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Résumé

Internet ainsi que tous les moyens numériques modernes disponibles pour communiquer, s’informer
ou se divertir génèrent des données en quantités de plus en plus importantes. Dans des domaines
aussi variés que la recherche d’information, la bio-informatique, la linguistique computation-
nelle ou la sécurité numérique, des méthodes automatiques capables d’organiser, classifier, ou
transformer des téraoctets de données apportent une aide précieuse.

L’apprentissage artificiel traite de la conception d’algorithmes qui permettent d’entrâıner de
tels outils à l’aide d’exemples d’apprentissage. Utiliser certaines de ces méthodes pour automa-
tiser le traitement de problèmes complexes, en particulier quand les quantités de données en
jeu sont insurmontables pour des opérateurs humains, parâıt inévitable. Malheureusement, la
plupart des algorithmes d’apprentissage actuels, bien qu’efficaces sur de petites bases de données,
présentent une complexité importante qui les rend inutilisables sur de trop grandes masses de
données. Ainsi, il existe un besoin certain dans la communauté de l’apprentissage artificiel pour
des méthodes capables d’être entrâınées sur des ensembles d’apprentissage de grande échelle,
et pouvant ainsi gérer les quantités colossales d’informations générées quotidiennement. Nous
développons ces enjeux et défis dans le Chapitre 1.

Dans ce manuscrit, nous proposons des solutions pour réduire le temps d’entrâınement et
les besoins en mémoire d’algorithmes d’apprentissage sans pour autant dégrader leur précision.
Nous nous intéressons en particulier aux Machines à Vecteurs Supports (SVMs), des méthodes
populaires utilisées en général pour des tâches de classification automatique mais qui peuvent
être adaptées à d’autres applications. Nous décrivons les SVMs en détail dans le Chapitre 2.

Ensuite, dans le Chapitre 3, nous étudions le processus d’apprentissage par descente de gra-
dient stochastique pour les SVMs linéaires. Cela nous amène à définir et étudier le nouvel
algorithme, SGD-QN. Après cela, nous introduisons une nouvelle procédure d’apprentissage: le
principe du “Process/Reprocess”. Nous déclinons alors trois algorithmes qui l’utilisent. Le
Huller et LaSVM sont présentés dans le Chapitre 4. Ils servent à apprendre des SVMs destinés
à traiter des problèmes de classification binaire (décision entre deux classes). Pour la tâche
plus complexe de prédiction de sorties structurées, nous modifions par la suite en profondeur
l’algorithme LaSVM, ce qui conduit à l’algorithme LaRank présenté dans le Chapitre 5. Notre
dernière contribution concerne le problème récent de l’apprentissage avec une supervision am-
bigüe pour lequel nous proposons un nouveau cadre théorique (et un algorithme associé) dans le
Chapitre 6. Nous l’appliquons alors au problème de l’étiquetage sémantique du langage naturel.

Tous les algorithmes introduits dans cette thèse atteignent les performances de l’état-de-
l’art, en particulier en ce qui concerne les vitesses d’entrâınement. La plupart d’entre eux ont été
publiés dans des journaux ou actes de conférences internationaux. Des implantations efficaces
de chaque méthode ont également été rendues disponibles. Dans la mesure du possible, nous
décrivons nos nouveaux algorithmes de la manière la plus générale possible afin de faciliter leur
application à des tâches nouvelles. Nous esquissons certaines d’entre elles dans le Chapitre 7.





Abstract

Internet as well as all the modern media of communication, information and entertainment entails
a massive increase of digital data quantities. In various domains ranging from network security,
information retrieval, to online advertisement, or computational linguistics automatic methods
are needed to organize, classify or transform terabytes of numerical items.

Machine learning research concerns the design and development of algorithms that allow com-
puters to learn based on data. A large number of accurate and efficient learning algorithms now
exist and it seems rewarding to use them to automate more and more complex tasks, especially
when humans have difficulties to handle large amounts of data. Unfortunately, most learning
algorithms performs well on small databases but cannot be trained on large data quantities.
Hence, there is a deep need for machine learning methods able to learn with millions of training
instances so that they could enjoy the huge available data sources. We develop these issues in
our introduction, in Chapter 1.

In this thesis, we propose solutions to reduce training time and memory requirements of
learning algorithms while keeping strong performances in accuracy. In particular, among all
the machine learning models, we focus on Support Vector Machines (SVMs) that are standard
methods mostly used for automatic classification. We extensively describe them in Chapter 2

Throughout this dissertation, we propose different original algorithms for learning SVMs,
depending on the final task they are destined to. First, in Chapter 3, we study the learning
process of Stochastic Gradient Descent for the particular case of linear SVMs. This leads us
to define and validate the new SGD-QN algorithm. Then we introduce a brand new learning
principle: the Process/Reprocess strategy. We present three algorithms implementing it. The
Huller and LaSVM are discussed in Chapter 4. They are designed towards training SVMs for
binary classification. For the more complex task of structured output prediction, we refine
intensively LaSVM: this results in the LaRank algorithm which is detailed in Chapter 5. Finally,
in Chapter 6 is introduced the original framework of learning under ambiguous supervision which
we apply to the task of semantic parsing of natural language.

Each algorithm introduced in this thesis achieves state-of-the-art performances, especially in
terms of training speed. Almost all of them have been published in international peer-reviewed
journals or conference proceedings. Corresponding implementations have also been released. As
much as possible, we always keep the description of our innovative methods as generic as possible
because we want to ease the design of any further derivation. Indeed, many directions can be
followed to carry on with what we present in this dissertation. We list some of them in Chapter 7.
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T
his thesis exhibits ways to exploit large-scale data sources in machine learning, especially
for training Support Vector Machines. This introduction is designed to identify what were

the motivations of this thesis and expose the main results we obtained. Section 1.1 sets up
the background scenery and explains the pertinence of the new methods detailed in the next
chapters. Afterward, Section 1.2 summarizes the different contributions that have been developed
throughout this dissertation. The final section (Section 1.3) sketches the several chapters.

1.1 Large Scale Machine Learning

First of all, let us briefly present the general scientific domain of machine learning as well as
some of its main applicative areas. We will then go on introducing the notion of large scale
machine learning and explain its interests, the main issues it involves and therefore the reasons
why working on it is relevant. This section ends by a discussion on the learning setup of online
learning and a description of the specific scope of this thesis.

1.1.1 Machine Learning

The field of machine learning evolved from the broad field of artificial intelligence, which aims
to mimic intelligent abilities of humans by machines. It is concerned with the design and de-
velopment of algorithms that allow computers to learn based on data, such as from sensors or
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databases. A major focus of machine learning research is to automatically learn to recognize
complex patterns and take decisions based on data. Hence, machine learning is closely related
to fields such as statistics, probability theory, data mining or pattern recognition.

Principle

In machine learning one considers the important question of how to make machines able to
learn. Learning in this context is understood as inductive inference, where one observes examples
that represent incomplete information about some statistical phenomenon. More specifically, an
algorithm is said to learn with respect to a class of tasks, if its performance on this class of tasks
increases with experience, given a measure of performance.

In this thesis, we only consider supervised learning problems. In such tasks, a machine
learning algorithm induces a prediction function using a set of examples, called a training set.
Each example consists of a pair formed by an observation annotated with a corresponding label.
The goal of the learnt function is to predict the correct label associated with an observation.
When the labels are discrete, the task is referred to as a classification problem. Otherwise, for
real-valued labels, we speak of regression problems.

A learning algorithm must be able to perform correct predictions for observations belonging
to the training set but also for unknown ones: machine learning is not only a question of re-
membering but also a matter of generalizing to unseen cases. In practice, a testing set, i.e. a set
of examples never seen by the algorithm during training, along with a performance measure are
thus employed to evaluate the generalization ability of a model.

Supervised learning is only a subfield of machine learning. For instance, one can consider
unlabeled training examples and try to uncover hidden regularities or detect anomalies in the
data: we then speak of unsupervised learning. One can also make use of both labeled and
unlabeled data for training (typically a small amount of labeled data with a large amount of
unlabeled data): this is referred to as semi-supervised learning.

Applications

Machine learning research is extremely active. A large number of accurate and efficient algorithms
regularly arise. It seems then rewarding for scientists and engineers to learn how and where
machine learning can be useful to automate tasks or provide predictions, especially when humans
have difficulties to handle large amounts of data.

The long list of examples where machine learning techniques were successfully applied in-
cludes: Natural Language Processing (a vast field, see [Manning, 1999] for an overview), hand-
writing recognition (e.g. check reading [Le Cun et al., 1997]), text categorization – spam filtering
for example – (e.g. [Joachims, 2000]), bioinformatics (e.g. cancer tissue classification [Furey et
al., 2000]), network security (e.g. [Laskov et al., 2004]), monitoring of electric appliances (e.g.
[Murata and Onoda, 2002]), optimization of hard disk caching strategies [Gramacy et al., 2003],
drug discovery [Warmuth et al., 2003], recommendation systems, natural scene analysis etc.

Of course, this brief summary is far from being complete. It focuses on supervised learning
methods and does not mention applications of either unsupervised learning (e.g. clustering), or
other branches of machine learning which extend its applicative range, but are not in the scope
of this thesis.

1.1.2 Towards Large Scale Applications

The last decades have seen a massive increase of data quantities. In various domains such as
biology, networking, or information retrieval, automatic methods, such as those that machine
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Google > 1,000 billions1 indexed pages in July 2008

Flickr > 3 billions2 photos in late 2008

Wikipedia ≈ 13 millions articles in mid 2009

YouTube > 45 terabytes3 of videos in early 2007

Facebook > 200 millions4 active users in mid 2009

Twitter > 3.5 millions5 active users in mid 2009

E-mail spams ≈ 100 billions6 per day in June 2007
1 http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
2 http://www.techcrunch.com/2008/11/03/three-billion-photos-at-flickr
3 http://www.businessintelligencelowdown.com/2007/02/top_10_largest_.html
4 http://www.facebook.com/press/info.php?statistics
5 http://twitdir.com/
6 http://www.spamunit.com/spam-statistics/

Table 1.1: Rough estimates of data resources of common Web services. From the
indexed pages of Google to the users of Facebook, many sources produce massive data quantities
that need to be classified, organized, hierarchised, etc.

learning can provide, are needed to organize, classify or transform thousands of pieces of infor-
mation. As illustration, Table 1.1 depicts the huge amounts of data generated and/or managed
by some common Web services.

Computing Resources and Data Volume

Electronic computers have vastly enhanced our ability to compute complicated statistical models.
As computing resources increases exponentially, one might think that no special care has to be
taken to handle large-scale databases: the increase of processor speed would, eventually, make
any algorithm tractable on any database, regardless of its size. A quick look at rough estimates
proves this wrong.

As predicted by Moore’s law, the number of transistors that can be placed inexpensively on
an integrated circuit doubles approximately every two years since the 60’s. This is depicted on
Figure 1.1 for the period 1980-2010 (red curve) and reflects the exponential increase of computing
power. But, on the other hand, since the 80’s, hard-drive storage capacities empirically double
every 18 months, more or less1 as shows the blue curve of Figure 1.1.

It appears that data sizes outgrow computer speed. Cheap, pervasive and networked comput-
ers are now allowing to collect and store observations faster than to analyse them. Even worse,
most machine learning algorithms demand computational resources that grow much faster than
the volume of the data (the cost is usually at least quadratic).

Motivations of the Thesis

Any efficient learning algorithm should at least pay a brief look at each training example. There
is a deep need for machine learning methods able to be trained on millions of training instances

1There is no law similar to Moore’s law for hard-drive storage capacity. The informal Kryder’s law
states that disk area storage density doubles annually (http://www.scientificamerican.com/article.cnfm?id=
kryders-law). But this appears to be mostly valid on the decade 1995-2005.

http://www.scientificamerican.com/article.cnfm?id=kryders-law
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://www.techcrunch.com/2008/11/03/three-billion-photos-at-flickr
http://www.businessintelligencelowdown.com/2007/02/top_10_largest_.html
http://www.facebook.com/press/info.php?statistics
http://twitdir.com/
http://www.spamunit.com/spam-statistics/
http://www.scientificamerican.com/article.cnfm?id=kryders-law
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Figure 1.1: Evolution of computing and storage resources. Comparison of exponential
growths of hard-disk drive capacity (blue) and CPU transistor counts (Moore’s law) (red) against
years of introduction. The logarithmic vertical axis represents their multiplicative factor since
1980. CPU counts double every 2 years while HD capacity empirically doubles every 18 months.

so that they could enjoy the massive recent databases. The main motivation of this thesis was
then to improve the scalability of supervised learning techniques.

In short we have been seeking training algorithms with the following properties:

1. short training time (linear scaling w.r.t. training set size, if applicable),

2. low memory usage,

3. high generalization accuracy.

Of course, the work presented in this dissertation can not be applied to every machine learning
field or application: it mostly relates to Support Vector Machines (SVMs). However, as we detail
in Chapter 2, SVMs are a rather generic supervised machine learning framework that can be
applied to lots of cases. That is the reason why we try to present most of our algorithms in a
general way in order to ease the conception of derivations for new large-scale applications.

Supervised Large-scale Learning: an Heresy?

All the data sources displayed in Table 1.1 can not be directly used for supervised machine
learning. Indeed, if one wants to learn a classifier for the 3 billions pictures of Flickr, these are
not directly labeled with their topic. Same problem for the hundreds of billions of pages indexed
by Google or for the loads of data generated by Facebook users. Manually annotating these to
create data sets is a solution by far too complicated and costly. A pertinent question can thus
be: is this useful to conceive methods for large-scale supervised learning if there is no large-scale
annotated training set?

Fortunately, there exist tasks for which huge annotated training resources are available. A
first example of productive source of labeled data is click-through information i.e. the sequence of
clicks a user performs during an Internet session. Determining/classifying the future clicks of a
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user is crucial for the online advertisement market and is a perfect machine learning application.
Corresponding training data can be collected in huge quantities by Internet providers or Web
services. In bioinformatics, for tasks such as DNA sequencing or protein classification, large
amounts of supervised data can also be automatically gathered.

Furthermore, when the data is not directly labeled, the rising phenomenon of collaborative
labeling can create new annotated corpora. In this case there is no direct annotation cost because
all is performed by online users. For example, in the case of spam filtering, Email services
receive millions of Email “marked as spam” everyday: these create perfect training examples
for classification. Similarly, [Ma et al., 2009] recently propose a work about the automatic
detection of malicious URLs. Thanks to an Internet provider, they gathered more than 2 millions
supervised training examples in a month. On picture sites like Flickr, users can tag their own
pictures themselves: as a result, they create thousands of annotated examples for image retrieval
(in July 2009, more than 6 millions photos were corresponding to the tag “beach” for example).

Collaborative labeling also provides huge annotated corpora for learning recommendation.
Recommender systems are built to display information items (such as movies, music, books,
etc.) that are likely of interest to a user and can be learnt with machine learning techniques.
Training sets for such systems are composed by sets of items and their ratings given by different
users. Such ratings can be legion and are usually gathered for free by Web merchants such as
Netflix or Amazon on their websites. Netflix recently organized a challenge to determine the best
movie recommender system:2 they provided a training data set of around 100 millions ratings
that over 480,000 users gave to nearly 18,000 movies.

This idea of collaborative annotation is even at the center of original human-based computation
or crowdsourcing systems. For example, the Game With A Purpose project3 targets to create
online games which help creating supervised corpora (see [Von Ahn, 2006]) for tasks such as image
recognition or segmentation, video retrieval, etc. Similarly, the reCAPTCHA system4 produces
annotated examples for Optical Character Recognition using special captchas5 [Von Ahn et al.,
2008]. Annotating any kind of large data source with a reduced cost becomes credible.

All the above examples prove the existence of large-scale supervised data sources and exhibit
the pertinence of the work described in this thesis. If still needed, the relevance of supervised
large-scale machine learning is also assessed by the recent Pascal large-scale learning challenge
[Sonnenburg et al., 2008] which was entirely centered toward supervised learning.

1.1.3 Online Learning

In machine learning, the learning process defines how examples are used during the training
phase. Most contributions of this dissertation are closely related to the online learning process
because this is usually a suitable way of handling big training databases. This section then
presents online learning and discusses its advantages and drawbacks.

Batch Learning

The standard way for learning the prediction function destined to any supervised machine learn-
ing task, is called batch learning. This training phase employs all the training examples together.
First, a cost function measures and averages how well (or how poorly) the prediction system
performs on all examples. According to this performance barometer, a global optimization step

2http://www.netflixprize.com/
3http://www.gwap.com
4http://recaptcha.net/
5A captcha is a type of challenge-response test used in computing to ensure that the response is not generated

by a computer.

http://recaptcha.net/
http://www.netflixprize.com/
http://www.gwap.com
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Figure 1.2: Batch learning of spam filtering. A training set of spam/non-spam documents
is provided (left). (1) The learning algorithm (center) takes the whole data set as input. This
requires a lot of memory and computational power. (2) After the (possibly long) training phase,
a spam filter (right) learnt from the data is outputted. This is the unique solution if the problem
is convex.

is performed on the parameters of the function. Such optimization steps are conducted until a
pre-defined stopping condition is fulfilled. If the learning problem is convex (as it is for SVMs),
the algorithm stops when the function parameters have converged to the unique solution of the
problem. A rough illustration is given in Figure 1.2 for the case of learning an automatic spam
filter. Examples of batch optimizers are Gradient Descent, Newton’s method (see [Boyd and
Vandenberghe, 2004] for details) or (L)BFGS [Nocedal, 1980]. They are popular because they
are usually very accurate and can be fast, as long as the training set is not too big.

However, in many domains, data now arrives faster than batch methods are able to learn
from it. Indeed, computing an average cost on all training instances takes a time (and memory)
growing faster than the training set size and this is intractable on large scale data sets. To avoid
wasting this data, one must switch from this traditional approach to systems that are able to
mine continuous, high-volume, open-ended data streams as they arrive.

Online Learning

Online algorithms such as the Perceptron [Rosenblatt, 1958] have received a considerable inter-
est for large-scale applications because they appear to perform well with comparatively small
computational requirements (e.g. [Crammer and Singer, 2001, Collins and Roark, 2004]). The
learning process of such algorithms is schematized in Figure 1.3. They perform a parameter
update whenever they receive a fresh example (that can come from a closed set or a stream) and
then discard it. Such methods are cheap in computations and memory as they only require to
store and process a single example at a time.

Strong generalization guarantees for online algorithms can be obtained by assuming that each
example is processed only once [Graepel et al., 2000]. Indeed, before its corresponding parameter
update, the performance of the learning system on each example reflects what has been learnt
from the previous examples only and therefore can be interpreted as a measure of generalization
(e.g. [Cesa-Bianchi and Lugosi, 2006]). Despite these theoretical guarantees, online algorithms



1.1 Large Scale Machine Learning 27

Figure 1.3: Online learning of spam filtering. A training set of spam/non-spam documents
is provided (far left). (1) At each iteration, a training example is drawn from it. (2) The
learning algorithm (center) takes this single example as input (low memory and computational
power requirements). (3) After a learning step on it, this example is removed from the training
set. The procedure (1)-(2)-(3) is carried-out until the training set is empty. (4) Anytime during
the learning process, one has access to the current learnt spam filter, but it is not optimal.

rarely approach the generalization abilities of equivalent batch algorithms after a single pass. The
solution is then to perform multiple passes on the training set. This achieves fair performances
in practice (e.g. [Freund and Schapire, 1998]) but ruins the generalization guarantees and also
increases a lot computational and memory requirements of online learning.

During this thesis, we have been seeking to produce learning algorithms sharing speed and
scalability of online methods and generalization ability of batch techniques.

1.1.4 Scope of this Thesis

Among the wide range of tasks encompassed by supervised machine learning, this thesis is
centered around two of them: classification and structured output prediction.

To address these problems, we have developped methods inspired by online learning to train
Support Vector Machines in large-scale setups. Chapter 2 provides more insights on SVMs. In
particular, Section 2.1 is entirely devoted to describe their application to classification and review
the related standard algorithms. And Section 2.2 details how SVMs can be adapted to perform
structured output prediction by following the approach proposed by [Tsochantaridis et al., 2005],
and how this formulation can be trained. But first, let us now introduce the two main tasks
tackled in the remaining of this thesis.

Classification

In classification, one trains methods able to distinguish between different instances by assigning
them a class label. In most cases there are two possible labels, we then speak of binary classifi-
cation. Otherwise, it is called multiclass classification. Examples of instances are human faces,
text documents, handwritten letters or digits, speech records, DNA sequences, etc.

An instance is described by its features, that are the characteristics of the examples for a
given problem. For example, in handwriting recognition, an instance can be a black and white
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Figure 1.4: Classification. A binary classifier is a decision boundary (black line) which
separates the mapping of training examples belonging to two sets (represented here by blue
crosses and red minuses).

picture representing a symbol and its features the gray level of each of its pixels. Thus, the input
to a classification task can equivalently be viewed as a two-dimensional matrix, whose axes are
the examples and the features.

Classification can be divided into several sub-tasks:

1. data collection and representation,

2. feature selection and/or feature reduction,

3. data mapping and final decision.

Data collection and representation are mostly problem-specific. Therefore it is difficult to give
general statements about this step of the process. Feature selection and feature reduction attempt
to reduce the dimensionality (i.e. the number of features) for the classification step. This is not
always essential or is implicitly performed in the third step.

Our work concentrates on learning the final classifier i.e. the process which finds a mapping
between instances and labels. This final classifier is defined by the decision surface lying at the
boundary between the mappings of the examples of each class. This is illustrated on Figure 1.4.

Structured Output Prediction

Much of the early research on supervised machine learning has focused on problems like clas-
sification and regression, where the prediction is a single univariate variable. However recent
problems arise, requiring to predict complex objects like trees, sequences, or alignments. Many
prediction problems can easily be broken into multiple binary classification problems, but other
problems require an inherently structured prediction.

Consider, for example, the problem of semantic role labeling. For a given input sentence x,
the goal is to predict the correct output parse tree y that reflects the semantic structure of the
sentence. This is illustrated on the right-hand side of Figure 1.5. Training data of sentences
that are labeled with the correct tree is available (e.g. from the Penn ProbBank [Kingsbury and
Palmer, 2002]), making this prediction problem accessible for supervised learning. Compared to
binary classification, the problem of predicting compound and structured outputs differs mainly
by the choice of the outputs y, much more complex than simple atomic labels.

Here are some examples of structures commonly used as well as concrete applications (see
[Bakır et al., 2007] for a complete review of the field):
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Figure 1.5: Examples of structured output prediction tasks in Natural Language
Processing. Left: Part-of-speech tagging associates an input natural language sentence (top)
with a sequence of part-of-speech tags such as Noun (Nn), verb (Vb), etc. (The output structure
is a sequence.) Right: Semantic role labeling associates an input natural language sentence (top)
to a tree connecting each verb with its semantic arguments. (The output structure is a tree.)

• Sequences: A standard sequence labeling problem is part-of-speech tagging. Given a sen-
tence x represented as a sequence of words, the task is to predict the correct part-of-speech
tag (e.g. noun or determiner) for each word (see the left-hand of Figure 1.5). Even if this
problem could be formulated as a multiclass classification task for each word, predicting
the sequence at a whole allows exploiting dependencies between tags (e.g. it is unlikely to
see a verb after a determiner).

• Trees: We have already discussed the problem of semantic role labeling (Figure 1.5 (right)).

• Alignments: For comparative protein structure modelling, it is necessary to predict how
the sequence of a new protein with unknown structure aligns against another sequence with
known structure.

1.2 New Efficient Algorithms for Support Vector Machines

We now detail the contributions to the field of large-scale machine learning proposed in this
dissertation. They can be split in three different pieces: (1) a novel generic algorithmic scheme
for conceiving online SVMs solvers which have been successfully applied to classification and
structured output prediction, (2) a quasi-Newton stochastic gradient algorithm for linear binary
SVMs, (3) a method for learning SVMs under ambiguous supervision. Most of them have been
the object of peer-reviewed publications in international journals or conference proceedings (see
Appendix A).

1.2.1 A New Generation of Online SVM Dual Solvers

We present a new kind of solver for the dual formulation of SVMs. This contribution is actually
threefold and takes up the main part of this thesis: it is the topic of both Chapter 4 and Chapter 5
(and also Appendix B).
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Figure 1.6: Learning with the Process/Reprocess principle Compared to a standard
online process, an additional memory storage is added (green square). (1) At each iteration,
a training example is either drawn from the training set ((1a) process) or from the additional
memory ((1b) reprocess). (2) The learning algorithm (center) takes this single example as input.
(3) After a learning step on it, this example is either discarded (3a) or stored in the memory
(3b). The procedure (1)-(2)-(3) is carried-out until the training set is empty. (4) Anytime, one
can have access to the current learnt spam filter.

The Process/Reprocess Principle

These new algorithms perform an online optimization of the dual objective of Support Vector
Machines based on a so-called process/reprocess principle: when receiving a new example, they
perform a first optimization step similar to that of a common online algorithm. In addition to this
Process operation, they perform Reprocess operations: each of which is a basic optimization
step applied to randomly chosen previously seen training examples. Figure 1.6 illustrates this
learning scheme. The Reprocess operations force these algorithms to store a fraction of the train-
ing examples to re-visit them now and then. This causes extra-storing and extra-computations
compared to standard online algorithms: these methods are not strictly online.6 However these
training algorithms still scale better than batch methods because the number of stored examples
is usually much smaller then the training set size.

This alternative online behavior presents interesting properties, especially for large-scale ap-
plications. Indeed, results provided in this dissertation show that online optimization with the
Process/Reprocess principle leads to algorithms providing fair approximate solutions on the
whole course of learning and achieving good accuracies while having low computational costs.

Family of Algorithms

During this thesis, we successively applied the Process/Reprocess principle to several concrete
problems. Hence, we developed a whole family of efficient algorithms.

Chapter 4 introduces two Process/Reprocess algorithms for binary classification. Named
the Huller and LaSVM, they yield competitive misclassification rates after a single pass over the
training examples, outspeeding state-of-the-art SVMs solvers. LaSVM outperforms the Huller

6Yet we sometimes refer to these as online algorithms in this thesis: it is a common naming abuse.
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because it handles noisy data in a better way. We also show how active example selection can
yield even faster training, higher accuracies, and simpler models, using only a fraction of the
training examples. Chapter 5 then proposes an online solver of the dual formulation of SVMs
for structured output prediction. The LaRank algorithm, implementing the Process/Reprocess

principle, is applied to the tasks of multiclass classification and sequence labeling. In both cases,
LaRank shares the generalization performances of batch optimizers and the speed of standard
online methods.

Theoretical Study

Every derivation is proved to eventually converge to the same solution as batch methods by
theoretical proofs spread in the chapters.

Moreover, in Section 4.4, we provide a theoretical study of the Process/Reprocess principle
in the context of online approximate optimization. We analyse a simple algorithm for SVMs for
binary classification, and show that a constant number of Reprocess operations is sufficient to
maintain, on the course of the algorithm, an averaged accuracy criterion, with a computational
cost that scales as well as the best existing SVMs algorithms with the number of examples.

1.2.2 A Carefully Designed Second-Order SGD

Stochastic Gradient Descent is known to be a fast learning algorithm in the large-scale setup. In
particular, numerous recent works report great performances for training linear SVMs.

In Chapter 3, we discuss how to train efficiently linear SVMs and propose SGD-QN: a stochas-
tic gradient descent algorithm that makes careful use of second-order information and splits the
parameter update into independently scheduled components. Thanks to this design, SGD-QN
iterates nearly as fast as a first-order stochastic gradient descent but requires less iterations to
achieve the same accuracy. This algorithm won the “Wild Track” of the first PASCAL Large
Scale Learning Challenge [Sonnenburg et al., 2008].

1.2.3 A Learning Method for Ambiguously Supervised SVMs

This contribution addresses the fresh problem of learning from ambiguous supervision, focusing
on the task of semantic parsing. A learning problem is said to be ambiguously supervised when,
for a given training input, a set of output candidates (rather than the only correct output) is
provided with no prior of which one is correct. In Chapter 6 is then introduced a new reduction
from ambiguous multiclass classification to the problem of noisy label ranking, which we then
cast into a SVMs formulation. We propose an online algorithm for learning these SVMs. An
empirical validation on semantic parsing data sets demonstrates the efficiency of this approach.

This contribution does not directly focus on large-scale learning. In particular, the related
experiments concern small-size data sets. Yet, our contribution involves an online algorithm
presenting good scaling properties towards large-scale problems.

Moreover, we believe this chapter is important because learning from ambiguous supervision
will be a key challenge in the future. Indeed, the cost for producing ambiguously annotated
corpora is far less than the one required for producing perfectly annotated ones. Large-scale
ambiguously annotated data sets will be likely to appear in the next few years. Being able to
properly use them would be rewarding.
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1.2.4 Careful Implementations

For almost all the new algorithms discussed in this thesis, a corresponding efficient implemen-
tation (in C or C++) is freely available.7 Even if this does not appear directly in the present
dissertation, we consider this as a contribution. Indeed a careful implementation is a key factor
when dealing with large amounts of data.

This issue is extensively discussed for the particular case of Stochastic Gradient Descent
algorithms in Chapter 3. Some implementation details are also provided for all other algorithms.

1.3 Outline of the Thesis

The chapters are not arranged in chronological order but rather follow the increase in complexity
of the different prediction models to be learnt. For interested readers, the chronological order in
which the different pieces of work have been developed, is: Chapter 4, then Chapter 5, Chapter 3
and Chapter 6.

• Chapter 2 presents the formalism of Support Vector Machines for classification and for
structured output prediction. It also describes the main notations and details some of the
state-of-the-art batch and online learning methods for SVMs.

• In Chapter 3, we study the learning process of Stochastic Gradient Descent for the partic-
ular case of linear SVMs. This leads us to define and validate the new SGD-QN algorithm.

• Chapter 4 explains the Process/Reprocess principle via the simple Huller algorithm.
We then analyse the LaSVM algorithm for solving binary classification, discuss the benefit
of joining active and online learning, and present a lemma which assesses generalization
abilities of the Huller and LaSVM.

• In Chapter 5, we discuss how to learn SVMs for structured output prediction with LaRank,
an algorithm implementing the Process/Reprocess principle. Derivation to multiclass
classification and sequence labeling are detailed.

• In Chapter 6 is introduced the original framework of learning under ambiguous supervision
which we apply to the structured task of semantic parsing.

• Chapter 7 presents our concluding remarks and explores some future research directions.

Three supplements are proposed at the end of this dissertation:

• Appendix A catalogs the different publications regarding this thesis contributions.

• Appendix B addresses the convergence properties of algorithms discussed in Chapter 4.

• Appendix C is not directly related to this thesis. It presents some of our recent work on
Natural Language Processing in which we experience some ways of learning to disambiguate
language using world knowledge and neural networks.

7Codes have been released under the GPL3 license and can be downloaded either at http://webia.lip6.fr/

~bordes/mywiki/doku.php?id=codes or from the mloss.org repository for machine learning open source softwares.

file://localhost/Users/claire/Library/Mail%20Downloads/mloss.org
http://webia.lip6.fr/~bordes/mywiki/doku.php?id=codes
http://webia.lip6.fr/~bordes/mywiki/doku.php?id=codes
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I
n this thesis, we address the training of Support Vector Machines (SVMs) on large scale
databases. SVMs [Vapnik, 1998] are supervised learning methods originally used for binary

classification and regression. They are the successful application of the kernel idea [Aizerman et
al., 1964] to large margin classifiers [Vapnik and Lerner, 1963] and have proved to be powerful
tools. Nowadays SVMs are used in various research and engineering areas ranging from breast
cancer diagnosis, recommendation system, database marketing, or detection of protein homolo-
gies, to text categorization, or face recognition, etc.1 The contributions of this dissertation cover
the general framework of SVMs. Hence, their applicative scope is potentially very vast.

The present chapter introduces Support Vector Machines along with some state-of-the-art
algorithms to train them. We do not claim to be exhaustive here, and we focus on the main
methods of the literature that are the most related to our work. For more details, [Cristianini
and Shawe-Taylor, 2000] propose a deep and comprehensive introduction to Support Vector
Machines. Section 2.1 focuses on binary classification, the original application of SVMs. In
particular, Section 2.1.2 presents batch SVMs training methods and Section 2.1.3 online kernel
algorithms. Then, Section 2.2 introduces the recent application of SVMs to the case of structured
output prediction following the work presented by [Tsochantaridis et al., 2005]. Existing batch
and online methods are finally discussed.

1The webpage http://www.clopinet.com/isabelle/Projects/SVM/applist.html displays many successful ap-
plications of SVMs.

http://www.clopinet.com/isabelle/Projects/SVM/applist.html
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2.1 Kernel Classifiers

Early kernel classifiers [Aizerman et al., 1964] were derived from the perceptron [Rosenblatt,
1958], a simple and efficient online learning algorithm. They associate classes y = ±1 to patterns
x ∈ X by first transforming the patterns into feature vectors Φ(x) and taking the sign of a linear
discriminant function:

f(x) = 〈w,Φ(x)〉 + b (2.1)

where 〈·, ·〉 denotes the dot product in the feature space endowed by Φ(·). The parameters
w and b are determined by running some learning algorithm on a set of training examples
(x1, y1) · · · (xn, yn). These classifiers are called Φ-machines, their feature function Φ is usually
hand chosen for each particular problem [Nilsson, 1965]. [Aizerman et al., 1964] transform such
linear classifiers by leveraging two theorems of the Reproducing Kernel theory [Aronszajn, 1950].

The Representation Theorem states that many Φ-machine learning algorithms produce pa-
rameter vectors w that can be expressed as a linear combinations of the training patterns.

w =

n
∑

i=1

αiΦ(xi)

The linear discriminant function (2.1) can then be written as a kernel expansion:

f(x) =

n
∑

i=1

αik(x, xi) + b (2.2)

where the kernel function k(x, x̄) represents the dot products 〈Φ(x),Φ(x̄)〉 in feature space. This
expression is most useful when a large fraction of the coefficients αi are zero. Examples such
that αi &= 0 are then called Support Vectors.

Mercer’s Theorem precisely states which kernel functions correspond to a dot product for
some feature space. Kernel classifiers deal with the kernel function k(x, x̄) without explicitly
using the corresponding feature function Φ(x). Common kernel involve the simplest linear kernel
k(x, x̄) = 〈x, x̄〉, the polynomial kernel k(x, x̄) = (1 + 〈x, x̄〉)p (where the positive integer p is

the degree) and the well-known RBF kernel k(x, x̄) = e−γ‖x−x̄‖2

(with γ > 0) which defines an
implicit feature space of infinite dimension.

Kernel classifiers handle such large feature spaces with the comparatively modest computa-
tional costs of the kernel function. On the other hand, kernel classifiers must control the decision
function complexity in order to avoid overfitting the training data in such large feature spaces.
This can be achieved by keeping the number of support vectors as low as possible [Littlestone
and Warmuth, 1986] or by searching decision boundaries that separate the examples with the
largest margin [Vapnik and Lerner, 1963, Vapnik, 1998].

2.1.1 Support Vector Machines

Support Vector Machines were defined by three incremental steps. First, [Vapnik and Lerner,
1963] propose to construct the Optimal Hyperplane, that is, the linear classifier that separates
the training examples with the widest margin. Then, [Guyon et al., 1993] propose to construct
the Optimal Hyperplane in the feature space induced by a kernel function. Finally, [Cortes and
Vapnik, 1995] show that noisy problems are best addressed by allowing some examples to violate
the margin constraint.

The idea of the maximization comes from the following reasoning. As for early classifiers,
predictions are carried out by taking the sign of the function f defined in (2.2). Geometrically,
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Figure 2.1: Margins. Two hyperplanes for separating crosses (blue) and minuses (red). Left:
hyperplane with a small margin. Right: hyperplane with a large margin. The margin is the
distance between the two dashed hyperplanes. SVMs are classifiers maximizing the margin.

the equation f(x) = 0 actually defines an hyperplane in the space induced by the feature function
Φ(x). It is depicted as a black line in Figure 2.1. In the SVM framework, this hyperplane is
enforced to separate the two classes of examples with the largest margin because, intuitively, a
classifier with a larger margin is more noise-resistant. This can be expressed by the following set
of constraints:

∀i ,

{

f(xi) ≥ γ if yi = +1
f(xi) ≤ −γ if yi = −1

(2.3)

with γ an arbitrary positive tolerance. By rescaling w and b, we can set γ = 1, with no loss of
generality, and group the above constraints in a single formula

∀i , yi f(xi) ≥ 1 . (2.4)

The margin is defined as the distance between the hyperplanes f(x) = 1 and f(x) = −1 (dashed
lines in Figure 2.1). A straightforward calculus provides its analytical value

margin =
2

||w|| . (2.5)

Finally, Support Vector Machines minimize the following objective function in feature space.

min
w,b

P (w, b) =
1

2
‖w‖2

+ C

n
∑

i=1

ℓ(yi f(xi)) (2.6)

The first term of the equation expresses the maximization of the margin (2.5). The second term
enforces to satisfy the constraints (2.4). Indeed the function ℓ, named the hinge loss, is defined
as ℓ(yi f(xi)) = max (0, 1 − yi f(xi)) and is directly related to the constraints set. The hinge
loss can also be seen as an intuitive measure of the quality of the classifier f on each training
example (xi, yi): the larger ℓ(yi f(xi)) is, the worse the classifier performs on (xi, yi).

Introducing the slack variables ξi, one usually gets rid of the inconvenient max of the loss
and rewrite the problem as

min
w,b

P (w, b) =
1

2
‖w‖2

+ C
n

∑

i=1

ξi with

{

∀ i yi f(xi) ≥ 1 − ξi

∀ i ξi ≥ 0
(2.7)
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Figure 2.2: Separating hyperplane and dual coefficients. Support vectors are the exam-
ples on which lies the margin and correspond to non-zero α. The C parameter is essential to
bound the α of misclassified instances (outliers) and yet lower their influence in the solution.

For very large values of the hyper-parameter C, this expression minimizes ‖w‖ (i.e. maxi-
mizes (2.5)) under the constraint that all training examples are correctly classified with a loss
ℓ(yi f(xi)) equal to zero. This is termed the Hard Margin case. Smaller values of C relax this
constraint and give the so-called Soft Margin SVMs that produces markedly better results on
noisy problems [Cortes and Vapnik, 1995]. SVMs have been very successful and are very widely
used because they reliably deliver state-of-the-art classifiers with minimal tweaking.

In practice learning SVMs can be achieved by solving the dual of this convex optimization
problem. The coefficients αi of the SVM kernel expansion (2.2) are found by defining the dual
objective function

D(α) =
∑

i

αiyi −
1

2

∑

i,j

αiαjk(xi, xj) (2.8)

and solving the SVM dual Quadratic Programming (QP) problem.

max
α

D(α) with















∑

i αi = 0
Ai ≤ αi ≤ Bi

Ai = min(0, Cyi)
Bi = max(0, Cyi)

(2.9)

Figure 2.2 illustrates how the separating hyperplane and the margin are related to the fi-
nal coefficients αi. As stated by the representation theorem, the discriminant function can be
expressed as a kernel expansion (2.2) involving only a fraction of the training examples, those
corresponding to non-zero α, i.e. the support vectors.

The formulation (2.9) slightly deviates from the standard formulation [Cortes and Vapnik,
1995] because it makes the αi coefficients positive when yi = +1 and negative when yi = −1.
The standard formulation enforcing all αi to be positive is defined as:

D(α) =
∑

i=1

αi −
1

2

∑

i,j

yiyjαiαjk(xi, xj) with

{
∑

i αiyi = 0
0 ≤ αi ≤ C

(2.10)

Both formulations lead to the same solution. In most of this thesis, we work with the dual
QP (2.9). (Only in Section 4.4, we use (2.10) because it provides more convenient notations.)
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Computational Cost of SVMs There are two intuitive lower bounds on the computational
cost of any algorithm able to solve the SVM QP problem for arbitrary matrices kij = k(xi, xj).

1. Suppose that an oracle reveals whether αi = 0 or αi = ±C for all i = 1 . . . n. Computing
the remaining 0 < |αi| < C amounts to inverting a matrix of size R × R where R is the
number of support vectors such that 0 < |αi| < C. This typically requires a number of
operations proportional to R3.

2. Simply verifying that a vector α is a solution of the SVM QP problem involves computing
the gradients of D(α) and checking the Karush-Kuhn-Tucker optimality conditions [Vapnik,
1998]. With n examples and S support vectors, this requires a number of operations
proportional to n S.

Few support vectors reach the upper bound C when it gets large. The cost is then dominated
by the R3 ≈ S3. Otherwise the term n S is usually larger. The final number of support vectors
therefore is the critical component of the computational cost of the SVM QP problem.

Assume that increasingly large sets of training examples are drawn from an unknown dis-
tribution P (x, y). Let B be the error rate achieved by the best decision function (2.1) for that
distribution. When B > 0, [Steinwart, 2004] shows that the number of support vectors is asymp-
totically equivalent to 2nB. Therefore, regardless of the exact algorithm used, the asymptotic
computational cost of solving the SVM QP problem grows at least like n2 when C is small and
n3 when C gets large. Empirical evidence shows that modern SVM solvers [Chang and Lin, 2001
2004, Collobert and Bengio, 2001] come close to these scaling laws.

Practice however is dominated by the constant factors. When the number of examples grows,
the kernel matrix kij = k(xi, xj) becomes very large and cannot be stored in memory. Kernel
values must be computed on the fly or retrieved from a cache of often accessed values. When
the cost of computing each kernel value is relatively high, the kernel cache hit rate becomes a
major component of the cost of solving the SVM QP problem [Joachims, 1999]. Large problems
must be addressed by using algorithms that access kernel values with very consistent patterns.

2.1.2 Solving SVMs with SMO

Efficient batch numerical algorithms have been developed to solve the SVM QP problem (2.9).
The best known methods are the Conjugate Gradient method [Vapnik, 1982, pages 359–362] and
the Sequential Minimal Optimization (SMO) [Platt, 1999]. Both methods work by making suc-
cessive searches along well chosen directions. Some famous SVM solvers like SVMLight [Joachims,
1999] or SVMTorch [Collobert and Bengio, 2001] propose to use decomposition algorithms to de-
fine such directions. This section mainly details SMO, as this is our main reference SVM solver
in this thesis. In particular, we compare our methods with the state-of-the-art implementation
of SMO, LibSVM [Chang and Lin, 2001 2004]. For a complete review of efficient batch SVM
solvers see [Bottou and Lin, 2007].

Sequential Direction Search

Each direction search solves the restriction of the SVM problem to the half-line starting from
the current vector α and extending along the specified direction u. Such a search yields a new
feasible vector α + λ∗u.

λ∗ = arg maxD(α + λu) with 0 ≤ λ ≤ φ(α,u) (2.11)
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The upper bound φ(α,u) ensures that α + λu is feasible as well.

φ(α,u) = min







0 if
∑

k uk &= 0
(Bi − αi)/ui for all i such that ui > 0
(Aj − αj)/uj for all j such that uj < 0







(2.12)

Calculus shows that the optimal value is achieved for

λ∗ = min

{

φ(α,u) ,

∑

i gi ui
∑

i,j uiuj kij

}

(2.13)

where kij = k(xi, xj) and g = (g1 . . . gn) is the gradient of D(α):

gk =
∂D(α)

∂αk
= yk −

∑

i

αik(xi, xk) = yk − f(xk) + b . (2.14)

Sequential Minimal Optimization

[Platt, 1999] observes that direction search computations are much faster when the search di-
rection u mostly contains zero coefficients. At least two coefficients are needed to ensure that
∑

k uk = 0. The Sequential Minimal Optimization (SMO) algorithm uses search directions whose
coefficients are all zero except for a single +1 and a single −1.

Practical implementations of the SMO algorithm [Chang and Lin, 2001 2004, Collobert and
Bengio, 2001] usually rely on a small positive tolerance τ > 0. They only select directions u

such that φ(α,u) > 0 and 〈u, g〉 > τ . This means that we can move along direction u without
immediately reaching a constraint and increase the value of D(α). Such directions are defined
by the so-called τ -violating pair (i, j):

(i, j) is a τ -violating pair ⇐⇒







αi < Bi

αj > Aj

gi − gj > τ

Algorithm 1 SMO Algorithm

1: Set α ← 0 and compute the initial gradient g (equation 4.2)
2: Choose a τ -violating pair (i, j). Stop if no such pair exists.

3: λ ← min

{

gi − gj

kii + kjj − 2kij
, Bi − αi, αj − Aj

}

αi ← αi + λ , αj ← αj − λ
gs ← gs − λ(kis − kjs) ∀ s ∈ {1 . . . n}

4: Return to step 2.

Algorithm 1 sketches SMO but does not specify how exactly the τ -violating pairs are chosen.
Modern implementations of SMO select the τ -violating pair (i, j) that maximizes the directional
gradient 〈u, g〉. This choice was described in the context of Optimal Hyperplanes in both [Vapnik,
1982, pages 362–364] and [Vapnik et al., 1984].

Regardless of how exactly the τ -violating pairs are chosen, [Keerthi and Gilbert, 2002] assert
that the SMO algorithm stops after a finite number of steps. This assertion is correct despite
a slight flaw in their final argument [Takahashi and Nishi, 2003]. When SMO stops, no τ -
violating pair remain. The corresponding α is called a τ -approximate solution. Proposition 23 in
Appendix B establishes that such approximate solutions indicate the location of the solution(s)
of the SVM QP problem when the tolerance τ become close to zero.
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2.1.3 Online Kernel Classifiers

On large-scale problems, batch methods solving the SVM QP problem exactly become in-
tractable. Even when they implement efficient caching procedures to avoid multiple costly
calculations of kernel values, their computational requirements overcome computing resources.

Hence, many authors have sought to replicate the SVM success with an online learning
process by applying the large margin idea to some simple online algorithms [Freund and Schapire,
1998, Frieß et al., 1998, Gentile, 2001, Li and Long, 2002, Crammer and Singer, 2003]. These
methods present better scaling properties than batch ones but they do not actually solve the
SVM QP. As a consequence, they usually suffer a loss of generalization. However, on many
large-scale applications they are the only methods available.

Kernel Perceptrons

The earliest online kernel classifiers [Aizerman et al., 1964] were derived from the Perceptron
algorithm [Rosenblatt, 1958]. The decision function (2.2) is represented by maintaining the set
S of the indices i of the support vectors. The bias parameter b remains zero. We depict the
kernel perceptron in Algorithm 2.

Algorithm 2 Kernel Perceptron

1: S ← ∅, b ← 0.
2: Pick a random example (xt, yt)
3: Compute f(xt) =

∑

i∈S αi k(xt, xi) + b
4: if yt f(xt) ≤ 0 then
5: S ← S ∪ {t}, αt ← yt

6: end if
7: Return to step 2.

Such online learning algorithms require far less memory than batch methods because the
examples are processed one by one and can be discarded after being examined.

Iterations such that yt f(xt) < 0 are called mistakes because they correspond to patterns
misclassified by the perceptron decision boundary. The algorithm then modifies the decision
boundary by inserting the misclassified pattern into the kernel expansion. When a solution
exists, Novikoff’s theorem [Novikoff, 1962] states that the algorithm converges after a finite
number of mistakes, or equivalently after inserting a finite number of support vectors. Noisy
data sets are more problematic.

Large Margin Kernel Perceptrons

The success of Support Vector Machines has shown that large classification margins were desir-
able. On the other hand, the Kernel Perceptron (Section 2.1.3) makes no attempt to achieve large
margins because it happily ignores training examples that are very close to being misclassified.

Many authors have proposed to close the gap with online kernel classifiers by providing larger
margins. The Averaged Perceptron [Freund and Schapire, 1998] decision rule is the majority vote
of all the decision rules obtained after each iteration of the Kernel Perceptron algorithm. This
choice provides a bound comparable to those offered in support of SVMs. Other algorithms
[Frieß et al., 1998, Gentile, 2001, Li and Long, 2002, Crammer and Singer, 2003] explicitly
construct larger margins. In particular, the passive-aggressive algorithm [Crammer et al., 2006]
(see Algorithm 3) performs updates when the margin yt f(xt) of the freshly drawn example
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is lower than 1, with a magnitude based on analytical solutions of simple constraint problems
similar to QP (2.9).

Algorithm 3 Passive-Aggressive (C)

1: S ← ∅, b ← 0.
2: Pick a random example (xt, yt)
3: Compute f(xt) =

∑

i∈S αi k(xt, xi) + b
4: if yt f(xt) ≤ 1 then

5: S ← S ∪ {t}, αt ← yt min
(

C, 1−yt f(xt)
k(xt,xt)

)

6: end if
7: Return to step 2.

Hence, large margin algorithms modify the decision boundary whenever a training example
is either misclassified or classified with an insufficient margin. Such examples are then inserted
into the kernel expansion with a suitable coefficient. Unfortunately, this change significantly
increases the number of mistakes and therefore the number of support vectors. The increased
computational cost and the potential overfitting undermines the positive effects of the margin.

Kernel Perceptrons with Removal Step

This is why [Crammer et al., 2004] suggest an additional step for removing support vectors
from the kernel expansion (2.2). The Budget Perceptron (Algorithm 4) performs very nicely on
relatively clean data sets.

Algorithm 4 Budget Kernel Perceptron (β,N)

1: S ← ∅, b ← 0.
2: Pick a random example (xt, yt)
3: Compute f(xt) =

∑

i∈S αi k(xt, xi) + b
4: if yt f(xt) ≤ β then
5: S ← S ∪ {t}, αt ← yt

6: if |S| > N then
7: S ← S − { arg maxi∈S yi (f(xi) − αi k(xi, xi)) }
8: end if
9: end if

10: Return to step 2.

Online kernel classifiers usually experience considerable problems with noisy data sets. Each
iteration is likely to cause a mistake because the best achievable misclassification rate for such
problems is high. The number of support vectors increases very rapidly and potentially causes
overfitting and poor convergence. More sophisticated support vector removal criteria avoid this
drawback [Weston et al., 2005]. This modified algorithm outperforms all other online kernel
classifiers on noisy data sets and approaches the performance of Support Vector Machines with
less support vectors.

Incremental Algorithms

Unfortunately, even the most sophisticated kernel perceptrons achieve generalization accuracies
lower than those of batch SVMs, because their online process make too scarce use of training
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examples. Incremental algorithms [Cauwenberghs and Poggio, 2001, Laskov et al., 2006] attempt
to combine the precision of batch SVMs with a somewhat online training process.

At each time index, they perform a batch optimization of a SVM objective function restricted
on the examples seen so far until reaching an optimality criterion. At each step, only one point
is added to the training set and one recomputes the exact SVM solution of the whole data set
seen so far. Hence, one does not consider a finite training set of size n anymore but a succession
of training sets whose sizes increases by one at each step.

In this thesis, we denote Pt(w) the primal cost function restricted to the set containing the
first t examples.2 An incremental algorithm thus solves recursively the following problems:

min
w,b

Pt(w, b) = ‖w‖2
+ C

t
∑

i=1

ξi with

{

∀ i = 1, . . . t yi f(xi) ≥ 1 − ξi

∀ i = 1, . . . t ξi ≥ 0
(2.15)

Similarly Dt(α) denotes the associated dual objective. The SVM QP (2.9) becomes:

max
α

Dt(α) =

t
∑

i=1

αi −
1

2

∑

i,j≤t

yiyjαiαjk(xi, xj) with

{ ∑

i αi = 0
∀ i = 1, . . . t 0 ≤ αi ≤ C

(2.16)

Incremental algorithms are mostly used either in active learning, or, in an incremental/decre-
mental setting, to compute leave-one-out errors. Such methods requires very efficient implemen-
tation to be competitive, in particular, ways to avoid to re-computing the whole solution from
scratch at each step are crucial.

The condition to remain optimal at every step means that an incremental algorithm has to
test and potentially train on every instances seen so far: this is intractable on large training sets.
SimpleSVM [Vishwanathan et al., 2003] is derived from the incremental setup but uses a loose
optimality criterion only requiring to be optimal on a subset of examples, and thus scales better.

2.1.4 Solving Linear SVMs

The use of a linear kernel heavily simplifies the SVM optimization problem. Indeed such a
kernel allows to explicitly express the parameter vector w. This means (i) no need to use a
kernel expansion as in (2.2) anymore, and (ii) no need to store or compute the kernel matrix.
Computing gradients of either the primal or dual cost function is cheap and depends only on
the sparsity of the instances. The use of linear kernel is thus very interesting when one needs
to handle large-scale databases. However this simpler complexity can also result in a loss of
accuracy compared to non-linear kernels (e.g. polynomial, RBF, . . . ).

Recent work exhibits new algorithms scaling linearly in time with the number of training ex-
amples. SVMPerf [Joachims, 2006] is a simple cutting-plane algorithm for training linear SVMs
that is shown to converge in linear time for classification. It is based on SVMstruct, an alterna-
tive formulation of the SVM optimization problem originally designed for predicting structured
outputs (presented in the next section), that exhibits a different form of sparsity compared to the
conventional formulation. The algorithm is empirically very fast and has an intuitively meaning-
ful stopping criterion. Bundle methods [Smola et al., 2008] perform in a similar way. LibLinear
[Hsieh et al., 2008] also reaches good performance on large scale data sets. Employing an efficient
dual coordinate descent procedure, it converges in linear time. Special care has been taken to its
implementation as described in [Fan et al., 2008]. As a result, experiments show that LibLinear
outperforms SVMPerf in practice.

2We also use these notations when we consider SVM problems applied to streams of examples (xi, yi)i≥1.
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Solving linear SVMs in the primal can also be very efficient. Recent work on Stochastic
Gradient Descent by [Bottou and Bousquet, 2008] have demonstrated that they usually obtain the
best generalization performances. For instance, algorithms such as PEGASOS [Shalev-Shwartz
et al., 2007] or SVMSGD [Bottou, 2007] are known to be fast and highly scalable online learning
solvers. Chapter 3 is entirely devoted to the study of linear SVMs learning. In particular, we
discuss in detail how to speed-up Stochastic Gradient Descent and compare empirically SVMSGD
and LibLinear.

Most of the methods cited in this section present strong theoretical scaling properties and
perform very well for learning SVMs with linear kernels. However one must remember that the
picture changes a lot with non-linear kernels because the parameter vector w can no longer be
made explicit. Hence, in this case, learning algorithms of the previous sections remain much
more efficient.

2.2 SVMs for Structured Output Prediction

This section describes the partial ranking formulation of multiclass SVMs [Crammer and Singer,
2001]. Remarking that structured output prediction is similar to multiclass classification with a
very large number of classes, [Tsochantaridis et al., 2005] nicely extend it to deal with all sorts of
structures. The presentation first follows their work and then introduces a new parametrization
of the dual program.

In the structured setting inputs and outputs to be predicted are more complex than for binary
classification. In sequence labeling for example, an input is a sequence of vectors and its output
a sequence of atomic class labels. To avoid confusions with the previous section, we now use the
following notations: an input pattern is denoted p ∈ P and an output is denoted c ∈ C.

2.2.1 SVM Formulation

As for binary classification, we want to learn a function f that maps patterns p ∈ P to out-
puts c ∈ C. Patterns can be speech utterances, text sentences, protein sequences, handwritten
scans,. . . Corresponding structured labels can be: speech transcription sequences, grammar parse
trees, protein alignments,. . .

From Multiclass Classification to Structured Output Prediction

When using SVMs, structured output prediction is highly related to multiclass classification
which is a well-known task in machine learning. The most widely used approaches combine
multiple binary classifiers separately trained using either the one-versus-all or one-versus-one
scheme (e.g. [Hsu and Lin, 2002]). Alternative proposals [Weston and Watkins, 1998, Cram-
mer and Singer, 2001] reformulate the large margin problem to directly address the multiclass
problem. These algorithms are more expensive because they must simultaneously handle all the
support vectors associated with different inter-class boundaries. Unfortunately, rigorous exper-
iments [Hsu and Lin, 2002, Rifkin and Klautau, 2004] suggest that this higher cost does not
translate into higher generalization performance.

The picture changes when, instead of predicting an atomic class label for each input pattern,
one targets to produce complex discrete outputs such as sequences, trees, or graphs. Such
problems can still be viewed as multiclass (potential outputs can be enumerated, in theory) but
with a number of classes growing exponentially with the characteristic size of the output. Yet,
dealing with so many classes in a large margin classifier is infeasible without smart factorizations
that leverage the specific structure of the outputs (e.g. Section 2.2 or [Taskar et al., 2005]). This
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can only be achieved using a direct multiclass formulation because the factorization of the output
space implies that all the classes must be handled simultaneously.

Inference

We introduce a discriminant function S(p, c) ∈ R that measures the correctness of the association
between a pattern p and a class label c. The predicted output can be recovered with the following
inference step

f(p) = arg max
c∈C

S(p, c) . (2.17)

This inference step, based on an arg max, is crucial in the formalism we present below. Indeed,
Equation (2.17) encodes the process that allows to re-construct any output structure using an
input and the model parameters.

For standard multiclass classification, the size of the output space C remains small. The
arg max is simply an exhaustive search. But for compound structures, the size of C increases and
this becomes intractable. One must use the output structure to be able to solve equation (2.17).
Modeling dependencies within the output or making conditional-independence assumptions are
some common levers. Examples of standard inference procedures can be Viterbi decoding for
sequences or Belief-Propagation for graphs.

All the following formulation is similar to a simple multiclass problem. It becomes valid for
any kind of structure as soon as an associated inference process can be modeled within a single
arg max equation.

Partial Ranking

We follow here the direct formulation of [Crammer and Singer, 2001] for multiclass classification,
and its continuation for large-margin learning with interdependent output spaces by [Altun et
al., 2003, Tsochantaridis et al., 2005]. Thus, we assume that the discriminant function has the
linear form S(p, c) = 〈w,Φ(p, c)〉, where Φ(p, c) maps the pair (p, c) into a suitable feature space
endowed with the dot product 〈·, ·〉.

Consider training patterns p1 . . . pn ∈ P and their desired outputs c1 . . . cn ∈ C. For each
pattern pi, we want to make sure that the score S(pi, ci) of the correct association is greater
than the scores S(pi, c), c &= ci, of the incorrect associations. This amounts to enforcing a partial
order relationship on the elements of P×C. This partial ranking can be expressed by constraints

∀i = 1 . . . n ∀c &= ci 〈w, δΦi(c)〉 ≥ ∆(ci, c)

where δΦi(c̄) stands for Φ(pi, ci) − Φ(pi, c̄) and ∆(ci, c) is the true loss incurred by predicting
label c instead of the true ci.

Following the standard SVM derivation, [Tsochantaridis et al., 2005] introduce slack variables
ξi to account for the potential violation of the constraints and optimize a combination of the
norm of w and of the size of the slack variables.

min
w

1

2
‖w‖2 + C

n
∑

i=1

ξi (2.18)

subject to

{

∀i ξi ≥ 0
∀i ∀c &= ci 〈w, δΦi(c)〉 ≥ ∆(ci, c) − ξi
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Dual Programs

The usual derivation leads to solving the following equivalent dual problem (e.g. [Crammer and
Singer, 2001, Tsochantaridis et al., 2005]):

max
α

∑

i,c&=ci

∆(ci, c)α
c
i −

1

2

∑

i,c&=ci

j,c̄&=cj

αc
iα

c̄
j 〈δΦi(c), δΦj(c̄)〉

subject to







∀i ∀c &= ci αc
i ≥ 0

∀i
∑

c&=ci

αc
i ≤ C

(2.19)

This problem has n(|C|− 1) variables αc
i , c &= ci corresponding to the constraints of (2.18). Once

we have the solution, the discriminant function is

S(p, c) =
∑

i,c̄&=ci

αc̄
i 〈δΦi(c̄),Φ(p, c)〉

This dual problem can be considerably simplified by reparametrizing it with n|C| variables βc
i

defined as

βc
i =







−αc
i if c &= ci

∑

c&=ci

αc
i otherwise (2.20)

Note that only the βci

i can be positive. Substituting in (2.19), and taking into account the
relation

∑

c βc
i = 0, leads to a much simpler expression for the dual problem (the δΦi(. . . ) have

disappeared.)

max
β

−
∑

i,c

∆(c, ci)β
c
i −

1

2

∑

i,j,c,c̄

βc
i β

c̄
j 〈Φ(pi, c),Φ(pj , c̄)〉

subject to







∀i ∀c βc
i ≤ δ(c, ci)C

∀i
∑

c

βc
i = 0

(2.21)

where δ(c, c̄) is 1 when c = c̄ and 0 otherwise. The discriminant function then becomes

S(p, c) =
∑

i,c̄

βc̄
i 〈Φ(pi, c̄),Φ(p, c)〉 .

As usual with kernel machines, the feature mapping function Φ can be defined by the speci-
fication of a joint kernel function

K(p, c, p̄, c̄) = 〈Φ(p, c),Φ(p̄, c̄)〉 . (2.22)

The prediction function is finally rewritten as

f(p) = arg max
c∈C

∑

i,c̄

βc̄
i K(pi, c̄, p, c). (2.23)

Both primal (2.18) and dual (2.21) are very similar to those of standard binary SVMs. How-
ever, in this case, computational bottlenecks are (i) the size of the constraints set (that might
be exponential) and (ii) the inference procedure (i.e. the arg max (2.23), that might be costly).
Hence, algorithms targeting to tackle structured output prediction must be wise in their ways to
crawl the output space and thrifty in arg max computations.
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2.2.2 Batch Structured Output Solvers

Batch methods solve the Quadratic Program (2.21) (or (2.19)) with an iterative procedure that
run several times over the entire data set until some convergence criterion is met (e.g. [Altun et
al., 2003, Tsochantaridis et al., 2005, Taskar et al., 2004, Collins et al., 2008] ).

MCSVM The dual cost (2.21) can be seen as a function of a n × |C| matrix of Lagrange
coefficients where n is the number of examples and |C| the number of classes. Each iteration of
the MCSVM algorithm [Crammer and Singer, 2001] maximizes the restriction of the dual cost
to a single row of this coefficient matrix. Successive rows are selected using the gradient of
the cost function. That makes MCSVM a very efficient solver of dual (2.21). However, unlike
the coefficients matrix, the gradient is not sparse. As a consequence, this approach is not
feasible when the number of classes |C| grows exponentially, because the gradient becomes too
large. MCSVM cannot be used to learn generic structured outputs predictors and is restricted to
multiclass classification. Yet we use MCSVM as reference in Section 5.2.

Algorithm 5 SVMstruct (ǫ)

1: S ← ∅.
2: repeat
3: Pick a random example (pt, ct)
4: Set H(c) = ∆(ct, c) −

∑

(i,c̄)∈S βc̄
i (K(pi, c̄, pt, ct) − K(pi, c̄, pt, c))

5: Compute ĉ = arg maxc∈C H(c)
6: Compute ξt = max

(

0,maxc̄∈C s.t. (pt,c̄)∈S H(c̄)
)

7: if H(ĉ) ≥ ξt + ǫ then
8: S ← S ∪ {(t, ct), (t, ĉ)}
9: Optimize on the set S

10: end if
11: Return to step 3.
12: until S has not changed during iteration

SVMstruct Throughout this thesis we use SVMstruct [Tsochantaridis et al., 2005] as batch
learning reference. Unlike MCSVM, SVMstruct needs not the full gradient information. It solves
the dual problem (2.19) with the clever cutting plane algorithm. This ensures convergence
while only requiring to store and compute a small fraction of the n(|C| − 1) constraints as they
are added incrementally during training. This point makes SVMstruct suitable for structured
output problems with a large number of classes. We display in Algorithm 5 our adaptation of
SVMstruct to solve problem (2.21) (with only minor changes compared to the original version
of [Tsochantaridis et al., 2005]). At each round a training example is picked in the training set
(line 3) and a label corresponding to the input pattern is predicted (line 5). If this prediction
violates the constraints set (line 7), it is added to the working set (if not already in). A global
optimization step (line 9) is then performed on the constraints set. SVMstruct loops over the
whole training set until no more constraints can be added: a theoretical proof ensures that this
condition is satisfied in a finite number of optimization steps.

SVMstruct requires an arg max each time a training instance is visited: this strategy allows
the cutting plane algorithm to keep a reasonable size for the active constraints set. Nevertheless,
combined with the batch mode that iterates several times over the data, this causes the total
number of arg max needed by SVMstruct to be much larger than the training set size. As a
result, as soon as the output structure gets too sophisticated (e.g. a tree), each arg max becomes
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computationally expensive and SVMstruct can only tolerate a small number of training instances
for tractability reasons.

Another family of max-margin batch methods is based on the different strategy of output
space factorization (e.g. [Taskar et al., 2004]). They solve an alternative problem using additional
variables that encode the output structure to ease the computation of the arg max. However, for
each example the number of such variables to be added is polynomial in the characteristic size
of the outputs, and causes the computational cost of such methods to also grow much more than
linearly with the number of examples. Hence, these are impracticable on large data sets.

2.2.3 Online Learning for Structured Outputs

As for binary classification, online methods are scalable alternatives to batch algorithms. As
they run a single pass on the training set and update their parameters after each single example
(e.g. [Collins, 2002, Daumé III and Marcu, 2005]), their computational cost depends linearly on
the number of observations. In particular, the number of inference steps to be performed in the
training phase is linear.

Algorithm 6 Structured Perceptron

1: S ← ∅.
2: Pick a random example (pt, ct)
3: Compute f(pt) = arg maxc∈C

∑

(i,c̄)∈S βc̄
i K(pi, c̄, pt, c)

4: if f(p) &= ct then

5: S ← S ∪ {(t, ct), (t, f(p))}, βct

t ← +1, β
f(pt)
t ← −1

6: end if
7: Return to step 2.

Online algorithms inspired by the perceptron [Collins, 2002] can be interpreted as the succes-
sive solution of optimization subproblems restricted to coefficients associated with the current
training example. Algorithm 6 presents a structured perceptron. Given a training example, it se-
lects the predicted output using an arg max procedure (line 3) but, unlike SVMstruct, it optimizes
only on this example (line 5). The random ordering of the training examples drives the successive
optimizations. Perceptrons provide strong theoretical guarantees [Graepel et al., 2000] and run
very quickly. As for the binary case, large-margin adaptations like passive-aggressive algorithms
[Crammer et al., 2006] (which optimize a cost similar to (2.21)), have also been proposed.

2.3 Summary

SVMs are powerful but their training can be problematic in some cases. This chapter does
not try to be exhaustive because the number of training methods for SVMs is very large and
evolving constantly. However we tried to exhibit the main learning alternatives. In particular
we discussed the issues of choosing either an online or a batch algorithm.

It appears that proponents of online algorithms often mention that their generalization bounds
are no worse than generalization bounds for batch algorithms [Cesa-Bianchi et al., 2004]. How-
ever, the error bounds are not tight and such theoretical guarantees are thus not very informative.
Therefore, online algorithms are still significantly less accurate than batch algorithms, as it is
confirmed by experimental results displayed in Chapter 5.

In the next chapters, we attempt to fill the gap between online and batch methods by propos-
ing new algorithms for training SVMs scaling like online methods but generalizing like exact ones.
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W
hen large scale training sets are involved, Stochastic Gradient Descent (SGD) algorithms
are usually one of the best ways to take advantage of all the data. Indeed, when the

bottleneck is the computing time rather than the number of training examples, [Bottou and
Bousquet, 2008] established that SGD often yields the best generalization performances, in spite
of being poor optimizers.

Nowadays, a growing interest concerns efficient large scale methods. Needless to say, SGD
algorithms have been the object of a number of recent works, in particular for training linear
SVMs. [Bottou, 2007] and [Shalev-Shwartz et al., 2007] demonstrate that the plain Stochastic
Gradient Descent yields particularly effective algorithms when the input patterns are very sparse.
It can greatly outperform sophisticated batch methods on large data sets but can also suffer
from slow convergence rates especially on ill-conditioned problems. Various remedies have been
proposed:

• Stochastic Meta-Descent [Schraudolph, 1999] heuristically determines a learning rate for
each coefficient of the parameter vector. Although it can solve some ill-conditioning issues,
it does not help much for linear SVMs.

• Natural Gradient Descent [Amari et al., 2000] replaces the learning rate by the inverse
of the Riemannian metric tensor. This quasi-Newton stochastic method is statistically
efficient but is penalized in practice by the cost of storing and manipulating the tensor.

• Online BFGS (oBFGS) and Online Limited storage BFGS (oLBFGS) [Schraudolph et
al., 2007] are stochastic adaptations of the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
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optimization algorithm. The limited storage version of this algorithm is a quasi-Newton
stochastic method whose cost by iteration is a small multiple of the cost of a standard
SGD iteration. Unfortunately this penalty is often bigger than the gains associated with
the quasi-Newton update.

• Online Dual Solver LibLinear [Hsieh et al., 2008] has shown good performance on large
scale data sets. These solvers can be applied to both linear and nonlinear SVMs. In the
linear case, it is surprisingly close to SGD.

In this chapter we try to identify and leverage different ways to increase SGD abilities to per-
form well on large scale problems. In particular, we discuss both algorithmic and implementation
issues as they are inseparable in this case. This leads us to introduce a new algorithm named
SGD-QN, which is a carefully designed Stochastic Gradient Descent for linear Support Vector
Machines. SGD-QN won the first PASCAL Large Scale Challenge [Sonnenburg et al., 2008].

Section 3.1.1 presents SGD algorithms for Linear SVMs and analyses the potential gains of
quasi-Newton techniques. Sections 3.1.2 and 3.1.3 discuss the sparsity and implementation issues.
Finally section 3.2 presents the novel SGD-QN algorithm, and section 3.2.3 reports experimental
results. The work presented in this chapter has been the object of a publication (e.g. [Bordes et
al., 2009]).

3.1 Stochastic Gradient Descent

This section introduces SGD algorithms and summarizes theoretical results that are relevant to
the design of a fast variant of stochastic gradient algorithms. It also exhibits other directions
able to improve efficiency.

3.1.1 Analysis

We consider a binary classification problem with training examples (x, y) ∈ R
d ×{−1,+1}. The

linear SVM classifier is obtained by minimizing the primal cost function

Pn(w) =
λ

2
‖w‖2 +

1

n

n
∑

i=1

ℓ(yi 〈w, xi〉) =
1

n

n
∑

i=1

(

λ

2
‖w‖2 + ℓ(yi 〈w, xi〉)

)

, (3.1)

where the hyper-parameter λ > 0 controls the strength of the regularization term. This formula-
tion is equivalent to the general SVM formulation (2.15) restricted to the set of the n examples
and presented in Chapter 2, but using the λ regularization parameter instead of C,1 a generic
loss function ℓ and no bias term. Although typical SVMs could even use non regular convex
loss functions, we assume here that the loss ℓ(s) is convex and twice differentiable with contin-
uous derivatives (ℓ ∈ C2[R]). This could be simply achieved by smoothing the traditional loss
functions in the vicinity of their non regular points.

Each iteration of the SGD algorithm consists of drawing a random training example (xt, yt)
and computing a new value of the parameter wt as

wt+1 = wt −
1

t + t0
B gt(wt) with gt(wt) = λwt + ℓ′(yt 〈wt, xt〉) yt xt (3.2)

and where the rescaling matrix B is positive definite. Since the SVM theory provides simple
bounds on the norm of the optimal parameter vector [Shalev-Shwartz et al., 2007], the positive

1Corresponding C value is 1/nλ.
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constant t0 is heuristically chosen to ensure that the first few updates do not produce a parameter
with an implausibly large norm.

• The traditional first order SGD algorithm, with decreasing learning rate, is obtained by
setting B = λ−1 I in the generic update (3.2) :

wt+1 = wt −
1

λ(t + t0)
gt(wt) . (3.3)

• The second order SGD algorithm is obtained by setting B to the inverse of the Hessian
Matrix H = [ P ′′

n (w∗
n) ] computed at the optimum w∗

n of the primal cost Pn(w) :

wt+1 = wt −
1

t + t0
H−1 gt(wt) . (3.4)

Randomly picking examples could lead to expensive random accesses to the slow memory. In
practice, one simply performs sequential passes over the randomly shuffled training set.

What Matters are the Constant Factors

[Bottou and Bousquet, 2008] characterize the asymptotic learning properties of stochastic gra-
dient algorithms in the large scale regime, that is, when the bottleneck is the computing time
rather than the number of training examples.

Stochastic Gradient Cost of one Iterations Time to reach Time to reach
Algorithm iteration to reach ρ accuracy ρ E ≤ c (Eapp + ε)

1st Order SGD O(d) νκ2

ρ + o
(

1
ρ

)

O
(

dνκ2

ρ

)

O
(

d ν κ2

ε

)

2nd Order SGD O
(

d2
)

ν
ρ + o

(

1
ρ

)

O
(

d2ν
ρ

)

O
(

d2 ν
ε

)

Table 3.1: Asymptotic results for stochastic gradient algorithms. Reproduced from
[Bottou and Bousquet, 2008]. Compare the second last column (time to optimize) with the last
column (time to reach the excess test error ǫ). Legend : n number of examples; d parameter
dimension; c positive constant that appears in the generalization bounds; κ condition number of
the Hessian matrix H; ν = tr

(

GH−1
)

with G the Fisher matrix (see Theorem 1 for more details).
The implicit proportionality coefficients in notations O() and o() are of course independent of
these quantities.

The first three columns of Table 3.1 report the time for a single iteration, the number of
iterations needed to reach a predefined accuracy ρ, and their product, the time needed to reach
accuracy ρ.

The excess test error E measures how much the test error is worse than the best possible error
for this problem. [Bottou and Bousquet, 2008] decompose the test error as the sum of three terms
E = Eapp + Eest + Eopt. The approximation error Eapp measures how closely the chosen family of
functions can approximate the optimal solution, The estimation error Eest measures the effect of
minimizing the empirical risk instead of the expected risk, The optimization error Eopt measures
the impact of the approximate optimization on the generalization performance.

The fourth column of Table 3.1 gives the time necessary to reduce the excess test error E
below a target that depends on ǫ > 0. This is the important metric because the test error is the
measure that matters in machine learning.
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Both the first order and the second order SGD require a time inversely proportional to ǫ to
reach the target test error. Only the constants differ. The second order algorithm is insensitive
to the condition number κ of the Hessian matrix but suffers from a penalty proportional to the
dimension d of the parameter vector.2 Therefore, algorithmic changes that exploit the second
order information in SGD algorithms are unlikely to yield superlinear speedups. We can at best
improve the constant factors.

Limited Storage Approximations of Second Order SGD

Since the second order SGD algorithm is penalized by the high cost of performing the update
(3.2) using a full rescaling matrix B = H−1, it is tempting to consider matrices that admit a
sparse representation and yet approximate the inverse Hessian well enough to reduce the negative
impact of the condition number κ. The following result precisely describes how the convergence
speed of the generic SGD algorithm (3.2) is related to the spectrum of matrix HB.

Theorem 1 Let Eσ denote the expectation with respect to the random selection of the examples
(xt, yt) drawn independently from the training set at each iteration. Let w∗

n = arg minw Pn(w) be
an optimum of the primal cost. Define the Hessian matrix H = ∂2Pn(w∗

n)/∂w2 and the Fisher
matrix G = Gt = Eσ

[

gt(w
∗
n) gt(w

∗
n)⊤

]

. If the eigenvalues of HB are in range λmax ≥ λmin >
1/2, the SGD algorithm (3.2) satisfies

tr (HBGB)

2λmax − 1
t−1 + o

(

t−1
)

≤ Eσ [Pn(wt) − Pn(w∗
n)] ≤ tr (HBGB)

2λmin − 1
t−1 + o

(

t−1
)

.

The proof is given below. Note that the theorem assumes that the generic SGD algorithm
converges. Convergence in the first-order case holds under very mild assumptions (e.g. [Bottou,
1998]). Convergence in the generic SGD case holds because it reduces to the first-order case with

the change of variable w → B− 1
2 w. Convergence also holds under slightly stronger assumptions

when the rescaling matrix B changes over time (e.g. [Driancourt, 1994]).

Proof Define vt = wt − w∗
n and observe that

Pn(wt) − Pn(w∗
n) = v

⊤

tHvt + o
`

t−2´ = tr
`

Hvtv
⊤

t

´

+ o
`

t−2´

Let Et−1 representing the conditional expectation over the choice of the example at iteration t− 1 given
all the choices made during the previous iterations. Recall that

Et−1

ˆ

gt−1(wt−1) gt−1(wt−1)
⊤
˜

= Et−1

ˆ

gt−1(w
∗
n) gt−1(w

∗
n)⊤
˜

+ o (1) = G + o (1)

and Et−1

ˆ

gt−1(wt−1)
˜

= P ′
n(wt−1) = Hvt−1 + o (vt−1) = IεHvt−1

where notation Iε is a shorthand for I + o (1), that is, a matrix that converges to the identity.
Using the generic SGD update (3.2),

Hvtv
⊤

t = Hvt−1v
⊤

t−1 − Hvt−1 g
t−1

(wt−1)⊤B

t+t0
− HBg

t−1
(wt−1)v⊤t−1

t+t0

+
HBg

t−1
(wt−1)g

t−1
(wt−1)⊤B

(t+t0)2

Et−1

ˆ

Hvtv
⊤

t

˜

= Hvt−1v
⊤

t−1 − Hvt−1 v⊤t−1 HIε B

t+t0
− HBIε Hvt−1 v⊤t−1

t+t0
+ HBGB

(t+t0)2
+ o

`

t−2
´

Et−1

ˆ

tr
`

Hvtv
⊤

t

´˜

= tr
`

Hvt−1v
⊤

t−1

´

− 2 tr(HBIε Hvt−1 v⊤t−1)
t+t0

+ tr(HBGB)

(t+t0)2
+ o

`

t−2
´

Eσ

ˆ

tr
`

Hvtv
⊤

t

´˜

= Eσ

ˆ

tr
`

Hvt−1v
⊤

t−1

´˜

− 2Eσ[tr(HBIε Hvt−1 v⊤t−1)]
t+t0

+ tr(HBGB)

(t+t0)2
+ o

`

t−2
´

.

2[Bottou and Bousquet, 2008] obtain slightly worse scaling laws for non-stochastic gradient algorithms.
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Let λmax ≥ λmin > 1/2 be the extreme eigenvalues of HB. Since, for any positive matrix X ,
`

λmin + o (1)
´

tr (X ) ≤ tr (HBIεX ) ≤
`

λmax + o (1)
´

tr (X )

we can bracket Eσ

ˆ

tr
`

Hvtv
⊤

t

´˜

between the expressions
„

1 − 2λmax

t
+ o

„

1

t

««

Eσ

ˆ

tr
`

Hvt−1 v
⊤

t−1

´˜

+
tr (HBGB)

(t + t0)2
+ o

`

t−2´

and
„

1 − 2λmin

t
+ o

„

1

t

««

Eσ

ˆ

tr
`

Hvt−1 v
⊤

t−1

´˜

+
tr (HBGB)

(t + t0)2
+ o

`

t−2´

By recursively applying this bracket, we obtain

uλmax(t + t0) ≤ Eσ

ˆ

tr
`

Hvtv
⊤

t

´˜

≤ uλmin
(t + t0)

where the notation uλ(t) represents a sequence of real satisfying the recursive relation

uλ(t) =

„

1 − 2λ

t
+ o

„

1

t

««

uλ(t − 1) +
tr (HBGB)

t2
+ o

„

1

t2

«

.

From [Bottou and Le Cun, 2005, lemma 1], λ > 1/2 implies t uλ(t) −→ tr(HBGB)
2λ−1

. Then

tr (HBGB)

2λmax − 1
t−1 + o

`

t−1´ ≤ Eσ

ˆ

tr
`

Hvtv
⊤

t

´˜

≤ tr (HBGB)

2λmin − 1
t−1 + o

`

t−1´

and
tr (HBGB)

2λmax − 1
t−1 + o

`

t−1´ ≤ Eσ [Pn(wt) − Pn(w∗
n)] ≤ tr (HBGB)

2λmin − 1
t−1 + o

`

t−1´ .

!

The following two corollaries recover the maximal number of iterations listed in Table 3.1
with ν = tr

(

GH−1
)

and κ = λ−1‖H‖.
Corollary 2 Assume B = H−1 as in the second order SGD algorithm (3.4). We have then

Eσ [Pn(wt) − Pn(w∗
n)] = tr

(

GH−1
)

t−1 + o
(

t−1
)

= ν t−1 + o
(

t−1
)

.

Corollary 3 Assume B = λ−1 I as in the first order SGD algorithm (3.3). We have then

Eσ [Pn(wt) − Pn(w∗
n)] ≤ λ−2 tr

(

H2GH−1
)

t−1 + o
(

t−1
)

≤ κ2 ν t−1 + o
(

t−1
)

.

An often rediscovered property of second order SGD provides an useful reference point:

Theorem 4 ([Fabian, 1973, Murata and Amari, 1999, Bottou and Le Cun, 2005])
Let w∗ = arg min λ

2 ‖w‖2+Ex,y [ ℓ(y 〈w, x〉) ]. Given a sample of n independent examples (xi, yi) ,
define w∗

n = arg minw Pn(w) and compute wn by applying the second order SGD update (3.4) to
each of the n examples. Then both n E

[

‖wn − w∗‖2
]

and n E
[

‖w∗
n − w∗‖2

]

converge to a same
positive constant K when n increases.

This result means that, asymptotically and on average, the parameter wn obtained after one
pass of second order SGD is as close to the infinite training set solution w∗ as the true optimum
of the primal w∗

n. Therefore, when the training set is large enough, we can expect that a single
pass of second order SGD is sufficient to replicate the test error of the actual SVM solution.

When we replace the full second order rescaling matrix B = H−1 by a computationally more
acceptable approximation, Theorem 1 indicates that we lose a constant factor on the required
number of iterations. We need to perform several passes over the randomly reshuffled training
set. On the other hand, a well chosen approximation of the rescaling matrix can save a large
constant factor on the computation of the generic SGD update (3.2).

The best training times are therefore obtained by carefully trading the quality of the approx-
imation for sparse representations.
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Frequency Loss

Special example:
n

skip

λ skip

2
‖w‖2

Examples 1 to n: 1 ℓ(yiw
⊤xi)

Table 3.2: Frequencies and losses. The regularization term in the primal cost can be viewed
as an additional training example with an arbitrarily chosen frequency and a specific loss function.

More Speedup Opportunities

We have argued that carefully designed quasi-Newton techniques can save a constant factor on
the training times. There are of course many other ways to save constant factor:

• Exploiting the sparsity of the patterns (see Section 3.1.2) can save a constant factor in
the cost of each iteration. However their benefit is more limited in the second-order case,
because the inverse Hessian matrix is not sparse.

• Implementation details (see Section 3.1.3) such as compiler technology or parallelization
can also reduce the learning time by constant factors.

Such opportunities are often dismissed as engineering tricks. However they should be consid-
ered on an equal footing with quasi-Newton techniques. Constant factors matter regardless of
their origin. The following two sections provide a detailed discussion of sparsity and implemen-
tation.

3.1.2 Scheduling Stochastic Updates to Exploit Sparsity

First order SGD iterations can be made substantially faster when the patterns xt are sparse.
The first order SGD update has the form

wt+1 = wt − αtwt − βtxt , (3.5)

where αt and βt are scalar coefficients. Subtracting βtxt from the parameter vector involves
solely the nonzero coefficients of the pattern xt. On the other hand, subtracting αtwt involves
all d coefficients. A naive implementation of (3.5) would therefore spend most of the time
processing this first term. [Shalev-Shwartz et al., 2007] circumvent this problem by representing
the parameter wt as the product stvt of a scalar and a vector. The update (3.5) can then be
computed as st+1 = (1 − αt)st and vt+1 = vt − βxt/st+1 in time proportional to the number of
nonzero coefficients in xt.

Although this simple approach works well for the first order SGD algorithm, it does not
extend nicely to quasi-Newton SGD algorithms. A more general method consists of treating the
regularization term in the primal cost (3.1) as an additional training example occurring with an
arbitrarily chosen frequency with a specific loss function.

Consider examples with the frequencies and losses listed in table 3.2 and write the average
loss:

1
n

skip
+ n

"

n

skip

„

λ skip

2
‖w‖2

«

+
n
X

i=1

ℓ(yi 〈w, xi〉)
#

=
skip

1 + skip

"

λ

2
‖w‖2 +

1

n

n
X

i=1

ℓ(yi 〈w, xi〉)
#

.

Minimizing this loss is of course equivalent to minimizing the primal cost (3.1) with its regu-
larization term. Applying the SGD algorithm to the examples defined in table 3.2 separates
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Algorithm 7 Comparison of the pseudo-codes of SGD and SVMSGD2.

SGD SVMSGD2

Require: λ, w0, t0, T
1: t = 0
2: while t ≤ T do

3: wt+1 = wt− 1
λ(t+t0)

(λwt+ℓ′(yt 〈wt, xt〉)ytxt)
4:

5:

6:

7:

8:

9: t = t + 1
10: end while

11: return wT

Require: λ, w0, t0, T, skip

1: t = 0, count= skip

2: while t ≤ T do

3: wt+1 = wt − 1
λ(t+t0)

ℓ′(yt 〈wt, xt〉)ytxt

4: count = count−1
5: if count < 0 then

6: wt+1 = wt+1 − skip

t+t0
wt+1

7: count= skip

8: end if

9: t = t + 1
10: end while

11: return wT

the regularization updates, which involve the special example, from the pattern updates, which
involve the real examples. The parameter skip regulates the relative frequencies of these up-
dates. The SVMSGD2 algorithm [Bottou, 2007] measures the average pattern sparsity and picks
a frequency that ensures that the amortized cost of the regularization update is proportional to
the number of nonzero coefficients. Algorithm 7 compares the pseudo-codes of the naive first
order SGD and of the first order SVMSGD2. Both algorithms handle the real examples at each
iteration (line 3) but SVMSGD2 only performs a regularization update every skip iterations (line
6).

Assume s is the average proportion of nonzero coefficients in the patterns xi and set skip to
c/s where c is a predefined constant (we use c = 16 in our experiments). Each pattern update
(line 3) requires sd operations. Each regularization update (line 6) requires d operations but
occurs s/c times less often. The average cost per iteration is therefore proportional to O (sd)
instead of O (d).

3.1.3 Implementation

In the optimization literature, a superior algorithm implemented with a slow scripting language
usually beats careful implementations of inferior algorithms. This is because the superior algo-
rithm minimizes the training error with a higher order convergence.

This is no longer true in the case of large scale machine learning because we care about the test
error instead of the training error. As explained above, algorithm improvements do not improve
the order of the test error convergence. They can simply improve constant factors and therefore
compete evenly with implementation improvements. Time spent refining the implementation is
time well spent.

• There are lots of methods for representing sparse vectors with sharply different computing
requirement for sequential and random access. Our C++ implementations use either a
full vector representation or a sparse vector representation consisting of an ordered list of
index/value pairs (see Table 3.3.)

Our implementation always uses a full vector for the parameter w and picks a format for
the patterns x according to the average sparsity of the data set. Inappropriate choices
cost outrageous time penalties. For example, on a dense data set with 500 attributes,
using sparse vectors increases the training time by 50%; on the sparse RCV1 data set (see
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Full Sparse

Random access to a single coefficient: O (1) O (s)
In-place addition into a full vector of dimension d: O (d) O (s)
In-place addition into a sparse vector with s′ nonzeros: O (d + s′) O (s + s′)

Table 3.3: Costs of various operations on a vector of dimension d with s nonzero coefficients.

Table 5.4), using a sparse vector to represent the parameter w increases the training time
by more than 900%.

• Modern processors often sport specialized instructions to handle vectors and multiple cores.
Linear algebra libraries, such as BLAS, may or may not use them in ways that suit our
purposes. Compilation flags have nontrivial impacts on the learning times.

Such implementation improvements are often (but not always) orthogonal to the algorithmic
improvements described above. The main issue consists of deciding how much development
resources are allocated to implementation and to algorithm design. This trade-off depends on
the available competencies.

3.2 SGD-QN: A Careful Diagonal Quasi-Newton SGD

As explained in Section 3.1.1, designing an efficient quasi-Newton SGD algorithm involves a
careful trade-off between the sparsity of the scaling matrix representation B and the quality of
its approximation of the inverse hessian H−1. The two obvious choices are diagonal approxima-
tions [Becker and Le Cun, 1989] and low rank approximations [Schraudolph et al., 2007].

3.2.1 Rescaling Matrices

Diagonal Rescaling Matrices

Among numerous practical suggestions for running SGD algorithm in multilayer neural networks,
[Le Cun et al., 1998] emphatically recommend to rescale the input space in order to improve the
condition number κ of the Hessian matrix. In the case of a linear model, such preconditioning is
similar to using a constant diagonal scaling matrix.

Rescaling the input space defines transformed patterns Xt such that [Xt]i = bi[xt]i where the
notation [v]i represents the i-th coefficient of vector v. This transformation does not change the
classification if the parameter vectors are modified as [Wt]i = [wt]i /bi. The first order SGD
update on these modified variable is then

∀i = 1 . . . d [Wt+1]i = [Wt]i − ηt (λ[Wt]i + ℓ′(yt 〈Wt,Xt〉) yt [Xt]i, )

= [Wt]i − ηt (λ[Wt]i + ℓ′(yt 〈wt, xt〉) yt bi[xt]i ) .

Multiplying by bi shows how the original parameter vector wt are affected:

∀i = 1 . . . d [wt+1]i = [wt]i − ηt

(

λ[wt]i + ℓ′(yt 〈wt, xt〉) yt b2
i [xt]i

)

.

We observe that rescaling the input is equivalent to multiplying the gradient by a fixed diagonal
matrix B whose elements are the squares of the coefficients bi.
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Ideally we would like to make the product BH spectrally close the identity matrix. Unfortu-
nately we do not know the value of the Hessian matrix H at the optimum w∗. Instead we could
consider the current value of the Hessian Hwt

= P ′′(wt) and compute the diagonal rescaling ma-
trix B that makes BHwt

closest to the identity. This computation could be very costly because
it involves the full Hessian matrix. [Becker and Le Cun, 1989] approximate the optimal diagonal
rescaling matrix by inverting the diagonal coefficients of the Hessian. The method relies on the
analytical derivation of these diagonal coefficients for multilayer neural networks. This derivation
does not extend to arbitrary models. It certainly does not work in the case of traditional SVMs
because the hinge loss has zero curvature almost everywhere.

Low Rank Rescaling Matrices

The popular LBFGS optimization algorithm [Nocedal, 1980] maintains a low rank approximation
of the inverse Hessian by storing the k most recent rank-one BFGS updates instead of the full
inverse Hessian matrix. When the successive full gradients P ′

n(wt−1) and P ′
n(wt) are available,

standard rank one updates can be used to directly estimate the inverse Hessian matrix H−1. Us-
ing this method with stochastic gradient is tricky because the full gradients P ′

n(wt−1) and P ′
n(wt)

are not readily available. Instead we only have access to the stochastic estimates gt−1(wt−1) and
gt(wt) which are too noisy to compute good rescaling matrices.

The oLBFGS algorithm [Schraudolph et al., 2007] compares instead the derivatives gt−1(wt−1)
and gt−1(wt) for the same example (xt−1, yt−1). This reduces the noise to an acceptable level at
the expense of the computation of the additional gradient vector gt−1(wt).

Compared to the first order SGD, each iteration the oLBFGS algorithms computes the addi-
tional quantity gt−1(wt) and updates the list of k rank one updates. The most expensive part
however remains the multiplication of the gradient gt(wt) by the low-rank estimate of the inverse
Hessian. With k = 10, each iteration of our oLBFGS implementation runs empirically 11 times
slower than a first order SGD iteration.

3.2.2 SGD-QN

The SGD-QN algorithm estimates a diagonal rescaling matrix using a technique inspired by
oLBFGS. For any pair of parameters wt−1 and wt, a Taylor series of the gradient of the primal
cost P provides the secant equation:

wt − wt−1 ≈ H−1
wt

(

P ′
n(wt) − P ′

n(wt−1)
)

. (3.6)

We would then like to replace the inverse Hessian matrix H−1
wt

by a diagonal estimate B

wt − wt−1 ≈ B
(

P ′
n(wt) − P ′

n(wt−1)
)

.

Since we are designing a stochastic algorithm, we do not have access to the full gradient P ′
n.

Following oLBFGS, we replace them by the local gradients gt−1(wt) and gt−1(wt−1) and obtain

wt − wt−1 ≈ B
(

gt−1(wt) − gt−1(wt−1)
)

.

Since we chose to use a diagonal rescaling matrix B, we can write the term-by-term equality

[wt − wt−1]i ≈ Bii

[

gt−1(wt) − gt−1(wt−1)
]

i
,

where the notation [v]i still represents the i-th coefficient of vector v. This leads to computing
Bii as the average of the ratio [wt − wt−1]i/

[

gt−1(wt) − gt−1(wt−1)
]

i
. An online estimation is
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easily achieved during the course of learning by performing a leaky average of these ratios,

Bii ← Bii +
2

r

(

[wt − wt−1]i
[

gt−1(wt) − gt−1(wt−1)
]

i

− Bii

)

∀i = 1 . . . d , (3.7)

and where the integer r is incremented whenever we update the coefficient Bii.
The weights of the scaling matrix B are initialized to λ−1 because this corresponds to the

exact setup of first order SGD. Since the curvature of the primal cost (3.1) is always larger
than λ, the ratios

[

gt−1(wt) − gt−1(wt−1)
]

i
/[wt − wt−1]i are always larger than λ. Therefore

the coefficients Bii never exceed their initial value λ−1. Basically these scaling factors slow down
the convergence along some axes. The speedup does not occur because we follow the trajectory
faster, but because we follow a better trajectory.

Performing the weight update (3.2) with a diagonal rescaling matrix B consists in performing
term-by-term operations with a time complexity that is marginally greater than the complexity
of the first order SGD (3.3) update. The computation of the additional gradient vector gt−1(wt)
and the re-estimation of all the coefficients Bii essentially triples the computing time of a first
order SGD iteration with non-sparse inputs (3.3), and is considerably slower than a first order
SGD iteration with sparse inputs implemented as discussed in Section 3.1.2.

Fortunately this higher computational cost per iteration can be nearly avoided by scheduling
the re-estimation of the rescaling matrix with the same frequency as the regularization updates.
Section 3.2.1 has shown that a diagonal rescaling matrix does little more than rescaling the input
variables. Since a fixed diagonal rescaling matrix already works quite well, there is little need to
update its coefficients very often.

Algorithm 8 compares the SVMSGD2 and SGD-QN algorithms. Whenever SVMSGD2 per-
forms a regularization update, we set the flag updateB to schedule a re-estimation of the rescaling
coefficients during the next iteration. This is appropriate because both operations have compa-
rable computing times. Therefore the rescaling matrix re-estimation schedule can be regulated
with the same skip parameter as the regularization updates. In practice, we observe that each
SGD-QN iteration demands less than twice the time of a first order SGD iteration.

Because SGD-QN re-estimates the rescaling matrix after a pattern update, special care must
be taken when the ratio [wt − wt−1]i/

[

gt−1(wt) − gt−1(wt−1)
]

i
has the form 0/0 because the

corresponding input coefficient [xt−1]i is zero. Since the secant equation (3.6) is valid for any
two values of the parameter vector, one computes the ratios with parameter vectors wt−1 and
wt + ε and derives the correct value by continuity. When [xt−1]i = 0, we can write

[(wt+ε)−wt−1]i
[gt−1

(wt+ε)−g
t−1

(wt−1)]
i

=
[(wt+ε)−wt−1]i

λ[(wt+ε)−wt−1]i+
(

ℓ′(yt−1〈(wt+ε),xt−1〉)−ℓ′(yt−1〈wt−1,xt−1〉)
)

yt−1 [xt−1]i

=

(

λ +

(

ℓ′(yt−1〈(wt+ε),xt−1〉)−ℓ′(yt−1〈wt−1,xt−1〉)
)

yt−1 [xt−1]i
[(wt+ε)−wt−1]i

)−1

=
(

λ + 0
[ε]

i

)−1 ε→0−→ λ−1 .

3.2.3 Experiments

We demonstrate the good scaling properties of SGD-QN in two ways: we present a detailed
comparison with other stochastic gradient methods, and we summarize the results obtained on
the PASCAL Large Scale Challenge.

Table 3.4 describes the three binary classification tasks we used for comparative experiments.
The Alpha and Delta tasks were defined for the PASCAL Large Scale Challenge [Sonnenburg



3.2 SGD-QN: A Careful Diagonal Quasi-Newton SGD 57

Algorithm 8 Comparison of the pseudo-codes of SVMSGD2 and SGD-QN.

SVMSGD2 SGD-QN

Require: λ, w0, t0, T, skip

1: t = 0, count= skip

2:

3: while t ≤ T do

4: wt+1 = wt− 1
λ(t+t0)

ℓ′(yt 〈wt, xt〉)ytxt

5:

6:

7:

8:

9:

10:

11: count = count−1
12: if count < 0 then

13: wt+1 = wt+1−skip(t+t0)
−1wt+1

14: count= skip

15: end if

16: t = t + 1
17: end while

18: return wT

Require: λ, w0, t0, T, skip

1: t = 0, count= skip,
2: B = λ−1 I , updateB= false, r = t0/skip.
3: while t ≤ T do

4: wt+1 = wt − (t + t0)
−1ℓ′(yt 〈wt, xt〉)yt B xt

5: if updateB= true then

6: pt = gt(wt+1) − gt(wt)
7: ∀i , Bii = Bii +

2
r

`

[wt+1 − wt]i [pt]
−1
i − Bii

´

8: ∀i , Bii = max(Bii, 10
−2λ−1)

9: r = r + 1 , updateB= false

10: end if

11: count = count−1
12: if count < 0 then

13: wt+1 = wt+1−skip (t + t0)
−1λ B wt+1

14: count= skip, updateB= true

15: end if

16: t = t + 1
17: end while

18: return wT

Data set Train. Ex. Test. Ex. Features s λ t0 skip

Alpha 100,000 50,000 500 1 10−5 106 16
Delta 100,000 50,000 500 1 10−4 104 16
RCV1 781,265 23,149 47,152 0.0016 10−4 105 9,965

Table 3.4: Data sets and parameters used for experiments.

et al., 2008]. We train with the first 100,000 examples and test with the last 50,000 examples of
the official training sets because the official testing sets are not available. Alpha and Delta are
dense data sets with relatively severe conditioning problems. The third task is the classification
of RCV1 documents belonging to class CCAT [Lewis et al., 2004]. This task has become a
standard benchmark for linear SVMs on sparse data. Despite its larger size, the RCV1 task is
much easier than the Alpha and Delta tasks. All methods discussed in this paper performs
well on RCV1.

The experiments reported in the last paragraph of this section use the hinge loss ℓ(s) =
max(0, 1 − s). All other experiments use the squared hinge loss ℓ(s) = 1

2 (max(0, 1 − s))2. In
practice, there is no need to make the losses twice differentiable by smoothing their behavior
near s = 0. Unlike most batch optimizer, stochastic algorithms do not aim directly for non-
differentiable points, but randomly hop around them. The stochastic noise implicitly smoothes
the loss.

The SGD, SVMSGD2, oLBFGS, and SGD-QN algorithms were implemented using the same
C++ code base. Implementations and experiment scripts are freely available under the GNU

Public License as part of the libsgdqn library on http://www.mloss.org (go to http://

mloss.org/software/view/197/).

http://mloss.org/software/view/197/
http://www.mloss.org
http://mloss.org/software/view/197/
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Alpha RCV1

SGD 0.13 36.8
SVMSGD2 0.10 0.20

SGD-QN 0.21 0.37

Table 3.5: Time (sec.) for performing one pass over the training set.

All experiments are carried out in single precision. We did not experience numerical accu-
racy issues, probably because of the influence of the regularization term. Our implementation
of oLBFGS maintains a rank 10 rescaling matrix. Setting the oLBFGS gain schedule is rather
delicate. We obtained fairly good results by replicating the gain schedule of the VieCRF pack-
age.3 We also propose a comparison with the online dual linear SVM solver [Hsieh et al., 2008]
implemented in the LibLinear package.4 We did not re-implement this algorithm because the
LibLinear implementation has proved as simple and as efficient as ours.

The t0 parameter is determined using an automatic procedure: since the size of the training
set does not affect results of Theorem 1, we simply pick a subset containing 10% of the training
examples, perform one SGD-QN pass over this subset with several values for t0, and pick the
value for which the primal cost decreases the most. These values are given in Table 3.4.

Sparsity Tricks

The influence of the scheduling tricks described in Section 3.1.2 is illustrated in Table 3.5. There
are displayed the training times of SGD and SVMSGD2. The latter uses scheduling tricks while
SGD does not. SVMSGD2 enjoys shorter training durations, especially with sparse data, where it
is more than 180 times faster. This table also demonstrates that an iteration of the quasi-newton
SGD-QN is not prohibitively expensive.

Quasi-Newton

Figure 3.1 shows how the primal cost Pn(w) of the Delta data set evolves with the number
of passes (left) and the training time (right). Compared to the first order SVMSGD2, both the
oLBFGS and SGD-QN algorithms dramatically decrease the number of passes required to achieve
similar values of the primal. Even if it uses a more precise approximation of the inverse Hessian,
oLBFGS does not perform better after a single pass than SGD-QN. Besides, running a single pass
of oLBFGS is much slower than running multiple passes of SVMSGD2 or SGD-QN. The benefits
of its second-order approximation are canceled by its greater time requirements per iteration.
On the other hand, each SGD-QN iteration is only marginally slower than a SVMSGD2 iteration;
the reduction of the number of iterations is sufficient to offset this cost.

Training Speed

Figure 3.2 displays the test errors achieved on the Alpha, Delta and RCV1 data sets as a
function of the number of passes (left) and the training time (right). These results show again
than both oLBFGS and SGD-QN require less iterations than SVMSGD2 to achieve the same test
error. However oLBFGS suffers from the relatively high complexity of its update process. The

3 http://www.ofai.at/~jeremy.jancsary
4 http://www.csie.ntu.edu.tw/~cjlin/liblinear

http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.ofai.at/~jeremy.jancsary
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Figure 3.1: Primal costs according to the number of epochs (left) and the training duration
(right) on the Delta data set.

SGD-QN algorithm runs significantly faster than the dual solver LibLinear on both the dense data
sets Alpha and Delta; and the sparse RCV1 data set.

LibLinear automatically computes its learning rate in the dual: this can be seen as an advan-
tage since this removes an extra-parameter to tune. However, our experiments show that, when
carefully used, the freedom of choice of a SGD learning rate can lead to faster training.

According to Theorem 4, given a large enough training set, a perfect second order SGD
algorithm would reach the batch test error after a single pass. One pass learning is attractive
when we are dealing with high volume streams of examples that cannot be stored and retrieved
quickly. Figure 3.2 (left) shows that both oLBFGS and SGD-QN are close to that ideal (oLBFGS
might even be a little closer). They would become even more attractive for problems where the
example retrieval time is much greater than the computing time.

PASCAL Large Scale Challenge Results

The first PASCAL Large Scale Learning Challenge [Sonnenburg et al., 2008] was designed to
identify which machine learning techniques best address these new concerns. A generic evaluation
framework and various data sets have been provided. Evaluations were carried out on the basis
of various performance curves such as training time versus test error, data set size versus test
error, and data set size versus training time5.

Given its strong generalization and scaling properties, SGD-QN was a natural choice for the
“Wild Track” of the competition which focuses on the relation between training time and test
performance. Wild track contributors were free to do anything leading to more efficient and
more accurate methods. Forty two methods have been submitted to this track. Table 3.6 shows
the SGD-QN ranks determined by the organizers of the challenge according to their evaluation
criteria. The SGD-QN algorithm always ranks among the top five submissions and ranks first in
overall score (tie with another Newton method).

5This material and its documentation can be found at http://largescale.first.fraunhofer.de/

http://largescale.first.fraunhofer.de/
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Figure 3.2: Test errors (in %) according to the number of epochs (left) and training duration
(right).
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Data set λ skip Passes Rank

Alpha 10−5 16 10 1st

Beta 10−4 16 15 3rd

Gamma 10−3 16 10 1st

Delta 10−3 16 10 1st

Epsilon 10−5 16 10 5th

Zeta 10−5 16 10 4th

OCR 10−5 16 10 2nd

Face 10−5 16 20 4th

DNA 10−3 64 10 2nd

Webspam 10−5 71,066 10 4th

Table 3.6: Results of SGD-QN at the 1st PASCAL Large Scale Learning Challenge.
Parameters and final ranks obtained in the “Wild Track”. All competing algorithms were run
by the organizers. (Note: the competition results were obtained with a preliminary version of
SGD-QN. In particular the λ parameters listed above are different from the values used for all
experiments in this paper and listed in Table 5.4.)

3.3 Summary

The SGD-QN algorithm strikes a good compromise for large scale application because it im-
plements a quasi-Newton stochastic gradient descent while requiring low time and memory per
iteration. As a result, SGD-QN empirically iterates nearly as fast as a first-order stochastic gra-
dient descent but requires less iterations to achieve the same accuracy. SGD-QN won the “Wild
Track” of the first PASCAL Large Scale Learning Challenge [Sonnenburg et al., 2008].

In this chapter we also took care to precisely show how this performance is the result of
a careful design taking into account the theoretical knowledge about second order SGD and a
precise understanding of its algorithmic and implementation computational requirements.
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S
tochastic Gradient Descent provides efficient training methods for linear Support Vector
Machines in a large-scale setup, as we showed in Chapter 3. However when it comes to non-

linear kernels, SGD is no longer satisfactory because it can not exploit the sparsity of the kernel
expansion (see equation 2.2) and suffers from the high complexity of the solution.

In this chapter we propose to study online learning methods for binary SVMs that work in the
dual parameters space. We will demonstrate that this allows to deal efficiently with large-scale
SVMs even when non-linear kernels are involved.
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Given a training set (x1, y1) · · · (xn, yn), it has been shown in Section 2.1.1 that the dual of
Support Vector Machines can take the form of the Quadratic Program:

max
α

D(α) =
∑

i

αiyi −
1

2

∑

i,j

αiαjk(xi, xj) with















∑

i αi = 0
Ai ≤ αi ≤ Bi

Ai = min(0, Cyi)
Bi = max(0, Cyi)

(4.1)

We also recall that we denote g = (g1 . . . gn) the gradient of the dual D(α) with

∀k = 1, . . . n , gk =
∂D(α)

∂αk
= yk −

∑

i

αik(xi, xk) . (4.2)

The first section of this chapter presents the Huller, a simple and efficient online kernel algo-
rithm which eventually converges fast to the exact Hard Margin SVM classifier. Interestingly,
it reaches competitive accuracies after a single pass over the training set. Unfortunately the
Huller performs poorly on noisy data sets. In Section 4.2 is then introduced LaSVM. This online
algorithm shares some desirable properties with the Huller: it reliably reaches competitive ac-
curacies after performing a single pass over the training set and trains significantly faster than
state-of-the-art SVM solvers. Besides, it solves the general Soft Margin SVM and thus handles
noise properly. The online learning process of LaSVM raises some questions about the example
selection. Section 4.3 addresses some of these by comparing several strategies for wisely choosing
which training instance to process. We show that an active learning setup can decrease training
duration and memory usage on large-scale problems, especially by increasing the sparsity of the
kernel expansion. Finally Section 4.4 displays a novel duality lemma providing tracking guar-
antees for approximate incremental SVMs that compare with results about batch SVMs. This
result also casts an interesting light on the online/active learning behavior of LaSVM.

The work presented in this chapter has been the object of two publications (e.g. [Bordes and
Bottou, 2005] and [Bordes et al., 2005]).

4.1 The Huller: an Efficient Online Kernel Algorithm

The Huller is a novel kernel classifier algorithm, whose basic optimization step is based on the
geometrical formulation of SVMs. It works in online epochs over the training set, considering
one example at a time. These properties cause the Huller to show an interesting behavior:

• Continued iterations of the algorithm converge to the exact Hard Margin SVM classifier.

• Like most SVM algorithms, and unlike most online kernel algorithms, it produces classifiers
with a bias term. Removing the bias term is a known way to simplify the numerical aspects
of SVMs (as for the methods discussed in Chapter 3). Unfortunately, this can also damage
the classification accuracy [Keerthi et al., 1999].

• Experiments on a relatively clean data set indicate that a single pass over the training set
is sufficient to produce classifiers with competitive error rates, using a fraction of the time
and memory required by state-of-the-art SVM solvers.

Section 4.1.1 reviews the geometric interpretation of SVMs. Section 4.1.2 presents a simple
update rule for online algorithms that converge to the SVM solution and proposes a critical refine-
ment. Section 4.1.3 reports experimental results. Finally Section 4.1.4 discusses the algorithm
capabilities and limitations.
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Figure 4.1: Geometrical interpreta-
tion of Support Vector Machines. The
maximum margin hyperplane is the bisec-
tor of the segment linking XP and XN ,
the closest points belonging to the convex
hulls formed by the examples of each class.

Figure 4.2: Basic update of the Huller.
The new point X′

P
is the point of seg-

ment [XP , xk] that minimizes the distance
‖X′

P
− XN‖2. It is defined using the λ pa-

rameter. A negative value for λ allows to
remove vectors from the current solution.

4.1.1 Geometrical Formulation of SVMs

Figure 4.1 illustrates the geometrical formulation of SVMs [Bennett and Bredensteiner, 2000,
Crisp and Burges, 2000]. Consider a training set composed of patterns xi and corresponding
classes yi = ±1. When the training data is separable, the convex hulls formed by the positive
and negative examples are disjoint. Consider two points XP and XN belonging to each convex
hull. Make them as close as possible without allowing them to leave their respective convex hulls.
The median hyperplane of these two points is the maximum margin separating hyperplane.

The points XP and XN can be parametrized as

XP =
∑

i∈P αixi

∑

i∈P αi = 1 αi ≥ 0
XN =

∑

j∈N αjxj

∑

j∈N αj = 1 αj ≥ 0
(4.3)

where sets P and N respectively contain the indices of the positive and negative examples. The
optimal hyperplane is then obtained by solving

min
α

‖XP − XN‖2
(4.4)

under the constraints of the parametrization (4.3). The separating hyperplane is then represented
by the following linear discriminant function:

f(x) = 〈(XP − XN ), x〉 + (‖XN‖2 − ‖XP ‖2
)/2 (4.5)

Since XP and XN are represented as linear combinations of the training patterns, both
the optimization criterion (4.4) and the discriminant function (4.5) can be expressed using dot
products 〈·, ·〉 between patterns. Arbitrary non linear classifiers can be derived by replacing these
dot products by suitable kernel functions. For simplicity, we discuss the simple linear setup and
leave the general kernel framework to the reader.

Equivalence to the Standard Formulation After a simple reorganization of the equality
constraints, the optimization problem expressed by equations (4.3) and (4.4) can be summarized



66 Large-Scale SVMs for Binary Classification

as follows:

max
α



−1

2

∑

ij

yiyjαiαj 〈xi, xj〉



 with







∀i αi ≥ 0
∑

i yiαi = 0
∑

i αi = 2

Observe that value 2 in the last constraint is arbitrary. We can replace this value by any positive
constant K. This change simply rescales the coefficients α without changing the position of the
decision boundary. The Karush-Kuhn-Tucker theorem then states that α are optimal if there is
µ such that:

∀i, αi

(

µ − yi

∑

j yjαj 〈xi, xj〉
)

= 0 , and
∑

αi = K ,
∑

yiαi = 0

Summing the first condition for all i yields: Kµ =
∑

ij yiyjαiαj 〈xi, xj〉 = ‖XP − XN‖2
.

This value is strictly positive when the data is separable. Then, for every positive constant
K, there is a positive µ and vice-versa. Since we do not care about the value of K as long as it
is positive, we can simply choose µ = 1. The Karush-Kuhn-Tucker conditions then become:

∀i, αi

(

1 − yi

∑

j yjαj 〈xi, xj〉
)

= 0 ,
∑

yiαi = 0

We recognize the standard Hard Margin SVM [Vapnik, 1998] (similar to (2.10) with no upper
bound on the values of the αi):

max
α

∑

i

αi −
1

2

∑

ij

yiyjαiαj 〈xi, xj〉 with

{

∀i αi ≥ 0
∑

i yiαi = 0

The decision boundaries obtained by solving the problem expressed by equations (4.3) and (4.4)
and by a Hard Margin SVM are thus identical.

4.1.2 The Huller Algorithm

Single Example Update

We now describe a first iterative algorithm that can be viewed as a simplification of the nearest
point algorithms discussed in [Gilbert, 1966, Keerthi et al., 1999]. The algorithm stores the
position of points XP and XN using the parametrization (4.3). Each iteration considers a
training pattern xk and updates the position of XP (when yk = +1) or XN (when yk = −1.)

Figure 4.2 illustrates the case where xk is a positive example (negative examples are treated
similarly). The new point X′

P
is a priori the point of segment [XP , xk] that minimizes the

distance ‖X′

P
− XN‖2. The new point X′

P
can be expressed as X′

P
= (1 − λ)XP + λxk with

0 ≤ λ ≤ 1.
This first algorithm is flawed: suppose that the current XP contains a non zero coefficient αk

that in fact should be zero. The algorithm cannot reduce this coefficient by selecting example xk.
It must instead select other positive examples and slowly erode the coefficient αk by multiplying
it by (1 − λ). A simple fix was proposed by [Haffner, 2002]. If the coefficient αk is strictly
positive, we can safely let λ become slightly negative without leaving the convex hull. The
revised constraints on λ are then −αk/(1 − αk) ≤ λ ≤ 1.

The optimal value of λ can be computed analytically by first computing the unconstrained
optimum λu. When xk is a positive example, solving

〈

(XP − X′

P
), (XN − X′

P
)
〉

= 0, the
orthogonality equation, for λ yields:

λu =
〈(XP − XN ), (XP − xk)〉

‖XP − xk‖2
=

‖XP ‖2 − 〈XN ,XP 〉 − 〈xk,XP 〉 + 〈XN , xk〉
‖XP ‖2 + ‖xk‖2 − 2 〈xk,XP 〉 (4.6)
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Similarly, when xk is a negative example, we obtain:

λu =
〈(XN − XP ), (XN − xk)〉

‖XN − xk‖2
=

‖XN‖2 − 〈XN ,XP 〉 − 〈XN , xk〉 + 〈xk,XP 〉
‖XN‖2 + ‖xk‖2 − 2 〈XN , xk〉

(4.7)

A case by case analysis of the constraints shows that the optimal λ is:

λ = min

(

1,max

( −αk

1 − αk
, λu

))

(4.8)

Both expressions (4.6) and (4.7) depend on the quantities ‖XP ‖2, 〈XN ,XP 〉, and ‖XN‖2 whose
computation could be expensive. Fortunately there is a simple way to avoid this calculation: in
addition to points XP and XN , our algorithm also maintains three scalar variables containing
the values of ‖XP ‖2, 〈XN ,XP 〉, and ‖XN‖2. Their values are recursively updated after each
iteration: when xk is a positive example,

‖X′

P
‖2 =(1 − λ)2‖XP ‖2 + 2λ(1 − λ) 〈XP , xk〉 + λ2‖xk‖2

〈

XN ,X′

P

〉

=(1 − λ) 〈XN ,XP 〉 + λ 〈XN , xk〉
‖XN‖2 =‖XN‖2

(4.9)

and similarly, when xk is a negative example,

‖XP ‖2 =‖XP ‖2

〈

X′

N
,XP

〉

=(1 − λ) 〈XN ,XP 〉 + λ 〈xk,XP 〉
‖X′

N
‖2 =(1 − λ)2‖XN‖2 + 2λ(1 − λ) 〈XN , xk〉 + λ2‖xk‖2

(4.10)

Algorithm 9 shows the resulting update algorithm. The cost of one update is dominated by the
calculation of 〈XP , xk〉 and 〈XN , xk〉. This calculation requires the dot products between xk

and all the current support vectors, i.e. the training examples xi with non zero coefficient αi in
the parametrization (4.3).

Algorithm 9 HullerUpdate(k)

1: Compute 〈xk,XP 〉, 〈XN , xk〉, and ‖xk‖2.
2: Compute λu using equations (4.6) or (4.7).
3: Compute λ using equation (4.8).
4: αi ← (1 − λ)αi for all i such that yi = yk.
5: αk ← αk + λ.
6: Update ‖XP ‖2, 〈XN ,XP 〉 and ‖XN‖2 using equation (4.9) or (4.10).

Algorithm 10 Huller

1: Initialize XP and XN by averaging a few points.
2: Compute initial ‖XP ‖2, 〈XN ,XP 〉, and ‖XN‖2.
3: Pick a random p such that αp = 0.
4: HullerUpdate(p). ⊲ Perform a Process operation
5: Pick a random r such that αr &= 0.
6: HullerUpdate(r). ⊲ Perform a Reprocess operation
7: Return to step 3.
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Insertion and Removal

Simply repeating this update for random examples xk works poorly. Most of the updates do
nothing because they involve examples that are not support vectors and have no vocation to
become support vectors. A closer analysis reveals that the update operation has two functions:

• Performing an update for an example xk such that αk = 0 represents an attempt to insert
this example into the current set of support vectors. This occurs when the optimal λ is
greater than zero, that is, when the point xk violates the SVM margin conditions. We term
this kind of update a Process.

• Performing an update for an example xk such that αk &= 0 will optimize the current solution
and possibly remove this example from the current set of support vectors. The removal
occurs when the optimal λ reaches its (negative) lower bound. We term this kind of update
a Reprocess.

Some work on kernel perceptrons [Crammer et al., 2004] also rely on two separate processes to
insert and remove support vectors from the expression of the current separating hyperplane. We
discuss here a situation where both functions are implemented by the same update rule (depicted
in Figure 4.2).

Picking the examples xk randomly gives a disproportionate weight to the insertion function.
The Huller algorithm (Algorithm 10) corrects this imbalance by allocating an equivalent com-
puting time to both functions. First, it performs a Process i.e. it picks a random example that
is not a current support vector and attempts to insert it into the current set of support vectors.
Second, it performs a Reprocess i.e. it picks a random example that is a current support vector
and attempts to remove it from the current set of support vectors. Implementing this simple
Process/Reprocess principle has a dramatic effect on the convergence speed.

4.1.3 Experiments

The Huller algorithm was implemented in C and benchmarked against the state-of-the-art SVM
solver LibSVM1 on the well known MNIST2 handwritten digit data set. All experiments were
run with a RBF kernel with parameter γ = 0.005. Both LibSVM and the Huller implementations
use the same code to compute the kernel values and similar strategies to cache the frequently
used kernel values. The cache size was initially set to 256MB.

Figure 4.3 reports the experimental results on the ten problems consisting of classifying each of
the ten digit category against all other categories. The Huller algorithm was run in epochs. Each
epoch sequentially scans the randomly permuted MNIST training set and attempts to insert
each example into the current set of support vectors (Process operation in Algorithm 10). After
each insertion attempt, the algorithm attempts to remove a random support vector (Reprocess

operation in Algorithm 10.) The Huller×1 results were obtained after a single epoch, that is after
processing each example once. The Huller×2 results were obtained after two epochs. All results
are averages over five runs.

The Huller×2 test errors (top left graph in Figure 4.3) closely match the LibSVM solution.
This is confirmed by counting the number of support vectors (bottom left graph), The Huller×2
computing times usually are slightly shorter than the already fast LibSVM computing times
(top right graph). The Huller×1 test errors (top left graph in Figure 4.3) are very close to both
the Huller×2 and LibSVM test errors. Standard paired significance tests indicate that these small
differences are not significant. This accuracy is achieved after less than half the LibSVM running

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm
2 http://yann.lecun.com/exdb/mnist

http://yann.lecun.com/exdb/mnist
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Figure 4.3: MNIST results for the Huller (one and two epochs), for LibSVM, and for
the AvgPerc (one and ten epochs). Top left: test error accuracies. Top right: training time.
Bottom left: number of support vectors. Bottom right: training time as a function of the number
of support vectors: LibSVM and the Huller have a linear behavior but the latter is more efficient.

Figure 4.4: Computing times with various cache sizes. Each color indicates the additional
time required when reducing the cache size. The Huller times remain virtually unchanged.
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time, and, more importantly, after a single sequential pass over the training examples. The
Huller×1 always yields a slightly smaller number of support vectors (bottom left graph). We
believe that a single Huller epoch fails to insert a few examples that appear as support vectors
in the SVM solution. A second epoch recaptures most missing examples.

Neither the Huller×1 or Huller×2 experiments yield the exact SVM solution. On this data set,
the Huller typically reaches the SVM solution after five epochs. The corresponding computing
times are not competitive with those achieved by LibSVM.

These results should also be compared with results obtained with a theoretically justified
kernel perceptron algorithm. Figure 4.3 contains results obtained with the AvgPerc [Freund and
Schapire, 1998] using the same kernel and cache size. The first epoch runs very quickly but
does not produce competitive error rates. The AvgPerc approaches3 the LibSVM or Huller×1
accuracies after ten epochs4. The corresponding training times stress the importance of the
kernel cache size. When the cache can accommodate the dot products of all examples with all
support vectors, additional epochs require very little computation. When this is not the case,
the AvgPerc times are not competitive.

Figure 4.4 shows how reducing the cache size affects the computing time. Whereas LibSVM
experiences significantly increased training times, the Huller training times are essentially un-
changed. The most dramatic case is the separation of digit “1” versus all other categories. The
initial 256MB cache size is sufficient for holding all the kernel values required by LibSVM. Under
these condition, LibSVM runs almost as quickly as the Huller×1. Reducing the kernel cache size
to 128MB doubles the LibSVM training time and does not change the Huller training times.

A detailed analysis of the algorithms indicates that LibSVM runs best when the cache contains
all the dot products involving a potential support vector and an arbitrary example: memory
requirements grow with both the number of support vectors and the number of training examples.
The Huller runs best when the cache contains all the dot products involving two potential support
vectors: the memory requirements grow with the number of support vectors only. This indicates
that the Huller is best suited for problems involving a large separable training set.

4.1.4 Discussion

The Huller processes many more examples during the very first training stages. After processing
the first pair of examples, the SMO core of LibSVM must compute 120000 dot products to update
the example gradients and choose the next pair. During the same time, the Huller processes at
least 500 examples. By the time LibSVM has reached the fifth pair of examples, the Huller has
processed a minimum of 1500 fresh examples. Online kernel classifiers without removal step tend
to slow down sharply because the number of support vectors increases quickly. The removal
step ensures that the number of current support vectors does not significantly exceed the final
number of support vectors.

This does not mean that LibSVM computes useless dot products. To simply assert that the
SVM solution has been reached, any SVM solver needs the values of every dot product appearing
in the SVM Karush-Kuhn-Tucker conditions. Depending on the problem, modern SMO solvers
request no more than 10% to 40% additional dot products.

To attain the exact SVM solution with confidence, the Huller also must compute all the dot
products it did not compute in the early stages. On the other hand, when the kernel cache size
is large enough, LibSVM already knows these values and can use this rich local information to
move more judiciously. This is why LibSVM outperforms the huller in the final stages of the

3This is consistent with the empirical results reported in [Freund and Schapire, 1998] (Table 3).
4The Averaged Perceptron theoretical guarantees only hold for a single epoch.
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optimization. Nevertheless, the Huller produces competitive classifiers well before reaching the
point where it gets outpaced by state-of-the-art SVM optimization packages such as LibSVM.

4.2 Online LaSVM

The Huller addresses the Hard-Margin SVM problem and therefore performs poorly on noisy
data sets [Cortes and Vapnik, 1995]. Even if many online kernel classifiers share this limitation,
this remains penalizing on most tasks. This section proposes a novel algorithm named LaSVM
that furthers ideas presented in the previous section but also fixes the limitations of the Huller.

Following the principle used for the Huller, LaSVM is an online kernel classifier which alternates
two kinds of direction searches named Process and Reprocess. Each direction search involves
a pair of examples. Direction searches of the Process kind involve at least one example that
is not a support vector and can potentially change its coefficient to make it a support vector.
Direction searches of the Reprocess kind involve two examples that are already support vectors
and can potentially zero their coefficients to remove them from the kernel expansion. Besides,
LaSVM is also a reorganization of the SMO sequential direction searches and, as such, converges
to the solution of the SVM QP problem (4.1). Section 4.2.1 details the LaSVM operations.

Compared to basic kernel perceptrons [Aizerman et al., 1964, Freund and Schapire, 1998], the
LaSVM algorithm features a removal step and gracefully handles noisy data. Compared to kernel
perceptrons with removal steps [Crammer et al., 2004, Weston et al., 2005], LaSVM converges
to the known SVM solution. Compared to a traditional SVM solver [Platt, 1999, Chang and
Lin, 2001 2004, Collobert and Bengio, 2001], LaSVM brings the computational benefits and
the flexibility of online learning algorithms. In addition, experimental evidence on multiple
data sets (Section 4.2.5) indicates that LaSVM reliably reaches competitive test error rates after
performing a single pass over the training set. It uses less memory and trains significantly faster
than state-of-the-art SVM solvers.

4.2.1 Building Blocks

The LaSVM algorithm maintains three essential pieces of information: the set S of potential
support vector indices, the coefficients αi of the current kernel expansion, and the partial deriva-
tives gi defined in (4.2). Variables αi and gi contain meaningful values when i ∈ S only. The
coefficient αi are assumed to be null if i /∈ S. On the other hand, set S might contain a few
indices i such that αi = 0.

The two basic operations of the online LaSVM algorithm correspond to steps 2 and 3 of the
SMO algorithm (see Algorithm 1 in Section 2.1.2). These two operations differ from each other
because they have different ways to select τ -violating pairs.

The first operation, Process (Algorithm 11), attempts to insert example k /∈ S into the set
of current support vectors. In the online setting this is used to process a new example at time
t. It first adds example k /∈ S into S (step 1-2). Then it searches a second example in S to find
the τ -violating pair with maximal gradient (steps 3-4) and performs a direction search (step 5).

The second operation, Reprocess (Algorithm 12), removes some elements from S. It first
searches the τ -violating pair of elements of S with maximal gradient (steps 1-2), and performs
a direction search (step 3). Then it removes blatant non support vectors (step 4). Finally it
computes two useful quantities: the bias term b of the decision function (2.2) and the gradient δ
of the most τ -violating pair in S.
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Algorithm 11 Process(k)

1: Bail out if k ∈ S.
2: αk ← 0 , gk ← yk − ∑

s∈S αs k(xk, xs) , S ← S ∪ {k}
3: if yk = +1 then
4: i ← k , j ← arg mins∈S gs with αs > As

5: else
6: j ← k , i ← arg maxs∈S gs with αs < Bs

7: end if
8: Bail out if (i, j) is not a τ -violating pair.

9: λ ← min

{

gi − gj

k(xi, xi) + k(xj , xj) − 2k(xi, xj)
, Bi − αi, αj − Aj

}

αi ← αi + λ , αj ← αj − λ
gs ← gs − λ (k(xi, xs) − k(xj , xs)) ∀ s ∈ S

Algorithm 12 Reprocess

1: i ← arg maxs∈S gs with αs < Bs

j ← arg mins∈S gs with αs > As

2: Bail out if (i, j) is not a τ -violating pair.

3: λ ← min

{

gi − gj

k(xi, xi) + k(xj , xj) − 2k(xi, xj)
, Bi − αi, αj − Aj

}

αi ← αi + λ , αj ← αj − λ
gs ← gs − λ (k(xi, xs) − k(xj , xs)) ∀ s ∈ S

4: i ← arg maxs∈S gs with αs < Bs

j ← arg mins∈S gs with αs > As

5: for all s ∈ S such that αs = 0 do
6: if ys = −1 and gs ≥ gi then
7: S = S − {s}
8: else if ys = +1 and gs ≤ gj then
9: S = S − {s}

10: end if
11: end for

12: b ← (gi + gj)/2 , δ ← gi − gj

4.2.2 Scheduling

After initializing the state variables (step 1), the online LaSVM algorithm alternates Process

and Reprocess a predefined number of times (step 2). Then it simplifies the kernel expansion
by running Reprocess to remove all τ -violating pairs remaining in the kernel expansion (step 3).
It is presented in Algorithm 13.

LaSVM can be used in the online setup where one is given a continuous stream of fresh random
examples. The online iterations process fresh training examples as they come. LaSVM can also
be used as a stochastic optimization algorithm in the batch setup where the complete training
set is available before hand. Each iteration randomly picks an example from the training set.

In practice we run the LaSVM online iterations in epochs. Each epoch sequentially visits all
the randomly shuffled training examples. After a predefined number P of epochs, we perform the
(optional) finishing step. A single epoch is consistent with the use of LaSVM in the online setup.
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Algorithm 13 LaSVM

1: Initialization:
Seed S with a few examples of each class.
Set α ← 0 and compute the initial gradient g (equation 4.2)

2: Online Iterations:
3: Repeat a predefined number of times:

- Pick an example kt

- Run Process(kt).
- Run Reprocess once.

4: Finishing:
Repeat Reprocess until δ ≤ τ .

Multiple epochs are consistent with the use of LaSVM as a stochastic optimization algorithm in
the batch setup.

4.2.3 Convergence and Complexity

Let us first ignore the finishing step (step 3) and assume that online iterations (step 2) are
repeated indefinitely. Suppose that there are remaining τ -violating pairs at iteration T .

a.) If there are τ -violating pairs (i, j) such that i ∈ S and j ∈ S, one of them will be exploited
by the next Reprocess.

b.) Otherwise, if there are τ -violating pairs (i, j) such that i ∈ S or j ∈ S, each subsequent
Process has a chance to exploit one of them. The intervening Reprocess do nothing
because they bail out at step 2.

c.) Otherwise, all τ -violating pairs involve indices outside S. Subsequent calls to Process and
Reprocess bail out until we reach a time t > T such that kt = i and kt+1 = j for some
τ -violating pair (i, j). The first Process then inserts i into S and bails out. The following
Reprocess bails out immediately. Finally the second Process locates pair (i, j).

This case is not important in practice. There usually is a support vector s ∈ S such that
As < αs < Bs. We can then write gi − gj = (gi − gs) + (gs − gj) ≤ 2τ and conclude that
we already have reached a 2τ -approximate solution.

The LaSVM online iterations therefore work like the SMO algorithm. Remaining τ -violating
pairs are sooner or later exploited by either Process or Reprocess. As soon as a τ -approximate
solution is reached, the algorithm stops updating the coefficients α. Theorem 28 in the Ap-
pendix B gives more precise convergence results for this stochastic algorithm.

The finishing step (step 3) is only useful when one limits the number of online iterations.
Running LaSVM usually consists in performing a predefined number P of epochs and running
the finishing step. Each epoch performs n online iterations by sequentially visiting the randomly
shuffled training examples. Empirical evidence suggests indeed that a single epoch yields a
classifier almost as good as the SVM solution.

Computational Cost of LaSVM Both Process and Reprocess require a number of operations
proportional to the number S of support vectors in set S. Performing P epochs of online iterations
requires a number of operations proportional to nP S̄. The average number S̄ of support vectors
scales no more than linearly with n because each online iteration brings at most one new support
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vector. The asymptotic cost therefore grows like n2 at most. The finishing step is similar to
running a SMO solver on a SVM problem with only S training examples. We recover here the
n2 to n3 behavior of standard SVM solvers (as discussed in Section 2.1.1).

Online algorithms access kernel values with a very specific pattern. Most of the kernel values
accessed by Process and Reprocess involve only support vectors from set S. Only Process on
a new example xkt

accesses S fresh kernel values K(xkt
, xi) for i ∈ S.

4.2.4 Implementation Details

Our LaSVM implementation reorders the examples after every Process or Reprocess to ensure
that the current support vectors come first in the reordered list of indices. The kernel cache
records truncated rows of the reordered kernel matrix. SVMLight [Joachims, 1999] and LibSVM
[Chang and Lin, 2001 2004] also perform such reordering, but do so rather infrequently. The
reordering overhead is acceptable during the online iterations because the computation of fresh
kernel values takes much more time.

Reordering examples during the finishing step was more problematic. We eventually deployed
an adaptation of the shrinking heuristic [Joachims, 1999] for the finishing step only. The set S
of support vectors is split into an active set Sa and an inactive set Si. All support vectors are
initially active. The Reprocess iterations are restricted to the active set Sa and do not perform
any reordering. About every 1000 iterations, support vectors that hit the boundaries of the box
constraints are either removed from the set S of support vectors or moved from the active set Sa

to the inactive set Si. When all τ -violating pairs of the active set are exhausted, the inactive set
examples are transferred back into the active set. The process continues as long as the merged
set contains τ -violating pairs.

A C implementation of LaSVM, featuring the kernel cache, is freely available on the mloss.org
website under the GNU Public License (go to http://mloss.org/software/view/23/).

4.2.5 Experiments

MNIST Experiments

The online LaSVM was first evaluated on the MNIST5 handwritten digit data set, that we
already used for benchmarking the Huller. Computing kernel values for this data set is relatively
expensive because it involves dot products of 784 gray level pixel values. In the experiments
reported below, all algorithms use the same code for computing kernel values. The ten binary
classification tasks consist of separating each digit class from the nine remaining classes. All
experiments use RBF kernels with γ = 0.005 and the same training parameters C = 1000 and
τ = 0.001. Unless indicated otherwise, the kernel cache size is 256MB.

LaSVM vs Sequential Minimal Optimization Baseline results were obtained by running
the state-of-the-art SMO solver LibSVM [Chang and Lin, 2001 2004]. The resulting classifier
accurately represents the SVM solution.

Two sets of results are reported for LaSVM. The LaSVM×1 results were obtained by per-
forming a single epoch of online iterations: each training example was processed exactly once
during a single sequential sweep over the training set. The LaSVM×2 results were obtained by
performing two epochs of online iterations.

Figures 4.5 and 4.6 show the resulting test errors and training times. LaSVM×1 runs about
three times faster than LibSVM and yields test error rates very close to the LibSVM results. Stan-

5 http://yann.lecun.com/exdb/mnist

http://yann.lecun.com/exdb/mnist
file://localhost/Users/claire/Library/Mail%20Downloads/mloss.org
http://mloss.org/software/view/23/
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Figure 4.5: Compared test error rates
for the ten MNIST binary classifiers.

Figure 4.6: Compared training times for
the ten MNIST binary classifiers.

Algorithm Error Time

LibSVM 1.36% 17400s
LaSVM×1 1.42% 4950s
LaSVM×2 1.36% 12210s

Figure 4.7: Training time as a function
of the number of support vectors.

Table 4.1: Multiclass errors and training
times for the MNIST data set.
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Figure 4.8: Compared numbers of sup-
port vectors for the ten MNIST binary
classifiers.

Figure 4.9: Training time variation as
a function of the cache size. Relative
changes with respect to the 1GB LibSVM times
are averaged over all ten MNIST classifiers.

dard paired significance tests indicate that these small differences are not significant. LaSVM×2
usually runs faster than LibSVM and very closely tracks the LibSVM test errors.

Neither the LaSVM×1 or LaSVM×2 experiments yield the exact SVM solution. On this
data set, LaSVM reaches the exact SVM solution after about five epochs. The first two epochs
represent the bulk of the computing time. The remaining epochs run faster when the kernel
cache is large enough to hold all the dot products involving support vectors. Yet the overall
optimization times are not competitive with those achieved by LibSVM.

Figure 4.7 shows the training time as a function of the final number of support vectors for
the ten binary classification problems. Both LibSVM and LaSVM×1 show a linear dependency.
The online LaSVM algorithm seems more efficient overall.

Table 4.1 shows the multiclass error rates and training times obtained by combining the ten
classifiers using the well known 1-versus-rest scheme [Schölkopf and Smola, 2002]. LaSVM×1
provides almost the same accuracy with much shorter training times. LaSVM×2 reproduces the
LibSVM accuracy with slightly shorter training time.

Figure 4.8 shows the resulting number of support vectors. A single epoch of the online LaSVM
algorithm gathers most of the support vectors of the SVM solution computed by LibSVM. The
first iterations of the online LaSVM might indeed ignore examples that later become support
vectors. Performing a second epoch captures most of the missing support vectors.

LaSVM vs the Averaged Perceptron The computational advantage of LaSVM relies on
its apparent ability to match the SVM accuracies after a single epoch. Therefore it must be
compared with algorithms such as the Averaged Perceptron [Freund and Schapire, 1998] that
provably match well known upper bounds on the SVM accuracies. The AvgPerc×1 results in
Figures 4.5 and 4.6 were obtained after running a single epoch of the Averaged Perceptron.
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Although the computing times are very good, the corresponding test errors are not competitive
with those achieved by either LibSVM or LaSVM. [Freund and Schapire, 1998] suggest that the
Averaged Perceptron approaches the actual SVM accuracies after 10 to 30 epochs. Doing so no
longer provides the theoretical guarantees. The AvgPerc×10 results in Figures 4.5 and 4.6 were
obtained after ten epochs. Test error rates indeed approach the SVM results. The corresponding
training times are no longer competitive.

LaSVM vs the Huller Both LaSVM and the Huller have been evaluated on MNIST with the
same kernel (and on similar computers). We can then perform a fair comparison of results
displayed in Figure 4.3 for the Huller and in Figures 4.5, 4.6, 4.7 and 4.8 for LaSVM. A first
glance shows that both algorithms perform in like manner: same good scaling behavior in one
pass, cheap memory usage and comparable accuracies. LaSVM is maybe slightly faster.

The main difference between them is that LaSVM trains Soft Margin SVMs and this is crucial
to deal with noisy data. On MNIST, we set C to a high value (1000) because this data set is not
very noisy. As a result, being restricted to the Hard Margin formulation is not really damaging
for the Huller on it. However, in the following, we display experimental results of LaSVM on
greatly noisier benchmarks (requiring much lower C values, see Table 4.2). Reach competitive
error rates on them would be impossible for the Huller.

Impact of the Kernel Cache Size Training times stress the importance of the kernel cache
size. Figure 4.6 shows how the AvgPerc×10 runs much faster on problems 0, 1, and 6. This is
happening because the cache is large enough to accommodate the dot products of all examples
with all support vectors. Each repeated iteration of the Average Perceptron requires very few
additional kernel evaluations. This is much less likely to happen when the training set size
increases. Computing times then increase drastically because repeated kernel evaluations become
necessary.

Figure 4.9 compares how the LibSVM and LaSVM×1 training times change with the kernel
cache size. The vertical axis reports the relative changes with respect to LibSVM with one
gigabyte of kernel cache. These changes are averaged over the ten MNIST classifiers. The plot
shows how LaSVM tolerates much smaller caches. On this problem, LaSVM with a 8MB cache
runs slightly faster than LibSVM with a 1024MB cache.

Useful orders of magnitude can be obtained by evaluating how large the kernel cache must be
to avoid the systematic recomputation of dot-products. Following the notations of Section 2.1.1,
let n be the number of examples, S be the number of support vectors, and R ≤ S the number of
support vectors such that 0 < |αi| < C.

• In the case of LibSVM, the cache must accommodate about n R terms. Indeed, each SMO
iteration selects one example among the R free support vectors and performs n distinct
dot-products with this selected example. As all SMO iterations are conducted several times
during training, the cache needs to store n R kernel values to be optimal.

• To perform a single LaSVM epoch, the cache must only accommodate about S R terms.
Since the examples are visited only once, the dot-products computed by a Process opera-
tion can only be reused by subsequent Reprocess operations. The cache must then concen-
trate on them. As (1) the examples selected by Reprocess are usually chosen among the
R free support vectors, and (2) for each selected example, Reprocess needs one distinct
dot-product per support vector in set S, the cache needs to store S R kernel values.

• To perform multiple LaSVM epochs, the cache must accommodate about n S terms: the
dot-products computed by processing a particular example are reused when processing
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the same example again in subsequent epochs. This also applies to multiple Averaged
Perceptron epochs.

An efficient single epoch learning algorithm is therefore very desirable when one expects S to be
much smaller than n. Unfortunately, this may not be the case when the data set is noisy. The
next section presents results obtained in such less favorable conditions.

Multiple Data Sets Experiments

Further experiments were carried out with a collection of standard data sets representing diverse
noise conditions, training set sizes, and input dimensionality. Figure 4.2 presents these data sets
and the parameters used for the experiments. Kernel computation times for these data sets are
extremely fast. The data either has low dimensionality or can be represented with sparse vectors.
For instance, computing kernel values for two Reuters documents only involves words common
to both documents (excluding stop words). The Forest experiments use a kernel implemented
with hand optimized assembly code [Graf et al., 2005].

Table 4.3 compares the solutions returned by LaSVM×1 and LibSVM. The LaSVM×1 ex-
periments call the kernel function much less often, but do not always run faster. The fast
kernel computation times expose the relative weakness of our kernel cache implementation. The
LaSVM×1 accuracies are very close to the LibSVM accuracies. The number of support vectors is
always slightly smaller.

LaSVM×1 essentially achieves consistent results over very diverse data sets, after performing
one single epoch over the training set only. In this situation, the LaSVM Process function gets
only one chance to take a particular example into the kernel expansion and potentially make it
a support vector. The conservative strategy would be to take all examples and sort them out
during the finishing step. The resulting training times would always be worse than LibSVM’s
because the finishing step is itself a simplified SMO solver. Therefore LaSVM online iterations
are able to very quickly discard a large number of examples with a high confidence. This process
is not perfect because we can see that the LaSVM×1 number of support vectors are smaller than
LibSVM’s. Some good support vectors are discarded erroneously.

Figure 4.4 reports the relative variations of the test error, number of support vectors, and
training time measured before and after the finishing step. The online iterations pretty much
select the right support vectors on clean data sets such as Waveform, Reuters or USPS, and
the finishing step does very little. On the other problems the online iterations keep much more
examples as potential support vectors. The finishing step significantly improves the accuracy on
noisy data sets such as Banana, Adult or USPS+N, and drastically increases the computation
time on data sets with complicated decision boundaries such as Banana or Forest.

The Collection of Potential Support Vectors The final step of the Reprocess operation
computes the current value of the kernel expansion bias b and the stopping criterion δ.

gmax = max
s∈S

gs with αs < Bs b =
gmax + gmin

2
gmin = min

s∈S
gs with αs > As δ = gmax − gmin

(4.11)

The quantities gmin and gmax can be interpreted as bounds for the decision threshold b. The
quantity δ then represents an uncertainty on the decision threshold b.

The quantity δ also controls how LaSVM collects potential support vectors. The definition of
Process and the equality (4.2) indicate indeed that Process(k) adds the support vector xk to
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Train Size Test Size γ C Cache τ Notes

Waveform1 4000 1000 0.05 1 40M 0.001 Artificial data, 21 dims.

Banana1 4000 1300 0.5 316 40M 0.001 Artificial data, 2 dims.

Reuters2 7700 3299 1 1 40M 0.001 Topic “moneyfx” vs. rest.

USPS3 7329 2000 2 1000 40M 0.001 Class “0” vs. rest.

USPS+N3 7329 2000 2 10 40M 0.001 10% training label noise.

Adult3 32562 16282 0.005 100 40M 0.001 As in [Platt, 1999].

Forest3 (100k) 100000 50000 1 3 512M 0.001 As in [Collobert et al., 2002].

Forest3 (521k) 521012 50000 1 3 1250M 0.01 As in [Collobert et al., 2002].

1 http://mlg.anu.edu.au/∼raetsch/data/index.html
2 http://www.daviddlewis.com/resources/testcollections/reuters21578
3 ftp://ftp.ics.uci.edu/pub/machine-learning-databases

Table 4.2: Data sets discussed in Section 4.2.5.

LibSVM LaSVM×1
Error SV KCalc Time Error SV KCalc Time

Waveform 8.82% 1006 4.2M 3.2s 8.68% 948 2.2M 2.7s

Banana 9.96% 873 6.8M 9.9s 9.98% 869 6.7M 10.0s

Reuters 2.76% 1493 11.8M 24s 2.76% 1504 9.2M 31.4s

USPS 0.41% 236 1.97M 13.5s 0.43% 201 1.08M 15.9s

USPS+N 0.41% 2750 63M 305s 0.53% 2572 20M 178s

Adult 14.90% 11327 1760M 1079s 14.94% 11268 626M 809s

Forest (100k) 8.03% 43251 27569M 14598s 8.15% 41750 18939M 10310s

Forest (521k) 4.84% 124782 316750M 159443s 4.83% 122064 188744M 137183s

Table 4.3: Comparison of LibSVM versus LaSVM×1 Test error rates (Error), number of
support vectors (SV), number of kernel calls (KCalc), and training time (Time). Bold characters
indicate significative differences.

Relative Variation
Error SV Time

Waveform -0% -0% +4%

Banana -79% -74% +185%

Reuters 0% -0% +3%

USPS 0% -2% +0%

USPS+N -67% -33% +7%

Adult -13% -19% +80%

Forest (100k) -1% -24% +248%

Forest (521k) -2% -24% +84%

Table 4.4: Influence of the finishing step on test error, number of support vectors and
training time. This can be highly beneficial (USPS+N) or a waste of time (Forest (100k)).
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the kernel expansion if and only if:

yk f(xk) < 1 +
δ

2
− τ (4.12)

When α is optimal, the uncertainty δ is zero, and this condition matches the Karush-Kuhn-
Tucker condition for support vectors yk f(xk) ≤ 1.

Intuitively, relation (4.12) describes how Process collects potential support vectors that are
compatible with the current uncertainty level δ on the threshold b. Simultaneously, the Repro-

cess operations reduce δ and discard the support vectors that are no longer compatible with this
reduced uncertainty.

The online iterations of the LaSVM algorithm make equal numbers of Process and Reprocess

for purely heuristic reasons. Nothing guarantees that this is the optimal proportion. The results
reported in Figure 4.10 clearly suggest to investigate this arbitrage more closely.

Variations on Reprocess Experiments were carried out with a slightly modified LaSVM algo-
rithm: instead of performing a single Reprocess, the modified online iterations repeatedly run
Reprocess until the uncertainty δ becomes smaller than a predefined threshold δmax.

Figure 4.10 reports comparative results for the Banana data set. Similar results were ob-
tained with other data sets. The three plots report test error rates, training time, and number
of support vectors as a function of δmax. These measurements were performed after one epoch of
online iterations without finishing step, and after one and two epochs followed by the finishing
step. The corresponding LibSVM figures are indicated by large triangles on the right side.

Regardless of δmax, the SVM test error rate can be replicated by performing two epochs
followed by a finishing step. However, this does not guarantee that the optimal SVM solution has
been reached. Large values of δmax essentially correspond to the unmodified LaSVM algorithm.
Small values of δmax considerably increases the computation time because each online iteration
calls Reprocess many times in order to sufficiently reduce δ. Small values of δmax also remove
the LaSVM ability to produce a competitive result after a single epoch followed by a finishing
step. The additional optimization effort discards support vectors more aggressively. Additional
epochs are necessary to recapture the support vectors that should have been kept.

There clearly is a sweet spot around δmax = 3 when one epoch of online iterations alone
almost match the SVM performance and also makes the finishing step very fast. This sweet spot
is difficult to find in general. If δmax is a little bit too small, we must make one extra epoch. If
δmax is a little bit too large, the algorithm behaves like the unmodified LaSVM. Short of a deeper
understanding of these effects, the unmodified LaSVM seems to be a robust compromise.

SimpleSVM The right side of each plot in Figure 4.10 corresponds to an algorithm that
optimizes the coefficient of the current support vectors at each iteration. This is closely related
to the SimpleSVM algorithm [Vishwanathan et al., 2003]. Both LaSVM and SimpleSVM update
a current kernel expansion by adding or removing one or two support vectors at each iteration.
The two key differences are the numerical objective of these updates and their costs.

Whereas each SimpleSVM iteration seeks the optimal solution of the SVM QP problem re-
stricted to the current set of support vectors, the LaSVM online iterations merely attempt to
improve the value of the dual objective function D(α). As a a consequence, LaSVM needs
a finishing step and the SimpleSVM does not. On the other hand, Figure 4.10 suggests that
seeking the optimum at each iteration discards support vectors too aggressively to reach com-
petitive accuracies after a single epoch. Moreover, we propose in Section 4.4 an analysis showing
that, without explicitly seeking the true optimum at each step, LaSVM fulfills an approximate
optimality criterion on the course of learning.
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Figure 4.10: Impact of additional Reprocess measured on Banana data set. During
the LaSVM online iterations, calls to Reprocess are repeated until δ < δmax.

Each SimpleSVM iteration updates the current kernel expansion using rank 1 matrix updates
[Cauwenberghs and Poggio, 2001] whose computational cost grows as the square of the number
of support vectors. LaSVM performs these updates using SMO direction searches whose cost
grows linearly with the number of examples. Rank 1 updates make good sense when one seeks
the optimal coefficients. On the other hand, all the kernel values involving support vectors must
be stored in memory. The LaSVM direction searches are more amenable to caching strategies for
kernel values.

SGD-QN Both LaSVM and SGD-QN (presented in Chapter 3) optimize SVMs for binary
classification. It is interesting to compare them even if, of course, LaSVM is more general: (i) it
can be used efficiently on any kind of kernel when SGD-QN is restricted to the linear case, (ii) it
trains classifiers with bias terms resulting in potential higher accuracies [Keerthi et al., 1999].

If we restrict to linear SVMs without bias, is it better to use LaSVM or SGD-QN? It is worth
noting that, in the linear case, a smart implementation of LaSVM bypassing the kernel cache is
essential to be competitive. We ran preliminary experiments (not shown in this thesis): LaSVM
appears to be slightly faster than LibLinear [Hsieh et al., 2008] on data sets used in Section 3.2.3
but does not outperform SGD-QN. A difference between LaSVM and SGD-QN is that LaSVM does
not require fiddling with learning rates. Although this is often viewed as an advantage, we feel
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that this aspect restricts the improvement opportunities and explains why SGD-QN is somewhat
more efficient.

4.3 Active Selection of Training Examples

The previous section presents LaSVM as an Online Learning algorithm or as a Stochastic Opti-
mization algorithm. In both cases, the LaSVM online iterations pick random training examples.
The current section departs from this framework and investigates more refined ways to select an
informative example for each iteration.

This departure is justified in the batch setup because the complete training set is available
beforehand and can be searched for informative examples. It is also justified in the online setup
when the continuous stream of fresh training examples is too costly to process, either because the
computational requirements are too high, or because it is impractical to label all the potential
training examples.

In particular, we show that selecting informative examples yields considerable speedups. Be-
sides, training example selection can be achieved without the knowledge of the training example
labels. In fact, excessive reliance on the training example labels can have very detrimental effects.

4.3.1 Example Selection Strategies

Gradient Selection

The most obvious approach consists in selecting an example k such that the Process operation
results in a large increase of the dual objective function. This can be approximated by choosing
the example which yields the τ -violating pair with the largest gradient. Depending on the class
yk, the Process(k) operation considers pair (k, j) or (i, k) where i and j are the indices of the
examples in S with extreme gradients.

i = arg max
s∈S

gs with αs < Bs , j = arg min
s∈S

gs with αs > As

The corresponding gradients are gk − gj for positive examples and gi − gk for negative examples.
Using the expression (4.2) of the gradients and the value of b and δ computed during the previous
Reprocess (4.11), we can write:

when yk =+1, gk − gj = yk gk − gi + gj

2
+

gi − gj

2
= 1 +

δ

2
− yk f(xk)

when yk =−1, gi − gk =
gi + gj

2
+

gi − gj

2
+ yk gk = 1 +

δ

2
− yk f(xk)

This expression shows that the Gradient Selection Criterion simply suggests to pick the most
misclassified example.

kG = arg min
k/∈S

yk f(xk) (4.13)

Active Selection

Always picking the most misclassified example is reasonable when one is very confident of the
training example labels. On noisy data sets, this strategy is simply going to pick mislabelled
examples or examples that sit on the wrong side of the optimal decision boundary.
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When training example labels are unreliable, a conservative approach chooses the example
kA that yields the strongest mini-max gradient:

kA = arg min
k/∈S

max
y=±1

y f(xk) = arg min
k/∈S

|f(xk)| (4.14)

This Active Selection Criterion simply chooses the example that comes closest to the current
decision boundary. Such a choice yields a gradient approximately equal to 1 + δ/2 regardless of
the true class of the example.

Criterion (4.14) does not depend on the labels yk. The resulting learning algorithm only
uses the labels of examples that have been selected during the previous online iterations. This
is related to the Pool Based Active Learning paradigm [Cohn et al., 1990].

Early active learning literature, also known as Experiment Design [Fedorov, 1972], contrasts
the passive learner, who observes examples (x, y), with the active learner, who constructs queries
x and observes their labels y. In this setup, the active learner cannot beat the passive learner
because he lacks information about the input pattern distribution [Eisenberg and Rivest, 1990].
Pool-based active learning algorithms observe the pattern distribution from a vast pool of unla-
belled examples. Instead of constructing queries, they incrementally select unlabelled examples
xk and obtain their labels yk from an oracle.

Several authors [Campbell et al., 2000, Schohn and Cohn, 2000, Tong and Koller, 2000]
propose incremental active learning algorithms that clearly are related to Active Selection. The
initialization consists of obtaining the labels for a small random subset of examples. A SVM
is trained using all the labelled examples as a training set. Then one searches the pool for the
unlabelled example that comes closest to the SVM decision boundary, one obtains the label of
this example, retrains the SVM and reiterates the process.

Randomized Search

Both criteria (4.13) and (4.14) suggest a search through all the training examples. This is
impossible in the online setup and potentially expensive in the batch setup.

It is however possible to locate an approximate optimum by simply examining a small constant
number of randomly chosen examples. The randomized search first samples M random training
examples and selects the best one among these M examples. With probability 1− ηM , the value
of the criterion for this example exceeds the η-quantile of the criterion for all training examples
[Schölkopf and Smola, 2002, Theorem 6.33] regardless of the size of the training set. In practice
this means that the best among 59 random training examples has 95% chances to belong to the
best 5% examples in the training set.

Randomized search has been used in the batch setup to accelerate various machine learning
algorithms [Domingo and Watanabe, 2000, Vishwanathan et al., 2003, Tsang et al., 2005]. In
the online setup, randomized search is the only practical way to select training examples. For
instance, here is a modification of the basic LaSVM algorithm to select examples using the Active
Selection Criterion with Randomized Search:

Each online iteration of the above algorithm is about M times more computationally expen-
sive that an online iteration of the basic LaSVM algorithm. Indeed one must compute the kernel
expansion (2.2) for M fresh examples instead of a single one (4.2). This cost can be reduced by
heuristic techniques for adapting M to the current conditions. For instance, we present exper-
imental results where one stops collecting new examples as soon as M contains five examples
such that | f(xs) | < 1 + δ/2.

Finally the last two paragraphs of Appendix B discuss the convergence of LaSVM with ex-
ample selection according to the gradient selection criterion or the active selection criterion.
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Algorithm 14 LaSVM+ Active Example Selection + Randomized Search

1: Initialization:
Seed S with a few examples of each class.
Set α ← 0 and g ← 0.

2: Online Iterations:
3: Repeat a predefined number of times:

- Pick M random examples s1 . . . sM .
- kt ← arg min

i=1...M
| f(xsi

) |
- Run Process(kt).
- Run Reprocess once.

4: Finishing:
Repeat Reprocess until δ ≤ τ .

The gradient selection criterion always leads to a solution of the SVM problem. On the other
hand, the active selection criterion only does so when one uses the sampling method. In prac-
tice this convergence occurs very slowly. The next section presents many reasons to prefer the
intermediate kernel classifiers visited by this algorithm.

4.3.2 Experiments on Example Selection for Online SVMs

This section experimentally compares the LaSVM algorithm using different example selection
methods. Four different algorithms are compared:

• random example selection randomly picks the next training example among those that
have not yet been Processed. This is equivalent to the plain LaSVM algorithm discussed
in Section 4.2.

• gradient example selection consists in sampling 50 random training examples among those
that have not yet been Processed. The sampled example with the smallest yk f(xk) is then
selected.

• active example selection consists in sampling 50 random training examples among those
that have not yet been processed. The sampled example with the smallest |f(xk)| is then
selected.

• autoactive example selection attempts to adaptively select the sampling size. Sampling
stops as soon as 5 examples are within distance 1 + δ/2 of the decision boundary. The
maximum sample size is 100 examples. The sampled example with the smallest |f(xk)| is
then selected.

Adult Data Set

We first report experiments performed on the Adult data set. This data set provides a good
indication of the relative performance of the gradient and active selection criteria under noisy
conditions.

Reliable results were obtained by averaging experimental results measured for 65 random
splits of the full data set into training and test sets. Paired tests indicate that test error differences
of 0.25% on a single run are statistically significant at the 95% level. We conservatively estimate
that average error differences of 0.05% are meaningful.
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Figure 4.11: Comparing example selection criteria on the Adult data set. Measure-
ments were performed on 65 runs using randomly selected training sets. The graphs show the
error measured on the remaining testing examples as a function of the number of iterations and
the computing time. The dashed line represents the LibSVM test error under the same conditions.

Figure 4.11 reports the average error rate measured on the test set as a function of the number
of online iterations (left plot) and of the average computing time (right plot). Regardless of
the training example selection method, all reported results were measured after performing the
LaSVM finishing step. More specifically, we run a predefined number of online iterations, save
the LaSVM state, perform the finishing step, measure error rates and number of support vectors,
and restore the saved LaSVM state before proceeding with more online iterations. Computing
time includes the duration of the online iterations and the duration of the finishing step.

The gradient example selection criterion performs very poorly on this noisy data set. A
detailed analysis shows that most of the selected examples become support vectors with coefficient
reaching the upper bound C. The active and autoactive criteria both reach smaller test error
rates than those achieved by the SVM solution computed by LibSVM. The error rates then
seem to increase towards the error rate of the SVM solution (left plot). We believe indeed that
continued iterations of the algorithm eventually yield the SVM solution.

Figure 4.12 relates error rates and numbers of support vectors. The random LaSVM algorithm
performs as expected: a single pass over all training examples replicates the accuracy and the
number of support vectors of the LibSVM solution. Both the active and autoactive criteria
yield kernel classifiers with the same accuracy and much less support vectors. For instance, the
autoactive LaSVM algorithm reaches the accuracy of the LibSVM solution using 2500 support
vectors instead of 11278. Figure 4.11 (right plot) shows that this result is achieved after 150
seconds only. This is about one fifteenth of the time needed to perform a full random LaSVM
epoch6.

Both the active LaSVM and autoactive LaSVM algorithms exceed the LibSVM accuracy
after a few iterations only. This is surprising because these algorithms only use the training
labels of the few selected examples. They both outperform the LibSVM solution by using only a
small subset of the available training labels.

6The timing results reported in figure 4.3 were measured on a faster computer.
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Figure 4.12: Comparing example selection criteria on the Adult data set. Test error
as a function of the number of support vectors.

MNIST Data Set

The comparatively clean MNIST data set provides a good opportunity to verify the behavior of
the various example selection criteria on a problem with a much lower error rate.

Figure 4.13 compares the performance of the random, gradient and active criteria on the
classification of digit “8” versus all other digits. The curves are averaged on 5 runs using different
random seeds. All runs use the standard MNIST training and test sets. Both the gradient and
active criteria perform similarly on this relatively clean data set. They require about as much
computing time as random example selection to achieve a similar test error.

Adding ten percent label noise on the MNIST training data provides additional insight re-
garding the relation between noisy data and example selection criteria. Label noise was not
applied to the testing set because the resulting measurement can be readily compared to test
errors achieved by training SVMs without label noise. The expected test errors under similar
label noise conditions can be derived from the test errors measured without label noise. Fig-
ure 4.14 shows the test errors achieved when 10% label noise is added to the training examples.
The gradient selection criterion causes a very chaotic convergence because it keeps selecting
mislabelled training examples. The active selection criterion is obviously undisturbed by the
label noise.

Figure 4.15 summarizes error rates and number of support vectors for all noise conditions.
In the presence of label noise on the training data, LibSVM yields a slightly higher test error
rate, and a much larger number of support vectors. The random LaSVM algorithm replicates the
LibSVM results after one epoch. Regardless of the noise conditions, the active LaSVM algorithm
reaches the accuracy and the number of support vectors of the LibSVM solution obtained with
clean training data. Although we have not been able to observe it on this data set, we expect
that, after a long time, the active curve for the noisy training set converges to the accuracy and
the number of support vectors achieved of the LibSVM solution obtained for the noisy data.

Online SVMs for Active Learning

The active LaSVM algorithm implements two dramatic speedups with respect to existing active
learning algorithms such as [Campbell et al., 2000, Schohn and Cohn, 2000, Tong and Koller,
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Figure 4.13: Comparing example selection criteria on the MNIST data set. (rec-
ognizing digit “8” against all other classes.) gradient selection and active selection perform
similarly on this relatively noiseless task.

Figure 4.14: Comparing example selection criteria on the MNIST data set with 10%
label noise on the training examples.
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Figure 4.15: Comparing example selection criteria on the MNIST data set. active

example selection is insensitive to the artificial label noise.

2000]. First it chooses a query by sampling a small number of random examples instead of
scanning all unlabelled examples. Second, it uses a single LaSVM iteration after each query
instead of fully retraining the SVM.

Figure 4.16 reports experiments performed on the Reuters and USPS data sets presented
in Table 4.2. The RETRAIN ACTIVE 50 and RETRAIN ACTIVE ALL select a query from 50 or all
unlabeled examples respectively, and then retrain the SVM. The SVM solver was initialized with
the solution from the previous iteration. The LASVM ACTIVE 50 and LASVM ACTIVE ALL do
not retrain the SVM, but instead make a single LaSVM iteration for each new labeled example.

All the active learning methods performed approximately the same, and were superior to
random selection. Using LaSVM iterations instead of retraining causes no loss of accuracy.
Sampling M = 50 examples instead of searching all examples only causes a minor loss of accuracy
when the number of labeled examples is very small. Yet the speedups are very significant: for
500 queried labels on the Reuters data set, the RETRAIN ACTIVE ALL, LASVM ACTIVE ALL,
and LASVM ACTIVE 50 algorithms took 917 seconds, 99 seconds, and 9.6 seconds respectively.

4.3.3 Discussion

Practical Significance

As we discussed in Chapter 1, data set sizes are quickly outgrowing the computing power of
our calculators. One possible avenue consists in harnessing the computing power of multiple
computers [Graf et al., 2005]. In this thesis, we are rather seeking learning algorithms with low
complexity.

When we have access to an abundant source of training examples, the simple way to reduce
the complexity of a learning algorithm consists of picking a random subset of training examples
and running a regular training algorithm on this subset. Unfortunately this approach renounces
the more accurate models that the large training set could afford. This is why we say, by reference
to statistical efficiency, that an efficient learning algorithm should at least pay a brief look at
every training example.

The LaSVM algorithm is very attractive because it yields competitive results after a single
epoch. This is very important in practice because modern data storage devices are most effective
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Figure 4.16: Comparing active learning methods on the USPS and Reuters data
sets. Results are averaged on 10 random choices of training and test sets. Using LaSVM iterations
instead of retraining causes no loss of accuracy. Sampling M = 50 examples instead of searching
all examples only causes a minor loss of accuracy when the number of labeled examples is very
small.

when the data is accessed sequentially. Active Selection of the LaSVM training examples brings
two additional benefits for practical applications: (a) it achieves equivalent performances with
significantly less support vectors, and (b) the search for informative examples is an obviously
parallel task.

Informative Examples and Support Vectors

By suggesting that all examples should not be given equal attention, we first state that all
training examples are not equally informative. This question has been asked and answered in
various contexts [Fedorov, 1972, Cohn et al., 1990, MacKay, 1992]. We also ask whether these
differences can be exploited to reduce the computational requirements of learning algorithms.
Our work answers this question by proposing algorithms that exploit these differences and achieve
very competitive performances.

Kernel classifiers in general distinguish the few training examples named support vectors.
Kernel classifier algorithms usually maintain an active set of potential support vectors and work
by iterations. Their computing requirements are readily associated with the training examples
that belong to the active set. Adding a training example to the active set increases the comput-
ing time associated with each subsequent iteration because they will require additional kernel
computations involving this new support vector. Removing a training example from the active
set reduces the cost of each subsequent iteration. However it is unclear how such changes affect
the number of subsequent iterations needed to reach a satisfactory performance level.

Online kernel algorithms, such as kernel perceptrons usually produce different classifiers when
given different sequences of training examples. Section 4.2 proposes an online kernel algorithm
that converges to the SVM solution after many epochs. The final set of support vectors is
intrinsically defined by the SVM QP problem, regardless of the path followed by the online
learning process. Intrinsic support vectors provide a benchmark to evaluate the impact of changes
in the active set of current support vectors. Augmenting the active set with an example that
is not an intrinsic support vector moderately increases the cost of each iteration without clear
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benefits. Discarding an example that is an intrinsic support vector incurs a much higher cost.
Additional iterations will be necessary to recapture the missing support vector.

Nothing guarantees however that the most informative examples are the support vectors of
the SVM solution. [Bakır et al., 2005] interpret Steinwart’s theorem [Steinwart, 2004] as an
indication that the number of SVM support vectors is asymptotically driven by the examples
located on the wrong side of the optimal decision boundary. Although such outliers might play
a useful role in the construction of a decision boundary, it seems unwise to give them the bulk
of the available computing time. Section 4.3 adds explicit example selection criteria to LaSVM.
The Gradient Selection Criterion selects the example most likely to cause a large increase of the
SVM objective function. Experiments show that it prefers outliers over honest examples. The
Active Selection Criterion bypasses the problem by choosing examples without regard to their
labels. Experiments show that it leads to competitive test error rates after a shorter time, with
less support vectors, and using only the labels of a small fraction of the examples.

Theoretical Questions

Appendix B provides a comprehensive analysis of the convergence of the algorithms discussed in
this contribution. Such convergence results are useful but limited in scope. This section under-
lines some aspects of this work that would vastly benefit from a deeper theoretical understanding.

• Test error rates are sometimes improved by active example selection. In fact this effect
has already been observed in the active learning setups [Schohn and Cohn, 2000]. This
small improvement is difficult to exploit in practice because it requires very sensitive early
stopping criteria. Yet it demands an explanation because it seems that one gets a better
performance by using less information. There are three potential explanations: (i) active
selection works well on unbalanced data sets because it tends to pick equal number of
examples of each class [Schohn and Cohn, 2000], (ii) active selection improves the SVM
loss function because it discards distant outliers, (iii) active selection leads to more sparse
kernel expansions with better generalization abilities [Cesa-Bianchi et al., 2005]. These
three explanations may be related and some recent work actually explore them using LaSVM
[Ertekin et al., 2007a, Ertekin et al., 2007b].

• We know that the number of SVM support vectors scales linearly with the number of
examples [Steinwart, 2004]. Empirical evidence suggests that active example selection
yields transitory kernel classifiers that achieve low error rates with much less support
vectors. What is the scaling law for this new number of support vectors?

We have presented empirical evidence suggesting that a single epoch of the LaSVM algorithm
yields misclassification rates comparable with a SVM. We also know that LaSVM exactly reaches
the SVM solution after a sufficient number of epochs. For well designed online learning algorithms
based on Stochastic Gradient Descent, there exist theoretical results estimating the expected
difference between the first epoch test error and the many epoch test error (see Theorem 4 in
Section 3.1.1). In the next section, we provide original theoretical guarantees for the online
LaSVM (and incremental algorithms). Indeed, using a new duality lemma, we demonstrate that
using a fixed number of Reprocess operations allows to track the SVMs optimum on the course
of learning.

4.4 Tracking Guarantees for Online SVMs

Standard online learning algorithms, like the perceptron, passive-aggressive algorithms, or stochas-
tic gradient descent, perform a single parameter update after seeing each new example. As we
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have already discussed, these are faster than batch algorithms that optimize a global cost func-
tion on the whole training set but have usually a significantly worse test performance. Running
several pass over a fixed training set can yet often turn them into computationally efficient
learning algorithms. They become as accurate in test as batch optimizers and are generally
still competitive in terms of training time. However they are no longer online and this involves
drawbacks. In particular, as mentioned in the discussion on kernel cache usage of Section 4.2.5,
caching requirements of an algorithm increase a lot when it runs multiple passes.

We have shown in Sections 4.2 and 4.3 that LaSVM does not require to be looped several
times over the training set to reach good performances. On various learning tasks it reaches a test
accuracy nearly as good as the final solution and a dual objective value close to the optimum,
after a single epoch over the training set. This has empirically demonstrated the rewarding
influence of the addition of a limited number of Reprocess steps. In this section we now attempt
to give theoretical insights of this useful impact.

We study SVMs algorithms that do not try to reach the optimum of the SVMs QP at
each time index t – as usually do incremental algorithms [Cauwenberghs and Poggio, 2001] –
but strive to track the sequence of optima with a predefined tolerance. Our analysis shows
that adequately designed algorithms can track the successive optima by performing a constant
number of iterations for each additional example (similar in spirit than Reprocess operations).
This results in an optimality guarantee that can be obtained with no extra-computation. The
total number of required iterations grows linearly with the number of examples and as for the
best algorithms for computing approximate SVMs [Joachims, 2006, Shalev-Shwartz et al., 2007].

We first describe our analysis setup (Section 4.4.1) and give a useful duality lemma (Sec-
tion 4.4.2). Then we present and analyze two approximate incremental SVM algorithms (Sec-
tion 4.4.3) and conclude with a discussion on how this translates to LaSVM (Section 4.4.4).

4.4.1 Analysis Setup

We consider the following online setup. Examples arrive as a stream of examples (xi, yi)i≥1 with
instances xi verifying ‖xi‖ ≤ 1 and with labels yi = ±1. We consider discriminant functions of
the form f(x) = 〈w, x〉 (we use no bias). Throughout this section, we only use the linear kernel
function k(x, x̄) = 〈x, x̄〉 but all the results we demonstrate could be translated to any general
kernel function.

As usual, we let Pt(w) be the primal cost function restricted to the set St containing the first
t examples,

Pt(w) =
1

2
‖w‖2

+ C

t
∑

i=1

max(0, 1 − yi 〈w, xi〉) (4.15)

and let Dt(α) be the associated dual objective function

Dt(α) =

t
∑

i=1

αi −
1

2

∑

i,j≤t

yiyjαiαj 〈xi, xj〉 with ∀i = 1, . . . t, 0 ≤ αi ≤ C . (4.16)

We employ here the standard dual formulation of SVMs, which is slightly different from the
one previously used in this chapter, because this eases notations. Of course, the two forms are
equivalent and lead to the same final vector w.
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If α∗ maximizes Dt, it is well known that7 w(α∗) =

t
∑

i=1

α∗
i yixi minimizes Pt, and

D∗
t = Dt(α

∗) = max
α∈[0,C]t

Dt(α) = min
w

Pt(w) = Pt(w(α∗)) = P ∗
t .

Dual coordinate ascent is a simple procedure to maximize Dt. It is similar to Sequential
Direction Search presented in Section 2.1.2 but simpler because, as we removed the bias term,
there is no equality constraint in the dual anymore. Let (e1 . . . et) be the canonical basis of R

t.
Starting from a dual parameter vector αk ∈ [0, C]t, each dual coordinate ascent iteration picks
a search direction eσ(k) and outputs a new dual parameter vector αk+1 = αk + a∗ eσ(k) with a∗

chosen to maximize D(αk+1) subject to αk+1 ∈ [0, C]t. A simple derivation shows that

a∗ = max
(

− αk
σ(k) , min

(

C − αk
σ(k),

gσ(k)(α
k)

∥

∥xσ(k)

∥

∥

2

))

with gi(α) = 1 − yi 〈w(α), xi〉 . (4.17)

An approximate minimizer of the primal cost D can therefore be obtained by choosing a suit-
able starting value α0, performing an adequate number K of successive dual coordinate ascent
iterations and outputting w(αK). The convergence and the efficiency of this procedure depends
on the scheduling policy used to chose the successive search direction eσ(k) at each step.

4.4.2 Duality Lemma

The following lemma is interesting because it connects the two quantities of interest: the duality
gap (i.e. the difference between the primal and the corresponding dual costs), which measures
the accuracy of the solution, and the expected effect of the next coordinate ascent iteration.

Lemma 5 Let t ≥ 1, maxi=1..t ‖xi‖ ≤ 1, and α ∈ [0, C]t. Then:

Pt(w(α)) − Dt(α)

Ct
≤ µ

(

E
i∼U(t)

∆t,i(α)

)

where µ(x) =
√

2x + x/C, U(t) denotes the uniform distribution over {1...t}, and

∆t,i(α) = max
a∈[−αi,C−αi]

[Dt(α + aei) − Dt(α)]

A bound on the gap is of course a bound on both the primal Pt(w(α))−P ∗
t and dual Dt(α)−D∗

suboptimalities. The left hand side denominator Ct makes sense because it normalizes the loss
in the expression of the primal (4.15).

Proof The result follows from elementary arguments regarding ∆t,i(α) and the duality gap

G(α) = Pt(w(α)) − Dt(α) = ‖w(α)‖2 + C
t
X

i=1

max(0, gi(α)) −
t
X

i=1

αi

Recalling ‖w(α)‖2 =

t
X

i=1

yiαi 〈w(α), xi〉 =

t
X

i=1

αi

`

1 − gi(α)
´

, we obtain the identity

G(α) =

t
X

i=1

max [(C − αi)gi(α),−αigi(α)] . (4.18)

7In this section, we denote the parameter vector w(α) to make explicit its dependency on the vector α.
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Figure 4.17: Duality lemma with a single example x1 = 1, y1 = 1. The figures
compare the gap Pt − Dt (continuous green curve), the bound (dashed red curve), and the
primal suboptimality Pt −P ∗

t (dotted blue curve) as a function of α1. The left plot shows a free
support vector (C = 1.5, α∗

1 = 1). The right plot shows a support vector at bound (C = 0.7,
α∗

1 = C).

We now turn our attention to quantity ∆t,i(α). Equation (4.17) shows that a∗ has always the same sign
as gi(α) and |a∗| ≤| gi|/‖xi‖2. Since Dt(α + aei) − Dt(α) = a

`

gi(α) − a/2 ‖xi‖2´,

1

2
|a∗||gi(α)| ≤ ∆t,i(α) = |a∗||gi(α)| − 1

2
‖xi‖2|a∗|2 . (4.19)

To use this result in equation (4.18), we fix some index i and consider two cases:

1. If |a∗| ≥ |gi(α)|, then, using equation (4.19), we have |gi(α)| ≤
p

2∆t,i(α), and thus

max [(C − αi)gi(α),−αigi(α)] ≤ C|gi(α)| ≤ C
p

2∆t,i(α) ≤ Cµ(∆t,i(α)) .

2. If |a∗| < |gi(α)|, then, given (4.17) and the assumption ‖xi‖2 ≤ 1, αi + a∗ has necessarily reached
a bound. Since a∗ and gi(α) have the same sign, it means that if gi(α) ≤ 0, then a∗ = −αi, and
a∗ = C − αi otherwise. This implies

max [(C − αi)gi(α),−αigi(α)] = |a∗||gi(α)| = ∆t,i(α) +
1

2
‖xi‖2|a∗|2 .

In order to obtain a bound involving only ∆t,i(α), we need to bound the last term of the last
equation. Since we are in the case |a∗| < |gi(α)|, the left-hand side of equation (4.19) gives us
|a∗| ≤

p

2∆t,i(α). Moreover, since ‖xi‖2 ≤ 1, we have 1
2
‖xi‖2|a∗| ≤ 1

2
C and

max [(C − αi)gi(α),−αigi(α)] ≤ ∆t,i(α) +
1

2
C
p

2∆t,i(α) ≤ Cµ(∆t,i(α)) .

Putting points 1 and 2 in equation (4.18), and using the concavity of µ, we obtain the desired result:

Pt(w(α)) − Dt(α)

Ct
≤ 1

t

t
X

i=1

µ(∆t,i(α)) ≤ µ

„

E
i∼U(t)

∆t,i(α)

«

.

!
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To ascertain the quality of this bound, consider how a SVM with a single scalar example
x1 = 1, y1 = 1 illustrates the two cases of the proof. The left plot in Figure 4.17 shows a
situation where the optimum uses the example as a free support vector, that is, case 1 in the
proof. The lack of a vertical tangent near the optimum α1 = 1 confirms the square root behavior
of µ(x) when x approaches zero. The right plot shows a situation of a bounded support vector,
that is, case 2 in the proof. The bound is much looser when αi approaches C. However this
is less important because coordinate ascent iterations usually set such coefficient to C at once.
The bound is then exact.

4.4.3 Algorithms and Analysis

The Analysis Technique

Let us illustrate the analysis technique on the dual coordinate ascent algorithm outlined in
Section 4.4.1 running on a fixed training set with t examples. Assume the successive search
directions are picked randomly. We can easily copy the collapsing sum method of [Shalev-Shwartz
and Singer, 2007b].

Let Fk represent all the successive search directions eσ(i), i < k. We can rewrite Lemma 5 as

∀k
Pt(w(αk)) − Dt(α

k)

Ct
≤ µ

(

E
[

Dt(α
k+1) − Dt(α

k)
∣

∣Fk

])

.

Taking the expectation, averaging over all k, and using twice Jensen’s inequality,

1

K

K
∑

k=1

E

[

Pt(w(αk)) − Dt(α
k)

Ct

]

≤ 1

K

K
∑

k=1

E
[

µ
(

E
[

Dt(α
k+1) − Dt(α

k)
∣

∣Fk

])]

≤ µ

(

E

[

1

K

K
∑

k=1

Dt(α
k+1) − Dt(α

k)

])

≤ µ

(

E
[

Dt(α
K+1) − Dt(α

1)
]

K

)

≤ µ

(

E D∗
t

K

)

.

Since the gap bounds both the primal and dual suboptimality, we obtain a dual convergence
bound

E

[

D∗
T − Dt(α

K)

Ct

]

≤ E

[

1

K

K
∑

k=1

D∗
t − Dt(α

k)

Ct

]

≤ µ

(

E D∗
t

K

)

,

and a somehow less attractive primal convergence bound

E

[

1

K

K
∑

k=1

Pt(w(αk)) − P ∗
t

Ct

]

≤ µ

(

E D∗
t

K

)

.

These bounds are different because each iteration increases the value of the dual objective, but
does not necessarily reduce the value of the primal cost. However it is easy to obtain a nicer
primal convergence bound by considering an averaged algorithm. Let ᾱK = 1

K

∑K
k=1 αk. Thanks

to the convexity of the primal cost, we can write

E

[

Pt(w(ᾱK)) − P ∗
t

Ct

]

≤ µ

(

E D∗
t

K

)

.

In practice, this averaging operation is dubious because it ruins the sparsity of the dual parameter
vector α. However it yields bounds that are easier to interpret, albeit not fundamentally different.
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Tracking Inequality for a Simple Algorithm

We now return to an incremental setup. Assume a teacher provides a new example (xt, yt) at
each time step. We seek to compute a sequence of classifiers wt that tracks P ∗

t = minw Pt(w)
with a predefined accuracy.

Algorithm 15 Simple Averaged Tracking Algorithm

1: input: stream of examples (xi, yi)i≥1, number of iterations K ≥ 1 at each time index.
2: ∀i, αi ← 0, t ← 1
3: Pick an example (xt, yt)
4: Set αt ← 0
5: for k = 1, . . . K do
6: Pick i randomly in {1, ..., t}
7: Set αi ← αi + max

(

−αi,min
(

C − αi,
gi(α)

‖xi‖
2

))

8: Set ᾱt ← k−1
k ᾱt + 1

kα

9: end for
10: output classifier wt = w(ᾱt)
11: t ← t + 1
12: Return to step 3.

After receiving each new example (xt, yt), Algorithm 15 performs a predefined number K of
dual coordinate ascent iterations on randomly picked coefficients associated with the currently
known examples.

Theorem 6 Let w(ᾱt) be the sequence of classifiers output by Algorithm 15. Assume further-
more that maxt ‖xt‖ ≤ 1. Then, for any T ≥ 1, we have

E

[

1

T

T
∑

t=1

Pt(w(ᾱt)) − P ∗
t

Ct

]

≤ µ

(

E D∗
T

KT

)

where µ(x) =
√

2x + x
C . Moreover, the number of dual coordinate ascent performed by the

algorithm after seeing T examples is exactly KT .

Theorem 6 does not bound the primal suboptimality at each time index. However, since all
these primal suboptimalities are positive, the theorem guarantees that an upper bound of the
excess misclassification error, (Pt −P ∗

t )/Ct, will be bounded on average. This weaker guarantee
comes with a considerable computational benefit: instead of computing costly stopping criteria,
we can blindly perform K iterations after each new example and know that the guarantee holds.

The proof of the theorem follows the schema of the previous section: setup the collapsing sum
of dual objective values; use Jensen’s inequality to distribute the function µ and the expectations
on each term; apply the lemma; and regroup the like terms on the left hand side.

Expectations in the theorem can have two interpretations. In the simplest setup, the teacher
fixes the sequence of examples before the execution of the algorithm. Expectations are then
taken solely with respect to the successive random choices of coordinate ascent directions. In a
more general setup, the teacher follows an unspecified causal policy. At each time index t, he can
use past values of the algorithm variables to choose the next example (xt, yt): this corresponds
to an active learning setup. The sequence of examples becomes a random variable. Expectations
are then taken with respect to both the random search directions and the sequence of examples.
The proof is identical in both cases.
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Tracking Inequality for a Process/Reprocess Algorithm

Algorithm 16 is inspired by the Process/Reprocess principle of the Huller and LaSVM (presented
in Sections 4.1 and 4.2). Before performing K dual coordinate ascent iterations on coefficients
associated with examples randomly picked among the currently known examples, this algorithm
performs an additional iteration on the coefficient associated with the new example (compare
lines 4 in both algorithms.)

Algorithm 16 Averaged Tracking Algorithm with Process/Reprocess

1: input: stream of examples (xi, yi)i≥1, number of iterations K ≥ 1 at each time index.
2: ∀i, αi ← 0, t ← 1
3: Pick an example (xt, yt)

4: Set αt ← max
(

0,min
(

C,
gt(α)

‖xt‖
2

))

⊲ i.e. perform Process

5: for k = 1, . . . K do
6: Pick i randomly in {1, ..., t}
7: Set αi ← αi + max

(

−αi,min
(

C − αi,
gi(α)

‖xi‖
2

))

⊲ i.e. perform K Reprocess

8: Set ᾱt ← k−1
k ᾱt + 1

kα

9: end for
10: output classifier wt = w(ᾱt)
11: t ← t + 1
12: Return to step 3.

Theorem 7 Let w(ᾱt) be the sequence of classifiers output by Algorithm 16. Let αt denote the
successive value taken by variable α before each execution of line 4 of Algorithm 16. Assume
furthermore that maxt ‖xt‖ ≤ 1. Then, for any T ≥ 1, we have

E

[

1

T

T
∑

t=1

Pt(w(ᾱt)) − P ∗
t

Ct

]

≤ µ

(

E [D∗
T − δT ]

KT

)

where µ(x) =
√

2x+ x
C and δT =

∑T
t=1 ∆t,t(α

t) is the cumulated dual increase during the Process

operations. Moreover, the number of elementary optimization steps performed by the algorithm
after seeing t examples is exactly (K + 1)t.

The proof of the theorem is similar to the proof of Theorem 6 except that terms of the
collapsing sum corresponding to the Process operations (line 4 in the algorithm) are collected
in quantity δT .

Adding this Process operation gives the bound µ
(

E
[

D∗
T − δ̄T

]

/KT
)

instead of µ (E [D∗
T ] /KT ).

Since the quantity δT is related to the online loss incurred by the online algorithm [Shalev-Shwartz
and Singer, 2007b], δT = Ω(T ) unless the all training examples received after a given time in-
dex are separable. Under this condition, the Process operation saves a multiplicative factor
on the number K of Reprocess operations necessary to reach a predefined accuracy. Although
we cannot give a precise value for δT , we can claim that Algorithm 16, implementing a sort of
Process/Reprocess strategy, should perform significantly better than Algorithm 15 in practice.

Rough Comparisons

Since D∗
T − δT ≤ D∗

T ≤ PT (0) = CT the following corollary can be derived from the theorems.
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Corollary 8 Under the assumptions of Theorems 6 and 7, let 4C ≥ ǫ ≥ 0.

When K =
⌈

8C
ǫ2

⌉

, both Algorithms 15 and 16 satisfy E

[

1
T

∑T
t=1

Pt(w(ᾱt))−P∗

t

Ct

]

≤ ǫ .

The total number n of iterations therefore scales like T/ǫ2 where T is the number of examples.
Since the cost of each iteration depends on details of the algorithm (see Section 4.4.4), let
us assume, as a first approximation, that the cost of each iteration is proportional to either
the number of support vectors, or, in the case of linear kernels, on the effective dimension
of the patterns. The results we report here are then comparable to the bounds reported in
[Tsochantaridis et al., 2005, Joachims, 2006, Franc and Sonnenburg, 2008]. Improved bounds
for generic bundle methods [Smola et al., 2008] are difficult to compare because their successive
iterations solve increasingly complex optimization problems. Bounds for stochastic gradient
algorithms [Shalev-Shwartz et al., 2007] also scale linearly with the number T of examples8 but
offer better scaling in 1/ǫ.

The next section show how these orders of magnitude can be improved on concrete cases.

4.4.4 Application to LaSVM

Transfer from the study-models 15 and 16 to real algorithms like LaSVM involves using some
algorithmic tricks that can procure performance gains and are therefore crucial on practical
applications.

Detecting Ascent Directions that Do Nothing

Algorithms 15 and 16 select dual coordinate ascent directions randomly. As a consequence, most
of these coordinate ascent iterations have no effect because the selected coefficient αi cannot be
improved. This happens when αi = 0 , gi(α) ≤ 0 or when αi = C , gi(α) ≥ 0. Assume we
have an efficient way to detect that the current coordinate ascent direction corresponds to one of
these case. We can then simply shortcut the coordinate ascent iteration because we know that
it does nothing.9

Given a training set of t training examples, let n0(α) and nC(α) be the number of examples
falling into these two cases. These numbers approach n0(α

∗
t ) and nC(α∗

t ) when α approaches
the SVM solution α∗

t . Provided that C decreases with an appropriate rate to ensure consistency,
[Steinwart, 2004] has famously proved that the total number of support vectors t − n0(α

∗
t )

scales linearly with the total number t of examples. But his work also shows that the number
of support vectors is dominated by the number nC(α∗

t ) of margins violators. Therefore the
fraction (n0(α) + nC(α)) /t of useless coordinate ascent iterations tends to 1 when t increases and
the algorithm converges. Avoiding these operations would therefore improve the asymptotical
behavior of the algorithm.

In order to test whether a coordinate ascent iteration along direction ei is useless, we need to
obtain the quantity gi(α). The traditional solution in SVM solvers (and used in LaSVM) consists
in allocating new variables gi that always contain quantity gi(α). Whenever a coefficient of α

changes, updating all the gi variables requires a time proportional to the total number t of
examples. Since this only happens when an actual update takes place, the amortized cost of a
coordinate ascent iteration is then proportional to t − n0(α) − nC(α) which grows slower than
t. In comparison, the direct computation of gi(α) with nonlinear kernels is proportional to the

8[Shalev-Shwartz et al., 2007] report a bound in Õ
`

1
λǫ

´

. Their λ is 1/CT in our setup.
9It is easy to postpone the averaging operation (line 8 in the algorithms) until an actual update of α takes

place. We just have to count how many averaging operations are pending in order to include α into the average
with the appropriate weight.
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number of support vectors t−n0(α) which grows like t. Storing some gradient derivatives brings
up non-trivial computational benefits.

Tracking Inequalities for Online LaSVM

We can even do better if we are willing to accept a weaker guarantee. Assume the teacher hands
us the examples (xt, yt) by performing multiple sequential passes over a finite training set of T

examples. We run a variant of Algorithm 16 with the following modifications:

i) we maintain variables gi representing gi(α) for only those i such that αi > 0,

ii) we shortcut line 7 in Algorithm 16 whenever αi = 0 or αi = C , gi ≥ 0.

This algorithm can be viewed as a randomized variant of LaSVM. Updating the gi is now pro-
portional to the number of support vectors instead of the total number of examples. This brings
very positive effects on the memory requirements of the kernel cache of LaSVM.

On the other hand, this modified algorithm can shortcut a coordinate ascent with αi = 0 that
would actually do something because gi(α) > 0. Yet we can carry out the analysis of Theorem 7
using a simple trick: whenever we shortcut a coordinate ascent iteration that would have updated
the coefficient αi, we simply remove the corresponding example from our current training set
St. This removal is an artifice of the analysis that allows us to use lemma 5. Nothing changes
in the algorithm since this situation only happens when αi = 0. As a result, the left hand side
of the bound involves the average primal suboptimality on a sequence of training sets that is no
longer strictly increasing. Examples removed in this way will reenter the training set during the
next pass over the training set. We know that such algorithms converge (see Appendix B), so
successive training sets St will eventually encompass all the T examples.

Experiments of the previous sections show that such removals are relatively rare. Hence, this
viewpoint casts a useful light about the behavior of the Huller and LaSVM. After the first pass
over the training set, the guarantee encompasses almost all the training examples and we can
expect a performance close to that of the true SVM. After a couple additional passes, the removed
examples have reentered the training sets St and the guarantee suggests that we closely match
the true SVM performance. This is exactly what we experimentally observe in Sections 4.1.3
and 4.2.5.

Extension to Active Learning

Theorems 6 and 7 make very little assumptions about the teacher’s policy. They state that the
algorithm will track the sequence of SVM solutions after a number of coordinate ascent iterations
that is independent on the quality of the teacher.

Let us assume that the teacher has T examples and chooses a presentation order π beforehand.
Following [Bengio et al., 2009], we call such a presentation order a curriculum. Algorithm 15,
for instance, will perform exactly KT coordinate ascent iterations. Let κ be the proportion of
coordinate ascent iterations that do nothing. We can then quantify the quality of a curriculum
by Q(π) = E [κ] where the expectation is taken with respect to the successive randomly picked
coordinate ascent iterations. It is clear from experience that different curricula will have very
different qualities Q(π).

This reasoning is easily extended to a setup where the teacher chooses each example according
to a policy π that takes into account the state of the teacher and the state of the algorithm. We
can again define the quality of a policy as Q(π) = E [κ] where the expectation is taken on both
the successive randomly picked coordinate ascent iterations and the successive training examples
selected by the policy. This setup actually describes an active learning model similar to that
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described in Section 4.3. Hence, Theorems 6 and 7 still apply: LaSVM with active learning also
tracks the sequence of SVM solutions. In Section 4.3, we have empirically shown that example
selection policies have a considerable impact on the quality of these SVM solutions, and therefore
on the performances of LaSVM.

4.5 Summary

This chapter first presented the Huller, a novel online kernel classifier algorithm that converges to
the Hard Margin SVM solution. Experiments suggest that it matches the SVM accuracies after a
single pass over the training examples thanks to its original Process/Reprocess strategy. Time
and memory requirements are then modest in comparison to state-of-the-art SVMs. However
the Huller is limited because it cannot handle properly noisy problems.

We have then refined this work and proposed an online algorithm that converges to the
Soft-Margin SVM solution. LaSVM reliably reaches competitive accuracies after performing a
single pass over the training examples, outspeeding state-of-the-art SVM solvers, especially when
data-size grows. We have also shown how active example selection can yield even faster training,
higher accuracies and simpler models using only a fraction of the training examples labels. With
its online and active learning properties, LaSVM is nowadays the algorithm of choice when one
wants to learn a SVM implementing non-linear kernels on a large data sets. For example, it has
been successfully employed to train a SVM for handwritten character recognition on more than
8 millions examples on a single CPU [Loosli et al., 2007].

Leveraging a novel duality lemma, we have finally presented tracking guarantees for approxi-
mate incremental SVMs that compare with results about batch SVMs and provide generalization
guarantees with no extra-computation. This allowed us to give theoretical clues on why algo-
rithms implementing the Process/Reprocess principle (such as the Huller and LaSVM) perform
well in a single pass.
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I
n this chapter, we propose LaRank, an online algorithm for the optimization of the dual for-
mulation of support vector methods for structured output spaces [Altun et al., 2003, Tsochan-

taridis et al., 2005], designed to present good abilities to handle large-scale training databases.
We recall that the issue of structured output prediction as well as previous work are extensively
presented in Section 2.2.

Following the work on fast optimization of Support Vector Machines of Chapter 4, this novel
algorithm performs SMO-like optimization steps over pairs of dual variables, and alternates
between unseen patterns and currently support patterns. As a result:

• LaRank generalizes better than perceptron-based algorithms. In fact, LaRank provides the
performance of batch algorithms because it solves the same optimization problem.

• LaRank achieves nearly optimal test error rates after a single pass over the randomly re-
ordered training set. Therefore, LaRank offers the practicality of any online algorithm.



102 Large-Scale SVMs for Structured Output Prediction

LaRank is similar in spirit to LaSVM presented in Section 4.2 since they both implement a
Process/Reprocess strategy to solve a dual SVM QP. However LaRank tackles a more complex
problem involving vast output spaces. As we will see in the following, LaRank must sample the
potential support vectors on two levels: (1) among the training inputs and (2) for each input,
within its realizable outputs. It is intractable to perform these sampling only based on gradient
information as LaSVM does. LaRank must treat the support vectors differently.

This chapter follows three steps. First, Section 5.1 introduces the general LaRank algorithm
and its theoretical properties. Then, Section 5.2 and Section 5.3 respectively present its appli-
cation to the benchmarked tasks of multiclass classification and sequence labeling, discussing
implementation details as well as experimental results. The work presented in this chapter has
been the object of two publications (e.g. [Bordes et al., 2007] and [Bordes et al., 2008]).

5.1 Structured Output Prediction with LaRank

As detailed in Section 2.2, the recovery of the structured output associated to an input pattern
p can be carried out using a prediction function such as

f(p) = arg maxc∈C S(p, c)
= arg maxc∈C 〈w,Φ(p, c)〉 (5.1)

with Φ(p, c) mapping the pair (p, c) into a suitable feature space endowed with the dot product
〈·, ·〉. This feature mapping function Φ is usually implicitly defined by a joint kernel function

K(p, c, p̄, c̄) = 〈Φ(p, c),Φ(p̄, c̄)〉 . (5.2)

Given a training set of pattern-output pairs (pi, ci) ∈ P ×C , i = 1, . . . , n, it has been shown
that the parameter vector w can be learnt by solving the following Quadratic Programming
problem:

max
β

−
∑

i,c

∆(c, ci)β
c
i −

1

2

∑

i,j,c,c̄

βc
i β

c̄
jK(pi, c, pj , c̄)

subject to







∀i ∀c βc
i ≤ δ(c, ci) C

∀i
∑

c

βc
i = 0

(5.3)

where ∆(c, ci) is the true loss incurred by predicting c instead of the desired output ci and δ(c, c̄)
is 1 when c = c̄ and 0 otherwise. The prediction function is then defined as

f(p) = arg max
c∈C

∑

i,c̄

βc̄
i K(pi, c̄, p, c).

During the execution of the optimization algorithm, we call support vectors all pairs (pi, c)
whose associated coefficient βc

i is non zero; we call support patterns all patterns pi that appear
in a support vector.

The LaRank algorithm stores the following data:

• The set S of the current support vectors.

• The coefficients βc
i associated with the support vectors (pi, c) ∈ S. This encodes the

solution since all the other β coefficients are zero.
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• The derivatives gi,c of the dual objective function with respect to the coefficients βc
i asso-

ciated with the support vectors (pi, c) ∈ S

gi,c = ∆(c, ci) −
∑

j,c̄

βc̄
i K(pj , c̄, pi, c) . (5.4)

Note that caching some gradient values (and update them on the course of learning) only saves
training time when non-linear input kernels (i.e. polynomial, RBF, . . . ) are employed. For linear
kernels, computing a fresh derivative or updating a stored one has equivalent costs.

LaRank does not store or even compute the remaining coefficients of the gradient. In general,
these missing derivatives are not zero because the gradient is not sparse but storing the whole
gradient is impracticable when dealing with structured output prediction. As a consequence, for
the sake of tractability, we forbid LaRank to use full gradient information to perform its updates.

5.1.1 Elementary Step

Problem (5.3) lends itself to a simple iterative algorithm whose elementary steps are inspired by
the well known sequential minimal optimization (SMO) algorithm [Platt, 1999].

Algorithm 17 SmoStep (i, c+, c−)

1: Retrieve or compute gi,c+
.

2: Retrieve or compute gi,c− .

3: Let λu =
gi,c+

−gi,c−

||Φ(pi,c+)−Φ(pi,c−)||2

4: Let λ = max
{

0, min( λu, C δ(c+, ci) − β
c+

i )
}

5: Update β
c+

i ← β
c+

i + λ and β
c−
i ← β

c−
i − λ

6: Update S according to whether β
c+

i and β
c−
i are zero.

7: Update gradients: ∀(pj , c) ∈ S, gj,c ← gj,c + λ (K(pi, c+, pj , c) − K(pi, c−, pj , c))

Each iteration starts with the selection of one pattern pi and two outputs c+ and c−. The
elementary step modifies the coefficients β

c+

i and β
c−
i by opposite amounts,

β
c+

i ←− β
c+

i + λ
β

c−
i ←− β

c−
i − λ

(5.5)

where λ ≥ 0 maximizes the dual objective function (5.3) along the direction defined by Φ(pi, c+)−
Φ(pi, c−) and subject to the constraints. This optimal value is easily computed by first calculating
the unconstrained optimum

λu =
gi,c+

− gi,c−

||Φ(pi, c+) − Φ(pi, c−)||2 (5.6)

and then enforcing the constraints

λ = max
{

0, min( λu, C δ(c+, ci) − β
c+

i )
}

(5.7)

Finally, if the input kernel is non-linear, the stored derivatives gj,c are updated to reflect the
coefficient update. This is summarized in Algorithm 17.
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5.1.2 Step Selection Strategies

Popular SVM solvers based on SMO select successive steps by choosing the pair of coefficients
that defines the feasible search direction with the highest gradient (see Section 2.1.2 or 4.2). We
cannot use this strategy because we have chosen to store only a small fraction of the gradient.

Stochastic algorithms inspired by the perceptron perform quite well by successively updating
coefficients determined by randomly picking training patterns. For instance, in a multiclass
context, [Taskar, 2004] (Section 6.1) iterates over the randomly ordered patterns: for each pattern
pi, he computes the scores S(pi, c) for all outputs and runs SmoStep on the two most violating
outputs, that is, the outputs that define the feasible search direction with the highest gradient.

In the context of binary classification, our work on the Huller (Section 4.1) shows that such
perceptron-inspired updates lead to a slow optimization of the dual because the coefficients
corresponding to the few support vectors are not updated often enough. We suggest instead to
alternatively update the coefficient corresponding to a fresh random example and the coefficient
corresponding to an example randomly chosen among the current support vectors. The related
LaSVM algorithm (Section 4.2) also alternates steps exploiting a fresh random training example
and steps exploiting current support vectors selected using the gradient.

We now extend this idea to the structured output formulation. Since this problem has both
support vectors and support patterns, we define three ways to select a triple (i, c+, c−) for the
elementary SmoStep.

Algorithm 18 ProcessNew (pi)

1: if pi is a support pattern then exit.
2: c+ ← ci.
3: c− ← arg minc∈C gi,c

4: Perform SmoStep (i, c+, c−)

Algorithm 19 ProcessOld

1: Randomly pick a support pattern pi.
2: c+ ← arg maxc∈C gi,c subject to βc

i < C δ(c, ci)
3: c− ← arg minc∈C gi,c

4: Perform SmoStep (i, c+, c−)

Algorithm 20 Optimize

1: Randomly pick a support pattern pi.
2: Let Ci = { c ∈ C such that (pi, c) ∈ S }
3: c+ ← arg maxc∈Ci

gi,c subject to βc
i < C δ(c, ci)

4: c− ← arg minc∈Ci
gi,c

5: Perform SmoStep (i, c+, c−)

• ProcessNew (Algorithm 18) operates on a pattern pi that is not a support pattern. It
chooses the outputs c+ and c− that define the feasible direction with the highest gradient.
Since all the βc

i are zero, c+ is always ci. Choosing of c− consists of finding arg maxc S(pi, c)
since equation (5.4) holds.

• ProcessOld (Algorithm 19) randomly picks a support pattern pi. It chooses the outputs
c+ and c− that define the feasible direction with the highest gradient. The determination
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of c+ mostly involves labels c such that βc
i < 0, for which the corresponding derivatives

gi,c are known. The determination of c− again consists of computing arg maxc S(pi, c).

• Optimize (Algorithm 20) resembles ProcessOld but picks the outputs c+ and c− among
those that correspond to existing support vectors (pi, c+) and (pi, c−). Using the gradient
is fast because the relevant derivatives are already known and their number is moderate.

Similarly to the Reprocess operation of LaSVM, ProcessOld and Optimize can remove sup-
port vectors from the expansion as the SmoStep can nullify β coefficients. The ProcessNew

operation is closely related to the perceptron algorithm. It can be interpreted as a stochastic
gradient update for the minimization of the generalized margin loss ([Le Cun et al., 2007], Sec-
tion 2.2.3), with a step size adjusted according to the curvature of the dual [Hildreth, 1957].
[Crammer and Singer, 2003] use a very similar approach for the MIRA algorithm.

5.1.3 Scheduling

Our previous algorithms on binary classification (Huller and LaSVM in Chapter 4) simply alter-
nate two step selection strategies according to a fixed schedule. However some results suggest that
the optimal schedule might be in fact data-dependent. We thus propose two kinds of scheduling
strategies for the LaRank algorithm.

Fixed Schedule

This is the simplest approach, closely related to the Huller and LaSVM. We call Reprocess

the combination of one ProcessOld step followed by ten Optimize steps. The fixed schedule
consists in repeatedly performing one ProcessNew step followed by a predefined number nR of
Reprocess combinations. The number nR depends on each problem and has to be determined
like an hyper-parameter using a validation set. The LaRank algorithm with fixed schedule is
presented in Algorithm 21.

Algorithm 21 LaRank with fixed schedule

1: input: nR.
2: S ← ∅.
3: loop
4: Randomly reorder the training examples.
5: k ←− 1.
6: while k ≤ n do
7: Perform ProcessNew (pk).
8: k ← k + 1.
9: for r = 1, . . . nR do

10: Perform Reprocess, i.e. 1 ProcessOld + 10 Optimize.
11: end for
12: end while
13: end loop
14: return

Besides its simplicity, this scheduling type is convenient because one controls exactly the num-
ber of optimization steps: for one epoch on n fresh examples, at most n(1 + 11nR) SmoStep are
performed, i.e. 1 ProcessNew + nR Reprocess (= 1 ProcessOld + 10 Optimize) per example.
It is worth noting that this number is linear with the data set size.
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Notice that only performing ProcessNew steps (i.e. nR = 0) yields a typical passive-
aggressive online algorithm [Crammer et al., 2006]. Therefore, the Reprocess operation is the
element that lets LaRank match the test accuracy of batch optimization after a single sweep over
the training data (see experiments in Sections 5.2 and 5.3).

Adaptive Schedule

The previously defined schedule requires to tune the extra parameter nR. Furthermore, nothing
indicates that a strategy fixed during the whole training phase is the best choice: nR might need
to be adjusted on the course of learning. Experiments on the influence of Reprocess operations
for LaSVM (displayed in Section 4.2.5) even suggest that a rigid schedule might not be optimal.

Algorithm 22 LaRank with adaptive schedule

1: S ← ∅, µ.
2: rOptimize, rProcessOld, rProcessNew ← 1.
3: loop
4: Randomly reorder the training examples.
5: k ←− 1.
6: while k ≤ n do
7: Pick operation s with odds proportional to rs.
8: if s = Optimize then
9: Perform Optimize.

10: else if s = ProcessOld then
11: Perform ProcessOld.
12: else
13: Perform ProcessNew (pk).
14: k ← k + 1.
15: end if
16: rs ← max

(

0.05 dual increase
duration + 0.95 rs, µ

)

.

17: end while
18: end loop
19: return

Actually, one might like to select at each step an operation that causes a large increase of
the dual in a small amount of time. We thus propose the following adaptive schedule for LaRank
(Algorithm 22). For each operation type, LaRank maintains a running estimate of the average
ratio of the dual increase over the duration (line 16). Running times are measured; dual increases
are derived from the value of λ computed during the elementary step. The small tolerance µ

keeps estimates to reasonable values (usually µ = 0.05). Each iteration of the LaRank algorithm
randomly selects which operation to perform with a probability proportional to these estimates.

5.1.4 Stopping

Neither Algorithm 21 nor Algorithm 22 specify a criterion for stopping their outer loops. LaRank
is designed to have a full online behavior and excellent results are obtained by performing just
one outer loop iteration (epoch). Hence, the default behavior of LaRank is to perform a single
epoch, that is to say, a single pass over the randomly ordered training examples.

However LaRank solves the exact convex QP problem (5.3) equivalent to that defined in
[Tsochantaridis et al., 2005]. Similarly to LaSVM, it can thus be used in a batch setting by
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looping several times over a closed training set. In this case, convenient stopping criteria include
exploiting the duality gap ([Schölkopf and Smola, 2002], Section 10.1.1) and monitoring the
performance measured on a validation set. We use the name LaRankGap to indicate that we
iterate LaRank (Algorithm 21 or 22) until the difference between the primal cost (2.18) and the
dual cost (2.21) (defined in Chapter 2) becomes smaller than C. However, computing the duality
gap can become quite expensive and involve tremendous increases of training time for LaRankGap
on large problems. In such cases, the full online version of LaRank is the best choice.

5.1.5 Theoretical Analysis

This section displays theoretical results concerning the LaRank algorithm: a bound on the number
of support vectors and another on the regret. These bounds do not depend on the chosen schedule
and are valid for both Algorithms 21 and 22.

Correctness and Complexity

Leveraging the theoretical framework of Appendix B can provide convergence results for LaRank.
Let ρmax = maxi,c ||Φ(pi, c)−Φ(pi, ci)||2 and let κ, τ, η be small positive tolerances. We assume
that the algorithm implementation enforces the following properties:

• SmoStep exits when gi,c+
− gi,c− ≤ τ .

• Optimize and ProcessOld chooses c+ among the c that satisfy βc
i ≤ C δ(c, ci) − κ.

• LaRank makes sure that every operation has probability greater than η to be selected at
each iteration (trivial for Algorithm 21 and ensured by the µ parameter for Algorithm 22).

We refer to this as the (κ, τ, η)-algorithm.

Theorem 9 With probability 1, the (κ, τ, η)-algorithm reaches a κτ -approximate solution of
problem (5.8), with adding no more than max{ 2ρmaxnC

τ2 , 2nC
κτ } support vectors.

Proof The convergence is a consequence from Theorem 28 from Appendix B. To apply this theorem,

we must prove that the directions defined by (5.5) form a witness family for the polytope defined by the

constraints of problem (5.3). This is the case because this polytope is a product of n polytopes for which

we can apply Proposition 18 from Appendix B. Then, we must ensure that all directions satisfying the

first two conditions would be eventually picked. This is guaranteed by the third condition. The number

of support vectors is then bounded using a technique similar to that of [Tsochantaridis et al., 2005]. !

The bound on the number of support vectors is also one on the number of successful SmoStep

required to converge: a successful SmoStep corresponds to a call to Algorithm 17 which actually
modifies the pair of β coefficients (i.e. λ &= 0). Interestingly, this bound is linear in the number
of examples and does not depend on the possibly large number of outputs.

Regret Bound

When learning in a single pass, the LaRank algorithm performs an iterative optimization of the
dual, where only the parameters corresponding to already seen examples can be modified at each
step. In this section, we extend the primal-dual view of online learning of [Shalev-Shwartz and
Singer, 2007a] to structured predictors (i.e. online optimizers of equation (5.3)) to obtain online
learning rates.
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Regret Bound for Online Structured Predictors The learning rates are expressed with
the notion of regret defined by the difference between the mean loss incurred by the algorithm
on the course of learning and the empirical loss of a given weight vector,

regret(n, w) =
1

n

n
∑

i=1

ℓ(wi, (pi, ci)) −
1

n

n
∑

i=1

ℓ(w, (pi, ci))

with wi the primal weight vector before seeing the i-th example, and ℓ(w, (p, c)) the loss incurred
by any weight vector w on the example (p, c). In our setup, the loss ℓ(wi, (pi, ci)) is defined as

ℓ(wi, (pi, ci)) = max

(

0, max
c∈C

∆(ci, c) − 〈w,Φ(pi, ci) − Φ(pi, c)〉
)

.

The following theorem gives a bound on the regret for any algorithm performing an online
optimization of the dual of equation (5.3):

Theorem 10 Assume that for all i, the dual increase after seeing example (pi, ci) is at least
Cµρ(ℓ(wi, (pi, ci))), with

µρ(x) =
1

ρC
min(x, ρC)

(

x − 1

2
min(x, ρC)

)

then, we have:

∀w, regret(n, w) ≤ ||w||2
2nC

+
ρC

2
.

Proof The proof exactly follows Section 5 of [Shalev-Shwartz and Singer, 2007a]. Let’s denote Pt(w)
and Dt(w) the primal and dual after seeing t examples for any weight vector w. The function µρ is
invertible on R+ and its inverse is

µ−1
ρ (x)



x + ρC

2
if x ≥ ρC

2√
2ρCx otherwise .

As Dt+1(wt+1) − Dt(wt) ≥ Cµρ(ℓ(wt, (pt, ct))) and assuming D0(w0) = 0, we deduce

Dn+1(wn+1) ≥ C

n
X

t=1

µρ(ℓ(wt, (pt, ct))) .

By the weak duality theorem, ∀w , Pn+1(w) ≥ Dn+1(w), and

∀w
||w||2
2C

+
n
X

t=1

ℓ(w, (pt, ct) ≥
n
X

t=1

µρ(ℓ(wt, (pt, ct))) .

As µρ is a convex function,

∀w
||w||2
2C

+
n
X

t=1

ℓ(w, (pt, ct) ≥ µρ

 

n
X

t=1

ℓ(wt, (pt, ct))

!

.

Both sides of the above inequality are non-negative, µρ is invertible, µ−1
ρ is monotonically increasing,

then

∀w µ−1
ρ

 

||w||2
2C

+
n
X

t=1

ℓ(w, (pt, ct)

!

≥
n
X

t=1

ℓ(wt, (pt, ct)) .

Since ∀x, µ−1
ρ (x) ≤ x + ρC

2
,

∀w
||w||2
2nC

+
ρC

2n
≥ 1

n

n
X

t=1

ℓ(wt, (pt, ct)) −
1

n

n
X

t=1

(ℓ(w, (pt, ct)) .

!
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The crucial point of this theorem is to directly relate the dual increase when seeing an example
and the regret bound: the more we can prove that the dual increases on the course of learning,
the more we can have guarantees on the performance.

Application to LaRank The following result allows to use Theorem 10 to bound the regret for
the LaRank algorithm:

Proposition 11 For a given i, the dual increase after performing a ProcessNew step on exam-
ple (pi, ci) is equal to

Cµρi(ℓ(wi, (pi, ci))) ,

with ρi = ||Φ(pi, ci) − Φ(pi, c
∗
i )||2 and c∗i = arg maxc∈C

(

∆(ci, c) + 〈wi,Φ(pi, c)〉
)

.

Proof Dt(w) still denotes the dual after seeing t examples. The direct calculation of the dual increase
after a ProcessNew step on example (pt, ct) yields Dt+1(wt+1) − Dt(wt) = λℓ(wt(pt, ct)) − ρt(λ)2/2
with λ = min(C, ℓ(wt, (pt, ct))/ρt) and ρt = ||Φ(pt, ct) − Φ(pt, f(wt, ct))||2. Using the definition of µρ,
Dt+1(wt+1) − Dt(wt) = Cµρt(ℓ(wt(pt, ct))) .

Since neither ProcessOld nor Optimize can decrease the dual, the whole LaRank algorithm in-

creases the dual by at least Cµρi(ℓ(wi, (pi, ci))) after seeing example i. Moreover, as µρ monotonically

decreases with ρ theorem 10 can be applied to LaRank with ρ = maxi ρi. !

Interpretation Proposition 11 first shows that the first epoch of LaRank has the same guar-
antees (in terms of regret) than a typical passive-aggressive algorithm as the latter is equivalent
to performing only ProcessNew operations.

In addition, Theorem 10 provides a partial justification of the ProcessOld and Optimize

functions. Indeed, it expresses that we can relate the dual increase to the regret. As such, if,
for instance, ProcessOld and Optimize operations bring a dual increase of the same order of
magnitude as ProcessNew operations at each round, then the regret of LaRank would be typically
two times smaller than the current bound. Although we do not have any analytical results
concerning the dual increase ratio between ProcessNew and ProcessOld/Optimize operations,
the theorem suggests that the true regret of LaRank should be much smaller than the bound.
We can also note that the tracking guarantees established in Section 4.4 for LaSVM could be
translated to LaRank.

The bound is also informative to compare online to batch learning. Indeed, if we consider
the examples (pi, ci) in the regret bound to be the training set, Theorem 10 relates the online
error with the error of the batch optimal. Then, we can claim that the online error of LaRank
will not be too far from the batch optimal trained with the same set of examples.

We have introduced LaRank, an online algorithm for structured output prediction inspired
by LaSVM, and we have exhibited its nice theoretical properties. The following sections display
how it can be applied to two concrete cases: multiclass classification (Section 5.2) and sequence
labeling (Section 5.3).

5.2 Multiclass Classification

As explained in Section 2.2.1, the formalism of SVMs for structured outputs derives from a model
originally destined to multiclass classification. Presenting a good behavior (especially, reduced
computational costs and memory needs) on multiclass problems is therefore a key condition for
any large-scale structured output prediction candidate. This is the reason why we experience
the behavior of LaRank on this task at first.
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5.2.1 Multiclass Factorization

For the problem of multiclass classification, a pattern p is simply a vector similar to those x ∈ X
of the binary classification case and the output outputs c correspond to atomic class labels
y ∈ Y, where Y can contain more than two elements. The joint kernel function (5.2) is simply
K(p, c, p̄, c̄) = k(x, x̄) δ(y, ȳ), where k(x, x̄) is a kernel defined on the inputs, and where δ(y, ȳ) is
1 if y = ȳ and 0 otherwise.

The dual problem (5.3) can be drastically simplified and becomes

max
β

∑

i

βyi

i − 1

2

∑

i,j

∑

y

βy
i βy

j k(xi, xj)

subject to







∀i ∀y βy
i ≤ Cδ(y, yi)

∀i
∑

y

βy
i = 0

(5.8)

When there are only two outputs, one can show that this reduces to the standard SVM solution
(without bias) presented in Chapter 2.

The prediction function is defined as f(x) = arg maxy∈Y

∑

i βy
i k(xi, x). In standard multiclass

problems, the number of classes |Y| is reasonably small (see Table 5.1 for rough estimates).
Solving the arg max is then simply an exhaustive search over all Y.

5.2.2 LaRank Implementation for Multiclass Classification

For multiclass classification, LaRank uses the adaptive schedule (Algorithm 22) as it allows to
automatically balance the use of each elementary operation. In order to facilitate timing, we
treat sequences of ten Optimize as a single atomic operation.

On most of multiclass classification benchmarks, the use of non-linear input kernels k(x, x̄) is
required to reach competitive accuracies. Non-linear kernels involves higher complexities. Special
implementation care must then be taken for LaRank to remain efficient and so, LaRank caches
some useful kernel values. A naive implementation could simply pre-compute all the kernel
values k(xi, xj). This would be a waste of processing time and memory because the location of
the optimum depends only on the fraction of the kernel matrix that involves support patterns.
Our code computes kernel values on demand and caches them in sets of the form

E(y, i) = { k(xi, xj) such that (xj , y) ∈ S }.

Although this cache stores several copies of the same kernel values, caching individual kernel
values has a higher overhead caused by the extra-costs to retrieve values one by one.

A C++ implementation of LaRank for multiclass classification, featuring the kernel cache
and the adaptive schedule, is freely available on the mloss.org website under the GNU Public

License (go to http://mloss.org/software/view/127/).

5.2.3 Experiments

This section reports experiments carried out on various multiclass pattern recognition problems
in order to well characterize the algorithm behavior. Most methods compared in this section are
detailed in Section 2.2.

file://localhost/Users/claire/Library/Mail%20Downloads/mloss.org
http://mloss.org/software/view/127/
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Train Ex. Test Ex. Classes Features C k(x, x̄)

Letter 16000 4000 26 16 10 e−0.025‖x−x̄‖2

USPS 7291 2007 10 256 10 e−0.025‖x−x̄‖2

MNIST 60000 10000 10 780 1000 e−0.005‖x−x̄‖2

INEX 6053 6054 18 167295 100 x · x̄

Table 5.1: Data sets and parameters used for the multiclass experiments.

Letter USPS MNIST INEX

MCSVM Test error (%) 2.42 4.24 1.44 26.26

(stores the full gradient) Dual 5548 537 3718 235204
Training time (sec.) 1200 60 25000 520
Kernels (×106) 241 51.2 6908 32.9

SVMstruct Test error (%) 2.40 4.38 1.40 26.25

(stores partial gradient) Dual 5495 528 3730 235631

Training time (sec.) 23000 6300 265000 14500

Kernels (×106) 2083 1063.3 158076 n/a†

LaRankGap Test error (%) 2.40 4.38 1.44 26.25

(stores partial gradient) Dual 5462 518 3718 235183
Training time (sec.) 2900 175 82000 1050
Kernels (×106) 156 13.7 4769 19.3

LaRank Test error (%) 2.80 4.25 1.41 27.20
(online) Dual 5226 503 3608 214224

Training time (sec.) 940 85 30000 300

Kernels (×106) 55 9.4 399 17.2
† Not applicable because SVMstruct bypasses the cache when using linear kernels.

Table 5.2: Compared test error rates and training times on multiclass data sets.

Experimental Setup

Experiments were performed on four data sets briefly described in Table 5.1: Letter and USPS
available from the UCI repository,1 MNIST2 that we already used in Chapter 4 and INEX, a
data set containing scientific articles from 18 journals and proceedings of the IEEE. We use a
flat TF/IDF feature space for INEX (see [Denoyer and Gallinari, 2006] for further details).

Table 5.1 also lists our choices for the parameter C and for the kernels k(x, x̄). These choices
were made on the basis of past experience. We use the same parameters for all algorithms
because we mostly compare algorithms that optimize the same criterion. The kernel cache size
was 500MB for all experiments.

Comparing Batch Optimizers

Table 5.2 (top half) compares three optimization algorithms for the same dual cost (5.8).

1http://www.ics.uci.edu/~mlearn/databases.
2http://yann.lecun.com/exdb/mnist.

http://yann.lecun.com/exdb/mnist
http://www.ics.uci.edu/~mlearn/databases
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Letter USPS

MNIST INEX

Figure 5.1: Test error as a function of the number of kernel calculations. LaRank
almost achieves its final accuracy after a single epoch on all data sets..

• MCSVM [Crammer and Singer, 2001] uses the full gradient and therefore cannot be easily
extended to handle structured output problems. We have used the MCSVM implementation
distributed by the authors.

• SVMstruct [Tsochantaridis et al., 2005] targets structured output problems and therefore
uses only a small fraction of the gradient. We have used the implementation distributed
by the authors. The authors warn that this implementation has not been thoroughly
optimized.

• LaRankGap iterates Algorithm 22 until the duality gap becomes smaller than parameter
C. This algorithm only stores a small fraction of the gradient, comparable to that used by
SVMstruct.

Both SVMstruct and LaRankGap use small subsets of the gradient coefficients. Although these
subsets have similar size, LaRankGap avoids the training time penalty experienced by SVMstruct.

Both SVMstruct and LaRank make heavy use of kernel values involving two support patterns.
In contrast, MCSVM updates the complete gradient vector after each step and therefore uses
the kernel matrix rows corresponding to support patterns. On our relatively small problems,
this stronger memory requirement is more than compensated by the lower overhead of MCSVM’s
simpler cache structure. However as MCSVM needs to store the whole gradient it cannot scale
to structured output prediction where the number of classes is very large.
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Comparing Online Learning Algorithms

Table 5.2 (bottom half) also reports the results obtained with a single LaRank epoch. This single
pass over the training examples is sufficient to nearly reach the optimal performance. This result
is understandable because (i) online perceptrons offer strong theoretical guarantees after a single
pass over the training examples, and (ii) LaRank drives the optimization process by replicating
the randomization that happens in the perceptron. This is also coherent with the regret bound
presented in Section 5.1.5 and with the performances of LaSVM displayed in Chapter 4.

For each data set, Figure 5.1 shows the evolution of the test error with respect to the number
of kernel calculations. The point marked LaRank×1 corresponds to running a single LaRank
epoch. The point marked LaRankGap still corresponds to using the duality gap stopping criterion.
Figure 5.1 also reports results obtained with two popular online algorithms:

• The points marked AvgPerc×1 and AvgPerc×10 respectively correspond to performing one
and ten epochs of the average perceptron algorithm [Freund and Schapire, 1998, Collins,
2002]. Multiple epochs of the averaged perceptron are very effective when the necessary
kernel values fit in the cache (first row). Training time increases considerably when this is
not the case (second row.)

• The point marked MIRA corresponds to the multiclass passive-aggressive algorithm pro-
posed by [Crammer and Singer, 2003]. We have used the implementation provided by the
authors as part of the MCSVM package. This algorithm computes more kernel values than
AvgPerc×1 because its solution contains more support patterns. Its performance seems
sensitive to the choice of kernel: [Crammer and Singer, 2003] report substantially better
results using the same code but different kernels.

These results indicate that performing single LaRank epoch is an attractive online learning al-
gorithm. Although LaRank usually runs slower than AvgPerc×1 or MIRA, it provides better and
more predictable generalization performance.

Comparing Optimization Strategies

Figure 5.2 shows the error rates and kernel calculations achieved when one restricts the set of
operations chosen by Algorithm 22. These results were obtained after a single pass on USPS.

As expected, using only the ProcessNew operation performs like MIRA. The average per-
ceptron requires significantly less kernel calculations because its solution is much more sparse.
However, it looses this initial sparsity when one performs several epochs (see Figure 5.1.) En-
abling ProcessOld and Optimize significantly reduces the test error. The best test error is
achieved when all operations are enabled. The number of kernel calculations is also reduced
because ProcessOld and Optimize often eliminate support patterns.

Comparing ArgMax Calculations

The previous experiments measure the computational cost using training time and number of
kernel calculations. Most structured output problems require the use of costly algorithms to
perform the inference step (e.g. sequence labeling, see Section 5.3). The cost of this arg max
calculation is partly related to the required number of new kernel values.

The average perceptron (and MIRA) performs one such arg max calculation for each example it
processes. In contrast, LaRank performs one arg max calculation when processing a new example
with ProcessNew, and also when running ProcessOld.
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Figure 5.2: Impact of the LaRank op-
erations (USPS data set).

Letter USPS MNIST INEX

AvgPerc×1 16 7 60 6
AvgPerc×10 160 73 600 60

LaRank 190 25 200 28
LaRankGap 550 86 2020 73

SVMstruct 141 56 559 78

Table 5.3: Numbers of arg max (in thou-
sands).

Table 5.3 compares the number of arg max calculations for various algorithms and data sets.3

The SVMstruct optimizer performs very well with this metric. AvgPerc and LaRank are very
competitive on a single epoch and become more costly when performing many epochs. One
epoch is sufficient to reach good performance with LaRank. This is not the case for AvgPerc.

5.3 Sequence Labeling

This section exhibits the specification of LaRank for sequence labeling. This task consists in
predicting a sequence of labels (y1. . . yT ) given an observed sequence of tokens (x1. . . xT ). This
task is a typical example of a structured output learning system. It is a major machine learning
task which appears in practical problems in computational linguistics or signal processing.

SVMs for structured outputs can deal with different sorts of structure. However, for sequence
labeling, some powerful specific models also exist. For many years, standard methods have
been Hidden Markov Models (HMMs) [Rabiner and Juang, 1986], generative systems modelling
a sequential task as a Markov process with unobserved states. Conditional Random Fields
(CRFs) [Lafferty et al., 2001] are now the state-of-the-art. A CRF is probabilistic framework for
labeling and segmenting sequential data. It forms an undirected graphical model that defines
a single log-linear distribution over label sequences given a particular observation sequence.
Contrary to generative HMMs, CRFs have a conditional nature, resulting in the relaxation
of the independence assumptions required by HMMs in order to ensure tractable inference.
Additionally, CRFs avoid the label bias problem. Hence, they have been shown to outperform
HMMs on many sequence labeling tasks. They can be trained either with batch or online methods
and thus can scale on large data sets. We use CRFs as reference, in Section 5.3.4.

This section displays the application of LaRank to the task of sequence labeling using two infer-
ence schemes detailed in Section 5.3.1. We cast them into the general structured output learning
problem in Section 5.3.2 and exhibit the LaRank corresponding derivations in Section 5.3.3. Sec-
tion 5.3.4 finally displays an empirical evaluation on standard benchmarks for sequence labeling
comparing LaRank with CRFs, batch SVM solvers and perceptrons, among others.

3The Letter results in Table 5.3 are outliers because the Letter kernel runs as fast as the kernel cache. Since
LaRank depends on timings, it often runs ProcessOld when a simple Optimize would have be sufficient.
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Even if LaRank can be used in either online or batch mode (see Section 5.1.4), we focus in
the remaining of this chapter, on the online version. Indeed, this is clearly the most engaging
feature, the one which could lead to a huge leap forward in scalability on large-scale problems.

5.3.1 Representation and Inference

In this section, we use bold characters for sequences such as the sequence of tokens x = (x1. . . xT )
or the sequence of labels y = (y1. . . yT ). Subsequences are denoted using superscripts, as in
y{t−k..t−1} = (yt−k. . . yt−1). We call X the set of possible tokens and Y the set of possible labels,
augmented with a special symbol to represent the absence of a label. By convention, a label ys

is the special symbol whenever s ≤ 0.
Two informal assumptions are crucial for sequence labeling. The first states that a label yt

depends only on the surrounding labels and tokens. The second states that this dependency is
invariant with t. These assumptions are expressed through the parametric formulation of the
models, and, in the case of probabilistic models, through conditional independence assumptions
(e.g. HMMs). Part of the model specification is then the inference procedure that recovers the
predicted labels for any input sequence. Exact inference can be carried out with the Viterbi
algorithm. The more efficient greedy inference, which predicts the labels in the order of the
sequence using the past predictions, can also be competitive in terms of accuracy by considering
higher order Markov assumptions.

Thus, an inference procedure assigns a label yt to each corresponding xt taking into account
the correlations between labels at different positions in the sequence. This work takes into
account correlations between k + 1 successive labels (Markov assumption of order k). More
specifically, we assume that the inference procedure determines the predicted label sequence y
on the sole basis of the scores

st(w,x,y) =
〈

w,Φg

(

xt,y{t−k..t−1}, yt
)〉

t = 1...T ,

where w ∈ R
D is a parameter vector and Φg : X × Yk × Y → R

D determines the feature space.

Exact Inference

Exact inference maximizes the sum
∑T

t=1 st(w,x,y) over all possible label sequences y. In this
case, for a given input sequence x, the prediction function fe(w,x) is then defined by

fe(w,x) = arg max
y∈YT

T
∑

t=1

st(w,x,y) (5.9)

= arg max
y∈YT

〈w,Φe(x,y)〉 ,

where Φe(x,y) =
∑T

t=1 Φg(x
t,y{t−k..t−1}, yt).

Greedy Inference

Following [Maes et al., 2007], greedy inference predicts the successive labels yt in sequence
by maximizing

〈

w,Φg(x
t,y{t−k..t−1}, yt)

〉

where the previously predicted labels y{t−k..t−1} are
frozen. For a given input x, the prediction function fg(w,x) is then defined by the recursion

f t
g(w,x) = arg max

y∈Y

〈

w,Φg

(

xt, f{t−k..t−1}
g (w,x), y

)

〉

t = 1...T . (5.10)



116 Large-Scale SVMs for Structured Output Prediction

Comparison

Although greedy inference is an approximation of exact inference, their different computational
complexity leads to a more nuanced picture. Exact inference solves (5.9) using the Viterbi

algorithm. It requires a time proportional to DT |Y|k+1
and becomes intractable when the order

k of the Markov assumption increases. On the other hand, the recursion (5.10) runs in time
proportional to DT |Y|. Therefore greedy inference is practicable with large k.

In practice, greedy inference with large k can sometimes achieve a higher accuracy than exact
inference with Markov assumptions of lower order.

5.3.2 Training

In this section we write the convex optimization problem used for determining the parameter
vector for both cases of exact and greedy inference by showing how the general dual problem (5.3)
applies to both problems.

Training for Exact Inference

Since the exact inference prediction function (5.9) can be written as arg maxc 〈w,Φ(p, c)〉, the
general formulation (5.3) applies directly. The patterns pi are the token sequences xi and the
classes c are complete label sequences y. The feature function Φ(pi, c) = Φe(xi,y) has been
defined in (5.9) and the loss ∆(y, ȳ) is the Hamming distance between the sequences y and ȳ.

The dual problem is then

max
β

−
∑

i,y

∆(y,yi)β
y

i − 1

2

∑

ij

∑

yȳ

βy

i βȳ

j Ke(xi,y,xj , ȳ)

subject to

{ ∀i ∀y βy

i ≤ δ(y,yi) C

∀i
∑

y
βy

i = 0 .
(5.11)

with the kernel matrix Ke(xi,y,xj , ȳ) = 〈Φe(xi,y),Φe(xj , ȳ)〉.
The solution is then w =

∑

iy βy

i Φe(xi,y).

Training for Greedy Inference

The greedy inference prediction function (5.10) does not readily have the form arg maxc 〈w,Φ(p, c)〉
because of its recursive structure. However, each prediction f t

g has the desired form with one pat-
tern pit for each training token xt

i, and with classes c taken from the set of labels and compared
with ∆(y, ȳ) = 1 − δ(y, ȳ).

This approach leads to difficulties because the feature function Φ(pit, y) = Φg(x
t
i, f

{t−k..t−1}
g , y)

depends on the prediction function. We avoid this difficulty by approximating the predicted la-

bels f
{t−k..t−1}
g with the true labels y

{t−k..t−1}
i .

The corresponding dual problem is then

max
β

−
∑

ity

∆(y, yt
i)β

y
it −

1

2

∑

itjr

∑

yȳ

βy
itβ

ȳ
jrKg(x

t
i, y, xr

j , ȳ)

subject to

{ ∀i, t ∀y βy
it ≤ δ(y, yt

i)C

∀i, t
∑

y βy
it = 0 .

(5.12)

with the kernel matrix Kg(x
t
i, y, xr

j , ȳ) =
〈

Φg(x
t
i,y

{t−k..t−1}
i , y) , Φg(x

r
j ,y

{r−k..r−1}
j , ȳ)

〉

.

The solution is then w =
∑

ity βy
it Φg(x

t
i,y

{t−k..t−1}
i , y).
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Discussion

Both dual problems (5.11) and (5.12) are defined using very different sets of coefficients β.
Experiments (Section 5.3.4) show considerable differences in sparsity. Yet the two kernel matrices
Ke and Kg generate parameter vectors w in the same feature space which is determined by the
choice of the feature function Φg, or equivalently the choice of the kernel Kg.

We use the following kernels in the rest of this paper.

Kg(x
t
i, y, xr

j , ȳ) = δ(y, ȳ)
(

k(xt
i, x

r
j) +

k
∑

s=1

δ(y t−s
i , ȳ r−s

j )
)

,

Ke(xi,y,xj , ȳ) =
∑

tr

δ(yt, ȳr)
(

k(xt
i, x

r
j) +

k
∑

s=1

δ(y t−s, ȳ r−s)
)

,

where k(x, x̄) = 〈x, x̄〉 is a linear kernel defined on the tokens. These two kernels satisfy the
identity Φe(x,y) =

∑

i Φg(x
t,y{t−k..t−1}, yt) by construction. Furthermore, the exact inference

kernel Ke is precisely the kernel proposed in [Altun et al., 2003].
The greedy kernel approximates the predicted labels with the true labels. The same approx-

imation was used in LaSO [Daumé III and Marcu, 2005] and in the first iteration of SEARN
[Daumé III et al., 2005]. In the context of an online algorithm, other approximations would have
been possible, such as the sequence of predicted labels for the previous values of the parameter.
However, the simpler approximation works slightly better in our experiments.

5.3.3 LaRank Implementations for Sequence Labeling

We denote LaRankExact, the LaRank algorithm adapted for solving the dual problem (5.11)
for exact inference, and LaRankGreedy the one for solving the dual problem (5.12) for greedy
inference. These algorithms stop after a single epoch over the training set. The suffix Gap is
added when an algorithm loops several times until the duality gap is smaller than C.

The LaRank algorithm using an adaptive schedule (Algorithm 22) works well for simple mul-
ticlass problems. However, we had mixed experiences with the exact inference models, because
the ProcessOld operations incur a penalization in terms of computation time due to the Viterbi
algorithm. In the end, ProcessOld was not sufficiently applied, leading to poor performance.
For this reason, we chose to use a fixed schedule (Algorithm 21) for both LaRankGreedy and
LaRankExact. A linear kernel is used for the inner products between tokens. Consequently, no
kernel cache is required for either LaRankExact or LaRankGreedy. Storing the gradients is also
useless as, in this case, the computational cost of a gradient update and a fresh computation are
equivalent.

C++ implementations of both LaRankExact and LaRankGreedy are freely available on the
mloss.org website under the GNU Public License:

• LaRankExact: http://mloss.org/software/view/198/

• LaRankGreedy: http://mloss.org/software/view/199/

The regret we consider in Section 5.1.5 does not match the true applicative setting of greedy
inference. Indeed, we consider in the regret bound a set of examples that is fixed independently
of the parameter vector w with which we compare. But on test examples the greedy inference
scheme uses the past predictions instead of the true labels. Nevertheless the partial justification
for the Reprocess (ProcessOld +Optimize) function is still valid.

Finally, we can remark that the combination of a fixed schedule, a linear kernel and no storage
of gradient values to update allows the amount of computations to be performed by LaRank at

file://localhost/Users/claire/Library/Mail%20Downloads/mloss.org
http://mloss.org/software/view/198/
http://mloss.org/software/view/199/
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each iteration to be identical on the course of learning. Hence, both algorithms enjoy a linear
scaling of training time w.r.t the training set size. This asymptotical guarantee, a key aspect for
a large-scale algorithm, is observed in practice (see next section).

5.3.4 Experiments

This section reports experiments performed on various label sequence learning tasks to study
the behavior of LaRank. Since such tasks are common in the recent literature, we focus on
fully supervised tasks where labels are provided for every time index. After presenting the
experimental tasks we chose, we compare the performances of LaRankExact and LaRankGreedy
to both batch and online methods to empirically validate their efficiency. We then investigate
how the choice of the inference method influences the performances.

Experimental Setup

Experiments were carried out on three data sets. The Optical Character Recognition data set
(OCR) contains handwritten words, with average length of 8 characters, written by 150 human
subjects and collected by [Kassel, 1995]. This is a small data set for which the performance
evaluation is performed using 10-fold cross-validation. The Chunking data set from the CoNLL
2000 shared task4 consists of sentences divided in syntactically correlated segments or chunks.
This data set has more than 75,000 input features. The Wall Street Journal data set5 (WSJ)
is a larger data set with around 1 million words in more than 40,000 sentences and with a large
number of features. The labels associated with each word are “part-of-speech” tags.

Table 5.4 summarizes the main characteristics of these three data sets and specifies the
parameters we have used for both batch and online algorithms: the constant C, the number
nR of Reprocess steps for each ProcessNew step, and the order k of the Markov assumptions.
They have been chosen by cross-validation for the batch setting, online algorithms using the
same parameters as their batch counterparts. Exact inference algorithms such as LaRankExact
are limited to first order Markov assumptions for tractability reasons.

General Performances

We report the training times for a number of algorithms as well as the percentage of correctly
predicted labels on the test sets (for Chunking, we also provide F1 scores on test sets). Results
for exact inference algorithms are reported in Table 5.5. Results for greedy inference algorithms
are reported in Table 5.6. Some discussed methods are detailed in Section 2.2.

Batch Counterparts Our main points of comparison are the prediction accuracies achieved
by batch algorithms that fully optimize the same dual problems as our online algorithms. In the
case of exact inference, our baseline is given by the SVMstruct results using the cutting plane
optimization algorithm [Tsochantaridis et al., 2005] (described in Section 2.2). In the case of
greedy inference, the batch baseline is simply LaRankGreedyGap.

Tables 5.5 and 5.6 show that both LaRankGreedy and LaRankExact reach competitive testing
set performances relative to these baselines while saving a lot of training time.

Figure 5.3 depicts relative time increments. Denoting t0 the running time of a model on a
small portion of the training set of size s0, the time increment on a training set of size s is defined
as ts/t0. We also define the corresponding size increment as s/s0. This allows to represent scaling

4http://www.cnts.ua.ac.be/conll2000/chunking/
5http://www.cis.upenn.edu/~treebank/

http://www.cis.upenn.edu/~treebank/
http://www.cnts.ua.ac.be/conll2000/chunking/
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TRAINING SET TESTING SET CLASSES FEATURES C LaRankGreedy LaRankExact
SEQUENCES(TOKENS) SEQUENCES(TOKENS) nR k nR k

OCR 650 (∼4,600) 5500 (∼43,000) 26 128 0.1 5 10 10 1

Chunking 8,931 (∼212,000) 2,012 (∼47,000) 21 ∼76,000 0.1 1 2 5 1

WSJ 42,466 (∼1,000,000) 2,155 (∼53,000) 44 ∼130,000 0.1 1 2 5 1

Table 5.4: Data sets and parameters used for the sequence labeling experiments.

OCR Chunking (F1 score) WSJ

CRF Test. accuracy (%) - 96.03 (93.75) 96.75

(batch) Train. time (sec.) - 568 3,400

SVMstruct Test. accuracy (%) 78.20 95.98 (93.64) 96.81

(batch) Train. time (sec.) 180 48,000 350,000

CRF Test. accuracy (%) - 95.26 (92.47) 94.42

(online) Train. time (sec.) - 30 240

PerceptronExact Test. accuracy (%) 51.44 93.74 (89.31) 91.49

(online) Train. time (sec.) 0.2 10 180

PAExact Test. accuracy (%) 56.13 95.15 (92.21) 94.67

(online) Train. time (sec.) 0.5 15 185

LaRankExact Test. accuracy (%) 75.77 95.82 (93.34) 96.65

(online) Train. time (sec.) 4 130 1380

Table 5.5: Compared accuracies and times of methods using exact inference.

OCR Chunking (F1 score) WSJ

LaRankGreedyGap Test. accuracy (%) 83.77 95.86 (93.59) 96.63
(batch) Train. time (sec.) 15 490 9,000

PerceptronGreedy Test. accuracy (%) 51.82 93.24 (88.84) 92.70
(online) Train. time (sec.) 0.05 3 10

PAGreedy Test. accuracy (%) 61.23 94.61 (91.55) 94.15
(online) Train. time (sec.) 0.1 5 25

LaRankGreedy Test. accuracy (%) 81.15 95.81 (93.46) 96.46
(online) Train. time (sec.) 1.4 20 175

Table 5.6: Compared accuracies and times of methods using greedy inference.
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Figure 5.3: Scaling in time on Chunk-
ing data set. (log-log plot) Solid black line:
LaRankGreedy, Dashed black line: LaRankEx-
act, Gray line: SVMstruct.

Chunking WSJ

SVMstruct (batch) 1360 9072

PAExact (online) 443 2122

LaRankExact (online) 1195 7806

LaRankGreedyGap (batch) 940 8913

PAGreedy (online) 410 2922

LaRankGreedy (online) 905 8505

Table 5.7: Values of dual objective after
training phase.

in time for different models. Figure 5.3 thus shows that, as we expected, our models scale linearly
in time while a common batch method as SVMstruct does not.

The dual objective values reached by the online algorithms based on LaRank and by their
batch counterparts are quite similar as presented on Table 5.7. LaRankExact and LaRankGreedy
have good optimization abilities; they both reach a dual value close to the convergence point of
their corresponding batch algorithms. We also provide the dual of PAExact and PAGreedy, the
passive-aggressive versions (i.e. without Reprocess) of LaRankExact and LaRankGreedy. These
low values illustrate the crucial influence of Reprocess in the optimization process, independent
of the inference method.

Other Comparisons We also provide comparisons with a number of popular algorithms for
both exact and greedy inference. For exact inference, the CRF results were obtained using a fast
Stochastic Gradient Descent implementation6 of Conditional Random Fields: online results were
obtained after one stochastic gradient pass over the training data; batch results were measured
after reaching a performance peak on a validation set. The PerceptronExact results were obtained
using the structured perceptron update proposed by [Collins, 2002] and described in Section 2.2,
along with the same exact inference scheme as LaRankExact. The PAExact results were obtained
with the passive-aggressive version of LaRankExact, that is without Reprocess or Optimize steps.
For greedy inference, we report results for both PerceptronGreedy and PAGreedy. Like LaRank,
these algorithms were used in a strict online setup, performing only a single pass over the training
examples.

Results in Tables 5.5 and 5.6 clearly display a gap between the accuracies of these common
online methods and the accuracies achieved by our two algorithms LaRankGreedy and LaRankEx-
act. The LaRank based algorithms are the only online algorithms able to match the accuracies
of the batch algorithms. Although higher than those of other online algorithms, their training
times remain reasonable. For example, on our largest data set, WSJ, LaRankGreedy reaches a
test set accuracy competitive with the most accurate algorithms while requiring less training
time than PerceptronExact (about four milliseconds per training sequence).

6http://leon.bottou.org/projects/sgd

http://leon.bottou.org/projects/sgd
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Results on the Chunking and WSJ benchmarks have been widely reported in the literature.
Our Chunking results are competitive with the best results reported in the evaluation of the
CoNLL 2000 shared task [Kudoh and Matsumoto, 2000] (F1 score 93.48). More recent works
include [Zhang et al., 2002] (F1 score 94.13, training time 800 seconds) and [Sha and Pereira,
2003] (F1 score 94.19, training time 5000 seconds). The Stanford Tagger [Toutanova et al., 2003]
reaches 97.24% accuracy on the WSJ task but requires 150,000 seconds of training. These state-
of-the-art systems slightly exceed the performances reported in this work because they exploit
highly engineered feature vectors. Both LaRankExact and LaRankGreedy need a fraction of these
training times to achieve the full potential of our relatively simple feature vectors.

Comparing Greedy and Exact Inference

This section focuses on an empirical comparison of the differences caused by the inference schemes

Inference Cost The same training set contains more training examples for an algorithm based
on a greedy inference scheme. This has a computational cost. However the training time gap
between PAExact and PAGreedy in Table 5.5 and 5.6 indicates that using exact inference entails
much higher computational costs because the inference procedure is more complex.

Figure 5.4: Sparsity measures during learning on Chunking data set. (Solid line:
LaRankGreedy, Dashed line: LaRankExact.)

Sparsity As support vectors for LaRankExact are complete sequences, local dependencies are
not represented in an invariant fashion. LaRankExact thus needs to store an important proportion
of its training examples as support pattern while LaRankGreedy only requires a small fraction of
them as illustrated in Figure 5.4. Moreover, for each support pattern, LaRankExact also needs
to store more support vectors.

Reprocess Figure 5.5 displays the gain in test accuracy that LaRankGreedy and LaRankExact
get according to the number of Reprocess. This gain is computed relatively to the passive-
aggressive algorithms which are similar but do not perform any Reprocess. LaRankExact requires
more Reprocess (10 on OCR) than LaRankGreedy (only 5) to reach its best accuracy. This
empirical result is verified on all three data sets. Using exact inference instead of greedy inference
causes additional computations in the LaRank algorithm.
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Figure 5.5: Gain in test accuracy com-
pared to the passive-aggressives according
to nR on OCR. (Solid line: LaRankGreedy,
Dashed line: LaRankExact)

Figure 5.6: Test accuracy according
to the Markov interaction length on
OCR. (Solid line: LaRankGreedy, Dashed line:
LaRankExact for which k = 1)

Markov Assumption Length This section indicates that using exact inference in our setup
involves both time and sparsity penalties. Moreover the loss in accuracy that could occur when
using a greedy inference process and not an exact one can be compensated by using Markov as-
sumptions of order higher than 1. As shown on Figure 5.6 it can even lead to better generalization
performances.

Wrap-up Online learning and greedy inference offer the most attractive combination of short
training time, high sparsity and accuracy. Indeed, LaRankGreedy is approximately as fast as an
online perceptron using exact inference, while being almost as accurate as a batch optimizer.

5.4 Summary

This chapter presented LaRank. This large-margin online learning algorithm for structured out-
put prediction nearly reaches its optimal performance in a single pass over the training examples
and matches the accuracy of batch solvers. In addition, LaRank shares the scalability properties
of other online algorithms. Similarly to SVMstruct, its number of support vectors is conveniently
bounded. Using an extension of [Shalev-Shwartz and Singer, 2007a] to structured outputs, we
also showed that it has at least the same theoretical guarantees in terms of regret (difference
between the online error and the optimal train error) as passive-aggressive algorithms.

Applied to multiclass classification and to sequence labeling, LaRank leads to empirically
competitive algorithms, that learn in one epoch and reach the performance of equivalent batch
algorithms on benchmark tasks. Involving low time and memory requirements, LaRank tends
to be a suitable algorithm when one wants to learn structured output predictors on large-scale
training data sets. We have presented two derivations but it could be applied to any structured
prediction problem as soon as it can be casted in the framework described in Section 2.2. For
example, [Usunier et al., 2009] recently used it for learning a ranking system on large amounts
of data.
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P
revious chapters have presented several original supervised learning algorithms to train Sup-
port Vector Machines for a broad range of applications. Enjoying nice theoretical and ex-

perimental properties, all methods can be employed on large-scale training databases, as soon
as these are annotated. Unfortunately, this last condition can be penalizing because annotating
large amounts of data is often costly and time-consuming. Depending on the task, this can even
require highly-advanced expertise on the part of the labeler. As we explained in Section 1.1.2, col-
laborative labeling or human-based computing can provide some annotations for reduced costs.
However this solution can not be actually employed in any case.

Ambiguous Supervision We present here an other opportunity to bypass such costs. For
many tasks an automatic use of multimodal environments can provide training corpora with little
or no human processing. For instance, the time synchronisation of several media can generate
annotated corpora: matching movies with subtitles [Cour et al., 2008] can be used for speech
recognition or information retrieval in videos, matching vision sensors and other sensors can
be used to improve robotic vision (as in [Angelova et al., 2007]), matching natural language
and perceptive events (such as audio commentaries and soccer actions in RoboCup [Chen and
Mooney, 2008]) can be used to learn semantics. Indeed, the Internet is abundant with such
sources, for example one could think to use the text surrounding pictures in a webpage as image
label candidates.

Such automatic procedures can build large corpora of ambiguously supervised examples.
Indeed, every resulting input instance (picture, video frame, speech, . . . ) is paired with a set
of candidate output labels (text caption, subtitle, . . . ). The automation of the data collection
makes it impossible to directly know which one is correct among them, or even if there exists
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Figure 6.1: Examples of semantic parsing. Left: an input sentence (line 1) and its represen-
tation in a domain-specific formal language. Right: automatic generation of ambiguous training
data by time-synchronisation of natural language commentaries (left column) and events in a
RoboCup soccer game (right column).

a correct label. To conceive systems able to efficiently learn out of such noisy and ambiguous
supervision would be a huge leap forward in machine learning. These methods could then benefit
from large training sets obtained with drastically reduced costs.

Semantic Parsing In this chapter we propose to study the process of learning under am-
biguous supervision through the task of semantic parsing (see e.g. [Zettlemoyer and Collins,
2005, Wong and Mooney, 2007]). This is appropriate because many of the few previous works
on ambiguous supervision [Chen and Mooney, 2008, Kate and Mooney, 2007] are related to it.
Semantic parsing aims at building systems that could understand questions or instructions in
natural language in order to bring about a major improvement in human-computer interfacing.
Formally, this consists of mapping a natural language sentence into a logical meaning represen-
tation (MR) which is domain-specific and directly interpretable by a computer. An example of
a semantic parse is given in Figure 6.1 (left).

Semantic parsing is an interesting case study for ambiguous supervision. Indeed, the deriva-
tion from a sentence to its logical form is never directly annotated in the training data. At the
word-level, semantic parsing is thus always ambiguously supervised: in the example of Figure 6.1
(left), there is no direct evidence that the word “dog” refers to the symbol dog. Furthermore,
training data for semantic parsing can be naturally gathered within perceptive environments via
the co-occurrence of language and events as in the right of Figure 6.1. Such examples are noisy
and ambiguous: irrelevant actions can occur at the time a sentence is uttered, an event can be
described by several sentences, and conversely a sentence can describe several events.

Ambiguously Supervised SVMs The contributions of this chapter are twofold. We first
propose a reduction from multiclass classification with ambiguous supervision to noisy label
ranking as well as an efficient online algorithm to solve this new formulation. We also show that,
in the ambiguous learning framework, our solver has a fast decreasing regret. We then apply
this algorithm to the specific case of semantic parsing. We introduce the OSPAS algorithm, a
sequential method inspired by LaSO [Daumé III and Marcu, 2005]. OSPAS is able to discover
the alignment between words and symbols and uses it to recover the structure of the semantic
parse. Finally we provide an empirical validation of our algorithm on three data sets. First, we
created a simulated data set to highlight the online ability of our method to recover the word-
level alignment. We then present results on the AmbigChild-World and RoboCup semantic
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parsing benchmarks on which we can compare with state-of-art semantic parsers from [Chen and
Mooney, 2008, Kate and Mooney, 2007].

The rest of the chapter is organized as follows. Section 6.1 describes our general algorithm,
Section 6.2 details its specialization to semantic parsing called OSAPS, Section 6.2.2 describes
experimental results and Section 6.3 concludes.

6.1 Online Multiclass SVM with Ambiguous Supervision

In this section, we present the task of multiclass classification with ambiguous supervision, and
justify how ambiguous supervision can be treated as a label ranking problem. We then present
an efficient online procedure for training in this context.

6.1.1 Classification with Ambiguous Supervision

As in classical multiclass classification (see Section 5.2), the goal is to learn a function f that
maps an observation x ∈ X to a class label y ∈ Y. We still assume that f predicts the class
label with a discriminant function S(x, y) ∈ R that measures the degree of association between
pattern x and class label y and using a standard arg max procedure:

f(x) = arg max
y∈Y

S(x, y) . (6.1)

As in previous chapters, we consider a linear form for S(x, y) i.e. S(x, y) = 〈w,Φ(x, y)〉, where
Φ(x, y) maps the pair (x, y) into a feature space endowed with the dot product 〈·, ·〉, and w is a
parameter vector to be learnt.

Given a class of functions F , we consider an ambiguous supervision setting, where a training
instance (x,y) consists of an observation x ∈ X and a set y ∈ P (Y) \Y of class labels, where
P (Y) is the power set of Y.1 The semantics of this set y is that at least one of class labels
present in the set y should be considered as the correct class label of x (i.e. the one that should
be predicted), but some of the class labels in y might not be correct. We define this particular
label using the following function:

y∗(x) = arg max
y∈Y

Py(y ∈ y|x) . (6.2)

Hence, assuming that the observations are drawn according to a fixed distribution D on X ,
we expect the prediction function f to minimize the following error:

err∗(f) = Px∼D(f(x) &= y∗(x)) . (6.3)

Related Work

[Cour et al., 2009] recently proposed to solve the problem of learning under ambiguous supervision
with a slightly different approach. They employ the pointwise error of a multiclass classifier f

on an ambiguous example (x,y), defined as:

err0/1(f, (x,y)) = I(f(x) &∈ y) = I (∀y ∈ y,∃ȳ ∈ Y\y, S(x, y) < S(x, ȳ)) .

Then, they showed, under natural assumptions on the nature of the ambiguities, that the min-
imizers of E

[

err0/1(f, (x,y)
]

are close to those of the unambiguous case. Thus, they tackle the

1We obviously require that the supervision does not consist of the whole set of class labels, since the example
is uninformative in that case.
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ambiguity by considering an unambiguous error different from err∗. Yet both errors track the
same optimal prediction y∗ but give different guarantees.

Unfortunately, err0/1 is difficult to deal with because it naturally leads to non-convex opti-
mization problems. For instance, if we consider the linear and realizable case, a natural large-
margin formulation that corresponds to this error on a training set (xi,yi)

n
i=1 is:

min
w

1

2
||w||2 u.c. ∀i, ∃y ∈ yi such that ∀ȳ ∈ Y\yi 〈w, Φ(xi, y)〉 − 〈w, Φ(xi, ȳ)〉 ≥ 1. (6.4)

Even if this problem is feasible, its optimization rapidly becomes intractable, since it is highly
non-convex due to the existential quantifier in the constraints. [Cour et al., 2009] proposed a
convex upper bound on err0/1, which reduces to the One-Versus-All approach to multiclass clas-
sification in the unambiguous case but, they did not exhibit assumptions sufficient to guarantee
that minimizing this error (or some 0/1 version of it) allows to recover the correct labels.

Reduction to Label Ranking

In our method, to find a minimizer of err∗, we propose to follow a label ranking approach which,
in the unambiguous case, boils down to the constraint classification approach of [Har-Peled et
al., 2002]. We thus use the mean pairwise error:

errp(f, (x,y)) =
1

|y||Y\y|
X

y∈y

X

ȳ∈Y\y

„

I (S(x, y) < S(x, ȳ)) +
1

2
I (S(x, y) = S(x, ȳ))

«

In the case of unambiguous multiclass classification, linear multiclass classifiers may be learn-
able in the constraint classification setting, but not in the One-versus-All one (see Section 3.3 of
[Har-Peled et al., 2002]). Moreover, we show in the next section that, under natural assumptions,
minimizing the mean pairwise error errp allows to minimize err∗ and recover the correct labels.

In terms of optimization procedure, the mean pairwise error in the case of linear functions
can be optimized on a training set (xi,yi)

m
i=1 with the following standard soft-margin SVM

formulation ([t]+ denotes the positive part of t):

min
w

1

2
||w||2 + C

m
∑

i=1

Lw(xi,yi) (6.5)

where Lw(xi,yi) =
1

|yi||Y\yi|
∑

y∈yi

∑

ȳ∈Y\yi

[1 − 〈w,Φ(xi, y) − Φ(xi, ȳ)〉]+ .

Unbiased Ambiguity

We now formally justify the use of the mean pairwise loss as a possible alternative for multi-
class learning with ambiguous supervision: under the following assumptions, we show that if
the incorrect labels given as supervision are random given the input x then errp has the same
minimizer on any distribution on the input space as err∗, even in the presence of random noise
(i.e. the correct label is not given).

For simplicity, we assume that for any observation x, the set y given as supervision is of
constant length. We consider the setting where the correct label of any input observation is given
by the function y∗ ∈ F . That is, the target classifier is in the class of hypotheses. We also make
the three following natural assumptions:

1. ∀y, y′ &= y∗(x) P (y ∈ y|x) = P (y′ ∈ y|x) ,

2. ∃γ > 0,∀x, P (y∗(x) ∈ y|x) > P (y ∈ y|x) + γ for y &= y∗(x) ,
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3. ∀y &= y∗(x) , S∗(x, y∗(x)) > S∗(x, y) with S∗ the score function associated with y∗.

The first assumption is the unbiased ambiguity assumption which ensures that the distribution
of incorrect labels within the supervision bags is not biased towards any incorrect label. The
second one forces the correct labels to appear in the supervision more often than the incorrect
ones. But it does not forbid cases where the correct label is not given in the supervision. The
third one makes sure that the argmax equation (6.1) always defines a single label.

Then, the following theorem holds. We provide a result for err∗ in the general i.i.d. case but
also a result in the non i.i.d. case because this is useful in an online setup. In the non i.i.d. case,
the error to minimize is defined as 1

n

∑n
i=1 I (f(xi) &= y∗(xi)) for n observations, x1, ..., xn.

Theorem 12 Under the previous assumptions, we have:

I.i.d. case. Assume the observations are drawn according to a fixed distribution D on X . Then,
for all f ∈ F :

err∗(f) ≤ 2ℓ(|Y| − ℓ)

γ
E [errp(f, (x,y)) − errp(y∗, (x,y))]

where ℓ is the size of the ambiguous supervision sets, and the expectations are taken for
x ∼ D and y ∼ P (.|x)

Non-i.i.d. case Let x1, ..., xn be n observations. Then, for all f ∈ F :

1

n

n
X

i=1

I (f(xi) .= y∗(xi)) ≤
2ℓ(|Y| − ℓ)

γ
E

"

1

n

n
X

i=1

`

errp(f, (xi,yi)) − errp(y∗, (xi,yi))
´

#

where the expectations are taken over yi ∼ P (.|xi).

Proof Both proofs follow from a direct calculation of E [errp(f, (x,y))|x], the expectation of the pairwise
error of f on a fixed observation x. Following the definition of the mean pairwise error, we have:

E [errp(f, (x,y))|x] =
X

y

P (y|x)

ℓ(|Y| − ℓ)

X

y∈y

X

ȳ∈Y\y

s(x, y, ȳ)

=
1

ℓ(|Y| − ℓ)

X

y∈Y

X

ȳ∈Y

P (y ∈ y, ȳ .∈ y|x)s(x, y, ȳ)

where s(x, y, ȳ) = I (S(x, y) < S(x, ȳ)) + 1
2

I (S(x, y) = S(x, ȳ)).
Using the assumption P (y ∈ y|x) = P (y′ ∈ y|x) for any y, y′ .= y∗(x), and by elementary probability

calculus, we have P (y ∈ y, y′ .∈ y|x) = P (y′ ∈ y, y .∈ y|x). Grouping the corresponding two terms in the
sum and noticing that s(x, y, ȳ) + s(x, ȳ, y) = 1, we obtain:

E [errp(f, (x,y))|x] =
1

2ℓ(|Y| − ℓ)

X

y (=y∗(x)

X

ȳ (=y∗(x)

P (y ∈ y, y′ .∈ y|x)

+
1

ℓ(|Y| − ℓ)

X

y∈Y

h

P (y ∈ y, y∗(x) .∈ y|x)s(x, y, y∗(x))

+ P (y∗(x) ∈ y, y .∈ y|x)s(x, y∗(x), y)
i

The first term is constant over all f . With the same calculation for the specific y∗, we can notice that,
(1) if S∗ is the discriminant function associated to y∗ (i.e. S∗(x, y) = 〈w∗, Φ(x, y)〉), s∗(x, y, y∗(x)) = 0,
(2) P (y∗(x) ∈ y, y∗(x) .∈ y|x) = 0, and (3) for any y, P (y∗(x) ∈ y, y .∈ y|x) − P (y ∈ y, y∗(x) .∈ y|x) =
P (y∗(x) ∈ y|x) − P (y ∈ y|x). We finally obtain:

E [errp(f, (x,y)) − errp(y∗, (x,y))|x] =
P (y∗(x) ∈ y|x) − p

ℓ(|Y| − ℓ)

X

y (=y∗(x)

s(x, y∗(x), y)
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where p = P (y ∈ y|x) for any y .= y∗(x). Since f(x) .= y∗(x) as soon as
P

y (=y∗(x) s(x, f(x), y) > 0 and

that this sum is always greater than 1/2 when strictly positive, we have both desired results (the first

one by taking the expectation over x, the second by summing over the n given x1, ..., xn). !

Interpretation In the i.i.d. setting, the theorem shows that any minimizer in F of the true
(i.e. generalization) pairwise loss recovers the function that produces the correct labels (and that
y∗ minimizes the pairwise loss in F). Since it can be shown (e.g. pursuing a growth function
approach as in [Har-Peled et al., 2002]) that the minimizer of the empirical risk in the mean
pairwise setting converges to the minimizer of the true risk, this justifies the use of the mean
pairwise loss in the ambiguous classification setting.

When the observations are fixed we have a similar result. We provide this version since we
will use the pairwise loss in the online setting, where the data may not be i.i.d. The results are
interesting in terms of regret, because an algorithm with a regret (in terms of pairwise loss) that
converges to zero corresponds to an algorithm which predicts the correct label up to some point.

6.1.2 Online Algorithm

There has been a lot of work on online algorithms for label ranking (see e.g. [Crammer and Singer,
2005, Crammer et al., 2006, Shalev-Shwartz and Singer, 2007b]). We present here an algorithm
that follows the primal-dual perspective presented in [Shalev-Shwartz and Singer, 2007a], and
can be seen as an analog of the algorithm of [Shalev-Shwartz and Singer, 2007b] (which uses the
maximum pairwise loss) for the mean pairwise loss.

The algorithm is based on a formulation of the SVM primal problem (6.5) using a single slack
variable per example. Using the equality [1− t]+ = maxc∈{0,1} c(1− t), the mean pairwise hinge
loss on a given example (xi,yi) can be written as:

Lw(xi,yi) = max
c

1

|yi||Y\yi|
∑

y∈yi

∑

ȳ∈Y\yi

cyȳ (1 − 〈w,Φ(xi, y) − Φ(xi, ȳ)〉)

= max
c

(∆xi,yi
(c) − 〈w,Ψxi,yi

(c)〉)
(6.6)

with c ∈ {0, 1}|yi||Y\yi|, and

∆xi,yi
(c) =

1

|yi||Y\yi|
∑

y∈yi

∑

ȳ∈Y\yi

cyȳ

Ψxi,yi
(c) =

1

|yi||Y\yi|
∑

y∈yi

∑

ȳ∈Y\yi

cyȳ (Φ(xi, y) − Φ(xi, ȳ)) .
(6.7)

This leads to the SVM primal formulation:

min
w,ξ

1

2
||w||2 + C

∑

i

ξi

subject to

{ ∀i ξi ≥ 0

∀i ∀c ∈ {0, 1}|yi||Y\yi| 〈w,Ψxi,yi
(c)〉 ≥ ∆xi,yi

(c) − ξi

(6.8)

Our algorithm optimizes the dual of (6.8):

D(α) =
∑

i,c

αc
i ∆xi,yi

(c) − 1

2

∑

i,c

∑

j,c̄

αc
i α

c̄
j

〈

Ψxi,yi
(c),Ψxj ,yj

(c̄)
〉

.
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Following [Shalev-Shwartz and Singer, 2007a], an online algorithm can be derived from the
dual function using a simple dual coordinate ascent procedure in a passive-aggressive setup.
While iterating over the examples, a single parameter update is performed for each example
using a dual coordinate associated to the given example and the step size that maximizes the
dual increase. A box constraint enforces the step size to remain between 0 and C.

Algorithm 23 AmbigSVMDualStep

1: input: xt ∈ X , yt.
2: Get ∆xt,yt

(ct),Ψxt,yt
(ct) where ∆xt,yt

(ct) − 〈w,Ψxt,yt
(ct)〉 = Lw(xt,yt)

3: Compute αct

t =
∆xt,yt

(ct)−〈w,Ψxt,yt
(ct)〉

||Ψxt,yt
(ct)||2

4: Clip αct

t = max(0,min(αct

t , C))
5: Update w = w + αct

t Ψxt,yt
(ct)

Algorithm 23 summarizes the steps followed by the algorithm when it receives a new example
(xt,yt). In our setting, after having seen the t-th example, the chosen dual coordinate is αct

t

(line 2), with ct the binary vector that realizes the max of equation (6.6). The value given to this
dual variable is computed analytically by maximizing the dual along the chosen direction (line
3) and clipping it to the constraint (line 4). The parameter vector w is finally updated (line 5).

Regret Bound

Following [Shalev-Shwartz and Singer, 2007a] and the work presented in Chapter 5, the gener-
alization ability of an online algorithm sequentially increasing the dual objective function can
be expressed in terms of regret. The regret is defined by the difference between the mean loss
incurred by the algorithm on the course of learning and the empirical loss of a given weight

vector w that is, regret(n, w) = 1
n

n
∑

i=1

Lwi
(xi,yi)− 1

n

n
∑

i=1

Lw(xi,yi) with wi the parameter vector

before seeing the i-th example.

Proposition 13 Define ρ = maxi,y∈yi,ȳ∈Y\yi
||Φ(xi, y) − Φ(xi, ȳ)||2. After seeing n examples,

the regret of Algorithm 23 is upper-bounded: ∀w, regret(n, w) ≤ ||w||2

2nC + ρC
2 .

Furthermore, if C =
√

||w||2

nρ
then: ∀w, regret(n, w) ≤

√

ρ||w||2

n .

This proposition, easily established by directly following the proof of Theorem 10 of Sec-
tion 5.1.5, exhibits that the regret of the online multiclass SVM for ambiguous supervision has
the compelling property of decreasing with the number of training examples.

6.2 Sequential Semantic Parser

The previous section defined an algorithm for learning multiclass classification under ambigu-
ous supervision. In order to benchmark it, we now use it for learning semantic parsing under
ambiguous supervision.

6.2.1 The OSPAS Algorithm

This section describes how we applied the online SVM (Algorithm 23) to derive an algorithm for
semantic parsing.
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Figure 6.2: Semantic parsing training example. Left: Predicted parse. Words are
successively labeled with symbols (line 2) and SRL tags (line 3-4). Right: Training example.
Several MRs are given in supervision: a combination of them can represent the correct MR (line
2-3), some might not be related (line 4). Empty label pairs (-,-) are also added to the bag.

Predicted Meaning Representations

The MRs considered in semantic parsing are simple logical expressions of the form REL(A0, A1,

. . . , An). REL is the relation symbol, and A0, ..., An its arguments. Notice that several forms
can be recursively constructed to form more complex tree structures.2 For instance, the tree in
Figure 6.1 (left) is equivalent to the representation given in Figure 6.2 (left).

In our work, we consider the latter equivalent representation of the MRs which allows, for
a given sentence, to create the semantic parse in several tagging steps. The first step is called
symbol labeling, and consists in labeling each word of a sentence with the its corresponding symbol
in the MR. This step is followed by semantic role labeling (SRL) steps: for each predicted relation
symbol, its arguments are labeled.

The crucial feature of this alternative representation is the use of the alignment word-symbol.
This can be seen as a nice way of encoding the joint structure of the sentence and the MRs and
this allows to predict the final MRs in several distinct steps. This is simpler than a global joint
inference step over the sentence and the MRs tree.

The ambiguous supervision consists of providing several MRs for each training sentence: it
is unknown which is the correct MR or combination of MRs. An example of a training instance
is given in Figure 6.2 (right). For our training algorithm the available supervision consists in
the pairs (Symbol, SRL tag) that appear in the different MRs. As an alignment word-symbol
must be feasible for each MRs, the supervision is completed with empty label pairs (-,-) if the
number of symbols in the MRs is lower than the length of the input sentence. We refer to this
supervision as a bag of pairs as it can contain duplicates of the same symbol.

The OSPAS Algorithm

We now describe OSPAS, the Online Semantic Parser for Ambiguous Supervision. Presented
in Algorithm 24, it is firstly designed to perform the symbol prediction step. Taking as input
a sentence x it follows the LaSO algorithm [Daumé III and Marcu, 2005] by incrementally
building the output sequence. Each atomic symbol is predicted using Algorithm 23: this is the
base classifier that can learn with the ambiguously supervised semantic parsing data.

For training, OSPAS receives a bag of symbols b. At each training step, an unlabeled word of
the sentence is randomly picked (line 6) to tend to satisfy the random ambiguity assumption (see
Section 6.1.1). If the corresponding predicted label violates the supervision (not in the bag – line
8), an update of Algorithm 23 is performed (line 9). The word is removed from the unlabeled

2In our work, we do not use any hard-coded grammar nor decoding step during parsing, because we do not
need to. The approach can however be adapted to use a grammar and a global inference procedure for predicting
the parse tree as soon as the symbols have been detected and aligned.
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Algorithm 24 OSPAS. choose(s) randomly samples without replacement in the set s and
bagtoset(b) returns a set after removing the redundant elements of b.

1: input: A sentence x = (x1, ...., x|x|) and a bag b = {y1, ..., y|b|}.
2: Initialize the set unlabeled = {x1, ...., x|x|};
3: while |unlabeled| > 0 do

4: Set s0 = |unlabeled|
5: for i = 1, . . . , s0 do

6: xk = choose(unlabeled);
7: ŷ = arg maxy∈Y S(xk, y);
8: if ŷ .∈ b then

9: Perform an update: AmbigSVMDualStep(xk, bagtoset(b));
10: else

11: Remove ŷ from b and xk from unlabeled;
12: break;
13: end if

14: end for

15: if |unlabeled| = s0 then

16: break;
17: end if

18: end while

set only if the prediction was in the bag (line 11): this enforces the SVM to perform a lot of
updates, especially at the beginning of training.

A crucial point of OSPAS is the bag management. Indeed if the bag was kept fixed during
all the predictions on a sentence, nothing would forbid the empty symbol “-” to be predicted for
every word of the sentence: it would never violate the supervision as it is added to almost every
training bag. To prevent such trivial (and incorrect) solutions, we remove a symbol from the bag
as soon as it has been predicted (line 11).

Specific Learning Setup

Our feature system is very simple.3 Each word x ∈ X is encoded using a “window” representation:
x = (C(i − l), . . . , C(i + l)), where C(j) is a binary vector with as many components as there
are words in the vocabulary, and all components are set to 0 except the one that corresponds to
the j-th word of the input sentence. Φ(x, y) is also binary vector of size X ×Y: only the features
associated with symbol y can be non-zero.

For symbol prediction, a window of size 1 is sufficiently informative. Therefore, if we set

C =
√

|X ||Y|
2n

, a direct analytical calculation under this simple feature setup can drastically

simplify the bound of Proposition 13. The regret of Algorithm 23 w.r.t. a parameter vector w∗

minimizing the primal (6.8) is now upper-bounded by
√

2|X ||Y|/n. The regret decreases very
fast with n: this can explain why OSPAS reaches good accuracies after a single pass over the
data4 (see Section 6.2.2).

Given an input sentence, OSPAS outputs a symbol sequence aligned with it. To finally recover
the MR, one has to perform as many SRL tagging steps as there are RELs in the predicted
symbols (we assume we know which symbols are REL). As the bag of supervision provides the
corresponding SRL tag for each symbol, OSPAS can also be used to learn the SRLs with the

3This is a basic setup, and it would be easy to add part-of-speech, chunk or parse tree based features.
4We recall that, in the regret bound, n refers to the number of words seen by the algorithm.
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sentence and the aligned symbols as input. We need to refine the feature representation by using
a larger input window.

The global system is trained online. Given an input sequence and its bag (symbols, SRLs) a
first OSPAS model learns the symbol prediction and a second one the SRL tagging. For simplicity
reasons, we will refer to the whole system as OSPAS in the following section.

6.2.2 Experiments

Training a semantic parser in a real perceptive environment is challenging as it would require a
process of generating meaning representations out of real-world perception data, using advanced
technologies such as visual scene understanding. We thus empirically assess our approach on two
benchmarks and a toy data set.

Experimental Setup

The first benchmark is AmbigChild-World from [Kate and Mooney, 2007]. It has been con-
ceived to mimic the type of language data that would be available to a child while learning
a language. The corpus is generated to model occasional language commentary on a series of
perceptual contexts. A synchronous context-free grammar generates natural language sentences
and their corresponding MRs which are in predicate logic without quantification, as illustrated
in the example of Figure 6.2 (right). The generated MRs can be quite complex, containing from
one to four RELs. The data set contains ten splits of 900 training instances and 25 testing one.
We present results averaged on these ten splits.

The RoboCup commentary benchmark contains human commentaries on football simula-
tions over four games labeled with semantic descriptions of actions (passes, offside, . . . ) and is
composed of pairs of commentaries and actions that occurred within 5 seconds of each other.
Following [Chen and Mooney, 2008] we trained on three games and tested on the last one, aver-
aging over all four possible splits. This leads to an average of 1,200 training instances and 400
testing ones. This data set is ambiguous and also very noisy: around 30% of the supervision
bags do not even contain the correct MRs.

To assess the ability of our method to recover the correct word-level alignment we needed
a data set for which such an alignment exists. Following [Kate and Mooney, 2007] we created
a simulation of a house with actors, objects and locations, and generated natural languages
sentences and their corresponding MRs using a simple grammar. The perfect noise-free word-
symbol alignment was employed in test to evaluate the symbol predictor (but never for prediction
nor training). There are 15 available actions for a total of 59 symbols and 74 words in the
dictionary. We use 2,000 training sentences and 500 for test.

For AmbigChild-World and AmbigHouse the level of ambiguity in the supervision can
be controlled. An ambiguity of level n means that, on average, supervision bags contain the
correct MRs and n incorrect ones. For no ambiguity, only the correct MRs are given. RoboCup
is naturally ambiguous but an unambiguous version of each game is provided for evaluation,
containing commentaries manually associated with their correct MRs (if any). For each data set
the test examples are composed by a sentence and its corresponding correct MRs only. The values
of the C parameter for OSPAS are set using the online regret. We used C = 0.1 on AmbigHouse
and RoboCup, and C = 1 on AmbigChild-World (the OSPAS models for symbol and SRL
predictions use the same C). All results presented for OSPAS have been obtained after a single
pass of an online training on the data.

The main baselines for ambiguous semantic parsing are KRISPER [Kate and Mooney, 2007]
and WASPER [Chen and Mooney, 2008]. Both methods follow the same training process. They
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Figure 6.3: Online test error curves on
AmbigHouse for different levels of ambiguity.
(Only one online training epoch.)
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Figure 6.4: Influence of the exploration
strategy on AmbigHouse for an ambiguity
of level 3. (Only one online training epoch.)

build noisy, unambiguous data sets from an ambiguous one, and then train a parser designed
for unambiguous supervision only (resp. KRISP [Kate and Mooney, 2006] and WASP [Wong
and Mooney, 2007]). Initially, the unambiguous data set consists of all (sentence, MR) pairs
occurring in the ambiguous data set. A trained classifier (initially trained as if all pairs are
correct) is iteratively used to predict which of the ambiguous pairs are correct, the others are
down-weighted (or not used) in the next round. OSPAS is more flexible: it learns in one pass
and avoids costly iterative re-training phases and does not rely on any reduction to unambiguous
supervision.

Results

Figure 6.3 presents the test alignment error of OSPAS according to the number of training
examples for different levels of ambiguity. The alignment error is defined as the percentage of
sentences for which the predicted symbol sequence is either incorrect or misaligned. This figure
demonstrates that OSPAS can recover the correct alignment with an online training and even
with an highly ambiguous supervision. When the ambiguity level increases, OSPAS still achieves
a good accuracy, it only requires more training examples.

Figure 6.4 demonstrates that OSPAS can deal with ambiguous supervision regardless of its
inference process. Indeed, for an ambiguity of level 3, we compare three strategies:

• Random: the next word to tag is selected randomly in the set unlabeled (this is default
strategy implemented by the choose() function of training Algorithm 24);

• Left-Right: the next word to tag is right next to the current one;

• Order-Free: all the remaining words in the set unlabeled are tagged using step 7 of
Algorithm 24. Only the prediction achieving the highest score is kept.

For all strategies, the test error decreases on the course of training. Yet, inference influences
learning speed and Left-Right strategy appears to be penalized.

Tables 6.1 and 6.2 respectively present the results on AmbigChild-World and RoboCup
and allow to compare OSPAS with previously published semantic parsers. The metric we used
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Ambiguity F1-score
Level krisper ospas

None 0.940∗ 0.940

1 0.935∗ 0.926
2 0.895∗ 0.912

3 0.815∗ 0.891

Table 6.1: Semantic parsing F1-scores on
AmbigChild-World. (∗)Values reproduced
from [Kate and Mooney, 2007]

Method Ambiguity F1-score

wasp No 0.780†

ospas No 0.871

wasper Yes 0.545†

krisper Yes 0.740†

ospas Yes 0.737

Table 6.2: Semantic parsing F1-scores on
RoboCup. (†)Values reproduced from [Chen
and Mooney, 2008]

is the one usually employed to evaluate semantic parsers (e.g. in [Chen and Mooney, 2008, Kate
and Mooney, 2007, Zettlemoyer and Collins, 2005]): the F1-score, defined as the harmonic mean
of precision and recall. In this setup, precision is the fraction of the valid MRs (i.e. conform
to the MR grammar) outputted by the system that are correct and recall is the fraction of the
MRs from the test set that the system correctly produces. The results on AmbigChild-World
and RoboCup express that, in spite of its simple learning process and its single pass over the
training data, OSPAS reaches state-of-the-art F1-scores. Indeed, it is equivalent to KRISPER and
much better than WASPER. In particular, it is worth noting that OSPAS efficiently handles the
high level of noise of the natural language sentences of RoboCup. Finally, Table 6.1 shows that
OSPAS is more robust to the increase of the ambiguity level than KRISPER.

6.3 Summary

This chapter studied a novel problem of learning from ambiguous supervision focusing on the
case of semantic parsing. This problem is original and interesting as ambiguous supervision issue
might be crucial in the next few years.

We proposed an original reduction from multiclass classification with ambiguous supervision
to noisy label ranking and derived an online algorithm for semantic parsing. Our approach is
competitive with state-of-the-art semantic parsers after a single pass over ambiguously supervised
data and would then hopefully scale well on future larger corpora.
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T
his final chapter is destined to summarize our contributions but also to explain how we think
they can be pursued. In a first section, we highlight our main achievements and display some

straightforward extensions that could be carried out without much difficulty. In a second time,
we present some artificial intelligence issues which, we conjecture, could be addressed by some
derivations of the work contained by this dissertation.

7.1 Large Scale Perspectives for SVMs

Throughout this thesis, we have exhibited several ways to handle large-scale data with Support
Vector Machines. For different kinds of data, different kinds of tasks, different kinds of kernels,
we have proposed solutions to reduce training time and memory requirements while keeping
accurate generalization performances.

Chapter 3 presented the specific issue of Stochastic Gradient Descent algorithms for learn-
ing linear SVMs and proposed the new SGD-QN algorithm. Chapter 4 explained the original
Process/Reprocess principle via the simple Huller algorithm and analyzed the fast and efficient
LaSVM algorithm for solving binary classification. It also investigated the benefit of joining
active and online learning and defined a fresh duality lemma for incremental SVM solvers. In
Chapter 5, we presented the fourth new algorithm of this dissertation: LaRank an algorithm
implementing the Process/Reprocess principle to learn SVMs for structured output prediction.
We detailed and tested specific derivations to multiclass classification and sequence labeling. Fi-
nally we introduced the original framework of learning under ambiguous supervision in Chapter 6
and applied it to the Natural Language Processing problem of semantic parsing which aims at
building systems that could interpret instructions in natural language.
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7.1.1 Impact and Limitations of our Contributions

This dissertation encompasses several new algorithms for learning large scale Support Vector
Machines. Most of our work have been spread in the machine learning scientific community via
international publications and talks (see personal bibliography in Appendix A) and have had a
significant impact. For instance, LaSVM is now a standard method for learning SVMs and has
been used as a reference in many publications.

Our contributions are composed as a mix of algorithms and implementation, and are designed
towards efficiency on large-scale databases. Hence, a crucial part of our work consists in the
extensive empirical validations of our methods. Let us briefly highlight some of their most
remarkable experimental achievements.

• SGD-QN won the first Pascal Large Scale Learning Challenge (“Wild track”) (Section 3.2.3);

• LaSVM (Section 4.2) has been successfully trained on 8.1 millions examples on a single
CPU with 6.5 GB of RAM [Loosli et al., 2007] (might be a world record);

• For sequence labeling, LaRank enjoys a linear scaling of time w.r.t. training set size (Sec-
tion 5.3.4);

• LaRankGreedy is as fast as a perceptron and as accurate as a batch method (Section 5.3.4).

Moreover, we also presented an essential theoretical tool for large-scale training methods. In-
deed, the lemma presented in Section 4.4 is critical because it provides generalization guarantees
for incremental learning algorithms without requiring any additional cost.

We finally want to point out that this thesis contains one of the very first work on learning
under ambiguous supervision with [Kate and Mooney, 2007] and [Cour et al., 2009]. We thus
cast a light on a fresh issue that might gain a growing importance in the next few years.

Throughout this thesis, our main motivation has been to propose algorithms to train SVMs
on possibly very large data quantities: experimental evidences on literature benchmarks have
demonstrated the efficiency of our methods. Unfortunately, when dealing with large-scale data,
there exists a gap between dimensions of benchmarks and those of real-world databases. In many
industrial applications, training sets can be orders of magnitude larger than those considered in
this thesis and handling them requires great engineering expertise, in memory storage or thread
parallelization, for instance. Not to display any real-world application can thus be seen as a
limitation of our work because we never clearly demonstrate the ability of our algorithms to
tackle such problems.

This limitation exists in this thesis, as in most machine learning publications. However, even
if no such real-world experiment is presented, we do not elude this issue and discuss some related
aspects such as caching requirements, memory usage or training duration for all our algorithms.
Besides, when used with a linear kernel, training times of SGD-QN and LaRank scale linearly with
the number of examples: considering that any learning algorithms should at least pay a brief
look at each training example, this is the best achievable behavior. Hence, this thesis proposes
methods which could potentially fit for industrial applications.

7.1.2 Further Derivations

As much as possible, we kept the description of our innovative methods as general as possible
because we always had in mind that further derivations are possible and we wanted to ease their
design. Many directions can be followed to carry on with what we have been describing in this
dissertation. An immediate one resides in the application of the efficient LaSVM algorithm to new
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large-scale problems with the use of other refined kernel functions. For instance, [Morgado and
Pereira, 2009] employs LaSVM with string-kernels for protein detection. It is also an appropriate
algorithm for active learning as demonstrated in [Ertekin et al., 2007a, Ertekin et al., 2007b].

Similarly, the LaRank algorithm has been designed for the general topic of structured output
prediction and concretely applied to two derivations, but it could be derived to problems involving
trees, graphs,. . . or many other kind of structures. For instance, in a recent paper, [Usunier et
al., 2009] use LaRank to train a system designed to rank webpages.

In Chapter 3, we introduced SGD-QN for the simple setup of linear SVMs but it could be
transferred on more complex problems. Even though we consider that it is not as efficient as
LaSVM for learning SVMs with non-linear kernels, we believe that SGD-QN could perform very
well on models with non-linear parametrization such as multi-layer perceptrons, or deep neural
networks. Efficient learning of such models raises more and more attention in the literature
[Hinton et al., 2006, Bengio, 2009], and SGD-QN might provide an interesting alternative.

Finally, ambiguously supervised learning systems can be employed for a vast range of tasks,
from speech recognition to information retrieval or image labeling. We have restricted our work
to the case of semantic parsing in which we have a great interest (see Section 7.2.2). Nevertheless,
the general framework described in Section 6.1 can be adapted to dozens of other applications.

7.2 AI Directions

The future research directions described in the previous section are quite straightforward because
they mainly consist in direct extensions of our contributions. However there might also exist
some other perspectives in which our work could apply. Remembering that machine learning is
a subfield of artificial intelligence (AI) we describe two of them now.

7.2.1 Human Homology

Despite three or four decades of research on machine learning, the ability of computers to learn
is still far inferior to that of humans. It can then seem natural to attempt to improve learning
algorithms by imitating human behavior. Trying to mimic human learning with artificial systems
might appear risky and even pretentious, but this is also an exciting challenge that can possibly
afford many side benefits.

Then, if we look at the training examples that humans (or intelligent animals) employ for
learning, we can gather some common properties. Indeed they (we) appear to learn from:

1. abundant data quantities,

2. continuous streams of information,

3. diverse and multimodal sources.

Following [Bengio and Le Cun, 2007], we believe human-homologous learning systems should
also be trained with such data.

The combination of large-scale amounts (point 1) and data streams (point 2) tends to indicate
that an online learning process is somewhat involved. But is this a strict online setup? Could
an additional memory storing a fraction of training samples be appropriate? We might like to
investigate if online procedures implementing the Process/Reprocess principle (introduced in
Chapter 4 and 5) could share some properties with biological learning systems.

The point 3 indicates that algorithms must be able to handle diverse data formats: video,
audio, text, sensors, . . . Multi-view learning or transfer learning seem then appropriate. In par-
ticular, the latter aims at building systems able to to leverage knowledge previously acquired on
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a given task in order to improve the efficiency and accuracy of learning in a new domain. Such
methods naturally benefit from diverse sources of data. But, a framework based on ambiguous
supervision could also be suitable. As we explained in Chapter 6, ambiguously supervised exam-
ples can be created within multimodal environments, by using time-synchronization for instance.
An interesting challenge, in which our work could apply, could then be to conceive and study
systems able to (1) automatically generate training examples out of multimodal environments
and (2) train from them in an online fashion.

Some of the contributions of this dissertation could be of some interest in fields located quite
far from their original purposes, because some of our work might be nicely inserted in human-
inspired artificial learning systems. Of course, we do not mean that they would be useful for
the models they actually train (mostly SVMs), but rather for the innovative training procedures
they implement. Some models like sophisticated kernel methods, multi-layer neural-networks or
reinforcement learning methods, among others, seem more likely to be ultimately learnt.

7.2.2 Natural Language Understanding

Understand, interpret or produce natural language with artificial systems have always been major
challenges of AI. The complexity of the task as well as the dream of “talking to computers” have
driven generation of scientists since the 70’s (e.g. [Winograd et al., 1972, Winston, 1976]) and
the origin of natural language processing (NLP), the related subfield of AI. Besides, systems
able to understand natural language would make a huge leap forward in many applicative areas.
Imagine what could be done with such intelligent tools in translation, summarizing, information
retrieval, speech recognition, interfacing,. . .

Among all concrete challenges AI can offer this one is thus our favorite. In fact, one can
remark that this interest emerges and sweats now and then in this dissertation. In Section 5.3,
two out of the three experimental tasks (Chunking and Part-Of-Speech tagging) are NLP related.
In Chapter 6, we applied our ambiguous supervision framework to semantic parsing because this
task is highly relevant to this issue.

Even if it is not directly in the scope of the thesis, we have recently started a project heading
towards the ultimate goal of understanding natural language. It is destined to study and inves-
tigate ways to build artificial systems able to make the connection between language and some
knowledge about their surrounding environment. This is related to both recent works [Roy and
Reiter, 2005, Mooney, 2008] and old ones; the SHRLDU language by [Winograd et al., 1972] for
blocks worlds remaining the best existing achievement.

Hence, in Appendix C, we present a general framework and learning algorithm for the new task
of concept labeling. This can be seen as a very basic first step to natural language understanding:
one has to associate to each word of a given natural language sentence the unique physical entity
(e.g. person, object, location, . . . ) or abstract concept it refers to. The work displayed in this
appendix tends to demonstrate that grounding language using our innovative framework allows
world knowledge and linguistic information to be used seamlessly during learning and prediction
to resolve ambiguities in language.
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Antoine Bordes and Léon Bottou. in Machine Learning: ECML 2005, 505-512. Springer Verlag.

http://largescale.first.fraunhofer.de/


152 Personal Bibliography

Online (and Offline) Learning on an Even Tighter Budget (2005).
Jason Weston, Antoine Bordes and Léon Bottou. in Proceedings of the 10th International Work-
shop on Artificial Intelligence and Statistics (AISTAT05), 413-420. Society for Artificial Intelli-
gence and Statistics.

Selected Talks

Towards Understanding Situated Text: Concept Labeling & Extensions (2009).
Antoine Bordes, Nicolas Usunier, Ronan Collobert and Jason Weston. at the Learning Work-
shop, Clearwater, USA. 13-17 April 2009.

SGDQN, LaRank: Fast Optimizers for Linear SVMs (2008).
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B

Convex Programming with Witness
Families

This appendix presents theoretical elements about convex programming algorithms that rely on
successive direction searches. Results are presented for the case where directions are selected
from a well chosen finite pool, like SMO [Platt, 1999], and for the stochastic algorithms, like the
online and active SVM discussed in Chapter 4.

Consider a compact convex subset F of Rn and a concave function f defined on F . We
assume that f is twice differentiable with continuous derivatives. This appendix discusses the
maximization of function f over set F .

max
x∈F

f(x) (B.1)

This discussion starts with some results about feasible directions. Then it introduces the
notion of witness family of directions which leads to a more compact characterization of the
optimum. Finally it presents maximization algorithms and establishes their convergence to
approximate solutions

B.1 Feasible Directions

Notations Given a point x ∈ F and a direction u ∈ Rn
∗ = Rn, let

φ(x,u) = max{λ ≥ 0 | x + λu ∈ F}
f∗(x,u) = max{f(x + λu), x + λu ∈ F , λ ≥ 0}

In particular we write φ(x,0) = ∞ and f∗(x,0) = f(x).

Definition 1 The cone of feasible directions in x ∈ F is the set

Dx = {u ∈ Rn |φ(x,u) > 0}

All the points x + λu, 0 ≤ λ ≤ φ(x,u) belong to F because F is convex. Intuitively, a direction
u &= 0 is feasible in x when we can start from x and make a little movement along direction u

without leaving the convex set F .

Proposition 14 Given x ∈ F and u ∈ Rn,

f∗(x,u) > f(x) ⇐⇒
{

u′∇f(x) > 0
u ∈ Dx
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Proof Assume f∗(x, u) > f(x). Direction u .= 0 is feasible because the maximum f∗(x, u) is reached

for some 0 < λ∗ ≤ φ(x, u). Let ν ∈ [0, 1]. Since set F is convex, x + νλ∗
u ∈ F . Since function f is

concave, f(x + νλ∗
u)) ≥ (1 − ν)f(x) + νf∗(x, u). Writing a first order expansion when ν → 0 yields

λ∗
u

′
∇f(x) ≥ f∗(x, u) − f(x) > 0. Conversely, assume u

′
∇f(x) > 0 and u .= 0 is a feasible direction.

Recall f(x + λu) = f(x) + λu
′
∇f(x) + o(λ). Therefore we can choose 0 < λ0 ≤ φ(x, u) such that

f(x + λ0u) > f(x) + λ0u
′
∇f(x)/2. Therefore f∗(x, u) ≥ f(x + λ0u) > f(x). !

Theorem 15 ([Zoutendijk, 1960] page 22) The following assertions are equivalent:

i) x is a solution of problem (B.1).

ii) ∀u ∈ Rn f∗(x,u) ≤ f(x).

iii) ∀u ∈ Dx u′∇f(x) ≤ 0.

Proof The equivalence between assertions (ii) and (iii) results from Proposition 14. Assume assertion

(i) is true. Assertion (ii) is necessarily true because f∗(u, x) ≤ maxF f = f(x). Conversely, assume

assertion (i) is false. Then there is y ∈ F such that f(y) > f(x). Therefore f∗(x, y − x) > f(x) and

assertion (ii) is false. !

B.2 Witness Families

We now seek to improve this theorem. Instead of considering all feasible directions in Rn, we
wish to only consider the feasible directions from a smaller set U .

Proposition 16 Let x ∈ F and v1 . . .vk ∈ Dx be feasible directions. Every positive linear
combination of v1 . . .vk (i.e. a linear combination with positive coefficients) is a feasible direction.

Proof Let u be a positive linear combination of the vi. Since the vi are feasible directions there are

yi = x + λivi ∈ F , and u can be written as
P

i γi(yi − x) with γi ≥ 0. Direction u is feasible because

the convex F contains (
P

γiyi) / (
P

γi) = x + (1/
P

γi) u. !

Definition 2 A set of directions U ⊂ Rn
∗ is a “witness family for F” when, for any point x ∈ F ,

any feasible direction u ∈ Dx can be expressed as a positive linear combination of a finite number
of feasible directions vj ∈ U ∩ Dx.

This definition directly leads to an improved characterization of the optima.

Theorem 17 Let U be a witness family for convex set F .
The following assertions are equivalent:

i) x is a solution of problem (B.1).

ii) ∀u ∈ U f∗(x,u) ≤ f(x).

iii) ∀u ∈ U ∩ Dx u′∇f(x) ≤ 0.

Proof The equivalence between assertions (ii) and (iii) results from Proposition 14. Assume assertion

(i) is true. Theorem 15 implies that assertion (ii) is true as well. Conversely, assume assertion (i) is false.

Theorem 15 implies that there is a feasible direction u ∈ Rn on point x such that u
′
∇f(x) > 0. Since

U is a witness family, there are positive coefficients γ1 . . . γk and feasible directions v1, . . . ,vk ∈ U ∩ Dx

such that u =
P

γivi. We have then
P

γjv
′
j∇f(x) > 0. Since all coefficients γj are positive, there is at

least one term j0 such that v′
j0

∇f(x) > 0. Assertion (iii) is therefore false. !
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The following proposition provides an example of witness family for the convex domain Fs that
appears in the SVM QP problem (2.9).

Proposition 18 Let (e1 . . . en) be the canonical basis of Rn. Set Us = {ei − ej , i &= j} is a
witness family for convex set Fs defined by the constraints

x ∈ Fs ⇐⇒
{

∀ i Ai ≤ xi ≤ Bi
∑

i xi = 0

Proof Let u ∈ Rn
∗ be a feasible direction in x ∈ Fs. Since u is a feasible direction, there is λ > 0 such

that y = x + λu ∈ Fs. Consider the subset B ⊂ Fs defined by the constraints:

z ∈ B ⇔


∀ i, Ai ≤ min(xi, yi) ≤ zi ≤ max(xi, yi) ≤ Bi
P

i zi = 0

Let us recursively define a sequence of points z(j) ∈ B. We start with z(0) = x ∈ B. For each t ≥ 0, we
define two sets of coordinate indices I+

t = {i | zi(t) < yi} and I−
t = {j | zj(t) > yj}. The recursion stops

if either set is empty. Otherwise, we choose i ∈ I+
t and j ∈ I−

t and define z(t+1) = z(t)+ γ(t)v(t) ∈ B
with v(t) = ei − ej ∈ Us and γ(t) = min(yi − zi(t), zj(t)− yj) > 0. Intuitively, we move towards y along
direction v(t) until we hit the boundaries of set B.

Each iteration removes at least one of the indices i or j from sets I+
t and I−

t . Eventually one of these
sets gets empty and the recursion stops after a finite number k of iterations. The other set is also empty
because

X

i∈I
+

k

|yi − zi(k)| −
X

i∈I
−

k

|yi − zi(k)| =

n
X

i=1

yi − zi(k) =

n
X

i=1

yi −
n
X

i=1

zi(k) = 0.

Therefore z(k) = y and λu = y − x =
P

t γ(t) v(t). Moreover the v(t) are feasible directions on x

because v(t) = ei − ej with i ∈ I+
t ⊂ I+

0 and j ∈ I−
t ⊂ I−

0 . !

Assertion (iii) in Theorem 17 then yields the following necessary and sufficient optimality crite-
rion for the SVM QP problem (2.9).

∀ (i, j) ∈ {1 . . . n}2 xi < Bi and xj > Aj ⇒ ∂f

∂xi

(x) − ∂f

∂xj

(x) ≤ 0

Different constraint sets call for different choices of witness family. For instance, it is sometimes
useful to disregard the equality constraint in the SVM polytope Fs. Along the lines of Propo-
sition 18, it is quite easy to prove that {±ei, i = 1 . . . n} is a witness family. Theorem 17 then
yields an adequate optimality criterion.

B.3 Finite Witness Families

This subsubsection deals with finite witness families. Theorem 20 shows that F is necessarily a
convex polytope, that is a bounded set defined by a finite number of linear of linear equality and
inequality constraints [Schrijver, 1986].

Proposition 19 Let Cx = {x + u , u ∈ Dx} for x ∈ F . Then F =
⋂

x∈F Cx.

Proof We first show that F ⊂
T

x∈F Cx. Indeed F ⊂ Cx for all x because every point z ∈ F defines a
feasible direction z − x ∈ Dx.

Conversely, Let z ∈ Tx∈F Cx and assume that z does not belong to F . Let ẑ be the projection of z

on F . We know that z ∈ Cẑ because z ∈ Tx∈F Cx. Therefore z − ẑ is a feasible direction in ẑ. Choose

0 < λ<φ (ẑ, z − ẑ). We know that λ < 1 because z does not belong to F . But then ẑ + λ(z − ẑ) ∈ F
is closer to z than ẑ. This contradicts the definition of the projection ẑ. !
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Theorem 20 Let F be a bounded convex set.
If there is a finite witness family for F , then F is a convex polytope1.

Proof Consider a point x ∈ F and let {v1 . . .vk} = U ∩ Dx. Proposition 16 and Definition 2 imply
that Dx is the polyhedral cone {z =

P

γivi, γi ≥ 0} and can be represented [Schrijver, 1986] by a finite
number of linear equality and inequality constraints of the form nz ≤ 0 where the directions n are unit
vectors. Let Kx be the set of these unit vectors. Equality constraints arise when the set Kx contains both
n and −n. Each set K§ depends only on the subset {v1 . . .vk} = U ∩Dx of feasible witness directions in
x. Since the finite set U contains only a finite number of potential subsets, there is only a finite number
of distinct sets Kx.

Each set Cx is therefore represented by the constraints nz ≤ nx for n ∈ Kx. The intersubsubsection
F =

T

x∈F Cx is then defined by all the constraints associated with Cx for any x ∈ F . These constraints
involve only a finite number of unit vectors n because there is only a finite number of distinct sets Kx.

Inequalities defined by the same unit vector n can be summarized by considering only the most

restrictive right hand side. Therefore F is described by a finite number of equality and inequality

constraints. Since F is bounded, it is a polytope. !

A convex polytope comes with useful continuity properties.

Proposition 21 Let F be a polytope, and let u ∈ Rn be fixed.
Functions x 8→ φ(x,u) and x 8→ f∗(x,u) are uniformly continous on F .

Proof The polytope F is defined by a finite set of constraints nx ≤ b. Let KF be the set of pairs (n, b)
representing these constraints. Function x 2→ φ(x, u) is a continuous on F because we can write:

φ(x, u) = min



b − n x

n u
for all (n, b) ∈ KF such that n u > 0

ff

Function x 2→ φ(x, u) is uniformly continuous because it is continuous on the compact F .
Choose ε > 0 and let x, y ∈ F . Let the maximum f∗(x, u) be reached in x + λ∗

u with 0 ≤ λ∗ ≤
φ(x, u). Since f is uniformly continous on compact F , there is η > 0 such that |f(x+λ∗

u)−f(y+λ′
u)| <

ε whenever ‖x − y + (λ∗ − λ′)u‖ < η(1 + ‖u‖). In particular, it is sufficient to have ‖x − y‖ < η and
|λ∗ − λ′| < η. Since φ is uniformly continuous, there is τ > 0 such that |φ(y, u) − φ(x, u)| < η
whenever ‖x − y‖ < τ . We can then select 0 ≤ λ′ ≤ φ(y, u) such that |λ∗ − λ′| < η. Therefore, when
‖x − y‖ < min(η, τ), f∗(x, u) = f(x + λ∗

u) ≤ f(y + λ′
u) + ε ≤ f∗(y, u) + ε.

By reversing the roles of x and y in the above argument, we can similary establish that f∗(y, u) ≤
f∗(x, u) + ε when ‖x − y‖ ≤ min(η, τ). Function x 2→ f∗(x, u) is therefore uniformly continuous on F .

!

B.4 Stochastic Witness Direction Search

Each iteration of the following algorithm randomly chooses a feasible witness direction and
performs an optimization along this direction. The successive search directions ut are randomly
selected (step 2a) according to some distribution Pt defined on U . Distribution Pt possibly
depends on values observed before time t.

Stochastic Witness Direction Search (WDS)

1) Find an initial feasible point x0 ∈ F .

2) For each t = 1, 2, . . . ,

1We believe that the converse of theorem 20 is also true.
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2a) Draw a direction ut ∈ U from a distribution Pt

2b) If u ∈ Dxt−1
and u′

t∇f(xt−1) > 0 ,

xt ← argmax f(x) under x ∈ {xt−1 + λut ∈ F , λ ≥ 0}
otherwise

xt ← xt−1.

Clearly the Stochastic WDS algorithm does not work if the distributions Pt always give
probability zero to important directions. On the other hand, convergence is easily established if
all feasible directions can be drawn with non zero minimal probability at any time.

Theorem 22 Let f be a concave function defined on a compact convex set F , differentiable
with continuous derivatives. Assume U is a finite witness set for set F , and let the sequence
xt be defined by the Stochastic WDS algorithm above. Further assume there is π > 0 such that
Pt(u) > π for all u ∈ U ∩ Dxt−1

. All accumulation points of the sequence xt are then solutions
of problem (B.1) with probability 1.

Proof We want to evaluate the probability of event Q comprising all sequences of selected directions
(u1, u2, . . . ) leading to a situation where xt has an accumulation point x∗ that is not a solution of
problem (B.1).

For each sequence of directions (u1, u2, . . . ), the sequence f(xt) is increasing and bounded. It
converges to f∗ = supt f(xt). We have f(x∗) = f∗ because f is continuous. By Theorem 17, there is a
direction u ∈ U such that f∗(x∗, u) > f∗ and φ(x∗, u) > 0. Let xkt be a subsequence converging to x∗.
Thanks to the continuity of φ, f∗ and ∇f , there is a t0 such that f∗(xkt , u) > f∗ and φ(xkt , u) > 0 for
all kt > t0.

Choose ε > 0 and let QT ⊂ Q contain only sequences of directions such that t0 = T . For any kt > T ,
we know that φ(xkt , u) > 0 which means u ∈ U ∩ Dxkt

. We also know that ukt .= u because we would
otherwise obtain a contradiction f(xkt+1) = f∗(xkt , u) > f∗. The probability of selecting such a ukt is
therefore smaller than (1 − π). The probability that this happens simultaneously for N distinct kt ≥ T
is smaller than (1 − π)N for any N . We get P (QT ) ≤ ε/T 2 by choosing N large enough.

Then we have P (Q) =
P

T P (QT ) ≤ ε
`
P

T 1/T 2
´

= Kε. Hence P (Q) = 0 because we can choose ε

as small as we want, We can therefore assert with probability 1 that all accumulation points of sequence

xt are solutions. !

This condition on the distributions Pt is unfortunately too restrictive. The Process and
Reprocess iterations of the Online LaSVM algorithm (Section 4.2) only exploit directions from
very specific subsets.

On the other hand, the Online LaSVM algorithm only ensures that any remaining feasible
direction at time T will eventually be selected with probability 1. Yet it is challenging to math-
ematically express that there is no coupling between the subset of time points t corresponding
to a subsequence converging to a particular accumulation point, and the subset of time points t

corresponding to the iterations where specific feasible directions are selected.
This problem also occurs in the deterministic Generalized SMO algorithm (Section 2.1.2).

An asymptotic convergence proof [Lin, 2001] only exist for the important case of the SVM QP
problem using a specific direction selection strategy. Following [Keerthi and Gilbert, 2002],
we bypass this technical difficulty by defining a notion of approximate optimum and proving
convergence in finite time. It is then easy to discuss the properties of the limit point.
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B.5 Approximate Witness Direction Search

Definition 3 Given a finite witness family U and the tolerances κ > 0 and τ > 0, we say that
x is a κτ -approximate solution of problem (B.1) when the following condition is verified:

∀u ∈ U , φ(x,u) ≤ κ or u′∇f(x) ≤ τ

A vector u ∈ Rn such that φ(x,u) > κ and u′∇f(x) > τ is called a κτ -violating direction in
point x.

This definition is inspired by assertion (iii) in Theorem 17. The definition demands a finite
witness family because this leads to Proposition 23 establishing that κτ -approximate solutions
indicate the location of actual solutions when κ and τ tend to zero.

Proposition 23 Let U be a finite witness family for bounded convex set F . Consider a sequence
xt ∈ F of κtτt-approximate solutions of problem (B.1) with τt → 0 and κt → 0. The accumulation
points of this sequence are solutions of problem (B.1).

Proof Consider an accumulation point x∗ and a subsequence xkt converging to x∗. Define function

(x, τ, κ) 2→ ψ(x, τ, κ, u) =
`

u
′
∇f(x) − τ

´

max {0, φ(x, u) − κ}

such that u is a κτ -violating direction if and only if ψ(x, κ, τ, u) > 0. Function ψ is continuous thanks

to Theorem 20, Proposition 21 and to the continuity of ∇f . Therefore, we have ψ(xkt , κkt , τkt , u) ≤ 0

for all u ∈ U . Taking the limit when kt → ∞ gives ψ(x∗, 0, 0, u) ≤ 0 for all u ∈ U . Theorem 17 then

states that x∗ is a solution. !

The following algorithm introduces the two tolerance parameters τ > 0 and κ > 0 into the
Stochastic Witness Direction Search algorithm.

Approximate Stochastic Witness Direction Search

1) Find an initial feasible point x0 ∈ F .

2) For each t = 1, 2, . . . ,

2a) Draw a direction ut ∈ U from a probability distribution Pt

2b) If ut is a κτ -violating direction,

xt ← argmax f(x) under x ∈ {xt−1 + λut ∈ F , λ ≥ 0}
otherwise

xt ← xt−1.

The successive search directions ut are drawn from some unspecified distributions Pt defined
on U . Proposition 26 establishes that this algorithm always converges to some x∗ ∈ F after a
finite number of steps, regardless of the selected directions (ut). The proof relies on the two
intermediate results that generalize a lemma proposed by [Keerthi and Gilbert, 2002] in the case
of quadratic functions.

Proposition 24 If ut is a κτ -violating direction in xt−1,

φ(xt,ut) u′
t∇f(xt) = 0
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Proof Let the maximum f(xt) = f∗(xt−1, ut) be attained in xt = xt−1+λ∗
ut with 0 ≤ λ∗ ≤ φ(xt−1, ut).

We know that λ∗ .= 0 because ut is κτ -violating and Proposition 14 implies f∗(xt−1, ut) > f(xt−1). If λ∗

reaches its upper bound, φ(xt, ut) = 0. Otherwise xt is an unconstrained maximum and u
′
t∇f(xt) = 0.

!

Proposition 25 There is a constant K > 0 such that

∀t , f(xt) − f(xt−1) ≥ K ‖xt − xt−1‖
Proof The relation is obvious when ut is not a κτ -violating direction in xt−1. Otherwise let the
maximum f(xt) = f∗(xt−1, ut) be attained in xt = xt−1 + λ∗

ut.
Let λ = νλ∗ with 0 < ν ≤ 1. Since xt is a maximum,

f(xt) − f(xt−1) = f(xt−1 + λ
∗
ut) − f(xt−1) ≥ f(xt−1 + λut) − f(xt−1)

Let H be the maximum over F of the norm of the Hessian of f .
A Taylor expansion with the Cauchy remainder gives

˛

˛ f(xt−1 + λut) − f(xt−1) − λu
′
t∇f(xt−1)

˛

˛ ≤ 1

2
λ

2‖ut‖2H

or, more specifically,

f(xt−1 + λut) − f(xt−1) − λu
′
t∇f(xt−1) ≥ −1

2
λ

2‖ut‖2H

Combining these inequalities yields

f(xt) − f(xt−1) ≥ f(xt−1 + λut) − f(xt−1) ≥ λu
′
t∇f(xt−1) −

1

2
λ

2‖ut‖2H

Recalling u
′
t∇f(xt−1) > τ , and λ‖ut‖ = ν‖xt − xt−1‖, we obtain

f(xt) − f(xt−1) ≥ ‖xt − xt−1‖
„

ν
τ

U
− ν

2 1

2
DH

«

where U =max
U

‖u‖ and D is the diameter of the compact convex F .

Choosing ν = min
“

1,
τ

UDH

”

then gives the desired result. !

Proposition 26 Assume U is a finite witness set for set F . The Approximate Stochastic WDS
algorithm converges to some x∗ ∈ F after a finite number of steps.

Proof Sequence f(xt) converges because it is increasing and bounded. Therefore it satisfies Cauchy’s
convergence criterion:

∀ ε > 0, ∃ t0, ∀ t2 > t1 > t0,

f(xt2) − f(xt1) =
X

t1<t≤t2

f(xt) − f(xt−1) < ε

Using Proposition 25, we can write:

∀ ε > 0, ∃ t0, ∀ t2 > t1 > t0,

‖xt2 − xt1‖ ≤
X

t1<t≤t2

‖xt − xt−1‖ ≤
X

t1<t≤t2

f(xt) − f(xt−1)

K
<

ε

K

Therefore sequence xt satisfies Cauchy’s condition and converges to some x∗ ∈ F .

Assume this convergence does not occur in a finite time. Since U is finite, the algorithm exploits at

least one direction u ∈ U an infinite number of times. Therefore there is a strictly increasing sequence

of positive indices kt such that ukt = u is κτ -violating in point xkt−1. We have then φ(xkt−1, u) >

κ and u
′
∇f(xkt−1) > τ . By continuity we have φ(x∗, u) ≥ κ and u

′
∇f(x∗) ≥ τ . On the other

hand, Proposition 24 states that φ(xkt , u) u
′
∇f(xkt) = 0. By continuity when t → 0, we obtain the

contradiction φ(x∗, u) u
′
∇f(x∗) = 0. !
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In general, Proposition 26 only holds for κ > 0 and τ > 0. [Keerthi and Gilbert, 2002] assert a
similar property for κ = 0 and τ > 0 in the case of SVMs only. Despite a mild flaw in the final
argument of the initial proof, this assertion is correct [Takahashi and Nishi, 2003].

Proposition 26 does not prove that the limit x∗ is related to the solution of the optimization
problem (B.1). Additional assumptions on the direction selection step are required. Theorem 27
addresses the deterministic case by considering trivial distributions Pt that always select a κτ -
violating direction if such directions exist. Theorem 28 addresses the stochastic case under mild
conditions on the distribution Pt.

Theorem 27 Let the concave function f defined on the compact convex set F be twice differen-
tiable with continuous second derivatives. Assume U is a finite witness set for set F , and let the
sequence xt be defined by the Approximate Stochastic WDS algorithm above. Assume that step
(2a) always selects a κτ -violating direction in xt−1 if such directions exist. Then xt converges to
a κτ -approximate solution of problem (B.1) after a finite number of steps.

Proof Proposition 26 establishes that there is t0 such that xt = x∗ for all t ≥ t0. Assume there is a

κτ -violating direction in x∗. For any t > t0, step (2a) always selects such a direction, and step (2b) makes

xt different from xt−1 = x∗. This contradicts the definition of t0. Therefore there are no κτ -violating

direction in x∗ and x∗ is a κτ -approximate solution. !

B.5.1 Example (SMO)

The SMO algorithm (Section 2.1.2) is2 an Approximate Stochastic WDS that always selects a
κτ -violating direction when one exists. Therefore Theorem 27 applies.

Theorem 28 Let the concave function f defined on the compact convex set F be twice differ-
entiable with continuous second derivatives. Assume U is a finite witness set for set F , and
let the sequence xt be defined by the Approximate Stochastic WDS algorithm above. Let pt be
the conditional probability that ut is κτ -violating in xt−1 given that U contains such directions.
Assume that lim sup pt > 0. Then xt converges with probability one to a κτ -approximate solution
of problem (B.1) after a finite number of steps.

Proof Proposition 26 establishes that for each sequence of selected directions ut, there is a time t0 and
a point x∗ ∈ F such that xt = x∗ for all t ≥ t0. Both t0 and x∗ depend on the sequence of directions
(u1, u2, . . . ).

We want to evaluate the probability of event Q comprising all sequences of directions (u1, u2, . . . )
leading to a situation where there are κτ -violating directions in point x∗. Choose ε > 0 and let QT ⊂ Q
contain only sequences of decisions (u1, u2, . . . ) such that t0 = T .

Since lim sup pt > 0, there is a subsequence kt such that pkt ≥ π > 0. For any kt > T , we know that
U contains κτ -violating directions in xkt−1 = x∗. Direction ukt is not one of them because this would
make xkt different from xkt−1 = x∗. This occurs with probability 1 − pkt ≤ 1 − π < 1. The probability
that this happens simultaneously for N distinct kt > T is smaller than (1 − π)N for any N . We get
P (QT ) ≤ ε/T 2 by choosing N large enough.

Then we have P (Q) =
P

T P (QT ) ≤ ε
`
P

T 1/T 2
´

= Kε. Hence P (Q) = 0 because we can choose ε

as small as we want. We can therefore assert with probability 1 that U contains no κτ -violating directions

in point x∗. !

2Strictly speaking we should introduce the tolerance κ > 0 into the SMO algorithm. We can also claim that
[Keerthi and Gilbert, 2002, Takahashi and Nishi, 2003] have established proposition 26 with κ = 0 and τ > 0 for
the specific case of SVMs. Therefore theorems 27 and 28 remain valid.
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B.5.2 Example (LaSVM)

The LaSVM algorithm (Section 4.2) is3 an Approximate Stochastic WDS that alternates two
strategies for selecting search directions: Process and Reprocess. Theorem 28 applies because
lim sup pt > 0.

Proof Consider a arbitrary iteration T corresponding to a Reprocess.
Let us define the following assertions:

A – There are τ -violating pairs (i, j) with both i ∈ S and j ∈ S.
B – A is false, but there are τ -violating pairs (i, j) with either i ∈ S or j ∈ S.
C – A and B are false, but there are τ -violating pairs (i, j).
Qt – Direction ut is τ -violating in xt−1.

A reasonment similar to the convergence discussion in Section 4.2 gives the following lower bounds (where
n is the total number of examples).

P (QT |A) = 1
P (QT |B) = 0 P (QT+1|B) ≥ n−1

P (QT |C) = 0 P (QT+1|C) = 0 P (QT+2|C) = 0 P (QT+3|C) ≥ n−2

Therefore
P ( QT ∪ QT+1 ∪ QT+2 ∪ QT+2 | A ) ≥ n−2

P ( QT ∪ QT+1 ∪ QT+2 ∪ QT+2 | B ) ≥ n−2

P ( QT ∪ QT+1 ∪ QT+2 ∪ QT+2 | C ) ≥ n−2

Since pt = P (Qt | A ∪ B ∪ C) and since the events A, B, and C are disjoint, we have

pT + pT+1 + pT+2 + pT+4 ≥ P ( QT ∪ QT+1 ∪ QT+2 ∪ QT+2 | A ∪ B ∪ C ) ≥ n−2

Therefore lim sup pt ≥ 1
4

n−2. !

B.5.3 Example (LaSVM + Gradient Selection)

The LaSVM algorithm with Gradient Example Selection remains an Approximate WDS algo-
rithm. Whenever Random Example Selection has a non zero probability to pick a τ -violating
pair, Gradient Example Selection picks the a τ -violating pair with maximal gradient with prob-
ability one. Reasoning as above yields lim sup pt ≥ 1. Therefore Theorem 28 applies and the
algorithm converges to a solution of the SVM QP problem.

B.5.4 Example (LaSVM + Active Selection + Randomized Search)

The LaSVM algorithm with Active Example Selection remains an Approximate WDS algorithm.
However it does not necessarily verify the conditions of Theorem 28. There might indeed be
τ -violating pairs that do not involve the example closest to the decision boundary.

However, convergence occurs when one uses the Randomized Search method to select an
example near the decision boundary. There is indeed a probability greater than 1/nM to draw
a sample containing M copies of the same example. Reasonning as above yields lim sup pt ≥
1
4 n−2M . Therefore, Theorem 28 applies and the algorithm eventually converges to a solution of
the SVM QP problem.

In practice this convergence occurs very slowly because it involves very rare events. On the
other hand, there are good reasons to prefer the intermediate kernel classifiers visited by this
algorithm (see Section 4.3).

3See footnote 2 discussing the tolerance κ in the case of SVMs.
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C

Learning to Disambiguate Language
Using World Knowledge

Disclaimer

This appendix presents an original work which is not directly related to the general topic of this
thesis. However it introduces some of the first methods and results which have been produced
following the ideas developed in the conclusion (Section 7.2.2). Hence, we believe this can be of
some interest for the reader. This project is a joint work with Jason Weston, Nicolas Usunier
and Ronan Collobert.

Abstract

We present a general framework and learning algorithm for the task of concept labeling : each
word in a given sentence has to be tagged with the unique physical entity (e.g. person, object or
location) or abstract concept it refers to. We show how grounding language using our framework
allows world knowledge to be used during learning and prediction. We show experimentally
using a simulated environment of interactions between actors, objects and locations that we can
learn to use world knowledge to resolve ambiguities in language, such as word senses or reference
resolution, without the use of hand-crafted rules or features.

C.1 Introduction

Much of the focus of the natural language processing community lies in solving syntactic or
semantic tasks with the aid of sophisticated machine learning algorithms and the encoding of
linguistic prior knowledge. For example, a typical way of encoding prior knowledge is to hand-
code syntax-based input features for a given task. One of the most important features of natural
language is that its real-world use (as a tool for humans) is to communicate something about
our physical reality or metaphysical considerations of that reality. This is strong prior knowledge
that is simply ignored in most current systems.

For example, in current parsing systems there is no allowance for the ability to disambiguate
a sentence given knowledge of the physical reality of the world. So, if one happened to know that
Bill owned a telescope while John did not, then this should affect parsing decisions given the
sentence “John saw Bill in the park with his telescope.” Likewise, in terms of reference resolution
one could disambiguate the sentence “He passed the exam.” if one happens to know that Bill is
taking an exam and John is not. Further, one can improve disambiguation of the word bank in
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“John went to the bank” if you happen to know whether John is out for a walk in the countryside
or in the city. In summary, many human disambiguation decisions are in fact based on whether
the current sentence agrees well with one’s current world model. Such a model is dynamic as the
current state of the world (e.g. the existing entities and their relations) changes over time.

In this paper, we propose a general framework for learning to use world knowledge called
the concept labeling task. The knowledge we consider is rudimentary and can be viewed as a
database of physical entities existing in the world (e.g. people, locations or objects) as well as
abstract concepts, and relations between them, e.g. the location of one entity can be expressed
in terms of its relation with another entity. Our task thus consists of labeling each word of a
sentence with its corresponding concept from the database.

The solution to this task does not provide a full semantic interpretation of a sentence, but
we believe is a first step towards that goal. Indeed, in many cases, the meaning of a sentence
can only be uncovered after knowing exactly which concepts, e.g. which unique objects in the
world, are involved. If one wants to interpret “He passed the exam”, one has to infer not only
that “He” refers to a “John”, and “exam” to a school test, but also exactly which “John” and
which test it was. In that sense, concept labeling is more general than the traditional tasks like
word-sense disambiguation, co-reference resolution, and named-entity recognition, and can be
seen as a unification of them.

We then go on to propose a tractable algorithm for this task that can learn to use world
knowledge and linguistic content of a sentence seamlessly without the use of any hand-crafted
rules or features. This is a challenging goal and standard algorithms do not achieve it.

The experimental evaluation of our algorithm uses a novel simulation procedure to generate
natural language and concept label pairs: the simulation generates an evolving world, together
with sentences describing the successive evolutions. This provides large labeled data sets with
ambiguous sentences without any human intervention. Experiments presented in Section C.6
demonstrate that our algorithm can learn to use world knowledge for word disambiguation and
reference resolution when standard methods cannot. We then go on to show in Section C.7 that
we can also learn in the case of (i) using only weakly annotated data and (ii) more realistic data
annotated by humans from RoboCup commentaries [Chen and Mooney, 2008].

In summary, the main contributions of this paper are:

1. the definition of the concept labeling task, including how to define the world (the database
of concepts) (Section C.3),

2. a tractable learning algorithm for this task (using either fully or weakly supervised data)
that uses no prior knowledge of how the concepts are expressed in natural language (Sec-
tion C.4 and Section C.7),

3. the definition of a simulation framework for generating data for this task (Section C.5).

Although clearly only a first step towards the goal of language understanding, which is AI
complete, we feel our work is an original way of tackling an important and central problem.
In a nut-shell, we show one can learn (rather than engineer) to resolve ambiguities using world
knowledge, which is a prerequisite for further semantic analysis, e.g. for communication.

C.2 Previous Work

Our work concerns learning the connection between two symbolic systems: the one of natural
language and the one, non-linguistic, of the concepts present in a database. Making such an
association has been studied as the symbol grounding problem [Harnad, 1990] in the literature.
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More specifically, the problem of connecting natural language to another symbolic system is
called grounded (or situated) language processing [Roy and Reiter, 2005].

Some of the earliest works that used world knowledge to improve linguistic processing involved
hand-coded parsing and no learning at all, perhaps the most famous being situated in blocks
world [Winograd et al., 1972]. More recent works on grounded language acquisition have focused
on learning to match language with some other representation. Grounding text with a visual
representation also in a blocks-type world was tackled [Feldman et al., 1996] (see also [Winston,
1976]). Other works also use visual grounding [Thibadeau, 1986, Siskind, 1994, Yu and Ballard,
2004, Fleischman and Roy, 2007, Barnard and Johnson, 2005], or a representation of the intended
meaning in some formal language [Zettlemoyer and Collins, 2005, Fleischman and Roy, 2005, Kate
and Mooney, 2007, Wong and Mooney, 2007, Chen and Mooney, 2008].

Example applications of such grounding include using the multimodal input to improve clus-
tering (with respect to unimodal input) (see e.g. [Siskind, 1994]), word-sense disambiguation
[Barnard and Johnson, 2005, Fleischman and Roy, 2005], or to make the machine predict one
representation given the other. For instance, [Chen and Mooney, 2008] learn to generate textual
commentaries of RoboCup soccer simulations from a representation of the actions in first-order
logic, and [Zettlemoyer and Collins, 2005] learns to recover logical representations from natural
language queries to a database. Although these learning systems can deal with some ambigui-
ties in natural language (or ambiguities in the target formal representation, see e.g. [Chen and
Mooney, 2008]), the representations that they consider, to the best of our knowledge, do not take
into account the changing environment.

Much work has also been done on knowledge representation itself, see [Russell et al., 1995]
for an introduction. In our work, we choose a simple database representation which we use as
input to our learning algorithm. The focus of this paper is not on knowledge representation, we
made the simplest possible choice to simplify the exposition of the rest of the paper.

Work using linguistic context, i.e. previously uttered sentences, also ranges from dialogue
systems, e.g. [Allen, 1995], to co-reference resolution [Soon et al., 2001]. We do not consider
this type of contextual knowledge in this paper, however our framework is extensible to those
settings.

C.3 The Concept Labeling Task

We consider the following setup. One must learn a mapping from a natural language sentence
x ∈ X to its labeling in terms of concepts y ∈ Y, where y is an ordered set of concepts, one
concept for each word in the sentence1, i.e. y = (c1, . . . , c|x|) where ci ∈ C, the set of concepts.

To learn this task one is given training data triples {xi, yi,Ui}i=1,...,m ∈ X × Y × U where Ui

is one’s knowledge of, i.e. current model of, the world (which we term a “universe”).

Universe We define the universe as a set of concepts and their relation to other concepts:
U = (C,R1, . . . ,Rn) where n is the number of types of relation and (Ri)j ⊂ C2, ∀i = 1, . . . , n,
j = 1 . . . |Ri|.

The universe we consider is in fact nothing more than a relational database, where records
correspond to concepts and each kind of interaction between concepts is a relation table. To
make things concrete we now describe the template database we use in this paper.

1When a phrase, rather than a word, should be mapped to a single concept, only the head word is mapped to
that concept, and the other words are labeled with the empty (“-”) concept.
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He cooks the rice

? ? ? ?

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

y:

u:

<Gina> <Mark>

locatio
n

<John> <cook> <rice>

<hat>

<get>

<move>

containedby

location

location

location

containedby

location

Figure C.1: An example of a training triple (x, y, u). The universe u contains all the
known concepts that exist, and their relations. The label y consists of the concepts that each
word in the sentence x refers to, including the empty concept “-”.

1. Each concept c of the database is identified using a unique string name(c). Each physical
object or action (verb) of the universe has its own referent. For example, two different
cartons of milk will be referred to as <milk1> and <milk2>2.

2. We consider two relation tables3 that can be expressed with the following formula:

• location(c) = c′ with c, c′ ∈ C: the location of the concept c is the concept c′.

• containedby(c) = c′ with c, c′ ∈ C: the concept c′ physically holds the concept c.

An illustrating example of a training triple (x, y, u) is given in Figure C.1.
In our work, we only consider dynamic interactions i.e. in each relation table, relations can

be inserted or deleted over time. Of course this setting is general, and one is free to define any
database one wishes. For example one could (but in this paper we do not) encode static relations
such as categories or hierarchies like the WordNet database [Miller, 1995]. The universe database
u encapsulates the world knowledge available to the learner when making the predictions y about
a sentence x, and a learning algorithm designed to solve the concept labeling task should be able
to use the information within it.

Why is this task challenging? The main difficulty of this task arises with ambiguous words
that can be mislabeled. Any tagging error would destroy subsequent semantic interpretation. A
concept labeling algorithm must be able to use the available information to solve the ambiguities.
In our work, we consider the following kinds of ambiguities (which of course, can be mixed within
a sentence):

• Location-based ambiguities that can be resolved by the locations of the concepts. Ex-
amples: “The father picked it up” or “He got the coat in the hall”. Information about the
location of the father, co-located objects and so on can improve the accuracy of disam-
biguation.

• Containedby-based ambiguities that can be resolved through knowledge of containedby re-
lations as in “the milk in the closet” or “the one in the closet” where there are several cartons
of milk (e.g. one in the fridge and one in the closet).

2Here, we use understandable strings as identifiers for clarity reasons but they have no meaning for the system.
3Of course this list is easily expanded upon. Here, we give two simple properties of physical objects.
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He cooks the rice

? ? ? ?

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

y:

u:

Step 0:

<Gina>

<Mark>

locatio
n

He cooks the rice

? ? ? ?

x:

y:

u:

Step 4:

(2)

(1)

<kitchen>

<garden>

<John>

<rice><cook>

<Gina>

<Mark>

He cooks the rice

? ? ? ?

x:

y:

u:

Step 5:

<kitchen>

<garden>

<John> <rice><cook>

<Gina>

<Mark>

Figure C.2: Inference Scheme. Step 0 defines the task: find the concepts y given a sentence
x and the current state of the universe u. For simplicity only relevant concepts and location
relations are depicted. First, non-ambiguous words are labeled in steps 1-3 (not shown). In step
4, to tag the ambiguous pronoun “he”, the system has to combine two pieces of information: (1)
<rice> and the unknown concept might share the same location, <kitchen>, and, (2) “he” only
refers to a subset of concepts in u (the males).

• Category-based: A concept is identified in a sentence by an ambiguous term (e.g. a
pronoun, a polyseme) and the disambiguation can be resolved by using semantic catego-
rization. Examples: “He cooks the rice in the kitchen” where both a male and a female
are in the kitchen; “John drinks the orange” and “John ate the orange” where there are
two objects <orange fruit> and <orange juice>, which can be disambiguated as one is
drinkable and the other is eatable.

The first two kinds of ambiguities require the algorithm to be able to learn rules based on its
available universe knowledge. The last kind can be solved using linguistic information such as
word gender or category. However, the necessary rules or linguistic information are not given as
input features and again the algorithm has to learn to infer them. This is one of the main goals
of our work.

Figure C.2 describes how an algorithm could perform disambiguation. Even for a simple
sentence the procedure is rather complex and somehow requires “reasoning”. The next section
describes the learning algorithm we propose for this task.

What is this useful for? A realistic setting where our approach can be applied immediately
is within a computer game environment, e.g. multiplayer Internet games. Real-world settings are
also possible but require, for example, vision technologies for building world knowledge beyond
the scope of this work.

Our overall goal is to construct a semantic representation of a sentence. Concept labeling
on its own is not sufficient to do this, however simply adding semantic role labeling (e.g. in
the style of PropBank [Kingsbury and Palmer, 2002]) should then be sufficient. One would
then know both the predicate concepts and the roles of other concepts with respect to those
predicates. For example, “He cooks the rice” from Figure C.1 would be labeled with “He/ARG1
cooks/REL the/- rice/ARG2” as well as with the concept labels y. Predicting semantic roles
should be straight-forward and has been addressed in numerous previous work [Collobert and
Weston, 2008, Pradhan et al., 2004]. For simplicity of exposition we therefore have not focused
on this task.
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Our system then has the potential to disambiguate examples such as the following: “John
went to the kitchen and Mark stayed in the living room. He cooked the rice and served dinner.”

The world knowledge that John is in the kitchen would come from the semantic representa-
tion predicted from the first sentence. This is used to resolve the pronoun “he” using further
background knowledge that cooking is done in the kitchen. All of this inference is learnt from
examples.

C.4 Learning Algorithm

Basic Argmax-type Inference A straight-forward approach one could adopt to learn a func-
tion that maps from sentence x to concept sequence y given u is to consider a model of the form:

y = f(x, u) = argmaxy′ g(x, y′, u), (C.1)

where g(·) returns a scalar that should be a large value when the output concepts y′ are consistent
with both the sentence x and the current state of the universe u. To find such a function, one
can choose a family of functions g(·) and pick the member which minimizes the error:

m
∑

i=1

L(yi, f(xi,Ui)) (C.2)

where the loss function L is 1 if its two arguments differ, and 0 otherwise. However, one practical
issue of this choice of algorithm is that the exhaustive search over all possible concepts in equation
(C.1) could be rather slow.

LaSO-type Inference In this paper we thus employ (a variation on) the LaSO (Learning As
Search Optimization) algorithm [Daumé III and Marcu, 2005]. LaSO’s central idea is to define
a search strategy, and for each choice in the search path to use the function g(·) to make that
choice. One then learns the function g(·) that optimizes the loss of interest, e.g. equation (C.2).
Equation (C.1) is in fact a simple case of LaSO, with a simple (but slow) search strategy.

For our task we propose the following more efficient “order-free” search strategy: we greedily
label the word we are most confident in (possibly the least ambiguous, which can be in any
position in the sentence) and then use the known features of that concept to help label the
remaining ones. That is, we perform the following steps:

1. For a given (x, u), start with predictions ŷ0
j = ⊥ , j = 1, . . . , |x|, where ⊥ means unlabeled.

2. On step t of the algorithm label greedily the concept with the highest score:

ŷt = argmaxy′∈St
g(x, y′, u), (C.3)

where St is defined using ŷt−1 as follows:

St =
[

j: ŷ
t−1

j
=⊥

˘

y
′
˛

˛y
′
j ∈ u and ∀i .= j, y′

i = ŷt−1
i

¯

That is, on each iteration one can label any thus far unlabeled word in the sentence with
a concept; the algorithm picks the one it is most confident in.

3. Repeat (2) to label all words, i.e. t = 1, . . . |x|.

Here, there are only |u| ×| x|! computations of g(·), whereas equation (C.1) requires |u||x|
(and |u| ≫| x|).
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Family of Functions Many choices of g(·) are possible. The actual form of g(·) we chose in
our experiments is:

g(x, y, u) =

|x|
∑

i=1

gi(x, y−i, u)⊤h(yi, u) (C.4)

where gi(·) ∈ R
N is a “sliding window” representation of width w centered on the ith position

in the sentence, y−i is the same as y except that the ith position (y−i)i = ⊥ , and h(·) ∈ R
N

is a mapping into the same space as g(·). We constrain ||h(⊥ , u)|| = 0 so that as yet unlabeled
outputs do not play a role.

A less mathematical explanation of this model is as follows: gi(·) takes a window of the input
sentence and previously labeled concepts centered around the ith word and embeds them into an
N dimensional space. h(yi, u) embeds the ith concept into the same space, where both mappings
are learnt. The magnitude of their dot product in this space indicates how confident the model
is that the ith word, given its context, should be labeled with concept yi.

This representation is useful from a computational point of view because gi(·) and h(·) can
be cached and reused in equation (C.3), making inference fast.

We chose gi(·) and h(·) to be simple two-layer linear neural networks in a similar spirit to
[Collobert and Weston, 2008]. The first layer of both are so-called “Lookup Tables”. We represent
each word W in the dictionary with a unique vector D(W) ∈ R

d and every unique concept name
name(c) also with a unique vector C(name(c)) ∈ R

d, where we learn these mappings. No hand-
crafted syntactic features are used.

To represent a concept and its relations we do something slightly more complicated. A
particular concept c (e.g. an object in a particular location, or being held by a particular
person) is expressed as the concatenation of the three unique concept name vectors:

C̄(c) = (C(name(c)), C(name(location(c))), C(name(containedby(c)))). (C.5)

In this way, the learning algorithm can take these dynamic relations into account, if they are
relevant for the labeling task. Hence, the first layer of the network gi(·) outputs4:

g1
i (x, y−i, u) =

“

D(x
i− w−1

2

), . . . , D(x
i+ w−1

2

), C̄((y−i)i− w−1

2

), . . . , C̄((y−i)i+ w−1

2

”

The second layer is a linear layer that maps from this 4wd dimensional vector to the N dimen-
sional output, i.e. overall we have the function:

gi(x, y−i, u) = Wg g1
i (x, y−i, u) + bg.

Likewise, h(yi, u) has a first layer which outputs C̄(yi), followed by a linear layer mapping from
this 3d dimensional vector to N , i.e.

h(yi, u) = Wh C̄(yi) + bh.

Overall, we chose a linear architecture that avoids engineered features, assumes little prior
knowledge about the mapping task in hand, but is powerful enough to capture many kinds of
relations between words and concepts.

4Padding must be used when indices are out of bounds.
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Training We train our system online, making a prediction for each example. If a prediction is
incorrect an update is made to the model. We define the predicted labeling ŷt at inference step
t (see equation (C.3)) as y-good, compared to the true labeling y, if either ŷt

i = yi or ŷt
i = ⊥ for

all i. Then, during inference, if the current state in the search path ŷt is no longer y-good we
make an “early update” [Collins and Roark, 2004].

The update is a stochastic gradient step so that each possible y-good state one can choose
from ŷt−1 is ranked higher than the current incorrect state, i.e. we would like to satisfy the
ranking constraints:

g(x, ŷt−1
+yi

, u) > g(x, ŷt, u), {∀i : ŷt−1
i = ⊥ } (C.6)

where ŷt−1
+yi

denotes a vector which is the same as ŷt−1 except its ith element is set to yi. Note
that if all such constraints are satisfied then all training examples must be correctly classified.

Why does this work? Consider again the example “He cooks the rice” in Figure C.2. We
cannot resolve the first word in the sentence “He” with the true concept labeling <John> until
we know that “rice” corresponds to the concept <rice> which we know is located in the kitchen,
as is John, thereby making him the most likely referent.

This is why we choose to label words with concepts in an order independent of position in the
sentence (“order-free”) in Equation (C.3), e.g. we did not simply label from left to right because
this does not work. The algorithm has to learn which word to label first, and presumably (and,
this is what we have observed experimentally) it labels the least ambiguous words first. Once
<rice> has been identified, its features including its location will influence the function g(x, y, u)
and the word “He” is more easily disambiguated.

Simultaneously, our method must learn the N dimensional representations gi(·) and h(·) such
that “He’ matches with <John> rather than <Gina>, i.e. equation (C.4) is a larger value. This
should happen because during training <John> and “He” often co-occur. This then concludes
the disambiguation.

Note that our system can learn the general principle that two things that are in the same
place are more likely to be referred to in the same sentence. Our system does not have to re-learn
that for all possible places and things.

In general, our feature representation as given thus far makes it possible to resolve all kinds
of ambiguities, both from syntax, semantics, or a combination. Indeed, all the cases given in
Section C.3 are resolvable with our method.

C.5 A Simulation Environment

To produce a learning problem for our learning algorithm we define a simulation based on the
framework defined in Section C.3. The goal of the simulation is to create an environment mod-
eling a real world situation from which we can generate labeled training data. It has two com-
ponents: (i) the definition of all the concepts constituting the environment and (ii) an iterative
procedure that simulates activities within it and generates natural language sentences grounded
by these actions.

C.5.1 Universe Definition

Our simulation framework is designed to be generic and easily adaptable to many environments.
A universe is defined using two types of definition: (i) basic definitions shared by a large class of
simulation instances; and (ii) definitions dedicated to a particular simulation.
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Basic definitions This first part, shared by each simulation, implements all the tools to create
and manipulate concepts and universes. This includes:

• Defines all the concepts corresponding to verbs in the language. Currently we have 15
verbs: <move>, <get>, <give>, <put>, <sleep>, <wake up>, <play>, <drink>, <eat>,
<bring>, <drop>, <sit>, <stand up>, <cook>, <work>.

• Defines the relation types. Currently, the simulation implements location, containedby,
inherit and state.

• Defines a function exec(c) for each verb c that takes as input a set of concepts (arguments)
and the current universe u, and outputs a (modified) universe. This operation can poten-
tially alter any relation that exists in the universe. For example the concept “<move>”
could have a function exec(<move>) that takes two arguments: a physical object c′1 and a
location c′2, and then outputs a universe where location(c′1) = c′2.

• Defines the function (v, a) = event(u) which returns a randomly generated verb and set
of arguments which are a coherent action given the universe. For example, it can return
an actor moving or picking up an object. However, an actor cannot sit on a seat if it is
occupied, give an object it does not have, and other similar intuitive constraints.

• Defines the function (x, y)=generate(v, a) which returns a sentence and concept labeling
pair given a verb and set of arguments. This sentence should describe the event in natural
language.

Environment definitions These definitions set up the specific physical environment for the
chosen “world”, i.e. the concepts (actors, objects and locations) that inhabit it. It defines the
initial relations. From this starting point the simulation can then be executed.

C.5.2 Simulation Algorithm

The definitions above can create a universe. In order to generate training examples, it has to
evolve, things must happen in it. To simulate activity in the artificial environment we iterate
the following procedure:

1. Generate a new event, (v, a) = event(u).

2. Generate a training sample, i.e. generate(v, a).

3. Update the universe, i.e. u := exec(v)(a, u).

Running this simple procedure modifies the universe at each step. For example, actors can
change location and pick up, exchange or drop objects.

Step 2 is used to generate the training triple (x, y, u). Here, we have specified a computational
method to generate a natural language sentence x. We define for each concept in u a set of phrases
that can be used to name it (ambiguously or not). x is created by choosing and concatenating
these terms along with linking adverbs, using a simple pre-defined grammar. Choosing how often
to select ambiguous words at this step allows one to fix the rate of ambiguous terms in x. In our
experiments we chose to forbid the generation of ambiguous sentences when the ambiguity cannot
be resolved with the current universe information (as in “He drops an apple in the kitchen” when
there is no way to guess who is “He”, e.g. if there are several males holding apples in the kitchen).

This simulation makes testing learning algorithms straight-forward as one can control ev-
erything in it, from the size of its vocabulary to the amount of ambiguity. It also allows us to
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x: the father gets some yoghurt from the sideboard
y: - <John> <get> - <yoghurt> - - <sideboard>

x: he sits on the chair
y: <Mark> <sit> - - <chair>

x: she goes from the bedroom to the kitchen
y: <Gina> <move> - - <bedroom> - - <kitchen>

x: the brother gives the toy to her
y: - <Mark> <give> - <toy> - <Francoise>

x: the cat plays with it
y: - <cat> <play> - <ball>

Table C.1: Examples generated by the simulation. Our task is to label a sentence x given
only world knowledge u (not shown).

cheaply generate thousands of training examples in an online way without requiring any human
annotation to test how algorithms scale. The particular environment we used for our experiments
is described in the next section.

C.6 Experiments

Simulated World To conduct experiments on an environment with a reasonably large size
we built the following artificial universe designed to simulate a house interior. It contains 58
concepts: the 15 verbs listed in Section C.5.1 along with 10 actors (<John>, <dog>,. . . ), 15
small objects (<water>, <chocolate>, <doll>,...), 6 rooms (<kitchen>,. . . ) and 12 pieces of
furniture (<couch>, . . . ).

In our experiments, we define the set of describing words for each concept to contain at
least two terms: an ambiguous one (using a pronoun) and a unique one. 75 words are used for
generating sentences x ∈ X . For example, an iteration of the procedure described in Section C.5.2
could produce the results:

1. The event <move>(<Gina>, <hall>) is picked.

2. Generate the sample (x, y, u) = (“she goes from the bedroom to the hall”, “<Gina> <move>

- - <bedroom> - - <hall>”, u).

3. Modify u with location(<Gina>) = <hall>.

This somewhat limited setup can still lead to millions of possible unique examples. Some
examples of generated sentences are given in Table C.1. For our experiments we record 50,000
triples (x, y, u) for training and 20,000 for testing. Around 55% of these sentences contain lexical
ambiguities.

Algorithms We compare several models. Firstly, we evaluate our “order-free” neural network
based algorithm presented in Section C.4 (NNOF using x + u) and the same where we remove
the grounding to the universe (NNOF using x).

The model with world knowledge has access to the location and containedby features of all
concepts in the universe. For the model without world knowledge we remove the C(name(location(c)))
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Method Features Train Err Test Err
SVMstruct x 42.26% 42.61%
SVMstruct x + u (loc, contain) 18.68% 23.57%
NN x 35.80% 36.97%
NNLR x 32.80% 35.80%
NNLR x + u (loc, contain) 5.42% 5.75%
NNOF x 32.50% 35.87%
NNOF x + u (contain) 15.15% 17.04%
NNOF x + u (loc) 5.07% 5.22%
NNOF x + u (loc, contain) 0.0% 0.11%

Table C.2: Medium-scale world simulation results. We compare our order-free neural
network (NNOF ) using world knowledge u to other variants: without world knowledge (x only),
the same network using left-right resolution NNLF , and SVMstruct versions. NNOF using u
performs best.

and C(name(containedby(c))) features from the concept representation in equation (C.5) and are
left with a pure tagging task, no different in spirit to tasks like named entity recognition.

In all experiments we used word and concept dimension d = 20, g(·) and h(·) have dimension
N = 200, a sliding window width of w = 13 (i.e., 6 words on either side of a central word), and
we chose the learning rate that minimized the training error given in equation (C.2). Complete
code for our algorithms and simulations will be made available in time for the conference.

We also compare to other models. In terms of NNs, we compare order-free labeling to
greedy left-to-right labeling (NNLR) or only using a standard sliding window with no structured
output feedback at all (NN). Finally, we compare all these models to a structured output SVM
(SVMstruct) [Tsochantaridis et al., 2005]. The features from the world model are just used as
additional input features as in C.1. In this case, Viterbi is used to decode the outputs and all
features are encoded in a binary format, as for the NN models. Only a linear model was used
due to the infeasibility of training non-linear kernels (all the NN models are linear as well).

Results The results are given in Table C.2. The error rates, given by equation (C.2), express
the proportion of sequences with at least one incorrect tag. They show that our model (NNOF )
learns to use world knowledge to disambiguate on this task: we obtain a test error close to 0%
with this knowledge, and around 35% error without. The comparison with other algorithms
highlights the following points: (i) order-free labeling of concepts is important compared to more
restricted labeling schemes such as left-right labeling (NNLR); (ii) the architecture of our NN
which embeds concepts helps generalization; this should be compared to SVMstruct which does
not perform as well. Note a nonlinear SVM or a linear SVM with hand-crafted features are likely
to perform better, but the former is too slow and the latter is what we are trying to avoid in this
work as such methods are brittle.

Table C.3 shows some of the features C(name(c)) ∈ R
d learnt by the model, analysing which

concepts are similar to others using Euclidean distance in the 20-dimensional embedding space.
We find that males, females, toys, animals, locations and actions are grouped together without
giving this explicit information to the model. The model learns that these concepts are used in
a similar context, e.g. the females are sometimes referred to by the word “she”.

We constructed our simulation such that all ambiguities could be resolved with world knowl-
edge, which is why we can obtain almost 0%: this is a good sanity check of whether our method
is working well. That is, we believe it is a prerequisite that we do well on this problem if we
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Query Concept Most Similar Concepts

<Gina> <Francoise>, <Maggie>
<Mark> <Harry>, <John>

<cat> <hamster>, <dog>
<football> <toy>, <videogame>
<chocolate> <salad>, <milk>
<desk> <bed>, <table>
<livingroom> <kitchen>, <garden>

<get> <sit>, <give>

Table C.3: Features learnt by the model. Our model learns a representation of concepts
in a 20 dimensional space. Finding nearest neighbors (via Euclidean distance) in this space we
find similar concepts are close to each other. The model learns that female actors are similar,
even though we have not given this information to the model.

hope to do well on harder tasks. The simulation we built uses rules to generate actions and ut-
terances, however our learning algorithm uses no such hand-built rules but instead successfully
learns them. We believe this flexibility is the key to success in real communication tasks, where
brittle engineering approaches have been tried and failed.

One may still be concerned that the environment is so simple that we know a priori that
the model we are learning is sufficiently expressive to capture all the relevant information in the
world. In the real world one would never be able to achieve essentially zero (training/test) error.
We therefore considered settings where aspects of the world could not be captured directly in
the model that is learned: NNOF using x+u (contain) employs a world model with only a subset
of the relational information (it does not have access to the loc relations). Similarly, we tried
NNOF using x + u (loc) as well. The results in Table C.2 show that our model still learns to
perform well (i.e. better than no world knowledge at all) in the presence of hidden/unavailable
world knowledge.

Finally, if the amount of training data is reduced we can still perform well. With 5000 training
examples for NNOF (x + u(loc, contain) ) with the same parameters we obtain 3.1% test error.
This could probably be improved by reducing the high capacity of this model (d, N, w).

C.7 Weakly Labeled Data

So far we have considered learning from fully supervised data annotated with sequence labels of
concepts explicitly aligned to words. Constructing such labeled data requires human annotation
(as was done for example for Penn TreeBank or PropBank [Kingsbury and Palmer, 2002]).

Ideally, one would be able to learn from weakly supervised data of just observing language
given the evolving world-state context. In this section we consider the weakly labeled case with
exactly the same setting of training triples {xi, y

∗
i ,Ui}i=1,...,m as before except y∗

i is a “bag”
(set) of labels of size |xi| where there is no ordering/alignment information to the sentence xi

and show concept labeling can still be performed. This is a more realistic setting and is similar
to the setting described in Chapter 6, except we learn to use world knowledge.

To do this, we employ the same inference algorithm with the same family of functions (C.4).
The only thing that changes is the training algorithm. We still employ LaSo0 based learning but
the update criteria is modified from (C.6) to the following ranking constraints:

g(x, ŷt−1
+(i,j), u) > g(x, ŷt, u), {∀i, j : ŷt−1

i = ⊥ , y∗
j &= ⊥ }
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He cooks the rice

<kitchen>

<garden>

<John>
<rice>

<cook>

x:

y:

u:

<Gina> <Mark>

locatio
n

<cook>
<John>

<rice>

<hat>

<get>

<move>

containedby

location

location

location

containedby

location

Figure C.3: An example of a weakly labeled training triple (x, y, u). This setting is
more realistic and does not require to create fully annotated training data.

where ŷt−1
+(i,j) denotes a vector which is the same as ŷt−1 except its ith element is set to y∗

j . After

y∗
j is used in the inference algorithm it is set to ⊥ so it cannot be used twice. Intuitively, if a

label prediction for the word xj in position j does not belong to the bag y∗ then we require that
any prediction that does belong to the bag y∗ is ranked above this incorrect prediction. If all
such constraints can be satisfied then we predict the correct bags. Even though the alignment
(the concept labeling) is not given, this will implicitly learn it.

Simulation Result with Weak Labeling We employed this approach of weak labeling in
an otherwise identical setup to the simulation experiments from Section C.6, i.e. we trained on
triples (xi, y

∗
i ,Ui) using both loc and containedby world knowledge. We obtained a concept

labeling (alignment) training error of 0.64% and test error of 0.72% (using loss (C.2)). Note that
the “bag” training error rate (percentage times we predict the correct bag) was 0%. This should
be compared with the results in Table C.2 which were trained with fully supervised concept
labeled data. We conclude that our method still performs very well in this more realistic weak
setting.

RoboCup Commentaries We also tested our system on the RoboCup commentary data
set available from http://www.cs.utexas.edu/~ml/clamp/sportscasting/#data. This data
contains human commentaries on football simulations over four games labeled with semantic
descriptions of actions (passes, offside, penalties, . . . along with the players involved) extracted
from the simulation, see [Chen and Mooney, 2008] for details. We treat this representation as a
“bag” of concepts and train weak concept labeling. We trained on all unambiguous (sentence,bag-
of-concept) pairs that occurred within 5 seconds of each other, training on only one match and
testing on the other three, averaged over all four possible splits. We report the “matching”
error [Chen and Mooney, 2008] which measures how often we predict the correct annotation for
an ambiguous sentence. We do this by predicting the bag of labels and choosing to match to
the bag from the ambiguous set that has the highest cosine similarity with our prediction. We
achieve an F1 score of 0.669. Previously reported methods [Chen and Mooney, 2008] Krisper
(0.645 F1) and Wasper-Gen (0.65 F1) achieve similar results, Wasper is worse (0.53 F1), while
random matching yields 0.465 F1. In conclusion, results on this task indicate the usefulness of
our method with weakly labeled human annotated data.

http://www.cs.utexas.edu/~ml/clamp/sportscasting/#data
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C.8 Conclusion

We have described a general framework for language grounding based on the task of concept
labeling. The learning algorithm we propose is scalable and flexible: it learns with raw data,
with no prior knowledge of how concepts in the world are expressed in natural language. We
have tested our framework within a simulation, showing that it is possible to learn (rather than
engineer) to resolve ambiguities using world knowledge. We also showed we can learn using
only weakly supervised data and with real human annotated data (RoboCup commentaries).
Although clearly only a first step towards the goal of language understanding we feel our work
is an original way of tackling an important and central problem.

Many extensions are possible, e.g. further developing the simulation, predicting semantic roles
for full semantic representation, and moving to an open domain. The most direct application of
our work is probably for language understanding within a computer game, although potentially
communication with any kind of static or mobile device (e.g. robots or cell phones) could apply.
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