Geometrical frustration, phase transitions and dynamical order The $Tb_2M_2O_7$ compounds (M = Ti, Sn)

Yann Chapuis

PhD supervisor: Alain Yaouanc

September 2009

spsms

Outline

Introduction

- 2 The $Tb_2M_2O_7$ compounds (M = Ti, Sn)
- 3 $Tb_2Ti_2O_7$: sample study
- 4 Crystal field levels
 - 5 Conclusions

Outline

Introduction

- geometrical frustration
- connectivity and degeneracy
- spin ice

2 The Tb₂M₂O₇ compounds (M = Ti, Sn)

- 3 Tb₂Ti₂O₇ : sample study
- 4 Crystal field levels

Conclusions

- impossibility to satisfy simultaneously all the magnetic interactions
- ullet frustration index : $f=| heta_{CW}|/T_{
 m c}$; frustration if $f\gtrsim 5$
 - θ_{CW} : Curie-Weiss temperature
 - $T_{\rm c}$: transition temperature
- example of 2D Ising antiferromagnets

Introduction geometrical frustration

• triangular lattice

• garnet lattice

• Kagomé lattice

• pyrochlore lattice

Introduction

connectivity and degeneracy

Yann Chapuis (CEA/Grenoble - Inac/SPSMS

Introduction spin ice

• water ice (on the left) and spin ice (on the right) : analogy between protons displacement vectors and magnetic moments

- water ice = each oxygen with two protons close and two protons away (Pauling)
- \bullet spin ice = two spins in, two spins out \rightarrow six equivalent configurations

entropy of the spin ice compound $Dy_2Ti_2O_7$

source : Moessner and Ramirez, Physics Today 2006

\rightarrow non vanishing entropy for $\mathcal{T}\rightarrow 0$

Outline

Introduction

The $Tb_2M_2O_7$ compounds (M = Ti, Sn)

- the pyrochlore structure
- general points and spin dynamics
- Tb environment
- energy levels

3 Tb₂Ti₂O₇ : sample study

4 Crystal field levels

5 Conclusions

The $Tb_2M_2O_7$ compounds (M = Ti, Sn) the pyrochlore structure

- on the left : pyrochlore structure = three dimensional arrangement of corner-sharing tetrahedra
- on the right : projection of the pyrochlore structure on the (111) plane

space group $Fd\bar{3}m$

compounds	lattice parameter	
Tb ₂ Ti ₂ O ₇	10.149 Å	
$Tb_2Sn_2O_7$	10.426 Å	

The $Tb_2M_2O_7$ compounds (M = Ti, Sn) general points : $Tb_2Ti_2O_7$

- Curie-Weiss temperature $\theta_{\rm CW} = -18.4(5)$ K (AF interactions)
- no obvious magnetic transition
- frustration index $f \to \infty$

The $Tb_2M_2O_7$ compounds (M = Ti, Sn) general points : $Tb_2Sn_2O_7$

- Curie-Weiss temperature $\theta_{\rm CW} = -12$ K (AF interactions) Matsuhira *et al.*, J. Phys. Soc. Jpn. **71** (2002)
- \bullet magnetic transition at $T_{\rm c}=0.88(1)$ K
- frustration index $f \simeq 14$

neutron diffraction : \rightarrow ordered spin ice \rightarrow magnetic moments with both ferro and antiferromagnetic components

Mirebeau et al., Phys. Rev. Lett. 94 (2005)

Dalmas de Réotier et al., Phys. Rev. Lett. 96 (2006)

The $Tb_2M_2O_7$ compounds (M = Ti, Sn) general points : $Tb_2Sn_2O_7$

Polarized neutron diffraction - Rule et al.

- Neutron diffraction our data
- ----- Neutron back-scattering Mirebeau et al.
- - Muon spin relaxation our data

+ no relaxation in our neutron spin echo data (IN11 at ILL) : $\tau > 10^{-8}$ s

 \rightarrow complex spin dynamics mechanism characterized by different fluctuation times : static at low Q and dynamic at high Q?

Yann Chapuis (CEA/Grenoble - Inac/SPSMS

The $Tb_2M_2O_7$ compounds (M = Ti, Sn) Tb environment

- spin angular momentum : S = 3
- orbital angular momentum : L = 3
- total angular momentum : J = 6

• Landé factor :
$$g_{\rm J}=3/2$$

	d _{8b} (Å)	d _{48f} (Å)
Tb ₂ Ti ₂ O ₇	2.197	2.502
$Tb_2Sn_2O_7$	2.257	2.517

with d the distance between the oxygen and the rare earth

trigonal symmetry with main axis \parallel to $\langle 111 \rangle$ (local symmetry $\equiv \bar{3}m$)

 $\mathcal{H}_{tri}^{CF} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_4^3 O_4^3 + B_6^0 O_6^0 + B_6^3 O_6^3 + B_6^6 O_6^6$

two lowest energy levels \equiv doublets

$Tb_2Ti_2O_7$

$$egin{array}{rcl} |\phi_0^{\pm}
angle &=& -0.958|\pm4
angle\pm0.129|\pm1
angle-0.121|\mp2
angle\mp0.226|\mp5
angle\ |\phi_e^{\pm}
angle &=& -0.937|\pm5
angle\pm0.241|\pm2
angle-0.078|\mp1
angle\mp0.241|\mp4
angle \end{array}$$

 \rightarrow ground state magnetic moment : $\mu^{\rm CF}$ = 5.1 $\mu_{\rm B}$

$Tb_2Ti_2O_7$

 $|\phi| \\ |\phi|$

$$egin{array}{lll} \pm 0 &= -0.958 |\pm 4
angle \pm 0.129 |\pm 1
angle - 0.121 |\mp 2
angle \mp 0.226 |\mp 5
angle \ \pm 2
angle &= -0.937 |\pm 5
angle \pm 0.241 |\pm 2
angle - 0.078 |\mp 1
angle \mp 0.241 |\mp 4
angle \end{array}$$

 \rightarrow ground state magnetic moment : $\mu^{\rm CF}=$ 5.1 $\mu_{\rm B}$

$\mathsf{Tb}_2\mathsf{Sn}_2\mathsf{O}_7$

|q|

$$\begin{array}{lll} b_0^{\pm}\rangle &=& 0.922 |\pm 5\rangle \mp 0.243 |\pm 2\rangle + 0.016 |\mp 1\rangle \mp 0.301 |\mp 4\rangle \\ b_e^{\pm}\rangle &=& \pm 0.938 |\pm 4\rangle - 0.156 |\pm 1\rangle \pm 0.019 |\mp 2\rangle - 0.309 |\mp 5\rangle \end{array}$$

 \rightarrow ground state magnetic moment : $\mu^{\rm CF}$ = 6.0 $\mu_{\rm B}$

$Tb_2Ti_2O_7$

 $|\phi|$ $|\phi|$

$$egin{array}{lll} \pm 0 &= -0.958 |\pm 4
angle \pm 0.129 |\pm 1
angle - 0.121 |\mp 2
angle \mp 0.226 |\mp 5
angle \ \pm 0.937 |\pm 5
angle \pm 0.241 |\pm 2
angle - 0.078 |\mp 1
angle \mp 0.241 |\mp 4
angle \end{array}$$

 \rightarrow ground state magnetic moment : $\mu^{\rm CF}$ = 5.1 $\mu_{\rm B}$

$\mathsf{Tb}_2\mathsf{Sn}_2\mathsf{O}_7$

 $|\phi|$ $|\phi|$

 \rightarrow ground state magnetic moment : $\mu^{\rm CF}$ = 6.0 $\mu_{\rm B}$

swap of $|m_z\rangle$ state mainly contributing to $|\phi_0^\pm\rangle$ and $|\phi_e^\pm\rangle$, depending on the B_6^0 parameter

Outline

Introduction

2 The $Tb_2M_2O_7$ compounds (M = Ti, Sn)

3 Tb₂Ti₂O₇ : sample study

- sample dependence of some properties
- characteristic temperatures

Crystal field levels

5 Conclusions

sample dependence of some properties

• crystal growth rate dependence of specific heat + possible well defined anomaly at 0.4 K Hamaguchi *et al.*, Phys. Rev. B **69** (2004)

sample dependence of some properties

- same sample as Hamaguchi et al. Yasui et al., J. Phys. Soc. Jpn. 71 (2002)
- some weak differences between samples

$Tb_2Ti_2O_7$: sample study sample dependence of some properties

• muon = magnetic local probe (μ SR measurements from ISIS)

- counts rate : $N(t) = N_0 \exp(-t/ au_\mu)[1 + a_0 P_{
 m Z}(t)]$
- asymmetry : a₀P_z(t) = a_s exp[-(λ_Zt)^β] + a_{bg}
 at 6 K : β = 1.00(3); and at 0.06 K : β = 1.30(2)

$\mathsf{Tb}_2\mathsf{Ti}_2\mathsf{O}_7$: sample study

sample dependence of some properties

- no sample dependence of the relaxation rate $\lambda_{\rm Z}$
- \bullet sample dependence of the exponent β needs to be checked

Yann Chapuis (CEA/Grenoble - Inac/SPSMS

characteristic temperatures

•
$$\lambda_Z \propto T \int \mathcal{A}(Q) \frac{\chi(Q)}{\Gamma(Q)} d^3Q$$

• from inelastic neutron scattering and muon spin relaxation : two characteristic temperatures = 2 and 50 K

characteristic temperatures

Luo et al., Phys. Lett. A 291 (2001)

- low temperature μSR spectra (from PSI) : no oscillation
- susceptibility : anomaly at around 0.1 K
- \rightarrow magnetic transition or not?
- → nature of the lowest temperature phase?

Outline

Introduction

- 2 The $Tb_2M_2O_7$ compounds (M = Ti, Sn)
- 3 Tb₂Ti₂O₇ : sample study

4 Crystal field levels

- inelastic neutron scattering
- entropy variation study

Conclusions

inelastic neutron scattering

• for Tb₂Ti₂O₇, our data are consistent with the ones of Mirebeau *et al.* and Yasui *et al.*

```
Mirebeau et al., Phys. Rev. B 76 (2007)
```

```
Yasui et al., J. Phys. Soc. Jpn. 71 (2002)
```

- weakly inelastic contribution : energy level at $\simeq 2$ K
- similar results for $Tb_2Sn_2O_7$ are obtained by Mirebeau *et al.*

entropy variation study

• on the left, total specific heat, nuclear and phonons contributions

- nuclear contribution from Zeeman splitting ($\Delta_{\rm N}$ = 82(5) mK) \rightarrow $\mu_{\rm SH}$ = 4.5(7) $\mu_{\rm B}$
- phonons from non magnetic and isostructural compound
- on the right, magnetic specific heat

2 doublets

$$\langle E \rangle = \frac{0 + 2\Delta \exp(-\beta\Delta)}{2 + 2\exp(-\beta\Delta)} = \frac{\Delta \exp(-\beta\Delta)}{1 + \exp(-\beta\Delta)}$$

2 singlets and 1 doublet

$$\langle E \rangle = \frac{0 + \delta \exp(-\beta \delta) + 2\Delta \exp(-\beta \Delta)}{1 + \exp(-\beta \delta) + 2 \exp(-\beta \Delta)}$$

- $C_v = d\langle E \rangle / dT$ • $\Delta S = \int \frac{C_v}{T} dT$
- ΔS calculated between 200 K down to 0.13 K

- for 0 K \leq T \leq 20 K, no influence of higher energy levels
- \bullet similar results for $\mathsf{Tb}_2\mathsf{Ti}_2\mathsf{O}_7$ and $\mathsf{Tb}_2\mathsf{Sn}_2\mathsf{O}_7$

• on the left, magnetic entropy variation : $\Delta S_{\rm m}(0 \rightarrow 20K) > R \ln(2) \rightarrow$ ground state splitting

• on the right, at low temperature : $\Delta S_{\rm m}(T = 0K) = R \ln(4)$?

Crystal field levels entropy variation study

• ΔS_m reaches $R \ln(4)$ at 20 K

• splitting observed by Mirebeau et al. with inelastic neutron scattering

Outline

1 Introduction

- 2 The $Tb_2M_2O_7$ compounds (M = Ti, Sn)
- 3 Tb₂Ti₂O₇ : sample study
- 4 Crystal field levels

Conclusions

- summary
- outlook

Conclusions summary

$\mathsf{Tb}_2\mathsf{Ti}_2\mathsf{O}_7$

- sample dependence of specific heat, magnetization and $\mu SR~(\,?) \to$ a detailed structural study is required
- but sample independence of inelastic neutron scattering results
- characteristic temperatures $T \simeq 2$ K and 50 K : μ SR and inelastic neutron scattering are consistent
- from muon frequency shift and susceptibility, possible transition at $\simeq 0.1 \text{ K}$: what is the nature of the lowest temperature phase?

Conclusions summary

$\mathsf{Tb}_2\mathsf{Ti}_2\mathsf{O}_7$

- sample dependence of specific heat, magnetization and $\mu SR~(\,?) \to$ a detailed structural study is required
- but sample independence of inelastic neutron scattering results
- characteristic temperatures T \simeq 2 K and 50 K : $\mu {\rm SR}$ and inelastic neutron scattering are consistent
- from muon frequency shift and susceptibility, possible transition at $\simeq 0.1 \text{ K}$: what is the nature of the lowest temperature phase?

$\mathsf{Tb}_2\mathsf{Sn}_2\mathsf{O}_7$

- low temperature spin dynamics characterized by different fluctuation times
- ullet order of magnitude depending on Q : 10^{-11} s / 10^{-9} s and $>10^{-8}$ s

$Tb_2M_2O_7$

 $\simeq 2$ K splitting of the ground state : deduced from inelastic neutron scattering; consistent with the tetragonal distortion along [001] and now, confirmed by entropy variation study

Conclusions

$Tb_2M_2O_7$

 $\simeq 2$ K splitting of the ground state : deduced from inelastic neutron scattering; consistent with the tetragonal distortion along [001] and now, confirmed by entropy variation study

new energy levels scheme

Conclusions

$\mathsf{Tb}_2\mathsf{Ti}_2\mathsf{O}_7$

- μ SR measurements on sample C to know the behaviour of the exponent β versus the temperature
- specific heat measurements in dilution on sample C to compare with other samples : $\Delta S \rightarrow R \ln(4)$?
- understand X-Ray and neutron diffraction patterns

Conclusions

$\mathsf{Tb}_2\mathsf{Ti}_2\mathsf{O}_7$

- μ SR measurements on sample C to know the behaviour of the exponent β versus the temperature
- specific heat measurements in dilution on sample C to compare with other samples : $\Delta S \rightarrow R \ln(4)$?
- understand X-Ray and neutron diffraction patterns

$\mathsf{Tb}_2\mathsf{Sn}_2\mathsf{O}_7$

- the magnetic moment has both ferromagnetic and antiferromagnetic components : what are consequences on the spin dynamics?
- static at low Q and dynamic at high Q?
- why no oscillations have been observed in μ SR spectra at low temperature?

Thanks

the jury

- P. Holdsworth
- I. Mirebeau
- A. Amato

my coworkers

- C. Marin, G. Lapertot, S. Vanishri, A. Forget (samples)
- C. Vaju, V. Glazkov, S. Sosin, D. Braithwaite (specific heat)
- J. F. Jacquot (magnetization)
- S. Pouget, P. Fouquet, L.-P. Regnault, B. Fåk, A. Cervellino, E. Ressouche, B. Grenier (neutrons)
- C. Baines, A. Amato, P.J.C. King (μ SR)
- S. H. Curnoe (theory)

And thank you for your attention...

Yann Chapuis (CEA/Grenoble - Inac/SPSMS

- S. deBrion
- A. Yaouanc
- P. Dalmas de Réotier