Efficient evaluation of numerical functions
 Tools and examples

Sylvain Chevillard

Supervisors: Nicolas Brisebarre and Jean-Michel Muller
École normale supérieure de Lyon
Laboratoire de l'informatique du parallélisme - Arenaire team

$$
\text { July, 6th } 2009
$$

- People usually enter in my office saying I would like to approximate a function.
- People usually enter in my office saying I would like to approximate a function.
- For instance: $\sin (x), \exp (x), \exp (1+\cos (x))$, etc.
- People usually enter in my office saying I would like to approximate a function.
- For instance: $\sin (x), \exp (x), \exp (1+\cos (x))$, etc.
- Values not exact in general:

$$
\exp (2)=7.38905609893065 \ldots
$$

- People usually enter in my office saying I would like to approximate a function.
- For instance: $\sin (x), \exp (x), \exp (1+\cos (x))$, etc.
- Values not exact in general:

$$
\exp (2)=7.38905609893065 \ldots
$$

\hookrightarrow approximated values.

- People usually enter in my office saying I would like to approximate a function.
- For instance: $\sin (x), \exp (x), \exp (1+\cos (x))$, etc.
- Values not exact in general:

$$
\exp (2)=7.38905609893065 \ldots
$$

\hookrightarrow approximated values.

- For example: error beyond the 15th digit.
- People usually enter in my office saying I would like to approximate a function.
- For instance: $\sin (x), \exp (x), \exp (1+\cos (x))$, etc.
- Values not exact in general:

$$
\exp (2)=7.38905609893065 \ldots
$$

\hookrightarrow approximated values.

- For example: error beyond the 15th digit.
- Fifteen correct digits?
- People usually enter in my office saying I would like to approximate a function.
- For instance: $\sin (x), \exp (x), \exp (1+\cos (x))$, etc.
- Values not exact in general:

$$
\exp (2)=7.38905609893065 \ldots
$$

\hookrightarrow approximated values.

- For example: error beyond the 15th digit.
- Fifteen correct digits?
0.99999999999999991234
1.00000000000000005678
- Don't programs for evaluating functions already exist?
- Don't programs for evaluating functions already exist?
- Yes, but we can:
- improve the efficiency while keeping the accuracy;
- improve the accuracy while keeping the efficiency.
- Don't programs for evaluating functions already exist?
- Yes, but we can:
- improve the efficiency while keeping the accuracy;
- improve the accuracy while keeping the efficiency.
- New programs must be designed for new architectures.
- Don't programs for evaluating functions already exist?
- Yes, but we can:
- improve the efficiency while keeping the accuracy;
- improve the accuracy while keeping the efficiency.
- New programs must be designed for new architectures.
\hookrightarrow the program must be written quickly.
- Example of function $f(x)=\exp (x)$.
- Example of function $f(x)=\exp (x)$.

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).
- Second step: replace the function f by a polynomial p.

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).
- Second step: replace the function f by a polynomial p.

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).
- Second step: replace the function f by a polynomial p.

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).
- Second step: replace the function f by a polynomial p.

Approximation error:

- absolute:

$$
\varepsilon=p-f
$$

- relative:

$$
\varepsilon=\frac{p-f}{f}
$$

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).
- Second step: replace the function f by a polynomial p.
- Third step: write a program that evaluates the polynomial.

```
#define p_coeff_1h 1.0000000000000000000000e+00
#define p_coeff_2h 4.99998331069946689066250e-01
define P_coeff 3h 1. 66667461395263671075000-01
define P_coeff -
define P_coeff_4h 4.1775226593017578125000e-02
#define p_coeff_5h 8.3332061767578125000000e-03
void p(double *P_resh, double x) (
    volatile float P_t_1_Oh;
    olatile float P_t_2-on;
    volatile float p t - - 0h;
    volatile float p-- - - Oh,
    volatile float P_t 5-Oh;
    volatile float P_t_6_Oh;
    volatile float P_t_7_0h;
    volatile float P_ + _ B Oh;
    volatile float P_t_-9_0n;
    volatile float P_t_10_0h;
    P__1_Oh = P_coeff 5h;
    pt_2Oh = p_t 1 Oh * x;
    pt 3 Oh = p coeff 4h + pt 2 Oh;
    P_t_4_Oh = P_t_3_Oh * x;
    P_t_5_Oh = P_coeff_3h + P_t_4_0h;
    p_t-6 Oh = P_t_5 Oh * x;
    Pt_7Oh - Pcoeff 2h+ P_t 6 Oh;
    P_t_8_0n - P_t_7-0n * x;
    p_t_9-0h = p_coeff_1h + P_t_8_0h;
    p_t_10_0h = p_t_9_0h * x
    *p_resh = p_t_10_0h;
}
```

- Example of function $f(x)=\exp (x)$.
- First step: reduce the range (range reduction).
- Second step: replace the function f by a polynomial p.
- Third step: write a program that evaluates the polynomial.

Sources of errors

- Approximation error: $\varepsilon=p-f$.

Sources of errors

- Approximation error: $\varepsilon=p-f$.
- Roundoff errors: due to the propagation of errors during the evaluation of p.

Sources of errors

- Approximation error: $\varepsilon=p-f$.
- Roundoff errors: due to the propagation of errors during the evaluation of p.
- The overall error must stay below the 15th digit.

Sources of errors

- Approximation error: $\varepsilon=p-f$.
- Roundoff errors: due to the propagation of errors during the evaluation of p.
- The overall error must stay below the 15th digit.

Sollya

- Sollya: developed with C. Lauter.
\hookrightarrow making the development of new functions easier.

Sollya

- Sollya: developed with C. Lauter.
\hookrightarrow making the development of new functions easier.
- Functions, polynomials, roundings, etc. in a safe environment.

Sollya

- Sollya: developed with C. Lauter.
\hookrightarrow making the development of new functions easier.
- Functions, polynomials, roundings, etc. in a safe environment.
- Now becoming a numerical toolbox.
\hookrightarrow interesting for anyone who wants guarantees on the quality.

Sollya

- Sollya: developed with C. Lauter.
\hookrightarrow making the development of new functions easier.
- Functions, polynomials, roundings, etc. in a safe environment.
- Now becoming a numerical toolbox.
\hookrightarrow interesting for anyone who wants guarantees on the quality.
- Thanks to Sollya, the development of functions has been almost completely automated.

Main contributions of this thesis

- Implementation of function erf in arbitrary precision:
- rigorous and effective bounds on sequences/functions;
- particular constraints imposed by arbitrary precision.
- Algorithms for finding good polynomial/rational approximations:
- approximation theory (real coefficients):
- linear programming;
- euclidean lattices.
- Algorithm for bounding rigorously the approximation error (between p and f):
- interval arithmetic;
- automatic computation of bounds on derivatives of a function;
- root isolation techniques.
- These algorithms are available within Sollya.

Main contributions of this thesis

- Implementation of function erf in arbitrary precision:
- Algorithms for finding good polynomial/rational approximations:
- approximation theory (real coefficients);
- linear programming;
- euclidean lattices.
- Algorithm for bounding rigorously the approximation error (between p and f):
- interval arithmetic;
- automatic computation of bounds on derivatives of a function;
- root isolation techniques.
- These algorithms are available within Sollya.

Main contributions of this thesis

- Implementation of function erf in arbitrary precision:
- Algorithms for finding good polynomial/rational approximations:
- approximation theory (real coefficients);
- linear programming;
- euclidean lattices.
- Algorithm for bounding rigorously the approximation error (between p and f):
- interval arithmetic;
- automatic computation of bounds on derivatives of a function;
- root isolation techniques.
- These algorithms are available within Sollya.

Main contributions of this thesis

- Implementation of function erf in arbitrary precision:
- Algorithms for finding good polynomial/rational approximations:
- approximation theory (real coefficients);
- linear programming;
- euclidean lattices.
- Algorithm for bounding rigorously the approximation error (between p and f):
- interval arithmetic;
- automatic computation of bounds on derivatives of a function;
- root isolation techniques.
- These algorithms are available within Sollya.

Main contributions of this thesis

- Implementation of function erf in arbitrary precision:
- rigorous and effective bounds on sequences/functions;
- particular constraints imposed by arbitrary precision.
- Algorithms for finding good polynomial/rational approximations:
- approximation theory (real coefficients);
- linear programming;
- euclidean lattices.
- Algorithm for bounding rigorously the approximation error (between p and f):
- interval arithmetic;
- automatic computation of bounds on derivatives of a function;
- root isolation techniques.
- These algorithms are available within Sollya.

Main contributions of this thesis

- Implementation of function erf in arbitrary precision:
- rigorous and effective bounds on sequences/functions;
- particular constraints imposed by arbitrary precision.
- Algorithms for finding good polynomial/rational approximations:
- approximation theory (real coefficients);
- linear programming;
- euclidean lattices.
- Algorithm for bounding rigorously the approximation error (between p and f):
- interval arithmetic;
- automatic computation of bounds on derivatives of a function;
- root isolation techniques.
- These algorithms are available within Sollya.
- Reminder about approximation theory.
\hookrightarrow finds good approximation polynomials with real coefficients.
- Polynomial p with floating-point coefficients.
- Linear programming.
\hookrightarrow gets useful informations on the structure of p.
- Euclidean lattices.
\hookrightarrow computes a very good polynomial p.
- Reminder about approximation theory.
\hookrightarrow finds good approximation polynomials with real coefficients.
- Polynomial p with floating-point coefficients.
- Linear programming.
\hookrightarrow gets useful informations on the structure of p.
- Euclidean lattices.
\hookrightarrow computes a very good polynomial p.

Approximation theory

- How to compute a good approximation polynomial?

Approximation theory

- How to compute a good approximation polynomial?

Characterisation theorem (1905)

p a polynomial of degree n, f a continuous function on $[a, b]$.

$$
\begin{gathered}
\|p-f\|_{\infty} \text { is minimal (i.e. } p \text { is optimal) } \\
\text { if and only if } \\
\exists x_{1}<\cdots<x_{n+2} \in[a, b], \exists \varepsilon>0,\left\{\begin{array}{l}
\forall i, p\left(x_{i}\right)-f\left(x_{i}\right)=(-1)^{i} \varepsilon \\
|\varepsilon|=\|p-f\|_{\infty} .
\end{array}\right.
\end{gathered}
$$

Approximation theory

- How to compute a good approximation polynomial?

Characterisation theorem (1905)

p a polynomial of degree n, f a continuous function on $[a, b]$.

$$
\begin{gathered}
\|p-f\|_{\infty} \text { is minimal (i.e. } p \text { is optimal) } \\
\text { if and only if } \\
\exists x_{1}<\cdots<x_{n+2} \in[a, b], \exists \varepsilon>0,\left\{\begin{array}{l}
\forall i, p\left(x_{i}\right)-f\left(x_{i}\right)=(-1)^{i} \varepsilon \\
|\varepsilon|=\|p-f\|_{\infty} .
\end{array}\right.
\end{gathered}
$$

- Theorem of la Vallée Poussin (1910).
\hookrightarrow oscillations and quality of approximation are related.

Approximation theory

- How to compute a good approximation polynomial?

Characterisation theorem (1905)

p a polynomial of degree n, f a continuous function on $[a, b]$.

$$
\begin{gathered}
\|p-f\|_{\infty} \text { is minimal (i.e. } p \text { is optimal) } \\
\text { if and only if } \\
\exists x_{1}<\cdots<x_{n+2} \in[a, b], \exists \varepsilon>0,\left\{\begin{array}{l}
\forall i, p\left(x_{i}\right)-f\left(x_{i}\right)=(-1)^{i} \varepsilon \\
|\varepsilon|=\|p-f\|_{\infty} .
\end{array}\right.
\end{gathered}
$$

- Theorem of la Vallée Poussin (1910).
\hookrightarrow oscillations and quality of approximation are related.
- Remez' algorithm (1934).

Sometimes, additional constraints may be interesting.

- Example: $e^{\sin (x)-\cos \left(x^{2}\right)}$ on $[-1 / 16,1 / 16]$, degree 5 :

Sometimes, additional constraints may be interesting.

- Example: $e^{\sin (x)-\cos \left(x^{2}\right)}$ on $[-1 / 16,1 / 16]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 0.36787944134003553928820 \ldots \\
& a_{1} \simeq 0.36787944121874345820075 \ldots \\
& a_{2} \simeq 0.18393894381629744544839 \ldots \\
& a_{3} \simeq-0.00000007647880859004234 \ldots \\
& a_{4} \simeq 0.13848496316631160839854 \ldots \\
& a_{5} \simeq 0.15944715191923863665924 \ldots
\end{aligned}
$$

Sometimes, additional constraints may be interesting.

- Example: $e^{\sin (x)-\cos \left(x^{2}\right)}$ on $[-1 / 16,1 / 16]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 0.36787944134003553928820 \ldots \\
& a_{1} \simeq 0.36787944121874345820075 \ldots \\
& a_{2} \simeq 0.18393894381629744544839 \ldots \\
& a_{3} \simeq-0.00000007647880859004234 \ldots \\
& a_{4} \simeq 0.13848496316631160839854 \ldots \\
& a_{5} \simeq 0.15944715191923863665924 \ldots
\end{aligned}
$$

- Corresponding error: $1.68 \mathrm{e}-10$.

Sometimes, additional constraints may be interesting.

- Example: $e^{\sin (x)-\cos \left(x^{2}\right)}$ on $[-1 / 16,1 / 16]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 0.36787944134003553928820 \ldots \\
& a_{1} \simeq 0.36787944121874345820075 \ldots \\
& a_{2} \simeq 0.18393894381629744544839 \ldots \\
& a_{3} \simeq-0.00000007647880859004234 \ldots \\
& a_{4} \simeq 0.13848496316631160839854 \ldots \\
& a_{5} \simeq 0.15944715191923863665924 \ldots
\end{aligned}
$$

- Corresponding error: $1.68 \mathrm{e}-10$.

Sometimes, additional constraints may be interesting.

- Example: $e^{\sin (x)-\cos \left(x^{2}\right)}$ on $[-1 / 16,1 / 16]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 0.36787944134003553928820 \ldots \\
& a_{1} \simeq 0.36787944121874345820075 \ldots \\
& a_{2} \simeq 0.18393894381629744544839 \ldots \\
& a_{3} \simeq 0 \\
& a_{4} \simeq 0.13848496316631160839854 \ldots \\
& a_{5} \simeq 0.15944715191923863665924 \ldots
\end{aligned}
$$

- Corresponding error: $1.68 \mathrm{e}-10$.

Sometimes, additional constraints may be interesting.

- Example: $e^{\sin (x)-\cos \left(x^{2}\right)}$ on $[-1 / 16,1 / 16]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 0.36787944134057472430253 \ldots \\
& a_{1} \simeq 0.36787944115897691446498 \ldots \\
& a_{2} \simeq 0.18393894243661711831086 \ldots \\
& a_{3} \simeq 0 \\
& a_{4} \simeq 0.13848524573630958469899 \ldots \\
& a_{5} \simeq 0.15943149020444985343712 \ldots
\end{aligned}
$$

- Corresponding error: $1.68 \mathrm{e}-10$.

Sometimes, additional constraints may be interesting.

- Example: $e^{\sin (x)-\cos \left(x^{2}\right)}$ on $[-1 / 16,1 / 16]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 0.36787944134057472430253 \ldots \\
& a_{1} \simeq 0.36787944115897691446498 \ldots \\
& a_{2} \simeq 0.18393894243661711831086 \ldots \\
& a_{3} \simeq 0 \\
& a_{4} \simeq 0.13848524573630958469899 \ldots \\
& a_{5} \simeq 0.15943149020444985343712 \ldots
\end{aligned}
$$

- Corresponding error: $1.68 \mathrm{e}-10$.
- Constrained polynomial error: $1.69 \mathrm{e}-10$.

Sometimes, additional constraints may be interesting.

- Example: $e^{\sin (x)-\cos \left(x^{2}\right)}$ on $[-1 / 16,1 / 16]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 0.36787944134057472430253 \ldots \\
& a_{1} \simeq 0.36787944115897691446498 \ldots \\
& a_{2} \simeq 0.18393894243661711831086 \ldots \\
& a_{3} \simeq 0 \\
& a_{4} \simeq 0.13848524573630958469899 \ldots \\
& a_{5} \simeq 0.15943149020444985343712 \ldots
\end{aligned}
$$

- Corresponding error: $1.68 \mathrm{e}-10$.
- Constrained polynomial error: 1.69 e-10.
- Stiefel's exchange algorithm (1959).
- Reminder about approximation theory.
\hookrightarrow finds good approximation polynomials with real coefficients.
- Polynomial p with floating-point coefficients.
- Linear programming.
\hookrightarrow gets useful informations on the structure of p.
- Euclidean lattices.
\hookrightarrow computes a very good polynomial p.
- Reminder about approximation theory.
\hookrightarrow finds good approximation polynomials with real coefficients.
- Polynomial p with floating-point coefficients.
- Linear programming.
\hookrightarrow gets useful informations on the structure of p.
- Euclidean lattices.
\hookrightarrow computes a very good polynomial p.

Representing real numbers in computers

- IEEE-754 standard: defines floating-point numbers.

Representing real numbers in computers

- IEEE-754 standard: defines floating-point numbers.
- A floating-point number x with radix 2 and precision t, is a number of the form:

$$
x=1 . b_{1} b_{2} \ldots b_{t-1} \cdot 2^{e^{\prime}}, \quad b_{i} \in\{0,1\}, e^{\prime} \in \mathbb{Z}
$$

Representing real numbers in computers

- IEEE-754 standard: defines floating-point numbers.
- A floating-point number x with radix 2 and precision t, is a number of the form:

$$
x=1 . b_{1} b_{2} \ldots b_{t-1} \cdot 2^{e^{\prime}}, \quad b_{i} \in\{0,1\}, e^{\prime} \in \mathbb{Z}
$$

- Formally, $x=m \cdot 2^{e}$ where:
- $m \in \mathbb{Z}$ (with exactly t bits) is its mantissa (or significand);
- $e \in \mathbb{Z}$ is its exponent.

The problem

- Each coefficient of a polynomial is represented by a floating-point number.

The problem

- Each coefficient of a polynomial is represented by a floating-point number.
- Naive method to obtain a polynomial approximation of f :
- compute the real minimax p^{\star};
- replace each coefficient a_{i}^{\star} of p^{\star} by the nearest floating-point number \widehat{a}_{i};
- use $\widehat{p}=\widehat{a_{0}}+\widehat{a_{1}} x+\cdots+\widehat{a_{n}} x^{n}$.

The problem

- Each coefficient of a polynomial is represented by a floating-point number.
- Naive method to obtain a polynomial approximation of f :
- compute the real minimax p^{\star};
- replace each coefficient a_{i}^{\star} of p^{\star} by the nearest floating-point number \widehat{a}_{i};
- use $\widehat{p}=\widehat{a_{0}}+\widehat{a_{1}} x+\cdots+\widehat{a_{n}} x^{n}$.
- Example with $f(x)=\log _{2}\left(1+2^{-x}\right)$ on $[0 ; 1]$ $n=6$, single precision coefficients (24 bits).

$\left\\|\varepsilon^{\star}\right\\|$	$\\|\hat{\varepsilon}\\|$	$\left\\|\varepsilon_{\text {opt }}\right\\|$
$8.3 \mathrm{e}-10$	$119 \mathrm{e}-10$	$10.06 \mathrm{e}-10$

$p_{\text {opt }}$: best polynomial with floating-point coefficients.

Previous works

- There exist recipes, not published.

Previous works

- There exist recipes, not published.
- D. Kodek (1980) has studied a similar problem in signal processing. Limited to small precisions $(t<10)$.

Previous works

- There exist recipes, not published.
- D. Kodek (1980) has studied a similar problem in signal processing. Limited to small precisions $(t<10)$.
- N. Brisebarre, J.-M. Muller and A. Tisserand (2006) have proposed an approach by linear programming. Limited to small degrees $(n<8)$.

Previous works

- There exist recipes, not published.
- D. Kodek (1980) has studied a similar problem in signal processing. Limited to small precisions $(t<10)$.
- N. Brisebarre, J.-M. Muller and A. Tisserand (2006) have proposed an approach by linear programming. Limited to small degrees $(n<8)$.
- Typically, we want $t \geq 50$ and $n \geq 10$.
- Reminder about approximation theory.
\hookrightarrow finds good approximation polynomials with real coefficients.
- Polynomial p with floating-point coefficients.
- Linear programming.
\hookrightarrow gets useful informations on the structure of p.
- Euclidean lattices.
\hookrightarrow computes a very good polynomial p.
- Reminder about approximation theory.
\hookrightarrow finds good approximation polynomials with real
coefficients.
- Polynomial p with floating-point coefficients.
- Linear programming.
\hookrightarrow gets useful informations on the structure of p.
- Euclidean lattices.
\hookrightarrow computes a very good polynomial p.

Polytope approach

- Inputs: degree n, interval $[a, b]$, function f, list of floating-point formats t_{i} (one per coefficient).
- Notations:
- $\varepsilon^{\star}=\left\|p^{\star}-f\right\|_{\infty}$ where p^{\star} is the real minimax.
- $\varepsilon_{\text {opt }}=\left\|p_{\text {opt }}-f\right\|_{\infty}$ where $p_{\text {opt }}$ is a best polynomial with floating-point coefficients.

Polytope approach

- Inputs: degree n, interval $[a, b]$, function f, list of floating-point formats t_{i} (one per coefficient).
- Notations:
- $\varepsilon^{\star}=\left\|p^{\star}-f\right\|_{\infty}$ where p^{\star} is the real minimax.
- $\varepsilon_{\text {opt }}=\left\|p_{\text {opt }}-f\right\|_{\infty}$ where $p_{\text {opt }}$ is a best polynomial with floating-point coefficients.
- We set a trial error: $\varepsilon_{\text {target }}$.
- We are looking for p such that $\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}$.

Polytope approach

- Inputs: degree n, interval $[a, b]$, function f, list of floating-point formats t_{i} (one per coefficient).
- Notations:
- $\varepsilon^{\star}=\left\|p^{\star}-f\right\|_{\infty}$ where p^{\star} is the real minimax.
- $\varepsilon_{\text {opt }}=\left\|p_{\text {opt }}-f\right\|_{\infty}$ where $p_{\text {opt }}$ is a best polynomial with floating-point coefficients.
- We set a trial error: $\varepsilon_{\text {target }}$.
- We are looking for p such that $\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}$.

$$
\Longleftrightarrow \forall x \in[a, b], \quad f(x)-\varepsilon_{\text {target }} \leq \sum_{i=0}^{n} a_{i} x^{i} \leq f(x)+\varepsilon_{\text {target }}
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Pick x_{0}

$$
\in[a, b] . \quad\left\{\begin{array}{cl}
f\left(x_{0}\right)-\varepsilon_{\text {target }} & \leq \sum_{i=0}^{n-1} a_{i} x_{0}^{i} \\
\sum_{i=0}^{n-1} a_{i} x_{0}^{i} & \leq f\left(x_{0}\right)+\varepsilon_{\text {target }}
\end{array}\right.
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Pick x_{0}

$$
\in[a, b] . \quad\left\{\begin{array}{l}
f\left(x_{0}\right)-\varepsilon_{\text {target }} \leq \sum_{i=0}^{n-1} a_{i} x_{0}^{i} \\
\end{array}\right.
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Pick x_{0}

$$
\in[a, b] . \quad\left\{\begin{array}{l}
f\left(x_{0}\right)-\varepsilon_{\text {target }}=\sum_{i=0}^{n-1} a_{i} x_{0}^{i}
\end{array}\right.
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Pick x_{0}

$$
\in[a, b] . \quad\left\{\begin{array}{l}
f\left(x_{0}\right)-\varepsilon_{\text {target }}=\sum_{i=0}^{n-1} a_{i} x_{0}^{i}
\end{array}\right.
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Pick x_{0}

$$
\in[a, b] . \quad\left\{\begin{array}{cl}
f\left(x_{0}\right)-\varepsilon_{\text {target }} & \leq \sum_{i=0}^{n-1} a_{i} x_{0}^{i} \\
\sum_{i=0}^{n-1} a_{i} x_{0}^{i} & \leq f\left(x_{0}\right)+\varepsilon_{\text {target }}
\end{array}\right.
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Pick $x_{0}, x_{1}, x_{2}, x_{3} \quad \in[a, b]$.

$$
\begin{aligned}
& \left\{\begin{aligned}
f\left(x_{0}\right)-\varepsilon_{\text {target }} & \leq \sum_{i=0}^{n-1} a_{i} x_{0}^{i} \\
\sum_{i=0}^{n-1} a_{i} x_{0}^{i} & \leq f\left(x_{0}\right)+\varepsilon_{\text {target }}
\end{aligned}\right. \\
& \left\{\begin{aligned}
f\left(x_{1}\right)-\varepsilon_{\text {target }} & \leq \sum_{i=0}^{n-1} a_{i} x_{1}^{i} \\
\sum_{i=0}^{n-1} a_{i} x_{1}^{i} & \leq f\left(x_{1}\right)+\varepsilon_{\text {target }}
\end{aligned}\right. \\
& \left\{\begin{aligned}
f\left(x_{2}\right)-\varepsilon_{\text {target }} & \leq \sum_{i=0}^{n-1} a_{i} x_{2}^{i} \\
\sum_{i=0}^{n-1} a_{i} x_{2}^{i} & \leq f\left(x_{2}\right)+\varepsilon_{\text {target }}
\end{aligned}\right.
\end{aligned}
$$

Construction of the polytope

$$
S=\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1} \text { s.t. }\|p-f\|_{\infty} \leq \varepsilon_{\text {target }}\right\} .
$$

Pick $x_{0}, x_{1}, x_{2}, x_{3}, \ldots \in[a, b]$.

$$
\left\{\begin{aligned}
f\left(x_{0}\right)-\varepsilon_{\text {target }} & \leq \sum_{i=0}^{n-1} a_{i} x_{0}^{i} \\
\sum_{i=0}^{n-1} a_{i} x_{0}^{i} & \leq f\left(x_{0}\right)+\varepsilon_{\text {target }}
\end{aligned}\right.
$$

$$
\begin{aligned}
& \left\{\begin{aligned}
f\left(x_{1}\right)-\varepsilon_{\text {target }} & \leq \sum_{i=0}^{n-1} a_{i} x_{1}^{i} \\
\sum_{i=0}^{n-1} a_{i} x_{1}^{i} & \leq f\left(x_{1}\right)+\varepsilon_{\text {target }}
\end{aligned}\right. \\
& \left\{\begin{aligned}
f\left(x_{2}\right)-\varepsilon_{\text {target }} & \leq \sum_{i=0}^{n-1} a_{i} x_{2}^{i} \\
\sum_{i=0}^{n-1} a_{i} x_{2}^{i} & \leq f\left(x_{2}\right)+\varepsilon_{\text {target }}
\end{aligned}\right.
\end{aligned}
$$

Construction of the polytope (II)

- We just keep a finite number of points x_{0}, \ldots, x_{d}.

Construction of the polytope (II)

- We just keep a finite number of points x_{0}, \ldots, x_{d}.
- The corresponding set of coefficients is a polytope \mathcal{P} of \mathbb{R}^{n+1}.

Construction of the polytope (II)

- We just keep a finite number of points x_{0}, \ldots, x_{d}.
- The corresponding set of coefficients is a polytope \mathcal{P} of \mathbb{R}^{n+1}.

Construction of the polytope (II)

- We just keep a finite number of points x_{0}, \ldots, x_{d}.
- The corresponding set of coefficients is a polytope \mathcal{P} of \mathbb{R}^{n+1}.
- Projections are performed by linear programming (simplex).

Construction of the polytope (II)

- We just keep a finite number of points x_{0}, \ldots, x_{d}.
- The corresponding set of coefficients is a polytope \mathcal{P} of \mathbb{R}^{n+1}.
- Projections are performed by linear programming (simplex).

Construction of the polytope (II)

- We just keep a finite number of points x_{0}, \ldots, x_{d}.
- The corresponding set of coefficients is a polytope \mathcal{P} of \mathbb{R}^{n+1}.
- Projections are performed by linear programming (simplex).

Construction of the polytope (II)

- We just keep a finite number of points x_{0}, \ldots, x_{d}.
- The corresponding set of coefficients is a polytope \mathcal{P} of \mathbb{R}^{n+1}.
- Projections are performed by linear programming (simplex).
- They give an enclosure for each coefficient : $a_{i} \in\left[u_{i}, v_{i}\right]$.

Construction of the polytope (II)

- We just keep a finite number of points x_{0}, \ldots, x_{d}.
- The corresponding set of coefficients is a polytope \mathcal{P} of \mathbb{R}^{n+1}.
- Projections are performed by linear programming (simplex).
- They give an enclosure for each coefficient : $a_{i} \in\left[u_{i}, v_{i}\right]$.

$$
\begin{aligned}
\|p-f\|_{\infty} \leq \varepsilon_{\mathrm{target}} & \Rightarrow\left(a_{0}, \ldots, a_{n}\right) \in S \\
& \Rightarrow\left(a_{0}, \ldots, a_{n}\right) \in \mathcal{P} \\
& \Rightarrow \forall i, a_{i} \in\left[u_{i}, v_{i}\right] .
\end{aligned}
$$

Worked example (beginning)

- Example given by John Harrison (Intel Corp.) when he came to Lyon.

Worked example (beginning)

- Example given by John Harrison (Intel Corp.) when he came to Lyon.
- He asked for a polynomial minimising the absolute error:
- approximating $f: x \mapsto \frac{2^{x}-1}{x}$;
- on $[a, b]=[-1 / 16,1 / 16]$;
- with a polynomial of degree 9 ;

Worked example (beginning)

- Example given by John Harrison (Intel Corp.) when he came to Lyon.
- He asked for a polynomial minimising the absolute error:
- approximating $f: x \mapsto \frac{2^{x}-1}{x}$;
- on $[a, b]=[-1 / 16,1 / 16]$;
- with a polynomial of degree 9 ;
- coefficient a_{0} : 129 bits of precision;
- other coefficients: 64 bits of precision.

Worked example (II)

- Minimax (real coefficients): $\varepsilon^{\star} \simeq 7.9 \mathrm{e}-25$.

Worked example (II)

- Minimax (real coefficients): $\varepsilon^{\star} \simeq 7.9 \mathrm{e}-25$.
- Error of the rounded minimax $\widehat{\varepsilon} \simeq 4035 \mathrm{e}-25$.

Worked example (II)

- Minimax (real coefficients): $\varepsilon^{\star} \simeq 7.9 \mathrm{e}-25$.
- Error of the rounded minimax $\widehat{\varepsilon} \simeq 4035$ e-25.
- Huge gap! Can we achieve an intermediate error of $\varepsilon_{\text {target }}=400 \mathrm{e}-25$?

Worked example (II)

- Minimax (real coefficients): $\varepsilon^{\star} \simeq 7.9 \mathrm{e}-25$.
- Error of the rounded minimax $\widehat{\varepsilon} \simeq 4035$ e-25.
- Huge gap! Can we achieve an intermediate error of $\varepsilon_{\text {target }}=400 \mathrm{e}-25$?
- Polytope constructed with 30 Chebyshev points.

Worked example (II)

- Minimax (real coefficients): $\varepsilon^{\star} \simeq 7.9 \mathrm{e}-25$.
- Error of the rounded minimax $\widehat{\varepsilon} \simeq 4035 \mathrm{e}-25$.
- Huge gap! Can we achieve an intermediate error of $\varepsilon_{\text {target }}=400 \mathrm{e}-25$?
- Polytope constructed with 30 Chebyshev points.
- Projection on a_{1} : the interval $\left[u_{1}, v_{1}\right]$ does not contain any double extended number!

Worked example (II)

- Minimax (real coefficients): $\varepsilon^{\star} \simeq 7.9 \mathrm{e}-25$.
- Error of the rounded minimax $\widehat{\varepsilon} \simeq 4035 \mathrm{e}-25$.
- Huge gap! Can we achieve an intermediate error of $\varepsilon_{\text {target }}=400 \mathrm{e}-25$?
- Polytope constructed with 30 Chebyshev points.
- Projection on a_{1} : the interval $\left[u_{1}, v_{1}\right]$ does not contain any double extended number!
- Hence $\varepsilon_{\text {target }}$ cannot be achieved:

$$
400 \mathrm{e}-25 \leq \varepsilon_{\mathrm{opt}} \leq 4035 \mathrm{e}-25
$$

Worked example (II)

- Minimax (real coefficients): $\varepsilon^{\star} \simeq 7.9 \mathrm{e}-25$.
- Error of the rounded minimax $\widehat{\varepsilon} \simeq 4035 \mathrm{e}-25$.
- Huge gap! Can we achieve an intermediate error of $\varepsilon_{\text {target }}=400 \mathrm{e}-25$?
- Polytope constructed with 30 Chebyshev points.
- Projection on a_{1} : the interval $\left[u_{1}, v_{1}\right]$ does not contain any double extended number!
- Hence $\varepsilon_{\text {target }}$ cannot be achieved:

$$
400 \mathrm{e}-25 \leq \varepsilon_{\mathrm{opt}} \leq 4035 \mathrm{e}-25 .
$$

- Generally $\left[u_{i}, v_{i}\right]$ is so thin that the exponent e_{i} is fixed.

Worked example (II)

- Minimax (real coefficients): $\varepsilon^{\star} \simeq 7.9 \mathrm{e}-25$.
- Error of the rounded minimax $\widehat{\varepsilon} \simeq 4035 \mathrm{e}-25$.
- Huge gap! Can we achieve an intermediate error of $\varepsilon_{\text {target }}=400 \mathrm{e}-25$?
- Polytope constructed with 30 Chebyshev points.
- Projection on a_{1} : the interval $\left[u_{1}, v_{1}\right]$ does not contain any double extended number!
- Hence $\varepsilon_{\text {target }}$ cannot be achieved:

$$
400 \mathrm{e}-25 \leq \varepsilon_{\mathrm{opt}} \leq 4035 \mathrm{e}-25 .
$$

- Generally $\left[u_{i}, v_{i}\right]$ is so thin that the exponent e_{i} is fixed.
- Improving the value 4035 e-25: we need a fast (possibly heuristic) algorithm.
- Reminder about approximation theory.
\hookrightarrow finds good approximation polynomials with real coefficients.
- Polynomial p with floating-point coefficients.
- Linear programming.
\hookrightarrow gets useful informations on the structure of p.
- Euclidean lattices.
\hookrightarrow computes a very good polynomial p.
- Reminder about approximation theory.
\hookrightarrow finds good approximation polynomials with real coefficients.
- Polynomial p with floating-point coefficients.
- Linear programming.
\hookrightarrow gets useful informations on the structure of p.
- Euclidean lattices.
\hookrightarrow computes a very good polynomial p.

Formalisation of the problem

- Our goal: find p approximating f and with the following form

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n}
$$

Formalisation of the problem

- Our goal: find p approximating f and with the following form

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n}
$$

- A simplification: guess the value of each e_{i}.
\hookrightarrow heuristic validated by means of projections.

Formalisation of the problem

- Our goal: find p approximating f and with the following form

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n}
$$

- A simplification: guess the value of each e_{i}.
\hookrightarrow heuristic validated by means of projections.
- Once e_{i} is guessed, we need to find $m_{i} \in \mathbb{Z}$ such that

$$
\left\|f(x)-\sum_{i=0}^{n} m_{i} \cdot 2^{e_{i}} x^{i}\right\|_{\infty}
$$

is minimal.

Description of the lattice-based method

Our goal: find p approximating f and with the following form

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n}
$$

Description of the lattice-based method

Our goal: find p approximating f and with the following form

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n}
$$

- We assume that p looks like p^{\star} :

Description of the lattice-based method

Our goal: find p approximating f and with the following form

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n}
$$

- We assume that p looks like p^{\star} :
- we choose $n+1$ points z_{0}, \cdots, z_{n} in $[a, b]$;

Description of the lattice-based method

Our goal: find p approximating f and with the following form

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n}
$$

- We assume that p looks like p^{\star} :
- we choose $n+1$ points z_{0}, \cdots, z_{n} in $[a, b]$;
- we search m_{0}, \cdots, m_{n} such that for all i

$$
p\left(z_{i}\right)=m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} z_{i}+\cdots+m_{n} \cdot 2^{e_{n}} z_{i}^{n} \simeq p^{\star}\left(z_{i}\right) .
$$

Description of the lattice-based method

Our goal: find p approximating f and with the following form

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n}
$$

- We assume that p looks like p^{\star} :
- we choose $n+1$ points z_{0}, \cdots, z_{n} in $[a, b]$;
- we search m_{0}, \cdots, m_{n} such that for all i

$$
p\left(z_{i}\right)=m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} z_{i}+\cdots+m_{n} \cdot 2^{e_{n}} z_{i}^{n} \simeq p^{\star}\left(z_{i}\right)
$$

- Rewritten with vectors:

$$
\underbrace{m_{0}\left(\begin{array}{c}
2^{e_{0}} \\
2^{e_{0}} \\
\vdots \\
2^{e_{0}}
\end{array}\right)+\cdots+m_{n}\left(\begin{array}{c}
2^{e_{n}} \cdot z_{0}^{n} \\
2^{e_{n}} \cdot z_{1}^{n} \\
\vdots \\
2^{e_{n}} \cdot z_{n}^{n}
\end{array}\right)}_{\Gamma \text { of the form } \mathbb{Z} \overrightarrow{b_{0}}+\mathbb{Z} \overrightarrow{b_{1}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}}} \simeq \underbrace{\left(\begin{array}{c}
p^{\star}\left(z_{0}\right) \\
p^{\star}\left(z_{1}\right) \\
\vdots \\
p^{\star}\left(z_{n}\right)
\end{array}\right)}_{\vec{v} \in \mathbb{R}^{n+1}}
$$

Notions about lattices

Let $\left(\overrightarrow{b_{0}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space.

Notions about lattices

Let $\left(\overrightarrow{b_{0}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{0}}+\mathbb{Z} \overrightarrow{b_{1}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}} .
$$

Notions about lattices

Let $\left(\overrightarrow{b_{0}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{0}}+\mathbb{Z} \overrightarrow{b_{1}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}} .
$$

In general, a lattice has infinitely many bases.

Notions about lattices

Let $\left(\overrightarrow{b_{0}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{0}}+\mathbb{Z} \overrightarrow{b_{1}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}} .
$$

In general, a lattice has infinitely many bases.

Notions about lattices

Let $\left(\overrightarrow{b_{0}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{0}}+\mathbb{Z} \overrightarrow{b_{1}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}} .
$$

In general, a lattice has infinitely many bases.

Notions about lattices (2)

Algorithmic problems:

Notions about lattices (2)

Algorithmic problems:

- shortest vector problem (SVP);

+	+		+		+		+			
+ +		+		+		+		+		+
$\overrightarrow{c_{1}}+$	+		+		+		+		$+$	
$\xrightarrow[{\overrightarrow{c_{0}}}^{+}]{ }$		+		+		+		$+$		+

Notions about lattices (2)

Algorithmic problems:

- shortest vector problem (SVP);
- closest vector problem (CVP).

Notions about lattices (2)

Algorithmic problems:

- shortest vector problem (SVP);
- closest vector problem (CVP).

Notions about lattices (2)

Algorithmic problems:

- shortest vector problem (SVP);
- closest vector problem (CVP).

LLL algorithm: Lenstra, Lenstra Jr. and Lovász (1982).

Notions about lattices (2)

Algorithmic problems:

- shortest vector problem (SVP);
- closest vector problem (CVP).

LLL algorithm: finds pretty short vectors in polynomial time.

Notions about lattices (2)

Algorithmic problems:

- shortest vector problem (SVP);
- closest vector problem (CVP).

LLL algorithm: used by Babai to solve an approximation of CVP.

A reminder of the formalisation

Remember our formalisation:

The algorithm

Input: $f,[a, b], n$, list of desired floating-point formats t_{i}.

The algorithm

Input: $\quad f,[a, b], n$, list of desired floating-point formats t_{i}.
Output: $\quad p=\sum m_{i} 2^{e_{i}} X^{i}$ (m_{i} with t_{i} bits).

The algorithm

Input: $\quad f,[a, b], n$, list of desired floating-point formats t_{i}.
Output: $\quad p=\sum m_{i} 2^{e_{i}} X^{i}$ (m_{i} with t_{i} bits).

1. Compute the real minimax $p^{\star}=\sum a_{i}^{\star} X^{i}$.

The algorithm

Input: $\quad f,[a, b], n$, list of desired floating-point formats t_{i}.
Output: $\quad p=\sum m_{i} 2^{e_{i}} X^{i}$ (m_{i} with t_{i} bits).

1. Compute the real minimax $p^{\star}=\sum a_{i}^{\star} X^{i}$.
2. Guess e_{i} (polytope approach).

The algorithm

Input: $\quad f,[a, b], n$, list of desired floating-point formats t_{i}.
Output: $\quad p=\sum m_{i} 2^{e_{i}} X^{i}$ (m_{i} with t_{i} bits).

1. Compute the real minimax $p^{\star}=\sum a_{i}^{\star} X^{i}$.
2. Guess e_{i} (polytope approach).
3. Choose z_{0}, \ldots, z_{n} in $[a, b]$.

The algorithm

Input: $\quad f,[a, b], n$, list of desired floating-point formats t_{i}.
Output: $\quad p=\sum m_{i} 2^{e_{i}} X^{i}$ (m_{i} with t_{i} bits).

1. Compute the real minimax $p^{\star}=\sum a_{i}^{\star} X^{i}$.
2. Guess e_{i} (polytope approach).
3. Choose z_{0}, \ldots, z_{n} in $[a, b]$.
4. Construct the vectors b_{j} and the vector v.

The algorithm

Input: $\quad f,[a, b], n$, list of desired floating-point formats t_{i}.
Output: $\quad p=\sum m_{i} 2^{e_{i}} X^{i}$ (m_{i} with t_{i} bits).

1. Compute the real minimax $p^{\star}=\sum a_{i}^{\star} X^{i}$.
2. Guess e_{i} (polytope approach).
3. Choose z_{0}, \ldots, z_{n} in $[a, b]$.
4. LLL-reduce the lattice: we get a basis $\left(c_{0}, \ldots, c_{n}\right)$.

The algorithm

Input: $f,[a, b], n$, list of desired floating-point formats t_{i}.
Output: $\quad p=\sum m_{i} 2^{e_{i}} X^{i}$ (m_{i} with t_{i} bits).

1. Compute the real minimax $p^{\star}=\sum a_{i}^{\star} X^{i}$.
2. Guess e_{i} (polytope approach).
3. Choose z_{0}, \ldots, z_{n} in $[a, b]$.
4. Use Babai's algorithm to find a vector \tilde{v} close to v.

The algorithm

Input: $\quad f,[a, b], n$, list of desired floating-point formats t_{i}.
Output: $\quad p=\sum m_{i} 2^{e_{i}} X^{i}$ (m_{i} with t_{i} bits).

1. Compute the real minimax $p^{\star}=\sum a_{i}^{\star} X^{i}$.
2. Guess e_{i} (polytope approach).
3. Choose z_{0}, \ldots, z_{n} in $[a, b]$.
4. Construct the vectors b_{j} and the vector v.
5. LLL-reduce the lattice: we get a basis $\left(c_{0}, \ldots, c_{n}\right)$.
6. Use Babai's algorithm to find a vector \tilde{v} close to v.

The algorithm

Input: $f,[a, b], n$, list of desired floating-point formats t_{i}.
Output: $\quad p=\sum m_{i} 2^{e_{i}} X^{i}$ (m_{i} with t_{i} bits).

1. Compute the real minimax $p^{\star}=\sum a_{i}^{\star} X^{i}$.
2. Guess e_{i} (polytope approach).
3. Choose z_{0}, \ldots, z_{n} in $[a, b]$.
4. Construct the vectors b_{j} and the vector v.
5. LLL-reduce the lattice: we get a basis $\left(c_{0}, \ldots, c_{n}\right)$.
6. Use Babai's algorithm to find a vector \tilde{v} close to v.
7. Replace each c_{j} by its expression with the vectors b_{k} : hence getting the coefficients m_{j} of \tilde{v} in the basis $\left(b_{0}, \ldots, b_{n}\right)$.

The algorithm

Input: $\quad f,[a, b], n$, list of desired floating-point formats t_{i}.
Output: $\quad p=\sum m_{i} 2^{e_{i}} X^{i}$ (m_{i} with t_{i} bits).

1. Compute the real minimax $p^{\star}=\sum a_{i}^{\star} X^{i}$.
2. Guess e_{i} (polytope approach).
3. Choose z_{0}, \ldots, z_{n} in $[a, b]$.
4. Construct the vectors b_{j} and the vector v.
5. LLL-reduce the lattice: we get a basis $\left(c_{0}, \ldots, c_{n}\right)$.
6. Use Babai's algorithm to find a vector \tilde{v} close to v.
7. Replace each c_{j} by its expression with the vectors b_{k} : hence getting the coefficients m_{j} of \tilde{v} in the basis $\left(b_{0}, \ldots, b_{n}\right)$.
Return: $\quad p=\sum m_{i} 2^{e_{i}} X^{i}$.

Worked example

- How to choose the points?

Worked example

- How to choose the points?
- We need $n+1$ points.

Worked example

- How to choose the points?
- We need $n+1$ points.
- They should correspond to the interpolation intuition :

$$
p\left(z_{i}\right) \simeq p^{\star}\left(z_{i}\right)
$$

Worked example

- How to choose the points?

Graph of the error function $p^{\star}-f$.

- We need $n+1$ points.
- They should correspond to the interpolation intuition :

$$
p\left(z_{i}\right) \simeq p^{\star}\left(z_{i}\right)
$$

- Idea: if possible take points where

$$
p^{\star}\left(z_{i}\right)=f\left(z_{i}\right) .
$$

Worked example

- How to choose the points?

Graph of the error function $p^{\star}-f$.

- We need $n+1$ points.
- They should correspond to the interpolation intuition :

$$
p\left(z_{i}\right) \simeq p^{\star}\left(z_{i}\right)
$$

- Idea: if possible take points where

$$
p^{\star}\left(z_{i}\right)=f\left(z_{i}\right) .
$$

Results

- We get a polynomial p_{0} with floating-point coefficients.
- The error of p_{0} is $\varepsilon_{0} \simeq 532 \mathrm{e}-25$.

Results

- We get a polynomial p_{0} with floating-point coefficients.
- The error of p_{0} is $\varepsilon_{0} \simeq 532 \mathrm{e}-25$.
- Remember that we knew: $400 \mathrm{e}-25 \leq \varepsilon_{\mathrm{opt}} \leq 4035 \mathrm{e}-25$.

Results

- We get a polynomial p_{0} with floating-point coefficients.
- The error of p_{0} is $\varepsilon_{0} \simeq 532 \mathrm{e}-25$.
- Remember that we knew: $400 \mathrm{e}-25 \leq \varepsilon_{\mathrm{opt}} \leq 4035 \mathrm{e}-25$.
\hookrightarrow now we know that

$$
400 \mathrm{e}-25 \leq \varepsilon_{\mathrm{opt}} \leq 532 \mathrm{e}-25 .
$$

Results

- We get a polynomial p_{0} with floating-point coefficients.
- The error of p_{0} is $\varepsilon_{0} \simeq 532 \mathrm{e}-25$.
- Remember that we knew: $400 \mathrm{e}-25 \leq \varepsilon_{\mathrm{opt}} \leq 4035 \mathrm{e}-25$.
\hookrightarrow now we know that

$$
400 \mathrm{e}-25 \leq \varepsilon_{\mathrm{opt}} \leq 532 \mathrm{e}-25 .
$$

- It is even possible to prove that

$$
444.02 \mathrm{e}-25 \leq \varepsilon_{\text {opt }} \leq \underbrace{444.92 \mathrm{e}-25}_{\text {effectively reached }}
$$

Conclusion

- Several techniques for polynomial approximation:
- approximation with real coefficients;
- approximation with floating-point coefficients:
\hookrightarrow linear programming, euclidean lattices.

Conclusion

- Several techniques for polynomial approximation:
- approximation with real coefficients;
- approximation with floating-point coefficients:
\hookrightarrow linear programming, euclidean lattices.
- Available within Sollya.

Conclusion

- Several techniques for polynomial approximation:
- approximation with real coefficients;
- approximation with floating-point coefficients:
\hookrightarrow linear programming, euclidean lattices.
- Available within Sollya.
- Other topics studied during the thesis:
- computing automatically a certified bound on $\|p-f\|_{\infty}$;
- implementing a function in arbitrary precision.

Perspectives

- Apply our techniques to signal processing:
\hookrightarrow find trigonometric polynomials with floating-point coefficients

Perspectives

- Apply our techniques to signal processing:
\hookrightarrow find trigonometric polynomials with floating-point coefficients
- Implementation of functions in arbitrary precision:
- painful to do manually;

Perspectives

- Apply our techniques to signal processing:
\hookrightarrow find trigonometric polynomials with floating-point coefficients
- Implementation of functions in arbitrary precision:
- painful to do manually;
- goal: automate the implementation;

Perspectives

- Apply our techniques to signal processing:
\hookrightarrow find trigonometric polynomials with floating-point coefficients
- Implementation of functions in arbitrary precision:
- painful to do manually;
- goal: automate the implementation;
- makes it possible to explore new ideas.

Perspectives

- Apply our techniques to signal processing:
\hookrightarrow find trigonometric polynomials with floating-point coefficients
- Implementation of functions in arbitrary precision:
- painful to do manually;
- goal: automate the implementation;
- makes it possible to explore new ideas.
- Continue developing Sollya.
\hookrightarrow the most important keyword is safety.

Perspectives

- Apply our techniques to signal processing:
\hookrightarrow find trigonometric polynomials with floating-point coefficients
- Implementation of functions in arbitrary precision:
- painful to do manually;
- goal: automate the implementation;
- makes it possible to explore new ideas.
- Continue developing Sollya.
\hookrightarrow the most important keyword is safety.
- Support for multivariate functions.

Perspectives

- Apply our techniques to signal processing:
\hookrightarrow find trigonometric polynomials with floating-point coefficients
- Implementation of functions in arbitrary precision:
- painful to do manually;
- goal: automate the implementation;
- makes it possible to explore new ideas.
- Continue developing Sollya.
\hookrightarrow the most important keyword is safety.
- Support for multivariate functions.
- More numerical procedures (interpolation, integration).

Perspectives

- Apply our techniques to signal processing:
\hookrightarrow find trigonometric polynomials with floating-point coefficients
- Implementation of functions in arbitrary precision:
- painful to do manually;
- goal: automate the implementation;
- makes it possible to explore new ideas.
- Continue developing Sollya.
\hookrightarrow the most important keyword is safety.
- Support for multivariate functions.
- More numerical procedures (interpolation, integration).
- Solving differential equations.

Perspectives

- Apply our techniques to signal processing:
\hookrightarrow find trigonometric polynomials with floating-point coefficients
- Implementation of functions in arbitrary precision:
- painful to do manually;
- goal: automate the implementation;
- makes it possible to explore new ideas.
- Continue developing Sollya.
\hookrightarrow the most important keyword is safety.
- Support for multivariate functions.
- More numerical procedures (interpolation, integration).
- Solving differential equations.
- Linear algebra (inversion of matrices, resolution of linear systems, etc.)

Perspectives

- Apply our techniques to signal processing:
\hookrightarrow find trigonometric polynomials with floating-point coefficients
- Implementation of functions in arbitrary precision:
- painful to do manually;
- goal: automate the implementation;
- makes it possible to explore new ideas.
- Continue developing Sollya.
\hookrightarrow the most important keyword is safety.
- Support for multivariate functions.
- More numerical procedures (interpolation, integration).
- Solving differential equations.
- Linear algebra (inversion of matrices, resolution of linear systems, etc.)

Perspectives

- Apply our techniques to signal processing:
\hookrightarrow find trigonometric polynomials with floating-point coefficients
- Implementation of functions in arbitrary precision:
- painful to do manually;
- goal: automate the implementation;
- makes it possible to explore new ideas.
- Continue developing Sollya.
\hookrightarrow the most important keyword is safety.
- Support for multivariate functions.
- More numerical procedures (interpolation, integration).
- Solving differential equations.
- Linear algebra (inversion of matrices, resolution of linear systems, etc.)

$$
\exp (x) \text {, on }[1,10] \text {, degree } 6
$$

In some circumstances, one may wish additional constraints:

In some circumstances, one may wish additional constraints:

- Example 1: e^{x} on $[-1 / 8,1 / 4]$, degree 5:

In some circumstances, one may wish additional constraints:

- Example 1: e^{x} on $[-1 / 8,1 / 4]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 0.99999999904782645291762 \ldots \\
& a_{1} \simeq 1.00000006000677910949618 \ldots \\
& a_{2} \simeq 0.50000048748217150868457 \ldots \\
& a_{3} \simeq 0.16665453887128398679564 \ldots \\
& a_{4} \simeq 0.04165519344690637013988 \ldots \\
& a_{5} \simeq 0.00888564825713070913304 \ldots
\end{aligned}
$$

In some circumstances, one may wish additional constraints:

- Example 1: e^{x} on $[-1 / 8,1 / 4]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
a_{0} & \simeq 0.99999999904782645291762 \ldots \\
a_{1} & \simeq 1.00000006000677910949618 \ldots \\
a_{2} & \simeq 0.50000048748217150868457 \ldots \\
a_{3} & \simeq 0.16665453887128398679564 \ldots \\
a_{4} & \simeq 0.04165519344690637013988 \ldots \\
a_{5} & \simeq 0.00888564825713070913304 \ldots
\end{aligned}
$$

- Corresponding error: $2 \mathrm{e}-9$

In some circumstances, one may wish additional constraints:

- Example 1: e^{x} on $[-1 / 8,1 / 4]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 0.99999999904782645291762 \ldots \\
& a_{1} \simeq 1.00000006000677910949618 \ldots \\
& a_{2} \simeq 0.50000048748217150868457 \ldots \\
& a_{3} \simeq 0.16665453887128398679564 \ldots \\
& a_{4} \simeq 0.04165519344690637013988 \ldots \\
& a_{5} \simeq 0.00888564825713070913304 \ldots
\end{aligned}
$$

- Corresponding error: $2 \mathrm{e}-9$

In some circumstances, one may wish additional constraints:

- Example 1: e^{x} on $[-1 / 8,1 / 4]$, degree 5:

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 1 \\
& a_{1} \simeq 1 \\
& a_{2} \simeq 0.5 \\
& a_{3} \simeq 0.16665453887128398679564 \ldots \\
& a_{4} \simeq 0.04165519344690637013988 \ldots \\
& a_{5} \simeq 0.00888564825713070913304 \ldots
\end{aligned}
$$

- Corresponding error: $2 \mathrm{e}-9$

In some circumstances, one may wish additional constraints:

- Example 1: e^{x} on $[-1 / 8,1 / 4]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 1 \\
& a_{1} \simeq 1 \\
& a_{2} \simeq 0.5 \\
& a_{3} \simeq 0.16665960056981588342415 \ldots \\
& a_{4} \simeq 0.04166987481926998551732 \ldots \\
& a_{5} \simeq 0.00878894622316490686862 \ldots
\end{aligned}
$$

- Corresponding error: $2 \mathrm{e}-9$

In some circumstances, one may wish additional constraints:

- Example 1: e^{x} on $[-1 / 8,1 / 4]$, degree 5 :

$$
p=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

with

$$
\begin{aligned}
& a_{0} \simeq 1 \\
& a_{1} \simeq 1 \\
& a_{2} \simeq 0.5 \\
& a_{3} \simeq 0.16665960056981588342415 \ldots \\
& a_{4} \simeq 0.04166987481926998551732 \ldots \\
& a_{5} \simeq 0.00878894622316490686862 \ldots
\end{aligned}
$$

- Corresponding error: $2 \mathrm{e}-9$
- Constrained polynomial error: $4.5 \mathrm{e}-9$.

