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» People usually enter in my office saying | would like to
approximate a function.
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exp(2) = 7.38905609893065 . . .
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» People usually enter in my office saying | would like to
approximate a function.

» For instance: sin(x), exp(x), exp(1 + cos(x)), etc.

» Values not exact in general:
exp(2) = 7.38905609893065 . . .

— approximated values.

» For example: error beyond the 15th digit.
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People usually enter in my office saying | would like to
approximate a function.

For instance: sin(x), exp(x), exp(1 + cos(x)), etc.

Values not exact in general:
exp(2) = 7.38905609893065 . . .

— approximated values.
For example: error beyond the 15th digit.
Fifteen correct digits?
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People usually enter in my office saying | would like to
approximate a function.

For instance: sin(x), exp(x), exp(1 + cos(x)), etc.

Values not exact in general:
exp(2) = 7.38905609893065 . . .

— approximated values.
For example: error beyond the 15th digit.
Fifteen correct digits?

0.99999999999999991234
1.00000000000000005678
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» Don't programs for evaluating functions already exist?
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» Don't programs for evaluating functions already exist?
» Yes, but we can:

» improve the efficiency while keeping the accuracy;
> improve the accuracy while keeping the efficiency.
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» Don't programs for evaluating functions already exist?

» Yes, but we can:
» improve the efficiency while keeping the accuracy;
> improve the accuracy while keeping the efficiency.

» New programs must be designed for new architectures.

< the program must be written quickly.
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» Example of function f(x) = exp(x).
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» Example of function f(x) = exp(x).
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» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).
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» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).
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140
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exp(a) = (exp(a/4)?)”
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» First step: reduce the range (range reduction).
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» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).
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» Example of function f(x) = exp(x).
» First step: reduce the range (range reduction).

» Second step: replace the function f by a polynomial p.
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» Example of function f(x) = exp(x).
» First step: reduce the range (range reduction).

» Second step: replace the function f by a polynomial p.

1.15 5

1.05 o

e=p—f /

Approximation error:

» absolute:
e=p—f»F

> relative:
p—f
e=F__
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» Example of function f(x) = exp(x).
» First step: reduce the range (range reduction).
» Second step: replace the function f by a polynomial p.

» Third step: write a program that evaluates the polynomial.
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» Example of function f(x) = exp(x).
» First step: reduce the range (range reduction).
» Second step: replace the function f by a polynomial p.

» Third step: write a program that evaluates the polynomial.
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Sources of errors

» Approximation error: € = p — f.
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Sources of errors

» Approximation error: € = p — f.

» Roundoff errors: due to the propagation of errors during the
evaluation of p.
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Sources of errors

» Approximation error: € = p — f.

» Roundoff errors: due to the propagation of errors during the
evaluation of p.

» The overall error must stay below the 15th digit.
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Sources of errors

» Approximation error: € = p — f.

» Roundoff errors: due to the propagation of errors during the
evaluation of p.

» The overall error must stay below the 15th digit.
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Sollya

> Sollya: developed with C. Lauter.

— making the development of new functions easier.
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— interesting for anyone who wants guarantees on the quality.
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Sollya

> Sollya: developed with C. Lauter.

— making the development of new functions easier.
» Functions, polynomials, roundings, etc. in a safe environment.
» Now becoming a numerical toolbox.

— interesting for anyone who wants guarantees on the quality.

» Thanks to Sollya, the development of functions has been
almost completely automated.
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Main contributions of this thesis

» Algorithms for finding good polynomial/rational
approximations:

» approximation theory (real coefficients);
> linear programming;
> euclidean lattices.
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» rigorous and effective bounds on sequences/functions;
> particular constraints imposed by arbitrary precision.
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» Reminder about approximation theory.
— finds good approximation polynomials with real
coefficients.

» Polynomial p with floating-point coefficients.

» Linear programming.
— gets useful informations on the structure of p.

» Euclidean lattices.
— computes a very good polynomial p.
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» Reminder about approximation theory.

— finds good approximation polynomials with real
coefficients.
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Approximation theory

» How to compute a good approximation polynomial?
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Approximation theory

» How to compute a good approximation polynomial?

» Theorem of la Vallée Poussin (1910).

— oscillations and quality of approximation are related.
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Approximation theory

» How to compute a good approximation polynomial?

» Theorem of la Vallée Poussin (1910).

— oscillations and quality of approximation are related.
» Remez’ algorithm (1934).
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Sometimes, additional constraints may be interesting.
> Example: esn()—cos(*) on [—1/16, 1/16], degree 5:
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Sometimes, additional constraints may be interesting.
» Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag >~ 0.36787944134003553928820. ..
a; ~ 0.36787944121874345820075. ..
a» ~ 0.18393894381629744544839. ..
a3 >~ —0.00000007647880859004234 . . .
as ~ 0.13848496316631160839854 . ..
as ~ 0.15944715191923863665924 . . .

l
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Sometimes, additional constraints may be interesting.
» Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

e ap ~ 0.36787944134003553928820. ..
a; ~ 0.36787944121874345820075 . ..
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l

» Corresponding error: 1.68e—10.
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Sometimes, additional constraints may be interesting.
> Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with

az >~ 0

» Corresponding error: 1.68e—10.
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Sometimes, additional constraints may be interesting.
» Example: esn()—cos(*) on [—1/16, 1/16], degree 5:
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with
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Sometimes, additional constraints may be interesting.
> Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag >~ 0.36787944134057472430253. ..

a; ~ 0.36787944115897691446498. ..
ar ~ 0.18393894243661711831086. ..
a3~ 0

as ~ 0.13848524573630958469899 . ..
as ~ 0.15943149020444985343712. ..

» Corresponding error: 1.68e—10.

» Constrained polynomial error: 1.69e—10.
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Sometimes, additional constraints may be interesting.
> Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx—|—agx2+a3x3+a4x4+a5x

with
ap =~

2

a1

12

ap

1

as

1

as

1

as

5

0.36787944134057472430253 . . .
0.36787944115897691446498 . . .
0.18393894243661711831086. . .
0

0.13848524573630958469899 . . .
0.15943149020444985343712. ..

» Corresponding error: 1.68e—10.

» Constrained polynomial error: 1.69e—10.

» Stiefel's exchange algorithm (1959).
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» Reminder about approximation theory.
— finds good approximation polynomials with real
coefficients.

» Polynomial p with floating-point coefficients.

» Linear programming.
— gets useful informations on the structure of p.

» Euclidean lattices.
— computes a very good polynomial p.
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» Polynomial p with floating-point coefficients.
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Representing real numbers in computers

» IEEE-754 standard: defines floating-point numbers.
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Representing real numbers in computers

» IEEE-754 standard: defines floating-point numbers.

» A floating-point number x with radix 2 and precision t, is a
number of the form:

x=1biby...by_y - 2¢, b €{0,1}, € € Z
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Representing real numbers in computers

» IEEE-754 standard: defines floating-point numbers.

» A floating-point number x with radix 2 and precision t, is a
number of the form:

x=1biby...by_y - 2¢, b €{0,1}, € € Z

» Formally, x = m - 2¢ where:

» m € Z (with exactly t bits) is its mantissa (or significand);
> e € Zis its exponent.
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The problem

» Each coefficient of a polynomial is represented by a
floating-point number.
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The problem

» Each coefficient of a polynomial is represented by a
floating-point number.
» Naive method to obtain a polynomial approximation of f:

» compute the real minimax p*;

> replace each coefficient aj of p* by the nearest floating-point
number 3;;

> use p=2ay+arx+---+a,x".
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The problem

» Each coefficient of a polynomial is represented by a
floating-point number.
» Naive method to obtain a polynomial approximation of f:
» compute the real minimax p*;
> replace each coefficient aj of p* by the nearest floating-point
number 3;;
> use p=2ay+arx+---+a,x".
» Example with 7(x) = log,(1+27) on [0; 1]
n = 6, single precision coefficients (24 bits).

le”]] €]l [€opt |

8.3e—10 | 119e—10 | 10.06e—10

Popt © best polynomial with floating-point coefficients.
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Previous works

» There exist recipes, not published.
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» There exist recipes, not published.

» D. Kodek (1980) has studied a similar problem in signal
processing. Limited to small precisions (¢t < 10).
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Previous works

» There exist recipes, not published.
» D. Kodek (1980) has studied a similar problem in signal
processing. Limited to small precisions (¢t < 10).

» N. Brisebarre, J.-M. Muller and A. Tisserand (2006) have
proposed an approach by linear programming.
Limited to small degrees (n < 8).
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Previous works

» There exist recipes, not published.
» D. Kodek (1980) has studied a similar problem in signal
processing. Limited to small precisions (¢t < 10).

» N. Brisebarre, J.-M. Muller and A. Tisserand (2006) have
proposed an approach by linear programming.
Limited to small degrees (n < 8).

» Typically, we want t > 50 and n > 10.

Sylvain Chevillard Efficient evaluation of numerical functions



» Reminder about approximation theory.
— finds good approximation polynomials with real
coefficients.

» Polynomial p with floating-point coefficients.

» Linear programming.
— gets useful informations on the structure of p.

» Euclidean lattices.
— computes a very good polynomial p.
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» Polynomial p with floating-point coefficients.

» Linear programming.
— gets useful informations on the structure of p.
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Polytope approach

» Inputs: degree n, interval [a, b], function f,
list of floating-point formats t; (one per coefficient).
» Notations:

» & = |p* — f||,, where p* is the real minimax.
> Eopt = ||Popt — f||, where poy: is a best polynomial with
floating-point coefficients.
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» Inputs: degree n, interval [a, b], function f,
list of floating-point formats t; (one per coefficient).
» Notations:
» & = |p* — f||,, where p* is the real minimax.
> Eopt = ||Popt — f||, where poy: is a best polynomial with
floating-point coefficients.
> We set a trial error: etarget.

> We are looking for p such that |[p — || < €target-
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Polytope approach

» Inputs: degree n, interval [a, b], function f,
list of floating-point formats t; (one per coefficient).
» Notations:
» & = |p* — f||,, where p* is the real minimax.
> Eopt = ||Popt — f||, where poy: is a best polynomial with
floating-point coefficients.
> We set a trial error: etarget.

> We are looking for p such that |[p — || < €target-

n
<~ Vx € [a, b], f(X) — Etarget < Zai x' < f(X) + Ctarget-
i=0
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Construction of the polytope

S={(ao, ..., an) ER™ st |p— flloo < Etarget }-
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Construction of the polytope

S={(ao, ..., an) ER™ st |p— flloo < Etarget }-

ai

do
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Construction of the polytope

S={(ao, ..., an) ER™ st |p— flloo < Etarget }-

n—1 .
Pick xg € [a, b] f(XO) — Etarget < 2:0 aj X(l)
1=
n—1 .
> ai X(S < f(XO) + Ctarget
i=0

ai

do
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Construction of the polytope

S={(a0, ..., an) € R

Pick xp S [a, b]

ai

do

Sylvain Chevillard
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f(XO) — Etarget <
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Construction of the polytope

S={(a0, ---» an) ER"™ sit. ||p—fll < Crarget}-
n—1 i
Pick xg S [a, b] f(XO) — Etarget — ;) aj X(I)

ai

do
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Construction of the polytope

S={(a0, ---» an) ER"™ sit. ||p—fll < Crarget}-
n—1 i
Pick xg S [a, b] f(XO) — Etarget — ;) aj X(I)

ai

do
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Construction of the polytope

S={(a0, ..., an) € R

Pick xg S [3, b]

ar

do

Sylvain Chevillard
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Construction of the polytope

S={(ao, ..., an) ER™ st |p— flloo < Etarget }-

n—1 .
Pick xg € [a, b] f(XO) — Etarget < 2:0 aj X(l)
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do
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Construction of the polytope

S={(ao, ..., an) ER™ st |p— flloo < Etarget }-

n—1 .
Pick xg, x1 € [a, b] f(XO) — Etarget < 2:0 aj X(l)
n—1 . =
Z ai X(S < f(XO) + Etarget
i=0
ai
n—1 i
f(Xl) — Etarget < > ai X;{
—
n—1 i '
Z aj X]I_ < f(Xl) + Etarget
i=0
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Construction of the polytope

S={(a0, ---» an) ER"™ sit. ||p—fll < Crarget}-
n—1 .
Pick xg, x1, X2 S [a, b] f(XO) — Ctarget < g:o aj X(l)
n—1 . =
> ai X(S < f(XO) + Ctarget
i=0

IN

n—1 i
f(Xl) — Etarget Z aj X;{
—
n—1 i '
> ai X]I_ < f(Xl) + Ctarget
i=0

f(X2) — Etarget

IA
Nng!
o
l\)><~

IN

f(X2) + Etarget

n—1 .
> aixs
i=0
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Construction of the polytope

S={(a0, ---» an) ER"™ sit. ||p—fll < Crarget}-
n—1 .
Pick xg, x1, X2, X3 € [a, b] f(XO) — Etarget < Z:O aj X(l)
1=
n—1 .
> ai X(S < f(XO) + Ctarget
i=0

IN

n—1 i
f(Xl) — Etarget Z aj X;{
—
n—1 i '
> ai X]I_ < f(Xl) + Ctarget
i=0

f(X2) — Etarget

IA
Nng!
o
l\)><~

IN

f(X2) + Etarget

n—1 .
> aixs
i=0
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Construction of the polytope

S={(a0, ---» an) ER"™ sit. ||p—fll < Crarget}-
n—1 .
Pick xg,x1,x2,x3,... € [a, b] f(XO) — Ctarget < 'Z:Oaix(l)
1=
n—1 .
> ai X(S < f(XO) + Ctarget
i=0

n—1 i
f(Xl) — Etarget < Z aj X;{
i=0

n—1 i
> ai X]I_ < f(Xl) + Ctarget
i=0

n—1 .
f(X2) — Etarget < Z aj X2’
=
n—1 . '
Z aj XQI < f(X2) + Etarget
i=0
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Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.
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» We just keep a finite number of points xg, ..., x4.
» The corresponding set of coefficients is a polytope P of R™1.

ap

do
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Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.
» The corresponding set of coefficients is a polytope P of R™1.
» Projections are performed by linear programming (simplex).

ap

do
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Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.
» The corresponding set of coefficients is a polytope P of R™1.
» Projections are performed by linear programming (simplex).

ap

do
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Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.
» The corresponding set of coefficients is a polytope P of R™1.
» Projections are performed by linear programming (simplex).

ap

[2) Vo do

Sylvain Chevillard Efficient evaluation of numerical functions 19



Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.

» The corresponding set of coefficients is a polytope P of R™1.
» Projections are performed by linear programming (simplex).

» They give an enclosure for each coefficient : a; € [u;, vi].

Vo ao
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Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.
» The corresponding set of coefficients is a polytope P of R™1.
» Projections are performed by linear programming (simplex).
» They give an enclosure for each coefficient : a; € [u;, vi].
Ip— fllo < Erarget = (0, ---» an) €S
= (ag, ..., an) €P
= Vi, a; € [uj, vj].

Vo 4o
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Worked example (beginning)

» Example given by John Harrison (Intel Corp.) when he came
to Lyon.
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Worked example (beginning)

» Example given by John Harrison (Intel Corp.) when he came
to Lyon.
» He asked for a polynomial minimising the absolute error:
> approximating f : x — %;
» on [a, b] = [-1/16, 1/16];

» with a polynomial of degree 9;
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Worked example (beginning)

» Example given by John Harrison (Intel Corp.) when he came
to Lyon.
» He asked for a polynomial minimising the absolute error:
> approximating f : x — %;
» on [a, b] = [-1/16, 1/16];
» with a polynomial of degree 9;
» coefficient ap: 129 bits of precision;

> other coefficients: 64 bits of precision.
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Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
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Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.

» Error of the rounded minimax & ~ 4035 e—25.

Sylvain Chevillard Efficient evaluation of numerical functions



Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400e—257

Sylvain Chevillard Efficient evaluation of numerical functions



Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400 e—257
» Polytope constructed with 30 Chebyshev points.
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Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400 e—257
» Polytope constructed with 30 Chebyshev points.
» Projection on a;: the interval [u1, v;] does not contain any
double extended number!
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Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400 e—257
» Polytope constructed with 30 Chebyshev points.
» Projection on a;: the interval [u1, v;] does not contain any
double extended number!
> Hence €target Cannot be achieved:

400e—25 < cop < 4035e—25,
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Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400 e—257
» Polytope constructed with 30 Chebyshev points.
» Projection on a;: the interval [u1, v;] does not contain any
double extended number!
> Hence €target Cannot be achieved:

400e—25 < cop < 4035e—25,

» Generally [u;, vi] is so thin that the exponent e; is fixed.
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Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400 e—257
» Polytope constructed with 30 Chebyshev points.
» Projection on a;: the interval [u1, v;] does not contain any
double extended number!
> Hence €target Cannot be achieved:

400e—25 < cop < 4035e—25,

» Generally [u;, vi] is so thin that the exponent e; is fixed.

» Improving the value 4035e—25: we need a fast (possibly
heuristic) algorithm.
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» Reminder about approximation theory.
— finds good approximation polynomials with real
coefficients.

» Polynomial p with floating-point coefficients.

» Linear programming.
— gets useful informations on the structure of p.

» Euclidean lattices.
— computes a very good polynomial p.
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» Polynomial p with floating-point coefficients.

» Euclidean lattices.
— computes a very good polynomial p.
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Formalisation of the problem

» Qur goal: find p approximating f and with the following form

mo 2% +my - 29X + -+ +m, -2 X",
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Formalisation of the problem

» Qur goal: find p approximating f and with the following form
mo 2% +my - 29X + -+ +m, -2 X",

» A simplification: guess the value of each e;.

— heuristic validated by means of projections.
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Formalisation of the problem

» Qur goal: find p approximating f and with the following form
mo 2% +my - 29X + -+ +m, -2 X",

» A simplification: guess the value of each e;.
— heuristic validated by means of projections.

» Once ¢; is guessed, we need to find m; € Z such that

Hf(x) - Z m; - 28!
i=0

o0

is minimal.
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Description of the lattice-based method
Our goal: find p approximating f and with the following form

mo 2% +m - 29X +---+m,-2%X".
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Description of the lattice-based method
Our goal: find p approximating f and with the following form

mo 2% +m - 29X +---+m,-2%X".

» We assume that p looks like p*:
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Description of the lattice-based method
Our goal: find p approximating f and with the following form

mo 2% +m - 29X +---+m,-2%X".

» We assume that p looks like p*:
» we choose n+ 1 points zg, -+, z, in [a, b];
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Description of the lattice-based method
Our goal: find p approximating f and with the following form

mo 2% +m - 29X +---+m,-2%X".
» We assume that p looks like p*:

» we choose n+ 1 points zg, -+, z, in [a, b];
» we search mg, - -+, m, such that for all i

P(Z,') = m0.2eo +m1'261zi+"'+mn'2e"2,-n ’:p*(z,-)
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Description of the lattice-based method
Our goal: find p approximating f and with the following form

mo 2% +m - 29X +---+m,-2%X".

» We assume that p looks like p*:
» we choose n+ 1 points zg, -+, z, in [a, b];
» we search myq, - -+, m, such that for all J

P(Z,') = m0.2eo +m1'261zi+"'+mn'2e"2,-n ’:p*(z,-)

» Rewritten with vectors:

2% 2% .z p*(z0)

2% 2% . z] p*(z1)
'n *

2% 20 .z p*(zn)

[ of the form Zby-+Zby +--+Zb, VR
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Notions about lattices

— — .
Let (bg, --- , bp) be a basis of a real vector space.
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Notions about lattices

— —

Let (bg, -+, bn) be a basis of a real vector space. The set of all
—

integer combinations of the b; is called a lattice:

— — —
[ =Zbo+7Zbi + - +7b,
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Notions about lattices

— —

Let (bg, -+, bn) be a basis of a real vector space. The set of all
—

integer combinations of the b; is called a lattice:

— — —
[ =Zbo+7Zbi + - +7b,

In general, a lattice has infinitely many bases.

F + + + + + +
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Let (bg, -+, bn) be a basis of a real vector space. The set of all

=
integer combinations of the b; is called a lattice:

— — —
[ =Zbo+7Zbi + - +7b,

In general, a lattice has infinitely many bases.

F + + +
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Notions about lattices

— —

Let (bg, -+, bn) be a basis of a real vector space. The set of all
—

integer combinations of the b; is called a lattice:

— — —
[ =Zbo+7Zbi + - +7b,

In general, a lattice has infinitely many bases.

F + + + + + +
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Notions about lattices (2)

Algorithmic problems:

Sylvain Chevillard
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Notions about lattices (2)

Algorithmic problems:
> shortest vector problem (SVP)

F + + +
+ + + +
a + +
= + +
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Notions about lattices (2)

Algorithmic problems:
> shortest vector problem (SVP)

> closest vector problem (CVP).
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Notions about lattices (2)

Algorithmic problems:
> shortest vector problem (SVP)

> closest vector problem (CVP).
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Notions about lattices (2)

Algorithmic problems:
» shortest vector problem (SVP);
> closest vector problem (CVP).
LLL algorithm: Lenstra, Lenstra Jr. and Lovasz (1982).

F + + + + + +
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Notions about lattices (2)

Algorithmic problems:
» shortest vector problem (SVP);
> closest vector problem (CVP).

LLL algorithm: finds pretty short vectors in polynomial time.

F + + + + + +
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Notions about lattices (2)

Algorithmic problems:
> shortest vector problem (SVP)

> closest vector problem (CVP).

LLL algorithm: used by Babai to solve an approximation of CVP.

F + + +
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A reminder of the formalisation

Remember our formalisation:

2¢0 2% .z f(z0)
2% PALRY f(z1)
mo| |4+ m, :
2¢0 2en .z f(zn)
————
by b v
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The algorithm

Input: £, [a, b], n, list of desired floating-point formats t;.
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The algorithm

Input: £, [a, b], n, list of desired floating-point formats t;.
Output: p =3 m;2¢X" (m; with t; bits).
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The algorithm

Input: £, [a, b], n, list of desired floating-point formats t;.
Output: p =3 m;2¢X" (m; with t; bits).

1. Compute the real minimax p* = 3" a* X'
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The algorithm
Input: £, [a, b], n, list of desired floating-point formats t;.
Output: p =3 m;2¢X" (m; with t; bits).
1. Compute the real minimax p* = 3" a* X'

2. Guess ¢; (polytope approach).
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The algorithm

Input:
Output:

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

1. Compute the real minimax p* = 3" a* X'

2. Guess ¢; (polytope approach).

3. Choose zg, ..., z, in [a, b].
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The algorithm

Input:
Output:

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

1. Compute the real minimax p*
2. Guess ¢; (polytope approach).
3.
4

. Construct the vectors b; and the vector v.

Choose zy, ..., z, in [a, b].

=Y arX.
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The algorithm

Input:
Output:

1
2
3.
5

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

Sylvain Chevillard

. Compute the real minimax p* = Y~ a*X".
. Guess ¢; (polytope approach).
Choose zy, ..., z, in [a, b].
. LLL-reduce the lattice: we get a basis (co, ..., cn).
F + + + + + +
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The algorithm

Input:
Output:

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

1. Compute the real minimax p*
2. Guess ¢; (polytope approach).
3.
6

. Use Babai's algorithm to find a vector ¥ close to v.

Choose zy, ..., z, in [a, b].

=Y arX.
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The algorithm

Input:
Output:

I T o

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

Compute the real minimax p* = Y~ a* X"

Guess e; (polytope approach).

Choose zy, ..., z, in [a, b].

Construct the vectors b; and the vector v.
LLL-reduce the lattice: we get a basis (co, ..., cn).

Use Babai's algorithm to find a vector ¥ close to v.
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The algorithm

Input:
Output:

No oA~ b=

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

Compute the real minimax p* = Y~ a* X"

Guess e; (polytope approach).

Choose zy, ..., z, in [a, b].

Construct the vectors b; and the vector v.
LLL-reduce the lattice: we get a basis (co, ..., cn).
Use Babai's algorithm to find a vector ¥ close to v.

Replace each ¢; by its expression with the vectors by: hence
getting the coefficients m; of ¥ in the basis (b, ..., by).
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The algorithm

Input:
Output:

No oA~ b=

Return:

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

Compute the real minimax p* = Y~ a* X"

Guess e; (polytope approach).

Choose zy, ..., z, in [a, b].

Construct the vectors b; and the vector v.
LLL-reduce the lattice: we get a basis (co, ..., cn).
Use Babai's algorithm to find a vector ¥ close to v.

Replace each ¢; by its expression with the vectors by: hence
getting the coefficients m; of ¥ in the basis (b, ..., by).

p=>m2%X'
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Worked example

» How to choose the points?
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Worked example

» How to choose the points?
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» We need n+ 1 points.
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Worked example

» How to choose the points?

Sylvain Chevillard

» We need n+ 1 points.

» They should correspond to the
interpolation intuition :

p(z) ~ p*(z).
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Worked example

» How to choose the points?

8e-25 4

» We need n+ 1 points.

» They should correspond to the
interpolation intuition :

0.02 0.04 0.0 P(Z,') ~ p*(Z,').

> |dea: if possible take points
where

Graph of the error function p*(zi) = f(z:).
p*—f.
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Worked example

» How to choose the points?

8e-25 4

» We need n+ 1 points.

» They should correspond to the
interpolation intuition :

0.02 0.04 0.0 P(Z,') ~ p*(Z,').

> |dea: if possible take points
where

Graph of the error function p*(zi) = f(z:).
p*—f.
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Results

» We get a polynomial py with floating-point coefficients.

» The error of pg is £g ~ 532e—25.
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Results

» We get a polynomial py with floating-point coefficients.
» The error of pg is £g ~ 532e—25.
» Remember that we knew: 400 e—25 < g4pr < 4035 e—25.
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Results

» We get a polynomial py with floating-point coefficients.
» The error of pg is £g ~ 532e—25.
» Remember that we knew: 400 e—25 < g4pr < 4035 e—25.

— now we know that

400 e—25 < gopt < 532e—25.
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Results

» We get a polynomial py with floating-point coefficients.
» The error of pg is £g ~ 532e—25.
» Remember that we knew: 400 e—25 < g4pr < 4035 e—25.

— now we know that
400 e—25 < gopt < 532e—25.
» It is even possible to prove that

444.02e—25 < gopr < 444.92e-25 .
—_———

effectively reached
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Conclusion

» Several techniques for polynomial approximation:

» approximation with real coefficients;
» approximation with floating-point coefficients:
— linear programming, euclidean lattices.
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Conclusion

» Several techniques for polynomial approximation:

» approximation with real coefficients;
» approximation with floating-point coefficients:
— linear programming, euclidean lattices.

» Available within Sollya.
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Conclusion

» Several techniques for polynomial approximation:

» approximation with real coefficients;
» approximation with floating-point coefficients:
— linear programming, euclidean lattices.

» Available within Sollya.
» Other topics studied during the thesis:

» computing automatically a certified bound on ||p — f|| _;
» implementing a function in arbitrary precision.
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Perspectives

» Apply our techniques to signal processing:

— find trigonometric polynomials with floating-point
coefficients
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» Apply our techniques to signal processing:

— find trigonometric polynomials with floating-point
coefficients
» Implementation of functions in arbitrary precision:
» painful to do manually;
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» goal: automate the implementation;
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» Apply our techniques to signal processing:
— find trigonometric polynomials with floating-point
coefficients

» Implementation of functions in arbitrary precision:

» painful to do manually;
» goal: automate the implementation;
» makes it possible to explore new ideas.
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Perspectives

» Apply our techniques to signal processing:
— find trigonometric polynomials with floating-point
coefficients

» Implementation of functions in arbitrary precision:

» painful to do manually;
» goal: automate the implementation;
» makes it possible to explore new ideas.

» Continue developing Sollya.
— the most important keyword is safety.
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» goal: automate the implementation;
» makes it possible to explore new ideas.
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» Solving differential equations.
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Perspectives

» Apply our techniques to signal processing:

— find trigonometric polynomials with floating-point
coefficients

» Implementation of functions in arbitrary precision:

» painful to do manually;
» goal: automate the implementation;
» makes it possible to explore new ideas.

» Continue developing Sollya.

— the most important keyword is safety.

» Support for multivariate functions.
» More numerical procedures (interpolation, integration).
» Solving differential equations.

» Linear algebra (inversion of matrices, resolution of linear
systems, etc.)
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exp(x), on [1, 10], degree 6
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exp(x), on [1, 10], degree 6
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0.2 4

0.15

0.05 4

exp(x), on [1, 10], degree 6

-0.15
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exp(x), on [1, 10], degree 6
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exp(x), on [1, 10], degree 6

0.08 —
0.06

0.04
0.02

-0.06

-0.08
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exp(x), on [1, 10], degree 6
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exp(x), on [1, 10], degree 6

0.08 —
0.04
0.02
-0.04
-0.06
-0.08

Efficient evaluation of numerical functions
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In some circumstances, one may wish additional constraints:
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In some circumstances, one may wish additional constraints:
» Example 1: ¢e* on [—1/8, 1/4], degree 5:
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In some circumstances, one may wish additional constraints:

» Example 1:

p:ao+alx—|—agx2+a3x3+a4x4+a5x

with

e* on [—1/8, 1/4], degree 5:

5

ap ~ 0.99999999904782645291762.. . .
a; ~ 1.00000006000677910949618.. . .
ap >~ 0.50000048748217150868457 . . .
az ~ 0.16665453887128398679564 . . .
as ~ 0.04165519344690637013988 . . .
as ~ 0.00888564825713070913304 . . .
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In some circumstances, one may wish additional constraints:
» Example 1: ¢e* on [—1/8, 1/4], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

e ap ~ 0.99999999904782645291762.. . .
a; ~ 1.00000006000677910949618.. . .
ap >~ 0.50000048748217150868457 . . .
az ~ 0.16665453887128398679564 . . .
as ~ 0.04165519344690637013988 . . .
as ~ 0.00888564825713070913304 . . .

» Corresponding error: 2e—9
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In some circumstances, one may wish additional constraints:

» Example 1: ¢e* on [—1/8, 1/4], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag =~ 0.99999999904782645291762. ..
a; ~ 1.00000006000677910949618. ..
a» ~ 0.50000048748217150868457 ...

» Corresponding error: 2e—9
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In some circumstances, one may wish additional constraints:
» Example 1: ¢e* on [—1/8, 1/4], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag~1
a;~1
dy X~ 0.5

» Corresponding error: 2e—9
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In some circumstances, one may wish additional constraints:

» Example 1: ¢e* on [—1/8, 1/4], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag~1
a;~1
dy X~ 0.5
as ~ 0.16665960056981588342415 . ..
as ~ 0.04166987481926998551732.. ..
as ~ 0.00878894622316490686362 . . .

» Corresponding error: 2e—9
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In some circumstances, one may wish additional constraints:

» Example 1: ¢e* on [—1/8, 1/4], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag~1
a;~1
dy X~ 0.5
as ~ 0.16665960056981588342415 . ..
as ~ 0.04166987481926998551732.. ..
as ~ 0.00878894622316490686362 . . .

» Corresponding error: 2e—9

» Constrained polynomial error: 4.5e—9.
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