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Clustering

I ) Data: xi,...,x, € R9.

Aim: designing K classes.
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Clustering

Data: xi,...,x, € RY.

Aim: designing K classes.

6 8 10 12 14

200 observations from a four-component
Gaussian mixture
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Model-Based Clustering

Statistical Approach: (xi,...,xy) realization of (Xi,...,X,) i.i.d. ~ ¥,

@ Fit a mixture model to the data.
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Model-Based Clustering

@ Fit a mixture model to the data.
K
My = {Zwkqb(.;wk) ‘ (1, .y TRy WL, -, WK) € @K} ,
k=1

Ok C Mk x (RY x Si)K

with K
I_IK:{(T(]J"')T"K)E[O,].]:Z 7Tk=1}'
k=1
710 = for all € ©
Let us denote: (- )_kZ::l k(- wk), for all 6 € Ok

» Dk =dim(©k), “number of free parameters”.

» Mixture form <« Choice of constraints on Ok.
» One model <> One number of components K.
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Model-Based Clustering

o Fit a mixture model to the data.

@ Design classes according to the rule

“One Gaussian component = One class”
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Model-Based Clustering

@ Fit a mixture model to the data. Usually:

n K
e € argmaxz log Z T d(Xi; wi) -

90k =1 k=1

log L(6)
Study based on a good estimation of the sample distribution.
@ Design classes according to the rule
“One Gaussian component = One class”
based on the Maximum A Posteriori:
TP(X; wi)

S (X W)

VAP (M) = argmax 74 (x; BF).
1<k<K
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Choosing the Number of Classes: Model Selection

Penalized Likelihood Criteria.
o Efficiency: minimize dKL(f@, f(. ;é\%'LE)).
> AIC : KAIC = argmin, < k<, { —log L(M-E) + Dk };
» Slope heuristics (Birgé and Massart, 2006).
o I|dentification: minimize mingecg, dKL(fp, f(.; 0))

» BIC : KBIC = argmin {—log L(a,'\QLE) + B log n}.
1<K<Ku

@ A criterion adapted to clustering:
» ICL (Biernacki, Celeux, Govaert, 2000) :

K' = argmin {—log L(G}'F) + ENT(A)E) + B¢ log n}.
1<K<Ky
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Entropy: Measure of the Assignment Confidence

X

ENT(6; x) = = > _ 7i(x: 0) log 7i(x; 0) € [0, log K].
k=1

ENT(0) = Z ENT(0; x;).
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ENT(0;"; x;,) close to 0.
ENT(0)"F; x;,) close to log 2.

J.-P. Baudry December 3, 2009 6 /21
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Conditional Classification Likelihood

The classification log-likelihood for the complete data (X, Z) in model
My:

n K
log Le (0 (X, 2)) =Y Zi log me(Xi; wi).

i=1 k=1

A key relation:

log Lc(0) = log L(8 +ZZZ,k log 7« (X:; 6).
i=1 k=1

Considering the conditional expectation of this relation:
Definition

The conditional classification log-likelihood is

log Lec(0) = log L(0) — ENT(6).
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Contrast Minimization for Clustering

Contrast:
—log Lec(0) = —log L(6) + ENT(0).

Associated loss:
Efe [—|og Lcc(e)] - mgin Efo [—Iog Lcc(e)]
> dir (F%, F(.;60)) + Ero [ENT(6)].

Approximation in the model M :

09 = agggKin{dKL(f@, £(.;0)) + Ero [ENT(0)] }

Even if f¥ € Mk, there is no reason that ¥ € ©%.
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Estimation: MLccE

Definition
The minimum empirical contrast estimator, called “Maximum conditional
classification Likelihood Estimator”, is defined by

b\MLccE c argmin{—|0g Lcc(e)}‘
0Ok

.
CTHEF
& o
2 0 2 4 6 8 10 12 14 -2 0 2 4 6 8 10 12 14
MLE MLccE
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Estimation: MLccE

Definition
The minimum empirical contrast estimator, called “Maximum conditional

classification Likelihood Estimator”, is defined by

b\MLccE c argmin{—|0g Lcc(e)}‘
0Ok
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MLccE Properties

Theorem
Let K € N*. Assume

@ Ok compact and convex;

< o0 as. and ||Hj |1 < oo.
(0.9}

S
K

0 OMLE ¢ ©k such that for all (9?( cev,

00

(M>(9 )

—log Lec(AF) < —log Lec(6%) + op(1).
Then

d(@%== 0%) —— 0.

n—o0

With d(6,8) = inf (|0 — 0]co.
USC]

J.-P. Baudry December 3, 2009 1 /21



Computing MLccE: L..-EM
The L-EM algorithm for MLccE:
n K
é\’l\chcE = argmax{z IogZﬂ'qu(X,-;wk) - ENT(@)}.
00k YiZ1 k=1
Initialization: Random, Small_L.._.EM, CEM, Km1...
lteration &/ — @/11:
E Step Compute Q(8, ) = Ey [log Lc(6; X, Z)|X = x].
This amounts to computing 7 (x;; &).

M Step Maximization of Q(6,&) — ENT(6) with respect to 6 € Ok:

ot e argmax{ Ey[log Le(6; X, Z)|X = x] — ENT(0) }
[ASSI%

log L(0)+321 1 SoR 4 (7 (xi:09 )+ 7k (xi:0) ) log T (x;:0)
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Computing MLccE: L..-EM
The L-EM algorithm for MLccE:

gt = argmax{ZIongkQS(X W) ENT(@)}.

0cOK i=1

Initialization: Random, Small_L.._.EM, CEM, Km1...

Split into two components

1o kg, K — 1

AN

1ok, K —1,K
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Consistent Model Selection

Identification point of view:

Ko = min argmin Efo [—log Lcc(@?()].
1<K<Ky

Procedures are considered such that

~

K = argmin {—Iog Lcc(é\%L“E) + pen(K)}.
1<K<Kp
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Consistent Model Selection

Theorem
Let us consider the model family (/\/lK)KE{1 o Ku} Let us assume:
@ VK, Ok is compact and convex.
® VK,V0 € Ok, V05, € %,
Efe [~log Lec(8)] = Efe [—log Lec(0k,)] <= —log Lec(8; x) = —log Lec(0k,; X) a.s.

@ VK, Hk(x) = sup |log Lec(6; x)| < 00 a.s. and ||Hk||oo < oo.

0 VK, Hi(x) = sup H Blochc)(g )H < o0 a.s. and ||Hk|l2 < oo.
@ VK,Vo% € 8%, 2 507 (Em[ log Lcc(e)])le0 is nonsingular.
K

pen(K) = op(n) as n — oo

Let A{1,... K R* such that
et pen:{l,...,Ku} = R" such tha {(pen(K)—pen(K’))LOOif K' < K.
n—oo

Then R
P[K # Ko] —— 0.
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A New Light on ICL

@ Analogy with model selection criteria in the usual observed likelihood
framework.

@ A good identification criterion, by analogy with BIC:

—~ ~ D
KbteCl = argmin {—Iog Lec(0)¢-F) + “Klog n}.
Ke{l,...Ku} 2

o ICL is an approximation of L..-ICL.

J.-P. Baudry December 3, 2009 15 /21



A New Light on ICL

@ Analogy with model selection criteria in the usual observed likelihood
framework.

@ A good identification criterion, by analogy with BIC:

—~ ~ D
Kte1Ch —  argmin {—Iog Lec(058F) + “Klog n}.
KefL,....Ku) 2

o ICL is an approximation of L.-ICL :

—~ ~ D
K't = argmin {—Iog Lec(011F) + =X log n}.
Ke{lv'"aKM} 2

J.-P. Baudry December 3, 2009 15 /21



Slope Heuristics
(Birgé and Massart, 2006)

“ . . . 7 ™ /
Data-driven Slope Estimation |
Assume an “optimal” penalty is 3
s«k . R
known up to a constant Kopt: <§>, Estimate the slope &
§ of this linear part
pen(K) = "'foptDK- ks

Dy

KSHkee —  argmin {—Iog Lec(B)F) + 27%DK}
Ke{L,....Ku}

This data-driven procedure may be applied:
@ to the usual observed likelihood contrast;
@ to the conditional classification likelihood contrast.
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“Cross” Dataset

107 . ..
8- L

@ Simulated data in R2.

@ Sample size: 200.

@ Number of components: 4.

@ Diagonal mixture models fitted: 7% € My.
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“Cross” Dataset: Results

| Selected number of components [[ 2| 3 | 4 | 5 [6[7[8] 9] 10-20 |
AIC 0| O 1 1121233 88
BIC 0| 4|91 5|0|0]|0]O0 0
SHL 0|2 |84 |10|3|0|0]0 1
ICL 0|9 | 3 1 /0|0]|0]|O0 0
L.-ICL 0199 | 1 00010
SHL . 2179 8 8 131010
Results for 100 experiments
[T [ Risk x10° | gRe< [T | "Risk” x10° |
Oracle 59 1 Oracle 3618
AIC 506 8.03 ICL 3622
BIC 65 1.10 Le-ICL 3623
(ICL) 156 2.62 SHLc 3632
SHL 69 117 “Oracle” number of

“Oracle” number of components: 4

J.-P. Baudry

components : 3

December 3, 2009

18 / 21



Mixtures of Mixtures

BIC Solution
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Mixtures of Mixtures
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Mixtures of Mixtures

@ Hierarchical classes combining:
» From the BIC solution with KBIC classes;
» By minimizing the entropy of the combined solution at each step;
» Until there is only one class left.
@ Choosing the number of classes:
» May be based on substantive ground;
» The whole hierarchy may be of interest to the user;
» The plot of the entropy against the number of classes may be helpful
for the analysis;
» Link with the works about penalized criteria?

150
6]
2
4 19 100 9
2 ﬁg 50 s
o ,r"’“u
Op--------------0----- o-------- 2°
-2 ) 0 500 1000 1500 2000
4 Cumul. sum of the merged
-2 0 2 4 6 8 10 12
. _ obs. number
BIC Solution Combined solutions entropy
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Conclusions and Perspectives

@ The theoretical study of ICL led to the definition of a contrast
adapted to the clustering objective, and thus to the corresponding
estimator and model selection procedures.

@ Solutions are proposed to put these into practice. They may also be
applied with benefit when computing the usual MLE through the
usual EM algorithm.

@ A new light is thrown on ICL, viewed as an approximation of L..-ICL.
This is a contribution to the study of the “class” notion in
model-based clustering.

@ This “class” notion may be further studied.

@ The MLE and MLccE estimators on the one hand; the ICL and
Lec-ICL model selection criteria on the other hand, may be further
compared, notably from a practical point of view.

@ The slope heuristics, in this mixture models framework, may be
further studied.
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