# Sélection de modèle pour la classification non supervisée. Choix du nombre de classes.

Jean-Patrick Baudry

Directeur de thèse : Gilles Celeux

Université Paris-Sud 11 Projet SELECT (INRIA)

3 Décembre 2009

# Model Selection for Clustering. How Many Classes?

Jean-Patrick Baudry

Advisor: Gilles Celeux

Université Paris-Sud 11 Project SELECT (INRIA)

December 3, 2009

J.-P. Baudry December 3, 2009 1 / 21

## Table of contents

- Introduction
  - Clustering
  - Model-Based Clustering
  - Choosing the Number of Classes
- Contrast Minimization for Clustering
  - Conditional Classification Likelihood
  - Estimation: MLccE
  - Model Selection
  - A New Light on ICL
  - Slope Heuristics
- Simulations
- Mixtures of Mixtures
- 5 Conclusion and Perspectives

J.-P. Baudry December 3, 2009 2 / 21

# Clustering



Data:  $x_1, \ldots, x_n \in \mathbb{R}^d$ .

Aim: designing K classes.

# Clustering



Data:  $x_1, \ldots, x_n \in \mathbb{R}^d$ .

Aim: designing (K classes)

## Clustering



200 observations from a four-component Gaussian mixture

Data:  $x_1, \ldots, x_n \in \mathbb{R}^d$ .

Aim: designing K classes.

Statistical Approach:  $(x_1, \ldots, x_n)$  realization of  $(X_1, \ldots, X_n)$  i.i.d.  $\sim f^{\wp}$ .

• Fit a mixture model to the data.

Fit a mixture model to the data.

$$\mathcal{M}_{K} = \left\{ \sum_{k=1}^{K} \pi_{k} \phi(.; \omega_{k}) \, \middle| \, (\pi_{1}, \dots, \pi_{K}, \omega_{1}, \dots, \omega_{K}) \in \Theta_{K} \right\},$$
with
$$\begin{cases} \Theta_{K} \subset \Pi_{K} \times \left( \mathbb{R}^{d} \times \mathbb{S}^{d}_{+} \right)^{K} \\ \Pi_{K} = \left\{ (\pi_{1}, \dots, \pi_{K}) \in [0, 1] : \sum_{k=1}^{K} \pi_{k} = 1 \right\}. \end{cases}$$

Let us denote:

$$f(.;\theta) = \sum_{k=1}^{K} \pi_k \phi(.;\omega_k), \text{ for all } \theta \in \Theta_K.$$

- ▶  $D_K = \dim(\Theta_K)$ , "number of free parameters".
- Mixture form  $\leftrightarrow$  Choice of constraints on  $\Theta_K$ .
- One model  $\leftrightarrow$  One number of components K.

J.-P. Baudry December 3, 2009 4 / 21

• Fit a mixture model to the data.

• Design classes according to the rule

"One Gaussian component = One class"

.

J.-P. Baudry December 3, 2009 4 / 2

• Fit a mixture model to the data. Usually:

$$\widehat{\theta}_K^{\mathsf{MLE}} \in \operatorname*{argmax}_{\theta \in \Theta_K} \underbrace{\sum_{i=1}^n \log \sum_{k=1}^K \pi_k \phi(X_i; \omega_k)}_{\log \mathsf{L}(\theta)}.$$

Study based on a good estimation of the sample distribution.

Design classes according to the rule

"One Gaussian component = One class"

based on the Maximum A Posteriori:

$$\forall x, \forall k, \forall \theta \in \Theta_K, \qquad \tau_k(x; \theta) = \frac{\pi_k \phi(x; \omega_k)}{\sum_{k'=1}^K \pi_{k'} \phi(x; \omega_{k'})}.$$
$$\widehat{z}^{MAP}(\widehat{\theta}_K^{MLE}) = \underset{1 \leq k \leq K}{\operatorname{argmax}} \ \tau_k(x; \widehat{\theta}_K^{MLE}).$$

J.-P. Baudry December 3, 2009 4 / 21

# Choosing the Number of Classes: Model Selection

#### Penalized Likelihood Criteria.

- Efficiency: minimize  $d_{KL}(f^{\wp}, f(.; \widehat{\theta}_{K}^{MLE}))$ .
  - ► AIC :  $\hat{K}^{AIC} = \operatorname{argmin}_{1 \le K \le K_M} \{ -\log L(\widehat{\theta}_K^{MLE}) + D_K \};$
  - ► Slope heuristics (Birgé and Massart, 2006).
- Identification: minimize  $\min_{\theta \in \Theta_K} d_{KL}(f^{\wp}, f(.; \theta))$ .
  - $\blacktriangleright \ \mathsf{BIC} : \hat{K}^{\mathsf{BIC}} = \underset{1 < K < K_M}{\mathsf{argmin}} \big\{ -\log \mathsf{L}(\widehat{\theta}_K^{\mathsf{MLE}}) + \frac{D_K}{2} \log n \big\}.$
- A criterion adapted to clustering:
  - ▶ ICL (Biernacki, Celeux, Govaert, 2000) :

$$\hat{K}^{\mathsf{ICL}} = \operatorname*{argmin}_{1 \leq K \leq K_{M}} \big\{ - \log \mathsf{L} \big( \widehat{\theta}_{K}^{\mathsf{MLE}} \big) + \mathsf{ENT} \big( \widehat{\theta}_{K}^{\mathsf{MLE}} \big) + \frac{D_{K}}{2} \log n \big\}.$$

J.-P. Baudry December 3, 2009 5 / 2

# Entropy: Measure of the Assignment Confidence

$$\begin{aligned} \mathsf{ENT}(\theta;x) &= -\sum_{k=1}^K \tau_k(x;\theta) \log \tau_k(x;\theta) \in [0,\log K]. \\ &\mathsf{ENT}(\theta) = \sum_{i=1}^n \mathsf{ENT}(\theta;x_i). \end{aligned}$$





$$\begin{split} & \mathsf{ENT}(\widehat{\theta}_4^{\mathsf{MLE}}; x_{i_1}) \; \mathsf{close} \; \mathsf{to} \; 0. \\ & \mathsf{ENT}(\widehat{\theta}_4^{\mathsf{MLE}}; x_{i_2}) \; \mathsf{close} \; \mathsf{to} \; \mathsf{log} \; 2. \end{split}$$

J.-P. Baudry December 3, 2009 6 / 2

# Choosing the Number of Classes: Model Selection

#### Penalized Likelihood Criteria.

- Efficiency: minimize  $d_{KL}(f^{\wp}, f(.; \hat{\theta}_{K}^{MLE}))$ .
  - ► AIC :  $\hat{K}^{AIC} = \operatorname{argmin}_{1 \le K \le K_M} \{ -\log L(\hat{\theta}_K^{MLE}) + D_K \};$
  - Slope heuristics (Birgé and Massart, 2006).
- Identification: minimize  $\min_{\theta \in \Theta_K} d_{KL}(f^{\wp}, f(.; \theta))$ .
  - ▶ BIC :  $\hat{K}^{BIC} = \operatorname{argmin} \{-\log L(\hat{\theta}_{K}^{MLE}) + \frac{D_{K}}{2} \log n\}$ .  $1 \le K \le K_M$
- A criterion adapted to clustering:
  - ► ICL (Biernacki, Celeux, Govaert, 2000) :

$$\hat{K}^{\mathsf{ICL}} = \operatorname*{argmin}_{1 \leq K \leq K_{M}} \big\{ - \log \mathsf{L} \big( \widehat{\theta}_{K}^{\mathsf{MLE}} \big) + \mathsf{ENT} \big( \widehat{\theta}_{K}^{\mathsf{MLE}} \big) + \frac{D_{K}}{2} \log n \big\}.$$

J.-P. Baudry December 3, 2009

## Conditional Classification Likelihood

The classification log-likelihood for the complete data  $(\underline{X},\underline{Z})$  in model  $\mathcal{M}_K$ :

$$\log L_{c}(\theta; (\underline{X}, \underline{Z})) = \sum_{i=1}^{n} \sum_{k=1}^{K} Z_{ik} \log \pi_{k} \phi(X_{i}; \omega_{k}).$$

A key relation:

$$\log L_{c}(\theta) = \log L(\theta) + \sum_{i=1}^{n} \sum_{k=1}^{K} Z_{ik} \log \tau_{k}(X_{i}; \theta).$$

Considering the conditional expectation of this relation:

#### **Definition**

The conditional classification log-likelihood is

$$\log L_{cc}(\theta) = \log L(\theta) - ENT(\theta).$$

J.-P. Baudry December 3, 2009 8 / 21

# Contrast Minimization for Clustering

Contrast:

$$-\log L_{cc}(\theta) = -\log L(\theta) + ENT(\theta).$$

Associated loss:

$$\begin{split} \mathbb{E}_{f^{\wp}} \big[ - \text{log} \, \mathsf{L}_{\mathsf{cc}}(\theta) \big] &- \min_{\theta} \mathbb{E}_{f^{\wp}} \big[ - \text{log} \, \mathsf{L}_{\mathsf{cc}}(\theta) \big] \\ &\longleftrightarrow d_{\mathit{KL}} \big( f^{\wp}, f \big( \, . \, ; \theta \big) \big) + \mathbb{E}_{f^{\wp}} \big[ \mathsf{ENT}(\theta) \big]. \end{split}$$

Approximation in the model  $\mathcal{M}_K$ :

$$\Theta_{\mathsf{K}}^{0} = \operatorname*{argmin}_{\theta \in \Theta_{\mathsf{K}}} \Bigl\{ d_{\mathsf{KL}} \bigl( f^{\wp}, f(\,.\,; \theta) \bigr) + \mathbb{E}_{f^{\wp}} \bigl[ \mathsf{ENT}(\theta) \bigr] \Bigr\}.$$

Even if  $f^{\wp} \in \mathcal{M}_K$ , there is no reason that  $f^{\wp} \in \Theta^0_{\kappa}$ .

J.-P. Baudry December 3, 2009 9 / 21

### Estimation: MLccE

#### **Definition**

The minimum empirical contrast estimator, called "Maximum conditional classification Likelihood Estimator", is defined by

$$\widehat{\theta}^{\mathsf{MLccE}} \in \operatorname*{argmin}_{\theta \in \Theta_K} \bigl\{ -\mathsf{log} \, \mathsf{L}_{\mathsf{cc}}(\theta) \bigr\}.$$





I.-P. Baudry December 3, 2009 10 / 21

### Estimation: MLccE

#### **Definition**

The minimum empirical contrast estimator, called "Maximum conditional classification Likelihood Estimator", is defined by

$$\widehat{\theta}^{\mathsf{MLccE}} \in \operatorname*{argmin}_{\theta \in \Theta_K} \bigl\{ -\mathsf{log} \, \mathsf{L}_{\mathsf{cc}}(\theta) \bigr\}.$$





-P. Baudry December 3, 2009 10 / 21

# **MLccE** Properties

#### **Theorem**

Let  $K \in \mathbb{N}^*$ . Assume

- $\Theta_K$  compact and convex;
- $H_K'(x) = \sup_{\theta \in \Theta_K} \left\| \left( \frac{\partial \log \mathsf{L}_{\mathsf{cc}}}{\partial \theta} \right)_{(\theta; x)} \right\|_{\infty} < \infty \text{ a.s. and } \|H_K'\|_1 < \infty.$
- $\bullet \ \widehat{\theta}^{\mathsf{MLccE}} \in \Theta_K \ \mathsf{such that for all} \ \theta_K^0 \in \Theta_K^0,$

$$-{\sf log}\, \mathsf{L}_{\sf cc}(\widehat{\theta}_{K}^{\sf MLccE}) \leq -{\sf log}\, \mathsf{L}_{\sf cc}(\theta_{K}^{0}) + o_{\mathbb{P}}(1).$$

Then

$$d(\widehat{\theta}_K^{\mathsf{MLccE}}, \Theta_K^0) \xrightarrow[n \to \infty]{\mathbb{P}} 0.$$

With 
$$d(\theta, \widetilde{\Theta}) = \inf_{\widetilde{\theta} \in \widetilde{\Theta}} \|\theta - \widetilde{\theta}\|_{\infty}$$
.

J.-P. Baudry

# Computing MLccE: Lcc-EM

The  $L_{cc}$ -EM algorithm for MLccE:

$$\widehat{\theta}_{K}^{\text{MLccE}} = \underset{\theta \in \Theta_{K}}{\operatorname{argmax}} \Big\{ \sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_{k} \phi(X_{i}; \omega_{k}) - \mathsf{ENT}(\theta) \Big\}.$$

Initialization: Random, Small\_L<sub>cc</sub>\_EM, CEM, Km1...

Iteration  $\theta^j \to \theta^{j+1}$ :

E Step Compute  $Q(\theta, \theta^j) = \mathbb{E}_{\theta^j} [\log \mathsf{L_c}(\theta; \underline{X}, \underline{Z}) | \underline{X} = \underline{x}].$ This amounts to computing  $\tau_k(x_i; \theta^j).$ 

M Step Maximization of  $Q(\theta, \theta^j) - \mathsf{ENT}(\theta)$  with respect to  $\theta \in \Theta_K$ :

$$\theta^{j+1} \in \operatorname*{argmax}_{\theta \in \Theta_K} \bigg\{ \underbrace{\mathbb{E}_{\theta^j} \big[ \log \mathsf{L_c}(\theta; \underline{X}, \underline{Z}) | \underline{X} = \underline{x} \big] - \mathsf{ENT}(\theta)}_{\log \mathsf{L}(\theta) + \sum_{i=1}^n \sum_{k=1}^K (\tau_k(x_i; \theta^j) + \tau_k(x_i; \theta)) \log \tau_k(x_i; \theta)} \bigg\}$$

J.-P. Baudry December 3, 2009 12 / 21

# Computing MLccE: L<sub>cc</sub>-EM

The  $L_{cc}$ -EM algorithm for MLccE:

$$\widehat{\theta}_{K}^{\text{MLccE}} = \underset{\theta \in \Theta_K}{\operatorname{argmax}} \Big\{ \sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_k \phi(X_i; \omega_k) - \mathsf{ENT}(\theta) \Big\}.$$

Initialization: Random, Small\_L<sub>cc</sub>\_EM, CEM, Km1...



December 3, 2009 12 / 21

#### Consistent Model Selection

Identification point of view:

$$K_0 = \min_{1 \le K \le K_M} \operatorname{argmin} \mathbb{E}_{f^{\wp}} \left[ -\log \mathsf{L}_{\mathsf{cc}}(\Theta_K^0) \right].$$

Procedures are considered such that

$$\widehat{K} = \underset{1 \leq K \leq K_M}{\operatorname{argmin}} \Big\{ - \log \mathsf{L}_{\mathsf{cc}} \big( \widehat{\theta}_K^{\mathsf{MLccE}} \big) + \mathsf{pen}(K) \Big\}.$$

December 3, 2009 13 / 21

#### Consistent Model Selection

#### Theorem

Let us consider the model family  $(\mathcal{M}_K)_{K \in \{1,...,K_M\}}$ . Let us assume:

- $\forall K$ ,  $\Theta_K$  is compact and convex.
- $\bullet \ \, \forall K, \forall \theta \in \Theta_K, \forall \theta^0_{K_0} \in \Theta^0_{K_0} \text{,}$

$$\mathbb{E}_{f^\wp} \left[ - \mathsf{log} \, \mathsf{L}_\mathsf{cc}(\theta) \right] = \mathbb{E}_{f^\wp} \left[ - \mathsf{log} \, \mathsf{L}_\mathsf{cc}(\theta^0_{K_0}) \right] \Longleftrightarrow - \mathsf{log} \, \mathsf{L}_\mathsf{cc}(\theta; x) = - \mathsf{log} \, \mathsf{L}_\mathsf{cc}(\theta^0_{K_0}; x) \text{ a.s.}$$

- $\bullet \ \, \forall K, H_K(x) = \sup_{\theta \in \Theta_K} \, \left| \log \mathsf{L}_{\mathsf{cc}}(\theta; x) \right| < \infty \, \, \mathsf{a.s.} \, \, \mathsf{and} \, \, \|H_K\|_\infty < \infty.$
- $\forall K, H'_K(x) = \sup_{\theta \in \Theta_K} \left\| \left( \frac{\partial \log L_{cc}}{\partial \theta} \right)_{(\theta; x)} \right\|_{\infty} < \infty \text{ a.s. and } \|H'_K\|_2 < \infty.$
- $\bullet \ \, \forall K, \forall \theta_K^0 \in \Theta_K^0, \frac{\partial^2}{\partial \theta^2} \Big( \mathbb{E}_{f^\wp} \left[ -log \, \mathsf{L}_{\mathsf{cc}}(\theta) \right] \Big)_{|\theta_c^0} \text{ is nonsingular}.$

Let 
$$\operatorname{pen}: \{1, \dots, K_M\} \to \mathbb{R}^+$$
 such that  $\left\{ egin{aligned} \operatorname{pen}(K) = o_{\mathbb{P}}(n) \text{ as } n o \infty \\ \left(\operatorname{pen}(K) - \operatorname{pen}(K')\right) & \xrightarrow{\mathbb{P}} \infty \end{aligned} \right.$  if  $K' < K$ .

Then

$$\mathbb{P}\big[\widehat{K}\neq K_0\big]\xrightarrow[n\to\infty]{}0.$$

## A New Light on ICL

- Analogy with model selection criteria in the usual observed likelihood framework.
- A good identification criterion, by analogy with BIC:

$$\widehat{K}^{\mathsf{L}_{\mathsf{cc}^{\mathsf{-}\mathsf{ICL}}}} = \underset{K \in \{1, \dots, K_M\}}{\mathsf{argmin}} \Big\{ -\mathsf{log}\,\mathsf{L}_{\mathsf{cc}}(\widehat{\theta}_K^{\mathsf{MLccE}}) + \frac{D_K}{2}\,\mathsf{log}\,n \Big\}.$$

• ICL is an approximation of L<sub>cc</sub>-ICL.

J.-P. Baudry December 3, 2009 15 / 21

# A New Light on ICL

- Analogy with model selection criteria in the usual observed likelihood framework.
- A good identification criterion, by analogy with BIC:

$$\widehat{K}^{\mathsf{L}_{\mathsf{cc}^{\mathsf{-}\mathsf{ICL}}}} = \underset{K \in \{1, \dots, K_M\}}{\mathsf{argmin}} \Big\{ -\mathsf{log}\, \mathsf{L}_{\mathsf{cc}} (\widehat{\boldsymbol{\theta}}_{K}^{\mathsf{MLccE}}) + \frac{D_K}{2}\, \mathsf{log}\, n \Big\}.$$

ICL is an approximation of L<sub>cc</sub>-ICL :

$$\widehat{K}^{\mathsf{ICL}} = \underset{K \in \{1, \dots, K_M\}}{\mathsf{argmin}} \Big\{ - \mathsf{log} \, \mathsf{L}_{\mathsf{cc}} \big( \widehat{\boldsymbol{\theta}}_{\mathsf{K}}^{\mathsf{MLE}} \big) + \frac{D_{\mathsf{K}}}{2} \, \mathsf{log} \, n \Big\}.$$

J.-P. Baudry December 3, 2009 15 / 21

# Slope Heuristics

(Birgé and Massart, 2006)

"Data-driven Slope Estimation" Assume an "optimal" penalty is known up to a constant  $\kappa_{\rm opt}$ :

$$pen(K) = \kappa_{opt} D_K$$
.



16 / 21

$$\widehat{K}^{\mathsf{SHLcc}} = \underset{K \in \{1, \dots, K_M\}}{\mathsf{argmin}} \left\{ -\log \mathsf{L}_{\mathsf{cc}}(\widehat{\theta}_K^{\mathsf{MLccE}}) + 2\widehat{\kappa} D_K \right\}$$

This data-driven procedure may be applied:

- to the usual observed likelihood contrast;
- to the conditional classification likelihood contrast.

J.-P. Baudry December 3, 2009

#### "Cross" Dataset



- Simulated data in  $\mathbb{R}^2$ .
- Sample size: 200.
- Number of components: 4.
- Diagonal mixture models fitted:  $f^{\wp} \in \mathcal{M}_4$ .

17 / 21

J.-P. Baudry December 3, 2009

## "Cross" Dataset: Results

| Selected number of components | 2 | 3  | 4  | 5  | 6 | 7 | 8 | 9 | 10–20 |
|-------------------------------|---|----|----|----|---|---|---|---|-------|
| AIC                           | 0 | 0  | 1  | 1  | 2 | 2 | 3 | 3 | 88    |
| BIC                           | 0 | 4  | 91 | 5  | 0 | 0 | 0 | 0 | 0     |
| SHL                           | 0 | 2  | 84 | 10 | 3 | 0 | 0 | 0 | 1     |
| ICL                           | 0 | 96 | 3  | 1  | 0 | 0 | 0 | 0 | 0     |
| L <sub>cc</sub> -ICL          | 0 | 99 | 1  | 0  | 0 | 0 | 0 |   |       |
| SHL <sub>cc</sub>             | 2 | 79 | 8  | 8  | 3 | 0 | 0 |   |       |

Results for 100 experiments

| L      | Risk ×10 <sup>3</sup> | Risk<br>Oracle Risk |
|--------|-----------------------|---------------------|
| Oracle | 59                    | 1                   |
| AIC    | 506                   | 8.03                |
| BIC    | 65                    | 1.10                |
| (ICL)  | 156                   | 2.62                |
| SHL    | 69                    | 1.17                |

<sup>&</sup>quot;Oracle" number of components: 4

| L <sub>cc</sub>      | "Risk" $\times 10^3$ |  |  |  |
|----------------------|----------------------|--|--|--|
| Oracle               | 3618                 |  |  |  |
| ICL                  | 3622                 |  |  |  |
| L <sub>cc</sub> -ICL | 3623                 |  |  |  |
| SHL <sub>cc</sub>    | 3632                 |  |  |  |

"Oracle" number of components : 3

## Mixtures of Mixtures





-P. Baudry December 3, 2009 19 / 21

### Mixtures of Mixtures



19 / 21

#### Mixtures of Mixtures

- Hierarchical classes combining:
  - From the BIC solution with  $\hat{K}^{BIC}$  classes;
  - By minimizing the entropy of the combined solution at each step;
  - ▶ Until there is only one class left.
- Choosing the number of classes:
  - May be based on substantive ground;
  - ▶ The whole hierarchy may be of interest to the user;
  - ► The plot of the entropy against the number of classes may be helpful for the analysis;
  - ▶ Link with the works about penalized criteria?





December 3, 2009

# Conclusions and Perspectives

- The theoretical study of ICL led to the definition of a contrast adapted to the clustering objective, and thus to the corresponding estimator and model selection procedures.
- Solutions are proposed to put these into practice. They may also be applied with benefit when computing the usual MLE through the usual EM algorithm.
- A new light is thrown on ICL, viewed as an approximation of L<sub>cc</sub>-ICL.
   This is a contribution to the study of the "class" notion in model-based clustering.
- This "class" notion may be further studied.
- The MLE and MLccE estimators on the one hand; the ICL and L<sub>cc</sub>-ICL model selection criteria on the other hand, may be further compared, notably from a practical point of view.
- The slope heuristics, in this mixture models framework, may be further studied.

J.-P. Baudry December 3, 2009 21 / 21