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Abstract :
In this work we have investigated the electronic properties of several types of molecular systems involv-

ing a metallic element. Our motivation for such applications on metallic compounds was to obtain an

accurate description of close lying electronic states, in which the relativistic effects of heavy atoms are

known to be important. Thus various approaches and methods have been employed to treat these effects,

including the multi-configurational method, with atomic pseudopotentials and large basis sets. In the first

study, we have determined the properties of the low lying electronic states of the diatomic compounds

MX, whose combinations in the solid phase produce ionic semi-conductor materials with piezoelectric

properties. Based on highly correlated ab initio calculations, we have elucidated the common properties

of the low lying electronic states of these diatomic compounds with eight valence electrons, which can be

considered as precursors for piezoelectric effects in their solid phase. Based on our electronic structure

calculations, we could identify among these diatomic compounds those who could lead to good candidates

for piezoelectric effects. As the second application, we have determined the electronic structure and the

spectroscopic constants for the ground state of the HZnF molecule and for the low lying electronic states

of its diatomic fragments. This application was initiated and motivated by interesting and puzzling re-

sults on the close system HZnCl. Comforted by our experience with the previous studies, we used the

pseudopotentials approach to obtain an accurate description of the low lying states of ZnH which could

be satisfactorily compared with existing data. Next, the ZnF and ZnCl diatomic molecules have been

studied with the same ansatz to reveal the properties of so far unknown electronic states. Finally, the

potential energy surface of the ground state of HZnF has been determined, and several spectroscopic

properties have been deduced.

Résumé :
Dans cette étude, nous avons déterminé les propriétés électroniques de plusieurs types de composés

moléculaires possédant un élément métallique. Notre motivation pour l’étude de tels systèmes était

de montrer qu’il était possible d’obtenir une description précise d’états électroniques très proches en

énergie, pour lesquels il est connu que les effets relativistes jouent un rôle important. Pour traiter ces

effets nous avons mis en œuvre différentes approches et méthodes, en particulier des méthodes multi-

configurationnelles, des pseudopotentiels atomiques et de grandes bases de fonctions. Dans une première

étude nous avons déterminé les propriétés des états électroniques de plus basse énergie de composés di-

atomiques MX dont l’association en phase solide conduit à des composés semi-conducteurs présentant

des propriétés piézoélectrique importantes. A l’aide de calculs électroniques incluant une large part de la

corrélation électronique nous avons mis en évidence les propriétés communes à une famille de composés

diatomiques possédant huit électrons de valence et qui peuvent être considérés comme précurseurs des

solides piézoélectriques. Il a ainsi été possible d’identifier les couples diatomiques qui constituaient les

meilleurs candidats pour une production d’effet piézoélectrique en phase solide. Dans la deuxième applica-

tion, nous avons calculé la structure électronique et les constantes spectroscopiques de l’état fondamental

de la molécule HZnF ainsi que les états de plus basse énergie des fragments diatomiques associés. Cette

étude était motivée par une analogie avec un système voisin HZnCl dont les premiers états électroniques

présentent des caractéristiques non complètement résolues. Après avoir validé notre approche sur l’étude

de ZnH et comparé nos résultats à ceux d’études antérieures, nous avons entrepris la détermination de

la structure électronique des molécules ZnF et ZnCl pour lesquelles nous avons pu identifier des états

électroniques encore mal connus. Utilisant les résultats obtenus sur ZnH et ZnF, nous avons déterminé la

surface d’énergie potentielle de l’état fondamental de HZnF et nous en avons déduit plusieurs grandeurs

spectroscopiques caractérisant cet état.
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Introduction

This study focuses on the determination of the electronic structure and spectroscopy of diatomic

and triatomic molecules containing metallic atoms. Even nowadays with efficient methods and

powerful computers it remains challenging to achieve an accurate description of the close lying

electronic states of such compounds, because of the complex interactions between them. Our in-

terest in this study is to take into account the relativistic effects of heavy atoms, which are known

to play an important role and to get a satisfactory description of the polarity of the metallic

atoms in the different electronic states. For this purpose, multi-configurational approaches are

required and atomic pseudopotentials are generally used to treat the relativistic effects without

an explicit treatment of the core electrons.

We report in this study the electronic properties and the spectroscopy of the low lying elec-

tronic states of several families of diatomic compounds, MX, whose pairs [M,X] form ionic solids

presenting piezoelectric effects. The second application concerns the description of the ground

state of the zinc hydrofluoride HZnF with its related diatomic fragments.

The first part of this manuscript presents the theoretical methods employed for the electronic

structure calculations and descriptions of the nuclear motions. Starting with the Schrödinger

equation of the molecular system, we apply the Born-Oppenheimer approximation to treat

separately the electronic and nuclear descriptions. For the electronic calculations, the Self-

Consistent-Field Hartree-Fock method is the initial step for all the study and it is presented

here briefly, then we mention several post Hartree-Fock methods accounting for the electronic

correlation energies. Next is described the formalism of the atomic pseudopotentials used to

include the relativistic effects and also to reduce the size of the computations. The basis set

functions, whose linear combinations define the molecular orbitals in the electronic wavefunction

are presented. Because the basis sets are always finite, which is a limitation in the accessible

accuracy of the theoretical treatments, we present here an empirical extrapolation to the basis

set limit. Following the methods for the electronic calculations, the methods used to describe

the nuclear motions in the diatomic and triatomic molecules are explained. Numerical reso-

lutions of the nuclear Hamiltonian allow accessing the spectroscopic constants, the rotational

and vibrational energy levels, and various quantities characterizing the properties of molecular

states, such approach is chosen for the diatomic molecules. For triatomic systems a variational

method using a basis set representation is employed.

In the second part, we report the results of the calculations of the properties of the low lying

electronic states of molecules containing metallic atoms. The first application is intended to

characterize the electronic structure of the low lying electronic states of diatomic compounds

related to piezoelectric effects in the solid phase. The piezoelectric effects were found at the end

of the 19th century and are now extensively applied to technology, which explains the interest

for such systems. The ionic semiconductors presenting the piezoelectric effect are formed of

pairs of atoms [M,X] having already at the diatomic level a set of common properties: they have

close lying lowest electronic states with different by close geometry and the charge distribution

in these electronic states is significantly different. In this study, based on highly correlated
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electronic calculations of the low lying electronic states of the diatomic compounds (including a

metal of Group IIa, IIb, or III and a non-metal of Group V, or VI), we show that strong corre-

lations can be established between the properties of the solids and those of the parent molecules.

The second application is the theoretical investigation on the zinc hydrofluoride HZnF

molecule with its associated diatomic fragments ZnH and ZnF. The zinc atom is an impor-

tant metal in biology and its abundant natural isotopes make a specific and interesting signa-

ture in the vibrational spectra of its compounds. Our interest for this system started with the

experimental results on the parent HZnCl molecule by P. Bernarth, exhibiting a complicated

spectrum difficult to assign. Recent calculations on the HZnCl system confirm our exploratory

study that it is very difficult to get a proper description of the electronic ground state. We have

thus decided to investigate the low lying states of the HZnF and the concerned diatomic com-

pounds at the Multi-Reference Configuration Interaction (MRCI) level including the Davidson

correction, using the pseudopotentials to take relativistic effects into account. The calculated

spectroscopic data of the low lying states of ZnH will be compared with the existing data to

validate the method and the ZnH+ cation will be treated using the same ansatz. Turning to

the ZnF diatomic molecule, it is somehow surprising that there is no reliable information on

the low lying states except for on its ground state. Thus we will perform the calculations to

have an accurate description of the properties of the low lying states of ZnF. Additionally, the

low lying electronic states of ZnCl will be also studied to discuss similarity to these of ZnF

and to complete the subsequent comparison between the HZnF and HZnCl molecules. Using

our results on the associated diatomic molecular fragments, the theoretical investigation on the

HZnF molecule, focusing on its ground state will be reported. From the calculated potential

energy surface, we will determine the equilibrium geometry and the harmonic wavenumbers

of this system. The effects of substitutions of the isotopes of Zn will be compared with simi-

lar study for HZnCl. Finally the rovibrational energy levels of the ground state will be simulated.
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1 Born-Oppenheimer approximation

1.1 Schrödinger equation

For a molecular system involving n electrons and N nuclei, the Schrödinger equation [1] is written

as follows for stationary states situation where the Hamiltonian operator Ĥ is time-independent;

ĤΨα(R; r) = EαΨα(R; r) (1.1)

where R and r represent respectively the coordinates of the nuclei and of the electrons and

α labels the eigenstate. Eα is the eigenenergy of the α eigenstate under the non-relativistic

Hamiltonian Ĥ:

Ĥ = T̂e + T̂N + V̂ee + V̂eN + V̂NN (1.2)

with the following terms:

T̂e = − 1

2me

n∑

i=1

∆i (1.3)

T̂N = −
N∑

a=1

∆a

2Ma
(1.4)

V̂ee =
1

2

n∑

i,j=1

e2

|ri − rj|
(1.5)

V̂eN = −
n,N∑

i,a=1

Zae
2

|Ra − ri|
(1.6)

V̂NN =
1

2

N∑

a,b=1

ZaZbe
2

|Ra −Rb|
(1.7)

where T̂ e and T̂N are the kinetic energy operators of electrons and nuclei respectively. The

electronic Coulomb repulsive potentials are expressed in the term V̂ee, as well as in the term

V̂NN for nuclear ones. V̂eN represents the Coulomb attractive potential between an electron and

a nucleus. Except for a few simple systems, it becomes difficult to obtain the exact solution of

the Schrödinger equation (1.1). The following approximation developed by Born and Oppen-

heimer [2] will be applied.

1.2 Born-Oppenheimer approximation

The Born-Oppenheimer approximation [2] is a separation between the electronic motion and the

nuclear one, based on the fact that the electrons move much more rapidly than the nuclei due

to the huge difference between their masses. We can imagine a picture such that electrons move

12



around nuclei fixed at a given structure.

For the fixed nuclear coordinates R, the electronic wavefunction ψ(R; r) holds the following

Schödinger equation with a parameter R:

[
T̂e + V̂ (R; r)

]
ψn(R; r) = En(R)ψn(R; r) (1.8)

where the potential is written as V̂ = V̂ee + V̂eN + V̂NN . n labels the electronic state and En(R)

depends on the parameterized R. The total wavefunction involving the nuclear part is expressed

by superposition of the electronic states with coefficients χn(R):

Ψ(r;R) =
∑

k

ψk(R; r)χk(R) (1.9)

which should satisfy the equation (1.1). Thus we obtain the equation (1.10).

[
− 1

2me

n∑

i=1

∆i −
N∑

a=1

∆a

2Ma
+ V̂

]∑

k

ψk(R; r)χk(R) = E
∑

k

ψk(R; r)χk(R) (1.10)

Manipulating the equation (1.10) with the help of the equation (1.8), we obtain the following

expression (1.11):

∑

k

χk(R)

[
− 1

2me

n∑

i=1

∆i + V̂

]
ψk(r;R)

−
∑

k

∑

a

1

2Ma
[∆aψk(r;R)χk(R) + 2∇aψk(r;R) · ∇aχk(R) + ψk(r;R)∆aχk(R)]

= E
∑

k

ψk(R; r)χk(R) (1.11)

Operating ψ∗
m(r; R) from the left on the equation (1.11) and integrating over r, we obtain:

[
−
∑

a

∆a

2Ma
+Em(R)−E

]
χm(R)

=
∑

k

∑

a

1

2Ma
[〈ψm |∆a|ψk〉χk(R) + 2 〈ψm |∇a|ψk〉 · ∇aχk(R)] (1.12)

where the orthonormality 〈ψi|ψj〉 = δij is used.

In the condition where the separation between electrons and nuclei holds, the right hand side

of the equation (1.12) can be considered to be zero. Thus χm(R) will appear as the solution of

the Schrödinger equation (1.13):

[
−
∑

a

∆a

2Ma
+Em(R)

]
χm(R) = Eχm(R) (1.13)
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The equation (1.13) can be considered as the Schrödinger equation of the nuclear motion under

the potential Em(R). The total wavefunction can be expressed as Ψ(r;R) = ψm(r;R)χm(R)

in the adiabatic approximation. Thus we can interpret the χm(R) as the nuclear wavefunction

belonging to the electronic state described by ψm(r;R). The Em(R) is called the adiabatic

potential of the mth electronic state and we will discuss in the next chapter the resolution of the

electronic Schrödinger equation (1.8).
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2 Calculations of the electronic structure

The equation (1.8), obtained in the last section, is the multi-electrons equation which determines

the electronic state. First, we will describe the stream to the Hartree-Fock approximation and

second various post Hartree-Fock methods.

2.1 Variation principle and Lagrange’s method of undetermined multipliers

2.1.1 Variation principle

Supposing that E0 and φ0 are the eigenenergy and the eigenfunction of the Hamiltonian Ĥ, the

following relation holds for any arbitrary wavefunction φ;

E [φ] =
< φ|Ĥ |φ >
< φ|φ > ≥ E0 (2.1)

This inequality is called the Variation principle. The minimum of the functional E[φ] gives the

closest value to E0. In the variation method, we can obtain an approximated energy, determin-

ing the parameters in the trial function which correspond to the stationary point of E[φ]. The

quality of this approximation depends essentially on the choice of the trial functions.

2.1.2 Lagrange’s method of undetermined multipliers

Based on the variation principle, we will seek the stationary points of E[φ] under the restric-

tions imposed on φ, using the Lagrange’s method of undetermined multipliers. Introducing the

undetermined multipliers λj, the new functional F[φ;λ] can be expressed as follows:

F [φ;λ] = E[φ] +
∑

j

λjGj [φ], Gj [φ] = 0 (2.2)

where Gj [φ] = 0 represents the restrictions imposed on φ. Then, the stationary point of E[φ] is

given by the set of the trial functions [φ1, ..., φn] satisfying the following relations:

∂F [φ;λ]

∂φi
= 0 and

∂F [φ;λ]

∂λj
= 0 (2.3)

2.2 Slater determinant

The multi-electrons equation (1.8) can no longer be resolved exactly except for a few simple

cases. The variational resolution of the equation (1.8) requires the initial wavefunction, written

as Ψ(ξ1, ξ2, ...., ξn) for the system including n electrons, where ξi = (ri, σi) and ri and σi are

respectively the space and spin coordinates of the ith electron. According to the Pauli principle

that the wavefunction should be anti-symmetric for exchanges of two electrons, the following

condition is imposed on the wavefunction:

Ψ(ξ1, ..., ξi, ..., ξj , ..., ξn) = −Ψ(ξ1, ..., ξj , ..., ξi, ..., ξn) (i 6= j) (2.4)
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We can describe the wavefunction of n electrons system by the Slater determinant which is

automatically anti-symmetric under the exchanges of two electrons. Using the spin-orbital ψk(ξi)

defined as follows:

ψk(ξi) = φS
k (ri)S(σi) (2.5)

where φk is the kth molecular orbital and S is the spin-function. The Slater determinant can be

given as below for the configuration in which each of the n electrons fills one different spin-orbital.

Ψ(ξ1, ξ2, ...., ξn) = ||ψm1 , ψm2 , ..., ψmn ||

= (n!)−1/2

∣∣∣∣∣∣∣∣

ψm1(ξ1) ψm1(ξ2) .... ψm1(ξn)
ψm2(ξ1) ψm2(ξ2) .... ψm2(ξn)
.... .... .... ....

ψmn(ξ1) ψmn(ξ2) .... ψmn(ξn)

∣∣∣∣∣∣∣∣
(2.6)

The Slater determinant is mono-configurational, thus the total wavefunction of n electrons with

m spin-orbitals can be expressed by superposition of these determinants for specified configura-

tions:

Ψel(ξ1, ξ2, ...., ξn)

=
∑

1≤m1<m2<...<mn≤m

C(m1,m2, ....,mn)||ψm1 , ψm2 , ..., ψmn || (2.7)

2.3 Hartree-Fock equation

For the wavefunction of n electrons expressed by the Slater determinant Ψ(ξ1, ξ2, ...., ξn), Hartree-

Fock approximaton [3–5] gives a set of spin-orbitals (ψ1, ψ2, ..., ψn) corresponding to the min-

imum of the expectation value <Ψ|Ĥ|Ψ>, using a variation method. We first simplify the

Hamiltonian of n electrons, using atomic units (h̄ = me = e = 1):

Ĥ =

n∑

µ=1

ĥ(rµ) +
1

2

∑

µν

1

rµν
(2.8)

ĥ(rµ) = −1

2
∆µ + v(rµ) (2.9)

rµν = |rµ − rν | (2.10)

where v(rµ) represents a sum of the Coulomb potentials between the µth electron and all nuclei

in a molecule.

The first term of the equation (2.8) is a one-body operator and the second a two-body

operator. Supposing the orthonormality of spin-orbitals 〈ψi|ψj〉 = δij , we can reduce <Ψ|Ĥ|Ψ>
as follows:

< Ψ|Ĥ|Ψ >=
n∑

i=1

< ψi|ĥ|ψi > +
1

2

n∑

i=1

n∑

j=1

(〈
ψiψj

∣∣∣∣
1

r12

∣∣∣∣ψiψj

〉
−
〈
ψiψj

∣∣∣∣
1

r12

∣∣∣∣ψjψi

〉)
(2.11)
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〈
ψiψj

∣∣∣∣
1

r12

∣∣∣∣ψiψj

〉
=

∫
dξ1

∫
dξ2ψ

∗
i (ξ1)ψ

∗
j (ξ2)

1

|r1 − r2|
ψi(ξ1)ψj(ξ2) (2.12)

〈
ψiψj

∣∣∣∣
1

r12

∣∣∣∣ψjψi

〉
=

∫
dξ1

∫
dξ2ψ

∗
i (ξ1)ψ

∗
j (ξ2)

1

|r1 − r2|
ψj(ξ1)ψi(ξ2) (2.13)

we search for a set of the spin-orbitals (ψ1, ψ2, ..., ψn) corresponding to the minimum of

<Ψ|Ĥ|Ψ> under the restriction 〈ψi|ψj〉 = δij . Based on the Lagrange’s method of undetermined

multipliers εji, we seek the conditions to satisfy the following equation:

δ


< Ψ|Ĥ|Ψ > −

n∑

i=1

n∑

j=1

(εji 〈ψi|ψj〉 − δij)


 = 0 (2.14)

with respect to the variations δψi(ξ) and δψ∗
i (ξ). In consequence, the equations (2.15) and (2.16)

yield,


ĥ+

n∑

j=1

(
Ĵj − K̂j

)

ψi(ξ) =

n∑

j=1

ψj(ξ)εji (2.15)

ψ∗
i (ξ)


ĥ+

n∑

j=1

(
Ĵ∗

j − K̂∗
j

)

 =

n∑

j=1

ψ∗
j (ξ)εij (2.16)

where the operators Ĵj and K̂j are defined as follows:

Ĵjψi(ξ) =

∫
dξ2ψ

∗
j (ξ2)

1

|r1 − r2|
ψi(ξ1)ψj(ξ2) (2.17)

K̂jψi(ξ) =

∫
dξ2ψ

∗
j (ξ2)

1

|r1 − r2|
ψj(ξ1)ψi(ξ2) (2.18)

Comparing the complex conjugate of (2.16) with (2.15), an additional condition on εji is found:

ε∗ij = εji (2.19)

2.4 Canonical Hartree-Fock equation

Introducing the ikth element of an unitary matrix as uik, the set of unitary transformed spin-

orbitals ψ
′

i can be expressed:

ψ
′

i =

n∑

k=1

uikψk (i = 1, 2, ..., n) (2.20)

The set of transformed spin-orbitals (ψ
′

1, ψ
′

2, ..., ψ
′

n), can satisfy the Hartree-Fock equation (2.15).

This character arises from an unitary invariance of the Slater determinant. We can derive the fol-

lowing relation between two Slater determinants Ψ
′

= ||ψ′

1, ψ
′

2, ..., ψ
′

n|| and Ψ = ||ψ1, ψ2, ..., ψn||:
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Ψ
′

=

∣∣∣∣∣∣∣∣

u11 u12 ... u1n

u21 u22 ... u2n

... ... ... ...
un1 un2 ... unn

∣∣∣∣∣∣∣∣
Ψ = ±Ψ (2.21)

The relation (2.21) leads to an equality <Ψ
′ |Ĥ|Ψ′

> = <Ψ|Ĥ|Ψ>, which confirms that both the

initial and the unitary transformed set are solutions of the Hartree-Fock equation (2.15). As

shown in the relation (2.19), εij is an element of a Hermitian matrix. Thus the matrix defined

as (E)ij = εij can be diagonalized as εcij = εiδij , by an appropriate unitary matrix (U)ij = uc
ij.

Using the unitary matrix U which diagonalizes the matrix E, a set of the canonical orbitals

(ψc
1, ψ

c
2, ..., ψ

c
n) can be expressed as follows:

ψc
i =

n∑

k=1

uc
ikψk (i = 1, 2, ..., n) (2.22)

εcij =

n∑

l=1

n∑

m=1

uc
ilεlmu

c
mj = εiδij (2.23)

With the help of (2.22) and (2.23), the Hartree-Fock equation (2.15) is transformed for the

canonical orbital ψc
i and the diagonal energy εi.


ĥ+

n∑

i6=j

(
Ĵj − K̂j

)

ψc

i = εiψ
c
i (i = 1, 2, ..., n) (2.24)

The equation (2.24) is likely to take the same form as the Schrödinger equation for the

canonical orbital ψc
i , and εi (namely the orbital energy) seems to be the eigenenergy for ψc

i .

This picture gives the concept of the n independent electrons, however the interactions between

electrons are included in the operators Ĵj and K̂j . Indeed the total energy <Ψ|Ĥ|Ψ> is not

equal to a sum of the orbital energies
∑

i εi.

The term Ĵj is called the Coulomb operator and the term
∑

i6=j Ĵj in the equation (2.24) can

be interpreted as the sum of the electronic Coulomb potentials except for the ith electron. The

exchange operator K̂j arises from the Pauli principle. Because the term
∑

i 6=j(Ĵj − K̂j) has a

sense of the mean potential over all electrons without the ith one, the Hartree-Fock method is

considered as a mean field approximation. According to the equation (2.24), ψc
1 is determined

under the mean field over ψc
2, ..., ψc

n, in turn, ψc
i under that over ψc

1, ..., ψc
i−1, ψ

c
i+1, ..., ψc

n.

It is necessary to determine iterativelly the best set of (ψc
1, ψ

c, ..., ψc
n). Thus in this sense, the

Hartree-Fock method is self-consistent.

2.5 Unrestricted and Restricted Hartree-Fock methods

With respect to the orbital φk(r) in the spin orbital ψk(ξ), there are two approaches for the

Hartree-Fock method. In the first one, namely the Unrestricted Hartree-Fock (UHF) method,

we express ψk(ξ), fixing the spin-functions as α(σ) or β(σ).
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ψk(ξ) = φα
k (r)α(σ) or φβ

k (r)β(σ) (2.25)

In the other one, the Restricted Hartree-Fock (RHF) method, the spin orbital is constructed

using the same orbital φk(r) for the α(σ) and β(σ) spin functions.

ψk(ξ) = φk(r)α(σ) or φk(r)β(σ) (2.26)

In the RHF method, the orbital φk(r) is filled by one electron with the α(σ) spin function

and the other with the β(σ). According to the fact that the less restricted trial function gives

variationally in general the lower energy, the UHF method is better than the RHF for opti-

mization of energy. However, the wavefunction of a molecule for stationary states should be

the eigenfunction of the total electronic spin Ŝ2 and its projection Ŝz. This character holds

in the RHF method, but if the wavefunction determined by the UHF method can satisfy the

eigenfunction of Ŝz, it is not the case for Ŝ2. This point is an advantage of the RHF method,

which is performed in most cases.

2.6 Roothaan-Hall equation

The Hartree-Fock equation mentioned above is a differential equation. In practice, instead of

solving this HF equation, we expand the spin orbital using a basis set χp, which is similar to

the atomic orbital. Thus this expansion is called the Linear Combination of Atomic Orbitals

-Molecular Orbitals (LCAO-MO).

ψi =
m∑

p=1

χpCpi (p = 1, 2, ...,m > n) (2.27)

The expansion coefficients Cpi are included in the Slater determinant and determined to

give the stationary points of <Ψ|Ĥ|Ψ>. Substituting ψi(ξ) written as (2.27) into the equation

(2.24), we obtain:

ĥψi(ξ) +

n∑

j=1

(Ĵj − K̂j)ψi(ξ) =

m∑

k=1

ĥCkiχk(ξ)

+

m∑

k,l,p=1

Cki

n∑

j=1

C∗
pjClj

[∫
dξ2χ

∗
p(ξ2)

1

r12
χl(ξ2)χk(ξ1)−

∫
dξ2χ

∗
p(ξ2)

1

r12
χk(ξ2)χl(ξ1)

]

= εi

m∑

k=1

Ckiχk(ξ) (2.28)

Multiplying the equation (2.28) by χ∗
q(ξ) from the left and integrating over ξ, the following

equation is obtained,

m∑

k=1

Cki


< χq|ĥ|χk > +

m∑

l,p=1

n∑

j=1

C∗
pjClj ([qk|pl]− [ql|pk])


 = εi

m∑

k=1

Cki 〈χq|χk〉 (2.29)
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[qk|pl] =

∫
dξ1

∫
dξ2χ

∗
q(ξ1)χ

∗
p(ξ2)

1

r12
χl(ξ2)χk(ξ1) (2.30)

Defining the matrices F and S and the vector Ci as follows:

(F)qk =< χq|ĥ|χk > +

m∑

l,p=1

n∑

j=1

C∗
pjClj ([qk|pl]− [ql|pk]) (2.31)

(S)qk = 〈χq|χk〉 (2.32)

(Ci)k = Cki (2.33)

Finally the Roothaan-Hall equation [6, 7] is written as below:

FCi = εiSCi (i = 1, 2, ..., n) (2.34)

Here, instead of resolving the differential equations, we solve the eigenvalue problem of the

Roothaan-Hall equation (2.34). In this method, the spin-orbital is expanded as a linear combi-

nation of the m atomic orbital-like basis set. The expectation energy of <Ψ|Ĥ|Ψ> is rewritten

under the orthonormality <ψi|ψj> =δij :

E =

n∑

i=1

εi −
1

2

n∑

i,j=1

m∑

k,l,p,q=1

C∗
qiCkiC

∗
pjClj ([qk|pl]− [ql|pk]) (2.35)

The Roothaan-Hall equation is also a self-consistent-field method, because of inclusion of Cpi

in the F matrix and should be treated iteratively. The n spin-orbitals ψi (i=1,2,...,n) are con-

structed with the optimized coefficients Cpi (p=1,2,...,m). As m > n, we can additionally obtain

the extra (m - n) spin-orbitals, called ”virtual orbitals” which are used for the post Hartree-Fock

methods.

2.7 Limit of the Hartree-Fock method

The Hartree-Fock method mentioned above can account for 99% of the total exact energy, how-

ever, the remaining 1% of the total energy is important to describe chemical pictures. This

residual arises from the electronic correlation, separated into the two following types: the first

one is the static correlation related to degenerated or quasi-degenerated states, which cannot

be correctly described by a mono-configurational wavefunction. This correlation depends also

on the size of the system and becomes important at dissociation asymptotes. The second one is

called the dynamical correlation related to collisions of electrons leading to the two-, three-, or

multi-electron excitation configurations. This type is independent of the size of the system, but

depends on the number of electrons in the system. We will next discuss the post Hartree-Fock

methods to recover the remaining 1% of the total exact energy.
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2.8 Configuration Interaction method

The first post Hartree-Fock method is the Configuration Interaction (CI) method, in which the

wavefunction of n electrons ΨCI is expressed by a linear combination of the Slater determinants

ΨI and the corresponding coefficients CI :

ΨCI =
∑

I=0

CIΨI (2.36)

where ΨI is constructed with a set of spin-orbitals ψ1, ψ2, ..., ψm (m>n). Ideally we can obtain,

using the CI method with an infinite set of spin-orbitals, the exact solution of the Schrödinger

equation under the Born-Oppenheimer approximation. In the case where the CI wavefunction is

expended on the maximum number of Slater determinants constructed with the finite set of spin-

orbitals, the maximum electronic correlation can be accounted within this limited spin-orbitals

number and the method is then called the Full CI method. The number of Slater determinants

of n electrons with m spin-orbitals NFCI , at the Full CI level, is counted as follows:

NFCI =
m!

n!(m− n)!
(2.37)

Thus feasibility of the Full CI method depends on the size of the system and of the spin-

orbital set. In practice, we can rewrite the combination (2.36) as follows:

ΨCI = C0ΨHF +
∑

S

CSΨS +
∑

D

CDΨD +
∑

T

CT ΨT + .... (2.38)

where ΨS, ΨD, and ΨT correspond respectively to the single-, double-, and triple-electron exci-

tations from the spin-orbitals included in the HF Slater determinant ΨHF to the virtual orbitals

obtained by the Hartree-Fock method. For the facility of actual computations, the above ex-

pansion is cut off after the doublet-excitation (CISD) or the triple-excitation (CISDT). In the

CISD and CISDT levels, the total number of Slater determinants is decreased to feasible size for

computations, however, these methods are no longer size-extensive. The term ”size-extensive”

means that, for the system including two molecules, the energy of the combined AB system is

equal to the sum of the energies of the separated A and B molecules in a size-consistent method.

In the CI method, we determine variationally only the coefficients CI to obtain the mini-

mum energy under the restriction of normalization imposed on the CI wavefunction. Using the

Lagrange’s undetermined multipliers λ, we find the coefficients which give the stationary points

of the following functional F:

F =< ΨCI |Ĥ|ΨCI > −λ(< ΨCI |ΨCI > −1)

=
∑

I,J

C∗
ICJ < ΨI |Ĥ|ΨJ > −λ

∑

I,J

C∗
ICJ < ΨI |ΨJ > +λ (2.39)

Thus we obtain the equation (2.40).

∂F

∂C∗
I

=
∑

J

(< ΨI |Ĥ|ΨJ > −λ < ΨI |ΨJ >)CJ = 0 (2.40)
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The definition HIJ = <ΨI |Ĥ|ΨJ > and SIJ = <ΨI |ΨJ> = δIJ leads to the following secular

equation:




H00 − λ H01 ... H0J ...
H10 H11 − λ ... H1J ...
... ... ... ... ...
HJ0 HJ1 ... HJJ − λ ...
... ... ... ... ...







C0

C1

...
CJ

...




=




0
0
...
0
...




(2.41)

The diagonalization of this matrix allows us to obtain the eigenvalues which correspond to a

series of energies from the ground state to higher excited states.

2.9 Multi-Configuration Self-Consistent-Field (MCSCF) method

This method is a CI method, in which the coefficients of the Slater determinants in a linear

combination are variationally optimized, as well as the molecular orbitals included in these de-

terminants. This variational optimization is performed iteratively as in the SCF method. In the

MCSCF method, the spaces of the molecular orbitals are divided into three sub-spaces (inactive,

active, and external) according to the occupation numbers of electrons in the molecular orbitals.

The orbitals in the inactive space are doubly occupied in all the configurations and correspond to

the core orbitals. The active space consists of the orbitals which can take the occupation number

among 0, 1, and 2. The definition of the active space is essential in the MCSCF method. The

orbitals in the external space are empty in the MCSCF wavefunction. The multi-configurational

character of the wavefunction due to these partially occupied molecular orbitals allows us to

recover a large part of the electronic correlation. The static correlation can be accounted by

inclusion of the quasi-degenerated configurations in the MCSCF wavefunction.

In the MCSCF method, the wavefunction can be expressed by a linear combination of the

Configuration State Functions (CSFs) ΨI with the associated coefficients CI :

ΨMCSCF =
∑

I

CIΨI ,
∑

I

C2
I = 1 (2.42)

The CSFs ΨI is again constructed as a linear combination of the Slater determinants which

are built with a set of the canonical molecular orbitals ψk. The ψk is expressed by the unitary

transformation of the basis set functions χµ, with the orthonormal restriction <ψk|ψl> =δkl:

ψk =
∑

µ

ckµχµ (2.43)

The simultaneous optimization of the coefficients CI and the canonical molecular orbitals ψk

via ckµ is required in the MCSCF method. Introducing the Lagrange’s undetermined multipliers,

the following secular equation can give optimization of the coefficients CI :

∑

J

(HIJ −EδIJ)CJ = 0 (2.44)
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The determination of ψk and the corresponding minimum energy are given using the Newton-

Raphson method [8].

The most popular approach of the MCSCF method is the Complete Active Space Self-

Consistent Field (CASSCF) method, which takes the valence space as the active space. In the

inactive space, the molecular orbitals are doubly occupied or virtual. These doubly occupied

orbitals can be treated as ”frozen” (not optimized and their electrons are not correlated) or

as ”closed” (optimized). The configurations involved in the CASSCF method are all the con-

figurations constructed by filling the molecular orbitals in the active space with the valence

electrons as much as possible and keeping the inactive space orbitals doubly occupied. In this

sense, the CASSCF method is one kind of Full CI method in a limited active space. The active

space should be appropriately selected to correctly treat modifications of the orbitals with the

geometry distortions of the system.

The MCSCF method can recover about 40% of the electronic correlation and can describe

correctly the wavefunction. However, for the case where we need more accurate descriptions, it

is necessary to perform beyond the MCSCF method, the subsequent MRCI method, which can

account for almost completely the electronic correlation.

2.10 Multi-Reference Configuration Interaction (MRCI) method

The Multi-Reference Configuration Interaction (MRCI) method is also a CI method, which uses

the multi-configurational function as reference. In general, the optimized MCSCF wavefunction

is taken as reference. The MRCI method can account for the interactions between the determi-

nants corresponding to the single and double excitations from the reference determinants.

As the previous CI methods, we write the MRCI wavefunction as a linear combination of

the CSFs ΨI .

ΨMRCI =
∑

I

CIΨI +
∑

S

∑

a

Ca
SΨa

S +
∑

P

∑

a,b

Ca,b
P Ψa,b

P (2.45)

taking the MCSCF function as reference:

Φ0 =
∑

R

CRΨR (2.46)

where I indicates the sum over the CSFs, in contrast, R runs over the configurations of reference.

We call ”internal space” the set of orbitals which construct the configuration in reference and

”external space” the set of orbitals occupied by the single or double excitations. The orbitals

in the external space are symbolized by a and b. The S and P correspond to the single and

double excitations from the configurations of reference, respectively. Practically, as the division

of orbitals in the CASSCF method, we can define the ”closed-shells” which are correlated in the

internal space, in contrast, the ”core” orbitals are always doubly occupied and non-correlated.
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This technique can significantly reduce the size of calculations.

The coefficients CI are variational parameters to be optimized via the secular equation.

The problem of the MRCI method is the huge number of included configurations. One of

the procedures to reduce the dimension of configurations is ”internal contraction” developed by

Werner and Reinsch [9]: contraction of all the configurations owning the same external space but

different internal space. The following formula of the internal contraction have been developed

by Werner and Knowles [10, 11] for the configurations resulting from the double excitation to

the external space.

Ψab
ijp =

1

2

(
Êai,bj + pÊaj,bi

)
Φ0

=
∑

R

CR

(
Êai,bj + pÊaj,bi

)
ΨR =

∑

R

CRΨab
ijp,R (2.47)

p is the spin factor taking 1 for the singlet coupling and -1 for the triplet coupling. Êai,bj is an

operator corresponding to the double excitations from the i and j internal orbitals to the a and

b external orbitals respectively. Internally contracted MRCI wavefunctions can be rewritten as

follows:

ΨMRCI =
∑

I

CIΨI +
∑

S

∑

a

Ca
SΨa

S +
∑

D

∑

a,b

∑

p

Cab
DpΨ

ab
Dp (2.48)

The configurations of the single excitations to the external space are not contracted. If these

configurations of the single excitations were also internally contracted, the number of variational

parameters would not depend on the size of the reference space.

The expansion of the MRCI wavefunction is limited to the double excitations. Thus this

method is not size-consistent as the previous CISD and CISDT methods. The Davidson correc-

tion [12] can estimate the energy with contributions up to quadruple excitations, based on the

MRCI energy up to double excitations. It uses the following formula:

∆EQ = ∆ESD

(
1−

∑

R

C2
R

)
(2.49)

where ∆ESD represents the contribution to the correlation energy, of the single and double exci-

tations accounted within the MCSCF reference wavefunction Φ0, and CR is the same coefficient

as in the expansion (2.46).
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3 Basis sets and Pseudopotentials

3.1 Basis sets

As mentioned in the last paragraph, the molecular orbitals are written as a linear combination

of the atomic basis functions χi. There are two types of basis function: Slater Type functions

(STO) [17] and Gaussian Type functions (GTO) [18]. In the spherical coordinates (r, θ, φ), the

STO takes the following form, derived directly from the hydrogenous function:

χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)rn−1exp(−ζr) (3.1)

where ζ is a parameter to denote the radial extension. This type of function can provide a good

description from the short to the long distances from nucleus, however, it is not convenient to

perform bi-electronic integrations. The other one (GTO) is written as follows:

χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r2n−2−lexp(−ζr2) (3.2)

The GTO can facilitate multi-centric integrations. In contrast to the STO, the description

of the GTO is incorrect at the short and the long distances, because of its zero slope due to r2

dependency in exponential and of the decay of e−ζr2
faster than e−ζr. In practice, we combine

linearly several GTO functions to express the atomic orbital. With a large ζ, the GTO function

is localized close to the nucleus and describes the core region. A medium coefficient ζ is used

to reproduce the chemical bonds and for properties as polarization and dipole moments. The

GTO functions are diffused with the small values of ζ.

In a linear combination, the GTO functions are partially contracted, i.e. the coefficients

of several GTO functions are frozen, to reduce the number of parameters in calculations. We

use n for the number of contractions to represent the valence orbitals, in general, n = 2, 3,

4, 5. Adding more primitive Gaussian functions, the ”correlation-consistent polarized n-zeta

basis set (cc-pVnZ)” is designed to account for the correlation energy. The basis set augmented

with diffuse functions is denoted by aug-cc-pVnZ, which we use mainly in this work. The more

correlation energy is accounted for the larger cardinal number n. This fact leads to the idea of

extrapolation to the Complete Basis Set (CBS), i.e. the convergence of energy ECBS at n = ∞.

ECBS can be estimated, using the parameters determined in the following relations:

E(n) = ECBS +Be−(n−1) + Ce−(n−1)2 (3.3)

E(n) = ECBS +B/n3 (3.4)

For the three cardinal numbers n = 3, 4, 5, we use the equation (3.3) and note CBS(1) [19,20].

In contrast, the extrapolation can be performed with the second one (3.4) for n = 4, 5 and this

method is denoted by CBS(2) [21, 22].
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3.2 Pseudopotentials

Pseudopotentials (or synonymously effective core potentials) are used as standard tools nowa-

days in valence ab initio quantum chemical calculations. The essential idea of pseudopotentials

relies on the fact that inactive core electrons in atoms do not participate to the chemical bonds,

contrary to the active electrons in the valence shells. Thus it is reasonable to replace the core

electrons by effective potentials including all informations about them and to treat explicitly

the valence electrons. This procedure has two advantages specially for atoms owning the large

atomic numbers. The size of calculations is proportional to n4 (n is the number of electrons in-

cluded in the system), thus inclusion of the inactive core electrons in pseudopotentials allows us

to reduce the actual cost of calculations without loss of the physical and chemical informations.

It has been recognized that the relativistic effects are important for heavy atoms, principally

in the inner orbitals. The second advantage of pseudopotentials is the automatical inclusion of

relativistic effects of heavy atoms, in the non-relativistic calculations of valence electrons.

In this method of pseudopotentials, the electrons in the inner shells are represented by the

energy-consistent pseudopotentials VPP (i) and the Hamiltonian of the electrons in valence is

given in atomic units by:

Ĥval = −
∑

i

∆i

2
+

1

2

∑

i,i′

1

rii′
+
∑

i

VPP (i) (3.5)

where the indices i and i
′

denote the valence electrons.

In this study, we employ the pseudopotentials (ECP10MDF) for Zn, recently reported by

Figgen et al. [13]. The term ”MDF” means the simultaneously adjusted two-component rel-

ativistic pseudopotentials (i.e., scalar-relativistic and spin-orbit), based on the numerical all-

electron four-component multi-configuration Dirac-Hartree-Fock (MCDHF) calculation. The

ECP2MWB and ECP10MWB pseudopotentials, developed by Bergner et al. [14] are used re-

spectively for F and Cl atom. The MWB type of pseudopotential is a one-component quasi-

relativistic pseudopotentials (i.e., spin-orbit averaged), determined from the numerical all-electron

Wood-Boring calculations.

VPP (i) of the MDF type is written in a semi-local ansatz as follows:

VPP (i) = −Q
ri

+
∑

l,j

∑

k

Alj,kexp(−αlj,kr
2
i )P̂l,j (3.6)

and for the MWB type:

VPP (i) = −Q
ri

+
∑

l

∑

k

Bl,kexp(−βl,kr
2
i )P̂l (3.7)

where Q denotes the core charge of the atom. P̂l,j or P̂l represents the projection operator with

respect to the angular momentum quantum number l and j = l ± 1/2 or l. k indicates the

number of parameters for each l. Using the valence wavefunction φl(j)(r) from the all-electron

calculations, the following transformation leads to the nodeless pseudo-orbital φ̃l(j)(r):
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φ̃l(j)(r) = φl(j)(r) (r ≥ rc), = fl(j)(r) (r < rc) (3.8)

The parameters in VPP (i) are determined to provide as far as possible the energies obtained

from all-electron calculations, using the Hamiltonian for the valence electrons (3.5) and the

pseudo-orbitals (3.8). For the ECP10MDF of Zn, the reference data to adjust the parameters is

the valence energy Eval
i of the ith state in the neutral atom and near-neutral ions, obtained from

the all-electron calculation at the four-component numerical MCDHF level, based on the Dirac-

Coulomb Hamiltonian with the two-electron Breit interaction treated to first-order perturbation

theory. While, for the MWB type, Eval
i corresponds to the valence energy of the lowest LS states

of a multitude of low lying configurations of the neutral atoms and the LS ground state of the

singly charged anions. Then the reference data to determine the parameters of the MWB effective

core potentials are provided by the numerical Wood-Boring all-electron calculations, which add

a mass-velocity and a Darwin terms to the non-relativistic Hamiltonian [15, 16]. Denoting the

corresponding valence energy EPP
i calculated by the non-relativistic valence Hamiltonian (3.5),

the adjustment of the parameters are performed by a least-squares fit to minimize the following

functional:

∑

i

(Eval
i −EPP

i )2 (3.9)

For Zn, using the ECP10MDF, the 1s, 2s, and 2p orbitals are replaced by pseudopotentials

and the outer core 3spd shells, in addition to 4sp shells are treated explicitly for the valence.

The ECP2MWB of F and the ECP10MWB of Cl replace respectively 2 and 10 core electrons

by pseudopotentials and 7 outer electrons in both atoms are treated explicitly in the all-electron

valence calculations.
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4 Description of the nuclear motions

4.1 Generality of the nuclear motions

Having resolved the electronic Schrödinger equation within the Born-Oppenheimer approxima-

tion, using the methods mentioned above, the question is then to obtain descriptions of the

nuclear motions under the adiabatic potential Em(R) included in the equation (1.13). For the

N atoms in a molecule, the degree of freedom of the nuclear motions is 3N, among which 3

degrees of freedom are attributed to the three directions of translation. 3 degrees (or 2 degrees

for linear molecules) result from the rotations. The remaining (3N - 6) (or (3N - 5) for the

linear molecules) are related to the vibrations. Because of the invariance of the potential energy

function under the translation of nuclear coordinates, 3 degrees attributed to translation can be

removed into the motion of the center of mass. In this chapter, we will explain the descriptions

of the nuclear vibrations and rotations and the actual approaches to obtain the spectroscopic

constants characterizing these motions under the potential energy function Em(R), for the di-

atomic and the triatomic molecules.

4.2 Diatomic molecule and NUMEROV program

4.2.1 Rotational and vibrational energy levels

The Hamiltonian of the nuclear motions in diatomic molecules under the potential V can be

written as:

ĤN = − h̄2

2m1
∆1 −

h̄2

2m2
∆2 + V (|R1 −R2|) (4.1)

where m1 and m2 are the mass of the nuclei 1 and 2 respectively. The potential V depends

only on the interatomic distance between the two atoms and equals to the adiabatic potential

Em(R).

Defining R = R1 - R2, neglecting the translation of the center of mass, and introducing the

spherical coordinates (R, θ, φ), we can rewrite the Hamiltonian (4.1) as follows:

ĤN = − h̄
2

2µ
∆ + V (R) = − h̄

2

2µ

1

R2

∂

∂R

(
R2 ∂

∂R

)
+

N̂2

2µR2
+ V (R) (4.2)

where µ represents the reduced mass. The angular momentum operator N̂2 and its eigen spher-

ical harmonic functions YNm(θ, φ) are defined as follows:

N̂2 = − 1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
− 1

sin2θ

∂2

∂φ2
(4.3)

N̂2YNm(θ, φ) = h̄2N(N + 1)YNm(θ, φ) (4.4)

Thus we express the nuclear wavufunction Φ(R, θ, φ), using the YNm(θ, φ) and the radial

function R(R). Substituting Φ(R, θ, φ) into the stationary Schrödinger equation for the Hamil-

tonian (4.2), we obtain the following equation for the radial function R(R):
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Φ(R, θ, φ) =
R(R)

R
YNm(θ, φ) (4.5)

[
− h̄

2

2µ

(
d

dR

)2

+ V (R) +
h̄2N(N + 1)

2µR2
−E

]
R(R) = 0 (4.6)

with the bound conditions imposed on R(R):

R(R = 0) = 0 and R(R→∞)→ 0 (4.7)

The third term in the equation (4.6) represents the centrifugal distortion effects and indicates

that the molecule can no longer be treated as a rigid body. After the Taylor expansion around

the equilibrium distance Re of the potential V(R) up to the 4th order of R, we can separate

the Hamiltonian ĤN into the harmonic oscillator and the rigid body rotation part Ĥ0 and the

perturbative parts Ĥ1 and Ĥ2:

ĤN = Ĥ0 + Ĥ1 + Ĥ2 (4.8)

Ĥ0 = − h̄
2

2µ

d2

dζ2
+ V (Re) +

1

2
kζ2 +

h̄2N(N + 1)

2µR2
e

(4.9)

Ĥ1 = −aζ3 − h̄2N(N + 1)

µR3
e

ζ (4.10)

Ĥ2 = bζ4 +
3h̄2N(N + 1)

2µR4
e

ζ2 (4.11)

where ζ = R − Re. The term 1
2kζ

2 denotes the harmonic potential and the third and fourth

anharmonicities are included by the terms −aζ 3 and bζ4 respectively. Taking the perturbation

corrections by Ĥ1 and Ĥ2, we can express the vibrational and rotational energy levels in power

series expansion of (v+1/2) and N(N+1). Including contributions from the higher order per-

turbations, the energy levels E(v,N) for nuclear motions in diatomic molecules are obtaind as

follows:

E(v,N) = G(v) + F (N) (4.12)

G(v) = ωe(v +
1

2
)− ωexe(v +

1

2
)2 + ... (4.13)

F (N) = B(v)N(N + 1)−D[N(N + 1)]2 + ... (4.14)

B(v) = Be − αe(v +
1

2
) + ... (4.15)

where G(v) represents the vibrational energy levels and F(N) the rotational levels including the

centrifugal distortion constant D and the rotation-vibration interaction constant αe via B(v).

Be is the equilibrium rotation constant given as Be = 1
2µR2

e
. This type of energy levels is called

the Dunham expansion [23].
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4.2.2 Vibronic transition

Within the dipole approximation of the interaction between photons and molecules, electronic

transitions are allowed between two electronic states satisfying the following conditions.

∆Λ = 0, or ∆Λ = ±1 (4.16)

where Λ is the eigen value of the projection on the z axis of the electronic orbital angular

momentum. ∆Λ = 0 is applied for the parallel transitions and ∆Λ = ±1 for the perpendicular

transitions. In addition, electronic transition is allowed between two Σ+ states or two Σ− states

and forbidden between the Σ+ and Σ− states.

For the vibrationally resolved absorption, we can use the oscillator strength to characterize

the intensities of transitions. This quantity Ivv′ has no dimension and is defined as below for the

vibronic transition from the v’ vibrational level of the initial electronic state to the v vibrational

state of the final electronic state.

Ivv′ = 2νvv′Bvv′c
2 (4.17)

Bvv′ =
1

2πε03
|Rvv′ |2 (4.18)

Rvv′ =

∫
drψ∗

vµee′ψv′ (4.19)

where Bvv′ is the Einstein’s B coefficient and νvv′ is the wavenumber of the corresponding spec-

trum line. Rvv′ represents the transition matrix and is defined by the equation (4.19), using the

dipole moment function µee′(R) and ψv(R) = Rv(R)/R.

4.2.3 NUMEROV program

Using the NUMEROV program [24], which can give a numerical resolution of the nuclear

Schrödinger equation in diatomic molecules (4.6), we obtain the spectroscopic constants and the

quantities to describe the vibrationally resolved absorption. In the first step of this program, the

adiabatic potential E(R) obtained by the electronic calculations is fitted by the following Morse

type potential V(R) and the difference between E(R) and V(R) is adjusted by cubic splines:

V (R) = va + e−vb(R−vc) + cubic splines (4.20)

The NUMEROV program is able to calculate the spectroscopic constants ωe and ωexe from

vibrational energy levels G(v). The equilibrium distance re and Be are deduced at the minimum

of the V(R) potential. Since the vibrational wavefunctions can be calculated simultaneously for

the two different electronic states, we can also obtain the quantities to characterize the vibronic

transition such as the oscillator strength.

This program resolves numerically the equation (4.6), using the Numerov’s method. Defining

d as the difference between two consecutive discrete distances:
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d = Ri+1 −Ri (4.21)

we rewrite the functions in the equation (4.6) as follows:

Vi = V (Ri) Gi = R(Ri) (4.22)

And then Fi is introduced by:

Fi =
2µ

h̄2 (E − Vi)−
N(N + 1)

R2
i

(4.23)

Thus the equation (4.6) leads to the following equation, which is resolved iteratively.

Gi+1 =
(2− 5

6d
2Fi)Gi − (1 + d2

12Fi−1)Gi−1

1 + d2

12Fi+1

(4.24)

4.3 Nuclear motions in triatomic molecule

4.3.1 Nuclear Hamiltonian in triatomic molecule

The nuclear Hamiltonian for rotations and vibrations can be constructed using the normal

coordinates Qs, following the procedure described below. For the jth nucleus in molecule, we

write its space-fixed coordinate Rj in terms of the center of mass fixed at space RG and the

molecule-fixed coordinate of the jth nucleus rj with the origin fixed at the center of mass:

Rj = RG +t D(αβγ)rj (j = 1, 2, 3) (4.25)

where α, β, and γ denote the Euler angles, and the corresponding 3×3 matrix D(αβγ) relates

the space-fixed coordinates to the ones fixed at molecule. Taking the displacement dRj and

ignoring the displacement of center of mass dRG, we obtain the following relation between two

coordinates;

dRj = dΩ× (tDrj) +t Ddrj (4.26)

where dΩ represents the infinitesimal rotation angles around the axes of the space-fixed coordi-

nate. From (4.26) the term of dRj ·dRj is expressed as the following relation:

dRj · dRj = (dΩ×t Drj) · (dΩ×t Drj) + 2(dΩ×t Drj) ·t Ddrj + (tDdrj) · (tDdrj) (4.27)

In the right hand side the second term can be deduced as follows, using the dΩ
′

= DdΩ and

the relation (A×B) ·C = A · (B×C).

2(dΩ×t Drj) ·t Ddrj = 2(dΩ
′ × rj) · drj = 2dΩ

′ · (rj ×t Ddrj) (4.28)

With the help of (4.28) and the definition of the inertia tensor I =
∑

j mj(|rj |2 − rt
jrj), we

can write the sum of 1
2mjdRj · dRj from the equation (4.27).
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1

2

∑

j

mjdRj · dRj =
1

2
dΩ

′ · IdΩ′

+ dΩ
′ ·
∑

j

mj(rj × drj) +
1

2

∑

j

mjdrj · drj (4.29)

We denote the equilibrium geometry of the jth nucleus as re
j and the displacement from it as

∆rj = rj − re
j . Then the transformation between ∆rj and the normal coordinates Qs is given

by:

(mj)
1/2∆rj =

∑

s

ljsQs (4.30)

Using the ljs in the transformation (4.30), the Coriolis constant ζss′ can be defined as (4.31)

and then the matrix Z is defined as (4.32):

ζss′ =
∑

j

ljs × ljs′ (4.31)

Zαs′ =
∑

s

ζα
ss′
Qs (4.32)

The equation (4.29) can be rewritten in the following matrix formula:

1

2

∑

j

mjdRj · dRj =
(
tdΩ

′ tdQ
)( I Z

tZ 1

)(
dΩ

′

dQ

)
(4.33)

From the relation (4.33) of the coordinate transformation, we can write the kinetic energy

operator T̂ in terms of Ω
′

and Q:

T̂ = − h̄
2

2
(detg)−1/2

(
t ∂
∂Ω

′
t ∂
∂Q

)
g−1(detg)1/2

(
∂

∂Ω
′

∂
∂Q

)
(4.34)

g =

(
I Z

tZ 1

)
(4.35)

For the matrix g, g−1 and det(g) can be deduced after the manipulation.

g−1 =

(
1 0
−tZ 1

)(
(I− ZtZ)−1 0

0 1

)
(4.36)

det(g) = det(I− ZtZ) (4.37)

Introducing the total angular momentum Ĵ, the vibrational angular momentum π̂, and the

µ tensor, the kinetic energy operator T̂ takes the following form:

T̂ =
1

2

t

(Ĵ− π̂)µ(Ĵ− π̂)− h̄2

2

∂

∂Q
· ∂
∂Q

(4.38)

Ĵ =
h̄

i

∂

∂Ω
′ (4.39)

π̂ =
h̄

i
Z
∂

∂Q
(4.40)
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µ = I
′−1 I

′

= I− ZtZ (4.41)

In consequence, the Hamiltonian for the rotational and vibrational nuclear motions around

the equilibrium configuration in polyatomic molecule can be expressed as the following formula

in terms of Ĵ, π̂, µ, and the potential V(Qs):

ĤN =
1

2

∑

α,β

µαβ(Ĵα − π̂α)(Ĵβ − π̂β) +
1

2

∑

s

P̂ 2
s + V (Qs) (4.42)

where P̂s denotes the conjugate momentum of the normal coordinate Qs.

4.3.2 Perturbative resolution: SURFIT program

The SURFIT program can give by perturbative treatment the rovibrational energy levels for

the nuclear motions in triatomic molecule, based on the nuclear Hamiltonian (4.42) [25]. In the

first step, the potential energy surface obtained by the electronic calculations are rewritten in

polynomial expression in term of the molecular internal coordinates di:

V (d1, d2, d3) =
∑

i,j,k

Cijkf1(d1)
if2(d2)

jf3(d3)
k (4.43)

where the order of polynomials can range from 4 to 8, according to the case. The polynomial

expression (4.43) should satisfy the following conditions: The symetry of the system must be

adopted in the polymonials. The energies obtained by the electronic calculations have to be

accurately reproduced in the polynomial expression within the error less than 1 cm−1. The

polynomials should provide the potential energy surface obtained from the electronic calcula-

tions, up to the suitable energy value (about 1 eV) from the minimum point. This energy value

is a criterion of validity, such that the rovibrational levels are correct up to this energy value.

In the SURFIT program, the function fi(di) can take several types. In this study, we use the

displacements of the internal coordinates and limit the order of polynomials up to 4. Then fi(di)

can be expressed by:

fi(di) = di − de
i (4.45)

where de
i denotes the internal coordinate di at the equilibrium geometry. The coefficients Cijk

of the polynomial expression are determined by a least-squares method to give the minimum of

the following sum Γ:

Γ =

P∑

n

[Vn(d1, d2, d3)−En(d1, d2, d3)]
2 (4.46)

where En is the energy value obtained by the electronic calculation at the nth nuclear geometry.

For the perturbative resolution of the nuclear Schrödinger equation, it is necessary to express

the potential in term of dimensionless normal coordinates qk. Then we write the µαβ tensor and

the potential by the Taylor expansion in term of qk around the equilibrium geometry. First, qk

and its conjugate momentum pk are introduced by:
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qk = λ
1/4
k Qk pk = λ

−1/4
k Qk (4.47)

where λ = (2πcωk)
2 and ωk is the harmonic wavenumber of the kth normal mode. Second, we

can write the Taylor expansion as follows:

µαβ = µ0
αβ +

∑

k

hcBk
αβqk + .... Bα

e =
1

2hc
µ0

αα =
1

2hcIe
α

(4.48)

V

hc
=

1

2

∑

k

ωkq
2
k +

1

6

∑

l,m,n

Φlmnqlqmqn +
1

24

∑

l,m,n,p

Φl,m,n,pqlqmqnqp + .... (4.49)

where the coefficients Φlmn and Φlmnp represent the cubic and quartic constants of the potential,

which are respectively determined by the third and fourth derivatives of the potential with

respect to the dimensionless normal coordinate qk. Finally, we can deduce ĤN/hc as the sum

of the perturbative terms up to the fourth order (4.50):

Ĥ02 =
∑

α

Bα
e J

2
α

Ĥ12 =
∑

αβ

∑

k

Bk
αβqkJαJβ

Ĥ22 =
3

8

∑

αβγ

∑

kl

(Bγ
e )−1(Bk

αγB
l
γβ +Bl

αγB
k
γβ)qkqlJαJβ

Ĥ21 = −2
∑

kl

(
ωl

ωk

)1/2

qkpl

∑

α

Bα
e ζ

α
klJα

Ĥ20 =
1

2

∑

k

ωk(p
2
k + q2k)

Ĥ30 =
1

6

∑

klm

Φ
′

klmqkqlqm

Ĥ40 =
1

24

∑

klmn

Φ
′

klmnqkqlqmqn +
∑

klmn

∑

α

Bα
e ζ

α
klζ

α
mn

(
ωlωn

ωkωm

)1/2

qkplpmpn

We can attribute the following interpretations to the terms in the equations (4.50): Ĥ02 rigid

rotator, Ĥ12 and Ĥ22 centrifugal distortion, Ĥ21 Coriolis interaction, Ĥ20 harmonic oscillator,

Ĥ30 vibrational anharmonicity, and Ĥ40 vibrational anharmonicity and l-doubling.

The perturbative method of the rotation and vibration Hamiltonian of the polyatomic

molecule was developed by Shaffer, Nielsen, and Thomas [26]. The essential idea is the suc-

cessive block diagonalizations of the perturbative part of the Hamiltonian, using the Van Vleck

transformation which will be explained below.

The concerned Hamiltonian Ĥ can be separated into the non-perturbative Ĥ0 and the per-

turbative Ĥ1 parts such that Ĥ0 � Ĥ1:
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Ĥ = Ĥ0 + Ĥ1 (4.51)

where the non-perturbative part Ĥ0 is initially diagonal. To diagonalize this Hamiltonian, we

need to find the transformation that decomposes Ĥ1 into the small terms D̂(i) commuting with

Ĥ0.

ĤD = Û †ĤÛ = Ĥ0 + D̂(1) + D̂(2) + D̂(3) + ... (4.52)

For the complete diagonalization, these terms are required to be mutually commuting. The

unitary transformation Û responsible for the diagonalization of Hamiltonian can be expressed

as a product of operators Ŵj, which transforms the small terms to commute with all the larger

terms:

Û =
∏

j=1

Ŵj (4.53)

and then,

ĤD1 = Ŵ †
1 ĤŴ1 = Ĥ0 + D̂

(1)
1 + D̂

(2)
1 + D̂

(3)
1 + ... (4.53)

where [Ĥ0, D̂
(i)
1 ] = 0, but the D̂

(i)
1 are not required to commute with each other. In the first

step, the Hamiltonian becomes to be block diagonal with respect to Ĥ0, denoted as ĤD1. The

second operator Ŵ2 can be then applied to the terms D̂
(i)
1 with i≥2, transforming into the terms

D̂
(i)
2 with i≥2:

ĤD2 = Ŵ †
2 ĤD1Ŵ2 = Ĥ0 + D̂

(1)
1 + D̂

(2)
2 + D̂

(3)
2 + ... (4.54)

where [Ĥ0 + D̂
(1)
1 , D̂

(i)
2 ] = 0 for i≥2, but the terms D̂

(i)
2 are not required to commute among

themselves. The resulting Hamiltonian ĤD2 is block diagonalized with respect to Ĥ0 and D̂
(1)
1 .

This procedure continues up to the desired order of the block diagonalization. Once the terms

D̂
(i)
j for i ≥ j after the jth transformation with the operator Ŵj commute with themselves,

the progressive diagonalization is completed. The operator Ŵj can be written in terms of the

generators Ĝk
j for the unitary transformations:

Ŵj = exp

(
i
∑

k=1

Ĝk
j

)
(4.55)

where Ĝk
j is an Hermitian operator and then the operator Û is denoted as follows:

Û =
∏

j=1

exp

(
i
∑

k=1

Ĝk
j

)
(4.56)

In general, the harmonic oscillator term Ĥ20 is taken as the non-perturbative part, for which

the eigenenergy is well known:

E0(v)

hc
=
∑

k

ωk(vk +
dk

2
) (4.57)
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where dk denotes the degeneracy of the kth vibration mode. The corresponding wavefunction of

the non-degenerated mode and of the doubly degenerated mode are also known as follows:

Ψk(Qk) = Nke
−1/2γkQ2

kHvk
(γ

1/2
k Qk) (4.58)

for the non-degenerated mode

Ψv,k(ρ, φ) = Nv,|l|e
−ρ2/2ρ|l|L

|l|
(v−|l|)/2(ρ

2)e−ilφ (4.59)

for the doubly degenerated mode, where Hvk
and L

|l|
(v−|l|) denote respectively the Hermite poly-

nomial and the associated Legendre polynomial. γk is equal to ωk/h. The doubly degener-

ated normal coordinates Qa and Qb are transformed as Qa = rcosφ and Qb = rsinφ and the

ρ = (h/ωk)1/2r. The number l is associated to the vibrational angular momentum.

In turn, we obtain the Hamiltonian for the pure vibrations:

Ĥv = Ĥ20 + Ĥ40 (4.60)

Within this representation, the energy levels for the harmonic oscillators with the contribu-

tions from the anharmonic vibrations up to the fourth order:

G(v1, v2, ...) =

3N−6(3N−5)∑

i

ωi(vi +
di

2
) +

∑

i

∑

k≥i

xik(vi +
di

2
)(vk +

dk

2
) +

∑

i

∑

k≥i

giklilk (4.61)

where xik and gik are the anharmonic constants.

For the pure rotation, the Hamiltonian of rigid rotator can be given by:

Ĥ02 = AeJ
2
x +BeJ

2
y + CeJ

2
z (4.62)

with the eigenvalues in the |J,K> representation, which is the eigenfunction of Ĵ2 and Ĵz .

< J,K|Ĥ02|J,K >=
1

2

[
(Ae +Be)[J(J + 1)−K2] + 2CeK

2
]

(4.63)

< J,K|Ĥ02|J,K±2 >=
1

4
(Ae−Be)[J(J+1)−K(K±1)]1/2[J(J+1)−(K±1)(K±2)]1/2 (4.64)

Using the expressions described above, the SURFIT program can give the rotation and

vibration energy levels up to the fourth order without the centrifugal distortion and the Coriolis

coupling:

E(v, J)

hc
= G(v) + F (v, J) (4.65)

The first term G(v) has already been given in (4.61) and the secod term F(v,J) denotes

the eigenvalues of the Hamiltonian of rigid rotator Ĥ02 and of the most important part of the

rotation-vibration coupling terms in Ĥ22. F(v,J) takes different forms according to the types of

the concerned molecule. In this study, we will treat the linear molecule and then F(v,J) can be

rewritten as follows:
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F (v, l, J) = Bv[J(J + 1)− l2], Bv = Be +
∑

k

αb
k(vk +

dk

2
) (4.66)

For the linear molecule, there is no rotation around the molecular axes, thus K=l. The con-

stant αb
k included in the second equation denotes the vibrational dependency of the rotational

constant.

4.3.3 Variational resolution: RVIB3 program

The RVIB3 program, developed by Carter and Handy [27], gives a variational resolution for the

rotational and vibrational nuclear Hamiltonian expressed as follows. Diagonalizing the matrix

elements of the Hamiltonian with the initially constructed basis function, this method can reveal

the rovibronic or rovibrational energy levels and the corresponding wavefunctions.

In the case of a triatomic molecule, the nuclear kinetic operator can be expressed by the

terms T̂ v and T̂ vr, with the internal coordinates (R1,R2,θ).

T̂v(R1, R2, θ) = −1

4

(
1

µ1R2
1

+
1

µ2R2
2

− 2cosθ

mBR1R2

)(
∂2

∂θ2
+ cotθ

∂

∂θ

)

− 1

2µ1

∂2

∂R2
1

− 1

2µ2

∂2

∂R2
2

− cosθ

mB

∂2

∂R1∂R2

+
1

mB

(
1

R1

∂

∂R2
+

1

R2

∂

∂R1

)(
sinθ

∂

∂θ
+ cosθ

)
(4.62)

T̂vr(R1, R2, θ, Ĵ, L̂, Ŝ) =
1

8cos2θ/2

(
1

µ1R2
1

+
1

µ2R2
2

+
2

mBR1R2

)
(Ĵz + L̂z + Ŝz)

2

+
1

8sin2θ/2

(
1

µ1R2
1

+
1

µ2R2
2

− 2

mBR1R2

)
(Ĵx + L̂x + Ŝx)2

1

8

(
1

µ1R2
1

+
1

µ2R2
2

+
2

mBR1R2

)
(Ĵy + L̂y + Ŝy)

2

− 1

4sinθ

(
1

µ1R2
1

− 1

µ2R2
2

)
[Ĵz + L̂z + Ŝz, Ĵx + L̂x + Ŝx]+

+
i

2

(
1

µ1R2
1

− 1

µ2R2
2

)(
cotθ

2
+

∂

∂θ

)
(Ĵy + L̂y + Ŝy)

+
i

2

sinθ

mB

(
1

R2

∂

∂R1
− 1

R1

∂

∂R2

)
(Ĵy + L̂y + Ŝy) +ASOL̂ · Ŝ (6.63)

where all the included variables are defined, for the ABC triatomic molecule with the centered

B atom, as follows:

R1: interatomic distance between the A and B atoms.

R2: interatomic distance between the B and C atoms.
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θ: bending angle ÂBC.

µ1: reduced mass of the A atom mass mA and that of the B atom mB, 1/µ1 = 1/mA + 1/mB .

µ2: reduced mass of the B atom mass and that of the C atom mC , 1/µ2 = 1/mB + 1/mC .

ASOL̂ · Ŝ: inclusion of the spin-orbit coupling by the semi-empirical term.

Thus the Hamiltonian of issue can be given by:

Ĥ = T̂v + T̂vr + V̂ (4.64)

where V̂ denotes the potential energy surface obtained by the electronic calculations and is

actually taken from the polynomial expansion in term of the internal coordinates performed

precedently by the SURFIT program. For the degenerated electronic state, V̂ can be written

by the corresponding two components VX and VY , with the projection operators P̂X and P̂Y

on the X and Y two components of the degenerated state, respectively.

V̂ = VX P̂X + VY P̂Y (4.65)

In this study, however, the RVIB3 program will be employed to treat a 1Σ+ state, being non-

degenerated.

The next issue is how to establish the initial basis set, with which the size of the matrix ele-

ments is limited at best. In general, the wavefunctions of the electronic states and the eigenfunc-

tions of the electronic spins are introduced as initial basis set. For the singlet non-degenerated

electronic state, however, the construction of the basis functions is simple, because the eigen val-

ues of the L̂z and Ŝz operators equal to zero. Thus the corresponding functions are not included.

For the stretching vibrations with the R1 and R2 internal coordinates, the wavefunctions of

harmonic oscillator are employed, owning the following form:

Fn(Ri) = Cne
−

(Ri−Re
i )2

2β2 Hn(
Ri −Re

i

β
), β =

(
1

µifi

)1/4

(4.67)

where Re
i denotes the equilibrium distance of Ri, µi the reduced mass of the two correspond-

ing atoms, and fi the force constant. Hn represents the Hermite polynomial. For the case that

the stretching vibration has the large anharmonicity, the wavefunction of the Morse oscillator

can be applied.

For the bending vibration, the function is required to cancel all singularities arising in the

kinetic energy operator in linear geometry. To satisfy this claim, Carter and Handy use the

associated Legendre polynomial P
|l|
n (cosθ) with the bending coordinate θ. Because P

|l|
n (cosθ)

can be expressed for any |l| using the terms P 0
n(cosθ) and P 1

n(cosθ), it is sufficient to employ

P 0
n(cosθ) for even K and even Λ or odd K and odd Λ, or P 1

n(cosθ) for even K and odd Λ or

odd K and even Λ, where K denotes the quantum number of the operator Ĵz and Λ that of the

operator L̂z. The z axis of the molecule-fixed coordinate becomes the linear axis as the angle θ

tends to 180◦.
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The inclusion of the rotation part in the initial basis set is simplified for the 1Σ+ state of

our interest, because there is no contribution from the electronic orbital and the electronic spin

angular momenta. In general case, the eigenfunctions of the L̂2
z and the electronic spin function

should be included. For the singlet non-degenerated state, the rotation part in the basis function

consists of the Wang combinations of the rotation-matrix eigenfunctions:

DJ
m,K±(α, β, γ) =

1√
2
[DJ

m,K(α, β, γ) ±DJ
m,−K(α, β, γ)] (4.68)

DJ
m,K(α, β, γ) = eimαdJ

m,K(β)eiγK (4.69)

where α, β, and γ denote the Euler angles in the molecule-fixed coordinates (x, y, z) related to

the space-fixed coordinates (X, Y, Z). dJ
m,K(β) is the rotation matrix. m and K are respectively

the quantum numbers of the operator ĴZ and Ĵz. Taking 0 for m, DJ
m,K±(α, β, γ) becomes as

follows:

DJ
0,K±(α, β, γ) =

1√
2
[dJ

0,K(β)eiγK ± dJ
0,−K(β)e−iγK ] (4.70)

In this method, to reduce the dimension of the Hamiltonian matrix elements, diagonalization

are performed successively, starting with the smallest effective Hamiltonian where several coor-

dinates are fixed at equilibrium. The proper vectors obtained by the preceding diagonalization

are used as the basis functions for the next diagonalization of the larger Hamiltonian with more

variables. This procedure, developed by Carter and Handy, is quite effective to diagonalize the

rovibrational matrix.
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Second part: Applications

5 Electronic properties of the diatomic compounds concerned with
piezoelectric effects

6 Theoretical investigation of the HZnF molecule
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5 Electronic properties of the diatomic compounds concerned
with piezoelectric effects

5.1 Introduction

Piezoelectric effect is related to the electric polarization in solid and to its modification under an

applied strain, as is pyroelectric effect resulting from a change of temperature. The first demon-

stration of the direct piezoelectric effect was achieved in 1880 by Pierre and Jacques Curie, using

crystals of tourmaline, quartz, topaz, cane sugar, and Rochelle salt (sodium potassium tartrate

tetrahydrate), among which, quartz and Rochelle salt exhibited the largest piezoelectricity. The

converse piezoelectric effect, which is the induced strain under an applied electric field, was

found by Gabriel Lippemann in 1881.

Piezoelectric effects are generally observed in ionic semiconductor materials, involving a

metal of Group IIa, IIb, or III, and a non-metal of Group V or VI. Typical examples are ZnO

and AlN. Many theoretical studies have been performed during the last decades to obtain a

reliable representation of piezoelectric effects in solid of ZnO, ZnS, BeO, AlN, and AlP, leading

to the determination of their piezoelectric constants. Even at the molecular level, those diatomic

molecules, consisting of the same pair of elements which present the piezoelectric effects in solid

phase, have the following common feature; two low lying, very close electronic states, a 1Σ+ and

a 3Π states or a 3Π and a 3Σ− states, with different electric properties and slightly different

equilibrium geometries. Consequently, the ground state of the molecule changes abruptly with

a small modification of the geometry, resulting in a large change of the charge distribution.

The purpose of this study is to elucidate these properties of the low lying states of the

concerned diatomic compounds, and to examine whether these pairs of elements are good candi-

dates for piezoelectric effects in solid phase. First, we will present the theoretical developments

achieved during the last decades to obtain a reliable representation of the electric polarization

in solid under an applied strain and summarize the existing piezoelectric tensors reported the-

oretically and experimentally. Secondly will be discussed the electronic structures of the low

lying states of the ZnO and AlN diatomic molecules, which are already well known for piezo-

electric effects in solid phase, and of the ZnS and BN diatomic molecules for comparison in the

same families. The properties of the low lying states of Alkaline earth chalcogenides diatomic

molecules will also be investigated, based on highly correlated ab initio electronic calculations.

5.2 Piezoelectric effects in solid phase

Piezoelectric effect is characterized by the induced piezoelectric polarization P, which is related

to an applied strain ε and to the piezoelectric tensor eij . In the linear regime, these parameters

are connected as follows:

Pi =
∑

j

eijεj (5.1)

Then the piezoelectric tensor eij is obtained
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eij =
∂Pi

∂εj
(5.2)

In the wurtzite structure (hexagonal Bravais lattice, C6v point group), the unit cell contains

four atoms and is fully defined by the length of the hexagonal edge a0, the height of the prism

c0, and the fractional z coordinate u0 of the sublattice. In this structure, the piezoelectric tensor

eij has just three independent components [1]. Two of them are related to the polarization

induced along the c axis (e33) or in the basal plane (e31). The third component e15 describes the

polarization induced perpendicularly to the c axis by a shear strain. We focus on the components

e33 and e31 in this study and the polarization along the z axis P3 can be written as follows:

P3 = e33ε3 + e31(ε1 + ε2) (5.3)

where ε3 = (c− c0)/c0 and ε1 = ε2 = (a− a0)/a0.

In the last decades, many theoretical studies have been performed to calculate the induced

piezoelectric polarization P and to estimate the piezoelectric tensor. In the very early study,

Martin [2] revealed that the piezoelectric tensor is a bulk quantity and independent of sample

termination. The method was developed by King-Smith and Vanderbilt [3, 4], which uses the

Berry phase to calculate the piezoelectric polarization in function of the strain ε. Their method

has been applied and further developed in many other studies.

The Berry phase φh (h = 1,2,3) along the hth crystallographic axis under the strain ε is given

by the following formula:

φh =
2πV

|e| P · a∗
h =

V

4π2

∑

n

∫
dk < un(k)| − ia∗

h · ∇k|un(k) > (5.4)

where V denotes the unit-cell volume, |e| the electron charge, a∗
h the hth reciprocal lattice

vector, n the electron band index, k the wave vector in the first Brillouin zone, and un(x, k) =

ψn(x,k)exp(ik · x) where ψn(x,k) is the nth crystalline orbital as the eigenfunction of the one-

electron Hamiltonian. P, ah, and un(x,k) quantities depend on the ε parameter. ε can be

expressed by six components εk (k = 1,...,6). For the wurtzite structure, the strain can be

written as follows in the Voigt notation; [0,0,ε,0,0,0] for e33 and [ε,ε,0,0,0,0] for e31. Using the jth

direct lattice basis vector aj and its ith Cartesian component, we can express the piezoelectric

tensor eik by the following formula:

eik =
|e|

2πV

∑

j

aji
∂φj

∂εk
(5.5)

where we use the orthonormality between the direct and reciprocal lattice vectors.
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Table 1: Theoretical and experimental piezoelectric tensors e33 and e31 in solid with the wurtzite

structure.

Molecule e33 /C.m−2 e31 /C.m−2 Method Ref. and Year

ZnO 1.34 -0.57 LDA-DFT Gopal06(a)

0.89 -0.51 GGA-DFT Bernardini97(b)

1.19 -0.55 DFT Catti03(c)

0.92 -0.39 LDA-DFT Dal Corso94(d)

1.19 -0.53 CRYSTAL Noel01(e)

1.06-1.31 -0.54 to -0.69 CRYSTAL Noel02(f)

1.29 HF/DFT Wu05(g)

1.30 -0.66 DFT Hill00(h)

1-1.55 -0.36 to -0.62 Exp. Madelung87(i)

0.96 -0.62 Exp. Madelung93(j)

ZnS 0.18 -0.13 DFT Catti03(c)

0.24 -0.51 LDA-DFT DalCorso94(d)

0.34 -0.10 Exp. Madelung93(k)

CdO 1.67 -0.48 LDA-DFT Gopal06(a)

BeO 0.02 -0.02 GGA-DFT Bernardini97(b)

0.04 -0.07 CRYSTAL Noel01(e)

0.07 CRYSTAL Noel02(f)

0.10 DFT Hill00(h)

0.09 Exp. Madelung87(i)

MgO 1.64 -0.58 LDA-DFT Gopal06(a)

AlN 1.46 -0.60 GGA-DFT Bernardini97(b)

1.55 -0.58 Exp. Gualtieri94(l)

AlP 0.04 -0.02 LDA-DFT Gironcoli90(m)

GaN 0.73 -0.49 GGA-DFT Bernardini97(b)

InN 0.97 -0.57 GGA-DFT Bernardini97(b)

(a): Taken from ref. [14]: DFT calculations, standard LDA, pseudopotentials.

(b): Taken from ref. [13]: Plane wave, pseudopotential GGA DFT.

(c): Taken from ref. [10]: B3LYP and LDA DFT.

(d): Taken from ref. [8]: LDA-DFT Polarization calculations.

(e): Taken from ref. [5]: HF calculations.

(f): Taken from ref. [6]: HF, LDA-DFT, PBE-DFT, and B3LYP-DFT calculations.

(g): Taken from ref. [11]: HF, DFT.

(h): Taken from ref. [9]: Plane waves, pseudopotentials DFT.

(i): Taken from ref. [15, 16]: Experimental values.

(j): Taken from ref. [17, 18]: Experimental values.

(k): Taken from ref. [17, 19]: Experimental values.

(l): Taken from ref. [20]: Experimental value.

(m): Taken from ref. [21]: DFT, LDA approximation, pseudopotentials, Plane waves.
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In the other types of study, as an alternative to the delocalized crystalline orbitals introduced

in the Berry phase formalism, well-localized Wannier functions were successfully employed to

calculate the polarization properties [5] and several types of Hamiltonian have been checked

within the DFT methods [6]. New approaches as molecular dynamics simulations have been

used recently to evaluate the piezoelectric tensor in quartz crystal [7]. Among the previous

studies, the most investigated systems are ZnO [5, 6, 8–12], ZnS [8, 10], BeO [5, 6, 8], GaAs [3],

and (AlN, AlP, GaN, GaP, InN, InP) [13]. Finally we list in Table 1 the piezoelectric tensor e31

and e33 from the previous theoretical and experimental works.

5.3 General properties of the molecular structure

We will examine the characteristics of the low lying electronic states, which should be considered

as precursors of piezoelectric effects, in diatomic compounds with total eight valence electrons,

involving a di- or tri-valent metal. This type of diatomic compounds yields from a combination

either between a metal of Group IIa(Be, Mg, Ca) or IIb(Zn, Cd, Hg) with a valence electronic

configuration ns2 and a chalcogen (O, S, Se, Te) with a valence electronic configuration n’s2n’p4

or between an element of Group IIIa (B, Al) and an element of Group V (N, P) with a valence

electronic configuration ns2np1 and n’s2n’p3 respectively. The former compounds are named as

the II-VI compounds and the latter named as the III-V compounds.

5.3.1 Nature of the electronic states in the molecular region

The characteristics of the low lying electronic states of the concerned diatomic compounds can

be discussed using a simplified molecular orbitals (MOs) diagram constructed with the valence

ns and np atomic orbitals of both atoms and without the participative role of the (n-1)d shell,

as presented in Figure 1 for ZnO. In this diagram, the label of the MOs runs only from 1σ to 4σ

and from 1π to 2π for simplification, with increasing energy as follows; 1σ, 2σ, 1π, 3σ, 2π, and

4σ. Because of the difference of electronegativity between the two atoms, the three lowest MOs,

which are principally bonding orbitals, have the dominant character of the more electronegative

atom. The 3σ orbital, being the first anti-bonding molecular orbital and preferentially localized

on the metal atom, has a key role in these compounds and its energy relative to that of the

1π orbital depends on the difference of electronegativity between the two concerned atoms. If

the difference of electronegativity is large, the 3σ is higher in energy than the 1π orbital. Such

situation occurs generally for the II-VI compounds, in contrast, for a small difference of elec-

tronegativity, the 3σ can be lower in energy than the 1π orbital. The values of electronegativity

for concerned atoms are listed in Table 2.

With eight valence electrons, the two lowest 1σ and 2σ orbitals are fully occupied and the

four remaining electrons are contained in the 3σ and 1π orbitals. When the four electrons fill

completely the 1π orbital, the resulting configuration 1σ22σ21π4 leads the molecular system to

be ionic and strongly bound with a short bond length. The molecular state is a 1Σ+ state, which

is the ground state in many cases of the II-VI compounds. The first type of excited configuration
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is 1σ22σ21π33σ1, leading to a 3Π and a 1Π states whose energies are close to that of the 1Σ+

state. These states are less ionic than the 1Σ+ state due to an electron transferred back to the

metal and are less bound because one electron fills an anti-bonding orbital instead of a bonding

one. The 3Π state is lying energetically very close to the 1Σ+ state and can become alternatively

the ground state. The 1Π state is higher than these two states but generally within 1.0 eV (8065

cm−1). The second excited configuration is written as 1σ22σ21π23σ2. The lowest resulting state

is a 3Σ− state, being even less ionic and less bound than the 3Π and 1Π states. This state can

be the ground state in the III-V compounds as AlP [24–26].

Table 2: Spectroscopic data of the atoms concerned with this study.

Element χ(a) Term Energy(b)/cm−1 Element χ(a) Term Energy(b)/cm−1

Be 1.57 1Sg 0 O 3.44 3Pg 0
3Pu 21980 1Dg 15709

Be+ 2Sg 75262

Mg 1.31 1Sg 0 S 2.58 3Pg 0
3Pu 21877 1Dg 8843

Mg+ 2Sg 61731

Zn 1.65 1Sg 0
3Pu 32567

Zn+ 2Sg 75847

Cd 1.69 1Sg 0
3Pu 30865

Cd+ 2Sg 72601

Hg 2.00 1Sg 0
3Pu 40366

Hg+ 2Sg 84266

B 2.04 2Pu 0 N 3.04 4Su 0
4Pg 28810 2Du 19227

B+ 1Sg 66994

Al 1.61 2Pu 0 P 2.19 4Su 0
2Sg 25347 2Du 11368

Al+ 1Sg 48317

(a): Taken from ref. [22]. (b): Taken from ref. [23], averaged over the fine structure levels.
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Figure 1: Simplified molecular orbitals diagram for the concerned diatomic compounds (pre-
sented for ZnO).
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5.3.2 Nature of the electronic states in the asymptotic region

For the II-VI compounds, as presented in Table 2, the energy difference between the two lowest

dissociation asymptotes corresponds to the excitation energy from the 3Pg ground state to the
1Dg first excited state in the chalcogen atoms (O, S). The first dissociation asymptote results

from a combination between the 1Sg ground state of the metal atom and the 3Pg ground state

of the chalcogen atom, correlating with one 3Π and one 3Σ− molecular states. One 1Σ+, one
1Π, and one 1∆ molecular states result from the second one, corresponding to the 1Sg ground

state of the metal atom and the 1Dg first excited state of the chalcogen atom. All of the four

molecular states 1Σ+, 3Π, 1Π, and 3Σ− discussed in the last paragraph are adiabatically corre-

lated with these two lowest dissociation asymptotes. The 1∆ state correlated with the second

one lies generally higher in energy than the four others in the molecular region. The first ionic

asymptote lies above these two lowest neutral asymptotes, depending on the ionization energy

of the metal and on the electronic affinity of the chalcogen. The energy position of this ionic

asymptote and the size of atoms determine a zone of crossing between the ionic states and those
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correlated with the two lowest covalent asymptotes, which makes the main differences in the

II-VI compounds.

For the III-V compounds, the two lowest dissociation asymptotes differ by an excitation in

the N or P atom. The first one resulting from the 2Pu ground state of B or Al and the 4Su

ground state of N or P, correlates adiabatically with one 3,5Π and one 3,5Σ− molecular states.

One 1,3Σ+, one 1,3Σ−, one 1,3Π, one 1,3∆, and one 1,3Φ molecular states result from the second

one involving the 2Du excited state of N or P. All of the four states mentioned above are involved

in these two lowest dissociation asymptotes.

5.4 Molecular structure of the diatomic compounds concerned with piezo-
electric effects

Using a simplified molecular orbitals diagram as described in the last section, we have revealed

roughly the principal electronic properties of the low lying states of the diatomic compounds

concerned with piezoelectric effects. However for an accurate picture of these states, it is nec-

essary to perform highly correlated ab initio calculations by multi-configurational approaches.

In this study, for the first step, state averaged Multi Configuration Self Consistent Field (MC-

SCF) calculations [27, 28] have been carried out with valence active molecular orbitals to rep-

resent the wavefunction of the outer electrons. Taking the MCSCF wavefunctions as reference,

subsequently the internally contracted Multi Reference Configuration Interaction (MRCI) cal-

culations [29, 30] have been performed including the Davidson correction which approximates

contributions of higher excitation terms [31,32]. All these electronic structure calculations have

been realized with the MOLPRO program package [33].

Spin-orbit effects and zero-point energy of vibration are not taken into account in this study.

Because the main configurations of the 1Σ+ and the 3Π states (or between the 3Π and the 3Σ−

states) differ only by one spin-orbital (namely 1π/3σ), the spin-orbit coupling between two states

in each family could be considered to be of the same order of magnitude. As a consequence, it

is not a factor which can differentiate the charge transfer effect in the diatomic compound and

the resulting piezoelectric effects in solid phase.

5.4.1 Group IIb chalcogenides

The equilibrium distance re, the harmonic wavenumber ωe, the dipole moment µe, and the rel-

ative energy Te, for the lowest electronic states of the IIb-VI compounds MX (M = Zn, Cd, and

Hg, X = O and S) are compared and compiled with the available existing data to illustrate the

electronic characteristics as precursors for piezoelectric effects.

To take relativistic effects of heavy atoms into account, atomic pseudopotentials have been

employed for the metallic atoms [34] with the associated correlation consistent cc-pwCV5Z-PP

basis sets reported by Peterson et al. [35,36]. For the oxygen the aug-cc-pVnZ (n = 3, 4, 5)basis

sets [37,38] and for the sulfur the aug-cc-pV(n+d)Z (n = 3, 4, 5) basis sets [39,40] have been used
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respectively. Due to the multi-configurational character of these low lying states, it is required

to include more states in the calculations for an accurate description. In the MCSCF step, for

example, the included electronic states for both ZnO and ZnS are as follows; two 1Σ+, two 1Π,

one 1Σ−, one 1∆, two 3Π, two 3Σ−, and one 3∆ states. Taking the MCSCF wavefunction as

reference, the potential curves at the MRCI+Q level and the dipole moments at the MRCI level

have been calculated for the 1Σ+, 1Π, 3Π, and 3Σ− states, separately in each space and spin

symmetries. The (n-1)s, (n-1)p, (n-1)d, ns, and np orbitals of the metals were optimized in the

MCSCF calculations but neither the (n-1)s orbital nor (n-1)p orbital were correlated at both

the MCSCF and the MRCI steps. The MCSCF calculations have optimized the core orbitals

of the chalcogens, but the corresponding electrons have not been correlated in the MCSCF and

the MRCI steps.

Table 3: Spectroscopic constants of the low lying electronic states of ZnO and ZnS.

State Method re /bohr ωe /cm−1 Te /cm−1 µe /a.u.

ZnO
1Σ+

This work(a) MRCI+Q 3.22 753.6 0 1.69

Peterson07(b) MRCI+Q/CBS 3.23 721.7 0

Peterson07(b) CCSD(T) 3.223 731.2 0 2.10

Jensen07(c) DFT 3.33 1.90

Boldyrev97(d) QCISD 3.27 690 0 2.11

Kullie06(e) DFT 3.18 750

Dolg86(f) MRCI 3.27 643 2.49

Bauschlicher98(g) CCSD(T) 3.25 727 0

Bakalbassis96(h) ASED 3.19 813 1.76

Fancher98(i) Exp. 805 0

Kim01(j) Exp. 770 0

3Π

This work(a) MRCI+Q 3.47 571.4 1969 1.07

Peterson07(b) MRCI+Q/CBS 3.468 581.8 1920

Boldyrev97(d) QCISD 3.54 525 1734 1.03

Bauschlicher98(g) CCSD(T) 3.51 567 2097

Fancher98(i) Exp. 2016

Kim01(j) Exp. 3.50 540 2460

1Π

This work(a) MRCI+Q 3.44 742.4 3967 1.15

Kim01(j) Exp. 3.47 600 4960
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State Method re /bohr ωe /cm−1 Te /cm−1 µe /a.u.

ZnS
1Σ+

This work(a) MRCI+Q 3.87 472.7 0 2.01

Peterson07(b) MRCI+Q/CBS 3.867 459.4 0

Peterson07(b) CCSD(T) 3.886 453.5 0 2.00

Raptis99(k) CCSD(T) 3.91 1.99

Jensen07(c) DFT 4.01 1.90

Boldyrev97(d) QCISD 3.92 447 0 2.06

3Π

This work(a) MRCI+Q 4.22 347.0 3980 0.81

Peterson07(b) MRCI+Q/CBS 4.197 343.8 3840

Boldyrev97(d) QCISD 4.27 329 2258 0.71

1Π

This work(a) MRCI+Q 4.21 363.8 6888 0.86

(a): AV5Z basis set.

(b): Taken from ref. [42] : MRCI+Q and Complete basis set CBS extrapolation; dipole moment

calculated at the CCSD(T)/AVTZ level of theory; T0 values.

(c): Taken from ref. [45] : BLYP calculations.

(d): Taken from ref. [46] : QCISD(T) calculations, QCISD for dipole moment and ωe values.

(e): Taken from ref. [47] : Relativistic DFT calculations.

(f): Taken from ref. [48] : MRCI+Q calculations.

(g): Taken from ref. [49] : CCSD(T) calculations.

(h): Taken from ref. [50] : ASED-MO approach.

(i): Taken from ref. [51] : from photoelectron spectroscopy : T0 value.

(j): Taken from ref. [43] : from photoelectron spectroscopy : T0 value.

(k): Taken from ref. [52] : equilibrium geometry and dipole moment calculated at the CCSD(T)

level with relativistic correction.

The potentials curves of the low lying states of ZnO and ZnS calculated at the MRCI+Q

level, are presented in Figures 2 and 3. The electronic structures of these two compounds show

similar properties in the bonding region. It is clearly found that the 1Σ+ state is the lowest one

followed by the 3Π and the 1Π states in turn. These three states are lying quite close to each

other. The repulsive 3Σ− state has not been depicted in Figures 2 and 3. The dipole moments of

these four states of ZnO and ZnS, calculated at the MRCI level, are presented in Figures 4 and

5, showing the common characteristics in both compounds. The dipole value of the 1Σ+ state is

much higher than that of the two Π states, which lie somehow above that of the 3Σ− state. Ex-

cept for the dipole moment of the 1Π state, these values vary little with the interatomic distance.

The spectroscopic constants for the 1Σ+, 3Π, and 1Π states of ZnO and ZnS have been
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Figure 2: Potential energy curves of the low lying states of ZnO at the MRCI+Q level of theory.
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Figure 3: Potential energy curves of the low lying states of ZnS at the MRCI+Q level of theory.
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Figure 4: Dipole moments of the low lying states of ZnO at the MRCI level of theory.
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Figure 5: Dipole moments of the low lying states of ZnS at the MRCI level of theory.
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obtained using the NUMEROV algorithm [41] and are listed in Table 3. The previous values

are compiled together in Table 3 and the experimental and theoretical methods are mentioned

in the footnotes. Our calculated equilibrium distances of the 1Σ+ and 3Π states show good

agreement with those calculated by Peterson et al. [42] at the MRCI+Q level with the CBS

extrapolation method. The equilibrium distances of the 3Π state are longer by 0.25 and 0.35

bohr than those of the 1Σ+ state for ZnO and ZnS respectively. The energy differences of the
3Π state relative to the 1Σ+ ground state are found to be 1969 cm−1 for ZnO and 3980 cm−1

for ZnS in this study, which compare well with the values reported by Peterson et al. [42]. In

the case of ZnO, our calculated value is somehow smaller than the experimental values [43, 44].

In both compounds, the second 1Π excited state is well separated in energy from the 3Π first

excited state, by about 2000 cm−1 for ZnO and about 3000 cm−1 for ZnS. Except for a slightly

too small value for the 1Σ+ ground state of ZnO, our calculated dipole moments show good

agreement with the previous values. The ratio of the dipole moments between the 1Σ+ state

and the 3Π state is found to be 1.6 for ZnO and 2.5 for ZnS.

For the low lying states of CdO and CdS compounds, we show in Figures 6 and 7 the po-

tentials curves at the MRCI+Q level and in Figures 8 and 9 their dipole moments at the MRCI

level, using the AV5Z basis set. The calculated spectroscopic constants of the cadmium com-

pounds are presented in Table 4 and these for mercury compounds are listed in Table 5. In these

four compounds, the 1Σ+ and 3Π states are the two lowest states and the former is the ground

state except for HgO. There is no existing experimental data, however our results are in good

agreement with the spectroscopic values of the previous calculations. Our calculated excitation

energies Te of the 3Π states of CdO and HgO show the difference from these of Perterson et

al.. These discrepancies can be due to different number of states included in the state averaged

MCSCF calculations and inclusion of extrapolation to the Complete Basis Set. Based on our

calculation, the energy difference between these two lowest states ranges from 322 (HgO) to 2453

cm−1 (CdS). In all compounds, for the concerned two states, the ratio of the dipole moments is

equal to 2 or more and the difference of the equilibrium distances is about 0.4 bohr.
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Table 4: Calculated spectroscopic constants of the low lying electronic states of CdO and CdS.

State Method re /bohr ωe /cm−1 Te /cm−1 µe /a.u.

CdO
1Σ+

This work(a) MRCI+Q 3.61 622.3 0 2.21

Peterson07(b) MRCI+Q/CBS 3.619 604.3 0

Peterson07(b) CCSD(T) 3.627 597.1 0 2.22

Kullie06(c) DFT 3.56 628

3Π

This work(a) MRCI+Q 3.89 474 1225 1.32

Peterson07(b) MRCI+Q/CBS 3.891 482.9 626

CdS
1Σ+

This work (a) MRCI+Q 4.25 419.4 0 2.22

Peterson07(b) MRCI+Q/CBS 4.252 382.6 0

Peterson07(b) CCSD(T) 4.267 376.7 0 2.25

Raptis99(d) CCSD(T) 4.31 2.26

3Π

This work(a) MRCI+Q 4.61 294.4 2453 0.99

Peterson07(b) MRCI+Q/CBS 4.594 289.7 2413

(a): AV5Z basis set.

(b): Taken from ref. [42] : The energy values are calculated at the MRCI+Q level with the Com-

plete basis set CBS extrapolation. The dipole moments are calculated at the CCSD(T)/AVTZ

level of theory. T0 values.

(c): Taken from ref. [47] : Relativistic DFT calculations.

(d): Taken from ref. [52] : Equilibrium geometry and dipole moment calculated at the CCSD(T)

level with relativistic correction.
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Table 5: Calculated spectroscopic constants of the low lying electronic states of HgO and HgS.

State Method re /bohr ωe /cm−1 Te /cm−1 µe /a.u.

HgO
1Σ+

This work(a) MRCI+Q 3.62 610.0 0 1.85

Peterson07(b) MRCI+Q/CBS 3.602 612.6 0

Peterson07(b) CCSD(T) 3.627 594.5 0 1.83

Kullie06(c) DFT 3.55 648

3Π

This work(a) MRCI+Q 4.06 337.1 -322 0.96

Peterson07(b) MRCI+Q/CBS 4.075 302.2 -70

HgS
1Σ+

This work(a) MRCI+Q 4.23 383.4 0 1.88

Peterson07(b) MRCI+Q/CBS 4.256 357.7 0

Peterson07(b) CCSD(T) 4.282 349.3 0 1.73

Raptis99(d) CCSD(T) 4.33 1.74

Guitou07(e) MRCI+Q/CBS 4.24 363 0 1.89

3Π

This work(a) MRCI+Q 4.76 190.3 859 0.53

Peterson07(b) MRCI+Q/CBS 4.751 188.1 1486

Guitou07(e) MRCI+Q/CBS 4.82 150 1557 0.72

1Π

Guitou07(e) MRCI+Q/CBS 4.54 298 5823 0.87

(a): AV5Z basis set.

(b): Taken from ref. [42] : The energy values are calculated at the MRCI+Q level with the Com-

plete basis set CBS extrapolation. The dipole moments are calculated at the CCSD(T)/AVTZ

level of theory. T0 values.

(c): Taken from ref. [47] : Relativistic Dirac-Fock-Slater DFT calculations.

(d): Taken from ref. [52] : Equilibrium geometry and dipole moment calculated at the CCSD(T)

level with relativistic correction.

(e): Taken from ref. [53] : MRCI+Q calculations with Complete Basis Set CBS extrapolation.

We can summarize the characteristics of the two lowest states at the diatomic level as pre-

cursors for piezoelectric effects: (1) the small difference between the equilibrium distances (2)

the large difference between the dipole moments in the molecular region (3) the small energy

difference between the two lowest states. For the zinc compounds, according to these criteria, it
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Figure 6: Potential energy curves of the low lying states of CdO at the MRCI+Q level of theory.
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Figure 7: Potential energy curves of the low lying states of CdS at the MRCI+Q level of theory.
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Figure 8: Dipole moments of the low lying states of CdO at the MRCI level of theory.

 1

 1.5

 2

 2.5

 3.2  3.4  3.6  3.8  4  4.2

D
ip

ol
e 

m
om

en
t [

a.
u.

]

R(Cd-O) [bohr]

1Σ+

3Π

Figure 9: Dipole moments of the low lying states of CdS at the MRCI level of theory.

 1

 1.5

 2

 2.5

 3.8  4  4.2  4.4  4.6  4.8

D
ip

ol
e 

m
om

en
t [

a.
u.

]

R(Cd-S) [bohr]

1Σ+

3Π

59



Figure 10: Potential energy curves of the low lying states of HgO at the MRCI+Q level of theory.
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Figure 11: Potential energy curves of the low lying states of HgS at the MRCI+Q level of theory.
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Figure 12: Dipole moments of the low lying states of HgO at the MRCI level of theory.
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Figure 13: Dipole moments of the low lying states of HgS at the MRCI level of theory.
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can be concluded that ZnO is a better candidate for piezoelectric effects than ZnS, in consistency

with the piezoelectric coefficients presented in Table 1. The Cadmium and mercury compounds

satisfy well these conditions and are expected to be important for piezoelectric effects. For CdO,

the calculated piezoelectric tensors 1.64 (e33) and -0.48 Cm−2 (e31) confirm our analysis.

5.4.2 III-V molecular compounds

In this paragraph we report the properties of the lowest states of BN, BP, AlN, and AlP as ex-

amples of the III-V compounds, from all electron electronic structure calculations at the MRCI

level including the Davidson correction. Using the correlation consistent aug-cc-pVnZ (n = 3,

4, 5) basis sets of Dunning and coworkers [37–40] for the B, P, N, and Al atoms, the MCSCF

calculations have been performed in the first step, from which the wavefunctions have been

taken as reference in the subsequent MRCI calculations. The active space has been defined as

the valence space and all valence electrons have been correlated in both the MCSCF and MRCI

steps. The Complete Basis Set extrapolation approach for the n = 4, 5 basis sets has been

applied, determining the parameters in the following equation [54, 55].

E(n) = ECBS +B/n3 (5.6)

We show the potential curves of the eight lowest electronic states of BN in Figure 14 and

their dipole moments in Figure 15. Table 6 lists the spectroscopic constants for the three lowest

states of BN, which compare quite well with the previous values. As seen in Figure 14, the

lowest state is the 3Π state, followed closely by the 1Σ+ state with the Te value of 242 cm−1.

The next one is the 1Π state lying parallel to the potential curve of the 3Π state, with an energy

difference of more than 3700 cm−1. Our calculated equilibrium distances at the CBS limit are

2.419, 2.517, and 2.521 bohr for the 1Σ+ state, the 3Π state, and the 1Π state respectively.

This trend is consistent with our discussions, based on a simplified molecular orbitals picture.

The dipole moments of these three states are almost constant in the concerned region. The

spectroscopic data for BP have been recently provided by Linguerri et al. [56] and are listed

in Table 7 with the values of the previous calculations. Based on these spectroscopic values, it

appears that the 3Π state and the 1Σ+ state are the two lowest ones with a small difference of the

dipole moments and a large energy difference. According to the quite small difference of their

dipole moments, neither BN nor BP can induce an electric change under an applied strain in

solid. Thus the BN and BP compounds are found to have little capability for piezoelectric effects.
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Table 6: Spectroscopic constants of the low lying electronic states of BN.

State Method re /bohr ωe /cm−1 Te /cm−1 µe /a.u.
3Π

This work(a) MRCI+Q 2.517 1525.2 0 0.78
MRCI+Q/CBS 2.513 1531.6 0

Denis04(b) CCSD(T) 2.513

Martin92(c) MRCI 2.527 1494.9 0

Bauschlicher96(d) MRCI+Q 2.515 1506 0

Peterson95(e) MRCI+Q 2.510 1508.2 0 0.780

Gan06(f) FCI 2.524 0

Lu05(g) DQMC 2.516 1529 0

Lorenz96(h) Exp. 1519.2 0

1Σ+

This work(a) MRCI+Q 2.419 1725.1 304.2 0.76
MRCI+Q/CBS 2.419 1725.1 242.0

Denis04(b) CCSD(T) 2.402

Martin92(c) MRCI 2.400 1733.7 160

Bauschlicher96(d) MRCI+Q 2.417 1694 180

Peterson95(e) MRCI+Q 2.413 1697.5 305 0.766

Gan06(f) FCI 2.408 328.8

Lu05(g) DQMC 2.410 1709 178

Karton06(i) CCSDTQ 158

Lorenz96(h) Exp. 1700.9 15-182

Asmis98(j) Exp. 2.408 153

1Π

This work(a) MRCI+Q 2.521 1541.2 3735.0 0.88
MRCI+Q/CBS 2.518 1547.0 3700.2

Bauschlicher96(d) MRCI+Q 2.534 1476.7 3633

Lorenz96(h) Exp. 1532.5 3646

Asmis98(j) Exp. 2.513 3767

(a): MRCI+Q calculation and AV5Z basis set. The Complete Basis set CBS extrapolation has

also been applied. Absolute energy value calculated at the minimum of the 1Σ+ state of BN :

-79.29307098 a.u.

(b): Taken from ref. [57] CCSD(T) calculations.

(c): Taken from ref. [58] MRCI calculations.

(d): Taken from ref. [59] MRCI+Q calculations.

(e): Taken from ref. [60] MRCI calculations.

(f): Taken from ref. [61] Full CI calculations.

(g): Taken from ref. [62] Diffusion Quantum Monte Carlo calculations.

(h): Taken from ref. [63] Fourier transform absorption and laser-induced fluorescence.
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(i): Taken from ref. [64] CCSDTQ calculations.

(j): Taken from ref. [65] Anion photoelectron spectroscopy.

Table 7: Calculated spectroscopic constants of the low lying electronic states of BP.

State Method re /bohr ωe /cm−1 Te /cm−1 µe /a.u.

BP
3Π

Boldyrev93(a) QCISD 3.322 1148 0

Boldyrev94(b) MRCISD 3.335 897 0

Linguerri08(c) MRCI+Q 3.303 941 0 0.06

1Σ+

Boldyrev93(a) QCISD 3.182 1072 2378

Boldyrev94(b) MRCISD 3.188 1026 3113

Linguerri08(c) MRCI+Q 3.176 1040 2548 0.27

1Π

Linguerri08(c) MRCI+Q 3.329 934 3145 1.05

3Σ−

Boldyrev93(a) QCISD 3.672 585 6890

Linguerri08(c) MRCI+Q 3.721 634 7412 0.21

(a): Taken from ref. [25] QCISD calculations (MP2 results for the ωe values).

(b): Taken from ref. [66] MRCISD+Q calculations.

(c): Taken from ref. [56] MRCI+Q calculations, aug-cc-pV6Z.
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Figure 14: Potential energy curves of the low lying states of BN at the MRCI+Q level of theory.
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Figure 15: Dipole moments of the low lying states of BN at the MRCI level of theory.

-1

-0.5

 0

 0.5

 1

 1.5

 2  2.5  3  3.5  4

D
ip

ol
e 

m
om

en
t [

a.
u.

]

R(B-N) [bohr]

1Σ+

1∆
1Π

3Σ+

3Π

23Π
3Σ-

65



Figure 16: Potential energy curves of the low lying states of AlN at the MRCI+Q level of theory.
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Figure 17: Dipole moments of the low lying states of AlN at the MRCI level of theory.
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Figure 18: Potential energy curves of the low lying states of AlP at the MRCI+Q level of theory.
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Figure 19: Dipole moments of the low lying states of AlP at the MRCI level of theory.
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The potential curves of the lowest electronic states of AlN, calculated at the MRCI+Q level,

are presented in Figure 16 and the corresponding dipole moments, calculated at the MRCI

level, are shown in Figure 17. Figures 18 and 19 show respectively the potential curves (at the

MRCI+Q level) and the dipole moments (at the MRCI level) of the five lowest states of AlP. In

Tables 8 and 9, we list also the corresponding spectroscopic constants of the these lowest states of

AlN and AlP together with the previous available data. The behaviour of their potential curves

and of their dipole moments, specially those of the 1Σ+ and 3Σ− states, are quite different from

the case of BN, due to the large difference of electronegativity and of size between B and Al.

It becomes clear that the 3Π state and the 3Σ+ state are the two lowest ones and separated in

energy from the other electronic states. From our calculations, the ground state is the 3Π state

in AlN, contrary to the 3Σ− state in AlP. As shown in Tables 8 and 9, the energy differences

between the 3Σ− state and the 3Π state are very small and even negative, which remains yet a

controversial problem, even with the AV5Z basis sets, as to know which is lower between these

two states. From our results on AlN, the 3Σ− state lies at 471.7 cm−1 above the 3Π ground state

with a difference of the equilibrium distances of 0.27 bohr. The ratio of 1.6 is found between the

dipole moments of the 3Π and the 3Σ− states. For AlP, the energy difference, the ratio of the

dipole moments, and the difference of the equilibrium distances between the two lowest states

are found to be 35 cm−1, 2, and 0.378 bohr. Beside the question of the determination of the

ground state, these features of the two lowest states imply that AlN and AlP are good candidates

for piezoelectric effects. The piezoelectric tensors of AlN in Table 1 support our conclusion on

AlN, however the previous DFT calculations [21] performed on the blende structure of AlP are

showing indeed that AlP does not present significant piezoelectric properties.
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Table 8: Spectroscopic constants of the low lying electronic states of AlN.

State Method re /bohr ωe /cm−1 Te /cm−1 µe /a.u.
3Π

This work(a) MRCI+Q 3.399 751.1 0 1.08

Langhoff88(b) MRCI+Q 3.436 738 0 1.019

Gutsev99(c) CCSD 3.384 756 -20.6 1.037

Gan06(d) FCI 3.422 0

Chase98(e) Exp. 3.376 746.9

3Σ−

This work(a) MRCI+Q 3.673 700.1 471.7 0.68

Langhoff88(b) MRCI+Q 3.683 587 99 0.650

Gutsev99(c) CCSD 3.620 628 0 0.632

Gan06(d) FCI 3.652 38.5

1Σ+

This work(a) MRCI+Q 3.164 953.3 3822.2 1.79

Langhoff88(b) MRCI+Q 3.202 913 4689

Gutsev99(c) CCSD 3.150 985 3359

Gan06(d) FCI 3.184 4232.0

Stull71(f) Exp. 3.118 930

1Π

This work(a) MRCI+Q 3.340 828.6 6059.6 1.59

3Σ+

This work(a) MRCI+Q 3.120 990.9 14617.2 1.60

(a): AV5Z basis set. Minimal energy relative to the minimum of the ground state.

(b): Taken from ref. [67] MRCI+Q calculations.

(c): Taken from ref. [68] CCSD(T) calculations.

(d): Taken from ref. [61] Full CI calculations.

(e): Taken from ref. [69] Experimental value.

(f): Taken from ref. [70] Experimental value.
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Table 9: Spectroscopic constants of the low lying electronic states of AlP.

State Method re /bohr ωe /cm−1 Te /cm−1 µe /a.u.

AlP
3Σ−

This work(a) MRCI+Q 4.575 370.3 0 0.44

Gan06(b) FCI 4.596 0

Boldyrev93(c) QCISD 4.584 361 0

Gomez02(d) Exp. 4.536 379 0

3Π

This work(a) MRCI+Q 4.197 467.1 34.8 0.89

Gan06(b) FCI 4.220 381.2

Boldyrev93(c) QCISD 4.214 487 455

Gomez02(d) Exp. 4.270 457 943

1Π

This work(a) MRCI+Q 4.153 503.7 3399.2 1.15

Gomez02(d) Exp. 470 4161

1Σ+

This work(a) MRCI+Q 3.965 556.2 3993.3 1.34

Gan06(b) FCI 3.984 4567.8

Boldyrev93(c) QCISD 3.868 670 4687

Gomez02(h) Exp. 541 4629

(a): AV5Z basis set. Minimal energy relative to the minimum of the ground state.

(b): Ref. [61] Full CI calculations.

(c): Ref. [25] QCISD calculations (MP2 results for the ωe values).

(d): Ref. [26] Anion photoelectron spectroscopy and ZEKE spectroscopy.

5.4.3 Alkaline earth chalcogenides

We discuss below the properties of the lowest electronic states of the MX (M = Be, Mg and X =

O, S) compounds as examples for alkaline earth chalcogenides. All electron electronic structure

calculations have been performed, using the correlation consistent aug-cc-pVQZ basis sets for

the Be, Mg, O, and S atoms [39]. The external four σ and two π orbitals were optimized and

the eight valence electrons were correlated in the MCSCF step. Due to the multi configurational

character of the 1Σ+, 1Π, and 3Π states, the MCSCF calculations have included the following

states; one 1Σ+, two 1Π, and two 3Π states for BeO, one 1Σ+, two 1Π, and one 3Π states for BeS,

and two 1Σ+, one 1Π, and one 3Π states for MgO and MgS. Taking the MCSCF wavefunction as

reference, the subsequent MRCI calculations with the Davidson correction have been performed
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in each space and spin symmetries, as well as in the MCSCF step. In the MRCI calculations, all

the electrons have been correlated. The size of the calculations in the MRCI step ranges from

0.5 million (for the 1Π state of BeO) to 45 million (for the 3Π state of MgO) with respect to the

number of variational parameters.

Table 10: Spectroscopic constants of the low lying electronic states of the Alkaline earth

chalcogenides.

State Method re /bohr ωe /cm−1 T
(b)
e /cm−1 µe /a.u.

BeO
1Σ+

This work(a) MRCI+Q 2.530 1471.7 0 2.56

Buenker07(c) MRD-CI 2.531 1463 0 2.42

Srnec05(d) MRCI 2.538 0

Gutsev97(e) CCSD(T) 2.517 1491.2 2.46

Fuentealba00(f) DFT 2.492 1512.0

Huber79(g) Exp. 2.515 1487.3 0 2.26

3Π

This work(a) MRCI+Q 2.784 1161.0 7871 0.51

Buenker07(c) MRD-CI 2.792 1112 8476 0.48

Huber79(g) Exp. 8480(h)

1Π

This work(a) MRCI+Q 2.781 1141.8 8776 0.44

Buenker07(c) MRD-CI 2.786 1135 9992 0.48

Srnec05(d) MRCI 10461(i)

Huber79(g) Exp. 2.765 1144.2 9406

(a): MRCI+Q level of theory, using the aug-cc-pVQZ basis sets for all atoms.

(b): Absolute energy values calculated at the minimum of the 1Σ+ ground state : -89.78089194

a.u. for BeO, -412.63209154 a.u. for BeS, -275.14591579 a.u. for MgO and -597.69675700 a.u.

for MgS.

(c): Taken from ref. [71], using the cc-pVTZ basis sets with additional s and p type diffuse

functions for Be and O atoms.

(d): Taken from ref. [72], using the cc-pVTZ basis sets for Be, Mg, O, and S.

(e): Taken from ref. [73], using the large atomic natural orbital basis of Widmark-Malmqvist-

Roos (WMR) contracted as (14s9p4d3f)/[7s7p4d3f] for Be and O, and as (17s12p5d4f)/[7s7p5d4f]

for Mg.

(f): Taken from ref. [74], calculated by the hybride density functional method (B3LYP), using

the two-valence electron pseudopotentials for Be and Mg with the (6s6p5d1f)/[5s5p4d1f] basis

sets. The O atom was treated at the all-electron level using the 6-331G** basis sets.
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State Method re /bohr ωe /cm−1 T
(b)
e /cm−1 µe /a.u.

MgO
1Σ+

This work(a) MRCI+Q 3.309 789.5 0 2.32

Srnec05(d) MRCI 3.348 0

Gutsev97(e) CCSD(T) 3.288 818.3 2.53

Fuentealba00(f) DFT 3.309 789.0

Thümmel89(m) MRD-CI 3.377 806 0

Bauschlicher01(n) ACPF 3.347 760 0

Huber79(g) Exp. 3.305 785.0 0

Kim01(o) Exp. 780 0

Busener87(s) Exp. 2.4

3Π

This work(a) MRCI+Q 3.536 653.5 2134 1.17

Thümmel89(m) MRD-CI 3.605 615 1929

Bauschlicher01(n) ACPF 3.568 645 1766

Huber79(g) Exp. 3.401(h) 650(h) 2400(h)

Kim01(o) Exp. 3.522 600 2510/2520

Ikeda77(p) Exp. 648 2623

Mürtz95(q) Exp. 3.532 650 2620

1Π

This work(a) MRCI+Q 3.525 664.3 3768 1.21

Srnec05(d) MRCI 3054(i)

Thümmel89(m) MRD-CI 3.570 677 2666

Bauschlicher01(n) ACPF 3.560 654 2621

Huber79(g) Exp. 3.522 664.4 3563

Kim01(o) Exp. 3.503 650 3390/3400

(g): Taken from ref. [24]

(h): This value is still uncertain.

(i): Deduced from the vertical absorption X1Σ+ - A1Π.

(j): Taken from ref. [75], using the polarized basis sets (POL) contracted as (10s6p4d)/[5s3p2d]

for Be and (13s10p4d)/[7s5p2d] for S.

(k): Calculated at the experimental equilibrium geometry of 3.291 bohr.

(l): Taken from ref. [76], analyzed the spectroscopic data obtained by Cheetham et al. [Trans.

Faraday Soc. 61, 1308-1316 (1965)], based on the CI calculations with STO basis sets for Be

and O.

(m): Taken from ref. [77], calculated at the MRD-CI level using the [7s5p2d] basis sets for Mg

and the [4s4p2d] basis sets for O.

(n): Taken from ref. [78], using the cc-pVQZ basis sets for Mg and the aug-cc-pVQZ for O.
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State Method re /bohr ωe /cm−1 T
(b)
e /cm−1 µe /a.u.

BeS
1Σ+

This work(a) MRCI+Q 3.298 998.8 0 2.04

Srnec05(d) MRCI 3.328 0

Noga97(j) CCSD(T) 2.05(k)

Huber79(g) Exp. 3.291 997.9 0

3Π

This work(a) MRCI+Q 3.605 761.5 6769 0.24

Pouilly82(l) Exp. 3.626 737 7100

1Π

This work(a) MRCI+Q 3.610 769.8 7764 0.20

Srnec05(d) MRCI 9039(i)

Huber79(g) Exp. 3.605 762.5 7960

Pouilly82(l) Exp. 3.607 762.1 7962

State Method re /bohr ωe /cm−1 T
(b)
e /cm−1 µe /a.u.

MgS
1Σ+

This work(a) MRCI+Q 4.064 524.2 0 2.78

Srnec05(d) MRCI 4.103 0

Huber79(g) Exp. 4.049 529

Walker97(r) Exp. 4.049

3Π

This work(a) MRCI+Q 4.391 427.0 3170 1.16

1Π

This work(a) MRCI+Q 4.386 449.0 4173 1.18

Srnec05(d) MRCI 4682(i)

(o): Taken from ref. [43], vibrationally resolved photoelectron spectra of MgO− using two dif-

ferent methods.

(p): Taken from ref. [79], photoluminescence spectra.

(q): Taken from ref. [80], observed the A1Π-X1Σ+ and a3Π-X1Σ+ bands, by the Faraday laser

magnetic resonance (LMR) technique.

(r): Taken from ref. [81], microwave Fourier Transform Spectroscopy.

(s): Taken From ref. [82], Stark quantum beat spectroscopy.
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Figure 20: Potential energy curves of the low lying states of BeO at the MRCI+Q level of theory.
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The potential curves and the dipole moments for the three lowest states, calculated at the

MRCI+Q level and at the MRCI level respectively, appear quite similar among these alkaline

earth chalcogenides, as shown in Figures 20 to 27. The spectroscopic constants obtained from

the MRCI+Q level calculations are listed in Table 10 for the three lowest 1Σ+, 1Π, and 3Π

states. From the figures of the potential curves, the three lowest states of all compounds present

the typical tendencies that were explained using a simplified MOs diagram: the ground state

is the 1Σ+ state followed by the 3Π state. The 1Π state is the third one in energy lying quite

close to the 3Π state. The separation in energy is less than 1 eV in the investigated interatomic

distances. We can also summarize the common features of the dipole moments as follows: the
1Σ+ state has an almost constant value much larger than those of two Π states which are in-

creasing when increasing the interatomic distance. In Table 10, the ratio of the dipole moments

between the 1Σ+ state and 3Π state is shown to be much larger in beryllium compounds than

in magnesium compounds. These compounds show in common that the equilibrium distance

of the 1Σ+ state is slightly shorter by 0.23-0.32 bohr than that of the 3Π state. However the

energy differences of the 3Π state relative to the 1Σ+ state are found to be about 2100 cm−1 for

MgO and 3200 cm−1 for MgS, in contrast to the large differences of 7900 cm−1 for BeO and of

6800 cm−1 for BeS. Considering these data, we can conclude that the magnesium compounds

are better candidates for piezoelectric effects than the beryllium compounds, in agreement with

the calculated piezoelectric tensors listed in Table 1.
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Figure 21: Dipole moments of the low lying states of BeO at the MRCI level of theory.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2  2.5  3  3.5  4  4.5  5

D
ip

ol
e 

m
om

en
t [

a.
u.

]

R(Be-O) [bohr]

1Σ+

3Π
1Π

5.5 Conclusions

In this study, we have presented an accurate description of the electronic structure of the low

lying states of the diatomic compounds, IIb chalcogenides (M = Zn, Cd, Hg and X = O, S), III-V

compounds (M = B, Al and X = N, P), and alkaline earth chalcogenides MX (M = Be, Mg and

X = O, S), based on electronic structure calculations at the MRCI+Q level with the appropriate

large basis sets. The common characteristics at the diatomic level as precursors for piezoelectric

effects have been revealed as follows: the two low lying states are very close in energy with

slightly different bonding distances and different charge distributions. These properties lead to

a mechanism such that an abrupt change occurs in the electronic structure and in the electric

polarization of the molecule under a small geometric distortion with a small variation of energy.

Based on these criteria, we have examined what is a good candidate for piezoelectric effects and

compared with the existing piezoelectric tensors determined in solid phase.
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Figure 22: Potential energy curves of the low lying states of BeS at the MRCI+Q level of theory.
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Figure 23: Dipole moments of the low lying states of BeS at the MRCI level of theory.
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Figure 24: Potential energy curves of the low lying states of MgO at the MRCI+Q level of
theory.
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Figure 25: Dipole moments of the low lying states of MgO at the MRCI level of theory.
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Figure 26: Potential energy curves of the low lying states of MgS at the MRCI+Q level of theory.
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Figure 27: Dipole moments of the low lying states of MgS at the MRCI level of theory.
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6 Theoretical investigation of the HZnF molecule

6.1 Introduction

Zinc is an interesting metal because of its important role in synthetic organic chemistry as well

as in biological system. For example, zinc dichloride is reported to be a highly efficient catalyst

in the alkylation of ketones [1]. As the second most abundant transition metal in the body, zinc

has been related to neurological effects such as Alzheimer’s disease [2]. Furthermore, zinc is

an important biological trace metal present in many enzymes, including alcohol dehydrogenase,

carbonic anhydrase, DNA and RNA polymerase, carboxypeptidase, and thermolysin [3]. On

the other hand, a particular interest for the vibrational spectroscopy of the compounds con-

taining Zn is the abundance of the various stable isotopes; the isotopes of Zn are 64Zn(48.6%),
66Zn(27.9%), 68Zn(18.8%), 67Zn(4.1%), and 70Zn(0.6%) [4]. Their isotopomers make a specific

signature in the vibrational spectra.

Recently, three experimental and theoretical studies have been reported to investigate the

ground state of zinc hydrochloride HZnCl. First, Macrae et al. [5] prepared HZnCl in Ar cold

matrices and recorded their infrared spectrum, from which they estimated three normal modes

of vibration. However, because of the absence of rotational analysis, no data were extracted

for the bond lengths. Later, the vibration-rotation emission spectrum of gaseous HZnCl was

recorded by Yu et al. [6]. Their spectrum appeared to be complicated due to a small value of

the rotational constant 2B and the abundant different isotopomers of HZnCl. Their determi-

nation of the bond lengths became quite confused because of many uncertainties arising from

this spectrum complexity. From the calculations at the RCCSD(T) level including one-electron

Douglas-Kroll-Hess relativistic effects, Kerkines et al. [7] have obtained reliable values of the

bond lengths and the harmonic wavenumbers of the three normal modes.

Motivated by these successful studies, we try to investigate the ground state of HZnF, which

has never been studied up to now. Starting with the ZnH and ZnF diatomic molecules, the

spectroscopic characteristics of the ground state of HZnF will be revealed, based on highly cor-

related ab initio calculations. In the first section, to confirm our method including relativistic

effects by pseudopotentials, we will perform the electronic structure calculations of the low ly-

ing states of ZnH and compare our results with the existing data. The low lying states of the

ZnH+ cation, which has been less studied, will be treated using the same ansatz to calculate

the ionization energy relative to the ground state of ZnH. This quantity will be involved in the

ionic dissociation asymptote of ZnH+ and F− in linear geometry.

In the second section, we will present the results from the electronic structure calculations

of the low lying states of ZnF, using the pseudopotentials for both Zn and F atoms. This part

is contributed not only to validate our method, but also to reveal the properties of the low lying

states of ZnF. These informations are necessary to investigate the dissociation asymptotes into

H and ZnF. However, there is actually no reliable information on these states, except for the

ground state. Based on highly correlated ab initio calculations, their electronic structures and

the corresponding calculated spectroscopic constants will be discussed. Vibronic transitions can
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occur between the ground state and the excited bound states and the corresponding vibrationally

resolved absorption spectra will be simulated. Additionally, we will show the results of ZnF−

anion and ZnCl, obtained from the same method as for ZnF, and compare with the existing data.

At the end of this chapter, the study of the ground state of HZnF will be presented. First, we

will reveal globally the properties of the low lying states of HZnF from the MCSCF calculations

and then will report, at the MRCI+Q level, the determination of the potential energy surface

of the ground state, from which the spectroscopic characteristics will be extracted. The effects

of the isotopic substitutions of Zn will be shown in term of the harmonic wavenumbers of the

normal vibration modes and of the rovibrational levels. To obtain the accurate description of

the ground state, it will be required to include into the calculations at the MCSCF level many

low lying excited states and then this point will need many efforts to determine how many

excited states should de considered. Based on the calculated electronic structures of the low

lying states of the concerned diatomic fragments, Table 11 shows, as the preliminary results, the

lowest covalent and ionic dissociation asymptotes of HZnF in linear geometry.

Table 11: Lowest covalent and ionic dissociation asymptotes of HZnF with the resulting low
lying electronic states in linear geometry.

Dissociation asymptotes Energies(a) [eV] Molecular states

HZn + F

ZnH(X2Σ+) + F(2Pu) 0 1,3Σ+, 1,3Π
ZnH(A2Π) + F(2Pu) 2.888 1,3Σ+, 1,3Π, 1,3∆, 1,3Σ−

ZnH(B2Σ+) + F(2Pu) 3.470 1,3Σ+, 1,3Π
ZnH+(X1Σ+) + F−(1Sg) 4.096 1Σ+

H + ZnF

H(2Sg) + ZnF(X2Σ+) 0 1,3Σ+

H(2Sg) + ZnF(A2Π) 4.634 (Tv)
1,3Π

H(2Sg) + ZnF(B2Σ+) 4.101 1,3Σ+

H(2Sg) + ZnF(C2Π) 4.876 1,3Π
H(2Sg) + ZnF(D2Σ+) 6.694 1,3Σ+

H(2Sg) + ZnF(2∆/2Σ−) 8.323 (Tv)
1,3∆/1,3Σ−

H(2Sg) + ZnF(2Π) 9.907 (Tv)
1,3Π

(a): Taken from our calculations at the MRCI + Q level. Te values are used for the bound

states and Tv vertical values at the equilibrium distance of the ground state for the repulsive

states. The Atomic energies are taken from [8] and are averaged over the fine structure levels.
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6.2 ZnH diatomic molecule and ZnH+ cation

6.2.1 Introduction

We have considered the zinc mono-hydride diatomic molecule (ZnH) and its anion (ZnH+), as

the first step in the study of the HZnF triatomic molecule. Since the beginning of the 1920s,

many works have been carried out on the X2Σ+ ground state of ZnH and on its low lying excited

states. ZnH is also a molecule of astrophysical interest [9, 10]. Wojslaw and Peery identified

the spectrum lines corresponding to the A2Π(v=0,1) - X2Σ+(v’=0) vibronic transitions of ZnH

in the violet spectrum of the cool carbon star 19 Piscium between 398 and 434 nm. Recently

Shayesteh et al. [11] reported their multi-isotopologue analyses of the ground state from the ob-

served infrared emission spectra. The most recent theoretical work of Kerkines et al. [7] indicated

that the one electron relativistic effects estimated within the second-order Douglas-Kroll-Hess

(DKH) approximation are important to obtain an accurate description of the ground state of

ZnH. The DKH approximation bases the idea on reduction of the coupling between the positron

and the electron states by the repetitive unitary transformations on the Dirac-Coulomb-Breit

Hamiltonian and on its four-component wavefunction. While, in this study of HZnF, we will

employ the most recently reported pseudopotentials for Zn with the associated basis set to take

the relativistic effects into account. Thus the first purpose of this chapter is to evaluate our

following method, compared with the already well known data of ZnH.

It is also necessary to calculate the ionization energy of the X2Σ+ ground state of ZnH to the

ground state of ZnH+, because this quantity is involved in the ionic dissociation asymptote of

HZn+ + F− in linear geometry. In addition, all existing studies of ZnH+ are concerned only with

the X1Σ+ and the A1Σ+ states. To obtain an accurate description of the low lying electronic

states of ZnH+, calculations will be performed using the same method as for ZnH. This is the

second objective in this chapter.

6.2.2 Existing data on ZnH and ZnH+

All of the previous studies of ZnH and ZnH+ are listed in Table 12.

(i) Previous studies of ZnH

A nearly complete summary of the experimental studies on ZnH prior to 1975 was compiled by

Huber and Herzberg [12]. The ZnH molecule was first observed in the 1920s through its spectra

in the visible and near-ultraviolet regions. The most detailed analyses reported by Stenvinkel

on the A2Π - X2Σ+ and B2Σ+ - X2Σ+ electronic transitions revealed the harmonic and anhar-

monic wavenumbers ωe/ωexe = 1607.6/55.14, 1910.2/40.8, and 1020.7/16.5 cm−1 respectively

for the X2Σ+, A2Π, and B2Σ+ states. The equilibrium distances re and the energy differences

relative to the ground state Te, were determined in this work as follows: 3.014 bohr for the

X2Σ+ ground state, 2.857 bohr/2.886 eV for the A2Π state, and 4.295 bohr/3.420 eV for the

B2Σ+ state. The extrapolated dissociation energy D0 of the ground state was reported by

Herzberg and Huber [12] to be 0.85 eV. Another electronic transition C2Σ+ - X2Σ+ was found
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by Khan [13] from the absorption spectra in the far-ultraviolet region. For this C2Σ+ state, the

following spectroscopic constants were reported: ωe/ωexe = 1824/48 cm−1, re = 2.891 bohr,

and Te = 5.094 eV. It was predicted that the C2Σ+ state is predissociated by a quartet state

correlated with the H(2Sg) + Zn(3Pu) dissociation asymptote. Hyperfine structure was investi-

gated by Knight and Weltner [14], more recently by McKinley et al. [15] using matrix-isolation

electron spin resonance techniques. They discussed the characters of the Zn(4s), Zn(4p), and

H(1s) atomic orbitals in the 8σ molecular orbital of the ground state occupied by the unpaired

electron. Urban et al. [16] recorded the infrared spectra of several isotopologues of ZnH in the

ground state, using a diode laser spectrometer, determining the Dunham parameters [17]. More

recently, Shayesteh et al. have confirmed the spectroscopic constants ωe/ωexe = 1603.2/50.5

cm−1 and re = 3.011 bohr for the X2Σ+ ground state deduced from infrared emission spectra.

Chong et al. [18, 19] reported the calculated spectroscopic constants for the ground state

by the singles-plus-doubles configuration interaction (SDCI) and the coupled pair functional

(CPF) method, using the [9s7p4d] and [4s3p] contracted Gaussian basis sets for Zn and H atom

respectively. They estimated also the relativistic effects at the SDCI and CPF levels with the

larger [9s7p4d3f1g] and [4s3p2d] basis sets, using the first-order perturbation theory to compute

the mass-velocity and Darwin contributions. The theoretical study including the ground and

excited states was perfomed by Jamorski et al. [20] at the CI level. In this study, the relativistic

effects were taken into account by the a relativistic effective core potential. The polarization and

intrashell correlation effects were treated with a semiempirical core polarization potential. They

noted that the C2Σ+ state has two close minima, one of them is found in the same range of dis-

tance as the X and A states. More recently, Kerkines et al. [7] have reported at the RCCSD(T)

level the spectroscopic constants re = 3.001 bohr, De = 0.919 eV, and µe = 0.232 a.u. for

the X2Σ+ ground state. They discussed the relativistic effects at the complete basis set (CBS)

limit, using the second-order DKH approximation and the corresponding cc-pV(T,Q,5)Z-DKH

basis sets. It has been noted in this study that the relativistic effects contribute more than the

core-valence effects estimated at the CBS limit using the cc-pwCV(T,Q,5)Z basis sets.

(ii) Previous studies of ZnH+

So far, three available studies exist for the ZnH+ cation. The emission spectra of ZnH+ in the

region from 200 to 250 nm was recorded and assigned to the A1Σ+ - X1Σ+ electronic transition

by Bengtsson and Grundström [21]. They revealed the spectroscopic constants as follows for

the X1Σ+ ground state: ωe/ωexe = 1916/39 cm−1, re = 2.863 bohr, and the extrapolated dis-

sociation energy D0 = 2.5 eV. For the A1Σ+ excited state, they obtained the values ωe/ωexe =

1365/15 cm−1, re = 3.243 bohr, and Te = 5.790 eV. Since this work, no experimental study has

been reported. Schilling et al. [22] calculated the spectroscopic constants for the ground state,

by dissociation-consistent configuration with a generalized valence bond wavefunction. They

used the VDZ basis sets for both H and Zn atoms. A little later, Greene et al. [23] performed

calculations for X1Σ+ ground state, at the MP2 and CCSD(T) levels, using the contracted

(9s8p6d2f)/[8s6p5d2f] and (10s2p)/[7s2p] basis sets for Zn and H respectively. At the CCSD(T)

level, their calculated values are ωe = 1878 cm−1 and re = 2.872 bohr. Beside the ground state,
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there is no theoretical work on the excited states of ZnH+ cation.

Table 12: Spectroscopic constants of the low lying states of ZnH and ZnH+ cation.

States Method re [bohr] ωe/ωexe [cm−1] De [eV] Te [eV] µe [a.u.]

ZnH

X2Σ+

This work(a) MRCI+Q 2.997 1621.6/53.9(64ZnH) 0.940 0 0.016
1621.2/53.8(66ZnH)
1621.0/53.8(67ZnH)
1620.9/53.8(68ZnH)

Kerkines [7] RCCSD(T) 3.001 0.919 0.232
Jamorski [20] CI 3.037 1647 0.82 0

Chong(b) SDCI 2.958 1775 1.00 0 0.297
CPF 3.005 1622 1.01 0 0.249

Shayesteh [11] Exp. 3.011 1603.2/50.5
Urban [16] Exp. 1615.7/59.61(64ZnH)

1615.3/59.58(66ZnH)
1615.1/59.57(67ZnH)
1615.0/59.56(68ZnH)

Stenvinkel [12] Exp. 3.014 1607.6/55.14 0

Herzberg [12] Exp. 0.85(c)

A2Π
This work MRCI+Q 2.851 1906.5/40.0 2.039 2.888 0.718
Jamorski CI 2.874 1875 1.98 2.88
Stenvinkel Exp. 2.857 1910.2/40.8 2.886

B2Σ+

This work MRCI+Q 4.295 1029.2/16.5 1.440 3.470 -0.025
Jamorski CI 4.297 1046 1.48 3.35
Stenvinkel Exp. 4.295 1020.7/16.5 3.420

C2Σ+

Jamorski CI 2.882 1825 1.56 5.01
Khan [13] Exp. 2.891 1824/48 5.094
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States Method re [bohr] ωe/ωexe [cm−1] De [eV] Te [eV] µe [a.u.]

ZnH+

X1Σ+

This work MRCI+Q 2.861 1950.6/65.7 2.488 0
Greene [23] CCSD(T) 2.872 1878
Schilling [22] GVB-DCCI 2.919 1868 2.271

Bengtsson [21] Exp. 2.863 1916/39 2.5(c) 0

A1Σ+

This work MRCI+Q 3.297 1245.8/35.4 2.583 5.896
Bengtsson Exp. 3.243 1365/15 5.790

b3Π
This work MRCI+Q 3.306 1205.5/26.0 1.107 7.363

B1Π
This work MRCI+Q 3.705 997.2/88.6 0.430 8.107

(a):Absolute energy values calculated at the minimum of the ground state; -227.01988183 a.u.

for ZnH and -226.74448416 a.u. for ZnH+. The dipole moment is calculated at the MRCI level.

(b):Taken from ref. [18, 19], using the [9s7p4d3f1g] and [4s3p2d] contracted Gaussian basis sets

for Zn and H respectively, with included relativistic effects. Only the dipole moments were

calculated with the [9s7p4d] and [4s3p] contracted Gaussian basis sets.

(c):Extrapolated D0 value.

6.2.3 Dissociation asymptotes of ZnH and ZnH+

The first dissociation asymptote of ZnH comes from a combination of the Zn(1Sg) and H(2Sg)

ground states, correlating with one 2Σ+ molecular state. The lowest dissociation asymptotes

depend only on excitation energies of the Zn atom, which are smaller than excitation from the

H(1s:2Sg) ground state to the H(2s:2Sg) first excited state (10.199 eV) [8]. Thus the second

and third lowest dissociation asymptotes lie at 4.038 eV and 5.796 eV above the first one, re-

spectively, corresponding to the excitation energies to the 3Pu and 1Pu excited states of Zn

(the value is averaged over the fine structure levels for the 3Pu state) [8]. The Zn(3Pu) excited

and H(2Sg) ground states lead to the second dissociation asymptote correlating with one 2,4Σ+

and one 2,4Π molecular states. The third one involving the Zn(1Pu) excited and H(2Sg) ground

states results in one 2Σ+ and one 2Π molecular states. The 4th and 5th asymptotes including the

Zn(3Sg) and Zn(1Sg) excited states correlate respectively with one 2,4Σ+ and one 2Σ+ molecular

states, lying 6.654 and 6.917 eV above the first asymptote. Based on the ionization energy of

Zn (9.394 eV) [8] and the electronic affinity of H (0.754 eV) [4], the first ionic asymptote, lying

8.640 eV above the lowest covalent one, correlates with one 2Σ+ state. This ionic asymptote

is much higher in energy than the others and will not be included in the calculations. The

crossing between the covalent and the ionic state in the 2Σ+ symmetry occurs at a distance
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around 3.155 bohr. The distance of this crossing can be roughly estimated by considering a

variation as −1/R for the potential energy of the ionic Zn+H− form and a quasi constant energy

for the covalent states. According to the position of the asymptotes and considering the simple

equation ∆E = −1/Rc, where ∆E represents the energy difference in atomic units between

the asymptote of the covalent states and that of the ionic state, we deduce ∆E = −0.317 a.u.

(-8.640 eV) and Rc = 3.155 bohr. This region should be treated with particular attention.

The lowest dissociation asymptote of ZnH+ corresponds to the combination of Zn+(3d104s:
2Sg) and H(2Sg) fragments, lying at 9.394 eV above the lowest one of the neutral ZnH, according

to the ionization energy of Zn [8] and correlates with one 1,3Σ+ molecular states. The second

asymptote resulting from the Zn+(3d104p:2Pu) and H(2Sg) states, lies at 6.065 eV (averaged

over the fine structure levels) above the first one, corresponding to the excitation energy of the

Zn+(2Pu) state [8]. This second asymptote correlates with one 1,3Σ+ and one 1,3Π molecular

states. Totally six molecular states 1,3Σ+, 1,3Π, and 1,3∆ are correlated with the third asymp-

tote involving the Zn+(3d94s2: 2Dg) and H(2Sg) states, lying 7.945 eV (averaged over the fine

structure levels) above the first asymptote [8].

The lowest dissociation asymptotes of ZnH and ZnH+ and the low lying electronic molecu-

lar states adiabatically correlated with these dissociation asymptotes are presented in Table 13.

The calculations performed in this study are concerned with all electronic molecular states corre-

lated with the five lowest asymptotes of ZnH and the three lowest ones of ZnH+ mentioned above.

Table 13: Lowest dissociation asymptotes of the diatomic ZnH and the ZnH+ cation and the
resulting low lying electronic states.

Dissociation asymptotes Energies(a)[eV] Molecular states

ZnH

Zn(1Sg) + H(2Sg) 0 2Σ+

Zn(3Pu) + H(2Sg) 4.038 2,4Σ+, 2,4Π
Zn(1Pu) + H(2Sg) 5.796 2Σ+, 2Π
Zn(3Sg) + H(2Sg) 6.654 2,4Σ+

Zn(1Sg) + H(2Sg) 6.917 2Σ+

Zn+(2Sg) + H−(1Sg) 8.640 2Σ+

ZnH+

Zn+(2Sg) + H(2Sg) 0 1,3Σ+

Zn+(2Pu) + H(2Sg) 6.065 1,3Σ+, 1,3Π
Zn+(2Dg) + H(2Sg) 7.945 1,3Σ+, 1,3Π, 1,3∆

(a): Taken from ref. [8].
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6.2.4 Computational details

The core electrons of the zinc atom have been described by atomic pseudopotentials which allow

relativistic effects to be taken into account. We employed the most recent energy-consistent

ECP10MDF effective core potentials [24], with 10 inner electrons presented by a pseudopo-

tential and the outer electrons explicitly treated using the associated aug-cc-pVQZ basis sets

contracted as (14s11p11d3f2g1h)/[6s6p5d3f2g1h] [25]. For the hydrogen atom, the Dunning et

al. correlation consistent aug-cc-pVQZ basis sets are employed [26].

Molecular structure calculations are performed in the same method with 21 or 20 valence

electrons for ZnH or ZnH+. In the first step, the wave functions of 21 (ZnH) and 20 (ZnH+)

valence electrons are determined by state-averaged Multi-Configuration-Self-Consistent-Field

(MCSCF) calculations [27, 28] with 15 active molecular orbitals constructed on the 3s, 3p, 3d,

4s, 4p, and 5s of Zn and 1s of H. Among these 15 orbitals, the 4 inner shells of the 3s and 3p of

Zn are optimized but not correlated in this step. Thus the effective active space results in the

(3-7)σ, (2-3)π, and 1δ molecular orbitals. The MCSCF wavefunctions are taken as reference for

the subsequent internally contracted Multi-Reference-Configuration-Interaction (MRCI) calcu-

lations [29,30]. The Davidson correction [31,32], which approximates the contribution of higher

excitation terms, has been introduced in the last step of the calculation (MRCI+Q). All elec-

tronic structure calculations are performed in the C2v symmetry group, using the MOLPRO

program package [33].

6.2.5 Results

(i) Results of ZnH

The state-averaged MCSCF calculations were performed for all doublet and quartet states cor-

related with the five lowest dissociation asymptotes. The potential curves of all the doublet and

quartet states correlated with the three lowest asymptotes and the dipole moments of these dou-

blet states are presented in Figures 28 and 29. Taking the MCSCF wavefunctions as reference,

the subsequent MRCI calculations for the electronic states correlated with two lowest asymptotes

were performed separately in each space and spin symmetries. Figure 30 shows the potential

curves of all the doublet and quartet states calculated at the MRCI level including the Davidson

correction. The dipole moment functions of the doublet states, calculated as an expectation

value at the MRCI level, are presented in Figure 31. The sign convention is defined such as the

positive value corresponds to the Zn+H− polarity. Our result confirms that the ground state is

found to be a 2Σ+ state. In turn, we can assign the A2Π and B2Σ+ to the excited doublet states.

These assignments are consistent with the previous studies. The energy difference between the

two lowest dissociation asymptotes (3.983 eV) compares well with the experimental value (4.038

eV) shown in Table 13. The B2Σ+ state correlated with the second asymptote presents an

avoided crossing with the C2Σ+ state around the interatomic distance of 3 bohr and then their

dipole moments interchange. We can see the crossing between the C2Σ+ state and the 4Π state

correlated with the second asymptote in Figure 28, which confirms the previous experiment [13].
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Figure 28: Potential energy curves of the low lying states of ZnH, correlated with the three
lowest asymptotes, at the MCSCF level of theory.
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The spectroscopic constants for the X2Σ+, A2Π, and B2Σ+ states of 64ZnH are obtained

from our potential curves at the MRCI+Q level, using the NUMEROV algorithm [34] and are

listed in Table 12. For the X2Σ+ ground state, its spectroscopic constants are deduced as fol-

lows: ωe/ωexe = 1621.6/53.9 cm−1, re = 2.997 bohr, and De = 0.940 eV. These constants are

in good agreement with the previous values presented in Table 12. However, our harmonic

wavenumber seems to be somehow larger than the experimental values, but closer to them than

all previous calculations which overestimated this quantity. The dipole moment of 0.016 a.u.

at the equilibrium distance shows a large difference compared with the previous calculations.

Ignoring such difference, the dipole moment of quasi-zero value in the bonding region indicates

the covalent character of the ground state as depicted in Figure 31. Tezcan et al. [35] deter-

mined the Fermi-contact constant bF of the H atom in ZnH, from their far-infrared rotational

spectra of the X2Σ+ ground state. Comparing this obtained bF parameter with that in the free

H atom, they reported that the character of the H(1s) atomic orbital in the 8σ molecular orbital

containing the unpaired electron is about 35%. McKinley et al. [15] measured the magnetic

parameters of 67ZnH, using matrix-isolation electronic spin resonance spectroscopy. Also by the

free atom comparison method, they analyzed that the 8σ molecular orbital consists of about

30% of the Zn(4s) character and 50% of the Zn(4pz) character. Based on our state-averaged

MCSCF calculations, the dominant configuration of the ground state at its equilibrium distance

is 1σ22σ23σ21π44σ25σ22π43π46σ21δ47σ28σ1 (in which 1σ22σ23σ21π4 is replaced by the pseu-

dopotentials for Zn) with the coefficient of 0.957, in which the 8σ molecular orbital is found to

be anti-bonding and has roughly contributions of 51%, 11%, and 38%, respectively, from the

Zn(4s), Zn(4pz), and H(1s) atomic orbitals. Thus, our result is in a better agreement with the
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Figure 29: Dipole moment functions of the doublet states of ZnH, correlated with the three
lowest asymptotes, at the MCSCF level of theory.
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Figure 30: Potential energy curves of the low lying states of ZnH, correlated with the two lowest
asymptotes, at the MRCI+Q level of theory.
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Figure 31: Dipole moment functions of the doublet states of ZnH, correlated with the two lowest
asymptotes, at the MRCI level of theory.
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previous experimental analysis by Tezcan et al. than with that of McKinley et al..

The A2Π state, correlated with the second dissociation asymptote, has the following values

ωe/ωexe = 1906.5/40.0 cm−1, re = 2.851 bohr, Te = 2.888 eV, and De = 2.039 eV which compare

quite well with those reported by the previous studies. This state has a partially ionic bond

according to the positive dipole moment in the molecular region, and becomes rapidly covalent

at distances longer than 5 bohr. With the long equilibrium distance of 4.295 bohr, the B2Σ+

state has a flat minimum. For this state, the following spectroscopic values are determined:

ωe/ωexe = 1029.2/16.5 cm−1, Te = 3.470 eV, and De = 1.440 eV, in excellent agreement with

the previous studies. A drastical change of the dipole moment of the B2Σ+ state around 3 bohr

indicates an avoided crossing with a higher 2Σ+ state. The B2Σ+ has also a partially ionic

bonding in the molecular region, according to its dipole moment with the maximum around 6

bohr.

(ii) Results of ZnH+

For ZnH+ cation, the state-averaged MCSCF calculations with 20 valence electrons were per-

formed for all singlet and triplet states correlated with the three lowest dissociation asymptotes.

Taking the MCSCF wavefunctions as reference, the subsequent MRCI calculations were carried

out for all molecular states correlated with the two lowest asymptotes, separately in each space

and spin symmetries. Figure 32 shows the potential curves of all singlet and triplet states calcu-

lated at the MRCI+Q level. The ground state of ZnH+ is found to be a 1Σ+ state, with the main
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Figure 32: Potential energy curves of the low lying states of ZnH+ at the MRCI+Q level of
theory.
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configuration (...)4σ25σ22π43π46σ21δ47σ2 at the equilibrium geometry which is consistent with

the lowest one-electron ionization from the main configuration (...)4σ25σ22π43π46σ21δ47σ28σ1

of the X2Σ+ ground state of ZnH. In turn, we can assign the A1Σ+ and B1Π to the excited

singlet states and a3Σ+ and b3Π to the excited triplet states. The energy difference between

the first and second dissociation asymptotes (6.031 eV) compares well with the experimental

value (6.065 eV) listed in Table 13. The spectroscopic constants for the X1Σ+, A1Σ+, B1Π, and

b3Π states are obtained from our potential curves at the MRCI+Q level, using the NUMEROV

algorithm [34] and are added in Table 12.

Our calculated harmonic and anharmonic wavenumbers of the X1Σ+ state are somehow

larger by about 30 cm−1 than those reported by Bengtsson and Grundström [21], even though

the equilibrium distance and the dissociation energy are in good agreement. However these

discrepancies are much smaller, compared with the other theoretical works. From the state-

averaged MCSCF calculations, the 7σ2 orbital in the main configuration (...)3π46σ21δ47σ2 for

the ground state at its equilibrium distance with a coefficient of 0.967, is constructed on 50% of

both Zn(4s) and H(1s) atomic orbitals with minor contributions from Zn(3d) and Zn(4p). The

ionization energy from the X2Σ+ of ZnH to the X1Σ+ of ZnH+ is calculated to be 7.494 eV,

using the De values at the MRCI+Q level. The ionization energy of 7.514 eV calculated with

the D0 values compares reasonably with that obtained from the experimental data (7.744 eV).

Table 12 lists also the spectroscopic constants for the other bound states. Compared with the

measurement by Bengtsson and Grundström, there remain again the large discrepancies on the

values of ωe/ωexe for the A1Σ+ state. Because of no available data on the other bound states,
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we can estimate only a quality of the same order as for the X1Σ+ and A1Σ+ states.

6.2.6 Conclusions

To evaluate our method to treat the HZnF molecule, we first performed the electronic structure

calculations on the ZnH molecule at the MRCI level including the Davidson correction. Using

the energy-consistent pseudopotentials for Zn with the associated aug-cc-pVQZ basis sets, we

have obtained an accurate description for the low lying states, and our results compared well

with the previous studies. Using the same method, we have studied the low lying states of

ZnH+, revealing unknown excited states. Finally the ionization energy from the X2Σ+ of ZnH

to the X1Σ+ of ZnH+ has been determined to be 7.494 eV, using the De values at the MRCI+Q

level, which will allow us to calculate the position in energy of the ionic dissociation asymptote

of HZn++F− in linear geometry.
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6.3 ZnF and ZnCl diatomic molecules

6.3.1 Introduction

Before starting the part of the HZnF triatomic molecules, we will make a consideration about

the zinc monofluoride and zinc monochloride to validate our method in this study and to eluci-

date the properties of the low lying electronic states of these systems. Even though the ground

states X2Σ+ of ZnF and ZnCl have been studied recently both theoretically and experimentally,

it is necessary to obtain an accurate description of the lower excited states of these diatomic

molecules, in order to advance towards the triatomic part. Additionally we are interested in

comparison of the properties of the low lying states between ZnF and ZnCl.

ZnF and ZnCl are ionic molecules belonging to the family of monohaloides of the 3d-transition

metals, which have been recently investigated by spectroscopic methods to understand the

characteristics of their chemical bonds. The equilibrium distances in the ground states of

3d-transition metal (from Sc to Zn) monochlorides and monofluorides have been reported by

experimental studies [36–56]. The trend in bond distances are similar for these two series, how-

ever, there are subtle differences, particularly in going from copper to zinc. Comparing with the

case of CuF and CuCl, the bond distance of ZnF increases by 0.8%, while by 3.8% for ZnCl. This

difference can be due to the variation in ionic character of the zinc species. As listed in Table

14, a particular interest for the vibrational spectroscopy of ZnF and ZnCl is the abundance of

the various stable isotopes of these elements; the isotopes of Zn are 64Zn (48.6%), 66Zn (27.9%),
68Zn (18.8%), 67Zn (4.1%), and 70Zn (0.6%). These of Cl are 35Cl (75.8%) and 37Cl (24.2%) [4].

These isotopologues make a specific signature in the vibrational spectra.

Even though ZnF and ZnCl can be easily produced by the exothermic reactions of zinc vapor

with F2 or Cl2 gas [49, 55] (for example: ∆E = 1.55 eV for ZnF), these systems have not been

much studied. The previous experimental data for ZnF and ZnCl until 1979 are summarized

by Huber and Herzberg [12], indicating that there were a few reliable informations on the low

lying states at that time, especially few information on the low lying excited states of ZnF.

Motivated to obtain an accurate description of the low lying electronic states of ZnF and ZnCl,

we have performed highly correlated ab initio calculations. Using effective core pseudopotentials

and aug-cc-pVQZ basis sets for Zn, F, and Cl atoms, the potential energy curves, the dipole

moments functions, and the transition dipole moments have been calculated at the MRCI level

including the Davidson correction. The obtained spectroscopic constants and properties of elec-

tronic structures of the low lying states have been compared with the previous theoretical and

experimental works. Based on the transition dipole moments between relevant electronic states,

the vibronic transitions from the v = 0 level of the ground state X2Σ+ to the bound states

of interest have been evaluated and their vibrationally resolved absorption spectra have been

simulated for the abundant isotopologues of ZnF.
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Table 14: Abundances and masses of the isotopologues of ZnCl.

Isotopes/Isotopologues Abundances [%] Atomic/Molecular Masses
35Cl 75.8 34.97
37Cl 24.2 36.97
64Zn 48.6 63.93
66Zn 27.9 65.93
67Zn 4.1 66.93
68Zn 18.8 67.92
70Zn 0.6 69.93

64Zn35Cl 36.8 98.90
66Zn35Cl 21.1 100.90
68Zn35Cl 14.3 102.89
64Zn37Cl 11.8 100.86
66Zn37Cl 6.8 102.90
68Zn37Cl 4.5 104.89
67Zn35Cl 3.1 101.90
67Zn37Cl 1.0 103.90
70Zn35Cl 0.5 104.90
70Zn37Cl 0.1 106.90

6.3.2 Theoretical and experimental previous studies

(i) Studies on the low lying states of ZnF

All results of the previous studies mentioned below are presented in Table 15.

The first measurement on the ZnF system was reported by Rochester and Olsson in 1939, from

an absorption spectrum in the ultraviolet domain [57]. Their measured harmonic ωe = 628

cm−1 and anharmonic wavenumbers ωexe = 3.5 cm−1 had not been confirmed before the work

of Moravec et al. [58], who reported the values ωe/ωexe = 620/2 cm−1, from their 4.66 eV photo-

electron spectroscopy of the ZnF− anion. More recently, Flory et al. recorded the pure rotational

spectrum of the ground state of ZnF, from which they deduced an equilibrium distance Re =

3.341 bohr, a dissociation energy De = 3.123 eV, and harmonic and anharmonic wavenumbers

of the abundant isotopologues ωe/ωexe = 631/4.0, 629/3.9, and 627/3.9 cm−1, respectively for
64ZnF, 66ZnF, and 68ZnF [55]. Concerned with the excited states, Moravec et al. mentioned

that the A2Π state must lie at more than 2.69 eV above the ground state X2Σ+ [58], estimating

isoelectronic neutral states with the configuration (9σ24π410σ2) in the X1Σ+ lowest anion state.

Supposing that the second order spin-orbit coupling in the ground state primarily arises from

interactions with the A2Π state, Flory et al. predicted that the A2Π state should be at 2.53

eV above the X2Σ+ state. Rochester and Olsson reported that the C2Π state lies at 4.586 eV

(for Ω = 1/2) and 4.632 eV (for Ω = 3/2) with an harmonic wavenumber ωe of about 599 cm−1

from their early work, indicating that predissociated levels were found between 36000 and 39000
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cm−1 [57].

In the last decade, several theoretical studies, based on various approaches, have been re-

ported focusing on the ground state of ZnF. The first calculation was conducted by Bowmaker

and Schwerdtfeger in 1990 [59], at the SDCI level of theory with the size-consistency correction

(SDCISC), using the pseudopotentials for Zn with the associated (8s7p6d)/[6s5p3d] basis sets

with an additional diffuse (1s1p1d) set. Their obtained spectroscopic constants were Re = 3.371

bohr, ωe = 601 cm−1, and De = 2.028 eV. A few years later, Kaupp and von Schnering obtained

Re = 3.390 bohr, using again the quasi-relativistic 20 valence electron pseudopotentials of Zn

at the MP2 level of theory [60]. Using the density functional theory (DFT) approach, Liao et

al. [61] reported Re = 3.364 bohr and ωe = 609 cm−1, later Belanzoni et al. [62] obtained Re =

3.399 bohr.

The more extensive studies have been performed by Boldyrev and Simons [63] and Harrison

et al. [64]. The former study calculated Re = 3.388 bohr, ωe = 593 cm−1, De = 2.931 eV,

and the dipole moment at the equilibrium distance µe = 1.275 a.u. for the ground state at the

QCISD(T) level, using the 6-331++G(d,f) basis sets. They reported also the van der Waals

A2Π state correlated with the first dissociation asymptote with the spectroscopic constants as

follows: Re = 8.520 bohr, ωe = 13 cm−1, Te = 2.928 eV, and µe = 0.015 a.u.. The latter

study calculated extensively the ZnF, ZnF+ cation and ZnF− anion system to compare the

bonding characteristics with the CaF, CaF+ cation and CaF− anion system at the RCCSD(T)

level, using the Dunning aug-cc-pVQZ basis sets contracted as (13s7p4d3f)/[6s5p4d3f] without

the g functions for F [65], and the (20s15p9d6f4g) primitive set with an ANO contraction to

[7s6p4d3f2g] for Zn [66]. They reported Re = 3.354 bohr, ωe = 633 cm−1, D0 = 3.16 eV, and µe

= 1.227 a.u. for the ground state and Re = 3.320 bohr, ωe = 659 cm−1, D0 = 2.59 eV, T0 = 4.63

eV and µe = 1.500 a.u. for the 2Π excited state which seems to be correlated with the second

dissociation asymptote. Even though Harrison et al. studied globally this system, it remains

the question whether the RCCSD(T) method could correctly describe the electronic states of an

ionic molecule. The validity of the method taken by Harrison et al. should be discussed later,

comparing with our calculations.

98



Table 15: Spectroscopic constants and dipole moments of the low lying states of ZnF and for
the electronic ground state of ZnF−.

States Method Re [bohr] ωe/ωexe [cm−1] De [eV] Te [eV] µe [a.u.]

ZnF

X2Σ+

This work(a) MRCI+Q 3.337 638.6/3.2(64ZnF) 3.030 0 0.939
636.4/3.2(66ZnF)
634.3/3.2(68ZnF)

Harrison [64] RCCSD(T) 3.354 633 3.16 (D0) 0 1.227

Belanzoni(b) DFT 3.399

Boldyrev(c) QCISD(T) 3.388 593 2.931 0 1.275

Liao(d) DFT 3.364 609

Kaupp(e) MP2 3.390
Bowmaker [59] SDCISC 3.371 601 2.028
Flory [55] Exp. 3.341 631/4.0(64ZnF) 3.123 0

629/3.9(66ZnF)
627/3.9(68ZnF)

Moravec [58] Exp. 620/2 0
Rochester [57] Exp. 628/3.5 0
A2Π

This work(a) MRCI+Q 4.634 0.997
Harrison RCCSD(T) 3.320 659 2.59 (D0) 4.63 (T0) 1.50

Boldyrev(c) QCISD(T) 8.520 13 2.928 0.015
Moravec Exp. >2.69 (Tv)
Flory Exp. 2.53 (Tv)
B2Σ+

This work(a) MRCI+Q 4.901 327.7/2.7 2.875 4.101 0.607
C2Π

This work(a) MRCI+Q 3.516 935.3/17.2 2.129 4.876 1.066
Rochester Exp. 599 4.586(Ω=1/2)

4.632(Ω=3/2)
D2Σ+

This work(a) MRCI+Q 3.325 705.1/12.0 0.310 6.694 1.299
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States Method Re [bohr] ωe/ωexe [cm−1] De [eV] Te [eV] µe [a.u.]

ZnF−

X1Σ+

This work(a) MRCI+Q 3.638 413.3/4.4 1.531 -1.829
Harrison RCCSD(T) 3.615 425 1.60 (D0) -1.929 (T0)

Moravec Exp. +0.283(f) 420 -1.974

(a): Absolute energy value calculated at the minimum of the X2Σ+ ground state:-250.63266307

a.u.. For the A2Π state, Te is the vertical excitation energy at the equilibrium geometry of the

X2Σ+ ground state. The dipole moments are calculated at the MRCI level, at the equilibrium

geometry of each bound state and at the equilibrium geometry of the ground state for the re-

pulsive state.

(b): Taken from ref. [62], calculated by the density functional approach using the zero order

regular approximated (ZORA) method.

(c): Taken from ref. [63], calculated Te value at the QCISD(T)/6-311++G(2d,2f) level, using

the equilibrium geometry optimized at the QCISD/6-311++G(d,f) level.

(d): Taken from ref. [61], calculated by the local density functional method with atomic-centered

STO basis sets.

(e): Taken from ref. [60], calculated at the MP2 level, with the quasi-relativistic 20 valence elec-

tron pseudopotentials for Zn. They used the segmented (8s7p6d)/[6s5p3d] valence basis sets,

associated with the pseudopotentials for Zn, and the segmented (5s5p1d)/[3s3p1d] valence basis

sets for F.

(f): Shift from Re for the X2Σ+ state of ZnF.

(ii) Studies on the low lying states of ZnCl

All results of the previous studies mentioned below are presented in Table 16.

All of the early experimental studies done until 1975 were summarized by Huber and Herzberg

[12]. Walter and Barratt reported the absorption spectra of ZnCl with ten heads between 290

and 300 nm [67]. A little later, Cornell recorded the vibrationally resolved emission spectra in

the wavelength region from 207.4 to 298 nm [68]. Their spectrum around 295 nm was assigned

to the C2Π - X2Σ+ transition, determining the spectroscopic constants ωe/ωexe for the X2Σ+

and C2Π states and Te for the C2Π excited state. Herzberg assigned subsequently the spec-

trum around 207.4 nm obtained by Cornell to the E2Σ+ - X2Σ+ transition, deriving the values

ωe/ωexe = 345.4/5.0 cm−1 and Te = 5.974 eV for the E2Σ+ state. Givan and Lowenschuss

measured the fundamental vibrational frequency of 385 cm−1 for the X2Σ+ ground state, using

matrix-isolation Raman spectroscopy [69]. The dissociation energy D0 of the ground state was

reported to be 2.37 ± 0.08 eV by Hildenbrand et al. [70], monitoring the gaseous isomolecular

reaction Zn + ZnCl2 = 2ZnCl by magnetic deflect ion mass spectrometer system. More recently

the rotational spectrum of the ground state was recorded by Tenenbaum et al., from which

they obtained the following constants: the equilibrium distance Re = 4.025 bohr, ωe/ωexe =
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392.1/1.7 cm−1 for the most abundant isotopologue 64Zn35Cl, and D0 = 2.73 eV [56]. Concern-

ing the other excited states, Herzberg and Huber listed in their summary the B2Σ+ state lying

at 3.387 eV above the ground state with the values ωe/ωexe = 185.0/0.5 cm−1. Sureshkumar et

al. reported the A2Π state which lies at about 2.23 eV above the ground state [71].

Table 16: Spectroscopic constants and dipole moments of the low lying states of ZnCl.

States Method Re [bohr] ωe/ωexe [cm−1] De [eV] Te [eV] µe [a.u.]

ZnCl

X2Σ+

This work(a) MRCI+Q 4.043 395.2/0.1 0 1.043
Kerkines [7] RCCSD(T) 4.010 2.146 1.106

Boldyrev(b) QCISD(T) 4.074 386 2.027 0 1.095
Bowmaker [59] SDCISC 4.099 1.805
Tenenbaum [56] Exp. 4.025 392.1/1.7 (64Zn35Cl) 2.73 (D0)
Cornell [68] Exp. 390.5/1.5 0

Givan(c) Exp. 385
Hildenbrand [70] Exp. 2.37(D0)
A2Π

This work(a) MRCI+Q 4.155 -0.629

Boldyrev(b) QCISD(T) 8.853 14 2.019 0.031
Sureshkumar [71] Exp. about 2.23
B2Σ+

This work(a) MRCI+Q 5.917 186.5/0.3 3.479 1.390
Herzberg [12] Exp. 185.0/0.5 3.387
C2Π

This work(a) MRCI+Q 4.087 662.8/47.9 4.392 0.708
Cornell Exp. 384.0/1.1 4.165(Ω=1/2)

381.8/1.0 4.213(Ω=3/2)
D2Σ+

This work(a) MRCI+Q 6.623 2.855
E2Σ+

Cornell Exp. 345.4/5.0 5.974
32Π

This work(a) MRCI+Q 3.837 520.5/12.8 7.319 4.919

(a): Absolute energy value calculated at the minimum of the X2Σ+ ground state:-241.41013660

a.u.. For the repulsive states, Te is the vertical excitation energy at the equilibrium geometry of

the X2Σ+ ground state. The dipole moments are calculated at the MRCI level, at the equilib-

rium geometry of each bound state and at the equilibrium geometry of the ground state for the

repulsive states. The most abundant isopotologue 64Zn35Cl is used to deduce ωe/ωexe.

(b): Taken from ref. [63], calculated Te value at the QCISD(T)/6-311++G(2d,2f) level, using
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the equilibrium geometry optimized at the QCISD/6-311++G(d,f) level.

(c): Value of the fundamental vibrational frequency.

Only three theoretical studies have been carried out in the last decade. Bowmaker and

Schwerdtfeger [59] studied the ground state of ZnCl at the CISDSC level, using the pseudopo-

tentials for Zn with the associated basis set contracted as (9s8p7d)/[7s6p4d]. They obtained

spectroscopic constants as Re = 4.099 bohr and De = 1.805 eV. The second theoretical work

was performed by Boldyrev and Simons at the QCISD level using the 6-331++G(d,f) basis set,

obtaining the following values for the X2Σ+ ground state: Re = 4.074 bohr, ωe = 386 cm−1,

De = 2.027 eV, and the dipole moment µe = 1.095 a.u. at the equilibrium geometry [63]. They

reported also the van der Waals A2Π state correlated with the first dissociation asymptote with

the spectroscopic constants as follows: Re = 8.853 bohr, ωe = 14 cm−1, Te = 2.019 eV, and

µe = 0.031 a.u.. More recently, Kerkines et al. reported the values Re = 4.010 bohr, De =

2.146 eV, and µe = 1.106 a.u. for the ground state at the RCCSD(T) level [7]. They took the

one-electron relativistic effects into account, using the second-order Douglas-Kroll-Hess (DKH)

approximation.

6.3.3 Nature of the low lying electronic states

In order to identify the electronic states which play a role in the molecular region, we have

first examined the situation close to the lowest dissociation limits. As shown in Table 17, the

lowest covalent dissociation asymptotes of ZnF and ZnCl are determined only by the excited

states of the zinc atom, because their excitation energies are smaller than the value of 12.701

and 8.979 eV for the 4Pg - 2Pu fine structure averaged excitation energy of F and Cl, respectively.

The lowest dissociation asymptote comes from a combination of the 1Sg ground state of Zn

and the 2Pu ground state of F/Cl, correlating with the 2Σ+ and 2Π molecular states. The second

asymptote corresponds to a combination of the first excited 3Pu state of Zn and the 2Pu ground

state of F/Cl. This second asymptote correlates with two 2,4Σ+, one 2,4Σ−, two 2,4Π and one
2,4∆, thus a total of 12 molecular states. The energy separation between the first and the second

asymptotes equals to 4.038 eV, averaged excitation energy of the experimental fine structure

levels (J = 0, 1, 2) of the 3Pu state of Zn [8]. The excited 1Pu state of Zn and the 2Pu ground

state of F/Cl lead to the third homolytic dissociation asymptote lying 5.796 eV above the first

one. The lowest asymptotes involving the first excited state 4Pg of F and Cl lie at 12.701 and

8.979 eV, respectively (averaged over the fine structure levels for the 2Pu and 4Pg states) above

the first asymptote of this series and will not be considered.

The atomic energy levels of Cl are lower than these of F, thus other covalent asymptotes

should be discussed and the resulting molecular states should be included in calculations to

obtain an accurate description of the ZnCl system, taking into account the interactions between

them. The combinations of the Cl(2Pu) ground state with the 3Sg,
1Sg, and 3Pu excited states

of Zn result in the three following asymptotes, lying at 6.654, 6.917, and 7.598 eV above the first

dissociation asymptote respectively. These three asymptotes correlate with totally 10 doublet
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and 8 quartet molecular states.

The first ionic asymptotes of ZnF and ZnCl correspond to the combinations of Zn+(2Sg) and

[F/Cl]−(1Sg) fragments. According to the experimental ionization energy of Zn (9.394 eV) [8]

and the electronic affinity of F/Cl (3.398/3.616 eV) [4], the first ionic asymptotes are found to

be the fourth asymptote of ZnF and to be the third one of ZnCl, lying at 5.994 and 5.778 eV

respectively above the first covalent asymptote. With these ionic asymptotes is correlated only

a 2Σ+ state which can interact with the lower states of the same symmetry. The distance Rc (or

zone) of crossing between the low lying covalent states and this ionic state can be roughly esti-

mated by considering a variation as −1/R for the potential energy of the ionic Zn+[F/Cl]− form

and a quasi constant energy for the covalent states. According to the position of the asymptotes

and considering the simple equation ∆E = −1/Rc, where ∆E represents the energy difference in

atomic units between the asymptote of the covalent state and that of the ionic state, we deduce

∆E = −0.220 a.u. (-5.994 eV) and Rc = 4.545 bohr for ZnF and -0.212 a.u. (-5.788 eV) and

4.717 bohr for ZnCl, for the crossing of the ionic state with the lowest 2Σ+ state correlated with

the first asymptote. These regions should be treated with particular attention.

The lowest covalent and ionic dissociation asymptotes of the diatomic ZnF and ZnCl and

the low lying electronic states adiabatically correlated with these dissociation asymptotes are

presented in Table 17. The calculations performed in the present study are concerned with all

the electronic states correlated with the two lowest asymptotes for ZnF and with the six lowest

covalent and one ionic asymptotes for ZnCl.

Table 17: Lowest covalent and ionic dissociation asymptotes of the diatomic ZnF and ZnCl with
the resulting low lying electronic states.

Dissociation asymptotes Energies(a) [eV] Molecular states

Zn(1Sg) + F/Cl(2Pu) 0 2Σ+, 2Π
Zn(3Pu) + F/Cl(2Pu) 4.038 2,4Σ+(2), 2,4Σ−, 2,4Π(2), 2,4∆
Zn+(2Sg) + Cl−(1Sg) 5.788 2Σ+

Zn(1Pu) + F/Cl(2Pu) 5.796 2Σ+(2), 2Σ−, 2Π(2), 2∆
Zn+(2Sg) + F−(1Sg) 5.994 2Σ+

Zn(3Sg) + Cl(2Pu) 6.654 2,4Σ+, 2,4Π
Zn(1Sg) + Cl(2Pu) 6.917 2Σ+, 2Π
Zn(3Pu) + Cl(2Pu) 7.598 2,4Σ+(2), 2,4Σ−, 2,4Π(2), 2,4∆

Zn(1Sg) + F/Cl(4Pg) 12.701/8.979 4Σ−, 4Π

(a) Experimental atomic energy averaged over the fine structure levels, taken from ref [8].
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6.3.4 Computational details

(i) Pseudopotentials and Basis sets

The core electrons of the Zn, F, and Cl atoms have been described by atomic pseudopoten-

tials which allow relativistic effects to be taken into account. For Zn, we employed the most

recent energy-consistent ECP10MDF effective core potentials [24], with 10 electrons represented

by a pseudopotential and the 20 outer electrons explicitly treated via the associated aug-cc-

pVQZ basis sets contracted as (14s11p11d3f2g1h)/[6s6p5d3f2g1h] [25]. The energy-consistent

ECP2MWB and ECP10MWB effective core potentials are used, respectively for F and Cl, with

2 and 10 core electrons represented by a pseudopotential [72]. The outer 7 electrons of F and

Cl are explicit in the calculations, using the associated (4s5p)/[2s3p] basis sets [72] augmented

with the 4d, 3f, and 2g primitives taken from the Dunning et al. correlation consistent aug-cc-

pVQZ basis sets [26,65]. Such ansatz allows to treat both diatomic systems in a very similar way.

(ii) Molecular structure calculations

The wavefunctions of the 27 valence electrons of ZnF are determined by state-averaged Multi-

Configuration Self-Consistent-Field (MCSCF) calculations [27, 28] with 18 active molecular or-

bitals constructed on the 3s, 3p, 3d, 4s, and 4p of Zn, and 2s, 2p, and 3s of F. For the case

of ZnCl, the MCSCF calculations for 27 valence electrons have been performed with 21 active

molecular orbitals constructed on the 3-5s, 3-5p, and 3d of Zn and 3s and 3p of Cl. Among these

18 or 21 orbitals, the 10 inner shells, including the 3d orbitals of Zn and the 2s orbital of F or 3s

of Cl are optimized but not correlated in this step. The effective active space consists thus in the

(5-8)σ and (3-4)π orbitals for ZnF and in the (5-9)σ and (3-5)π orbitals for ZnCl. The MCSCF

wavefunctions are taken as reference for the subsequent internally contracted Multi-Reference-

Configuration-Interaction (MRCI) calculations [29,30]. The Davidson correction [31,32], which

approximates the contribution of higher excitation terms, has been introduced in the last step

of the calculation (MRCI+Q). All electronic structure calculations are performed in the C2v

symmetry group, using the MOLPRO program package [33].

6.3.5 Electronic structure of ZnF

(i) Potential energy curves

Starting with the state-averaged MCSCF calculations including all the states correlated with the

two lowest dissociation asymptotes, the subsequent MRCI calculations are performed separately

in each space and spin symmetries. The energy difference between the two lowest asymptotes is

calculated to be 3.958 eV, in good agreement with the experimental value of 4.038 eV (see Table

17). Figures 33 and 35 present the potential energy curves of the doublet and quartet states of

ZnF obtained from calculations at the MRCI level including the Davidson correction. Figure 33

shows that the electronic ground state of ZnF is the X2Σ+ state with the equilibrium geometry

calculated close to R = 3.3 bohr. This state is correlated with the first asymptote and presents

an interaction with a higher 2Σ+ state in the region close to 5 bohr, which is the crossing region
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with the first ionic state, as discussed in the previous section. Our RCCSD(T) calculation for

the X2Σ+ ground state, using the same pseudopotentials and basis sets, is shown in Figure 34,

thus it should be noted that the RCCSD(T) method can not describe accurately this interaction

and is adapted only in the vicinity of the equilibrium distance of the ground state. Both the

B2Σ+ and the D2Σ+ states are correlated with the second asymptote : the B2Σ+ state presents

a deep minimum around R = 5.0 bohr, resulting from the interaction with the X2Σ+ state, the

D2Σ+ state has a shallow minimum around R = 3.3 bohr.

In Figure 33 one can see that the A2Π and C2Π states, correlated with the first and second

asymptotes respectively, form an avoided crossing around R = 3.5 bohr. The A2Π state is not

bound but has a shoulder in the region of the avoided crossing. The minimum of the potential

energy of the C2Π state is located at the avoided crossing with the A2Π state. This situation

has not been discussed by Harrison et al. [64], who found only one excited 2Π state correlated

with the second asymptote with an equilibrium geometry close to the local minimum of the A2Π

state using the RCCSD(T) method. As demonstrated in Figure 34, this ab initio method could

not be adapted for the electronic calculations of these excited crossing states.

All the other doublet and all the quartet states correlated with the second asymptote are

found to be repulsive, as shown in Figures 33 and 35.
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Figure 33: Potential energy curves of the doublet states of ZnF at the MRCI+Q level of theory.
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(ii) Electronic wavefunctions

In this section, we discuss the electronic wavefunctions of the low lying states of ZnF, based

on the state-averaged MCSCF calculations. The (1-4)σ, 1δ, and (1-2)π molecular orbitals are

almost identical to atomic orbitals and are fully occupied in all the examined configurations.

The external (5-8)σ and (3-4)π orbitals are roughly constructed as follows : the 5σ orbital is a

bonding combination of the 4s of Zn and the 2pz of F, while the 6σ orbital corresponds to the

antibonding combination of the same atomic orbitals. The 5σ has a dominant contribution from

the 2pz of F; in contrast, the 4s of Zn contributes mainly to the 6σ, as already mentioned in

previous studies [55,62], even though the small contribution from other atomic orbitals is found

here slightly different as a result of our state-averaged procedure. The 7σ orbital is more diffuse

and almost identical to the 4pz of Zn with a small contribution from the 3s of F. The 8σ orbital

is equivalent to the 3s of F. The 3π and 4π orbitals are identical to the 2px,2py of F and to the

4px,4py of Zn respectively.

In Table 18, we give the dominant configurations and their coefficients in the low lying elec-

tronic states at the MCSCF level of theory. For the bound states, we refer to the equilibrium

geometry of the state, and for the repulsive states the data are given at the equilibrium ge-

ometry of the X2Σ+ ground state. At long distance, the dominant configuration of the X2Σ+

ground state is (1σ22σ23σ24σ21δ41π42π4)5σ16σ23π4 corresponding to a covalent ZnF situation.

For interatomic distances between 2.6 and 4.0 bohr the dominant configuration of the X2Σ+

ground state is (....)5σ26σ13π4, corresponding to a charge transfer from Zn to F and that of

the B2Σ+ state becomes (....)5σ16σ23π4 as a result of the avoided crossing occurring close to
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Figure 34: Potential energy curves of the lowest 2Σ+ and 2Π states of ZnF at the RCCSD(T)
level of theory. The potential curves of the X2Σ+, A2Π, and C2Π states from the MRCI+Q
calculations are also presented for comparison.
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Figure 35: Potential energy curves of the quartet states of ZnF at the MRCI+Q level of theory.
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R = 5.0 bohr. At larger distance the dominant configuration of the B2Σ+ state is again the

ionic one (....)5σ26σ13π4 with a coefficient of 0.543 at R= 5.0 bohr and of 0.605 at R = 6.0

bohr. At its equilibrium geometry the D2Σ+ state has the leading configuration (....)5σ27σ13π4,

which stays dominant until R = 4.0 bohr. This configuration is associated with a charge transfer

from Zn to F. For interatomic distances shorter than 3.0 bohr the D2Σ+ state takes the leading

configuration (....)5σ16σ23π4 from the B2Σ+ state as a result of an avoided crossing occurring

close to R = 3.0 bohr.

At long distances, the main configuration contributing to the A2Π state is (....)5σ26σ23π3,

while the C2Π state is dominated by (....)5σ23π44π1. These configurations correspond qualita-

tively to Zn(3d104s2) + F(2s22p5) for the A2Π state and Zn+(3d104p1) + F−(2s22p6) for the

C2Π state. Because of an avoided crossing between these states near 3.5 bohr, as seen in Figure

33, the dominant configurations of these two states are interchanged at distances below 3.4 bohr.

The main configuration of the X1Σ+ state of the ZnF− molecular anion is (....)5σ26σ23π4 at

its equilibrium geometry. In the photoelectron spectroscopy experiments performed by Moravec

et al. [58] the accessible states of the ZnF species are preferentially those which correspond to

the elimination of one electron from this configuration. The preceding analysis shows that the

X2Σ+, the A2Π and the B2Σ+ should be accessible in photoelectron spectroscopy experiments,

provided that the photons posses a sufficient energy to reach these states. Unfortunately, the

photon energy employed in the experiments of Moravec et al. [58] was only sufficient to reach

the X2Σ+ state.

Table 18: Dominant configurations of the low lying electronic states of ZnF at the MCSCF level
of theory.

States Configurations(a) Coefficients

X2Σ+ (....)5σ26σ13π4 0.909
A2Π (....)5σ26σ23π3 0.908
B2Σ+ (....)5σ16σ23π4 0.731
C2Π (....)5σ23π44π1 0.857
D2Σ+ (....)5σ27σ13π4 0.782

(a): The molecular orbitals in parentheses are fully occupied and correspond to:

1σ22σ23σ24σ21δ41π42π4.

(iii) Dipole moment functions

Figures 36 and 37 show the dipole moments of the 2Σ+ and 2Π states, respectively, as a func-

tion of the interatomic distance R. Table 15 presents the dipole moments at the equilibrium

geometries of the bound states and at the equilibrium geometry of the X2Σ+ ground state for

the repulsive states. These dipole moments are calculated as an expectation value at the MRCI
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level separately in each space and spin symmetries. The sign convention is defined such as the

positive value corresponds to the Zn+F− polarity. The dipole moments are used here to discuss

the polarity of the states and the interactions between them. The transition dipole functions

calculated as an expectation value, in the next section, will be used to discuss the intensity of

the electronic transitions between the bound doublet states.

Based on an averaged slope of the dipole moment function of the X2Σ+ ground state in

the bonding region, between 3 and 4 bohr, one can estimate the charge separation to be 0.56e,

corresponding to a partially ionic bond Znδ+Fδ−. This result confirms the conclusion of Flory et

al. [55], from their analysis of the electron density at the Zn and F nuclei, that the ground state

is partially ionic and confirms also the previous calculations of Harrison et al. [64] who found,

at the RCCSD(T) level, a partial charge of +0.72e and -0.72e for Zn and F respectively. For an

interatomic distance R close to 4.5 bohr the dipole moment of this state presents the maximum

and then decreases to zero for interatomic distances longer than 6.0 bohr, corresponding to the

covalent dissociation limit.

The dipole moment of the B2Σ+ state is almost equal to zero at interatomic distances larger

than 10.0 bohr, corresponding to the covalent structure: the B2Σ+ has an ionic structure of

Zn+F− type between 10.0 and 6.0 bohr, with the maximum of the dipole moment function

around R = 6.0 bohr. At this distance the B2Σ+ starts to interact with the X2Σ+ ground state

and the ionic character is transferred to the ground state in the region of the avoided crossing

which spreads over 1.5 bohr, as shown in Figure 36. The polarity of the X2Σ+ and the B2Σ+

states results from the charge transfer appearing in the configuration (....)5σ26σ13π4.

For R > 6.0 bohr, the D2Σ+ state is covalent according to the quasi zero value of the dipole

moment. In the bonding region, the dipole moment of this state is positive, corresponding to a

Znδ+Fδ− polarity.

The sharp avoided crossing between the A2Π and C2Π states that is seen in Figure 37 near

3.4 bohr leads to a drastic change in the dipole moment of the two states, as the electronic

character of the state changes dramatically near this interatomic distance. At interatomic dis-

tances longer than 3.6 bohr, the dipole moment of the C2Π state is positive with the maximum

value around R = 3.8 bohr due to an ionic structure of Znδ+Fδ− type, in agreement with the

charge transfer associated to the configuration (....)5σ23π44π1. The third 2Π state is covalent at

large interatomic distances (R > 7 bohr) and presents a dipole moment function which is close

to zero. In the region between 3 and 7 bohr, this state has an ionic structure of Zn−F+ type,

according to the negative value of the dipole moment.

(iv) Spectroscopic constants for the four lowest bound states

The potential energy curves calculated at the MRCI+Q level have been used to derive the

spectroscopic constants of the electronic states of ZnF via the NUMEROV algorithm [34]. The

calculated data on ZnF are presented in Table 15 together with the spectroscopic constants
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Figure 36: Dipole moment functions of the 2Σ+ states of ZnF at the MRCI level of theory.
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Figure 37: Dipole moment functions of the 2Π states of ZnF at the MRCI level of theory.
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of the X1Σ+ of the ZnF− molecular anion. The equilibrium bond distance Re of the ground

state X2Σ+ is determined to be 3.337 bohr, quite close to the most recent experimental value

Re = 3.341 bohr by Flory et al. [55] and to the theoretical value Re = 3.354 bohr by Harri-

son et al. [64] calculated at the RCCSD(T) level of theory. For the harmonic vibrational (ωe)

and anharmonic vibrational wavenumbers (ωexe) of the ground state for the main isotopologue
64Zn19F, we obtain 638.6 cm−1 and 3.2 cm−1 respectively. Our harmonic vibrational wavenum-

ber is slightly larger (6-8 cm−1) than the previous values [55,64]. We report also in Table 15 the

wavenumbers (ωe and ωexe) of the X2Σ+ state for the other isotopologues 66Zn19F and 68Zn19F.

The dissociation energy De of the X2Σ+ ground state obtained with our MRCI+Q potential

is equal to 3.030 eV, smaller by about 0.1 eV than the values determined by Harrison et al.

(D0 = 3.16 eV) and by Flory et al. (De = 3.123 eV), but higher by about 0.1 eV than the value

of 2.931 eV calculated by Boldyrev and Simons [63]. For the B2Σ+ and D2Σ+ states, there is

no known data to compare with and we believe that the accuracy on these quantities is of the

same quality as for the X2Σ+ state.

The spectroscopic constants of the first excited 2Π states (A and C) have also been given

in Table 15. At the QCISD(T) level, Boldyrevand Simons [63] predicted a van der Waals A2Π

state with a minimum at 8.520 bohr. However, we have found this state purely dissociative for

the large ZnF bond lengths. The C2Π state lies at 4.876 eV (Te) above the ground state with

ωe/ωexe = 935.3/17.2 cm−1. These numbers can hardly be compared to the calculated values

of Harrison et al. [64] (Re = 3.320 bohr, ωe = 659 cm−1, D0 = 2.59 eV and T0 = 4.63 eV) since

they found only one 2Π state instead of two. Also, the simple spin-orbit perturbation model

of Flory et al. [55] that predicted the A2Π state at 2.53 eV above the X2Σ+ state was related

to the presence of an isolated first excited 2Π state and cannot be valid. However, the only

experimental work which has probed the 4.6 eV region is the study of Rochester and Olsson [57]

that confirms a complicated situation since they found predissociated levels between 36000 and

39000 cm−1 (region of the avoided crossing between both 2Π states). The assignments of the ex-

perimental UV bands stay problematic. From photoelectron spectroscopy experiments, Moravec

et al. affirm that there is no absorbing electronic state below 2.69 eV above the X2Σ+ state.

The spectroscopic constants related to the electronic ground state X1Σ+ of ZnF− are also

presented in Table 15 and are compared with the experimental data of Moravec et al. [58] and

with the calculated data of Harrison et al. [64]. The electronic affinity is calculated at 1.829 eV

and equals to 1.843 eV with the zero energy point correction which compares well with the ex-

perimental value of 1.974 eV of Moravec et al. [58] and of 1.929 eV of Harrison et al. [64]. These

authors found that the equilibrium bond length of the ionic state must be shifted by +0.283

bohr from the Re of the neutral X2Σ+ state. Our calculated shift is 0.301 bohr. The agreement

for the harmonic wavenumbers is within 7 cm−1. If we use the experimental data in Table

15 and the experimental electronic affinity of F (3.398 eV) [4], we can estimate an experimen-

tal value of 1.660 eV forD0 and of 1.686 eV forDe which is close to the calculated De of 1.531 eV.

(v) Vibronic transitions between the X2Σ+ state and the lowest bound states
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Figure 38: B2Σ+(v)← X2Σ+(v′) absorption spectra for the three most abundant isotopologues
of ZnF.
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Vibronic transitions can occur between the X2Σ+ and the excited 2Σ+ and 2Π bound states and

the intensity of the lines depends on the magnitude of the transition dipole moments between

the two states of interest. At the equilibrium geometry of the X2Σ+ ground state, these values

are calculated to be 0.1506 a.u., 1.2931 a.u., and 0.9540 a.u. for the B2Σ+ state, the C2Π state,

and the D2Σ+ state, respectively, at the MRCI level of theory. Consequently the transitions to

the C2Π and D2Σ+ states are expected to be more intense than to the B2Σ+ state. In the case

of the most abundant isotopologue 64ZnF, due to the energy difference T0 = 32920 cm−1 (4.082

eV) for the B2Σ+ state and T0 = 39471 cm−1 (4.894 eV) for the C2Π state, these transitions

can be observed in the UV domain.

The vibrationally resolved absorption spectra to the B2Σ+ and C2Π states, for the three

most abundant isotopologues 64ZnF, 66ZnF, and 68ZnF, have been simulated, using the NU-

MEROV algorithm [34] at T = 0 K and they are presented in Figure 38 for the B-X transition

and in Figure 39 for the C-X one. One can see the long progression in the B-X spectrum, due

to a large difference of the equilibrium distances of both states, in contrast, the transition to the

C state is almost vertical and only a few vibrational levels of the C2Π excited electronic state

are reached. We assume that the C-X bands associated with transition energies larger than

39000 cm−1 could be only slightly disturbed by the avoided crossing between the A2Π and C2Π

states lying approximately at 36500 cm−1 from the equilibrium of the X2Σ+ state. Only the

D2Σ+(v = 0) level is populated by the X-D absorption with an oscillator strength of 0.193115

and a transition energy of 54022 cm−1 for 64ZnF.
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Figure 39: C2Π(v) ← X2Σ+(v′) absorption spectra for the three most abundant isotopologues
of ZnF.
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6.3.6 Electronic structure of ZnCl

Potential energy curves calculated at the MRCI level including the Davidson correction are

shown in Figures 40 and 41, respectively for the doublet and quartet states which are correlated

adiabatically with the two lowest asymptotes. Figure 42 presents the dipole moments at the

MRCI level, of the the 2Π states. The MRCI calculations have been performed, separately in

each space and spin symmetries, taking as reference the MCSCF wavefunctions with the coeffi-

cients larger than 0.01 to reduce the size of calculations. At the MCSCF level, calculations have

been performed for the molecular states correlated with the seven lowest asymptotes, separately

in each space and spin symmetries. This procedure which has not been applied to the case

of ZnF, is necessary to obtain the accurate descriptions of the low lying states of ZnCl, due

to the dissociation asymptotes of ZnCl lower than those of ZnF. Because the underlying RHF

calculations have not been converged, we have to discard the calculations at the MCSCF and

the MRCI levels at distances longer than 6.5 bohr. Using the NUMEROV algorithm [34], the

calculated spectroscopic constants are listed in Table 16 for the doublet states of interest.

Observing the potential curves of the low lying states, we can find their behaviors similar

to those of ZnF. From Figure 40, the 2Σ+ state correlated adiabatically with the lowest asymp-

tote is the ground state and the lower A, B, and C states have the same trends of appearances

as in the case of ZnF, while the higher excited states D2Σ+ and third 2Π show the following

differences: the former has the bound structure around the equilibrium distance of the ground

state in ZnF and is repulsive with a small shoulder in ZnCl. In contrast, the latter is repulsive

in ZnF and has the bound structure with the equilibrium distance of 3.837 bohr in ZnCl. This
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fact may be due to the difference of the molecular states included in the MCSCF calculations.

Our obtained spectroscopic data of the X2Σ+ and the B2Σ+ show excellent agreement with

the previous values. The E2Σ+ state was reported by Cornell [68] with the values ωe/ωexe =

345.4/5.0 cm−1 and Te = 5.974 eV. In contrast, the higher excited D2Σ+ state is found to be

repulsive in our results.

Compared with the previous studies, the most obvious difference appears in the descriptions

of the A2Π and C2Π states. An avoided crossing occurs between these states at the interatomic

distance around 4 bohr, where their dipole moments interchange drastically behaviors shown in

Figure 42. As in the case of ZnF, this avoided crossing determines the minimum of the C2Π

state correlated adiabatically with the second dissociation asymptote, while the A2Π state is

correlated with the first one. Compared with the previous experimental values measured by

Cornell [68], our obtained harmonic and anharmonic wavenumbers of the C2Π state show ob-

viously large differences, in contrast, the energy difference relative to the ground state is in

reasonable agreement. About the C2Π state, there is no other comparative data. Boldyrev and

Simons [63] reported, from their QCISD(T) calculations, that the A2Π state is a van der Waals

state correlated with the lowest asymptote owning the following constants: Re = 8.835 bohr,

ωe = 14 cm−1, and Te = 2.019 eV. Sureshkumar et al. [71] recorded the vibrationally resolved

emission spectra at the wavelengths from 510 to 655 nm. They assigned their spectra to the A2Π

- X2Σ+ transition and revealed the energy difference of about 2.23 eV between these two states.

However our calculations at the MRCI+Q level show that the A2Π state is globally repulsive

and lies much higher than 2.23 eV in the molecular region. We can comment that the accurate

descriptions of both the A2Π and the C2Π states in the vicinity of their avoided crossing remain

yet difficult.

6.3.7 Conclusions

The potential energy curves and the dipole moment functions of the low lying electronic states of

ZnF and ZnCl and of the electronic ground state of ZnF− are calculated at the MRCI+Q level of

theory. As presented in Figure 33 and 35, only four low lying electronic states of ZnF are bound:

the X2Σ+, B2Σ+, C2Π and D2Σ+ states. The spectroscopic constants of these bound states are

obtained, many of them for the first time and vibronic transitions from the electronic ground

state X2Σ+ towards these three excited states can be observed in the UV domain. All the low

lying quartet states are found to be repulsive. For the low lying states of ZnCl, we have obtained

the similar results to those of ZnF. The potential energy of the ZnF− molecular anion has been

determined in the vicinity of its equilibrium geometry and the electronic affinity of ZnF has

been calculated in agreement with the photoelectron spectroscopy experiments. Compared with

the previous theoretical study using the RCCSD(T) method, we conclude that it is necessary

to treat these molecules by the multi-configurational method, in order to take into account the

interactions between the states. In both cases of ZnF and ZnCl, our results of the A2Π and C2Π

states show discrepancies from the previous works. For the disagreement of the C2Π state, it

should be discussed in term of the rovibronic levels, including the spin-orbit interactions between

A2Π and C2Π states. About the difference of the description of the A2Π state between our study
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Figure 40: Potential energy curves of the doublet states of ZnCl at the MRCI+Q level of theory.
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Figure 41: Potential energy curves of the quartet states of ZnCl at the MRCI+Q level of theory.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 3  3.5  4  4.5  5  5.5  6  6.5

E
ne

rg
y 

[e
V

]

R(Zn-Cl) [bohr]

4Σ+

4Π
4∆

4Σ-

115



Figure 42: Dipole moment functions of the 2Π states of ZnCl at the MRCI level of theory.
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and the previous ones, we note that the method employed by Boldyrev and Simons [63] tends

to predict a van der Waals state for the low lying states of the zinc diatomic compounds.
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6.4 Study of the ground state of HZnF

6.4.1 Introduction

From the information on the structures of the ZnH and ZnF diatomic fragments, we can turn

towards the HZnF triatomic molecule, focusing on its ground state. This study is motivated

by previous experimental and theoretical work on the zinc hydrochloride HZnCl, revealing the

electronic structure and spectroscopic data of the 1Σ+ ground state.

Recently, Macrae et al. [5] prepared HZnCl, HCdCl, and HHgCl in Ar cold matrixes and

recorded their infrared spectra, from which it turned out that these molecules are linear in their

ground state. They observed three normal modes of vibration at 1952.3 cm−1 for the Zn-H

stretching mode ν1, at 449.6 cm−1 for the bending mode ν2, and at about 420 cm−1 for the

Zn-Cl stretching mode ν3, with assignments pointed out by isotopic substitution and density

functional theory (DFT) calculations.

On the other hand, Yu et al. [6] have recorded the vibration-rotation emission spectrum for

the four most abundant isotopomers in gaz phase. They have observed a very dense emission

infrared spectrum around 1966 cm−1, corresponding to the Zn-H stretching mode (ν1). This

density of the spectrum was due to the small value of the rotational constant 2B (circa 0.3 cm−1)

and various natural isotopomers of HZnCl. The complex spectrum was fitted using the simple

energy level expression (6.1) where the bending mode ν2 and the Zn-Cl stretching mode ν3 and

the J assignments were made with the help of DFT(B3LYP) calculations. They have obtained

the (1, 0, 0) energies of the four most abundant isotopomers (1966.87 cm−1 for H64Zn35Cl) and

the (2, 0, 0) energies of H64Zn35Cl.

E = G(v1, v2, v3) +B(v1, v2, v3)J(J + 1)−D(v1, v2, v3)[J(J + 1)]2 (6.1)

The determination of the bond lengths between H and Zn (RHZn) and between Zn and F

(RZnCl) was rather controversial, especially for the former one. Using the moment of inertia

equation applied to the six pairwise combinations of isotopomers, they have calculated the value

of RHZn ranging from 3.016 to 3.381 bohr, in contrast the obtained value for RZnCl ranges

more consistently from 3.929 to 3.946 bohr. With the help of the Kraitchman’s equation for

linear molecule [73], they have obtained the value of 3.937 bohr for RZnCl. Substituting this

value (3.937 bohr) into the moment of inertia equation and into the center of mass equation,

the value of 3.221 and 3.322 bohr are derived respectively for the bond length of RZnH of the

main isotopomer H64Zn35Cl.

To determine the equilibrium structure and the spectroscopic constant, Kerkines et al. [7]

have performed the calculations for the ground state at the RCCSD(T) level, as well as for the

ones of ZnH and ZnCl. Their calculations involved 20 valence electrons (Zn:3d104s2, Cl:3s23p5,

and H:1s1) using the correlation consistent polarized cc-pV(T,Q,5)Z basis sets for H, Cl, and

Zn. The effects of the 3s23p6 and 2s22p6 electron cores of Zn and Cl, respectively, were included

using the weighted core cc-pwCVTZ basis sets. They have estimated one-electron relativistic

effects within the second-order DKH approximation and the associated cc-pV(T,Q,5)Z-DKH
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basis sets. After the elimination of basis set superposition errors (BSSE) with the counterpoise

technique, finally, the CBS limit approach was applied using the following formula:

Pn = P∞ +Ae−(n−1) +Be−(n−1)2 (6.2)

Within this approach, they have reported the equilibrium geometries of RHZn = 2.833 and

RZnCl = 3.929 bohr, with the contribution of the relativistic effect reducing the bond lengths by

0.025-0.032 bohr and that of the core electrons contracting quite slightly by 0.002-0.008 bohr.

The harmonic wavenumbers ω1 (H-Zn stretching mode), ω2 (bending mode), and ω3 (Zn-Cl

stretching mode) were reported, based on the calculations at the RCCSD(T)/cc-pVTZ level.

Their results for the most abundant isotopomer H64Zn35Cl (ω1 = 2008.2, ω2 = 421.2, and ω3

= 431.7 cm−1) are successfully in good agreement with these values obtained from the previous

experimental studies.

Motivated by these previous works, we will try to study the ground state of the zinc hy-

drofluoride HZnF, replacing F by Cl. There is no experimental and theoretical studies about

this compound up to the present. Thus we have examined the descriptions of ZnF and ZnH and

obtained the more information about them in the last chapters and we have listed the previous

works in detail for comparison between HZnF and HZnCl. To complete this comparison, we

have performed the calculations of the low lying states of ZnCl, using the same ansatz as for

ZnH and ZnF.

6.4.2 Dissociation asymptotes

In order to clarify the electronic states in the molecular region, we start with the situation close

to the lowest dissociation limits to both HZn + F and H + ZnF in linear geometry. The low

lying dissociation asymptotes in linear geometry and the molecular states correlated with them

are listed in Table 11.

(i) Dissociation asymptote into HZn and F

The lowest dissociation asymptote into HZn + F in linear geometry corresponds to a com-

bination between the 2Σ+ ground state of HZn and the 2Pu ground state of F, leading to one
1,3Σ+ and one 1,3Π molecular states. In the next, one 1,3Σ+, one 1,3Σ−, one 1,3Π, and one 1,3∆

molecular states are correlated with the asymptote HZn(A2Π) excited state and F(2Pu) ground

state. This second one lies at 2.888 eV (from our calculations) above the lowest one. The third

asymptote HZn(B2Σ+) + F(2Pu), lying at 3.470 eV above the first one, correlates with one
1,3Σ+ and one 1,3Π states. The dissociation asymptote due to the 4Pg first excited state of F

lies 12.701 eV above the first one and is not taken into account in this study [8]. As revealed in

the previous chapter, the 1Σ+ ground state of ZnH+ lies at 7.494 eV above the ground state of

ZnH and the experimental electronic affinity of F [4] is 3.398 eV. Thus the first ionic dissociation

asymptote lies at 4.096 eV above the lowest covalent one, correlating with one 1Σ+ molecular

state.
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(ii) Dissociation asymptote into H and ZnF

The lowest dissociation asymptote into H and ZnF in linear geometry comes from the ground

states 2Σ+ and 2Sg, correlating with one 1,3Σ+ state. Since the hydrogen has the 2Sg ground

state, the resulting HZnF has the same representation in C∞v symmetry group as the parent

ZnF with the singlet or triplet spin multiplicities. Thus, the other lowest asymptotes (from the

second to the seventh) correspond to a combination of the ground state of H with two 2Σ+,

three 2Π, one 2∆, and one 2Σ− states of ZnF and correlate with two 1,3Σ+, three 1,3Π, one
1,3∆, and one 1,3Σ− molecular states. Using the Te values for the bound states and the Tv

values for the repulsive states of ZnF, from our calculations, we list energy differences of these

asymptote related to the lowest one in Table 11. To include in the calculations the same number

of the molecular states of HZnF in both paths of dissociation, we should include in the calcula-

tions one more 1Σ+ molecular state correlated adiabatically with the asymptote resulting from

the ground state of H and a 2Σ+ state of ZnF, which results from the Zn(1Pu) and F(2Pu) states.

6.4.3 Computational details

Keeping the same ansatz as the calculations of the diatomic molecules, the 10 core electrons of

Zn and the 2 core electrons of F were represented respectively by the ECP10MDF [24] and the

ECP2MWB [72] pseudopotentials. The 20 outer electrons of Zn were explicitly treated via the

associated aug-cc-pVQZ basis sets contracted as (14s14p11d3f2g1h)/[6s6p5d3f2g1h] [25] and the

7 outer electrons of F using the associated (4s5p)/[2s3p] basis sets [72] augmented with the 4d,

3f, and 2g primitives taken from the Dunning et al. correlation consistent aug-cc-pVQZ basis

sets [26, 65]. For the hydrogen atom, the Dunning et al. correlation consistent aug-cc-pVQZ

basis sets was employed [26].

The electronic structure calculations for the four 1Σ+, three 1Π, one 1∆, and one 1Σ− molec-

ular states have been performed at the MCSCF level with 28 valence electrons [27, 28]. The 19

active molecular orbitals were constructed on the 3s, 3p, 3d, 4s, and 4p of Zn, 2s, 2p, and 3s of

F, and 1s of H. Among these 19 orbitals, the 10 inner shells including the 3d orbital of Zn and

the 2s orbital of F were optimized but not correlated. The effective active space consists thus

in the (5-9)σ and (3-4)π orbitals in C2v symmetry group. Taking the MCSCF wavefunction as

reference, the subsequent internally contracted MRCI calculations [29,30] have been performed

for only the ground state, including the Davidson correction [31, 32]. All electronic structure

calculations have been realized in C2v or Cs symmetry groups using the MOLPRO program

package [33].

6.4.4 Results

According to the potential curves and the dipole moments of the low lying states of both ZnH

and ZnF, these states show the interactions among them. Specially, around the equilibrium

distances of the ground state of both ZnH and ZnF, we find the obvious avoided crossing. Even

though we focus this study on the ground state of HZnF, it is necessary to include many excited
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states in the calculation at the MCSCF level, for taking into account such interactions which

may affect the description of the HZnF ground state.

(i) Ground and low lying excited states at the MCSCF level

We discuss first qualitatively the electronic structures of the ground and low lying excited

states, based on the MCSCF calculations. The potential curves in linear geometry with variation

of the distance RZnF between Zn and F are presented in Figure 43, in which the distance RHZn

between Zn and H is fixed at the calculated equilibrium distance 2.997 bohr of the ZnH(X2Σ+)

state. Figure 44 shows the potential curves in linear geometry in function of RHZn with RZnF

fixed at the calculated equilibrium geometry of 3.337 bohr for the ZnF(X2Σ+). The calculations

have been performed in C2v symmetry group.

From both Figures 43 and 44, clearly HZnF has the 1Σ+ ground state, with the equilib-

rium bond length of 3.344 bohr for RZnF and of 2.942 bohr for RHZn. In both linear cuts,

the ground state is quite separated in energy from the low lying excited states. The bond en-

ergy for the F + ZnH dissociation is larger than that for the other dissociation. The principle

configuration of the ground state in the vicinity of the equilibrium bond lengths is found to be

(1σ)2(2σ)2(3σ)2(4σ)2(1π)4(1δ)4(2π)4(5σ)2(6σ)2, with increase of energy. Figure 43 shows the

remaining characters of ZnF in the HZnF compound. For example, the second 1Σ+ state has the

wide minimum around RZnF = 5.0 bohr quite similar to the minimum structure of the B2Σ+

states of ZnF. The avoided crossing between the A2Π and the C2Π states in ZnF appears in

HZnF, as found the avoided crossing between the first and second 1Π states. In contrast, the

effects of addition of F into ZnH are less clear in Figure 44. The wide minimum of the second
1Σ+ state of HZnF may be due to the B2Σ+ state of ZnH. The dissociation asymptotes into H

+ ZnF lie qualitatively well, compared to the energetical order of the lowest states in ZnF at

the interatomic distance of 3.337 bohr.

The variation of the potential curves in function of the bending angle θ from 180 to 240◦

are depicted in Figure 45 for the low lying states of HZnF, calculated at the MCSCF level in Cs

symmetry group. The distance between Zn and H is fixed at RZnH = 2.942 bohr and the other

at RZnF = 3.344 bohr. Again the ground state 1Σ+ is found to be linear and isolated in energy

in the region of these bending angles. The higher excited states have the minimum in linear

geometry, contrary, the potential energies of the lower excited states decrease with increase of

the bending angle. This behavior is likely to arise from the avoided crossings between two 1A′

states occurring at 200 and 230◦ and that between two 1A” states around 200◦.

120



Figure 43: Potential energy curves (in function of RZnF ) of the ground and low lying excited
states of HZnF at the MCSCF level of theory, in linear geometry.
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Figure 44: Potential energy curves (in function of RZnH) of the ground and low lying excited
states of HZnF at the MCSCF level of theory, in linear geometry.
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Figure 45: Potential energy curves (in function of the bending angle θ) of the ground and low
lying excited states of HZnF at the MCSCF level of theory.
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(ii) Potential energy surface of the ground state

The determination of the potential energy surface (PES) of the 1Σ+ ground state of HZnF

has been performed from the calculations at the MRCI level including the Davidson correction

for only the ground state, taking the preceding MCSCF wavefunction as reference. The calcu-

lations have been carried out in Cs symmetry group at 31 points (19 linear and 12 non linear),

with variations of RZnH , RZnF , and the bending angle θ, corresponding to the energy increases

less than about 10000 cm−1 from the equilibrium energy. These variables included in the PES

range from 2.31 to 3.56 bohr, from 2.89 to 3.89 bohr, and from 180 to 220◦, respectively for

RZnH , RZnF , and θ.

The resulting energy values were fitted by the following polynomial expansion up to the fourth

order of the displacements of these three internal coordinates, using the SURFIT program [74].

V (∆RZnH ,∆RZnF ,∆θ) =
∑

i,j,k

(∆RZnH)i(∆RZnF )j(∆θ)k (6.3)

∆RZnH = RZnH −Req
ZnH

∆RZnF = RZnF −Req
ZnF

∆θ = θ − π

where 0 ≤ i, j, k ≤ 4 and 0 ≤ i+ j + k ≤ 4. k should take even values to observe the symmetry

of the bending coordinate. The equilibrium geometry where the first derivatives of the PES
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are equal to zero was taken as reference. 22 expansion coefficients Cijk optimized by a least

square-fitting with the root mean square of 1.37 cm−1 are listed in Table 19 with the reference

geometry Req
ZnH and Req

ZnF .

At this equilibrium geometry, the dipole moment is calculated at the MRCI level, using the

center of mass of the molecule as the coordinate origin. Compared our results with the previous

data on the HZnCl and on the concerned diatomic compounds presented in Table 20, the con-

traction of the bonding lengths in equilibrium geometry appears quite similar between HZnF

and HZnCl. RZnF of the ground state (3.269 bohr) is shorter by 2% than that of the X2Σ+

state (3.337 bohr) in ZnF and this contraction ratio is same between HZnCl and ZnCl in the

study of Kerkines et al. [7]. About comparison of contraction of the H-Zn bond length between

HZnF and HZnCl, our calculated RZnH has 93.4% of the equilibrium distance of ZnH and the

ratio of 94.4% is found for HZnCl from the calculations by Kerkines et al. [7].

Using the SURFIT code, we have calculated, from the PES derivatives at the minimum, the

harmonic wavenumbers of three normal modes ω1, ω2, and ω3 for all natural isotopomers of

HZnF and they are listed in Table 21 with the ones of the main HZnCl isotopomers reported in

the previous works. Decomposition of the stretching Q1 and Q3 normal modes into the displace-

ments of internal coordinates ∆RZnH and ∆RZnF are shown in Table 22 and it appears that

the Q1 and Q3 normal modes are almost localized respectively on the stretching of the ZnH and

ZnF bonds. The harmonic wavenumber ω1 of the ZnH stretching mode has almost similar value

between HZnF and HZnCl. With substitution of the various isotopes of Zn, ω3 is more affected

from 696.28 for H64ZnF to 689.63 cm−1 for H70ZnF, while ω1 and ω2 are almost constant. The

similar trend was found for the isotopic replacement of Zn in the study of HZnCl reported by

Kerkines et al. [7].
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Table 19: Polynomial expansion coefficients Cijk (a.u.) of the PES of the ground state 1Σ+, with
its equilibrium geometries and the equilibrium dipole moment calculated at the MRCI level.

Coefficients Coefficients

C000 -251.26947415 C102 -0.01285483
C100 0.00000000 C012 -0.01764748
C010 0.00000000 C400 0.03220686
C200 0.08187298 C310 0.00074914
C110 -0.00403714 C220 0.00204196
C020 0.13505205 C130 0.00065378
C002 0.03209212 C040 0.08045024
C300 -0.06947624 C202 0.00620243
C210 -0.00032669 C112 0.01017617
C120 0.00050788 C022 0.01280744
C030 -0.14281362 C004 -0.00240091

Req
ZnH 2.802 (bohr) Req

ZnF 3.269 (bohr)
µe 0.775 (a.u.)

(a): Taken from ref [7].

(b): Taken from ref [6].

(c): Taken from ref [55].

(d): Taken from ref [56].

(e): Taken from ref [11].
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Table 20: Comparison of the structure constants of the ground states of HZnF(1Σ+),
HZnCl(1Σ+), ZnF(2Σ+), ZnCl(2Σ+), and ZnH(2Σ+).

Quantities This study Kerkines(a) Yu(b) Flory(c) Tenenbaum(d) Shayesteh(e)

Method MRCI+Q RCCSD(T) Exp. Exp. Exp. Exp.

ZnH:Re(bohr) 2.999 3.001 3.010
ZnH:µe(a.u.) 0.016 0.232
ZnF:Re(bohr) 3.337 3.341
ZnCl:Re(bohr) 4.043 4.010 4.025
ZnF:µe(a.u.) 0.939
ZnCl:µe(a.u.) 1.043 1.106
Req

ZnH (bohr) 2.802 2.833 3.016 to 3.381
Req

ZnF (bohr) 3.269
Req

ZnCl (bohr) 3.929 3.938
µe (a.u.) 0.775 0.700

(a): Taken from ref [7]. Calculated at the RCCSD(T)/cc-pVTZ level of theory.

(b): Taken from ref [6]. Vibration-rotation emission spectrum of gaseous HZnCl.

(c): Taken from ref [5]. Matrix-isolated infrared spectrum.

(iii) Rovibrational levels of the ground state

For the linear triatomic molecule, there is no rigid rotation around the molecular axes (fixed to

the z axis). Thus the projection of the total angular moment on the z axis Ĵz has a contribution

only from the z component of the vibrational angular moment, whose quantum number l can be

related to the quantum number of the bending vibrational mode v2 as follows; l = ±v2, ±(v2−2),

..., ±2, 0 (for even value of v2) or ±v2, ±(v2 − 2), ..., ±1 (for odd value of v2). In the case of

the 1Σ+ ground state of HZnF, according to the zero quantum numbers of the projection of the

electronic and spin angular momenta, the rovibrational levels are characterized by the quantum

number K = |l | = 0, 1, 2, and 3.

Using the RVIB3 program [75] with the previously fitted PES, the vibrational levels of the

ground state 1Σ+ have been computed up to 3000 cm−1 for the main isotopomer H64ZnF. The

13 harmonic oscillator wavefunctions for the each stretching mode and the 70 associated Legen-

dre polynomials for the bending mode were involved in the contraction scheme. The primitive

set of integration points comprised 14 and 94 points for the stretching and the bending modes,

respectively. These rovibrational levels are shown in Table 23. The fundamental frequencies

are given as ν1 = 2000.847 cm−1 (for J, K = 0), ν2 = 474.471 cm−1 (for J, K = 1) and ν3 =

684.828 cm−1 (for J, K = 0). Compared with the ν1 values of HZnCl obtained from the previous

experiments [5,6], this value is slightly smaller by about 40 cm−1. From the split of 3.895 cm−1

between the J = 0 and J =1 in the zero vibrational level, the rotational constant 2B0 of 3.895

cm−1 is much larger than that of HZnCl (about 0.3 cm−1). Compared with the perturbatively
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Table 21: Harmonic wavenumbers ω1, ω2, and ω3 for all natural isotopomers of HZnF and the
main isotopomers of HZnCl.

Method Isotopomers ω1 cm−1 ω2 cm−1 ω3 cm−1

HZnF
This work MRCI+Q H64ZnF 2089.80 484.14 696.28

H66ZnF 2089.25 483.77 693.94
H67ZnF 2088.99 483.60 692.82
H68ZnF 2088.74 483.43 691.73
H70ZnF 2088.26 483.10 689.63

HZnCl

Kerkines(a) RCCSD(T) H64Zn35Cl 2008.2 421.2 431.7
H66Zn35Cl 2007.7 420.9 429.4
H68Zn35Cl 2007.2 420.6 427.3

Yu(b) Exp. H64Zn35Cl 2036.8

Macrae(c) Exp. H64Zn35Cl 2023.1 458.8 424.7
H66Zn35Cl 422.6
H68Zn35Cl 420.5

Table 22: Decomposion of the stretching normal modes Q1 and Q3 into the displacements of
internal coordinates ∆RZnH and ∆RZnF for the most abundant isotopomer H64ZnF.

Normal modes ∆RZnH ∆ZnF

Q1 0.9984 -0.0564
Q3 0.0193 0.9998

calculated anharmonic constants χ11 = 46.10 cm−1, χ22 = 1.00 cm−1, and χ33 = 11.61 cm−1,

Table 23 shows consistently the largest anharmonicity in the ZnH stretching mode than the

others. However, from the experiment reported by Yu al. [6], the anharmonicity in the ZnH

stretching mode of HZnCl appears much smaller than that of HZnF.
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Table 23: Rovibrational levels (cm−1) of the ground state 1Σ+ for the main isotopomer H64ZnF.

(v1,v2,v3) J=0,K=0 J=1,K=0 J=1,K=1 J=2,K=0 J=2,K=1 J=2,K=2

(0,0,0) 0(a) 3.895 11.684
(0,1,0) 474.471 482.257
(0,0,1) 684.828 688.722 696.507
(0,2,0) 938.595 942.488 950.271 946.879
(0,1,1) 1157.842 1165.625
(0,0,2) 1360.813 1364.704 1372.486
(0,3,0) 1404.570 1412.352
(0,2,1) 1620.495 1624.386 1632.167 1628.807
(0,1,2) 1832.453 1840.232
(0,4,0) 1860.239 1864.130 1871.911 1868.501
(1,0,0) 2000.847 2004.639 2012.221
(0,0,3) 2029.508 2033.415 2041.228
(0,3,1) 2084.996 2092.775
(0,2,2) 2293.747 2297.637 2305.414 2302.082
(0,5,0) 2317.775 2325.557
(1,1,0) 2465.523 2473.103
(0,1,3) 2502.368 2510.216
(0,4,1) 2539.160 2543.050 2550.829 2547.453
(1,0,1) 2686.406 2690.236 2697.894
(0,0,4) 2690.370 2694.270 2702.071
(0,3,2) 2756.966 2764.744
(0,6,0) 2765.042 2768.934 2776.717 2773.286
(1,2,0) 2920.120 2923.909 2931.487 2928.249
(0,2,3) 2966.583 2970.525 2978.409 2974.853
(0,5,1) 2995.200 3002.979

(a):The zero rovibrational level at 1853.397 cm−1.

6.4.5 Conclusions

In this chapter we have presented the study of HZnF, focusing on its ground state. Taking in ac-

count the interactions between the molecular states of ZnH and ZnF, we have carefully included,

in the MCSCF calculations, the low lying states of HZnF owning the interactions between them.

Taking the MRCI wavefunctions as referece, we have detremined, from the MRCI+Q calcula-

tions, the potential energy surface of the 1Σ+ ground state, from which we have estimated the

various spectroscopic constants. Then these data have been compared with the previous values

of HZnCl. If the vibration-rotation spectrum of HZnF in gaz phase is measured, we estimate

that it will become less complex than that of HZnCl, due to the larger rotational constant B.
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Conclusions

Despite recent developments in theory and methodology, it remains difficult to obtain an ac-

curate description of the electronic structure of compounds containing heavy atoms and close

lying electronic states. The existence of d shells introduces complexity in these systems and

metallic compounds with elements of the transition block exhibit such characteristics as several

accessible ionic forms and large relativistic effects which have been recognized to play an im-

portant role, consequently various relativistic approaches have been developed to include these

effects during the last decades. In this study, we have employed the pseudopotentials method

which allows the implicit introduction of relativistic effects and we have used large basis sets to

have enough flexibility to describe the variations of the polarity properties with the geometry.

Several metallic compounds have been the subject of the present study.

The diatomic compounds, MX, treated in the first application exhibit this complexity. To

take into account the interactions between the close lying electronic states, we have used a multi-

configurational approach throughout this study, atomic pseudopotentials to represent the core

electrons of the metals and large basis sets. In the first application, we have elucidated the com-

mon characteristics of the low lying electronic states of a large family of diatomic compounds

which can be considered as precursors for piezoelectric effects in the solid phase. Based on

highly correlated ab initio calculations, we have shown that the diatomic compounds involving

a metal of Group IIa, IIb, or III and a non-metal of Group V or VI, with their eight valence

electrons, have all in common very close lying lowest electronic states with different spin, sym-

metry, polarity and geometric properties. We could correlate these properties of the diatomics

to piezoelectric characteristics of the ionic solids, MX, formed with such pairs of atoms. We

could also infer which of these pairs present the largest piezoelectric effects in the solid phase.

In previous theoretical studies of piezoelectric effects, the bulk level has been explored and our

study could clarify the molecular process between the partners which can be responsible for the

effect in the solid phase. Further extensions of this study are, on one hand the analysis of the

electronic and polarity properties of larger molecular systems, as for example the dimers (MX)2

and on the other hand the calculation of the piezoelectric tensor for nanowires of the same pairs,

particularly ZnO and AlN.

In the second part of this work, we have reported the study on the HZnF molecule and the

associated diatomic fragments, ZnH and ZnF. Their electronic structure and the spectroscopic

constants have been reported in this study, based on calculations at the MRCI level including the

Davidson correction, with pseudopotentials and large basis sets. The calculated spectroscopic

data compare well with known previous data. A better knowledge of these molecules has been

given, particularly an appropriate description of the low lying excited states of ZnF which were

not or poorly described in previous studies. It has been necessary to include the spin-orbit inter-

actions between the A2Π and the C2Π states in order to obtain what we guess is an appropriate

description of these states in contradiction with previous interpretations. For the ZnH+ cation

it was not possible to obtain a very accurate description of the properties, certainly because of

the Zn pseudopotential, which was designed for the neutral species and not especially for the

Zn+(3d94s2) ion [24]. An accurate description of the ground state of HZnF could be obtained by
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the inclusion in the MCSCF step of much more low lying excited states than inferred in previous

analysis. This point was essential in the present study and required many efforts. The Poten-

tial Energy Surface, PES, has been used to calculate the rovibrational spectrum of this molecule.

Both applications have led to publications.

The first one in:

(1) ”Specific electronic properties of metallic molecules MX, correlated to piezoelectric prop-

erties of solids MX”, G. Chambaud, M. Guitou, and S. Hayashi, Chemical Physics, 352, 147,

(2008).

For the second application, new results on the ZnF fragments have been published and the

complete study of the triatomic will lead to another publication:

(2) ”Ab initio study of the low lying electronic states of ZnF and ZnF−”, S. Hayashi, C. Léonard,

and G. Chambaud, The Journal of Chemical Physics, 129, 044313, (2008).
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