activité cérébrale est essentiellement électrique, on
peut distinguer deux groupes parmi ces techniques :

• Les méthodes métaboliques
Ces méthodes permettent de mesurer un changement du métabolisme relié à
l’activité cérébrale. La plus connue est l’imagerie par résonance magnétique
fonctionnelle (IRMf), qui permet de mesurer le taux d’oxygénation du sang
dans le cerveau. Dans les régions qui consomment de l’énergie, l’afflux de
sang oxygéné augmente et donc l’IRMf permet de localiser les régions de forte
activité cérébrale. La technique de l’IRMf permet de générer une image 3d
précise, mais le temps d’acquisition est de l’ordre d’une seconde : une suite
temporelle d’images IRMf n’a donc pas la résolution nécessaire pour suivre en
détails la dynamique des processus cognitifs (de l’ordre de 10 ms). On peut
également citer la technique de tomographie par émission de positrons (TEP)
qui mesure les modifications de débit sanguin par injection d’un traceur ra-
dioactif. Cette technique est de moins en moins utilisée en neurosciences cog-
nitives car elle a une résolution temporelle encore plus faible que l’IRMf.

• Les mesures directes de l’activité électrique
La technique la plus connue, l’électroencéphalographie (EEG), est en fait la
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toute première méthode de neuroimagerie non invasive. Sa mise au point date
de 1929, par le neurologue Hans Berger. Son principe consiste à mesurer le po-
tentiel électrique à la surface de la tête d’un patient, à l’aide d’un casque muni
d’électrodes. En dehors de toute autre source électrique artificielle, le poten-
tiel électrique mesuré est censé provenir seulement de l’activité électrique du
cerveau. Son avantage en comparaison des méthodes métaboliques est que
la résolution temporelle est uniquement limitée par l’électronique de mesure,
et typiquement le signal est mesuré avec une fréquence d’échantillonage de
5 kHz, bien supérieure à la dynamique de l’activité cérébrale. La magnéto-
encéphalographie (MEG) est une technique très similaire à l’EEG, mais elle
mesure autour de la tête le champ magnétique au lieu du potentiel électrique.
Son intérêt réside dans le fait que, contrairement au potentiel électrique, le
champ magnétique est peu déformé par son passage au travers des tissus or-
ganiques (notamment le crâne).

Ainsi, grâce à leur haute résolution temporelle, l’EEG et la MEG offrent théo-
riquement la possibilité de suivre en détails les processus de la dynamique de l’acti-
vité cérébrale. Une caractéristique de ces mesures vient pourtant limiter leur ca-
pacité d’imagerie : ce sont des mesures de surface qui en tant que telles ne don-
nent qu’une information grossière sur la localisation de l’activité électrique ayant
généré le champ électromagnétique mesuré. Pour pouvoir estimer la position des
sources du signal électromagnétique, il faut recourir à des méthodes mathématiques
d’analyse du signal. Ce problème de localisation de source rentre dans une catégorie
de problèmes mathématiques désignés sous le nom de problèmes inverses, qui ont
en général la caractéristique d’être mal posés : le nombre de mesures est insuffisant
pour déterminer parfaitement la position des sources du signal. La résolution de ce
problème inverse passe par une étape initiale de modélisation du phénomène étudié,
dite problème direct. Dans le cas de l’EEG et de la MEG, le phénomène étudié
est la propagation du champ électromagnétique depuis une source localisée dans le
cerveau jusqu’aux capteurs situés à la surface de la tête du patient. La qualité de
la modélisation de ce phénomène influe directement sur la précision des méthodes
de localisation de source. Il est donc nécessaire dans cette étape de modélisation
de se rapprocher au plus près des caractéristiques réelles de propagation du champ
électromagnétique à travers les différents tissus organiques qui composent la tête.

Le travail de cette thèse s’inscrit dans cette étape de modélisation. Les enjeux
actuels de la modélisation du problème direct se situent à deux niveaux :

• La propagation du champ électromagnétique est décrite par des equations aux
dérivées partielles (EDP). Dans des milieux décrits par des géométries com-
plexes, comme c’est le cas pour les modèles de tête obtenus à partir d’IRM
structurelles des patients, la résolution de ces EDP nécessite l’utilisation de
méthodes numériques souvent coûteuses en mémoire et en temps de calcul.
Cela est un frein à l’utilisation de géométries complexes qui décrivent avec
précision la géométrie de la tête, et la plupart des expérimentateurs en EEG
et MEG utilisent encore des descriptions sphériques de la tête, pour lesquelles
les solutions des EDP du champ électromagnétique sont facilement calcula-
bles.

• Les conductivités électriques des tissus organiques qui composent la tête sont
mal connues, alors que ces propriétés affectent la propagation du champ électro-
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magnétique (en particulier le potentiel électrique). Dans la plupart des modèles
de tête, les valeurs de conductivités utilisées proviennent de mesures in vitro
des tissus, et ne rendent pas compte de la réalité des tissus dans leur milieu
naturel. Afin que les modèles de tête reproduisent au mieux la réalité, des
méthodes non invasives d’estimation de conductivité in vivo sont développées.

Dans cette thèse, nous présentons des contributions originales sur les deux as-
pects de la modélisation du problème direct. L’organisation du manuscrit se compose
d’une introduction et de deux parties. L’introduction est censée donner au lecteur un
aperçu rapide du domaine de recherche lié à l’imagerie fonctionnelle avec l’EEG et
la MEG. Une emphase particulière est mise sur la modélisation du problème direct,
qui conclut cette introduction. La première partie présente nos contributions sur les
méthodes pour la résolution numérique des EDP du champ électromagnétique dans
des géometries complexes. La seconde partie quant à elle s’intéresse au problème
des conductivités dans les modèles de tête en EEG et MEG.

PRÉSENTATION DU MANUSCRIT

Introduction

Cette partie permet de comprendre la nature des signaux observés en EEG et MEG,
quelles sont les méthodes pour localiser les sources de ces signaux et enfin comment
se déroule le processus de modélisation du problème direct.

Le chapitre 1 expose les bases du signal mesuré en EEG et MEG. La section 1
explique quels sont les mécanismes physiologiques à la base de l’activité électrique
des neurones du cerveau. Nous expliquons ensuite dans la section 2 comment
le champ électromagnétique produit par l’activité électrique du cerveau peut être
mesuré à la surface de la tête. Enfin nous illustrons en section 3 le problème de
l’échelle des sources observables en EEG et MEG qui dépasse la taille du simple
neurone.

Le chapitre 2 présente les caractéristiques de l’EEG et de la MEG lorsqu’elles
sont utilisées en tant que modalités d’imagerie fonctionnelle. La section 2 illustre
le type de mesures que l’on peut observer en EEG et MEG, et le problème inverse
de localisation de sources est ensuite expliqué (section 3). La localisation de sources
dépend de l’hypothèse que l’on fait sur la distribution de l’activité cérébrale, ce qui
conduit à différents modèles de sources (section 4). Enfin, nous présentons dans la
section 5 les méthodes les plus couramment utilisées en localisation de source.

Le chapitre 3 développe en détails les différentes approches pour la modélisation
du problème direct. Nous rappelons tout d’abord les équations classiques d’électro-
magnétisme qui s’appliquent dans le cas de l’EEG et la MEG (section 1). Nous
expliquons ensuite comment résoudre ces équations dans des géométries de plus
en plus complexes : un milieu infiniment homogène (section 2), un conducteur à
géométrie sphérique (section 3) et enfin des géométries réalistes de la tête (sec-
tion 4). Un concept utile pour le calcul du champ électromagnétique dans le cas de
l’EEG et de la MEG est la réciprocité : il permet d’intervertir la position des sources
et des capteurs. Ce concept est expliqué dans la section 5. Enfin nous présentons le
problème du choix des conductivités dans les modèles de tête (section 6).
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Première partie - Résolution du problème direct
Cette première partie concerne les méthodes de résolution du problème direct dans
des géométries réalistes et complexes. Dans le chapitre 4, nous présentons une
nouvelle méthode par éléments finis utilisant une simple grille cartésienne comme
maillage du domaine, tout en gardant une description précise de la géométrie grâce
aux représentations par fonctions implicites des différents tissus composant la tête.
Dans le chapitre 5, nous utilisons la méthode de l’adjoint afin de dériver des EDP
réciproques générales, applicables en EEG et MEG pour tout type de capteur.

Chapitre 4 - Représentations implicites pour la méthode des éléments finis

Habituellement, résoudre le problème direct par la méthode des éléments finis (FEM)
nécessite de réaliser un maillage qui suit la géométrie du domaine considéré. L’ap-
proche la plus commune est de construire un maillage tétrahédrique. La construc-
tion de ce maillage doit à la fois respecter la géométrie et certains critères de qualité
numérique (homogénéité des tétrahèdres). Les méthodes automatiques de génération
de maillage créent parfois des défauts qui nécessitent une interaction de la part de
l’utilisateur afin d’assurer la qualité finale du maillage. Le procédé de création de
maillage est donc parfois laborieux. A l’inverse, si le problème direct est résolu
par la méthode des différences finies (FDM), seulement une grille cubique du do-
maine est nécessaire. De plus, cette grille peut etre directement adaptée depuis la
grille d’une image IRM du sujet. L’étape compliquée du maillage est donc évitée.
Cependant, la description de la géometrie du domaine est moins bonne que dans
le cas de la FEM, puisque les différents tissus sont alors décrits par des domaines
”en escalier”. Nous proposons donc une méthode qui combine à la fois la simplicité
de la grille cubique de la FDM avec la description précise de la géometrie obtenue
avec la FEM. C’est en fait une méthode éléments finis, où les fonctions de bases
sont trilinéaires par morceaux, correspondant à l’interpolation classique des images
3d sur une grille cubique. La description précise des différents tissus de la tête
est alors prise en compte par l’utilisation de description implicites (levelsets) sur la
grille. La pleine compréhension de ce chapitre nécessite quelques connaissances sur
la méthode des éléments finis, il peut donc être utile de se référer à l’appendice A
qui explique en détails la FEM tétrahédrique classique. Ce chapitre est adapté d’une
publication [80] présentée au workshop MMBIA de la conférence ECCV 2007.

Chapitre 5 - EDP réciproques générales obtenues par la méthode de l’adjoint

Lorsque la solution du problème direct est calculée avec la FDM ou la FEM, on
utilise l’approche réciproque afin de limiter le coût computationnel de ces méthodes
numériques. Dans ce cas, on résout une EDP différente. Par exemple, en EEG,
l’EDP du potentiel électrique généré par une source a l’intérieur d’un domaine Ω
est : {

∇ · (σ∇V ) = ∇ · Jp in Ω
σ∇V · n = 0 on ∂Ω

alors que l’EDP réciproque, correspondant au potentiel généré par une injection de
courant au bord du domaine, est :{

∇ · (σ∇V ) = 0 in Ω
σ∇V · n = δr1 − δr2 on ∂Ω
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ou r1 et r2 sont les points où le courant est injecté. Dans ce cas où l’on considère
des mesures ponctuelles du potentiel électrique, l’EDP réciproque est donnée di-
rectement par le théorème de réciprocité de Helmholtz. L’EDP réciproque pour
le champ magnétique ne s’obtient pas de manière aussi directe : elle a été cal-
culée pour des mesures ponctuelles dans [74]. Dans ce chapitre, nous proposons
d’utiliser la méthode de l’adjoint comme un outil général pour la formulation des
EDP réciproques, aussi bien en EEG qu’en MEG. L’avantage de cette méthode est
que les EDP réciproques peuvent facilement être modifiées pour intégrer des mesures
non-ponctuelles, afin de prendre en compte la surface des électrodes EEG ou la
géométrie des capteurs MEG (magnétomètres, gradiomètres). Ce chapitre est adapté
d’un article soumis au journal Physics in Medicine and Biology.

Seconde partie - Calibration des conductivités

Cette seconde partie traite du problème du choix des conductivités dans les modèles
directs en EEG. Nous présentons une analyse de sensibilité globale des modèles à
trois couches (chapitre 6) ainsi qu’une méthode pour la calibration des conductivités
avec des potentiels évoqués somesthésiques (chapitre 7).

Chapitre 6 - Analyse de sensibilité globale des topographies EEG par rap-
port aux conductivités

Le potentiel électrique est déformé lors de sa propagation à travers des tissus dont
les conductivités électriques changent brutalement. C’est pourquoi le choix des
conductivités dans un modèle électromagnétique de la tête est déterminant pour
la topographie du potentiel à la surface, et affecte par la même la localisation de
sources en EEG. Pour mieux comprendre quels sont les paramètres de conductivité
du modèle de tête qui sont importants vis à vis des topographies EEG, il est nécessaire
d’effectuer une analyse de sensibilité. Quand le modèle est linéaire par rapport à
ses paramétres, une analyse de sensibilité locale est suffisante pour comprendre
complètement le modèle. Mais le potentiel électrique a une dépendance fortement
non-linéaire aux conductivités du modèle de tête, donc une analyse de sensibilité lo-
cale n’est pas suffisante dans ce cas. Nous présentons dans ce chapitre une analyse
de sensibilité globale, qui permet de capturer toute la variabilité des topographies
EEG par rapport aux conductivités. Cette analyse de sensibilité globale est basée
sur des méthodes de décomposition de variance, dont les principes généraux sont
expliqués dans l’appendice B. Ce chapitre est adapté d’un article soumis au journal
IEEE Transactions on Biomedical Engineering.

Chapitre 7 - Calibration des conductivités par l’utilisation de potentiels
évoqués somesthésiques

La modalité la plus courante pour l’estimation des conductivités d’un modèle di-
rect EEG est la Tomographie par Impédance Électrique (EIT). Le principe de cette
technique est d’injecter un courant sur le scalp du patient entre deux électrodes
d’un casque EEG, et de mesurer le potentiel électrique ainsi généré sur les autres
électrodes du casque. A partir de la donnée du courant injecté et du potentiel
mesuré, la conductivité du modèle de tête peut être estimée. Dans le chapitre 6,
l’analyse de sensibilité démontre que les topographies EEG ne sont pas sensibles
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aux mêmes paramètres de conductivité selon que la source électrique est dans le
cerveau ou sur le scalp. Par conséquent, dans une optique de localisation de sources,
il semble plus intéressant de calibrer le modèle de tête avec une source électrique
située dans le cortex. Nous proposons donc dans ce chapitre une méthode pour cali-
brer les conductivités à l’aide de potentiels évoqués somesthésiques. Ce chapitre est
adapté d’une publication [101] présentée à la conférence ISBI 2007.
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CONTEXT OF THIS WORK
The study of brain mechanisms that underlie cognition (perception, motivity, lan-

guage and memory) is a research field commonly referred to as cognitive neuro-
science. In this domain, an important issue for further understanding of the brain is
to establish the connection between function and localization, i.e. to find what parts
of the brain are involved in the processing of a particular task. The first results
of localization come from neuropsychology, by studying behavioral changes due to
a well localized cerebral lesion, and electro-physiology technologies, that consist in
measuring neurons electrical activity by implanting electrodes in the brain (mostly
on animals). Nowadays, advances in the brain function localization are strongly
linked to the use of several neuroimaging techniques that allow to study the hu-
man brain in an almost noninvasive way, and so to perform experiments on many
subjects, even healthy.

Structural neuroimaging technologies appeared at the beginning of the seventies
with x-ray Computed Tomography (CT), then developed with the arrival of MRI in
the eighties. These methods generate a contrasted 3D image of the brain anatomy,
and in particular allow to identify the localization and the extension of a cerebral
lesion. Within the framework of cognitive neuroscience research, structural imag-
ing brings elements to interpret behavioral observations in neuropsychology. By
determining to which lesions corresponds a given cognitive deficit, it is possible to
establish that the damaged cerebral region is involved in the underlying mecha-
nism.

Functional neuroimaging goes beyond the simple anatomic image and aims at
characterizing the brain in action. Its classical use in cognitive neuroscience consists
in making a subject execute a task and in measuring the cerebral activity correlated
to this task. Depending on the functional imaging technology, it is possible to find
more or less precisely which region of the brain was activated and at which moment.
We can distinguish two groups among these techniques :

• Metabolic methods
These methods measure a change in metabolism linked to cerebral activity.
The most known is functional Magnetic Resonance Imaging (fMRI), that allows
to measure the blood oxygenation level in the brain. In regions that consume
energy, oxygenated blood flow increases and so fMRI allows to localize regions
where a high cerebral activity is taking place. The fMRI modality generates a
precise 3d image, but the acquisition time is of about one second : a temporal
series of fMR images do not have a sufficient temporal resolution to follow in
detail the dynamics of cognitive processes (duration of about 10 ms). We can
also cite the Positron Emission Tomography (PET) that measures blood flow
changes by injection of a radioactive label. This technique is less and less
used in cognitive neuroscience because it has a temporal resolution even more
limited than fMRI.

• Direct measures of the electrical activity
The most known technique, electroencephalography (EEG), is in fact the very
first noninvasive neuroimaging method. Its realization by neurologist Hans
Berger dates back to 1929. Its principle consists in measuring the electric
potential at the surface of the patient’s head, thanks to a helmet with elec-
trodes. Apart from all other artificial electrical sources, the electric potential
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measured is supposed to be only generated by brain electrical activity. Its ad-
vantage compared to metabolic methods is that the temporal resolution is only
limited by the measurement electronics, and typically the signal is measured
with a sampling frequency of 1 kHz, much higher than the dynamics of cere-
bral activity. Magnetoencephalography (MEG) is a technique very similar to
EEG, but it measures above the head surface the magnetic field instead of
the electric potential. Its interest lies in the fact that, contrary to the electric
potential, the magnetic field is not very distorted by its propagation through
organic tissues (notably the skull).

Hence, thanks to their high temporal resolution, EEG and MEG theoretically
offer the possibility to follow in detail the dynamics of cerebral activity processes.
A characteristic of these measures yet limit their imaging capacity : they are sur-
face measures that, as such, only give a crude information on the localization of
electrical activity that generated the measured electromagnetic field. To be able to
estimate the position of electromagnetic signal sources, one needs to have recourse
to mathematical methods of signal analysis. This problem of source localization
falls in a category of mathematical problems designated as inverse problems, that
generally have the characteristic of being ill-posed : the number of measurements
is insufficient to perfectly determine the positions of signal sources. Before solving
this inverse problem, an initial modeling of the studied phenomenon is required,
called forward problem. In the case of EEG and MEG, the studied phenomenon is
the electromagnetic field propagation from a source in the brain to the sensors lo-
cated at the head surface. The quality of the models of this phenomenon has a direct
effect on the accuracy of the source localization methods. It is hence necessary to
build head models that correspond as well as possible to the real electromagnetic
field propagation in the organic tissues of the head.

The work presented in this thesis focuses on this electromagnetic head modeling.
There are actually two main issues with regard to the forward problem :

• The electromagnetic field propagation is described by partial differential equa-
tions (PDE). In complex media with complicated geometries, such as realistic
head models built from structural MRI of the subjects, solving these PDEs
requires to use numerical methods which are generally computationally ex-
pensive, both in memory and in time. It hence limits the use of complicated
geometries that describe precisely the head geometry. Most experimenters in
EEG and MEG still use spherical descriptions of the head, for which quasi-
analytical solutions were developed.

• The electrical conductivities of the organic tissues of the head are not well
known, nevertheless these properties affect the electromagnetic field propaga-
tion (especially the electric potential). For most head models, the conductivity
values come from in vitro measurements, which does not account for the real-
ity of tissues in their natural environment. For the head models to correspond
as well as possible to reality, methods are developed for in vivo conductivity
estimation.

In this thesis, we present contributions on these two issues of the forward prob-
lem. The manuscript is composed of an introduction and two parts. The introduc-
tion is meant to give the reader an overview of the research field linked to functional
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brain imaging with EEG and MEG. We particularly emphasize the forward model-
ing problem, which ends this introduction. The first part presents our contributions
on the numerical methods for the electromagnetic PDEs in complicated geometries.
The second part focuses on the problem of the conductivities for EEG and MEG head
models.

MANUSCRIPT OVERVIEW

Introduction
This part explains how the signal observed with EEG and MEG is generated, what
are the methods for source localization and finally how is performed the forward
problem modeling.

Chapter 1 introduces the physiology of the EEG and MEG signals. Section 1
explains the physiological mechanisms that are responsible for the neuronal electri-
cal activity. We then present in section 2 how the electromagnetic field generated
by brain electrical activity can be measured at the head surface. This chapter ends
with section 3, illustrating the scale problem of the sources that are detectable with
EEG and MEG, which are far greater than a single neuron.

Chapter 2 presents the characteristics of EEG and MEG when they are used
as brain functional imaging modalities. Section 2 shows the types of measures that
are recorded with EEG and MEG, and the inverse problem of source localization
is introduced in section 3. The source localization depends on the hypotheses with
regard to the distribution of brain activity, and as a consequence different source
models can be used (section 4). Finally, we explain in section 5 some of the most
common methods for source localization.

Chapter 3 presents in detail the different approaches for the forward problem
modeling. We first start by recalling the classical equations of electromagnetism
that apply to EEG and MEG (section 1). Then we explain how to solve these equa-
tions in more and more complex geometries : an infinite homogeneous medium (sec-
tion 2), a conductor with a spherical geometry (section 3) and finally realistic head
geometries (section 4). To compute the electromagnetic field in the case of EEG and
MEG, it is sometimes useful to use the reciprocity concept, which basically states
that source and sensors can be interchanged. This concept is explained in section 5.
The last section presents the problem of the choice of conductivities in head models
(section 6).

Part I - Forward problem computation
This first part deals with the computation of the forward models : we present a
new Finite Element Method (FEM) which uses a simple cubic grid as a mesh while
keeping a precise description of the interfaces between the head tissues (chapter 4),
and a general framework for reciprocity in EEG and MEG (chapter 5).

Chapter 4 - Implicit meshes for Finite Element Methods

Using the FEM to solve the forward problem requires to mesh the head domain with
respect to the different head tissues. The common technique is to build a tetrahedral
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mesh. This mesh must at the same time be a good representation of the underlying
geometry and respect some quality criteria (tetrahedra homogeneity). Automatic
techniques for mesh generation sometimes create defects which require user inter-
action to ensure the final quality of the mesh. As a consequence, the process of mesh
generation is sometimes laborious and time consuming. On the contrary, when us-
ing a Finite Difference Method (FDM) to solve the forward problem, the meshing
step simply consists in defining a cubic grid, which moreover can be directly taken
from the MRI cubic grid. The complicated meshing of the FEM is hence avoided.
Yet the description of the geometry in FDM is not as good as the FEM, because the
different tissues are described as staircase domains. We thus propose a method for
the forward problem computation which combines both the simplicity of the cubic
grid of the FDM and the precise description of the interfaces of the FEM. It is actu-
ally a FEM method, which uses a cubic grid (usually the MRI grid) with an element
basis of trilinear functions. The precise description of the interfaces between tissues
is then taken into account by using their levelset representations on the grid. For
a better understanding of this chapter, appendix A gives the details of the classi-
cal tetrahedral FEM method. This chapter is based on an article presented at the
MMBIA workshop of the conference ICCV 2007 [80].

Chapter 5 - The adjoint method for general sensor-based lead field equa-
tions

Usually, to use EEG or MEG source localization methods, one has to solve the for-
ward problem for many possible locations of the brain sources (between 103 and 105).
When the forward problem is solved in complex geometries with numerical methods,
this can be computationally too expensive. This problem is avoided by considering
a reciprocal approach, where the sources and the sensors are interchanged. In this
case, the forward problem has to be solved for the different possible locations of
the sensors (between 50 and 300), which considerably reduces the computational
cost. The reciprocal approach consists in considering a different electromagnetic
field PDE. For instance, in EEG, the electric potential generated by a source Jp in a
domain Ω satisfies the PDE :{

∇ · (σ∇V ) = ∇ · Jp in Ω
σ∇V · n = 0 on ∂Ω

and the reciprocal PDE, corresponding to the electric potential generated by a cur-
rent injection, is the following :{

∇ · (σ∇V ) = 0 in Ω
σ∇V · n = δr1 − δr2 on ∂Ω

where r1 and r2 are the points where the current is injected. In this case, where the
electric potential and pointlike measurements are considered, the reciprocal PDE
that has to be solved is directly given by Helmholtz’s reciprocity theorem. The re-
ciprocal PDE for the magnetic field is not as straightforward to obtain : it has been
formulated for pointlike measurements in [74]. In this chapter, we propose to use
the adjoint method as a general framework to derive the reciprocal PDE, both in
EEG and MEG. The advantage of this formulation is that the reciprocal PDE can
also be extended to non-pointlike sensors, in aim to take into account the area of
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the EEG electrodes or the geometry of the MEG sensors (magnetometers, gradiome-
ters). This chapter is adapted from an article submitted to the journal Physics in
Medicine and Biology.

Part II - Conductivity calibration
This second part deals with the problem of the choice of conductivity values in EEG
forward models : we present a global sensitivity analysis of the three-layer head
models (chapter 6), and a method for conductivity calibration with somatosensory
evoked potentials (chapter 7).

A global sensitivity analysis of the three-layer conductivity models for EEG

The propagation of the electric potential is affected by the changes of electrical con-
ductivity in the head. As a consequence, the choice of the conductivities in a head
model has an effect on the topographies of the electric potential, which directly af-
fects the source localization with EEG. To better understand what conductivities of
the head model are important with respect to the EEG topography, it is necessary
to perform a sensitivity analysis. When considering a linear model, it is sufficient
to perform a local sensitivity analysis to fully understand the model. But the elec-
tric potential has a strong non-linear dependency on the conductivity of the head
model, so a local sensitivity analysis is not sufficient in this case. We thus present
in chapter 6 a global sensitivity analysis, which is able to capture all the variability
of the EEG topographies with respect to the conductivities of the head model. This
global sensitivity analysis is performed using a variance-based method, hence the
appendix B gives an overview of this type of methods. This chapter is adapted from
an article submitted to the journal IEEE Transactions on Biomedical Engineering.

Conductivity calibration with somatosensory evoked potentials

A common modality for conductivity estimation of the EEG forward models is Elec-
trical Impedance Tomography (EIT). In this technique, a current is injected between
two scalp electrodes, and the conductivities of the head model are inferred from the
resulting scalp potential measurements. The sensitivity analysis presented in chap-
ter 6 reveals that the EEG scalp topographies have a different sensitivity to the
conductivities whether the source is in the brain or on the scalp surface. As a conse-
quence, the conductivity model can be better calibrated when the source configura-
tion is similar to the one considered for brain source localization. We thus propose
in chapter 7 a method for conductivity calibration using somatosensory evoked po-
tentials. This chapter is based on an article presented at the ISBI 2007 conference.
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• Sylvain Vallaghé, Maureen Clerc, ”In vivo conductivity estimation using so-

matosensory evoked potentials and cortical constraint on the source”, IEEE
Proceedings of ISBI 07, Washington DC, USA, 2007.
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Figure 1.1: Neuron diagram. Source : enchantedlearning.com.

1 NEURAL ORIGIN OF THE BRAIN ELECTROMAGNETIC
FIELDS

The human brain is a very complex structure composed of around 100 billions
of small elementary units : the neurons. The neurons are linked together and each
neuron can have up to 10000 connections. The neuron is a cell with a special shape :
it is composed of a soma or cell body, containing the nucleus, a dendritic tree and
an axon, as shown in figure 1.1. It can be viewed as a signal receiver, processor and
transmitter : the signal coming from the dendrites is processed at the soma and
generates (or not) an action potential which is carried along the axon towards other
neurons. The signal moving along the dendrites, called post-synaptic potential, is
different from the signal moving along the axon, the action potential. We briefly
describe the ion mechanisms [54] responsible for these two types of potential :

• Post-synaptic potential
The junction between the axon terminal of a neuron and a dendrite or the soma
of another neuron is called a synapse. It can be a direct electrical junction, but
most of the time synapses are chemical : when an action potential reaches
the end of an axon terminal, it releases neuro-transmitters. When a neuro-
transmitter molecule touches the other neuron, the membrane permeability is
affected and specific ions (Na+ and K+) penetrate inside, increasing the resting
state potential of about 10mV with a duration of 10ms. This is called a post-
synaptic potential. It is shown in figure 1.2a.

• Action potential
When many post-synaptic potentials are summing up, the membrane poten-
tial of the soma can reach locally a certain threshold which makes the neuron
”spike” : some voltage-sensitive channels open, allowing positive ions to flow
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(a) Post-synaptic potential. Source : psy.jhu.edu.

(b) Action potential propagation. Source : kvhs.nbed.nb.ca.

Figure 1.2: Neuron signals.
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Figure 1.3: The electric field generated by an electric dipole (source
hyperphysics.phy-astr.gsu.edu).

inside the cell, and the potential inside the neuron is increased suddenly. The
potential comes back rapidly to its resting state (in 1ms), with the help of
other voltage-sensitive channels that allow a compensating outward current.
Because of this peak of potential, the nearby regions reach the threshold and
spike too : the action potential thus propagates along the axon. It is shown in
figure 1.2b.

These two types of potentials create some very small currents in the neuron
which can be approximated by mathematical dipoles. In electrostatics, an electric
dipole is the configuration obtained when two charges, one negative and one positive,
are coming close to each other along a certain axis. A dipole is defined by its position
(where the charges are located), and its moment, a vector pointing from the negative
to the positive charge and whose amplitude is given by the magnitude of the charges
times the distance between them. An electric dipole creates an electromagnetic
field : the figure 1.3 shows the shape of the electric field lines.

We can extend this concept of electric dipole to a current dipole. The most simple
current configuration is to consider a simple wire between two points which are
respectively a source and a sink of current. Physiologically, if we consider a neuron,
when a dendrite receives an increase of positive ions due to an excitatory synapse,
there is a current source at the dendrite and a sink of current at the soma, and the
current flows in the wire represented by the dendrite. When the source and the sink
of current are coming close to each other, we have a current dipole configuration.
Like the electric dipole, it is defined by a position (where the source and sink are
located), and a moment, a vector pointing from the source to the sink and whose
amplitude is given by the magnitude of the current times the distance between the
source and the sink. The electromagnetic field generated by a current dipole has
exactly the same shape than the electromagnetic field of an electric dipole. As shown
by figure 1.4, the current generated by a post-synaptic potential corresponds to a
single current dipole aligned with the dendrite, whereas the action potential can be
represented as two opposite current dipoles aligned with the axon. For the action
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Figure 1.4: External currents generated by action and post-synaptic potential.
There is a clear difference between the dipolar and quadrupolar structures.

potential, the two opposite dipoles correspond to a quadrupole. In a simple infinite
homogeneous medium, the electric potential at a position r generated by a dipole at
the origin is :

V (r) = K
q · u
r2

,

where K is a constant, q is the dipole moment, u is the unit vector in the direction of
r and r is the norm of r (distance between the dipole and the observation point). The
electric potential thus decreases as the inverse of the square of the distance. For a
quadrupole, the electric potential is :

V (r) = K
1
r3

∑
i,j

qijuiuj ,

where qij are the quadrupole moments and ui are the components of the vector u. In
this case, the potential decreases as the inverse of the cube of the distance. The same
difference of decrease rate also holds for the magnetic field. It means that if a dipole
and a quadrupole located at the same positions are observed from a long distance,
the electromagnetic field of the quadrupole is negligible compared to the field of the
dipole. As a consequence, when the brain electromagnetic field is measured outside
the head (”far” from the neurons), it is commonly accepted that the electromagnetic
field generated by the action potential is negligible with respect to the one generated
by post-synaptic potentials.

Still, the post-synaptic potentials of one neuron alone cannot generate an elec-
tromagnetic field sufficient to be measured outside the head. To give an idea, it is
necessary to sum the field amplitudes of about 104 neurons to produce a field am-
plitude that is detectable outside the head [72]. Furthermore, the amplitude of the
fields generated by many dendrites completely sum only if the dendrites have the
same direction and orientation. For instance, stellate cells which have dendrites in
all directions can not produce a measurable field. Only the class of neurons called
pyramid cells have the regular organization that is required to sum the fields gen-
erated by their post synaptic potentials. The pyramidal neurons are located mostly
in the gray matter of the cortex (see section 3.1), and they all have a thick dendrite
(called apical dendrite) extending towards the exterior of the cortex, perpendicularly
to its surface, as shown by figure 1.5 and 1.6. These neurons constitute about 70% of
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Figure 1.5: Pyramidal neurons in medial prefrontal cortex of macaque. Source
brainmaps.org.
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Figure 1.6: Pyramidal cells in the cortex and the corresponding electromagnetic field
(E is the electric field, B is the magnetic field).

the neo-cortex, and their density is such that theoretically the simultaneous activa-
tion of an area of 1mm2 of the cortex would be detectable, even if experimental stud-
ies showed that the minimal detectable activity has an area of about 100mm2 [41].

2 NON-INVASIVE MEASURES OF THE BRAIN ELECTRIC
ACTIVITY

Because the electric activity of the neurons produces an electromagnetic field, it
is possible to detect at a distance the brain activity when the corresponding elec-
tromagnetic field is sufficiently strong. This offers the possibility to get information
about the brain activity from outside the head, in a non-invasive way. An electro-
magnetic field is composed of two parts, the electric field and the magnetic field,
which can both be measured in different ways. As a consequence, two modalities
have been developed for measuring the brain electromagnetic field outside the head
: one measures the electric potential and is called electroencephalography, the other
measures the magnetic field and is called magnetoencephalography.
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Figure 1.7: An EEG equipment : the electrode helmet is placed on the head of
the subject, then the signal is processed through an amplifier and digitalized on a
computer (Odyssée project team, INRIA Sophia Antipolis).

Figure 1.8: A MEG equipment : the helmet equipped with SQUID sensors is im-
mersed in helium (Magnetoencephalography center, La Timone, Marseille).

2.1 Electroencephalography (EEG)

This modality is the oldest one. Human EEG recordings started in 1920 with the
German physiologist and psychiatrist Hans Berger. The recording is obtained by
placing electrodes which measure the electric potential on the scalp of the subject.
Nowadays, these electrodes are connected to an amplifier and the signal is then
digitalized and stored on a computer. The advantage of this device is its simplicity
and cheap cost. Unfortunately, the low conductivity of the skull tends to diffuse the
electric potential, and at the surface of the scalp, the potential only reflects coarsely
the underlying brain activity. The number of electrodes on a modern EEG helmet is
usually 32, 64 or 128.

2.2 Magnetoencephalography (MEG)

The magnetic field generated by the human brain was first measured by David Co-
hen in 1968, using only a copper induction coil as the detector. The main problem is
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Figure 1.9: The cerebrum is shown in green on the left. The gray matter of the
cerebral cortex is shown on the right.

the weakness of the signal generated by the brain activity, a magnetic field with an
intensity of a few femtoteslas (1fT = 10−15T ). In comparison, the Earth’s magnetic
field has an intensity of about 10−5T . David Cohen made the measurements in a
magnetically shielded room to reduce the magnetic background noise, but it was not
sufficient to get a clear signal. In 1969, Zimmerman and colleagues finished the de-
velopment of the SQUID (superconducting quantum interference device), a detector
using supra-conductors which can measure very small variations of the magnetic
field. A few years later, Cohen measured again the brain magnetic field using a
single SQUID detector and a better magnetic shielded room. This time the signals
were comparable to EEG. Nowadays, the MEG systems contain between 150 and
300 SQUID sensors, covering most of the head. A MEG system is very expensive
compared to EEG, because the SQUID sensors need to operate at very low temper-
ature, and for this reason are immersed in liquid helium. Moreover, most often a
magnetic shielded room has to be built to use the system. Nevertheless, the mag-
netic field is much less sensitive to the low conductivity of the skull than the electric
potential, and the magnetic field observed outside the head is a sharper represen-
tation of the underlying brain activity. That is why in spite of their cost, more and
more MEG systems are being built.

3 EEG AND MEG : WHAT ARE WE LOOKING AT ?

Anatomically speaking, the brain of vertebrates is composed of many different
structures, which can be classified with respect to the different stages of the devel-
opment of the central nervous system. There are five major divisions, starting with
the spinal chord and ending with the cerebrum. In humans, the cerebrum, which
contains the cerebral cortex, is very developed and thus completely surrounds all
the other (and ”older”) parts of the brain (figure 1.9a). The outermost layer of the
cerebrum, called the gray matter, is formed by neurons, and the white matter below
the gray matter is formed by axons. As a consequence, the neurons of the gray mat-
ter are the closest of the head surface, and other neurons of the brain have their cell
body in the center, far from the head surface, due to the space taken by the white
matter (figure 1.9b). Because of the decrease rate of the electromagnetic field, it is
assumed that the signal measured with EEG and MEG comes mainly from the neu-
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Figure 1.10: Cortical layers. Layer organization of the cortex (a) Weigert’s coloration
shows myelinated fibers (axons) and so the connections inside and between layers,
(b) Nissl’s coloration only reveals cell bodies (c) Golgi’s coloration shows the whole
cells (From [75]).

rons of the gray matter, especially the part of the gray matter located closely under
the skull, which is part of the cortex. The cortex is involved in higher functions of
the brain such as sensory perception, motor commands, consciousness, language,
and so EEG and MEG can be used to measure the brain activity during cognitive
tasks.

3.1 Basic organization of the cortex

The cortex is mainly composed of gray matter formed by neurons and their un-
myelinated fibers. The white matter below the gray matter of the cortex is formed
predominantly by myelinated axons interconnecting different regions of the central
nervous system. First of all, it has been proved that the gray matter has a horizontal
organization in layers composed of different cell types (see figure 1.10). The num-
ber of layers, their cell composition, their thickness and organization are not the
same over the whole surface of the cortex. These differences led neuroanatomists
to divide the cortex into small regions called areas (figure 1.11) whose characteris-
tics were homogeneous and that corresponded to different functions, e.g., vision or
motion. Generally speaking, most of the cortex is made up of six layers of neurons,
from layer I at the surface of the cortex to layer VI, deeper, that lies close to the
white matter. For humans, its thickness varies from 3 to 6 mm.
More detailed information about cortical structure and function can be found in
[51, 82, 52]. The organization of the cortex is not only laminar. It has been observed
that neurons located in a column perpendicular to the cortex tend to be connected to
each other and to respond to precise stimulations with similar activities throughout
the layers. They form a cortical column. Several studies have shown biological evi-
dence for such small aggregates of about one hundred neurons, 20 up to 50 µm wide,
called minicolumns (see e.g. [10, 71]). Larger columnar structures have been also
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Figure 1.11: Cortical areas. In 1909, Brodmann [9] divided the cortex into 52 cy-
toarchitectonic areas according to the thickness of the cortical layers. For example,
layer IV is very thin in the primary motor cortex (area 4) while it is very thick in the
primary visual cortex (area 17).

observed. For instance, Mountcastle in [70] showed that neurons inside columns of
300 to 500 µm of diameter displayed similar activities. Those physiological units are
usually called macrocolumns.

3.2 Models of brain electric activity for EEG and MEG
As we explained in section 1, the post-synaptic electrical activity of a neuron can
be modeled by a current dipole. Nevertheless, this dipole has a very weak intensity
and its electromagnetic field can not be measured with EEG or MEG. Only the sum-
mation of the activity of more than 104 neurons with the same dipolar structure can
generate a detectable signal. Such a structure, where many neurons have dendrites
all parallel to each other, can be found in the pyramidal neurons of the gray mat-
ter. The density of the pyramidal cells in the cortex is such that the simultaneous
activation of about 100mm2 of the cortex is sufficient to produce such a signal.

The consequence for EEG and MEG is that the brain activity is observed at a
macroscopic scale with respect to the size of a neuron. What is measured is the
electrical activity of assemblies of neurons. The typical size of the neuron assemblies
observable with EEG or MEG is bigger than the size of cortical columns but smaller
than the size of a cortical area. For the last three decades, neuroscientists have
been building models of neuron assemblies [63, 116, 28, 50, 107, 98], based on the
knowledge of neuronal dynamics, but the dynamics of such assemblies is far from
being completely understood.

It leads to the problem of the modeling of the brain electric activity for EEG and
MEG. The main assumption is that the measurements reflect the activity of one or
several assemblies of neurons. For one assembly, the EEG or MEG measurements
only reflect its average activity, and it is usually considered that the intrinsic dy-
namics of the group of neurons is unknown. As a consequence, for EEG and MEG,
the most common model of the brain activity is to use a finite set of simple electric
sources (such as dipoles). Each source is meant to reflect the average activity of the
assembly of neurons surrounding it. As explained in chapter 3, section 2.1, because
the area of a neuron assembly is small compared to the distance to the observa-
tion point (the EEG-MEG sensors), a dipole located at the center of the area can
generate a very similar electromagnetic field as when the whole area is activated
(figure 1.12).
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Figure 1.12: The activity of a small region of the brain can be approximated by a
current dipole. The position of the dipole (the dot) is at the center of the activated
cortex area and the moment of the dipole (the arrow) corresponds to the average
orientation of the pyramidal neurons in this region (perpendicular to the cortical
surface).
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CHAPTER 2

BRAIN FUNCTIONAL IMAGING
WITH EEG AND MEG

Visualizing the brain in function means localizing in space and time the activity
of the brain. Because the activity of the brain is mainly electrical, and because
this electrical activity produces an electromagnetic field outside the head, EEG and
MEG measurements give an information on this activity, and can then be used for
brain functional imaging.
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(a) fMRI (b) EEG

Figure 2.1: On the left, the statistically significant brain activity is evaluated using
fMRI (source hitl.washington.edu). On the right, an image of the electric potential at
the head surface is given by the average of EEG measurements (evoked potential).

1 INTRODUCTION

Medical imaging underwent a revolution when the x-ray computed tomography
(CT) was introduced about 30 years ago. It was then possible to look almost non-
invasively at a three-dimensional image of the anatomy of organs within the living
human. After CT, other imaging techniques appeared, like positron emission tomog-
raphy (PET) and magnetic resonance imaging (MRI). With the development of PET
and MRI came the opportunity to not only look at the anatomy but also to evaluate
the function of organs. With these new imaging techniques, researchers interested
in the function of the human brain were presented with an opportunity to examine
how brain function correlates with mental activities. It contributed significantly to
the understanding of the human brain, and developed the field of cognitive neuro-
science.

Nevertheless, PET and fMRI (functional MRI) are limited by the temporal reso-
lution they offer (of the order of the second) and also by the quantity they measure
(glucose or oxygen uptake) which is indirectly related to brain activity. As a con-
sequence, one brain image produced with PET or fMRI reflects the average brain
activity over a period of time of about one second or more. Many temporal dynam-
ics of the brain are not captured by these imaging modalities, because the typical
frequencies of the brain activity are way above 1 Hz.

On the contrary, because the electromagnetic field propagates at the speed of
light, the EEG and MEG measurements give instantaneous information about the
electrical activity of the neurons. Moreover, EEG and MEG can be recorded at a
frequency of 1kHz or more, which is superior to the frequencies of the brain activity.
These measurements hence allow to follow in details the temporal dynamics of the
brain, in a non-invasive way. The difference with PET and fMRI is that EEG and
MEG do not give a 3d image of the brain but only an image of the electromagnetic
field at the surface of the head (figure 2.1).
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Figure 2.2: The subject is presented with an electrical stimulation of the median
nerve located at the right wrist. This stimulus is repeated about a thousand times
and the EEG or MEG measurements are then averaged to extract the activity which
is correlated and locked in latency with the stimulus. This is called evoked activity.
On this figure the evoked potential/magnetic field is shown 20 ms after the stimulus
onset (top view of the sensors on/above the subject’s head).

2 EEG-MEG AS FUNCTIONAL BRAIN IMAGING MODAL-
ITIES

The study of the brain dynamics first started with EEG, and for many years
researchers and clinicians only used the surface EEG recordings. From the topog-
raphy of the electric potential at the electrodes, and their knowledge about brain
anatomy and functions, they could infer the location of the brain activity at a very
coarse spatial resolution. Figure 2.2 shows typical EEG and MEG topographies that
are generated by a simple stimulation of the right wrist of a subject. If we compare
it with the electric potential and magnetic field generated by a simple dipole (fig-
ure 2.3a), one can tell that the source of the brain electrical activity is very likely
located in the left hemisphere, at the center with respect to the front and the back of
the brain. This is in agreement with the knowledge that the left hemisphere mainly
processes the information concerning the right part of the human body, and that
the sensory information is processed in the so-called somatosensory cortex, located
posterior to the central sulcus of the cortex (figure 2.3b). It is important to note the
difference between EEG and MEG topographies : for the same brain source, the to-
pography at the head surface is more focal in MEG than in EEG. It means that the
MEG has a better capacity to distinguish between two activities with close locations
in the brain. This is due to the fact that the magnetic field is not very sensitive
to the electrical conductivities of the head tissues, and thus propagates almost like
in an homogeneous conductor. On the contrary, the electric potential is sensitive to
the conductivity, and is affected by the low conductivity of the skull which tends to
diffuse the electric potential at the surface of the head.

The topographies of EEG and MEG measurements can give an information on
the location of the brain activity, but the ultimate goal of the brain functional imag-
ing is to generate a 3d image of the brain activity. That is why research is carried
out in the EEG-MEG field to find methods for localizing the electrical activity re-
sponsible for the electromagnetic field observed at the surface of the head. These
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(a) Dipole field (b) Somatosensory cortex

Figure 2.3: On the left, the figure shows the lines of the electromagnetic field gen-
erated by a single dipole (Source biomagnetism.kriss.re.kr). The dipole field has a
very characteristic shape : at the surface, the EEG and MEG measurements show
two peaks, one positive and one negative, located on both sides of the dipole location.
With EEG, these two peaks are aligned with the dipole moment, whereas for MEG
the two peaks are aligned perpendicularly to the dipole moment. On the right, the
location of the somatosensory cortex is shown among other main parts of the brain
(Source emc.maricopa.edu).

Source localization ?

Figure 2.4: An illustration of the source localization problem : inferring the distri-
bution Jp of active electrical sources (left) from sensor data (right).

methods try to estimate a solution to the source localization problem, which can
be stated as : how to pass from the surface measurements to the underlying brain
activity (figure 2.4) ?

3 THE SOURCE LOCALIZATION PROBLEM

We assume that we have a model which describes the propagation of the electro-
magnetic field in the head. It means that for any distribution of electrical sources
in the brain, which can be represented as a vector field of R3 denoted Jp(r) (this
notation is explained in chapter 3), we are able to compute the corresponding elec-
tromagnetic field in the whole head domain. For instance, for the electric potential
V (r), we have a model f such that V = f(Jp). How to build and compute such a
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model is referred to as the forward problem and is explained in chapter 3.
Now suppose we have some measurements v1, . . . , vn of the electric potential at

some electrode positions r1, . . . , rn. To localize the brain activity, we would like to
find the distribution Jp that best explain the measurements. If we have a model V =
f(Jp), we want to find Jp such that the difference between the model simulation V

and the real potential is as small as possible. Because the real potential is measured
only at the electrodes placed at the surface of the head, we can only compare the real
potential and the model simulation at the electrode positions, i.e. compare V (ri) and
vi. For example, we can look for Jp that minimizes the quantity

n∑
i=1

(V (ri)− vi)2 with V = f(Jp) .

The source localization problem is the problem of finding such a Jp. The problem is
exactly the same with MEG but with a model for the magnetic field B = g(Jp) and
magnetic measurements b1, . . . , bn.

The source localization problem falls in the category of inverse problems. An in-
verse problem occurs when the values of some model parameters must be obtained
from the observed data. In our case, we have a model V = f(Jp), some observed data
v1, . . . , vn (the measurements), and we want to obtain the values of the model param-
eter Jp. Inverse problems are typically ill posed, as opposed to the well-posed prob-
lems more typical when modeling physical situations where the model parameters
or material properties are known (which is the case for the forward problem). The
three conditions for a well-posed problem were suggested by Jacques Hadamard : a
solution exists, the solution is unique and the solution depends continuously on the
data. In particular, the source localization problem in EEG or MEG does not satisfy
the uniqueness condition. It is well known in electromagnetism since Helmholtz
that in certain conductors, there are some configurations of electrical sources that
produce no electromagnetic field outside the conductor. Such sources are called
silent sources. Adding a silent source to a solution of the source localization problem
would not change the electromagnetic field outside the head, and so the solution is
not unique. Because of this, in the inverse problem, one needs to make explicit any
available a priori information on the model parameters. In the source localization
problem, the model parameters are the values of the vector field Jp, representing
the sources of electrical activity in the brain. The a priori information on the brain
sources can be made explicit by using constraining models for Jp.

4 SOURCE MODELS

4.1 Dipolar models

A possible assumption about the brain activity is that it is sparse and focal. In
other words, at a given time, the activity occurs at a small number of places in the
cortex, and at each place the area of the cortex which is active is small (compared
to the distance to the sensors). In this case, as explained in chapter 1, section 3.2
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and chapter 3, section 2.1, the activity of each area can be represented by one single
dipole, called equivalent current dipole (ECD). The goal of the source localization
problem is then to find the parameters of the dipoles (six for each dipole, position
and moment). Different approaches can be used to estimate these parameters. The
most common simply consists in minimizing the residual error between the model
and the measurements, this is called the least-squares dipole fit. The details of this
method are explained in section 5.2. Other methods are based only on analytical
considerations, but are restricted to a spherical description of the head [4, 11, 5].
In general, for the solution to be unique, the number of parameters to be estimated
should not be greater than the size of the data [2] (given by the number of sensors,
typically 64 for EEG and 150 to 300 for MEG).

Most of the time, the brain activity has a complex structure, for which the dipolar
models are not very well suited, but they can still give good results when considering
the evoked activity at short latencies. It has been shown that for sensory or motor
experiments, the solutions obtained with dipolar models are correct with respect to
the anatomic and functional knowledge of the brain [95]. The precision of the source
localization with dipolar models has been evaluated to be a few millimeters with
MEG [99] and about one centimeter with EEG [114, 58].

The simplest approach with dipolar models is to find the dipole parameters at a
given time instant [92, 53, 108], which is usually at a peak observed in the evoked
activity. If the dipole parameters are evaluated at several successive time instants,
then the dipoles are moving with respect to time, this is the moving dipole approach.
But considering the sample rate of EEG and MEG (more than 1 kHz), and the du-
ration of post-synaptic potentials (10 ms), it is expected that the brain activity does
not change too much between two time samples. The dipole localization can thus
be performed on a small time window [89], so that there is more data available for
the same number of parameters to be estimated. If only the position parameters are
evaluated on the whole time window, but the moment is evaluated at each time sam-
ple, then the dipole can rotate over time, this is the rotating dipole approach. With
a fixed position over time, the amplitude courses of the dipoles reflect the activity of
the corresponding areas.

One drawback of the dipolar approaches is that the number of sources has to be
chosen a priori. Most of the time it is chosen with respect to the knowledge of the
experiment which is considered, but it can also be determined more or less automat-
ically using the residual error between the model and the data, or by analyzing the
spectrum of the data. Another limitation of the dipolar models is that it is not well
suited to explain a complex activity in the brain, which occurs for late responses to
a stimulus, or when the experiment is more complex than just a sensory or motor
task.

An example of source localization with a dipolar model is given by figure 2.5.

4.2 Scanning approaches
This approach is closely related to the dipolar approaches, as it also estimates the
positions of several dipoles that best explain the measurements. But the way to
achieve such a result is quite different. In the scanning methods, the space of the
head domain is sampled at many locations, usually following a regular grid, and
at each location the probability of a dipole being present is evaluated. Then the
dipole positions are given by the local maxima of an evaluating function over the
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Figure 2.5: Three dipoles are localized using the dipole fit method. They are shown
on different cross sections of the MRI of the subject. The dot gives the position and
the bar gives the moment of each dipole. Source : eeglab.

head domain. The most common scanning method in EEG and MEG is the MUSIC
method [69], which is explained in section 5.3. Another class of scanning methods
fall in the category of the spatial filters, also called beamformers. For each sample
point of the head domain, a spatial filter that can be applied to the data is computed,
such that it theoretically extracts only the contribution of a dipole located at this
given point [103]. When these filters are applied to the real data, they give at each
point the estimated contribution of a dipole to the measurements. In this case, the
dipole positions are again obtained for the local maxima among the contributions
of all points. These approaches are usually more robust than the classical dipolar
methods, but they can fail to reconstruct two different source positions when the
temporal activities of these two sources are highly correlated. An example of source
localization with the MUSIC method is given by figure 2.6.

4.3 Distributed source models

These methods were developed to bypass the limitations inherent to the dipolar
approaches. The idea is to reconstruct an approximation of the whole source distri-
bution, represented by the vector field Jp. The most common approximation is to
sample the totality or a part of the head domain, and to evaluate the values of Jp

at each space sample. In other words, a dipole is positioned at each sample point,
and the moments of all these dipoles are estimated at the same time. When us-
ing distributed source models, the number of parameters to estimate is far greater
than the size of the data, due to the space sampling size (with just a simple grid
10 × 10 × 10, there are 1000 dipole moments to estimate, i.e. 3000 parameters,
and the number of sensors is at most 300). This is a situation often encountered
in inverse problems, and in these cases, regularization techniques may be used to
introduce assumptions on the solution and thus ensure its uniqueness. Different
methods have been developed for distributed source models, depending on how the
space is sampled (defining the source space) and what regularization is used. The
general approach is explained in section 5.4.
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Figure 2.6: The MUSIC method computes in the brain space a map of the probability
of a dipole being present. The peaks of the map gives the most probable locations of
the brain activity.

Several regularizations for the distributed source models in EEG and MEG have
been introduced [15, 42, 81], with general sampling of the head space. But it is
possible to restrict the source space based on the a priori information that the brain
activity is located in the gray matter of the cortex. This is done by segmenting an
anatomical MRI of the subject to get a description of the cortical surface, and then
distributing dipoles only on this surface and not in the whole head space [20]. The
solution can be even more constrained by assuming that the moments of the dipoles
are perpendicular to the cortical surface, which is coherent with the orientation of
pyramidal neurons.

The main limitation of the distributed source approaches is that the regulariza-
tion techniques that are used most of the time impose constraints on the solution
which are defined mathematically (minimum norm of the solution, its gradient or
its Laplacian), but which produce estimates of the solution that are not realistic
physiologically (often the solutions are too smooth). One way to circumvent these
problems is to incorporate information about the cortical structure and function in
the regularization [3].

The figure 2.7 shows an example of solution obtained with a distributed source
model.

5 METHODS

We now briefly describe some of the methods that fall in the different categories
presented in the previous section.
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Figure 2.7: The distributed sources methods generally generate an image of the
amplitude of the dipoles on the cortex. Here the cortex is unfolded to ease the vi-
sualization in the sulci. The red corresponds to a high amplitude and the blue to a
zero amplitude.

5.1 Definitions

In this section, we introduce some concepts that are shared by most source local-
ization methods. It is known that the electric potential V and the magnetic field
B are linear with respect to the sources, represented by the vector field Jp. As a
consequence, any EEG-MEG measurement m(r) at a point r is a linear functional of
Jp, and from the Riesz representation theorem, there exists L(r, r′) : R3 × R3 → R3

such that :
m(r) =

∫
Ω

L(r, r′) · Jp(r′)dr′ .

The vector field r′ → L(r, r′) is called the lead field of the measurement at the point r.
If we consider a dipole with position r0 and moment q, such that Jp(r′) = δ(r′− r0)q,
where δ is the Dirac distribution, then we simply have :

m(r) = L(r, r0) · q .

In this case, the vector field r → L(r, r0) is called the forward field of the dipole at
the position r0. Let us assume that m(r) = V (r) is a measurement of the potential,
one can see that computing V (r) = L(r, r0)·q for all points r of the space corresponds
exactly to solving the forward problem V = f(Jp) where Jp is a single dipole with
position r0 and moment q. The forward field at a position r0 can then be computed
by solving the forward problem for three dipoles at position r0 with moments equal
to the three Cartesian orientations (1, 0, 0), (0, 1, 0) and (0, 0, 1). As a consequence,
one can approximate the function (r, r′) → L(r, r′) by evaluating the forward field
r → L(r, ri) at many dipole positions ri.

As explained in section 4, for most of the source models, the brain activity is
represented by a certain number k of dipoles (ri,qi). In this case, an EEG-MEG
measurement is given by

m(r) =
k∑

i=1

L(r, ri) · qi .
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If we consider a complete set of n sensors at positions (rs1, . . . , rsn), we can write the
relation between the sources and the measurements in a simple matrix product :

m =

 m(rs1)
...

m(rsn)

 =

 L(rs1, r1)T · · · L(rs1, rk)T

...
. . .

...
L(rsn, r1)T · · · L(rsn, rk)T


 q1

...
qk

 = Gq . (2.1)

G is called the gain matrix or sometimes the lead field matrix. Normally, to
compute the gain matrix, one has to solve one forward problem per column of the
gain matrix. If we consider k dipoles with all the Cartesian orientations, then the
forward problem needs to be solved 3k times.

5.2 Least-squares dipole fit

This method is based on a dipolar model of the brain activity as presented in sec-
tion 4.1. In this approach, it is assumed that the brain activity is sparse and focal :
at a given time, only a few small areas (or patches) of the cortex are activated. As a
consequence, the activity of each patch can be represented by one dipole, often called
equivalent dipole. Then the whole brain activity is represented by a small number
of dipoles. In this framework, the goal of the inverse problem is to find the posi-
tions and moments of these dipoles. One can assume that the number of dipoles is
fixed in advance, if not the number of dipoles becomes an unknown of the problem.
Generally, the number of dipoles is always assumed to be far inferior to the number
of measurements, so that the problem is overdetermined, and it can be shown that
there is a unique solution [2]. We present here the simple approach with a fixed
number of dipoles k. The projection of the dipoles on the measurement is given by
the gain matrix (2.1), which can be written :

m = G({ri})q

where G depends on the dipole positions {ri} and q is the column vector containing
all the moments of the dipoles q = [qi]. If we have some real measurements M, the
goal is to minimize the following cost function :

E({ri,qi}) = ‖M−m‖2 = ‖M−Gq‖2 (2.2)

where ‖.‖ is the discrete l2-norm, such that for a vector u = [uj ], ‖u‖2 = 〈u,u〉 =∑
j u2

j . For the sake of simplicity, M is supposed to be a column vector corresponding
to the measurements at a given time t. For given positions {ri}, the moments q = [qi]
that minimize E are obtained by a closed formula. The derivative of E with respect
to q is

∂qE = 2GT (M−Gq) .

The minimum is obtained for ∂qE = 0, which gives :

q∗ =
(
GT G

)−1

GT M . (2.3)

We can replace q by q∗ in (2.2) so that E only depends on the dipole positions {ri}.
The minimization of E with respect to the dipole positions is more complicated, be-
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cause E depends on the {ri} via the gain matrix G({ri}), which is not linear with
respect to the {ri}. In this case, one has to use iterative methods for the mini-
mization of E. Many minimization methods can be used, such as the Nelder-Mead
simplex or the Levenberg-Marquardt method, which is particularly adapted to the
least square minimization. In all cases, at each iteration of the minimization algo-
rithm, the dipole positions {ri} are updated, and so G({ri}) has to be recomputed,
which means solving 3k times the forward problem, as explained in section 5.1. If
the dipole fit method is applied at each time sample t of the measurements, then the
dipole localizations change over time, this is called the moving dipole approach. But
one can consider a whole set of measurements over a time window, in this case M
is a matrix n× T , where T is the number of time samples. In this case, (2.3) gives a
matrix containing the dipole moments varying over time, but the minimization of E

still gives k fixed positions. This is called the rotating dipole approach.

5.3 MUSIC

The Multiple Signal Classification (MUSIC) is a method used originally for anten-
nas, which was then applied to MEG-EEG source localization [69]. This method is
also used to find a small number k of dipoles, but the approach is different, as it
is a scanning approach (section 4.2), and requires to consider some measurements
over a certain time window. M is then a matrix n × T where n is the number of
sensors and T the number of time samples. The idea is to use the singular value
decomposition (SVD) of the measurements M = USVT . If k is inferior to the num-
ber of measurements, and the measurements are not too noisy, then all the signal
coming from the k dipoles should be spanned by the k first left singular vectors of U,
denoted Uk. The remaining vectors of U should only span noise. In this framework,
P = I − UkUT

k is the orthogonal projector onto the noise subspace. We can then
define a cost function with respect to a dipole position ri :

E(ri) =
‖PG(ri)‖2

F

‖G(ri)‖2
F

(2.4)

where G(ri) is the three column matrix extracted from the gain matrix, correspond-
ing to the forward field of the dipole at position ri. ‖.‖F is the Frobenius norm for
matrices, such that ‖A‖2

F =
∑

i

∑
j a2

ij . Theoretically, if E(ri) = 0, it means that
all the signal that a dipole at position ri can generate is in the signal subspace of
the measurements. In this case, ri is a true source location. In practical situations,
it is of course not possible to get E(ri) = 0. The common strategy is to regularly
sample the space where the brain sources should be, which define a set of positions
{ri}, and then to find the k best local minima of E(ri). These k local minima give
directly the k dipole positions, and then the moments of these dipoles are computed
with a closed formula like for the dipole fit approach. For this method, the number
of times that the forward problem has to be solved depends on how the source space
is sampled. We need to compute G(ri) for every space sample ri. For instance, if
we take a regular 10 × 10 × 10 grid enclosing the brain, the forward problem has
to be computed for 3000 different dipoles (1000 positions with the three Cartesian
orientations).



50 CHAPTER 2. BRAIN FUNCTIONAL IMAGING WITH EEG AND MEG

5.4 Distributed sources

In this approach, many dipoles with fixed positions are regularly distributed in the
brain region, and the goal is to estimate the moments of all the dipoles at the same
time. It can be seen as a way of estimating a discretization of the primary cur-
rent Jp. Because the activity measured in EEG-MEG comes from the pyramidal
neurons mostly located in the deep layers of the gray matter, the dipoles are gen-
erally distributed over a surface corresponding to the interface between white and
gray matter. Typically, the cortical surface can be well described with about 10000
dipoles.

Now that the dipole positions are fixed, we have a simple linear relationship
between the dipole moments and the measurements :

m = Gq .

This can be even more simplified if one assumes that the dipole moments are per-
pendicular to the cortical surface (because of the pyramidal neuron structure). The
orientations are also fixed and the only unknowns are the amplitudes of the dipoles.
It gives a similar linear system of smaller dimension m = Hs. Nevertheless, be-
cause of the number of dipoles, the problem is now underdetermined. The closed
form (2.3) for finding q is not valid anymore because in this case G is a matrix with
far more columns than rows, so it cannot be of full rank. Any q in the kernel of G is
a silent source, and so there is no unique solution.

For the problem to have a unique solution, one has to add more constraints. This
is generally done by adding a regularization term R to the cost function :

E(q) = ‖M−Gq‖2 + R(q) .

If R is strictly convex, then there is a unique minimum to E. The simplest choice
for R is the classic Tikhonov regularization :

R(q) = λ‖Wq‖2 ,

where ‖ · ‖ is the Euclidean norm or l2-norm, and W is a matrix which allows to put
priors on the solution. If W = I is the identity matrix, then the regularization gives
preference to solutions with smaller norms, and the effect of regularization can be
controlled with the scale factor λ. W can also be used to discretize the gradient or
Laplacian operator, in this case the regularization tends to minimize the norm of
the gradient or the norm of the Laplacian of the solution. The matrix W is also
used to incorporate information about the sources : it can put balance between deep
and superficial sources, or incorporate the covariance of the sources. The general
solution q̂ is then given by the formula :

q̂ =
(
GT G + λWT W

)−1

GT M ,

where the notation −1 is meant as a pseudoinverse. The problem is that the square
matrix

(
GT G + λWT W

)
has a size corresponding to the number of dipoles, and

computing its inverse can be computationally very expensive. Using the matrix
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inversion lemma, another closed formula for the solution can be derived :

q̂ = (WT W)−1GT
(
G(WT W)−1GT + λI

)−1

M ,

for which the matrix to be inverted,
(
G(WT W)−1GT + λI

)
, has now a size equal to

the number of sensors. This inverse is computationally cheaper to obtain, provided
that (WT W)−1 can be calculated at low cost.

With the distributed approaches, the gain matrix to be generated is usually big,
with a number of columns equal to the number of dipoles that are distributed in the
head domain.

6 IMPORTANCE OF THE HEAD MODEL

The section 5 shows that all source localization methods are based on the knowl-
edge of the gain matrix G. For a given source, this gain matrix gives the values at
the sensors of the electromagnetic field produced by this source. To be able to gen-
erate such a matrix, one needs to build and compute a model which describes how
the electromagnetic field propagates in the head. If this model does not reproduce
accurately the propagation of the electromagnetic field in a real human head, then
the values of the gain matrix are directly affected and the results of the source lo-
calization methods are subject to errors. As a consequence, the accuracy of the head
model directly affects the accuracy of the source localization methods. This is partic-
ularly important for EEG and less for MEG : as explained in section 2, the variation
of the electrical conductivity in the head compartment affects the propagation of
the electric potential, whereas the magnetic field is less sensitivite to conductivity
changes. It has been shown that if the head is described as a simple spherical con-
ductor, the dipole localization errors in EEG can be of the order of 3 cm compared to
intracranial localizations [99]. There are two important factors for a good model of
the head :

• The shape of the head model : it must represent as well as possible the shape
of the head of the subject. In the most simple models, the head is described
as a homogeneous spherical conductor for MEG, or as a three or four-layered
spherical conductor for EEG, in aim to take into account the low conductivity
of the skull and the high conductivity of the cerebrospinal fluid (CSF). Nowa-
days, MRI is a pretty common modality that can provide a 3d image of the
anatomy of the head subjects. It is thus possible to segment the MRI and to
get a realistic model of the head, describing precisely the different tissues that
compose the head : scalp, skull, CSF, gray matter, white matter.

• The electrical conductivity of the head model : it affects the propagation of the
electromagnetic field and must be chosen such that the propagation in the head
model approximates as best as possible the propagation in the head of the sub-
ject. There is no technique yet to get an accurate 3d image of the human head
conductivity. Hence the choice of the conductivity of the head models in EEG
and MEG is mainly based on in vitro measures or in vivo measures on animals.
Usually, the head model is divided in several compartments corresponding to
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homogeneous tissues (scalp, skull, gray matter) and a constant conductivity is
associated to each compartment based on the measures that can be found in
the literature.

How to build and compute such a model is commonly referred to as the forward
problem, and is described in detail in chapter 3.



CHAPTER 3

THE FORWARD PROBLEM

In this chapter, we review the equations and methods for solving the forward
problem.
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1 THE PHYSICS OF EEG AND MEG

1.1 Notation

The space we consider is R3. All vectors are denoted in bold characters. The vector
indicating the position of a point r of R3 is denoted r. In the following, we use vector
calculus notation, with the ”nabla” operator ∇. For a real function f(r), ∇f is the
gradient of f . For a vector field X(r), ∇ ·X is the divergence of this field (a scalar)
and ∇×X is the curl of this field (a vector).

1.2 Maxwell’s equations

Maxwell’s equations relate the electromagnetic field to the charge density and cur-
rent density. We denote E the electric field, B the magnetic field, ρ the charge
density and J the current density. Maxwell’s equations are a set of four partial
differential equations :

∇ ·E = ρ
ε ∇×E = −∂B

∂t

∇ ·B = 0 ∇×B = µ
(
J + ε∂E

∂t

) (3.1)

ε is the electrical permittivity of the medium and µ is the magnetic permeability.
For human tissues, the magnetic permeability µ is the same as for vacuum µ = µ0,
whereas the relative electrical permittivity εr = ε

ε0
can vary a lot depending on

tissue and frequency. For instance, at a frequency of 100Hz, εr is around 4× 106 for
gray matter, 5× 105 for fat and 6× 103 for compact bone [30]. The relation between
the charge density and the current density is

∇ · J = −∂ρ

∂t
. (3.2)

In particular, in a passive (no charge, nor current generator) non-magnetic medium,
J is simply the sum of the ohmic current and the polarization current :

J = σE +
∂P
∂t

, (3.3)

where P = (ε− ε0)E is the polarization and σ is the conductivity of the medium.

1.3 Quasi-static approximation

We explained in chapter 1, section 1 that the post-synaptic potentials have a du-
ration of about 10ms. As a consequence, it is commonly accepted that the time
frequencies of the brain electromagnetic field that can be observed outside the head
can rarely exceed 100Hz. For such low frequencies, the time derivatives in Maxwell’s
equations can be neglected, this is called the quasi-static approximation.

A justification of the quasi-static approximation can be found in [41]. Let us
illustrate it with some orders of magnitude. We know that in a simple medium, the
general solution of the electromagnetic wave equation can be written as a linear
superposition of planar waves of different frequencies and polarizations. Let us just
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consider one planar wave for the sake of simplicity. Its equation is :

E(r, t) = E0e
i2πk·rei2πft , (3.4)

where i is the imaginary unit, E0 is a real amplitude vector contained in the wave
plane, k is a real spatial frequency vector normal to the wave plane (E0 · k = 0), and
f is the temporal frequency. One of Maxwell’s equations including a time derivative
is

∇×B = µ0

(
σE + ε

∂E
∂t

)
,

for a passive non-magnetic medium. To neglect the time derivative, we must have
‖ε∂E

∂t ‖ << ‖σE‖, which for the planar wave is equivalent to κ = |2πf ε
σ | << 1. For the

head tissues, at a frequency of 100Hz, the average permittivity is ε = 105ε0 and the
average conductivity is σ = 0.3Ω−1m−1. With these values, we have κ = 1, 8× 10−3,
so we can neglect the term ε∂E

∂t .
More intuitively, we can just consider the spatial wavelength λ of our planar

wave which is given by the relation c = fλ, where c = 1√
µε is the speed of the wave

in the medium and f is the temporal frequency of the wave. With a frequency of
100Hz, it gives us a spatial wavelength of about 105m. So at the scale of a human
head, we can neglect the oscillations of the wave, which gives ∇ × E = 0 instead of
∇×E = −∂B

∂t .

1.4 The electric potential equation

In the quasi-static approximation, we neglect all the time derivatives. As a conse-
quence, the curl of the electric field E is zero, meaning that it derives from a scalar
potential V :

E = −∇V. (3.5)

In equation (3.3), the term ∂P
∂t is null, but because the brain is not a passive

medium, we need to add the contribution of a primary current Jp reflecting the
brain electrical activity :

J = Jp + σE = Jp − σ∇V . (3.6)

As opposed to the primary current, σE can be referred to as passive current,
ohmic current or volume current. Neglecting the time derivative in (3.2) also states
that ∇ · J = 0, which finally leads to the potential equation :

∇ · (σ∇V ) = ∇ · Jp . (3.7)

1.5 The magnetic field equation : the Biot-Savart law

Because ∇ ·B = 0, B derives from a vector potential A :

B = ∇×A ,
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and we use the classical gauge condition ∇ · A = 0 to avoid the indetermination
related to the definition of A. We now have :

∇×B = ∇×∇×A = ∇ (∇ ·A)−∆A = −∆A .

Maxwell’s equation ∇×B = µ0J becomes ∆A = −µ0J, which is a Poisson equation.
If we impose A(∞) = 0 (no magnetic field at infinity), it has a general solution in
R3 :

A(r) =
µ0

4π

∫
R3

J(r′)
‖r− r′‖

dr′ .

Taking the curl, we obtain the Biot-Savart law :

B(r) =
µ0

4π

∫
R3

J(r′)× (r− r′)
‖r− r′‖3

dr′ .

Because the current can be written as J = Jp − σ∇V , we can transform the Biot-
Savart law into :

B(r) = B0(r)− µ0
4π

∫
R3 σ∇V (r′)× (r−r′)

‖r−r′‖3 dr′ , (3.8)

with
B0(r) =

µ0

4π

∫
R3

Jp(r′)× (r− r′)
‖r− r′‖3

dr′ .

With this formulation, B0 is often referred as the primary magnetic field while the
second term is called the secondary magnetic field.

2 UNBOUNDED HOMOGENEOUS MEDIUM

If we consider a conductor which consists of the whole space with a constant
conductivity σ, then equation (3.7) becomes

∆V =
1
σ
∇ · Jp ,

which is a Poisson equation of general solution

V (r) =
1

4πσ

∫
R3

∇ · Jp(r′)
‖r− r′‖

dr′ ,

with V vanishing at infinity. Applying the divergence theorem, it becomes

V (r) = 1
4πσ

∫
R3 Jp(r′) · (r−r′)

‖r−r′‖3 dr′ . (3.9)

For the magnetic field, we can take σ out of the integral in (3.8) because it is
constant :

B(r) = B0(r)−
µ0σ

4π

∫
R3
∇V (r′)× (r− r′)

‖r− r′‖3
dr′ . (3.10)
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Using the identity

∇V (r′)× (r− r′)
‖r− r′‖3

= ∇×
(
∇V (r′)
‖r− r′‖

)
− ∇× (∇V (r′))

‖r− r′‖

and the fact that the curl of a gradient is null, the integral in the right hand side
of (3.10) becomes ∫

R3
∇×

(
∇V (r′)
‖r− r′‖

)
dr′ .

Because V vanishes at infinity, it is easy to show with Stokes’ theorem that this
integral is null. So finally, in an infinite homogeneous medium, the magnetic field
reduces to the primary field :

B(r) = B0(r) = µ0
4π

∫
R3 Jp(r′)× (r−r′)

‖r−r′‖3 dr′ . (3.11)

In this special case, the passive current σE = −σ∇V does not contribute to the
magnetic field.

2.1 Dipolar sources

If the primary current Jp is reduced to a single dipole at position r0 with moment
q, then Jp(r) = δr0q, where δ is the Dirac distribution and δr0 = δ(r − r0). For such
a primary current, the potential and magnetic field in an homogeneous space have
very simple formulations :

V (r) =
1

4πσ
q · (r− r0)

‖r− r0‖3
(3.12)

B(r) =
µ0

4π
q× (r− r0)

‖r− r0‖3
(3.13)

It is therefore very convenient to use the dipole model for the primary current.
Actually, if Jp is contained in a small volume compared to the distance to the ob-
servation point r, then the dipole is a good approximation. For instance, for such a
small volume vol, the potential at r is

V (r) =
1

4πσ

∫
vol

Jp(r′) · (r− r′)
‖r− r′‖3

dr′ ≈ 1
4πσ

q · (r− r0)
‖r− r0‖3

,

where r0 is the centroid of the volume vol containing Jp and q =
∫

vol
Jp(r′)dr′. The

same approximation can be used for the magnetic field.

3 THE SPHERICAL HEAD MODEL

Obviously, the human head is not an infinite homogeneous conductor. First of all,
it is a bounded conductor and no electric current can flow outside the head (except
at the neck). Secondly, the electrical conductivity σ of the head is not constant : for
instance, it is commonly accepted that the skull is between twenty and one hundred
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Figure 3.1: A spherical model with three layers.

times less conductive than other head tissues. This must be taken into account to
get more accurate formulations of the potential and magnetic field generated by the
brain electrical activity. A first step towards head modeling is to consider the head
as a set of nested spheres. Each volume enclosed between two spheres is supposed
to represent a different tissue of the head, with a constant conductivity. Figure 3.1
shows a spherical model with three spheres. Without respect to proportions, it could
represent the brain, the skull and the scalp of a human head. This type of model
is a very coarse description of the head, but the simple geometry allows to find an
analytic solution for the electric potential generated by a dipole, like for the infinite
homogeneous medium (3.12).

3.1 Electric potential generated by a dipole

The key point is to take advantage of the spherical symmetry of the geometry. First,
we use spherical coordinates (r, θ, φ) instead of Cartesian coordinates, and second,
we decompose the electric potential on the spherical harmonics basis Y m

l (θ, φ). The
spherical harmonics have the following form :

Y m
l (θ, φ) = Nm

l Pm
l (cosθ)eimφ, l ∈ N,m ∈ Z, |m| < l ,

where Nm
l is a normalization coefficient and Pm

l is an associated Legendre func-
tion. This basis is interesting in our case because the general solution of Laplace’s
equation ∆f = 0 in spherical coordinates can be written as a linear combination of
spherical harmonics

f(r, θ, φ) =
∞∑

l=0

l∑
m=−l

(Almr−1−l + Blmrl)Y m
l (θ, φ) .
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If f is a real function, it simplifies to

f(r, θ, φ) =
∞∑

l=0

l∑
m=0

(Almr−1−l + Blmrl)Pm
l (cosθ)cos(mφ) .

A function f such that ∆f = 0 is called a harmonic function.
Now let us consider a current dipole inside the spherical model. We denote r0

its position and q its moment. We use the notations presented in figure 3.1, with
the indices increasing from the innermost sphere to the outermost one. In all the
subregions Ωk where the dipole is not located, the potential equation states that
∇ · (σk∇V ) = σk∆V = 0 because σk is constant. As a consequence,the restriction
Vk of V in each domain Ωk is harmonic and can be decomposed on the spherical
harmonic basis :

Vk(r, φ, θ) =
∑∞

l=0

∑l
m=0(A

k
lmr−1−l + Bk

lmrl)Pm
l (cosθ)cos(mφ) . (3.14)

In the domain Ωk∗ where the dipole is located, the potential V verifies σk∗∆V =
∇ · Jp, with Jp = δ(r − r0)q. So we can decompose the potential in V = v + u,
where v is the potential generated by the dipole in an infinite homogeneous domain
of conductivity σk∗ , and u is an harmonic function. The function v is defined as

v(r) =
1

4πσk∗
q · (r− r0)

‖r− r0‖3
.

This function can be decomposed in the spherical harmonic basis

v(r, φ, θ) =

{ ∑∞
l=0

∑l
m=0 qinf

lm rlPm
l (cosθ)cos(mφ) , r < r0∑∞

l=0

∑l
m=0 qsup

lm r−1−lPm
l (cosθ)cos(mφ) , r > r0

So if we note Ak∗

lm and Bk∗

lm the coefficients of the decomposition of u, we have a
decomposition of Vk∗ in the spherical harmonic basis

Vk∗(r, φ, θ) =

{ ∑∞
l=0

∑l
m=0(A

k∗

lmr−1−l + (qinf
lm + Bk∗

lm)rl)Pm
l (cosθ)cos(mφ) , r < r0∑∞

l=0

∑l
m=0((A

k∗

lm + qsup
lm )r−1−l + Bk∗

lmrl)Pm
l (cosθ)cos(mφ) , r > r0

(3.15)
Finally, to fully determine the potential in the whole domain Ω, one only needs to

fix the value of the coefficients Ak
lm and Bk

lm. This is done by considering the bound-
ary conditions at each surface Sk. The electric potential and the current density
must be continuous through the interfaces :{

Vk(rk, φ, θ) = Vk+1(rk, φ, θ)
σk

∂Vk

∂r (rk, φ, θ) = σk+1
∂Vk+1

∂r (rk, φ, θ)
(3.16)

From (3.14), (3.15) and (3.16), a linear system can be built for the Ak
lm and Bk

lm,
hence determining the values of these coefficients. Because of the infinite series,
in practical situations one has to choose at which order this series has to be trun-
cated. For high orders, the solution is more accurate but the computation is more
expensive. Several formulations have been proposed for efficient computation of the
electric potential in multilayer spheres [24, 8, 118].
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3.2 The magnetic field

In the case of the magnetic field, there is no need to use an infinite series based on
a decomposition in spherical harmonics. In a spherical geometry, the magnetic field
has a simple closed form.

3.2.1 The radial component of the magnetic field

We consider again a spherical geometry as described by figure 3.1. With the spheri-
cal coordinates, the radial component of the magnetic field is

Br(r) = B(r) · er = B(r) · r
r

,

and the outward normal at each surface Sk is

n(r′) =
r′

r′
.

The spherical geometry 3.1 is a special case of geometry with a piecewise constant
conductivity, and so the magnetic field can be expressed using the formula (3.19)
described in section 4.1. If we compute the radial component of the magnetic field,
the following scalar triple product appears in the surface integrals :

(r− r′)
‖r− r′‖3

× r′

r′
· r
r

.

This quantity is zero because r,r′ and (r − r′) are in the same plane. As a conse-
quence, in a spherical geometry, the radial component of the magnetic field is equal
to the radial component of the primary field :

Br(r) = B0r
(r) =

µ0

4π

∫
Ω

Jp × (r− r′)
‖r− r′‖3

· erdr′ .

3.2.2 Total magnetic field generated by a dipole

We assume that Jp is a dipole at position r0 and with moment q. Outside the domain
Ω, there is no current, the Maxwell’s equations in the quasistatic approximation
state that ∇×B = 0. As a consequence, outside Ω, B derives from a scalar potential
U :

B = −∇U ,

with U vanishing at infinity. For r outside Ω, we can then write the following line
integral :

U(r) = −
∫∞
0
∇U(r + ter) · erdt

=
∫∞
0

Br(r + ter) · erdt

=
∫∞
0

B0r
(r + ter) · erdt

= µ0
4πq× (r− r0) · er

∫∞
0

1
‖r+ter−r0‖3 dt

The computation of the integral in the right hand side leads to

U(r) = −µ0

4π

q× r0 · r
F

,
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Figure 3.2: On the left, a slice of a CT image. On the right, the same slice obtained
with T1 MRI. (Source gehealthcare.com).

where F = a(ra + r2 − r0 · r) with a = r − r0 and a = ‖a‖. Taking the gradient, we
have a formulation of the total magnetic field :

B(r) = µ0
4πF 2 (Fq× r0 − q× r0 · r∇F ) . (3.17)

This formula for the total magnetic field generated by a dipole in a spherical ge-
ometry is due to Sarvas [88]. It is interesting to note that although it is different
from the formula in an infinite homogeneous medium, it is also independent of the
conductivity σ of the domain Ω.

3.3 Limits of spherical models
These analytical or semi-analytical formulas of the electromagnetic field can be ex-
tended to eccentric spheres [66], or to ellipsoidal geometries [21]. Nevertheless,
several studies have shown that these kind of models are not sufficient to take into
account the effects due to the head geometry, and that realistic models are necessary
to correctly describe the electromagnetic propagation in the human head [17, 49, 12].

4 REALISTIC HEAD MODELS

To improve the head model, it is necessary to take into account the real geom-
etry of the head, which of course is not spherical. This can be achieved thanks to
3d imaging modalities that can produce images of the head anatomy. The oldest
one is the X-ray computed tomography (CT), which reconstructs a 3d image from a
large series of two-dimensional X-ray images. Its main advantage is that the bones
produce a very high signal compared to other tissues, so the skull can be accurately
modeled from a CT image. But the CT technique exposes the subject to a high quan-
tity of ionizing radiation and as a consequence it is dedicated to diagnostic purposes
and it is almost never used on subjects chosen for an EEG or MEG experiment.
The other imaging modality is the magnetic resonance imaging (MRI), which uses
a magnetic field to measure the relaxation time of protons. Since protons in differ-
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(a) Sagittal cross section of an anatomical MR
volume image.
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Figure 3.3: An example of piecewise constant head model.

ent tissues of the body have different relaxation times, the different structures of
the body can be revealed. The advantage of MRI compared to CT is that it does
not expose the patient to the hazards of ionizing radiation. It is thus much more
used as an imaging technique for subjects of an EEG-MEG experiment. The signal
obtained with MRI gives a good contrast between soft tissues (white matter, gray
matter, fat, muscle) compared to CT, but not for hard tissues (bones, skull) or liquids
(cerebro-spinal fluid). Hence, precise models of the brain tissues can be built from
MR images, but the skull is most of the time not clearly visible and the skull models
obtained from MRI are less accurate. CT and MRI images of the same subject are
shown in figure 3.2.

4.1 The piecewise constant approximation

From an MRI of the subject, it is possible to extract surfaces describing the anatomy
of the head. Such surfaces are the head contour, the outer and inner skull surfaces,
or the gray matter contours. The figure 3.3 shows the kind of geometry that can
be extracted from the MRI of a subject’s head. From these surfaces, the simplest
model consists in assigning a constant conductivity to each region located between
two surfaces, like for the spherical model. Practically, each subregion corresponds
to a certain type of head tissue which is supposed to be sufficiently homogeneous to
have a constant conductivity. The conductivity of the head is hence approximated by
a piecewise constant function, which is constant in each tissue and discontinuous at
the interfaces between tissues. So we can consider the head as a domain Ω composed
of several subregions Ωk separated by surfaces Sk, each with a constant conductivity
σk, and with σ = 0 outside Ω.
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(a) The scalp surface extracted from an MRI. (b) An approximation with triangles.

Figure 3.4: A triangulated surface.

In this case, the equations (3.7) and (3.8) can be rewritten as integral equations :

on Sk,
σk + σk+1

2
V (r) = V0(r)−

1
4π

∑
l

(σl − σl+1)
∫

Sl

V (r′)∇
(

1
R

)
· nl(r′)ds′ ,(3.18)

B(r) = B0(r)−
µ0

4π

∑
l

(σl − σl+1)
∫

Sl

V (r′)
(r− r′)
‖r− r′‖3

× nl(r′)ds′ ,(3.19)

where V0 and B0 are the electric potential and magnetic field generated by the pri-
mary current distribution Jp in a homogeneous domain. These formulas are due to
Geselowitz [32, 33]. The details on how to derive these equations are given in ap-
pendix C. For general geometries, there is no analytic solutions to these equations,
and only an approximate solution can be obtained, often called numerical solution.

4.2 The Boundary Element Method

The boundary element method is a numerical computational method of solving lin-
ear partial differential equations which have been formulated as integral equations,
such as (3.18). Hence, for EEG and MEG, this method is valid only for a piecewise
constant conductivity model. We describe here how to solve the equation (3.18) for
the potential.

The key point of the method is to look for a solution in a very simple space. Nor-
mally, the electric potential is a square integrable function. So if we note S = ∪kSk

the union of the surfaces Sk, and E the space of functions square integrable on S,
then the problem of solving the potential equation can be written :

Find V ∈ E such that

∀k, ∀r ∈ Sk,
σk + σk+1

2
V (r) = V0(r)−

1
4π

∑
l

(σl − σl+1)
∫

Sl

V (r′)
(r− r′)
‖r− r′‖3

· nl(r′)ds′

(3.20)
Let us simplify this problem with several approximations. First, we assume that

the surfaces Sk are approximated with a set of n triangles {Ti | i ∈ [1 . . . n]}. The
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figure 3.4 shows an example of a triangulated surface. Then, using this triangula-
tion, we can define a subspace of E of finite dimension. For instance, we take the
subspace of the piecewise constant functions, which are constant on each triangle.
We denote this subspace Eh, where h is an index which stands for the size of the
largest triangle. A basis {φi} for Eh is :{

φi(r) = 1, r ∈ Ti

φi(r) = 0, r /∈ Ti

Any function f ∈ Eh can then be written f =
∑

i fiφi, where fi is the constant
value of f on Ti. So if we consider the subspace Eh, we can transform (3.20) in :

Find V ∈ Eh such that

∀i, Ti ∈ Sk,
σk + σk+1

2
Vi = V0(ri)−

1
4π

∑
l

(σl−σl+1)
∑

Tj∈Sl

Vj

∫
Tj

φj(r′)
(ri − r′)
‖ri − r′‖3

·njds′

where ri is the center of triangle Ti and nj is the constant normal to triangle Tj .
This last equation is of the form

Vi = bi +
∑

j

aijVj ,

where the bi and aij are constant coefficients that can be computed. So we just
defined a linear system

A [Vi] = b . (3.21)

One just needs to solve this system to get the values Vi of V on each triangle. We
are thus able to compute an approximate solution of the electric potential. From
this electric potential, an approximate solution of the magnetic field generated by
the same source can be computed with equation (3.19) [26].

To ensure the quality of the approximate solution, one has to show that when
h → 0 (the triangles get smaller), then the solution in Eh converges to the solution
in E. This property is not trivial and depends on the chosen sequence of subspaces
Eh. The rate of convergence towards the real solution also depends on the subspaces
Eh. For our example, we took the simplest space (piecewise constant functions),
but it is usually the space of piecewise linear functions which is chosen [23], which
gives a better approximated solution. The quality can be even more increased by
using piecewise quadratic or cubic functions, but the increased complexity of the
functions also increases the complexity of the coefficients to be computed for building
the linear system.

The BEM is prone to certain numerical errors. First, if there are large differences
between the conductivities of the different compartments of the head model, it can
lead to an amplification of the numerical errors [67]. The Isolated Problem Approach
can be used to reduce this effect [40]. Second, for sources which are located close to
an interface, typically at a distance smaller than the size of the triangles used to
describe the surfaces, the accuracy of the BEM drops severely. A new BEM formu-
lation has been introduced to reduce this effect [55], which also allows to consider
piecewise constant conductivity models that are not necessarily nested volumes [56].

Computationally, one advantage of the BEM is that the matrix A of the linear
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system (3.21) is generally sufficiently small to use direct methods for the resolution
of the linear system. Such methods use factorizations of the matrix A (e.g. A = LU)
which transform the linear system (3.21) in a new linear system which can be solved
very rapidly. Because the contribution of the source Jp only appears in the right
hand side b of the system (3.21), the factorization of the matrix (which corresponds
to the most computationally expensive part) just has to be performed once for a
given head model, and then the solution to the forward problem can be computed
rapidly for many different source distributions.

4.3 Beyond piecewise constant models

Even if there is no technique to get a precise 3d image of the conductivity of the
head, it is known that some of the head tissues do not have a constant conductivity.
For instance, the skull has a variable thickness, and in the areas of large thickness
it is composed of soft bone enclosed between two layers of compact bone, and soft
and compact bone have different conductivities. Also, the white matter is composed
of large bundles of parallel axon fibers which tend to increase the conductivity in
the direction parallel to the fibers, so the conductivity is anisotropic with a principal
direction which is not constant over space. As a consequence, the BEM can not be
used with head models where the conductivity is anisotropic or varies inside the
same tissue. For such models, it is necessary to discretize the whole head volume
for computing a numerical solution (as opposed to BEM where only the interfaces
between tissues are discretized). There are several volume-discretization methods
for the numerical solution of PDE : the Finite Element Method (FEM), the Finite
Difference Method (FDM), the Finite Volume Method (FVM).

4.4 The Finite Difference Method (FDM)

Finite difference methods approximate the solutions to differential equations by re-
placing derivative expressions with approximately equivalent difference quotients.
For instance, for a function f in 1D, the first order derivative is given by the limit :

f ′(x) = lim
h→0

f(x + h)− f(x)
h

,

and so the derivative can be approximated by :

f ′(x) ' f(x + h)− f(x)
h

,

for some small value of h. For equation (3.7), we need to approximate the differential
operator ∇ · σ∇V , which gives a formula such as :

(∇ · σ∇V ) (r0) ' α0V (r0)−
6∑

i=1

αiV (ri) , (3.22)
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where

αi = 2h
σ0σi

σ0 + σi
,

α0 =
6∑

i=1

αi .

The positions ri are the points located at a distance of +h and −h of r0 along each
Cartesian coordinate, and σi is the conductivity at the point ri. Actually, this scheme
corresponds exactly to Kirchhoff ’s law for the balance of currents, assuming that the
points form a network of resistors. Generally, the head volume is discretized using
a cubic grid with a regular spacing h, hence the same scheme (3.22) can be used at
every point of the grid with its closest neighbors.

For the source, we need to approximate the divergence operator ∇ · Jp. For a
dipole, it is convenient to represent it as a small current between two points r+

and r−, so that the divergence is reduced to the source and sink of current, i.e.
∇·Jp = Iδr+ −Iδr− , where I is the strength of the current. This sources and sinks of
current can then be plugged directly in Kirchhoff ’s law, by associating each of them
to the closest point of the grid.

Finally we obtain a linear equation for each point r0 of the grid :

α0V (r0)−
6∑

i=1

αiV (ri) =


0

I

−I

.

Denoting V the values of the potential at the points of the grid, we can build a
linear system AV = b, similar to the BEM. The size of the matrix A is typically
bigger than the BEM matrix, because the whole head domain has to be discretized,
but it is sparse because it has at most six off-diagonal elements. It is not possible in
general to use direct methods for solving this linear system, but iterative methods
can perform well because of the sparsity of the matrix A.

Anisotropic conductivities can be handled by the FDM, but in this case the scheme
(3.22) has to be modified and typically involves more neighbors [85, 39]. The fact
that the FDM uses a regular cubic grid is at the same time an advantage and a draw-
back. On one hand, the cubic grid and the conductivity values associated to each
point of the grid can be directly obtained from the segmentations of the anatomical
MRI, which is also represented using a cubic grid. On the other hand, the interfaces
between tissues of different conductivities describe smooth and sometimes complex
surfaces (e.g. gray-white matter interface) which cannot be accurately represented
by the FDM cubic grid (staircase representation).

4.5 The Finite Element Method (FEM)

The FEM is very similar to the BEM in its principle. The difference is that the
FEM takes directly the differential equation to solve as an input, whereas for the
BEM the differential equation has to be reformulated as a surface integral equation,
like (3.18). For instance, the FEM can be used to compute an approximate solution
of the differential equation (3.7) for the potential. As a consequence, no assumptions
need to be made on the conductivity σ of the domain, and so the FEM can be used
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Figure 3.5: A tetrahedral mesh of the head. The different domains are shown with
different colors, from inside to outside : white matter, gray matter, CSF, skull, scalp.
This picture is taken from [109].

to solve the forward EEG-MEG problem for any conductivity model of the head. We
give a sketch of the method here for the electric potential PDE, for further details
we refer to the appendix A.

We consider the domain Ω describing the head and its boundary denoted ∂Ω. On
the boundary, there is no electric current flowing outside, so the differential equation
with its boundary condition is{

∇ · (σ∇V ) = ∇ · Jp in Ω
σ∇V · n = 0 on ∂Ω

(3.23)

An important step of the FEM is to transform the differential equation (3.23) in
its variational formulation. We assume that V lives in a certain space E. If V is
solution of (3.23), then for any function φ of E sufficiently smooth :∫

Ω
∇ · Jpφ =

∫
Ω
∇ · (σ∇V ) φ

=
∫

∂Ω
φσ∇V · n−

∫
Ω

σ∇V · ∇φ

= −
∫
Ω

σ∇V · ∇φ

The last identity is of the form a(V, φ) = f(φ) where a is a bilinear functional and
f is linear. The variational formulation of (3.23) is then :

∀φ ∈ E, a(V, φ) = f(φ) . (3.24)

It can be shown under certain assumptions on E and a that there is a unique solution
V to (3.24) [112], which is hence the solution of (3.23).

Then, like for the BEM, the goal is to rewrite the variational formulation (3.24)
in a subspace Eh of finite dimension. This subspace Eh is usually defined from a
partition of the domain Ω in tetrahedrons, thus defining a mesh of the head domain
and an approximation Ωh of Ω (figure 3.5). For instance, we can choose Eh to be the
space of piecewise linear functions, which are linear in each tetrahedron. The usual
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basis for this space is composed of piecewise linear functions each associated to one
vertex of the mesh, whose values are one at the corresponding vertex and zero at the
others. These functions thus have a local support, which is the polyhedron defined
by a mesh vertex and its neighbors. Let us assume that {φi | i = 1 . . . n} is a basis
of Eh, where the index i stands for a mesh vertex. If we look for a solution V in Eh,
it can be written V =

∑n
i=1 Viφi, where Vi is the value of V at the ith vertex. The

variational formulation in Eh becomes :

∀j ∈ [1 . . . n] ,
n∑

i=1

Viah(φi, φj) = fh(φj) . (3.25)

Once again we built a linear system A [Vi] = b which completely determines the
values Vi. An approximate solution for the potential can then be obtained by solving
this linear system. Once again, because the whole head volume is discretized, the
matrix A is too big to use direct methods for solving the linear system. But due to
the local support of the basis functions, the coefficients of the matrix A given by :

ah(φi, φj) = −
∫

Ωh

σ∇φi · ∇φj ,

are non-zero only for basis functions φi and φj corresponding to neighboring vertices,
hence the matrix A is very sparse. Iterative methods can thus perform well for
solving this linear system.

The right hand side b of the system is given by :

fh(φj) =
∫
Ωh
∇ · Jpφj

=
∫

∂Ωh
φjJp · n−

∫
Ωh

Jp · ∇φj

= −
∫
Ωh

Jp · ∇φj ,

assuming that there are no sources on the boundary ∂Ωh and that partial integration
is possible. But this formulation can be generalized to Jp being a distribution, in
what case

∫
Ωh
∇ · Jpφj = −

∫
Ωh

Jp · ∇φj by definition. For instance, for a dipole,
Jp = qδr0 , where δr0 is the Dirac distribution at r0, we thus have :

fh(φj) = q · ∇φj(r0) .

As a consequence, the contribution of the dipole in the right hand side b is non-zero
at all neighboring nodes of the dipole position r0. The dipole is hence represented
by a linear combination of several basis functions, and so this specific finite element
representation of the dipole is ”blurred”. Other representations of the dipole for the
FEM are possible [91].

The incorporation of anisotropic conductivity in the FEM is straightforward. If
the conductivity is described as a tensor Σ, then the coefficients of the matrix A are :

ah(φi, φj) = −
∫

Ωh

∇φi · Σ∇φj .

The advantage of the FEM compared to the FDM is that the head volume can
be discretized using an unstructured grid, such as a tetrahedral mesh. As a conse-
quence, the FEM mesh can better represent the complex surfaces that correspond to
the interfaces between tissues. Nevertheless, the generation of such meshes is not
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trivial and requires additional work. The meshing can be simplified by using hex-
ahedral cells, but in this case the surfaces are described by staircase shapes which
decrease the quality of the approximation. One solution to limit this effect is to use
geometry-adapted hexahedral cells [111].

5 RECIPROCITY

In classical electromagnetism, reciprocity refers to a variety of related theorems
involving the interchange of electric current densities (sources) and the resulting
electromagnetic fields (measurements). The most general theorem is Lorentz reci-
procity, which basically states that the relationship between a current and the re-
sulting electric field is unchanged if one interchanges the points where the current
is placed and where the field is measured. This result was obtained by Lorentz fol-
lowing analogous results regarding sound by Helmholtz, and the theorem is also
often referred to as Helmholtz reciprocity. This concept of reciprocity can also be
applied for the forward problem in EEG and MEG [84, 64].

Let us consider a bounded conductor : a current dipole is placed in the conductor
at position r0 with moment q, and the resulting electric potential V is measured
at two positions r1 and r2 located on the boundary of the conductor. The reciprocal
configuration is to consider that a current I is injected in the conductor between the
two positions r1 and r2 and that the resulting electric potential U is measured at the
position r0. In this case, the reciprocity theorem states that :

V (r1)− V (r2) =
∇U(r0) · q

I
.

As a consequence, the knowledge of U in the whole conductor can give the value of
the measurement V (r1)− V (r2) for any dipole placed in the conductor.

Let us consider now that one needs to generate a gain matrix for an EEG with 64
sensors and for a distributed source model with 10000 dipoles. Such a matrix thus
has 64 rows and 10000 columns. The direct method to generate the gain matrix
is to compute the electric potential V generated by each dipole and to sample its
values at the EEG sensors. This requires to solve the forward problem for 10000
different source configurations. If instead we consider a pair of EEG electrodes, we
can compute the electric potential U generated by a current injection between these
electrodes and sample ∇U at the dipole positions to get a complete row of the gain
matrix. Using this approach, the gain matrix generation only requires to solve the
forward problem for 64 different source configurations.

This reciprocal approach is particularly interesting when solving the forward
problem for many different source configurations is computationally expensive. This
is not very interesting with spherical models because the analytical formulas can be
computed very rapidly. With numerical methods (BEM,FDM,FEM), one has to solve
a linear system AV = b, where the contribution of the source appears in the right
hand side b. In the case of the BEM, direct methods can be used : the matrix A is
factorized and then the linear system can be solved rapidly for different right hand
sides, so the reciprocal approach is not necessary. For FDM and FEM, the matrix A
is too big to be factorized, and the linear system is solved by iterative methods. On
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the contrary of direct methods, the iterative methods can not take advantage of a
linear system where only the right hand side changes. Any iterative solver has to be
restarted for each new right hand side b. As a consequence, the computational time
with FDM or FEM is directly proportional to the number of source configurations,
and in this case the reciprocal approach is very useful.

6 CONDUCTIVITY

For all the forward models, from the simplest ones to the most complex, one has
to choose what conductivity values are assigned to the model. In MEG, most people
use a spherical model which does not depend on the conductivity, so in this case the
problem is avoided. Even when using a realistic model, the choice of conductivities is
not crucial for MEG [41]. For EEG, the conductivities of the head model have a non
negligible effect on the propagation of the electric potential, and thus their values
must be chosen in aim to reproduce as well as possible the real electric potential
propagation.

The electrical conductivities of many human tissues have been measured in vitro
and are available in the literature [29, 30]. Some tissues have also been measured
invasively for animals [60, 113] and for humans [6, 57]. But these measured values
are not necessarily the best values to put in the forward model. First, the skull
is a very variable tissue depending on the person and the age, and so its electrical
conductivity can not be tabulated once and for everybody. Second, the forward model
gives an approximation of the real conductivity distribution of the head, and so the
conductivity parameters for which the forward model best reproduces reality are
not necessarily the physiological conductivity values. For instance, when using a
classical three-layer model of the head (brain, skull, scalp), many types of tissues
are omitted, but the approximation error of the model can be compensated for if one
chooses ”efficient” conductivity values instead of physiological values. The efficient
conductivities would be the values for which a given model best reproduces the real
propagation of the electric potential.

These remarks show the need for methods for in vivo calibration of the forward
model conductivities, which can be used non-invasively for each subject of an EEG
experiment. The classical technique for the in vivo conductivity estimation of the
head tissues is to inject a current at the scalp surface and to infer the conductiv-
ity values from the resulting potential measurements at the scalp surface. This is
called Electrical Impedance Tomography (EIT). The applicability of this technique
has been shown for three-layer models [78, 102, 37]. Another possible approach is to
consider a focal brain activity recorded with a combination of EEG and MEG mea-
surements [37, 7, 38]. In this case, the brain source is estimated with MEG, and
then fixed in the forward model which allows to estimate the conductivities from
the EEG measurements. Both these approaches suffer from the ill-conditioning of
the inverse conductivity problem : one tries to estimate a conductivity distribution
in the 3d space of the head with only boundary data given by the EEG measure-
ments. Actually, these approaches are applicable only when the conductivity models
are parametrized with few parameters, thus no regularization is needed. A recent
technique called Magnetic Resonance Electrical Impedance Tomography (MREIT)
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aims to bypass this limitation : it uses a MRI scanner to measure the magnetic field
generated by a current injection on the scalp [76]. In this case, the data is measured
not only at the boundary but in the whole head volume, and so a 3d image of the
conductivity can be estimated.
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CHAPTER 4

IMPLICIT MESHES FOR FEM

Finite Element methods (FEM) usually require a mesh to describe the geometric do-
main in which the computations occur. These meshes must have several properties:
1) they must approximate the geometrical domain accurately, 2) they must have
good numerical properties, and 3) they must be small enough so that the computa-
tions take a reasonable amount of time. These goals are somewhat contradictory
and in many cases such as biomedical images – and particularly in the case of the
head –, even though the geometric domains can effectively be extracted, e.g. from
Magnetic Resonance Images (MRI), the generation of such meshes can in certain
cases be difficult.

This chapter describes a technique that bypasses this mesh generation step go-
ing directly from a description by levelsets of the interfaces separating the various
domains to the matrix associated to the FEM method. Using the levelsets descrip-
tion is quite convenient as it is already used by many segmentation tools.
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1 INTRODUCTION

MRI segmentation techniques have been developed for several years now, and
many toolboxes are available for (more or less) automatic extraction of the different
subdomains of the head [19, 16, 94]. The classical output of these segmentation
methods is a set of surfaces describing the interfaces between different tissues. To
use these surfaces with FEM methods, they must be meshed with certain quality
criteria :

• The meshes obtained from various surfaces should not self-intersect.

• The meshes should have a controlled size while preserving their topological
and geometrical quality.

• Volumes delimited by various meshes need to be meshed and fused in a single
volumic mesh again with a controlled quality and size.

For these reasons, the problem of creating a volumic mesh from a set of surfaces is a
difficult one, often involving the use of many different tools and some hand polishing
to get a proper result. This can be very time consuming and an obstacle to a more
widespread use of FEM methods, especially when new meshes need to be created
often, such as in the medical field where each patient is different.

This is all the more disturbing that the meshes are used only to discretize a
variational criterion and its solution, which then takes the form of a linear system:
AV = B, where A is a sparse matrix called the stiffness matrix, V is the discretized
approximation of the solution and B is the discretized approximation of the input
data. Computing A and B just requires a discretization Ωh of the space Ω on which
the computation has to be made and a basis B for a discrete approximation of the
space F of sufficiently regular functions defined on Ω. The most standard choice
is to use tetrahedral meshes for Ωh and piecewise linear functions over the mesh
(P1 elements) to approximate F . In this case, the basis B is defined as the set of
piecewise linear functions that take the value 1 on one nodal point of the mesh and
zero on the other nodes.

Here we use another family : Q1 elements. The reason is that the pixels (voxels)
of a MRI image readily provide a Cartesian mesh and the standard Q1 function
basis is exactly the one used with multi-linear interpolation in images. This is thus
an attractive choice to avoid the generation of a complicated mesh. But in this case,
the mesh does not give a description of the interfaces between tissues. We hence use
the levelset representation to keep track of these surfaces in the FEM method. The
remaining of this chapter studies how to build the matrices A and B directly from
levelsets and using Q1 elements, in the 2D and 3D cases.

2 Q1 ELEMENTS

Consider a rectangular domain B of the embedding space in which the calcula-
tions have to be made. In order to solve the equations of interest over B, usually this
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Figure 4.1: Summary of the Q1 elements and basis functions in the 2D and 3D cases.
The values Iij and Iijk are the values of a function f at the nodes of a cell. The third
line gives the basis functions φn attached to the node n where n is a multi-index.

domain has first to be tessellated in order to approximate the solution in the contin-
uous domain by one in a finite dimensional space. In this work, a regular Cartesian
grid Gh is used, where h is the “step” of the grid. For simplicity, it is assumed here-
after that the step is 1 in all dimensions. Obviously, the general case derives from
this simple one by an appropriate rescaling of the domain. The N nodes of this grid
are denoted by Pi, where i is a multi-index (a vector of integer indices of the appro-
priate dimension). The elements of this grid are squares (in 2D) or cubes (in 3D) and
are denoted by Sj , j = 1..P . In Q1 finite element methods, a continuous function f

over B is approximated by a piecewise multilinear continuous function fh by:

fh(x) =
∑

n

f(Pn)φn(x) .

The function φn is a piecewise multilinear function defined by:

φn(Pk) =

{
1 k = n

0 otherwise
(4.1)

When h tends to 0, fh tends to f . Obviously, the set of values f(Pn) represents an
image and fh corresponds to the classical multilinear interpolation in images. From
Eq. 4.1 and because the grid Gh is Cartesian, it can be seen that, except at the bor-
ders, all the functions φn can be obtained by translating at position Pn a standard
function centered at the origin of the space φn(x) = φ(x − Pn). In particular, φ can
be depicted by its restrictions over the various cells surrounding the origin or equiv-
alently by the various non-null restrictions of φn to a given cell. Fig 4.1 summarizes
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the properties of Q1 elements in the 2D and 3D cases.

3 LEVELSETS

Let us first recall briefly what levelsets are. The levelsets technique was first
hinted to in [25] and then developed by Osher and Sethian [79]. Since then it has
received a lot of attention for representing and evolving closed shapes in space. The
basic idea of levelsets is to represent a surface S of codimension 1 (a curve in 2D or
a surface in 3D) implicitly as the zero-level of a scalar function fS in its embedding
space (e.g. R2 for curves or R3 for surfaces). Typically, this function f represents
the signed distance to the surface (negative inside, positive outside). In practice,
the embedding space is tessellated with a square grid (squares in 2D, cubes in 3D)
and fS is discretized as a 2D or 3D image. One key of the success of the levelset
method is that complex shapes can be easily and conveniently manipulated as im-
ages. In this work, we adopt a multilinear interpolation of the levelset images, i.e. a
representation with Q1 elements. This allows for two things:

• The zero crossings within a pixel/voxel are well defined as the zero-crossings
of the multi-linear function.

• Consequently, the topology of the levelset is always well defined.

Hence we can represent the head geometry with Q1 levelsets. We denote by B the
bounding box of the head domain and assume that this domain can be depicted as a
finite set of subdomains Di, i = 1..N delimited by closed non-intersecting interfaces
Sj , j = 1..M,Sj ∩ Sk = ∅ if j 6= k. Denoting by I a tessellation of B, each interface Sj

is represented by a levelset as an image.
For simplicity, it is assumed in the following that there is at most one interface

crossing any pixel/voxel of I. This is just a technical requirement that can easily
be overcome. Many tools have been proposed to obtain such levelset descriptions of
complex domains [115, 36, 35, 44, 43, 93].

4 COMPUTING THE FEM INTEGRALS

Usually, with FEM methods, the domain where the PDE is solved is modeled
as a set of subdomains for which the PDE coefficients (e.g. the conductivity) are
constants. As explained in appendix A, section 3 for the electric potential PDE,
the assembly of the stiffness matrix A requires to compute integrals involving the
elements and the conductivity. For instance, the classical tetrahedral mesh with P1
elements leads to the following coefficients for A :

Aij =
∑

k:Pi∈Tk,Pj∈Tk

∫
Tk

σk∇φi
k(r) · ∇φj

k(r) dr ,

where Tk denotes a tetrahedron and σk is the constant value of the conductivity over
this tetrahedron. As a consequence, the tetrahedral mesh must match the different
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subdomains to allow the use of a constant σk in the tetrahedron Tk. Designing such
a mesh can be a complicated task as explained in the introduction.

In this work, we use the FEM method with a Cartesian mesh and basis functions
which are Q1 elements, so the Aij are now integrals on voxels Vk.

Aij =
∑

k:Pi∈Vk,Pj∈Vk

∫
Vk

σ(r)∇φi
k(r) · ∇φj

k(r) dr .

The Cartesian mesh does not match the geometry of the subdomains, and the
conductivity σ is not necessarily constant on a voxel Vk. If a given voxel Vk crosses
an interface, we can not use a constant σ in the whole voxel, but we can split Vk in
its two subdomains V 1

k and V 2
k where σ is constant :∫

Vk

σ(r)∇φi
k(r) · ∇φj

k(r) dr =
∫

V 1
k

σ1
k∇φi

k(r) · ∇φj
k(r) dr +

∫
V 2

k

σ2
k∇φi

k(r) · ∇φj
k(r) dr .

The levelset of the interface between the two subdomains gives a parametrization of
the surface which allows to properly define the integrals on the subdomains V 1

k and
V 2

k . This is detailed in section 5.

5 COMPUTING INTEGRALS ON THE DOMAINS DEFINED
BY LEVELSETS

With the choice of Q1 elements, the integrals that have to be computed for our
applications (MEEG) are of the form :∫

V 1
k

∇φm(r) · Σ∇φn(r) dr ,

where Σ is a constant conductivity tensor which can represent an anisotropic con-
ductivity. To be able to take Σ out of the integral, we need to compute the integrals of
all the possible products of the different components of the basis function gradients :∫

V 1
k

∂iφm(r)∂jφn(r)dr (i, j) ∈ {x, y, z}2.

Because the basis functions φn are trilinear on the voxel Vk, the polynomial corre-
sponding to ∂iφm∂jφn can be composed of 23 different monomials, where the highest
degree monomials are x2y2, x2z2, y2z2, x2yz, xy2z, xyz2. Hence in the following we
just describe, for these kind of monomials, how to compute the integral on a subdo-
main V 1

k of Vk. The integral of the polynomial ∂iφk∂jφl is obtained by linear combi-
nation of the integrals of the different monomials. The next two sections describe
the monomial integrations in the 2D and 3D cases.
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(a) (b) (c) (d)

Figure 4.2: The basic four cases that can arise in the integral computation. The
red and green colors correspond to levelset values of different signs (exactly which
sign is not meaningful). The black curve corresponds to the zero-crossing, while the
red and green areas correspond to the two separate domains on which the integrals
must be computed. The horizontal and vertical axes corresponds to the variables x
and y respectively.

5.1 Computing the monomial integrals in the 2D case.

In the 2D case, the restriction to each voxel of a Q1 levelset takes the form:

f(x, y) = c00xy + c10x + c01y + c00 .

For a pixel that crosses the interface, it is easy to parameterize the curve corre-
sponding to the zero crossing as (x,− c10x+c00

c11x+c01
) for some range of values of x. After

normalization by symmetry and rotation, there are basically four cases that can
occur. Those correspond to different topological configurations and are shown in
Fig. 4.2. Case (a) is trivial with integrals over the green domain being 0 and inte-
gral over the red domain being easily computed. Case (b) is the basic one : the green
domain is defined by Green =

{
(x, y)/x ∈ [0, x0], y ∈ [0,− c10x+c00

c11x+c01
]
}

, where x0 is the
intersection of the zero-crossing of the curve with the x-axis. Cases (c)-(d) are just
variants of case (b):

• Case (c) is the same as case (b) with a range over the horizontal axis of [0, 1]
(i.e. x0 = 1).

• Case (d) is just the sum of two cases of type (b), one in the configuration shown
and one with the same configuration but rotated by 180◦.

Let us assume that the monomial integrand is m(x) = m(x, y) and that M(x, y)
is the primitive of m(x, y) defined by:

M(x, y) =
∫ y

0

m(x, u)du .

Since m is a monomial, M is also a monomial in x and y. We also assume that
integrals over the green domain need to be computed (the integrals over the red
domain are simply the integrals over the full pixel minus the green integrals). The
integrals can then be computed as:Z Z

Green

m(x, y)dydx =

Z x0

0

Z − c10x+c00
c11x+c01

0

m(x, y) dydx

=

Z x0

0

M

„
x,− c10x + c00

c11x + c01

«
dx .
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Since M is a monomial, this is just the integral of a rational function that can
be calculated explicitly and implemented using simple rational functions and log-
arithms1. There are, however, two important points to take into account for the
implementation :

• The argument of the logarithm that appears in the formulae (all monomial in-
volve the same value) can be zero when top = c11c00−c10c01 = 0. This is related
to a topological change of the zero-crossing of the levelset and corresponds to
the case where f(x, y) = (ax + b)(cy + d) for some values of a, b, c, d. In such a
case (and for all situations where top is small), the explicit expressions need to
be replaced by their limit when top tends to 0 which are polynomials that can
be obtained explicitly.

• If c11 = 0, the integrals are even simpler to compute as the rational function
becomes a simple affine one. However, when c11 is close to zero the explicit
formulae are poorly conditioned numerically (especially when the monomial
degree increases). As an example, for the integral corresponding to the mono-
mial x2y2 all the first six terms of the Taylor expansion cancel. For this reason,
it is better to rely on the first non-zero terms of the Taylor expansion to esti-
mate the integral values for small values of c11. In practice, 20 terms of the
Taylor expansion have been used.

The full algorithm is then the following:

1. Using rotations, symmetry and change of sign of the levelset, normalize the
given element to be one of Fig 4.2.

2. Compute the value of x0 according to the case: x0 = − c00
c10

for cases (b) and (d)
and x0 = 1 for case (c).

3. Compute the various integrals using the explicit formulae.

4. For case (d), apply a 180◦ degree rotation over the element, compute the in-
tegral values as in step 2 and 3, apply the transforms needed to bring these
values back into the original space (simple linear combinations of the various
computed integrals in general) and add those values to the ones computed at
step 3.

5. Compute the values corresponding to the integrals in the original configura-
tion (i.e. before using rotations and symmetries of step 1). Again, these are
normally simple linear combinations of the values computed at step 4.

6. Assemble the monomials into the polynomials of interest.

5.2 Computing the monomial integrals in the 3D case.
Because the 2D integrals already involve logarithms, there is little hope of obtaining
explicit formulae for monomial integrals in the 3D case. This is all the more true as
the number of topological situations is much bigger (see e.g. [14, 62] for an explicit
study of these configurations in the Q1 case). The problem was thus solved using

1Explicitly giving all the formulae would be tedious, error prone and not very interesting. A maple
function that computes the relevant elements was used.
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Figure 4.3: A voxel is sliced along the vertical axis. For each slice, 2D integrals
can be computed explicitly. The 3D integrals are then obtained using numerical
integration.

numerical integration. As depicted in Fig. 4.3, the 3D voxel is considered as a 1D
family of 2D squares piled up along the z-axis. For each square, the monomial inte-
grals can be computed using the method depicted in Sect. 5.1 and a Gauss-Kronod
numerical integration method with 61 points is used to integrate those values along
the z-axis. Care has to be taken to split the z-axis [0, 1] into pieces for which the
2D slices share the same topology (otherwise some inaccuracies may occur). Since
topology changes are related to changes of signs on the corners of the 2D slice, and
since Q1 elements have been used (so that the levelset function varies linearly along
the z-axis), there are at most four such changes along the z axis (one for each corner
of the 2D slices).

6 RESULTS

The previous formalism is used here with a synthetic problem and an application
to EEG forward computation. In the first section, it is simply used to estimate the
simplest possible integral : a volume. Spheres are used in order to have a known
ground truth. The second section applies the formalism to one of our target applica-
tion : EEG forward problem computation. This is done first on a spherical model for
which the ground truth is known and then for a realistic head model.

6.1 Volume of spheres
Volumes are naturally the simplest integral that can be estimated. Here spheres
have been used so that the ground truth is known. Basically, we used a levelset
describing a sphere, and we computed the integral of the constant monomial 1 on all
the voxels (and subdomains of voxels) which are inside the levelset. The volume is
then obtained by summing all the integrals. Figure 4.4a shows the accuracy of the
proposed technique. Even with a coarse grid, the computed volume is very accurate.

We also did the same experiment but this time by computing the integrals of
all the monomials described in section 5 that are needed for the FEM applied to the
EEG forward problem. The figure 4.4b shows that the computational time needed to
compute all the monomial integrals is proportional to the area of the interface (the
sphere in this case). This is due to the fact that the integrals on voxels completely
inside the levelset are all identical, and have to be computed just once. It also means
that the memory storage of these integrals is proportional to the area. This is an
advantage compared to tetrahedral meshes for which each tetrahedron has its own
geometry, and thus the integrals are all different, so in this case the computational
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Figure 4.4: The relative accuracy of the volume of the sphere (left). The horizontal
axis gives the radius of the sphere (the unit is the voxel size). The vertical one gives
the relative error of the computed volume. The red curve corresponds to the pro-
posed technique whereas the blue one gives the value obtained by a simple counting
of the inner voxels. The right plot gives the computational times of all the monomi-
als with respect to the sphere area (horizontal axis).

time and the memory storage are proportional to the volume.

6.2 EEG Forward Problem
6.2.1 Spherical Model.

The accuracy is first evaluated by computing the electric potential on a 3-sphere
model with a single dipolar source. In this configuration, there is an analytic ex-
pression of the potential which can be used as a ground truth to estimate the error
of the method [118]. The dipolar source is approximated in the FEM using the for-
mula (A.6) (appendix A, section sect:FEM discretized). The spherical model is com-
posed of 3 spheres of radii 0.87, 0.92, 1. The conductivity values are 0.33, 0.0042,
0.33 from inside to outside for the isotropic case, and the conductivity of the middle
layer (corresponding to the skull) is 0.008 in the tangential direction and 0.0008 in
the radial direction for the anisotropic case. The accuracy of the numerical solu-
tion is given by the Relative Difference Measure (RDM) on the outermost sphere
(uniformly sampled with 642 points) :

RDM =
∥∥∥∥ Vnum

‖Vnum‖
− Vanal

‖Vanal‖

∥∥∥∥
where Vnum is the numerical solution, Vanal is the analytic solution and ‖ · ‖ is the
discrete l2-norm. Figure 4.5 shows the RDM with respect to the eccentricity of the
dipole. The dipole eccentricity increases in z direction, and the dipole orientation
is always (1, 0, 1), which encompasses both radial and tangential orientations. As
expected, the error increases when the dipole gets closer to the innermost sphere,
but the RDM stays below 4% with a good resolution (256× 256× 256).

The computational cost of the method was also compared to the classical tetrahe-
dral mesh FEM. Table 4.1 illustrates the computation time of both FEM approaches.
For the same discretization (equivalent number of points), the computational cost of
the proposed method is smaller, both in memory and time.
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Figure 4.5: Accuracy of the forward EEG computations with respect to the eccen-
tricity of the source (horizontal axis) and the size of the discretization. The vertical
axis represents the relative error.

Number of
points Edge size Assembly

time
Memory
space

Solving
time

Tetrahedral 1e6 0.018 2mn45s 1GB 1h07mn
Implicit

128x128x128
1e6 0.016 3mn17s 140MB 8mn

Implicit
256x256x256

8e6 0.008 13mn51s 1.2GB 1h38mn

Table 4.1: The computational performances of the method are compared to tetra-
hedral FEM. For similar discretizations, the memory cost is smaller, leading to a
smaller computation time of the solution. As a consequence, the method can handle
higher resolutions.

We also applied our approach to the computation of the magnetic field, the results
are shown in chapter 5.

6.2.2 Real Head Model.

To model a real head, an MRI image of size 256 × 256 × 256 has been taken and
segmented using four levelsets (also within a 256 × 256 × 256 discretized domain).
Figure 4.6 (a) shows a cut through this model. Figure 4.6 (b) shows the computed po-
tential over the skin. For this model constant conductivities have been used for each
of the five sub-domains. Building such a model using standard meshing techniques
would require a lot of work and would result in a huge mesh of several millions tetra-
hedra whereas the matrix computed by the proposed technique has been computed
in about 12 minutes (on a 2GHz laptop). With the classical tetrahedral technique, a
standard meshed model with a similar accuracy could not have been run on such a
laptop.
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(a) (b)

Figure 4.6: EEG computation on a real head model. Left: the five layers model used
to compute the solution. From the outside to the inside, this model contains the air
(black), the skin, the skull, the cerebro-spinal fluid and the brain (white). Notice
how complex is the brain. To model this using standard meshing techniques would
require a huge number of tetrahedra and a lot of user interaction to build the model.
Right: the potential value displayed on the skin for a given source in the brain.

7 CONCLUSION

It is possible to compute the FEM matrices directly from levelsets-based segmen-
tations. For complicated domains that need to be generated on a regular basis (such
as head models), this technique has many practical advantages. First, the technique
needs no user interaction for mesh generation. Second, the time needed to produce
and solve the FEM linear system is typically decreased by an order of magnitude for
complex models such as the head. This time is directly proportional to the total area
of the interfaces used in the model. It allows for production of very accurate models
(at the resolution of the MR images that are the support for the levelsets) at moder-
ate and known a priori costs. Further benefits can be obtained thanks to the regular
discretization structure. Many parts of the FEM code were easily parallelized using
OpenMP, what can be very effective with the democratization of multi-core CPUs.
Using multiscale techniques is also possible. The main drawback of the technique
compared to tetrahedral FEM is that less control of the solution at the interfaces is
possible.

Because our FEM approach uses a cubic grid as a mesh, it is somehow similar
to a FDM method. The main theoretical advantage of the FEM compared to FDM
is the quality of the approximation between grid points. Nevertheless, the quali-
ties of both approaches are problem dependent : in general, FEM is more used for
structural mechanics whereas FDM is more used for fluid dynamics. In the case
of EEG/MEG forward problem computation, numerical comparisons between both
approaches would be necessary.
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CHAPTER 5

THE ADJOINT METHOD FOR
GENERAL EEG AND MEG
SENSOR-BASED LEAD FIELD
EQUATIONS

Most of the methods for the inverse source problem in electroencephalography (EEG)
and magnetoencephalography (MEG) use a lead field as an input. The lead field is
the function which relates any source in the brain to its contribution to the mea-
surements at the sensors. For complex geometries, there is no analytical formula
of the lead field. The common approach is to numerically compute the value of the
lead field for a finite number of point sources (dipoles). There are several draw-
backs : the model of the source space is fixed (a set of dipoles) and the computation
can be expensive for as much as 10000 dipoles. The common idea to bypass these
problems is to compute the lead field from a sensor point of view, by using recipro-
cal approaches. In this chapter, we use the adjoint method to derive general EEG
and MEG sensor-based lead field equations. Within a simple framework, we pro-
vide a complete review of the explicit lead field equations, and we are able to extend
these equations to non-pointlike sensors. The work presented in this chapter was
submitted to the journal Physics in Medicine and Biology.
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1 INTRODUCTION

Electroencephalography (EEG) and magnetoencephalography (MEG) can be used
as functional brain imaging modalities : in this case, the goal is to localize the elec-
trical activity in the cortex from the EEG or MEG measurements. This is referred to
as the inverse source problem. Before solving the inverse source problem, one needs
a forward model which gives the electric potential or magnetic field for a known
source configuration. In EEG for instance, the forward problem is given by the fol-
lowing differential equation :{

∇ · (σ∇V ) = ∇ · Jp in Ω
σ∇V · n = 0 on ∂Ω

(5.1)

where V is the electric potential, σ is the conductivity, Jp is the primary current
vector (representing brain electrical activity) and Ω is the head domain. It is ob-
vious that V is linear with respect to Jp, and so the mapping of Jp on the EEG
electrodes can be represented by a linear operator L which is called the lead field.
Many methods for solving the inverse source problem use the lead field representa-
tion, and most of the time the lead field is discretized for a finite number of dipoles
with unitary moments. The result is the so-called lead field matrix L : one column
of the matrix gives the values of the electric potential at the EEG electrodes for a
given dipole. This matrix has a number of lines equal to the number of electrodes
and a number of columns equal to the number of dipoles considered (around 10000
in distributed source models). Then the EEG measurements are simply given by the
matrix-vector product m = Ls where s is a vector containing the amplitudes of the
dipoles, which becomes the unknown of the inverse problem.

To compute the matrix L, the direct method is to solve (5.1) for each dipole. If
the head is modeled as spherical shells, then there is an analytic formula for the
solution of (5.1), and the computation of L is very fast. For realistic geometries, there
are different approaches, such as the finite difference method (FDM), the boundary
element method (BEM) or the finite element method (FEM). They are different ways
of discretizing the differential equation (5.1), and they all lead to solving a linear
system of finite dimension

Ax = b . (5.2)

The matrix A is constant for given geometry and conductivities, and the right-hand
side b is determined by the source, so it is different for each dipole. For the BEM, the
matrix A is sufficiently small to be able to factorize it (LU for instance), and once
factorized, it is fast to solve the linear system (5.2) for many different right-hand
sides b. But the BEM only allows to describe the conductivity of the head domain as
piecewise constant and isotropic. On the contrary, FDM and FEM allow to describe
general conductivity distributions, but the matrix A generated is generally too big to
use direct factorizations. In this case, the system (5.2) is solved by iterative methods,
and this can be extremely time consuming if it has to be done for as many as 10000
different right-hand sides.

A first approach to bypass this problem is to do matrix manipulations on (5.2) to
get a new system

AT y = c (5.3)
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with the matrix AT , which is equal to A since A is generally symmetric. In this
case the number of different right-hand sides c is equal to the number of sensors
(around 60 for EEG electrodes), which considerably reduces the computation time.
This so-called transfer matrix approach is described for the EEG in [105] and for the
EEG and MEG in [105, 110]. In this approach, (5.3) was directly created from the
discretized equation (5.2).

Another approach is to start directly from the definition of the lead field L. Be-
cause it is a linear operator, its restriction to one sensor is a linear functional, and
it can be formulated with its Riesz representation : for instance, for a measurement
of the electric potential V between positions r1 and r2, the lead field L12 is such that

V (r1)− V (r2) =
∫

Ω

L12(r) · Jp(r) dr .

If L12 can be computed, then any source Jp can be projected on the measurement
V (r1) − V (r2) with a simple scalar product. In this example, the equation of L12 is
known from the Helmholtz reciprocity principle. It states that, if Jp = qδr0 , with
δr0 being the Dirac distribution at r0, then V (r1) − V (r2) = q · ∇U(r0), where U is
the potential generated by a current injection between r1 and r2. It follows that
L12 = ∇U . So in this case, L12 can be computed from U , for which the equation is :{

∇ · (σ∇U) = 0 in Ω
σ∇U · n = δr1 − δr2 on ∂Ω

(5.4)

This equation can be solved numerically for complex geometries, as described in [105].
For the magnetic field, the equation of the sensor-based lead field was first pre-
sented in [74], and different numeric implementations were described for piecewise
constant conductivities [74, 90].

These two approaches that we described, using linear algebra or reciprocity, are
very similar, as they both change the forward problem from a source point of view
to a sensor point of view. The difference is that one does it in a discrete space,
whereas the other keeps the original continuous space. We think that the continuous
approach has the advantage of giving a general formulation of the lead field which
is independent of the discretization used for numerical computation.

In this chapter, we propose to use the adjoint method [61, 34] as a simple and
powerful tool to derive the differential equation of the lead field with respect to a
given sensor. It can handle both EEG and MEG lead fields, and because it is a gen-
eral framework, we are able to include in an easy way the geometry of the sensors
in the lead field equation, which can be very important for MEG. The purpose of
this chapter is thus to provide all the sensor-based lead field equations, especially
for non-pointlike sensors because some of them have not been presented before.

2 THE ADJOINT METHOD

Let E be an Hilbert space, i.e. a Banach space equipped with an inner product. In
our case, we will consider E = L2(Ω), the space of real square-integrable functions
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defined on an open bounded region Ω equipped with the inner product

< u, v >=
∫

Ω

u(r)v(r)dr .

Let p represent a parameter which can be a real scalar or vector function defined in
some functional space E′. For any p, we consider the (hopefully unique) function v

of E which satisfies the state equation :

Av = b(p) , (5.5)

where A is a linear operator from E to another set E1 ⊂ E and b is a differentiable
function from E′ to E1. This defines a mapping p → v(p) where the solution v(p)
of (5.5) is called the state function. To give some intuition, in the EEG case the state
function v is the electric potential V (r) and the parameter p is the primary source
current vector Jp(r). We assume that the mapping p → v(p) is differentiable.

We also make a measurement of the state function v which can be modeled as a
linear functional f(v) from E to R. For v(p) solution of the state equation, we can
express the measurement as a functional g of p from E′ to R :

g(p) = f(v(p)) .

We want to compute the derivative of g with respect to p by using the adjoint method.
Indeed, for our application to EEG and MEG, the derivative of g represents the lead
field of the measurement g.

First, we build a Lagrangian L by adding the measurement to the product of the
state equation with a Lagrange multiplier w :

L(p, v, w) = f(v)+ < w,Av − b(p) > .

This Lagrangian can be compared to the Lagrangian used in optimization problems,
where it is built as the sum of the function to minimize and the product of the
constraints with a Lagrange multiplier. In our continuous setting, the Lagrange
multiplier w is a function living in the space of test functions E2 ⊂ E1. We assume
that the Lagrangian L is differentiable with respect to all three variables p, v, w. As
soon as v = v(p) is solution of the state equation, we have

g(p) = L(p, v(p), w) .

From this equation, we now want to compute the derivative of g with respect to p.
Using the differential notation, we consider the differential δg with respect to the
differential δp :

δg =
∂L

∂v
(p, v(p), w)δv +

∂L

∂p
(p, v(p), w)δp , (5.6)

which holds for all w in E2. Note that the differential δw does not appear since
w does not depend on p. We choose the Lagrange multiplier so that the first term
vanishes, i.e. defined by the equation

∂L
∂v (p, v(p), w)δv = 0 for all δv

∂f
∂v δv+ < w,Aδv >= 0 for all δv .
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We now use the fact that in a Hilbert space, if H is a linear operator, the inner
product < x,Hy > is equal to < H∗x, y >, where H∗ is the linear operator adjoint to
H. We thus introduce the adjoint operator A∗ and rewrite the previous equation as

∂f

∂v
δv+ < A∗w, δv >= 0 for all δv ,

which is equivalent to

A∗w = −∂f

∂v
. (5.7)

This equation is called the adjoint equation. Therefore, if v and w are respectively
solutions of (5.5) and (5.7), the relation (5.6) reduces to

δg =
∂L

∂p
(p, v(p), w)δp ,

which is simply

δg =< w,
∂b

∂p
δp > .

Hence the derivative of g can be computed from the sole derivative of b. When
the direct computation of the derivative of g is complex, the adjoint method is par-
ticularly interesting if the derivative of b is simple.

In EEG and MEG, the quasi-static approximation of Maxwell’s equations is used.
In this framework, the electric potential and the magnetic field depend on the pri-
mary current vector Jp, which represents brain activity, and in particular they are
both linear with respect to Jp. As a consequence, any electric or magnetic measure-
ment at a given sensor is linear with respect to Jp. Let g(Jp) be such a measurement.
Because g(Jp) is linear, it can be formulated exactly using its derivative : for any pri-
mary current distribution Jp,

g(Jp) =<
∂g

∂Jp ,Jp >=
∫

Ω

∂g

∂Jp Jp .

So ∂g
∂Jp is exactly the lead field for the given measurement. And this derivative can

be easily computed with the adjoint method. The adjoint method is hence a powerful
and general framework to compute the lead field for any type of measurement.

3 POINTLIKE LEAD FIELDS

3.1 EEG lead field
The function g(Jp) that we consider is a measurement of the electric potential V at
a certain electrode location ri, with respect to a reference at the electrode location
r0. We now make explicit the formalism introduced in section 2.

• We consider the functional space E = L2(Ω) of real square-integrable functions
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on Ω, an open bounded region of R3 representing the head domain. The scalar
product is < u, v >=

∫
Ω

u(r)v(r)dr.

• p is the primary source current vector field Jp(r), defined in some functional
space E′ on Ω.

• v is the electric potential V (r) ∈ C0(Ω) ∩ E.

• g(Jp) = f(V (Jp)) = V (ri) − V (r0) =
∫
Ω

V (δri
− δr0)dr where δri

is the Dirac
distribution at ri.

• V is solution of the following differential equation (the state equation) :{
∇ · (σ∇V ) = ∇ · Jp in Ω
σ∇V · n = 0 on S = ∂Ω

where S is the boundary of Ω, n is the unit normal vector to S and σ(r) is the
conductivity. In this case, AV = ∇ · (σ∇V ) and b(Jp) = ∇ · Jp.

• The Lagrangian is the sum of the measurement and the state equation multi-
plied by a Lagrange multiplier w :

L(Jp, V, w) =
∫

Ω

V (δri
− δr0)dr +

∫
Ω

(∇ · (σ∇V )−∇ · Jp)wdr .

Let us first formulate the adjoint equation. Physically, V and σ∇V are continu-
ous through the eventual discontinuity surfaces Sk of σ :{

[V ]Sk
= 0

[σ∇V · n]Sk
= 0

where [.]Sk
denotes the jump of a function on a given surface Sk. We take a Lagrange

multiplier w which verifies the same properties. Then the divergence theorem gives :∫
Ω

(∇ · (σ∇V ))wdr =
∫

S

wσ∇V · nds−
∫

Ω

σ∇V · ∇wdr

∫
Ω

(∇ · (σ∇w))V dr =
∫

S

V σ∇w · nds−
∫

Ω

σ∇w · ∇V dr

Because of the boundary condition on V , and the fact that σ is symmetric (conduc-
tivity tensor), we get :∫

Ω

(∇ · (σ∇V ))wdr =
∫

Ω

(∇ · (σ∇w))V dr −
∫

S

V σ∇w · nds .

Using this identity we can rewrite the Lagrangian :

L(Jp, V, w) =
∫

Ω

V (δri
−δr0)dr+

∫
Ω

(∇· (σ∇w))V dr−
∫

S

V σ∇w ·nds−
∫

Ω

(∇·Jp)wdr .
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As a consequence, the condition ∂L
∂V = 0 can be satisfied if w is solution of the follow-

ing differential equation :

{
∇ · (σ∇w) = 0 in Ω
σ∇w · n = δri − δr0 on S

(5.8)

This corresponds exactly to the equation of the electric potential with a unit current
injection on the boundary between positions ri and r0.

The derivative of g is given by ∂L
∂Jp . L only depends on Jp via the term −

∫
Ω
(∇ ·

Jp)wdr, which can be rewritten as
∫
Ω
∇w · Jp using the divergence theorem and the

fact that Jp is zero on the boundary S. So

∂g

∂Jp = ∇w

and for any primary source Jp, g(Jp) =
∫
Ω
∇w · Jpdr. In the particular case of a

source being a dipole at location p and with moment q, we have Jp = δpq and
g(δpq) = q·∇w(p) = V (ri)−V (r0), which is exactly Helmholtz’s reciprocity principle.

3.2 MEG lead field

For MEG, the difference with the previous section is that we consider the magnetic
field, for which the state equation is different. The function g is now a measurement
of the magnetic field at location ri and in the direction di (a unitary vector), g(Jp) =
di ·B(ri). The magnetic field is given by the Biot-Savart law :

B(ri) = B0(ri)−
µ0

4π

∫
Ω

σ∇V ×∇
(

1
R

)
dr

with B0(ri) = µ0
4π

∫
Ω

Jp ×∇
(

1
R

)
dr and R = ‖ri − r‖. Let us consider first the depen-

dence of g on V (dropping the scale factor µ0
4π for the sake of clarity) :

di ·
∫
Ω

σ∇V ×∇
(

1
R

)
=

∫
Ω

di · σ∇V ×∇
(

1
R

)
=

∫
Ω

σ∇V · ∇
(

1
R

)
× di

=
∫
Ω
∇V · σ∇

(
1
R

)
× di

=
∫
Ω
∇ ·
(
V σ∇

(
1
R

)
× di

)
−
∫
Ω

V∇ ·
(
σ∇

(
1
R

)
× di

)
Now we want to apply the divergence theorem to the first term of the right hand side.
Unfortunately the expression inside the divergence is not necessarily continuous
: V and ∇

(
1
R

)
are continuous but σ is often considered as piecewise continuous

within nested domains modeling the different types of tissues inside the head. It is
necessary to take into account the discontinuities of σ across the different interfaces
Sk between tissues :

di·
∫

Ω

σ∇V×∇
(

1
R

)
=

∑
k

∫
Sk

V (σ−k −σ+
k )∇

(
1
R

)
×di·n−

∫
Ω

V∇·
(

σ∇
(

1
R

)
× di

)
where the subscripts − and + define the interior and exterior limits of a function
with respect to a surface, on which the normal n is pointing outwards.

This time we take a Lagrange multiplier w which is continuous on Ω, but we
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relax the continuity of σ∇w · n. In this case, the divergence theorem gives :∫
Ω

(∇ · (σ∇w))V =
∑

k

∫
Sk

V (σ−k ∇w− · n− σ+
k ∇w+ · n)−

∫
Ω

σ∇w · ∇V

In the MEG case, the Lagrangian can then be written as

L(Jp, V, w) = −µ0
4π

∑
k

∫
Sk

V (σ−k − σ+
k )∇

(
1
R

)
× di · n−

∑
k

∫
Sk

V (σ−k ∇w− · n− σ+
k ∇w+ · n)

+µ0
4π

∫
Ω

V∇ ·
(
σ∇

(
1
R

)
× di

)
+
∫
Ω
(∇ · (σ∇w))V

+di · µ0
4π

∫
Ω

Jp ×∇
(

1
R

)
−
∫
Ω
(∇ · Jp)w

Now, considering the condition ∂L
∂V = 0, the adjoint equation becomes a set of differ-

ential equations coupled by boundary conditions :

{
∇ · (σ∇w) = −µ0

4π∇ ·
(
σ∇

(
1
R

)
× di

)
in Ωk, for k = 1..N

σ−k ∇w− · n− σ+
k ∇w+ · n = −µ0

4π (σ−k − σ+
k )∇

(
1
R

)
× di · n on Sk, for k = 1..N

(5.9)
It should be noted that if the conductivity σ is constant and isotropic in a domain
Ωk, then we can transform the right hand side of the differential equation :

∇ ·
(
σ∇

(
1
R

)
× di

)
= σ∇ ·

(
∇
(

1
R

)
× di

)
= σ(di · ∇ ×

(
∇
(

1
R

))
+∇

(
1
R

)
· ∇ × di)

= 0

because the curl of a gradient is zero and di is a constant. In this case, the equation
reduces to ∆w = 0, meaning that w is harmonic in the corresponding compartment.
This result has been used previously for the numerical computation of the MEG lead
field [74, 90].

The expression of ∂L
∂Jp is slightly different from the EEG case, as there is a de-

pendency on Jp in B0(ri) :

di ·B0(ri) = di · µ0
4π

∫
Ω

Jp ×∇
(

1
R

)
= µ0

4π

∫
Ω

di · Jp ×∇
(

1
R

)
= µ0

4π

∫
Ω

Jp · ∇
(

1
R

)
× di

Finally
∂g

∂Jp = ∇w +
µ0

4π
∇
(

1
R

)
× di .

4 INCORPORATING SENSOR GEOMETRY

In section 3, we simplified the sensor measurements. For instance, we assumed
that an EEG electrode measures the potential at a mathematical point ri, i.e. we
used point electrodes. In reality, an electrode has a certain area of contact with the
scalp. In the same way, a SQUID sensor does not measure the magnetic field at a
single point but the flux of the magnetic field through one or several small loops.
The geometries of the different sensors can be easily incorporated in our framework
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simply by reformulating the function g.

4.1 MEG sensors
A magnetometer measures the flux of the magnetic field through a small loop. For
a magnetometer i, let Mi be the surface enclosed by the loop, and di the unitary
vector normal to Mi. The function g can then be written as g(Jp) =

∫
Mi

di ·B(r′)dr′.
In the Biot-Savart law, the only dependence of B(r′) on r′ is in R = ‖r′ − r‖, see
section 3.2. Then the only change in the adjoint equation is in the term ∇

(
1
R

)
× di,

which becomes ∫
Mi

∇
(

1
R

)
× di dr′ .

Using Stokes theorem, this can also be rewritten as the following line integral(∫
∂Mi

1
R

t(r′)dr′
)

, (5.10)

where t is the tangent vector to the boundary ∂Mi of the loop. This formulation
is the same as the one given in [110]. For a gradiometer, the measurement is the
linear combination of flux of the magnetic field through two or more close parallel
loops. For instance, for a first-order gradiometer, let G+

i and G−
i be the two surfaces

enclosed by the two loops, then the term ∇
(

1
R

)
× di is transformed in∫

∂G+
i

1
R

t(r′)dr′ −
∫

∂G−
i

1
R

t(r′)dr′ .

Generally, the MEG manufacturers give a set of positions and weights for each sen-
sor, and the linear combination of the magnetic field at these positions using these
weights is meant to recreate the measurement. For a set (rk, λk) of positions and
weights, the term ∇

(
1
R

)
× di becomes(∑

k

λk∇
(

1
Rk

))
× di ,

where Rk = ‖rk − r‖.

4.2 EEG surface electrodes
To incorporate the surface electrodes, we need to take into account the fact that
the electric potential is constant at the surface of the electrodes due to the high
conducting metal. This is called the shunt effect. This effect has first been modeled
for electrical impedance tomography (EIT) [13, 97] and then for EEG [77]. The
shunt effect simply modifies the boundary conditions of the electric potential PDE.
The simple homogeneous Neumann condition is transformed to :

V + zkσ∇V · n = vk on ek∫
ek

σ∇V · n = 0
σ∇V · n = 0 on S\ ∪ ek

(5.11)

where ek is the kth electrode, vk is the constant value of the potential on the kth
electrode and zk is the effective contact impedance which models the electrochemical



96CHAPTER 5. THE ADJOINT METHOD FOR GENERAL EEG AND MEG SENSOR-BASED LEAD FIELD EQUATIONS

effect at the skin-electrode interface.

It is straightforward from (5.11) that vk = 1
|ek|
∫

ek
V , where |ek| denotes the area

of the electrode ek. Then a potential measurement between electrode i and reference
0 can be defined as :

g(Jp) =
1
|ei|

∫
ei

V − 1
|e0|

∫
e0

V =
∫

Ω

V

(
δei

|ei|
− δe0

|e0|

)
where δek

is the distribution such that
∫
Ω

V δek
=
∫

ek
V .

We now proceed as in section 3.1 and we add the boundary conditions (5.11). The
first difference compared to point electrodes is that the following boundary integral
does not vanish anymore :∫

S
wσ∇V · nds =

∑
k

∫
ek

1
zk

(−V + vk)w ds

=
∑

k

∫
ek

1
zk

(−V + 1
|ek|
∫

ek
V )w ds

=
∑

k

∫
Ω

1
zk

(−V + 1
|ek|
∫
Ω

V δkdr)wδk dr

Deriving this last expression with respect to V gives :∑
k

1
zk

(−w +
1
|ek|

∫
ek

w)δk .

The second difference is that the measurement g(Jp) is now :

g(Jp) =
∫

Ω

V

(
δei

|ei|
− δe0

|e0|

)
,

for which the derivative with respect to V is :

δei

|ei|
− δe0

|e0|
.

By incorporating these two changes in the adjoint equation for point electrodes (5.8),
we get the new adjoint equation for surface electrodes :

{
∇ · (σ∇w) = 0 in Ω

σ∇w · n = δei

|ei| −
δe0
|e0| +

∑
k

1
zk

(
−w + 1

|ek|
∫

ek
w
)

δk on S
(5.12)

Integrating the boundary condition of (5.12) on ek gives :

∫
ek

σ∇w · n =


1 k = i

−1 k = 0

0 otherwise

. (5.13)

Also, on each electrode ek,

w + zkσ∇w · n = Wk on ek, (5.14)

where Wk is a constant, and outside the electrodes :

σ∇w · n = 0 on S\ ∪ ek . (5.15)
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The boundary conditions (5.13), (5.14) and (5.15) differ from (5.11) only by the fact
that there is a non-zero current at the electrodes. Now the adjoint equation is ex-
actly the equation of the electric potential with a unitary current injection between
electrodes ei and e0.

5 NUMERICAL SIMULATIONS

To illustrate our approach, we computed the lead field for magnetometers using
the finite element method presented in 4. We used a spherical geometry to be able
to compare the numerical solution with the ground truth given by the analytical
formulation. The geometry was composed of three nested spheres with radii of 0.87,
0.92, 1, meant to represent brain, skull and scalp tissues. We assigned constant
isotropic conductivities of 1, 0.02, 1 to brain, skull, scalp respectively. It is known
that in a spherical geometry the magnetic field outside the conductor does not de-
pend on the conductivities, but we intentionally put different conductivities in our
model to test that the numerical solution is actually similar to the case of a homoge-
neous sphere. This geometry was embedded in a Cartesian grid with a resolution of
128x128x128, defining a Cartesian mesh that is used to define a trilinear element
basis (for more details, we refer to chapter 4). To give an idea, with a 128x128x128
resolution, the spherical geometry contains a little less than 106 mesh nodes. We
placed 89 magnetometers equally distributed on the positive z hemisphere, oriented
in the x direction, positioned at a distance of 0.03 of the outermost sphere, and with
a radius of 0.015. For each magnetometer, we solved the differential equation (5.9),
with the modification (5.10), using the implicit finite element method. The integral
in (5.10) was computed with a Gauss-Kronod method using 61 points. For a solu-
tion w of (5.9), and a dipole with position r0 and moment q, the quantity ∇w(r0) · q
gives the part of the magnetometer measurement generated by Ohmic current (of-
ten called secondary field). Analytically, the secondary field generated by a dipole in
a spherical geometry can be computed by subtracting the analytical formulation of
the primary field to Sarvas’ formula for the total magnetic field [88]. This analytic
formulation was integrated on the magnetometers surfaces to get the magnetome-
ter measurement (also using a Gauss method for numerical integration). So we
compared at the sensors the numerical and analytical secondary fields measure-
ments for many dipoles located at various depths on the z axis, with all Cartesian
orientations. The error with respect to the analytical solution is summarized by two
quantities, the RDM which gives the topographic error, and the MAG which gives
the magnitude error :

{
RDM(Bn, Ba) =

∥∥∥ Bn

‖Bn‖ −
Ba

‖Ba‖

∥∥∥
MAG(Bn, Ba) = ‖Bn‖

‖Ba‖

where ‖.‖ is the discrete l2-norm and Bn, Ba are the set of measurements of the
secondary field at the sensors for the numerical solution and analytical solution
respectively. The results are shown on figure 5.1. For dipoles in y and z directions,
the error of the numerical solution is very small, as it is always under 1%. The
accuracy slightly decreases when the dipole gets very close to the innermost sphere,
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ie close to the interface between conductivities : this is a well known effect when
using BEM or FEM methods. For the dipoles in x direction, we observe different
results : the MAG varies between 0.985 and 1.03, and the RDM is below 3% for
most dipole positions but fastly increases when the dipole gets close to the center of
the sphere. These results are due to the fact that for dipoles in the x direction, the
x component of the secondary field tends to zero when the dipole gets close to the
center of the spherical geometry. In this case, the RDM and MAG measures have
quantities in the denominator that also tends to zero, which is responsible for the
effect observed only for dipoles in x direction. For these dipoles, RDM and MAG are
not relevant measures, and it is better to simply consider the absolute error. The
figure 5.2 shows that the absolute error is similar for the three dipole orientations,
which validates the numerical solution for dipoles in x direction.

Nevertheless, our purpose here is not to show the quality of the numerical com-
putations but to illustrate the correctness of the equations previously derived. In
the case presented here, the interest is that we have to solve only one differential
equation to compute the whole flux of the magnetic field through one magnetome-
ter, instead of having to compute several pointlike lead fields at several points of the
magnetometer surface and then approximate the magnetic flux using these points.
For example, if a sensor is approximated using a linear combination of four points,
then the computational time can be divided by four.

6 CONCLUSION

We proposed to use the adjoint method to derive the equations of the EEG and
MEG sensor-based lead fields. By using this simple and general framework, we
were thus able to rederive the lead field equations for pointlike sensors, both for
EEG and MEG, and we also showed how to extend very easily these equations to
incorporate the geometry of the sensors in the lead field. Our goal is to give a better
insight on EEG-MEG lead field computation, and also to provide a complete list of
the PDE for the sensor-based lead fields, for all type of sensors. All these equations
are simple second-order elliptic PDE in divergence form, and therefore they can be
directly plugged in any Finite Difference or Finite Element solver.



99

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Dipole depth

R
D

M

tangential x

tangential y
radial z

tangential x

tangential y
radial z

tangential x

tangential y
radial z

tangential x

tangential y
radial z

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

1.025

1.030

Dipole depth

M
A

G

tangential x

tangential y
radial z

Figure 5.1: RDM and MAG between numerical and analytical solution with respect
to dipole depth. The dipoles are located on the z axis, and the dipole positions are
given relatively to the radius of the innermost sphere (a value of 1 means that the
dipole is located on the sphere). The three Cartesian coordinates have been consid-
ered for the dipole orientations.
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CHAPTER 6

GLOBAL SENSITIVITY
ANALYSIS OF THREE AND
FOUR-LAYER EEG
CONDUCTIVITY MODELS

The accuracy of forward models for electroencephalography (EEG) partly depends
on the conductivity values of the head tissues. Yet the influence of the conductiv-
ities on the model output is still not well understood. In this chapter, we apply a
variance-based sensitivity analysis method to the most common EEG forward mod-
els (three or four layers). This method is global because it quantifies the influence of
each parameter with all the parameters varying at the same time. With non-linear
models, it helps to understand the interaction between parameters, which is not
possible with simple sensitivity analyses (one-at-a-time variations, derivatives, per-
turbations). By analyzing the potential topographies at the electrodes, we obtained
several results. For a shallow dipole, the brain conductivity effect is negligible and
the influence of skull and scalp conductivities appears mainly via their interaction.
It means that the variability of the scalp topographies is driven mostly by a function
of skull and scalp conductivities. Similar results are presented for skull anisotropy
and for a current injection as performed in electrical impedance tomography (EIT).
This global sensitivity analysis gives new information about EEG forward models :
it identifies the main input factors which need model refinement, and gives direc-
tions on how to calibrate these models.

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2 Variance based methods for sensitivity analysis . . . . . . . . . 106
3 Sensitivity analysis of EEG forward models . . . . . . . . . . . 107

3.1 Design of the analysis . . . . . . . . . . . . . . . . . . . . . . . 107
3.2 Sampling size and computational cost . . . . . . . . . . . . . . 108
3.3 A first simple enlightening case : spherical model with su-

perficial dipolar source . . . . . . . . . . . . . . . . . . . . . . 109
3.4 General results on a realistic model . . . . . . . . . . . . . . . 110

103



104CHAPTER 6. GLOBAL SENSITIVITY ANALYSIS OF THREE AND FOUR-LAYER EEG CONDUCTIVITY MODELS

3.5 Electrical impedance tomography (EIT) . . . . . . . . . . . . . 112
4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



105

1 INTRODUCTION

Electroencephalography (EEG) is becoming a more and more common functional
brain imaging modality. Thus, it is of interest to improve the resolution of the in-
verse EEG problem, which is spatially lower than magnetoencephalography (MEG)
and functional magnetic resonance imaging (fMRI). The main problem in EEG is
its sensitivity to electrical properties of head tissues, which can affect the EEG
source localization [49]. Unfortunately, the tissue conductivities can vary among
subjects (especially the skull conductivity) and there is no available technique to
measure precisely the conductivity of the head tissues in vivo (although MREIT
seems promising). As a consequence, for the time being, the conductivity models
used for EEG are built from the segmentation of a subject’s MRI in three or more
nested tissues (scalp, skull, CSF, gray matter, white matter). Then scalar values are
assigned to each tissue, describing a uniform conductivity (isotropic, or anisotropic
with constant ratio).

The electrical conductivities of many human tissues have been measured in vitro
and are available in the literature [29, 30]. Some tissues have also been measured
invasively for animals [60, 113] and for humans [6, 48, 57, 117]. But these measured
values are not necessarily the best values to put in a forward EEG model. First, the
skull is a very variable tissue depending on the person and the age, and so its elec-
trical conductivity can not be tabulated once and for everybody. Second, the forward
model gives an approximation of the real conductivity distribution of the head, and
so the conductivity parameters for which the forward model best reproduces reality
are not necessarily the physiological conductivity values. For instance, when using
a classical three-layer model of the head (brain, skull, scalp), many types of tissues
are omitted, but the approximation error of the model can be compensated for if one
chooses ”efficient” conductivity values instead of physiological values. The efficient
conductivities would be the values for which a given model best reproduces the real
propagation of the electric potential. This is why it is important to understand the
sensitivity of these models to the parameters (the scalar conductivity values), in
aim of producing more accurate models. Several sensitivity analyses of conductiv-
ity models have been carried out [46, 65, 31, 109, 104, 83], but none of them was a
global sensitivity analysis, meaning that the effect of a parameter is evaluated while
all others are also varying. They are either one-at-a-time designs [46, 65, 109, 83],
where one factor is varied while the others are fixed to nominal values, or local
sensitivity analyses [31, 104], for which small perturbations are considered. These
approaches are limited when dealing with non-linear models because they are un-
able to appreciate the interaction effect between parameters, which can be very
important to understand the behavior of the model.

This chapter presents a global sensitivity analysis of the EEG forward problem
with respect to conductivities. The analysis is performed on the EEG scalp topogra-
phies, by considering the effect of conductivity parameters on the RDM, a quantity
which summarizes the topographic error. This is of main interest because most
of the source localization methods depends almost entirely on the topography of
the electric potential at the EEG electrodes. In section 2, we briefly describe the
variance-based methods for sensitivity analysis. Then in the following sections, we
give the results of our global sensitivity analysis on the EEG and EIT forward mod-
els, for different source configurations and conductivity models. Finally, we show the
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interest of this sensitivity analysis for the calibration of the EEG forward model.

2 VARIANCE BASED METHODS FOR SENSITIVITY ANAL-
YSIS

Let us assume a model y = f(x) with k input parameters x = (x1, x2, ..., xk)
and a single output y. The imperfect knowledge of the parameters is described by
a probability density function p(x) = p(x1, x2, ..., xk). Let us consider x and y as
realizations of the random variables X and Y . In this stochastic framework, to
completely characterize the uncertainty of Y , the knowledge of the distribution of
Y would be necessary. Still, one simple and good indicator for the uncertainty of
the model output Y is its variance V (Y ). Following this idea, we can say that a
parameter Xi is important if the variance decreases when Xi is known and fixed
in the model. In other words, Xi is important if the conditional variance V (Y |Xi =
x∗i ) is small compared to the total variance V (Y ), where x∗i is the true value of
Xi. Unfortunately we do not know x∗i , yet we can still look at the average over all
possible values of Xi, E(V (Y |Xi)). The more important Xi, the smaller this quantity.
Since the theorem of the total variance states that V (Y ) = V (E(Y |Xi))+E(V (Y |Xi)),
we can rather look at the quantity V (E(Y |Xi)). The more important Xi, the bigger
this quantity. So finally, the following coefficient Si measures the importance of a
parameter Xi :

Si =
V (E(Y |Xi))

V (Y )
.

The indices Si are more reliable measures than what can be obtained with one-at-a-
time variations or local analyses because they include multidimensional averaging
over the whole range of uncertainty of all the parameters. These indices are com-
monly referred to as first-order effect indices. Yet they are not sufficient to describe
all the variability of the model, because the identity

∑
i Si = 1 only holds if the

model is additive (a linear model is a particular case). For non-linear models, most
of the time

∑
i Si < 1, and the residual variance is then explained by the concept of

interaction. Two parameters are interacting if their joint effect is greater than the
sum of their first-order effects, hence the interaction between two factors Xi and Xj

can be quantified using the variance :

Sij =
V (E(Y |Xi, Xj))− V (E(Y |Xi)− V (E(Y |Xj)

V (Y )
.

The indices Sij are called second-order indices. Similarly, one can define third-order
(Sijk), fourth-order (Sijkl) or higher order indices, which quantify the interaction
between three, four or more parameters. All the first-order and higher order indices
are easy to interpret as they all sum to 1, and thus give the apportionment of the
uncertainty of the output with respect to the input parameters.

When analyzing a model, if the number k of parameters is too important, there
are too many sensitivity measures to consider, so a good way to summarize the
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interactions is to use the following measures :

STi =
∑
I∈#i

SI ,

where I is a (multi-)index and #i is meant to represent all the set of (multi-)indices
which contain the index i (i, ij, ik, ijk, . . . ). STi

is called the total effect index of factor
Xi, and measures the first-order effect of Xi plus all its interactions with the other
parameters.

These sensitivity indices raise the problem of how to compute the conditional
variances. If the model is very simple, an analytical expression for the conditional
variances V (E(Y |Xi)) can be found, but this is rarely the case. The common strategy
is to sample the space of input parameters with respect to their prior probability dis-
tribution, to compute the output for these different sample values, and then to eval-
uate estimators of the sensitivity indices. The two most known methods to estimate
variance-based sensitivity indices are Sobol’s [96] and the Fourier Amplitude Sensi-
tivity Test (FAST) [18]. An extensive review of these methods can be found in [86].
For the work presented here, we used the FAST method, which has the advantage of
giving accurate estimations of the sensitivity indices with a rather small sampling
of the input space. The drawback of the method is that only the first order and total
effect indices can be computed. The FAST method is based on selecting N points
over a particular space-filling curve in the kth dimensional parameter space, built
so as to explore each parameter with a different integer frequency (w1, w2, . . . , wk).
These frequencies must be such as they do not interfere up to a certain harmonic
order M (usually M = 4 or M = 6 is sufficient). The model is run for each of the N

points of the curve and the Fourier spectrum is calculated on the model output at
specific frequencies (wi, 2wi, . . . ,Mwi) to estimate the first-order sensitivity index of
parameter Xi. The total effect indices are obtained by selecting other frequencies of
the spectrum.

3 SENSITIVITY ANALYSIS OF EEG FORWARD MODELS

3.1 Design of the analysis

The first step of the analysis is to choose a meaningful output of the model. The
common output of an EEG forward model is a vector u containing the values of the
electric potential at the electrode positions. A direct method would be to perform a
sensitivity analysis for each electrode, but the results would be hard to interpret.
Because the primary goal of EEG forward models is to be the first step for brain
source localization, we think that the best output to analyze is the topographic vari-
ation of the electric potential at the electrodes. This is motivated by the fact that
source localization almost only depends on the topography of the electric potential
at the electrodes. Indeed, the differential equation of the forward EEG problem in a
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Range Mean
Brain [0.5,1.5] 1.0
Skull [0.01,0.03] 0.02
Scalp [0.5,1.5] 1.0

Table 6.1: Conductivity ranges for a three-layer isotropic model

head domain Ω {
∇ · (σ∇u) = f in Ω
σ∇u · n = 0 on ∂Ω

states that there is a linear dependency of the potential u on the source f . As a
consequence, a source λf would generate a potential λu. So the amplitude of u does
not hold any useful information for the localization of f , and we will consider only
the topography of the potential. Hence we build the following output for our model,
based on the Relative Difference Measure (RDM) :

y = f(x) = RDM(u,uref ) =
∥∥∥∥ u
‖u‖

− uref

‖uref‖

∥∥∥∥ ,

where ‖.‖ is the discrete l2-norm, and u is a sample set of the electric potential
at the electrode positions, obtained for a given set of conductivity realization x =
(x1, x2, ..., xk). The topographic variation is computed with respect to a reference
potential uref which is fixed in the whole analysis. For the reference, our choice
is to take the potential obtained with the conductivity values corresponding to the
expectation of the parameters E(X1), ..., E(Xn).

We then have to define the prior distribution of the conductivity parameters
p(x1, x2, ..., xk). In vitro [29, 30] and in vivo [78, 1, 48, 57, 117] measurements of
the conductivities which can be found in the literature are not sufficient to define
a precise distribution. One certain fact is that the skull has a lower conductivity
than other tissues : in the literature, the ratio between scalp and skull conductiv-
ity ranges approximatively from 15 to 120. Tissues other than the skull are mostly
watery, and their conductivity can all be assumed to be in the same range (rela-
tively to the skull). For the sake of simplicity, we mainly focus in this chapter on a
three-layer model of the head (brain, skull, scalp), describing only the main tissue
differences of the head. Because we do not have real priors, we just assume uniform
distributions over the ranges described by table 6.1. Although the uncertainty about
the skull conductivity is supposed to be greater than others, we chose the same rel-
ative uncertainty for each conductivity. The goal is to have equal uncertainty on the
input parameters of the model, so that the results of the sensitivity analysis depend
only on the model itself. So for our sensitivity analysis, the reference potential is
computed with the mean values of the conductivities : 1, 0.02, 1 for brain, skull,
scalp.

3.2 Sampling size and computational cost

For our applications to EEG forward models, the computational cost in realistic ge-
ometries is a crucial point, and the sampling of the parameter space has to be rather
low. To determine a good trade-off between accuracy and sampling size, we used
spherical models for which the forward problem can be computed at a very cheap
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cost. We computed the sensitivity indices for many sampling sizes until convergence
of the FAST estimators was observed. For a three-layer spherical model with three
parameters (isotropic conductivities), we observed the convergence for 600 samples.
For the same model with four parameters (skull anisotropy), 800 samples were suf-
ficient to give very good estimates of the sensitivity indices. As a consequence, we
used these sampling sizes for the realistic models. The computational cost was fur-
ther reduced by using a grid of computers where more than 100 calculations could
be run in parallel.

3.3 A first simple enlightening case : spherical model with
superficial dipolar source

We start with a simple case to show the value of variance-based methods. We use a
3-shell spherical model with radii of 0.87, 0.92, 1 and we use nominal conductivity
values of 1.0, 0.02, 1.0 (from brain to scalp). A radial dipole is positioned at 0.83
on the z-axis and the simulated potential is sampled at 64 positions on the positive
z hemisphere of the outermost sphere. These positions were uniformly distributed
with a 15o spherical angle. If we perform a one-at-a-time sensitivity analysis, and
look at the variation of the RDM with respect to each conductivity separately, we
get the result presented in figure 6.1. It appears that the brain conductivity has lit-
tle importance in the topographic error, whereas skull and scalp conductivities can
really affect the potential topography. Now let us consider the variance-based sen-
sitivity indices : we denote x1, x2 and x3 the parameters corresponding to the brain,
skull and scalp conductivities respectively. The sensitivity indices are presented in
table 6.2. We learn more from these indices : we see that skull and scalp conductiv-
ities are not important parameters by themselves (S2 and S3 are relatively small),
but mostly via their interaction with other parameters (ST2 and ST3 are big). And
because ST1 is almost zero, it means that skull and scalp only interact together. Ac-
tually, ST1 = 0.03 = S1 +S12 +S13 +S123 (first-order index plus all interactions of x1),
so S12+S13+S123 < 0.03, and we can have an estimate of the second-order index S23,
which is given by ST2−S2 or ST3−S3. We see that S23 ' 0.7, which means that the in-
teraction between scalp and skull conductivities is responsible for about 70% of the
total variance of the scalp topographies. Unfortunately, the variance-based analysis
does not provide any information about the structure of this interaction. Still we
can make a guess : figure 6.2 shows the variations of the output y = RDM(u,uref )
when skull and scalp are varied at the same time, with the brain fixed at its nomi-
nal value. We see that the ratio between scalp and skull conductivities is constant
along the isolines. So in this plane where only skull and scalp conductivities vary,
the RDM behaves like a function of the scalp/skull conductivity ratio. It means that
the skull and scalp conductivities interact through their quotient. This is not sur-
prising, because in the analytical formulation of the electric potential in a spherical
conductor [22], the quantities containing the conductivities are quotients of the con-
ductivities of successive layers. Also, because the quotient is a non-linear function,
it explains why the first order indices are not sufficient to explain all the variance
of the scalp topographies (

∑
i Si = 0.26 < 1). Finally, the most important result of

this analysis is that the quantity corresponding to the scalp/skull conductivity ra-
tio drives just by itself 70% of the variability of the EEG scalp topographies (for a
3-shell spherical model).
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Figure 6.1: Variations of the RDM with respect to each conductivity, in a spherical
model, when the source is a superficial dipole.

S1 S2 S3 ST1 ST2 ST3 S23

∑
Sij(k), ij 6= 23

0.00 0.12 0.14 0.03 0.86 0.84 ' 0.7 < 0.03

Table 6.2: Sensitivity indices for a superficial dipole in a spherical model. The pa-
rameters x1, x2, x3 are the brain, skull and scalp conductivities.
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Figure 6.2: Variations of the RDM in the skull-scalp conductivity plane for a spher-
ical model. Isolevels of the RDM are plotted.

3.4 General results on a realistic model

We now consider a three-layer realistic model obtained after segmentation of a T1-
MRI of a subject with Brainvisa [16]. The EEG forward problem is solved using the
implicit FEM (chapter 4). We use electrode positions registered from a real EEG
experiment on the same subject with a 64 10-10 standard system. In this system, 4
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electrodes do not record brain signals (HEOG, VEOG, F9, F10), and were removed
from the electrode system, resulting in a 60 electrode configuration.

We first show in table 6.3 the maximum achievable RDM among the conductiv-
ity ranges defined in table 6.1 for one dipolar source in the brain at various depths.
We see that the maximum achievable RDM gets smaller as the depth of the dipole
increases. For a dipole located 5 cm under the skull, the biggest RDM is 4%. So it
appears that for a three-layer model, the sensitivity to the conductivity values only
matters for shallow sources. Also most of the time, the purpose of source localiza-
tion with EEG is to locate activity in the neo-cortex, which corresponds to shallow
sources. For both reasons, we will only consider shallow sources (dipoles) in the
following.

Let us consider the case where the model consists of three isotropic layers, like in
the previous section. We thus have three parameters x1, x2 and x3 corresponding to
conductivity values of brain, skull and scalp respectively. For the source, we chose to
position a dipole in the posterior wall of the central sulcus, which corresponds to an
activation in the somato-sensory cortex. For this model configuration, the sensitivity
indices with respect to the conductivities are given in table 6.4. Although we only
computed the first-order and total effect indices, we can still estimate the second
order effects like in the previous section. We find that S23 ' 0.7, which means that
about 70% of the topographic variability comes from the interaction between skull
and scalp conductivities. We see also that the influence of brain conductivity is
negligible.

Now considering that skull and scalp conductivities are the main input parame-
ters of the EEG forward model, a logical way to improve the model is to first refine
the model for these two tissues. As it was previously proposed [65, 109], we can im-
prove the model of the skull conductivity by considering it as anisotropic with two
main directions : radial and tangential with respect to the two closed surfaces defin-
ing the skull geometry. The conductivity of the skull is then defined by two scalar
values : its radial and tangential conductivity. For a three-layer model with skull
anisotropy, we then have four scalar parameters. We denote them x1, x2, x3 and x4

for brain, radial skull, tangential skull and scalp conductivities respectively. For the
conductivity ranges, we kept the interval [0.01 0.03] for the radial skull conductivity
and we assigned the interval [0.05 0.15] to the tangential skull conductivity. With
these ranges, the anisotropy ratio of the skull conductivity can vary between 1.5
and 15. The sensitivity indices for such a model are presented in table 6.5, where
the dipolar source is the same as in the isotropic case. The total effect indices ST1

and ST3 are very small, so we can neglect all the high order effects except S24. As
a consequence, we can have an estimate of S24 ' 0.65. This shows that a major
part of the topographic variability (about 65%) is driven by the interaction between
the radial skull conductivity and the scalp, while the effects of brain and tangential
skull conductivities are negligible.

Another common extension of the three-layer model is to include the cerebro-
spinal fluid (CSF), which gives a four-layer model. The importance of the CSF for
forward EEG models has been underlined previously [83, 106]. We incorporated this
tissue to our three-layer model by adding the surface of the gray matter as a new
interface between tissues. It is important to note that in order to carry the numer-
ous computations of the forward model required to compute the sensitivity indices,
we used a FEM mesh resolution which is not sufficient to handle the small distance
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Dipole depth 1 cm 2 cm 3 cm 4 cm 5 cm
max(RDM) 0.17 0.14 0.11 0.07 0.04

Table 6.3: Maximum of the RDM with respect to the depth of the dipole. The depth
of the dipole is given as the distance to the skull in centimeters.

S1 S2 S3 ST1 ST2 ST3 S23

∑
Sij(k), ij 6= 23

0.00 0.10 0.18 0.01 0.82 0.89 ' 0.7 < 0.01

Table 6.4: Sensitivity indices for a shallow dipole in a three-layer isotropic realistic
EEG model. The parameters x1, x2, x3 are the brain, skull and scalp conductivities.

S1 S2 S3 S4 ST1 ST2 ST3 ST4 S24

∑
Sij(k)(l), ij 6= 24

0.00 0.07 0.00 0.24 0.02 0.73 0.01 0.92 ' 0.65 < 0.03

Table 6.5: Sensitivity indices for a shallow dipole in a three-layer realistic EEG
model with skull anisotropy. The parameters x1, x2, x3, x4 are the brain, radial skull,
tangential skull and scalp conductivities.

S1 S2 S3 S4 ST1 ST2 ST3 ST4

0.05 0.03 0.06 0.16 0.25 0.19 0.56 0.65

Table 6.6: Sensitivity indices for a shallow dipole in a four-layer realistic EEG model.
The parameters x1, x2, x3, x4 are the brain, CSF, skull and scalp conductivities.

separating the inner skull surface and the gray matter surface. As a consequence,
we had to scale down the gray matter surface so that the distance to the inner skull
surface was numerically reasonable. As a consequence, the four-layer model that
we used has quite a big CSF compartment compared to reality and the sensitivity
indices that have been computed on this model should be considered accordingly.
For the source, we positioned a dipole inside the post-central gyrus, and the param-
eters are denoted x1, x2, x3 and x4 for the brain, CSF, skull and scalp conductivities.
The conductivity ranges were kept the same as before, and for the CSF we chose a
uniform distribution on the interval [2.5, 7.5]. For the mean values, we thus have a
CSF/brain conductivity ratio of 5, and this ratio can vary between 1.5 and 15 over
the distributions of the two conductivities. The sensitivity indices for this model
configuration are given in table 6.6. We see first that the first-order indices are
all rather small, whereas the total effect indices have all non-negligible values. It
underlies again the non-linear dependency of the EEG topographies on the conduc-
tivities. It also shows that the interaction structure is much more complicated in
this case, because it involves all the parameters. The brain and CSF conductivities
now have non negligible effects, with total effect indices of 0.25 and 0.19. The skull
and scalp are still the most influent parameters, with total indices of 0.56 and 0.65.
It is not possible to estimate the second-order effects directly from the first-order
and total indices, because in this case the interaction involves all the parameters.

3.5 Electrical impedance tomography (EIT)
It is also of interest to consider the case when the source is a current injection on
the scalp between two electrodes : this type of source configuration is encountered
in electrical impedance tomography (EIT), a method which can be used to calibrate
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S1 S2 S3 ST1 ST2 ST3 S13

∑
Sij(k), ij 6= 13

0.02 0.01 0.29 0.52 0.14 0.98 ' 0.5 < 0.13

Table 6.7: Sensitivity indices for a scalp current injection in a three-layer realistic
EIT model. The parameters x1, x2, x3 are the brain, skull and scalp conductivities.

S1 S2 S3 S4 ST1 ST2 ST3 ST4 S14

∑
Sij(k)(l), ij 6= 14

0.04 0.00 0.00 0.28 0.64 0.07 0.01 0.95 ' 0.5 < 0.08

Table 6.8: Sensitivity indices for a scalp current injection in a three-layer realistic
EIT model with skull anisotropy. The parameters x1, x2, x3, x4 are the brain, radial
skull, tangential skull and scalp conductivities.

the conductivities of EEG forward models [27, 78, 37], since EEG and EIT share the
same forward model and only the source term is different. Let us recall briefly the
principle of EIT. A current is injected through a pair of electrodes, and the goal is
to find the set of conductivity parameters which gives the best match between the
forward model simulation and the measurements. For a unitary current injection
between positions r1 and r2, the differential equation has the following form :{

∇ · (σ∇u) = 0 in Ω
σ∇u · n = δr1 − δr2 on ∂Ω

where δr1 = δ(r − r1) is the Dirac distribution at r1. It is easy to see that if the
conductivity is multiplied by a scalar factor λ > 0, then the solution u is divided
by λ. As a consequence, if we fix a scale for the conductivity, the EIT problem can
be reduced to finding the set of conductivity values which gives the best topography
match between the forward model simulation and the measurements. The factor λ to
apply to conductivities is then easily given by the amplitude of the measurements.
So the EIT problem has been reduced to a topography consideration, and we can
use the same sensitivity analysis design as above. With our realistic model, we
computed the sensitivity indices when the source is a current injection. Tables 6.7
and 6.8 show these sensitivity indices, with and without skull anisotropy. In both
cases, the total indices of the skull conductivity are small and we can estimate the
sensitivity index of the interaction between the brain and the scalp only : its value
is about equal to 0.5. So we see that the most important factor is the interaction
between brain and scalp conductivities, which drives around 50% of the topographic
variability. Surprisingly, the skull conductivity has a small effect in this source
configuration, but we found that it can be slightly modified depending either on
skull thickness or skull conductivity range. If the skull is thicker, or if the range of
variation of skull conductivity is shifted towards lower values, then the total effect
of skull conductivity increases and the total effect of brain conductivity decreases.
For the results presented in tables 6.7 and 6.8, we chose a frontal-occipital electrode
pair for the current injection. It should be underlined that the configuration of
this electrode pair (short or long distance, frontal-occipital or temporal left-temporal
right) had almost no influence on the sensitivity indices.
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4 DISCUSSION

The first lesson from this sensitivity analysis is that the skull and scalp tissues
are very important for the EEG forward models with three layers. This corresponds
to the intuitive idea that the important part of the model is the region between the
sources and the sensors. In the EEG case, the sources are believed to be in the gray
matter (the outermost part of the cortex) and the sensors are at the scalp surface,
and most of the area between these two is covered by skull and scalp tissues. For
a shallow source in a simple isotropic three-layer model of the head (brain, skull,
scalp), the sensitivity indices confirm this intuition, showing that the influence of
the conductivity model on the potential topography at the electrodes is due almost
entirely to the skull and scalp conductivities. At the same time, it reveals that the
brain conductivity has a very little effect. We think that this is due to the homo-
geneous model of the brain compartment used in the three-layer model. Indeed,
when the brain compartment is more complex (CSF, gray matter, white matter),
some studies showed that the conductivities of the brain tissues have non-negligible
effects [46, 109]. Still, although this study was done for a coarse model with three
layers, we think that it gives directions for further modeling of the head tissues. We
believe that it is more important to refine the modeling of the tissues that are lo-
cated between the sources and the sensors, e.g. the skull and scalp tissues, than the
tissues within the brain compartment. Still, in most of the conductivity models, the
refinement of the head tissue description focuses on the brain (gray matter, white
matter, anisotropy), in particular using DT-MRI modality [100].

One possible improvement for the skull tissue is to add anisotropy. For such a
model, our sensitivity analysis reveals that the tangential skull conductivity has al-
most no role to play in the topographic variability of the potential. It appears that
the effect of the skull conductivity comes from its radial component. In [65], it was
also observed that the radial conductivity has much more effect than the tangential
conductivity. Thus a model which incorporates the skull anisotropy would not bring
more variability in the scalp topographies than a model with an isotropic skull con-
ductivity. The relevance of such a model is hence arguable. In [109], the effect of
skull anisotropy is found to be important, but the radial and tangential conductivi-
ties are varied simultaneously, so the effect of the two skull conductivity components
can not be distinguished. Other possible refinements for the skull modeling would
be to segment it in several tissues (compact and spongy bone) or to divide it in areas
of different conductivities, because its thickness is variable. However such modeling
imply an increased accuracy in the skull segmentation, which does not seem easily
achievable without user interaction. For the moment, the automatic segmentation
of skull from T1-MRI consists most of the time in the computation of a smooth wrap-
ping of the gray matter surface, which defines the inner skull, and this surface is
then inflated to get the outer skull.

Another improvement of the model is to include the cerebro-spinal fluid (CSF),
which is actually located between the sources and the sensors. Our analysis of such
a four-layer model reveals that when incorporating the brain-CSF interface, the
brain and CSF conductivities have non-negligible effects. This result is consistent
with previous studies [46, 109] which show a non-negligible effect of the brain com-
partment when it is modeled as composed of different tissues (CSF, gray matter,
white matter). Our intuition is that this is due to the complex folding of the surface
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corresponding to the brain-CSF interface, which can be responsible for deformations
of the EEG topographies. Nevertheless, the skull and scalp conductivities still have
the greater sensitivity indices, and hence remain the most important tissues in a
four-layer model. It is important to note that we only considered a shallow source,
so these conclusions are no more valid for deep sources. It was shown in [109] that
for a source in the thalamus, the brain tissues have more influence than the skull.

For all the models we analyzed, the interaction between parameters is always
very important, underlying the non-linearity of the potential with respect to the
conductivities. For a simple three-layer spherical model, we showed in section 3.3
that there is a high interaction between skull and scalp conductivities, and that this
interaction seems to correspond to the scalp/skull conductivity ratio. We assumed
this is due to the fact that in the analytical formulation of the electric potential in a
spherical conductor [22], the quantities containing the conductivities are quotients
of the conductivities of successive layers. Following this idea, we can reparametrize
the conductivity models using ratios of conductivities, and recompute the sensi-
tivity indices with this new parametrization. We show in tables 6.9 and 6.10 the
sensitivity indices of the conductivity ratios, for the realistic three and four-layer
isotropic models. With this new parametrization, we removed a lot of interaction :∑

i Si = 0.94 for the three-layer model, and
∑

i Si = 0.86 for the four-layer model. It
thus shows that even in realistic models, the conductivity ratios of successive layers
are very important quantities. For the three-layer model, the first order index of
the scalp/skull conductivity ratio is almost equal to 1 (S2 = 0.94), which shows that
this quantity drives almost all the variability of the EEG topographies, like for the
spherical model. For the four-layer model, the first order index of the scalp/skull
conductivity ratio is also very high (S3 = 0.69) and proves again the importance of
this quantity, even when modeling the CSF. As a consequence, the primary goal of
an EEG forward model calibration should be to estimate the scalp/skull conductivity
ratio.

The classical method for conductivity calibration is the electrical impedance to-
mography (EIT), that we introduced in section 6.7. In this configuration, the sensi-
tivity indices are different. The total effect indices of brain and scalp conductivities
are important, whereas the total effect of skull conductivity is lower, see tables 6.7
and 6.8. It means that there is more interaction between scalp and brain conduc-
tivities than between scalp and skull conductivities. Furthermore, the interaction
is more complicated as it involves the three conductivities, and we were not able to
find the structure of this interaction. Still, considering the importance of the inter-
action between scalp and brain conductivities, we believe that the scalp/skull ratio is
not the quantity of choice to be estimated with EIT, although it was done in several
previous studies [78, 37].

More recent methods for conductivity calibration use focal evoked activity in the
cortex [37, 7, 38, 101, 59]. A simple somatosensory stimulus such as a median nerve
stimulation is presented to the subject, producing a focal activity in the somatosen-
sory cortex at short latency (20 ms). This focal activity can be well modeled by a
single dipole. Then, assuming more or less priors on the dipole location, the conduc-
tivities can be calibrated by matching the simulated potential given by the EEG for-
ward model with the evoked potential computed from the real EEG data. With this
source configuration, the topography of the simulated potential is indeed sensitive
to the scalp/skull conductivity ratio, and so this method is more appropriate than
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S1 S2 S3 ST1 ST2 ST3

0.00 0.94 0.00 0.04 0.99 0.01

Table 6.9: Sensitivity indices for a shallow dipole in a three-layer realistic EEG
model. The parameters x1, x2, x3 are the skull/brain ratio, scalp/skull ratio and scalp
conductivity. All the parameters are varied of ±50% with the following nominal
values : 1

50 for skull/brain ratio, 50 for scalp/skull ratio and 1 for scalp conductivity.

S1 S2 S3 S4 ST1 ST2 ST3 ST4

0.17 0.00 0.69 0.00 0.28 0.03 0.82 0.01

Table 6.10: Sensitivity indices for a shallow dipole in a four-layer realistic EEG
model. The parameters x1, x2, x3, x4 are the CSF/brain ratio, skull/CSF ratio,
scalp/skull ratio and scalp conductivity. All the parameters are varied of ±50% with
the following nominal values : 5 for CSF/brain ratio, 1

250 for skull/CSF ratio, 50 for
scalp/skull ratio and 1 for scalp conductivity.

EIT if the final goal is to calibrate the EEG forward model for source localization.
To illustrate this, we refer to chapter 7, section 3.3 where are shown some results of
conductivity calibration based on real data from an experiment with median nerve
stimulation.

5 CONCLUSION

The aim of this chapter was to present a global sensitivity analysis of the three-
layer EEG forward models, with respect to the conductivity parameters. We ana-
lyzed the impact of the conductivities on the topographic distribution of the electric
potential at the sensors. By using a variance-based method for the sensitivity anal-
ysis, we were able to quantify precisely the effect of each conductivity parameter,
and also the effect of parameters together, which is referred to as interaction. For a
shallow dipole and a three-layer head model, it appears that almost all the effect of
conductivity parameters on the potential topography is driven by the skull and scalp
conductivities. As a consequence, it is crucial to develop accurate models of these two
tissues. Also, skull and scalp conductivities have a high interaction, meaning they
have a joint effect on the potential topography. The quantity responsible for this in-
teraction appears to be the ratio between scalp and skull conductivities. This means
that the value of this ratio is very important in determining the potential shape.
That is why the calibration of EEG forward models should focus on estimating this
quantity. Our sensitivity analysis also reveals that the electrical impedance tomog-
raphy (EIT) is not adapted for such an estimation, and that calibration methods
based on evoked potentials are better suited for this purpose.



CHAPTER 7

CONDUCTIVITY CALIBRATION
WITH SOMATOSENSORY
EVOKED POTENTIALS

A new method for in vivo conductivity estimation of head tissues is proposed.
Unlike classical electrical impedance tomography methods, for which the
conductivity is inferred from a current injection on the scalp, we use an evoked
source inside the brain that comes from a somatosensory experiment. The
resulting uncertainty with respect to the source is then balanced by strong
constraints : we assume the source to be a single dipole located in the
somatosensory cortex, with orientation normal to the cortical surface. Using only
EEG data, we are then able to estimate conductivity values, using the MUSIC
method to recover the position of the source. The applicability of the method is
demonstrated on simulations and on real data.
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1 INTRODUCTION

As explained in chapter 3, section 6, a problem with EEG is its sensitivity to
electrical properties of head tissues. In particular, the bad knowledge of skull con-
ductivity can greatly affect the EEG source localization [49]. Further, it is known
that the skull conductivity can vary highly, depending on the subjects, but also for
the same subject depending on his age. For the purpose of better source estimation,
it is hence essential to be able to calibrate in vivo the conductivities of the EEG
forward models.

The main approach taken to achieve conductivity estimation is electrical impedance
tomography (EIT), in which a low-intensity current is imposed on the scalp through
selected EEG electrodes, and conductivity values are then inferred from potential
measurements at the remaining electrodes [27, 78, 37]. The results of the sensitivity
analysis presented in chapter 6 show that with this modality, the EEG topographies
have a different sensitivity to the conductivities than when considering an electric
source in the brain. As a consequence, if the EEG forward model is used for source
localization, it can be better calibrated with a source inside the brain.

Nevertheless, several problems arise when considering the calibration of the con-
ductivities with a brain source instead of a scalp current injection :

• With EIT, the source is artificial : a current is injected on the scalp. Putting an
artificial source in the subject’s brain would be of course very invasive, so we
need to consider a natural brain source, generated by a stimulus presented to
the subject.

• With EIT, the source is completely known : its position is given by the injection
electrodes, and its intensity is controlled by an amplifier. For a brain source
generated by a stimulus, we have less knowledge. We can still have a strong
a priori on certain parameters of the source by using well-understood stimuli.
For instance, a classical somato-sensory experiment is to use an electric stim-
ulation of the median nerve, localized at the wrist, which is known to produce
a very focal brain response in the posterior wall of the central sulcus at 20 ms.
For such a stimulus, we can put constraints on the source position by using a
segmentation of the cortical surface from an MRI of the subject.

Most of the previous approaches for conductivity calibration with a brain source
used a combination of EEG and MEG measurements [37, 7, 38]. In this case, the
brain source is first localized using the MEG measurements, then the source location
is fixed in the EEG forward model and the conductivities are calibrated using the
EEG measurements. The method principle is correct, but it is very likely that if an
MEG is available at the same time then the use of EEG is not necessary (unless for
combined EEG-MEG source localization). Most of the time, EEG is used alone, or
in combination with fMRI, and in this case it would be worthwhile to calibrate the
conductivities of the EEG forward model without MEG.

In this chapter, we thus propose a method to calibrate the conductivities with a
brain source, with only EEG. Such an approach has been briefly considered before
in [38], but without constraint on the source, which we demonstrate to have poor
robustness to noise. In our method, we use median nerve stimulation and a cortical
surface obtained from MRI segementation to constrain both the localization and
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orientation of the source. It allows us to define a very restrictive source space, and
we perform the source localization in this source space. Such constraints on the
source lead to a source localization almost independent on the conductivities, and so
we can perform the conductivity calibration as if the source was fixed. We present
results of the method applied to both simulated and real data.

2 METHOD

2.1 EEG forward model

We consider the electric potential V which satisfies, inside the head volume Ω with
conductivity σ, the following PDE :{

∇ · (σ∇V ) = ∇ · Jp in Ω
σ∇V · n = 0 on ∂Ω

,

where Jp represents the sources inside the brain. For the moment we do not assume
any conductivity model and we suppose that we are able to compute the potential V

for any given σ and Jp.

2.2 Source model

We suppose that we presented the subject with a median nerve stimulation, and
that we want to localize the brain source corresponding to the evoked potential at
20 ms. This evoked source is supposed to be localized in the somato-sensory cortex,
on the posterior wall of the central sulcus [45], and more important it is considered
to be a very focal source. As a consequence, we will model the source as a single
dipole. It corresponds well to a focal activity, and has the advantage of being defined
by a few parameters, which in our case is important because we want as few source
parameters as possible to remain unknown.

2.3 Source space

Usually, when doing single dipole localization, the dipole is allowed to move in the
whole head domain. Here we want to use the a priori information about the source
location, i.e. constrain the dipole position to the somato-sensory cortex. This can be
done by using a cortical surface segmented from an anatomical MRI of the subject.
Many toolboxes are available (Brainvisa, Brainsuite, Freesurfer) and can provide a
mesh describing the cortical surface. Usually, this cortical surface corresponds to
the grey/white matter interface, but sometimes it is also possible to get an estimate
of layer IV of the cortical sheet. We rather use this surface as most of the pyramidal
neurons are in layers III and V of the cortex. So we chose to use Freesurfer [19]
which can provide an estimate of the layer IV of the cortical sheet, thus giving a
good approximation of the real positions of the sources. It is then possible to extract
the part of this mesh corresponding to the somato-sensory cortex using automatic
labeling (see figure 7.1). Once we have a mesh of the somato-sensory cortex, it is
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Figure 7.1: The cortical surface can be clustered in different areas. For our applica-
tion, we keep the area corresponding to the post-central gyrus.

easy to constrain the dipole position : we use the mesh vertices as the only possible
locations for the dipole. We are then given a finite set of positions that define a
discretized source space. The dipole can be even more constrained by assuming
that its moment is normal to the cortical surface. In this case we are left with
only two unknowns for the source : its amplitude and at what mesh vertex it is
located. It is possible to use interpolation between the mesh vertices so as to have
a continuous description of the cortical surface, but this is not necessary since the
meshes produced by the segmentation tools are very fine. To give an idea, a mesh
describing precisely the somatosensory cortex contains about 105 vertices.

2.4 Single dipole localization on the cortical surface

Because we consider a discretized source space, it is very convenient to use a scan-
ning method, like MUSIC or beamformers, to localize a single dipole. To give an
example, we describe the source localization with the MUSIC method, but it can be
directly transposed to any beamforming method.

We assume that we have built a gain matrix for our EEG forward model with a
given conductivity σ, projecting all the dipoles previously defined on the electrodes.
For a dipole at a cortical mesh vertex i, we denote gi the column of the gain matrix
corresponding to this dipole, also called gain field.

Now we consider the EEG measurement data M , which is an n×m matrix, where
n is the number of electrodes and m is the number of time samples. Let M = USV

be the singular value decomposition of M . For the MUSIC method, we define a
signal subspace and a noise subspace. Here, in the case of a single source, the signal
subspace is spanned by the first left singular vector in U , call it u1, and P = I−u1u

T
1

is the orthogonal projector on the noise subspace.
Next we can define a cost function with respect to the cortical mesh vertices :

J(i) =
‖Pgi‖2

‖gi‖2
. (7.1)
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When J(i) is close to zero, this corresponds to most of the gain field gi being in
the signal subspace, in which case there is a high likelihood for there to be a source
located at vertex i. In our case of a single dipole, the estimated source position is
given by the vertex where J achieves its minimum.

2.5 Definition of a cost function for conductivities

For a given conductivity distribution σ, we are able to find the most probable location
of the dipole source within the set of cortical mesh vertices, given by the minimum of
J . Let us index the gain field of this ”optimal” dipole by the conductivity σ, denoting
gσ. We can hence define a cost function for the conductivity by quantifying the error
between this gain field and the measurements. One possible choice is to compute a
global RDM between the gain field and the measurements :

E(σ) =
1
m

m∑
i=1

RDM(Mi, gσ) =
1
m

m∑
i=1

∥∥∥∥ Mi

‖Mi‖
− gσ

‖gσ‖

∥∥∥∥ ,

where ‖·‖ is the discrete l2-norm, Mi is the vector of measurements at time sample i

and m is the number of time samples. In our case, we use the MUSIC method which
extracts a signal subspace from the measurements so as to limit the effect of noise,
hence it seems better to compare the gain field of the optimal dipole with the signal
subspace. We rather use the following cost function :

E(σ) = RDM(u1, gσ) =
∥∥∥∥ u1

‖u1‖
− gσ

‖gσ‖

∥∥∥∥ , (7.2)

where u1 is the first left singular vector of the measurements. This represents the
topographic error between the data and the gain field of the best dipole location. The
minimum of this cost function corresponds to the conductivity distribution which
gives the best topographic match with the measured scalp potentials. It is important
to note that each evaluation of E(σ) requires to generate a new gain matrix with the
corresponding conductivity σ. Depending on the method used to compute the gain
matrix, this can be more or less expensive, and so this will impact the number of
different conductivity distributions that can be considered.

An important point to note is that the absolute values of the conductivity cannot
be determined by this way. To illustrate this point, let us consider two conductivity
distributions σ1 and σ2 such that σ2 = λσ1 where λ is a scalar. Then, for a given
dipole, the corresponding gain fields are such that gσ2 = 1

λgσ1 . As a consequence,
considering the formula of E (7.2), we have Eσ1 = Eσ2 , and so the two conductiv-
ity distributions cannot be distinguished. It means that the minimum of the cost
function E is non unique, and one has to fix the global amplitude of the conductiv-
ity distibution for the problem to have a unique solution. In other words, it is only
possible to determine the relative variations of the conductivity distribution.

3 EXPERIMENTAL RESULTS
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3.1 Head model

All the following results are shown for a three-layer model with realistic geometry.
This model was built from a T1 MRI of a subject who participated in a somatosen-
sory experiment. The skull segmentation was first obtained automatically using
Brainvisa, and then corrected manually so that it best matches with the MRI. The
EEG electrode positions of the model were obtained from the registration of the 64
electrode positions recorded during the somatosensory experiment. A mesh of the
grey-white matter interface was obtained using Freesurfer, and the somato-sensory
cortex was automatically extracted using the labelling of the main brain areas.

3.2 Simulations and robustness to noise

To test the method, we considered the estimation of the scalp/skull conductivity ra-
tio, as the sensitivity analysis of chapter 6 has shown that the EEG topographies
are mainly sensitivite to this quantity. Hence, we fixed both brain and scalp con-
ductivities to 1, and we sampled the skull conductivity from 0.01 to 0.03 with a step
of 0.002. It gives eleven different conductivity distributions, with a scalp/skull ratio
varying between 33 and 100. For each of these conductivity distributions, we com-
puted the corresponding lead field using the FEM method described in chapter 4.
The nominal scalp/skull ratio was chosen to be 50, and we evaluated the capacity of
the method to estimate this ratio among the other sampled values.

We produced simulations of EEG data which resemble SEP. We chose a vertex
of the cortex mesh located on the posterior wall of the central sulcus, thus giving
a position r0 and an orientation q defining a dipole. To simulate the short latency
response to a median nerve stimulation, we modulated the gain field of this dipole
with 10 samples of a half sine wave period. This corresponds to what can be recorded
during 2 ms at a sampling rate of 5 kHz. As explained, the nominal value for the
scalp/skull ratio is chosen to be 50, so the EEG simulations were generated with the
dipole gain field at this conductivity.

First, we tested the robustness of the method to the noise at the sensors. Because
we consider evoked potentials which are generated from between 500 and 1000 sin-
gle trials, we can first assume that the noise average is a Gaussian noise (due to
the central limit theorem). We thus generated 100 realizations of a white Gaussian
noise that we added to the EEG simulation described above. This was done for four
different SNR : 50, 10, 5, 2. The method was then applied on these noisy SEP sim-
ulations, giving an estimate of the scalp/skull conductivity ratio as the minimum of
E among the different conductivity samples. These estimates are shown as boxplots
on figure 7.2. These are classical boxplots corresponding to the smallest observation,
lower quartile (Q1), median, upper quartile (Q3), and largest observation. The box
outlines the lower and upper quartiles, and the stars indicate possible outliers. Out-
liers are defined as any points larger than Q3+1.5∗IQR or lower than Q1−1.5∗IQR,
where IQR is the inter quartile range defined as IQR = Q3−Q1. Even for low SNR,
the method can recover the scalp/skull ratio with good accuracy. This is mainly due
to the fact that in this ideal situation with white Gaussian noise, the SVD performed
by the MUSIC method is able to remove almost all the noise from the simulations.
Actually, assuming a white Gaussian noise at the sensors is not very realistic : even
if the average is Gaussian, it is known that close sensors are not completely uncor-
related. To test our method with real noise, we generated many average of real EEG



123

SNR

Estimated scalp/skull ratio

50 10 5 2
30

35

40

45

50

55

60

65

70

75

Figure 7.2: Boxplots of the estimated scalp/skull conductivity ratio, with respect to
the different levels of SNR (white Gaussian noise).
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Figure 7.3: Boxplots of the estimated scalp/skull conductivity ratio, with respect to
the different levels of SNR (realistic noise).

measurements during a prestimulus period that is usually considered as a baseline
for evoked activity. We used a somatosensory experiment with more than 600 trials,
and we generated 100 different average noises by bootstrapping the trials (random
sampling with replacement). The results of the method in presence of realistic noise
are presented in figure 7.3. The results are not as accurate as with white Gaussian
noise, but the estimates are still good for a reasonable amount of noise (SNR=10)
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Figure 7.4: Boxplots of the estimated scalp/skull conductivity ratio, with and with-
out cortical constraint (realistic noise).
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Figure 7.5: Plots of E = RDM(u1, gσ) with respect to the scalp/skull conductivity
ratio, with and without the cortical constraint. The minimas of the two curves does
not match because they correspond to two different noise realizations (SNR=10).

which can be obtained with a sufficient number of trials. To illustrate the impor-
tance of the cortical constraint on the source, we did the same experiment without
the constraint. It means that, for each conductivity sample, a MUSIC localization is
performed in the whole head space. We show on figure 7.4 the boxplots at a SNR of
50 and 10, with and without the constraints. It clearly shows that the method fails
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Figure 7.6: Boxplots of the estimated scalp/skull conductivity ratio, with respect to
the source position error.

to recover a good estimate if the source position is not constrained. To give further
insight, we plotted on figure 7.5 two curves of E with and without the constraint, for
two different noise realizations at a SNR of 10. Without the cortical constraint, the
curve of E is very flat, because for each conductivity sample the source localization
finds a different dipole position that has a very good match with the measurements.
On the contrary, when the source is constrained to the cortical surface, the discrep-
ancy between the conductivity samples is far better. Because E has a flat profile
without the source constraint, the position of its minimum is very sensitive to the
noise, and in this case the method is not robust.

We also tested the robustness of the method to the errors in the cortical segmen-
tation. Actually, the anatomical MRI that we used has a 1 mm resolution, so the
location of the cortical surface is subject to errors of the mm order. Second, we con-
strain the source to a surface which is an estimate of the layer IV of the grey matter,
which is not necessarily the real location of the sources. Most of the pyramidal neu-
rons are located in layers III and V of the grey matter, and their apical dendrite can
extend more or less towards upper layers. Also, the thickness of the grey matter
varies between 3 mm and 6 mm, and the grey and white matter surfaces are not
necessarily parallel, so the dendrites of the pyramidal neurons are not necessarily
perfectly perpendicular to the cortical surface that we use. As a consequence, a real
brain source does not necessarily have its centroid located exactly on the segmented
cortical surface, and its global moment is not necessarily perpendicular to the cor-
tical surface. We thus generated other EEG simulations where the dipole that we
first chose on the cortical mesh was randomly modified. We first moved only its posi-
tion : we generated 100 random vectors sampling the surface of a sphere with fixed
radius, and add these vectors to the position of the dipole. This was done for four
radii of 1 mm, 2 mm, 5 mm and 10 mm. The boxplots of the estimated conductivity
are shown on figure 7.6. Similarly, we changed only the moment of the dipole : we
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Figure 7.7: Boxplots of the estimated scalp/skull conductivity ratio, with respect to
the source moment error.
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Figure 7.8: The evoked potential is shown 20 ms after the stimulus (top view of the
sensors on the subject’s head). The nice dipolar strucutre of the potential topography
shows the validity of the single dipole model.

generated 100 different vectors on the surface of a cone with a certain angle, where
the axis of the cone is the original dipole moment. This was done for four angles (in
degrees) : 5, 10, 20 and 45. The results of the estimation are shown on figure 7.7.
It appears that the estimation is very sensitivite to the error on the source position
and moment. The results show that the method can reasonably be applied only if
the real source is located less than 2 mm away of the segmented cortical surface and
the angle error is less than 10 degrees.

3.3 Real data

The method was also applied on real data coming from a somatosensory experi-
ment with median nerve stimulation. The data was recorded at Hopital la Timone
(Marseille, France), with a 64-channel EEG helmet. An electrical stimulator was po-
sitioned on the subject’s wrist, and the intensity of the current was chosen according
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to the sensitivity threshold of the subject, i.e. when the stimulation produced move-
ment of the thumb (around 10 mA). The stimulation was repeated at a frequency
of 5 Hz while the potential was sampled at 5 kHz. We then averaged the data over
about 500 artifact-free trials to obtain the N20 somatosensory evoked potentials
(figure 7.8).

For this experiment, we computed several gain matrices for different conductiv-
ity distributions. These conductivity distributions were generated by sampling each
conductivity of each layer independently, while the others were fixed to nominal val-
ues of 1, 0.02, 1 for brain, skull, scalp respectively. For each of these conductivity
distributions, we computed the value of the cost function E. Because we sampled
each conductivity independently, what we got is the variation of E = RDM(u1, gσ)
with respect to each conductivity. We thus show on figure 7.9 a plot of the RDM
with respect to the variation of each conductivity. We can see that the curves which
show the highest variability of the RDM (between 21% and 29%) are the ones corre-
sponding to the variations of the skull and scalp conductivities. The variation of the
brain conductivity only makes the RDM vary between 24% and 26%, despite a large
range of variation (the brain conductivity was varied from 0.3 to 10). Also, for skull
and scalp, the minima both correspond to a RDM of 21%, for values of 0.009 and 2.5
respectively, which gives a scalp/skull ratio of 1

0.009 = 111 and 2.5
0.02 = 125 (relatively

to the nominal values). The fact that the two minima give the same RDM and a sim-
ilar scalp/skull ratio confirms the relevance of the quantity σscalp

σskull
. Actually, because

the interaction of skull and scalp conductivity is so high, it would be impossible to
estimate both, and only their ratio can be estimated. So with this method using a
somatosensory evoked potential, and for a three-layer model, the calibration can be
done either by estimating the skull conductivity or the scalp conductivity, because
both can provide an estimate of the scalp/skull ratio.

4 CONCLUSION

We have presented a new approach for conductivity estimation, using an evoked
source in the somatosensory cortex and only EEG measurements. The source is lo-
calized by scanning the vertices of a mesh describing the somatosensory cortex. With
this constraint, the source localization is very robust to the choice of conductivity :
it is as if the source was fixed, which in return makes the conductivity estimation
possible. We showed the applicability of this method on both simulated and real
data, for the estimation of the scalp/skull conductivity ratio in a three-layer model.
The main weakness of the method seems to be its strong dependency on the quality
of the mesh describing the cortex. Yet we can argue that the accuracy given by a T1
MRI (a few mm) is comparable to the accuracy of a source localization with MEG.
Hence it is unlikely that the conductivity estimation with combined EEG-MEG mea-
surements [37, 7, 38] would give better results than our approach using only EEG.
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Figure 7.9: RDM between the N20 SEP and the simulated potential given by the
forward model with respect to conductivity variations : brain conductivity, skull
conductivity, scalp conductivity. For each conductivity variation, the other conduc-
tivities are fixed to their nominal values : 1, 0.02, 1 for brain, skull and scalp respec-
tively.
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Summary and main contributions
The development of the forward EEG and MEG models towards more realism is
linked to the development of the structural imaging techniques of the body. With
the use of high-fields MRI scanners (3T ) and new modalities (DT-MRI), it is possible
to get very complex descriptions of the human head tissues. Solving the PDEs of the
electromagnetic field in such geometries requires the use of volume-discretization
methods, such as the FDM, FEM, or FVM. All these methods have in common a
high computational cost, which is more or less important depending on the accuracy
of the method. The work we presented in part I aims at lowering this cost while
keeping a good accuracy. The FEM method introduced in chapter 4 just requires a
cubic mesh and yet is able to handle complex domains by using levelsets represen-
tations. It requires very little user interaction, and its memory and computational
costs are reasonable. It thus allows to run simulations in high resolution realistic
geometries on an everyday desktop or laptop computer. In chapter 5, we extended
the reciprocal PDEs from pointlike sensors to non-pointlike sensors, thus decreas-
ing the number of computations needed to build a gain matrix in the case of complex
sensors (e.g. first or second order gradiometers).

The accuracy of the forward EEG models also depends strongly on the choice
of efficient conductivities. Although some methods exist for in vivo conductivity
estimation (EIT, MREIT), it is not clear how well they can perform for the calibration
of an EEG forward model which is used for brain source localization. The part II is
a study of the problem of conductivity calibration. To better understand the forward
EEG models and their sensitivity to the conductivities, we presented in chapter 6
a global sensitivity analysis of the EEG topographies in the most common models
(three-four layers). The two main results are :

• For a source in the brain, the EEG topographies are mostly sensitive to skull
and scalp conductivities, especially to the value of their ratio.

• The sensitivity of the EEG topographies to the conductivities is different whether
the electric source is in the brain or at the scalp surface.

As a consequence, it seems important to focus on the calibration of the value of the
scalp/skull conductivity ratio, and a configuration where the source is located in the
brain appears to be the best for estimating this quantity. Following these results,
we proposed in chapter 7 a method for the calibration of the conductivities with a
brain source. We showed on simulations the capacity of the method to give a good
estimate of the scalp/skull conductivity ratio, and its applicability to real data.

Perspectives
The methods presented in this thesis have possible applications or extensions. Some
of them are projects for the future while others are concrete or already ongoing.

Improve and make available the implicit FEM. As explained in the conclu-
sion of chapter 4, the implicit FEM has less control on the solution at the interfaces
than the tetrahedral FEM. Actually, in the Implicit FEM, the solution is approxi-
mated by a piecewise trilinear function, which is trilinear in each voxel. For a voxel
crossing an interface, the approximated solution and its derivative are hence con-
tinuous through the interface. For the real solution, there must be continuity of the
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potential and the flux through the interface, which means that the normal deriva-
tive of the potential is discontinuous at an interface. As a consequence, the quality
of the approximation can be improved if for the crossing voxels we consider local ba-
sis functions for which the normal derivative is also discontinuous at the interface.
This kind of approach is called the Immersed Finite Element Method, and has been
previously developed for Q1 elements in the 2d case [47], giving a convergence rate
of O( 1

h2 ). We are currently working on a possible extension to the 3d case.
The code of the Implicit FEM (chapter 4) is written in C++, and is developed

under Linux. For the moment it is still in a development state, but it is planned to
produce a stable release that can be distributed.

Sensitivity analyses of complex EEG forward models. The variance-based
sensitivity analysis of the forward EEG models (chapter 6) has been done only for
models with three or four scalar conductivity parameters. It would be interesting
to carry the same sensitivity analysis on more refined models which describe many
different tissues. It is now possible to build models with up to 11 different scalar
parameters [83]. The interest of such an analysis would be to identify which pa-
rameters are non-influent so that they can be fixed to an average value without
affecting the output of the model. If many parameters were (almost) non-influent,
then only a few remaining parameters would need to be estimated, which would
make the estimation possible. The drawback of the variance-based methods is their
computational cost, as they require many calculations of the model to give reliable
estimates. For a forward EEG model with 10 or more conductivity parameters, ap-
plying a variance-based method would require too many sample points of the pa-
rameter space to be possible. Nevertheless, another approach called the elementary
effects method [68] could be applied in this case, as it requires a very small sampling
size, but at the price that the sensitivity indices hold less information.

Statistical study of the conductivity calibration on real data. The method
for conductivity calibration described in chapter 7 will be used as part of an INSERM
experimental protocol starting in fall 2008 at the hospital La Timone (Marseille,
France). This experiment will involve 30 subjects with a drug-resistant epilepsy who
are waiting for a presurgical sEEG exploration (implantation of depth electrodes).
For each subject, the conductivities of a realistic EEG model will be calibrated both
with EIT and with SEP. Then some source localization methods will be performed on
EEG recordings of interictal spikes, both with standard and calibrated conductivity
values. The aim of the study is to compare the results of the source localizations
with and without conductivity calibration, and also later with the finer localizations
given by the depth electrodes. This study is particularly interesting as the subjects
will be mostly children and teenagers for whom the skull tissue is not mature yet,
and hence have a very variable conductivity.
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Résumé et principales contributions

Le réalisme toujours plus poussé des modèles directs EEG et MEG est fortement
lié au développement des techniques d’imagerie structurelle du corps humain. Avec
l’utilisation de scanners IRM à haut champ (3T ) et l’apparition de nouvelles modalités
(DT-MRI), il est possible de construire des descriptions très complexes des tissus
composant la tête. Pour résoudre les EDP du champ électromagnétique dans de
telles géométries, il est nécessaire d’utiliser des méthodes de discrétisation volu-
mique telles que les différences finies, les éléments finis ou les volumes finis. Toutes
ces méthodes ont le désavantage de présenter un coût computationnel élevé, plus
ou moins important selon la précision de la méthode. Les travaux que nous avont
présentés dans la première partie de cette thèse ont pour but de réduire ce coût
computationnel tout en gardant une bonne précision. La méthode éléments finis
exposée au chapitre 4 est basée sur un maillage Cartésien, simple à mettre en oeu-
vre, et cependant est capable de traiter avec précision des géométries complexes par
l’emploi de fonctions implicites. Cette méthode requiert très peu d’intervention de
la part de l’utilisateur, et ses coûts en temps et en mémoire restent limités. Cette
méthode permet donc de produire des simulations EEG et MEG dans des géométries
réalistes à haute résolution sur n’importe quel ordinateur personnel courant. Dans
le chapitre 5, nous avons étendus les EDP réciproques utilisées en EEG et MEG
afin de prendre en compte l’utilisation de capteurs non ponctuels. Typiquement,
cela permet de réduire notablement le coût computationnel des simulations lorsque
des capteurs complexes sont simulés (par exemple les gradiomètres de premier et
second ordre).

La précision des modèles directs EEG dépend également fortement du choix des
valeurs de conductivité qui sont affectées au modèle. Bien que certaines méthodes
soient développées afin d’estimer in vivo les valeurs de conductivité, il n’est toujours
pas clair qu’elles puissent véritablement être efficaces pour la calibration de modèles
direct EEG utilisés pour la localisation de sources. Dans la seconde partie de cette
thèse, nous avons étudié ce problème de calibration de conductivités. Dans un pre-
mier temps, afin de mieux comprendre la sensibilité de ces modèles aux paramètres
de conductivité, nous avons effectué au chapitre 6 une analyse de sensibilité pour les
modèles les plus couramment utilisés (trois ou quatre couches). Les deux résultats
principaux sont les suivants :

• Pour une source située dans le cerveau, les topographies EEG sont principale-
ment sensibles aux conductivités du crâne et du scalp, surtout à la valeur de
leur ratio.

• La sensibilité des topographies EEG aux conductivités est différente selon que
la source électrique est située dans le cerveau ou à la surface du scalp.

Par conséquent, il nous semble important de se concentrer sur la calibration du ratio
de conductivité scalp/crâne, et une configuration dans laquelle la source est située
dans le cerveau semble être la meilleure pour l’estimation de cette quantité. Prenant
en compte ces résultats, nous avons proposé au chapitre 7 une méthode pour la
calibration de conductivtés utilisant une source située dans le cerveau. Les résultats
de cette méthode sur différents jeux de simulation ainsi que sur des données réelles
ont montré sa capacité à estimer le ratio de conductivté scalp/crâne.
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Perspectives
Les méthodes que nous avons présentées dans cette thèse ont de possibles applica-
tions et extensions. Certaines sont au stade de projet mais d’autres sont déjà des
travaux en cours.

Améliorer et rendre disponible la FEM implicite Comme expliqué en conclu-
sion du chapitre 4, la FEM implicite a moins de contrôle sur la solution au niveau des
interfaces que la FEM tétrahedrique. En effet, avec la FEM implicite, la solution est
approchée par une fonction trilinéaire par morceaux, qui est trilinéaire dans chaque
voxel. Ainsi, pour un voxel coupé par une interface, l’approximation de la solution
est continue à travers l’interface, et il en est de même pour sa dérivée. Pourtant, la
solution réelle doit vérifier des conditions de saut qui imposent la continuité du po-
tentiel et du flux à travers les interfaces. Cela signifie en particulier que la dérivée
normale du potentiel est discontinue au niveau d’une interface. Par conséquent, il
est possible d’améliorer la qualité de l’approximation de la solution en modifiant les
fonctions de base au niveau des voxels coupés, et en utilisant des fonctions dont la
dérivée normale est discontinue au niveau de l’interface. Ce type d’approche est con-
nue sous le nom d’éléments finis immergés, et a été précédemment développée pour
des éléments bilinéaires dans le cas 2d [47], avec un taux de convergence en O( 1

h2 ).
Nous travaillons actuellement sur une possible extension au cas 3d.

Le code de la FEM implicite est écrit en C++ et développé sous Linux. Pour le
moment il est toujours dans un stade de développement mais le but à terme est de
produire une version stable qui puisse être distribuée.

Analyse de sensibilité de modèles directs EEG complexes L’analyse de sen-
sibilité basée sur la variance que nous avons effectuée pour les modèles directs EEG
(chapitre 6) s’est restreinte aux modèles avec au plus quatre paramètres de conduc-
tivité. Il serait intéressant de mener le même genre d’analyses sur des modèles plus
raffinés qui décrivent beaucoup plus de tissus différents. Il est actuellement possible
de construire des modèles qui peuvent comporter jusqu’à 11 paramètres de conduc-
tivité [83]. L’intérêt d’une telle analyse est d’identifier quels sont les paramètres qui
sont très peu influents, afin de pouvoir en connaissance de cause leur affecter une
valeur moyenne tout en sachant que le modèle n’en sera pas affecté. Si beaucoup de
paramètres étaient non influents, il serait même possible d’envisager l’estimation
du peu de paramètres restants. Le problème des méthodes basées sur la variance
est leur coût computationnel, puisqu’un grand nombre de simulations du modèle
sont nécessaires pour obtenir des estimations raisonnables. Pour un modèle direct
EEG comportant 10 paramètres de conductivité ou plus, l’utilisation d’une méthode
basée sur la variance nécessiterait de considérer un bien trop grand nombre de simu-
lations pour être applicable. Néanmoins, d’autres méthodes d’analyse de sensibilité
sont possibles, comme celle des effets élémentaires [68], et peuvent être utilisées
dans ce cas car elles recquièrent un nombre de simulations beaucoup plus faible, au
prix cependant d’une analyse de sensibilité moins performante.

Etude statistique des calibrations de conductivité sur données réelles La
méthode pour la calibration de conductivité présentée au chapitre 7 va être utilisée
au sein d’un protocole expérimental de l’INSERM qui commencera à l’automne 2008
à l’hopitâl de La Timone à Marseille. Cette expérience sera menée sur trente sujets
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au total, qui présentent une épilepsie partielle pharmaco-résistante et qui sont en
attente d’une exploration SEEG préchirurgicale (implantation d’électrodes dans le
cerveau). Pour chaque sujet, les conductivités d’un modèle EEG à géométrie réaliste
seront calibrées, à la fois par EIT et par la méthode utilisant les PES. Ensuite des
méthodes de localisation de sources seront appliquées sur des enregistrements de
pointes intercritiques, à la fois avec des valeurs de conductivité standard et cal-
ibrées. Le but de l’étude est de comparer les résultats de localisation avec et sans
calibration des conductivités, et aussi plus tard avec les localisations fines obtenues
par SEEG. Cette étude est particulièrement intéressante puisque les sujets seront
principalement des enfants et des adolescents pour lesquels l’os du crâne n’est pas
encore arrivé à maturité, et donc sa conductivité peut être très variable.
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APPENDIX A

THE FINITE ELEMENT
METHOD (FEM)

The FEM [119] is a broadly used method to approximate the solution of Partial Dif-
ferential Equations (PDEs) or integral equations over a finite domain. Its ability
to handle complex geometries and boundaries with relative ease and with a sound
mathematical basis has made it the method of choice for solving problems such as
structural mechanics, electromagnetic propagation and in some cases fluid dynam-
ics. At the heart of the method are three main ingredients:

• A variational formulation of the PDE, obtained by multiplying the PDE by a
test function w and integrating the resulting equation by parts over the domain
of interest Ω. This results in a global criterion over Ω that encompasses both
the PDE and the boundary conditions that are required to select a particular
solution. This variational formulation usually decreases the amount of regu-
larity required for the solution and is sometimes called the weak formulation
of the problem.

• The variational problem is then discretized. An approximation of the solu-
tion of the variational criterion is sought in a discrete space, in such a way
that when the discretization step tends to zero, the approximation tends to the
original continuous solution of the variational problem. The discretization is
usually defined by meshing the domain Ω and by approximating the original
solution of the variational problem using interpolation over the mesh. Even
though any type of mesh can be used for the domain, triangular or tetrahedral
meshes are most often used because they are easier to adapt to the geometry
of Ω. Quadrangular meshes are also often encountered.

• Once discretized the problem is solved as a linear matricial problem, with ma-
trices that are guaranteed to be sparse.

In this appendix, we present in detail the Finite Element Method as applied to
the electric potential PDE (3.7). It is meant as an introduction to chapter 4.
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1 THE ELECTRIC POTENTIAL PDE

We recall the Poisson equation

∇ · (σ∇V ) = f = ∇ · Jp .

To obtain a unique solution, one needs to supplement this equation with a boundary
condition. To do so, we hypothesize that no current flows outside of the head (which
is mostly true except at the spinal column which is “far” from most EEG/MEG mea-
surements). We thus have to solve the following problem:


∇ · (σ∇V ) = ∇ · Jp in Ω

σ
∂V

∂n
= σ∇V · n = 0 on S = ∂Ω.

(A.1)

This problem will be solved using a Finite Element Approach. We will first show
that the PDE A.1 can be formulated as a variational problem (section 2), which is
then discretized to obtain a linear system (section 3), and then solved (section 4).

2 A VARIATIONAL FORMULATION OF THE PDE

Let us first define some functional spaces that will be needed hereafter.

H1(Ω) =
{
w ∈ L2(Ω),∇w ∈ L2(Ω)3

}
.

H2(Ω) =
{
w ∈ L2(Ω),∇w ∈ H1(Ω)3

}
.

These spaces simply provide functions that can be plugged within the equations that
will be used (with all integrals and differentiations well defined).

We first show that the following two problems are equivalent:

➀ V ∈ H2(Ω) is solution of:
∇ · (σ∇V ) = f in Ω

σ
∂V

∂n
= σ∇V · n = g on S = ∂Ω.

➁ V ∈ H1(Ω) is such that

∀w ∈ H1(Ω)
∫

Ω

σ(r)∇V (r) · ∇w(r) dr +
∫

Ω

f(r)w(r) dr−
∫

S

g(r)w(r) ds = 0 .
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Notice that the PDE in ➀ is exactly the same as the one in A.1: we have just
renamed f = ∇ · Jp and allowed for a more general Neumann boundary condition
g. This makes the presentation slightly more general and shows that the basic
method will remain the same even if there are currents injected on the boundary.
The functions f and g are supposed to be square integrable, that is f ∈ L2(Ω) and
g ∈ L2(∂Ω).

Theorem A.1. Problems ➀ and ➁ are equivalent.

Proof.

➀ =⇒ ➁

Using the formula: ∇ · (σw∇V ) = σ∇V · ∇w + w∇ · σ∇V and integrating it over the
domain Ω, we have:∫

Ω

w(r)∇ · σ(r)∇V (r) dr =
∫

Ω

∇ · (σ(r)w(r)∇V (r)) dr−
∫

Ω

σ(r)∇V (r) · ∇w(r) dr

In the left hand side of this equation, ∇ · σ∇V can be replaced by f because of ➀.
The Green theorem can be used to transform the first term of the right hand side
giving:∫

Ω

σ(r)∇V (r) · ∇w(r) dr +
∫

Ω

f(r)w(r) dr−
∫

S

w(r)σ(r)∇V (r) · n ds = 0 .

Replacing σ(r)∇V (r) · n by its value on S as given by the boundary condition of ➀

yields the result.∫
Ω

σ(r)∇V (r) · ∇w(r) dr +
∫

Ω

f(r)w(r) dr−
∫

S

g(r)w(r) ds = 0 .

➁ =⇒ ➀

If ➁ is true for any w ∈ H1(Ω), it is also true for w ∈ D(Ω) the space of C∞ functions
with compact support in Ω. The dual of D(Ω) is the space of distributions over
Ω, D′(Ω). If ∇ · (σ∇V ) ∈ L2(Ω), then ∇ · (σ∇V ) − f ∈ L2(Ω) since f ∈ L2(Ω) by
hypothesis. We denote by < ., . > the duality bracket between the spaces L2(Ω) and
D′(Ω). Thus Eq. ➁ can be written as < ∇ · (σ∇V ) − f, w >= 0. From a standard
result in functional analysis [Brezis 88], ∇ · (σ∇V )− f is zero almost everywhere.

3 DISCRETIZATION OF THE VARIATIONAL FORMULA-
TION

3.1 General discrete framework
The 3D space Ω is tessellated with bounded cells (e.g. tetrahedra or hexahedra)
(Ci), i = 1 . . . NC . This tessellation Ωh also introduces a set of points (Pi), i =
1 . . . NP (the vertices of the cells) and the space of the continuous functions over
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Ω is approximated by a vector space using some basis functions (φi), i = 1 . . . NP

defined at each vertex.

H1
h(Ωh) =

{
wh,∃(w1, . . . , wNP

) ∈ RNP , w(r) =
NP∑
i=1

wiφ
i(r)

}
,

The boundary of the tessellation Sh also defines a tessellation of S the boundary of
Ω. Without loss of generality, we assume that the vertices of the tessellation that
are on the boundary of the tessellation are (Pi), i = 1 . . . NS with NS < NP .

H1
h(Sh) =

{
wh,∃(w1, . . . , wNS

) ∈ RNS , wh(r) =
NS∑
i=1

wiφ
i
Sh

(r)

}
,

where φi
Sh

is the restriction to Sh of the function φi.

The discretization of the variational formulation ➁ is obtained by using the dis-
cretized versions Vh, wh, fh and gh of all the involved functions V , w, f and g :

∫
Ωh

σ(r)∇Vh(r) · ∇wh(r) dr +
∫

Ωh

fh(r)wh(r) dr−
∫

Sh

gh(r)wh(r) ds = 0 . (A.2)

Furthermore, H1
h(Ωh) is a vector space of finite dimension equipped with the

basis (φi), i = 1 . . . NP . So if (A.2) is true for any wh ∈ H1
h(Ωh), it is true for any φi,

and reciprocally. So finally, the discretized version of the variational formulation ➁

is :

Vh ∈ H1
h(Ωh) is such that

∀φi, i = 1 . . . NP∫
Ωh

σ(r)∇
(∑NP

j=1 Vjφ
j(r)

)
· ∇φi(r) dr +

∫
Ωh

fh(r)φi(r) dr−
∫

Sh
gh(r)φi

Sh
(r) ds = 0

∀φi, i = 1 . . . NP∑NP

j=1 Vj

∫
Ωh

σ(r)∇φj(r) · ∇φi(r) dr +
∫
Ωh

fh(r)φi(r) dr−
∫

Sh
gh(r)φi

Sh
(r) ds = 0 .

(A.3)

We now introduce the matrix A of size NP ×NP with the coefficients :

Aij =
∫

Ωh

σ(r)∇φi(r) · ∇φj(r) dr .

Note that A is naturally symmetric. We also introduce the column vector B of size
NP :

Bi =

{∫
Ωh

fh(r)φi(r) dr−
∫

Sh
gh(r)φi

Sh
(r) ds for i ≤ NS∫

Ωh
fh(r)φi(r) dr otherwise .

So by denoting V = [Vi] the column vector containing the coefficients of Vh in the
basis (φi), (A.3) can be written as

AV + B = 0 .



146 APPENDIX A. THE FINITE ELEMENT METHOD (FEM)

VT AV =
NP∑

i,j=1

ViVjAij =
NP∑

i,j=1

∫
Ωh

ViVjσ(r)∇φi(r) · ∇φj(r) dr =
∫

Ωh

σ(r) ‖∇Vh(r)‖2
dr

(A.4)
This proves that the matrix A is positive because σ > 0 over Ω. Note, however

that the matrix is not definite. Indeed, VT AV is zero if ∇Vh(r) = 0 in Ω almost
everywhere. This is natural as the original equation is insensitive to the addition
to V of a constant function over Ω. On our discretized spaces, this happens for
Vh = Cst1 (this is the case whenever the constant function over Ωh belongs to the
space H1

h(Ωh) which is the case for the standard basis functions P1 or Q1 used for
tetrahedric or hexahedric cells respectively). Similarly to Eq. A.4, we can prove that
VT

1 AV2 =
∫
Ω

σ(r)∇Vh1(r) · ∇Vh2(r) dr. Applying this result to V2 = 1, proves that
the kernel of the matrix A is the constant vector 1. Rewriting this result for each
line of the matrix gives:

∀i = 1 . . . NP

NP∑
j=1

Aij = 0 . (A.5)

This result can be used to reduce the amount of memory used to store the matrix A.

3.2 An implementation with P1 elements

In practice, the most common approach is to use P1 basis functions over a tetrahe-
dral mesh. In dimension d, a tetrahedron Tj is defined by d + 1 vertices Pik

, k =
1 . . . d + 1. The restriction φi

j of φi to Tj is defined by (for notational simplicity, we
assume without loss of generality that Pi1 = P1):

φi
j(r) =

{
0 if the vertex Pi does not belong to Tj

|r P2...Pd+1|
|P1...Pd+1| otherwise ,

where the vectors in the determinants are written with d + 1 coordinates: the usual
d coordinates are augmented with a final 1 (this is called projective or homogeneous
coordinates). Because φi

j is a linear function of r, its gradient is a constant vector.
Given this value of the gradient ∇φi

j , the matrix A is computed as:

Aij =
∑

k:Pi∈Tk,Pj∈Tk

∫
Tk

σk∇φi
k(r) · ∇φj

k(r) dr ,

Here, σ was discretized such that it has a constant value σk over the tetrahedron Tk,
so all the terms in the integral are of the same order. It implies that the tetrahedral
mesh must match with the subdomains where σ is constant. The formula for Aij

shows that the only non-diagonal non-zero coefficients of the matrix A correspond
to the edges of the mesh. Consequently, the matrix A is very sparse.

Since we usually assume that g = 0 for the forward EEG problem, the computa-
tion of B includes only the term containing f = ∇ · Jp.

Bi =
∫
Ωh
∇ · Jp(r)φi(r)dr becomes:
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Bi =
∫

Ωh

∇ ·
(
φi(r)Jp(r)

)
dr−

∫
Ωh

∇φi(r) · Jp(r) dr

=
∫

Sh

φi(r)Jp(r) · n(r) ds(r)−
∫

Ωh

∇φi(r) · Jp(r) dr

To go further, one needs to choose a specific model for Jp.

The continuous case In this first case, Jp is represented as Jp(r) =
∑NP

j=1 φj(r)Jp
j .

Consequently:

Bi =
NS∑
j=1

Jp
j ·
∫

Sh

φi(r)φj(r)n(r) ds(r)−
NP∑
j=1

Jp
j

∫
Ωh

∇φi(r) · φj(r)dr

We can assume that there are no sources on Sh if we only consider sources in the
brain, hence :

Bi =
NP∑
j=1

Jp
j

∫
Ωh

∇φi(r) · φj(r)dr .

The Dirac case In this case, the current distribution is represented by one or
several dipoles each localized at a single point in space. At one dipole position r0,
the current orientation and strength are described by a vector q. Thus, Jp(r) can be
written as: Jp(r) = qδ(r− r0). Consequently,

Bi = q ·
∫

Sh

φi(r)δ(r− r0)n(r) ds(r)− q · ∇φi(r0)

Assuming again that the dipole is not on Sh gives:

Bi = −q · ∇φi(r0) . (A.6)

4 SOLVING THE LINEAR SYSTEM

The solution of the discretized problem can be found by solving AV+B = 0. This
is a fairly simple linear system, which could in theory be solved using a pseudo-
inverse (the inverse of A does not exist since it is not definite). However, A is a very
big matrix which can be stored only because it is sparse. Since the pseudo-inverse
(or the inverse) of a sparse matrix is usually not a sparse matrix, it is unwise to
try to compute it, as the amount of memory needed to store it will be huge. It is
thus a much better idea to solve AV + B = 0 using an iterative method for each B.
Since the matrix A is symmetric and positive, the conjugate gradient method can be
used. Strictly speaking, this method can only be used with definite matrices, but it
actually works in this case provided that B is in the range of matrix A. Because A is
symmetric, the property (A.5) also holds for column vectors of A, which means that
these columns are all orthogonal to the constant vector 1. These vectors thus all
have the property that their mean value is zero. It can be verified that this property
is true for the various versions of B detailed above.
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The conjugate gradient method only needs to evaluate the quantity g = AV + B
for any given parameter vector V and the quantity gT Ag to compute the optimal
step at each iteration. These two quantities can be easily evaluated using simple
traversal of all the edges of the mesh.

In general, the conjugate gradient method only requires a few steps to converge
(typically one or two magnitude order less iterations than NP the size of the matrix).
However, due to the very different values of the conductivities for the various parts
of the head, this leads to badly conditioned matrices A. To improve the speed of con-
vergence, it is thus preferable to use a preconditioned conjugate gradient method.
A simple Jacobi preconditioner is already very effective. Such a preconditioner is
obtained by inverting a diagonal matrix whose entries are the diagonal elements of
the matrix A.
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VARIANCE-BASED METHODS
FOR GLOBAL SENSITIVITY
ANALYSIS

This chapter is meant to introduce the global sensitivity analysis, and in particular
the variance-based methods. We present the different sensitivity indices as well as
the corresponding methods for their estimation.
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1 GLOBAL SENSITIVITY ANALYSIS

We consider a mathematical model, made of a set of stochastic input variables,
a deterministic function, and a set of stochastic output variables. We can write this
model as :

f : Rp → R
X → Y = f(X)

The function f can be very complex (a PDE system), and is usually evaluated
with a computer code, more or less expensive. The set of input variables X =
(X1, . . . , Xp) is made of all the model parameters which are considered as stochastic
or uncertain. For the sake of simplicity, we will suppose here that the input vari-
ables are independent, and that the set of output variables is reduced to a single
variable Y . The sensitivity analysis studies how perturbations on the input vari-
ables lead to perturbations on the output. The sensitivity analysis methods are
usually clustered in three groups : screening methods, local sensitivity analyses and
global sensitivity analyses. Screening methods give a qualitative analysis of the im-
portance of the input variables with respect to the output variability. They allow to
determine a hierarchy among the input variables, about how the inputs act upon the
output variability. Local and global sensitivity analyses are quantitative methods
: they give a hierachy of the inputs, and moreover they give an estimation of the
intervals inside this hierarchy. Local sensitivity analyses study how small pertur-
bations around a value x0 = (x0

1, . . . , x
0
p) of the inputs affect the output value. The

most common approach is to compute the sensitivity indices corresponding to the
derivatives

Si =
∂y

∂xi
(x0

1, . . . , x
0
p) ,

which express the effect on the value of Y of perturbing the values of the variables
Xi around a nominal value x0

i . Global sensitivity analyses consider the variability
of the output with respect to the input domain. It studies how the variability on
the inputs projects on the output, by estimating how the output variability can be
apportioned to certain inputs or set of inputs. The difference between local and
global analyses can be sketched by saying that local analysis is interested in the
output value whereas global analysis is interested in the output variability.

1.1 Goals of sensitivity analysis
When building or using a mathematical model, sensitivity analysis is a powerful
tool. By studying how the model output reacts to the input variations, one can
determine :

• If the model is correct. If the analysis reveals that an input is important
whereas in reality it is known as non-influent, the model should be modified.

• Which inputs contribute most to the output variability. If the most important
inputs are identified, the errors on the model output can be greatly reduced by
focusing on reducing the error on these inputs.

• Which inputs have the least effect. They can be considered as deterministic,
and fixed to an average value. The resulting model is simpler and has less
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inputs.

• Which input variables interact with which others. The analysis can help to
better understand the model, and how the inputs relate to each other.

1.2 Methods for global sensitivity analysis

The goal of the global sensitivity analysis is to apportion the uncertainty on the out-
put to the different inputs, ie determine to what extent the uncertainty of each input
variable contributes to the output uncertainty. A review of all existing methods is
presented in [86]. In this chapter, we present only one method, based on the vari-
ance decomposition of the model, because it is the one we use in chapter 6. The idea
of the method is to determine which part of the output variance is due to the vari-
ance of each input, by decomposing the total variance of the output in conditional
variances with respect to the different inputs. It leads to the definition of sensitivity
indices, which reflect the model sensitivity to each input variable. We then present
how to estimate these indices.

2 VARIANCE-BASED METHOD

We consider the model
Y = f(X1, . . . , Xp) (B.1)

where the input variables are independent. To quantify the importance of an input
Xi on the variance of the output Y , we can look at how much the variance of Y

decreases if we fix Xi to a value x∗i :

V (Y |Xi = x∗i ) .

This quantity is the conditional variance of Y given the value Xi = x∗i . The problem
of this index is the choice of the value x∗i of Xi, which can be solved by considering
the expectation of this quantity for all possible values x∗i :

E [V (Y |Xi)] .

The more important Xi with respect to the variance of Y , the smaller this quantity.

Theorem 1. Total variance theorem
Let Xi and Y be stochastic variables, where the values of Y are in R and the values of
Xi are in a finite or enumerable set, or in R or Rp. If the variance of Y is finite, then :

V (Y ) = V (E [Y |Xi]) + E [V (Y |Xi)] .

From theorem 1, an index of the sensitivity of Y to Xi is the variance of the
expectation of Y given Xi :

V (E [Y |Xi]) .

The more important Xi, the bigger this quantity. For normalization, we define the
following sensitivity index.
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Definition 1. The sensitivity index quantifying the sensitivity of Y to Xi is defined
as :

Si =
V (E [Y |Xi])

V (Y )
(B.2)

This index is called first order sensitivity index by Sobol [96], and is sometimes
called importance measure. It quantifies the part of variance of Y due to the input
variable Xi.

Theorem 2. Sobol decomposition of the variance
The variance of the model (B.1) with independent inputs can be decomposed as :

V =
p∑

i=1

Vi +
∑

1≤i<j≤p

Vij + · · ·+ V1...p , (B.3)

where

V = V (Y ),
Vi = V (E [Y |Xi]),
Vij = V (E [Y |Xi, Xj ])− Vi − Vj ,

Vijk = V (E [Y |Xi, Xj , Xk])− Vi − Vj − Vk − Vij − Vik − Vjk,

. . .

V1...p = V −
∑p

i=1 Vi −
∑

1≤i<j≤p Vij − · · · −
∑

1≤i1<···<ip−1≤p Vi1...ip−1

The proof can be found in [96].

Definition 2. We can then define the first order sensitivity indices :

Si =
Vi

V
, (B.4)

the second order sensitivity indices :

Sij =
Vij

V
,

which quantify the sensitivity of Y to the interaction between Xi and Xj , ie the sensi-
tivity of Y to Xi and Xj which is not taken into account in the effect of the variables
alone. We can also define the third order sensitivity indices :

Sijk =
Vijk

V
,

which quantify the sensitivity of Y to the variables Xi, Xj , Xk which is not taken into
account in the effect of the variables alone and in the two-by-two interactions. One
can thus pursue up to the order p.

Remark. The definition of the first order sensitivity index given by Sobol decompo-
sition (B.4) is the same as the previous one (B.2).

The interpretation of these indices is easy : thanks to (B.3), their sum is equal to
1, and they are all positive. As a consequence, the bigger (close to 1) the sensitivity
index, the more important the variable.

The number of sensitivity indices, from order 1 to order p, is equal to 2p−1. When
the number p of input variables increases, the number of sensitivity indices becomes
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too big, and the estimation and interpretation of all the indices is impossible. We
can then consider the total sensitivity indices, which quantify the total sensitivity
of Y to one variable, ie the sensitivity to this variable alone plus the sensitivity to
the interactions of this variable with others.

Definition 3. The total sensitivity index STi of the variable Xi is defined as the sum
of all the sensitivity indices relative to Xi :

STi
=
∑
k#i

Sk , (B.5)

where #i is meant to represent all the set of indices which contain the index i.

For instance, for a model with three input parameters :

ST1 = S1 + S12 + S13 + S123 .

Remark. From theorem 1, we have :

1 =
V (E [Y |Xi])

V (Y )︸ ︷︷ ︸
Si

+
E [V (Y |Xi)]

V (Y )
,

so if we now consider all the parameters but Xi, denoted X∼i, we have :

1 =
V (E [Y |X∼i])

V (Y )
+

E [V (Y |X∼i)]
V (Y )︸ ︷︷ ︸

STi

. (B.6)

All the sensitivity indices that we presented do not require any hypothesis on
the model itself (eg linear, non-linear), but it is necessary that the input parameters
are independent. All these sensitivity indices, especially the first order and total
indices, are used in chapter 6.

3 ESTIMATION OF THE SENSITIVITY INDICES

The sensitivity indices can sometimes be computed analytically when the func-
tion f of the model is known and simple. But when f is complex, without an analyt-
ical form (the result of a computer code for instance), the sensitivity indices can not
be computed directly and it is necessary to estimate them.

3.1 Monte Carlo methods
We consider the following integral :

I =
∫

D

f(x)dx ,

where D can be a space of high dimension, and f is an integrable function. Let
x1, . . . ,xN be a random sampling of a uniformly random variable on D. In the Monte
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Carlo method, I is approximated by

ÎN =
1
N

N∑
i=1

f(xi) .

The law of large numbers states that the mean of a series of independent random
variables with the same expectation and finite variance converges almost surely to
the expectation. As a consequence :

lim
N→+∞

ÎN = I , with a probability equal to 1 .

More generally, for a random variable X with a probability density function µ, the
expectation of f(X)

E [f(X)] =
∫

f(x)µ(x)dx ,

can be estimated by

Ê [f(X)] =
1
N

N∑
i=1

f(xi) ,

where (xi)i=1..N is a sampling of N realisations of the random variable X. If f(X)
has a finite variance σ2, the convergence rate of a Monte Carlo method is given by
the limit central theorem :

√
N

σ
(ÎN − I) L−→ N (0, 1) .

The convergence rate is then O(N− 1
2 ).

3.2 Convergence

The random sampling is the basic approach when using a Monte Carlo method and
has a convergence rate of O(N− 1

2 ). Many other approaches have been proposed to
increase the convergance rate, in particular using pseudo-random sequences. For
instance, the methods called Quasi-Monte Carlo [73] are deterministic versions of
the Monte Carlo method : the series of samples is deterministic and has a better
uniform distribution in the space of input variables. With this type of sampling,
the convergence can be O(N−1(logN)p−1) with weak regularity assumptions on f .
These methods can be extended by randomizing the deterministic sequences, and
the convergence rate can be increased to O(N− 3

2 (logN)
p−1
2 ).

3.3 Estimation of the sensitivity indices with Monte Carlo

We consider N realisations of the input variables (X1, . . . , Xp) :

X̃N = (xk1, . . . , xkp)k=1..N .



155

The expectation of Y , E [Y ] = f0, and its variance, V (Y ) = V , are estimated by :

f̂0 =
1
N

N∑
k=1

f(xk1, . . . , xkp) , (B.7)

V̂ =
1
N

N∑
k=1

f2(xk1, . . . , xkp)− f̂2
0 . (B.8)

To estimate the sensitivity indices, we need to estimate conditional variances. We
present the approach due to Sobol [96]. For the first order sensitivity indices (B.4),
we need to estimate the quantity :

Vi = V (E [Y |Xi]) = E
[
E [Y |Xi]

2
]
− E [E [Y |Xi]]

2 = Ui − E [Y ]2 ,

while the variance of Y is estimated with (B.8).

At first sight, it might seem that the computational strategy for the estimation of
Ui = E

[
E [Y |Xi]

2
]

would be to first use a set of Monte Carlo points to estimate the
inner expectation for a fixed value of Xi, and then repeat the procedure many times
for different Xi values to estimate the outer expectation. To give an indication, if
1000 points were used to get a good estimate of the conditional expectation E [Y |Xi],
and the procedure were repeated 1000 times to estimate the outer expectation, then
we would need 106 points just for one sensitivity index. This in fact not necessary,
as the computation can be accelerated via a shortcut. We denote x = (xi, z) some
realizations of the input variables, distinguishing between xi and the other variables
denoted by z. We can then rewrite Ui :

E
[
E [Y |Xi]

2
]

=
∫ [∫

f(x)dz
]2

dxi

=
∫ [∫

f(xi, z)dz
] [∫

f(xi, z′)dz′
]

dxi

=
∫

f(xi, z)f(xi, z′)dzdz′dxi (B.9)

The idea is to estimate Ui like a normal expectation (B.7) using the formulation (B.9).
We hence need two sets of realisations, denoted X̃1

N and X̃2
N . Then an estimator of

Ui is :

Ûi =
1
N

N∑
k=1

f
(
x1

k1, .., x
1
k(i−1), x

1
ki, x

1
k(i+1), .., x

1
kp

)
×f
(
x2

k1, .., x
2
k(i−1), x

1
ki, x

2
k(i+1), .., x

2
kp

)
.

At each sample set k, all variables are sampled twice except Xi. The first order
sensitivity indices are estimated by :

Ŝi =
V̂i

V̂
=

Ûi − f̂2
0

V̂
.

For the second order sensitivity index Sij = Vij

V , where :

Vij = V (E [Y |Xi, Xj ])− Vi − Vj = Uij − E [Y ]2 − Vi − Vj ,
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the quantity Uij is estimated in the same way, by sampling all variables twice except
Xi and Xj for a sample set k. The index Sij is then estimated by :

Ŝij =
Ûij − f̂2

0 − V̂i − V̂j

V̂
.

And it is the same for indices of greater orders.

Remark. The estimation of sensitivity indices of order i requires the estimation of
indices of order 1 to i− 1.

On the contrary, the total sensitivity indices can be estimated directly. From (B.6),
we can write :

STi
= 1− V (E [Y |X∼i])

V (Y )
= 1− V∼i

V
,

where V∼i is the variance of the expectation of Y given all variables but Xi :

V∼i = E
[
E [Y |X∼i]

2
]
− E [E [Y |X∼i]]

2 = U∼i − E [Y ]2 .

U∼i is estimated like Ui, but instead of varying all variables but Xi, we vary only
Xi :

Û∼i =
1
N

N∑
k=1

f
(
x1

k1, .., x
1
k(i−1), x

1
ki, x

1
k(i+1), .., x

1
kp

)
×f
(
x1

k1, .., x
1
k(i−1), x

2
ki, x

1
k(i+1), .., x

1
kp

)
,

and so

ŜTi
= 1− Û∼i − f̂2

0

V̂
.

Remark. If the size of the Monte Carlo sampling is N , then the estimation of the
sensitivity indices requires 2N realisations of the input parameters, because we need
two sets of simulations. The number of calls to the model function f is then N ×
(k + 1), where k is the number of indices to be estimated. For a model with p input
parameters, N × 2p function calls are necessary to estimate all the indices. On the
contrary, if only the first order and total indices are estimated, N × (2p + 1) calls are
needed.

3.4 The FAST method

The FAST method (Fourier Amplitude Sensitivity Test) was first developped in [18].
Its purpose is to estimate the first order sensitivity indices. We consider a function

f(x) = f(x1, . . . , xp) ,

where x ∈ [0, 1]p, and the corresponding stochastic model Y = f(X1, . . . , Xp). It is
possible to get a decomposition of the variance of Y , like with Sobol’s method, by
using the multidimensional Fourier transform of f . But the computational cost of
such a multidimensional decomposition is too big in practical situations, so the idea
of the FAST method is to use a unidimensional decomposition along a curve covering
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the space [0, 1]p. This curve is defined by a set of parametric equations :

xi(s) = gi(sin(wis)) for i = 1, . . . , p ,

where gi are functions which give a uniform covering of [0, 1]p, and (w1, . . . , wp) ∈ Np

is a set of incommensurate integer frequencies (linearly independent with integer
coefficients). When s varies in R, the vector (x1(s), . . . , xp(s)) describes a curve cov-
ering [0, 1]p. It can be shown that :

f0 =
∫

[0,1]p
f(x)dx = lim

T→∞

1
2π

∫ T

−T

f(x(s))ds .

Because the frequencies (w1, . . . , wp) are integers, the curve does not fill the space
[0, 1]p but is 2π-periodic, so :

f0 =
1
2π

∫ π

−π

f(x(s))ds .

This idea can be used to compute the variance V of a model Y = f(X1, . . . , Xp).
Denoting f0 = E [Y ], we get :

V =
1
2π

∫ π

−π

f2(x(s))ds− f2
0

=
∞∑

j=−∞
(A2

j + B2
j )−A2

0

= 2
∞∑

j=1

(A2
j + B2

j ) , (B.10)

where Aj and Bj are the Fourier coefficients defined as :

Aj =
1
2π

∫ π

−π

f(x(s)) cos(js)ds ,

Bj =
1
2π

∫ π

−π

f(x(s)) sin(js)ds .

In the theory of the FAST method, it is explained that the part of the variance (B.10)
due to the input variable Xi is the sum of squares of the Fourier coefficients Aj and
Bj corresponding to the frequency wi and its harmonics :

Vi = 2
∞∑

k=1

(A2
kwi

+ B2
kwi

) .

The sensitivity index Si is then defined by :

Si =
∑∞

k=1(A
2
kwi

+ B2
kwi

)∑∞
j=1(A

2
j + B2

j )
.

The FAST method was extended in [87] for the total sensitivity indices. The part of
the variance due to all variables but Xi is evaluated as the sum of squares of the
Fourier coefficients corresponding to the frequencies w∼i different from wi and its
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harmonics :

V∼i = 2
∞∑

k=1

(A2
kw∼i

+ B2
kw∼i

) .

Then the total sensitivity index STi
is given, as with Sobol’s method, by :

STi = 1−
∑∞

k=1(A
2
kw∼i

+ B2
kw∼i

)∑∞
j=1(A

2
j + B2

j )
.

3.5 Estimation of the FAST sensitivity indices
When estimating the indices defined by the FAST method, it is necessary to define
the functions gi and the frequencies wi that are used. A boundary M on the number
of harmonics considered must also be fixed, in order to compute a finite number of
Fourier coefficients. The choice of M is a trade-off between accuracy and computa-
tional complexity :

• the greater M , the better the sensitivity indices reflect the effects of the input
parameters,

• the greater M , the bigger the sampling size of the input parameters (due to
Nyquist-Shannon sampling theorem).

In general, a choice of M = 4 or M = 6 is sufficient, independently of the dimension
of the model. For the choice of the functions gi, many options are possible, knowing
that they must cover as well as possible the space [0, 1]p. As shown in [87], a good
choice is :

xi(s) = gi(sin(wis)) =
1
2

+
1
π

arcsin(sin(wis)), s ∈ [−π, π] .

There are also many possibilities for the choice of the frequencies. The theory of the
FAST method states that the frequencies must be incommensurate, which can be
complicated and lead to the choice of high frequencies. Nevertheless, the fact that
only a small number of harmonics are taken into account allow to use frequencies
that are not necessarily incommensurate. An automatic approach for the choice
of frequencies is described in [87]. The important point is that these frequencies
determine the minimum size of sampling for the computation of the indices :

N = 2Mmax
i

(wi) + 1 ,

where M is the highest harmonic considered. In general, for the same accuracy, the
FAST method requires a smaller size of sampling than Sobol’s method.
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Figure C.1: An example of piecewise constant head model.

APPENDIX C

GESELOWITZ’S FORMULAS

We consider a geometry corresponding to the figure C.1. The head is described as a
domain Ω composed of several subregions Ωk separated by surfaces Sk, each with a
constant conductivity σk, and with σ = 0 outside Ω.

1 ELECTRIC POTENTIAL

At the surfaces Sk where the conductivity is discontinuous, we have the following
boundary conditions (continuity of potential and current density) :{

Vk(r′) = Vk+1(r′)
σk∇Vk(r′) · nk(r′) = σk+1∇Vk+1(r′) · nk(r′)

∀r′ ∈ Sk (C.1)

where nk is the outward unit normal to the surface Sk, and Vk is the restriction
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of the potential V to the subdomain Ωk. We assume in the following that r does not
belong to any Sk so that for any r′ ∈ Sk, 1

R = 1
‖r−r′‖ is well defined. As a consequence,

using the divergence theorem and taking into account the discontinuities, we get :

∫
Ω

1
R∆(σ(r′)V (r′))dr′ =

∑
k

∫
Sk

1
R (σk∇Vk(r′) · nk(r′)− σk+1∇Vk+1(r′) · nk(r′))ds′

−
∫
Ω
∇(σ(r′)V (r′)) · ∇

(
1
R

)
dr′

= −
∫
Ω
∇(σ(r′)V (r′)) · ∇

(
1
R

)
dr′ ,

(C.2)
and also

∫
Ω

σ(r′)V (r′)∆
(

1
R

)
=

∑
k

∫
Sk

(σk − σk+1)V (r′)∇
(

1
R

)
· nk(r′)ds′ −

∫
Ω
∇(σ(r′)V (r′)) · ∇

(
1
R

)
dr′

=
∑

k

∫
Sk

(σk − σk+1)V (r′)∇
(

1
R

)
· nk(r′)ds′ +

∫
Ω

1
R∆(σ(r′)V (r′))dr′ .

(C.3)
− 1

4πR is the Green function for the Laplacian operator, meaning that

∆
(

1
R

)
= −4πδ(r− r′) .

As a consequence, if σV is continuous at r, i.e. r does not belong to any Sk, we have∫
Ω

σ(r′)V (r′)∆
(

1
R

)
dr′ = −4πσ(r)V (r) .

Also, in each domain Ωk, σ = σk is constant so

∆(σkV ) = ∇ · (σk∇V ) = ∇ · Jp .

We hence have ∫
Ω

1
R∆(σ(r′)V (r′))dr′ =

∫
Ω

1
R∇ · Jp(r′)dr′

= −
∫
Ω
∇
(

1
R

)
· Jp(r′)dr′

using the divergence theorem and the fact that Jp is zero on the boundary of Ω (no
brain activity at the surface of the head). So finally, (C.3) becomes :

−4πσ(r)V (r) =
∑

k

∫
Sk

(σk − σk+1)V (r′)∇
(

1
R

)
· nk(r′)ds′ −

∫
Ω

∇
(

1
R

)
· Jp(r′)dr′

which can be rewritten

σ(r)V (r) = V0(r)−
1
4π

∑
k

(σk − σk+1)
∫

Sk

V (r′)∇
(

1
R

)
· nk(r′)ds′ (C.4)

where V0 is the potential generated by Jp in an infinite homogeneous medium
with unitary conductivity. Because of our assumptions, this formulation is valid
only if r does not belong to any Sk. Let us note

Ik(r) =
∫

Sk

V (r′)∇
(

1
R

)
· nk(r′)ds′ .
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For a point s ∈ Sk, it can be shown that

lim
r→s

Ik(r) = 2πV (s) + Ik(s) .

From this result, we can compute the limit of (C.4). For r ∈ Sk, we get

σk+σk+1
2 V (r) = V0(r)− 1

4π

∑
l(σl − σl+1)

∫
Sl

V (r′)∇
(

1
R

)
· nl(r′)ds′ (C.5)

This formula was established in 1967 by Geselowitz [32]. It is an integral equa-
tion which determines the value of V on the surfaces Sk. And once V is known on
the Sk, we can compute its value in the whole head domain using (C.4). This is
the advantage of the piecewise constant model : the potential is fully determined
by its value at the surface of discontinuities, what transforms the general potential
equation (3.7) into the simpler equation (C.5).

2 MAGNETIC FIELD

The equation of the magnetic field (3.8) can also be simplified in the case of a
piecewise constant model. First, we can decompose the integrals on the different
domains Ωk :

B(r) = B0(r)−
µ0

4π

∑
k

σk

∫
Ωk

∇V (r′)× (r− r′)
‖r− r′‖3

dr′ .

Then, using the identity

∇V (r′)× (r− r′)
‖r− r′‖3

= ∇×
(

V (r′)
(r− r′)
‖r− r′‖3

)
and Stokes’ theorem, each integral on a domain Ωk can be transformed in a surface
integral :∫

Ωk

∇V (r′)× (r− r′)
‖r− r′‖3

dr′ =
∫

Sk+1

V (r′)
(r− r′)
‖r− r′‖3

×nk+1(r′)−
∫

Sk

V (r′)
(r− r′)
‖r− r′‖3

×nk(r′)ds′

By grouping pairs of surfaces, we obtain the final result :

B(r) = B0(r)− µ0
4π

∑
k(σk − σk+1)

∫
Sk

V (r′) (r−r′)
‖r−r′‖3 × nk(r′)ds′ . (C.6)

This formula for the magnetic field implies that the potential V is known on the
surfaces Sk, which is possible due to (C.5). It is again due to Geselowitz [33].
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