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I People usually enter in my office saying I would like to
approximate a function.

I For instance: sin(x), exp(x), exp(1 + cos(x)), etc.
I Values not exact in general:

exp(2) = 7.38905609893065 . . .

↪→ approximated values.
I For example: error beyond the 15th digit.
I Fifteen correct digits?

0.99999999999999991234
1.00000000000000005678
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I Don’t programs for evaluating functions already exist?

I Yes, but we can:

I improve the efficiency while keeping the accuracy;
I improve the accuracy while keeping the efficiency.

I New programs must be designed for new architectures.
↪→ the program must be written quickly.
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I Example of function f (x) = exp(x).

I First step: reduce the range (range reduction).
I Second step: replace the function f by a polynomial p.
I Third step: write a program that evaluates the polynomial.
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I Example of function f (x) = exp(x).
I First step: reduce the range (range reduction).

I Second step: replace the function f by a polynomial p.
I Third step: write a program that evaluates the polynomial.

exp(a) =
(
exp(a/4)2

)2
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I Example of function f (x) = exp(x).
I First step: reduce the range (range reduction).
I Second step: replace the function f by a polynomial p.

I Third step: write a program that evaluates the polynomial.

Approximation error:
I absolute:

ε = p − f

I relative:

ε =
p − f

f
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Sources of errors
I Approximation error: ε = p − f .

I Roundoff errors: due to the propagation of errors during the
evaluation of p.

I The overall error must stay below the 15th digit.
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Sollya

I Sollya: developed with C. Lauter.
↪→ making the development of new functions easier.

I Functions, polynomials, roundings, etc. in a safe environment.
I Now becoming a numerical toolbox.
↪→ interesting for anyone who wants guarantees on the quality.

I Thanks to Sollya, the development of functions has been
almost completely automated.
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Main contributions of this thesis

I Implementation of function erf in arbitrary precision:
I rigorous and effective bounds on sequences/functions;
I particular constraints imposed by arbitrary precision.

I Algorithms for finding good polynomial/rational
approximations:

I approximation theory (real coefficients);
I linear programming;
I euclidean lattices.

I Algorithm for bounding rigorously the approximation error
(between p and f ):

I interval arithmetic;
I automatic computation of bounds on derivatives of a function;
I root isolation techniques.

I These algorithms are available within Sollya.
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I Reminder about approximation theory.
↪→ finds good approximation polynomials with real
coefficients.

I Polynomial p with floating-point coefficients.
I Linear programming.
↪→ gets useful informations on the structure of p.

I Euclidean lattices.
↪→ computes a very good polynomial p.
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Approximation theory

I How to compute a good approximation polynomial?

Characterisation theorem (1905)
p a polynomial of degree n, f a continuous function on [a, b].

‖p − f ‖∞ is minimal (i.e. p is optimal)
if and only if

∃x1 < · · · < xn+2 ∈ [a, b], ∃ε > 0,
{
∀i , p(xi )− f (xi ) = (−1)iε
|ε| = ‖p − f ‖∞ .

I Theorem of la Vallée Poussin (1910).
↪→ oscillations and quality of approximation are related.

I Remez’ algorithm (1934).
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Sometimes, additional constraints may be interesting.
I Example: esin(x)−cos(x2) on [−1/16, 1/16], degree 5:

p = a0 + a1 x + a2 x2 + a3 x3 + a4 x4 + a5 x5

with

a3 '

I Corresponding error: 1.68 e−10.
I Constrained polynomial error: 1.69 e−10.
I Stiefel’s exchange algorithm (1959).
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I Reminder about approximation theory.
↪→ finds good approximation polynomials with real
coefficients.

I Polynomial p with floating-point coefficients.
I Linear programming.
↪→ gets useful informations on the structure of p.

I Euclidean lattices.
↪→ computes a very good polynomial p.
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Representing real numbers in computers

I IEEE-754 standard: defines floating-point numbers.

I A floating-point number x with radix 2 and precision t, is a
number of the form:

x = 1.b1b2 . . . bt−1 · 2e′ , bi ∈ {0, 1}, e′ ∈ Z.

I Formally, x = m · 2e where:

I m ∈ Z (with exactly t bits) is its mantissa (or significand);
I e ∈ Z is its exponent.
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The problem

I Each coefficient of a polynomial is represented by a
floating-point number.

I Naive method to obtain a polynomial approximation of f :
I compute the real minimax p?;
I replace each coefficient a?i of p? by the nearest floating-point

number âi ;
I use p̂ = â0 + â1 x + · · ·+ ân xn.

I Example with f (x) = log2(1 + 2−x ) on [0; 1]
n = 6, single precision coefficients (24 bits).

‖ε?‖ ‖ε̂‖ ‖εopt‖
8.3 e−10 119 e−10 10.06 e−10

popt : best polynomial with floating-point coefficients.
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Previous works

I There exist recipes, not published.

I D. Kodek (1980) has studied a similar problem in signal
processing. Limited to small precisions (t < 10).

I N. Brisebarre, J.-M. Muller and A. Tisserand (2006) have
proposed an approach by linear programming.
Limited to small degrees (n < 8).

I Typically, we want t ≥ 50 and n ≥ 10.
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I Reminder about approximation theory.
↪→ finds good approximation polynomials with real
coefficients.

I Polynomial p with floating-point coefficients.
I Linear programming.
↪→ gets useful informations on the structure of p.

I Euclidean lattices.
↪→ computes a very good polynomial p.
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Polytope approach

I Inputs: degree n, interval [a, b], function f ,
list of floating-point formats ti (one per coefficient).

I Notations:
I ε? = ‖p? − f ‖∞ where p? is the real minimax.
I εopt = ‖popt − f ‖∞ where popt is a best polynomial with

floating-point coefficients.

I We set a trial error: εtarget.
I We are looking for p such that ‖p − f ‖∞ ≤ εtarget.

⇐⇒ ∀x ∈ [a, b], f (x)− εtarget ≤
n∑

i=0
ai x i ≤ f (x) + εtarget.
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Construction of the polytope
S = {(a0, . . . , an) ∈ Rn+1 s.t. ‖p − f ‖∞ ≤ εtarget}.

Pick x0

, x1, x2, x3, . . .

∈ [a, b].


f (x0)− εtarget
n−1∑
i=0

ai x i
0

n−1∑
i=0

ai x i
0 ≤ f (x0) + εtarget


f (x1)− εtarget ≤

n−1∑
i=0

ai x i
1

n−1∑
i=0

ai x i
1 ≤ f (x1) + εtarget

f (x2)− εtarget ≤
n−1∑
i=0

ai x i
2

n−1∑
i=0

ai x i
2 ≤ f (x2) + εtarget

. . .
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Construction of the polytope (II)
I We just keep a finite number of points x0, . . . , xd .

I The corresponding set of coefficients is a polytope P of Rn+1.
I Projections are performed by linear programming (simplex).
I They give an enclosure for each coefficient : ai ∈ [ui , vi ].

‖p − f ‖∞ ≤ εtarget ⇒ (a0, . . . , an) ∈ S
⇒ (a0, . . . , an) ∈ P
⇒ ∀i , ai ∈ [ui , vi ].
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Worked example (beginning)

I Example given by John Harrison (Intel Corp.) when he came
to Lyon.

I He asked for a polynomial minimising the absolute error:

I approximating f : x 7→ 2x−1
x ;

I on [a, b] = [−1/16, 1/16];
I with a polynomial of degree 9;
I coefficient a0: 129 bits of precision;
I other coefficients: 64 bits of precision.
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Worked example (II)

I Minimax (real coefficients): ε? ' 7.9 e−25.

I Error of the rounded minimax ε̂ ' 4035 e−25.
I Huge gap! Can we achieve an intermediate error of
εtarget = 400 e−25?

I Polytope constructed with 30 Chebyshev points.
I Projection on a1: the interval [u1, v1] does not contain any

double extended number!
I Hence εtarget cannot be achieved:

400 e−25 ≤ εopt ≤ 4035 e−25.

I Generally [ui , vi ] is so thin that the exponent ei is fixed.

I Improving the value 4035 e−25: we need a fast (possibly
heuristic) algorithm.
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I Reminder about approximation theory.
↪→ finds good approximation polynomials with real
coefficients.

I Polynomial p with floating-point coefficients.
I Linear programming.
↪→ gets useful informations on the structure of p.

I Euclidean lattices.
↪→ computes a very good polynomial p.
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Formalisation of the problem

I Our goal: find p approximating f and with the following form

m0 · 2e0 + m1 · 2e1X + · · ·+ mn · 2enXn.

I A simplification: guess the value of each ei .
↪→ heuristic validated by means of projections.

I Once ei is guessed, we need to find mi ∈ Z such that∥∥∥∥∥f (x)−
n∑

i=0
mi · 2ei x i

∥∥∥∥∥
∞

is minimal.
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Description of the lattice-based method
Our goal: find p approximating f and with the following form

m0 · 2e0 + m1 · 2e1X + · · ·+ mn · 2enXn.

I We assume that p looks like p?:

I we choose n + 1 points z0, · · · , zn in [a, b];
I we search m0, · · · , mn such that for all i

p(zi ) = m0 · 2e0 + m1 · 2e1zi + · · ·+ mn · 2en zn
i ' p?(zi ) .

I Rewritten with vectors:

m0


2e0

2e0

...
2e0

+ · · · + mn


2en · zn

0
2en · zn

1
...

2en · zn
n


︸ ︷︷ ︸

Γ of the form Z
−→
b0+Z

−→
b1+···+Z

−→
bn

'


p?(z0)
p?(z1)

...
p?(zn)


︸ ︷︷ ︸
−→v ∈Rn+1

.
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Notions about lattices
Let (

−→
b0, · · · ,

−→
bn) be a basis of a real vector space.

The set of all
integer combinations of the

−→
bi is called a lattice:

Γ = Z
−→
b0 + Z

−→
b1 + · · ·+ Z

−→
bn .

In general, a lattice has infinitely many bases.
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Notions about lattices (2)

Algorithmic problems:

I shortest vector problem (SVP);
I closest vector problem (CVP).

LLL algorithm:
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Notions about lattices (2)

Algorithmic problems:
I shortest vector problem (SVP);
I closest vector problem (CVP).

LLL algorithm: Lenstra, Lenstra Jr. and Lovász (1982).
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Notions about lattices (2)

Algorithmic problems:
I shortest vector problem (SVP);
I closest vector problem (CVP).

LLL algorithm: finds pretty short vectors in polynomial time.
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Notions about lattices (2)

Algorithmic problems:
I shortest vector problem (SVP);
I closest vector problem (CVP).

LLL algorithm: used by Babai to solve an approximation of CVP.
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A reminder of the formalisation

Remember our formalisation:

m0


2e0

2e0
...
2e0


︸ ︷︷ ︸
−→
b0

+ · · · + mn


2en · zn

0
2en · zn

1
...

2en · zn
n


︸ ︷︷ ︸

−→
bn

'


f (z0)
f (z1)
...

f (zn)


︸ ︷︷ ︸

−→v

.

Sylvain Chevillard Efficient evaluation of numerical functions 27



The algorithm
Input: f , [a, b], n, list of desired floating-point formats ti .

Output: p =
∑

mi2ei X i (mi with ti bits).
1. Compute the real minimax p? =

∑
a?i X i .

2. Guess ei (polytope approach).
3. Choose z0, . . . , zn in [a, b].
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Sylvain Chevillard Efficient evaluation of numerical functions 28



The algorithm
Input: f , [a, b], n, list of desired floating-point formats ti .

Output: p =
∑

mi2ei X i (mi with ti bits).
1. Compute the real minimax p? =

∑
a?i X i .

2. Guess ei (polytope approach).
3. Choose z0, . . . , zn in [a, b].
5. LLL-reduce the lattice: we get a basis (c0, . . . , cn).

Sylvain Chevillard Efficient evaluation of numerical functions 28



The algorithm
Input: f , [a, b], n, list of desired floating-point formats ti .

Output: p =
∑

mi2ei X i (mi with ti bits).
1. Compute the real minimax p? =

∑
a?i X i .

2. Guess ei (polytope approach).
3. Choose z0, . . . , zn in [a, b].
6. Use Babai’s algorithm to find a vector ṽ close to v .
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The algorithm
Input: f , [a, b], n, list of desired floating-point formats ti .

Output: p =
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mi2ei X i (mi with ti bits).
1. Compute the real minimax p? =

∑
a?i X i .

2. Guess ei (polytope approach).
3. Choose z0, . . . , zn in [a, b].
4. Construct the vectors bj and the vector v .
5. LLL-reduce the lattice: we get a basis (c0, . . . , cn).
6. Use Babai’s algorithm to find a vector ṽ close to v .
7. Replace each cj by its expression with the vectors bk : hence

getting the coefficients mj of ṽ in the basis (b0, . . . , bn).
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The algorithm
Input: f , [a, b], n, list of desired floating-point formats ti .

Output: p =
∑

mi2ei X i (mi with ti bits).
1. Compute the real minimax p? =

∑
a?i X i .

2. Guess ei (polytope approach).
3. Choose z0, . . . , zn in [a, b].
4. Construct the vectors bj and the vector v .
5. LLL-reduce the lattice: we get a basis (c0, . . . , cn).
6. Use Babai’s algorithm to find a vector ṽ close to v .
7. Replace each cj by its expression with the vectors bk : hence

getting the coefficients mj of ṽ in the basis (b0, . . . , bn).
Return: p =

∑
mi2ei X i .
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Worked example
I How to choose the points?

Graph of the error function
p? − f .

I We need n + 1 points.
I They should correspond to the

interpolation intuition :

p(zi ) ' p?(zi ).

I Idea: if possible take points
where

p?(zi ) = f (zi ).
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Results

I We get a polynomial p0 with floating-point coefficients.
I The error of p0 is ε0 ' 532 e−25.

I Remember that we knew: 400 e−25 ≤ εopt ≤ 4035 e−25.
↪→ now we know that

400 e−25 ≤ εopt ≤ 532 e−25.

I It is even possible to prove that

444.02 e−25 ≤ εopt ≤ 444.92 e−25︸ ︷︷ ︸
effectively reached

.
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Conclusion

I Several techniques for polynomial approximation:
I approximation with real coefficients;
I approximation with floating-point coefficients:
↪→ linear programming, euclidean lattices.

I Available within Sollya.

I Other topics studied during the thesis:

I computing automatically a certified bound on ‖p − f ‖∞;
I implementing a function in arbitrary precision.
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Perspectives

I Apply our techniques to signal processing:
↪→ find trigonometric polynomials with floating-point
coefficients

I Implementation of functions in arbitrary precision:

I painful to do manually;
I goal: automate the implementation;
I makes it possible to explore new ideas.

I Continue developing Sollya.
↪→ the most important keyword is safety.

I Support for multivariate functions.
I More numerical procedures (interpolation, integration).
I Solving differential equations.
I Linear algebra (inversion of matrices, resolution of linear

systems, etc.)
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exp(x), on [1, 10], degree 6
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In some circumstances, one may wish additional constraints:

I Example 1: ex on [−1/8, 1/4], degree 5:

p = a0 + a1 x + a2 x2 + a3 x3 + a4 x4 + a5 x5

with
a0 '
a1 '
a2 '

I Corresponding error: 2 e−9
I Constrained polynomial error: 4.5 e−9.

Sylvain Chevillard Efficient evaluation of numerical functions 34



In some circumstances, one may wish additional constraints:
I Example 1: ex on [−1/8, 1/4], degree 5:

p = a0 + a1 x + a2 x2 + a3 x3 + a4 x4 + a5 x5

with
a0 '
a1 '
a2 '

I Corresponding error: 2 e−9
I Constrained polynomial error: 4.5 e−9.

Sylvain Chevillard Efficient evaluation of numerical functions 34



In some circumstances, one may wish additional constraints:
I Example 1: ex on [−1/8, 1/4], degree 5:

p = a0 + a1 x + a2 x2 + a3 x3 + a4 x4 + a5 x5

with
a0 ' 0.99999999904782645291762 . . .
a1 ' 1.00000006000677910949618 . . .
a2 ' 0.50000048748217150868457 . . .
a3 ' 0.16665453887128398679564 . . .
a4 ' 0.04165519344690637013988 . . .
a5 ' 0.00888564825713070913304 . . .

I Corresponding error: 2 e−9
I Constrained polynomial error: 4.5 e−9.

Sylvain Chevillard Efficient evaluation of numerical functions 34



In some circumstances, one may wish additional constraints:
I Example 1: ex on [−1/8, 1/4], degree 5:

p = a0 + a1 x + a2 x2 + a3 x3 + a4 x4 + a5 x5

with
a0 ' 0.99999999904782645291762 . . .
a1 ' 1.00000006000677910949618 . . .
a2 ' 0.50000048748217150868457 . . .
a3 ' 0.16665453887128398679564 . . .
a4 ' 0.04165519344690637013988 . . .
a5 ' 0.00888564825713070913304 . . .

I Corresponding error: 2 e−9

I Constrained polynomial error: 4.5 e−9.

Sylvain Chevillard Efficient evaluation of numerical functions 34



In some circumstances, one may wish additional constraints:
I Example 1: ex on [−1/8, 1/4], degree 5:

p = a0 + a1 x + a2 x2 + a3 x3 + a4 x4 + a5 x5

with
a0 ' 0.99999999904782645291762 . . .
a1 ' 1.00000006000677910949618 . . .
a2 ' 0.50000048748217150868457 . . .
a3 ' 0.16665453887128398679564 . . .
a4 ' 0.04165519344690637013988 . . .
a5 ' 0.00888564825713070913304 . . .

I Corresponding error: 2 e−9

I Constrained polynomial error: 4.5 e−9.

Sylvain Chevillard Efficient evaluation of numerical functions 34



In some circumstances, one may wish additional constraints:
I Example 1: ex on [−1/8, 1/4], degree 5:

p = a0 + a1 x + a2 x2 + a3 x3 + a4 x4 + a5 x5
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I Corresponding error: 2 e−9
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