Efficient evaluation of numerical functions

Tools and examples

Sylvain Chevillard

Supervisors: Nicolas Brisebarre and Jean-Michel Muller

Ecole normale supérieure de Lyon
Laboratoire de I'informatique du parallélisme - Arenaire team

July, 6th 2009

- UNIV_RSI:_ D= LYON % Wl NRIA OL?O

Sylvain Chevillard Efficient evaluation of numerical functions

» People usually enter in my office saying | would like to
approximate a function.

Sylvain Chevillard Efficient evaluation of numerical functions

» People usually enter in my office saying | would like to
approximate a function.

» For instance: sin(x), exp(x), exp(1 + cos(x)), etc.

Sylvain Chevillard Efficient evaluation of numerical functions

» People usually enter in my office saying | would like to
approximate a function.

» For instance: sin(x), exp(x), exp(1 + cos(x)), etc.

» Values not exact in general:

exp(2) = 7.38905609893065 . . .

Sylvain Chevillard Efficient evaluation of numerical functions

» People usually enter in my office saying | would like to
approximate a function.

» For instance: sin(x), exp(x), exp(1 + cos(x)), etc.

» Values not exact in general:
exp(2) = 7.38905609893065 . . .

— approximated values.

Sylvain Chevillard Efficient evaluation of numerical functions

» People usually enter in my office saying | would like to
approximate a function.

» For instance: sin(x), exp(x), exp(1 + cos(x)), etc.

» Values not exact in general:
exp(2) = 7.38905609893065 . . .

— approximated values.

» For example: error beyond the 15th digit.

Sylvain Chevillard Efficient evaluation of numerical functions

v

v

v

v

People usually enter in my office saying | would like to
approximate a function.

For instance: sin(x), exp(x), exp(1 + cos(x)), etc.

Values not exact in general:
exp(2) = 7.38905609893065 . . .

— approximated values.
For example: error beyond the 15th digit.
Fifteen correct digits?

Sylvain Chevillard Efficient evaluation of numerical functions

v

v

v

v

People usually enter in my office saying | would like to
approximate a function.

For instance: sin(x), exp(x), exp(1 + cos(x)), etc.

Values not exact in general:
exp(2) = 7.38905609893065 . . .

— approximated values.
For example: error beyond the 15th digit.
Fifteen correct digits?

0.99999999999999991234
1.00000000000000005678

Sylvain Chevillard Efficient evaluation of numerical functions

» Don't programs for evaluating functions already exist?

Sylvain Chevillard Efficient evaluation of numerical functions

» Don't programs for evaluating functions already exist?
» Yes, but we can:

» improve the efficiency while keeping the accuracy;
> improve the accuracy while keeping the efficiency.

Sylvain Chevillard Efficient evaluation of numerical functions

» Don't programs for evaluating functions already exist?
» Yes, but we can:

» improve the efficiency while keeping the accuracy;
> improve the accuracy while keeping the efficiency.

» New programs must be designed for new architectures.

Sylvain Chevillard Efficient evaluation of numerical functions

» Don't programs for evaluating functions already exist?

» Yes, but we can:
» improve the efficiency while keeping the accuracy;
> improve the accuracy while keeping the efficiency.

» New programs must be designed for new architectures.

< the program must be written quickly.

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).

160 —
140
120

100

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).

160 —
140
120

100

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).

160 —
140
120

100

s0-| exp(a) = exp(a/2)?

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).

160 —
140
120

100

s0-| exp(a) = exp(a/2)?

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).

160 —
140
120

100

exp(a) = (exp(a/4)?)”

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).

160 —
140
120

100

exp(a) = (exp(a/4)?)”

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).

160 —
140
120

100

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).

160 —
140
120

100

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).

160 —
140
120

100

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).

» First step: reduce the range (range reduction).

1.15 5

1.05 o

-0.1 -0.05 0

0.05

Sylvain Chevillard

0.1

Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).
» First step: reduce the range (range reduction).

» Second step: replace the function f by a polynomial p.

1.15 5

1.05 o

-0.1 -0.05 0 0.05 0.1

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).
» First step: reduce the range (range reduction).

» Second step: replace the function f by a polynomial p.

1.15 5

1.05 o

-0.1 -0.05 0 0.05 0.1

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).
» First step: reduce the range (range reduction).

» Second step: replace the function f by a polynomial p.

1.15 5

1.05 o

-0.1 -0.05 0 0.05 0.1

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).
» First step: reduce the range (range reduction).

» Second step: replace the function f by a polynomial p.

1.15 5

1.05 o

e=p—f /

Approximation error:

» absolute:
e=p—f»F

> relative:
p—f
e=F__

-0.1

-0.05

0.05 0.1

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).
» First step: reduce the range (range reduction).
» Second step: replace the function f by a polynomial p.

» Third step: write a program that evaluates the polynomial.

Sylvain Chevillard Efficient evaluation of numerical functions

» Example of function f(x) = exp(x).
» First step: reduce the range (range reduction).
» Second step: replace the function f by a polynomial p.

» Third step: write a program that evaluates the polynomial.

Sylvain Chevillard Efficient evaluation of numerical functions

Sources of errors

» Approximation error: € = p — f.

1e-07

-2e-08

-4e-08-

-6e-08

-8e-08--

Sylvain Chevillard

Efficient evaluation of numerical functions

Sources of errors

» Approximation error: € = p — f.

» Roundoff errors: due to the propagation of errors during the
evaluation of p.

Sylvain Chevillard Efficient evaluation of numerical functions

Sources of errors

» Approximation error: € = p — f.

» Roundoff errors: due to the propagation of errors during the
evaluation of p.

» The overall error must stay below the 15th digit.

-1e-07

-1.5e-07

-2e-07

Sylvain Chevillard Efficient evaluation of numerical functions

Sources of errors

» Approximation error: € = p — f.

» Roundoff errors: due to the propagation of errors during the
evaluation of p.

» The overall error must stay below the 15th digit.

Sylvain Chevillard Efficient evaluation of numerical functions

Sollya

> Sollya: developed with C. Lauter.

— making the development of new functions easier.

Sylvain Chevillard Efficient evaluation of numerical functions

Sollya

> Sollya: developed with C. Lauter.
— making the development of new functions easier.

» Functions, polynomials, roundings, etc. in a safe environment.

Sylvain Chevillard Efficient evaluation of numerical functions

Sollya

> Sollya: developed with C. Lauter.
— making the development of new functions easier.
» Functions, polynomials, roundings, etc. in a safe environment.

» Now becoming a numerical toolbox.

— interesting for anyone who wants guarantees on the quality.

Sylvain Chevillard Efficient evaluation of numerical functions

Sollya

> Sollya: developed with C. Lauter.

— making the development of new functions easier.
» Functions, polynomials, roundings, etc. in a safe environment.
» Now becoming a numerical toolbox.

— interesting for anyone who wants guarantees on the quality.

» Thanks to Sollya, the development of functions has been
almost completely automated.

Sylvain Chevillard Efficient evaluation of numerical functions

Main contributions of this thesis

Sylvain Chevillard Efficient evaluation of numerical functions

Main contributions of this thesis

» Algorithms for finding good polynomial/rational
approximations:

» approximation theory (real coefficients);
> linear programming;
> euclidean lattices.

Sylvain Chevillard Efficient evaluation of numerical functions

Main contributions of this thesis

» Algorithms for finding good polynomial/rational
approximations:
» approximation theory (real coefficients);
> linear programming;
> euclidean lattices.
» Algorithm for bounding rigorously the approximation error
(between p and f):

> interval arithmetic;
» automatic computation of bounds on derivatives of a function;
> root isolation techniques.

Sylvain Chevillard Efficient evaluation of numerical functions

Main contributions of this thesis

» Algorithms for finding good polynomial/rational
approximations:
» approximation theory (real coefficients);
> linear programming;
> euclidean lattices.
» Algorithm for bounding rigorously the approximation error
(between p and f):
» interval arithmetic;
» automatic computation of bounds on derivatives of a function;
> root isolation techniques.

> These algorithms are available within Sollya.

Sylvain Chevillard Efficient evaluation of numerical functions

Main contributions of this thesis

» Implementation of function erf in arbitrary precision:
» rigorous and effective bounds on sequences/functions;
> particular constraints imposed by arbitrary precision.
» Algorithms for finding good polynomial/rational
approximations:
» approximation theory (real coefficients);
> linear programming;
> euclidean lattices.
» Algorithm for bounding rigorously the approximation error
(between p and f):
» interval arithmetic;
» automatic computation of bounds on derivatives of a function;
> root isolation techniques.

> These algorithms are available within Sollya.

Sylvain Chevillard Efficient evaluation of numerical functions

Main contributions of this thesis

» Implementation of function erf in arbitrary precision:
» rigorous and effective bounds on sequences/functions;
> particular constraints imposed by arbitrary precision.
» Algorithms for finding good polynomial/rational
approximations:
» approximation theory (real coefficients);
> linear programming;
» euclidean lattices.
» Algorithm for bounding rigorously the approximation error
(between p and f):
» interval arithmetic;
» automatic computation of bounds on derivatives of a function;
> root isolation techniques.

> These algorithms are available within Sollya.

Sylvain Chevillard Efficient evaluation of numerical functions

» Reminder about approximation theory.
— finds good approximation polynomials with real
coefficients.

» Polynomial p with floating-point coefficients.

» Linear programming.
— gets useful informations on the structure of p.

» Euclidean lattices.
— computes a very good polynomial p.

Sylvain Chevillard Efficient evaluation of numerical functions

» Reminder about approximation theory.

— finds good approximation polynomials with real
coefficients.

Sylvain Chevillard Efficient evaluation of numerical functions

1.15 4

1.05 —

0.85

-0.1 -0.05 0 0.05 0.1

Sylvain Chevillard Efficient evaluation of numerical functions

1.15 4

1.05 —

0.85

-0.1 -0.05 0 0.05 0.1

Sylvain Chevillard Efficient evaluation of numerical functions

1.15 4

1.05 —

0.85

-0.1 -0.05 0 0.05 0.1

Sylvain Chevillard Efficient evaluation of numerical functions

1.15 4

e=p—f»

1.05 —

0.85

-0.1 -0.05 0 0.05 0.1

Sylvain Chevillard Efficient evaluation of numerical functions

1.5e-06 —

1e-06 —

5e-07

-1.5e-06 —

Sylvain Chevillard

0.05 0.1

Efficient evaluation of numerical functions

1.5e-06 —

£ = MmaX |E(X
Jelloo = max [€(x)

1e-06 —

5e-07

-5e-07 —

Ne-06 -

0.05 0.1

-1.5e-06 —

Sylvain Chevillard

Efficient evaluation of numerical functions

Approximation theory

» How to compute a good approximation polynomial?

Sylvain Chevillard Efficient evaluation of numerical functions

Approximation theory

» How to compute a good approximation polynomial?

Sylvain Chevillard

Efficient evaluation of numerical functions

DA

Approximation theory

» How to compute a good approximation polynomial?

» Theorem of la Vallée Poussin (1910).

— oscillations and quality of approximation are related.

Sylvain Chevillard

Efficient evaluation of numerical functions

DA

Approximation theory

» How to compute a good approximation polynomial?

» Theorem of la Vallée Poussin (1910).

— oscillations and quality of approximation are related.
» Remez’ algorithm (1934).

Sylvain Chevillard

Efficient evaluation of numerical functions

DA

Sometimes, additional constraints may be interesting.
> Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

Sylvain Chevillard Efficient evaluation of numerical functions

Sometimes, additional constraints may be interesting.
» Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag >~ 0.36787944134003553928820. ..
a; ~ 0.36787944121874345820075. ..
a» ~ 0.18393894381629744544839. ..
a3 >~ —0.00000007647880859004234 . . .
as ~ 0.13848496316631160839854 . ..
as ~ 0.15944715191923863665924 . . .

l

Sylvain Chevillard Efficient evaluation of numerical functions

Sometimes, additional constraints may be interesting.
» Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

e ap ~ 0.36787944134003553928820. ..
a; ~ 0.36787944121874345820075 . ..
ap >~ 0.18393894381629744544839. ..
az ~ —0.00000007647880859004234 . . .
as ~ 0.13848496316631160839854 . ..
as ~ 0.15944715191923863665924 . . .

l

» Corresponding error: 1.68e—10.

Sylvain Chevillard Efficient evaluation of numerical functions

Sometimes, additional constraints may be interesting.
> Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with

az ~ —0.00000007647880859004234 . . .

» Corresponding error: 1.68e—10.

Sylvain Chevillard Efficient evaluation of numerical functions

Sometimes, additional constraints may be interesting.
> Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with

az >~ 0

» Corresponding error: 1.68e—10.

Sylvain Chevillard Efficient evaluation of numerical functions

Sometimes, additional constraints may be interesting.
» Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag >~ 0.36787944134057472430253. ..

a; ~ 0.36787944115897691446498. ..
ar ~ 0.18393894243661711831086. ..
a3~ 0

as ~ 0.13848524573630958469899 . ..
as ~ 0.15943149020444985343712. ..

» Corresponding error: 1.68e—10.

Sylvain Chevillard Efficient evaluation of numerical functions

Sometimes, additional constraints may be interesting.
> Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag >~ 0.36787944134057472430253. ..

a; ~ 0.36787944115897691446498. ..
ar ~ 0.18393894243661711831086. ..
a3~ 0

as ~ 0.13848524573630958469899 . ..
as ~ 0.15943149020444985343712. ..

» Corresponding error: 1.68e—10.

» Constrained polynomial error: 1.69e—10.

Sylvain Chevillard Efficient evaluation of numerical functions

Sometimes, additional constraints may be interesting.
> Example: esn()—cos(*) on [—1/16, 1/16], degree 5:

p:ao+alx—|—agx2+a3x3+a4x4+a5x

with
ap =~

2

a1

12

ap

1

as

1

as

1

as

5

0.36787944134057472430253 . . .
0.36787944115897691446498 . . .
0.18393894243661711831086. . .
0

0.13848524573630958469899 . . .
0.15943149020444985343712. ..

» Corresponding error: 1.68e—10.

» Constrained polynomial error: 1.69e—10.

» Stiefel's exchange algorithm (1959).

Sylvain Chevillard Efficient evaluation of numerical functions

» Reminder about approximation theory.
— finds good approximation polynomials with real
coefficients.

» Polynomial p with floating-point coefficients.

» Linear programming.
— gets useful informations on the structure of p.

» Euclidean lattices.
— computes a very good polynomial p.

Sylvain Chevillard Efficient evaluation of numerical functions

» Polynomial p with floating-point coefficients.

Sylvain Chevillard Efficient evaluation of numerical functions

Representing real numbers in computers

» IEEE-754 standard: defines floating-point numbers.

Sylvain Chevillard Efficient evaluation of numerical functions

Representing real numbers in computers

» IEEE-754 standard: defines floating-point numbers.

» A floating-point number x with radix 2 and precision t, is a
number of the form:

x=1biby...by_y - 2¢, b €{0,1}, € € Z

Sylvain Chevillard Efficient evaluation of numerical functions

Representing real numbers in computers

» IEEE-754 standard: defines floating-point numbers.

» A floating-point number x with radix 2 and precision t, is a
number of the form:

x=1biby...by_y - 2¢, b €{0,1}, € € Z

» Formally, x = m - 2¢ where:

» m € Z (with exactly t bits) is its mantissa (or significand);
> e € Zis its exponent.

Sylvain Chevillard Efficient evaluation of numerical functions

The problem

» Each coefficient of a polynomial is represented by a
floating-point number.

Sylvain Chevillard Efficient evaluation of numerical functions

The problem

» Each coefficient of a polynomial is represented by a
floating-point number.
» Naive method to obtain a polynomial approximation of f:

» compute the real minimax p*;

> replace each coefficient aj of p* by the nearest floating-point
number 3;;

> use p=2ay+arx+---+a,x".

Sylvain Chevillard Efficient evaluation of numerical functions

The problem

» Each coefficient of a polynomial is represented by a
floating-point number.
» Naive method to obtain a polynomial approximation of f:
» compute the real minimax p*;
> replace each coefficient aj of p* by the nearest floating-point
number 3;;
> use p=2ay+arx+---+a,x".
» Example with 7(x) = log,(1+27) on [0; 1]
n = 6, single precision coefficients (24 bits).

le”]] €]l [€opt |

8.3e—10 | 119e—10 | 10.06e—10

Popt © best polynomial with floating-point coefficients.

Sylvain Chevillard Efficient evaluation of numerical functions

Previous works

» There exist recipes, not published.

Sylvain Chevillard Efficient evaluation of numerical functions

Previous works

» There exist recipes, not published.

» D. Kodek (1980) has studied a similar problem in signal
processing. Limited to small precisions (¢t < 10).

Sylvain Chevillard Efficient evaluation of numerical functions

Previous works

» There exist recipes, not published.
» D. Kodek (1980) has studied a similar problem in signal
processing. Limited to small precisions (¢t < 10).

» N. Brisebarre, J.-M. Muller and A. Tisserand (2006) have
proposed an approach by linear programming.
Limited to small degrees (n < 8).

Sylvain Chevillard Efficient evaluation of numerical functions

Previous works

» There exist recipes, not published.
» D. Kodek (1980) has studied a similar problem in signal
processing. Limited to small precisions (¢t < 10).

» N. Brisebarre, J.-M. Muller and A. Tisserand (2006) have
proposed an approach by linear programming.
Limited to small degrees (n < 8).

» Typically, we want t > 50 and n > 10.

Sylvain Chevillard Efficient evaluation of numerical functions

» Reminder about approximation theory.
— finds good approximation polynomials with real
coefficients.

» Polynomial p with floating-point coefficients.

» Linear programming.
— gets useful informations on the structure of p.

» Euclidean lattices.
— computes a very good polynomial p.

Sylvain Chevillard Efficient evaluation of numerical functions

» Polynomial p with floating-point coefficients.

» Linear programming.
— gets useful informations on the structure of p.

Sylvain Chevillard Efficient evaluation of numerical functions

Polytope approach

» Inputs: degree n, interval [a, b], function f,
list of floating-point formats t; (one per coefficient).
» Notations:

» & = |p* — f||,, where p* is the real minimax.
> Eopt = ||Popt — f||, where poy: is a best polynomial with
floating-point coefficients.

Sylvain Chevillard Efficient evaluation of numerical functions

Polytope approach

» Inputs: degree n, interval [a, b], function f,
list of floating-point formats t; (one per coefficient).
» Notations:
» & = |p* — f||,, where p* is the real minimax.
> Eopt = ||Popt — f||, where poy: is a best polynomial with
floating-point coefficients.
> We set a trial error: etarget.

> We are looking for p such that |[p — || < €target-

Sylvain Chevillard Efficient evaluation of numerical functions

Polytope approach

» Inputs: degree n, interval [a, b], function f,
list of floating-point formats t; (one per coefficient).
» Notations:
» & = |p* — f||,, where p* is the real minimax.
> Eopt = ||Popt — f||, where poy: is a best polynomial with
floating-point coefficients.
> We set a trial error: etarget.

> We are looking for p such that |[p — || < €target-

n
<~ Vx € [a, b], f(X) — Etarget < Zai x' < f(X) + Ctarget-
i=0

Sylvain Chevillard Efficient evaluation of numerical functions

Construction of the polytope

S={(ao, ..., an) ER™ st |p— flloo < Etarget }-

Sylvain Chevillard Efficient evaluation of numerical functions

Construction of the polytope

S={(ao, ..., an) ER™ st |p— flloo < Etarget }-

ai

do

Sylvain Chevillard Efficient evaluation of numerical functions

Construction of the polytope

S={(ao, ..., an) ER™ st |p— flloo < Etarget }-

n—1 .
Pick xg € [a, b] f(XO) — Etarget < 2:0 aj X(l)
1=
n—1 .
> ai X(S < f(XO) + Ctarget
i=0

ai

do

Sylvain Chevillard Efficient evaluation of numerical functions 18

Construction of the polytope

S={(a0, ..., an) € R

Pick xp S [a, b]

ai

do

Sylvain Chevillard

st. [[p— fllo < Etarget }-

f(XO) — Etarget <

Efficient evaluation of numerical functions

n—1 .
Z aj X(')
i=0

Construction of the polytope

S={(a0, ---» an) ER"™ sit. ||p—fll < Crarget}-
n—1 i
Pick xg S [a, b] f(XO) — Etarget — ;) aj X(I)

ai

do

Sylvain Chevillard Efficient evaluation of numerical functions

Construction of the polytope

S={(a0, ---» an) ER"™ sit. ||p—fll < Crarget}-
n—1 i
Pick xg S [a, b] f(XO) — Etarget — ;) aj X(I)

ai

do

Sylvain Chevillard Efficient evaluation of numerical functions

Construction of the polytope

S={(a0, ..., an) € R

Pick xg S [3, b]

ar

do

Sylvain Chevillard

st. ||p— f”oo < €target}-

f(XO) — Etarget <

Efficient evaluation of numerical functions

n—1 .
Z aj X(')
i=0

Construction of the polytope

S={(ao, ..., an) ER™ st |p— flloo < Etarget }-

n—1 .
Pick xg € [a, b] f(XO) — Etarget < 2:0 aj X(l)
1=
n—1 .
> ai X(S < f(XO) + Ctarget
i=0

ai

do

Sylvain Chevillard Efficient evaluation of numerical functions 18

Construction of the polytope

S={(ao, ..., an) ER™ st |p— flloo < Etarget }-

n—1 .
Pick xg, x1 € [a, b] f(XO) — Etarget < 2:0 aj X(l)
n—1 . =
Z ai X(S < f(XO) + Etarget
i=0
ai
n—1 i
f(Xl) — Etarget < > ai X;{
—
n—1 i '
Z aj X]I_ < f(Xl) + Etarget
i=0

Sylvain Chevillard Efficient evaluation of numerical functions 18

Construction of the polytope

S={(a0, ---» an) ER"™ sit. ||p—fll < Crarget}-
n—1 .
Pick xg, x1, X2 S [a, b] f(XO) — Ctarget < g:o aj X(l)
n—1 . =
> ai X(S < f(XO) + Ctarget
i=0

IN

n—1 i
f(Xl) — Etarget Z aj X;{
—
n—1 i '
> ai X]I_ < f(Xl) + Ctarget
i=0

f(X2) — Etarget

IA
Nng!
o
l\)><~

IN

f(X2) + Etarget

n—1 .
> aixs
i=0

Sylvain Chevillard Efficient evaluation of numerical functions 18

Construction of the polytope

S={(a0, ---» an) ER"™ sit. ||p—fll < Crarget}-
n—1 .
Pick xg, x1, X2, X3 € [a, b] f(XO) — Etarget < Z:O aj X(l)
1=
n—1 .
> ai X(S < f(XO) + Ctarget
i=0

IN

n—1 i
f(Xl) — Etarget Z aj X;{
—
n—1 i '
> ai X]I_ < f(Xl) + Ctarget
i=0

f(X2) — Etarget

IA
Nng!
o
l\)><~

IN

f(X2) + Etarget

n—1 .
> aixs
i=0

Sylvain Chevillard Efficient evaluation of numerical functions 18

Construction of the polytope

S={(a0, ---» an) ER"™ sit. ||p—fll < Crarget}-
n—1 .
Pick xg,x1,x2,x3,... € [a, b] f(XO) — Ctarget < 'Z:Oaix(l)
1=
n—1 .
> ai X(S < f(XO) + Ctarget
i=0

n—1 i
f(Xl) — Etarget < Z aj X;{
i=0

n—1 i
> ai X]I_ < f(Xl) + Ctarget
i=0

n—1 .
f(X2) — Etarget < Z aj X2’
=
n—1 . '
Z aj XQI < f(X2) + Etarget
i=0

Sylvain Chevillard Efficient evaluation of numerical fu

Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.

Sylvain Chevillard

Efficient evaluation of numerical functions

Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.
» The corresponding set of coefficients is a polytope P of R™1.

ap

do

Sylvain Chevillard Efficient evaluation of numerical functions

Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.
» The corresponding set of coefficients is a polytope P of R™1.

ap

do

Sylvain Chevillard Efficient evaluation of numerical functions

Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.
» The corresponding set of coefficients is a polytope P of R™1.
» Projections are performed by linear programming (simplex).

ap

do

Sylvain Chevillard Efficient evaluation of numerical functions

Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.
» The corresponding set of coefficients is a polytope P of R™1.
» Projections are performed by linear programming (simplex).

ap

do

Sylvain Chevillard Efficient evaluation of numerical functions

Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.
» The corresponding set of coefficients is a polytope P of R™1.
» Projections are performed by linear programming (simplex).

ap

[2) Vo do

Sylvain Chevillard Efficient evaluation of numerical functions 19

Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.

» The corresponding set of coefficients is a polytope P of R™1.
» Projections are performed by linear programming (simplex).

» They give an enclosure for each coefficient : a; € [u;, vi].

Vo ao

Sylvain Chevillard Efficient evaluation of numerical functions

Construction of the polytope (I1)

» We just keep a finite number of points xg, ..., x4.
» The corresponding set of coefficients is a polytope P of R™1.
» Projections are performed by linear programming (simplex).
» They give an enclosure for each coefficient : a; € [u;, vi].
Ip— fllo < Erarget = (0, ---» an) €S
= (ag, ..., an) €P
= Vi, a; € [uj, vj].

Vo 4o

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example (beginning)

» Example given by John Harrison (Intel Corp.) when he came
to Lyon.

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example (beginning)

» Example given by John Harrison (Intel Corp.) when he came
to Lyon.
» He asked for a polynomial minimising the absolute error:
> approximating f : x — %;
» on [a, b] = [-1/16, 1/16];

» with a polynomial of degree 9;

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example (beginning)

» Example given by John Harrison (Intel Corp.) when he came
to Lyon.
» He asked for a polynomial minimising the absolute error:
> approximating f : x — %;
» on [a, b] = [-1/16, 1/16];
» with a polynomial of degree 9;
» coefficient ap: 129 bits of precision;

> other coefficients: 64 bits of precision.

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.

» Error of the rounded minimax & ~ 4035 e—25.

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400e—257

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400 e—257
» Polytope constructed with 30 Chebyshev points.

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400 e—257
» Polytope constructed with 30 Chebyshev points.
» Projection on a;: the interval [u1, v;] does not contain any
double extended number!

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400 e—257
» Polytope constructed with 30 Chebyshev points.
» Projection on a;: the interval [u1, v;] does not contain any
double extended number!
> Hence €target Cannot be achieved:

400e—25 < cop < 4035e—25,

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400 e—257
» Polytope constructed with 30 Chebyshev points.
» Projection on a;: the interval [u1, v;] does not contain any
double extended number!
> Hence €target Cannot be achieved:

400e—25 < cop < 4035e—25,

» Generally [u;, vi] is so thin that the exponent e; is fixed.

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example (I1)

» Minimax (real coefficients): £* ~ 7.9e—25.
» Error of the rounded minimax & ~ 4035 e—25.

» Huge gap! Can we achieve an intermediate error of
Etarget = 400 e—257
» Polytope constructed with 30 Chebyshev points.
» Projection on a;: the interval [u1, v;] does not contain any
double extended number!
> Hence €target Cannot be achieved:

400e—25 < cop < 4035e—25,

» Generally [u;, vi] is so thin that the exponent e; is fixed.

» Improving the value 4035e—25: we need a fast (possibly
heuristic) algorithm.

Sylvain Chevillard Efficient evaluation of numerical functions

» Reminder about approximation theory.
— finds good approximation polynomials with real
coefficients.

» Polynomial p with floating-point coefficients.

» Linear programming.
— gets useful informations on the structure of p.

» Euclidean lattices.
— computes a very good polynomial p.

Sylvain Chevillard Efficient evaluation of numerical functions

» Polynomial p with floating-point coefficients.

» Euclidean lattices.
— computes a very good polynomial p.

Sylvain Chevillard Efficient evaluation of numerical functions

Formalisation of the problem

» Qur goal: find p approximating f and with the following form

mo 2% +my - 29X + -+ +m, -2 X",

Sylvain Chevillard Efficient evaluation of numerical functions

Formalisation of the problem

» Qur goal: find p approximating f and with the following form
mo 2% +my - 29X + -+ +m, -2 X",

» A simplification: guess the value of each e;.

— heuristic validated by means of projections.

Sylvain Chevillard Efficient evaluation of numerical functions

Formalisation of the problem

» Qur goal: find p approximating f and with the following form
mo 2% +my - 29X + -+ +m, -2 X",

» A simplification: guess the value of each e;.
— heuristic validated by means of projections.

» Once ¢; is guessed, we need to find m; € Z such that

Hf(x) - Z m; - 28!
i=0

o0

is minimal.

Sylvain Chevillard Efficient evaluation of numerical functions

Description of the lattice-based method
Our goal: find p approximating f and with the following form

mo 2% +m - 29X +---+m,-2%X".

Sylvain Chevillard Efficient evaluation of numerical functions

Description of the lattice-based method
Our goal: find p approximating f and with the following form

mo 2% +m - 29X +---+m,-2%X".

» We assume that p looks like p*:

Sylvain Chevillard Efficient evaluation of numerical functions

Description of the lattice-based method
Our goal: find p approximating f and with the following form

mo 2% +m - 29X +---+m,-2%X".

» We assume that p looks like p*:
» we choose n+ 1 points zg, -+, z, in [a, b];

Sylvain Chevillard Efficient evaluation of numerical functions

Description of the lattice-based method
Our goal: find p approximating f and with the following form

mo 2% +m - 29X +---+m,-2%X".
» We assume that p looks like p*:

» we choose n+ 1 points zg, -+, z, in [a, b];
» we search mg, - -+, m, such that for all i

P(Z,') = m0.2eo +m1'261zi+"'+mn'2e"2,-n ’:p*(z,-)

Sylvain Chevillard Efficient evaluation of numerical functions

Description of the lattice-based method
Our goal: find p approximating f and with the following form

mo 2% +m - 29X +---+m,-2%X".

» We assume that p looks like p*:
» we choose n+ 1 points zg, -+, z, in [a, b];
» we search myq, - -+, m, such that for all J

P(Z,') = m0.2eo +m1'261zi+"'+mn'2e"2,-n ’:p*(z,-)

» Rewritten with vectors:

2% 2% .z p*(z0)

2% 2% . z] p*(z1)
'n *

2% 20 .z p*(zn)

[of the form Zby-+Zby +--+Zb, VR

Sylvain Chevillard Efficient evaluation of numerical functions

Notions about lattices

— — .
Let (bg, --- , bp) be a basis of a real vector space.

Sylvain Chevillard Efficient evaluation of numerical functions

Notions about lattices

— —

Let (bg, -+, bn) be a basis of a real vector space. The set of all
—

integer combinations of the b; is called a lattice:

— — —
[=Zbo+7Zbi + - +7b,

Sylvain Chevillard Efficient evaluation of numerical functions

Notions about lattices

— —

Let (bg, -+, bn) be a basis of a real vector space. The set of all
—

integer combinations of the b; is called a lattice:

— — —
[=Zbo+7Zbi + - +7b,

In general, a lattice has infinitely many bases.

F + + + + + +

Sylvain Chevillard Efficient evaluation of numerical functions

Notions about lattices

— — .
Let (bg, -+, bn) be a basis of a real vector space. The set of all

=
integer combinations of the b; is called a lattice:

— — —
[=Zbo+7Zbi + - +7b,

In general, a lattice has infinitely many bases.

F + + +

Sylvain Chevillard

Efficient evaluation of numerical functions

Notions about lattices

— —

Let (bg, -+, bn) be a basis of a real vector space. The set of all
—

integer combinations of the b; is called a lattice:

— — —
[=Zbo+7Zbi + - +7b,

In general, a lattice has infinitely many bases.

F + + + + + +

Sylvain Chevillard Efficient evaluation of numerical functions

Notions about lattices (2)

Algorithmic problems:

Sylvain Chevillard

Efficient evaluation of numerical functions

Notions about lattices (2)

Algorithmic problems:
> shortest vector problem (SVP)

F + + +
+ + + +
a + +
= + +

Sylvain Chevillard

Efficient evaluation of numerical functions

Notions about lattices (2)

Algorithmic problems:
> shortest vector problem (SVP)

> closest vector problem (CVP).

Sylvain Chevillard

Efficient evaluation of numerical functions

Notions about lattices (2)

Algorithmic problems:
> shortest vector problem (SVP)

> closest vector problem (CVP).

Sylvain Chevillard

Efficient evaluation of numerical functions

Notions about lattices (2)

Algorithmic problems:
» shortest vector problem (SVP);
> closest vector problem (CVP).
LLL algorithm: Lenstra, Lenstra Jr. and Lovasz (1982).

F + + + + + +

Sylvain Chevillard Efficient evaluation of numerical functions

Notions about lattices (2)

Algorithmic problems:
» shortest vector problem (SVP);
> closest vector problem (CVP).

LLL algorithm: finds pretty short vectors in polynomial time.

F + + + + + +

Sylvain Chevillard Efficient evaluation of numerical functions

Notions about lattices (2)

Algorithmic problems:
> shortest vector problem (SVP)

> closest vector problem (CVP).

LLL algorithm: used by Babai to solve an approximation of CVP.

F + + +

Sylvain Chevillard

Efficient evaluation of numerical functions

A reminder of the formalisation

Remember our formalisation:

2¢0 2% .z f(z0)
2% PALRY f(z1)
mo| |4+ m, :
2¢0 2en .z f(zn)
————
by b v

Sylvain Chevillard Efficient evaluation of numerical functions

The algorithm

Input: £, [a, b], n, list of desired floating-point formats t;.

Sylvain Chevillard Efficient evaluation of numerical functions

The algorithm

Input: £, [a, b], n, list of desired floating-point formats t;.
Output: p =3 m;2¢X" (m; with t; bits).

Sylvain Chevillard Efficient evaluation of numerical functions

The algorithm

Input: £, [a, b], n, list of desired floating-point formats t;.
Output: p =3 m;2¢X" (m; with t; bits).

1. Compute the real minimax p* = 3" a* X'

Sylvain Chevillard Efficient evaluation of numerical functions

The algorithm
Input: £, [a, b], n, list of desired floating-point formats t;.
Output: p =3 m;2¢X" (m; with t; bits).
1. Compute the real minimax p* = 3" a* X'

2. Guess ¢; (polytope approach).

Sylvain Chevillard Efficient evaluation of numerical functions

The algorithm

Input:
Output:

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

1. Compute the real minimax p* = 3" a* X'

2. Guess ¢; (polytope approach).

3. Choose zg, ..., z, in [a, b].

Sylvain Chevillard Efficient evaluation of numerical functions

The algorithm

Input:
Output:

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

1. Compute the real minimax p*
2. Guess ¢; (polytope approach).
3.
4

. Construct the vectors b; and the vector v.

Choose zy, ..., z, in [a, b].

=Y arX.

Sylvain Chevillard

Efficient evaluation of numerical functions

The algorithm

Input:
Output:

1
2
3.
5

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

Sylvain Chevillard

. Compute the real minimax p* = Y~ a*X".
. Guess ¢; (polytope approach).
Choose zy, ..., z, in [a, b].
. LLL-reduce the lattice: we get a basis (co, ..., cn).
F + + + + + +

Efficient evaluation of numerical functions

The algorithm

Input:
Output:

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

1. Compute the real minimax p*
2. Guess ¢; (polytope approach).
3.
6

. Use Babai's algorithm to find a vector ¥ close to v.

Choose zy, ..., z, in [a, b].

=Y arX.

Sylvain Chevillard

Efficient evaluation of numerical functions

The algorithm

Input:
Output:

I T o

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

Compute the real minimax p* = Y~ a* X"

Guess e; (polytope approach).

Choose zy, ..., z, in [a, b].

Construct the vectors b; and the vector v.
LLL-reduce the lattice: we get a basis (co, ..., cn).

Use Babai's algorithm to find a vector ¥ close to v.

Sylvain Chevillard Efficient evaluation of numerical functions

The algorithm

Input:
Output:

No oA~ b=

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

Compute the real minimax p* = Y~ a* X"

Guess e; (polytope approach).

Choose zy, ..., z, in [a, b].

Construct the vectors b; and the vector v.
LLL-reduce the lattice: we get a basis (co, ..., cn).
Use Babai's algorithm to find a vector ¥ close to v.

Replace each ¢; by its expression with the vectors by: hence
getting the coefficients m; of ¥ in the basis (b, ..., by).

Sylvain Chevillard Efficient evaluation of numerical functions

The algorithm

Input:
Output:

No oA~ b=

Return:

f, [a, b], n, list of desired floating-point formats t;.
p =" m2%X" (m; with t; bits).

Compute the real minimax p* = Y~ a* X"

Guess e; (polytope approach).

Choose zy, ..., z, in [a, b].

Construct the vectors b; and the vector v.
LLL-reduce the lattice: we get a basis (co, ..., cn).
Use Babai's algorithm to find a vector ¥ close to v.

Replace each ¢; by its expression with the vectors by: hence
getting the coefficients m; of ¥ in the basis (b, ..., by).

p=>m2%X'

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example

» How to choose the points?

Sylvain Chevillard

Efficient evaluation of numerical functions

Worked example

» How to choose the points?

Sylvain Chevillard

» We need n+ 1 points.

Efficient evaluation of numerical functions

Worked example

» How to choose the points?

Sylvain Chevillard

» We need n+ 1 points.

» They should correspond to the
interpolation intuition :

p(z) ~ p*(z).

Efficient evaluation of numerical functions

Worked example

» How to choose the points?

8e-25 4

» We need n+ 1 points.

» They should correspond to the
interpolation intuition :

0.02 0.04 0.0 P(Z,') ~ p*(Z,').

> |dea: if possible take points
where

Graph of the error function p*(zi) = f(z:).
p*—f.

Sylvain Chevillard Efficient evaluation of numerical functions

Worked example

» How to choose the points?

8e-25 4

» We need n+ 1 points.

» They should correspond to the
interpolation intuition :

0.02 0.04 0.0 P(Z,') ~ p*(Z,').

> |dea: if possible take points
where

Graph of the error function p*(zi) = f(z:).
p*—f.

Sylvain Chevillard Efficient evaluation of numerical functions

Results

» We get a polynomial py with floating-point coefficients.

» The error of pg is £g ~ 532e—25.

Sylvain Chevillard Efficient evaluation of numerical functions

Results

» We get a polynomial py with floating-point coefficients.
» The error of pg is £g ~ 532e—25.
» Remember that we knew: 400 e—25 < g4pr < 4035 e—25.

Sylvain Chevillard Efficient evaluation of numerical functions

Results

» We get a polynomial py with floating-point coefficients.
» The error of pg is £g ~ 532e—25.
» Remember that we knew: 400 e—25 < g4pr < 4035 e—25.

— now we know that

400 e—25 < gopt < 532e—25.

Sylvain Chevillard Efficient evaluation of numerical functions

Results

» We get a polynomial py with floating-point coefficients.
» The error of pg is £g ~ 532e—25.
» Remember that we knew: 400 e—25 < g4pr < 4035 e—25.

— now we know that
400 e—25 < gopt < 532e—25.
» It is even possible to prove that

444.02e—25 < gopr < 444.92e-25 .
—_———

effectively reached

Sylvain Chevillard Efficient evaluation of numerical functions

Conclusion

» Several techniques for polynomial approximation:

» approximation with real coefficients;
» approximation with floating-point coefficients:
— linear programming, euclidean lattices.

Sylvain Chevillard Efficient evaluation of numerical functions

Conclusion

» Several techniques for polynomial approximation:

» approximation with real coefficients;
» approximation with floating-point coefficients:
— linear programming, euclidean lattices.

» Available within Sollya.

Sylvain Chevillard Efficient evaluation of numerical functions

Conclusion

» Several techniques for polynomial approximation:

» approximation with real coefficients;
» approximation with floating-point coefficients:
— linear programming, euclidean lattices.

» Available within Sollya.
» Other topics studied during the thesis:

» computing automatically a certified bound on ||p — f|| _;
» implementing a function in arbitrary precision.

Sylvain Chevillard Efficient evaluation of numerical functions

Perspectives

» Apply our techniques to signal processing:

— find trigonometric polynomials with floating-point
coefficients

Sylvain Chevillard Efficient evaluation of numerical functions

Perspectives

» Apply our techniques to signal processing:

— find trigonometric polynomials with floating-point
coefficients
» Implementation of functions in arbitrary precision:
» painful to do manually;

Sylvain Chevillard Efficient evaluation of numerical functions

Perspectives

» Apply our techniques to signal processing:
— find trigonometric polynomials with floating-point
coefficients

» Implementation of functions in arbitrary precision:

» painful to do manually;
» goal: automate the implementation;

Sylvain Chevillard Efficient evaluation of numerical functions

Perspectives

» Apply our techniques to signal processing:
— find trigonometric polynomials with floating-point
coefficients

» Implementation of functions in arbitrary precision:

» painful to do manually;
» goal: automate the implementation;
» makes it possible to explore new ideas.

Sylvain Chevillard Efficient evaluation of numerical functions

Perspectives

» Apply our techniques to signal processing:
— find trigonometric polynomials with floating-point
coefficients

» Implementation of functions in arbitrary precision:

» painful to do manually;
» goal: automate the implementation;
» makes it possible to explore new ideas.

» Continue developing Sollya.
— the most important keyword is safety.

Sylvain Chevillard Efficient evaluation of numerical functions

Perspectives

» Apply our techniques to signal processing:
— find trigonometric polynomials with floating-point
coefficients

» Implementation of functions in arbitrary precision:

» painful to do manually;
» goal: automate the implementation;
» makes it possible to explore new ideas.

» Continue developing Sollya.
— the most important keyword is safety.
» Support for multivariate functions.

Sylvain Chevillard Efficient evaluation of numerical functions

Perspectives

» Apply our techniques to signal processing:
— find trigonometric polynomials with floating-point
coefficients
» Implementation of functions in arbitrary precision:
» painful to do manually;
» goal: automate the implementation;
» makes it possible to explore new ideas.
» Continue developing Sollya.
— the most important keyword is safety.

» Support for multivariate functions.
» More numerical procedures (interpolation, integration).

Sylvain Chevillard Efficient evaluation of numerical functions

Perspectives

» Apply our techniques to signal processing:
— find trigonometric polynomials with floating-point
coefficients
» Implementation of functions in arbitrary precision:
» painful to do manually;
» goal: automate the implementation;
» makes it possible to explore new ideas.
» Continue developing Sollya.
— the most important keyword is safety.

» Support for multivariate functions.
» More numerical procedures (interpolation, integration).
» Solving differential equations.

Sylvain Chevillard Efficient evaluation of numerical functions

Perspectives

» Apply our techniques to signal processing:

— find trigonometric polynomials with floating-point
coefficients

» Implementation of functions in arbitrary precision:

» painful to do manually;
» goal: automate the implementation;
» makes it possible to explore new ideas.

» Continue developing Sollya.

— the most important keyword is safety.

» Support for multivariate functions.
» More numerical procedures (interpolation, integration).
» Solving differential equations.

» Linear algebra (inversion of matrices, resolution of linear
systems, etc.)

Sylvain Chevillard Efficient evaluation of numerical functions

Perspectives

» Apply our techniques to signal processing:

— find trigonometric polynomials with floating-point
coefficients

» Implementation of functions in arbitrary precision:

» painful to do manually;
» goal: automate the implementation;
» makes it possible to explore new ideas.

» Continue developing Sollya.

— the most important keyword is safety.

» Support for multivariate functions.
» More numerical procedures (interpolation, integration).
» Solving differential equations.

» Linear algebra (inversion of matrices, resolution of linear
systems, etc.)

Sylvain Chevillard Efficient evaluation of numerical functions

Perspectives

» Apply our techniques to signal processing:

— find trigonometric polynomials with floating-point
coefficients

» Implementation of functions in arbitrary precision:

» painful to do manually;
» goal: automate the implementation;
» makes it possible to explore new ideas.

» Continue developing Sollya.

— the most important keyword is safety.

» Support for multivariate functions.
» More numerical procedures (interpolation, integration).
» Solving differential equations.

» Linear algebra (inversion of matrices, resolution of linear
systems, etc.)

Sylvain Chevillard Efficient evaluation of numerical functions

exp(x), on [1, 10], degree 6

Sylvain Chevillard Efficient evaluation of numerical functions

0.5

04

-0.5 4

-1.5 o

exp(x), on [1, 10], degree 6

Sylvain Chevillard

Efficient evaluation of numerical functions

0.5

-05 4|

-1.5 o

exp(x), on [1, 10], degree 6

Sylvain Chevillard

Efficient evaluation of numerical functions

0.2 4

0.15

0.05 4

exp(x), on [1, 10], degree 6

-0.15

Sylvain Chevillard Efficient evaluation of numerical functions

0.2 4

0.15

0.1 4

exp(x), on [1, 10], degree 6

-0.05

-0.1 o

-0.15

-0.2 o

Sylvain Chevillard

Efficient evaluation of numerical functions

exp(x), on [1, 10], degree 6

0.08 —
0.06

0.04
0.02

-0.06

-0.08

Efficient evaluation of numerical functions

Sylvain Chevillard

exp(x), on [1, 10], degree 6

0.08 —

0.06 P

-0.08

Efficient evaluation of numerical functions

Sylvain Chevillard

exp(x), on [1, 10], degree 6

0.08 —
0.04
0.02
-0.04
-0.06
-0.08

Efficient evaluation of numerical functions

Sylvain Chevillard

In some circumstances, one may wish additional constraints:

Sylvain Chevillard Efficient evaluation of numerical functions

In some circumstances, one may wish additional constraints:
» Example 1: ¢e* on [—1/8, 1/4], degree 5:

Sylvain Chevillard Efficient evaluation of numerical functions

In some circumstances, one may wish additional constraints:

» Example 1:

p:ao+alx—|—agx2+a3x3+a4x4+a5x

with

e* on [—1/8, 1/4], degree 5:

5

ap ~ 0.99999999904782645291762.. . .
a; ~ 1.00000006000677910949618.. . .
ap >~ 0.50000048748217150868457 . . .
az ~ 0.16665453887128398679564 . . .
as ~ 0.04165519344690637013988 . . .
as ~ 0.00888564825713070913304 . . .

Sylvain Chevillard Efficient evaluation of numerical functions

In some circumstances, one may wish additional constraints:
» Example 1: ¢e* on [—1/8, 1/4], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

e ap ~ 0.99999999904782645291762.. . .
a; ~ 1.00000006000677910949618.. . .
ap >~ 0.50000048748217150868457 . . .
az ~ 0.16665453887128398679564 . . .
as ~ 0.04165519344690637013988 . . .
as ~ 0.00888564825713070913304 . . .

» Corresponding error: 2e—9

Sylvain Chevillard Efficient evaluation of numerical functions

In some circumstances, one may wish additional constraints:

» Example 1: ¢e* on [—1/8, 1/4], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag =~ 0.99999999904782645291762. ..
a; ~ 1.00000006000677910949618. ..
a» ~ 0.50000048748217150868457 ...

» Corresponding error: 2e—9

Sylvain Chevillard Efficient evaluation of numerical functions

In some circumstances, one may wish additional constraints:
» Example 1: ¢e* on [—1/8, 1/4], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag~1
a;~1
dy X~ 0.5

» Corresponding error: 2e—9

Sylvain Chevillard Efficient evaluation of numerical functions

In some circumstances, one may wish additional constraints:

» Example 1: ¢e* on [—1/8, 1/4], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag~1
a;~1
dy X~ 0.5
as ~ 0.16665960056981588342415 . ..
as ~ 0.04166987481926998551732.. ..
as ~ 0.00878894622316490686362 . . .

» Corresponding error: 2e—9

Sylvain Chevillard Efficient evaluation of numerical functions

In some circumstances, one may wish additional constraints:

» Example 1: ¢e* on [—1/8, 1/4], degree 5:

p:ao+alx+agx2+a3x3+a4x4+a5x5

with
ag~1
a;~1
dy X~ 0.5
as ~ 0.16665960056981588342415 . ..
as ~ 0.04166987481926998551732.. ..
as ~ 0.00878894622316490686362 . . .

» Corresponding error: 2e—9

» Constrained polynomial error: 4.5e—9.

Sylvain Chevillard Efficient evaluation of numerical functions

