Dominique FLEURY mercredi 2 Décembre 2009

CONTRIBUTION À L'ÉTUDE EXPÉRIMENTALE DU TRANSPORT DANS LES TRANSISTORS DE DIMENSION DÉCA-NANOMÉTRIQUE DES TECHNOLOGIES CMOS SUB-45NM

Thèse préparée à l'école doctorale EEATS de l'INP Grenoble Directeur de thèse: G. GHIBAUDO (IMEP-LAHC) Encadrants: A. CROS (STMicroelectronics) et K. ROMANJEK (ex NXP)

Les sujets abordés dans le manuscrit:

- Fonctionnement du transistor MOS
- Etude théorique du transport dans le canal
- Les méthodologies d'extraction de paramètres électriques sur les transistors MOS
- La modélisation et la caractérisation de la capacité MOS
- Etude expérimentale du transport dans le MOSFET

sujets traités dans cette présentation

INTRODUCTION AU TRANSISTOR MOS

Introduction: context

Du produit au dispositif élémentaire:

Introduction: principe de fonctionnement

- Principe de fonctionnement du transistor MOS
 - La tension de grille (V_{qs}) contrôle la charge dans le canal
 - − La tension source-drain (V_{ds}) permet la circulation de ces charges → courant de drain I_d .

Introduction: principe de fonctionnement

• La caractéristique courant-tension du transistor MOS

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

Introduction: la problématique du scaling

- La réduction d'échelle: « loi » de Moore
 - La densité d'intégration double tous les 2 ans !

Introduction: la problématique du scaling

- La réduction d'échelle: « loi » de Moore
 - La densité d'intégration double tous les 2 ans !
- MAIS: la miniaturisation des transistors entraîne aussi des problèmes:
 - Apparition des effets de canaux courts (perte du contrôle électrostatique de la grille)
 - Les capacités parasites deviennent prédominantes
 - Le transport (la mobilité) est dégradé

Les performances sont en deçà des prévisions !

AMÉLIORATIONS APPORTÉES À LA MESURE DE LA LONGUEUR EFFECTIVE

Longueur effective: à ne pas confondre !

11

• Les différentes longueurs dans le transistor MOS

La longueur effective de canal (L_{eff}) est <u>CELLE</u> qui gouverne les CRITÈRES DE PERFORMANCE:

- le courant de drain Id (transport, champ électrique)
- les effets de canaux courts (DIBL, CSE)
- la durée de vie du dispositif (fiabilité HCI)

L_{eff} doit être mesurée précisément !

La longueur effective n'est pas mesurable directement (microscopie, AFM)

La caractérisation électrique est indispensable !

L'état de l'art des méthodes d'extraction de L_{eff}:

- basées sur les mesures de courant ex: R_{tot}(L)
 - Ne prennent pas en compte la dégradation de mobilité qui apparait sur les transistors courts
- basées sur les mesures capacitives (C_{gc}, C_{gb}):
 - Ne prennent pas en compte les capacités parasites

Une méthodologie ADAPTEE AUX TRANSISTORS COURTS EST NECESSAIRE !

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

Longueur effective: problématique de la mesure MEP-LAHC

IMEP-LAHC

Longueur effective: capacités parasites

• Les capacités parasites propres au transistor MOS

• La réponse capacitive grille-canal (C_{gc})

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2008 2009

IMEP-LAHC

 Mieux comprendre la capacité de bord interne en utilisant des structures sans recouvrement (C_{ov}=0)

IMEP-LAHC

Comment modéliser la capacité de bord interne ?

Dominique FLEURY – Soutenance de Thèse, mercre

- Modélisation du phénomène d'écrantage dans C_{gb}(V_{gs})
 - Définition d'une fonction d'écrantrage F_{shield} (nouveau)

- Modélisation du phénomène d'écrantage dans C_{gb}(V_{gs})
 Définition d'une fonction d'écrantrage F_{shield} (nouveau)

Modélisation de la capacité de bord interne: C_{if}(V_{gs})

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

Modélisation de la capacité de bord interne: C_{if}(V_{gs})

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

Longueur effective: méthodologie d'extraction (MEP-LAHC

 Le travail effectué sur les capacités parasites nous permet de comprendre l'allure d'une mesure C_{gc}(V_{gs})

Longueur effective: nouvelle métodologie

• Implémentation sous forme de test automatique:

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

Longueur effective: résultats (1/2)

- Mesures précises de L_{eff}:
 - Précision de l'ordre de \pm 1nm sur des transistors L_{eff} < 100nm
 - Corrélation avec les études en fiabilité (durée de vie HCI)

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

Longueur effective: résultats (2/2)

- Exemple: mise en évidence de la diffusion des extensions S/D:

Les conclusions de cette partie:

- Une meilleure compréhension des capacités parasites a permis de concevoir une méthodologie de mesure de L_{eff} plus robuste (résultats précis et fiables sur transistors courts).
- L'automatisation de la mesure devient possible (transfert sous forme de test en ligne) pour permettre un suivi de L_{eff} au cours du développement de la technologie.

Ouvre de nouvelle perspectives dans l'étude des propriétés de transport sur des transistors courts : mobilité, balisticité...

CONTRIBUTION À L'ÉTUDE EXPÉRIMENTALE DU TRANSPOR

Le transport: de la diffusion à balistique...

• Le libre parcours moyen: un point de départ à l'unification des différentes théories de transport:

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

57

« En physique, la mobilité d'un électron relie sa vitesse au champ électrique, dans un solide ou dans un gaz »

source: Wikipédia

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

« En physique, la mobilité d'un électron relie sa vitesse au champ électrique, dans un solide ou dans un gaz »

Le transport: les mécanismes de collision

- Les centres de diffusion quasi-élastiques:
 - Les phonons acoustiques: μ_{ph}
 - Les centres chargés (interaction de Coulomb): μ_{cb}
 - La rugosité de surface: μ_{SR}
 - Les centres non chargés (dislocation, interstitiels): μ_N
- Les centres de diffusion inélastiques
 - Les phonons optiques (v_{sat})
 - Provoquent UNE DEVIATION A LA LOI D'OHM
- La mobilité effective du canal:

IMEP-LAHC

Relation de

Matthiessen

Le transport: les mécanismes de collision

• Les signatures en champ et en température...

Type d'intéraction	dépendance champ/dopage	dépendance ${\cal T}$
Coulomb (μ_{cb}) [Jeon89, Sze81]	$1/N_I$	$T^{1-1.5}$
Rugosité de surface (μ_{sr})	\mathcal{E}_{eff}^{-1} (e) \mathcal{E}_{eff}^{-2} (h)	$T^{0.5}$
Phonons acoustiques (μ_{ph})	$\mathcal{E}_{eff}^{-1/3}$	$T^{-3/2}$
Phonons optiques (μ_{opt})	$\mathcal{E}_{eff}^{-1/b}, 3 \le b \le 6$	$T^{-a}, 1 \leq a \leq 3/2$
Défauts neutres (μ_N) [Kiréev75, Sclar56]	$1/N_N$	T^{0}
Possibilité d'identifier les mécanismes par leur sig- nature en température ou en champ !	Mobilité effective Lefte (cm ² /s) 10 10 10 ² Champ effective	10 ⁶ f E _{EFF} (MV/cm)

Le transport: les mécanismes de collision

- Le concept de vitesse de saturation (v_{sat})
 - − Collisions inélastiques → déviation de la loi d'Ohm
 - La vitesse sature à fort champ

Le transport: problématique

transposables au régime de saturation ?

- vitesse de saturation ?

Le transport: le régime linéaire

• Une chute de mobilité prononcée sur les canaux courts

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

Le transport: le régime linéaire

• La valeur du libre parcours moyen est contradictoire avec l'hypothèse de la quasi-balisticité !

Le transport: le régime de saturation

IMEP-LAHC

Mise en évidence d'une saturation de vitesse

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

Le transport: méthode d'extraction (1/2)

Construction d'une nouvelle méthode d'extraction

Le transport: méthode extraction (2/2)

• Un protocole d'extraction « simple »:

Le transport: analyse de v_{lim}

• Extraction de v_{lim} en fonction de L_{eff}

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

Le transport: analyse de v_{lim}

 Identification du mécanisme de transport grâce à la signature en température:

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

Le transport: hypothèse de la survitesse (1/2) (MEP-LAHC

• Explication des résultats par la théorie de la survitesse

Le transport: hypothèse de la survitesse (2/2) (MEP-LAHC

 La théorie de la survitesse permet d'expliquer le comportement de v_{lim} en température et en L_{eff}.

Dominique FLEURY – Soutenance de Thèse, mercredi 2 Décembre 2009

Le transport: conclusion (1/2)

- Les nouveautés de la méthode
 - Utilisation du concept de mobilité apparente
 - Utilisation des régimes linéaires et de saturation simultanément
 - Concept de vitesse limite v_{lim}
- Les avantages de la nouvelle extraction
 - La nature de v_{lim} n'est pas présupposée
 - La mesure de μ_{dd}/L_{eff} n'est pas nécessaire
 - Mesures rapides (courants) permettant une bonne statistique

Le transport: conclusion (2/2)

• Conclusion concernant le transport ...

la limitation de vitesse semble résulter d'un phénomène qui s'apparente à la vitesse de saturation <u>couplé avec un</u> <u>phénomène de survitesse prononcé sur les</u> <u>canaux courts</u>

CONCLUSION &

PERSPECTIVES

Conclusion & Perspectives

• Conception de nouvelles méthodologies d'extraction

- Amélioration de l'extraction de la longueur effective de canal grâce à une meilleure compréhension des capacités parasites
- Extraction des paramètres du courant (fonction ξ , extraction sous le seuil)
- Extraction des résistances séries: méthode $R_{tot}(1/\beta)$
- Mise en évidence expérimentale du rôle des mécanismes de collision dans les canaux courts
- Perspectives:
 - Application de l'extraction v_{lim} sur d'autres technologies
 - Extraction de la résistance série sur une seule longueur
 - Trouver les leviers qui permettent une balisticité effective ?

MERCI POUR VOTRE ATTENTION !

Le pot de thèse !

