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Introduction en francais.

Cette these porte sur la structure de Lie de la cohomologie de Hochschild,
donnée par le crochet de Gerstenhaber. Plus précisément, nous étudions la
structure d’algébre de Lie du premier groupe de cohomologie et la structure de
module de Lie des groupes de cohomologie de Hochschild de certaines algebres
monomiales.

Dans cette introduction, nous précisons d’abord le cadre de la these. Nous
présentons ensuite un apercu de la recherche réalisée précédemment. Puis nous
examinons 1’objectif et la motivation de ce travail. Finalement, nous donnons
une description détaillée de chaque chapitre de cette these. Les résultats de la
premiere section du chapitre 4, de la section 3 du chapitre 5 et les annexes A et
B ont fait 'objet de la publication [SF08].

Cadre de la these. Soit A une k-algébre associative avec unité ou k est
un corps commutatif. La cohomologie de Hochschild en degré n de A, dénotée
HH™(A), est définie de la maniere suivante:

HH™(A) = HH™(A,A) = ExtX. (A, A)

olt A€ est l'algeébre enveloppante A°? @ A de A. Par exemple, HHC(A) est
le centre de Palgebre et HH'(A) est I’espace de dérivations extérieures, c’est &
dire le quotient des dérivations de 'algebre modulo les dérivations intérieures.
Remarquons que HH'(A) a une structure d’algebre de Lie donnée par le crochet
commutateur.

En 1963, Gerstenhaber a introduit deux opérations sur les groupes de coho-
mologie de Hochschild: le cup-produit

_~ _:HH™A) x HH™(A) — HH"™"™(A).
et le crochet
[—, —]:HH™A) x HH™(A) — HH™™ T(A).

Il a montré que la cohomologie de Hochschild de A

o0
HH*(A) = @5 HH™A),

n=0
munie du cup-produit est une algebre commutative graduée. En outre, il a
démontré que HH**1(A) munie du crochet de Gerstenhaber a une structure
d’algebre de Lie graduée. Par conséquent, HH'(A) est une algébre de Lie et
HH™(A) est un module de Lie sur HH'(A). En fait, le crochet de Gerstenhaber
restreint & HH'(A) est le crochet commutateur des dérivations extérieures. En
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plus, le cup-produit et le crochet de Gerstenhaber munissent HH*(A) de la
structure d’algebre de Gerstenhaber.

Intérét et recherche précédente. Les structures algébriques sur la coho-
mologie de Hochschild sont importantes dans 1’étude de la théorie des
représentations et des déformations de l'algebre. Les deux structures, celle
d’algebre commutative graduée et celle d’algebre de Lie graduée, sont préservées
sous la relation d’équivalence dérivée. Il a été montré d’abord que la structure
d’algebre commutative de HH*(A) est invariante sous la relation d’équivalence
dérivée [Hap89, Ric91]. Puis, dans [Kel04], Keller a prouvé que le crochet
de Gerstenhaber sur HH*t1(A) est aussi préservé sous la relation d’équivalence
dérivée.

Cependant, la compréhension des deux structures est une tache difficile car
les calculs sont compliqués. Néanmoins, plusieurs résultats ont été obtenus
afin de: (1) décrire la structure d’algebre de la cohomologie de Hochschild
pour certaines algebres, [Hol96, CS97, Cib98, ES98, EH99, SW00, SA02,
EHS02, GA08, Eu07b, FXO06]; (2) étudier la cohomologie de Hochschild mod-
ulo nilpotence [GSS03, GSS06, GS06]; (3) calculer le crochet de Gerstenhaber
[Bus06, Eu07a, SA07].

Objectif. Le but de cette theése est d’étudier la structure de Lie de la
cohomologie de Hochschild pour les algebres monomiales de dimension finie.
Une algebre monomiale est définie comme le quotient de ’algebre de chemins
d’un carquois par un idéal bilatere engendré par un ensemble de chemins de
longueur au moins deux. Nous utilisons les données combinatoires intrinseques
a de telles algebres pour étudier la structure de Lie définie sur la cohomologie de
Hochschild par le crochet de Gerstenhaber. En fait, nous examinons deux aspects
de cette structure algébrique. Le premier est la relation entre la semi-simplicité
du premier groupe de cohomologie de Hochschild et la nullité des groupes de
cohomologie de Hochschild. Dans le second aspect, nous nous concentrons sur
la structure de module de Lie des groupes de cohomologie de Hochschild d’une
famille d’algébres particuliére: celles dont le radical de Jacobson au carré est
nul.

Motivation. Une des motivations principales de cette recherche, a été
suggérée par Christian Kassel a partir des résultats de Claudia Strametz. Dans
[Str06], Strametz a étudié la structure d’algebre de Lie du premier groupe de
cohomologie de Hochschild d’une algebre monomiale. Elle a réussi a décrire le
crochet commutateur en termes de la combinatoire du carquois. Une de ses con-
tributions a été de donner des conditions nécessaires et suffisantes aux données
combinatoires des algebres monomiales afin de garantir la semi-simplicité dans le
premier groupe de cohomologie. De plus, elle a montré que dans ce cas, l'algebre
de Lie semi-simple obtenue est un produit direct de certaines algebres de Lie de
matrices de trace nulle. Les modules de dimension finie sur ces algebres de
Lie sont classifiés et une question naturelle se pose: Quelle est la description
de la cohomologie de Hochschild en degré n en tant que module de Lie sur le
groupe de dérivations extérieures, quand cette derniére est semi-simple? Nous



démontrons dans cette these que pour les algebres monomiales sur un corps de
caractéristique zéro, les groupes de cohomologie de Hochschild de degré au moins
deux sont nuls, ce qui nous amene a nous poser d’autres questions concernant la
structure de la cohomologie. En particulier, nous voulons trouver des exemples
ou la structure de module de Lie des groupes de cohomologie de Hochschild est
non triviale, ce qui ameéne a considérer le cas ou l’algebre de Lie en degré un
est non semi-simple. Nous considérons alors des algebres monomiales dont le
radical de Jacobson au carré est nul. Pour de telles algebres, Claude Cibils a
calculé, dans [Cib98], les groupes de cohomologie en utilisant la combinatoire
du carquois.

Résumé des chapitres. Cette these est divisée en cinq chapitres. Dans le
premier et second chapitres, nous présentons des résultats concernant 1’algebre
de Lie du premier groupe de cohomologie de Hochschild. Dans le troisieme
chapitre, nous considérons la relation entre semi-simplicité sur HH'(A) ol A est
monomiale et la nullité des groupes de cohomologie de Hochschild. Les chapitres
quatre et cinq traitent de la structure de module de Lie de HH™ des algebres
monomiales dont le radical au carré est nul. Décrivons a présent chaque chapitre
en détail.

Premier chapitre. Dans ce chapitre, le but est de rappeler la description
combinatoire, donnée par Strametz, du crochet commutateur défini sur HH'(A).
Pour cela, nous rappelons la description de HH'(A) donnée en termes de fleches
paralleles. Le contenu de ce chapitre est plutot technique, néanmoins les deux
descriptions combinatoires présentées sont les principaux outils pour comprendre
la structure d’algebre de Lie, ce qui est 'objectif du chapitre suivant.

Second chapitre. Nous spécifions la structure d’algebre de Lie de HH'(A):
lorsque le radical de A au carré est nul d’une part et lorsque A est triangulaire
et completement monomiale d’autre part. Une algebre complétement monomiale
est une algebre monomiale qui vérifie la propriété suivante: tout chemin de
longueur au moins deux parallele & un chemin nul dans 'algebre, est aussi nul.
En particulier, les algebres monomiales dont le radical au carré est nul sont des
algebres completement monomiales. Nous étudions deux cas séparément: celui
des algebres compléetement monomiales dont le carquois ne contient pas de cycles
orientés d’une part et le cas des algebres de radical carré nul sans restriction sur
le carquois d’autre part.

En tenant compte du théoreme de décomposition de Levi, nous calculons
d’abord le radical résoluble de HH'(A) pour ensuite obtenir la partie semi-
simple. Cette derniére est précisément le quotient par le radical résoluble.
Dans ce chapitre nous assumons que le corps k est algébriquement clos de car-
actéristique zéro.

Pour les algebres monomiales de radical carré nul, nous montrons que le
premier groupe de cohomologie de Hochschild est une algebre de Lie réductive,
c’est a dire qu’elle est la somme directe d’une algebre de Lie semi-simple et une
algebre de Lie abélienne.



Etant donné un carquois Q, nous dénotons Q, le carquois obtenu en identi-
fiant les fleches paralleles, i.e. les fleches paralleles multiples dans Q sont vues
comme une seule fleche dans Q. Nous dénotons S I’ensemble des fleches de Q qui
correspondent & plus qu'une fleche dans Q. Nous avons la proposition suivante.

PRrROPOSITION. Soit A =kQ/ < Q2 > une algébre monomiale dont le radical
au carré est zéro ou le corps k est algébriquement clos de caractéristique zéro et
ot le carquois Q est fini et connexe. Alors

HH'(A) = [ slw(k) x kXQ
xeS

ot x(Q) = [Q] — |Qqgl + 1 est la caractéristique d’Euler de Q. En particulier,
HH'(A) est réductive.

En particulier lorsque le carquois est un cycle orienté, ’ensemble S est vide.
De plus x(Q) = 1, ainsi dans ce cas HH'(A) est lalgebre de Lie abélienne de
dimension un.

Nous appliquons la proposition ci-dessus au carquois a boucles multiples.
Par définition, le carquois a boucles multiples est le carquois donné par un seul
sommet et au moins deux boucles. L’algebre monomiale dont le radical au carré
est zéro associée au carquois a boucles multiples est k[x1,...%:]/ < xixj >15
ou 1 est le nombre de boucles. Suite a la proposition ci-dessus, le premier groupe
de cohomologie de Hochschild est gl,(k), 'algebre de Lie des matrices carrées
de taille .

Ensuite, nous considérons les algebres completement monomiales sans cycles
orientés dans leur carquois. La partie semi-simple de leur premier groupe de
cohomologie de Hochschild peut étre exprimé dans les mémes termes que dans
le cas précédent. Le radical résoluble n’est plus abélien, cependant nous donnons
une description de celui-ci.

Troisiéme chapitre. Notre principal objectif dans ce chapitre est de mon-
trer que sous ’hypothese de semi-simplicité du premier groupe de cohomologie de
Hochschild d’une algebre monomiale, les groupes de cohomologie de Hochschild
sont nuls a partir du deuxieme degré. Précisément, nous montrons le théoreme
suivant.

THEOREME. Soit Q wun carquois fini et connexe et soit Z un ensemble
minimal de chemins qui est stable par chemins paralléles. Considérons l’algébre
monomiale de dimension finie A =kQ/ < Z > ou le corps k est algébriquement
clos et de caractéristique zéro. Si la graphe sous-jacent a Q est un arbre alors

- HHO(A) =k
- HH'(A) = [T ses Sl (k) et
- HH™(A) = 0 pour tout n > 2.

Pour prouver le théoreme précédent, nous utilisons la résolution projec-
tive de Happel-Bardzell [Bar97| qui est une résolution projective de A comme
Af€-module a gauche.



COROLLAIRE. Soit A = kQ/ < Z > une algébre monomiale de dimension
finie 0w le corps k est algébriquement clos et de caractéristique zéro. Si HH'(A)
est semi-simple alors HH™(A) = 0 pour toute n > 2.

Pour démontrer le corollaire, nous utilisons les conditions pour la semi-
simplicité données par Strametz. Au début de ce chapitre, nous rappelons et
examinons ces conditions pour énoncer son résultat.

PROPOSITION ([Str06]). Soit Q un carquois fini et connexe et soit Z un
ensemble minimal de chemins. Soit A = kQ/ < Z > I’ algébre monomiale de
dimension finie ou le corps k est algébriquement clos et de caractéristique zéro.
Les assertions suivantes sont équivalentes:

(1) HH'(A) est semi-simple.

(2) La graphe sous-jacent du carquois Q est un arbre, Z est stable par
chemins paralléles et I’ensemble S est non vide.

(3) HH'(A) est isomorphe au produit direct non trivial suivant:

H 51\oc|(k)-

xeS

Nous présentons une autre démonstration du théoréeme de Strametz.

Quatriéme chapitre. Nous supposons, tout au long du chapitre, que A est
une algeébre monomiale dont le radical carré est zéro. Nous étudions la structure
de module de Lie des groupes de cohomologie de Hochschild, induite par le
crochet de Gerstenhaber

HH'(A) x HH™(A) — HH™(A).

L’étude dépend de trois cas selon le carquois:

1. le carquois est une boucle,
2. le carquois est un cycle orienté mais pas une boucle, et
3. le carquois n’est pas un cycle orienté.

L’outil principal pour comprendre la structure de module de Lie est la descrip-
tion combinatoire du groupe de cohomologie de Hochschild et du crochet de
Gerstenhaber. Dans la premiere section, nous présenterons le complexe combi-
natoire donné dans [Cib98] qui calcule la cohomologie de Hochschild. Ensuite,
nous rappelons la formulation du crochet de Gerstenhaber donné dans [SFO8]
pour la réalisation des groupes de cohomologie de Hochschild. Cette section
rassemble quelques résultats de mon article [SFO8| pour lesquels les preuves
sont données dans ’appendice de cette these. Dans le reste du chapitre nous
explorons la structure de module de Lie pour les cas mentionnés ci-dessus.

Dans le premier cas, ’algebre que nous considérons est en fait ’algebre de
nombres duaux. Les groupes de cohomologie de Hochschild de degré > 1 de
cette algebre sont des espaces vectoriels de dimension un. Dans la proposition
suivante, nous donnons une base de HH™(A) .
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PROPOSITION. Soit A = k[x]/ < xZ > ot k est un corps de caractéristique
2éro. Pour n > 1, considérons Uapplication @n : A®™ — A donnée par

TOA(fi, x sim est pair
on(f1® - Ofi® - ®fy) = H;1(‘) ' et
[ A(fy,x)x st est impair.

ou fy = A(fy, x)x + A(fy, 1) pouri=1,--- n. Alors HH™(A) = k @n.
Les modules de Lie de dimension un sur une algebre de Lie abélienne sont

donnés par la multiplication par un scalaire dans le corps. Nous précisons le
scalaire qui détermine le module de Lie HH™(A).

PROPOSITION. Soit A = k[x]/ < x? > ot k est un corps de caractéristique
zéro. Pour m > 1, la structure de module de Lie des groupes de cohomologie de
Hochschild, donné par le crochet de Gerstenhaber,

HH'(A) x HH™(A) — HH™(A),
est donnée par
—NPn st M est pair
P1.0n = ) ) )
(1—m)@n sin est impair.
Alors
HHzn(A) ~ HHZTI-H (A)

en tant que modules de Lie.

Maintenant dénotons la cohomologie en degrés impairs par:

HHOIY(A) = G HHT(A).
n=0

Il est clair que HH®99(A) muni du crochet de Gerstenhaber est une algebre de
Lie. Nous décrivons cette algebre de Lie. Soit W 'algebre de Lie des dérivations
de k[x], i.e. W = Der(k[x], k[x]). Elle admet la graduation suivante:

W =P Wa
n=0

ou W, est I'espace vectoriel engendré par la dérivation ¢ : k[x] — k[x] définie
par ¢n(xt) = ix"T,

des dérivations ¢n. De plus, le crochet commutateur est donné par la formule

En fait, toute dérivation est une combinaison linéaire

suivante:

[bn, Pml = (M —M)Drym1.
Clairement, le crochet est gradué si nous considérons les éléments de W;, comme
étant de degré n — 1. D’autre part, nous dénotons

00
Wodd — @WZTLJH

n=0

la sous-algebre de Lie de W.
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PROPOSITION. Soit k un corps de caractéristique zéro et A [algébre des
nombres duauz, c¢’est & dire A = k[x]/ < x2 >. L’algébre de Lie HH?4(A) est
isomorphe a Ualgébre de Lie de dimension infinie W44,

Dans le deuxieme cas, soit Q un cycle orienté de longueur N ou N > 2. Un
élément f dans A = kQ/ < Q2 > est donné par une combinaison linéaire

N
f=> Alf,edei+Alf,ai)a;
i=1
ou ey,...,eN sont les sommets du carquois et ay, ..., ayn sont les fleches. Nous

donnons une base de I’espace vectoriel HH™(A). Voici quelques notations.
Pouri=1,...,N et pour cN > 0 un multiple positif de N, nous dénotons

oi:{1,...,cN}—={1,--- N}

la fonction périodique de période N (i.e. 0i(j) = 0i(j + N)) telle que oj restreint
a lensemble {1,..., N} est la permutation cyclique suivante:

e sii=1alors 01(j) =j pourj=1,...,N;

esii=Nalors on(1)=Net on(j) =j—1pourj=2,...N,

esil <1i< Nalors 0i(j)) =i+ (G—1) pourj =1,...,N—i+1 et

0ij)=G—1)—(N—1) pourj=N—-1+2,...N.
Nous dénotons
O . A®CN — k

I’application linéaire donnée par

cN

7Ti(f1 R Q& ch) = H)\(f]v acri(j))-
=1

Nous démontrons le résultat suivant:

PROPOSITION. Soit A =kQ/ < Q2 > ou le carquois Q est le cycle orienté
de longueur N ot N > 2 et le corps k est de caractéristique zéro. Considérons
Uapplication linéaire @1 : A — A donnée par

@1(f) = A(f,ar)ay.

Alors HHY(A) = k 1.
Pour n > 1, un multiple de N, considérons Uapplication @n : A®™ — A
donnée par

N
Pon(f1®---®fn) Zzﬂi(ﬁ ®---Qfn)e;
i

et Uapplication @nyq: A — A donnée par
Pnt1(fi @ @frp) =mf1 @ @ f)A(frui, ar)ar .

Alors HH™(A) = k @n, et HH™ 1 (A) = kK @np1 sin est pair et HH™(A) est nul
autrement.
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D’apres ce résultat, HH™(A) est un espace vectoriel nul ou de dimension un.
En particulier pour le cas ou cet espace est de dimension un, la structure de
module de Lie de HH™(A) est donnée par la multiplication par un scalaire non
nul. Nous précisons ce scalaire dans la proposition suivante.

PROPOSITION. Soit A = kQ/ < Q2 > ou le carquois Q est le cycle orienté
de longueur N ou N > 2 et le corps k est de caractéristique zéro. Pour n > 1,
la structure de module de Lie des groupes de cohomologie de Hochschild, donné
par le crochet de Gerstenhaber,

HH'(A) x HH™(A) — HH™(A)

est donné par
P1.9n=—CPn

ot ¢ est an entier tel que cN est pair et n = cN oun = cN+ 1, et ¢ est zéro
autrement.

Alors, pour tout entier positif ¢, HHEN(A) = HHNY(A) en tant que mod-
ules de Lie.

Comme auparavant, nous décrivons HH944(A). Pour cela, soit W* la sous-
algebre de W suivante:

W* = P Wai.
n=0

La proposition suivante décrit la structure d’algebre de Lie de HH°44(A) dans
le cas du cycle orienté.

PROPOSITION. Soit A = kQ/ < Q2 > ou k est un corps de caractéristique
zéro, ou Q est le cycle orienté de longueur N et N > 2. L’algebre de Lie

HHC44(A) est isomorphe ¢ W*.

Dans le dernier cas, nous supposons que le carquois n’est pas un cycle orienté,
i.e. Q peut admettre des cycles orientés mais Q ne peut pas étre réduit a un
cycle orienté. Dans ce cas, la description de la structure de module de Lie est
donnée en termes du carquois de ces raccourcis et des ses cycles orientés. Voici
d’abord quelques définitions et quelques notations.

Soient X et Y des ensembles des chemins de Q, alors X || Y dénote I’ensemble
de couples de chemins (o, ) dans X XY que sont paralléles, ¢’est & dire qui parta-
gent le méme sommet d’origine et le méme sommet d’arrivée. Nous dénotons
k(X || Y) le k-espace vectoriel dont la base est I’ensemble X || Y. On appelle
k(Qn || Q1) lespace de raccourcis et k(Qn || Qo) l'espace des cycles orientés
pointés.

La description des groupes de cohomologie de Hochschild comme des quo-
tients de ’espace de raccourcis est donné dans [Cib98]. L’énoncé précis est le
suivant.
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THEOREME ([Cib98]). Soit A = kQ/ < Q2 > ot Q n’est pas un cycle
orienté. Alors, sim > 1

~ k(Qn ” Q1)

HH™(A
( ) Im Dn,1
Dng :k(an1 || Qo) — k(Qn H Q1)
est lapplication linéaire suivante
Dna(y™e)= ) (@™ a+ (=" ) (" 'aa).
acQre aceQ;

De plus, sin > 1, alors
dimiHH™(A) = [Qn || Q1l = 1Qn—1 || Qol-

En utilisant la réalisation ci-dessus, nous décrivons la structure de module
de Lie. Nous démontrons le théoreme suivant.

THEOREME. Soit A =kQ/ < Q2 > ou Q est un carquois fini. Si Q n’est pas
un cycle orienté alors la structure de module de Lie des groupes de cohomologie
de Hochschild donnée par le crochet de Gerstenhaber

HH'(A) x HH™(A) — HH™(A)
est induite par une fonction bilinéaire

k(Q1 || Q1) x k(Qn || Q1) — k(Qn || Q1)

donnée par les formules suivantes:
n
(a,%)-(ay) = 8§ - (o, x) = 3 8¢ - (o a,y)
i=1

ot O est le symbole de Kronecker et x = ay---ay---an est un chemin de longueur
n constitué par les fleches ai. Pour aiy = x le chemin o ¢ a est obtenu en
1

remplacant ai par a.

Cinquiéme chapitre. Dans ce chapitre, nous considérons deux types de
carquois: ceux sans cycles orientés et les carquois & boucles multiples. Nous
relions la structure de module de Lie des groupes de cohomologie de Hochschild
aux modules de Lie sur 'algebre de Lie des matrices carrées de trace zéro sl (k),
en utilisant le théoreme ci-dessus.

Dans le premier cas nous considérons des algebres monomiales triangulaires
dont le radical carré est zéro. Introduisons quelques notations pour énoncer
le résultat. Etant donné une fleche « dans Q;, nous dénotons V le k-espace
vectoriel dont la base est ’ensemble «. L’espace vectoriel V,, a une structure de
module de Lie sur [ ], €0, Endy (Vy/) donné par:

(fcx’)oc/eé1 v =fav).

De plus, étant donné un raccourci T dans Q, i.e. T est un élément de Q,, || Q1,
nous écrivons T = (o1 -+ &4+ - - &n,y) ou &4 et y sont des fleches dans Q.
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THEOREME. Soit A = kQ/ < Q2 > ou Q est un carquois fini sans cycles
orientés et k est un corps algébriquement clos de caractéristique zéro. Alors
pour 1. > 1 la structure de module de Lie de HH™(A) sur HH'(A) induite par le
crochet de Gerstenhaber est donnée de la maniére suivante:

HHY(A) = (P HHYQ)
TeQnIQ

ol
HHFQ) = Vg, @ - @ Vg,

k k t
De plus, HHT(Q) est irréductible.

Le deuxieme cas est le carquois a boucles multiples. Soit A ’algebre mono-
miale dont le radical au carré est zéro, associée a ce carquois. Nous avons déja
mentionné que le premier groupe de cohomologie de Hochschild est isomorphe
a gly(k). Pour cette algebre, nous relions la structure de module de Lie & un
produit tensoriel de deux gl.(k)-module de Lie. L’énoncé précis est le suivant:

THEOREME. Soit A = kQ/ < Q2 > ou Q est le carquois a boucles mul-
tiples et k est un corps algébriquement clos de caractéristique zéro. Alors,
HH'(A) = gl(k) en tant qu’algébres de Lie, ot v est le nombre de boucles. La
structure de module de Lie (induite par le crochet de Gerstenhaber) de HH™(A)
sur HH'(A) = gl.(k) est donnée par lisomorphisme suivant

HH™(A) = V¥ T g s1,(k)

ot V est le gly(k)-module standard et sl.(k) est le gly(k)-module canonique (i.e.
donné par la restriction du module adjoint).

Une observation simple nous donne le résultat suivant.

COROLLAIRE. Pour A comme ci-dessus, HH?(A) = V* @ sl.(k) et pour
n>2,

HH™A) = V* @ HH™ T (A).

Supposons que le corps de base est algébriquement clos de caractéristique
zéro de facon & étudier HH™(A) comme module sur sl.(k). Rappelons deux
résultats classiques de la théorie de Lie, (voir par exemple [EW06, FH91]).

(1) Tout module de Lie de dimension finie sur sl.(k) a une décomposition
en somme directe de modules irréductibles.

(2) Les modules irréductibles sur sl,(k) sont déterminés de maniere unique
par leur vecteur de plus haut poids. Nous dénotons I’ le module
irréductible sur sl.(k) de plus haut poids A.

Pour le carquois & deux boucles, nous donnons de maniere explicite la
décomposition en somme directe de modules irréductibles des groupes de co-
homologie de Hochschild, considérés comme des modules sur sly(k). Le résultat
est le suivant:



15

PROPOSITION. Soit k un corps algébriguement clos de caractéristique zéro,
soit Q le carquois a deux boucles et A =kQ/ < Q2 >. Pourn > 1 soit

h(n) =max{lin+1-21>0}

Pour1=0,...,h(n) soit q(n,1) Uentier suivant:

—1
(“ ) 5il=0,1
1
n+1 B n+1 B n—1 N n—1 Gil>2
l 1—1 1—1 1-2

La décomposition de HH™(A) en somme directe de modules de Lie irréductibles

qmn,l) =

sur slao(k) est donnée par
h(n)
~ L
HHY(A) = DTy
1=0

ot rt“ dénote la somme directe de q copies de Ty, qui est l'unique slo(k)-module
wrréductible de dimension t+ 1.

Dans le cas général du carquois a boucles multiples, nous obtenons
la décomposition en somme directe de modules irréductibles du deuxieme groupe
de la cohomologie de Hochschild, considéré comme module sur sl k. Soit
May.az....a,_;) V'unique module irréductible sur sl.(k) qui a comme plus haut
poids ajwi + aywy + -+ - ar_1wy ou les w; sont les poids fondamentaux sur

sl(k).

PROPOSITION. Soit A =kQ/ < Q2 > ou Q est le carquois a T boucles. La
décomposition de HH%(A) en somme directe de modules irréductibles sur sly(k)
est donnée par:

3T ifr=2
HHZ(A) = r(]‘z) D r(oyz) D I"(OJ) ZfT =3
F0,...02®Ta0,..10 @001 fr>3

Rappelons que la regle de Littlewood-Richardson est utilisée afin d’obtenir
la décomposition en somme directe de modules irréductibles du produit ten-
sorielle de deux modules irréductibles sur sl.(k). Un cas spécial est donné par
la proposition suivante:

PROPOSITION. (Clebsch-Gordon) Pour sly(k) et a > 1
Vv* & ra = ra+1 @ raf1 .
St a=0 alors V¥ @ Ty = V*.

Si r > 2 nous avons la regle de Littlewood-Richardson:
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PROPOSITION. (Régle de Littlewood-Richardson) Pour sl.(k) ou v > 3, la
décomposition en somme directe de modules irréductibles de V* @ T(q; ay.....ar 1)
est

r(a] a2 ,ear 1 +1) D @ r(m ven@i1,ai 1 =T ar 1) D r((h —l,az,..,a,_1)
aiy12>1
En utilisant les propositions ci-dessus, nous décrivons un algorithme qui nous
permet de trouver la décomposition en somme directe de modules irréductibles
sur sly(k) des groupes de cohomologie de Hochschild.

ALGORITHME. Soit A = kQ/ < Q2 > ou Q est le carquois a T boucles.
Nous avons mentionné que HH'(A) est isomorphe & gl.(k) et nous considérons
HH™(A) comme module de Lie sur sl;.(k). Notre but est d’expliquer I’algorithme
que calcule la décomposition en somme directe de modules irréductibles sur
sly(k) de HH™(A). Le premier pas est donné par la proposition ci-dessus qui
donne la décomposition voulue de HH2(A). Pour n > 2 supposons que nous
avons la décomposition suivante:

HH™A) = @ra.

Afin de calculer la décomposition de HH™'(A) nous utilisons que
HH™(A) = V* ® HH™(A). Comme les sommes directes et les produits ten-
soriel commutent, le pas suivant est de calculer la décomposition de V* ® Ty
pour chaque ', qui apparait dans la décomposition de HH™(A). Pour cela, nous
appliquons la regle de Littlewood-Richardson, et de cette maniére nous trouvons
la décomposition de HH™1(A).

Dans le cas v = 2, remarquons que nous obtenons la régle de Pascal tronquée.
Le tableau suivant donne la décomposition des groupes de cohomologie de
Hochschild pour les degrés 2 a 7

n H ro F1 rz F3 F4 F5 F6 F7 rg

HHZ(A) 1 1

HH3(A) || 1 2 1

HH*(A) 3 3 1

HH>(A) || 3 6 4 1
HH®(A) 9 10 5 1
HH7(A) || 9 19 15 6 1

Pour sl;(k) nous obtenons une regle ”tronquée” de Pascal généralisée.



Introduction in English.

This thesis is about the Lie structure on the Hochschild cohomology, given
by the Gerstenhaber bracket. More precisely, we study the Lie algebra structure
of the first Hochschild cohomology group and the Lie module structure of the
Hochschild cohomology groups of some monomial algebras.

In this introduction, we specify first the framework. Next, we present an
overview of the research realized previously. Then we discuss the objective and
the motivation for this work. Finally there is a detailed description of each
chapter of this thesis. The results of the first section of the chapter 4, the third
section of chapter 5 and the annexes A and B were published in [SFO08].

Framework. Let A be an associative unital k-algebra where k is a field.
The Hochschild cohomology group in degree n of A, denoted HH™(A), refers to

HH™(A) = HH™(A,A) = Ext}Xc (A A)

where A€ is the enveloping algebra A°P @ A of A. For instance, HHO(A) is the
center of A and the first Hochschild cohomology group HH'(A) is the vector
space of the outer derivations, this is the quotient of the derivations by the
interior derivations. Note that HH'(A) has a Lie algebra structure given by the
commutator bracket.

In [Ger63], Gerstenhaber introduced two operations on the Hochschild co-
homology groups: the cup product

_ v _:HH™(A) x HH™(A) — HH"“"™(A).
and the bracket
[—, —]:HH™A) x HH™(A) — HH™™ T(A).

He proved that the Hochschild cohomology of A,

o
HH*(A) = @5 HH™A),

n=0
provided with the cup product is a graded commutative algebra. Furthermore,
he demonstrated that HH*T'(A) endowed with the Gerstenhaber bracket has
a graded Lie algebra structure. Consequently, HH'(A) is a Lie algebra and
HH™(A) is a Lie module over HH'(A). As a matter of fact, the Gerstenhaber
bracket restricted to HH'(A) is the commutator bracket of the outer derivations.
In addition, the cup product and the Gerstenhaber bracket endow HH*(A) with
the Gerstenhaber algebra structure.
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Interest and previous research. The algebraic structures on the
Hochschild cohomology are important in the study of the representation and
deformation theory of the algebra.

Both structures, the graded commutative algebra and the graded Lie al-
gebra, are preserved under derived equivalence. First, it was shown that the
commutative algebra structure of HH*(A) is invariant under derived equiva-
lence [Hap89, Ric91]. Then, in [Kel04], Keller proved that the Gerstenhaber
bracket on HH**1(A) is also preserved under derived equivalence.

However, understanding both structures is a difficult assignment since the
computations are complicated. Nevertheless, several results have been obtained
in order to: (1) describe the Hochschild cohomology algebra (or ring) for some al-
gebras, [Hol96, CS97, Cib98, ES98, EH99, SW00, SA02, EHS02, GAO08,
Eu07b, FXO06]; (2) study the Hochschild cohomology ring modulo nilpotence,
[GSS03, GSS06, GS06| and (3) compute the Gerstenhaber bracket [Bus06,
Eu07a, SA07].

Objective. The aim of this thesis is to study the Lie structure on the
Hochschild cohomology of finite dimensional monomial algebras. A monomial
algebra is defined as the quotient of the path algebra of a quiver by a two-sided
ideal generated by a set of paths of length at least two. We use the intrinsic
combinatorial data of such algebras to study the Lie structure defined on the
Hochschild cohomology by the Gerstenhaber bracket. Actually, we discuss two
aspects of such algebraic structure. The first one is the relationship between
semisimplicity on the first Hochschild cohomology groups and the vanishing of
the Hochschild cohomology groups. In the second one, we center our attention
to the Lie module structure of the Hochschild cohomology groups of a particular
family of monomial algebras: those whose Jacobson radical square is zero.

Motivation. One of the principal motivation of this research was suggested
by Christian Kassel from the results of Claudia Strametz. In [Str06], Strametz
studied the Lie algebra structure of the first Hochschild cohomology group of
monomial algebras. She succeed to describe the commutator bracket in terms of
the combinatorics of the quiver. One of her contributions was to provide suffi-
cient and necessarily conditions to the combinatorial data of the monomial alge-
bra in order to guarantee the semisimplicity on the first Hochschild cohomology
group. Moreover, she showed that in this case, the semisimple Lie algebra ob-
tained is isomorphic to a direct product of some Lie algebras of trace zero square
matrices. Finite dimensional modules over these Lie algebras are classified so
a natural question arise: What is the description of the Hochschild cohomology
group in degree n as a Lie module over the Lie algebra of outer derivations, when
this one is semisimple? We show in this thesis that for monomial algebras over a
field of characteristic zero, the Hochschild cohomology groups of degree at least
two are zero, however this answer brings out some other questions concerning the
structure of the cohomology. For instance, the pursuit of examples where the Lie
module structure of the Hochschild cohomology groups is not trivial, this lead
to consider the case where the Lie algebra in the first degree is not semisimple.
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Hence, we consider monomial algebras whose radical square is zero. For these
algebras, Claude Cibils has computed, in [Cib98], the Hochschild cohomology
groups using the combinatorics of the quiver.

Contents of chapters. This thesis is divided into five chapters. In Chap-
ters 1 and 2, we present results concerning the Lie algebra structure of the first
Hochschild cohomology group. In chapter 3, we consider the relationship be-
tween semisimplicity on HH'(A) where A is monomial and the vanishing of the
Hochschild cohomology groups. Chapters 4 and 5 are concerned with the Lie
module structure of HH™(A) where A is a monomial algebra of radical square
zero. We will describe next the contents of each chapter more in detail.

First chapter. In this chapter, the aim is to recall combinatorial descrip-
tion, given by Strametz, of the commutator bracket defined on HH'(A). To do
so, we will remind the description of HH'(A) given in terms of parallel arrows.
The contents of this chapter is rather technical, nevertheless both combinatorial
descriptions presented here are the principal tools to understand the Lie algebra
structure, which is the objective of the subsequent chapter.

Second chapter. We specify the Lie algebra structure of HH'(A): when
A has radical square zero in one hand and when A is a triangular complete
monomial algebra in the other hand. A complete monomial algebra is a monomial
algebra that verifies the following property: every path of length at least two
parallel to a path which is zero in the algebra is also zero. For instance, the
radical square zero monomial algebras are complete monomial. We study both
cases separately: the complete monomial algebras whose quiver contains no
oriented cycles in one hand and radical square zero monomial algebras without
any restriction on the quiver in the other hand.

Keeping in mind Levi’s decomposition theorem, we compute first the solvable
radical of HH'(A) in order to obtain then the semisimple part. Recall that the
semisimple part is precisely the quotient by its solvable radical. In this chapter
we assume that the field k is algebraically closed of characteristic zero.

For the radical square zero monomial algebras, we show that the first
Hochschild cohomology groups is a reductive Lie algebra, this means that it
is the direct sum of a semisimple Lie algebra and an abelian Lie algebra.

Given a quiver Q, we denote Q the quiver obtained by identifying parallel
arrows, i.e. multiple parallel arrows in Q are seen as only one arrow in Q. Denote
S the set of arrows in Q that correspond to more than one arrow in Q. We have
the following proposition.

PROPOSITION. Let A = kQ/ < Q2 > be a monomial algebra of radical
square zero where kK is an algebraically closed field of characteristic zero, and Q
s a finite connected quiver. Then

HH'(A) = [ [ syo(k) x kXQ
xeS

where X(Q) = |Q4|—|Qq|+1 is the Buler characteristic of Q. Therefore, HH!(A)
15 reductive.
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In particular, when the quiver is an oriented cycle the set S is empty. More-
over x(Q) = 1, hence in this case HH'(A) is the one dimensional abelian Lie
algebra.

We apply the above proposition to the multiple loops quiver. By definition,
the multiple-loops quiver is the quiver with one vertex and at least two loops. The
monomial algebra of radical square zero associated to the multiple-loops quiver
is k[x1,...%:]/ < xi%; >{J-:1 where 1 is the number of loops. As a consequence
of the above proposition, the first Hochschild cohomology group is gl (k), the
Lie algebra of square matrices of size .

Next we consider triangular complete monomial algebras. The semisimple
part of the first Hochschild cohomology group can be expressed in the same
terms as in the previous case. The solvable radical is not longer abelian however
we give a description of it.

Third chapter. Our principal objective in this chapter is to show that un-
der the hypothesis of semisimplicity on the first Hochschild cohomology group of
a monomial algebra, the Hochschild cohomology groups vanish from the second
degree. More precisely, we prove the following theorem.

THEOREM. Let Q be a finite connected quiver, and Z a minimal set of
paths closed by parallel paths. Consider the finite dimensional monomial al-
gebra A =kQ/ < Z >, where k is an algebraically closed field of characteristic
zero. If the underlined graph of Q is a tree then

- HHO(A) =k
- ]‘“‘{1 (A) = HocES 51\oc|(k) and
- HH™(A) =0 for alln > 2.

To prove the above theorem, we use as a tool the Happel-Bardzell projective
resolution [Bar97| which is a projective resolution of A as a left A®-module.

COROLLARY. Let A =kQ/ < Z > be a finite dimensional monomial alge-
bra where k is an algebraically closed field of characteristic zero. If HH'(A) is
semisimple then HH™(A) = 0 for alln > 2.

In order to demonstrate the corollary, we used the conditions for semisim-
plicity given by Strametz. At the beginning of this chapter, we recall and discuss
those conditions in order to restate her theorem.

PROPOSITION ([Str06]). Let Q be a quiver and Z a minimal set of paths.
Let A = kQ/ < Z > be the finite dimensional monomial algebra where k is
an algebraically closed field of characteristic zero. The following conditions are
equivalent:

(1) HH'(A) is semisimple.
(2) The underlined graph of the quiver Q is a tree, Z is closed by parallel
arrows and the set S is not empty.
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(3) HH'(A) is isomorphic to the following non trivial direct product of Lie

algebras:
H Sl‘od(k).
xS

We present another proof of Strametz’ theorem.

Chapter four. We will assume, throughout this chapter, that A is a mono-
mial algebra with radical square zero. In this chapter, we will study the Lie
module structure on the Hochschild cohomology groups, induced by the Ger-
stenhaber bracket

HH'(A) x HH™(A) — HH™(A).
The study is in three cases, depending on the quiver:

1. the quiver is a loop,
2. the quiver is an oriented cycle but not the loop, and
3. the quiver is not an oriented cycle.

The principal tool to understand the Lie module structure is the combinato-
rial description of both the Hochschild cohomology group and the Gerstenhaber
bracket. In the first section, we will present the combinatorial complex given
in [Cib98] that computes Hochschild cohomology. Next, we recall the formu-
lation of the Gerstenhaber bracket given in [SF08] for Cibils’ realization of the
Hochschild cohomology groups. This section collects some results of my paper
[SF08], where proofs are given in the appendix of this thesis. In the rest of the
chapter we explore the Lie module structure for the cases above mentioned.

In the first case, the algebra that we are considering is in fact the algebra
of the dual numbers. The Hochschild cohomology vector spaces of degree > 1
of this algebra are one dimensional. In the following proposition, we provide a
basis of HH™(A).

PROPOSITION. Let A = k[x]/ < x? > where k is of characteristic zero. For
n > 1, consider the map @n : A™ — A given by:

H?:] A(fy, x) if n is even
[T A(f,x)x  if nds odd.
where f; = A(fy, x)x + A(fi, 1) fori=1,--- ,n. Then HH™(A) = k o,

(Pn(f1®"'®fi®"'®fn):{

The one dimensional Lie modules over an abelian Lie algebra are given by
the multiplication by some scalar. We precise the scalar determines the Lie
module HH™(A).

PROPOSITION. Let A = k[x]/ < x% > where k is of characteristic zero. For
n > 1, the Lie module structure on the Hochschild cohomology groups given by
Gerstenhaber bracket,

HH'(A) x HH™(A) — HH™(A),
s given by:
] nen if n is even
@1-On (1—n)en ifn is odd.
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Therefore,
HHzn(A) ~ HHZTL+1 (A)

considered as Lie modules.

Now we denote the cohomology in odd degrees by

HHOdd(A) — @ HHZTLJH (A)
n=0

It is clear that the Gerstenhaber bracket endows HH°94(A) with a Lie algebra
structure. We will describe such Lie algebra. Let W be the Lie algebra of deriva-
tions of k[x], i.e. W = Der(k[x],k[x]). Such Lie algebra admits the following

graduation:
(o)
W =P Wa

n=0
where W,, is the vector space generated by the derivation ¢y : k[x] — k[x]
defined by ¢n(x}) = ix™~1, In fact, any derivation is linear combination of the
dn’s. Moreover, the commutator is given by the following formula:

[bn, Pl = (M —M)Prjpm1.

Clearly, the bracket is graded if we consider the elements of W,, as of degree
n — 1. Beside, we will denote

Wedd = (B W i1

n=0

the Lie subalgebra of W.

PROPOSITION. Let k be a field of characteristic zero and A the algebra of
the dual numbers, this is A = k[x]/ < x* >. The Lie algebra HH°4(A) is
isomorphic to the infinite dimensional Lie algebra YW°44,

For the second case, let Q be an oriented cycle of length N where N > 2.
An element f in A =kQ/ < Q; > is given by a linear combination

N
f=> Af eei+Af,ai)a;
i=1
where eq,...,eN are the vertices of the quiver and aj,...,an are the arrows.
We give a basis of the vector space HH™(A). Let us give some notations.
Fori=1,--- N and for cN > 0 a positive multiple of N, we denote

oi:{1,...,cN}—={1,--- N}

the periodic function with period N (i.e. 0i(j) = oi(j+N)) such that oj restricted
to the set {1,..., N} is the following cyclic permutation:
e ifi=1then o1(j)=jforj=1,...,N;
e if i =N then on(1) =N and on(j) =j—1forj=2,...N,
eif 1 <i< N then oi(j) =i+ (G—1)forj=1,...,N—1i+1 and
oii) =G -1 —(N—i) forj=N—1i+2,...N.
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We denote
m ASN ok
the linear map given by
cN

mi(f1 ® - @fn) = Hij’ %oy 5))-
=1

We show the following result.

PROPOSITION. Let A = kQ/ < Q2 > where k is a field of characteristic
zero and Q is the oriented cycle of length N with N > 2. Consider the map
©1:A — A given by

@1(f) = A(f,a1)aq
Then HH'(A) = k @1.
Forn > 1, a multiple of N, consider the map @n : A™ — A given by

N
Pn(fi @ @fn) =) m(fi®- @ fe
i=1

and the map @it : A — A given by
Pn1(fi®- @ fn) =mf1 @ @ f)AM(fug, ar)ar .

Then HH™Y(A) = k@n and HH™ W (A) = k@ny1 if n is even and HH™A) is
zero otherwise.

According to this result, HH™(A) is either zero or a one dimensional vector
space. In the particular case of dimension one, the Lie module structure of
HH™(A) is given by the multiplication by a non-zero scalar. We precise this
scalar in the following proposition.

PROPOSITION. Let A =kQ/ < Q2 > where Q is an oriented cycle of length
N with N > 2 and k is a field of characteristic zero. For n > 1, the Lie mod-
ule structure on the Hochschild cohomology groups, given by the Gerstenhaber
bracket,

HH'(A) x HH™(A) — HH™(A)
s given as follows
P1.Pn=—CPn

where ¢ is an integer such that cN is even and either n = cN orn = cN + 1

and ¢ is zero otherwise.
Therefore, for all positive integer ¢, HHEN(A) = HHNtT(A) as Lie modules.

As before, we describe HH®94(A). To do so let W* be the Lie subalgebra of
W given as follows:

W* = P Wai.
n=0

The following proposition describes the Lie algebra structure of HH°44(A) in
the oriented cycle case.
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PROPOSITION. Let A =kQ/ < Q2 > where Q is the oriented cycle of length
N with N > 2, and k is a field of characteristic zero. The Lie algebra HHO94(A)
18 isomorphic to W*.

In the last case we suppose that the quiver is not an oriented cycle, i.e. Q
can admit cycles but Q cannot be reduced to an oriented cycle. For this case,
the description of the Lie module structure is given in terms of the quiver: of its
shortcuts and oriented cycles. Here is some definitions notations.

Let X and Y be sets consisting of paths of Q, then X || Y denotes the set of
all couples of paths (x, p) in X x Y that are parallels, this means that they share
the same source and the same target. We denote k(X || Y) the k-vector space
whose basis is the set X || Y. We call k(Qy || Q1), the space of shortcuts and
k(Qn || Qo), the space of pointed oriented cycles.

The description of the Hochschild cohomology groups as quotients of the
space of shortcuts is given in [Cib98]. The precise statement is the following.

THEOREM ([Cib98]). Let A = kQ/ < Q2 > where Q is not an oriented
cycle. Then, if n > 1

where

Dy :k(an1 || Qo) — k(Qn H Q1)

1s the following linear map

Dna(y™ e)= ) (ay™ " a+(=1" Y (" 'aq).

aceQre aceQq
Moreover, if n > 1 then

dimHH™A) = [Qn || Q1 = 1Qn-1 [ Qol.

Using the above realization, we describe the Lie module structure. We prove
the following theorem.

THEOREM. Let A = kQ/ < Q2 > where Q is a finite quiver. If Q is not
an oriented cycle then the Lie module structure of the Hochschild cohomology
groups given by the Gerstenhaber bracket

HH'(A) x HH™(A) — HH™(A)
1s induced by the following bilinear map:

k(Q1 [ Q1) x k(Qn || Q1) — k(Qn || Q1)

given as follows
n
(a,%).(0,y) =85 (@, x) = 3 8% - (a0 a,y)
i=1

where & is the Kronecker symbol and x = a1---ai---an s a path of length n
constituted of arrows ai. For ay = x the path « ¢ a is obtained by replacing a;
1

with a.
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Chapter five. In this chapter we consider two kinds of quivers: those with-
out oriented cycles and the multiple-loops. We relate the Lie module structure
of the Hochschild cohomology groups with the Lie modules over the Lie algebra
of trace zero square matrices sl;(k), using the above theorem.

In the first case, we consider triangular monomial algebra of radical square
zero. Let us introduce some notation in order to state the result. Given an
arrow o in Q, we denote V the k-vector space whose basis is the set o«. The
vector space Vi has a Lie module structure over || e Endy (V) given by:

(foc’)(x/€61 v ="fu(v)

Moreover, given a shortcut T in Q, i.e. T is an element of Q,, | Q;, we write
T=(ay- & - xn,y) where a; and y are arrows in Qj.

THEOREM. Let A =kQ/ < Q2 > where Q is a finite quiver without oriented
cycles and k is an algebraically closed field of characteristic zero. Then form > 1
the Lie module structure of HH™(A) over HH'(A) induced by the Gerstenhaber
bracket is given as follows:

HHYA)= @ HHFQ)
TeEQuIIQ
where
HHT(Q) =V, %---@V:q R---@Vy @V,

Moreover, HH}(Q) is irreducible.

The second case is the multiple-loops quiver. Let A be the monomial algebra
of radical square zero, associated to this quiver. We have mentioned that the
first Hochschild cohomology group is isomorphic to gl.(k). For this algebra, we
relate the Lie module structure with a tensor product of two well known modules
of gl(k). The exact statement is as follows:

THEOREM. Let A =kQ/ < Q2 > where Q is a multiple-loops quiver and k
is an algebraically closed field of characteristic zero. Then HH'(A) = gl (k) as
Lie algebras, where v is the number of loops. The Lie module structure (induced
by the Gerstenhaber bracket) of HH™(A) over HH'(A) = gl.(k) is given by the
following isomorphism

HH™Y(A) = V**™ T @ s1,(k)

where V is the standard gl,(k)-module and sl.(k) is the usual gl.(k)-module (i.e.
given by the restriction of the adjoint module).

A simple observation gives the following;:

COROLLARY. For an algebra A as above, HH?(A) = V* @ sl.(k) and for
n > 2 we have

HH™(A) = V* @ HH™ ' (A).
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Assume that the ground field is algebraically closed and of characteristic
zero, in order to study HH™(A) as a module over sl.(k). Let us recall two
classical Lie theory results, (see for instance [EW06, FH91]).

(1) Every (finite dimensional) sl.(k)-module has a decomposition into di-
rect sum of irreducible modules

(2) The irreducible modules over sl.(k) are uniquely determined by their
vector of highest weight. We denote Iy the irreducible sl,(k) module of
highest weight A.

For the two loop quiver, we provide explicitly the decomposition into direct
sum of irreducible modules of the Hochschild cohomology groups, considered as
modules over sly(k). The result is as follows:

PROPOSITION. Let k be an algebraically closed field of characteristic zero, Q
be the two-loops quiver and A =kQ/ < Q2 >. Forn>1 let

h(n) =max{ln+1-21>0}.

For1=0,...,h(n) let q(n,1) be the following number:

(“;]> ifl=0,1
<n+1><n+1)<n—1>+<n—1> if1>2
1 1—1 1—1 1-2

The decomposition of HH™(A) into a direct sum of irreducible Lie modules over
sla(k) is given by

qn,1) =

h(n)
~ 1
HHM(A) = Py
=0
where th denotes the direct sum of q copies of It that is the unique irreducible
sly(k)-module of dimension t+ 1.

In the general case of multiple-loops quiver, we obtain the decomposition into
direct sum of irreducibles modules of the second Hochschild cohomology groups,
considered as a module over sl.(k). Let Iy, ). a, ;) be the unique irreducible
module over sl;.(k) of highest weight a;wq+ ayw>+- - - ar_1w; where wj are the
fundamental weights of sl(k).

PROPOSITION. Let A =kQ/ < Q2 > where Q is a multi-loop quiver with v
loops. The decomposition of HH?(A) into direct sum of irreducible modules as a
module over sl.(k) is given by:

[EXERN ifr=2
HHZ(A) = r(]‘z) &b r(o)z) D r(OJ) ’LfT‘ =3
F10,..02®Ta0,...10®T0,..01 fr>3
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Recall that the Littlewood Richardson rule is used to find the decomposition
into direct sum of irreducibles of the tensor product of two irreducible modules
of sl.(k). A special case is given in the next proposition.

PROPOSITION. (Clebsch-Gordon) For sly(k) and a > 1 the following holds
V'® l—‘a = ra+1 2] ra71 .

If a =0 then V* @ Ty = V*.
For r > 2, we have the Littlewood-Richardson rule:

PROPOSITION. (Littlewood-Richardson rule) For sl.(k) with v > 3, the de-

composition into direct sum of irreducible modules of V* @ T'q; a, 18

ai12>1

Using the above propositions, we provide an algorithm that allows us to
find the decomposition into direct sum of irreducible modules over sl (k) of the
Hochschild cohomology groups.

ALGORITHM. Let A = kQ/ < Q2 > where Q is a multi-loop quiver with r
loops. We have mentioned that HH'(A) is isomorphic to gl,(k). We consider
HH™(A) as sl;(k)-modules. Our aim is to explain an algorithm to calculate the
decomposition into direct sum of irreducible sl,(k)-modules of HH™(A). The
first step is given by the above proposition which gives the wanted decomposition
for HH?(A). For n > 2, let us suppose that we have the following decomposition:

HH™A) = PTa.

In order to calculate de decomposition of HH™t1(A) we used that HH™1(A) =
V* @ HH™(A), which is a consequence of the above theorem. Since direct sums
and tensor products of Lie modules commute, the next step is to calculate the de-
composition of V*®T}, for each I, that appears in the decomposition of HH™(A).
To do so, we apply the Littlewood-Richardson rule, and in this way we find the
decomposition of HH™T(A).

In fact, for r = 2 notice that we obtain a ”truncated” Pascal rule. The
following table gives the decomposition for the Hochschild cohomology groups
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of degrees between 2 and 7.
n H ro F1 rz F3 F4 F5 F6 F7 rg

HHZ(A) 1 1

HH3(A) || 1 2 1

HH*(A) 3 3 1

HH>(A) || 3 6 4 1
HH®(A) 9 10 5 1
HH7(A) || 9 19 15 6 1

For sl.(k) we obtain a "truncated” generalized Pascal rule.



CHAPTER 1

The space of outer derivations of a monomial algebra.

It is well known that the first Hochschild cohomology group is in fact the vec-
tor space of outer derivations. Clearly, it is endowed with a Lie algebra structure
given by the commutator bracket. Such structure was studied by C. Strametz
for the case of finite dimensional monomial algebras, using combinatorial tools.

In this chapter, we will recall the description of the space of outer derivations
using the combinatorial data of a finite-dimensional algebra. Such description is
obtained from the complex induced by the Happel-Bardzell projective resolution.
Then we will remind the description of the commutator bracket given by Stram-
etz in the same terms as the combinatorial realization of the first Hochschild
cohomology group of a monomial algebra.

We will begin recalling the definition of a monomial algebra, and we will fix
the notation that we will be using all along this thesis.

1.1. Monomial Algebras.

Peter Gabriel’s theorem states that any basic, finite dimensional algebra over
an algebraically closed field is isomorphic to a quotient of a path algebra by an
admissible ideal. Monomial algebras are certain quotients of a path algebra, they
play a special role in the study of finite dimensional algebras. In this section we
will recall some generalities about monomial algebras: we will begin with the
definitions of a quiver and its path algebra.

A quiver Q is a directed graph. This means that a quiver is given by the
following data: a set Qg called the set of vertices and a set Q7 called the set
of arrows, together with two applications which are called the source, denoted
s, and the target, denoted t, both defined from the set of arrows to the set of
vertices.

For example, the loop quiver is given by one vertex and one arrow. The
source and the target functions are the same:

o

Another example is the Kronecker quiver, given by a double arrow, this
means that Qo = {ej,e2}, Q1 ={a, a’} and for the source and target functions,
s(a) =s(a’) = ey and t(a) =t(a’) = ey.

a
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The multiple loops quiver is given by one vertex and several loops, like in the
following figure: @
\ A
/N

where 1 is the number of loops.
The multiple arrows quiver is given by the following data: Qo = {e1, e2},
Q1 ={ay,...a}, s(aj) =ejand t(ay) = ez fori =1,...,r. We will denote it by
a
T —
€] ——= €2 = €1 ——= €2

—_—
ar

Given a quiver Q, one constructs paths by concatenating arrows as follows.
Let ai,...,an be arrows such that s(a;) = t(ay1) for i = 1,...,n— 1, the
expression ajdy--- dn is a path denoted p.

an an—1 aq

Let us remark that the source map and the target map can also be defined for
paths as follows: s(p) = s(an) and t(p) = t(aj). Let p and q be two paths,
we say that they are composable if and only if s(p) = t(q), in this case we
write pq for the path obtained after concatenation. Besides, a path c such that
s(c) = t(c) is called an oriented cycle. For example, the arrow in the loop quiver
is an oriented cycle. Moreover, the length of a path is the number of arrows
used in its expression as concatenation of arrows. We will denote Q, the set of
all paths of Q of length n. The set of vertices Qg, which is the set of paths of
length zero, will be considered as the set of trivial paths.

Let p and q be two paths. We say that q divides p if there exist paths x
and y such that p = xqy where x and y are paths. Moreover, the underlying
graph of the quiver is the graph obtained when the orientations of the arrows
are ignored.

Let k be a field. We define the path algebra of a quiver Q as follows: its
underlying vector space has a basis given by all paths of the quiver, and the
multiplication is given by the concatenation of paths whenever they are compos-
able and zero otherwise. Let us remark that kQg has an algebra structure and
kQ7 becomes a kQo—kQq bimodule. Then the path algebra can be equivalently
defined as the tensor algebra of kQq over kQy, i.e.

®ﬂ.
kQ = Tiq, (kQ1) = P kQ, .
n
For instance, the path algebra of the loop quiver is the polynomial algebra in
one variable.

DEFINITION. An admissible ideal I is an ideal of a path algebra of a quiver
Q such that

<Qn>CIC<Q2>
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for some n, where < Qj > is the two-sided ideal generated by Qj.

ExAMPLE. The two-sided ideal generated by Q with n > 2 is an admissible
ideal. Another example is the zero ideal which is admissible if and only if the
quiver has no oriented cycles.

DEFINITION (Monomial algebra). A monomial algebra is a quotient of the
path algebra of a quiver Q by a two-sided ideal generated by a set of paths of
length at least two, which we will denote Z.

ASSUMPTIONS. In this thesis, we are concerned with finite dimensional mono-
mial algebras, according to P. Gabriel theorem quoted above, this means

A =kQ/ < Z > where < Z > is an admissible ideal.
In the sequel, we will assume that

- Q7 and Qg are non-empty sets.

- Q is finite, i.e. Qo and Qq are finite sets.

- Q is a connected, i.e. the underlying graph of Q is connected.

- Z is minimal, this means that for all path p in Z and for all path q # p
that strictly divides the path p, q does not belong to the set Z.

This last assumption is not restrictive since we can always extract from a set of
paths, a minimal subset such that both sets generate the same ideal.
Let B be the set of paths of Q which are not divided by any element of

Z. It is clear that the elements of B form a basis of the monomial algebra A.
Moreover, the Jacobson radical (i.e. the intersection of all left maximal ideals)
of a monomial algebra denoted r = rad A is given by

< Q1>

C<Z>
where < Q7 > is the two-sided ideal generated by Q; (see for instance [Cib90]).
Furthermore, E = kQq is isomorphic to A/r. Moreover A = E & r, as predicted
by Wedderburn-Malcev theorem.

1.2. A description of the first Hochschild cohomology group.

For any algebra A, the Hochschild cohomology groups are computed as the
cohomology of the complex obtained after applying the functor Homae(—, A)
to any projective resolution of A as a left A®-module. The Hochschild coho-
mology groups computation for a monomial algebra has been done using the
Happel-Bardzell projective resolution. Once we have such resolution, a complex
is induced as we have just explained, after applying the functor Homae (—, A).
Then such complex is simplified: the space of cochains are expressed in terms of
parallel paths and the differential maps are expressed in terms of an operation
that replaces parallel arrows in a path. Let us first introduce both tools: parallel
paths and such operation.

DEFINITION (Parallel paths). Given a quiver, we say that two paths o and
[ are parallels if and only if they have the same source and the same target. If
o and (3 are parallels we write « || .
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NOTATION. Let X and Y be sets consisting of paths of Q, then X || Y denotes
the set of all couples of paths (x,) in X x Y that are parallels. We denote
k(X || Y) the k-vector space generated by X || Y.

Now, we introduce the operation that replaces parallel arrows in a path, the
operation ¢ where 1 is a natural number between 1 and the length of the path.
1

DEFINITION (Operation ¢). Given a path «in Qy with n > 1 we will suppose
its expression in arrows is as1 follows: &« = aj---aj---an. Fix a natural number
i from 1 to n. Now, let 3 be a non trivial path in Q, such that a; || . From
such data, a path in Qn4+m_1 can be obtained by replacing the arrow aj by the
path 3:

ar---ai1faip1 - an.

The following picture illustrate such replacing;:

~ 0
/’J \\\
Qan ai—1 Qi1 a

ai

Let us denote k(Qn) the vector space generated by all paths of length n, the
operation ¢ is given by:
1

<i>: k(Qn) xk(Qm) — k(Qner—l)

(o, B)

ar---ai—1Paipr---an ifay || B
=oaof = .
i 0 otherwise.

NOTATION. Let « be a path in Q and (a,y) in Qq || B. Following Strametz
we denote a(®Y) the element in A given by the sum of all nonzero paths (i.e.
paths in B) obtained by replacing each appearance of the arrow a in « by .
If the path o does not contain the arrow a or if every replacement of a in «
is not a path in B, then «(®Y) = 0. For example, let & = aba be a path,
«!®Y) = aby + yba in case aby and yba are paths in B. In general, if the
expression in arrows of & is aj---ai-- - an, then al®Y) is the element of A given
by

n
alay) — Zégi XB(“?Y) Xy

i=1
where 63, is the Kronecker symbol and xp is the characteristic function. It is
clear that o is parallel to o7y for all i. Now, let us suppose « is in a certain set
1

of paths X. We denote (o, «(®Y)) the element in k(X || B) given by the following
sum:

n
(o, @) =3 88 xBloxoy) (o, o).
i=1 ' t t
Now, we are able to state the proposition that gives a combinatorial descrip-
tion of the vector space of outer derivations HH'(A) when A is monomial.
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PROPOSITION ([Str06]). Let A =kQ/ < Z > be a monomial algebra and let
B denote the basis of A, described before. The beginning of the complex induced
by the Happel-Bardzell resolution can be described in the following way:

0 —k(Qo || B) 22 K(Q1 [| B) 25 K(Z | B) = -+
The maps Vo and Py are given by

(1) Pole,y) = Z (a,ay) — Z (a,va)
als(a)=e alt(a)=e
2) Pila,y) = ) (p,p'®Y)
peZ
Therefore,
1Ay ~ Kerg
HH'(A) = Im o

We will give a sketch of the proof of the above proposition. As we have
wrote, the principal tool used in the computation of HH' is the Happel-Bardzell
resolution. Since we are interested in the computation of the first Hochschild
cohomology group, let us only recall the beginning of such resolution. The next
proposition gives the beginning of a resolution of A as a left A®-module where
A =kQ/ < Z > is any finite-dimensional monomial algebra.

PROPOSITION ([Bar97]). Let Q be a finite connected quiver and < Z > be
an admissible ideal of the path algebra kQ. Suppose Z is a minimal set of paths.
Let E =kQq be the semisimple commutative algebra generated by Qo. Consider
the sequence

ARKZOA L ARKQI 9A L ARA A 0
E E E E E

given by the maps:

u(wgy) = Xy
do(x®a®y) = xa®y—x® ay
E E E E
1(x@P®Y) = Y XPp1e-Pit @Pi®Pir1c Py -
E E pez E E

where x, Yy are in A, a is in Q1 and p s in Z which has an expression in arrows

P=P1PiPn.
Then the above sequence is exact at A ®kQ1® A and at A @ kQo ® A.
E E E E

After applying the functor Homae (—, A) to the above resolution, a complex
is obtained. The cochains of this complex, Homae(A ® kX ® A, A), can be
E E

identified with Homee (X, A) using to the following lemma:

LEMMA. Let E be any subalgebra of A. Let M be an E — E bimodule and N
be an A — A bimodule. Then

Homae(A®@M ® A,N) = Homge (M, N).
E E
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The above lemma, which we use to simplify the complex induced by the
Happel-Bardzell resolution, provides an isomorphic complex. The beginning of
such complex computes the zero and the first Hochschild cohomology group.

REMARK. The first Hochschild cohomology of A is the quotient of the kernel
of {1 by the image of g from the complex:

0 — Homge (kQo, A) % Homee (kQ1,A) %5 Homege (kZ, A)
given by the maps
(3) Pof: kQy — A
a — af(s(a)) —f(t(a))a
where f is in Homege (kQq, A).
Pig: kZ - A

(4) Up)
p o= Y propiag(PUpi - Pupy
i

where g is in Homge (kQq, A)

In order to obtain the complex given by Strametz we simplify the above
complex. For a monomial algebra, we identify Homege (kX,A) with k(X || B)
where X is Qg, Q1 or Z. Such identification is based on the following lemma.

LEMMA. Let X and Y be sets of paths. Then
Homege (KX, kY) = k(X || Y).

We provide the explicit isomorphism used to prove the lemma. Given f in
Homege (kX,kY) and « a path in X, f(«) is a linear combination of paths of Y,
ie.

flo) = ) At B) B
pBey
where the sum is over all paths 3 in Y. Since f is an E-E bimodule map, then
fla) = f(t(a)as(a)) = t(a)f(x)s(x). Hence Af(a, ) # O for a path B then
a || B. Therefore, we have the following well-defined morphism:

Homee (KX, kY) — k(X |Y)

f =) > Ml B) (o, B).

aeX RBeY

Conversely, we have the following morphism:

K(X|Y) — Homge(kX,kY)

(x,B) = flap: kKX — kY
x = O0%P
where 8% is the Kronecker symbol and x is a path in X. The above isomorphisms
enable to transcribe morphisms of E — E modules into parallel arrows and vice
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versa. Finally we proceed to translate the differentials into the operations of
replacement of arrows using the previous identifications.

1.3. Combinatorial commutator bracket.

The Lie algebra structure of the outer derivations is given by the commutator
bracket. In order to study such structure using the above combinatorial presen-
tation we translate the commutator bracket in terms of the combinatorial de-
scription of HH'(A) by Strametz. In order to translate the commutator bracket
she gave maps from C'(A,A) to k(Qq || B) and vice versa. Those maps induce
inverse linear isomorphisms at the cohomological level, i.e. between HH'(A). In
fact, they are induced from some comparison maps, which are written explicitly
for the first degree. This procedure enables us to give a Lie algebra structure to
the cochain complex k(Q1 || B).

In this section we will present the quasi-isomorphism maps and the combi-
natorial commutator bracket.

Given f in Homy (A, A) and a an arrow, f(a) is a linear combination of paths
of B, i.e.

fla) =) Aela,¥)v.

vEB

The map from C'(A,A) to k(Q7 || B) is induced by:

C'(A,A) — Kk(Q1|B)

foo= Y Y Mayey).

acQ (a,v)€(Q1|B)

The inverse map is induced by
KQiB) — CUAA)

(v) = Fam: A 2 A

n
a
x = Zéai oy

i=1

where & = aj - - - an, is an element of B. The induced isomorphisms on HH'(A)
given by the above maps are useful to prove the following proposition.

THEOREM ([Str06]). Let A =kQ/ < Z > be a monomial algebra and let B
be the corresponding basis of A. Consider the bracket

[—, —Is:k(Q1 [ B) x k(Qq [| B) — k(Q1 || B)
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given by
[(Cl,(X), (baB)]S = (b’B(a,O())_(a’ o((b»ﬁ))
m
= Zf’&XB(BOa) (b,p o)
(5) i=1
- ZéaLXB 060[3 (a,oc?ﬁ)
where the decomposition in arrows of o and B are x = aj---an and

B =Dbi---bm; the functions 8¢ and xg are the Kronecker symbol and the char-
acteristic function respectively.

The above bracket induces a Lie algebra structure on the first Hochschild
cohomology group HH'(A) = Ker/Impg which is a Lie algebra isomorphic
to HH'(A) with the commutator bracket.

Next we describe the derivations and inner derivations of A as an

E — E bimodule (see [Str06]). Let us introduce notation in order to state the
result. We denote

Derge(A,A) = Derg(A,A) N Homege (A, A)
where Derg(A, A) is the Lie algebra of derivations of A. Denote

Adge(A,A) = Adr(A,A) N Homege (A, A)
where Ady (A, A) is the Lie ideal of inner derivations of A . We have the following
description of Derge (A, A) and Adge (A, A).

PROPOSITION ([Str06]). The Lie algebra Kery (with the bracket described
in the preceding theorem) and Derge (A, A) (with the canonical bracket) are iso-
morphic.

COROLLARY ([Str06]). The Lie ideal Im1o of Kerpy and the Lie ideal
Adge(A,A) of Derge (A, A) are isomorphic.



CHAPTER 2

Lie algebra structure.

In this chapter we are concerned about the Lie algebra structure of the first
Hochschild cohomology group of a monomial algebra. We will determine its
radical and its semisimple part in two cases. The first one is when the monomial
algebra is of radical square zero. In the second case, we consider triangular and
complete monomial algebras. Then, using Levi’s decomposition theorem, we
obtain a complete description of the Lie algebra structure of the first Hochschild
cohomology of such algebras. We will assume, throughout this chapter, that
the field is algebraically closed of characteristic zero. We will begin by some
technical results.

2.1. Parallel arrows.

The combinatorial commutator bracket described in the chapter before in-
duces a Lie algebra structure on the cochains k(Qq || B). Let us remark
that k(Qq || Q1) becomes a Lie subalgebra with the combinatorial commuta-
tor bracket

[—, =Is:k(Q1 ]| Q1) x k(Q1 | Q1) — k(Q1 || Q1)
given by
[(a»a,)) (b)b,)]s = 51‘3/ (b\ a/) - 62’ (a)b/) .

We call k(Qq || Q1) the Lie algebra of parallel arrows. In this section we will
study both Lie algebras: k(Qq || Q1) and k(Qq || B). The results from this
section will allow us to compute the semisimple part and the radical of HH'(A)
in the two cases mentioned before.

Given a quiver Q we have that || is an equivalence relation on the set of
arrows Q7. We denote Q7 the set of equivalence classes. It is clear that the
maps source s and target t are well defined on Q;. The quiver which has Qg as
vertices and Q1 as set of arrows, together with the maps s and t will be denoted
Q. Note that in the quiver Q, all multiple parallel arrows of Q are identified.

For example

Q ~ Q
ny'\n B/\j
where o« ={aV, ..., a™)}, g ={pM ... b2 and y ={cV,... M.

37
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We will show that the Lie algebra k(Qq || Q1) can be expressed as a direct
product of endomorphism Lie algebras gl, where « is an arrow of Q. Let us
introduce such Lie algebras.

NOTATION. Given a in Q; we denote

gla= P kla,a)

a,a’ex

I = Z(a, a).

acx

and

Clearly, the vector space gl, together with the above bracket is a Lie sub-
algebra of k(Qq || Q1). Let us show that these are endomorphism Lie algebras.
Denote V4 the vector space whose basis is the set «, so dimy(Vy) = |af. Con-
sider Endy (Vy), the Lie algebra of endomorphism of V4 with the commutator
bracket. We will show that Endy (V) and gly are isomorphic. Given a,a’ € «,
denote f(q q/): Va — Vi the linear morphism given by:

fla,an()_Ax) =Aad’.
x€a
The inverse map is given by the following:

gly,  — Endk(Va)
(a,a") = —flqa)
The minus sign in the right side is needed in order to guarantee this map to
be an homomorphism of Lie algebras. Therefore, gl, is isomorphic to the Lie
algebra of endomorphism of V,. We will use such Lie algebra to describe the

Lie algebra structure of the parallel arrows. The description of the Lie algebra
k(Q1 || Q1) and its radical is given by the following lemma.

LEMMA 2.1.1.

KQi Q=[] 9
xeQ
as Lie algebras. Moreover,
radk(Qr | Q1) = J] ke
xEQ;
PROOF. If oc # 3 then gl N glg =0 and
[(a,a’),(b,b)]s =0

for all (a,a’) in gl and (b,b’) in gls. Then it is easy to conclude that k(Q7 || Q1)
is the product of all gl,. Now, recall that the radical of Lie algebras commutes
with finite products, so the radical of k(Q7 || Q1) is the product of the radicals of
the gl,’s. Since the radical of gl is k I+, we obtain that the radical of k(Qq || Q1)
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is the direct product of kI4’s. For the last statement, it is enough to compute
[(a,a’), I4]ls where a, a’ are in o, and « € Q.

[(Cl,(l/), ICX]S = eroc[(aa Cl.,), (Xax)]s
= eraéﬁ(a) Cl/) - 52,(0, a/)

= (a,a’)—(a,a’) =0
O

Now we are ready to study the Lie algebra k(Qq || B). Let us remark that

N
K(Q1 | B) = k(Q1 || Qo) @ k(Q1 || Q1) & @DK(Q1 | BN QY)
i=2
where N is the maximum length of non-zero paths in A. If we set that the
elements of k(Qq || BN Q4) are of degree i — 1, the combinatorial commutator
bracket is graded. Let

N
R=EPk(Q1BNQw.
i=2

LEMMA 2.1.2. Let Q be a quiver without loops and consider the Lie algebra
k(Q1 || B). Then R is a solvable ideal. Since k(Qq || Q1) is a subalgebra, the
following decomposition of k(Qq || B) holds

k(Q1 [ B) =k(Q1 [ Q1) &R.

PROOF. First we prove that R is an ideal, to do so let (x,y™) be in k(Qq || B)
and let (y,y™) be in R (i.e. m > 2). Using the definition of the combinato-
rial commutator bracket, [(x,y™), (y,y™)ls is in k(Q1 || B N Qnim—1) where
n+m-—12>2. So it is clear that R is an ideal. Let us prove that R is solv-
able, i.e. that its derived series 2 (R) vanishes for some 1. Recall that if g is
a Lie algebra then its derived series is the sequence defined by 2°(g) = g and
2% (g) = [2Yg) , 2'(g)]. In order to prove that R is solvable, let us remark
the following;:

N
2'(R) =[R,Rls CEHk(Q: || BNQy).

i=3

Moreover, the derived series of R satisfies
N
7 (R) =[Z*R), Z*R)s € €D k(Q1 | BNQy)
1=tk 41

where 1 < ix41 < N. Then it is clear that R is solvable since there exists k such
that B N Q; is empty for i > k. Therefore 21 (R) = 0. O

The following lemma allows to calculate the radical of k(Qq || B).

LEMMA 2.1.3. Let Q be a quiver without loops. Consider the Lie algebra
k(Q1 || B). Then radk(Qq || Q1) ® R is a solvable ideal. Therefore, it belongs
to rad k(Qq || B).
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PROOF. Let I=r1adk(Q;1 | Q1) ®R= Hoce@ kIy @ R. First, we will show
that I is an ideal. Since we have shown that R is an ideal, it is enough to prove
that [k(Qq || B), H(xe@ kIyls belongs to I. Let (x,y™) bein k(Qq || B), we will
calculate [ (x,Y™), Ix]s for all «in Q. For n = 1, this means that y' is an arrow
which is parallel to x. So, if x ¢ « then it is clear that [(x,y"), I«]s = 0. Now,
if x € o then [(x,v"), Ials = (x,¥") — (x,¥') = 0. Therefore, for all x € Qj,
[(x,v"), I«ls = 0. If n > 2 then we will show that [(x,y"), I«]s belongs to
R. Using the combinatorial bracket definition, [(x,y™), I]s is a multiple of
(x,y™). Since n > 2, [(x,y™), Ix]s is in R for all & in Q;. We conclude that
[k(Qq || B), Ils € R. From this inclusion we infer that I is an ideal. Moreover,
[I, I]ls € R, then I is solvable since R is solvable. O

LEMMA 2.1.4. Let Q be a quiver without loops. Consider the Lie algebra
k(Qq || B). Then

radk(Qq | B) =radk(Qq [ Q1) &R

PRrROOF. The above lemma gives the inclusion:

radk(Qq || B) 2 radk(Qq || Q1) @ R.

From the Lemma (2.1.2) we know that k(Qq || B) = k(Q7 || Q1) ® R. Let x
be in k(Qq || B), there exists y in k(Qq || Q1) and z in R such that x =y + z.
In order to prove the other inclusion (C), let us show the following: if x is in
radk(Qq || B) then y is in k(Qq || Q1). Consider the projection map:

p:k(Q1 ] B) = k(Q1 | Q1).

It is clear that p is a Lie algebra epimorphism, therefore

p(radk(Qq [ B)) € radk(Qq || Q1).

Therefore, if x is in rad k(Qq || B) then y = p(x) is in rad k(Q1 || Q1). O

2.2. Radical square zero.

Now, we deal with a particular case of monomial algebras: those of radical
square zero. In this case, Z is the set of all paths of length two, i.e. Z = Q,.
The set of vertices and arrows form a basis, i.e. B = QoUQ7. In [Cib98], Cibils
describe the Hochschild cohomology groups for such algebras using a complex
which coincides with the complex induced by the Happel-Bardzell resolution.

In the next paragraph, we recall the computation of the first Hochschild
cohomology group for monomial algebras of radical square zero. Let us re-
mark that the chain complex k(Qq || Qo U Q1) is isomorphic as a vector space
to k(Qo || Qo) ® k(Qo || Q1). Therefore, the beginning of the Happel-Bardzell
complex becomes

0= k(Qo || Qo) @ k(Qo || Q1) 2 K(Q1 || Qo) @ k(Q1 || Q1) 5 k(Q2 || Qo) ® k(Q2 || Q1)
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Moreover, for any couple (e,a) in Qg || Q1, Po(e,a) = 0 and for any couple
(a,a’) in Q1 || Q1, Pi(a,a’) =0. So, the differential can be restated as follows:

Yo = (go g)

by = (31 g)

where

Do: k(Qol Qo) — k(Q1 Q1)
(6) (e, e) — Z (a,a) — Z (a,a)

acQqe aceQq

and

Di: k(Q1] Qo) — k(Q2] Q1)
(a,e) — ) (ba,b) + ) (ab,b).

beQ e beeQ

REMARK. We already know that HHO(A) is the center of A. From the
above complex, we deduce that the center of A is kery, which is equal to
k(Qo || Q1) @ kerDy. Let us remark that DO(ZeEQO(e,e)) = 0. Then the
element ) _ ecQo (e, e), which is the unit of A, is in ker Dy, which is not surprising
since the unity of A is always in its center.

LEMMA 2.2.1. Let Q be a quiver. The dimension of Im Dy is |Qqo| — 1.

PRrROOF. Suppose Q is a loop or a multiple loops quiver then Dy = 0 and
Im Dy has dimension 0. Moreover in this case, we obtain the result since
[Qol —1=0. Now, suppose Q is not a loop nor a multiple loops quiver, then
we will show that ker Dy is one dimensional. Let x be in ker Dy, we write
X = Zeer Ae(e, e) with A in k. Since Dg(x) =0,

Z 7\e( Z (a,a) — Z (a,a))

eeQo aeQre aceQq

is zero. Let a be an arrow such that s(a) # t(a). Notice that the element (a, a)
appears in the above linear combination with coefficient Ag(q) — A¢(q). Therefore
As(a) = My(q) for all a such that s(a) # t(a). We conclude that Ae = A for
all e,e’ in Qg since Q is connected. We infer that ker Dy is the vector space
generated by Zeer e, the unit of A. Notice that the following is an exact
sequence of vector space:

0 — ker Do — k(Qo || Qo) 2% ImDg — 0

Finally, the vector space Im Dy has dimension |Qq| — 1 since ker Dg is one di-
mensional. O

In view of the above complex, in order to compute HH'(A), we have to
determine the kernel of 17 and the image of {o. Such computation is done in
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three separated cases: first for the loop, then for the oriented cycle of length
greater or equal two and finally for quivers that are not just an oriented cycle.

For the loop, let e be the vertex and a be the arrow. It is clear that Do =0
and Di(a,e) = 2(a?,a). Now, if chark = 2 then D; = 0 and therefore we
conclude

HH'(A,A) = k(a,e) ® k(a, a).

Moreover, if chark # 2 the map D; is clearly injective so KerD; = 0. So
Keri = k(a, a). Since Imy is zero,

HH'(A) = k(a, a).
For the oriented cycle, let eq,...eNn be the vertices and ay,...ayn be the
arrows. We will suppose N > 2 and s(aj) = e;. Then D = 0, so HH'(A) is
isomorphic to the quotient of k(Q1 || Q1) by Im Dy. Therefore,
oM k(ai, ai)
<(aj,ai) — (ai-1,ai-1) >i=2

HH'(A) =

For a quiver that is not an oriented cycle, the map D is injective, this
was proven by Cibils in [Cib98]. Therefore,

1 k(Q1 | Q1)
HH'(A) = “ImD,

Since we have obtained the explicit computation of the first Hochschild co-
homology group of a monomial algebra of radical square zero, we are able to
study its Lie algebra structure. First, we give some notation and some technical
results.

NoOTATION. Denote x(Q) the Euler characteristic of the underlying graph of
the quiver Q, i.e.
x(Q) =1Q1l—1Qol + 1.
Let us remark that if the underlying graph of Q is a tree then x(Q) = 0.

LEMMA 2.2.2. Let Q be a quiver that is not an oriented cycle. Consider
the Lie algebra k(Qq || Q1). Then ImDy is an abelian ideal of k(Qq || Q7).
Therefore,

ImDy C radk(Qq || Q1).

Moreover, if the underlying graph of Q is a tree then
ImDo =radk(Qq || Q).

PROOF. Let us remark that

Dole,e) = ) Io— Y I

xcQ;e aceQ,

In order to show that Im Dy is an ideal of k(Q7 || Q1), let us compute first
[Ia, (x,x")]s. If x € o then it is clear that [Iy, (x,x')]s = 0. If x € « then
[Ty, (x,x")]s = (x,x') — (x,x’) = 0. We conclude that [Dy(e,e), (x,x’)]s = 0
for all e € Qo and for all (x,x’) € k(Q1 || Q1). Therefore, [Dy(e,e), wls =0
for all w € k(Qq || Q). From this computation, it is clear that Im Dy is an
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abelian ideal. For the last statement, recall that radk(Q || Q1) is equal to
I1 «cQ I, so its dimension is |6] |. From the above remark Im Dy has dimension
|Qol — 1. Since Q is a tree, |Q4] =|Qo| — 1 and therefore both ideals ImDg and
radk(Qq || Q1), are equal. O

The following lemma is a well known result from Lie algebras. We will use
it as a tool to compute the radical of the Lie algebras that we are dealing with.
LEMMA 2.2.3. Let g be a Lie algebra and 1 be a solvable ideal. Then

radg
I

PRroOOF. Consider the canonical projection p : g — g/I, therefore

g
a? =
Ta I

p(radg) C Tad%

since the image of a solvable ideal is solvable. Since I belongs to rad g, the image
of rad g under p is:

rad
plradg) = 200
We conclude that
radg C rad %

In order to prove the lemma we have to prove the equality. To do so, we use the
bijective correspondence between the ideals of the quotient g/I and the ideals of
g that contain I. Let us suppose | is an ideal of g which contains I such that

g_J
rad 1- T
Clearly, ] contains rad g using the above inclusion We will prove that ] = rad g.
It is enough to see that ] is solvable, since if this is true then ] belongs to
rad g and we obtain the result. We know that J/I is a solvable ideal of g/I, so

24 /1) = 0 for certain 1. Let us also notice that

gtgm = 20T
Then 2Y(J) C I. This implies
[2'0), 7' 1, 1
and therefore we infer that 2V (J) = 0 for some 1’. O

REMARK. Let Q be a quiver that is not an oriented cycle. We apply the
above lemma to g = k(Qq || Q1) and to I = Im Dy. Then

rad k(Q1 [ Q1)  radk(Qq || Q)
ImDy ImDg

NoOTATION. We will denote S the set of non-trivial equivalence classes:

S={xecQ|laf>1}
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REMARK. If « is in S denote slj4 (k) the simple Lie algebra of |&| x [«
matrices of trace zero. It is clear that gl,/k I is isomorphic as a Lie algebra to
sl (k) if the characteristic of the field is zero.

COROLLARY 2.2.4. Assume that the field k is algebraically closed and of
characteristic zero. Let Q be a quiver which is not an oriented cycle. Then,

k(Qi [ Q1) o Q
ﬁ =~ Elssla(k) « kX(Q

as Lie algebras.

Proor. First, we will compute the semisimple part. To do so we have to
compute the quotient of k(Qq || Qq1)/Im Dy by its radical. The radical is given
by the quotient radk(Qq || Q1)/Im Dy using the above lemma. Therefore,
it is clear that the semisimple part is k(Qq || Q1)/radk(Qq || Q1) which is
isomorphic to [ [ s Sljw(k). The quotient rad k(Q1 || Q1)/Im Dy is isomorphic
to the quotient of ] «cQ, kI by Im Dy which is isomorphic kX(Q. The last
assertion follows from the fact that [ | «cQ, k I is abelian of dimension |Q4| and
ImDy is of dimension [Qol — 1. Once we have the semisimple part and the
radical, we apply Levi’s theorem which gives us the decomposition. We will
show that the product is direct. Let X be in k(Q1 || Q1)/Im Dy and y be in its
radical where x is in k(Qq || Q1) and y is in H“GQ kIy. Using Lemma 2.1.1,
[x,yls = 0, therefore [X, yls = 0. O

The computation of HH'(A) and the study of the Lie algebra structure of
k(Q1 || Q1) by Im Dy provides the following result:

ProproOSITION 2.2.5. Let A =kQ/ < Q2 > be a monomial algebra of radical
square zero where k is an algebraically closed field of characteristic zero and Q
s a finite connected quiver. Then

HH'(A) = [ ] slw(k) x kXQ
xS

Therefore, HH'(A) is reductive.

PROOF. First, if Q is the loop we have shown that HH'(A) = k(a, a), which
is clearly isomorphic to k. Moreover, since X(Q) = 1 and S = ¢ we obtain
the above isomorphism. Second, if Q is an oriented cycle of length > 2. we
have proved that HH'(A) is the quotient of EBiN: 1k(ai, ai) by the two sided ideal
generated by elements of the form (ai, aij) — (aj_1, ai_1), which is the image of
Dy. The numerator is abelian of dimension N (where N is the length of the
oriented cycle) and the denominator is of dimension N — 1 (see Lemma 2.2.1).
Then HH'(A) is one dimensional, therefore isomorphic to k. Moreover, since
x(Q) = 1 and S = ¢ we obtain the above isomorphism for the oriented cycle.
Finally, if Q is not the oriented cycle, then HH'(A) is the quotient of k(Q1 || Q1)

by ImDgy. We apply the corollary 2.2.4 to obtain the above isomorphism. O
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The next corollary gives Strametz’ conditions for semisimplicity. We will
study those conditions in the next chapter.

COROLLARY 2.2.6. Let A = kQ/ < Q2 > be a monomial algebra of radical
square zero. Then HH'(A) is semisimple if and only if S # ¢ and the quiver Q
18 a tree.

Next, we illustrate two examples we will use later: the first example is when
the quiver is one loop and the second is when the quiver is the multi-loops quiver.

ExAMPLE. The above proposition implies that HH'(k[x]/ < x? >) = k,
which is the one dimensional abelian Lie algebra.

EXAMPLE. Let Q be the multi-loops quiver: this is the quiver which has one
vertex and several loops. Assume that the number of loops is greater or equal
two, Q is the one loop quiver. If A = kQ/ < Q; >, the above proposition implies
that HH'(A) is isomorphic to sl.(k) x k = gl,(k) where 1 is the number of loops
and k is a field of characteristic zero and algebraically closed. Denote HH'(A )¢
the semisimple part of a Lie algebra, this is the quotient by its solvable radical.
Then HH'(A)¢s = sl+(k)

2.3. Triangular complete monomial.

In this section, we will study the Lie algebra structure of the first Hochschild
cohomology group of a a triangular complete monomial algebra. Let us begin
by the definitions of a triangular algebra and a complete monomial algebra. Let
A = kQ/I be any finite dimensional algebra, so I is an admissible ideal of the
path algebra kQ.

DEFINITION (Triangular algebra). If Q has no oriented cycles, we say A is
triangular algebra.

DEFINITION (Complete monomial algebra). Let A = kQ/ < Z > be a mono-
mial algebra. We say that A is complete if and only if any path of length at least
two which is parallel to a path in < Z > is also in < Z >.

ExaMpPLE. Radical square zero monomial algebras are complete monomial
algebras.

REMARK. In [Hap89], Happel called ”semi-commutative monomial alge-
bras” what we call ”complete monomial algebras”.

We compute the first Hochschild cohomology group of triangular complete
monomial algebras using the complex induced from the Bardzell-Happel reso-
lution. Since A is triangular, the set Qq || B is in fact Qo || Qo. Since A is
complete monomial then for all p in Z and (a,y) in Q1 || B, p(®Y) isin < Z >
by definition. Consider the map ¥ : k(Qq || B) — k(Z || B) from the complex
induced by the Bardzell-Happel resolution, we obtain that {¢(a,y) = 0 for all
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(a,v) in Qq || B. Moreover, Z || B =Z | Q1. Therefore, the complex induced
by the Bardzell-Happel projective resolution is:

0 — k(Qo || Qo) % k(Q1 || B) -5 k(Z || Q1)

where the map Vg is in fact the map Dgy. Therefore,

104y _ K(Q1 [l B)

The following lemma is analogue to the corresponding lemma for radical
square zero algebras. We show that the denominator of the above quotient is in
the radical of the numerator.

LEMMA 2.3.1. Let Q be a quiver without oriented cycles. Consider the Lie
algebra k(Q1q || B). Then Im Dy is an abelian ideal, therefore

ImDy C radk(Qq || B).

PROOF. Let e be in Qp and let (x,7y) be in Q1 || B, i.e the arrow x is parallel
to v, a path in B of length n. We will show that [Dg(e,e), (x,v)]s =0. Since

Do(e,e) = Z I — Z | P

06661 e xe eé]

we will compute [I4, (x,v)]s for « in Q; such that s(x) = e or t(x) = e.
Assume y™ = yq1---Yi---Yn. Since Q has no oriented cycles (x,y) can be
drawn as follows:

Yi
L 2.

oo

X

Let us denote ey = t(y1) = t(x), ey = s(yi) = t(yyq) fori=1,...,n—1 and
en = s(yn) = s(x). It is clear that all e; for i = 0,...,n are different. First,
suppose e is a vertex with e # e; for all i = 0,--- ,n. Let a be an arrow such
that s(a) = e (or t(a) =e), [(a,a), (x,y)]s = 0 since a is neither x nor any yj.
Therefore [I4, (x,v)]s = 0 for all « in Qe and for all & in eQ;. We conclude
that if e # e; then [Do(e,e), (x,v)]s = 0. Suppose now that e = e; for some
i=1,...,n— 1. Let us remark that y; which is in the decomposition of vy, is
an arrow whose source is e. Notice also that the arrow y;, which is also in the
decomposition of y, is an arrow whose target is e. A simple calculation gives us
that:

[(yi,vi), (x,7)]s = (%)

[Yir1, i), (5, ¥) s = (x%,7).
Denote o4 the equivalence class of y; and denote also by o1 the equivalence
class of yi 1. Observe that oy is in Qqe while oiy1 is in eQq. It is clear that
[T, 6)]s = [Ta.y s (x,7)]s = (x,7¥). Now, let o be in Q; such that s(a) = e
(resp. t(a) = e), but different from o (resp. «iy1). Then [Iy, (x,v¥)]s =0
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since for all a in «, a is neither x nor any y;. We can conclude now that if e = e;
for somei=1,...,n—1, then

[Dole,e), (x,¥)]s = [, (%, V)]s — [a,y» (6,7) s = (x%,7) — (x,v) = 0.
Finally, suppose e = e, both arrows y, and x have source e. A simple calcula-
tion give us that:

[(yn,un), (x,¥)ls = (x,7)

[(x,x), (%,v)]s = —(xv).
Denote &y, the equivalence class of Yy, and denote oy the equivalence class of
x. Both o, and &y are in Qqe. It is clear that [y, , (x,v)]s = (x,y) and that
[Ta,, (x,7)]s = —(x,7Y). As for the case before, for all  in Q; such that s(x) = e
(resp. t(x) = e), but different from oy, and from oy, we infer [14, (x,v)]s = 0.
We can conclude now that if e = e,

[DO(e)e)) (X)Y)]S: [I(Xn) (X>’Y)]S+[IOCX) (X)’Y)]S:(X)Y)_(X)’Y} :O
A similar argument, give us that for e = e,
[DO(eve)) (X)’Y)]S:_[qu)) (Xa’Y)]S_[IOCX) (X)Y)]S:_(X>Y)+(X)Y) =0

where o is the equivalence class of y;. Both oy and &, are in 661. [l

LEMMA 2.3.2. Let Q be a quiver without oriented cycles. Consider the Lie
algebra k(Qq || B). Then

dk(Q] IB) _ radk(Q | B)
ImDo ImDo

Proor. We apply Lemma 2.2.3. O

Ta

Recall that R is the solvable ideal of k(Q1 || B) given by the direct sum of all
k(Q1 || QiNB) where i goes from 2 to N, where N is the maximum of all length
of non-zero paths in A.

PROPOSITION 2.3.3. Let A =kQ/ < Z > be a triangular complete monomial
algebra where k is an algebraically closed field of characteristic zero. Then

HH'(A) = [ sl(k) » (kX Q@ R).
x€S

Moreover [sly(k), kXQ g R]CR.

PRrOOF. As we did for the radical square case, first we compute the semisim-
ple part. So we have to compute the quotient of k(Q; || B)/Im Dy by its
radical, which is radk(Qq || B)/Im D¢ using the above lemma. Clearly, the
semisimple part is isomorphic to the quotient of k(Qq || B) by radk(Qq || B).
Recall that k(Qq || B) is equal to k(Qq || Q1) © R and radk(Qq | B) is
equal to Tadk(Q || Q1) @ R. Therefore, the semisimple part of HH'(A) is
[Taessla(k). To compute the radical of HH'(A), we have to compute the
quotient of radk(Qq || Q1) ® R by ImDy. Since Im Dy is an abelian ideal of
k(Q1 || Q1), then the radical is precisely kX(QgR. Using the Levi decomposition
theorem we obtain the result. Il
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COROLLARY 2.3.4. Let A be a triangular complete monomial algebra. Then
HH'(A) is semisimple if and only if Q is a tree and S is not an empty set.

DEFINITION. A is a schurian algebra if for any two vertices e, e’ in the
quiver, dimy eAe’ < 1.

As a consequence of Proposition 2.3.3, we describe the Lie algebra structure
of HH! when the algebra is triangular complete monomial and schurian as well.

COROLLARY 2.3.5. If A is a triangular, schurian and complete monomial
algebra, HH'(A) is an abelian Lie algebra of dimension x(Q).

Proor. We apply Proposition 2.3.3. Note that S is empty. Remark that
Q1 || BN Qj is empty for i > 2 so R =0. Therefore, we can conclude. O

As a consequence of the above proposition, we deduce a result given in
[Cib00]. This paper collects some computations of the dimension of HH' of
certain quotients of path algebras. In [Cib00], Cibils computes the dimension
of HH'! of the quotient of a path algebra of a narrow quiver by an admissible
ideal. Recall that a quiver Q is said to be narrow if and only if for any two
vertices e and e’ there is at most one path from e to e’.

More precisely, let @ be a narrow quiver without oriented cycles and let Z
be a set of paths. Then HH'(kQ/ < Z >) is the abelian Lie algebra given by
the direct product of x(Q) copies of the field.



CHAPTER 3

Semisimplicity and vanishing Hochschild cohomology.

In [Str06], Strametz gave necessarily and sufficient conditions for the semisim-
plicity of HH'(A) when A is a monomial algebra. If we assume that the field is
algebraically closed and of characteristic zero, her theorem states that HH'(A)
is semisimple if and only if the following conditions are satisfied:

- the underlying graph of the quiver Q is a tree,
- there exists a non trivial class in Q; and
- the ideal < Z > is completely saturated.

The aim of this chapter is to prove the following result: let A be a monomial
algebra with HH'(A) semisimple. Then HH™(A) = 0 for all n > 2. To do so we
will use the above stated conditions for semisimplicity. We begin recalling the
definition of completely saturated ideal, and we prove that under the assumption
that the underlying graph of the quiver Q is a tree, the completely saturated
condition is equivalent to being closed under parallel paths. Therefore, we are
able to restate Strametz’s conditions. In the second section of this chapter, we
provide another proof of Strametz’s theorem. Then in the third section we prove
the main result of the chapter. We will proceed as follows: we assume the above
conditions in order to compute the complex from the Bardzell-Happel resolution.
Then we show that the Hochschild cohomology groups are zero from degree two.

3.1. Completely saturated condition.

DEFINITION (Completely Saturated). Let a || b be two parallel arrows. We
say a and b are equivalent if p(®?) =0 = p(®) for all p in Z. The ideal < Z >
is called completely saturated if all parallel arrows are equivalent.

The next lemma gives technical condition to determine whether an ideal
generated by paths is completely saturated.

LEMMA 3.1.1. An ideal < Z > is completely saturated if and only if for any
path p in Z the following condition is verified: for each arrow pi in the expression
of p and for any arrow a parallel to pi, the path p o a is in < Z >.

1

PROOF. Let p =p1---pi---pn be a path in Z and a, b two parallel arrows.
Recall that the element p(®P) in A is given as follows:

n
(ab) =% 52 oblpob
p ; pXB(Poblpo
where 85 is the Kronecker delta and xp is the characteristic function. Remark
that pla, a) = 0 for all a in Q. Moreover, suppose a is not parallel to any arrow
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pi then poa = 0 for all 1 and therefore pl@&~) = 0. Now, suppose a # b and that
1
a is parallel to some arrow that composes the path p. In this case, we will show
that all paths which are summands of p(®?) are different. Let 1, be two natural
numbers from 1 to n such that pi =a=p;. fpob=p7;---a---pp=poa
1

then i =j since a # b. Therefore all paths p ¢ b in the above sum are different.
1
(=) Let a be an arrow such that a || p; for some i. If a = p; then poa =p,
1

which is clearly in < Z >. Suppose a # pi. By hypothesis, all couples of parallel
arrows are equivalent, in particular (pi, a). So

n
0=pP¥ =3 &bixp(p calpoa.
j=1
We have shown that all paths in the right side of the formula are different.
Therefore since xg(poa)poa =0 for all j. We conclude that poaisin < Z >.
) ) i

(&) Let a || b, let us show that they are equivalent, i.e. p(®?) =0 =p(b.a),
At the above formula, it is clear that we are only interested in arrows p; which
are equal to a or b. Consider these pi’s, evidently p; is parallel to a and to b.
By hypothesis, the paths p <i>b and p <i> a are in < Z > for all p; that is equal to

aor tob. Then xg(poa) =0=xg(pob). Using the above formula we deduce
1 1
that p(@b) = 0 and p®% = 0. O

LEMMA 3.1.2. Let Q be a quiver and Z be a minimal set of paths of length
at least two. If A =kQ/ < Z > is a complete monomial algebra then < Z > is
completely saturated.

PROOF. Let p be in Z, p; be an arrow in the expression of p, and a be an
arrow parallel to pi. Since A is a complete monomial algebra and p || p ¢ ai,
poaiisin < Z>. By the above Lemma we conclude that < Z > is completely
saturated. O

DEFINITION (Closed under parallel paths). A set of paths Z is called closed
under parallel paths if and only if for any path p in Z the following condition is
verified: if q is a parallel path to p then q is in Z.

ExaMPLE. Let Q be the following quiver:

1) If Z = {cb} then Z is clearly closed under parallel paths. The algebra
A =kQ/ < Z > is not complete monomial since cba is in < Z > but
cd which is parallel to cba is not in < Z >.

2) If Z= Q3 then A =kQ/ < Z > is a complete monomial algebra. The
set Z is not closed under parallel paths since d || ba but d is not in Z.
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3) If Z ={cd, cba} then Z is closed under parallel paths and A = kQ/ < Z >
is a complete monomial algebra.

4) If Z ={ba} then A = kQ/ < Z > is not complete monomial since cba
is a path in < Z > parallel to cd which is not in < Z >. The set Z is
not closed under parallel paths.

The objective in this section is to prove that in Strametz’s theorem, we can
replace ”completely saturated” by ”closed under parallel paths”. To do so, let
us first show the following:

LEMMA 3.1.3. Let Z be a minimal set of paths of length at least two. If the
set Z s closed under parallel paths, then the ideal < Z > is completely saturated.

PROOF. Let p be in Z whose expression in arrows is pj---pi---pn. If an
arrow a is parallel to some p; then the path p is clearly parallel to the path
obtained by replacing p; with a, which is p ¢ a. Since Z is closed under parallel

1

paths, then poaisin < Z > for all i. O
1

The converse of the above implication is not always true. For example, let
Z = Qn where n > 1, the ideal < Z > is completely saturated but Z is not
necessarily closed under parallel paths. For instance, let Q be the quiver of the
above example and let Z = Q;. Notice that < Z > is completely saturated and
Z is not closed under parallel paths. If the underlying graph of Q is a tree then
the converse holds. Indeed, under this assumption, parallel paths are as follows.

LEMMA 3.1.4. Assume that the underlying graph of Q is a tree. Let & =
aj---an and B =by---by be parallel paths. Then n =m and a; || b;.

PROOF. A pair of parallel paths in Q provides a pair of parallel paths in Q.
Since Q is a tree, the former are equal, hence the original paths only differ by
parallel arrows. O

Finally, the following proposition allows us to restate Strametz’s theorem as
we have explained above.

PRrorOSITION 3.1.5. Let Q be a quiver and Z be a minimal set of paths of
length at least two. Assume that the underlying graph of Q is a tree. If < Z >
1s completely saturated ideal then Z is closed under parallel paths.

PROOF. Let p =p1---pn beapathin Z and g be a parallel path to p. Using
the above lemma, q = g7 - -- qn, where q; || pi for all i. Since we suppose < Z >
is completely saturated, for each 1 from 1 to n and a parallel to pi, the path peoa

1

is in the ideal < Z > (Lemma 3.1.1). Let us notice that it is enough to prove
that for any path p in Z, the path p ¢ a is actually in Z. Once we have shown
1
this, we can set p(0) = p and for i = 1,...,n we can set p(i) = p(i—1) ¢ qi.
1

Then each p(i) will be in Z and in particular p(n) = q. Then we would have

shown what we wanted. So let us prove that for any path p in Z, and for all

a || pi, the path p ¢ a is actually in Z: by induction on 1(p), the length of the
1



02

path p. Let us suppose l(p) = 2, then p = pip2, and let a || p;. Since < Z > is
completely saturated, p ¢ a is in < Z >. This means that p ¢ a = ap’f where
1 1

p’isin Z, o and B are paths. Then it is easy to see that « and  are trivial
paths otherwise p’ is in Q1, which is not possible since Z N Q7 = ¢. Now, let us
suppose (p) =n > 2. Let p=p1---pn be in Z and let a || p;. Since < Z > is
completely saturated, then p <> a is in < Z >, therefore p <> a = ap’p where p’

is in Z. We have that p’ is parallel to pj, - - - pj, since the underlying graph of
Q is a tree. If o or B are non trivial paths, then 1(p’) < n. By the induction
hypothesis pj, ---pj, is in Z since it is parallel to p’ which is in Z. Since Z is
minimal this is a contradiction. Therefore, « and 3 are trivial paths. We obtain
thatp<i>ais in Z. O

COROLLARY 3.1.6. Let Q be a quiver and Z be a minimal set of paths of
length at least two. Assume that the underlying graph of Q is a tree. The
following statements are equivalent:

(1) A=kQ/ < Z > is a complete monomial algebra.
(2) < Z > is a completely saturated ideal.
(3) Z is closed under parallel paths.

PROOF. (1 = 2) see Lemma 3.1.2. (2 = 3) see the above Proposition.

(3= 1) Let p be a path in < Z > and q be a path parallel to p. Assume
p = ap’P where p’ is in Z and « and 3 are paths. Since the underlying graph
of Q is a tree, = a’q’B’ where « || o/, B || B’ and p’ || q’. By hypothesis, q’
is in Z, therefore q is in < Z >. O

3.2. Semisimplicity of the first Hochschild cohomology group.

In this section, we will provide another proof of the result given by Strametz
in [Str06] about the sufficient and necessarily conditions for the semisimplicity
of HH'(A). Let us begin proving that if HH'(A) is semsimple then necessarily
the underlying graph of Q is a tree.

ProPOSITION 3.2.1. Let A =kQ/ < Z > be a finite dimensional monomial
algebra where k is an algebraically closed field of characteristic zero. If HH'(A)
is semisimple then the underlying graph of the quiver Q is a tree.

PROOF. Recall that HH'(A) is the quotient of the kernel of the map 1 by
the image of the map o. So we have a surjective Lie map: kerip; — HH'(A)
and the left side is a Lie subalgebra of k(Q7 || B). Then radkeri; belongs to
rad HH'(A), which is zero since it is semisimple. Therefore,

radkerip; C Imy.

On the other hand, let us remark that for all a in Q; and p in Z, p(®% is
zero. So \Pi(a,a) = 0, i.e (a,a) is in kerq for all a in Q. Therefore, for

all « € Qy, the element I, = Y a,a) is also in kery. Furthermore, since

(IEOC(
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radk(Qq || Q1) belongs to radk(Qq || B), I« is in rad k(Qq || B). Hence the set
of vectors {I“}cxe@ belongs to rad k(Qq || B) Nkery. Recall that

radker{p; =kerPp; Nradk(Qq || B).

Then we have shown that { I} belongs to rad ker{ 1, which belongs to Im .
Since { I} «c; belongs to the image of Vg, we deduce that {14} %€, belongs to
Im Dy. Besides, let us remark that the set {14} o) is clearly linearly independent
in the vector space k(Qq || B), therefore it is linearly independent in Im Dy
whose dimension is [Qg| — 1. For this reason, |Q;] < |Qol — 1. This means that
x(Q) =[Q;1—1Qql+1 =0, so the underlying graph of the quiver Q is a tree. [

REMARK. Let My, (k) be the vector space of all square matrices of size mn.
We denote tr(N) the trace of a matrix N. Consider the following exact sequence

0— k-5 Mn(k) D sla(k) — 0.

where the maps are ((A) = Ald,, and p(N) = N — tr(N)/n1d,, and Id,, is the
identity matrix. Notice that t and p are Lie maps. Moreover, this exact sequence
of Lie algebras splits where the section is given by the inclusion.

Since gl, = Endy(Vy) for all « in S and Iy corresponds to the identity in
Endy(Vy), we deduce that the following exact sequence of Lie algebras splits

0= klx— gly — sliy(k) — 0.
Hence the following exact sequence of Lie algebras splits

0 — radk(Q1 | Q1) = k(Q1 || Q1) = [ [ slalk) = 0.

xeS

Denote s the isomorphic copy of [ [ g sla(k) in k(Q7 || Q1). For o« in S, denote

ho = {Za@j\a(a, a)| ) qeqPa= O} the Lie subalgebra of k(Q1 || Q1). Clearly,
it is isomorphic to the Cartan subalgebra of all diagonal matrices of trace zero

of sljy(k). Denote h = [],csbha Notice that b is a Cartan subalgebra of the
semisimple Lie algebra s.

Let g be a semisimple Lie algebra and g’ a semisimple subalgebra of g. If g’
contains a Cartan subalgebra of g, we called g’ regular.

PRrROPOSITION 3.2.2. Let A =kQ/ < Z > be a finite dimensional monomial
algebra where k is an algebraically closed field of characteristic zero. If HH!(A)
is semisimple then

HH'(A) < J ] sla(k)
and HH'(A) contains the subalgebra . Therefore, HH'(A) is isomorphic to a
reqular subalgebra of [ [ cgslalk).

PRrROOF. First, let us remark that the complex obtained from the Bardzell-
Happel resolution becomes:

0 — k(Qo || Qo) = k(Q1 || Q1) 5 k(Z || B)
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So HH'(A) = ker{;/ImDy. We have that Im Dy is an abelian ideal of
k(Q1 || Q1), therefore it is an abelian ideal of kerij. Using the remark of
the Lemma 2.2.3, we obtain
k
rad HH'(A) = "adkervr
ImDO

The fact that HH'(A) is semisimple implies rad HH'(A) = 0. Therefore,
radker\y; = ImDy. Moreover, since Q is a tree Im Dy, which is the radi-
cal of keriy, is isomorphic to radk(Qq || Q1), using Lemma 2.2.2. Then we

have the following diagram:

ImDy ker HH'(A)

T

0 —=1adk(Q7 || Q1) —=k(Q1 || Q1) — [Taes shw(k) —=0

(7)o

0

that is clearly commutative. Moreover notice that (a, a) is in kerip for all a in
Q1. Then by C kerpg for all  in Q;. Using the above commutative diagram, it
is easy to see that p(h) = 0 if and only if || = 1. Let ocin S, we conclude h is a
non zero subalgebra of HH'(A). Therefore b is also a non trivial subalgebra. [

REMARK. Let A be the root system associated to s. There is a bijection
between the roots of A and the couples (a,a’) in Qq || Q1 with a # a’ given as
follows. For every o in Q; and every couple (a, a’) of different arrows in &, we
associate the following linear map:

rf‘a‘a,) b =k
h — }\(a’,a’) — )\(a‘a)
where h = erQ1 Axx) (X, ) with erQ1 Ax = 0. A simple computation gives
us that
]’L.(Cl, (1/) = ()\(a’,a’) - ?\(a,a])(av (1,) = T?(a‘a/)(a» (1,)
for all h in b, therefore Tf‘ ar) 18 & root of 5 and Sye 0= k(a,a’) denotes the

a)
root space of s. Hence, the Cartan decomposition of s is

5:h@@5r
TEA

In order to describe completely HH'(A), we will study keriy.

LEMMA 3.2.3. Let A =kQ/ < Z > be a finite dimensional monomial alge-
bra where k is an algebraically closed field of characteristic zero. If HH'(A) is
semisimple then the following conditions on ker\{ hold:

(1) If (a,a’) is in kery then (a’, a) is in kery.
(2) If (a,a’) and (a’,a”) are in ker 7 then (a,a”) is in ker;.

PRrOOF. Since HH'(A) is a semisimple regular subalgebra of s, following
Dynkin (see [Dyn52]), we have the following decomposition

HH'(A) =b" & ) s

reA!
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where h/ C h and A’ is a subsystem of A with the following properties:
(i) If vy is in A’ then —r7 is in A'.

(ii) If ry and 7, are in A’ such that v + 15 is in A then 1 + 15 is in A’.
Besides, using diagram (7) notice that for all (a, a’) in ker{; with a # a’, the
couple (a, a’) is a non trivial element of HH'(A). Then the above decomposition
of HH'(A) implies that (a,a’) in ker if and only if T?ﬁl,a/) is in A’. Finally,
it is easy to show that condition (1) becomes (1) and (ii) becomes (2). O

LEMMA 3.2.4. Assume that the underlying graph of Q is a tree. Let

w= Y > Axyxy)

veQ, XWEY

be in kery. Then (x,y) is in ker Py if Axy) #0 .

PROOF. Since w is in ker1,

0= Z Z }\(x,y)Z(p)p(X’y))-

YEQ, MYEY PEZ

Let p,q be two paths in Z and (x,y) and (x’,y’) parallel arrows in Q; || Q.
Remark that (p,p™¥)) = (q, g™ ¥} if and only if p = q and (x,y) = (x,y’).
From this remark, we conclude that if Ay, # O then p™¥) =0 for all p in Z.
Therefore P (x,y) =0 O

PrROPOSITION 3.2.5. Let A =kQ/ < Z > be a finite dimensional monomial
algebra where k is an algebraically closed field of characteristic zero. HH'(A) is
semisimple if and only if

HH'(A) = [ ] sta(k)
xeS

Proor. Using the above commutative diagram (7), notice that if we prove
that ker; = k(Qq || Q1) then we obtain the result. Fix ain S. Let (a, a’) be in
Q1] Q1, with a # a’. We will show that if (a,a’) is not in keriy, there exists
a non trivial abelian ideal of HH'(A), which is a contradiction to the fact that
HH'(A) is semisimple. Suppose then that (a, a’) is not in kerq, by property
(1) of the above lemma the element (a’, a) is neither in ker1;. Denote

g =1{x € a|(x,a) € kery},

da ={x € a|(x,a’) € kery}

and oc = ax —{oxq U xq/}. Clearly a belongs to aq and a’ belongs to og:. Notice
that if x is in &g or g/ then either (a,x) is in kery or (a’,x) is in keri by
property (1) of Lemma (3.2.3). Then, by property (2) of the same lemma, the
set otq N g is empty. Moreover, let x be in oq and let y be in g/ then neither
(x,y) nor (y,x) is in ker1, otherwise (a, a’) is in kery. Therefore, if

w=3Y > Axyxv)

'y€61 X,QEY
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is in kery then A ) =0 = A i) for all x € aq and y € ¢y’ since of the above

lemma. Denote
T = ) (x,%) and To, = D (x,x)

XE Xa XEX 1

Clearly Iy, and Iy, is in keriq. Define
J={Aala+ Aa’Ioca/ | AayAar € K}

We will prove that J is an ideal of kerj. Let z = AqIq + Aq/ Iqr be in J. We
compute [w,z]s by computing [w, [,]s and [w, I4_,Is. So,

(W, Tals = Y yea M) [(6,1), Tag Is
= Zx,yeoca )\(X,UJ[( Y, lagls + Zx,yeoca/ A(X’y)[(x,y) s Toods
T Zx,yeac ?‘(X‘y)[( Y, Tadls
= X xyeaa Mxy)(XY) = (y,x) =0.

A similar computation gives [w, Iy ,] = 0. Therefore J is an abelian ideal
of kery;. Using the above commutative diagram (7), p(J) # 0 otherwise
p(]) C kI, which is not possible since p(]) is a vector space of dimension two.
Therefore p(J) is a non trivial abelian ideal of HH'(A). This contradiction
comes from the assumption that (a,a’) is not in ker. Therefore we obtain
that k(Qq || Q1) = kery and we infer the result. O

LEMMA 3.2.6. Assume that the underlying graph of Q is a tree. Let Z be any
minimal set of paths of length at least two. The set Z is closed under parallel
paths if and only if the map b1 = 0.

PROOF. (=) Let (a,a’) be in k(Q7 || Q1), We assert that {q(a,a’) = 0.
Let p=p1---pn be in Z. Since Z is closed under parallel paths, for all a’ || py,
poa’isin Z. Then we conclude that 85 xg(p ¢ a’)(p,p ¢ a’) is zero for all i.

1 1 1

Therefore p(®) = 0 for all p, so Pq(a,a’) =0 for all (a,a’).

(&) Let p =p1---pn be in Z and let a be an arrow parallel to p;. First,
let us remark the following: since \;(py, ai) = 0, for any q in Z, qPv%) = 0.
In the particular case of @ = p, pP»%) = 0 which implies that p o ay is in
< Z >. Therefore, < Z > is completely saturated since the condition olf Lemma
3.1.1 is satisfied. Since the underlying graph of Q is a tree and Z is completely
saturated, Z is closed under parallel paths using the Proposition 3.1.5. Il

Next, we will give another proof of Strametz’s theorem.

PROPOSITION ([Str06]). Let Q be a quiver and Z a minimal set of paths.
Let A = kQ/ < Z > be a finite dimensional monomial algebra where k is
an algebraically closed field of characteristic zero. The following conditions are
equivalent:

(1) HH'(A) is semisimple.
(2) The underlying graph of the quiver Q is a tree, Z is closed under parallel
paths and the set S is not empty.
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(3) HH'(A) is isomorphic to the following non trivial product of Lie alge-

bras
I sbe(k).

xeS

PROOF. (1) & (3) See above proposition. (3) = (2) It is clear that S is
not empty and using Proposition 3.2.1, the underlying graph of Q is a tree. So,
it is enough to prove that Z is closed under parallel paths. Using the above
commutative diagram (7) we obtain by hypothesis that

kerpr _ k(Q1 | Q1)

ImDy  radk(Qq || Q1)

Again, since the underlying graph of Q is a tree, then both denominators are
isomorphic, i.e ImDp = radk(Qq || Q1). Therefore, both numerators ker
and k(Qq || Q1) have the same dimension. Since kerip; belongs to k(Q1 || Q1),
ker{py = k(Qq || Q1), then Py = 0. Hence, by Lemma 3.2.6, Z is closed under
parallel paths.

(2) = (3). Since the underlying graph of Q is a tree, A is triangular. We use
Proposition 2.3.3 that describes HH'(A) in the case where A is a triangular

complete monomial algebra. Notice that x(Q) = 0 and that Qq || BN Qy is
empty for i > 2 since Q is a tree. O

3.3. Vanishing of the Hochschild cohomology.

In the sequel, we will assume that the characteristic of the field is zero. Let
A be a finite dimensional monomial algebra. In this section, we prove that if
HH'(A) is semisimple then the Hochschild cohomology groups vanish in higher
degrees. In fact, we prove directly that if A is complete monomial and the
underlying graph of Q is a tree then HH™(A) = 0 for n > 2. The principal tool
is the Happel-Bardzell projective resolution. Let us recall some facts about this
resolution.

In [Hap89|, Happel provides the projectives for a minimal projective res-
olution of a finite dimensional k-algebra over its enveloping algebra. Then in
[Bar97], Bardzell describes the projective modules for monomial algebras in
terms of the combinatorics of A and he describes the morphisms of the resolu-
tion.

NoOTATION. The Happel-Bardzell minimal projective resolution for mono-
mial algebras given in [Bar97] is denoted by:

B= ---—=Pu1—Pi— Py =P = Py BHAS0.

The projective modules and morphisms are given explicitly in terms of the quiver
and the set of paths Z. The construction is rather technical, we provide a sketch
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of it:
Py = A®A
kQo
Pi = A® kQ ® A
kQo kQo
P, = A®kZLI®A
kQo kQo
Ppn = A ® kAP, ® A
kQo kQo
where AP, is a set of paths constructed by induction: for n > 2 and for each
path p in Z, an associated sequence, (p,r2,--- ,Tn), of n— 1 paths in Z is given,

then to each associated sequence a certain path is defined with s(p) as source and
t(rn) as target. Then AP, is the collection of all those paths. The definition
of ”associated sequence” and the construction of paths from this associated
sequences is given in [Bar97]. For the purpose of this thesis we just need the
following property.

LeMMA ([Bar97]). Let p™ in APn. The set
Sub(p™) ={p™ ' € AP, | p™! divides p™}

contains two paths pI~' and p{‘fl where s(ph1) = s(p™) and t(p{‘f]) =t(p").
Furthermore, if n is odd then Sub(p™) = {po_],p?_1}

The above lemma will enable to compute the complex obtained from the
Happel-Bardzell projective resolution for monomial algebras whose first Hochschild
cohomology group is semisimple.

LEMMA 3.3.1. Let A = kQ/ < Z > be a monomial algebra over k a field
of characteristic zero. Assume Z is closed under parallel paths and that the
underlying graph of Q is a tree. Let p™ be a path in APn. Then any path
parallel to p™ is in the ideal < Z >.

PRrROOF. The proof is by induction. For n = 2 the statement is true since
Z is closed under parallel paths. Now, let us suppose n > 2. Let p™ be a path
in AP,. By the lemma of Bardzell, p™ = Lp2~' where p?~" is in AP, 1. If &

"where L’ || L and p’ || p}~"' since « is

is a parallel path to p™ then o« = L'p
obtained by replacing parallel arrows in p™ since Q is a tree. By the induction
hypothesis, p’ is in < Z > since it is parallel to a path in AP, 7. Therefore « is

in<Z>. O

THEOREM 3.3.2. Let A = kQ/ < Z > be a finite dimensional complete
mOnomiaialgebra where k is a field of characteristic zero. If the underlying
graph of Q is a tree then

- HHO(A) =k
- ]‘”‘{1 (A) = HocGS Sl\ocl(k) and
- HH™(A) =0 for alln > 2.

PrOOF. For A a complete monomial algebra which the underlying graph of
Q is a tree, let us remark that Z || B is empty since Z is closed under parallel
paths and the elements of B form a basis of A. In general APy || B is empty for
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n > 2 using the above lemma. The complex obtained after applying the functor
Homae (—, A) to the Happel-Bardzell resolution is isomorphic to the following
complex:

0= Kk(Qo | Qo) ™ K(Q1 | Q1) 250 —=0— - =0 = -
We deduce that HH°(A) = k and HH™(A) = 0 for n > 2. We use Proposition
2.3.3 to describe the first Hochschild cohomology group. O

Notice that under the hypothesis of the above result, if Q = Q then Q is a
tree and S is clearly empty. Therefore HH'(A) is zero, which is a result from
Bardzell and Marcos [BM98].

COROLLARY 3.3.3. Let A = kQ/ < Z > be a finite dimensional monomial

algebra where k is a field of characteristic zero. If HH'(A) is semisimple then
HH™(A) =0 for alln > 2.






CHAPTER 4

Hochschild cohomology groups as Lie modules.

Let A be a finite dimensional monomial algebra of radical square zero, i.e.
A =kQ/ < Q2 > where Q is a finite connected quiver. We will study the Lie
module structure on the Hochschild cohomology groups of these algebras. Such
Lie module structure is the induced by the Gerstenhaber bracket,

[—, —]:HH'(A) x HH™(A) — HH™A),

defined in [Ger63]. The principal tools in our research are the description of
the Lie algebra of HH'(A) together with the combinatorial description of the
Hochschild cohomology groups and the Gerstenhaber bracket. The description
of the Lie algebra structure on the first Hochschild cohomology group of such
algebras, has been provided in chapter two.

In the present chapter, we begin recalling the combinatorial description of
the Hochschild cohomology groups and the Gerstenhaber bracket. Then we
present results concerning the Lie module structure. We divide our study in
three cases: the first one is when the quiver is just a loop. The second case is
when the quiver is an oriented cycle but is not reduced to a loop. The last case
is when the quiver is not an oriented cycle.

4.1. Combinatorial Gerstenhaber bracket.

In this section, we recall the computations of the Hochschild cohomology
groups given by Cibils in [Cib98] and the description of the Gerstenhaber
bracket given in [SFO08]. Both descriptions are given in terms of the quiver.

The Hochschild cohomology groups have been computed from a combina-
torial complex. Such complex is in fact isomorphic to the reduced complex,
which is the complex induced from the reduced projective resolution. We re-
fer the reader to the appendix A for the formulation of both. In [Cib98], the
Hochschild cohomology groups of a radical square zero algebra are obtained from
the following complex, which we denote C*(Q):

0 0 0 0
(Do 0) <D1 0>
0—=k(Qoll Qo) ®k(Qoll Q1) —  k(Q1 | Qo) ®k(Q1 | Q1) —" ---
(5 3)
k(Qn || QO) EBk(Qn H Q1) n—> k(Qn+1 ” QO) @k(QnJﬂ H Q1)
where the map
Dn: k(Qn || QO) — k(Qn+1 ” Q1)

61
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is defined as follows

(8) Datv,e) = Y (ay,a)+ (1™ Y (va,a)
acQre aceQq
where the path v, of length n, is parallel to the vertex e, in other words vy is a
cycle at vertex e.
Before we continue, let us remark that the Jacobson radical r of A is kQ;.

Moreover, the Wedderburn-Malcev decomposition of these algebrasis A =E@r
where E = kQy.

LEMMA ([Cib98]). Let A be a monomial algebra of radical square zero. The
cochain of the reduced complex, CZ(r,A) = Homee (t¥E, A), is isomorphic as a
vector space to

k(Qn H QOU Q1) :k(Qn ” QO) @k(Qn H Q])

The isomorphism is explicit. Then the differentials are translated in order
to obtain C*(Q) which is isomorphic to the reduced complex.

In order to compute the Hochschild cohomology groups using the complex
C*(Q), it is enough to compute the kernel and the image of the maps Dy. Such
computation has been done in three separated cases:

- when the quiver is a loop
- when the quiver is an oriented cycle but not a loop and
- when the quiver is not an oriented cyle.

The statement of the result of such computation will be given later. Now, we will
proceed to compute the Gerstenhaber bracket using this combinatorial complex.
Notice that the Gerstenhaber bracket is defined on the Hochschild cohomology
groups using the Hochschild complex (see apendix B for details). So we need to
translate the Gerstenhaber bracket into the combinatorial complex C*(Q). Since
this combinatorial complex is isomorphic to the reduced complex, it is enough
to compute the reduced bracket.

The reduced bracket is defined in [SF08], using the reduced complex. The
exact formulation of the reduced bracket can be found in the appendix B of this
thesis. In the same appendix, we show that the reduced bracket endows

Ci''(r,A) =P CE(r, A)
n=1

with the structure of a graded Lie algebra, see Proposition B.2.3. The proof
is based on the construction of two maps of complexes between the Hochschild
complex and the reduced complex. The precise construction of such maps of
complexes can be found in appendix A of this thesis. Furthermore, the Ger-
stenhaber bracket and the reduced bracket provide the same graded Lie algebra
structure on HH**1(A) (see Proposition B.2.5). In view of this result and since
the reduced complex is isomorphic to C*(Q), in order to compute the Gersten-
haber bracket we must compute the reduced bracket using the combinatorial
interpretation given by the above lemma.
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DEFINITION. Let Q be a finite quiver. Let o and 3 be paths of length n and
m respectively, given by

o(:a]...ai...an and B:b1b1bm
where the a; and b; are arrows. The bilinear map

[—, —1o :k(Qn | QU Q1) x k(Qm || QoU Q1) — k(Qnim—1 || QoU Q1)

is defined as follows
n

(o), (Bl =) (=N (e x) o (B,y)
i=1
—(=1)n =R () DB y) o (o, x).
i1 '
where
(o, x) o (B,y) = 85 (o B,x]
and

(Byy)o(ox) =85, (B < ay).

i
The expression d stands for the Kronecker symbol. Recall that oc¢ 3 is the path
1
obtained by replacing the arrow a; by the path 3. In the same way (3 ¢  is the

1
path obtained by replacing b; by the path «. For more details see the definition
of operation ¢, given in chapter one.
1

REMARK. If n = m =1, the above formula coincides with the combinatorial
commutator bracket given in [Str06].

We obtain the following result.

THEOREM 4.1.1. Let Q be a finite quiver. The vector space C*T1(Q) with
the bracket [—, —1q is a graded Lie algebra.

Moreover, if A = kQ/ < Q2 > the graded Lie algebra C’E+1(T,A) endowed
with the reduced bracket is isomorphic to C**1(Q) endowed with the bracket

[ Ty T ] Q .

PrOOF. Given a quiver Q, let A = kQ/ < Q2 >. Let us remark that
C**t1(Q) is isomorphic as a vector space to C*t1(r, A) using the above lemma. A
straightforward verification shows that the bracket [ —, —]q is the combinatorial

translation of the reduced bracket. The definition of the reduced bracket can be
found in the appendix B. Since C**1(r, A) with the reduced bracket is a graded

Lie algebra (see Proposition B.2.3), we infer that C**1(Q) with [—, —Jgis a
graded Lie algebra. The isomorphisms defined by Cibils induce an isomorphism
of graded Lie algebras. O

The combinatorial bracket endows a graded Lie algebra structure on

Q) = P k(Qn || Qo) & k(Qn || Q1)

n=1
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Next, we will show that the combinatorial bracket on the cohomology of the
complex C*(Q) is well defined. In order to do so, we need more notation.

NOTATION. Consider the combinatorial complex C*(Q). Let Z™(Q) be the
kernel of the differential ( 0 O> and let BM1(Q) be the image of the differential

Dn 0
(5, o)
LEMMA 4.1.2. Let A=%kQ/ < Q2 >. The maps
[—, =1@: Z™Q) x Z™Q) = Z™™(Q)
and
[—, ~]q:B™Q) x Z™Q) — B™™(Q)
are well defined. Hence we have a well defined bracket on the Hochschild coho-
mology groups:

[—, —]q: HH™A) x HH™(A) — HH™ ™ 1(A).

PROOF. Let us denote 6 the differential ( 0). Using Lemma B.2.4, we

0
Dn 0
obtain

8[,81q = [, 88, Jq + (=1)™ (8¢, Elq
where & and &’ are elements of the cochains of C*(Q), since the combinatorial
bracket is the translation of the reduced bracket. From this formula, clearly we
infer that & and &’ are two cocycles then [&, &'] is a cocyle. Moreover if d& is a
coboundary and &' is a cocyle, the formula gives that [8¢,, '] is a co-boundary

too. Therefore the bracket [—, —]Q is well defined at the cohomology level
of C*(Q), i.e. in HH™(A). Notice that we denote [—, —]g the combinatorial
bracket defined on the Hochschild cohomology groups. O

Moreover, the combinatorial bracket endows the same Lie graded algebra on
the Hochschild cohomology as the Gerstenhaber bracket.

COROLLARY 4.1.3. Let A = kQ/ < Q2 > where Q is a finite quiver. The
graded Lie algebra structure on HH*Y1(A) given by the Gerstenhaber bracket is
isomorphic to the the graded Lie algebra structure induced on the cohomology of
the complex C*T1(Q) given by [—, —]1q.

PROOF. Proposition B.2.5 from appendix B states that the graded Lie alge-
bra HH**1(A) endowed with the Gerstenhaber bracket is isomorphic to HH**1(A)
endowed with the reduced bracket. Since the graded Lie algebra C**'(Q) en-
dowed with [—, —]q is isomorphic to the graded Lie algebra C**1(r, A) together
with the reduced bracket, we obtain the result. [l

The above corollary provides a combinatorial tool to study the graded Lie
algebra HH**1(A) where A = kQ/ < Q, >. In the next sections, we will
study closely the Lie module structure on HH™(A) using the above results as a
principal tool.
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4.2. Algebra of dual numbers.

In this section, we will assume that the quiver Q is a loop and the charac-
teristic of the field is zero. Then, the radical square zero monomial algebra that
we consider is A = k[x]/ < x2 >, the algebra of the dual numbers.

We already know, from Proposition 2.2.5 of chapter two, that its first
Hochschild cohomology is the field, therefore as a Lie algebra it has to be the one
dimensional abelian Lie algebra. We will show that the Hochschild cohomology
vector spaces of degree n > 1 are one dimensional vector spaces, and we will
provide a basis of HH™(A). We know that one dimensional Lie modules over an
abelian Lie algebra are given by the multiplication by some scalar in the field.
We will precise this scalar for the Lie module HH™(A). To do so we will first
state the result which computes the dimension of the Hochschild cohomology
vector spaces.

PROPOSITION (see for instance [Cib98]). Let A = k[x]/ < x? > where k is
a field of characteristic zero. Then,
HHC(A) = A
HH™A) = k forn>1
The proof is based on the computation of the kernel and the image of the
maps Dy, given by the equation (8), of the complex C*(Q). Let us sketch the
proof in [Cib98]. If Q is the loop quiver, we denote e the only vertex and by a
the only arrow. Then, for the loop quiver, the combinatorial complex C®(Q) is

as follows:
(5. ¢
0 D] 0
0—k(e,e)®k(e,a) — k(a,e)®k(a,a) —" ---
(0. o)
n n Dn 0 n+1 n+1
- k(a™e)dk(a™a) — k(a™',e)Dk(a™ ', a)---
A short computation gives that the map Dy, = 0 for n even and Dy (a™ e) =

2(a™*1 a) for n odd. Since chark = 0, we infer that D, injective for n odd.
Therefore for n =0,

HH®(A) = k(e,e) D k(e,a) = A
If n is odd,
HH™(A) =k(a™ a) = k.
If n > 0is even

HHn(A) = k(an’]f()a?i ];()an, a) = k(an> e) = k.

PROPOSITION 4.2.1. Let A =Kk[x]/ < x% > where k is of characteristic zero.
For n > 1, consider the map @n: AS™ — A given by:

[T A(f,x) if nis even
[T A(f,x)x  if nds odd.
where 1 = Ay, x)x +A(fy, 1) fori=1,--- n. Then HH"(A) =k ¢n

(Pn(f1®"‘®fi®"'®fn):{
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PROOF. Let Q be the loop with vertex e and arrow a, and let
A = kQ/ < Q3 >. Using the above description of HH™(A) for n > 1 we
obtain that HH™(A) = k(a™,e) if n is even and HH™(A) = k(a™, a) if n is
odd. Since k(Qn || Qo U Q1) = Homge (r® A) and using the induced quasi-
isomorphism Homege (t¥™ A) — Homy(A®™, A) from the Appendix A, we infer
that (a™, e) corresponds to the map @, if n is even and that (a™, a) corresponds
to map @, if n is odd. O

Before continue, let us remark the following.

REMARK. Let g be the one dimensional abelian Lie algebra, (i.e. g = k).
The one dimensional Lie modules of g are determined by some scalar. Given c
in k, denote ke = k the Lie module given by:

g X ke — ke

AL =cAu
where A and p are in k. Notice that k. = ks as Lie modules over g if and only
if ¢ = ¢’. Moreover, if V is a one dimensional Lie module over g then V = k.

where c is obtained as the result of the action of the element 1 in g over the
basis of V. We have the following bijection

K 2L {one dimensional Lie modules over g}/ ~
c ke

Since HH™(A) is a one dimensional vector space, its Lie module structure is
clearly given as in the above remark. We will precise the scalar in the field that
determines the Lie module structure by a simple computation of [—, —]q.

PROPOSITION 4.2.2. Let A =k[x]/ < x% > where k is of characteristic zero.
Form > 1, the Lie module structure on the Hochschild cohomology groups given
by Gerstenhaber bracket,

HH'(A) x HH™(A) — HH™(A),
s given by:
I 2 if n is even
P1-on = {(1 —Nn)Qn if N is odd.
Therefore,
HH?™Y(A) = HH?™1(A)

considered as Lie modules.

ProoOF. Let Q be the loop with vertex e and arrow a, and let
A = kQ/ < Q2 >. As a consequence of corollary 4.1.3 and using the com-
binatorial description of HH™(A) and the bracket [—, —]g, we deduce that
the Lie module structure on the Hochschild cohomology groups given by the
Gerstenhaber bracket HH'(A) x HH™(A) — HH™(A) is induced by the fol-
lowing morphisms. If n is even, k(Qq || Q1) X k(Qn || Qo) — k(Qn || Qo) is
given as follows: (a,a).(a™e) = [(a,a), (a™e)lo = —n(a™e). If n is odd,
K(Q1 | Q1) x K(Qn | Q1) — k(Qu || Q1) is given as follows: (a,a).(a™ a) =
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[(a,a), (a™ a)]g = (1 —n) (a™ a). Using the above proposition we know that

(a™, e) corresponds to @ if n is even and that (a™, a) corresponds to @, if n
is odd. We obtain the result. O
Denote

00
HHOdd(A) — @ HH2n+1 (A)
n=0

It is clear that the Gerstenhaber bracket endows HH°44(A) with a Lie algebra
structure. To describe this Lie algebra, let us introduce some notation. De-
note W the Lie algebra of derivations of k[x], i.e. W = Der(k[x],k[x]). For
n a positive integer, let ¢y : k[x] — k[x] be the derivation defined as follows:
Pn(x!) = ix™ T where i is a positive integer. The commutator bracket os such
derivations is given by

[Pn, dml = (M —M)brym1.

Now, it is easy to see that any derivation on k[x] is a linear combinations of
®n’s. Denote by W;, the vector space generated by ¢r,. Then

(9]
W =P Wh.

n=0
Clearly, the commutator bracket is graded if we consider elements of W, of
degree n — 1. We will denote

Wedd = (B Wi

n=0

the Lie subalgebra of W.

ProprosITION 4.2.3. Let k be a field of characteristic zero and
A = k[x]/ < x? > the algebra of the dual numbers. The Lie algebra HHO94(A)
is isomorphic to te Lie algebra W44,

PrOOF. Using the formula for the bracket, we have

n+m—1

[(an»a))(am»a)]Q: (n—m) (Cl ,(l).

Using Proposition 4.2.1 we deduce that [@n, @m]l = (M —M)@nim_1. O

4.3. Oriented cycle.

Assume that the quiver Q is an oriented cycle of length N > 2 and the
characteristic of the field is zero. In this section, we will determine the Lie
module structure on HH™(A) where A = kQ/ < Q, >. Using Proposition
2.2.5 of chapter two, we know that the first Hochschild cohomology is the one
dimensional abelian Lie algebra. Moreover, we will show that HH™(A) is either
zero or a one dimensional vector space and we will provide a basis of HH™(A)
when it is not trivial. The Lie module structure on the non-trivial Hochschild
cohomology vector spaces is determined by a scalar on the field. We will precise
this scalar. As we did in previous section, we begin recalling the computation
of the Hochschild cohomology vector spaces.
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PRrROPOSITION ([Cib98]). Let A = kQ/ < Q2 > where Q is the oriented
cycle of length N with N > 2 and k is a field of characteristic zero. If n or n—1
1s an even multiple of N

HH™A) =k,

otherwise HH™(A) is zero.

If Q is an oriented cycle of length N, let {eq,...,en} be the set of vertices
and {ay,...,an} be the set of arrows such that s(ai) = e, t(ai) = eiyyq for
i=1,...,N—1and t(an) = e1 = s(aj). The combinatorial complex in this
case is as follows:

0 — k(Qo Il Qo) ——=K(Qy || Q1) =% -

0 Dn 0
co— k(AN Qo) T k(Qn41 | Q1) — - -+

0 Den 0
o — k(Qen || Qo) T K(Qengr || Q1) — -+

where ¢ > 0 is a positive integer. Let us notice that if n # ¢N and n # cN + 1,
clearly HH™(A) = 0 since Qn || Qo and Qny1 || Q1 are empty sets. Now, the
others cohomology groups are:

_ K(Qen1 || Q1)

HHN(A) =kerDeny and  HHSNFN(A)
ImDCN

where c is a positive integer. In order to compute HHN(A) and HHN*TT(A) it
is enough to compute the kernel and the image of D¢n. In [Cib98], the following
is proved:
- if ¢N is odd then D.y is injective, therefore both cohomology groups
HHN(A) and HHN*TT(A) are zero.
- if ¢N is even then D.n has a one dimensional kernel, therefore both
cohomology groups HHN(A) and HHN*tT(A) are one dimensional.
We introduce the following notation in order to state the computation of the
kernel and the image of the map D.n.

NotATION. Fori=1,--- /N we denote v, the only oriented cycle of length
N that starts and ends at vertex e; and and yg, denotes the composition of the
path ye, with itself ¢ times. If ¢ =0 we set yg, = e;.

LEMMA 4.3.1. Let Q be the oriented cycle of length N with N > 2 and k is
a field of characteristic zero. For ¢ > 0 consider the map

Den i k(Qen || Qo) — k(Qena || Q1)

given by (8). If cN is an even multiple of N then
k(QcN+1 || Ql) ~

N
kerDen = kZ(ygi, ei) and Im Dn,

i=1

k(ve, a1, a1).
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PROOF. Notice that Qen || Qo consists of all (vg,ei) and Qenyt || Q1
consists of all (yi(ai)ai, aiy). Fori=1,--- /N, we denote b; the the only arrow
such that t(b;) = ey, so s(aj) = e; = t(by). If cN is even then Dy is given by

Denlve,rei) = (aiye,, ai) — (ve,bi, bi).
Let us remark that (yg bi, bi) = (bw‘;(bi),bi). Let x be in ker DN, suppose

X = Zl\; Ae; (Ve,, €i). Since Den(x) = 0, the linear combination given by

N
D Ae ((aﬂ’ep ai) — (bi¥§,)» bi))
i

is zero. Notice that the element (bﬂ’g(bipbi) appears in the above linear com-
bination with coefficient Ay, ) — Ae;, Which is zero. Therefore for all arrow b,
As(by) = A(by)- Since Q is connected, we deduce that Ae, = A¢; for all 1,j. We
obtain that ker Dcn is generated by the sum of all (yg ,ei). Now, the vector
space Im D¢y has dimension |Qen1 || Qi1l—1 =1Q1/—1 =|Qo/—1. Notice that
if w is an element in k(Q¢ny1 || Q1), then it can be written as follows:

N N
W= Aa(¥§(a @ ai) = tri(w)(v§,ar, a1) + D tri(w)Den(vs,, €1)
i=1 i=2

where triy(w) = Z;\]:J\aj. We deduce that {Den(ve,, ei)}]iiz is a basis of Im DN
and in order to complete a basis for k(Qeng1 || Q1) we include {(ySar, aq)}.
Therefore we obtain the last statement. ]

The above lemma provides a basis of HH™(A) in terms of the combinatorics
of the quiver. We will give the linear map in Homy(A®, A) that corresponds to
this basis. To do so, let us introduce some notation.

NOTATION. Fori=1,--- N and ¢N > 0 a positive multiple of N, we denote
oi:{1,...,cN}—={1,--- N}
the periodic function with period N (i.e. 0i(j) = oi(j+N)) such that oj restricted
to {1,..., N} is the following cyclic permutation:
e ifi=1then o1(j)=jforj=1,...,N;
e if i =N then on(1) =N and on(j) =j—1forj=2,...N,
eif 1 <i< N then oi(j) =i+ (G—1) forj=1,...,N—1i+1 and
0ij)=—1)—(N—1i)forj=N—-1i+2,...N.
ExaMPLE. If N =2 then for j =0,...,c—1:
01(2j+1)=1,0112j+2)=2,0202j+1) =2, 02(2 +2) =1.
If N =3 then G1|{1,2,3} = (1), 62|{1,2,3} = (]23) and G3|{1)213} = (]32) Therefore,

o13j+1) =1, c1(3j+2)=2, 01(3j+3)=3,
0231 +1) =2, 023j+2)=3, 0203j+3)=1,
O'3(3j+]):3, O'3(3j+2):], 0'3(3j+3):2,

forj=0,...,c—1.
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An element f in A is written as a linear combination
N

f=> Alf,edei+Alf,a)a;

i=1

where ey, ..., exN are the vertices and ap,...,an are the arrows of Q.

NoOTATION. Fori=1,--- /N and c¢N > 0 a positive multiple of N we denote
mi s AYN 5k

the linear map given by
cN
mi(f1 ® - @ fn) = Hx(fj» Qg (5))-
j=1

We show the following result.

PROPOSITION 4.3.2. Let A =kQ/ < Q2 > where k is a field of characteristic
zero and Q is the oriented cycle of length N with N > 2. Consider the map
©1:A — A given by

@1(f) = Alf, a1)aq

Then HH'(A) = k @.
Forn > 1, a multiple of N, consider the map @n : A™ — A given by

N
Pen(fi @ ®f) =) m(f1@ - @fne
i1

and the map @ni1: A — A given by
Pnt1(fi @ @frp) =mf1 @ @ f)AM(frni, ar)ar .

Then HH™Y(A) = k@n and HH™" T (A) = k@ny if n is even and HH™MA) is
zero otherwise.

ProOOF. The vector space HH™(A) is trivial except if either n or n — 1 is
a multiple of N and this multiple is even. We use the above lemma to obtain
a basis of HHN(A) and HHN*T(A) when cN is even. The basis is given in
terms of the quiver. Using the isomorphism k(Qen || Qo) = Homge (r¥N A),
the element (yg,,ei) corresponds to the linear map T r@eN 5 A given by
m(f1® - @ fn) = mi(f1 ® - ® fen)eq. Using the above lemma, the basis of
HHSN(A) is given by the sum of all ni’s. Using the induced quasi-isomorphism
from the Appendix A we infer that such sum corresponds to @.N. Besides, recall
that k(Qengt || Q1) = Homee (r®N+1 A). The element (v¢, ai, ai) corresponds
to the linear map 7t/ : TNt 5 A given by n/(f1 ® -+ @ fen ® fong1) =
mi(f1®- - @fen)A (fenat, ai)a; . Using the above lemma, the basis of HHENFT(A)
is given by (ySaq, ay) which corresponds to the map 7] in Homege (r®eN+T A
Using the induced quasi-isomorphism from the Appendix A we infer that 7t}
corresponds @.N. Using the description of the Hochschild cohomology groups
we obtain the last statement. O
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We conclude that HH™(A) is either zero or a one dimensional vector space.
For HH™(A) which is not zero, we point out that the Lie module structure on
HH™(A) is indeed given by the multiplication by some scalar in the field. For
each n, we precise this scalar in the following proposition.

PrOPOSITION 4.3.3. Let A = kQ/ < Q2 > where Q is an oriented cycle
of length N with N > 2 and k is a field of characteristic zero. For n > 1,
the Lie module structure on the Hochschild cohomology groups, given by the
Gerstenhaber bracket,

HH'(A) x HH™(A) — HH™(A)

1s given as follows
P1.Pn=—CPn
where ¢ is a positive integer such that cN is even and either n = cN orn = cN+1

and ¢ is zero otherwise.
Therefore, for all positive integer ¢, HHEN(A) = HHNTT(A) as Lie modules.

PRrROOF. From corollary 4.1.3, in order to determine the Lie module struc-
ture, we use the combinatorial description of HH™(A) and we compute the
bracket [—, —]g. Suppose ¢cN > 0 is an even multiple of N. The Lie mod-
ule structure on HHN(A) given by the Gerstenhaber bracket is induced by
the following morphism k(Q7 || Q1) X k(Qen || Qo) — k(Qen || Qo) given as fol-
lows: (ai,ai).(ygj,ej) = [(ay,ai), (ygj,e]-)]Q. A simple computation of the
combinatorial bracket gives [(ai, ai), (ygj ,6)]g = —c(‘y‘e’j ,€j). Using the above
proposition, we know that ¢7 corresponds to (aj,aj) and @.N to the sum of
all (ygj,e)-), then we obtain that [@1, @ecn] = —c@cn. We obtain the re-
sult for HHN(A). Likewise, the Lie module structure on HHN*T(A) is in-
duced by the morphism k(Qq || Q1) X k(Qn || Q1) — k(Qn || Q1) given as fol-
lows: (aj, ai).(y,f(aj)a]-, a;) = [(ay, ai), (y,f(aj)aj, a;j)]q. As we did before, a sim-
ple computation of the combinatorial bracket gives: [(ay, ai), (yg(aj 195, aj)lg =
—c(yf(aj)a]-,a,-). Using the above proposition (aj, aj) corresponds to @1 and
(vSa1,ar) to @cn41 and then we obtain that [@1, @cNng1] = —C @en. O

Recall that we denote W the Lie algebra Der(k[x], k[x]), see the previous
section. We denote W* the Lie subalgebra of W given as follows:

W* =P Wan.
n=0

We have the following proposition:

PrROPOSITION 4.3.4. Let A = kQ/ < Q2 > where Q is the oriented cycle
of length N with N > 2 and k is a field of characteristic zero. The Lie algebra
HHC44(A) is isomorphic to W*.

Proor. If N is even,

HHOdd(A) — @ HHCN—H (A)
=0
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and if N is odd,

HHOdd(A) — @ HHZCN—H (A)
c=0

Define L. = HHNFT(A) if N is even and Lo = HH2NTT(A) if N is odd. L. is a
one dimensional vector space and [L¢,L{]g € Lcyer. We assume that N is even
without lost of generality. To determine the Lie algebra structure on HH®44(A),
we need to compute the Gerstenhaber bracket

K(Qen1 || Q1) x K(Qernt || Q1) — k(Qeaeryngr || Q1)

We have that [ (v{ a5, a5) , (Yf(lai]ai, aj)lg=—c¢ (Yf&f)a]‘, a5) — ¢’ (v, an ai)-

Let us remark that if i =j then

[(V(ay) @0 a1), (Yi(a) @i ai)lQ = (e —¢/) (v{()ap, ad).

Using Proposition 4.3.2 we deduce the statement. O

4.4. Quivers different from an oriented cycle.

In this section, we consider A =kQ/ < Q2 > where Q is not an oriented
cycle. We will like to emphasize that the quiver can have oriented cyles but
it cannot be reduced to an oriented cycle. Let us recall the description of the
Hochschild cohomology groups of such algebras. In [Cib98], the description is
given using the combinatorial complex C*(Q). The map Dy, given by (8), is
injective for n > 1 when Q is not an oriented cycle. Therefore, for n > 1 the
kernel of the differential

(5. )

K(Qn | Qo) @ k(Qn | Q1) 25" K(Quar || Qo) & K(Quss || Q1)

is actually k(Qn || Q1) which is called the space of shortcuts. Moreover, Im Dy,
is isomorphic to k(Qn_1 || Qo) the space of pointed oriented cycles. The state-
ment is as follows:

THEOREM ([Cib98]). Let A = kQ/ < Q2 > where Q is not an oriented
cycle. Then, if n > 1

where
Din1:k(Qn-11l Qo) — k(Qn || Q1)

is the linear map given by (8). Moreover, if n > 1

dimHH™(A) =[Qn || Q11 = 1Qn-1 || Qol.

The combinatorial description of both the Hochschild cohomology groups
and the Gerstenhaber bracket provides the following result:
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THEOREM 4.4.1. Let A = kQ/ < Q32 > where Q is a finite quiver. If Q is not
an oriented cycle then the Lie module structure on the Hochschild cohomology
groups given by the Gerstenhaber bracket

HH'(A) x HH™(A) — HH™(A)
18 induced by the following bilinear map:

k(Q1 [ Q1) x k(Qn [ Q1) — k(Qn [| Q1)

given as follows
n
(a)X)~(“)y) = 613 : (O(,X) - Zésl : ((X?a)y)
i=1

where & is the Kronecker symbol and o« = aj---ai---an s a path of length n
constituted of arrows ai. For ai = x the path « ¢ a is obtained by replacing a;
1

with a.

PRrROOF. Using the above proposition, we obtain that Z™(Q), the space of
cocyles of C*(Q), is equal to k(Qn | Q1). Moreover, B™(Q), the space of
coboundaries, is Im Dy,—1. Then we compute the combinatorial bracket [ —, —]g
on the space of shortcuts and we obtain the above formula. Using corollary 4.1.2,
we know that [—, —]q is well defined in the quotient of k(Qn || Q1) by Im Dy_1.
Finally using 4.1.3 we obtain the result. O

The above theorem gives a combinatorial description of the Lie module struc-
ture on HH™(A). In the next chapter, we will apply this theorem in two cases:
when the quiver has no oriented cycles and when it is the multiple-loops quiver.






CHAPTER 5

Triangular and multiple-loops quiver.

In this chapter we consider monomial algebras A with radical square zero
associated to a quiver without oriented cycles or to the multiple-loops quiver. In
the previous chapter, we have described the Lie module structure induced by the
Gerstenhaber bracket on HH™(A) for such algebras. In fact, we have considered
a more general case: when the quiver is not an oriented cycle. The description
in this case has been given in terms of the combinatorics of the quiver. In the
present chapter, we will relate such Lie module structure with the Lie modules
over the Lie algebra of square matrices of trace zero sl.(k). We will use as a tool
the combinatorial description of such Lie modules.

5.1. Triangular

In this section we consider triangular monomial algebras with radical square
zero, i.e. A =kQ/ < Q2 > where Q is a quiver without oriented cycles. We will
prove that the Lie module structure on HH™(A) is isomorphic to a direct sum
of tensor products of ”standard modules” over gl (k).

Let us begin with the following observation. Since Q has no oriented cycles
the combinatorial complex is the following:

C*Q) = 0— Kk(Qo | Qo) = k(Qy | Q1) = -

0 0 0
- — k(Qn | Q1) 7 k(Qny1 | Q1) — -+

It is clear that for n > 1, the differentials are zero since Q, || Qo is an empty
set. Therefore HH™(A) = k(Qn || Q1) for n > 1. In view of this, we will study
k(Qn || Q1) as a Lie module in a more general setting that we explain in the
next paragraph.

REMARK. In the previous chapter, Theorem 4.1.1 states that

C1(Q) = D K(Qn I Qo) & K(Qn || Q1)

n=1

together with the combinatorial bracket is a graded Lie algebra. Therefore, given
any quiver Q, the graded vector space of shortcuts, i.e.

P kQnl Qi)
n=1

75
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equipped with the combinatorial bracket [—, —]q is also a graded Lie algebra
since the bracket of two shortcuts is a shortcut. As a consequence k(Qn || Q1)
is a Lie module over the Lie algebra k(Qq || Q1).

Recall that k(Qq || Q1), the Lie algebra of parallel arrows, has been already
studied in the second chapter of this thesis. We will study the Lie module
structure on k(Qqn || Q1) over this Lie algebra. To do so, we need to introduce
some notation.

NOTATION. Define an equivalence relation on the set Qqn || Q1 as follows.
Let x=ay---ai---an and p =by---b;--- by be paths in Q. Then

(o, x) ~ (B,y) if and only if x || y and a; || b; for all 1.
Denote T, the set of equivalence classes (Qn || Q1)/ ~.

REMARK. The following map is a bijection between 7, and Q,, || Q;, the set
of shortcuts of the quiver Q:
Tn — Qn H Q]
tl=[(ar--ai---an,x)] = (oo om,y)
where
[t] denotes the class of t,
-t=(aj---ai---an,x) is a shortcut in Q,
ai belongs to &4 and x to vy,
-« is in Qq for all i, as well as y and
- (xX7- - &i--- o, y) is a shortcut in Q.

NOTATION. Let T = (o7 --- o+ - &tn,Y) be a shortcut in Q,, || Q;. We write
|lt E T"

when t = (aj---aj---an,x) is a shortcut in Qy || Q1 such that its class [t]
correspond to T through the above bijection. We also write ”t belongs to T”.
Moreover, given T in Q,, || Q;, we denote

KT =Pkt
teT
which is a subvector space of k(Qqn || Q1).

LEMMA 5.1.1. KT is a submodule of k(Qn || Q1) over the Lie algebra k(Qq || Q1).
Hence

kQnllQ= €& «T
Tn€6n”61
as Lie modules over k(Qq || Q1).

PROOF. To show that kT is submodule of k(Qy, || Q1), consider t € T and
(a,a’) in k(Qq ]| Q). Let t=(aj---ai---an,x). A simple computation gives

(a,a’).t = [(a,a’),(ar---a; - an,x)]Q
(9) = &%(ar---aj---an,a’)
—_ Z{l:_légi/(a]...a...an)x)
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where the shortcuts that appear in the right side of the equation are in the class
of t. So (a, a’).tis a linear combination of shortcuts belonging to T. This implies
that kT is a submodule of k(Qn || Q1) over k(Q7 || Q1). Moreover, let T and T’
be in Q,, || Q. Clearly kT N kT’ = 0 whenever T # T’. Finally, k(Qy || Q1) is
the direct sum of the submodules kT for all T in Q,, || Q;. O

Since k(Qn || Q1) is a direct sum of Lie modules kT, we will investigate
in more detail such modules. In fact, we will relate tensor products of ”stan-
dard modules” over the Lie algebra of endomorphism with kT. We begin fixing
notation about standard modules.

REMARK. We have shown in Lemma 2.1.1 that
kKQil Q=[] ola= ] Endr(Va)
0666] 0666]

as a Lie algebra where V4 is the vector space with basis the set «. Notice that
for every o in Q;, we can consider Vy as a module over k(Qq || Q1).

We will write explicitly the Lie module structure on V4 over k(Qq || Q1)

using the following map:

k(Q1 | Q1) X Vo — Vi«

(a,a’).x = 65a’

where a and a’ are parallel arrows, x is an arrow in « and & is the Kronecker
symbol. We write explicitly the Lie module structure of the dual V* using the
following map:

k(Qq || Q1) x Vg — Vg

(a,a’).x* = —5% a*.

We will use V, and its dual in order to describe the Lie module kT. In fact,
kT is given by a tensor product of those Lie modules. Let us recall the tensor
product of Lie modules in a general setting: let g be a Lie algebra and M and
N be two Lie modules over g. The tensor product M (% N is a Lie module over

g given by the map:
gXMON->M®N
k k

given by
gmIN=gmOn+meg.mn.

LEMMA 5.1.2. Let T = (ot1-+- &+ - &n,Y) be a shortcut in Q|| Qq, then
kTg\/Zq (%)...(%qu (%...V;n (%VY
as Lie modules over k(Qq || Q1).

PROOF. Let T = (&1 ---&i---&tn,y) bein Q,, || Q; and let t = (aj - - - an,x)
be in Qqn || Q1 such that t € T. Consider the map

P kT — Vg, %'”%V&%'“V&%\/v
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given by
Pt)=a]® - ®a® - ®a, xX.
We will prove that 1\ is a morphism of Lie modules, i.e. {((a,a’).t) = (a,a’)p(t).
In view of (9) in the proof of the above lemma, we remark that
P((a,a’)t) = 5’&0’1‘ ® -®a--@dead
- Zéa‘ A®---®ad---®a;x.
i=1

Now, let us compute (a, a’)ap(t):

n
(a,a’)Pp(t) = Za*{®-~®(a,a’).a?®---®aj‘1®x
+ aj®---Rad® --®ad,o(aa)x
n
e Z 5,(11 .®a*®...a;®x

+ 6’5(11@ Rai® - @ay®a.
Then P is a morphism of Lie module and is clearly bijective. Therefore we have

an isomorphism of Lie modules. O

In the next lemma, we prove that the Lie module kT is generated by any
t € T whenever T is constituted by different arrows.

LEMMA 5.1.3. Let T = (&7...n,X) be a shortcut in Q,, || Q; such that
o # X for any i and o # o for any 1 #j. Then KT is generated by any t € T
as Lie module over k(Q1 || Q1).

PROOF. Let t = (aj---an,x) andt’ = (aj - - - aj,, x) be shortcuts that belong
to T, so a; || al and x || x’. We will show that t’ is in the Lie module generated
by t. Denote t(© = (x,x’).t, notice that t(®) belongs to the Lie module generated
by t. Since x’ # a; for all 1,

t9 =[(x,x), (a1 ay,x) g = (a7~ ay,x').
For i=1,...,n, define recursively t) as follows:
tV = (af, a) ™V = [(af, ai), tlo.

Notice first that each t) is in the Lie module generated by t. Again as a
consequence of the hypothesis, x’ # ai, ai # af for j <1 and a; # aj for i <j.
A simple calculation of the above bracket shows
t® = (af ay).(a} - al a1 an,x’)
= (a{ . a{_1a./ai+1 S ap, x7).

Thus we deduce that t’ = t(™ which is in the Lie module generated by t. O

LEMMA 5.1.4. Let T = (7...an,x) be a shortcut in Q,, | Qq such that
i # X for all i and oy # o for all 1 #j. Then the Lie module kT is generated
by any of its nonzero elements. Therefore, KT is an irreducible Lie module.
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In particular, if Q has no oriented cycles then kT is an irreducible Lie module
for any shortcut T.

PRrOOF. Let
w = Z 7\tt

be a non-zero element of kT, we will prove it generates kT. There exists a
t € T that appears in the linear combination of w with non-zero coefficient.
Fix t = (a7---an,x) a shortcut whose coefficient A is not zero. By hypothesis,
x # ai for all i. Denote W the Lie module generated by w. Set

W(O) = (X»X)'W = [(X)X) y W]Q

Clearly w(© is an element of W, a simple computation of the bracket gives:

n
0
w =33 Najeag (@ afy,x)
j=1 a].'€ocj
Fori=1,...,n, we set:
1) i-1) _

w® = (a5, a)) wt =[(a, ap), w0,

It is clear that every element w(V is in W. Moreover, for i < n we have that
wl is equal to the following linear combination:

n
i / /
(=1) Z Z A(al“'aia{+1'~~a1’u><)(a1 ©QiQg4y A, X
= —
j=i+1 ajeay

Then w™ = +At which is in W and using the above lemma W must be the
Lie module kT. Clearly kT is irreducible if it is generated by any of its non-zero
elements. Finally, if Q has no oriented cycles then any shortcut T satisfies the
hypothesis of the statement. O

We have studied k(Qn || Q1) as a Lie module over k(Qq || Q1) using the
decomposition in direct sum of submodules kT. We have also seen that if the
quiver has no oriented cycles then kT is irreducible.

Next, we will consider k(Qyn || Q1) as a Lie module over the quotient of
the Lie algebra k(Qq || Q1) by Im Dy. Moreover, we will also obtain the same
decomposition in direct sum of submodules kT.

LEMMA 5.1.5. Let Q be a quiver without oriented cycles. Then k(Qn || Q1)
is a Lie module over the quotient k(Q1q || Q1) by Im Do with the following map

k(?]“@) X k(Qn | Q1) = k(Qn || Q1)
mDo

(a,a/).t = (a,a').t=[(a,a’), tlq
where (a,a’) is the class of an element in Q1 || Q1 and t is a shortcut. Moreover,
kKQullQ) = & «T

Teén”é]
as a Lie module over the quotient of k(Q1 || Q1) by Im Dy.
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PROOF. From Lemma 4.1.2 of the previous chapter, the combinatorial bracket
of a coboundary and a cocyle is a coboundary. Using the description of C*(Q)
when Q has no oriented cycles given at the beginning of this chapter, B'(Q) =
ImDy, ZM(Q) =k(Qn || Q1), and B™(Q) =0 for n > 1. Therefore

[Im Do, k(Qn [ Q1)Ig =0

for n > 1. Therefore, a Lie module structure on k(Qn || Q1) over the quotient
k(Q1 || Q1) by Im Dy is induced by the above formula. We use Lemma 5.1.1 to
obtain the decomposition of k(Qn || Q1) as a direct sum of kT, considered as
modules over the quotient. O

In this paragraph, we return to the Hochschild cohomology of triangular
monomial algebras of radical square zero. Let A = kQ/ < Q2 > where Q has
no oriented cycles and k is a field of characteristic zero. Recall that HH'(A)
is the quotient of the Lie algebra k(Q7 || Q1) by the image of Dy and that for
n > 1, HH™(A) is the space of shortcuts k(Qn || Q). As before we will use
tensor products of standard modules to describe HH™(A). We need the following
remark in order to understand the Lie module structure over HH'(A) on those
tensor products.

REMARK. Given a quiver Q without oriented cycles, let T = (&7...cn,x)
be a shortcut in Q,, || Q;. Recall that kT is isomorphic to the tensor product

V:q (%"'(%V:q(%'“%v;n%vY

as Lie modules over k(Qq || Q1). Since kT is a Lie module over the quotient of
the Lie algebra k(Qq || Q1) by Im Dy (Lemma 5.1.5), we endow the above tensor
product with a Lie module structure over the quotient via the isomorphism.

NoOTATION. Let Q be a quiver without oriented cycles and T be a shortcut
in Q. We denote the above tensor product HH}(Q) when we consider it as a
Lie module over HH'(A) as explained above.

In order to state the result, let us recall some facts about HH'(A). In
chapter two, we proved that HH'(A) is reductive, i.e. it is a direct product of
its semisimple part HH'(A)gs and its radical HH'(A)qp which is an abelian Lie
algebra. Moreover,

HH (A)gs = [ [ shog(k) and  HH'(A)p = 28 % = jx(@
x€eS

where
S ={a € Q; such that |«| > 1}
and
X(Q) =1Q4| —1Qql + 1.
The next statement describes explicitly the Lie module structure on HH™(A)
over HH'(A)¢s and over HH'(A) gp.
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THEOREM 5.1.6. Let A = kQ/ < Q2 > where Q is a finite quiver without
oriented cycles and k a field of characteristic zero. Then for n > 1 the Lie
module structure on HH™(A) over HH'(A) induced by the Gerstenhaber bracket
1s as follows:

HH™(A) = @7 HHTT‘(Q)%k
TeQLIQ,
where
HHRQ) = Vg, @ - @ V5, 8- 0 Vg, 8V,

Moreover, HHY(Q) is irreducible.
More precisely, the Lie module structure on HHT(A) over HH'(A)ss is given
by
(fa)aes - Xoy @+ DXy @+ Xox RXy QA=
o €S
—Xs(V) Xy @+ @ Xeq @ - Xy @ T (xy) @A
The Lie module structure on HHY}(A) over HH'(A)ap is given by
(}\0()0(66] - Xoy K- ®Xoci & c X ®Xy®)\:
qu ®"' ®Xo(1 ® "'Xo(n ®Xy®A(Ay_Z?Ai)

PROOF. Since Q has no oriented cycles, HH™(A) = k(Qn || Q1). By Lemma
5.1.5, HH™(A) as a Lie module over HH'(A), is equal to the direct sum of kT
where the sum runs over all shortcuts T in Q. Since we have endowed HHT(Q)
with a Lie module structure over HH'(A) in such a way that kT is isomorphic
to HHT(Q) as Lie modules over HH'(A), we obtain the above decomposition.
To prove that HH}(Q) is irreducible, the same proofs of Lemmas 5.1.3 and
5.1.4 can be considered using the way the Lie module over HH'(A) is induced.
Finally, we consider the isomorphism between HH'(A) and the direct product of
HH'(A)ss and HH'(A)4p given in chapter two. A straightforward computation
of the combinatorial bracket via such isomorphism gives the last part of the
statement. O

5.2. Multiple-loops quiver.

In this section we deal with the monomial algebra of radical square zero
given by the multiple-loop quiver which is not reduced to a single loop. We
denote 1 the number of loops, ¥ > 2. The monomial algebra we consider is

A=k[x7,...,x1/ < {xixj}{’jﬂ >. Since Q is not an oriented cycle,
HH'(A) = k(Q1 || Q1), which is in fact gl.(k). Moreover, for n > 1,
Im Dn,1

where the map Dy, is defined by (8). Recall that the map Dy, is injective,
therefore we have

dimg HH™(A) = v+ — 0T
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In order to study the Lie module structure on HH™(A) over gl,(k) induced by
the Gerstenhaber bracket, we study the numerator and the denominator of the
above quotient. We relate this Lie module structure with the known Lie modules
over gl,(k). We begin introducing some notation.

NOTATION. Let Q be a finite quiver. Recall that the vector space generated
by the set of arrows Q1 is denoted kQq. Then kQ has a Lie module structure
over k(Q1 || Q1) through the following map:

k(Q1 [l Q1) x kQ1 — kQ1
(a,a’).x = 8%a’.
A straightforward verification gives
[(a,a’), (b,b)].x = (a,a’).(b,b’).x — (b,b’).(a,a’).x

so the above map provides a Lie module structure on kQq over k(Qq || Q1).
Denote V = kQ; this Lie module over k(Q || Q1). Moreover, the dual Lie
module structure V* is given by the following map:

k(Q1 || Q1) x kQ7 — kQj
(a,a')x = —6%a

REMARK. If Q is the multiple-loops quiver, we know that k(Qq || Q1) is
isomorphic to gl,(k) where 1 is the number of loops. The Lie module V described
above is isomorphic to the standard module k'.

In the previous section, we have study the Lie module structure on the short-
cut space k(Qn || Q1) over k(Qq || Q1). Such Lie module structure is induced by
the combinatorial bracket [—, —]Q. The results that we have obtained where
stated in a general setting. We are going to apply some of them in the case of
the multiple-loops quiver.

PrOPOSITION 5.2.1. Let Q be the multi-loop quiver where v, the number of
loops, 1s greater or equal two. Then

k(Qn Q1) =V eV

as Lie modules over gl.(k), where V is the standard module, i.e. isomorphic to
k" as Lie module over gl.(k).

PROOF. As a consequence of Lemma 5.1.1, k(Qy || Q1) has a decomposition
into a direct sum of Lie modules kT where the sum runs over all shortcuts
T in Q. Moreover by Lemma 5.1.2 the Lie modules kT are isomorphic to a
tensor product of standard modules. For the multiple loops quiver, there is
only one shortcut T = («™, &) where « is the only arrow in Q. Therefore,
k(Qn || Q1) = kT = Vi®" @ V,. Since the Lie module Vy is equal to V we
obtain the result. O
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Next, we investigate the denominator of the quotient that computes HH™(A),
this means the image of the map D,,_1. We study its Lie module structure over
HH'(A). To do so we work in a more general setting.

For quivers that are not oriented cycles, the map

Dy k(Qn || Qo) — k(Qn ” Q1)

is injective for n > 1. Therefore, within those cases we can identify k(Qn || Qo),
the space of pointed oriented cycles, with the image of D,,. We are going to
study both the space of pointed oriented cycles and the image of the map Dy,
as Lie modules over k(Q1 || Q1).

The following two lemmas describes explicitly the Lie module structure of
k(Qn || Qo) and of Im Dy,.

LEMMA 5.2.2. Let Q be any finite quiver. Given a path «, let us sup-
pose & =aj---qi---dn where the ai’s are arrows. The combinatorial bracket
[—, —]q endows k(Qn || Qo) with a Lie module structure over k(Qq || Q1) as
follows:

n
(a,a").(a,e) = [(a,a'), (x,e)lq=—) 5% (xoa,e)
1
i=1
where o a is the path obtained by replacing a; by a if a’ = aj.
1

PROOF. Recall that Theorem 4.1.1 states that C*t1(Q) equipped with the
combinatorial bracket is a graded Lie algebra. The bracket [—, —]g endows
k(Qn || Qo) ® k(Qn || Q1) with  a  Lie module  structure  over

k(Q1 [ Qo) ®k(Q1 || Q1). In particular, k(Qn || Qo) © k(Qn || Q1) becomes a
Lie module over k(Qq || Q7). Moreover k(Qn || Qo) is a submodule since the
combinatorial bracket of a parallel arrow (a,a’) and a pointed oriented cycle
(o, e) is indeed a sum of pointed oriented cycles in k(Qn || Qo). O

LEMMA 5.2.3. Let Q be a finite quiver that is not an oriented cycle. The
image of the linear map Dy_1 is a Lie submodule of k(Qn || Q1) overk(Qq || Q1).

PROOF. Recall that the combinatorial bracket endows k(Qy || Q1) with a
Lie module structure over k(Q1 || Q1) using Theorem 4.1.1. Besides, Z™(Q) =
k(Qn || Q1) and B™M(Q) =Im Dy, 1 € Z™(Q). Moreover

[12'(Q), Z™MQ) 1o € Z™Q) and [Z'(Q), B™(Q)]o € B™Q)

(see Lemma 4.1.2). Therefore B™(Q) is a submodule of Z™(Q) over the Lie
algebra k(Qq || Q1). O

Since we identify k(Qn || Qo) with Im Dy, we need to prove that they are
isomorphic as Lie modules.

LEMMA 5.2.4. Let Q be a finite quiver that is not an oriented cycle. The
map Dy 1 k(Qn || Qo) = k(Qni1 || Q1) is @ morphism of Lie modules.
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PRrROOF. We will show that
Dn((a) al)'((xa e)) = (a» Cl/).Dn(OC, e)
for a and a’ two parallel arrows and o an oriented cycle such that s(a) = t(x) = e.
Recall that (a,a’).(e, e) = 63{(0(9 a,e). Denote oy = & ¢ a whenever a’ = a;.
1 1

Let us begin computing the left side.

n

Dn((a,a’).(x€)) = Dn(Z((Xi)e))

— Z Z (otix, x) (—1)n+1Z Z (xai, x)

i=1 x|s(x)=e i=1 x|t(x)=e

In order to compute the right side, let us begin computing (a, a’).(ax,x) and
(a,a’).(xe, x) where x is an arrow such that s(x) = e or t(x) = e respectively:
n
(a,a’).(ox,x) = 8% (xa,a’) — Z(oqx,x) — 6,‘:,(oca, a’) or
i=1
n
(a,a’).(xe,x) = 8¢ (ax,a’) — Z(xoci,x) — 6% (ao, a’)
i=1
Let suppose first that a is an arrow such that s(a) and t(a) is different from e.
Then

(a,a").Dn(ae) = Y (a.d)(ox,x)+ (-1 > (a.a’).(xoc,x)

x| s(x)=e x| t(x)=
n
= Z Z(oqx,x) n+1 Z Z XX, X
x| s(x)=e i=1 x| t(x)=e i=1

since a # x for any x such that t(x) = e and s(x) =e. Therefore, we obtain the
result in this case. Now we consider the other case, when a is an arrow such that
s(a) or t(a) is equal to e. Without lost of generality let us suppose s(a) = e,
obviously s(a’) = e. Then

n
Z (a.a’).(ax,x) = Z 8¢ (xa,a’) Z Z X, x)
x|s(x)=e x|s(x x| s(x)=e i=1
— Z 6‘1 (xa,a’)
x| s(x)=e
n
= (xa,a’) Z Z aix, x) — (xa, a’)
x| s(x)=e i=1
n
= Z Z(oqx X
x|s(x)=e i=1
We deduce (a,a’).Dn(e, e) = Dn((a,a’).(«,e)). O

PROPOSITION 5.2.5. Let Q be the multi-loop quiver where v, the number of
loops, is greater or equal two. Then

ImDy_y = V&N
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as Lie modules over gl.(k) where V is the the standard module, i.e. isomorphic
to k" as Lie module over gl (k).

PROOF. From Lemma (5.2.4), ImDy_; is isomorphic to the Lie module
k(Qn-1 || Qo) over k(Q1 || Q1). Now, let us consider the following map:

¢ 1 k(Qno1 || Qo) — V!
ble)=a1® - Ra® @ an

where @« = aj---ai---an is an oriented cycle. From Lemma (5.2.2) we have
have that ¢((a,a’).(«,e)) = (a,a’)d(«, e). Therefore ¢ is a Lie morphism and
it is clearly bijective. g

THEOREM 5.2.6. Let A = kQ/ < Q2 > where Q is a multiple-loops quiver
and k is an algebraically closed field of characteristic zero. Then HH'(A) = gl.(k)
where 1 is the number of loops. The Lie module structure (induced by the Ger-
stenhaber bracket) of HH™(A) over HH'(A) = gl,(k) is given as follows:

HH™Y(A) = V**™ T @ s1,(k)

where V is the standard gly(k)-module and sl.(k) is the usual gly(k)-module (i.e.
given by the restriction of the adjoint module).

PROOF. For the multiple loops quiver, we have shown that the Lie module
k(Qn || Q1) is isomorphic to V¥¥™ @V (see Proposition 5.2.1) and k(Qn_1 || Qo)
is isomorphic to V*®1 (see Proposition 5.2.5). Now, we compute the quotient
that gives Hochschild cohomology:

VeEngyV _ venlggli(k
HHYA) =~ oY = ® glilk)
V*®n—] V*®n—1 ® k
The last equality comes from the following fact. Recall that the following exact
sequence of Lie modules over gl.(k) splits:

0 — k — gli(k) — sl (k) — 0.

= V-l g sl (k).

where the section is the inclusion. Therefore
0 — VOl vl g g1 (k) = VT g sl.(k) — 0
is an exact sequence. O
A simple observation gives the following result:

COROLLARY 5.2.7. For an algebra A as above, HH?*(A) = V* ® sl.(k) and
for n > 2 we have
HH™A) = V* @ HH™ (A)

From now on we will assume that the ground field is algebraically closed and
of characteristic zero. The above theorem determines completely the Lie module
HH™(A) over HH'(A). Now, we will study HH™(A) as a Lie module over sl,(k)
as we will explain. Let us recall two classical Lie theory results, (see for instance
[EW06, FH91))
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(1) Every (finite dimensional) sl.(k)-module has a decomposition into di-
rect sum of irreducible modules

(2) The irreducible modules over sl.(k) are uniquely determined by their
vector of highest weight. We denote Iy the irreducible sl,(k) module of
highest weight A.

Then HH™(A) has a decomposition as a direct sum of irreducible modules
over sl,.k as follows:

HH"(A) = @ i
A

Next we provide an algorithm to determine each g, using the usual tools of
classical Lie theory.

NoOTATION. Let I'g, o,
of weight a1wi + aowy + - - - ar_1w; where w; are the fundamental weights. Let

a,_;) be the unique irreducible module over sl (k)

.....

us notice that for slyk, the unique irreducible module of dimension a + 1 is I'g.

REMARK. Let A = kQ/ < Q2 > where Q is a multi-loop quiver. The
above result gives an algorithm to calculate the Hochschild cohomology groups
considered as modules over sl.(k) where r is the number of loops. First, let us
remark that HH2(A) = V* @ sl.(k) where V* is the dual of the standard module
of sl:(k). For n > 2 we have

HH™'(A) = V* @ HH™(A)

The Littlewood Richardson rule is used to find the decomposition into direct
sum of irreducibles of the tensor product of two irreducible modules of sl.(k). A
special case is given in the next proposition. A proof of this result can be found
in the book ”Representation theory” of Fulton and Harris [FH91]. For r = 2,
we have the Clebsch-Gordon theorem:

PROPOSITION. (Clebsch-Gordon) For sly(k) and for a > 1 the following
holds:
V*@Tq=Tar1®Ta 1.
Fora=0,V*®Ty=V"

PROPOSITION. (Littlewood-Richardson rule) For sl.(k) with v > 3, the de-

composition into direct sum of irreducible modules of V* @ T'q, a, 18

~~~~~ ar—1)

ajy1>1
ExaMPLE. For slz(k)
V@ T aw) = MNap+1) @ Natr10-1) @ TNa1,p)
ifa,b>1. Forb=0and a>1,

V*®@Ta0) = Naps1) @ Ta1p)-
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Now, fora=0and b > 1
VE@T0) =Tab+1) @ Na-1)-

Finally

PROPOSITION 5.2.8. Let A = kQ/ < Q2 > where Q is a multi-loop quiver
with 1 loops. The decomposition of HHZ(A) into direct sum of irreducible modules
as a module over sl.(k) is given by

301 ifr=2
HH(A) = § Ti1 2y @ To.2) @ Toy ifr=3
Fio0,..02®Tap,..10 ®To,..01) #fr>3

PROOF. We know that HH%(A) = V* & sl.(k). In order to find the decom-
position into direct sum of irreducible modules, we apply the above proposition.
For v = 2, let us remark that sly(k) is ;. For r = 3 we have that sl3(k) is I’ 1.
For r > 3 we have that sl.(k) is (1o 01)- O

ALGORITHM. In this paragraph, our aim is to explain an algorithm to calcu-
late the decomposition into direct sum of irreducible sl.(k)-modules of HH™(A).
The first step is given by the above proposition. For n > 2, let us suppose we
have found the decomposition of HH™(A):

HH™A) =D Ta.

In order to calculate de decomposition of HH™1(A) we use Corollary 5.2.7
which says that HH™1(A) = V* @ HH™(A). Now, recall that direct sums
and tensor products of Lie modules commute so the next step is to calculate
the decomposition of V* ® Iy for each Iy that appears in the decomposition of
HH™(A). To do so, we apply the Littlewood-Richardson rule which is stated
above for this case.

REMARK. We find the same algorithm described in [SF08] for r =2

5.3. Two-loops quiver.

In the previous section we considered the multiple loops quiver: we found an
algorithm that calculates the decomposition into direct sum of irreducible Lie
modules of HH™(A) as a module of sl.(k) where r is the number of loops. In
this section, we consider the two loops quiver (i.e. T = 2): we give the explicit
decomposition into direct sum of irreducible Lie modules of HH™(A) as a module
over sly(k). We will begin providing a copy of the Lie algebra sl,(k) in HH'(A).

PROPOSITION 5.3.1. Assume that Q is the two loops quiver where e is the
vertex and the loops are denoted a and b. Let A = kQ/ < Q2 >. Then the
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elements
H = (bab)_(a) (1)
E = (a,b)
F = (b,a)

generate a copy of the Lie algebra sla(k) in HH'(A). Moreover, the Lie algebra
HH'(A) is isomorphic to sly(k) x k.

PROOF. First notice that HH'(A) = k(Q; || Q1) and that the elements H, E,
Fand I = (a,a)+ (b,b) form a basis of HH'(A). A straightforward verification
of the following relations
proves that HH'(A) contains a copy of slyk. Finally, it is easy to see that

[I,H]q=0, [I,E]g=0, [I,Flg=0,
O

We begin describing the eigenvector spaces of H as an endomorphism of
k(Qn || Qo) and Im Dy, 1. Given a path y™ in Qn, we denote a(y™) and b(y™)

the number of occurrences of the arrow a and the arrow b in the decomposition
of y™, respectively.

MaP (v). Define v as the map given by:
vn: Qn — Z
Y o= aly™) —by")
LEMMA 5.3.2. For all y™ in Qn,
Hy™b) = (valy™ +1) (" a)
H.(y"a) = (valy™) =1 (v™b)
and for all y™ ' in Qn_1,
HDn (™ e) =vna (Y™ ) Dna(y™ e
PROOF. It is easy to check through a straightforward verification of the
combinatorial bracket. g

PROPOSITION 5.3.3. Assume that chark = 0.
(1) Consider H as an endomorphism of k(Qn || Q1). The eigenvalues of H

aren+1—21L where 1 =0,...n+ 1. Denote W(A) the eigenspace of H
of the eigenvalue A.

dimWn +1—21) = ( “f )

(2) Consider H as an endomorphism of ImDy_1 The eigenvalues of H
restricted to ImDyn_1 are n —1—21 where 1 =0,...n— 1. As above,
denote W(A) the eigenspace of H of eigenvalue A.

dimWmn —1—21) = < “I] >
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PROOF. (i) From the above lemma, it is clear that the set

(v a) [y e Quiu{(y™a) | y" € Qn}

is a basis of k(Qn || Q1) consisting of eigenvectors. We also have that (y™, a)
and (y™,b) are eigenvectors of eigenvalue v(y™) + 1 and v(y™) — 1 respectively.
Since a(y™)+b(y"™) = n for all paths y™, v(y") = n—2b(y™) where b(y™) varies
from O to n. Then v(y™) &1 is of the form n+1—21(y™) where L =0...,n+1.
Let us remark the following:

— (a™,b) is the only eigenvector of value n + 1
— (b™, a) is the only eigenvector of value —(n+ 1)
—Ifo<l<n+1,
e (Y™ a) is an eigenvector of eigenvalue n+1—21iff | = b(y™)
e (y™ b) is an eigenvector of eigenvalue n+1—2Liff 1 —1 =b(y™)

On the other hand, if 0 <1 <+ 1, we know that there are < T ) paths y™ such
that b(y™) =1 and < 1: > paths y™ such that b(y™) = 1 — 1. Therefore, there

are
n n [ 41
(V)=
eigenvectors (Y™, x) of eigenvalue n + 1 — 21.
(ii) From the above lemma, it is clear that the set

{Dn (,Yn—1’ e) | Yn_] € Qn-1}

is a basis of Im Dy_1 consisting of eigenvectors. We also have that Dyp_1(y™, e)
is an eigenvector of eigenvalue v(y™ ). Since a(y™ ") +b(y™') =n—1 for all
paths Y"1, v(y™ 1) = n—1—2b(y™") where b(y™) varies from 0 to n — 1.
Therefore the eigenvalues are of the form n — 1 — 21 where 1 varies from 0 to
n — 1 and there are < nf1 ) eigenvectors of eigenvalue n+ 1 — 2L. O

Recall the following result from Lie theory:

LEMMA 5.3.4 (General Multiplicity Formula [BHO06]). Let V a finite di-
mensional sly(k)-module. For every integer t, let Vi be the eigenspace of H of
etgenvalue t. Then for any nonnegative integer t, the number of copies of Ty that
appear in the decomposition into direct sum of irreducibles is dim Vi, — dim Vi

A consequence of the above lemma is the following result:

LEMMA 5.3.5. Let k be an algebraically closed field of characteristic zero, Q
be a quiver and A =kQ/ < Q2 >. Form > 1,

h(n)=max{l | n+1-21>0}.
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For1=0,...,h(n),

(T) if1=0
n n )
() e
Then

(1) the decomposition into direct sum of irreducibles of k(Qn || Q1) as
sly(k) Lie module is given by

1
K(Qn || Q1) GB ey,

(2) the decomposition into direct sum of irreducibles of ImDy,_1 as sly(k)
Lie module is given by

ImDy g = @ rp*;‘lzli

ProOPOSITION 5.3.6. Let k be an algebmzcally closed field of characteris-
tic zero, Q be the two-loops quiver and A = kQ/ < Q2 >. Forn > 1 and

1=0,...,h(n),
(“I]> ifl1=0,1

n+l ) [n+1 ) [ n—] . n—1 if1>2
l -1 -1 -2
The decomposition of HH™(A) into a direct sum of irreducible Lie modules over

sla(k) is given by

p(n,l) =

q(n,1)

HH™(A) = EB pat

where th denotes the direct sum of q copz'es of Ty that is the unique irreducible
sly(k)-module of dimension t+ 1.

ALGORITHM. There is an algorithm that give us the decomposition of HH™(A)
into direct sum of irreducible modules, which is described in the previous sec-
tion. We will explain it again in this paragraph for the case of the two-loops
quiver. We use the following table to write such decomposition:

n o N T3y Ts eIy

HHZ2(A) 1 1

HH™A) ||do d1 42 d3 d4 ds dg q7
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In the above table, at the row HH™(A), the number that appears in the column
It stands for the number of copies of the irreducible module 't that appears
in the decomposition of HH™(A). We leave a blank space if no I't appears
in the decomposition of HH™(A). We fix the first row of the table with the
decomposition of HH%(A). Now, given the entries of the row HH™(A), we can
fill out the coefficients of the next row, this is for HH™"'(A), in the following
manner:

(1) Add a column just before the column [, consisting of zeros.

(2) Write the coefficients of the next row using the rule from Pascal’s tri-
angle: add the number directly above and to the left with the number
directly above and to the right.

(3) If n is even the number of copies of '] that appear in the decomposition
of HH™! is equal to the number of copies of Iy that appear in the
decomposition of HH™(A)

(-) To I T It T

HH™(A) 0 \qc q1 cee qe—1 qt Qi1

HHn+1(A) 0 q1 qi—1 + qi+1
LEMMA 5.3.7. (1) If n is even then q(n,h(n)) =q(n+1,h(n+1)).

(2) If n > 2 then q(n,1) +q(n,1+1)=q(n+1,1+1).

PROOF. For the first equality, we verify by a direct computation for n = 2
and n =4. For n > 6, we use that if n is even

n+17\ n+1

n/2 ) \n/2+1 )"
For the second equality, we verify by a direct computation for l =0 and 1 = 1.
For 1 > 2, we use Pascal triangle’s rule:

n n n+1
<1)+<1+1>_<1+1 >
REMARK. Moreover,
am2=(";").

Finally, once we have the decomposition of HH™(A) into a direct sum of
irreducible modules over sl k, we return to study HH™(A) as a HH'(A)-module.

COROLLARY 5.3.8.
h(n)
HH™Y(A) = Priny, k.
1=0

as Lie modules over HH'(A).
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ProOOF. Notice that
Liy"x) =1 —ay™) =by")(y™x) =(1—-n)(y"x)



APPENDIX A

A comparison map between the bar projective
resolution and the reduced bar projective resolution.

In this appendix, we deal with finite dimensional k-algebras whose semisim-
ple part (i.e the quotient by its Jacobson radical) is isomorphic to a finite number
of copies of the field. Monomial algebras are a particular case of these algebras.

A.1. Two projective resolutions.

The usual A®-projective resolution of A used to calculate the Hochschild
cohomology groups is the standard bar resolution. The standard bar resolution,
that we will denote S, is given by the following exact sequence:

n+1

S = o ABTT S AT S S A% S AgA B A0
k

where u is the multiplication and the A®-morphisms 6 are given by

n
Sx1 @ @xnp1) =) (1)@ @xixip1 @+ @ X

i=1
where x; € A and ® means ®.
k

Now, the AS®-projective resolution of A used in [Cib98] to compute the
Hochschild cohomology groups of a monomial radical square zero is the re-
duced bar resolution. It is defined for a finite dimensional k-algebra A whose
Wedderburn-Malcev decomposition is given by the direct sum A = E @ r where
r is the Jacobson radical of A and E = A/r = k x k--- x k. In the sequel A
denotes an algebra verifying those conditions. Let us denote R the reduced bar
resolution. It is given by the following exact sequence:

Ri= 5 A% 2A 3 A @A S - 5 AgreA S ARA B A5 0
E E E E E E E
where @ is the multiplication and the A®€-morphisms 6 are given by

d(a@X 1 ® - @Xp 1 ®b) =ax1 X2 Q- RXnp1 @b
+ YN ® - @xiXi1 Q- ®b
+ (="M a@X1 @ @ Xn ® Xnyib
where a,b € A, x; € r and ® means ®. The proof that this sequence is a
E
projective resolution can be found in [Cib90].

93
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A.2. Comparison maps.

Theorically, a comparison map exists between these two projective resolu-
tions. The objective of this section is to give an explicit comparison map between
the projective resolutions S and R in both directions. Such comparison map will
induce some quasi-isomorphisms between the Hochschild cochain complex and
the complex induced by the reduced bar resolution. The explicit calculations of
these quasi-isomorphisms, enables to reformulate the Gerstenhaber bracket.

In this paragraph, we are going to give two maps of complexes:

p:S—Rands:R —S.

This means we will define maps (pn) and (s ) such that the following diagrams
(10)

ARAST @A 2 L AQASK QA - ARA* o 0
k k k k k
Prn+1 Pn Po id
AT @A 2 L ARTHE QA - AGAM _p g
E E E E
Sn+1 Sn SO id
ARA T A S LAQASE QA .- ARA M A 0
k k k k k
commute.

MAP (pn). We define py as the linear map given by
Po: ARA — ARA
k E
a®b — a®b
k E
Now, let n > 1. Define
P ARARK QA S ARTPE QA
Kk k E E
as the linear map given by

ARXI P X P @Xnp1 Db = a@ (X)) @ @ 7(Xi) @ -+ @ TT(Xny1) @ .
k k k k k k E E E E E E

where 7t denotes the projection map from A to the Jacobson radical. Notice that
Pn is an A€-morphism for all n.

In order to define the maps (sn,) we introduce some notation. In the sequel,
let Eg denote a complete system of orthogonal, idempotents and primitives of E.
Note that the set Eg is finite.

REMARK. Now, consider elements of A ® r®t ® A of the form
E E

aej; @ -+ Qe Xi1€j, © € Xi€j, @ €j  Xin1€,, @ e, b
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where each ej, is in Ep, a,b are in A and x; in 7. It is not difficult to see that
those elements generate the vector space A ® 1¥E ® A. Indeed,
E E

Y oaej; @ @ej Xi165 D Xi€),, @ €, Xit18,, © - © ¢, b
| E E E E E E
I15e-)n+1

where the sum is over all (n+1)-tuples (ej,,...,¢€;;,...,€j, ) of elements of Ey.

MAP (sn). Define sp as the linear map given by
so: ARA — ARA
E K
ae®@eb — ae®eb
E K

So we have
so(a%b) = Z ae%@eb.
ecky

This map is well defined since sp(ae ® b) = ae ® eb = sp(a ® eb) for all e € E.
E K E

Now, let n > 1. Define
S AQTTE QA 5 AR A% @ A
E E k k

as the linear map given by
aej; @ -+ @€ Xi-1€j; & €5 Xi€j ; & €5 1 Xi1€j, , & -
E E E E E
aej, & 0 ej_yXi1€j; & €5 Xilji,y & €y Xit1€j,, O+ &
where each ej, is in Eg. So we have that

SHA@XT® - X Q- Qxn®b) =
E E E E E E
§ aej; ® -+ ® e Xi18) © € Xi€j, © &) Xip1€5,, O Qe b

J1seednt
where the sum is over all (n + T)-tuples (ej,,...,ej,...,€j ) of elements of
Eo. Notice that sy, is an A®-morphism.

REMARK. It is clear that pnsn = 1dA®r®E A"
E E

LEMMA A.2.1. The maps
p:S—>Rands: R — S

defined above are maps of complexes.

PROOF. A straightforward verification shows that the diagram (10) is com-
U

mutative.
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A.3. Induced quasi-isomorphism.

We will denote the Hochschild cochain complex by C*(A, A). Recall that it
is defined by the complex,

0— A > Homyg(A,A) -5
- — Homy(A®k A) 2, Homk(A®Tkl+] JA)
where 8(a)(x) = xa — ax for a in A and
(1 ® - @xn @xnp1) = x1f(x2® - @xny1) +

YD @ @ XX @ - @ Xnp1)F
(—1 )n_Hf(Xl K- ® Xn)xn—H

for f in Homy(A®k,A). Notice that after applying the functor Homae(—, A)
to the standard bar resolution, the Hochschild cochain complex is obtained by
identifying Homae (A @ A%k @1 A, A) to Homy(A®k, A). The reduced complex
is obtained from the reduced bar resolution in a similar way. First we apply
Homae(—, A) to the reduced bar resolution, then we identify the vector space
Homae (A ®¢ 7t @ A, A) to Homege (t®E | A). Therefore, the reduced bar com-
plex that we denote R*(A, A) is given by

0 AES Homege(r,A) 2,
-~ Homge(r®F A) - Homge (18 A)
where AF is the subalgebra of A defined as follows:
AP ={a e Alae =ea for all e € E}.

The differentials for the reduced complex are given through the above formulas.

In this paragraph, we will compute the quasi-isomorphisms between the
Hochschild cochain complex and the reduced complex, induced by the com-
parison maps p and s. We will denote them by

p*:R*(A,A) - C*(A,A) and s*:C°(A,A) - R°*(A A).
MAP (p*). In degree zero, po: AF — A is the inclusion map. For n > 1,
p™: Homee (1%, A) — Homy (A®K  A)
is given by
P @ @xn) =f(1(x1) @ - @ 7t(xn))
K K E E

where f is in Homge (t®E, A) and x; € 1.

MAP (s*). In degree zero, s°: A — AF is given by

where x € A. For n > 1,

s™: Homy A%k, A) — Homge (r¥E, A)
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is given by

n
sTx1 @ ©xn) = Y eiflepxae, ® - Qe xie; @ @ e, Xn€j, ey,

jOv--»jn
where the sum is over all (n + 1)-tuples (e;,,
f is in Homy(A®%, A) and x4 is in .

REMARK. $*p® =1idrea A)-

N R

., €j,) of elements of Eo,






APPENDIX B

Gerstenhaber and reduced bracket.

The Gerstenhaber bracket is defined on the Hochschild cohomology groups
using the Hochschild complex. In this chapter we will define the reduced bracket
using the reduced complex. We show that the Gerstenhaber bracket and the
reduced bracket provides the same graded Lie algebra structure on HH*t1(A).
We begin recalling the Gerstenhaber bracket in order to fix notation.

B.1. Gerstenhaber bracket.

Set CO(A,A) := A and for n > 1, we will denote the space of Hochschild
cochains by
C™A,A) = Homy(A%K A).
In [Ger63], Gerstenhaber defined a right pre-Lie system {C™(A,A), oi} where
elements of C™(A,A) are declared to have degree n — 1. The operation o is
given as follows.

DEFINITION. Given n > 1, let us fix i = 1,...,n. The bilinear map
0i: CMA,A) x C™(A,A) — CV™ (A A)

is given by the following formula:

loigM™X1 @ @Xnym-1) =1 @ @gMX @ - @Xigm-1) @ @ Xnim-1)
where f™ is in C™(A,A) and g™ is in C™(A, A).

Then he proved that such pre-Lie system induces a graded pre-Lie algebra

structure on
o0

C*(AA) = CMA,A)
n=1
by defining an operation o as follows.

DEFINITION. Let f™ be in C™(A,A) and g™ be in C™(A, A). The bilinear
map
o:C™A,A) x C™(A,A) — C™™M (A A)

is given by
n

o gm — Z(_] )(171)(m71)]cn i gm.
i=1
Finally, C**1(A, A) becomes a graded Lie algebra by defining the bracket as
the graded commutator of o. So we have the following definition:

99
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DEFINITION. The Gerstenhaber bracket is the bilinear map
[—, —1: C™(A,A) x C™(A,A) — C™™ (A A)
given as follows:
[, g™ =" o g™ — (—1)nHm=lgmg fn,

Clearly, the Gerstenhaber bracket restricted to C'(A,A) is the usual Lie
commutator bracket.

THEOREM ([Ger63]). Let A be an associative K-algebra with unit. The Ger-
stenhaber bracket endows C*T1(A,A) with a graded Lie algebra structure, i.e.
the bracket satisfied the following conditions:

(1) fn,g :_(_1)(n71)(m71)[gm,fn]
(2) (=1)n-Np= [[f“ 9™, h¥] +
(— )(p Dm=T[[hP, 1], g™ +
(=1 DT g™, v, 1 = 0

where ™, g™ and hP are in C™(A,A), C™(A, A) and CP(A, A) respectively.
PROPOSITION ([Ger63]). The Gerstenhaber bracket satisfies:
SIf™, g™ = [f", 8™ + (=)™ 1[5, g™
where & is the differential of the Hochschild cochain complez.

This result implies that the bracket of two cocycles is a cocyle and that the
bracket of a cocyle and coboundary is a coboundary. Therefore, the bilinear
map:

[—, —]: HH™(A) x HH™(A) — HH™™1(A)
is well defined.
COROLLARY ([Ger63]). Let A be an associative k-algebra with unit. Then

HH**(A) endowed with the induced Gerstenhaber bracket is a graded Lie alge-
bra.

B.2. Reduced Bracket.

In order to define the reduced bracket, we proceed in the same way as Ger-
stenhaber did. We will define the reduced bracket as the graded commutator of
an operation o Such operation will be given by o. Denote Cg(r, A) the cochain

1

space of the reduced complex, this is
CP(r,A) = Homge (*¥E | A).
DEFINITION. Let n > 1 and fix i = 1,...,n. The bilinear map
o1 CE(r,A) x CF(r,A) = Cprm(r,A)
is given by the following formula:

fn‘? gm()q - - '®Xn+mf1) = fn(xl K- - '®7Tgm(xi®' : ‘®Xi+m71)®' : ‘®Xn+m71)
1 E E E E E E E E
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where f™ is in C¢(r,A) and g™ is in Cg*(r,A) and Xx1,...,Xn4m—1 are in 1. Let
us remark that the image of g™ does not necessarily belong to the radical but
the image of tg™ clearly does. Therefore f™ o g™ is well defined.

1

Then we can define oR on
C*Jr1 (r,A) @ CE(r,A)

as above but using o instead of o;. This means that
1

n

n mo_ _1\G—=1)(m-1)
fMog ;( 1) fogm

Let us remark that ° is a graded operation on C*Jr1 (r,A) by declaring elements
of CZ(r,A) to have degree n—1.

DEFINITION. We call the reduced bracket, denoted [—, —]g, to be the graded
commutator bracket of oR:

[—, —Jr: CR}(r,A) x CP*(r,A) — CF™ (1, A)

given by
[f“) gm]R —{n % gm _ (_])(n—l)[m—ﬂgmokfn'

The following lemmas will relate the Gerstenhaber bracket and the reduced
bracket.

LEMMA B.2.1. We have the following formula:

[f“) gm]R _ Sn+mf1 [pnfn, pmgm].

PRrROOF. A straightforward verification shows that

n+m 1 ( ngm

f og oip™g™).

n+m—1

Since s is a linear application we have the formula wanted. O

LEMMA B.2.2. We have the following formula:

pn—l—mfl[fn, gm]R — [pnfn’ p1119111]

1

PROOF. Since p™*™ ! is a complex morphism, we prove that

pn+m71 (

frog™) =p"fToipTg™
by a direct computation. O
We will write p* for the morphism
p* i Cil(r,A) — C*T1(AA)

induced by p®. We have the following proposition as a consequence of the above
lemmas relating both brackets.
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PROPOSITION B.2.3. The graded product [—, —]r endows Cg(r,A) with the
structure of a graded Lie algebra. We also have that p* is a morphism of graded
Lie algebras.

ProOOF. Using Lemma B.2.1, it is easy to see that the reduced bracket sat-
isfies the graded antisymmetric property as a consequence of the fact that the
Gerstenhaber bracket satisfies the same condition. For the graded Jacobi iden-
tity, we proceed in the same way. First, we write a formula that relates both
brackets, using Lemma B.2.1 and Lemma B.2.2

[[f™, gm]R’ hI]R — Sn+m+p72[pn+m71[fn’ Qm]R, plhl]
Sn+m+‘p—2[ [pnfn’ p'mg'm] , plhl]

Then, using the linearity of s"*™ P2 and the fact that the Gerstenhaber bracket

satisfies the graded Jacobi identity, we have proved that [—, —]g satisfies the
two conditions of the definition of graded Lie algebra. Finally, p* becomes a Lie
graded morphism using Lemma B.2.2. O

LEMMA B.2.4. Let & be the differential of the Hochschild cocomplex. Then
S[f™, g™ = [, 8g™ Ir+ (1) (6", g™ k.
Hence we have a well defined bracket on the Hochschild cohomology vector spaces:
[—, —]r: HH™(A) x HH™(A) — HH™™(A).
PrOOF. We have that
S, gM™Ig = ds™MTI[pf p™Mg

™]
:Sn+mf16[ nfn’p g ]
:Sn+m—1[ nfm 5p g ]
]
i

+ (=1 Tgn+m— 1[6pnfn D g m]
:Sn+mf1[ M pMEg™ ] + (— )m Tgn+m— 1[ e, pmg™]
=[f", 8™ Ir + ( 1)mLsf™, g™k

g

We have equipped HH**1(A) with a graded Lie algebra structure induced by
the reduced bracket. We know that HH**1(A) is already a graded Lie algebra
and this structure is given by the Gerstenhaber bracket. Then we have the
following theorem.

THEOREM B.2.5. The graded Lie algebra HH**1(A) endowed with the Ger-
stenhaber bracket is isomorphic to HH*t1(A) endowed with the reduced bracket.

PROOF. We continue to write p* for the automorphism of HH**1(A) given
by the family of morphisms (p™). A direct consequence of the above proposition
is that p* becomes an isomorphism of graded Lie algebras. O
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Résumé.
La structure de Lie de la cohomologie de Hochschild d’algebres monomiales.
Cette these porte sur la structure de Lie de la cohomologie de Hochschild, donnée par
le crochet de Gerstenhaber. Plus précisément, on étudie la structure d’algébre de Lie
du premier groupe de cohomologie et la structure de module de Lie des groupes de co-
homologie de Hochschild de certaines algebres monomiales. Une algébre monomiale est
définie comme le quotient de 'algebre de chemins d’un carquois par un idéal bilatere
admissible engendré par un ensemble de chemins de longueur au moins deux. On utilise
les données combinatoires intrinseques a telles algebres pour étudier la structure de
Lie définie sur la cohomologie de Hochschild. En fait, on examine deux aspects de
cette structure algébrique. Le premier est la relation entre la semi-simplicité du pre-
mier groupe de cohomologie de Hochschild et la nullité des groupes de cohomologie de
Hochschild. Dans le second aspect, on se concentre sur la structure de module de Lie des
groupes de cohomologie de Hochschild d’une famille d’algébres particuliére: celles dont

le radical de Jacobson au carré est nul.

Abstract.

The Lie structure on the Hochschild cohomology d’algébres monomiales.
This thesis is about the Lie structure on the Hochschild cohomology, given by the
Gerstenhaber bracket. More precisely, we study the Lie algebra structure of the first
Hochschild cohomology group and the Lie module structure of the Hochschild cohomology
groups of some monomial algebras. The aim of this thesis is to study the Lie structure
on the Hochschild cohomology of finite-dimensional monomial algebras. A monomial
algebra is defined as the quotient of the path algebra of a quiver by a two-sided ad-
missible ideal generated by a set of paths of length at least two. We use the intrinsic
combinatorial data of such algebras to study the Lie structure defined on the Hochschild
cohomology by the Gerstenhaber bracket. Actually, we discuss two aspects of such al-
gebraic structure. The first one is the relationship between semi-simplicity on the first
Hochschild cohomology group and the vanishing of the Hochschild cohomology groups.
In the second one, we center our attention to the Lie module structure of the Hochschild
cohomology groups of a particular family of monomial algebras: those whose Jacobson
radical square is zero.
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