

Greffage de Films Organiques par Polymérisation Radicalaire Électro-amorcée en Milieu Aqueux Dispersé

> Lorraine TESSIER Guy DENIAU Bernadette CHARLEUX

Vendredi 16 octobre 2009 Laboratoire de Chimie des Surfaces et Interfaces

<u>Lorraine TESSIER</u> Guy DENIAU Bernadette CHARLEUX

Greffage de Films Organiques par Polymérisation Radicalaire Électro-amorcée en Milieu Aqueux Dispersé

OBJECTIF

Objectif:

Etudier le mécanisme réactionnel impliqué dans le procédé SEEP

Laboratoire de Chimie des Polymères

Polymérisation radicalaire (contrôlée) Polymérisation en émulsion

SEEP

(Surface Electroinitiated **Emulsion** Polymerization)

Fonctionnalisation de Surface (Electrogreffage)

Laboratoire de Chimie des **Surfaces et Interfaces**

J. Nicolas, B. Charleux, O. Guerret, S. Magnet; Angew. Chem, Int. Ed; 2004; 43; 6186 S. Palacin, C. Bureau, J. Charlier, G. Deniau, B. Mouanda, P. Viel; ChemPhysChem; 2004; 18; 1468-1481 G. Deniau, L. Azoulay, L. Bougerolles, S. Palacin; Chem. Mater; 2006; 18; 5421-5428

Fonctionnalisation de Surfaces

Techniques de physisorption

Fonctionnalisation de Surfaces

Techniques de physisorption

 \otimes Interactions faibles \rightarrow fragilité du revêtement

Techniques de chimisorption

Fonctionnalisation de Surfaces

Techniques de physisorption

Fonctionnalisation de Surfaces

Techniques de physisorption

\otimes Interactions faibles \rightarrow fragilité du revêtement

Films fins
Principalement sur surfaces oxydées

Fonctionnalisation de Surfaces

Techniques de physisorption

 \otimes Interactions faibles \rightarrow fragilité du revêtement

Techniques de chimisorption

• Monocouche auto-assemblée

• Polymérisation amorcée sur/à partir de la surface

② Plusieurs étapes③ Temps et température élevés

Fonctionnalisation de Surfaces

Techniques de physisorption

e

⁺N₂-

 \odot Interactions faibles \rightarrow fragilité du revêtement

Techniques de chimisorption

- Monocouche auto-assemblée
- Polymérisation amorcée sur/à partir de la surface
- Électrogreffage de sels d'aryldiazonium
- Électrogreffage cathodique de monomères vinyliques

🙁 Revêtement type polyaryle

Électrogreffage Cathodique

G. Deniau, L. Azoulay, P. Jégou, G. Le Chevallier, S. Palacin; Surf. Sci.; 2006; 600; 675-684

II. SEEP: Principe & Protocole expérimental

III. Résultats

Caractérisation des films

Mécanisme

IV. Discussion : Mécanisme de SEEP V. Application

VI. Conclusion

II. SEEP: Principe & Protocole expérimental

III. Résultats

Caractérisation des films

Mécanisme

IV. Discussion : Mécanisme de SEEP V. Application

VI. Conclusion

II. SEEP: Principe & Protocole expérimental

III. Résultats

Caractérisation des films

Mécanisme

IV. Discussion : Mécanisme de SEEP

V. Application

VI. Conclusion

II. Principe

Surface Electronitiated Emulsion Polymerization

II. Principe

Surface Electronitiated Emulsion Polymerization

II. Principe

Surface Electronitiated Emulsion Polymerization

Préparation du mélange réactionnel

0 < < < < < < ÉMULSION 0 \mathbf{H}^+ \mathbf{H}^+ 0 0 \sim \mathbf{H}^+ H^+ 0 \mathbf{H}^+ Sonde à ultrasons (10 minutes / 60 %)

II. Expérimental

 \mathbf{H}^+

0

 \mathbf{H}^{+}

Préparation du mélange réactionnel

MINIÉMULSION

Préparation du mélange réactionnel

Nitrobenzene diazonium tetrafluoroborate (NBD) 2.10⁻³ mol/L \mathbf{H}^{+} 0 BF_4 $^{+}N_{2}^{-}$ ·NO₂

0 \mathbf{H}^+ \mathbf{H}^+ 0 \mathbf{H}^+ H^+ H^+

😳 Commercial

© Sonde interne pour la caractérisation des films

Montage Électrochimique

Électrochimie

Optimisation des Conditions de Synthèse

Optimisation des Conditions de Synthèse

2 <u>Désoxygénation</u>

Dégazage d'Argon (30 min)

II. SEEP: Principe & Protocole expérimental

III. Résultats

Caractérisation des films

- Densité / Compacité
- Composition chimique
- Structure moléculaire

Mécanisme

IV. Discussion : Mécanisme de SEEP V. Application VI. Conclusion

m/z	Fragments \oplus	m/z	Fragments \ominus
29,0303	C_2H_5	25,02	67 C ₂ H
27,0285	C_2H_3	41,012	$O C_2HO$
41,0432	C_3H_5	55,026	7 C_3H_3O
43,0450	C_3H_7	73,045	$O C_4H_9O$
55,0579	C_4H_7	85,0268	$C_4H_5O_2$
57,0597	C_4H_9	107,08	19 C ₇ H ₇ O
69,0414	C_4H_5O	183,129	$C_{11}H_{19}O_{2}$
98,0405	$C_5H_6O_2$	269,157	4 $C_{15}H_{25}O_4$
141,0855	$C_{8}H_{13}O_{2}$		

m/z	Fragments \oplus		m/z	Fragments ⊖
29,0303	C_2H_5		25,0267	C_2H
27,0285	C_2H_3		41,0120	C_2HO
41,0432	$C_{3}H_{5}$		55,0267	C_3H_3O
43,0450	C_3H_7		73,0450	C_4H_9O
55,0579	C_4H_7	0	85,0268	$C_4H_5O_2$
57,0597	C_4H_9		107,0819	C ₇ H ₇ O
69,0414	C ₄ H ₅ O		183,1297	$C_{11}H_{19}O_{2}$
98,0405	$C_5H_6O_2$		269,1574	$C_{15}H_{25}O_{4}$
141,0855	$C_8 H_{13} O_2$			

m/z	Fragments \oplus		m/z	Fragments \ominus
29,0303	C_2H_5		25,026	7 C_2H
27,0285	C_2H_3		41,0120	C_2HO
41,0432	C_3H_5		55,0267	C_3H_3O
43,0450	C_3H_7		73,0450	C_4H_9O
55,0579	C_4H_7	0 0	85,0268	$C_4H_5O_2$
57,0597	C_4H_9		107,081	9 C ₇ H ₇ O
69,0414	C_4H_5O		183,1297	$C_{11}H_{19}O_{2}$
98,0405	$C_5H_6O_2$		269,1574	$C_{15}H_{25}O_{4}$
141,0855	C ₈ H ₁₃ O ₂			

n/z	Fragments \oplus	m/z	z Fragm
0303	C_2H_5	25,0)267 C
0285	C_2H_3	41,0	120 C ₂
432	C_3H_5	CH ₃ 55,09	267 C ₃
450	$C_{3}H_{7}$	CH ₂ C 73,04	50 C ₄
	C_4H_7	0 85,02	68 C ₄ I
<i></i> 7	C_4H_9	107,0)819 C ₇
4	C_4H_5O	183,12	297 C_{11}
,)	$C_5H_6O_2$	269,15	674 C ₁₅ I

141,0855 $C_8H_{13}O_2$

m/z	Fragments \oplus		m/z	Fragments ⊖
29,0303	C_2H_5		25,0267	C_2H
27,0285	C_2H_3		41,0120	C_2HO
41,0432	C_3H_5		55,0267	C ₃ H ₃ O
43,0450	C_3H_7		73,0450	C_4H_9O
55,0579	C_4H_7	0	85,0268	C ₄ H ₅ O ₂
57,0597	C_4H_9		107,0819	C ₇ H ₇ O
69,0414	C_4H_5O	Ī	183,1297	$C_{11}H_{19}O_2$
98,0405	$C_5H_6O_2$		269,1574	$C_{15}H_{25}O_{4}$
141,0855	$C_8H_{13}O_2$	Structure du PBMA		

Présence de groupements NITROPHENYLES

III. Composition chimique

Spectroscopie de photoélec. X (XPS)

Composition du PBMA

- $\mathbf{NO}_2 \rightarrow$ nitrobenzene diazonium
- $\mathbf{NH}_2 \rightarrow \text{réduction des NO}_2$ en \mathbf{NH}_2 (électrochimie ou XPS)
- $N=N \rightarrow$ mécanisme controversé (3 propositions)

III. Composition chimique

Spectroscopie de photoélec. X (XPS)

• $\mathbf{NH}_{3}^{+} \rightarrow \mathbf{Protonation \ des \ amines}$

• NHOH / N=O \rightarrow Produits intermédiaires de la réduction des NO₂ en NH₂

Profil ToF-SIMS

Profil ToF-SIMS

I. Introduction

II. SEEP: Principe & Protocole expérimental

III. Résultats

Caractérisation des films

Mécanisme

IV. Discussion : Mécanisme de SEEP

V. Application

VI. Conclusion

Rôle des sels de diazonium

① Amorceurs de polymérisation radicalaire

X. Zhang, J.P. Bell, J. Pinson; J. Appl. Polym. Sci.; 1999; 73; 2265–2272
C. Combellas, F. Kanoufi, J. Pinson, F. Podvorica; Langmuir; 2005; 21; 280–286

Rôle des protons

Microbalance à Cristal de Quartz (MCQ)

Rôle des protons

Rôle des protons

Miniémulsion de BMA sans sel de diazonium

Rôle des protons

Rôle des protons

Rôle des protons

Rôle des protons

Amorçage de la polymérisation par les radicaux hydrogènes H⁺→ H•

1^{ère} étape : Greffage d'un film de PNP

2^{ème} étape : Miniémulsion de BMA

Rôle des protons

I. Introduction

II. SEEP: Principe & Protocole expérimental

III. Résultats

Caractérisation des films

Mécanisme

IV. Discussion : Mécanisme de SEEP V. Application VI. Conclusion

① Amorçage

Mécanisme SEEP

35

Mécanisme SEEP

P. Doppelt, G. Hallais, J. Pinson, F. Podvorica, S. Verneyre; *Chem. Mater.*; **2007**; 19; 4570-4575 A. Laforgue, T. Addou, D. Bélanger;Langmuir; **2005**; 21; 6855-6865

Mécanisme SEEP

⑤ Accroche des chaînes sur la sous-couche de PNP (réaction de transfert)

Transfert de chaîne / Terminaison à la surface de l'électrode

Mécanisme SEEP

⑤ Accroche des chaînes sur la sous-couche de PNP (réaction de transfert)

Mécanisme SEEP

Électrode tournante

Mécanisme SEEP

II. SEEP: Principe & Protocole expérimental

III. Résultats

Caractérisation des films (morphologie)

Composition chimique & Structure moléculaire

Mécanisme

IV. Discussion : Mécanisme de SEEP

V. Application

VI. Conclusion

V. Application

Surfaces à motifs alternés hydrophile/hydrophobe

M. W. J. Beulen, M. I. Kastenberg, F. Van Veggel, D.N. Reinhoudt; Langmuir; 1998; 14; 7463-7467

II. SEEP: Principe & Protocole expérimental

III. Résultats

Caractérisation des films (morphologie)

Composition chimique & Structure moléculaire

Mécanisme

III. Discussion : Mécanisme de SEEP

IV. Application

V. Conclusion

III. Conclusion

Procédé SEEP

- Revêtements de PBMA à partir de solutions aqueuses
- Nombreux revêtements

Mécanisme ⇒ objectifs atteints ☺

- Amoreurs = $NO_2 \Phi \bullet (\leftarrow NO_2 \Phi N_2^+)$ et $H \bullet (\leftarrow H^+)$
- PNP = $(\Phi$ -NO₂)_n sous-couche
- Procédé par "Grafting to" (PBMA) / "Grafting from" (PNP)
- Chaînes courtes (DP \approx 10-12 estimé par XPS)
- Construction "multicouches"
- Structure des films : Φ -NO₂ \equiv cross-linkers
- •Influence du tensioactif
- •Influence de l'agitation

•Interaction spécifique NBD / SDS

III. Conclusion

• Liaison d'interface

• Amorçage chimique \rightarrow Réduction par voie chimique

III. Conclusion

• Liaison d'interface

• Amorçage chimique \rightarrow Réduction par voie chimique

Remerciements

Guy DENIAU Bernadette CHARLEUX Serge PALACIN

Pascale JEGOU & Nabila DEBOU (**XPS**)

Sylvie VERNEYRE – Alchimer (ToF-SIMS)

Achraf GHORBAL & Federico GRISOTTO (AFM)

Fabien HUBERT – SCM (**DDL**)

Bruno JOUSSELME & Romain METAYE (RMN)

Laura D'AMICO Pierre-Antoine CURET

Alice MESNAGE, Alexandre GARCIA, Fanny HAUQUIER, Cédric GOYER, Dimitri ALDAKOV, Pascal VIEL, Julienne CHARLIER, Brigitte MOUANDA, Sébastien ROUSSEL, Fabien NEKELSON, Fabrice MOGGIA, Alessandro BENEDETTO, Claudine PORCEL, Corinne BELHOMME, Xuan Tuan LE, Alan LE GOFF, Pierre-Jean ALET, Rachid BABAA, ...

MERCI pour votre ATTENTION

Référence *Nature* **2008** Référence *JACS* **2009**

Polymérisation radicalaire en Miniémulsion

État INITIAL

Eau Tensioactif Monomère hydrophobe Amorceur hydrosoluble

Polymérisation radicalaire en Miniémulsion

État FINAL

Électrogreffage Cathodique

