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Résumé

Dans cette thèse, nous avons étudié d’un point de vue expérimental et numérique la dy-
namique et la structure des décharges de type streamer dans l’air à la pression atmo-
sphérique. Deux configurations ont été étudiées: une décharge Nanoseconde Répétitive
Pulsée (NRP) entre deux pointes dans l’air préchauffé et une Décharge à Barrière Diélec-
trique (DBD) dans une configuration pointe-plan. Nous avons montré que les simulations
de la dynamique de ces décharges sur des temps courts permettent d’obtenir des infor-
mations sur la structure et les propriétés de ces décharges observées expérimentalement,
généralement sur des temps plus longs. Dans le cadre de cette thèse, du point de vue de
la simulation des décharges, deux nouvelles approches ont été développées: pour le calcul
de la photoionisation et pour la prise en compte d’électrodes de forme complexe dans des
maillages cartésiens.

Pour le calcul de la photoionisation dans l’air, le modèle intégral de référence requiert
de longs temps de calcul. Dans ce travail, afin d’éviter de lourds calculs intégraux, nous
avons développé plusieurs modèles différentiels qui permettent de prendre en compte la
dépendance spectrale de la photoionisation, tout en restant simples et peu coûteux en
temps de calcul. Parmi les modèles développés, nous avons montré que le modèle appelé
SP3 3-groupes basé sur une approximation d’ordre 3 de l’équation de transfert radiatif était
plus précis pour la simulation des streamers.

Afin de prendre en compte des électrodes de forme complexe dans les simulations, nous avons
adapté une méthode GFM (“Ghost Fluid Method”) pour résoudre l’équation de Poisson
afin de calculer précisément le potentiel et le champ électrique près de l’électrode. Cette
méthode nous permet de prendre en compte l’influence de la forme exacte de l’électrode
dans un maillage régulier, et ce quelque soit la forme de l’électrode.

Nous avons réalisé des simulations en géométrie pointe-pointe étroitement liées à de récents
travaux expérimentaux concernant des décharges générées par NRP dans de l’air préchauffé.
Nous avons étudié la dynamique de la décharge dans l’espace inter-électrode pour différentes
températures de l’air et différentes tensions appliquées. Nous avons montré que la structure
de la décharge dépendait fortement de la tension appliquée, ce qui est en bon accord avec
les expériences.

Dans la partie expérimentale de ce travail, nous avons étudié un comportement particulier
des filaments de plasma dans une DBD pendant la demi-alternance positive de la ten-
sion appliquée. La dynamique des décharges est fortement affectée par la charge de surface
déposée sur le diélectrique. Nous avons simulé une configuration pointe-plan avec un diélec-
trique plan sur la cathode dans le but de mieux comprendre l’influence de l’accumulation
de la charge de surface sur l’allumage et la propagation de décharges successives dans une
DBD. Dans ce travail, nous avons simulé la propagation d’un streamer initié près de l’anode
jusqu’au diélectrique, ainsi que la formation d’une décharge de surface sur celui-ci. Nous
avons ainsi déterminé les échelles de temps et les processus responsables de l’écrantage
d’un filament de plasma et les conditions d’allumage des décharges successives. Les résul-
tats obtenus sont en bon accord avec l’expérience.





Abstract

In this Ph.D. thesis we contribute to several aspects of research on streamer physics in air
at atmospheric pressure through both experimental and numerical studies. We show that
studying transient phenomena such as streamer discharges, whose timescales are very short
compared to the operating times in applications, results in useful informations concerning
their underlying physical mechanisms.

The classical integral model for photoionization generated by streamers in air is very
time consuming. In this work we have developed three differential approaches: a three-
exponential Helmholtz model, a three-group Eddington model, and a three-group improved
Eddington (SP3) model. The Helmholtz model is based on approximating the absorption
function of the gas in order to transform the integral expression of the photoionization term
into a set of Helmholtz differential equations. The Eddington and SP3 methods are based
on the direct numerical solution of an approximation of the radiative transfer equation.
Finally, we have derived accurate definitions of boundary conditions for these differential
models.

To take into account the electrode shapes in the simulations, we have adapted the Ghost
Fluid Method to solve Poisson’s equation in order to calculate the electric potential and
field close to the electrode accurately. This method allows us to take into account the
influence of the exact shape of the electrodes in the framework of finite volume methods
using a regular grid, no matter how the electrode surfaces cross the grid. We use this
method in simulations of streamer discharges generated by Nanosecond Repetitively Pulses
(NRP) and in Dielectric Barrier Discharges (DBD), both of which involve needle-shaped
electrodes.

We have carried out simulations in a point-to-point geometry closely linked with recent
experimental works in pre-heated air discharges generated by NRP. We found out that by
considering the propagation timescales of streamers in these configurations, it is possible to
draw some conclusions about the final discharge structure (i.e., sparks or coronas discharges)
which are in good agreement with the experiments.

In the experimental part of this work, we have studied a particular behavior of plasma
filaments in a DBD during the positive half-cycle of the applied voltage. The dynamics of
discharges is found to be greatly affected by the surface charge deposited upon the dielectric
material. We have simulated a point-to-plane configuration, with a dielectric upon the plane
cathode, in order to better understand the influence of the surface charge accumulation on
successive discharges in a DBD. In this work we are able to simulate the propagation of
the streamer from its ignition close to the anode up to the dielectric material, as well as
its splitting into surface discharges upon reaching the dielectric. This simulation provides
information on the timescales and processes responsible for plasma filament screening and
ignition conditions of successive discharges, which are in agreement with experiment.
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Introduction

Motivation and context

C
old plasmas in atmospheric pressure air have been used in many different applications
in the past few years. Air pollutant removal has become a major concern due to the

tightening of environmental laws. Because of its low energy cost and its high chemical
reactivity, cold plasma treatment appears to be a promising solution. Surface treatment
applications (such as textile or biological treatments) require nondestructive solutions that
still induce strong modifications of physical properties of the surface. In cold plasmas, elec-
trons are heated up to a few tens of thousands of degrees Kelvin, while the heavy species
such as neutral species or ions remain at room temperature. Cold plasmas are therefore an
appropriate solution for surface treatment [see Kogelschatz , 2004]. Furthermore, the neces-
sity of reducing pollutant emissions in aircraft engines, gas turbines and internal combustion
engines has also motivated studies on the stabilization of the combustion of lean mixtures
by cold plasma discharges. Very promising results have been obtained so far [Starikovskaia,
2006; Pilla et al., 2006]. Finally, plasma actuators have been extensively studied to modify
the laminar-turbulent transition inside the boundary layer and therefore reduce the drag
in order to avoid unsteadiness that generates unwanted vibrations and noise [see Moreau,
2007]. For these two last applications, atmospheric pressure plasmas present very inter-
esting features: robustness, low power consumption and the ability to impact the flow at
high-frequency.

One of the main problems in plasma discharge experiments and applications comes from the
fact that, at atmospheric pressure, the cold nonequilibrium plasma discharge is a transient
event. A simple way to generate cold plasmas is to use electrodes at high-voltage separated
by a gaseous gap. However, at atmospheric pressure, the originally cold plasma rapidly
becomes a high-conducting junction that evolves into a thermal plasma where heavy species
tend to be in equilibrium with the electrons at a few tens of thousands degrees Kelvin.
This is the so-called arc discharge, which is then very destructive. There are several ways
to prevent this equilibrium of temperature between heavy species and electrons. Two main
solutions are Dielectric Barrier Discharges (DBD) and Nanosecond Repetitively Pulsed
(NRP) discharges.

Dielectric barrier discharges have been studied since the invention of the ozonizer by Siemens
in 1857. DBDs at atmospheric pressure produced by applied voltage at low frequency in
gaseous gaps on the order of a few millimeters are mainly constituted of unstably triggered
nonequilibrium transient plasma filaments. The dielectric barrier prevents the formation
of an arc because charges deposited by the plasma filament on the dielectric material are
trapped. These charges are deposited such that the electric field becomes too low to produce
more current and the process stops in a few tens of nanoseconds. One of the current chal-
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lenges of DBDs is to gain a better understanding of interactions between plasma filaments.
Recently, Guaitella et al. [2006] described the bimodal behavior of the statistical distribu-
tion of current peaks in a cylindrical DBD operating at low frequency and concluded that
the high-current mode was due to the self-triggering of several filaments, possibly influenced
by the surface charge.

Another solution is to turn off the electric field before substantial ionization occurs, and
thus avoid an extremely fast increase of the gas temperature. Repetitive pulsing results
in the accumulation of active species, which produces a rich chemistry. NRP are also able
to generate glow discharges between two point electrodes at quite high gas temperatures
(∼1000 K) [e.g., Pai , 2008; Pai et al., 2008]. Currently, finding a range of parameters
resulting in a diffuse discharge at atmospheric pressure and ambient temperature is of
great interest for prospective applications.

The physical comprehension of cold nonequilibrium plasmas at atmospheric pressure, at
least at small time scales, rests upon the concept of highly nonlinear space charge waves, or
so-called streamers. Streamers were introduced in the 1930’s to explain naturally occurring
spark discharges [Loeb and Meek , 1940a, b]. Plasma filaments in DBDs are created along
the path of streamers. Streamers are also regarded as the precursors to spark discharges.
They can initiate spark discharges in relatively short (several cm) gaps near atmospheric
pressure in air. In atmospheric pressure applications, the typical transverse scale of indi-
vidual streamer filaments in air is a fraction of millimeter, and may be substantially wider
depending on external conditions. For example, lightning is a natural phenomenon directly
related to streamer discharges. A streamer zone consisting of many highly-branched stream-
ers usually precedes leader channels, which initiate lightning discharges in large volumes at
near ground pressure.

It is interesting to note that, about two decades ago, large-scale electrical discharges were
discovered in the mesosphere and the lower ionosphere above large thunderstorms, which are
now commonly referred to as sprites [e.g., Franz et al., 1990; Sentman et al., 1995; Stanley
et al., 1999; Lyons , 2006]. In fact, the filamentary structures observed in sprites are the
same phenomenon as streamer discharges at atmospheric pressure scaled to the reduced air
density at higher altitudes [Pasko et al., 1998; Liu and Pasko, 2004]. An overview of the
physical mechanism and aspects of the molecular physics of sprite discharges in comparison
with laboratory discharges can be found in [Pasko, 2007].

The streamer is thus present in many applications and physical phenomena, involving nu-
merous time scales and characteristic lengths. Unfortunately, there is no analytical model
able to describe all its properties accurately. Numerical simulations are therefore required.
The numerical model proposed by Dhali and Williams [1987] is an effective model using
drift-diffusion equations for charged species coupled with Poisson’s equation. This model
has been widely used in simulations of streamer propagation in plane-plane and point-to-
plane geometry for many purposes [e.g., Vitello et al., 1994; Babaeva and Naidis , 1997;
Kulikovsky , 2000a; Pancheshnyi et al., 2001; Arrayás et al., 2002]. It is interesting to men-
tion that the recent work of Chanrion and Neubert [2008] based on the resolution of the
Boltzmann equation using particle techniques validates the fluid approach for streamer
simulations.

It is important to note that recent developments in experimental diagnostics and simulation
tools make it possible to carry out challenging thorough comparison studies on discharge dy-
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namics and structure. This enables the understanding of important properties of discharges
for the application of interest.

Scope of the Ph.D. thesis

The streamer discharge is very complex and is thus a subject of study in itself. The ex-
periments and physical phenomena involving streamers couple many different time scales
and characteristic lengths. The complexity in making theoretical predictions concerning
experiments arises in these multiscale problems. In this thesis we have developed accurate
numerical models to simulate streamers in NRP and DBD discharges, and the results ob-
tained have been compared to experiments. The objective of this Ph.D. thesis is to answer
two main questions:

1. For the DBD studied by Guaitella et al. [2006]: what is the influence of surface charges
deposited on the dielectric by one discharge on the subsequent discharges.

2. For the NRP studied by Pai [2008]: what is the dynamics at short time scales of the
diffuse discharge observed in experiments between two point electrodes.

These two questions require the study of discharge dynamics at short time scales.

To answer the first question, following the work of Guaitella et al. [2006], we have carried
out a detailed experimental study at LPTP (Laboratoire de Physique et Technologies des
Plasmas at Ecole Polytechnique, France) in a simpler geometry than the wire-cylinder
geometry used in [Guaitella et al., 2006]. In our work we have used a metallic point-
to-plane dielectric configuration, and we have carried out detailed imaging and electrical
diagnostics.

To answer the first and second questions, we have developed a 2D code at the EM2C lab-
oratory (Energetique Moleculaire et Macroscopique, Combustion, at Ecole Centrale Paris,
France) to study discharge dynamics based on the classical drift-diffusion equations coupled
to Poisson’s equation.

Two aspects in particular have been studied in this work:

• The development of an accurate method to take into account electrodes of complex
geometries (needle-shaped in both experiments considered in this work) in Cartesian
grids. Indeed, in a Cartesian grid, the exact shape of the electrode is replaced by a
staircase, which may be inaccurate even with a refined grid.

• The development of an accurate and efficient model to take into account the pho-
toionization in air. The objective is to avoid the use of the classical Zheleznyak et al.
[1982] integral model, which is very time-consuming in computations, and to replace
it with a more efficient model.

In Chapter I we present the formulation of the physical model of streamer dynamics. Chap-
ter II presents the main numerical methods used and developed in this work. In Chapter
III we derive three new models of photoionization. These new models are also tested in real
streamer simulations in two configurations. The influence of electrodes of complex shapes
is discussed in Chapter IV. Then, this method is applied to the study of the dynamics of
the discharge in the configuration of the NRP. Chapter V presents the experimental study



xviii Introduction

of the DBD discharge. VI shows the numerical simulation of the DBD and the comparison
with experiment.



Chapter I

Streamer fluid model
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I.1 Electron avalanche

I.1.1 Electron drift velocity

L
et us consider a free electron in a gas immersed in a homogeneous field. This electron
is initially (t = 0) placed at x = 0. Under this field, the electron is accelerated

by the electric force between two collisions with neutral molecules of the gas. A collision
between an electron and a molecule changes the direction of motion of the electron, although
the molecules are considered to be static since they are much heavier than the electrons.
As charged particles are very rare compared to the molecules in weakly ionized plasmas,
we will not consider electron-electron collisions1 nor electron-ion collisions in this section.
The inelastic collisions are much less frequent than the elastic collisions, and they can be
neglected in the analysis of the general motion of the electrons we present here [Raizer , 1991,
Sec. 2.1.1, p. 8]. The electron is then accelerated in the electric field until the next collision,
when the direction of the velocity changes sharply in a random fashion. Afterwards, the
electron is re-accelerated in the direction of the electric field, and so on. One of the main
results of the rigorous analysis of this problem is the fact that on a mesoscopic scale of
space and time [e.g., Rax , 2005, Sec. 2.1.1] the average velocity of the electron becomes
proportional to the electric field. That is, the electric force compensates for the resistive
force from the large number of collisions. This mean velocity of the electron is named drift
velocity, and is written as:

~ve = −µe
~E = − q

meν
~E (I.1)

where µe is the electron mobility, q is the elementary charge, me is the mass of the electron,
ν is the effective collision frequency for momentum transfer between electrons and neutral
molecules, and ~E is the electric field. In general, relation (I.1) is more complicated because
ν depends on the electron energy. The characteristic time for the mean velocity to reach a
constant value and take the form (I.1) is on the order of 1/ν (which is also the characteristic
time for the isotropization of microscopic velocities). From [Raizer , 1991, Table 2.1, p. 10]
we find that 1/ν ≃ 3 · 10−13 s in air at atmospheric pressure for a typical electric field
range between 3-40 kV/cm, which is much less than the time scale of propagation of the
discharges we study in this report (i.e., the nanosecond time scale). Thus, in our study we
can consider Equation (I.1) to be a very good approximation.

It is interesting to note that the time scale of the energy relaxation (also called the time
scale of thermalization) is also linked to ν. This link is often described using a parameter δ

1Electron-electron collisions do not contribute to the electric resistance, as the total momentum of an
electron colliding pair is conserved. However, they can indirectly affect the conductivity by changing the
electron energy distribution function [see Raizer , 1991, Sec. 2.2.3, p. 14].
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for which the energy relaxation time scale is then (δν)−1. In the model of elastic collisions
δ = 2me/M , where M is the mass of the neutral molecule, and therefore δ ≪ 1. This time
is much longer than that required for the mean velocity to reach a steady state.

I.1.2 Electron diffusion

Another physical quantity important for characterization of the motion of a group of elec-
trons in a gas is the electron diffusion. The diffusion characterizes the speed of the spreading
of the electron cloud due to the collisions with neutral molecules. It is related to the mean
quadratic deviation of the electron motion [Rax , 2005, e.g., Sec. 2.1.1] and it is characterized
by the coefficient:

De =
kTe

meν
(I.2)

where k is the Boltzmann constant, and Te is the temperature of the electrons. The link
between the mobility (I.1) and the diffusion (I.2) is the Einstein relation:

De

µe

=
kTe

q
(I.3)

I.1.3 Electron amplification

If the electric field is strong enough, the energy gained by the electron between collisions
enables it to ionize the molecules of the gas. Then, secondary electrons will be created and
follow the same life cycle as the first electron: acceleration, collision (maybe ionization),
then acceleration again, etc. This leads to an exponential increase of the electron cloud as
electrons move forward, globally in the opposite direction of the electric field. It is then
natural to introduce a number that characterizes the increase of this electron avalanche.
This number is called the first Townsend coefficient after John Sealy Edward Townsend
and is often written as α. It represents the mean number of electrons created by electron
impact on neutral molecules per unit length. The electron density in the avalanche in one
dimension, and with the electric field oriented in the decreasing x direction, can then be
written as:

dNe

Ne

= αdx (I.4)

where Ne is the number of electrons. Thus, from our single electron, we generate Ne =
exp(αx) electrons after propagation across a distance x. The natural link between the drift
velocity and the first Townsend coefficient is the ionization frequency:

νi = αve (I.5)

In electronegative gases one has to replace α by an effective ionization coefficient αeff = α−β
where β is the attachment coefficient, which is the mean number of electrons attached
by molecules per unit length. Note that β can also take into account the electron-ion
recombination processes. In the same way that the characteristic distance of ionization
1/α is linked to the characteristic time 1/νi, the characteristic distance of attachment is
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linked to 1/νa where νa is the attachment frequency. For low electric fields, α is less than β.
However, α grows much faster with the electric field than β does, and then for high electric
fields α becomes much greater than β. The equality of those two coefficients defines the
conventional breakdown threshold field Ek ≃ 30 kV/cm in air at atmospheric pressure [e.g.,
see Raizer , 1991, Sec. 7.2.5, p. 136]. For electric fields lower than this value, one does not
observe any appreciable discharge in the gas.

I.1.4 Avalanche-to-streamer transition

For an avalanche, the electron cloud is only controlled by the external electric field. In other
words, the number of electrons is small enough such that the avalanche is not perturbed by
its own electric field, also called the space charge field. However, if the electron amplification
is sufficiently high, that is after a certain distance, the space charge field can considerably
perturb the external field (see Fig. I.1), eventually leading to an object mainly controlled by
its own field. This object is the streamer itself and will be discussed in the next section. In
this section, let us focus on the transition between the electron avalanche and the streamer.

As the avalanche moves in the opposite direction of the electric field, the number of electrons
increases exponentially (I.4) and spreads out because of the diffusion. One can find that the
characteristic radius of the avalanche started from one single electron ne(x, t = 0) = δ(0),
where δ is the Dirac delta function [Raizer , 1991, Sec. 12.2.1, p. 328]:

rD =
√

4Det =

√

4
Dex0

µeE0

(I.6)

where x0 is the position of the center of the plasma cloud, and E0 is the external homo-
geneous field. The space charge forms a dipole, where electrons are at the head of the
avalanche and the mean position of positive ions is behind. It is interesting to note that
the characteristic length between the electron and ion clouds is a constant 1/α(E0) [Raizer ,
1991; Montĳn and Ebert , 2006]. One can clearly see in Figure I.1(a) that the resulting field
in front of the avalanche is higher than E0, and that the field between the negative cloud
and the positive cloud is smaller than E0. It is possible to approximate the space charge
electric field in front of the avalanche by considering it as a spherical electron cloud of
radius rD: E ′ = 1

4πǫ0

qNe

r2
D

, where ǫ0 is the permittivity of free space. For air at atmospheric
pressure, one finds from (I.6) that E ′ is on the order of the conventional breakdown field Ek

for Ne ≃ 0.8 · 107, which corresponds to αd ≃ 18, where d is the distance from the center
of the electron cloud to the initial position of the primary electron. This is the so-called
Raether-Meek criterion [Raizer , 1991, Sec. 12.2.5, p. 332]. For the original study of this
criterion, see [Meek , 1940; Loeb and Meek , 1940a]. Refinement of the Raether-Meek crite-
rion is possible by taking into account the real shape of the electron cloud (which is only
influenced by the external homogeneous field), the influence of the ion field, and finding
by simulation the electric field generated by the avalanche for which the deviation from
an avalanche purely controlled by the external field becomes significant. This study was
done by Montĳn and Ebert [2006], who found that for air at atmospheric pressure the new
criterion was really close to the classical Raether-Meek criterion αd ≃ 18. Discrepancies
are more noticeable for non-attaching gases.



I.1. Electron avalanche 5

Figure I.1: Avalanche between two planar electrodes (A is the anode and C is the cathode)
generating the homogeneous electric field ~E0. (a) Representation of the space charge electric
field ~E ′. (b) Representation of the total electric field ~E = ~E0 + ~E ′. Figure taken from
[Raizer , 1991, Fig. 12. 3, p. 332].

When the density of electrons is sufficiently high in the avalanche head (i.e., when αd & 14),
the role of repulsion between electrons becomes non-negligible compared to diffusion for the
expansion of the radius of the avalanche. Furthermore, the rate of expansion due to diffusion
is δrD/δt ∼ t−1/2, but the rate of expansion due to the repulsion is given by [Raizer , 1991,
Sec. 12.2.6, p. 334]:

dR

dt
= µeE

′ =
qµeR

−2 exp (αµeE0t)

4πǫ0

(I.7)

Which leads to:

R =

(

3q

4πǫ0αE0

)1/3

exp
(αx

3

)

=
3E ′

αE0

, ne =
3Ne

4πR3
=

ǫ0αE0

q
(I.8)

Equation (I.8) shows that repulsion of electrons results in an exponential increase of the
avalanche radius. Furthermore, we see that the electron density is not changed by this
repulsion effect.

It is interesting to note here that the time scale linked to this expansion rate is the Maxwell
time, also called the dielectronic relaxation time τm. Indeed, dR

dt
∼ R/τm, where:

τm =
ǫ0

qneµe

(I.9)

which is quite important in the streamer simulations, as we will see in the following. We
noticed previously that the mean distance between the ion and the electron clouds is char-
acterized by 1/α. When the radius reaches this value, the mean distance between ions and
electrons is small, and the spreading of the electrons begins to slow down. The maximum
radius of the avalanche is then ∼1/α. In air at atmospheric pressure this value is roughly
0.1 cm at the breakdown field Ek. This phenomenon takes place before the Raether-Meek
criterion is reached, but we see what is taking place for this avalanche: it starts to be
managed by its own charge field. Afterwards, the Raether-Meek criterion is overtaken, and
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Figure I.2: Diagram of a positive streamer propagating in an ambient field [Liu, 2006;
Bazelyan and Raizer , 1998].

the field in front of the avalanche is able to ionize the gas close to this head. This also
occurs at the back of the avalanche where the ion density is high. These new electrons
allow propagation due to drift to be replaced by a new mode based on the ionization of the
neutral gas, and this new propagating object is called the streamer discharge.

I.2 Mechanism of streamer discharge propagation

I.2.1 Basics

The concept of streamer discharges was put forward in the 1930’s by Raether and Loeb to
explain spark discharges and by Cravath and Loeb to explain very fast phenomenon (i.e.,
close to the speed of light) in low pressure long tubes first observed by J. J. Thompson in
1893 [Loeb, 1965]. Meek, Loeb and Raether further developed this theory [Loeb and Meek ,
1940a, b; Loeb, 1965].

The concept of streamers is based on a mode of propagation: they are filamentary plasmas
driven by their own space charge field. The dynamics of the streamer is mainly controlled
by a high-field region called the streamer head. The head of the streamer is depicted as a
crescent shape in the left panel of Figure I.2. In the head the net charge is high and positive
or negative for a positive streamer or negative, respectively. The principle is that the high-
field region is quickly enhanced by electrons that drift and amplify on the length scale of this
region, in a kind of avalanche. In the case of positive streamers, they neutralize the positive
charge zone and therefore the space charge electric field, but repeat the charge pattern a
bit farther down by leaving the ions behind them during their drift. If the electrons are
amplified enough to compensate the positive head of the streamer, then the streamer can
propagate in a stable manner. Thus, the positive streamer propagates step-by-step in the
direction of the ambient field, which is why the streamer is also called a space charge wave.
For air at atmospheric pressure, the streamers propagate very fast: typically with velocity
∼108 cm/s, that is one hundredth of the speed of light in the vacuum. The peak of electric
field in the streamer head can reach 4-7 times the breakdown field Ek [e.g., see Dhali and
Williams , 1987; Liu, 2006].

Therefore, the positive streamer moves in the reverse direction of the electrons. Then, it
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needs electrons upstream its head to propgate. These electrons may come from the natural
electron background, essentially due to natural radioactivity and cosmic rays, from a pre-
ionization of the gas, for example due to previous discharges or photoionization by external
source (UV lamps, etc). Furthermore, the high-field region is the place of very intense
electron impact on neutral molecules which leads to ionization, excitation, or creation of
active species. The molecules excited by the electron impact can relax to lower energy
states by emitting photon radiation. A certain range of photons can themselves ionize
neutral molecules by photoionization, which provide seed electrons ahead of the streamer.
These electrons enter the high-field region and participate in its enhancement of electron
density. The photoionization has been found to be essential for the positive streamers to
propagate with the observed velocities. This physical phenomenon and its modeling will
be extensively discussed in Chapter III.

For negative streamers, the principle of propagation is the same but the net charge in the
head is negative and it propagates in the opposite direction of positive streamers, that is
in the opposite direction of the electric field. Thus, electrons behind the streamer head
participate in the local electron amplification in the high-field region. Pre-ionization and
photoionization are then less important in the case of negative streamers. However, as for
positive streamers, pre-ionization level and photoionization play important roles in their
structures and guide streamer propagation [e.g., Vitello et al., 1994].

For both streamer types, the forward-moving streamer head leaves behind quasi-neutral
plasma, where the field is very low (E . Ek). This is often called the streamer channel, or
streamer tail, and can be described as an ambipolar zone [e.g., Hassouni et al., 2004].

I.2.2 Estimation of the propagation velocity

An electron which enters the streamer head ignites the avalanche at a time t, until the
electron density, due to the amplification from this electron, reaches the positive ion density
at a time t + δt. Assuming this amplification behaves like an avalanche for a constant
field, one can estimate that the characteristic distance between the new created electrons
neutralizing the streamer head and the new created ions left behind is α−1, as for the
classical avalanche (see previous section). The characteristic length of the streamer head
is then δl ∼ α(Emax)

−1, where Emax is the maximum field in the streamer head. The
characteristic time of ionization over such a characteristic length is precisely the ionization
time: δt ∼ νi(Emax)

−1. Then one obtains a rough estimation of the propagation velocity Vs

by writing:

Vs ∼ α(Emax)
−1νi(Emax) = ve(Emax) (I.10)

We can find in results provided in [Dhali and Williams , 1987] that this approximation is
quite accurate, given the simplicity of this relation. In fact, Vs calculated here is underes-
timated by less than one order of magnitude.

A more complete approximation has been derived in [Dyakonov and Kachorovskii , 1988],
which presents a clear relation between the propagation velocity and the density far beyond
the streamer head. One can consider that, as for an electrode with a tip radius R, the region
around the streamer head with a substantial field has a size on the order of the streamer
radius R. Moreover, it is well known that the ionization frequency is a function of the
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electric field and saturates above a field Es. Dyakonov and Kachorovskii [1988] concluded
that the size of the substantial field region (∼R) around the streamer head should be on
the same order as the size of the region where substantial ionization takes place, for the
streamer to have a stable propagation. Then, the field at the streamer head would be on the
order of Es, and then one has νi ∼ νi(Es) ≡ νi,s in this region. The increase of the electron
density in the high field region stops when the repulsion of electrons is faster than the
ionization, that is when the Maxwell time is on the order of the ionization time: τm ∼ ν−1

i,s

(see Section I.1.4). For the exponential growth of the electron density n(t) = n0 exp (νi,st),
where n0 is the electron density far beyond the streamer head (e.g., due to photoionization),
one finds that the characteristic time of the electron density growth is:

τ ∼ ν−1
i,s log

(

νi,sǫ0

qn0µe

)

(I.11)

One sees that in these conditions the density in the streamer channel is:

nc ∼ n(t = τ) =
νi,sǫ0

qµe

(I.12)

Thus, one obtains the streamer velocity:

Vs ∼
R

τ
=

Rνi,s

log(nc/n0)
(I.13)

As a qualitative result, one sees that the smaller nc/n0 (keeping the other parameters as
constants), the faster the streamer. In [Dyakonov and Kachorovskii , 1989] authors showed
that their model (not restricted to Equation (I.13)) was in good agreement with [Dhali and
Williams , 1987]. Note that a similar equation of the streamer propagation velocity was
already provided by Loeb [1965], and that two other analytical models are provided in [Ku-
likovsky , 1998]. Kulikovsky [2000b] also proposed to replace R in (I.13) by the characteristic
length of the absorption of photoionizing radiation. However, these models all contain at
least one arbitrary parameter which is a priori not known (e.g., n0 in (I.13)).

As for the calculation of the streamer velocity, a full and accurate investigation of the
streamer properties is only possible by a more complete description than the existing an-
alytical models, and due to the high non-linearity of the source terms and the transport
coefficients, the numerical simulation is required.

I.3 Model formulation

I.3.1 Elements of kinetic theory

Kinetic theory aims at describing the motion of particles by one distribution function
f(~r,~v, t). The statistical meaning of the number f(~r,~v, t)d3rd3v is the number of par-
ticles (electrons in our case) inside the phase-space volume d3rd3v at (~r,~v) and at time t.
On this basis one can define the density of particles:

n(~r, t) =

∫

f(~r,~v, t)d3v (I.14)
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and the mean velocity of the group of particles, also named the fluid velocity :

~V (~r, t) = 〈~v〉v ≡ 1

n(~r, t)

∫

~vf(~r,~v, t)d3v (I.15)

In the same way, we can obtain the characteristic frequencies of collision from their cross
sections, for example:

ν(~r, t) = N〈σ~v〉v =
N

n(~r, t)

∫

σ~vf(~r,~v, t)d3v (I.16)

where N is the neutral molecule density and σ is the momentum transfer cross section.

The evolution of the distribution function is governed by the Boltzmann equation:

∂f

∂t
+ ~v · ~∇~rf +

~F

m
· ~∇~vf =

(

∂f

∂t

)

c

(I.17)

where ~F is the force exerted on the particles and
(

∂f
∂t

)

c
accounts for the change in f due to

collisions.

I.3.2 Fluid reduction

It is possible to obtain a very good description of the dynamics of particles by taking the
first moments of Equation (I.17). However, the dynamics of moment vk is coupled to the
dynamics of moment vk+1. It is then necessary to truncate the moment series at a finite
stage. We will take the first two moments of (I.17). The first moment (k = 0) of the
electron Boltzmann equation gives the continuity equation:

∂ne

∂t
+ ~∇ · (ne

~Ve) = G − L (I.18)

where subscript “e” stands for “electrons”. The functions G and L describe the creation
rate and the loss rate for electrons, respectively. The second moment of the Boltzmann
equation gives the conservation of momentum flux, also called the Euler equation:

∂ ~Ve

∂t
+ ( ~Ve · ~∇) ~Ve = −

~∇Pe

neme

+
〈 ~Fe〉v
me

− ν ~Ve (I.19)

for a weakly ionized plasma where only electron-neutral collisions are taken into account.
The quantity Pe in (I.19) is the electron pressure.

It is very interesting to see how we can simplify the Euler equation. First, the first term
of the left-hand side of Equation (I.19) falls very quickly to zero, since the electron flow
velocity ~Ve we consider here becomes stationnary on a time scale on the order of at most
ν−1, which is short compared to the propagation time scale of the streamer:

∂Ve

∂t
∼ 0

Second, since the streamer proceeds as a fast ionization wave, one has in principle Vs & Ve.
The quantity δl ∼ α−1 is the characteristic length of the flow. Therefore, ν ≃ 3 ·1012 s-1 (see
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Section I.1.1) is much greater than Ve/δl . Vsα ≃ 109 s-1, for Vs ≃ 108 cm/s and α ≥ 10
cm-1 (see previous discussion), and one gets:

νVe =
vthVe

λ
≫ V 2

e

δl
∼ |( ~Ve · ~∇) ~Ve|

where λ is the mean free path of momentum transfer, and vth is the usual thermal velocity
of electrons. In fact, one has: V 2

e

δl
= V 2

e

λ
Kn, where Kn = λ/δl is called the Knudsen

number and characterizes whether the fluid is in molecular or continuous flow. In our case
λ ≪ δl ⇒ Kn ≪ 1 and therefore the regime is continuous and the inertial term is neglected
comparing to the friction force [Rax , 2005, Sec. 6.2.1]. Thus, from this short analysis one
can neglect the left-hand side of Equation (I.19) and one obtains:

~Ve = −
~∇Pe

meneν
+

〈 ~Fe〉v
meν

(I.20)

On time scale of electron flow larger than (δν)−1, one can consider the electrons as a locally
isothermal fluid, and thus assume Pe = nekTe. This leads to the relation for the fluid
velocity:

~Ve = − kTe

meν

~∇ne

ne

+
〈 ~Fe〉v
meν

= −De

~∇ne

ne

+ µe
〈 ~Fe〉v

q
(I.21)

This equation closes the system of moments of the Boltzmann equation. Note that although
we focused on the motion of electrons, positive ions can be treated in a similar fashion.

I.3.3 Lorentz force and magnetic field

As the electric field due to the streamer head varies very quickly in the reference frame
of the experimentalist, one can ask if the induced magnetic field has a role in governing
streamer propagation in an external constant Laplacian electric field. The magnetic field
is governed by the Maxwell-Ampère Equation:

~∇× ~B = µ0qne
~Ve + µ0ǫ0

∂ ~E

∂t
(I.22)

where ~B is the magnetic field, and µ0 is the permeability of free space. Now, let us make
an approximate analysis to see under what conditions one can neglect the magnetic field.

We consider the characteristic length scale δl to be on the order of the size of the streamer
head radius. We saw in Section I.2.2 that in the streamer dynamics this length scale can
be linked to the time scale δt ≃ ν−1

i,max log(nc/n0). Thus, one can approximate the terms of
left and right sides of Equation (I.22) as:

|~∇× ~B| ∼ B

δl
and µ0qne| ~Ve| + µ0ǫ0

∣

∣

∣

∣

∣

∂ ~E

∂t

∣

∣

∣

∣

∣

∼ qneµeE

ǫ0c2
+

1

c2

E

δt

where we used the relation ǫ0µ0c
2 = 1, with c being the speed of light in free space. We

therefore obtain the approximation2 for B:

B ∼ qneµeEδl

ǫ0c2
+

1

c2

Eδl

δt
(I.23)

2Because of the triangle inequality, B is actually overestimated in the Equation (I.23).
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We see that the Maxwell time (I.9) appears in Equation (I.23):

B ∼
(

1

τm

+
1

δt

)

δl

c2
E (I.24)

Besides, we saw in Section I.1.4 and I.2.2 that the Maxwell time becomes comparable to
the ionization time τm ∼ ν−1

i,max in the streamer head. The electron density in the streamer
channel is much greater than that ahead of the streamer. Therefore nc/n0 ≫ 1, and even if
this factor is in the logarithm (log (nc/n0) ≃ 10 typically in our studies), one can consider
that δt−1 ≃ νi,max/ log(nc/n0) is negligible compared to τ−1

m . Moreover, according to (I.13)
one has the streamer velocity Vs ∼ δl/δt. Therefore, one obtains:

B ∼ δl

c2τm

E =
δl

δt

log (nc/n0)

c2
E =

Vs

c2
log (nc/n0) (I.25)

The electron fluid is subject to the mean Lorentz force:

〈~F 〉v = q( ~E + ~Ve × ~B) ∼ q ~E + q
VeVs

c2
log (nc/n0)E~um (I.26)

where ~um =
~Ve× ~B

| ~Ve× ~B| . We know that at most, the mean velocity of the electron fluid is Ve . Vs

in the streamer head:

q| ~Ve × ~B| . q
V 2

s

c2
log (nc/n0)E

And since Vs ≪ c (in air at atmospheric pressure Vs/c ≃ 1/100), one has:

〈~F 〉v ∼ q ~E (I.27)

Thus, the motion of the electron fluid is only subjected to the electrostatic force, and this is
the approximation we will employ in the rest of this work. Note that the streamer model we
present in Section I.4 does not prevent the streamer velocities from reaching and exceeding
the speed of light [see Liu and Pasko, 2004, Sec. 4.3]. However, the streamers we will study
have a much lower velocity than light in vacuum.

I.3.4 Diffusion coefficient

The analysis made in section I.3.2 to obtain Equation (I.21) is not general. Indeed, we
assumed that the problem was perfectly isotropic and that De was a scalar. Generally,
this is not true in the presence of high density gradients and if the collision frequency for
momentum transfer depends on electron energy [Parker and Lowke, 1969]. Typically for
electrons, ν increases with energy which leads to a slowing down of these electrons. In
the presence of high density gradients, the mean energy of electrons going down through
the gradient in the opposite direction of the field is not compensated by the less numerous
electrons passing in the other direction. These energetic electrons encounter a greater
friction force due to the increase in collision frequency. On a mesoscopic scale, this behavior
is equivalent to a reduction of the coefficient of diffusion in the direction of the field D‖
compared to that of diffusion in the transverse direction D⊥. At most, D‖ and D⊥ differ by
a factor of 2 [Raizer , 1991, Sec 2.4.4, p. 23]. In the streamers we study here, the gradients
of electron density are not high enough for electron diffusion to significantly affect the
streamer dynamics, which is principally governed by the electron drift and source terms.
Thus, these differences in the diffusion coefficients are considered to be negligible, and we
take D‖ = D⊥ = De.
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I.3.5 Local field approximation

As is very often the case in the literature, we will assume that the local field approxima-
tion is valid in our study. This approximation implies that local equilibrium of electrons is
achieved instantaneously in time in response to the electric field ~E. This allows us to express
all the transport coefficients and source terms as explicit functions of the norm of the local
reduced electric field E/N . This is the case when the time scales of variations of the electric
field and electron density are long compared to the time scale of energy relaxation, and this
approximation is not always valid in the streamer head. Several approaches have been taken
to examine the differences due to the nonlocality in streamers. The first one consists of tak-
ing nonequilibrium into account by adding additional moments of the Boltzmann equation
to increase the accuracy of the fluid description [Kunhardt et al., 1988]. In [Guo and Wu,
1993] an equation of the energy balance appears naturally, and therefore the mean energy
of electrons is used in the ionization coefficient as part of streamer simulations (positive
and negative) for nitrogen at atmospheric pressure. The effects of nonlocality on positive
streamers in air at atmospheric pressure were studied by Naidis [1997], who corrected the
electron source term rates calculated with the local field approximation following the work
of [Aleksandrov and Kochetov , 1996]. Deviations from the local field approximation were
studied for negative streamers in nitrogen at atmospheric pressure by [Li et al., 2007] by
means of a comparison between 1D fluid and particle models. By taking into account the
nonlocal effects, all of these authors found an increase of the ionization in the streamer
head, a resulting increase of the electric field and a small increase of the streamer velocity.

However, these discrepancies are far smaller than an order of magnitude. For example,
Li et al. [2007] found a relative difference between the fluid and the particle models of
∼10% and ∼20% in the ionization level behind the streamer front for homogeneous applied
electric fields of 50 kV/cm and 100 kV/cm, respectively. For practical accuracy, one can
obtain the main streamer characteristics by a fluid model [Naidis , 1997]. Furthermore,
recently Chanrion and Neubert [2008] used a PIC code to solve the Boltzmann equation and
a Monte Carlo simulation to simulate collisions, in the framework of streamer simulations
in the Earth’s atmosphere as applicable to sprite discharges. These authors found an
excellent agreement with results obtained by a fluid model by Liu and Pasko [2004] (a
comparison of our results with this work will be presented in Chapter III) both for positive
and negative streamers. This agreement is surprisingly good, as noted by the authors
themselves, especially given the discrepancies in the modeling of the photoionization and of
course in the local field approximation used in [Liu and Pasko, 2004] but not in [Chanrion
and Neubert , 2008]. We will thus also assume that the local field approximation is valid in
the following section.

I.4 Streamer equations

From the previous sections of this chapter, one can derive the most common and effective
model to study the dynamics of streamers based on the following drift-diffusion equations
for electrons and ions coupled with Poisson’s equation [e.g., Kulikovsky , 1997b]:

∂ne

∂t
+ ~∇·(ne ~ve) − ~∇ · (De

~∇ne) = Sph + S+
e − S−

e (I.28)
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∂np

∂t
+ ~∇·(np ~vp) = Sph + S+

p − S−
p (I.29)

∂nn

∂t
+ ~∇·(nn ~vn) = S+

n − S−
n (I.30)

~∇2V = − q

ǫ0

(np − nn − ne) (I.31)

where subscripts “e”, “p” and “n”, respectively, refer to electrons, positive and negative
ions, ni is the number density of species i, V is the potential, ~ve is the drift velocity of
electrons, Di and µi are respectively the diffusion coefficient and the absolute value of
mobility of species i, q is the absolute value of electron charge, and ǫ0 is permittivity of
free space. The S+ and S− terms stand for the rates of production and loss of charged
particles. They will be taken with the following general form:

S+
e = S+

p = neαve (I.32)

S+
n = neβattve (I.33)

S−
e = neβattve + nenpβep (I.34)

S−
p = nenpβep + nnnpβnp (I.35)

S−
n = nnnpβnp (I.36)

where βatt accounts for the electron attachment on neutral molecules, βep accounts for the
electron-positive ion recombination, and βnp accounts for the negative-positive ion recom-
bination. In the present study, the S+

e and S+
p production rates are the ionization rate due

to the electron impact ionization of air molecules. The origin of the coefficient sets we use
will be indicated each time, as needed.

The Sph term is the rate of electron-ion pair production due to photoionization in a gas
volume. For photoionization calculations in the streamer model, we employed techniques
discussed in Chapter III. Specifically, for the present study we have implemented the three-
group Eddington and SP3, the three-exponential Helmholtz, and the Zheleznyak classical
integral models [Ségur et al., 2006; Bourdon et al., 2007; Zheleznyak et al., 1982].

The coefficients of the model are assumed to be explicit functions of the local reduced
electric field E/N , where E is the electric field magnitude and N is the neutral density of
air (see Section I.3.5).

As a rough approximation, one can consider that the characteristic length of the variation
of electron and ion densities in the streamer head is on the order of α−1 (see Section I.2.2).
One notes ~vdiffi

= −Di
~∇ni/ni the “diffusion velocity” of ions (positive or negative). Using

the Einstein relation (I.3) it then follows that vdiffi
/vi = Di|~∇ni|/(nivi) ∼ Diα/(µiEmax) =

kTiα/(qEmax) ≃ 10−2, since the ion temperature is roughly the ambient temperature, using
Emax ≃ 150 kV/cm and by taking α from [Morrow and Lowke, 1997] (e.g., see Section II.3).
The density gradients are even weaker in the streamer channel and before the streamer head.
Thus, in all cases we present in this Ph.D. thesis, the diffusion of ions will be neglected. A
similar analysis for an electron thermal energy of ∼1 eV shows that the electron diffusion
is mostly negligible compared to the drift velocity of the electrons.
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In this report, axisymmetric streamers are studied and thus cylindrical coordinates are
used.

The computational models used for solving the drift-diffusion equations as well as for Pois-
son’s equation are described in Chapter II.



Chapter II

Numerical models
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II.1 Poisson’s equation

F
or streamer simulations, the electric field is a key parameter for two reasons. First, the
transport parameters and source terms have a non-linear dependence on it. Second, the

electric field is directly related to charged species densities (I.31). In streamer simulations,
the electric field is derived from the electric potential given by Poisson’s equation. A small
error in the calculation of the electric potential leads to large fluctuations in the electric
field, which may lead to considerable errors in the simulation results. Thus, it is important
to solve Poisson’s equation accurately. Moreover, we show in Chapter III that techniques
similar to those we use for solution of Poisson’s equation are also used for the modeling of
the photoionization source term.

Three important points have to be considered for the numerical solution of Poisson’s equa-
tion:

• The discretization scheme: it defines the numerical accuracy of the resolution of
Poisson’s equation. The discretization we use is derived in Section II.1.1.

• The boundary conditions: as an elliptic equation, the resolution of Poisson’s equation
requires the boundary conditions to be set. It is especially important in the case of
Laplace’s equation where the solution is entirely governed by the boundary conditions.
We discuss this point in Section II.1.2, and we present in detail the calculation of
boundary conditions for two configurations studied in this work.

• The numerical method used: the resolution of Poisson’s equation can be very time
consuming. For this reason, one has to find the most efficient solver for each new
configuration under study. Some solvers are iterative, and some are direct. In the
present work, both are used and we will briefly present them and compare them in
Section II.1.3.

II.1.1 Discretization

In cylindrical coordinates, Equation (I.31) can be written as:

∂

∂x

(

∂V

∂x

)

+
1

r

∂

∂r

(

r
∂V

∂r

)

= −ρ(x, r)

ǫ0

(II.1)

where x and r are axial and radial coordinates, respectively, and ρ = q(np−nn−ne). In this
work, we consider that the computational domain is discretized on a rectilinear grid. The
nodes of the grid are indexed with i and j in the axial and radial directions respectively,
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such that Vi,j = V (xi, rj). The edges of the cell indexed (i, j) are located by xi±1/2 and
rj±1/2, in the axial and radial direction, respectively (see Figure II.6).

In the volume of the computational domain (i.e., far from the boundaries) the second order
discretization of Eq. (II.1) in cylindrical coordinates gives the classical five diagonal linear
system:

V e
i,jVi+1,j + V w

i,jVi−1,j + V s
i,jVi,j−1 + V n

i,jVi,j+1 + V c
i,jVi,j = −ρi,j

ǫ0

(II.2)

with:


































































































V e
i,j =

1

∆xi(xi+1/2 − xi−1/2)

V w
i,j =

1

∆xi−1(xi+1/2 − xi−1/2)

V n
i,j =

rj+1/2

∆rj

(

r2
j+1/2

−r2
j−1/2

2

)

V s
i,j =

rj−1/2

∆rj−1

(

r2
j+1/2

−r2
j−1/2

2

)

V c
i,j = −(V w

i,j + V e
i,j + V s

i,j + V n
i,j)

(II.3)

where ∆xi = xi+1 − xi and ∆rj = rj+1 − rj. In this work, we have used this second order
discretization of Poisson’s equation because it is sufficiently accurate and robust for the
cases we have considered.

II.1.2 Boundary conditions

Different sets of boundary conditions are used for Poisson’s equation, depending on the
problem studied. In this work, we have considered discharges propagating between two
electrodes (plane-to-plane, point-to-plane and point-to-point). For metallic electrodes, the
potential is fixed on the electrodes, and in Chapter IV we will present how to impose this
boundary condition for an electrode of complex shape in a rectilinear mesh. The case
of boundary conditions in presence of a dielectric material will be addressed in Chapter
VI. In this work, we have only considered axisymmetric geometries, and thus a symmetry
condition is used on the axis of symmetry.

In this section, we present the calculation of boundary conditions for two different cases
that we have extensively studied for streamer simulations. In the first one, shown in Figure
II.1, a strong homogeneous electric field (i.e., greater than Ek everywhere in the simulation
domain) is applied externaly. In order to simulate streamer propagation in a weak electric
field (i.e., less than Ek), the second case shown in Figure II.2 consists of a narrow high-field
region generated by a spherical electrode placed in a weak and originally homogeneous
electric field. In this test case the spherical electrode is considered to be outside of the
simulation domain.
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In streamer simulations, computational domains are usually large in the radial directions
and therefore, the electric potential at the boundary r = R is specified by neglecting
contributions from the charges inside the domain since they occupy a relatively small space.
Two different types of boundary conditions can be used at the boundary r = R. The
homogeneous Neumann boundary condition (~∇V · ~n = 0, ~n being the normal vector of the
surface boundary), and the Dirichlet boundary condition based on the solution of Laplace’s
equation (i.e., ρ = 0 in Equations (I.31) and (II.1)).

If one wants to use a computational domain with a smaller radial extension, the influence
of charges inside the domain has to be considered. In this case, It is possible to compute
directly the Dirichlet boundary conditions from a Laplacian potential and to add the influ-
ence of the charges on the boundaries from the integral solution of Equation (II.1). This
approach is very time-consuming as each node of the boundary requires an integration of
the charge densities over the whole simulation domain. Therefore, we have carried out some
tests to try to find a compromise on the size of the computational domain between:

• a computational domain with a large radial extension, for which the resolution of
equations in the volume of the computational domain (e.g., drift-diffusion equations)
is very time consuming,

• a computational domain with a small radial extension, for which the computation of
boundary conditions for Poisson’s equation is very time consuming.

We have observed that the least time-consuming way for a given accuracy and for config-
urations presented in this Chapter is to work with a computational domain with a small
radial extension and the integral solution of Poisson’s equation for boundary conditions.
We present the detailed calculation of these boundary conditions for the cases presented in
Figures II.1 and II.2.

External homogeneous electric field

Figure II.1 shows the computational domain immersed in a homogeneous electric field
virtually generated by two infinite planar electrodes. The general solution of Equation
(I.31) can be written as:

V (~r) = VL(~r) +
1

4πǫ0

∫∫∫

Ω′

ρ(~r ′)

|~r − ~r ′|dΩ′ (II.4)

where ~r is the position vector (x, r) (from the origin point (0, 0) in Figures II.1 and II.2),
Ω′ is the volume of the computational domain, and VL is the Laplacian part of the electric
potential, that is ~∇2VL = 0. In the case of an external homogeneous field E0 in the axial
direction Ox, one has:

VL(x, r) = −E0x + C (II.5)

where C is an arbitrary constant. Equation (II.4) is used to calculate the potential at the
boundaries of the domain. Inside the simulation domain, the electric potential is calculated
based on the numerical solution of the discretized form of Poisson’s equation (Equation
(II.2)). The different numerical methods used will be discussed in Section II.1.3.
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Figure II.1: Representation of the simulation domain in a homogeneous electric field gen-
erated by two infinite planar electrodes [Liu and Pasko, 2004].

Field generated by a spherical electrode placed in an weak external homoge-
neous electric field

Figure II.2 shows a representation of the computational domain and the virtual electrodes
used. A potential V0 is applied to the conducting sphere, which is put into an originally
homogeneous electric field virtually established by two remote plane electrodes placed very
far from the sphere.

This test case was initially proposed for streamer simulations by [Babaeva and Naidis , 1996].
It enables the study of the ignition of a streamer in the high field region close to the sphere
and the propagation of the streamer in a homogeneous weak electric field. The interest
of this test case is its geometric simplicity, since the spherical electrode is not included in
the computational domain. In Figure II.2, we note that there is only one point of contact
between the sphere and the computational domain.

Because of the layout of charges on the spherical electrode under application of a homoge-
neous field, the Laplacian component of the electric potential becomes [Durand , 1966b, p.
202]:

VL(x, r) =
V0b

ds

− E0

[

1 −
(

b

ds

)3
]

(x + b) (II.6)

where ds =
√

(b + z)2 + r2 is the distance between the sphere center and the observation
point (x, r), V0 is the potential of the spherical electrode, and b is the sphere radius (see
Figure II.2). Furthermore, if one considers each cell of the simulation grid as a point charge,
it becomes possible to take into account the influence of the corresponding image charge in
the sphere on the electric potential in the simulation domain1. In this case Equation (II.4)

1The image method introduces point charges inside the spherical electrode in order to keep the electric
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Figure II.2: Representation of the simulation domain where the electrical field is generated
by a spherical electrode in a homogeneous electric field [Liu and Pasko, 2006].

becomes:

V (~r) = VL(~r) +
1

4πǫ0

∫∫∫

Ω′

ρ(~r ′)

|~r − ~r ′|dΩ′ +
1

4πǫ0

∫∫∫

Ω′

ρi(ρ(~r ′))

|~r − ~ri(~r ′)|dΩ′ (II.7)

where VL(~r) is defined by Equation (II.6) and ρi is a virtual charge density accounting for
the influence of the image charges. One has [Durand , 1966b; Liu, 2006]:

ρi(ρ(~r ′)) = − b

ds

ρ(~r ′) (II.8)

~ri(~r
′) =

b2

d2
s

(~r ′ + b ~ux) − b ~ux (II.9)

where ~ux is the unit vector of the x-axis. As for Equation (II.4), the integrals in Equation
(II.7) are only computed on the boundaries of the simulation domain.

Elliptic integral approach

The calculation of the integrals in Equations (II.4) and (II.7) is very time-consuming.
Therefore, we have carried out some tests to compare different numerical methods for com-
puting them, namely, by Gaussian quadrature, Romberg’s method and an elliptic integral
approach [these methods were taken from Press et al., 1992]. For studies presented in this
work, the most efficient numerical method is the elliptic integral approach [Liu and Pasko,
2006].

potential as a constant V0 on its surface.
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As the model is cylindrically symmetric, one can integrate over the volume of the simula-
tion domain using elementary rings of radius r′ at axial position x′, corresponding to an
individual grid node, around the axis of symmetry. Thus, the elementary potential at the
observation point ~r due to this infinitesimal ring is:

dV (x, r; x′, r′) =
1

4πǫ0

ρ(x′, r′)r′dr′dx′
∫ 2π

0

dφ
√

r2 + r′2 + (x − x′)2 − 2rr′ cos φ
(II.10)

where φ is the azimuthal angle (see Fig. III.1(a)). By making the substitution φ = π + 2β,
one obtains:

dV (x, r; x′, r′) =
ρ(x′, r′)r′dr′dx′

πǫ0

√

(r + r′)2 + (x − x′)2
K(k(x, r; x′, r′)) (II.11)

where K(k) =
∫ 2π

0
(1 − k2 sin2 β)1/2dβ is the complete elliptic integral of the first kind, and

k(x, r; x′, r′) = 4rr′

(r+r′)2+(x−x′)2
. Note that the denominator in Equation (II.11) is always non-

zero, since we used a simulation grid with cell interfaces at r = 0 or z = 0 instead of grid
nodes (see Section II.2.1).

The above method can also be applied to the image part of Equation (II.7). The numerical
method we used to compute K(k) is taken from [Press et al., 1992] and based on the
Carlson’s function RF [Carlson, 1977]. The integration over x′ and r′ is performed using
the trapezoidal integration.

II.1.3 Numerical methods for solving Poisson’s equation

In streamer simulations, the discretized form of Poisson’s equation (II.2) inside the com-
putational domain is usually solved using the symmetrical successive overrelaxation (SOR)
method. This method has been widely used because it is simple to implement and ro-
bust. However, the SOR method is well-known to converge rather slowly. To reduce
computation times, we have used the D03EBF module of the NAG Fortran library (http:

//www.nag.co.uk) in this work, which is based on the iterative Strongly Implicit Procedure
[Stone, 1968]. This method converges more rapidly than the SOR method for the same
accuracy.

Recently, different efficient direct solvers (e.g., MUMPS [Amestoy et al., 2000, 2001, 2006]
and the SuperLU solver [Demmel et al., 1999a, b] (http://crd.lbl.gov/~xiaoye/SuperLU/))
have been developed for large systems of linear equations and can be applied to solve Pois-
son’s equation. As part of the preparatory work for the studies presented in this thesis,
we have conducted several test runs to compare the results obtained using the iterative
NAG module and the direct SuperLU solver. Both solvers have very good performances.
The main asset of SuperLU is its accuracy, but its main drawback is the consumption of
memory and the speed of the LU factorization. On the other hand, the main asset of the
NAG routine is that, as an iterative solver, it is faster to converge from previous solutions
than through a direct matrix inversion, even when using a moving mesh. However, its main
drawback is that it takes a few iterations to converge at each timestep, and moreover, it
is difficult to estimate a priori its accuracy for a given set of convergence criteria in each
studied configuration.

http://www.nag.co.uk
http://www.nag.co.uk
http://crd.lbl.gov/~xiaoye/SuperLU/
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Figure II.3: Maximum difference between results given by the iterative NAG solver and by
SuperLU, as well as the number of iterations of the NAG solver, both as a function of one
convergence criterion.

For the sake of brevity, we present here only one example among all the different compar-
ison tests done. In this example, the simulation domain is [0, 1] × [0, 1] (arbitrary units),
discretized on a 41×41 Cartesian grid. We take a source term on the right hand side of Pois-
son’s equation, such that the corresponding solution of Poisson’s equation is a Lorentzian
function centered in the middle of the domain. The maximum of the Lorentzian function
is 10 (a.u.) with a half width at half maximum of 10−3/2 (a.u.). The iterative NAG solver
is initialized with zero potential in the overall domain. Figure II.3 shows the maximum
difference between results obtained using the iterative NAG solver and the direct SuperLU
solver, and the number of iterations of the NAG solver, as a function of one convergence
criterion of the NAG routine. This convergence criterion is defined as the maximum ab-
solute value of the change made to the elements of the matrix at each iteration. Details
on the convergence criterion can be found in the D03EBF - NAG Fortran Library Routine
Document.

We have noted that the maximum difference between the result given by SuperLU and the
analytical solution (the Lorentzian function used) is 2·10−15 (a.u.). Figure II.3 clearly shows
that the precision of the iterative solver is always less than that of SuperLU. However, one
notes that the results of the iterative solver become closer to those obtained with SuperLU
when the convergence criterion is reduced. However, this involves an increase in the number
of iterations. Note that the number of iterations obtained for a convergence criterion of
10−15 seems to deviate from the general trend. At this point, the required precision is
close to the accuracy of representation of double precision numbers. This means that any
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arithmetic operation suffers a large rounding error and causes poor convergence2. We note
that for a convergence criterion of 10−16, the iterative solver never converges.

Thus, as part of the preparatory work for further simulations, we have conducted several
test runs in streamer simulations to compare the results obtained using the iterative NAG
module and the direct SuperLU solver. It turned out that there are only minor changes in
the streamer dynamics computed using these two solvers. Direct solvers are inherently very
accurate and robust. Furthermore, for the case of a fixed grid, the most time-consuming
step in the calculation of the solution (i.e., the factorization) needs to be done only once
at the beginning of the discharge simulation. Then, at each timestep of the discharge
simulation, the calculation of the solution for different source terms (i.e., term on the right
hand side of Equation (II.1)) is fast.

In the following sections and chapters, we use either the SuperLU or the NAG routine,
depending on the context and their time consumption in a given configuration. Using two
different solvers is useful for demonstrating the accuracy of the results for each new external
configuration (e.g., electrode geometry). Furthermore, we can cross-check the two solvers
to ensure that a particular streamer effect does not results from an inaccurate computation
of the electric potential.

II.2 Numerical resolution of the drift-diffusion equa-
tions

Many problems arise in connection with solution of drift-diffusion equations (I.28)–(I.30)
applied to streamer simulations. It is important to note that most of these problems
are related to the great spatial variations of densities of charged species. For example,
Figures II.4 and II.5 show the evolution of the densities of electrons, positive ions and net
charge densities for negative and positive streamer heads. Thus, to solve the drift-diffusion
equations applied to streamer simulations, a suitable numerical method has to comply with
two requirements: a sufficient accuracy for exact description of the density gradients and
positivity of densities. As discussed for example in [Godunov , 1959], it is difficult to satisfy
both constraints.

In this section, first, we present the finite volume method applied to the drift-diffusion
equations, and then we discuss the advantages and limitations of three numerical schemes
used in the literature for streamer simulations. Finally, in Section II.3 we compare the
performance of these three schemes on the simulation of a positive streamer.

II.2.1 Finite volume methods

Finite volume methods are based on the integral formulation of the partial differential
equations to be solved. By construction, these methods guarantee the conservation of the
transported physical quantity [Ferziger and Peric, 2002]. For streamer simulations, this
property is essential because it is particularly important to conserve the charge during the
whole streamer simulation. In finite volume (or control volume) methods, the domain is

2Private communications with Zdenek Bonaventura.
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Figure II.4: Structure of a negative streamer front: absolute value of the electric field |E|,
electron density ne, positive ion density np and absolute net charge density ρ = |np − ne|.
The arrow points in the propagation direction. Simulations are performed for a 1 cm gap
in nitrogen at atmospheric pressure [Bessières , 2006].
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Figure II.5: Same caption as figure II.4 for a positive streamer front [Bessières , 2006].
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Figure II.6: Representation of the numerical grid. Control volumes are referenced by their
centers and are defined by their edges between xi−1/2 and xi+1/2, and between rj−1/2 and
rj+1/2. The arrows represent the outward unit normal vectors of the boundaries of the cell
(i, j).

subdivided into a finite number of small control volumes by a grid. In this work we use
only structured grids. For this type of grid one can work either with the nodes centered in
control volumes (see Figure II.6) or with the faces centered between nodes [Ferziger and
Peric, 2002]. Both approaches have their own advantages, and in the present work we have
used node-centered grids, as they are used more frequently in the literature [Ferziger and
Peric, 2002].

We present now the finite volume method for the case of Equation (I.28). As stated by
Equation (I.18), the conservation law for electron is:

∂ne

∂t
+ ~∇ · ne

~Ve = G − L (II.12)

The basic principle of the finite volume method is to maintain the conservative property
of Equation (II.12) in every volume element. Therefore Equation (II.12) is integrated over
the volume element Ωi,j of the cell (i, j) (see Figure II.6) and becomes:

∂

∂t
n̄i,j +

1

Ωi,j

∫

Ωi,j

~∇ · ne
~Ve dΩ =

1

Ωi,j

∫

Ωi,j

(G − L)dΩ (II.13)

where we define n̄i,j as the average of ne(x, r, t) over Ωi,j:

n̄i,j =
1

Ωi,j

∫

Ωi,j

ne(x, r, t)dΩ (II.14)

Using the Gauss-Ostrogradsky theorem one obtains:

∂

∂t
n̄i,j +

1

Ωi,j

∫

∂Ωi,j

ne
~Ve · ~n dΣ =

1

Ωi,j

∫

Ωi,j

(G − L)dΩ (II.15)

where dΣ measures the infinitesimal surface of the cell boundaries, and ~n is the outward
unit normal vector. Decomposing the surface integral on the edges of the cell shown in
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Figure II.6, one obtains:

∂

∂t
n̄i,j +

1

Ωi,j

(F x
i+1/2 + F x

i−1/2 + F r
j+1/2 + F r

j−1/2) = S̄i,j (II.16)

where we define the fluxes as

F x
i+1/2 =

∫

Σi+1/2,j

ne
~Ve · ~ndΣ ≃ ni+1/2,jV

x
ei+1/2,j

Σi+1/2,j (II.17)

where the surface of the cell boundary Σi+1/2,j is located at (i + 1/2, j), and S̄i,j is the
average of source and loss terms over the volume Ωi,j.

To calculate the exact change of the density n̄i,j over an elementary time step ∆t = tk+1−tk,
we integrate the equation (II.16) from tk to tk+1:

n̄k+1
i,j = n̄k

i,j −
1

Ωi,j

∫ tk+1

tk
(F x

i+1/2 + F x
i−1/2 + F r

j+1/2 + F r
j+1/2)dt +

∫ tk+1

tk
S̄i,jdt (II.18)

where n̄k+1
i,j is the value of the mean density inside the control volume Ωi,j at the end of

a time step. This equation is the conservative form of Equation (II.16). Indeed, if all the
fluxes are equal to zero in a control volume, Equation (II.18) shows that the change of
density inside the control volume is only due to volume source and loss terms.

It is important to note that no approximation has been made in deriving Equation (II.18).
In order to solve this equation numerically, it is necessary to express the different fluxes
and source terms on the right-hand side part of the equation. It is interesting to point out
that the fluxes in Equation (II.18) account for both drift and diffusion fluxes. We will first
consider the fluxes are constant during time step ∆t and simplify Equation (II.18):

n̄k+1
i,j = n̄k

i,j −
∆t

Ωi,j

(F x,k
i+1/2 + F x,k

i−1/2 + F r,k
j+1/2 + F r,k

j+1/2) +

∫ tk+1

tk
S̄i,jdt (II.19)

The main problem in solving Equation (II.19) concerns the determination of fluxes at the
interfaces of the control volume. Indeed, as shown by Equation (II.17), these fluxes only
strictly depend on the (unknown) values of the densities at the interfaces and not on the
(known) mean value of the density n̄i,j inside the control volume. Thus, the difficulty is to
express the different fluxes as approximate functions of n̄i,j. In the following section, we
will present the approximate expressions of drift fluxes for the three different schemes used
in this work:

• The upwind scheme.

• A Flux-Corrected Transport method.

• The modified Scharfetter-Gummel scheme.

It is interesting to note that diffusion fluxes are calculated simultaneously with drift fluxes
in the modified Scharfetter-Gummel scheme. For other schemes, diffusion and drift fluxes
are calculated separately, and we present the method used to calculate diffusion fluxes in
these cases. Finally, in the following section, we will present and discuss different methods
for the time integration and the integration of the source term on the right-hand side of
Equation (II.16).
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II.2.2 Numerical schemes for drift-diffusion fluxes

In this section, the source term in Equation (II.19) is assumed to be equal to zero:

n̄k+1
i,j = n̄k

i,j −
∆t

Ωi,j

(F x,k
i+1/2 + F x,k

i−1/2 + F r,k
j+1/2 + F r,k

j+1/2) (II.20)

In cylindrical coordinates, the volumes Ωi,j and the surfaces Σi+1/2,j and Σi,j+1/2 are given
by:

Σi+1/2,j = π(r2
i,j+1/2 − r2

i,j−1/2) (II.21)

Σi,j+1/2 = 2πri,j+1/2(zi+1/2,j − zi−1/2,j) (II.22)

Ωi,j = π(r2
i,j+1/2 − r2

i,j−1/2)(zi+1/2,j − zi−1/2,j) (II.23)

Upwind scheme for drift fluxes

The upwind scheme is the simplest numerical scheme. The basic idea of this scheme is to
use the direction of the drift velocity to approximate the drift fluxes. The drift velocity
field for charged particles can be easily derived at each time step from the calculation of the
electric field. Then, for example in the axial direction, the drift fluxes are approximated as:

• F x,k
i+1/2 = n̄k

i,jv
x,k
ei+1/2,j

Σi+1/2,j, if ~vk
ei+1/2,j

· ~ni > 0,

• F x,k
i+1/2 = −n̄k

i+1,jv
x,k
ei+1/2,j

Σi+1/2,j, if ~vk
ei+1/2,j

· ~ni < 0.

where vx,k
e is the axial component of the drift velocity ~ve. A similar approximation is used in

the radial direction.The upwind scheme is therefore very simple to implement and has the
great advantage of being strictly positive. However, this first-order scheme is numerically
diffusive [e.g., Ferziger and Peric, 2002].

This scheme has been used for streamer simulations, in particular in the work of the MIPT
group in Russia [e.g., Pancheshnyi et al., 2001, 2005].

Flux Corrected Transport method

To reduce the numerical diffusion and thereby increase the accuracy of the solution, different
high order interpolation methods can be used to determine the drift fluxes at the cell
interfaces. However, solutions by schemes of second order and higher, are not positive and
these schemes generally present dispersion with spurious oscillations close to high gradient
zones [e.g., Ferziger and Peric, 2002]. Different types of methods have been developed in the
literature to reduce the spurious oscillations as much as possible and guarantee the positivity
of the solution. The method of Flux Corrected Transport was developed in the 1970s [Boris
and Book , 1973, 1976]. The basic idea of this method is to combine two numerical schemes.
The first is strictly positive but diffusive (for example the upwind scheme), and the second
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is a higher order, but dispersive scheme which is more accurate. In the FCT method, the
solution obtained with the low-order diffusive scheme is corrected by antidiffusive fluxes
calculated using the high-order scheme. However, as this scheme is dispersive, this may
lead to oscillations in high gradient regions. Thus, the antidiffusive fluxes are limited in
order to preserve the monotonicity of the solution. Different limiters have been developed
in the literature for the FCT method [Boris and Book , 1973; Zalesak , 1979; DeVore, 1998].
In this work, we have used the 2D limiter proposed by Zalesak [1979], which appears to be
a good compromise between efficiency and complexity of implementation.

The FCT method proposed by Boris and Book has been widely used in 1D and 2D discharge
simulations ever since its first use by Morrow [1981]. In this work, we have used a slightly
modified FCT method. We have developed an FCT method based on the first-order upwind
scheme as the diffusive scheme, and for the high-order scheme we have used the third
order QUICKEST scheme (Quadratic Upstream Interpolation for Convective Kinematics
with Estimated Streaming Terms). The 1D third order QUICKEST scheme (also called
QUICKEST3) was introduced by Leonard [1979]. It is based on a third order polynomial
interpolation of the density at the interface of the cell. It is interesting to note that in
the third order QUICKEST scheme, the time integration of the fluxes in equation (II.18) is
carried out accurately [Potin, 2001; Bessières , 2006]. Usually, for other schemes, the simple
approximation of Equation (II.19) is used. All the details on the third order QUICKEST
scheme can be found in [Leonard , 1979] and are not repeated here for the sake of brevity.
This scheme, associated with the universal limiter developed also by Leonard [1991], has
been extensively compared with other schemes in [Bessières , 2006] on academic test cases
and applied to different streamer simulations [Bessières , 2006; Bessières et al., 2007].

It is important to note that the QUICKEST3 scheme with the universal limiter has been
developed in 1D. The extension to 2D of the QUICKEST3 scheme with the universal limiter
can be done easily by splitting the numerical treatment into two one-dimensional problems
in the x and r directions, respectively. Leonard has developed a 2D numerical scheme called
ENIGMATIC (Extended Numerical Integration for Genuinely Multidimensional Advective
Transport Insuring Conservation) [Leonard et al., 1995], although the implementation of the
scheme and its 2D limiter for the purposes of streamer simulations is not straightforward.

In this work, we have used the QUICKEST3 in 1D, and we have combined it with a 1D
upwind scheme to build a 2D FCT scheme based on the 2D limiter of Zalesak [1979].

Modified Scharfetter-Gummel scheme

The original Scharfetter-Gummel method was introduced in 1969 to obtain self-consistent
numerical solutions for equations describing carrier transport, carrier generation, and space-
charge balance in semiconductor devices [Scharfetter and Gummel , 1969]. This method is
essentially a discretization scheme for variables in convection-dominated problems that
employs an exponential fitting technique. One main advantage of this scheme is that it
calculates drift and diffusion fluxes at the same time. The Scharfetter-Gummel method
has the very important property of monotonicity, but it has been shown that this method
is accurate only if the potential drop between to adjacent nodes is much less than the
electron temperature [Kulikovsky , 1995a]. For problems in gas discharges, it is necessary to
use fine grids to satisfy this condition, and therefore the computational cost becomes very
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expensive. Therefore, to apply this scheme to gas discharges with reasonable computational
times, Boeuf and Pitchford have developed an implicit variant of this sheme [Boeuf and
Pitchford , 1991; Fiala et al., 1994].

In 1995, Kulikovsky [1995a] proposed a modified version of the original explicit Scharfetter-
Gummel method that improves the accuracy of the original scheme significantly without
requiring the use of a fine grid. All the details on the scheme can be found in [Kulikovsky ,
1995a] and are not repeated here for the sake of brevity. In this section, we present the main
characteristics of the modified Scharfetter-Gummel, method and we discuss the different
parameters we have made to implement it.

Kulikovsky’s basic idea is to put a pair of virtual nodes, one on each side of the cell interface
where the flux has to be calculated. The distance between these virtual nodes is chosen to be
small enough to satisfy the condition for which the Scharfetter-Gummel method is accurate.
Densities at virtual nodes are obtained using an interpolation of the density between two
grid nodes. Then, based on the densities at the virtual nodes, the flux at the cell edge can
be calculated accurately using the Scharfetter-Gummel scheme. It is interesting to note
that in the original Scharfetter-Gummel method the electric field is assumed to be constant
between the virtual nodes. Kulikovsky has proposed a more accurate approximation of the
flux, in which the field is assumed to vary linearly between the virtual nodes. In [Kulikovsky ,
1995a], it was shown that accounting for the linear field profile has a minor influence on the
results obtained on a simplified test case. We have also observed this minor influence in
streamer simulations, and used the constant electric field approximation (also called ISG0
in [Kulikovsky , 1995a]) in the streamer simulations presented in this work.

In the modified Scharfetter-Gummel scheme, the determination of the location of the vir-
tual nodes is essential, and Kulikovsky has proposed a criterion with a constant factor ǫ
which has to be selected. When ǫ changes from 0 to 1, the scheme transforms from a very
accurate but dispersive one to a less accurate, diffuse but monotonic Scharfetter-Gummel
algorithm. The actual value of this parameter should be chosen experimentally, and Ku-
likovsky suggests that a value of ǫ in the range [0.01, 0.04] gives good results in most cases.

For the interpolation of the densities at the virtual nodes, Kulikovsky [1995a] has proposed
two interpolation schemes: exponential and local cubic spline piecewise interpolation. Af-
ter having checked both interpolations, and we have chosen to use the local cubic spline
interpolation in this work.

It is important to note that the modified Scharfetter-Gummel scheme was developed in 1D.
We have adapted it to 2D by splitting the numerical treatment into two one-dimensional
problems in the x and r directions, respectively. To improve the accuracy of the splitting
method, an alternation of the order between the x and r axes is used in two successive time
steps.

The modified Scharfetter-Gummel scheme has been successfully applied to different 2D
streamer simulations by Kulikovsky [e.g., 1995b, 1997a, b, 2000b, 2001] and also other
authors [e.g., Liu and Pasko, 2004, 2006; Liu, 2006].
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Diffusion fluxes

In the modified Scharfetter-Gummel scheme, diffusion and drift fluxes are calculated si-
multaneously. However, diffusion fluxes are usually calculated separately from drift fluxes
and Equation (II.20) is thus splitted into two equations: one with drift fluxes and a sec-
ond one with diffusion fluxes. This is for example the case for the upwind scheme or the
FCT method. In this case, we have used a classical second-order central-difference scheme,
representing the diffusion fluxes in the form:

F x,k
i+1/2 = Dk

i+1/2,j

n̄k
i,j − n̄k

i+1,j

xi+1,j − xi,j

Σi+1/2,j (II.24)

F r,k
j+1/2 = Dk

i,j+1/2

n̄k
i,j − n̄k

i,j+1

ri,j+1 − ri,j

Σi,j+1/2 (II.25)

II.2.3 Time integration

In this work, we have tested two different time integration methods for Equation (II.18).

• First approach: to obtain a second order scheme in time, we have developed a
predictor-corrector scheme [Ferziger and Peric, 2002]. However, this approach is
very time-consuming.

• Second approach: we have used a simple first-order Euler time integration for fluxes
(Equation (II.19)) and the photoionization source term, and a fourth-order Runge-
Kutta method [Ferziger and Peric, 2002] for the time integration of other source
terms.

We have compared the results of both approaches and we found that to obtain the same
accuracy of the results, it was less time consuming to use the second approach with a slightly
smaller timestep than to use the predictor-corrector scheme. Therefore in this work, we
have used this second approach.

Time step

We follow the approach discussed in [Vitello et al., 1994] to define the time step for model
execution. The time scales of relevance for selection of the time step providing model sta-
bility and accuracy are the Courant δtc, effective ionization δtI and dielectronic relaxation
δtD time scales (Maxwell time). The explicit expressions for δtc, δtI and δtD can be found
in [Vitello et al., 1994]. The model time step is calculated as δt=min(Acδtc, AIδtI , ADδtD)
with Ac=0.5, AI=0.05 and AD=0.5. In practical streamer calculations the time step during
the initial stage of streamer formation is almost always defined by the minimum value of
the ionization time scale corresponding to the maximum field and the maximum ionization
frequency νimax

in the streamer head (δtI=1/νimax
). We note that in our modeling, we adopt

a small AI value, which is a factor of two less than that used in [Vitello et al., 1994]. It
is interesting to note that during the stable streamer propagation phase the timestep is
mostly controlled by the Maxwell time.
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II.3 Numerical results

In this section, we compare the results obtained using the FCT method based on the upwind
and QUICKEST3 schemes and Zalesak’s limiter to the modified Scharfetter-Gummel and
upwind schemes.

We consider the configuration described in Section II.1.2: a conducting sphere at a potential
V0 is placed in an originally homogeneous field. The simulation domain is discretized on a
Cartesian grid with a cell size of ∆x = ∆r = 6.2 µm. The size of the domain is 1 × 0.125
cm2. The electrode potential is set at V0 = 6500 V, and the weak homogeneous external
electric field throughout the domain is E0 = 10 kV/cm.

As described in Figure II.2, the sphere is tangential to the computational domain at x = 0.
At t = 0 a Gaussian spot of neutral plasma is placed initially in the high-field region, in
the vicinity of the sphere. The initial electron and positive ion densities have a Gaussian
shape:

ne(x, r)|t=0 = np(x, r)|t=0 = n0 exp

[

−(x − 2σx)
2

σ2
x

− r2

σ2
r

]

+ nback (II.26)

where we have chosen σx = σr = 0.01 cm, and n0 = 1012 cm-3. The negative ion density
is initially taken to be zero. The transport coefficients and source terms are taken from
formulations presented in [Morrow and Lowke, 1997].

For the simulation results presented in this section, the photoionization source term has
been omitted and replaced with a fixed pre-ionized neutral background. The level of this
pre-ionized background is fixed to nback = 109 cm-3 to give results consistent with the ones
obtained when the photoionization source term is included (see Appendix C for further
details).

In the figures presented in this section, the spherical electrode is placed on the left (outside
the simulation domain), and the positive streamer propagates in the +x direction. As an
example of the results obtained, Figures II.7 and II.8 show the cross-sectional views of
the distributions of the electron density and the electric field at three moments in time,
using the upwind scheme. Figure II.7 shows the evolution of the filamentary shape of
the electron density in a neutral medium. Figure II.8 presents two main regions of the
streamer: a crescent-shaped high-field region produced by the streamer head and a low
field region behind the streamer head where the field is lower than the breakdown field, and
which corresponds to the high electron density region (see Figure II.7) caused by streamer
propagation.

Figures II.9 and II.10 present cross-sectional views of the distributions of the electron
density and of the magnitude of the electric field, respectively, for the three different schemes
at t = 11.5 ns. Figures II.11 and II.12 compare the corresponding profiles of the electron
density and the magnitude of the electric field on the axis of symmetry of the computational
domain (shown by white horizontal line in the cross-sectional figures).

We note that the results obtained by the FCT method and the modified Scharfetter-Gummel
are very close. The streamer velocity is the same, as well as the electric field and the electron
density profiles (see also Figures II.13 and II.14). Conversely, with the upwind scheme, the
streamer velocity is much higher, with a higher electron density in the streamer head and
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Figure II.7: Cross-sectional views of the distribution of the electron density at different
times, computed using the upwind scheme. (a) t = 2.5 ns. (b) t = 8.5 ns. (c) t = 14.5 ns.

Figure II.8: Cross-sectional view of the distribution of the electric field at different times,
computed using the upwind scheme. (a) t = 2.5 ns. (b) t = 8.5 ns. (c) t = 14.5 ns. (1
Td=10−17 V cm2).
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Figure II.9: Cross-sectional views of the distribution of the electron density at t = 11.5 ns:
(a) computed using the upwind scheme; (b) computed using the FCT method based on
the upwind and QUICKEST3 schemes and Zalesak’s limiter; and (c) computed using the
modified Scharfetter-Gummel scheme.

Figure II.10: Cross-sectional views of the distribution of the electric field at time t = 11.5
ns: (a) computed using the upwind scheme; (b) computed using the FCT method based
on the upwind and QUICKEST3 schemes and Zalesak’s limiter; and (c) is computed using
the modified Scharfetter-Gummel scheme. (1 Td=10−17 V cm2).
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Figure II.11: Profiles of electron density on the axis of symmetry. The upper graph uses
linear scale, and lower graph log scale. Solid line: results obtained with the upwind scheme.
Dashed line: results obtained with the FCT method based on the upwind and QUICKEST3
schemes and Zalesak’s limiter. Dotted line: results obtained with the modified Scharfetter-
Gummel scheme. Results are shown from t = 0 to t = 17.5 ns, with a time step of 2.5
ns.
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Figure II.13: Streamer length as a function of time.

in the channel (by a factor of 2 to 5 compared to the other schemes) and a higher maximum
electric field (between 10% to 35% higher in comparison to other schemes).

Figure II.13 presents the streamer length as a function of the electric field. The streamer
length is estimated using the maximum electric field in the streamer head as a reference.
One observes that for the chosen parameters the streamer propagation is stable for the
three schemes, that is the streamer velocity is almost constant.

From results presented in Figure II.11 we note that the characteristic length of variation
of the electron density, as well as the charge layer size of the streamer head and the size
of the zone where substantial ionization takes place is ∼0.007 cm. This is on the order
of magnitude of α−1(Emax) ≃ 0.001 cm [e.g., given by Morrow and Lowke, 1997], with
Emax ≃ 114 kV/cm taken from Figures II.10 and II.12 (for high-order schemes). This
confirms the physical mechanisms considered in Chapter I.

The streamer radii calculated using the different schemes are in a good agreement at t = 11.5
ns. It is interesting to note that the radius of these simulated streamers is roughly 0.1 cm.
In fact, this value corresponds quite well to the maximum radius of the avalanche α−1(Ek)
derived in Section I.1.4.

Furthermore, if we consider the electron density in the streamer channel given by Equation
(I.12), we obtain nc ∼ ǫ0Emaxα(Emax)/q ≃ 6 · 1013 cm-3. This value is in good agreement
with the electron density value of 3 · 1013 cm-3 found just behind the streamer head in the
simulation results at t = 17.5 ns for high order schemes.

The accuracy of the results obtained with the upwind scheme can be increased by decreasing
the cell-size of the grid. However, refining the numerical grid considerably increases the
time required for the simulation. Furthermore, in this work, we have used fixed grids, and
for the final studies presented in Chapters IV and VI we have to carry out simulations
on computational domains of a few cm2. The typical cell-size used in this work is on the
order of ∆x = ∆r = 5 µm. Thus, to obtain results with good accuracy on such grids
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in a reasonable time, all final results presented in this work have been obtained using the
FCT method or the modified Scharfetter-Gummel scheme. As calculations with the upwind
scheme are easy to perform, and as this scheme is strictly positive, we have nevertheless used
this scheme as a development tool for preliminary simulations in each new configuration.

II.4 Conclusions

In this chapter we have presented the different numerical methods used in the present work.
As the electric field is a key parameter in streamer simulations, it has to be calculated
accurately, and therefore we have tested two different solvers for Poisson’s equation. The
first is an iterative solver based on a NAG library routine and the second, is a direct solver
called SuperLU. Both provide very accurate solutions in all the configurations we tested and
we have adopted both of them for the streamer simulations presented in this work. Note
that these solvers are also used in the computation of the photoionization processes since
the differential methods introduced for this purpose in Chapter III lead to sets of Helmholtz
equations, which can be solved by essentially the same techniques as for Poisson’s equation.

We have also discussed the calculation of boundary conditions for Laplace’s and Poisson’s
equations, and we have presented them in detail for two configurations studied this work.
The first produces a homogeneous Laplacian electric field permitting the study of the prop-
agation of streamers of both polarities for strong applied electric fields greater than Ek.
The second produces a strong electric field close to a spherical electrode in order to ignite
a positive streamer but also generates a weak (less than Ek) homogeneous electric field
allowing studies of streamer propagation in low fields.

We have also described in this chapter the numerical methods and schemes used to solve
the drift-diffusion equations for charged species numerically. In this work, we have mainly
used three different schemes: the first-order upwind scheme, the FCT method based on the
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the upwind and QUICKEST3 schemes and Zalesak’s limiter, and the modified Scharfetter-
Gummel scheme. In the last section, we have compared the results obtained for a represen-
tative model case of propagation of a positive streamer with these three schemes, and we
have demonstrated that the upwind scheme could significantly overestimate the streamer
velocity, the electron density and the maximum electric field on grids with typical cell
sizes on the order of 5 µm. We demonstrated that to calculate streamer propagation on
such grids accurately, higher order schemes such as the FCT method and the modified
Scharfetter-Gummel scheme are required. In this section we also demonstrated that some
properties of the simulated positive streamer are in good agreement with simple physical
models presented in Chapter I.
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Some results of this chapter have been published in [Bourdon et al., 2007] and in [Liu et al.,
2007].

III.1 Introduction

A
s stated in Chapter I, the presence of seed electrons in front of the propagating streamer
head is believed to play a critical role for the propagation of streamers of both po-

larities. In some conditions these seed electrons are present in the gas, e.g., in repetitive
discharges with a sufficiently high repetition rate, the gas can be efficiently pre-ionized by
the previous discharge [e.g., Pancheshnyi , 2005; Naidis , 2006]. However, when the preion-
ization of the gas is too low, the photoionization mechanism has been found to be essential
to accurately model the streamer propagation, especially for positive streamers. According
to Kulikovsky [2000a] the photoionization is responsible for the main dynamics of streamer
propagation in low external field (E < Ek, with Ek the conventional breakdown field, see
Section I.1.3). During early attempts of numerical simulations of streamers, the photoion-
ization term was ignored and the pre-ionization needed for stable advancement of streamers
of both polarities was provided by introducing a uniform neutral background ionization of
the gas [e.g., Dhali and Williams , 1987; Vitello et al., 1994]. Pancheshnyi et al. [2001] have
compared the streamer discharge characteristics obtained using spatially uniform back-
ground pre-ionization level with those obtained with the full photoionization model in air.
They found that although it is possible to obtain an agreement of some characteristics by
varying the preionization level, the agreement cannot be reached for all the characteristics
at a given pre-ionization level. In Appendix C, we present a method of determination of
the preionization level based on the dynamics of the streamer head which gives the same
propagation of a positive streamer in air in a weak field as the one obtained in taking into
account the full photoionization model in air. However, it is important to note that for
each new studied configuration, the a priori determination of the level of the background
density is not obvious and therefore, it is necessary to take into account the photoionization
source term in the simulations.

In a drift-diffusion approach to streamer modeling, the motion of electrons, ions and excited
molecules is governed by continuity equations (I.28)-(I.30) coupled to Poisson’s equation
(I.31). The photoionization process is taken into account through a source term which
is added to the continuity equations of electrons and ions. In the current literature, the
photoionization term is usually calculated using integral models with coefficients based
either on the classical experiments of Penney and Hummert [1970] and Teich [1967] [e.g.,
Wu and Kunhardt , 1988; Kunhardt and Tzeng , 1988; Morrow and Lowke, 1997], or on the
description proposed by Zheleznyak et al. [1982] for air [e.g., Babaeva and Naidis , 1997;
Kulikovsky , 2000a; Pancheshnyi et al., 2001; Liu and Pasko, 2004, 2006]. The Zheleznyak
photoionization model, discussed in the following section, has been formulated using classic
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experimental data obtained at low pressure [Penney and Hummert , 1970; Teich, 1967].
However, this model agrees well with results of more recent experiments at atmospheric
pressure [Aints et al., 2008; Naidis , 2006, and references cited therein].

For the integral approach mentioned above, the calculation of the photoionization source
term at a given point of the volume studied requires a quadrature over the complete volume
of the discharge. Therefore, the calculation of the photoionization source term in streamer
discharges is computationally expensive. To accelerate the simulation of streamers, different
approximations have been proposed in the literature to reduce the computation time spent
on calculation of the photoionization source term [Kulikovsky , 2000a; Hallac et al., 2003;
Pancheshnyi et al., 2001]. Kulikovsky [2000a] proposed to confine the emitting volume
of the photoionizing radiation to a small cylinder around the main axis of the discharge
and to divide it into small rings. For a two-dimensional modeling of streamers assuming
cylindrical symmetry, the effects of an emitting ring at a point of interest can be effectively
characterized by their relative locations (described by a geometric factor in [Kulikovsky ,
2000a]). This geometric factor only needs to be calculated once before the simulation for
a specific computational geometry and can be repeatedly reused in the simulations. In
[Kulikovsky , 2000a] and [Hallac et al., 2003] photoionization is calculated on a coarse grid
and interpolation is used to obtain needed values on the main grid. Finally, in [Pancheshnyi
et al., 2001] calculations are carried out in a small area around the streamer head. We
note that all the approximate models reviewed above reduce the computation time to a
certain degree but the accuracy of these models has not yet been rigorously evaluated and
demonstrated in the existing literature.

Recently, two different approaches to calculate the photoionization term have been proposed
to avoid the calculation of the global quadrature over the simulation domain. The first
approach was tested a few years ago [Djermoune et al., 1995a, b] and improved recently
[Ségur et al., 2006]. This method is based on the direct numerical solution of an improved
Eddington approximation of the radiative transfer equation. The second approach has
been proposed recently by Luque et al. [2007]. These authors proposed to approximate
the absorption function of the gas in order to transform the integral expression of the
photoionization term into a set of Helmholtz differential equations. In this chapter, we
present and discuss these two approaches for the calculation of the photoionization term,
and develop improved models based on the same principles by more accurately accounting
for the spectral dependence of the photoionization. We also discuss the importance of
accurate calculation of boundary conditions for the photoionization term and we introduce
boundary conditions based on the integral Zheleznyak model and boundary conditions
based on radiative transfer theory. The validity and range of applicability of the developed
models for the photoionization term is demonstrated by performing direct comparisons
of the results from these models and results obtained from the classic integral model of
Zheleznyak et al. [1982]. First, specific validation comparisons are presented for a set of
artificial sources of photoionizing radiation with different Gaussian dimensions. Then, we
present validation comparisons for the development of a double-headed streamer in a high
electric field (>Ek) at ground pressure and for the positive streamer propagation in weak
external electric fields (<Ek) at ground pressure, i.e., conditions which are of great interest
for practical applications.
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III.2 Classical integral model for photoionization in
air

In the widely used model derived by Zheleznyak et al. [Zheleznyak et al., 1982; Liu and
Pasko, 2004; Naidis , 2006] for photoionization in air, the photoionization rate at point of
observation ~r due to source points emitting photoionizing UV photons at ~r ′ is

Sph(~r) =

∫∫∫

V ′

I(~r ′)g(R)

4πR2
dV ′ (III.1)

where R=|~r − ~r ′|. In this model, to simplify calculations, the production of photons is
assumed to be proportional to the ionization production rate Si, and then I(~r) is given by:

I(~r) = ξ
nu(~r)

τu

=
pq

p + pq

ξ
νu

νi

Si(~r) (III.2)

where ξ is the photoionization efficiency, nu(~r) is the density of the radiative excited species
u, the ratio pq

p+pq
is a quenching factor, τu is the lifetime of the excited state u only accounting

for the effects of spontaneous emission (i.e., τu= 1
Au

, where Au is the Einstein coefficient),
νu is the electron impact excitation frequency for level u, and Si = νine, where ne is the
electron density and νi is the ionization frequency. The function g(R) in (III.1) is defined
by

g(R)

pO2

=
exp(−χminpO2

R) − exp(−χmaxpO2
R)

pO2
R ln(χmax/χmin)

(III.3)

where χmin = 0.035 Torr−1 cm−1, χmax = 2 Torr−1 cm−1 and where pO2
is the partial

pressure of molecular oxygen (= 150 Torr at atmospheric pressure). We note that in
equation (III.3) we divided g(R) by pO2

to make the result conveniently dependent on the
product pO2

R, which is an important parameter for photoionization in N2 − O2 mixtures
as shown by Zheleznyak et al. [1982]. The dependence of the right hand side of equation
(III.3) on the pO2

R product makes it easily scalable to different pressures.

The above described model has typically been employed in a cylindrical coordinate system
to model the dynamics of two-dimensional azimuthally symmetric streamers. Following the
approach proposed by Kulikovsky [2000a], the emitting volume in this kind of coordinate
system (r, φ, z) is divided into small rings centered at the symmetry axis (Figure III.1(a)),
and the photoionization rate at point of observation (r,z) due to all source rings (rs, zs) in
cm−3s−1 is

Sph(r, z) =

∫

drs

∫

dzsI(rs, zs)Mph(r, rs, |z − zs|) (III.4)

In equation (III.4) the integration is performed over all source regions with significant
production of photoionizing radiation and the function Mph is defined as

Mph(r, rs, |z − zs|) =
rs

4π

∫ 2π

0

g[R(φs)]

R(φs)2
dφs (III.5)

where R(φs)=|~r − ~r ′|=[r2
s + r2 + (z − zs)

2 − 2rrs cos(φs)]
1

2 .
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Figure III.1: (a) Elementary emitting volume (ring) for photoionization calculations; (b)
Schematic illustration of the inhomogeneous grid for efficient photoionization calculations
using the integral model; (c) Illustration of an inhomogeneous grid system for acceleration
of photoionization calculations using the integral model.

The geometric factor Mph depends on r, rs, and |z − zs|, and it is possible to calculate
Mph once and store it as a three-dimensional array, which can be repeatedly reused for
computation of Sph at each time step in the simulation. Even with this simplification
the integral model for photoionization is computationally very expensive because a two-
dimensional integration (equation (III.4)) has to be carried out for each observation point
(r, z). To further improve the computation efficiency, a straightforward technique of using
a coarse grid for photoionization calculation instead of the main grid can be employed, and
then, interpolation is carried out to obtain the photoionization rate on the fine grid. A
homogeneous coarse grid is utilized for this purpose in [Kulikovsky , 2000a; Hallac et al.,
2003].

A more accurate and efficient grid system is an inhomogeneous one with fine resolution
around the streamer head and coarse resolution in the region away from the head as shown
schematically in Figure III.1(b). In this approach every time when the photoionization is
calculated, a new grid is generated with the origin at the streamer tip, where the electric
field is maximum. The photoionizing emission source is assumed to be confined in the
shaded region shown in Figure III.1(b). The value of Sph at each point of the new grid is
calculated using equation (III.4) by accounting for the sources in the shaded region only.
A linear or exponential interpolation is used to obtain Sph at the main grid points. The
Mph required for integration (III.4) still needs to be calculated only once and stored in a
three-dimensional array for a repeated use.

Figure III.1(c) provides an example of practical implementation of the above discussed ideas.
If the size of the simulation domain is 0.5 × 0.125 cm2, a grid for the calculation of Mph

can be set up as shown in Figure III.1(c), where the effective diameter of the shaded region
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shown in Figure III.1(b) is assumed to be l = 0.2 cm. In the z direction the simulation
domain is divided in equal intervals with length l/2=0.1 cm. The grid size in each of these
intervals is constant, and increases exponentially with the distance from the origin from
one interval to the next. If the grid size in a particular interval becomes greater than the
interval itself (l/2), then l/2 is used as the grid size instead, as shown, for example for
the interval from z=0.4 to 0.5 cm in Figure III.1(c). The grid in r direction is generated
following the same procedure. Mph can then be calculated on this grid using equation
(III.5). The grid for the problem geometry shown in Figure III.1(b) can be generated by
following the same ideas with the origin placed at the streamer tip and with the l/2 intervals
with reduced grid resolution extending in both positive and negative z directions from the
shaded region. The calculation of the contribution to Sph(r, z) due to a source ring at (rs, zs)
is significantly accelerated by a simple call of the corresponding pre-calculated element of
the three-dimensional matrix Mph(r, rs, |z − zs|). Finally, the contributions from all the
rings constituting the shaded source shown in Figure III.1(b) are summed up to obtain the
total Sph(r, z).

The integral approach with variable size grids based on Zheleznyak et al. [1982] model
outlined above is used for streamer calculations reported in Section III.6.2 of the present
chapter. It should be noted that for the double-headed streamer presented in Section III.6.2,
there are two grid systems generated with the origin of each grid system positioned at the
tip of the corresponding streamer head. However, the same precalculated Mph matrix is
used for both heads.

III.3 Two and three-exponential Helmholtz models for
photoionization in air

Luque et al. [2007] have recently proposed a novel approach allowing to effectively replace
the calculation of integral (III.1) of the classic photoionization model with a solution of
a set of Helmholtz differential equations, which can be very efficiently solved using well
developed techniques available for solution of the elliptic partial differential equations. In
terms of notations adopted in the present chapter the approach proposed by Luque et al.
[2007] involves fitting of the g(R)/R ratio in (III.1) with a sum of exponential functions
leading to a set of integrals, each of which can effectively be interpreted as an integral
solution of a separate Helmholtz differential equation. After this equivalent representation is
established the problem can be solved by solving the set of Helmholtz differential equations,
instead of direct evaluation of integrals. However, the two-exponential fit provided in [Luque
et al., 2007] has been applied to low pressure experimental data of Penney and Hummert
[1970] effectively corresponding to the function g(R), rather than to g(R)/R required for
the correct solution of the problem. In this section we present correct solution of this
problem using two and three-exponential fits. In Section III.6.1 we demonstrate that the
two-exponential fit is generally not sufficient and the three-exponential fit is needed for
obtaining the accurate solution of the problem for a full range of pO2

R values in which the
Zheleznyak et al. [1982] photoionization model remains valid.

We note that the Zheleznyak et al. [1982] photoionization model, discussed in the previous
section, has been formulated using experimental data obtained at low pressure [Penney
and Hummert , 1970; Teich, 1967] and agrees well with results of more recent experiments
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Table III.1: Parameters of the two-exponential fit of g(R)/pO2
/(pO2

R) as a function of
pO2

R.

j Aj [cm−2 Torr−2] λj [cm−1 Torr−1]
1 0.0021 0.0974
2 0.1775 0.5877

Table III.2: Parameters of the three-exponential fit of g(R)/pO2
/(pO2

R) as a function pO2
R.

j Aj [cm−2 Torr−2] λj [cm−1 Torr−1]
1 1.986×10−4 0.0553
2 0.0051 0.1460
3 0.4886 0.89

at atmospheric pressure [Aints et al., 2008; Naidis , 2006, and references cited therein].
Therefore, in contrast to [Luque et al., 2007] in our derivation below we do not employ
the low pressure data of Penney and Hummert [1970], but rather formulate the two and
three-exponential Helmholtz models using the g(R) function (III.3) appearing in the classic
integral model for photoionization in air [Zheleznyak et al., 1982].

The function Sph(~r) given by (III.1) can be represented in the form

Sph(~r) =
∑

j

Sj
ph(~r) (III.6)

with terms

Sj
ph(~r) =

∫∫∫

V ′

I(~r ′)Ajp
2
O2

e−λjpO2
R

4πR
dV ′ (III.7)

satisfying Helmholtz differential equations

∇2Sj
ph(~r) − (λjpO2

)2Sj
ph(~r) = −Ajp

2
O2

I(~r) (III.8)

Having compared equations (III.1) and (III.7) it can be easily verified that

g(R)

pO2

= (pO2
R)
∑

j

Aje
−λjpO2

R (III.9)

The solution of the problem requires fitting of the function g(R)/pO2
by series of exponents

multiplied by (pO2
R). After the fitting, the photoionization problem can be solved by solving

differential equations (III.8) and performing summation (III.6). In practice, it appears to
be easier to fit function g(R)/pO2

/(pO2
R) with a sum of exponents

∑

j Aje
−λjpO2

R and then
multiply the result by (pO2

R) to obtain the desired representation of g(R)/pO2
given by

(III.9).

The function g(R)/pO2
is shown in Figure III.2 by solid line and a two-exponential fit

performed by MATLAB function fminsearch (based on Nelder-Mead simplex direct search
method) is shown by the dashed line. The two-exponential fit was performed for the range
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Figure III.2: Solid line: The g(R)/pO2
function given by equation (III.3) from the model of

Zheleznyak et al. [1982]. Dashed line: Two-exponential fit of the form specified by equation
(III.9), performed for the range 1<pO2

R<60 Torr cm and with the parameters of Table
III.1. Dot-dashed line: Three-exponential fit with the parameters of Table III.2 performed
for the range 1<pO2

R<150 Torr cm.

1<pO2
R<60 Torr cm, which directly corresponds to the pO2

R range shown in Figure 3 of
[Zheleznyak et al., 1982]. The two-exponential fit parameters are shown in Table III.1. We
emphasize that the fit shown in Figure III.2 by the dashed line is a product of (pO2

R) and
∑

j Aje
−λjpO2

R as required for solution of the problem and represented by the right hand
side in equation (III.9). It is also noted that it is very difficult to fit g(R)/pO2

function
with two exponents multiplied by pO2

R and the fit given by parameters in Table III.1 and
in Figure III.2 becomes invalid for pO2

R<1 Torr cm and pO2
R>60 Torr cm. Implications

of this will be discussed in Section III.6.1.

Djakov et al. [1998] have applied a three-exponential fit in the context of Zheleznyak et al.
[1982] photoionization model to obtain a fast recursive algorithm for solution of the pho-
toionization problem in a quasi-two-dimensional (the 1.5D or “disk” based) streamer model.
Although the fit proposed in [Djakov et al., 1998] is not directly applicable in the context of
the Helmholtz equations based photoionization model discussed in this section, we note that
the employment of three-exponential fits represents a natural and logical step to remove the
above discussed limitations of the two-exponential model for the range 1<pO2

R<60 Torr
cm.

As part of this work we also performed a three-exponential fit of g(R)/pO2
using three

exponents multiplied by (pO2
R). The related fit is shown in Figure III.2 by dot-dashed

line. The parameters of the three-exponential fit are summarized in Table III.2. The three
exponential fit is valid in the range of pO2

R from 1 to 150 Torr cm. We note that this range
translates into 1/150=0.0067 to 1 cm at ground pressure. The fit for pO2

R>1 Torr cm is
generally improved in comparison with the two-exponential case, but it is very difficult to
fit this function even with three exponents at pO2

R<1 Torr cm. We note that the upper
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limit of validity of the developed three-exponential fit (pO2
R=150 Torr cm) exceeds the

pO2
R≃100 Torr cm (i.e., pR≃500 Torr cm, where p is air pressure) validity threshold of the

Zheleznyak et al. [1982] model for photoionization in air, as discussed recently in [Naidis ,
2006].

The accurate numerical solution of Helmholtz equations (III.8) requires knowledge about
values of Sj

ph(~r) functions at the boundaries of the simulation domain. The determination
of boundary conditions will be presented and discussed in Section III.5.

III.4 Three-group Eddington and SP3 approximations
for photoionization in air

III.4.1 Three-group approach

In [Ségur et al., 2006], the photoionization source term Sph(~r) is calculated using direct
numerical solutions of the first (also called Eddington approximation) and the third order
(also called SP3) approximations of the radiative transfer equation. Ségur et al. [2006]
introduce a simple monochromatic approach (also called one-group method) and derive the
physical parameters required for applying this method to calculate Sph(~r) for non-thermal
gas discharges in air at atmospheric pressure by making the model results as consistent as
possible with the classical Zheleznyak model.

In order to achieve a better agreement with the Zheleznyak model for the Eddington and
SP3 approximations, we propose to consider j = 1, Ng effective monochromatic radiative
transfer equations. We consider that there is no photon scattering and as the timescale of
photon propagation is much less than the timescale of streamer propagation, we neglect
the transient term of the radiative transfer equation. For each frequency, the effective
monochromatic radiative transfer equation can be written as [Ségur et al., 2006]:

~Ω · ~∇Ψj(~r, ~Ω) + λjpO2
Ψj(~r, ~Ω) =

nu(~r)

4πcτu

(III.10)

where to simplify the notation, first, the time dependent functions Ψj(~r, ~Ω, t) and nu(~r, t)

are noted as Ψj(~r, ~Ω) and nu(~r) and second, only one radiative excited state u is consid-
ered. The quantity λjpO2

is the absorption coefficient. It is important to mention that all
monochromatic equations for j = 1, Ng have the same source term but different absorption
coefficients. The equation (III.10) can be simply integrated to derive Ψ0,j(~r), the isotropic
part of the photon distribution function Ψj(~r, ~Ω) as:

Ψ0,j(~r) =

∫∫∫

V ′

nu(~r′)

cτu

exp(−λjpO2
R)

4πR2
dV ′ (III.11)

Then we assume that the isotropic part of the total distribution function Ψ0(~r) can be
written as:

Ψ0(~r) =
∑

j

αjΨ0,j(~r) (III.12)
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Table III.3: Parameters of the three-exponential fit of g(R)/pO2
as a function pO2

R.

j Aj [cm−1 Torr−1] λj [cm−1 Torr−1]
1 0.0067 0.0447
2 0.0346 0.1121
3 0.3059 0.5994

where αj are constants. This approach is similar to the Gaussian-type quadratures generally
used in the correlated-k method [Taine and Soufiani , 1999]. As already mentioned in [Ségur
et al., 2006], to calculate the photoionization source term it is only necessary to know Ψ0(~r)
the isotropic part of the distribution function. Then, using equations (III.11) and (III.12),
the photoionization source term can be written as:

Sph(~r) =
∑

j

AjξpO2

∫∫∫

V ′

nu(~r′)

τu

exp(−λjpO2
R)

4πR2
dV ′ =

∑

j

Sj
ph(~r) (III.13)

where AjξpO2
are coefficients, which will be defined below, with the photoionization effi-

ciency ξ introduced in equation (III.2). To use this approach in air, the photoionization
source term given by equation (III.13) has to be compared with the Zheleznyak integral
expression (III.1). Both equations are identical if

g(R)

pO2

=
∑

j

Aje
−λjpO2

R (III.14)

where Aj and λj are the unknowns. To obtain their values, we use the same approach as
in Section III.3 and we fit the function g(R)/pO2

by a three-exponential fit (i.e., Ng = 3).
The corresponding parameters Aj and λj are given in Table III.3. In the following, this
approach is called the three-group method.

To avoid any possible confusion we emphasize the difference between the equation (III.14)
and equation (III.9) of the Helmholtz model. The Helmholtz model employs series of
exponents multiplied by (pO2

R), while equation (III.14) provides direct fit by exponents
without multiplication by (pO2

R). We also bring to the attention of the readers the related
difference in units between Aj coefficients shown in Tables III.1 and III.2 for the Helmholtz
model [cm−2Torr−2] and those corresponding to equation (III.14) and shown in Table III.3
[cm−1Torr−1].

Figure III.3 shows the original function g(R)/pO2
, the three-exponential fit (III.14) derived

in this section, and the one-exponential fit proposed in [Ségur et al., 2006]. The three-
exponential fit was performed for the range 0.1<pO2

R<150 Torr cm. It appears that the
three-exponential fit allows to have an excellent agreement with the function g(R)/pO2

,
which is much better than the one-exponential fit, in particular for large pO2

R values. It is
interesting to note that in the pO2

R range 0.1<pO2
R<150 Torr cm the fit obtained using a

three-group method (Figure III.3) is generally more accurate than the one obtained using
a three-exponential Helmholtz model (Figure III.2).

The above analysis indicates that in order to calculate the photoionization source term
Sph(~r), the set of radiative transfer equations (III.10) has to be solved. However, the direct
solution of the radiative transfer equation is not straightforward and usually in the literature
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Figure III.3: Solid line: The g(R)/pO2
function given by equation (III.3) from the model

of Zheleznyak et al. [1982]. Dashed line: one-exponential fit given in [Ségur et al., 2006].
Dot-dashed line: Three-exponential fit of the form specified by equation (III.14), performed
for the range 0.1<pO2

R<150 Torr cm, and with the parameters of Table III.3.

approximate differential models are used [Ségur et al., 2006]. In this work we propose to
extend to the three-group approach the Eddington and SP3 methods used in [Ségur et al.,
2006] for a one-group approach.

III.4.2 Eddington and SP3 models

Approximate differential methods are based on the assumption that the distribution func-
tion Ψj(~r, ~Ω) varies only weakly with the unitary vector ~Ω. Using this assumption, Equation
(III.10) is transformed into a partial differential equation of second order which gives directly
the isotropic part Ψ0,j(~r, ~Ω). This is the so-called Eddington approximation [Pomraning ,
1973]. Unfortunately, this approximation is valid only if the absorption coefficient λjpO2

is
sufficiently high (i.e., in a strongly absorbing medium). To obtain higher order approxima-
tions, Larsen et al. [2002] proposed to introduce a small parameter in Equation (III.10) in
order to expand this equation in a series of powers of this small parameter. We present here
the derivation of the first order (Eddington) and the third order (SP3) approximations.

We divide Equation (III.10) by λjpO2
and to define the vector ~R = ~∇/(λjpO2

). Then,
Equation (III.10) can be written as:

(

1 + ~Ω · ~R
)

Ψj(~r, ~Ω) =
nu(~r)

4πcτuλjpO2

(III.15)

Then the photon distribution function is given by:

Ψj(~r, ~Ω) =
(

1 + ~Ω · ~R
)−1 nu(~r)

4πcτuλjpO2

(III.16)
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and by developping into Neumann series, one obtains:

Ψj(~r, ~Ω) =
[

1 − ~Ω · ~R + (~Ω · ~R)2 − (~Ω · ~R)3 + · · ·
] nu(~r)

4πcτuλjpO2

(III.17)

Thus, the isotropic part of the photon distribution function is given by:

Ψ0,j(~r) =

∫

Ω

Ψj(~r, ~Ω)dΩ =

(

1 +
1

3
~R2 +

1

5
~R4 + · · ·

)

nu(~r)

cτuλjpO2

(III.18)

and then, finally, Equation (III.10) becomes :
(

1 − 1

3
~R2 − 4

45
~R4 − 44

945
~R6 − · · ·

)

Ψ0,j(~r) =
nu(~r)

cτuλjpO2

(III.19)

Equation (III.19) shows that when the parameter

|~R2Ψ0,j(~r)|
Ψ0,j(~r)

≪ 1,

that is under a weak anisotropy assumption, one can truncate the operator series.

For j = 1, Ng, the Eddington approximation of (III.10) to derive Ψ0,j is given by the
truncation to the second term of operator factors in Equation III.19 [Ségur et al., 2006]:

[∇2 − 3(λjpO2
)2]ΨED,0,j(~r) = −3λjpO2

nu(~r)

cτu

(III.20)

where ΨED,0,j(~r) represents the first order Eddington approximation of Ψ0,j(~r). It is in-
teresting to note that equation (III.20) is an elliptic equation, which has a structure very
similar to Poisson’s equation. Therefore, as noted in Section II.4, both Poisson’s equation
and the Eddington approximation can be solved with the same numerical routine.

In [Larsen et al., 2002], a significant improvement of the accuracy of the solution was
obtained by keeping the terms in the left hand side of equation (III.19) up to the third
order Laplacian. In this case, the equation is a partial differential equation of sixth order
which can be written as a set of two equations of second order verified by the functions φ1,j

and φ2,j given by:

∇2φ1,j(~r) −
(λjpO2

)2

κ2
1

φ1,j(~r) = −λjpO2

κ2
1

nu(~r)

cτu

(III.21)

∇2φ2,j(~r) −
(λjpO2

)2

κ2
2

φ2,j(~r) = −λjpO2

κ2
2

nu(~r)

cτu

(III.22)

where κ2
1 = 3

7
− 2

7

√

6
5

and κ2
2 = 3

7
+ 2

7

√

6
5
. Then, for j=1, Ng, the third order SP3 approxi-

mation of Ψ0,j is denoted as ΨSP3,0,j and is given by [Larsen et al., 2002]:

ΨSP3,0,j(~r) =
γ2φ1,j − γ1φ2,j

γ2 − γ1

(III.23)
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where

γn =
5

7

[

1 + (−1)n3

√

6

5

]

(III.24)

Equations (III.21) and (III.22) again have the same structure as Poisson’s equation and can
be solved using the same numerical methods.

After obtaining the solution for ΨED,0,j or ΨSP3,0,j, the photoionization source term can be
calculated using

Sph(~r) =
∑

j

AjξpO2
cΨ0,j(~r) =

∑

j

Sj
ph(~r) (III.25)

by replacing Ψ0,j with ΨED,0,j or ΨSP3,0,j.

It is important to note that equation (III.20) of the Eddington model, and equations (III.21)
and (III.22) of the SP3 model are Helmholtz equations of the same structure as equations
(III.8). Then the accurate numerical solution of all these equations requires knowledge
about values of Sj

ph(~r) functions at the boundaries of the simulation domain. The determi-
nation of boundary conditions for the different models will be presented and discussed in
Section III.5.

Finally, as equations of the Eddington, SP3 and Helmholtz models have the same structure,
in Appendix B we show that all solutions of these models can be written in essentially
same mathematical form, with differences between these models only arising from different
numerical values of the model coefficients. Then we demonstrate that the three-exponential
Helmholtz model is more accurate than the three-group Eddington model. In Appendix B
we also demonstrate that the SP3 model can be effectively represented in a mathematical
form equivalent to six-exponential Helmholtz model. This analysis clearly demonstrates
that the three-group SP3 model is more accurate than the three-group Eddington model
and the three-exponential Helmholtz model.

III.4.3 Determination of parameters of the three-group models

The formulation of the above Eddington and SP3 models require separate evaluations of ξ
in equation (III.25), and nu(~r)

τu
in equation (III.20) for the first order approximation, or in

equations (III.21) and (III.22) for the third one. For Zheleznyak and Helmholtz models,
the product ξ nu(~r)

τu
is computed using equation (III.2) to give the photoionization radiation

source utilizing the known term ξ νu

νi
given by Zheleznyak et al. [1982]. To effectively use the

same term in the Eddington approximations, we can slightly change the above formulation
by multiplying both sides of the equation (III.20) or equations (III.21) and (III.22) by a
constant ξ. For example, the following equation is obtained for the first order Eddington
approximation:

[∇2 − 3(λjpO2
)2][ξΨED,0,j(~r)] = −3λjpO2

ξ
nu(~r)

cτu

(III.26)
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where we could define Ψ∗
ED,0,j(~r) = ξΨED,0,j(~r). This equation is solved for Ψ∗

ED,0,j(~r) and,
finally, we have

Sph(~r) =
∑

j

AjpO2
cΨ∗

ED,0,j(~r) =
∑

j

Sj
ph(~r) (III.27)

By using this formulation, the factor ξ nu(~r,t)
τu

in the source term of the equation (III.26) can

be directly evaluated by pq

p+pq

(

ξ νu

νi

)

νine as used by Zheleznyak and Helmholtz models (see

equation (III.2)).

The same idea can be applied to equations (III.21) and (III.22) of the SP3 model. In this
way, it is also demonstrated that we could use different combinations of ξ and νu/νi as long
as their product is consistent with that given by Zheleznyak et al. [1982].

III.5 Boundary conditions

III.5.1 Two and three-exponential Helmholtz models

The accurate numerical solution of Helmholtz equations (III.8) requires knowledge about
values of Sj

ph(~r) functions at the boundaries of the simulation domain. In [Luque et al., 2007]
these values are assumed to be zero. In Section III.6.1 we demonstrate that the definition
of the boundary conditions for different components Sj

ph(~r) represents an important part of
accurate solution of the photoionization problem. A practical solution of this problem, is

• to define the Sj
ph(~r) component with the smallest λj (i.e., the longest photoionization

range) using the classic integral model of Zheleznyak et al. [1982], and

• to assume zero boundary conditions for the rest of the Sj
ph(~r) components.

For both two and three-exponential models presented in this section the smallest λj are
associated with the first terms in the corresponding series (i.e., with the j = 1 term), as
can be directly seen from Tables III.1 and III.2.

It is expected that this approach may lead to inaccurate results for situations when the
photoionization source is positioned very close to the boundary (i.e., for a streamer head
approaching an electrode or a dust particle [Babaeva et al., 2006]). However, the enhance-
ment of the electric field due to the conducting surface (i.e., image charges) effects in this
kind of simulation geometry may result in a relatively small contribution of the photoioniza-
tion rate in comparison with the electron-ion pair production rate due to the direct electron
impact ionization.

III.5.2 Three-group Eddington and SP3 models

Boundary conditions using the integral Zheleznyak model

As for Helmholtz models, boundary conditions play an important role in the accurate
evaluation of the Sph term using the three-group Eddington and SP3 models. It is interesting
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to note that the approach proposed for Helmholtz models can be also used for the boundary
conditions of the three-group Eddington and SP3 models. For the three-group Eddington
model, the boundary condition is set on the Ψ∗

ED,0,1 function as the component with j=1
is corresponding to the smallest λj value (i.e., the longest photoionization range) in Table
III.3. According to equation (III.27), the boundary condition for Ψ∗

ED,0,1 is written as:

Ψ∗
ED,0,1(~r) =

Sph(~r)

pO2
A1c

(III.28)

where Sph(~r) is calculated using the Zheleznyak integral model. Zero boundary conditions
are assumed for the remaining Ψ∗

ED,0,j components corresponding to j=2 and 3. This
approach is subject to the same limitations as discussed at the end of Section III.5.1.

For the three-group SP3 model, the same boundary condition is set on the functions defined
as φ∗

1,1(~r) = ξφ1,1(~r) and φ∗
2,1(~r) = ξφ2,1(~r) according to equations (III.25) and (III.23):

φ∗
1,1(~r) = φ∗

2,1(~r) =
Sph(~r)

pO2
A1c

(III.29)

Marshak’s boundary conditions for the Eddington model

For the first order Eddington model, we have also used the classical boundary conditions
derived by Marshak [Pomraning , 1973, p. 55] for various configurations. For example, for
the case of a boundary surface with no reflection or emission (i.e., the boundary surface
is transparent for the radiative flux emitted in the medium), the value of Ψ∗

ED,0,j at the
boundary is given by:

~∇Ψ∗
ED,0,j(~r) · ~nS = −3

2
λjpO2

Ψ∗
ED,0,j(~r) (III.30)

where ~nS is the unit outward boundary surface normal.

It is interesting to note that equations (III.26) and (III.30) form a consistent set of closed
equations where the unknowns are the Ψ∗

ED,0,j(~r) functions. Furthermore, boundary condi-
tions given by equation (III.30) are very simple to implement and very fast to calculate.

Larsen’s boundary conditions for the SP3 model

The third order Eddington approximation (SP3) results in elliptic equations for functions
φ∗

1,j(~r) and φ∗
2,j(~r) (see Equations (III.21) and (III.22)) and a linear combination of φ∗

1,j(~r)
and φ∗

2,j(~r) gives the isotropic part of the photon distribution function. Larsen et al. [2002]
derived the corresponding boundary conditions for a boundary surface without reflection
and without emission:







~∇φ∗
1,j(~r) · ~ns = −λjpO2

α1φ
∗
1,j(~r) − λjpO2

β2φ
∗
2,j(~r)

~∇φ∗
2,j(~r) · ~ns = −λjpO2

α2φ
∗
2,j(~r) − λjpO2

β1φ
∗
1,j(~r)

(III.31)
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where ~ns is the unit outward boundary surface normal and α 1

2

=
5

96

(

34 ± 11

√

6

5

)

and

β 1

2

=
5

96

(

2 ∓
√

6

5

)

.

As the coefficients α 1

2

≫ β 1

2

the coupling between both equations is weak. Then, to solve
this problem, as recommended by Larsen, the two equations are first solved independently
(considering β = 0) and iterations are carried out afterwards with the β coefficients. The
convergence is very rapid and obtained in only a few iterations.

It is interesting to note that the equations (III.21–III.22) and (III.31) form a consistent set
of closed equations.

III.6 Results and Discussion

III.6.1 Gaussian photoionization source

In this subsection, a simple model source of photoionizing radiation is used to compare
the two and three-exponential Helmholtz, the three-group Eddington and SP3 models in-
troduced in Sections III.3 and III.4 with the integral model proposed by Zheleznyak et al.
[1982] reviewed in Section III.2. We calculate the photoionization production rate Sph in
a two-dimensional axisymmetric computational domain of length Ld and radius Rd for a
Gaussian source centered on the symmetry axis. The Gaussian ionization production rate
Si is defined by:

Si(rs, zs) = νi(rs, zs)ne(rs, zs) = Si0 exp(−(zs − z0)
2/σ2 − r2

s/σ
2) (III.32)

where z0 is the axial position of the source term, σ is the parameter controlling effective
spatial width of the source, and Si0=1.53×1025 cm−3s−1. We note that the particular Si0

value is chosen to be consistent with similar study presented in [Ségur et al., 2006] and has
no implications for test results and related conclusions presented in this section. Assuming
pq/(p + pq)=0.038 (i.e., ground pressure) and ξνu/νi=0.06 as in [Ségur et al., 2006] and
using (III.2) we can write

I(rs, zs) = I0 exp(−(zs − z0)
2/σ2 − r2

s/σ
2) (III.33)

where I0 = pq

p+pq
ξ νu

νi
Si0=3.5×1022 cm−3s−1 as in [Ségur et al., 2006].

The finite difference forms of the differential equations involved in the Helmholtz, Eddington
and SP3 models are solved using the module D03EBF of the NAG Fortran library (see
Section II.1.3). The numerical calculation of (III.4) was carried out using standard Gaussian
quadratures. All calculations were carried out with a uniform grid in both directions and
with nz = nr = 251, where nz and nr are the number of cells along the longitudinal and
radial directions, respectively.

To demonstrate importance of different ranges of pO2
R in solution of the photoioniza-

tion problems we have performed calculations for simulation domain sizes (i.e., Ld×Rd)
0.02×0.02 cm2, 0.2×0.2 cm2 and 2×2 cm2, at ground pressure (pO2

=150 Torr). We have
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also used respective values of source sizes σ=0.001, 0.01 and 0.1 cm. It is assumed that the
source is positioned in the center of the simulation domain at z0=0.01, 0.1 and 1 cm, re-
spectively. It is noted that σ=0.001 cm is generally smaller than the dimension of streamer
head at ground pressure after it has just been born from an avalanche. The σ=0.01 cm
is comparable to the size of the streamer head (e.g., see Section II.3). The streamer head
can reach dimension comparable and much greater than σ=0.1 cm in large applied electric
field, when the streamer expands quickly [e.g., Briels et al., 2006; Liu and Pasko, 2004].
Therefore, all source sizes σ studied can be attributed to practical stages of propagation of
real streamers. In the present chapter, we only show the results for σ=0.01 cm; results for
σ=0.001 cm and σ=0.1 cm are presented in the Appendix A.

We note that the artificial source of photoionizing radiation formulated for studies in this
subsection is spherically symmetric and is expected to produce identical distributions of the
photoionization production rate Sph in both, the radial and axial directions with respect to
the center of the simulation domain. Therefore for the chosen domain sizes with Ld=Rd,
the distance from the center to the radial boundary is two times longer than to the axial
boundary. This aspect is very useful for demonstration of effects of boundaries and bound-
ary conditions on obtained solutions as well as for direct comparison of performance of the
models on different spatial scales.

Figures III.4(a) and III.4(b) show the axial and radial profiles of the photoionization source
term Sph calculated by the Zheleznyak integral model and the Helmholtz differential model
based on the two-exponential fit, for the domain dimension 0.2×0.2 cm2. The two compo-
nents S1

ph and S2
ph of the two-exponential Helmholtz model are also shown. The solutions of

Helmholtz equations are obtained using zero boundary conditions. We note that the two-
exponential Helmholtz profiles deviate significantly from the Zheleznyak solution, especially
near the boundaries. The importance of the boundaries in the context of differential pho-
toionization models has not been discussed in [Ségur et al., 2006] and [Luque et al., 2007].

As already mentioned in Section III.5.1, the Zheleznyak integral model can be used to
improve the solution of the Helmholtz model. Using (III.4), the boundary condition is
defined for the S1

ph component (i.e., for the one with the smallest λj). For the another
component S2

ph, zero boundary conditions are used. Figures III.4(c) and III.4(d) show axial
and radial profiles for the two-exponential model with thus corrected boundary conditions.
The solutions are obviously improved. For the Eddington and SP3 models, the effects of the
use of boundary conditions defined for the S1

ph component by the Zheleznyak integral model
instead of zero boundary conditions for all components are very similar to those presented
in Figure III.4. Then, the related results are not shown here for the sake of brevity. In the
remainder of this chapter, except when stated, all Helmholtz, Eddington and SP3 model
results are obtained using the boundary conditions based on the integral Zheleznyak model.

Figures III.5(a) and III.5(b) compare the two and three-exponential Helmholtz model so-
lutions, for the domain dimension 0.2×0.2 cm2. The ionization term Si (III.32) is also
included for reference, as for streamer simulations, photoionization is important only in
regions where Si<Sph. The results obtained with the three-exponential fit appear to match
better with the Zheleznyak integral solution. In particular, the solutions near the cen-
ter of the simulation domain are significantly improved. This directly relates to a better
three-exponential fit at small pO2

R values as can be seen in Figure III.2.

Figures III.5(c) and III.5(d) compare the Zheleznyak model with results obtained using
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Figure III.4: Axial ((a) and (c)) and radial ((b) and (d)) profiles of the photoionization
source term Sph for the case of domain dimension 0.2×0.2 cm2 and σ=0.01 cm. Dashed
line: Results obtained with integral model of Zheleznyak et al. [1982]. Solid line: The
photoionization source term Sph=S1

ph+S2
ph calculated using the two-exponential Helmholtz

model with zero boundary conditions ((a) and (b)), and with boundary conditions based
on Zheleznyak model ((c) and (d)). Dot-dahed line: The S1

ph component. Dotted line: The
S2

ph component.
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Figure III.5: Axial ((a), (c) and (e)) and radial ((b), (d) and (f)) profiles of the ionization
source term Si and the photoionization source term Sph. Dashed line: Results obtained
with integral model of Zheleznyak et al. [1982]. (a) and (b) Dot-dashed line: Sph using
the two-exponential Helmholtz model; Solid line: Sph using three-exponential Helmholtz
model. (c) and (d) Dot-dashed line: Sph using 3-group Eddington approximation; Solid
line: Sph using 3-group SP3. (e) and (f) Solid line: Sph using 3-group SP3 approximation;
Dot-dashed line: Sph using 3-exponential Helmholtz model.
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the 3-group Eddington approximation and the 3-group SP3 model, for the same domain
dimension. The results shown in these two figures demonstrate that the 3-group Eddington
approximation and the 3-group SP3 model give very similar results in the region where
Sph>Si, and these two solutions also appear to be in good agreement with the Zheleznyak
integral model. At atmospheric pressure (pO2

=150 Torr), the three absorption coefficients
of the three-group Eddington and SP3 models given in Table III.3 are λ1pO2

=6 cm−1,
λ2pO2

=16 cm−1 and λ3pO2
=89 cm−1. It is interesting to note that even if the Eddington

and SP3 are in principle only very well suited to situations in which photon absorption is
sufficiently high [Ségur et al., 2006], Figure III.5 shows that these approximations can be
used to calculate accurately the photoionization source term using a three-group approach
for streamer propagation.

Finally, in Figures III.5(e) and III.5(f), we compare the 3-group SP3 and the 3-exponential
Helmholtz model with the Zheleznyak model. The SP3 model appears to be slightly more
accurate in the region where Sph>Si.

We note that the direct application to the streamer modeling of the Zheleznyak integral
model given by equation (III.1), without optimizations specified in Section III.2, is pro-
hibitively computationally expensive. In particular, results obtained in Figure III.5 using
the non-optimized Zheleznyak model generally required a factor of 1000 longer computa-
tional times than those obtained with the Eddington and Helmholtz models.

Figure III.6 demonstrates comparative performance of the boundary conditions based on
the Zheleznyak integral model for the three-group Eddington and SP3 models (equations
(III.28) and (III.29), respectively) and Marshak’s boundary conditions for the three-group
Eddington (equations (III.30)) and Larsen’s boundary conditions for the three-group SP3

(equations (III.31)). We note that whatever the boundary conditions used, the results are
very close to the photoionization source term calculated with the Zheleznyak integral model
in the whole computational domain. Nevertheless, the use of Larsen’s boundary conditions
for the SP3 model and Marshak’s boundary condition for the Eddington model slightly
overestimates the exact value of the photoionization source term at the boundaries in the
axial direction, but the agreement is good in the radial direction. As already mentioned in
Section III.5, equations (III.26) and (III.30) for the Eddington approach and the equations
(III.21–III.22) and (III.31) for the SP3 approach, respectively, form a coherent set of closed
equations. Furthermore, these differential boundary conditions are simple to implement
and very fast to calculate.

Finally, in Figure III.7 we compare the profiles of each component Sj
ph for j = 1, 3 of the

three-group SP3 approach, calculated with boundary conditions based on the Zheleznyak
integral model for the S1

ph component and with the Larsen’s boundary conditions for all
components. We note significant discrepancies in the evolutions of the different components
of Sph close to the boundaries. As expected, the profiles obtained with Larsen’s boundary
conditions appear to have more physical evolutions close to boundaries than those with
boundary conditions based on the Zheleznyak model.

In conclusion, all the results obtained in this section show that the use of non-zero boundary
conditions improves significantly the agreement between the Zheleznyak integral and the
approximate differential models. In this work, we have used boundary conditions specified
on the basis of the classic integral model of Zheleznyak and for the Eddington and SP3

models, we have shown that a coherent set of approximate boundary conditions derived
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Figure III.6: Axial ((a) and (c)) and radial ((b) and (d)) profiles of the ionization source
term Si and the photoionization source term Sph. (a) and (b) present results computed
using the the three-group SP3 approximation, and (c) and (d) present results computed
using the three-group Eddington approximation. Dashed line: Sph using the integral model
of Zheleznyak et al. [1982]. Solid line: Sph computed using the Larsen’s boundary conditions
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source term Sph from the three-group SP3 model and its three components S1
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from radiation transfer theory can be successfully used. We have also shown that the use
of a three-exponential fit either with the SP3 model or with the Helmholtz model allows to
obtain a good agreement with the Zheleznyak integral model, and that the two-exponential
fit is generally not sufficient to reproduce the Zheleznyak model accurately for the full
range of validity of this model (i.e., up to pO2

R≃100 Torr cm, or R≃0.7 cm at ground
pressure [Naidis , 2006]; see Appendix A). It is interesting to note also that although the
Eddington and SP3 are in principle only very well suited to situations in which photon
absorption is sufficiently high, these approximations can be used to calculate accurately
the photoionization source term using a three-group approach for streamer propagation.
The models derived in this chapter are only slightly more complicated than the one-group
model proposed in [Ségur et al., 2006], but remain simple to implement in streamer codes.
Results of the practical application of these models to streamer problems are presented
in the next section, in which we also discuss computational expenses involved in different
types of photoionization models.

III.6.2 Streamer simulations

In this section, the three-exponential Helmholtz, and the three-group Eddington and SP3

differential photoionization models are used for two realistic problems:

• the development of a double-headed streamer in a high electric field (>Ek) at ground
pressure,

• the streamer propagation in weak external electric fields (<Ek) at ground pressure.

The validity and range of applicability of the developed models for the photoionization
term is demonstrated by performing direct comparisons of the results from these models
and results obtained from the classic integral model of Zheleznyak et al. [1982].

In this work we use the drift-diffusion equations of the streamer fluid model (I.28)-(I.30)
coupled to Poisson’s equation (I.31). On timescales of interest for studies presented in this
chapter, ions are assumed to be motionless. For test studies presented in this chapter all
transport parameters and reaction rates in air are taken from [Morrow and Lowke, 1997].
Axisymmetric streamers are studied and thus cylindrical coordinates introduced in Section
III.2 are used.

In this section, two sets of numerical techniques are used for solving the streamer model
equations:

1. The charged species transport equations are solved using a flux-corrected transport
(FCT) method (see paragraph “FCT method” in Section II.2.2). The 3rd order
QUICKEST scheme is used as the high order scheme and an upwind scheme for the
low order scheme. The flux limiter derived by Zalesak [1979] is adopted for this
FCT method. The finite difference form of the Poisson’s equation is solved using the
D03EBF module of the NAG Fortran library (http://www.nag.co.uk).

2. The charged species transport equations are solved using a modified Scharfetter-
Gummel (SG) algorithm (see paragraph “Modified SG scheme” in Section II.2.2),
and the finite difference form of Poisson’s equation is solved by successive overrelax-
ation (SOR) method [see Liu and Pasko, 2004, and references cited therein].

http://www.nag.co.uk
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It is interesting to note that we have also carried out some streamer simulations using the di-
rect solver SuperLU [Demmel et al., 1999a, b] (http://crd.lbl.gov/~xiaoye/SuperLU/)
to solve the Poisson’s equation. The results obtained have been found to be very close to
those given by iterative solvers.

The boundary conditions for the potential required for the solution of the Poisson’s equation
are obtained using integral solutions of the Poisson’s equation, which accounts for the known
charge distribution inside of the simulation domain (see Section II.1.2). As stated in Section
II.1.2, the applied technique allows to use a relatively small simulation domain in transverse
(i.e., radial) direction to obtain an accurate solution for the electric potential.

The calculation of the boundary conditions in streamer simulations can be significantly
accelerated since only a small number of grids inside of the simulation domain (usually
around streamer body and streamer head(s)) possesses charge density values significantly
contributing to the potential values at the boundary. In practical calculations the simula-
tion domain is scanned to find the maximum magnitude of the charge density value |ρmax|,
and it has been verified by separate tests that accounting only for grids with charge density
magnitudes, which exceed 0.1% of this value (i.e., |ρ|>0.001 |ρmax|) leads to fast, accurate
and robust evaluation of boundary conditions for potential, allowing effective use of simu-
lation domains with very small size in radial direction. Further improvements in terms of
execution speed can be achieved due to a relatively smooth spatial variation of the potential
at the boundaries. The potential can be evaluated at a selected set of points and interpola-
tion can be used to obtain the values at all grid points constituting the boundary. Due to a
very small time step used in streamer modeling (usually defined by the ionization time scale
associated with the large electric field in the streamer head as already mentioned above)
it is also possible, especially for preliminary test runs, to evaluate boundary conditions
only once during several steps of the model execution. However, for all streamer results
presented in this section the update of potential boundary conditions has been performed
at every time step for maximum accuracy of results.

For photoionization calculations in the streamer model we employ techniques discussed
in Sections III.2, III.3 and III.4. Specifically, for the present study we have implemented
the three-group Eddington and SP3, the three-exponential Helmholtz, and the classical
integral models. The quenching pressure is assumed to be pq = 30 Torr, and the ratio
ξνu/νi, appearing in (III.2), is assumed to depend on the reduced electric field as specified
in [Liu and Pasko, 2004]. The finite difference forms of the Eddington, SP3 and Helmholtz
photoionization model equations are solved using the same module of the NAG Fortran
library used for the solution of the Poisson’s equation. It is interesting to note that we
have also carried out tests using the direct solver SuperLU (see Section II.1.3) for the
computation of the photoionization source term based on the Eddington and SP3 models.
The results have been found to be very close to those obtained using the iterative solvers.
The three differential models for photoionization are implemented within the context of
the first set of numerical techniques described above (i.e., the FCT based). Within the
context of the second set of numerical techniques (i.e., the SG based), we implemented the
classical integral and the Helmholtz models. The finite difference equations of the Helmholtz
photoionization model are solved by the SOR method for this case. The modeling results
obtained by using different numerical techniques to solve the Helmholtz model equations
are very similar and we will not differentiate them in the following sections of this chapter.

http://crd.lbl.gov/~xiaoye/SuperLU/
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Double-headed streamers in air

In this section, we report and compare modeling results on a double-headed streamer de-
veloping in air at ground pressure (760 Torr) obtained with the different photoionization
models discussed in this chapter. The simulation domain is the same as in [Liu and Pasko,
2004, Figure 4a]. Two remote electrodes with a certain potential difference establish a
uniform Laplacian field E0=4.8×106 V/m. All results are obtained assuming air neutral
density N0=2.688×1025 m−3, and therefore E0/N0=178.6 Td (1 Td=10−17 V cm2). Un-
der the influence of this applied field, a double-headed streamer is launched by placing a
neutral plasma cloud in the simulation domain. The initial plasma cloud has a Gaussian
distribution in space:

ne(r, z)|t=0 = np(r, z)|t=0 = n0 exp

[

−
(

r

σr

)2

−
(

z − z0

σz

)2
]

. (III.34)

The center of the Gaussian distribution is located in the middle of the simulation domain,
at z0=0.7 cm, and it is assumed that σr=σz=0.02 cm and n0=1020 m−3. The size of the
computational domain is 1.4 × 0.125 cm2. The computational grid is uniform in both
radial and axial directions. The total number of cells is nz×nr=1681×151, where nz and
nr represent number of cells in the axial and radial directions, respectively. As part of
preparatory work for the model studies presented in this chapter we have conducted several
test runs with 2400×100 grid points with a refined mesh in the radial direction and uniform
mesh in the axial direction. Results appeared to be identical to those obtained with the
1681×151 uniform mesh, which therefore was adopted for all runs presented in this section.

Concerning the photoionization source term, it has been verified by practical tests that
very accurate results for the photoionization production rate can be obtained even if the
photoionization is calculated once during every ten steps of the execution of the streamer
model. This approach is justified due to the very small time step used in the streamer
modeling. Additionally, for photoionization calculations the Sph term is usually negligible
in the immediate vicinity of the streamer head due to the domination of the ionization
term Si, and electrons created by photoionization well ahead of the streamer head go
through a relatively long (in comparison with the model time step) evolution and avalanche
multiplication before they affect the dynamics of the streamer head.

Before the incorporation of different photoionization models, we tested the performance
of the two sets of numerical techniques described in Sections II.2.2 and II.2.2 (i.e., the
FCT and SG based) using a double-headed streamer test case for which photoionization
effects are not included and the pre-ionization level is only supplied by a uniform neutral
background plasma with initial density of 1014 m−3. This approach is similar to the one
applied in a classic paper of Dhali and Williams [1987]. Only very small differences are
observed in results obtained with the two models for the modeled double-headed streamer.
Specifically, by the time moment 3.5 ns from the beginning of the model execution the
differences between the peak electron number densities and peak electric fields between two
model streamers do not exceed 7.8% and 2.6%, respectively. It is noted that these differ-
ences do not exceed those arising from known limitations of the local field approximation
in streamer modeling [Naidis , 1997; Li et al., 2007] (see Section I.3.5). The test results
concerning the double-headed streamer are not shown in this thesis for the sake of brevity,
but essentially the same agreement between the two numerical techniques can be observed
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Figure III.8: Electron density profiles on the symmetry axis of the computational domain
at various moments of time calculated using different photoionization models. The results
are obtained by the FCT based numerical technique described in Section III.6.2. Dashed
line: Three-exponential Helmholtz model; Solid line: Three-group Eddington; Dot-dashed
line: Three-group SP3. Results are shown for the moments of time from t = 0 to t = 3.5
ns, with a timestep of 0.5 ns.

by comparing results obtained with the three-exponential Helmholtz photoionization model
shown in Figures III.8 and III.9(a).

Figure III.8 compares the electron number density distribution on the symmetry axis of
the computational domain calculated using the three-group Eddington and SP3, and the
three-exponential Helmholtz models for the photoionization term. The results are shown
for the moments of time from t = 0 to t = 3.5 ns, with a timestep of 0.5 ns. We note
that there is an excellent agreement between the results obtained with these three models
for both streamer heads. Small differences are observed in the region well ahead of the
streamer head, and the differences increase as the streamer advances.

Figure III.9 compares the profiles of electron density and the magnitude of the electric field
on the symmetry axis of the computational domain calculated using the three-exponential
Helmholtz model for the photoionization term and the classical integral model of Zheleznyak
et al. [1982] optimized as described in Section III.2. The results are also shown for the
moments of time from t=0 to t=3.5 ns, with a timestep of 0.5 ns. An excellent agreement
between the results is observed for the double-headed streamer. For the electron density,
only small differences exist in the region well ahead of the streamer head. For electric field,
the difference is almost impossible to notice before 3.0 ns and extremely small deviations
between results obtained with the two models are present at 3.0 and 3.5 ns. The differences
for both electron density and electric field increase as the streamer advances.

Figure III.10 shows a cross-sectional view of the distributions of the electron density, electric
field and photoionization production rate at t=3.5 ns obtained using the three-exponential
Helmholtz model. This cross-sectional view represents an example of two-dimensional views
of simulation results obtained by using different differential equation based photoionization
models. As expected, the photoionization source term is maximized in the head regions, but
we also note that this term is significant in the body of the streamer in the region between
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Figure III.9: Profiles of streamer characteristics along the symmetry axis of the computa-
tional domain at various moments of time calculated using different photoionization models.
The results are obtained by the SG based numerical technique described in Section III.6.2.
(a) Electron density. (b) Electric field. Dashed line: Optimized integral Zheleznyak model;
Solid line: Three-exponential Helmholtz model. Results are shown for the moments of time
from t = 0 to t = 3.5 ns, with a timestep of 0.5 ns.
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Figure III.10: A cross-sectional view of distributions of (a) electron density, (b) electric field
and (c) photoionization source term at t = 3.5 ns calculated using the three-exponential
Helmholtz model.
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Figure III.11: Photoionization source term Sph at t=3 ns along the symmetry axis of the
computational domain. (a) Sph and the three components S1
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ph and S3

ph of the three-
exponential Helmholtz model. (b) Sph calculated using the three-exponential Helmholtz
and the optimized integral Zheleznyak models.
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the two heads. As expected on physical grounds and as apparent from Figure III.10(c) the
photoionization production rate appears to exhibit a high degree of spherical symmetry
around both streamer heads. The direct inspection of Figure III.10(c) also emphasizes the
importance of accurate definition of boundary conditions for Sph, as simple zero bound-
ary conditions on radial boundaries would clearly produce an unphysical distortion of the
photoionization production rate.

Figure III.11(a) shows the Sph term and the relative distributions of the three components
of the three-exponential Helmholtz model on the symmetry axis of the simulation domain at
t = 3.0 ns. The regions dominated by each component can clearly be identified in the figure.
The S1

ph term, associated with the smallest λ1 and therefore with the longest photoionization
range (which from the general structure of equation (III.7) is expected to approximately
follow 1/λ1 dependence) dominates in the region ahead of the streamer head. The S2

ph term
ranks after S1

ph demonstrating intermediate λ2 value and the photoionization range (see
Table III.2), while S3

ph term is clearly confined and dominates inside of the streamer head
(this term has the largest λ3 as can be seen from Table III.2 and therefore is associated
with the shortest photoionization range).

Figure III.11(b) compares the photoionization source term calculated by the three-exponential
Helmholtz model described in Section III.3 and the optimized integral Zheleznyak model
described in Section III.2. Results from both models are in a very good agreement in the
regions of, and ahead of both positive (left) and negative (right) streamer heads. A signif-
icant difference is observed in the region between the streamer heads. We recall that the
optimized integral solution described in Section III.2 does not include contributions from
the emission sources outside of the square around each of the streamer heads (see Figure
III.1(b), and discussion in at the end of Section III.2), but the Helmholtz solution does. A
relatively strong ionization appears in the streamer body (Figure III.12(b)) implying strong
photon emission source in this region. The Helmholtz model automatically accounts for
this source by the right-hand-side term in equation (III.8). However, the photoionization
source in the streamer body does not affect the dynamics of the streamer, because the
electron impact ionization rate Si is much stronger than the photoionization rate Sph in the
streamer body, as illustrated in Figure III.12(b).

As a follow up from discussion presented in the previous paragraph it is worthwhile to re-
iterate that photoionization plays a role in the streamer dynamics only when it dominates
over ionization in certain regions. Figures III.12(a) and III.12(b) compare the photoioniza-
tion source term Sph calculated with the three-group SP3 model and the ionization source
term Si at two different moments of time: t = 0.2 ns and t = 3 ns. At t = 0.2 ns, we
note that in the streamer head regions the ionization term Si exceeds the photoioniza-
tion term Sph. In front of the streamer heads, the photoionization source term dominates.
Very rapidly as streamer starts to propagate, the ionization term becomes stronger than
the photoionization term everywhere in the simulation domain as shown, for example, by
Figure III.12(b) at t = 3 ns. These results support the conclusion made in [Kulikovsky ,
2000a] that “In high field the streamer behaves as a flash lamp; it produces very intensive
radiation when it arises and then the initial photoelectrons provide its propagation.” This
conclusion is only valid for streamers propagating in a high applied electric field E exceed-
ing the conventional breakdown threshold field Ek defined by the equality of the electron
impact ionization and electron dissociative attachment coefficients in air [Raizer , 1991, p.
135]. It is expected that the photoionization term would dominate over the ionization term
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Figure III.12: Photoionization source term Sph and ionization source term Si along the
symmetry axis of the computational domain at (a) t = 0.2 ns and (b) t = 3 ns. Solid line:
the three-group SP3 with boundary conditions based on Zheleznyak model. Dot-dashed line:
ionization term with boundary conditions based on Zheleznyak model for photoionization.
Dashed line: the three-group SP3 with zero boundary conditions. Dotted line: ionization
term with zero boundary conditions for photoionization.

in most of the region ahead of a streamer propagating in a low ambient field (E<Ek) in
a point-to-plane discharge geometry where the dissociative and three-body attachment of
electrons is dominant over the ionization. This case is studied in the next section.

Figures III.12(a) and III.12(b) also show the photoionization source term Sph and the ion-
ization term calculated for a case when zero boundary conditions for the photoionization
term Sph in SP3 model are used. In this case, we note that in the regions of the streamer
heads the ionization term dominates over photoionization term, however, the photoioniza-
tion term is at all moments of time stronger than the ionization term in the region ahead
of both streamer heads. This observation reiterates that the boundary conditions for the
photoionization calculation have a significant impact on the ionization term as photoion-
ization provides the initial photoelectrons for ionization in high fields. Figures III.12(a)
and III.12(b) indicate that in the regions ahead of streamer heads, both photoionization
and ionization terms significantly deviate from those calculated using boundary conditions
based on the Zheleznyak model for Sph. We emphasize that even with these noticeable
differences in ionization and photoionization, the characteristics (e.g., distributions of the
electron density and electric field, speed, and radius) of the modeled streamer are still very
close to the case with boundary conditions based on the Zheleznyak model for photoioniza-
tion. Therefore, for this high field test-case to speed up calculation, it is possible to use zero
boundary conditions for photoionization calculation if the goals of the study do not include
detailed studies of properties of the ionization or photoionization in the region ahead of
the streamer heads. However, as we already mentioned above, for other situations such as
the propagation of streamers in low fields in point-to-plane discharge geometry when two
and three-body attachment dominates over ionization in the most of the simulation domain
ahead of the streamer [i.e., Babaeva and Naidis , 1997; Liu and Pasko, 2006, and references
therein], it is essential to correctly take into account boundary conditions for calculation of
the photoionization term.

It is instructive to compare the total execution times of the models based on differential
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equation approach in comparison with the optimized integral Zheleznyak model. We have
noticed that the simulation time of the three-group Eddington approach with boundary
conditions given by equation (III.28) is similar to the one of the three-exponential Helmholtz
model with boundary conditions based on Zheleznyak model given in Section III.3, whereas
the simulation time of the three-group SP3 with boundary conditions given by equation
(III.29) is slightly longer. As an example of such comparisons we conducted accurate
measurements of computation times involved in two model cases shown in Figure III.9.
We reiterate that both models are executed on the same hardware (2 GHz Power Mac
G5 running Mac OS X 10.4) with identical grids and algorithms to define time steps and
boundary conditions. As already mentioned, the photoionization production rate has been
updated after every ten steps of the model execution and the boundary conditions for the
electric potential have been updated every time step. The measured total execution time
of the code based on the optimized implementation of the Zheleznyak et al. [1982] integral
photoionization model as described in Section III.2 was 53 hours and 20 minutes. The
measured execution time of the code based on the three-exponential Helmholtz model with
boundary conditions based on Zheleznyak model described in Section III.3 was 63 hours
and 14 minutes. The time profiling indicates that about 80% of the model execution time is
spent in both cases on updates of the boundary conditions for the potential and the solution
of the Poisson equation for the electric field. It is noted that even if the photoionization
production rate is updated at every time step, the execution times of both models will be
of the same order.

The difference in the computation time presented above may seem in favor to the integral
photoionization model, however, it is important to point out that the optimization (intro-
duction of moving meshes with variable cell sizes and employment of effective windowing
and interpolation techniques) of the integral model is rather involved and complex, and re-
quires a separate adaptation effort to extend it to every new configuration studied. At the
same time, the implementation of the photoionization models based on differential equation
approach is straightforward and simple. Furthermore, in the optimized integral approach
the photoionization source term is calculated accurately only close the the streamer heads.
For example, in the double-headed test-case, we have shown that due to the optimization,
in the region between the streamer heads, the photoionization source term is not calcu-
lated accurately using the integral model. Conversely with the differential approaches the
photoionization term is calculated accurately in the whole computation domain.

Propagation of streamer in a weak external field

In the present section, we apply the three-exponential Helmholtz and three-group SP3

models to the simulation of streamers propagating in weak external electric fields (<Ek, see
I.1.3), which is a configuration where photoionization has a much more significant impact
on the streamer dynamics than in the high-field case studied previously. Moreover this weak
field condition is of great interest for many practical applications of streamers. We propose
to validate the three-exponential Helmholtz and three-group SP3 models by comparing the
corresponding results with those obtained with the Zheleznyak model. The objective of this
work is to demonstrate the validity and accuracy of the three-exponential Helmholtz and
three-group SP3 models for studies of streamer discharges in air for a wide range of applied
electric fields.
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Figure III.13: A cross-sectional view of distributions of (a) electron density, (b) electric
field and (c) photoionization rate at t = 17.5 ns calculated using the three-exponential
Helmholtz model.

Except where noted, in this section we use the efficient Larsen’s boundary conditions (III.31)
based on radiative transfer theory in the case of three-group SP3. The boundary conditions
for the Helmholtz model are provided by the Zheleznyak integral solution. When the
Zheleznyak model is used to calculate the photoionization source term, to optimize the
computation of the 3D integral, an inhomogeneous grid with fine resolution around the
streamer head and coarse resolution in the region away from the head is employed, and the
emission source is assumed to be confined in the streamer head region.

The geometry of the simulation domain is identical to the one employed by Liu and Pasko
[2006] in which a small conducting sphere is placed in a weak uniform electric field E0, and
is described in Section II.1.2. The air pressure is fixed at a value of 760 Torr. The external
homogeneous field E0 is 106 V/m. The radius b and the potential applied to the conducting
sphere 0 are 0.1 cm and 6500 V, respectively. To initiate the development of a streamer,
as a common practice, we place a cloud of plasma with spherically symmetric Gaussian
spatial distribution on the axis of symmetry in the vicinity of the sphere, i.e.,

ne = np = n0 exp
(

−(r/σr)
2 − ((z − z0)/σz)

2
)

(III.35)

where ne and np are densities of electrons and positive ions, respectively, n0 = 1018 m-3,
σr = σz = 0.01 cm, and z0 = 0.02 cm. The size of the computational domain is 1.0× 0.125
cm2. The computational grid is uniform in both radial and axial directions. The numbers
of grid points in axial and radial directions are 1601 and 201, respectively.

Figure III.13 shows a cross-sectional view of the distributions of the electron density, elec-
tric field, and photoionization production rate at t = 17.5 ns obtained using the three-
exponential Helmholtz model. This cross-sectional view represents an example of two-
dimensional views of simulation results obtained by using different photoionization models.
The streamer expands as it propagates (Fig. III.13(a)). The photoionization production
rate is maximized in the head region, and there is no significant contribution in the body
of the streamer (Fig. III.13(c)). These results are notably different from those obtained for
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Figure III.14: Profiles of streamer characteristics along the symmetry axis of the com-
putational domain at various moments of time calculated using different photoionization
models. The results are obtained by the FCT based numerical technique. (a) Electron
density. (b) Electric field. Dashed line: three-group SP3 with boundary conditions defined
by the equation (III.31); Solid line: three-exponential Helmholtz model. Results are shown
for the moments of time from t = 0 to t = 17.5 ns with a timestep of 2.5 ns.

a streamer in strong electric field (see Fig. III.10), for which significant photoionization is
present in the streamer body.

Figure III.14 compares the profiles of electron density and the magnitude of the electric
field on the symmetry axis of the computational domain calculated using the three-group
SP3 and three-exponential Helmholtz models. The results are shown for the moments of
time from t = 0 to t = 17.5 ns, with a timestep of 2.5 ns. The results obtained with these
two models agree very well in terms of the shape of the profiles, and the magnitudes of the
channel density and the peak electric field. For the electron density, only small differences
exist in the region well ahead of the streamer head. For the electric field, the difference
is almost impossible to notice before 15.0 ns, and relatively small deviations are present
at 15.0 and 17.5 ns. Figure III.15 compares the profiles of electron density and the mag-
nitude of the electric field on the symmetry axis of the computational domain calculated
using the three-group SP3 (boundary conditions provided by Zheleznyak integral solution),
the three-exponential Helmholtz, and the reference Zheleznyak integral models. An excel-
lent agreement between the results obtained with these three models is observed. Results
presented in Figs. III.14 and III.15 demonstrate that for practical accuracy calculations
all three photoionization models (i.e., Zheleznyak, three-group SP3, and three-exponential
Helmholtz) provide adequate and consistent solutions to the streamer problem. Careful
inspection of results presented in Figs. III.14 and III.15 indicates that the modeling results
obtained using the SP3 model are closer to the reference Zheleznyak model results than those
obtained with the three-exponential Helmholtz model. The observed better performance
of the SP3 model in comparison with the three-exponential Helmholtz model is consistent
with the analysis reported in the appendix B. Furthermore, the possibility of formulating
a consistent set of equations and boundary conditions based on radiative transfer physics
is a significant advantage of the SP3 model in comparison with the Helmholtz model.
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Figure III.15: Same caption as Fig. III.14 except that the results are obtained by the
Scharfetter-Gummel (SG) based numerical technique. Dotted line: three-group SP3 with
boundary conditions provided by Zheleznyak integral solution. Dashed line: Zheleznyak
model. Solid line: three-exponential Helmholtz model.
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Figure III.16: Photoionization production rate Sph at t = 15 ns along the symmetry axis of
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Figure III.16(b) compares the photoionization source term calculated by the three-exponential
Helmholtz model and the optimized integral Zheleznyak model, the electron impact ioniza-
tion rate, and the three-body electron attachment rate. For the photoionization production
rate, results from both models are in a very good agreement in the region of, and ahead
of the streamer head. A significant difference is observed in the region near the spherical
electrode. As already discussed for the double-headed streamer test-case, the optimized
integral solution does not include contributions from the emission sources outside of the
region around the streamer head, but the Helmholtz solution does. A relatively strong
photoionization appears in the region near the spherical electrode implying strong pho-
ton emission source in this region. The Helmholtz model automatically accounts for this
source when solving the Helmholtz differential equation. The agreement of the modeling
results obtained using the two photoionization models shown by Fig. III.15 suggests that
the different photoionization rates in the region near spherical electrode do not affect the
dynamics of the streamer, which is mostly controlled by photons emitted by the streamer
head.

Figure III.16(b) further indicates that in contrast to the high applied field case, for which
electron impact ionization was a dominant process controlling production and loss of elec-
trons in the entire simulation domain (including streamer head and streamer channel re-
gions), the low field case is characterized by the dominance of three-body attachment in
the body of the streamer, the dominance of the electron impact ionization in the streamer
head, and the dominance of photoionization in the region ahead of the streamer head.

III.7 Conclusions

In this chapter, we discussed and improved several models currently proposed in the lit-
erature for calculation of the photoionization produced by plasma discharges in air. In
particular, the classical Zheleznyak integral model and three photoionization models in a
differential form are presented. The reported improvements of the differential models are
achieved by more accurate accounting for the spectral dependence of the photoionization
process. The different approaches presented in this chapter can be directly applied for
photoionization calculations in model studies of the dynamics of streamers in air.

An efficient implementation of the classical Zheleznyak integral model is presented for
streamer modeling in air. The three differential approaches developed are a three-exponential
Helmholtz model, a three-group Eddington, and a three-group improved Eddington (SP3)
models. The Helmholtz model is based on an approximation of the absorption function
of the gas in order to transform the integral expression of the photoionization term in a
set of Helmholtz differential equations. The Eddington and SP3 methods are based on
the direct numerical solution of an approximation of the radiative transfer equation. It is
demonstrated that the solutions involved in all three differential models require accurate
definition of the boundary conditions.

We have conducted three test studies of the performance of the newly proposed pho-
toionization models: Gaussian emission source, a double-headed streamer developing in
a strong uniform electric field (greater than the conventional breakdown field) and the pos-
itive streamer propagation in weak external fields (less than the conventional breakdown
field).
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Our studies using the Gaussian source have demonstrated that the use of a three-exponential
fit to the absorption function in air either with the Eddington, SP3 or the Helmholtz model
allows to obtain a good agreement with the Zheleznyak integral model, and that single or
two-exponential fits do not allow to reproduce the Zheleznyak model accurately. We have
also demonstrated that a proper setting of boundary conditions improves significantly the
agreement between the Zheleznyak model and the three differential models.

Our model studies of the double-headed streamer have demonstrated that with the three-
group Eddington, the three-group SP3, or the three-exponential Helmholtz models, the
calculated streamers are very similar to the one calculated using the classical Zheleznyak
integral model. It is particularly interesting to note that Eddington and SP3 models, which
are in principle only very well suited to situations in which photon absorption is sufficiently
high, can be used to calculate very accurately the photoionization source term using a
three-group approach even if some effective absorption coefficients in the model are small.
The comparison of the photoionization and ionization source terms for the studied case of
strong uniform applied field indicates that photoionization only plays a role during the very
early stage of the development of the streamer.

Our studies on the propagation of a positive streamer in a weak field have demonstrated
that with the three-group SP3, or the three-exponential Helmholtz models, the calculated
streamers are very similar to the one calculated using the classical Zheleznyak integral
model. It is important to note that in this case, the streamer dynamics is much more
affected by the photoionization than in the external high-field propagation case.

In this work, we have also compared streamer modeling results obtained using different
numerical techniques to solve the transport equations for charged particles: the Zalesak flux-
corrected transport (FCT) method and the modified Scharfetter–Gummel (SG) algorithm.
We have also utilized different techniques for solution of the Poisson’s field equation: the
D03EBF module of the NAG Fortran library and the SOR method, which are used in
conjunction with the FCT and SG transport algorithms, respectively. Moreover, we have
realized tests with the direct solver SuperLU which completely confirm the obtained results
with the iterative solvers. The results of solution of the same streamer problem obtained
by the FCT method based on a 3rd order QUICKEST scheme and an upwind scheme, and
by the modified SG algorithm demonstrate that both numerical techniques lead to accurate
and consistent solutions of the streamer problem.

The results of accurate measurement of computational time involved in calculations using
different photoionization models for the considered modeled streamer are presented, which
indicate, in particular, that the computational times of the differential and optimized in-
tegral models for the model case considered in the present study are of the same order.
However, it is important to mention that a significant acceleration of the integral models
in simple cases of single or double-headed streamers studied with these models to date has
been possible due to introduction of moving meshes with variable cell sizes and employ-
ment of effective windowing and interpolation techniques. The details of related algorithms
are presented in the present chapter. It is important to stress that the optimization of
the integral model is rather complex and requires to be separately adapted to every new
configuration studied. Conversely, the implementation of the photoionization models based
on differential equation approach is straightforward and simple. Furthermore, in the opti-
mized integral approach the photoionization source term is calculated accurately only close
to the streamer heads. For example, in the double-headed test-case, we have shown that in
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the optimized integral model the photoionization source term is not calculated accurately
in the region between the streamer heads (see discussion of Figure III.11(b) in Section
III.6.2). Conversely with the differential approaches the photoionization term is calculated
accurately in the whole computation domain.

Although the different photoionization models are only used to model streamer discharges
in air in this study, we expect that the models can be applied to evaluating the photoion-
ization effects in other forms of plasma discharges in air. In addition, the extension of
the photoionization models to other gases is possible if the information on all emission,
absorption and photoionization coefficients of the studied gas is available.

The presented results document the range of applicability of the newly developed pho-
toionization models and emphasize that the accurate formulation of boundary conditions
represents an important task needed for a successful extension of the proposed formula-
tions to two- and three-dimensional physical systems with obstacles of complex geometry
(i.e., electrodes, dust particles, aerosols, etc.), which are opaque for the photoionizing UV
photons. We have demonstrated that accurate definition of the boundary conditions can
be effectively introduced with the Zheleznyak integral model. For the Eddington model
we have also demonstrated performance of a set of boundary conditions consistent with
the first order approximation of the radiative transfer equation, the so-called Marshak’s
boundary conditions (III.30). These boundary conditions are simple, fast to compute and
easy to adapt to any configuration. This is also possible with the SP3 model by using the
Larsen’s boundary conditions (III.31). The possibility to formulate such a consistent set
of equations and boundary conditions based on radiative transfer physics is a significant
advantage of the Eddington and SP3 models in comparison with the Helmholtz model.

We emphasize that the actual advantage of differential models advanced in this chapter in
comparison with the integral model lies in the simplicity of implementation of this type of
models, and in unquestionable simplicity of extension of these models to complex two- and
three-dimensional simulation geometries, involving, for example, propagation of multiple
streamer heads in the same simulation domain, and the presence of obstacles on the streamer
path (i.e., electrodes, dust particles, aerosols, etc).

Finally, it is important to note that in this work we have used only approximate solutions of
the radiative transfer equation. Capeillère et al. [2008] have used a Finite Volume Method
(FVM) on space and angular variables has been used to solve directly the radiative transfer
equation. It is important to note that the FVM method is much more complex to implement
than approximate differential models presented in this chapter. The FVM method was
validated by comparison with the reference integral solution on a monochromatic Gaussian
source. When the absorption coefficient is high enough, Eddington and SP3 methods are
as accurate and become faster than the direct method. However, when the absorption
coefficient decreases, approximate methods become less accurate and more computationally
expensive than the direct FVM. Therefore the direct method was applied in [Capeillère
et al., 2008] to the simulation of a double-headed streamer at ground pressure assuming that
photoionization is monochromatic. The results obtained have been compared with those
obtained with the SP3 model and further validate the use of the SP3 model for sufficiently
high values of the absorption coefficient. In [Capeillère et al., 2008], only monochromatic
cases have been studied. To accurately simulate streamers propagating in air at atmospheric
pressure, it is necessary to take into account the spectral dependence of the photoionization
process. The three-group approach presented in this chapter could be very easily used with
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the FVM to simulate streamer propagation in air in high and weak fields. The related
results will be presented in a separate dedicated work.
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IV.1 Introduction

M
any early simulation studies on streamers have been done in the simple plane-to-
plane geometry [Dhali and Williams , 1987; Vitello et al., 1994; Kulikovsky , 1997b].

However, in practical situations, the electrode geometries are much more complex, often
with one of the electrodes having a much smaller radius of curvature than the other (e.g.,
point-to-plane, wire-to-cylinder). One of the most studied configurations in the literature
is the point-to-plane geometry. In Chapters II and III we studied a “sphere-to-plane”
configuration, proposed by Babaeva and Naidis [1996], taking into account the influence of
the spherical electrode on the discharge without including it in the computational domain.
In this model, the computational grid is tangent to the sphere, and therefore there is only
one point of contact between the spherical electrode and the computational domain. The
simulation of the discharge is roughly approximated close to the sphere, in regions where
the computational grid has no contact with the electrode. It is interesting to note that this
approach is rather easy to implement and has been used in different works in the recent few
years [Liu and Pasko, 2006; Liu et al., 2007]. The only complexity of this model is in the
implementation of the boundary conditions for Poisson’s equation, where image charges in
the sphere have to be taken into account (see Section II.1.2).

For more realistic electrode shapes, such as for hyperboloids [Kulikovsky , 1997b; Morrow
and Lowke, 1997; Pancheshnyi et al., 2001] or paraboloids [Djermoune et al., 1995a, b;
Dessantes , 2000], the electrode is usually included in the computational domain. However,
as most streamer simulations are carried out using a finite volume approach and a rectilinear
grid, the shape of the electrode is approximated by a staircase.

In the works of Morrow and Lowke [1997], Djermoune et al. [1995a, b], and Dessantes
[2000], the shape of the electrode is defined as accurately as possible by defining a new
axial grid point for each radial grid point, such that the position defined by the axial
and radial coordinates lies on the electrode surface. This definition of the grid allows for
defining the potential on the electrode surface very accurately, which serves as the bound-
ary condition for Poisson’s equation. However, the use of this approach for hyperboloids
and paraboloids leads to significant variations of the cell sizes to adapt to the point elec-
trode shape. In finite volume methods, these significant variations of cell sizes are not
recommended. Furthermore, with this approach, the grid has to be adapted to each new
geometry.

Another approach is to use a curvilinear grid [Kim et al., 2004; Akishev et al., 2002]. For
example, for a hyperboloid-to-plane geometry, a quasi-orthogonal grid can be defined based
on confocal hyperboloids and ellipses. In this case, the grid is orthogonal to the electrode
surface, therefore the potential of the electrode is set very accurately. Furthermore, with
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this approach, it is rather easy to implement boundary conditions for charged species with
various secondary emission processes. However, in this case also, the grid has to be adapted
to each new geometry.

Finally, some authors [Georghiou et al., 1999; Papageorghiou and Spyrou, 2007] use finite-
element methods with unstructured grids to simulate streamer propagation in wire-to-
plane or point-to-plane geometries. It is clear that the use of an unstructured grid allows
for an accurate local description of complex geometries with a reduced number of points
in comparison to structured grids. Recently, Ducasse et al. [2007] have compared the
results obtained with finite volume and finite element approaches with structured and
unstructured grids, respectively, for a point-to-plane geometry with a 1-mm inter-electrode
gap and a hyperboloid anode. Good agreement between the results obtained with both
methods has been observed. However, it is important to note that the implementation of
the finite element method is much more complex than the finite volume approach. Ducasse
et al. [2007] have also shown that even with a smaller number of nodes in the grid, the
computational cost of finite element method calculations appeared to be much higher than
that of finite volume method calculations.

In the work reported in this chapter, we have implemented a method allowing to easily
take into account electrodes of complex geometries in streamer simulations. For simplicity,
we have tried to find a method based on rectilinear grids and finite volume or difference
approaches. The problem of taking into account a boundary or an interface of complex
geometry in a rectilinear grid has been studied in fluid mechanics. For example, to model
interfaces in two-phase flows, Fedkiw et al. [1999] have introduced the Ghost Fluid Method
(GFM). This method accurately localizes the interface, follows its time evolution with
a Level Set formalism [Liu et al., 2000], and gives the possibility of accurately defining
boundary conditions at the interface. Liu et al. [2000] developed the method for the variable
coefficient Poisson’s equation. Kang et al. [2000] subsequently extended it to treat two-phase
incompressible flow, including the effects of viscosity, surface tension, and gravity. Nguyen
et al. [2001] included the reactivity of the flows. For Dirichlet boundary conditions set
at the interface, the second-order-accurate symmetric discretization of Poisson’s equation
based on the GFM was obtained in [Gibou et al., 2002]. A review of boundary condition
capturing methods based on the GFM is provided in [Hong et al., 2007].

Preliminary tests in applying the GFM to the simulation of a streamer discharge have been
done by Régnier [2004]. In contrast to two-phase flows, the situation is simpler for streamer
simulations since the embedded boundary (the electrode) is motionless. In this work, we
will apply the GFM to the simulation of streamer discharge propagation in the classical
point-to-plane and point-to-point geometries.

In Section IV.2, we present the equations needed for the numerical simulation of streamer
discharges and the application of the GFM to Poisson’s equation. In Section IV.3, to
validate the use of the GFM for the computation of the Laplacian electric potential and of
the electric field, we compare the results obtained using this approach with the analytical
solution in a point-to-plane configuration. Then, in order to validate the use of the Ghost
Fluid Method for streamer simulations, we compare the results obtained using the GFM
with the results obtained by Kulikovsky [1998] for the same point-to-plane configuration.
Finally, the application of the GFM to the simulation of a discharge in preheated air in a
point-to-point geometry is presented and discussed.
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IV.2 Model formulation

As stated in Section I.4, the starting point of our streamer simulations is the resolution of
Equations (I.28)–(I.30) coupled to Poisson’s equation (I.31).

It is important to note that for streamer simulations, the electric field is a key parameter.
First, transport parameters and source terms in Equations (I.28)–(I.30) have a strong non-
linear dependence on it. Second, the electric field is directly related to charged species
densities in Equation (I.31). Therefore the simulation of streamer propagation requires
an accurate calculation of the electric field in the simulation domain at each time step,
especially in regions with high gradients in the field (e.g., the streamer head and the tip of
the needle electrode). In the following section, we present the application of the GFM to
Poisson’s equation to calculate accurately the potential and the electric field in streamer
simulations.

IV.2.1 The Ghost Fluid Method applied to Poisson’s equation

We use the scheme presented in Section II.1.1 for the numerical resolution of Poisson’s
equation. In the volume of the computational domain (i.e., far from the boundaries) the
second order finite difference discretization of Equation (II.1) in cylindrical coordinates
gives the classical five diagonal linear system:

V e
i,jVi+1,j + V w

i,jVi−1,j + V s
i,jVi,j−1 + V n

i,jVi,j+1 + V c
i,jVi,j = −ρi,j

ǫ0

(IV.1)

where the usual coefficients V e
i,j, V w

i,j, V n
i,j, V s

i,j, V c
i,j of the grid node (i, j) with coordinates

(xi, rj) in the simulation domain (i.e., far from the boundaries) are given by Equation (II.3).

As shown in Figure IV.1, the electrode is an embedded boundary in the Cartesian grid.
To localize the fluid/electrode interface accurately, we use two “signed distance functions”
based on the Level Set formalism (see [Liu et al., 2000]): φx

i,j is defined by the distance
between grid nodes and the electrode interface according to x, and φr

i,j is defined by the
distance between grid nodes and the electrode interface according to r. In Figure IV.1, we
define θj and βi such that |φx

i,j| = θj∆xi−1 and |φr
i,j| = βi∆rj−1. The distance functions

are readily found if one has an analytical expression of the electrode interface. Distance
functions are defined as negative for nodes inside the electrode and as positive for nodes
in the computational domain. For example, in Figure IV.1, the node (i, j) is outside
the electrode, and therefore the distance functions (or Level Set functions) are defined
as positive for this node.

Through the fluid/electrode interface, the potential is continuous, but there is a jump in the
electric field. The GFM consists in setting virtual potentials (denoted by the superscript
“G” for “ghost” in the following) at the nodes inside the electrode (e.g., V G

i−1 at the i − 1
node in Figure IV.2) such that the interpolated potential at the interface between two nodes
of the grid is precisely the physical potential of the electrode VI (see Figure IV.2). For the
interpolation, in this work we have used a linear interpolation both in x and r. This is a
refinement of the Dirichlet boundary condition over the electrode surface which was used
in Gibou et al. [2002].
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θj∆xi−1

βi∆rj−1

∆xi−1

∆rj−1

(i−1,j)
(i,j) (i+1,j)

(i−1,j−1) (i,j−1) (i+1,j−1)

r

x

Figure IV.1: Electrode embedded in a Cartesian grid. The electric potential is fixed in the
electrode (shaded) and computed in the fluid domain (not shaded). Nodes are represented
on the grid and are indexed by (i, j). Dashed lines are interfaces of the grid cells.

Figure IV.2: 1D description of the GFM applied to the calculation of the electrical potential.
A virtual (or ghost) potential V G

i−1 is set at the node i − 1 inside the electrode, such that
the interpolated potential at the interface I between the two nodes i − 1 and i is precisely
the physical potential of the electrode VI .
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To show the new discretization of Poisson’s equation around the electrode interface using
the GFM, we consider as an example the case depicted by Figure IV.1 (with an interface
lying between the nodes (i− 1, j) and (i, j) in the axial direction and (i, j − 1) and (i, j) in
the radial direction). In this case, the nodes (i− 1, j) and (i, j − 1) are “ghost” nodes, and
therefore, Equation (IV.1) becomes:

V e
i,jVi+1,j +V w

i,jV
G
i−1,j +V s

i,jV
G
i,j−1 +V n

i,jVi,j+1− (V w
i,j +V e

i,j +V s
i,j +V n

i,j)Vi,j = −ρi,j

ǫ0

(IV.2)

First, we consider the axial direction. Figure IV.2 shows that, using a linear extrapolation,
V G

i−1,j can be written as a linear function of xi−1:

V G
i−1,j =

Vi,j − VI

|φx
i,j|

(xi−1 − xI) + VI = −
|φx

i−1,j|
|φx

i,j|
(Vi,j − VI) + VI (IV.3)

where xI is the position of the interface. By inserting Equation (IV.3) into Equation (IV.2),
the terms including V w

i,j become:

− V w
i,jVi,j + V w

i,jV
G
i−1,j = V w

i,j(VI − Vi,j)
|φx

i,j| + |φx
i−1,j|

|φx
i,j|

= −
V w

i,j

θj

Vi,j +
V w

i,j

θj

VI (IV.4)

All other terms in Equation (IV.2) remain unchanged. A similar approach can be applied
in the radial direction for the interface lying between the nodes (i, j−1) and (i, j). Finally,
for the 2D case of Figure IV.1, one can easily show that the discretization of Poisson’s
equation centered on the point (i, j) becomes

V e,g
i,j Vi+1,j + V w,g

i,j Vi−1,j + V s,g
i,j Vi,j−1 + V n,g

i,j Vi,j+1 + V c,g
i,j Vi,j = Sg

i,j (IV.5)

where















































V e,g
i,j = V e

i,j

V w,g
i,j = 0

V n,g
i,j = V n

i,j

V s,g
i,j = 0

V c,g
i,j = −V e

i,j −
1

θj∆xi−1(xi+1/2 − xi−1/2)
− V n

i,j −
2rj−1/2

βj∆rj−1(r2
j+1/2 − r2

j−1/2)

Sg
i,j = −ρi,j

ǫ0

− VI

θj∆xi−1(xi+1/2 − xi−1/2)
− 2rj+1/2VI

βj∆rj(r2
j+1/2 − r2

j−1/2)

(IV.6)

and where the superscript “g” is used to define coefficients of Poisson’s equation close to the
interface. Different situations have to be considered, depending on how the electrode crosses
the cells. This requires checking which of the five nodes required for the discretization of
Poisson’s equation lie in the electrode. This can be easily done by testing the signs of either
φx or φr. For example, if one finds a negative value of φx

i,j at the central node (i, j), one
directly sets Vi,j = VI . In the case of an interface located between two nodes in the radial
direction only, then V e

i,j and V w
i,j remain unchanged and are given by Equation (II.3), as

well as V s
i,j, if the electrode is above the grid node (i, j), or V n

i,j, if the electrode is below.
In the case of an interface located between two nodes in the axial direction only, V n

i,j and
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Figure IV.3: Point-to-point configuration. Boundary conditions at the electrode surface are
taken into account using the GFM. The thick line shows the borders of the computational
domain. The configuration is axisymmetric and also has a planar symmetry.

V s
i,j remain unchanged and are given by Equation (II.3), as well as V w

i,j if the electrode is to
the right of the grid node (i, j), or V e

i,j if the electrode is to the left.

In this work, we consider streamer simulations in point-to-plane and point-to-point geome-
tries. The GFM is used to define the electric potential on the electrodes, but boundary
conditions have to be defined on the other boundaries of the computational domain. For
the point-to-point geometry, Figure IV.3 shows the two hyperboloid electrodes and the bor-
ders of the computational domain where boundary conditions have to be defined. Usually,
a large computational domain is used in simulations, and the electric potential at these
boundaries is specified by neglecting contributions from the charge inside the domain due
to the relatively small space occupied by the charge. Two different types of boundary condi-
tions can be used: the homogeneous Neumann boundary condition (~∇V ·~n = 0, where ~n is
the unit vector normal to the surface boundary) and the Dirichlet boundary condition based
on the solution of Laplace’s equation (i.e., ρ = 0 in Equations (I.31)). For point-to-plane
and point-to-point geometries, we have compared the results obtained using both boundary
conditions. In order to minimize influence on the streamer propagation, it is necessary to
use a much larger computational domain with the homogeneous Neumann boundary con-
dition than with the Dirichlet boundary condition based on Laplace’s equation. Thus, in
this work, we have used a Dirichlet boundary condition based on the solution of Laplace’s
equation.
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IV.2.2 Analytical solution of Laplace’s equation in hyperbolic
point-to-point and point-to-plane geometries

As mentioned in the previous section, the analytical solution of Laplace’s equation can be
used to define boundary conditions. It is also interesting to use this analytical solution to
initialize the electric potential in the whole computational domain to derive the Laplacian
potential at t = 0 if an iterative solver for Poisson’s equation is to be used.

For the point-to-plane and point-to-point geometries, we consider the point electrodes to
be infinite hyperboloids. In the point-to-point geometry, the electrodes are branches of the
same hyperboloid. As shown in Figure IV.3, the geometrical configuration has a planar
symmetry in this case. In experiments, the length of the electrodes is obviously finite. If
the absolute values of the electric potential applied to the anode and to the cathode are
different (e.g., a grounded cathode and the anode set to V = Va), then the electric field lines
starting from the anode do not necessarily converge at the cathode and can go to infinity.
Thus, both electrodes are not in “total influence”, and the system is no longer symmetric.
The electric field in the vicinity of the anode is higher than in the vicinity of the cathode.
To obtain equal electric fields, one can roughly estimate that the gap length between the
two electrodes has to be less than or equal to a characteristic length of the electrodes (e.g.,
radius of a sphere, length of an hyperboloid, etc).

From an electrostatic point of view, the point-to-plane configuration is very close to the
point-to-point configuration. Indeed, since the geometrical configuration of the two elec-
trodes is symmetric, the plane of symmetry in the middle of the gap is an equipotential
plane of the electrostatic system (see Figure IV.3). Thus, one can adjust this equipotential
to any value by changing the potential at one of the electrodes.

Given the geometry of the system, it is useful to work in hyperbolic coordinates:
{

x = αξ(1 + η2)1/2

r = αη(1 − ξ2)1/2 (IV.7)

where ξ2 < 1 and α 6= 0. Note that it is also possible to work in prolate spheroidal
coordinates [Durand , 1966b, p. 177]. As shown in Figure IV.3, the needle electrodes are
two branches of the same hyperboloid. The surfaces of these electrodes are defined by the
Cartesian equation:

x2

a2
− r2

b2
= 1 (IV.8)

Using Equation (IV.7), we have a2 = α2ξ2 and b2 = α2(1−ξ2), and the squared focal length
of the hyperbola is a2 + b2 = α2. In such a system of coordinates, a hyperbola with the
focal length α is defined by the equation ξ = C, where C is a constant, and the electrode
surface is defined as ξ2

0 = a2/α2. For this geometry, the electric potential has the following
form [Eyring et al., 1928]:

V (ξ) =
A

2
log

1 + ξ

1 − ξ
+ B (IV.9)

where A and B are constants depending on the electric potentials of the electrodes and their
shapes. It is interesting to note that V depends only on ξ, which means that equipotential
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surfaces of the system are branches of confocal hyperbolas. In a point-to-point geometry,
one can take the symmetric electrode surfaces, with ξ = ξ0 for the anode of potential Va

and ξ = −ξ0 for the cathode at potential Vc:






















A =
Va − Vc

log
(

1+ξ0
1−ξ0

)

B =
Va + Vc

2

(IV.10)

To find A and B in the point-to-plane system, where the point is a hyperboloid and the
plane is a grounded cathode, it is only necessary to set Vc = −Va in Equation (IV.10).
Then, V = 0 represents an equipotential plane corresponding to the cathode plane defined
by ξ = 0. Finally, to use Equation (IV.9) on a rectilinear grid, we have derived an expression
for ξ in cylindrical coordinates:

ξ2(x, r) =
α2 + x2 + r2 − [(α2 + x2 + r2)2 − 4α2x2]

1/2

2α2
(IV.11)

Note that from Equation (IV.7), ξ < 0 (or ξ > 0) corresponds to x < 0 (or x > 0).

For streamer applications, it is also interesting to derive the value of the magnitude of the
electric field. Using the hyperbolic coordinates given by Equation (IV.7), we have [Eyring
et al., 1928]:

~∇V =
1

Ξ

∂V

∂ξ
~uξ (IV.12)

where ~uξ =
~∇ξ

‖~∇ξ‖
and

Ξ(η, ξ) = α

(

η2 − ξ2 + 1

1 − ξ2

)1/2

(IV.13)

Using Equations (IV.7) and (IV.11), one can easily derive Ξ(x, r). Finally, the magnitude
of the electric field can be derived from Equation (IV.9) as:

| ~E(x, r)| =
1

Ξ(x, r)

A

1 − ξ2(x, r)
(IV.14)

IV.2.3 Numerical methods for Poisson’s equation and drift-diffusion
equations

In order to compare our results in a point-to-plane geometry with those obtained by Ku-
likovsky [1998], we have used the same numerical scheme (i.e., the modified Scharfetter-
Gummel algorithm [Kulikovsky , 1995a], see Section II.2.2) to solve the charged species
transport equations. This numerical scheme has also been used for streamer simulations in
point-to-point geometries in Section IV.3.3. For both geometries, there has been no special
numerical treatment close to the needle electrodes to take into account the exact shape
of the electrodes in setting up the boundary conditions for the drift-diffusion equations of
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charged species. The boundary conditions are computed in both directions simply assuming
that the interface has a “staircase” shape. In this work, as in [Kulikovsky , 1997a], we have
taken into account simplified boundary conditions: near the anode and cathode surfaces,
gradients of electron density are assumed to be equal to zero.

In [Kulikovsky , 1998], the finite difference form of Poisson’s equation is solved using the
symmetrical successive overrelaxation (SOR) method. This method is simple and robust,
and has been widely used for streamer simulations. However, the SOR method is well-known
to converge rather slowly. To reduce computation times, we used two numerical methods
for the resolution of Poisson’s equation described in Section II.1.3, namely the D03EBF
iterative module of the NAG Fortran library and the direct SuperLU solver. Then, as part
of the preparatory work for the studies presented in this chapter, we conducted several
test runs to compare the results obtained using the iterative NAG module and the direct
SuperLU solver. It turned out that there are only minor changes in the streamer dynamics
computed using these two solvers. Direct solvers are inherently very accurate and robust.
Furthermore, for the case of a fixed grid, the most time-consuming step in the calculation
of the solution (i.e., the factorization) needs to be done only once, at the beginning of
the discharge simulation. As a result, at each time step of the discharge simulation, the
calculation of the solution for different source terms (i.e., term in the right hand side of
Equation (IV.1)) is very fast. Thus, SuperLU solver was adopted for all simulation studies
presented in this chapter.

To calculate the photoionization source term in the streamer model, we use the three-group
SP3 model presented in Chapter III with the Larsen’s boundary conditions (Section III.5).

IV.3 Results and Discussion

IV.3.1 Laplacian field in a point-to-plane geometry

In this section, a point-to-plane configuration is used to compare the electric potential
calculated in the whole computational domain using the GFM presented in Section IV.2.1
and the analytical solution presented in Section IV.2.2. We have considered the same
configuration as in [Kulikovsky , 1998]: a hyperboloid anode (Va = 13 kV) is located at
x = 1 cm and a plane grounded-cathode (i.e., V = 0) is located at x = 0. Parameters
of the shape of the hyperboloid anode are the same as in [Kulikovsky , 1998]: a = 1 cm
and b = 0.18 cm, which correspond to a radius of curvature at the tip of the electrode
of b2/a = 324 µm. The computational domain dimension is 2 × 1 cm2 and is discretized
on a Cartesian grid in both the radial and axial directions. The total number of cells is
nx ×nr = 1000× 500, where nx and nr represent the number of cells in the axial and radial
directions, respectively. This corresponds to cell sizes of 20 µm both in the axial and radial
directions. For streamer simulations, the typical cell size is much smaller and is on the
order of 5 µm or less. In this section, we use a large grid size to demonstrate the efficiency
of the GFM clearly.

Figure IV.4 compares the isocontours of the electric potential calculated using the GFM and
the analytical solution given by Equation (IV.9). Very good agreement between both results
is observed. Small variations in the electric potential can lead to significant changes in the
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Figure IV.4: Isocontours of the electric potential in a point-to-plane configuration. The
isocontours are shown from 0 V (cathode) to 13000 V (anode), with a step of 1000 V.
In this figure, the isocontours of the analytical solution overlap those from the numerical
simulation with GFM, demonstrating a good agreement between the two solutions.

electric field. Figure IV.5 compares the analytical solution of the electric field (Equation
(IV.14)) with the electric field computed with the GFM, for the same condition as Figure
IV.4. For the scale used in Figure IV.5, very good agreement is observed between the
electric field computed using the GFM and the analytical solution. To show clearly the
quantitative improvement due to the use of the GFM close to the electrode, we compare
the magnitude of the electric field in Figures IV.6 and IV.7, computed on the same grid
with the GFM and without any specific treatment to take into account the real shape of
the electrode (i.e., “the staircase approach”).

On the axis of symmetry, Figure IV.6 shows that the electric field calculated using the GFM
is in very good agreement with the analytical solution close to the electrode. The results
obtained with the staircase approach on the same grid overestimates the electric field in the
vicinity of the electrode. We have checked that the discrepancy between the two numerical
approaches increases as the grid becomes coarser.

Figure IV.7 shows the magnitude of the electric field obtained with and without the GFM
in the whole computational domain. We note that the results obtained without the GFM
exhibit oscillations in the electric field along the electrode interface due to the random
crossing of the electrode over the cells. Furthermore, it is important to mention that the
maximum of the electric field with this grid is not located at the electrode tip on the
symmetry axis but a few cells below (see Figure IV.7). We have carried out simulations
of streamer propagation with both Laplacian electric fields, and we have observed that the
oscillations in the electric field calculated without using the GFM may lead to streamer
branching close to the electrode. Using the GFM on the same grid, no streamer branching
has been observed.
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Figure IV.5: Isocontours of the magnitude of the electric field for the same conditions as
in Figure IV.4. The isocontours are shown from 1 kV/cm to 160 kV/cm, with a step of 1
kV/cm. In this figure, the isocontours of the analytical solution overlap those of the electric
field computed using the GFM, demonstrating a good agreement between the two solutions.
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Figure IV.6: Magnitude of the electric field along the symmetry axis in the vicinity of
the anode tip. Solid line: analytical solution (Equation (IV.14)). Dotted line with circles:
numerical results using the GFM. Dot-dashed line with crosses: numerical results without
the GFM (i.e., “staircase” approach). The symbols for the numerical results correspond to
the grid nodes.
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Figure IV.7: Comparison between the magnitude of the electric field computed with and
without the GFM in the same point-to-plane configuration as in Figure IV.4. The white
region of the color scale corresponds to the hyperboloid anode. In the case without the
GFM, all the potentials Vi,j are set equal to Va if the point (i, j) is inside the electrode. In
the case with GFM, the nodes inside the electrode are also set to Va, except for the points
close to the interface.

IV.3.2 Positive streamer propagation in a point-to-plane geome-
try

In order to validate the use of the Ghost Fluid Method for streamer simulations, in this
section we compare the results obtained using this approach with the results obtained by
Kulikovsky [1998] for the same point-to-plane configuration. The parameters of the shape
of the hyperboloid anode, the location of the electrodes and the applied voltage are the
same as in Section IV.3.1. We have used the same transport parameters and reaction rates
as in [Kulikovsky , 1998]. In the work of Kulikovsky [1998], the photoionization source term
in air is calculated using an optimized integral approach based on the model proposed by
Zheleznyak et al. [1982]. In our work, this model is also used, but we have implemented it
using the differential three-group SP3 model [Bourdon et al., 2007]. If the integral model
is used without any geometric limitations on the emitting volume of the discharge, we
have shown in [Bourdon et al., 2007] that the results of both approaches are in very good
agreement. In [Kulikovsky , 1998], the computational domain dimension is 6 × 1.1 cm2 and
is discretized on a grid with nx ×nr = 134× 640 points. The streamer head is covered by a
moving window with an uniform fine grid (of ≃ 400 cells) with a cell size of 6.3 µm × 8 µm.
In this chapter, to validate the use of the GFM, we have first used a fixed grid. We have
also carried out different tests on the grid to reduce the size of the computational domain
and to limit the number of grid points. Finally, in this chapter we have also used a 2× 0.5
cm2 computational domain discretized on a fixed rectilinear grid with nx ×nr = 2254×344
cells. The grid is Cartesian, with a fixed cell size of 5 µm in the region where the streamer
propagates. Beyond this region (i.e., x ∈ [1.1, 2] cm and r ∈ [0.15, 0.5] cm), the grid expands
according to a geometric progression. As in [Kulikovsky , 1998], a neutral plasma spot is
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Figure IV.8: Two-dimensional isocontours of the electron density and the magnitude of the
electric field at t = 5, 11, 17, and 23 ns. For the electron density, the isocontours go from
1011 to 1014 cm−3, with a multiplier step of 100.5 cm−3. For the electric field, the isocontours
go from 30 to 90 kV/cm, with a step of 10 kV/cm. The left panel presents results from our
code. The right panel is taken from [Kulikovsky , 1998, Figure 2].

placed at the anode tip to initiate streamer formation:

np(x, r)|t=0 = ne(x, r)|t=0 = n0 exp

[

− r2

σ2
r

− (x − x0)
2

σ2
x

]

(IV.15)

where x0 = a − σx, σx = 0.025 cm, and σr = 0.01 cm. At t = 0 there are no negative ions.
The initial maximum density is n0 = 1014 cm-3.

The left panels of Figures IV.8 and IV.9 show the same results as Figures 2 and 3 in
[Kulikovsky , 1998]. Results from [Kulikovsky , 1998] are included for reference in the right
panels of Figures IV.8 and IV.9. Figure IV.8 shows the contour lines of the electron density
and the magnitude of the electric field during the positive streamer propagation towards the
cathode. Figure IV.9 shows the evolution of axial profiles of the electron density and electric
field. For both figures, we have good agreement with the results of [Kulikovsky , 1998].
Slight differences are observed on the contour lines. From Figure IV.8, we note that in our
results the contour line for 30 kV/cm is slightly larger in the radial direction and slightly
shorter in the axial direction than in the results of [Kulikovsky , 1998]. Direct inspection
of the contour lines of the electron density indicates that the variation of the thickness
of the streamer channel is smoother in our results than in the results from [Kulikovsky ,
1998]. These small differences may come from the different grid used and the different
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treatment of the photoinization source term in our work and from that in [Kulikovsky ,
1998]. At time t = 1 ns the field in the streamer head is higher in our results than in the
results of Kulikovsky [1998]. This is possibly due to the fact that the GFM is not used in
[Kulikovsky , 1998]. In Figures IV.8 and IV.9, the two phases of the streamer propagation
can be clearly observed. The first one lasts about 5 ns and corresponds to the positive
streamer formation close to the point anode and to its propagation in the high field region
close to the electrode tip. We note that during the first phase, the streamer radius increases
as the streamer propagates towards the cathode. For t > 5 ns, the streamer propagates
with the velocity almost constant, the radius of the plasma channel and the maximum
electric field in the streamer head. In [Kulikovsky , 1998], this phase is called the stationary
propagation phase of the streamer.

The results obtained in this section clearly validate the use of the GFM for the simulation
of streamer propagation.

IV.3.3 Streamer propagation in point-to-point geometry

In this section, we apply the GFM to simulate a discharge in air at atmospheric pressure
between two point electrodes. This discharge has been studied experimentally in [Pai et al.,
2008; Pai , 2008]. These authors use a nanosecond repetitively pulsed voltage (5 − 10 kV)
with a repetition rate of 10 kHz to generate a discharge in a preheated air flow between
two pin electrodes separated by 5 mm. Pai et al. [2008] showed that for a temperature
T = 1000 K, three different regimes are observed. At low voltages, corona discharges are
observed. This is called the “C” regime. For voltages higher than 7 kV, a “F” regime is
observed. This regime is reminiscent of a spark discharge, with intense emission and a high
conduction current. Finally, for voltages in a narrow range between 6 kV and 7 kV, a regime
with an emission which fills the gap in a diffuse manner is observed; this is the “D” regime.

To take a first step towards understanding the different discharge regimes, we simulated a
point-to-point configuration for different temperatures and voltages. In the following we
present results obtained for three different temperatures. The temperature T = 1000 K has
been extensively studied in [Pai , 2008], and therefore we use this temperature as a reference
point. We also study discharges at ambient temperature T = 300 K, which are of great
interest for applications. Furthermore, results at T ≤ 2000 K were obtained by Packan
[2003] for discharges in air at atmospheric pressure using a point-to-point configuration,
and therefore we also show here results for the temperature T = 1800 K. For all the cases
studied in the present work, we found that the study of the dynamics of the streamers could
give interesting information on the final discharge structure.

In the experimental study of Pai [2008], the exact shape of the electrodes is not known
accurately. Nevertheless, the radius of curvature of both needle electrodes is roughly es-
timated to be close to 200 µm. As a first approximation, we have considered that both
electrodes are hyperboloids with a radius of curvature of 324 µm as in Sections IV.3.1 and
IV.3.2.

The simulation of successive discharges due to nanosecond voltage pulses applied at high
repetition rate is beyond the scope of this thesis. In this work, we apply the GFM to
simulate a single discharge in air generated by a single 10 ns-long voltage pulse. As many
discharges have occurred before the one we simulate in this work, it is necessary to estimate
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the density of seed charge in the inter-electrode gap. Based on the work of Pancheshnyi
[2005], we have assumed the density of the initial charges before each new pulse to be in
the 109 − 1010 cm−3 range at ambient temperature, forming a neutral and homogeneous
background. Furthermore, the pre-ionized background is not expected to change sharply
with the gas density [see Pancheshnyi , 2005]. As a first approximation, a value of 109 cm−3

has been used as a uniform pre-ionized background for the calculations presented in this
section. We have checked that photoionization has no influence on the results presented in
this section.

In the experiments, the velocity of the air flow is on the order of 1 m/s, and thus we have
assumed that the air is static during one discharge pulse and is uniformly preheated. To
take into account the fact that the discharge occurs at different temperatures, we have
simply changed the value of the total density N = N0T0/T where N0 = 2.45 × 1025 m−3

is the air neutral density at ground pressure and ambient temperature (T0 = 300 K). This
decrease of the total density by a factor T/T0, increases the local reduced electric field E/N
by the same factor, and thus has a direct impact on transport parameters and reaction rates
in air, which are assumed to be functions of E/N . In this section the transport parameters
and source terms are the same as in Section IV.3.2.

Note that the results obtained in this work cannot be understood solely by considering of
similarity laws. Indeed, in the present simulations the radius of curvature of the electrodes
as well as the initial densities are not scaled along with the neutral gas density [see Liu and
Pasko, 2006, for further details on similarity laws]. For the different temperatures studied
in this section, we do not attempt to scale the Laplacian electric field by the same factor
as the gas density. Instead, we used typical values of experimental studies.

In this work, we have used a 2 × 0.5 cm2 computational domain discretized on a fixed
rectilinear grid with nx ×nr = 1510× 347 cells. The grid is Cartesian, with a fixed cell size
of 5 µm in the region of the streamers propagation. Beyond this region, the grid expands
according to a geometric progression. The tip of the anode is located at x = 1.25 cm, and
the tip of the grounded cathode is located at x = 0.75 cm.

Discharge at 1000 K

Figure IV.10 shows the evolution of the contour lines of the electron density and of the
absolute values of the electric field for Va = 7 kV. Figures IV.11 and IV.12 shows the
evolution of axial profiles of the electric field and of the electron density, respectively.

Two phases of the discharge evolution can be clearly distinguished. The first lasts about
5 ns. During this time period, two discharges are initiated at both electrode tips where
the Laplacian electric field is highest (i.e., 70 kV/cm), and these discharges propagate in
the gap. On the anode side, the conditions for positive streamer propagation are fulfilled
in the first nanosecond, and a positive streamer propagates towards the grounded cathode.
The electron density in the streamer channel is about 1.5 × 1013 cm−3, and the maximum
electric field on the streamer axis is 50 kV/cm. It is interesting to note that these values
are less than those obtained for the positive streamer simulated in Section IV.3.2. In fact,
due to the pre-ionization in the gap and the lower total density, the conditions are much
more favorable for positive streamer propagation than in Section IV.3.2 and therefore the
streamer propagates with a lower electric field and lower electron density in its head. It is
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Figure IV.10: Point-to-point geometry: Two-dimensional isocontours of the electron density
and the magnitude of the electric field for t = 1, 3, 5, and 7 ns. For the electron density,
the isocontours vary from 109 to 1013.5 cm−3, with a multiplier step of 100.5 cm−3. For the
electric field the isocontours vary from 10 to 50 kV/cm, with a step of 10 kV/cm. In this
case T = 1000 K and Va = 7 kV.
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interesting to note that Liu and Pasko [2006] have compared streamer propagation at 300
K at atmospheric pressure to that at lower pressures. These authors indicated that at low
pressures, the maximum electric field and electron density are less than that at atmospheric
pressure. In their work, the change of pressure has a direct impact on the quenching of
the radiative molecular states responsible for photoionization, and thus the photoionization
source term decreases as the pressure increases. We note that our results obtained at 1000
K with pre-ionization in the gap are close to the results of Liu and Pasko [2006] at low
pressure. However, we note again that in our case the Laplacian electric field and the
pre-ionization level are not defined following the similarity laws.

On the cathode side, in the first few nanoseconds we observe the expansion of a discharge
towards the anode. The maximum electric field in the discharge decreases as the discharge
propagates towards the anode and is on the order of 30 kV/cm. The electron density in the
discharge front is on the order of 1012 cm−3. Due to the pre-ionization in the inter-electrode
gap, these values are less than those usually obtained for negative streamers [e.g., Bourdon
et al., 2007], and we can quantify that the discharge which propagates from the cathode
as a “weak” negative streamer. We also carried out simulations without a continuous
ionized background, and initializing the streamer by a neutral plasma cloud in the vicinity
of the anode (as in Section IV.3.2). In this case we found that the weak negative streamer
is ignited from the cathode as well, but in this situation the ignition is only due to the
photoionization of the positive streamer instead of the uniform background density.

In Figure IV.10 both discharges have very different radial expansions. At t ≃ 5 ns, both
discharges interact at z ≃ 1.05 cm, and Figures IV.11 and IV.12 clearly show that the
positive streamer propagates very rapidly towards the cathode in the volume pre-ionized
by the “weak” negative streamer. Then at t = 7 ns the positive streamer reaches the
grounded electrode, and Figure IV.11 shows the rapid redistribution of the potential in the
interelectrode gap. In Figure IV.12, we note that the interaction between the two discharges
creates an enhancement in the electron density at z ≃ 1.05 cm and this enhancement
remains nearly unchanged for t > 5 ns. We also note that for t > 5 ns the electron number
density increases on the discharge axis.

All these results indicate that a positive streamer could propagate between the two point
electrodes in less than 7 ns, which is in qualitative agreement with the experimental results.
In this case an electrical connection between two electrodes is realized with quite a high
electron density. This junction is created after the positive streamer reaches the cathode.
Depending on the temperatures and voltages studied, this connection can form during the
applied-voltage pulse (10 ns long for the experiment considered). As a result, the current in
the conducting junction increases and the plasma filament develops into a spark discharge.

In Figure IV.13, the conditions are the same as in Figure IV.10, except that the applied
voltage at the anode is Va = 5 kV. As for Figure IV.10, we observe that two discharges are
ignited in the vicinity of the electrodes, which are of opposit polarity. The results obtained
are similar to the case with Va = 7 kV, but in this case the propagation time scale of
negative and positive streamers is much longer. The positive streamer contacts the region
ionized by the weak negative streamer only after 13.5 ns and finally reaches the cathode
after 20 ns. The electrical connection is not realized during the 10 ns long voltage pulse,
and therefore one expects to obtain only corona discharges on such a time scale.

In the experimental results at 1000 K, corona discharges are present up to Va = 6 kV, and
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Figure IV.13: Point-to-point geometry: Two-dimensional isocontours of the electron density
and the magnitude of the electric field at t = 8.5, 11.5, 14.5, and 17.5 ns. For the electron
density the isocontours vary from 109 to 1013.5 cm−3, with a multiplier step of 100.5 cm−3.
For the electric field, the isocontour vary from 10 to 50 kV/cm, with a step of 10 kV/cm.
In this case T = 1000 K and Va = 5 kV.
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for voltages higher than 7 kV spark discharges occur. In this respect, the simulation results
are considered to be in good agreement with the experimental results. We presume that
the very strong impact of the applied voltage on the time required to create the electrical
connection is related to the narrowness of the voltage range allowing for the diffuse regime.
Note also that for the case of Va = 5 kV in [Pai , 2008], only anode corona discharges
are visible. We stated at the beginning of Section IV.2.2 that as the electrode points are
spatially finite in the experiments, a grounded cathode and a high-potential anode do not
necessarily give symmetric distribution of the Laplcian fields magnitude at the tips of the
electrodes. The field lines starting from the anode can diverge to the grounded objects
around the exprerimental device, therefore electrodes are not in total influence. However,
the Laplacian field is perfectly symmetric in the simulations. Note that recent experimental
work1 of David Pai with a cathode set at -5 kV and the anode at 5 kV results in corona
discharges on both electrodes.

Discharge at 300 K

In this section, we present simulation results for T = 300 K. In this model case, for voltages
below 7 kV, we did not observe any positive streamer propagation. Figure IV.14 shows
the results obtained for Va = 10 kV. We note that the time scale for positive and negative
discharge propagation is much longer than that of the cases studied at 1000 K. For example,
the positive and negative streamers contact each other at t = 16.5 ns. However, one notes
that the positive streamer eventually reaches the cathode after t = 20 ns. But for 10 ns
long voltage pulses, this appears to be insufficient to produce a spark discharge.

Figure IV.15 shows the results obtained for Va = 13 kV. The positive streamer enters the
ionized zone created by the negative streamer at 6.5 ns and reaches the cathode at t = 8.5
ns. That is only 2 ns after the two streamers touch each other. Therefore, for the considered
pulse durations (10 ns), these results indicate that the electrical connection could be realized
before the end of the pulse and these conditions may produce a spark discharge. As already
observed at T = 1000 K, we note that at T = 300 K a small increase in the voltage has a
significant impact on streamer propagation time scales.

Discharge at 1800 K

The experimental results for a point-to-point case at 2000 K in a 1-cm gap have been
reported in [Packan, 2003]. The exact shape and radius of curvature of the electrodes were
not known accurately. In [Packan, 2003] the pulse repetition rate was 100 kHz with a
voltage pulse duration of 10 ns. For Va = 6 kV, Packan [2003] observed the propagation of
two discharges starting at the same time from both electrodes and contacting each other in
the middle of the gap after about 10 ns and then producing a diffuse discharge.

As previously noted, the detailed study of the nanosecond repetively pulsed discharge at
2000 K is beyond the scope of this thesis. In this section, we have kept the same geometry as
in the previous section, and we have studied the influence of a higher tempertaure (T = 1800
K) on the discharge dynamics.

1Private communication with David Pai.
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Figure IV.14: Point-to-point geometry: Two-dimensional isocontours of the electron density
and the magnitude of the electric field at t = 11, 14, 17, and 20 ns. For the electron density,
the isocontours vary from 109 to 1013.5 cm−3, with a multiplier step of 100.5 cm−3. For the
electric field the isocontours vary from 30 to 150 kV/cm, with a step of 30 kV/cm. In this
case T = 300 K and Va = 10 kV.
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Figure IV.15: Point-to-point geometry: Two-dimensional isocontours of the electron density
and the magnitude of the electric field at t = 2, 4, 6, and 8 ns. For the electron density
the isocontours vary from 109 to 1013.5 cm−3, with a multiplier step of 100.5 cm−3. For the
electric field the isocontours vary from 30 to 150 kV/cm, with a step of 30 kV/cm. In this
case T = 300 K and Va = 13 kV.
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Figure IV.16: Point-to-point geometry: Two-dimensional isocontours of the electron density
and the magnitude of the electric field at t = 6, 10, 14, and 18 ns. For the electron density
the isocontours vary from 109 to 1013.5 cm−3, with a multiplier step of 100.5 cm−3. For the
electric field the isocontours vary from 10 to 30 kV/cm, with a step of 2.5 kV/cm. In this
case T = 1800 K and Va = 3 kV.
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Figure IV.16 shows the results obtained at T = 1800 K and Va = 3 kV. This figure presents a
characteristic case where the positive streamer never reaches the cathode, even after contact
with the negative discharge. That is, both the electron enhancement due to the discharge
starting from the cathode and the electric field in the positive streamer head are insufficient
to produce an electrical connection with significant enhancement in electron density. It is
interesting to note that the negative discharge is broader than for cases at higher voltages.

Figure IV.17 shows the results at T = 1800 K and Va = 5 kV. In this figure the junction
is formed in less than 4 ns. Figure IV.17 also clearly shows the increase in the electron
density in the discharge channel between 4.5 and 5.5 ns. Thus, this discharge will possibly
turn into spark discharge during the applied voltage pulse.

Figure IV.18 shows the results at T = 1800 K and Va = 7 kV. In this figure, the positive
and negative streamers are clearly visible. They propagate toward each other and collide
at t = 1.7 ns. This collision develops on a very short time scale compared to the previously
studied cases. Furthermore, a high electron density is produced in both streamers. Given
the remaining time of the voltage pulse, these conditions will likely produce a high-current
spark discharge.

Similarly to the other temperature cases studied, one sees that the applied voltage has a
significant impact on the propagation time scales of positive and negative streamers.

IV.4 Conclusions

In this chapter, we presented the application of the Ghost Fluid Method (GFM) with the
simulation of streamer discharges between electrodes of complex geometries. In streamer
simulations, it is particularly important to calculate the electric field accurately because, it
is directly related to charged species densities in Poisson’s equation, and because, transport
parameters and source terms have a strong non-linear dependence on the electric field. Thus
in this work, we have used the GFM for solving Poisson’s equation in order to calculate
the potential and electric field accurately close to the electrode. This method takes into
account the influence of the exact shape of the electrodes in a rectilinear grid, no matter
how the electrode surfaces cross the grid.

Two numerical solvers for Poisson’s equation have been tested in this work: the iterative
NAG module and the direct SuperLU solver. Only minor discrepancies have been observed
in the streamer dynamics computed using these two solvers. In fact, direct solvers are
inherently very accurate and robust. Furthermore for the case of a fixed grid, the most
time-consuming step in calculating the solution (i.e., the factorization) needs to be done
only once, at the beginning the discharge simulation. Thus, the direct SuperLU solver was
adopted for all studies presented in this chapter.

We have conducted two validation studies to test the performance of the GFM in solving
Poisson’s equation for streamer simulations. In a point-to-plane geometry, we have com-
pared the analytical solution for the potential and the Laplacian electric field with the
results calculated with the GFM. Very good agreement has been observed. To show the
improvement due to the use of the GFM close to the electrode, we have also compared the
magnitude of the electric field computed on the same grid, with the GFM and without any
special treatment for taking into account the real shape of the electrode (i.e., “the staircase
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Figure IV.17: Point-to-point geometry: Two-dimensional isocontours of the electron density
and the magnitude of the electric field at t = 1, 2.5, 4, and 5.5 ns. For the electron density
the isocontours vary from 109 to 1013.5 cm−3, with a multiplier step of 100.5 cm−3. For the
electric field the isocontours vary from 10 to 30 kV/cm, with a step of 2.5 kV/cm. In this
case Va = 5 kV.
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Figure IV.18: Point-to-point geometry: Two-dimensional isocontours of the electron density
and the magnitude of the electric field at t = 0.5, 1, 1.5, and 2 ns. For the electron density
the isocontours vary from 109 to 1013.5 cm−3, with a multiplier step of 100.5 cm−3. For the
electric field the isocontours vary from 10 to 30 kV/cm, with a step of 2.5 kV/cm. In this
case Va = 7 kV.
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approach”). As expected, the discrepancy between the two numerical approaches increases
as the grid becomes coarser. We have also shown that without the GFM, the electric field
along the electrode surface may present unphysical oscillations due to the random crossing
of the electrode surface with the grid. Second, we have compared results obtained using the
GFM with results obtained by Kulikovsky [1998] for the simulation of the positive streamer
propagation in a hyperboloid-to-plane configuration. Good agreement has been obtained
on all positive streamer characteristics during its propagation in the interelectrode gap.
Finally, we have applied the GFM to simulate the discharge in preheated air (at 1000 K)
at atmospheric pressure in point-to-point geometry (with a 5 mm interelectrode gap). This
discharge has been studied experimentally in [Pai et al., 2008; Pai , 2008]. For a constant
applied voltage of 7 kV, we have shown that positive and negative streamers start to prop-
agate in the gap from the anode and cathode, respectively. After the streamer interact in
the gap, we have observed a very rapid propagation of the positive streamer towards the
cathode in the volume pre-ionized by the negative streamer. This structure of the discharge
is in qualitative agreement with the experiments.

To take a first step towards understanding of the structure of discharges in point-to-point
geometry in preheated air, we have carried out a short comparison study for several tem-
peratures and applied voltages. Considering propagation time scale of the positive streamer
make possible to draw conclusions about the final discharge structure (i.e., spark discharges
or corona discharges) that are in good agreement with the experiments. This also indicates
that the streamer modeling at short time scales can be of a great help for the understand-
ing of nano-pulsed discharges at atmospheric pressure. In particular, it could indicate on
the key physical mechanisms leading to the diffuse regime (“D” regime) and the ranges of
parameters needed for generating this regime at atmospheric pressure. However, this study
is only a first step towards a more thorough comparison study between experiment and
simulation.

In this work, we have shown that the GFM is a simple method which can be readily imple-
mented in existing discharge codes. In this chapter, we have studied discharges propagating
between metallic electrodes, but the GFM can be easily extended to simulate dielectric bar-
rier discharges in complex two- and three-dimensional geometries, or to study the influence
of obstacles (i.e., dust particles, droplets, etc) on the streamer propagation.

In this work, no special numerical treatment has been done close to the needle electrodes
to take into account the exact shape of the electrode in setting up boundary conditions
for drift-diffusion equations of charged species. The boundary conditions are computed in
both directions on the grid assuming that the interface has a “staircase” shape. In this
chapter, as in [Kulikovsky , 1997a], we have used simplified boundary conditions: near the
anode and cathode surfaces, the gradient of the electron density is taken to be equal to zero.
More realistic boundary conditions for electrodes with complex geometries (i.e., secondary
emission processes due to ion bombardment, photoemission, etc), require modeling the
real shape of the electrode for setting up boundary conditions of drift-diffusion equations of
charged species. For flows in complex geometries, Tseng and Ferziger [2003] have developed
the ghost-cell immersed boundary method (GCIBM). This method handles Dirichlet and
Neumann boundary conditions while preserving the overall second-order accuracy of the
solver that they use in the flow far from boundaries. In [Zeghondy et al., 2007], we have
applied the GCIBM to implement Neumann boundary conditions on a hyperboloid anode
in a point-to-plane geometry.
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As a clear example of the strong influence a dielectric material on the filamentary dis-
charges, we experimentally studied a specific Dielectric Barrier Discharge (DBD) configu-
ration. Some results of this chapter have been published in [Celestin et al., 2008b].

V.1 Introduction

D
ielectric barrier discharges (DBDs), also known as barrier discharges or silent dis-
charges, have been studied since the invention of the ozonizer by Siemens in 1857.

Nowadays DBDs are widely used for industrial applications [Eliasson and Kogelschatz ,
1991a], such as gas depollution, surface treatment, excimer lamps, ozone generation and
plasma display panels. At atmospheric pressure (for gaseous gaps on the order of a few
millimeters), DBDs are mainly constituted of unstably triggered non-equilibrium transient
plasma filaments (also called microdischarges) [Eliasson and Kogelschatz , 1991a]. The short
duration (a few tens of nanoseconds) and unpredictable triggering of these filaments make
them difficult to study experimentally. During the last decade, a few authors have succeeded
in following the propagation of a single filament (the streamer phase) with high resolution
in time and space in a double dielectric barrier configuration, and thus have determined
the electron density and electric field inside using spectroscopic diagnostics [Kozlov et al.,
2001].

Guikema et al. [2000] observed self-organized patterns in a one-dimensional symmetric
DBD system with He/Ar mixtures and associated the patterns with characteristics for
charge transfer during one cycle of the applied voltage (for frequencies on the order of a few
kilohertz). They concluded that the patterns resulted from the presence of surface charge
deposits; that is, related to the intrinsic so-called memory effect of DBDs [e.g., Eliasson
and Kogelschatz , 1991a; Golubovskii et al., 2002]. Klein et al. [2001] progressed further
in this study by improving the time resolution of the imaging technique and observed
that the patterns obtained in [Guikema et al., 2000] were in fact constituted of several
filaments ignited at different times, which were spatially and temporally controlled by
the residual surface charges on the dielectric. It is also interesting to note that Chirokov
et al. [2004] also demonstrated a behavior of self-organization in a plane-to-plane DBD in
air at atmospheric pressure driven by high-frequency sinusoidal voltage (kHz) through a
comparison of experimental results with a numerical model.

Recently, Guaitella et al. [2006] described the bimodal behavior of the statistical distribution
of current peaks in a cylindrical DBD, and they concluded that the high-current group was
due to the self-triggering of several filaments, presumably correlated by a radiative effect
called the collective effect. They also studied the impact of this collective effect on the
injected energy in the discharge, which directly controls the chemistry. Collective behavior
of microdischarges has also been recently observed by imaging with a CCD camera on
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Figure V.1: Scheme of the reactor.

asymmetric surface dielectric barrier discharges (ASDBD) in [Allegraud et al., 2007].

This Chapter seeks to demonstrate the strong influence of the dielectric material and the
charges deposited on it on the filamentary discharges in air at atmospheric pressure at low
frequency (50 Hz) using a new experimental device coupled with an imaging method.

Firstly, we describe the experimental setup and the diagnostics in Section V.2. In Section
V.3 we show the characteristic regimes of the DBD by a statistical study. To show a clear
correlation between discharges corresponding to different peaks and the collective behaviors
of the microdischarges we present CCD imaging results of individual current peaks during
the positive half-cycle in Section V.4. Then we support the argument that the deposited
charges on the dielectric plate are responsible for the spatial and temporal organization of
the discharges in Sections V.5 and V.6.

V.2 Experimental setup

V.2.1 DBD reactor

The discharges are produced in a Pyrex cell (see Figure V.1). The upper electrode is a
cylinder in tungsten (diameter 2 mm) coated with a 1 mm layer of dielectric except on its
tip, and it is linked to a 50 Hz sine wave high-voltage power supply. The lower electrode is
salt water to allow for imaging. The discharge was not influenced by the salt concentration
or the resulting change in the resistance of the water. In the following the conductivity of
the water is ∼ 800 µS/cm.

The dielectric is a cylindrical Pyrex plate of 2.2 cm diameter and 2 mm thickness (Figures
V.1 and V.2) and placed above the water. Dry synthetic air flows at 500 SCCM (Standard
Cubic Centimeter) through the 5 mm gap at atmospheric pressure is used for the purpose
of pollution control. A gauge controls the pressure downstream of the reactor.
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Figure V.2: Experimental set-up scheme.

V.2.2 Electrical diagnostics

At atmospheric pressure in air, breakdown occurs at about 13 kV in this reactor. This
study was performed for three applied voltage amplitudes Va of 15, 18 and 20 kV.

CCD imaging is performed by an Andor iStar 734 camera, via a B7838-UV Pentax objective
which is efficient in the spectral range 230 − 800 nm. The Lecroy LT584M 1 GHz 4 Gs/s
oscilloscope, which can output an electric signal upon detecting a rising front, is used
to trigger the camera. The camera can be positioned either underneath the reactor (as
sketched in Figure V.2) to image the plasma zone through the water or beside the reactor
to image the gap. Current peaks are measured with a Fischer F33-5 Rogowski coil with a
bandwidth from 1 to 100 MHz. A capacitor Cm=1.11 nF is connected in series with the
reactor to measure injected energy and charge transfer. Both Va and Vm are measured with
Lecroy PPE20kV probes (see Figure V.2). The DBD generates a small number of very
short current peaks, measured as voltage steps across the capacitor as shown in Figure V.3,
due to the ignition of microdischarges between the electrodes that are extinguished by the
screening from the charge deposited on the dielectric plate (this process occurs over a few
tens of nanoseconds) [Eliasson and Kogelschatz , 1991a]. The first and second current peaks
correspond to the first and second voltage steps, respectively. Although DBDs generally
exhibit a great number of current peaks, in this configuration only a few current peaks are
observed (up to 4).

Note that in such an experimental configuration, the electrical signal of the capacitor volt-
age possesses a jitter of about 1 ms because of the usual unpredictability of AC DBDs
at atmospheric pressure and low frequency without specific preparation of the high-field
electrode [Eliasson and Kogelschatz , 1991b]. Moreover, one or several current peaks occur
during the positive half-cycle. The total number of current peaks in one positive half-cycle
depends on the applied voltage.

Figure V.4 shows an example of a characteristic current peak as a single-shot record, cor-
responding to the first step on the measurement capacitor voltage, measured with the
Rogowski coil. We can see that its total duration is about 100 ns and its maximum is
about 2 A. After ∼ 100 ns the current becomes slightly negative (∼ −0.1 A). We have
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Figure V.3: Screenshot of the oscilloscope. Sinusoidal curve: power supply voltage, 3.75
kV·div-1. Measurement capacitor voltage: 50 V·div-1. Output gate signal of the CCD:
arbitrary units. Timebase: 2 ms·div-1.
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Figure V.4: Current peak measured by the Rogowski coil.
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Figure V.5: Closed squares: measured integration of current peak versus the capacitor
charge. Dashed line: the linear regression. Solid line: representation of the function y = x.

assumed that this was due to perturbations in the electrical circuit.

Figure V.3 also shows the output gate signal of the CCD camera. The CCD array is opened
when the signal is non-zero. When the power supply changes polarity, the CCD switches on
for 2 ms in order to overlap with the first positive step of the measured capacitor voltage.
The aim of this work is to detect an event corresponding to an individual current peak
(one step in the capacitor voltage) and to record the current peak and the corresponding
image. Given that few current peaks occur during the positive half-cycle, a CCD gate of
2 ms results in the detection of only a single current peak. Sometimes, two current peaks
can appear during the opening of the CCD, but such images are then discarded.

V.2.3 Current measurement and charge transfer

The transferred charge is estimated in two ways:

1. The voltage increase at the measurement capacitor, using Q = Cm · ∆Um,

2. The integration of the current peak, using Q =
∫

i(t)dt from t = 0 to t(i = 0), for a
current peak recorded in single-shot.

Figure V.5 shows that the two measurement methods give close results.

We can see that the charge measured using the integral of the current peak is generally less
than the charge measured with the capacitor. This is due to the sampling of the current
peak (recorded in single-shot) by the oscilloscope; the integral of the current peak (2) is
then slightly underestimated.
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Figure V.6: Mean injected power measured using the Manley method versus the applied
voltage amplitude Va.

V.2.4 Injected power

We measured the mean power injected in the gas by the discharge for a given applied voltage
amplitude using the Manley method [Manley , 1943] (or Lissajous method) as described in
[e.g., Allegraud et al., 2007; Guaitella et al., 2006]. Figure V.6 shows that the mean injected
power is a linear function of the maximum voltage. The injected power increases by about
17 mW per kilovolt. Compared with the results obtained in [Guaitella et al., 2006], the
mean injected power we obtained here is less by a factor of ten. This is related to the
difference in the reactor geometries used; for example, it is interesting to note that the zone
where the plasma takes place in the reactor used in [Guaitella et al., 2006] is about ten
times larger than the one used for this study.

V.3 Current peak statistics

V.3.1 Temporal occurrence of current peaks

In order to characterize the DBD, a statistical study over ignition times of current peaks
was carried out for different applied voltage amplitudes Va. Figures V.7(a) and V.7(b)
present the mean number of peaks averaged over 100 periods of applied voltage, during
each millisecond increment of the period, starting from t = 0 up to 20 ms (the period of
the power supply voltage), for applied voltage amplitudes of 15 and 18 kV; t = 0 refers to
the voltage zero value, increasing voltage.

Figure V.7(a) shows that at t = 2.5± 0.5 ms, there is a 96% chance of measuring a current
peak and the corresponding discharge. Figure V.7(a) also shows the fluctuation in the mo-
ment of appearance of the current peaks. We notice two time intervals for their appearance



114 Chapter V. Experimental study of the filamentary discharges in a DBD

Figure V.7: Mean number of current peaks per millisecond from t = 0 ms to t = 20 ms.
Between 10 and 20 ms, the current peaks are negative. (a) Va = 15 kV and (b) Va = 18 kV.

in the positive half-cycle (t ∈ [0, 10] ms). Current peaks appear more consistently in time
during the positive half-cycle in Figure V.7(b), which shows the measurements for the case
of Va = 18 kV. But Figures V.7(a) and V.7(b) cannot detail the probability of the total
number of current peaks in the overall half-cycle nor the influence of the applied voltage
on this probability.

V.3.2 Number of current peaks per half-cycle

The relative number of current peaks occurring in the positive half-cycle is shown in Figure
V.8 for power supply voltage amplitudes of 15, 18 and 20 kV. Figure V.8 was obtained by
counting the total number of events (1, 2, 3 or 4 current peaks during the positive half-
cycle) over 100 complete positive half-cycles of the applied voltage, unlike the incremental
method used to obtain Figures V.7(a) and V.7(b).

For 15 kV, Figure V.8 shows that two situations are observed in this regime: either only one
or two current peaks occur during the positive half-cycle, with the latter in the majority
of cases. For the two current peaks case, there are about 2 ms between peaks (see Figure
V.3). Similar results for 18 and 20 kV are presented in Figure V.8.

The maximum of occurrences obtained for every Va is two current peaks; the cases of 3 and
4 total current peaks only occur when the amplitude is 18 or 20 kV. There was only one
current peak during the negative half-cycle for all the studied applied voltages.

From the results presented in Figure V.8, we can estimate an average number of current
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Figure V.8: Number of observed total current peaks by percentage during the positive
half-cycle for a power supply voltage amplitudes of 15, 18 and 20 kV.

Table V.1: Average total number of current peaks during the positive half-cycle.

Va(kV) 15 18 20
〈N〉 1.6 2.2 2.4

peaks during the positive half-cycle for each applied voltage amplitude (see Table V.1). The
data are consistent although insufficient to evaluate a real tendency. Indeed, as expected
for a DBD, the number of events increases with the applied voltage amplitude. One can
estimate a “statistical error” by summing the probabilities obtained in Figures V.7(a) and
V.7(b) and dividing by the average total number of peaks. For 15 and 18 kV the error
bars are shown in Figure V.8. These error bars are small (less than 10%) and show the
consistency of the statistical approach used in Figures V.7 and V.8.

V.3.3 Influence of first event on subsequent events

The measured current amplitude of first current peaks during the positive half-cycle when
Va is 18 kV is plotted as a function of Vpeak, the ignition voltage of a first current peak,
in Figure V.9. The accuracy of the maximum of a current peak depends on the sampling
rate of the current peak by the oscilloscope. Error bars are then evaluated according to
the sampling rate. Higher sampling rates result in smaller error, but lower sampling rates
permit a larger time range.

One can clearly see from Figure V.9 that the maximum of first current peak increases with
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Figure V.9: Measured current amplitude of first current peaks as a function of the applied
voltage at which they occur (Vpeak). Applied voltage amplitude: Va = 18 kV.

ignition voltage, and the same trend is observed for the transferred charge corresponding
to the first current peaks. This is not clearly observed for the subsequent peaks. This is
explained further in Section V.6.

To exhibit the influence of the first current peak on the subsequent ones for each positive
half period we plot in Figure V.10 the number of peaks per positive half period as a function
of the ignition voltage of the first one.

Figure V.10 shows that the subsequent peaks (second, third and fourth) are strongly in-
fluenced by the first one. On average, if the first current peak is ignited at small applied
voltages, the subsequent events can be numerous; it becomes possible to have two, three
or four peaks in total. Furthermore, according to Figure V.9, the total number of current
peaks is inversely related to the intensity of the first. Figures V.9 and V.10 show that the
higher the ignition voltage of the first peak, the higher its corresponding maximum current
and charges transferred and the smaller the number of following peaks during this positive
half-cycle. This result is explained further in Section V.6.

The spatial behavior of the microdischarges is described in the following section using CCD
images corresponding to individual current peaks (first, second, etc).

V.4 CCD imaging of individual current peaks during
the positive half-cycle

V.4.1 Methodology

In the previous section, we showed that depending on the AC voltage, a statistical number of
peaks appear during the positive half-cycle. Here, we do not monitor the propagation of the
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Figure V.10: Total number of current peaks in the positive half-cycle for three applied
voltage amplitudes as a function of the mean ignition voltage of the first current peak.

plasma filaments. CCD imaging has been used to take pictures of individual current peaks
(first, second, etc) to study the influence of their ranks (i.e., of their order of appearance in
the positive half-cycle).

The total transmission time of the trigger signal from the oscilloscope to the CCD was
estimated accurately to be 200 ns.

A CCD gate of 1 ms captures microdischarges emission corresponding to an individual
current peak. The CCD gate is synchronized to a reference of zero applied voltage by
triggering the CCD with the oscilloscope and can be shifted in time by introducing a delay,
in order to picture the current peaks of different ranks.

Events pictured can be preceded or followed by other events. They always correspond to
an individual current peak and are not accumulated.

Triggering the CCD with the rising current peak, as opposed to the zero voltage reference,
always results in a blank picture for gate times ranging from 10 ns up to the time at which
a subsequent current peak is measured. Thus no luminous events occur 200 ns after the
rising current peak trigger time, thereby eliminating the possibility that microdischarges
go undetected by the current probe.

V.4.2 Imaging results

As mentioned previously, only a few current peaks occur during the positive half-cycle (up
to four for the 20 kV amplitude case). In the comparisons of plasma filament behavior that
follow, it will be seen that the order of occurrence (i.e., rank) of the current peak is very
important.

Colour scale of Figures V.11 and V.12 are represented in arbitrary units (the red being
more intense than the violet).
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Figure V.11: CCD images of the event corresponding to a first current peak when the
camera is set up underneath the reactor (left image) and in perspective from an angle
(right image).

Images of a ‘first current peak’

Figure V.11 shows the luminous event corresponding to a first current peak in the positive
half-cycle when Va = 18 kV. In this case, three current peaks can take place in total during
the positive half-cycle (two discharges follow the presented one). The picture on the left of
Figure V.11 corresponds to a current peak of 0.35 A, which involves a charge transfer of
10 nC; the picture on the right corresponds to a current peak of 0.9 A, which involves a
charge transfer of 45 nC.

Figure V.11 is representative of discharges corresponding to a first current peak. They are
localized around the center of the dielectric for the underneath visualization and most of
the time corresponding to one or two filaments close to the central axis. We can also see on
the left image of Figure V.11 that thin luminous filaments emanate on the dielectric surface
from the ‘footprint’ of the filament crossing the gas gap [see also Celestin et al., 2008a]. The
figure obtained is close to the typical Lichtenberg figure for a positive charge deposition
[Bertein, 1973; Zhu et al., 1996; Murooka et al., 2001, and references therein]. The area
of this Lichtenberg figure is considerably larger than the luminous channel diameter as
mentioned in [Kogelschatz , 2002].

Images of a ‘second current peak’

Images of a second current peak in the positive half-cycle were obtained in the same manner
as for the first current peak. Figure V.12 shows the features of such an event, for Va = 18
kV and for three current peaks in total in the positive half-cycle. The picture on the left
of Figure V.12 corresponds to a current peak of 2.25 A, which involves a charge transfer of
90 nC; the picture on the right corresponds to a current peak of 1.5 A, which involves a
charge transfer of 76 nC.

One can see that the thick filaments from the left-hand image of Figure V.12 correspond
to the filaments in the gaseous gap from the right-hand image. The ends of the thick
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Figure V.12: CCD images of the event corresponding to a second current peak when the
camera is set up underneath the reactor (left image) and in perspective from an angle (right
image).

Dielectric plate

filaments on the left-hand image are in fact the ‘footprints’ of filaments. Hence, one can
define the ‘mean impact radius’ from the center of the dielectric to the filaments footprints
as sketched in Figure V.12. If the picture contrast is increased, one sees that yet more
filaments emanate on the surface from the footprints up to the dielectric edge, forming a
Lichtenberg figure for each filament in the volume.

For each Va studied, Figure V.12 is representative of microdischarges corresponding to a
second current peak. The third and fourth current peaks also have this typical multifilament
and organized structure, which is quite different from the first current peaks. This behavior
of microdischarges is discussed in Section V.6.

V.4.3 Spatial and temporal self-organization relation between fil-
ament length and ignition voltage of a current peak

It is possible to analyze the relation between the layout of the filaments and the electrical
measurements by comparing the CCD camera pictures and the current peaks measured by
the capacitor Cm or the Rogowski coil.

Mean impact radii were calculated for several current peaks and were related to the applied
voltage at which the current peaks occur (Vpeak). We realized these measurements for three
applied voltage amplitudes: Va = 15, 18 and 20 kV.

Increasing the applied voltage amplitude Va, reduces the average time of the first peak
appearance. This is a well-known effect in DBDs, which is due to the fact that the total
amount of transferred charge in cycles of the applied voltage increases with applied voltage.
This results in greater residual surface charge on the dielectric surface, causing the first
peak to ignite sooner. To avoid this shift and make an overall comparison for different Va,
〈Vpeak〉 the average voltage at which the first peak occurs for one Va, was estimated and
subtracted from each Vpeak [Allegraud et al., 2007].
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Figure V.13: Mean impact radius length versus the corrected voltage.

The graph from Figure V.13 clearly shows an increasing linear relation of the envelope of
the points. It must be noticed as well that data for the three applied voltage amplitudes
15, 18 and 20 kV match. Finally, one can see that filaments corresponding to peaks of
different ranks are in different voltage ranges of Vpeak and different length ranges of the
mean impact radius. Beyond the fourth peak, we observed that the dielectric plate is not
large enough for continuing the tendency shown in Figure V.13. Filaments which cannot
reach the dielectric plate anymore may reach the side of the reactor (also made of Pyrex).

The increase in the mean impact radius in one positive half-cycle with the rank of the
current peak is due to the deposition of charges by the previous discharges in the same
positive half-cycle; this is confirmed by a simple electrostatic model in Section V.5 and also
discussed in Section V.6.

V.5 Electrostatic modeling

A numerical 2D-axisymmetric electrostatic model simulation of the reactor has been per-
formed using COMSOL Multiphysics R© to validate the measured transferred charge by a
microdischarge and to understand the physical impact of the charges deposited on the
dielectric plate on the transient filamentary discharges (see Figure V.14).

Breakdown occurs when the metallic electrode is at about 13 kV. As seen previously, the
breakdown voltage decreases for the subsequent microdischarges due to the deposition of
charges on the dielectric. Assuming a quasi-uniform distribution of the negative charge
over the dielectric during the negative cycle, the potential difference between the metallic
electrode and the water electrode then has to be on the order of 13 kV for a first current peak.
Under this assumption, we fixed the metallic electrode at 13 kV and placed no charge upon
the dielectric surface. Having defined the boundary conditions for the simulation domain,
we can obtain the Laplacian electric field in the gaseous gap (see Figure V.14), and we
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Figure V.14: Electric field (V·m-1) given by the electrostatic model without surface charge
on the dielectric plate. Red dashed line: line along which we take the norm of the electric
field in Figure V.15.

can also define a positive surface charge density upon the dielectric to model the screening
of the electrostatic field by the transferred positive charges of a first current peak. This
surface charge density is not homogeneous [Kozlov et al., 2001; Yurgelenas and Wagner ,
2006] and is assumed to be Gaussian:

σs(r) =
Q

2πσ2
exp

(

− r2

σ2

)

(V.1)

where σ is the characteristic length of the charge deposit (which can be chosen according
to the experimental results) and Q is the total amount of charge (integration of (V.1) from
r = 0 to infinity). From the measured mean impact radius of the first peaks from Figure
V.13, we can take σ = 0.2 cm and look for the results with different Q. By running this
simulation, we found that Q must be ∼ 10− 100 nC to obtain an electric field comparable
to the electric field applied. This corresponds well to the values we obtained experimentally.
In Figure V.15 we plot the results of the simulation for the electric field along the red dashed
line of Figure V.14 (called arc-length) from the place of the maximum Laplacian electric
field (at the edge of the metallic cylinder electrode) to the dielectric plate, for different Q.

We can see in Figure V.15 that the value of Q for which the maximum field (at the metallic
edge) is the most shielded is 40 nC. The electric field increases at this point for lower or
higher Q, with the latter case corresponding to an inversion of the field. This fits well with
the experimental results, as indeed Q = 40 nC is the average charge transferred by a first
current peak.

One also can see in Figure V.15 that the electric field on the dielectric surface increases
significantly with Q and can exceed the breakdown voltage. The physics is then no longer
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Figure V.15: Norm of the electric field for several total amounts of charge upon the dielec-
tric. Arc-length= 3 mm corresponds to the edge of the metallic electrode and Arc-length= 8
mm corresponds to the dielectric plate with a Gaussian surface charge distribution (V.1),
with σ = 2 · 10−3 m.

static and involves the triggering of surface discharges. Of course, a dynamic simulation
would be necessary to completely model this behavior and we make a first step to realize
it in the chapter VI.

V.6 Discussion

From this study, it follows that for discharges generated in air at atmospheric pressure using
this particular reactor driven by a 50 Hz sine wave power supply, only a few current peaks
appear in the positive half-cycle of the applied voltage (similar to the results of [Guikema
et al., 2000] for another DBD configuration). The electrical measurements combined with
the imaging diagnostics revealed that the first current peak in the positive half-cycle corre-
sponds mostly to a single centred filament in the gaseous gap (see Figure V.11). All of the
subsequent peaks always correspond to a bunch of filaments in the gaseous gap (see Figure
V.12). This reveals the generation of several transient discharges in a time window smaller
than 50 ns, according to the current peak measurements (i.e., Figure V.4), which is a time
scale effectively instantaneous compared with the characteristic rising time of the applied
voltage (∼ 1 ms for the results presented herein). Photon radiation coupling may explain
the correlation between so many filaments over such a time scale. Guaitella et al. [2006]
explained that an initial filament triggers the others by irradiating the dielectric plate, but
we can also suggest that additional radiative processes by a first streamer play a role, such
as photoionization in the high-field region.
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Furthermore, we see in Figure V.12 that the subsequent discharges following a first peak
do not reach the center of the dielectric anymore. More precisely, the mean impact radius
was measured as an increasing function of Vpeak (see Figure V.13). This effect on the layout
of the plasma filaments is due to the charges deposited on the dielectric. It must be noted
that the behavior of the transient filaments and the measurements of the charge transferred
by a first current peak are in good agreement with a simple electrostatic model discussed in
Section V.5. This model also confirms that the screening mechanism of a DBD, namely the
deposition of charges on a dielectric, changes the entire field configuration in the gaseous
gap as well as the propagation of subsequent streamers. As stated in [Kogelschatz , 2002], in
a typical discharge situation there is a competition between individual microdischarges for
the available surface area. In the situation we encountered in this chapter, this competition
is dominated by the residual charges already deposited on the dielectric by the previous
discharges, and this effect makes the filaments of successive current peaks extend farther
and farther from the center of the dielectric to deposit their charge. It has to be noted that
in this study we did not observe a single sequence of current peaks in the same positive
half-cycle of the applied voltage. It was impossible because the readout time of the CCD
was too long.

Moreover, Figure V.9 shows that, for the first peak in the positive half-cycle, the maxi-
mum current increases with Vpeak, the applied voltage at which the current peak appears.
Therefore, because the charge transferred is related to the screened field, in this experi-
mental configuration, the discharge does not occur for a constant voltage in the gaseous
gap (meaning the gap above the deposits of charge). Equivalently, the discharge does not
occur at a constant field, presumably the breakdown field, in the high-field region near the
metal cylinder edge. Indeed, if the microdischarge occurred at a constant voltage in the
gaseous gap (presumably the breakdown voltage in the considered geometry), it would gen-
erate always the same current necessary to transfer sufficient charge to screen the electric
field. We propose that the ignition time of the first current peak (of which current-voltage
relationship is shown in Figure V.9) corresponds to the efficiency and the stochasticity of
the initiation of the ‘pre-breakdown phase’ described in [Kozlov et al., 2001; Yurgelenas and
Wagner , 2006] or the ‘Townsend phase’ described in [Braun et al., 1992]. In the config-
uration used in this chapter, the pre-breakdown phase activity occurs at the edge of the
metallic cylinder electrode, where the radius of curvature is smallest and hence where the
electric field is strongest. The moment of the beginning of the Townsend phase is suspected
here to be influenced by the charge deposited on the dielectric, as surface charge can af-
fect the secondary emission from the dielectric. The current of this microdischarge is then
determined by the electric field at the metallic electrode when the microdischarge finally
occurs.

The impact of the amount of charge deposited on the dielectric plate on (1) the multi-
filament behavior and (2) the intensity of the discharges cannot be resolved solely by using
a static model; a dynamic model of streamer propagation toward a charged dielectric plate
is required.
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V.7 Conclusions

The electrical measurements combined with the imaging diagnostics revealed that the first
current peak in the positive half-cycle corresponds mostly to a single centred filament in
the gaseous gap, but all of the subsequent peaks always correspond to organized multi-
filamentary discharges in the gaseous gap. Both kinds of discharges are strongly branching
over the dielectric material.

The spatial organization of plasma filaments is strongly affected by the deposited charges
on the dielectric material. A first discharge in the positive half-cycle deposits charges close
to the center of the dielectric plate. Subsequent discharges are affected by these surface
charges and plasma filaments then impact the dielectric farther and farther from the center
of the dielectric plate.

The first current peak ignition time corresponds to the efficiency and the stochasticity of the
initiation of the ‘pre-breakdown phase’ and consequently the amount of transferred charges
in the positive half-cycle is correlated with the voltage at the metallic electrode when a first
current peak occurs. This has an impact on the temporal organization of discharges in one
positive half-cycle.

A model of the streamers dynamics in such an experimental configuration is required to
better understand the impact of a dielectric material, and the charges deposited upon it,
on the streamers dynamics. Such a study is presented in Chapter VI.
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VI.1 Introduction

A
s stated in Chapter V, in order to further advance in the understanding of the dis-
charge, it is necessary to study streamer dynamics in Dielectric Barrier Discharges.

However, the experimental setup used in this Chapter has a complex geometry, especially
with a dielectric around the tip anode. Therefore, three-dimensional computations would
be necessary to simulate this discharge.

In this chapter, we consider a simplified axisymmetric configuration using a hyperboloid
point-to-plane geometry with a dielectric material on the plane cathode. We study the
streamer dynamics in this configuration, and we show that the results obtained are in good
agreement with the experimental results obtained in Chapter V.

The point-to-plane configuration studied is depicted in Figure VI.1 and is similar to the one
presented in Chapter IV, with the addition of a dielectric material on the plane cathode.
The configuration is axisymmetric, with a needle anode that is assumed to be an infinite
hyperboloid body of revolution about the axis of symmetry. The cathode is the plane
perpendicular to the axis of symmetry and coinciding with the origin of x coordinate.

Near the needle electrode, the electric potential is calculated by solving the discretized Pois-
son’s equation (II.2) using the Ghost Fluid Method (see Chapter IV). As for the case with
no dielectric material, the analytical Dirichlet boundary condition is used in order to reduce
the time consumption of the simulation. Indeed, as stated at the end of Section IV.2.1,
solving Poisson’s equation accurately using the homogeneous Neumann boundary condition
(~∇V · ~n = 0, where ~n is the unit vector normal to the surface boundary) would be more
time-consuming as it requires expanding the computational domain and thus significantly
increasing the computation time of the simulation.

In Figure VI.1, we have divided the electrode gap into two domains Ω1 and Ω2. The
domain Ω1 is constituted of air at t = 0, therefore the dielectric permittivity in this domain
is ǫ = ǫ0; this is the domain in which the discharges propagate. The domain Ω2 is the
dielectric material with permittivity ǫ = ǫ2.

To take into account several domains with different dielectric permittivities, the governing
equation for the electric field is:

~∇ · ~D = ρ (VI.1)

where ~D = ǫ0
~E + ~P is the electric displacement field, and ~P the polarization density of

the material. For linear and isotropic media, ~D = ǫ ~E ≡ ǫrǫ0
~E, where ǫ and ǫr are scalars.

Thus, as ~E = −~∇V , the equation governing the electric potential is Poisson’s equation
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Figure VI.1: Illustration of the hyperboloid needle-to-plane system with a dielectric material
layer above the plane cathode. The potential at the needle is Va. The electric potential at
the cathode plane is 0 V. The domain Ω1 is in air, and therefore has a dielectric permittivity
ǫ0. The domain Ω2 is the dielectric with a dielectric permittivity ǫ2.

(I.31) with variable coefficients:

~∇ · (ǫ~∇V ) = −ρ (VI.2)

where the charge density ρ is generally a function in space at a given time. The dielectric
of the reactor described in Chapter V is made of Pyrex, hence its relative permittivity
ranges between 4.6 and 5. In the following, we take ǫr=5 for the relative permittivity of
the dielectric material. Its thickness is d = 1 mm.

In Section VI.2 we will present the discretization of Equation (VI.2) on a numerical grid.
In Section VI.3 we will find the analytical solution of (VI.2) in a configuration similar
to the one we will simulate. This analytical solution will be used in the simulations as
boundary conditions for Poisson’s equation. The streamer simulations in the point-to-
plane configuration with a dielectric plane will be presented in Section VI.4. The obtained
results will then be compared to experimental measurements presented in Chapter V.
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VI.2 Discretization of a Poisson’s equation with vari-
able coefficients

To take the plane dielectric layer positioned above the cathode into account, one can dis-
cretize Equation (VI.2) using the same method as for Poisson’s equation with constant
coefficients (II.1). The coefficients of the discretized Poisson’s equation (II.2) become:
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(VI.3)

where ǫi,j is the dielectric permittivity at grid node (i, j). We also have to take into account
the surface charge density on the dielectric σs, which causes an additional jump in the
normal component of the electric field. As we consider here a plane dielectric, σs is only
a function of the radial position, and we define σsj ≡ σs(rj). Considering the numerical
grid, as depicted in Figure VI.2, we assume that the dielectric surface lies on the interface
between the nodes (i∗, j) and (i∗ + 1, j); i.e., on the edge of cell (i∗ + 1/2, j). Thus, the
source term ρi,j of (II.2) has to be replaced with ρ′

i,j only at the points (i = i∗, j) and
(i = i∗ + 1, j), such that:
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(VI.4)

In the considered configuration, ǫi∗+1,j = ǫ0 and ǫi∗,j = ǫ2. The surface charge density on
the dielectric material is caused by the fluxes of charged species to the dielectric surface,
and thus we define the surface charge at time tk+1 as:
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(VI.5)

where subscripts “p” and “e” refer to positive ions and electrons, respectively, Σi∗+1/2,j is
the surface of the interface of the cell in contact with the dielectric, and F x,k

i∗+1/2 refers to
the fluxes defined in Chapter II accounting for drift fluxes and diffusion fluxes (depending



VI.3. Analytical electrostatic study of the point-to-plane configuration with dielectric 129

Figure VI.2: Representation of the numerical grid in the presence of a plane dielectric. The
shaded domain represents the region Ω2. The gas/dielectric interface lies at xi∗+1/2.

on the chosen boundary conditions). Relation (VI.5) means that charged species can be
deposited on the dielectric, but we do not consider that they can leave the dielectric surface
on the time scale studied in this work.

VI.3 Analytical electrostatic study of the point-to-
plane configuration with dielectric

In Section IV.2.2 we solved Laplace’s equation with constant coefficients in hyperbolic ge-
ometries. Equation VI.2 (with ρ = 0) can be solved in similar fashion, that is through the
use of the symmetry of the electrostatic system. In Section IV.2.2, we showed that this
problem is clearly simplified by the use of hyperbolic coordinates, since equipotential sur-
faces and electric field lines are confocal hyperboloids of revolution and their corresponding
orthogonal ellipsoids, respectively. Ideally, we would simulate a planar dielectric material,
since it is planar in the experimental study. Using a plane also simplifies the definition
of boundary conditions for the fluxes in a rectilinear mesh. However, in this hyperbolic
configuration a plane dielectric breaks the symmetry of the system. Indeed, the planar
dielectric surface cannot be defined as an equipotential surface, and the polarizing effect of
the dielectric may distort the layout of electric potential in a very complex way.

The analytical solution of Poisson’s equation (VI.2) with ρ = 0 is needed for defining
the boundary conditions (see Figure IV.3). It can also be used to initialize an iterative
solver for Poisson’s equation in the whole simulation domain. To derive this analytical
solution, we have assumed that the dielectric interface is not exactly a plane but instead
follows an equipotential surface of the point-to-plane system without dielectric. That is,
we have assumed that the dielectric interface is a hyperboloid confocal to the anode (see
Figure VI.1). It is interesting to note that the hyperbolic equipotential surfaces in the
case without dielectric material remain so in the case with dielectric because of the system
symmetry.
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We recall the transformation from Cartesian to hyperbolic coordinates (IV.7):
{

x = αξ(1 + η2)1/2

r = αη(1 − ξ2)1/2 (VI.6)

where ξ2 < 1 and α 6= 0. The equipotential surfaces of the problem are defined by ξ(x, r) =
C, where C is a constant. We note that ξ = ξ0 defines the anode surface, ξ = 0 defines the
cathode plane, and ξ = ξ1 defines the dielectric interface.

To define the dielectric interface, we consider a hyperboloid equipotential surface ξ = ξ1

close enough to the cathode to be considered a good approximation of a plane dielectric.

VI.3.1 Electric potential

The relative dielectric permittivity ǫr is a constant in each domain Ω1 and Ω2. Thus it is
possible to solve for the electric potential in each domain separately. Given the symmetries
of the system, the solution in each domain follows from the electric potential given in
Section IV.2.2 (i.e., Equation (IV.9)):
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where A, B, A′, and B′ are the four unknowns determined according to the four boundary
condition equations:

V1(ξ0) =
A

2
log

1 + ξ0

1 − ξ0

+ B = Va (VI.8)

V2(ξ = 0) = B′ = 0 (VI.9)

V1(ξ1) = V2(ξ1) (VI.10)

ǫ0(~n · ~E|ξ>ξ1,ξ→ξ1) − ǫ2(~n · ~E|ξ<ξ1,ξ→ξ1) = σs = 0 (VI.11)

where ~n is the unit vector normal to the dielectric interface, and σs is the surface charge
density upon the dielectric material, which is considered to be zero in this analytical study.
Equation (VI.8) defines the potential value Va at the anode. Equation (VI.9) sets the zero-
potential value at the cathode. Equation (VI.10) is the condition for the electric potential
continuity across the dielectric interface. Finally, Equation (VI.11) defines the discontinuity
of the normal component of the electric field through the dielectric interface [e.g., Durand ,
1966a, c].

From the formulation of gradient in this coordinates system (IV.12), one has:

~E = −~∇V = − 1

Ξ

∂V

∂ξ
~uη (VI.12)
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Then, from (VI.11) one gets:
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The electric potential is fully determined by (VI.7) and (VI.13). To transform these relations
into cylindrical coordinates, Equation (IV.11) is used.

VI.3.2 Electric field

The electric field in each domain is derived from Equations (VI.12), (VI.7) and (VI.13) as:
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and ~E = Ei~uη in the domain Ωi. Note that ǫr = 1 equalizes the electric potential in
both domains and gives the results obtained in Section IV.2.2. As noted previously, in
the following, we take ǫr=5 to be the relative permittivity of the dielectric material. Its
thickness is taken to be d = 1 mm.

VI.3.3 Approximation of the analytical model

In this chapter we use a simulation domain dimension of 1 × 0.5 cm2 and a thickness of 1
mm for the dielectric layer. The parameters a and b (see (IV.8)) of the hyperboloid anode
are defined by a = 0.5 and b = 0.18, giving a radius of curvature of 648 µm, which is on the
same order of magnitude as the radius of the edge of the metallic cylinder in Chapter V.
The cathode is the plane defined by x = 0, and the anode is set to 13 kV, which corresponds
to the experimental breakdown voltage of a very first discharge ignition (see Section V.5).

In the previous section, the analytical solution was found using a hyperbolic dielectric
interface. However, the dielectric layer upon the cathode is planar in the simulated con-
figuration. Since the analytical solution of the electric potential is used as the boundary
condition at the radial boundary r = Rd of the simulation domain, we have chosen to define
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Figure VI.3: Solid line: shape of the simulated dielectric interface in the streamer code.
Dotted line: dielectric interface taken in the analytical model for the calculation of the
boundary conditions for Poisson’s equation. Dot-dashed line: surface of the anode.

the dielectric interface as the confocal hyperboloid which crosses the plane dielectric at the
radial boundary. The geometry is illustrated in Figure VI.3.

Figure VI.4 shows that for such a simulation domain and dielectric layer, this method gives
accurate results. Indeed, Figure VI.4 demonstrates that the results from analytical and
numerical models are close, especially in the vicinity of the tip of the anode. We note that
discrepancies are visible close to the dielectric interface. Determining the exact solution
for the problem with a plane dielectric is not straightforward and it is difficult to quantify
the accuracy of our approach better than by the range given by the difference between the
solutions represented in Figure VI.4. However, the error in the Laplacian field close to the
dielectric is clearly negligible compared to the space charge electric field of the streamer head
when the streamer reaches the dielectric. Moreover, from a numerical point of view, the
number of iterations required of the NAG solver is heavily reduced by these new boundary
conditions, indicating that the obtained numerical solution is very close to the real solution
of this system.

VI.4 Simulation of streamer dynamics

As preliminary work, we have carried out the same electrostatic study as in Section V.5. We
found that for a distribution of surface charge defined by Equation V.1 with a characteristic
size σ = 0.2 cm, the electric field at the anode tip falls to zero for a total charge Q ≃ 40
nC. This is equal to the charge we found in Section V.5 for the electrostatic modeling of the
experimental reactor. For the same shape of charge distribution, the total surface charge
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Figure VI.4: Magnitude of the electric field along the axis of symmetry, calculated for setting
the Dirichlet boundary conditions. Solid line: numerical solution of Laplace’s equation
computed on a 1000× 500 Cartesian grid. Dashed line: analytical solution used for setting
the Dirichlet boundary condition.

Q ≃ 35 nC is required to decrease the electric field to the breakdown field Ek ≃ 30 kV/cm.
Considering Section V.5, this indicates that the simplified configuration considered in this
chapter can be used to obtain the order of magnitude for the main electrical characteristics
related to a first current peak in the positive half-cycle of the experimental work discussed
in Chapter V.

In the following, we study streamer dynamics in the above defined configuration. As for
the point-to-plane configuration without dielectric studied in Section IV.3.2, we initiate the
positive streamer by placing a Gaussian spot of neutral plasma close to the anode tip:

np(x, r)|t=0 = ne(x, r)|t=0 = n0 exp

[

− r2

σ2
r

− (x − x0)
2

σ2
x

]

(VI.15)

where x0 = 0.5−σx, σx = 0.01 cm, and σr = 0.01 cm. At t = 0, there are no negative ions.
The initial maximum density is n0 = 1014 cm-3.

In this study we have used the same transport parameters and reaction rates as in [Ku-
likovsky , 1998], and we have used the positive ion mobility from [Morrow and Lowke, 1997].
Given the complexity of the simulated problem, the results shown in the present work are
computed using the upwind scheme. We mentioned in Chapter II that the upwind scheme
is able to provide essential information on streamer dynamics, although it overestimates
the electron density and the electric field.

The simulation domain is 1×0.5 cm2, discretized on a 1597×344 grid. In the axial direction,
the grid is:

• uniform with a cell size of ∆x = 5 µm from x = 0 to 0.75 cm
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• refined around the dielectric interface with ∆x = 1 µm from x = 0.75 cm to 0.125 cm

• non-uniform from x = 0.125 cm to 0.15 cm with a geometric expansion ∆xi =
1.1∆xi−1 up to ∆x = 5 µm at x = 0.15 cm

• uniform with ∆x = 5 µm until x = 0.55 cm

• non-uniform, following a geometric progression with a ratio of 1.1 up to x = 1 cm

In the radial direction we have used a grid that is:

• uniform with ∆r = 5 µm up to r = 0.15 cm

• non-uniform, following a geometric progression with a ratio of 1.1 up to r = 0.5 cm

The photoionization source term has been computed using the three-group SP3 approach
with Larsen’s boundary conditions (see Chapter III).

The boundary conditions for fluxes at the dielectric surface have been observed to play a
significant role after the streamer contacts the dielectric material. In the following, the
boundary conditions are zero for the diffusion and drift fluxes. We model the secondary
emission due to ion bombardment by the second Townsend coefficient γ defined as the
average number of electrons produced by one ion as it impacts the dielectric material. At
the end of this chapter we also show some results obtained with the dielectric acting as a
perfectly emitting boundary, that is with a zero-gradient condition on the electron density
∂ne

∂x

∣

∣

x=0.1
= 0.

VI.4.1 Streamer propagation in the gas gap

At the beginning of the simulation, the positive streamer is initiated close to the anode tip
and then propagates towards the grounded plane. As an example of the results obtained,
Figures VI.5 and VI.6 show cross-sectional views of the electron density and the magnitude
of the electric field, respectively, at t = 3 ns.

We found that the secondary emission via ion bombardment at the dielectric interface does
not play any role during streamer propagation in the gas gap. Conversely, the role of
secondary emission becomes significant when the streamer reaches the dielectric surface.
This will be discussed in the next section.

The propagation of the streamer from the anode to the dielectric surface lasts ∼4.5 ns.
During this phase, the ions and electrons near the dielectric surface are produced only by
the photoionization. Figure VI.7 shows that the increase of the surface charge density due
to the ion drift towards the dielectric is slow. During the streamer propagation, the surface
charge density does not increase sufficiently to distort the Laplacian electric field. Figure
VI.7 also illustrates the modification of the surface charge variation at t = 4.5 ns, indicating
the interaction of the streamer with the dielectric surface.

To compare our results with experiments, we have also calculated the electric current col-
lected by the cathode. The cathode plane is under the dielectric material and therefore the
collected current at the cathode is the displacement current:

I =

∫

S

∂ ~D

∂t
· d~S = ǫ2

∫

S

∂ ~E

∂t
· d~S (VI.16)
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Figure VI.5: Cross-sectional view of the distribution of the electron density at t = 3 ns.
The white areas represent the anode and the dielectric material.

Figure VI.6: Cross-sectional view of the distribution of the magnitude of the electric field
at t = 3 ns. The white area represents the anode.
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Figure VI.7: Radial distribution of the surface charge density upon the dielectric before the
streamer reaches the dielectric surface, from t = 0 to t = 4.5 ns.

where S is the surface of the cathode. This calculation is not representative of the total
current of the discharge but gives an estimation of the current measured by a current probe
linked to the cathode, as performed in the experiments described in Chapter V. Figure VI.8
shows the current collected by the cathode during streamer propagation.

Figure VI.8 shows a clear increase of the current as the streamer head gets closer to the
cathode. A maximum of 0.76 A is reached at t = 4.6 ns when the streamer impacts the
dielectric surface. In the current measurements, such as those shown in Figure V.4, one
cannot accurately resolve the short time scale of streamer propagation, although we can
estimate that streamer propagates on the same order of time. The maximum current is in
good agreement with typical measurements in the experiments. As mentioned previously,
the γ parameter has not been found to play a significant role during streamer propagation
in the gas gap, and thus the current is not modified by the value of γ until the impact of
the streamer head on the dielectric.

Figures VI.9 and VI.10 show the cross-sectional structure of the discharge at the moment
of the impact on dielectric (i.e., t = 4.5 ns).

Because of the zero boundary condition for fluxes, except for the secondary electron flux
due to ion bombardment, a small region of about 20 µm close to the dielectric surface has
a low electron concentration, and thus the streamer stops when it reaches this region until
secondary processes such as photionization, photoelectric effect, or ion bombardment can
compensate for the lack of electrons. Then, a sufficient number of electrons is created to
neutralize the streamer head partially. As for the secondary processes, some preliminary
studies showed that the photoelectric effect becomes very important, or even predominant,
when the streamer reaches the dielectric. This provides enough electrons to neutralize the
streamer head. In the present study, we did not take into account the photoelectric effect
in order to save computation time. However, to compensate for the lack of electrons and to
model streamer dynamics after contact with the dielectric surface, we artificially increase
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Figure VI.8: Current collected by the cathode as a function of time during streamer prop-
agation.

Figure VI.9: Cross-sectional view of the distribution of the electron density at t = 4.5 ns.
The white areas represent the anode and the dielectric material. In this simulation γ = 0.1.



138 Chapter VI. Simulation of a point-to-plane DBD

Figure VI.10: Cross-sectional view of the distribution of the magnitude of the electric field
at t = 4.5 ns. The white area represents the anode. In this simulation γ = 0.1.

the γ coefficient. Note that the variation of γ has no impact on the propagation phase of
the streamer (from t = 0 to t = 4.5 ns) nor on the current shown in Figure VI.8. The
typical value for gamma found in the literature for dielectrics such as Pyrex is γ ≃ 0.01
[e.g., Golubovskii et al., 2002]. In this work, we use γ as a parameter and study the results
obtained for values of γ between 0.01 and 1.

VI.4.2 Interaction between the streamer and the dielectric

Because of electron emission from the dielectric surface, the streamer head is partially
neutralized. However, the neutralization of the streamer head is not complete, and the
streamer eventually branches on the dielectric surface. Surface discharges then spread out
on the dielectric. Figures VI.11 and VI.12 show cross sectional views of the electron density
and the magnitude of the electric field, respectively, at t = 8.5 ns and for γ = 0.1. Figure
VI.12 clearly shows that during this phase the electric field is screened, except at two
visible spots, which are the surface streamer heads (as the simulation is axisymmetric this
discharge has a ring shape).

Figure VI.13 shows the radial profile of surface charge deposited upon the dielectric during
the propagation of the surface discharge. There is clearly a peak in the profile of the surface
charge, just before a sharp decrease. This corresponds to the position of the surface streamer
head propagating along the dielectric surface. Furthermore, the surface charge density at
r = 0 decreases for t > 6.5 ns. In this simulation, the only way for the surface charge
to decrease is through the deposition of electrons on the dielectric surface (see Equation
(VI.5)). Hence, as the surface streamer propagates, the high field in its head increases
the surface charge by ion deposition, and after the streamer head passes, the electron flux
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Figure VI.11: Cross-sectional view of the distribution of the electron density at t = 8.5 ns.
White areas represent the anode and the dielectric material. In this simulation γ = 0.1.

Figure VI.12: Cross-sectional view of the distribution of the magnitude of the electric field
at t = 8.5 ns. White area represents the anode. In this simulation γ = 0.1.
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Figure VI.13: Surface charge density upon the dielectric. Results are computed using a fine
grid (∆x = 1 µm close to the dielectric surface) and with γ = 0.1.

decreases the surface charge density until the electric field is screened.

It is interesting to note that, for all values of γ studied in this work, the surface charge
affects the propagation of the surface discharge only after 6.5 ns. That is, the surface charge
field becomes greater than Ek only after 6.5 ns (this is verified by keeping σs constant for
a given moment of time, and by solving (VI.2) with ρ = 0) i.e., after the ignition of the
surface discharge. This means that the breakdown field required for the surface discharge to
be ignited is not exceeded through surface charge accumulation, but instead by the space
charge density in a volume close the dielectric surface. This is the case even when the
streamer head is easily neutralized, that is for high γ values or for a perfectly emitting
dielectric surface.

From the results presented in Figure VI.13, one finds that the total surface charge at time
t = 9 ns is 1.2 nC, which is 40 times less than the total surface charge to screen the
Laplacian electric field (see the beginning of Section VI.4). This means that the screening
of the electric field is mostly due to the space charge. To compare the different contributions
of surface charge and space charge in the screening of the electric fields, we computed the
surface charge and/or the space charge electric fields, from the results obtained at t = 9 ns.
The results are shown on Figure VI.14. We note that the total electric field in the plasma
channel between the anode and the dielectric is roughly constant and on the order of the
breakdown field. This means that there is no significant electron multiplication in this
channel, but instead just electron drift towards the dielectric. Note that this behavior was
also observed for different configurations in [e.g., Braun et al., 1992; Gibalov and Pietsch,
2000]. Moreover, one sees that both surface and space charge have to be taken into account
to understand the screening of the electric field. The main effect of the space charge field
is the screening of the high field region close to the anode tip, while the main effect of the
surface charge is the screening of the electric field close to the dielectric surface.

Figure VI.15 compares the surface charge computed using a coarse grid with ∆x = 5 µm in
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Figure VI.14: Axial electric field at time t = 9 ns along with the individual contributions
from space charge and surface charge. Solid line: only the surface charge given by the
streamer simulation is taken into account (no space charge). Dashed line: electric field
given by the streamer simulation. Dotted line: results without taking into account the
surface charge.

the vicinity of the dielectric to that using the reference refined grid at t = 6 ns. This figure
shows that at t = 6 ns the surface charge obtained with the coarse grid is much higher than
that obtained with the fine grid (see Figure VI.13). Furthermore, the refinement of the grid
close to the dielectric surface has a significant impact on the simulation results. In general,
it delays surface discharge ignition and slows down its propagation. As shown by Figure
VI.15 these discrepancies are much larger than the effect of varying the γ parameter.

VI.4.3 Perfectly emitting dielectric surface and electron density
in the vicinity of the anode tip

We have performed simulations considering a surface that could provide as many electrons
as required by the electric field (boundary condition: ∂ne

∂x

∣

∣

x=0.1
= 0, instead of zero flux).

This corresponds to a dielectric surface that completely neutralizes the streamer head. In
this case, we have observed no propagation of the surface discharge on the dielectric.

In this situation, instead of taking photionization processes into account, which partly
counterbalance the lack of electrons due to the zero-flux boundary condition, one can use
a neutral background of 109 cm-3 (see Appendix C). For a case without dielectric, we have
demonstrated that this reproduces the main features of streamer dynamics (see Section
II.3). In the present configuration, we observe the propagation of a primary streamer and its
screening by surface charge deposition on the dielectric, as in the case with photoionization.
However the continuous background provides enough electrons close to the tip of the anode
to trigger streamers outside the screened channel.
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Figure VI.15: Surface charge density upon the dielectric at t = 6 ns.

Figure VI.16: Cross-sectional view of the distribution of the electron density at different
times. (a): 9.5 ns. (b): 14.5 ns. (c): 19.5 ns. (d): 24.5 ns. The white areas represent
the anode and the dielectric material. Simulations are done assuming a perfectly emitting
dielectric surface and with a neutral background of 109 cm-3.
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Figure VI.16 clearly shows the triggering of the subsequent discharge. Note that the simu-
lated discharge is not fully physical, since we use a 2D axisymmetric approach to describe
a 3D phenomenon. We note that during these simulations the second streamer reaches the
expanding region of the numerical grid, which is the reason for the presence of the small
squares visible in Figures VI.16(c) and VI.16(d). We presume that this is also the reason
for the non-physical swelling of the discharge zone visible in Figure VI.16(d). In a full
3D simulation, one could expect this secondary discharge to split into several independant
streamers. Moreover, as stated previously, the screening of the electric field on such a short
time scale (∼10 ns) results from both surface charge and space charge. Conversely, the
screening of the central part of the electric field in the experiment, which determines the
particular shape of filaments corresponding to second current peaks (see Section V.4.2), can
only come from the surface charge trapped on the dielectric. Indeed, the characteristic time
between two discharges (∼1 ms) is longer than the volume recombination time. However,
the surface charge is known to remain for a very long time (see [Golubovskii et al., 2002]
for a detailed study of processes related to surface charge upon a dielectric surface). Nev-
ertheless, these results show how a second streamer could start from the anode following
the screening of the electric field by the primary central discharge of a similar radius. This
characteristic feature resembles the secondary discharge in the positive half-cycle presented
in Section V.4.2.

VI.5 Conclusions

In this chapter we have simulated a Dielectric Barrier Discharge in a point-to-plane config-
uration. Even without space charge in the simulation domain, this configuration is rather
complex. To define Dirichlet boundary conditions for Poisson’s equation based on an ana-
lytical solution, we used a slightly modified geometry with a hyperbolic dielectric interface
instead of a plane. We demonstrated that this approximation is accurate, and we suc-
cessfully applied it in the framework of streamer modeling via using of the Ghost Fluid
Method.

The dynamics of dielectric barrier discharges has been studied, including the initiation of a
surface discharge after the propagation of the streamer in the gas gap. We also studied the
importance of the second Townsend coefficient γ, which has been observed to work as an
acceleration parameter for the initiation and propagation of the surface discharge. In these
simulations, we found that the surface discharge initiated by the main streamer starts from
the space charge close to the dielectric surface and not from an accumulation of surface
charge. The surface charge plays an important role in the screening of the Laplacian electric
field close to the dielectric, and the space charge contributes significantly to the screening
of the electric field in the vicinity of the anode tip on the considered time scale (∼10 ns).
This is why the total charge accumulated on the dielectric surface found in simulations
(∼1 nC) is less than the surface charge required to screen the electric field (∼40 nC) (see
the beginning of Section VI.4). We assume that the total charge of 40 nC found in the
experiments (and in our electrostatic studies) corresponds to a surface charge accumulated
over a much longer time.

In this work we have carried out axisymmetric 2D simulations, although a three-dimensional
simulation would be necessary to simulate the experiment accurately. However, we have
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shown that the screening of the electric field in the channel produced by the initial central
streamer can influence the subsequent streamers by deflecting them from their expected
trajectories, as observed in the experiments. In the simulations, the impact radius and
the spatial distribution of the discharge are comparable to the experimental results from
Section V.4.2.



General Conclusion

I
n this Ph.D. thesis we contribute to several aspects of research on streamer physics in air
at atmospheric pressure through both experimental and numerical studies. We show that

studying transient phenomena such as streamer discharges, whose timescales are very short
compared to the operating times in applications, results in useful informations concerning
their underlying physical mechanisms.

In this work we have studied streamer dynamics based on the most common and effective
model, using drift-diffusion equations for charged species coupled with Poisson’s equation.
The numerical resolution of this set of equations requires careful attention to the efficiency
of the numerical schemes used. In fact, it requires making a strict selection of numerical
solvers for the different components of the resolution. The computation of the electric
field is a key point in streamer modeling. First, transport parameters and source terms of
the drift-diffusion equations have a strongly non-linear dependence on the reduced electric
field. Second, the electric potential itself is directly related to charged species densities via
Poisson’s equation. Thus, to obtain a reliable calculation of the electric field, we have used
two different solvers for Poisson’s equation. The first one is an iterative solver based on a
NAG library routine. And the second one called SuperLU is a direct solver. Both provide
very accurate solutions in all the configurations we tested. Moreover, these solvers are also
used in the computation of the photoionization processes using the differential approaches.
As Poisson’s equation is elliptic, we have carefully defined the boundary conditions for each
case studied in this work. Numerical methods and schemes used to solve the drift-diffusion
equations for charged species have been also described. In this work, we have mainly used
three different schemes: the simple first-order upwind scheme, the FCT method based on the
the upwind and QUICKEST3 schemes and Zalesak’s limiter, and the modified Scharfetter-
Gummel scheme. We showed that the upwind scheme can give the main physical parameters
of streamer dynamics. However, it is unable to attain the accuracy of high-order schemes
on the considered numerical grids. Thus, to accurately resolve streamer propagation, higher
order schemes such as the FCT method and the modified Scharfetter-Gummel scheme are
required.

A considerable effort has been to calculate the photoionization process. Indeed, photoion-
ization is considered to be of great importance in streamer dynamics in air. The classical
Zheleznyak approach, as an integral model, is very time consuming. As a consequence,
several differential approaches have been proposed in the literature to reduce the computa-
tion time of numerical models for plasma discharges in air. In this work we have developed
three differential approaches: a three-exponential Helmholtz model, a three-group Edding-
ton model, and a three-group improved Eddington (SP3) model. The Helmholtz model is
based on approximating of the absorption function of the gas in order to transform the
integral expression of the photoionization term in a set of Helmholtz differential equations.
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The Eddington and SP3 methods are based on the direct numerical solution of an approxi-
mation of the radiative transfer equation. Finally, we have demonstrated that the solutions
involved in all three differential models require accurate definitions of boundary conditions,
and we have derived these boundary conditions.

We have carried out comparative studies of these models using mainly two different config-
urations for streamer propagation. The homogeneous electric field configuration was used
for igniting streamers of both polarities propagating in a strong electric field (E>Ek, where
Ek is the conventional breakdown field). In this case ionization by electron impact dom-
inates over photoionization, where the latter is a second order process. Thus, the choice
of the differential model for calulating the photoionization source term has a small impact
on the streamer dynamics. In the other configuration studied, a sphere with high electric
potential lies in an initially weak homogeneous electric field. In this case we studied the
propagation of a streamer in the weak electric field (E<Ek). In this configuration the
streamer dynamics is heavily influenced by the photoionization processes. In this case, we
found that the best agreement with the reference Zheleznyak integral model is obtained
using the three-group SP3 model. Furthermore, we have shown that the advantage of the
three-group SP3 approach over the three-exponential Helmholtz method is that it provides
a purely physical and consistent set of closed equations with the boundary conditions. The
actual advantage of differential models derived in this work over the integral model lies
in the simplicity of the implementation of this type of models, and in the unquestionable
simplicity of extending these models to complex two- and three-dimensional simulation ge-
ometries. For example, this could involve the propagation of multiple streamer heads in the
same simulation domain and the presence of obstacles in the streamer path (e.g., electrodes,
dust particles, aerosols, etc).

In the experiments, electrodes with small radii of curvature are often used in order to
localize streamer ignition. To take the electrode shapes into account in the simulations, we
have adapted the Ghost Fluid Method to solve Poisson’s equation in order to calculate the
electric potential and field close to the electrode accurately. This method allows us to take
the influence of the exact shape of the electrodes into account in the framework of finite
volume methods using a regular grid, no matter how the electrode surfaces cross the grid.

After having validated the method with classical numerical results of the literature in a
point-to-plane geometry, we carried out simulations in a point-to-point geometry closely
linked with recent experimental results in pre-heated air discharges generated by Nanosec-
ond Repetitively Pulsed (NRP) plasmas. We found out that by considering the propagation
timescales of streamers in this configuration, it is possible to draw some conclusions about
the final discharge structure (i.e., spark or coronas discharges) which are in good agreement
with the experiments. This also indicates that streamer modeling on short time scales can
be of a great help towards the understanding of nano-pulsed discharges at atmospheric
pressure. In particular, this work points out the potential of such a study for finding the
ranges of parameters allowing for a diffuse regime at atmospheric pressure and ambient
temperature.

Dielectric Barrier Discharges (DBDs) are widely used for industrial applications. At at-
mospheric pressure and low frequency (50 Hz), they are mainly constituted of unstably
triggered non-equilibrium transient plasma filaments produced by streamer propagation.
In the experimental part of this work, we have studied a particular behavior of plasma
filaments in a DBD during the positive half-cycle of the applied voltage. In the experimen-
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tal device close to the point-to-plane configuration studied, the dynamics of discharges has
been found to be greatly affected by the surface charge deposited upon the dielectric mate-
rial. We have studied the impact of this behavior on the organization of plasma filaments.
In such a device, the trapping on long time scales of the charges on the dielectric surface is
responsible for the coupling between subsequent discharges (leading to a substantial current
in the gap during about a hundred nanoseconds) that follows after several milliseconds.

Having gathered the models and methods presented in this Ph.D. thesis, we performed
simulations in a point-to-plane configuration with a dielectric upon the plane cathode in
order to improve the understanding of the behavior experimentally observed in the DBD
device. In this work we were able to simulate the propagation of the streamer from its
ignition point at the anode to the dielectric material, as well as its splitting into surface
discharges upon reaching the dielectric. We found that the obtained surface discharges are
not ignited by an over-accumulation of charges on the dielectric surface, but rather by a
residual space charge of the streamer head in a thin layer close to the dielectric. We also
found that the Laplacian electric field quenches on a very short timescale (<10 ns) because
of both the contribution of the accumulated surface charge and the residual space charge
in the streamer channel. On such time scales the surface charge contributes mainly to
the screening of the electric field close to the dielectric, while the space charge contributes
mainly to the screening of the field close to the anode. From the perspective to this study, it
would be interesting to analyze the decrease of the current along with the related transport
of charges and to study several amplitudes of the applied voltage.

Considering the time scales of the applied voltage at low frequency, the space charge nec-
essarily disappears in the during the time between two subsequent discharges observed
experimentally. Furthermore the surface charge found in simulations for time scales of
about 10 ns is not sufficient to screen the electric field by itself. Thus, we assumed that the
major part of the surface charge is accumulated on a much longer timescale, corresponding
to the decrease of the current peak found in the measurements (∼100 ns). We also observed
that the increased population of electrons in the vicinity of the anode allows for the ignition
of subsequent streamers. The propagation of these streamers is deflected because of the
screening of the electric field, which is in agreement with experimental observations.





Suggestions for future research

It has been demonstrated in this work that fluid simulations of streamers in complex electric
fields configurations represents a very interesting potential concerning the prediction of the
different regimes in NRPs. From this perspective, it is important to check the influence
of initial and external conditions on the simulation results. For example, studying the
effects of the radius of curvature and the pre-ionized background on the discharge dynamics
would allow us to verify the consistency of simulation results1. To determine the spatial
distribution of pre-ionized background just before a new discharge more accurately, it would
be very interesting to simulate the spatio-temporal distribution of charged species in the
post-discharge. Furthermore, it would be interesting to obtain additional results on the
voltage ranges of the diffuse regime (as a function of the temperature) and to analyze
them carefully to differentiate this regime from the corona and spark regimes. It would
be also interesting to take the increase of the neutral gas temperature into account in
the simulations, especially for determining the range of applied voltages for obtaining spark
discharges accurately. As an extensive experimental work has been done on the spectroscopy
of the discharge at 1000 K, it would be of great interest to compute (at least as a post-
treatment of simulation results) the excited states densities and to compare them with the
experimental results, especially the observation of wave propagation in the diffuse regime.
Finally, it would be interesting to simulate successive discharges to study synergy effects
at high frequency. In the future, the challenge is to couple these simulations with Navier-
Stokes flow codes to study the plasma/flow interaction which is of great importance for
applications such as plasma-assisted combustion or flow control.

Considering the DBD studies, experimental studies (not shown in this thesis) have shown
that negative discharges occurring in the considered experimental device are much more
diffuse than the positive ones. In the future, it would be interesting to simulate this behavior
and to obtain the shape of the surface charge produced by such a discharge. In this work, we
have considered simplified boundary conditions with a global γ coefficient at the dielectric
plane. It would be interesting to model surface processes in the simulations by taking
into account photoemission, recharging of ions, thermal influence, etc. Furthermore, in
this work we have simulated only one discharge assuming a constant applied voltage. It
would be interesting to simulate the discharge during several cycles of the applied voltage
to understand the role of surface charges on long timescales better.

Concerning the theoretical approach on streamer dynamics, many questions remain open.
Some of them have been summarized in [Pasko, 2006]. For example, stability and branching

1At the time of publishing this thesis, one parametric study on the radius of curvature [Blackmond et al.,
NSF EE REU Penn State Annual Research Journal, Vol. VII, 2009] and one study about the pre-ionized
background [Bourdon et al., accepted for publication in PSST, 2009] have been already carried out in the
same configuration.
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of streamers remain unsolved problems. It is obvious that a better theoretical understanding
of the streamer dynamics would lead to great improvements in the conception of new
reactors, as well as in the understanding of natural phenomenon involving streamers.



Appendix A

Accuracy of different photoionization
models for different simulation
domain dimensions and boundary
conditions

Figure A.1 presents the same information as Figure III.5, only for the domain dimension
2×2 cm2 with σ=0.1 cm.

Figures A.1(a) and A.1(b) show the axial and radial profiles of the photoionization source
term Sph calculated by the Zheleznyak model in comparison with the Helmholtz solutions
obtained using the two and three-exponential fits. As in Figure III.5, the ionization term
Si is also shown for reference. The results obtained with the three-exponential fit appear
to match better with the Zheleznyak integral solution in the region where Sph>Si and, in
particular, close to the boundaries. The two-exponential Helmholtz model fails to provide
an accurate solution in this case. This result directly relates to a poor two-exponential fit
at large pO2

R>60 Torr cm values (i.e., R>0.5 cm at ground pressure considered here), as
can be seen in Figure III.2. The better performance of the three-exponential Helmholtz
model directly relates to a better three-exponential fit at large pO2

R values (i.e., R>0.5 cm
at ground pressure), as also can be seen in Figure III.2.

Figures A.1(c) and A.1(d) compare the 3-group Eddington approximation and the 3-group
SP3 with the Zheleznyak model for the same domain dimension 2×2 cm2. We note that the
use of the SP3 allows to improve the agreement with the Zheleznyak model, in particular,
close to the boundaries.

Finally, Figures A.1(e) and A.1(f) compare the 3-group SP3 and the 3-exponential Helmholtz
model with the Zheleznyak model. In this case, both models give very similar results in
the axial direction and are very close to the Zheleznyak model. In the radial direction,
the results obtained with the SP3 model appear to be slightly more accurate than the
three-exponential Helmholtz model in the region where Sph>Si.

As we emphasized at the beginning Section III.6.1, for the domain with Ld=Rd the effective
distance from the source at the center of the simulation domain to the boundary is two
times longer in the radial direction than in the axial direction (i.e., 2 cm versus 1 cm in
Figure A.1). Therefore the radial distances exceeding 1 cm allow to observe the behavior
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of different models in the region beyond applicability of the model fits obtained for the
range 1<pO2

R<150 Torr cm for the three-exponential Helmholtz model (Figure III.2) and
for 0.1<pO2

R<150 Torr cm for the three-group Eddington and SP3 models (Figure III.3)
(i.e., for R<1 cm at atmospheric pressure pO2

=150 Torr). All models shown in Figures
A.1(e) and A.1(f) show outstanding performance in both axial and radial directions at
distances <1 cm from the source, as expected from the range of validity of related fits in
Figures III.2 and III.3. In the same vein we note that a special caution should be used
when models described in the present work are applied in large simulation domains for
which pO2

R product exceeds 150 Torr cm.

Figure A.2 is presented in the same format as Figures III.5 and A.1, only for the domain
dimension 0.02×0.02 cm2 with σ=0.001 cm.

Figures A.2(a) and A.2(b) show the axial and radial profiles of the photoionization source
term Sph calculated by the Zheleznyak model and the Helmholtz solution using two and
three-exponential fits. As expected from the fits shown in Figure III.2 for small distances,
the results obtained with both solutions are poor, but we note that in the region of interest
for streamer simulations (where Sph>Si), the three-exponential Helmhotz model appears
to be in a relatively good agreement with the Zheleznyak model.

In Figures A.2(c) and A.2(d), we compare the three-group Eddington approximation and
the three-group SP3 with the Zheleznyak model. We note that the use of the SP3 allows
to improve the agreement with the Zheleznyak model, in particular, in the region where
Sph>Si.

In Figures A.2(e) and A.2(f), we compare the three-group SP3 and the three-exponential
Helmholtz model with the Zheleznyak model. In this case, in the region where Sph>Si both
models give very similar results in the axial direction and are very close to the Zheleznyak
model. In the radial direction, the results obtained with the SP3 model appear to be slightly
more accurate than the three-exponential Helmholtz model in the region where Sph>Si.

Figures A.3(a) and A.3(b) demonstrate comparative performance of the boundary condi-
tions specified by equations (III.29) or (III.31) using the three-group SP3 approximation for
domain dimensions 2×2 cm2 and σ=0.1 cm. The results are in very good agreement with
the results of the Zheleznyak model. Nevertheless, one can note that the use of equation
(III.31) slightly overestimates the exact value of the photoionization source term at the
boundaries in the radial direction, but the agreement is good in the axial direction. In
Figures A.3(c) and A.3(d) which present computations for a domain dimension 0.02×0.02
cm2 and σ=0.001 cm, the use of equation (III.31) for defining boundary conditions slightly
overestimates the exact value of the photoionization source term at the boundaries in both
the axial and radial directions.

Figures A.4(a) and A.4(b) correspond to the domain dimension 0.02×0.02 cm2 with σ=0.001
cm. In this case, the use of equation (III.30) slightly overestimates the exact value of the
photoionization source term at the boundaries in both the axial and radial directions,
although for the domain dimension 2×2 cm2 with σ=0.1 cm (Figures A.4(e) and A.4(f))
the photoionization source term at the boundaries in both the axial and radial directions
is underestimated.
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Figure A.1: Same caption as Figure III.5 only for domain dimension 2×2 cm2 and σ=0.1
cm.
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Figure A.2: Same caption as Figure III.5 only for domain dimension 0.02×0.02 cm2 and
σ=0.001 cm.
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Figure A.3: Same caption as Figure III.6(a) and III.6(b) for domain dimensions 2×2 cm2

and σ=0.1 cm ((a) and (b)), and for domain dimensions 0.02×0.02 cm2 and σ=0.001 cm
((c) and (d)).
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Figure A.4: Same caption as Figure III.6(c) and III.6(d) for domain dimensions 2×2 cm2

and σ=0.1 cm ((a) and (b)), and for domain dimensions 0.02×0.02 cm2 and σ=0.001 cm
((c) and (d)).



Appendix B

Mathematical relationships between
the Eddington, SP3 and Helmholtz
models

Some results of this appendix have been published in [Bourdon et al., 2007].

The three-group Eddington and SP3 models presented in Chapter III have been derived on
physical grounds from the general radiative transfer equation. These physics based models
have certain advantages in comparison with the Helmholtz model, allowing in particular to
formulate a consistent and computationally efficient set of equations and boundary condi-
tions based on a radiative transfer theory (see Section III.4). It is useful, however, to bring
to attention of the readers that the equation (III.20) of the Eddington model and equations
(III.21) and (III.22) of the SP3 model are Helmholtz equations. Therefore, as demonstrated
below in this Appendix, for these equations it is possible to derive effective representations
of the g(R)/pO2

function of the type specified by equation (III.9) of the Helmholtz model
described in Section III.3. The establishment of these mathematical relationships between
Eddington, SP3 and Helmholtz models is very useful for interpretation of results presented
in Section III.6.1, and evaluation of performance of the Eddington and SP3 models in the
general context of the quality of the fit of the g(R)/pO2

function given by equation (III.9)
in comparison with the original g(R)/pO2

function of the Zheleznyak photoionization model
specified by equation (III.3).

Each of the Helmholtz differential equations (III.8) is similar to equations for wave potentials
commonly encountered in antenna theory in electromagnetics [Harrington, 2001; Landau
and Lifshitz , 1971, Chapter VIII, § 64]. On a conceptual level the electromagnetic problem
corresponds to a case of purely imaginary λj values for which the equation (III.7) would
represent outgoing waves [Harrington, 2001, p. 80]. In the photoionization problem the λj

values are real, reflecting exponential spatial damping of the solutions due to the absorption
of the photoionizing radiation. The appearance of the similar Helmholtz equations (III.20),
(III.21) and (III.22) in the Eddington and improved Eddington approximations to the
radiative transfer equation is also consistent with the above physical interpretation. In this
Appendix we demonstrate that the solutions of the Helmholtz, Eddington and SP3 models
can be represented in a mathematically equivalent form, however, all represent approximate
solutions of the same problem, rely on different numerical values of the model coefficients,
and therefore generally do not lead to identical results.
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Figure B.1: Solid line: The g(R)/pO2
function given by equation (III.3) from the model of

Zheleznyak et al. [1982]. Dot-dashed line: Equivalent three-exponential fit for the Helmholtz
model obtained from the three-group Eddington approximation. Dashed line: Equivalent
three-group fit for the Eddington approximation based on three-exponential Helmholtz
model.

In this context it is useful to recall that the Eddington and the Helmholtz models are simply
based on different forms of approximation of the integral specified by equation (III.1). The
original integral contains a difference of two exponents divided by R3, the three-group
Eddington model approximates the function under integral by a sum of three exponents
divided by R2 (Section III.4), and the three-exponential Helmholtz model approximates the
same function by three exponents divided by R (Section III.3). If the problem is solved
correctly all approximations should lead to solutions consistent with Sph (III.1).

In this Appendix in order to distinguish between the coefficients involved in the Helmholtz
(Table III.2) and the Eddington (Table III.3) models, we will use notations A∗

j [cm−2 Torr
−2], λ∗

j [cm−1 Torr −1], and Aj [cm−1 Torr −1], λj [cm−1 Torr −1], for the Helmholtz, and
the Eddington models, respectively.

We observe that the Helmholtz equations (III.20) appearing as part of the development of
the Eddington approximation are similar in structure to (III.8) and therefore have formal
solutions of the type specified by (III.7). On these grounds, after simple algebraic manipu-
lations, we can write solution for the photoionization production rate satisfying equations
(III.20) in the form:

Sph(~r) =

∫∫∫

V ′

I(~r ′)pO2

4πR2
(pO2

R)
∑

j

3Ajλje
−
√

3λjpO2
RdV ′ (B.1)

Alternatively, the equation (III.13), representing the same Sph(~r) before the approximation
based in the isotropic part of the photon distribution function is applied (see Section III.4),
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can be written as:

Sph(~r) =

∫∫∫

V ′

I(~r ′)pO2

4πR2

∑

j

Aje
−λjpO2

RdV ′ (B.2)

Having introduced A∗
j=3Ajλj and λ∗

j=
√

3λj, and remembering that in accordance with
(III.9) and (III.14):

g(R)

pO2

= (pO2
R)
∑

j

A∗
je

−λ∗

j pO2
R =

∑

j

Aje
−λjpO2

R (B.3)

it can be easily seen that the equation (B.1) employs exactly the same form of approximation
to the g(R)/pO2

function as is used in the Helmholtz model. These relationships demon-
strate mathematical equivalence between the three-exponential Helmholtz model based on
equations (III.8) and the three-group Eddington approximation based on equations (III.20).

We note that taking the three-group Eddington parameters from Table III.3 and calculating
the three-exponential Helmholtz model parameters using the above derived relationships
A∗

j=3Ajλj and λ∗
j=

√
3λj leads to g(R)/pO2

=(pO2
R)
∑

j A∗
je

−λ∗

j pO2
R function shown in Fig-

ure B.1 by the dot-dashed line, which does not agree with similar function shown in Figure
III.2. Thus obtained A∗

j and λ∗
j are different from those given in Table III.2.

Alternatively, taking A∗
j and λ∗

j from Table III.2 and calculating λj=λ∗
j/
√

3 and Aj=A∗
j/(3λj)

leads to g(R)/pO2
=
∑

j Aje
−λjpO2

R shown in Figure B.1 by the dashed line, which signifi-
cantly deviates from similar function shown in Figure III.3. Similarly to the previous case
we note that thus obtained Aj and λj are different from those given in Table III.3.

These results demonstrate that although the two model formulations can be represented
in mathematically equivalent form, additional approximations involved on previous steps
of the derivation of the Eddington model (i.e., related to the spherical harmonic expansion
of the photon distribution function) lead to different numerical values of model coefficients
and explain why results obtained from these two model are not identical.

It is interesting to note that since the three-group Eddington model is based on solutions of
the Helmholtz equations (III.20) of the form (B.1) with g(R)/pO2

effectively given by dot-
dashed line in Figure B.1, the discrepancies observed between the three-group Eddington
approximation and the Zheleznyak model in Figures A.1(c) and A.1(d) of Section III.6.1
can be directly linked to the discrepancies between the g(R)/pO2

and the Zheleznyak model
at large pO2

R values in Figure B.1. The establishment of these relationships is therefore
useful for evaluation of the performance of the Eddington model.

In view of the above mentioned mathematical relationships between the two models it
might be tempting to replace the parameters of the Eddington model with the ones from
the Helmholtz model providing a better fit. However, this step is not justified in the context
of the rigorous development of the Eddington and the improved Eddington (SP3) models,
and as discussed in Section III.6.1 and further reiterated below in this Appendix the SP3

model takes full advantage of the original accurate fit specified by parameters given in Table
III.3 and leads to significantly improved solutions in comparison with the Eddington model.
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Figure B.2: Solid line: The g(R)/pO2
function given by equation (III.3) from the model of

Zheleznyak et al. [1982]. Dot-dashed line: Equivalent six-exponential fit for the Helmholtz
model obtained from the three-group SP3 model.

We note that the Helmholtz equations (III.21) and (III.22) appearing as a part of the SP3

model are similar in structure to (III.8) and have formal solutions of the type (III.7). By
summing these solutions using equation (III.23), the corresponding photoionization rate
(III.25) can be expressed in the form

Sph(~r) =

∫∫∫

V ′

I(~r ′)pO2

4πR2
(pO2

R)
∑

j

A∗
je

−λ∗

j pO2
RdV ′ (B.4)

with the corresponding six pairs of (A∗
j , λ∗

j) of the equivalent six-exponential Helmholtz
model defined by: λ∗

1=λ1/κ1, λ∗
2=λ2/κ1, λ∗

3=λ3/κ1, λ∗
4=λ1/κ2, λ∗

5=λ2/κ2, λ∗
6=λ3/κ2;

A∗
1=

γ2

γ2−γ1

λ1A1

κ2
1

, A∗
2=

γ2

γ2−γ1

λ2A2

κ2
1

, A∗
3=

γ2

γ2−γ1

λ3A3

κ2
1

, A∗
4=- γ1

γ2−γ1

λ1A1

κ2
2

, A∗
5=- γ1

γ2−γ1

λ2A2

κ2
2

, A∗
6=- γ1

γ2−γ1

λ3A3

κ2
2

.

Having taken the three-group Eddington parameters (Aj, λj) from Table III.3 and calcu-
lated the six-exponential Helmholtz model parameters using the above derived relation-
ships leads to the g(R)/pO2

=(pO2
R)
∑

j A∗
je

−λ∗

j pO2
R function shown in Figure B.2 by the

dot-dashed line, which is in a substantially better agreement with the original Zheleznyak
function in comparison to the similar equivalent three-exponential fit, obtained for the
three-group Eddington model, shown by dot-dashed line in Figure B.1. The good perfor-
mance of the three-group SP3 model in Figures A.1(c) and A.1(d) of Section III.6.1 can be
directly linked to the better agreement between the six-exponential g(R)/pO2

fit with the
original Zheleznyak function in Figure B.2.

In summary, in this appendix we have demonstrated the mathematical equivalence of the
Eddington, SP3 and Helmholtz models. All solutions of these models can be written in es-
sentially same mathematical form, with differences between these models only arising from
different numerical values of the model coefficients. The presented analysis demonstrates
that the three-exponential Helmholtz model presented in Section III.3 is more accurate
than the three-group Eddington model presented in Section III.4, in agreement with re-
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sults presented in Section III.6.1. The presented analysis also demonstrates that the SP3

model can be effectively represented in a mathematical form equivalent to six-exponential
Helmholtz model. This approach allows a simple interpretation of better performance of the
three-group SP3 model in comparison with the three-group Eddington model introduced in
Section III.4, and in comparison with the three-exponential Helmholtz model presented in
Section III.4, in agreement with the results presented in Section III.6.1.





Appendix C

Determination of the pre-ionization
level for streamer propagation in
weak field at ground pressure in air

Using an initial continuous neutral pre-ionization level instead of the full model for pho-
toionization is a simple way to save computation time. Obviously, the important point is
then the determination of the pre-ionization level. In this appendix, we develop an approach
to determine this pre-ionization level.

Pancheshnyi et al. [2001] have mentioned that it is possible to attain the coincidence of some
characteristics (but not for all the characteristics simultaneously) of streamer discharges,
by varying the level of pre-ionization background. To avoid doing systematic parametric
studies with different pre-ionization levels, in this appendix, we determine the level of pre-
ionization based on the dynamics of the streamer head. This analysis is based on the
simulation results obtained with the full model for photoionization. Figure C.1 shows the
direct ionization by electron impact rate, the photoionization rate, and the electron density
at time t = 17.5 ns in the simulation case of streamer propagation in a weak field depicted
in Section III.6.2 and computed using the FCT+QUICKEST3 scheme (see Chapter II).

As mentioned in Chapter III, the ionization rate is higher than the photoionization rate in
the narrow region of the streamer head. Behind this region, in the streamer channel, the
photoionization rate is higher than the ionization rate. In front of the streamer head, where
the gas is still mainly neutral, the creation of electrons and ions mainly results from the
photoionization process beyond the intersection point of the ionization and photoionization
rates. In Figure C.1 at time t = 17.5 ns one can say that the creation of seed electrons is
mainly governed by photoionization in the region x & 0.77 cm.

Moreover, the electron density which corresponds to the location of equal ionization and
photoionization rates, is quite constant during stable streamer propagation. We concluded
that this value of the electron density, which is negligible compared to the density inside the
streamer channel, can be interpreted as the electron density mainly produced by photoion-
ization at this location. Considering the impact of photoionization on the local dynamics
of the head, this value could replace the seed electrons due to photoionization in front of
the streamer head. In the case of Figure C.1 this value is ∼109 cm-3.

We have checked this method in different configurations and we observed that it is efficient
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Figure C.1: Photoionization and direct ionization rates, and electron density at time t =
17.5 ns for the streamer propagation in a weak field presented in Section III.6.2.

to find a good approximation of the pre-ionization level.

Figures C.2 and C.3 show the comparison of the electron densities and axial electric field,
respectively, between the simulations using either a pre-ionization background or the com-
putation of the photoionization source term. In the cases without photoionization we
considered the pre-ionization levels of 109 cm-3 and 1010 cm-3. For a pre-ionization level of
108 cm-3, we have not observed any streamer propagation.

Figure C.2 shows that the pre-ionization level of 109 cm-3 gives a good agreement with
the computation of the photoionization source term. The electron density in the channel
is in very good agreement, as well as the electric field in the streamer channel showed
by Figure C.3. The electric field in the streamer head is also well described. The main
difference between the case with the pre-ionization level at 109 cm-3 and the case with
the computation of the photoionization source term is the propagation velocity, which is a
slightly higher when the photoionization source term is calculated.

One can also note that with a pre-ionization level of 1010 cm-3, the propagation of the
streamer is slower in spite of relation (I.13). This means that increasing the pre-ionized
background does not have a simple impact on the streamer dynamics and leads, for example,
to a non-negligible change of the electric field (see Figure C.3). To argue in this direction, we
also noted that, at the beginning of the propagation, for the pre-ionized case at 1010 cm-3 the
streamer is faster than for the other cases, but streamers calculated using photoionization
model and 109 cm-3 pre-ionization pass it at about 12 ns.

In conclusion, we have shown that to reproduce the streamer propagation in the weak field
case presented in Section III.6.2, a pre-ionization level of 109 cm-3 gives a good agreement
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Figure C.2: Electron density. Upper image: linear scale. Lower image: logscale. Solid line:
pre-ionization level of 109 cm-3. Dashed-line: pre-ionization level of 1010 cm-3. Dotted-line:
computation taking into account the photoionization. Time t = 17.5 ns.
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with the results of computations using the photoionization source term.
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