
Année

École Centrale de Nantes Université de Nantes École des Mines de Nantes

ÉCOLE DOCTORALE STIM

« SCIENCES ETTECHNOLOGIES DE L’I NFORMATION ET DESMATÉRIAUX »

No attribu par la bibliothque

Allocation de Requêtes dans des Systèmes
d’Information Distribués avec des

Participants Autonomes

THÈSE DEDOCTORAT

Discipline : Informatique

Spécialité : Bases de Données

Présentée
et soutenue publiquement par

Jorge-Arnulfo Q UIANÉ-RUIZ

Le 22 Septembre 2008 l’UFR Sciences & Techniques, Université de Nantes,
devant le jury ci-dessous

Président : Pr. Georges Gardarin Université de Versailles St Quentin
Rapporteurs : Christophe Sibertin-Blanc, Pr Université Toulouse I

Georges Gardarin, Pr Université de Versailles St Quentin
Examinateurs : Sylvie Cazalens, MC Université de Nantes

Philippe Lamarre, MC Université de Nantes
Ioana Manolescu, CR INRIA INRIA Saclay-Île-de-France
Patrick Valduriez, DR INRIA INRIA Nantes

Directeur de thèse : Patrick Valduriez
Co-encadrant: Philippe Lamarre

Laboratoire:L ABORATOIRE D’ I NFORMATIQUE DE NANTES ATLANTIQUE .
UMR CNRS. , rue de la Houssinire,BP   –   Nantes, CEDEX . No 366-371ED-STIM

favet neptunus eunti

A SATISFACTION -BASED QUERY ALLOCATION FRAMEWORK

FOR DISTRIBUTED I NFORMATION SYSTEMS

Allocation de Requêtes dans des Systèmes d’Information
Distribués avec des Participants Autonomes

Jorge-Arnulfo Q UIANÉ -RUIZ

⊲⊳

Université de Nantes

Jorge-Arnulfo QUIANÉ-RUIZ

A Satisfaction-Based Query Allocation Framework for Distributed Information
Systems
IV+XLII +128 p.

This document was edited withthese-LINA LATEX2e class of the “Association of Young
Researchers on Computer Science (LOGIN)” from the University of Nantes (available on :
http://login.irin.sciences.univ-nantes.fr/). This LATEX2e class is under the rec-
ommendations of the National Education Ministry of Undergraduate and Graduate Studies
(circulaire no 05-094 du March) of the University of Nantesand the Doctoral School of
« Technologies de l’Information et des Matériaux(ED-STIM) ».

Print : thesis.tex – 09/02/2009 – 16:28.

http://login.irin.sciences.univ-nantes.fr/
http://www.sup.adc.education.fr/bib/Acti/These/circulaire.rtf
http://www.univ-nantes.fr/
http://edstim.univ-nantes.fr/

Abstract

In large-scale distributed information systems, where participants (consumers and providers) are au-
tonomous and have special interests for some queries, queryallocation is a challenge. Much work
in this context has focused on distributing queries among providers in a way that maximizes over-
all performance (typically throughput and response time).However, participants usually have certain
expectations with respect to the mediator, which are not only performance-related. Such expectations
mainly reflect theirintereststo allocate and perform queries, e.g. their interests towards: providers
(based on reputation for example), quality of service, topics of interests, and relationships with other
participants. In this context, because of participants’ autonomy,dissatisfactionis a problem since it
may lead participants to leave the mediator. Participant’ssatisfactionmeans that the query alloca-
tion method meets its expectations. Thus, besides balancing query load, preserving the participants’
interests so that they are satisfied is also important. In this thesis, we address the query allocation
problem in these environments and make the following main contributions. First, we provide a model
to characterize the participants’ perception of the systemregarding their interests and propose mea-
sures to evaluate the quality of query allocation methods. Second, we propose a framework for query
allocation, calledSbQA, that dynamically trades consumers’ interests for providers’ interests based
on their satisfaction. Third, we propose a query allocationapproach, called$bQA, that allows a query
allocation method (specificallySbQA) to scale up in terms of the numbers of mediators, participants,
and hence of performed queries. Fourth, we propose a query replication method, calledSbQR, which
allows supporting participants’ failures when allocatingqueries while preserving participants’ satis-
faction and good system performance. Last, but not least, weanalytically and experimentally validate
our proposals and demonstrate that they yield high efficiency while satisfying participants.

Keywords: distributed information systems, query allocation, mediation, autonomous participants, par-

ticipants’ satisfaction, scale up, participants’ failure

Résumé

Nous nous intéressons aux systèmes d’informations où les participants (clients et fournisseurs) sont
autonomes, c.à.d. ils peuvent décider de quitter le systèmeà n’importe quel moment, et qu’ils ont des
intérêts particuliers pour certaines requêtes. Dans ces environnements, l’allocation de requêtes est
un défi particulier car les attentes des participants ne sontpas seulement liées aux performances du
système. Dans ce contexte, l’insatisfaction des participants est un problème car elle peut les conduire
à quitter le système. Par conséquent, il est très important de répondre aux attentes des participants
de sorte à ce qu’ils soient satisfaits. Dans cette thèse, nous abordons ce problème en apportant qua-
tre contributions principales. Primo, nous fournissons unmodèle pour caractériser la perception des
participants par rapport au système et proposons des mesures qui permettent d’évaluer la qualité des
méthodes d’allocation de requêtes. Secundo, nous proposons une méthode d’allocation de requêtes,
SbQA, qui permet d’équilibrer à la volée les intérêts tant des clients que des fournisseurs en se basant
sur leur satisfaction. Tertio, nous proposons$bQA : une version économique deSbQA qui permet de
passer à l’échelle en nombre de médiateurs, de participants, et par conséquent, de requêtes traitées.
Quarto, nous proposonsSbQR : une méthode de réplication de requêtes qui permet de supporter les
pannes éventuelles des participants, tout en préservant leur satisfaction.

Mots-clés :systèmes d’information, allocation de requêtes, médiation, participants autonomes, satisfac-

tion des participants, passage à l’échelle, panne des participants

ACM Classification

Categories and Subject Descriptors :H.2.4 [Database Management]: Systems—Distributed
databases, Query processing; H.4.0 [Information Systems Applications]: General.

General Terms :Design, Information Systems, Management, Performance, Reliability.

http://www.acm.org/class/

Acknowledgements

First of all, I would like to express my gratitude to my advisors, Professors Patrick Valduriez and
Philippe Lamarre, who provided invaluable guidance throughout my years at University of Nantes and
that without them this thesis would not have been possible. Their persistent pursuit of perfection and
their deep insights into various subjects have always been an inspiration to me. It is them who introduced
me to the databases and distributed systems area. It is them who helped me to become a researcher. Most
importantly, it is them who made me understand that a good researcher is one who loves what he does as
research. Simply, it has been a great honor working with them.

I would also like to thank other members of my thesis committee : Professors George Gardarin and
Christophe Sibertin-Blanc for their valuable and detailedcomments on my thesis, which helped me to
improve it ; Sylvie Cazalens and Ioana Manolescu, for their fruitful comments on my thesis. I would
especially like to thank Sylvie Cazalens. I had the opportunity to work closely with her during my Ph.D.
I have learnt a lot from her impeccable attitude towards research while endless discussions with her have
helped shape a lot of my ideas. In fact, she is also a main contributor of the solution we present in the
third chapter of this dissertation.

I am very thankful to the Mexican National Council for Science and Technology (CONACyT) for
their financial support that without it the possibility of doing this thesis would not have happened.

I have had the chance of making a lot of friends over the years at University of Nantes who made
my life as a graduate student quite enjoyable : Reza Akbariania, Eduardo Almeida, Guillaume Blin,
Cedric Coulon, William Dedzoe, Marcos Didonet, Rabab Hayek, Manal El-Dick, Fabrice Evan, Lor-
raine Goeuriot, Sandra Lemp, Jorge Manjarrez, Vidal Martins, Jean-Marie Normand, Wenceslao Palma,
Antoine Pigeau, Guillaume Raschia, Ricardo Soto, Siloé Souza, David Tlalolini, Mounir Tlili, Anthony
Ventresque, Juliana Vermelho. I want to thank all of them forbeing as they are.

I am blessed to have a truly loving wife’s family who live in the beautiful “Pay Basque” region of the
south of France. Since I landed in France they immediately took me as one of them. They always helped
us, my wife and me, for several administrative procedures, finding a flat, and much more more things that
we were confronted in France. Most important, I would like tothank them for all the beautiful moments
we had together. In particular, I want to thank “Amatxie”, mywife’s grand-mother, a lovely person who
watch and pray for us from heaven.

I especially want to thank all my family in Mexico. My parentsknew instilled in me that the most
precious treasure than a person can have is the knowledge, which helped me to set up a life-long goal in
pursuing knowledge. It is their love and belief in me that gave me the force to overcome every seemingly
insurmountable difficulty, and continue fighting for reaching my next dream. I owe them my life. I want
to thank my sister and brother for being with me always I need them. I want to give my special thanks to
my parents-in-law for taking me as their new child and their support.

Finally, I want to thank my wife, Mariana Quiané, and my son, Killian Quiané-Haro. I thank my
wife for her help, comprehension, and support during these past few years. She was always there to
encourage me when I needed it most. I thank my son whose birth motivated much more myself to pursue
my dreams. To them, I dedicate this work.

Table of Contents

Table of Contents VII

List of Tables XI

List of Figures XIII

List of Examples XV

Extended Abstract in French XVII

— Body of the Dissertation —

Introduction 1

1 Participants Characterization and Measures 7
1.1 Problem Statement 8
1.2 A Usual Characterization of Providers 8
1.3 Satisfaction Model 9
1.3.1 Participants’ Adequation 10
1.3.2 Participants’ Satisfaction 12
1.3.3 Provider Intention-based Profit 14
1.3.4 Query Allocation Method Efficiency 15
1.3.5 Discussion 16
1.4 System Measures 17
1.5 Related Work 18
1.6 Chapter Summary 19

2 Satisfaction-based Query Allocation 21
2.1 Problem Definition 22
2.2 Consumer’s Side 23
2.3 Provider’s Side 23
2.4 Mediator’s Side 24
2.4.1 Scoring and Ranking Providers 25
2.4.2 Regulating the System 26
2.4.3 Query Allocation Principle 27
2.4.4 Communication Cost 27
2.5 Discussion 29
2.6 Experimental Validation 30
2.6.1 Setup 30
2.6.2 Baseline Methods 31
2.6.3 Results 32

VII

VIII TABLE DES MATIÈRES

2.7 Related Work 40
2.7.1 Data Mediator Systems 41
2.7.2 Multi-Agents 41
2.7.3 Web Services 42
2.7.4 Load Balancing Approaches 44
2.7.5 Economic Approaches 45
2.8 Chapter Summary 46

3 Scaling Up Query Allocation 49
3.1 Problem Statement 50
3.2 Use of Virtual Money 51
3.2.1 Flow of Virtual Money 53
3.3 Provider’s Side 54
3.3.1 Computing Bids 54
3.3.2 Bidding in the Presence of Several Mediators 55
3.4 Mediator’s Side 56
3.4.1 Computing Providers’ Level 56
3.4.2 Invoicing Providers 57
3.4.3 Communication Cost 59
3.5 Cost of Federating Mediators 59
3.6 Experimental Validation 60
3.6.1 Setup 60
3.6.2 Results 61
3.7 Related Work 65
3.7.1 Peer-to-Peer Networks 65
3.7.2 Grid-based Networks 67
3.7.3 Multi-Agent Networks 68
3.7.4 Small-World Networks 69
3.7.5 Summary 70
3.8 Chapter Summary 71

4 Dealing with Participants’ Failures 73
4.1 Problem Definition 74
4.2 Satisfaction Model for Faulty Participants 75
4.2.1 Consumer Satisfaction 75
4.2.2 Provider Satisfaction 76
4.2.3 Global Satisfaction 77
4.3 Non Systematic Query Replication Based on Satisfaction. 81
4.4 Experimental Validation 84
4.4.1 Setup 84
4.4.2 Results 85
4.5 Related Work 88
4.5.1 Query Replication 89
4.5.2 Rollback-Recovery Protocols 92
4.5.3 Concluding Remark 94
4.6 Chapter Summary 95

TABLE OF CONTENTS IX

Conclusion 97

— Appendixes —

A The SbQA Prototype 103
A.1 SbQA’s demo : A BOINC example .103
A.2 SbQA within Grid4All .105
A.2.1 Grid4All Example Application 106
A.2.2 Selection Service Specification 106

Notations 111

Bibliography 113

List of Tables

1 Fournisseur ayant les capacités de traiter la requête d’Emma.XVIII

2 Paramètres des simulations. XXXVI

3 Reasons of the provider’s departures for a workload of 80% of the total system capacity. XL

4 Reasons of the provider’s departures for a workload of 80% of the total system capacity. XL

5 Reasons of the provider’s departures for a workload of 80% of the total system capacity.XLI

— Body of the Dissertation —
6 Providers foreWine’s query. 4

2.1 Simulation parameters. 31
2.2 Reasons of the provider’s departures for a workload of 80% of the total system capacity. . . 37

3.1 Virtual money balance along a sequence of mediations. 54
3.2 $bQA in a (a) competition and an (b) imposition case, withω = 0.5 andn = 2. 57

4.1 Simulation parameters. 84

— Appendixes —

XI

List of Figures

1 Valeurs possibles deω en fonction des satisfactions. .XXVI

2 Number of results vs query’s criticity when a consumer requires five results.XXVIII

3 Satisfaction des fournisseurs avec une charge croissant de30% à100% de la capacité du
système ; agents non autorisés à quitter le système. XXXVII

4 Satisfaction des clients avec une charge croissant de30% à100% de la capacité du sys-
tème ; agents non autorisés à quitter le système. XXXVII

5 Utilisation des fournisseurs avec une charge croissant de30% à 100% de la capacité du
système ; agents non autorisés à quitter le système. XXXVIII

6 Départs des fournisseurs avec une charge exprimée en fonction des capacités initiales du
système ; agents autorisés à quitter le système. XXXVIII

7 Départs des clients avec une charge exprimée en fonction des capacités initiales du sys-
tème ; agents autorisés à quitter le système. XXXIX

8 Temps de réponse avec une charge exprimée en fonction des capacités initiales du sys-
tème ; agents autorisés à quitter le système. XXXIX

— Body of the Dissertation —

9 Overview of Query Allocation in Distributed Systems with Autonomous Participants. 2

2.1 Tradeoff betweenpreferenceandutilization for getting providers’intention. 24
2.2 The values thatω can take. 26
2.3 SQLB system architecture. 28
2.4 Participants’ satisfaction results for a workload range from30 to 100% of the total system

capacity when participants are captive. 33
2.5 (a) and (c) : query load balancing results for a workload range from30 to 100% of the total

system capacity when participants are captive, (d) and (e) :allocation efficiency results
for different workloads, and (f) : ensured response times. All these results are with captive
participants. 34

2.6 Impact on performance of providers’ departure. 35
2.7 Participants’ departures. 36
2.8 Quality results for a workload range from30 to 100% of the total system capacity when

participants are captive and for three kinds of providers :(i) when they are interested
only in their preferences (thepreference-based case), (ii) when they are just interested in
their utilization (theutilization-based case), and(iii) when their utilization is as important
as their preferences (thenormal case). 38

2.9 Quality results for aworkload range from30 to 100% of the total system capacity when
participants arecaptiveand : (a)-(c) providers compute their intentions based on their
preferences and utilization (thenormal case) and (d)-(f) providers compute their inten-
tions based on their preferences (thepreference-based case). 39

2.10 Performance results with captive participants. 39
2.11 Cycle of a Web service invocation. 43

XIII

XIV LIST OF FIGURES

3.1 A x-redundant VO with 3 mediators. 51
3.2 General system architecture. Sitem denotes the mediator,c a consumer, andp a provider. . . 52
3.3 Quality results in mono-mediator VOs for different workloads and with captive participants. 62
3.4 Impact on performance of providers’ departure. 62
3.5 Quality results with captive participants for different workloads in a x-redundant VO with8

mediators. .. 63
3.6 Performance results (a) and (b) for different workloadsin a x-redundant VO with8 mediators

and captive participants, and ; (c) for a workload of60% of the total system capacity with
50 consumers and100 providers (set1),100 consumers and200 providers (set2),200
consumers and400 providers (set3) and400 consumers and800 providers (set4). 64

3.7 Grid Organization. 68
3.8 Acquaintance topology forms. 69

4.1 Number of results vs query’s criticity when a consumer requires five results. 76
4.2 Results with faulty participants and different workloads. 86
4.3 Results with different query criticity values and different workloads. 87
4.4 Results with a high-probability of failure and different workloads. 88
4.5 Passive redundancy model. 90
4.6 Active redundancy model. 91
4.7 Recovery line, rollback propagation, and domino effect. 93
4.8 Logging for deterministic replay. 94

— Appendixes —

A.1 Some SbQA GUIs. 104

List of Examples

— Body of the Dissertation —
1 Participants’ Preferences 1

— Appendixes —

XV

Extended Abstract in
French

Les systèmes d’information distribués font souvent l’hypothèse que leurs participants1 sont au-
tonomes, c’est-à-dire qu’ils sont libres de rejoindre ou dequitter le “système”2 à n’importe quel moment
et sans avoir à en référer à qui que ce soit. La motivation des participants à intégrer le système peut être
liée à l’espoir que ce système peut répondre à leurs attenteset leur permettre d’atteindre leurs objectifs.
Le départ quand à lui est souvent consécutif à la déception. Pour le bon fonctionnement de ces systèmes,
il est donc primordial que la répartition des tâches soit attentive aux attentes des participants, tant des
clients que des fournisseurs, de sorte à ce qu’ils soientsatisfaits, autant que faire ce peut.

De nombreux travaux ont été menés dans le contexte de l’allocation de tâches : de la recherche
des fournisseurs pouvant réaliser une tâche [LH04, NBN99],à l’allocation d’une tâche de sorte à max-
imiser ou minimiser certains critères comme la répartitionde charge et le temps de réponse [ABKU99,
GBGM04, MTS90, RM95, SKS92]. Cependant, les attentes des participants se joignant au système ne
sont pas nécessairement restreintes aux performances. Lesclients peuvent manifester un certain intérêt
concernant la qualité des résultats (si tous les fournisseurs ne donnent pas les mêmes réponses). Parmi les
tâches qu’ils peuvent traiter, les fournisseurs peuvent avoir des préférences pour certaines. Tous peuvent
avoir des préférences concernant les agents avec lesquels ils traitent. L’intentionqu’a un fournisseur de
traiter une tâche est donc le résultat de la combinaison de plusieurs critères qui lui sont propres.

De même, l’intentiond’un client à voir sa tâche traitée par tel ou tel fournisseurest aussi le résultat
de considérations personnelles. Cette approche soulève unproblème. Si aucun fournisseur ne manifeste
d’intérêt pour une tâche donnée, elle risque de ne pas être traitée. C’est de fait ce qui se produit dans
différents systèmes basés sur des techniques de micro-économie [FNSY96, FYN88, SAL+96]. Dans un
tel cas, le traitement de la tâche doit être imposé à un ou plusieurs fournisseurs, ce qui les mécontentera
(sauf à les dédommager). D’un autre coté, si la tâche n’est pas traitée, c’est le client qui sera mécontent.

Les problèmes inhérents à l’allocation de tâches sont donc de nature differente. D’abord, les attentes
des participants peuvent-être contradictoires. Ensuite,le fait que nous considérons que les tâches doivent
être traitées par le système, même si les fournisseurs ne souhaitent pas les traiter pour des raisons qui leurs
sont propres, peut introduire du mécontentement. Enfin, trop de mécontentement conduit les participants
à quitter le système ce qui peut avoir des conséquences sur les fonctionnalités offertes par le système. Le
départ de fournisseurs peut conduire à perdre des fonctionnalités, et le départ de clients est une perte de
source de travail pour les fournisseurs.

A notre connaissance, ce problème n’a pas été adressé dans son ensemble. Les mécanismes de mé-
diation qui effectuent l’allocation de tâches ne tiennent compte ni desintentionsdes participants, ni de
leur satisfaction. Les contributions majeures de cette thèse sont donc :
• La proposition d’un mécanisme de médiation (SbQA) qui s’adapte immédiatement et automatique-

ment aux attentes des participants. Ce mécanisme utilise les intentionsexprimées par les partici-
pants pour définir leursatisfaction. Il utilise ensuite ces deux notions pour allouer les tâches. Pour

1Tout au long de ce document, le terme participant fait référence à la fois aux fournisseurs et aux clients.
2Le “système” peut désigner soit le système d’information distribué, soit plus localement un médiateur [Mil02, RS97].

XVII

XVIII Extended Abstract in French

Table 1 – Fournisseur ayant les capacités de traiter la requête d’Emma.

FournisseursCharge Intention Cons.

Int.

Mark 15% Oui Non

Robert 43% Non Oui

Johnson 78% Oui Non

William 85% Non Oui

Mary 100% Oui Oui

atteindre une certaine équité,SbQA pondère les intentions des différents participants en fonction
de leurs satisfactions respectives.

• Une analyse des techniques d’allocation du point de vue de lasatisfaction.
• Une validation expérimentale comparantSbQA à d’autres techniques existantes (Capacity based

etMariposa-like) qui montre la supériorité de notre approche.
Pour illustrer le problème des systèmes d’information distribués avec des participants autonomes,

considérons par exemple un système incluant des centaines de scientifiques (biologistes, docteurs en
médecine, généticiens. . .) travaillant sur le génôme humain. Ils sont répartis sur la planête et ils partagent
leurs informations. Chaque site, qui représente un scientifique, déclare ses capacités au système et gère
localement ses préférences et intentions.

Considérons un scénario simple. Emma (Dr. en médecine) vient de découvrir un gène responsable
d’une maladie de la peau. Elle interroge le système pour trouver des liens éventuels avec d’autres mal-
adies. Pour une vue plus générale, elle souhaite avoir des réponses de plusieurs collègues, disons 2 pour
simplifier l’exemple.

Dans un premier temps, le système doit identifier les fournisseurs capables de traiter la requête. Un
algorithme dematchmaking[SKWL99] permet de résoudre ce premier problème. Supposonsque pour
cet exemple, il y en ait 5. La seconde étape consiste à obtenirles intentions de ces fournisseurs par rapport
à cette requête (supposées binaires dans cet exemple). Le tableau 6 regroupe les différentes données de
cet exemple.

Mary est la plus chargée (elle n’a plus de ressource disponible). Robert et William ne désirent pas
traiter cette requête pour des raisons qui leurs sont propres. D’un autre coté, pour des raisons de confiance
envers leurs résultats, Emma ne souhaite pas que Mark ou Johnson traitent sa requête.

Quoi qu’il en soit, à la demande d’Emma, le système doit choisir deux fournisseurs pour leur allouer
la requête. Mark et Robert sont les moins chargés. C’est doncà eux que les méthode basées sur la
répartition de charge alloueraient la requête. Cela auraitpour conséquence de mécontenter Robert et
Emma. Répétées, de telles décisions pourraient conduire ces participants à quitter le système. Ici la seule
réponse correcte du point de vue des intentions est Mary. Malheureusement, cette allocation n’est pas
satisfaisante du point de vue de la répartition de charge. Deplus, Emma a demandé à ce que la requête
soit envoyée à deux scientifiques. C’est donc un cas qui génèrera du mécontentement d’un coté ou de
l’autre.

Plusieurs questions restent donc ouvertes :Que doit faire le système dans ce cas ? Doit-il privilégier
les intentions du client (ici Emma) ? les intentions des fournisseurs ? Doit-il prendre en compte la charge
des fournisseurs ?Dans cette thèse nous répondons à ces questions, mais aussi nous proposons un modèle
qui permet d’analyser le comportement d’un système de ce type. Les notions présentées peuvent aussi

Extended Abstract in French XIX

servir à une méthode de médiation dans ses prises de décisions.

Travaux Précédents

Dans le contexte des systèmes d’information distribués à grande échelle, de nombreuses approches
se sont concentrées sur le problème de l’allocation de tâches avec comme objectif les performances du
système, sans aucune considération des intentions des participants, sauf à considérer qu’ils sont eux-
mêmes exclusivement intéressés par les performances. Par exemple, les propositions [RM95, SKS92]
allouent chaque tâche entrante aux fournisseurs qui sont les moins chargés parmi ceux qui peuvent traiter
la tâche.

Les techniques de médiation utilisant une approche économique peuvent prétendre prendre en compte
les intentions. Mariposa [SAL+96] est l’un des premiers systèmes utilisant des techniquesde microé-
conomie pour la gestion des informations dans un système réparti. Cette proposition est basée sur un
système de vente aux enchères. Pour schématiser, les clients payent les fournisseurs pour qu’ils traitent
leurs tâches. Le prix établi par les fournisseurs est calculé en fonction de leurs préférences et de leur
charge de travail, ceci afin de garantir un certain équilibrede la charge de travail au sein du système.
Une fois les offres publiées, un broker sélectionne les fournisseurs ayant les offres les plus basses. En
revanche, nos expérimentations montrent que Mariposa ne garantit pas un bon équilibre de charge de
tâches. En outre, si aucun fournisseur ne souhaite traiter la tâche, elle ne le sera tout simplement pas.

La médiation, ditemédiation flexible, proposée dans [LCLV07] est aussi basée sur des aspects
économiques. Là encore, les fournisseurs font des offres pour obtenir des tâches. Ces offres sont alors
équilibrées par leur qualité estimée (ou réputation). Le prix que doit payer un fournisseur pour obtenir
la tâche dépend de sa réputation. Contrairement à Mariposa,lorsqu’une tâche n’intéresse personne, cela
conduit à la “réquisition” de fournisseurs auxquels on impose de la traiter. Un mécanisme de com-
pensation financière est alors mis en œuvre. Cette compensation augmente les possibilités de ces four-
nisseurs à faire valoir leurs choix dans les prochains tours. Dans cette approche, ce sont des mécanismes
économiques qui sont utilisés pour réguler le système, la satisfaction des participants étant supposée être
une propriété induite.

Dans [QRLV06], nous avons proposé une technique de médiation basée sur la satisfaction des four-
nisseurs, mais ni la satisfaction des clients, ni leur intentions ne sont prise en compte. Dans [QRLV07a],
nous avons proposé une stratégie pour prendre en compte ces différentes notions, mais aucune méthode
pour faire la fusion desintentionsdes clients et fournisseurs n’est proposée. En outre, les stratégies que
nous proposons dans [QRLV07a] peuvent être utilisées pour améliorer les résultats des travaux préce-
dents.

Notions Préliminaires

Le système que nous considérons est constitué d’un ensemblede fournisseursP , d’un ensemble
de clientsC et d’un ensemble de médiateursM . Ces ensembles ne sont pas nécessairement disjoints,
un même agent pouvant jouer plusieurs rôles. Les fournisseurs peuvent être hétérogènes en termes de
capacités, ne disposant pas tous des mêmes ressources, maisaussi en termes de données. Ce dernier point
signifie qu’ils peuvent donner des résultats différents lesuns des autres pour la même tâche. Les tâches
sont abstraites par un tripletq =< c, d, n > tel queq.c ∈ C est l’identifiant du client ayant émis la tâche,
q.d est la description de la tâche, et le paramètreq.n représente le nombre de fournisseurs que le client
veut voir traiter la tâche. Considérons par exemple une application de commerce électronique. Dans ce

XX Extended Abstract in French

cas, la tâche correspond à un appel à propositions. Donc, lorsqu’un client fait un appel à propositions, il
peut souhaiter limiter le nombre de réponses àn. De même, les fournisseurs ne souhaitent généralement
pas répondre à tous les appels d’offres.

La tâche peut être exprimée de manière textuelle, logique, dans un langage spécifique tel que SQL,
XQuery,etc.Le problème de “matchmaking”, consistant à identifier les fournisseurs pouvant travailler
avec cette requête est en dehors du champ de cet article (voir[LH04, NBN99] pour plus d’informa-
tions). Nous nous contentons de supposer que nous disposonsd’un processus permettant d’identifier les
fournisseurs adéquats de manière idéale, i.e. sans faux positif ni faux négatif.

Les clients confient leurs tâches à un médiateurm ∈ M dont le rôle est d’allouer chaque tâcheq
à q.n fournisseurs.Pq représente l’ensemble des fournisseurs associés au médiateur m (n’apparaissant
pas dans la notation pour éviter de l’alourdir) pouvant traiter la tâcheq. Cet ensemble de fournisseurs est
obtenu via un processus de “matchmaking” supposé correct.

L’allocation d’une tâcheq est formalisée par un vecteurAll−→ocq de longueurN tel que :

∀p ∈ Pq, All−→oc [p] =
1 si la tâche est allouée àp
0 sinon

Dans le cas où le nombre de fournisseurs pouvant traiter la tàche est insuffisant par rapport au nombre de
fournisseurs demandés par le client, ils doivent tous la traiter. Ceci impose donc que

∑
p∈Pq

All−→ocq[p] =

min(q.n, N) oùN = ||Pq||.

Modèle de Satisfaction

Notre attention s’est portée sur deux caractériques des participants qui permettent de comprendre
comment ils peuvent percevoir le système dans lequel ils interagissent.

La première de ces caractéristiques est l’adéquation. En fait, deux adéquations doivent être consid-
érées. a)adéquation du système par rapport à un participante.g. un système dans lequel un fournisseur
ne peut trouver aucune requête correspondant à ses attentesn’est pas adéquat pour ce fournisseur ; b)
adéquation d’un participant au systèmee.g. un client qui émet des requêtes qui n’intéressent aucunfour-
nisseur n’est pas adéquat par rapport au système. A travers ces notions il est possible d’évaluer si un
participant a une chance d’atteindre ses objectifs dans un système. À moins d’avoir une connaissance
globale du système, un participant ne peut déterminer lui même ce que les autres pensent de lui. Aussi,
nous considérons l’adéquation d’un participant au systèmecomme une caractéristique globale (cf. Sec-
tion).

La seconde caractéristique est lasatisfaction. Comme pour l’adéquation, deux sortes de satisfaction
peuvent être consédérées : a) lasatisfaction d’un participant vis-à-vis du systèmee.g. un client qui reçoit
des résultats de fournisseurs qu’il ne souhaitait pas solliciter n’est pas satisfait ; et b) lasatisfaction d’un
participant par rapport au système de médiatione.g. un fournisseur devant traiter des requêtes qu’ils ne
désirait pas met en cause le système de médiation lorsqu’il constate qu’il existe des requêtes lui convenant
mieux, mais ne lui étant pas allouées. Ces deux notions de satisfaction peuvent avoir un impact important
sur le système dans la mesure où elles peuvent fonder une décision de départ d’un participant.

Nous supposons que les participants ont une mémoire limitéeet qu’ils ne mémorisent donc que leurs
k dernières interactions avec le système3. Nous allons donc définir les différentes notions présentées
ci-dessus par rapport à la mémoire des participants. Deux remarques supplémentaires. Il est évident que

3Notons quek peut être différent d’un participant à l’autre. Cependant,dans un souci de simplification, nous supposerons
ici que ce paramètre est identique pour tous les participants.

Extended Abstract in French XXI

ces notions évoluent au cours du temps, mais pour éviter d’alourdir les notations, le temps n’apparaîtra
pas. Enfin, ces notions peuvent être définies soit à partir despréférences des participants, soit à partir
de leurs intentions. Si les définitions formelles sont similaires, les valeurs obtenues présentent quelques
différences. Pour des raisons de place, nous ne pouvons en présenter ici qu’une seule version. Dans la
mesure où les préférences sont souvent considérées comme des données privées, ce sont les intentions
affichées auprès des médiateurs qui serviront de base à nos définitions.

Caractérisation locale d’un client

Un client est caractérisé à partir des informations qu’il peut obtenir du système. Intuitivement, les
caractéristiques présentées ci-après sont utiles pour répondre à des questions de la forme “Dans quelle
mesure mes intentions correspondent à celles des fournisseurs pouvant traiter mes requêtes ?” –adéqua-
tion d’un client par rapport au système– “Dans quelle mesure les fournisseurs ayant traité mes dernières
requêtes me satisfont ?” –Satisfaction d’un client– “La méthode d’allocation des requêtes me satisfait-
elle ?” –Satisfaction d’un client par rapport à l’allocation–. Ces notions seront basées sur la mémoire
d’un client qui sera notéeIQk

c .

Adéquation

L’ adéquation du système pour un clientcaractérise la vision du système qu’a le client. Dans le scé-
nario présenté dans l’introduction, le système est relativement adéquat pour Emma car bon nombre des
fournisseurs lui conviennent. Plus formellement, l’adéquation du système par rapport au clientc et pour
une requêteq, notéeδs(c, q), est définie comme étant la moyenne des intentions dec par rapport à
l’ensemble des fournisseurs pouvant traiterq (Pq). La valeur de cette notion est volontairement amenée
dans l’intervalle[0..1].

δa(c, q) =
((1

||Pq||

∑

p∈Pq

−→
CIcq[p]

)
+ 1
)/

2 (1)

L’ adéquation du système par rapport à un clientc, est alors définie comme la moyenne des adéqua-
tions pour lesk dernières requêtes.

Definition 1. Adéquation du système par rapport à un client.

δa(c, q) =
1

||IQk
c ||

∑

q∈IQk
c

δa(c, q)

Plus la valeur est proche de 1, plus le client considère le système comme adéquat.

Satisfaction

La satisfaction d’un clientc concernant le traitement d’une de ses requêtesq, notéesatFunction(c, q)

est liée aux fournisseurs auxquels sa requête a été allouée (P̂q). La moyenne semble une technique in-
tuitive. Cependant, elle ne permet pas de prendre en compte le souhait d’un client d’avoir plusieurs
résultats de fournisseurs différents. Par exemple, dans lescénario de l’introduction, Emma a demandé 2

XXII Extended Abstract in French

fournisseurs. Si le système ne lui en alloue qu’un seul la satisfaction d’Emma ne peut être totale, même
si ce fournisseur est parfait. L’équation suivante tient compte de ce point.

δs(c, q) =
((1

n

∑

p∈cPq

−→
CIcq[p]

)
+ 1
)/

2 (2)

oùn abbrègeq.n. Les valeurs deδs(c, q) sont dans l’intervalle[0..1].
La satisfactiond’un clientc est alors obtenue en faisant la moyenne des satisfactions par rapport aux

k dernières requêtes traitées.

Definition 2. Satisfaction d’un client

δs(c) =
1

||IQk
c ||

∑

q∈IQk
c

δs(c, q)

Cette notion de satisfaction ne tient aucun compte du contexte. Elle ne permet donc pas au client
d’évaluer les efforts consentis par le système d’allocation pour le satisfaire. Par exemple, en reprenant
le scénario de l’introduction, suppose qu’Emma a une intention de1 (resp.0.9, 0.7) pour que la requête
soit allouée à Robert (resp. William et Mary). Allouer la requête à William est dans l’absolu satisfaisant.
Cependant, il existe un autre fournisseur dans le système qui serait encore plus satisfaisant. Lasatisfac-
tion d’un fournisseur par rapport au système d’allocation, notéeδas(c) (définition 18) permet de rendre
compte des efforts effectués en ce sens par la méthode d’allocation. Cette satisfaction prend ses valeurs
dans l’intervalle[0..∞].

Definition 3. Satisfaction d’un client par rapport à la méthode d’allocation

δas(c) =
1

||IQk
c ||

∑

q∈IQk
c

δs(c, q)

δa(c, q)

Si la valeur ainsi obtenue est supérieure à 1, le client peut en conclure que la méthode d’allocation
agit en sa faveur. Par contre, si cette valeur est proche de0 la méthode défavorise le client.

Caractérisation locale d’un fournisseur

Cette section est consacrée à la caractérisation d’un fournisseur. Intuitivement, nous cherchons à
répondre à des questions de la forme : “dans quelle mesure lesrequêtes émises sur le système corre-
spondent aux intentions du fournisseur ?” –Adéquation du système– ; “dans quelle mesure les dernières
requêtes que le fournisseur a eu à traiter lui conviennent ?”– Satisfaction du fournisseur– ; “la méthode
d’allocation est-elle statisfaisante ?” –Satisfaction du fournisseur par rapport à la méthode d’alloca-
tion –. Ces caractéristiques seront définies par rapport aux intentions exprimées par le fournisseurs sur
lesk dernières requêtes qu’il est capable de mémoriser (

−→
PIpk).

Adéquation

L’ adéquation du système par rapport à un fournisseuraide ce fournisseur à déterminer si le système
dans lequel il évolue correspond à ses attentes. Par exemple, dans notre scénario, on peut considérer que
le système est adéquat par rapport à Marc dans la mesure où la seule requête émise par Emma correspond
à ses intentions. Cependant, il est difficile de conclure en ne considérant qu’une seule requête. Une
moyenne est plus informative.

Extended Abstract in French XXIII

Definition 4. Adéquation du système par rapport à un fournisseur

δa(p) =

∣∣∣∣∣∣∣

((1

||PQk
p||

∑

q∈PQk
p

−→
PIpk[q]

)
+ 1
)/

2

0 si PQk
p = ∅

Les valeurs que peut prendre cette adéquation sont dans l’intervalle [0..1]. Plus la valeur est proche
de1, plus le système est adéquat par rapport au fournisseur concerné.

Satisfaction

Contrairement à l’adéquation, la satisfaction d’un fournisseur ne dépend que des requêtes qu’il a eu
à traiter. En revenant encore une fois au scénario de l’introduction, et en supposant que le système alloue
la requête d’Emma à Robert, Robert ne sera pas satisfait car il ne souhaite pas la traiter. Lasatisfaction
d’un fournisseur,δs(p), est donc définie comme étant la moyenne des satisfactions obtenues sur les
requêtes traitées par le fournisseur (SQk

p) parmi lesk dernières requêtes (PQk
p). La valeur est ramenée

sur l’intervalle[0..1]. Plus la valeur est proche de1, plus le fournisseur est satisfait.

Definition 5. Satisfaction d’un fournisseur

δs(p) =

∣∣∣∣∣∣∣

((1

||SQk
p||

∑

q∈SQk
p

−→
PIpk[q]

)
+ 1
)/

2

0 si SQk
p = ∅

Avec cette définition, un fournisseur peut évaluer s’il obtient des requêtes lui permettant d’attein-
dre ses objectifs, ou au moins, satisfaisant ses intentions. D’un autre coté, les efforts déployés par la
méthode d’allocation pour l’aider peuvent aussi l’intéresser. Nous définissons lasatisfaction d’un four-
nisseur par rapport à la méthode d’allocationcomme étant la ratio de sa satisfaction sur son adéquation
(définition 20). Les valeurs sont dans l’intervalle[0..∞].

Definition 6. Satisfaction d’un fournisseur par rapport à la méthode d’allocation

δas(p) =
δs(p)

δa(p)

Plus la satisfaction d’un fournisseur par rapport à la méthode d’allocation est supérieure à1 plus
l’effort de la méthode d’allocation en faveur du fournisseur est important. A contrario, plus la valeur est
proche de0, plus la méthode est pénalisante pour le fournisseur.

Caractérisations des participants du point de vue du système

Les participants, tant les fournisseurs que les clients, sont ici caractérisés d’un point de vue global.
L’objectif est de pouvoir répondre à des questions de la forme : “Dans quelle mesure les requêtes d’un
client correspondent aux attentes des fournisseurs” –Adéquation d’un client par rapport au système–
“Dans quelle mesure un fournisseur répond-il aux attentes des clients ?” –Adéquation d’un fournisseur
par rapport au système–

L’ adéquation d’un client par rapport au systèmepermet d’évaluer si ce client correspond aux attentes
des fournisseurs. En reprenant notre scénario, la requête d’Emma est adéquate au système car une grande

XXIV Extended Abstract in French

partie des fournisseurs sont prêts à la traiter. En accord avec cette intuition, l’adéquation d’une requêteq
d’un clientc, notéeδa(c, q), est définie comme la moyenne des intentions déclarées par les fournisseurs.
Les valeurs sont ramenées dans l’intervalle[0..1].

δa(c, q) =
((1

||Pq||

∑

p∈Pq

pip(q)
)

+ 1
)/

2 (3)

L’adéquation du client par rapport au système est simplement définie comme la moyenne de ces
valeurs.

Definition 7. Adéquation d’un client par rapport au système

δa(c) =
1

||IQk
c ||

∑

q∈IQk
c

δa(c, q)

L’ adéquation du fournisseur par rapport au systèmepermet d’évaluer si les clients sont intéressés
par ce fournisseur. En revenant à notre scénario, Emma ne souhaite pas que Mark traite sa requête. Cela
ne joue pas en faveur de Mark. L’adéquation d’un fournisseurpar rapport au système,δa(p), est définie
comme la moyenne des intentions montrées à son égard par les clients sur lesk dernières requêtes
proposées. Les valeurs sont ramenées entre[0..1]. Plus la valeur est proche de1, plus le fournisseur est
adéquat.

Definition 8. Adéquation d’un fournisseur par rapport au système

δa(p) =

∣∣∣∣∣∣∣

((1

||PQk
p||

∑

q∈PQk
p

−→
CIcq[p]

)
+ 1
)/

2

0 if PQk
p = ∅

Mécanisme de Médiation

SbQA est un mécanisme d’allocation fondé sur la prise en compte des intentionset de lasatisfac-
tion des participants. Cela lui permet de s’adapter immédiatement et automatiquement aux changements
d’intentionsdes participants. Par exemple, le système de médiation ne tiendra compte des performances
(temps de réponse et répartition de charge) que si les participants en tiennent eux mêmes compte dans
l’expression de leurs intentions.

Nous présentons iciSbQA en deux phases. La première partie décrit la technique d’évaluation d’un
score pour chaque fournisseur correspondant à la pertinence de lui allouer la tâche. La deuxiême partie
présente l’algorithme général deSbQA.

Intentions des participants

Les intentionsdes participants sont exprimées sur l’intervalle[−1..1]. Une intention positive traduit
le souhait que le choix devienne réalité, souhait d’autant plus important que la valeur est proche de1.
Au contraire, une intention négative traduit le souhait de ne pas voir cette possibilité se réaliser, souhait
d’autant plus important que la valeur est proche de−1. Une valeur de0 traduit une indifférence.

Il est de la responsabilité d’un participant de calculer sespropres intentions en combinant les critères
qu’il juge utile de considérer (e.g. charge, préférences, temps de réponse, réputation, expériences passées,. . .).

Extended Abstract in French XXV

La manière dont les participants calculent leursintentionsest considérée comme une information privée
à laquelle le système ne peut accéder. Cependant, il ne faut pas s’y tromper, cela a un impact direct sur
le comportement global du système. Par exemple, si les participants manifestent tous un intérêt mar-
qué pour des temps de réponse les plus faibles possibles, la médiation tenant compte de leurs intentions
devrait conduire à l’obtention d’un système performant du point de vue des temps de réponse. Tel ne
sera pas le cas si les participants s’intéressent à la qualité des réponses sans aucune considération pour
le temps. La médiation doit permettre d’adapter le comportement global du système aux attentes des
participants.

Pertinence d’allouer une tâche â un fournisseur

Étant donné une tâcheq et un fournisseurp, la pertinence d’allouer cette tâche â ce fournisseur est
évaluée et quantifiée en considérant les deux points de vue enprésence. Le point de vue du clientc est
obtenu en considérant sonintentionde voir sa tâche traitée parp et le point de vue du fournisseurp est
obtenu en considérant sonintentionde traiter la tâcheq dec. La confrontation de ces deux points de vue
pourrait être directe, mais dans un souci d’équité, nous avons choisi de permettre qu’un point de vue soit
privilégié par rapport à l’autre.

Definition 9. Évaluation d’un fournisseur

scrq(p) =

∣∣∣∣∣∣∣∣∣∣∣∣

(−→
PIq[p]

)ω(−→
CIcq[p]

)1−ω

si
−→
PIq[p] > 0 ∧

−→
CIcq[p] > 0

−
((

(1−
−→
PIq[p]) + ǫ

)ω(
(1−

−→
CIcq[p]) + ǫ

)1−ω
)

sinon

À différence du vecteur
−→
PIp qui stocke lesintentionsdu fournisseurp pour taiter les dernières tâches

qui lui ont été proposées, le vecteur
−→
PIq stocke l’intention de chaque fournisseurp ∈ Pq pour traiter

la tâcheq (mêmes informations notées différemment suivant les points de vue adoptés : fournisseur ou
mediateur). Le paramètreǫ > 0 est une constante habituellement valuée à 1. Son rôle est seulement
d’éviter le passage à zéro.ω est une variable qui prend ses valeurs dans l’intervalle[0..1] ; elle traduit
le fait qu’un point de vue peut être privilégié par rapport ? l’autre. Lorsqueω vaut0, 5, les deux points
de vue sont considérés avec une égalité parfaite. Lorsqueω vaut 0, le point de vue du fournisseur est
totalement occulté pour ne prendre en compte que celui du client. L’inverse est vrai quandω vaut 1.

Pour chaque évaluationSbQA calcule la valeur deω en fonction de lasatisfactiondes agents dont
on confronte le point de vue. L’idée est de privilégier le point de vue de l’agent qui est le moins satisfait.
ω représente donc la différence de satisfaction entre le fournisseur et le client en présence. La Figure 2.2
illustre les valeurs queω peut prendre selon lasatisfactiondes clients et fournisseurs.

ω =
((

δs(c)− δs(p)
)

+ 1
)/

2 (4)

Une fois quantifiées la pertinence d’allouer la tâche pour chaque fournisseur pouvant traiter la tâche,
il n’est pas difficile d’ordonner les fournisseurs du plus pertinent au moins pertinent. Le résultat de cet
ordonnancement est mémorisé dans un vecteur

−→
R q, où

−→
R q[1] (respectivement

−→
R q[N]) est le fournisseur

le plus (respectivement le moins) pertinent.

XXVI Extended Abstract in French

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

Provider Sat.
 0

 0.2
 0.4

 0.6
 0.8

 1

Consumer Sat.

 0
 0.2
 0.4
 0.6
 0.8

 1

Figure 1 – Valeurs possibles deω en fonction des satisfactions.

Algorithm 1 : Allocation d’une tâche
Input : q, Pq

Output : All−→ocq

begin1

// Intention du client
fork demander l’intention ?q.c;2

// Ints. des fournisseurs
foreach p ∈ Pq do3

fork demander l’intention ?p ;4

waituntil
−→
CIcq et

−→
PIq ou untimeout;5

// Éval. des fournisseurs
foreach p ∈ Pq do6

évaluerp par rapport
−→
CIcq &

−→
PIq ;7

// Ordre des fournisseurs

rankPq,
−→
Rq, par rapportscrp(q) ;8

// Selection des fournisseurs

for i = 1 to min(n,N) do All−→oc [
−→
R q[i]]← 1 ;9

for j = min(n,N) + 1 to N do All−→oc [
−→
R q[j]]← 0 ;10

end11

Principe

Pour allouer une tâcheq, dans un premier temps, le médiateur doit être capable de déterminer
l’ensemble de fournisseurs qui ont la capacité de traiter cette tâche (i.e. l’ensemblePq). Un grand nom-
bre de travaux ont déjà porté sur ce problème, voir par exemple [LH04,?]. Aussi nous considérerons ce
problème comme étant résolu par des techniques que nous ne présentons pas ici.

Les grandes étapes permettant d’allouer la tâcheq à q.n fournisseurs parmi ceux de l’ensemble
Pq sont présentées dans l’algorithme 3 . Après avoir demandé enparallèle et obtenu lesintentionsdes

Extended Abstract in French XXVII

différents participants concernés par cette allocation (ligne 2)4, l’évaluation de chaque fournisseur est
calculée (ligne 7) comme indiqué dans la section précédente. Une fois triés (ligne 8), ceux qui sont
considérés comme étant les plus pertinents sont sélectionnés (ligne 9). Finalement, tous les participants
à cette médiation sont informés du résultat (lignes 9 et 10).Cet algorithme peut être optimisé de bien des
manières, mais notre but est ici d’en présenter une version facilement compréhensible.

Réplication de Requêtes

Aujourd’hui, Internet offre de nombreuses possibilités à grande échelle de calcul distribué. Une des
plus récentes solutions à grande échelle de l’informatiqueest l’utilisation de milliers, voire des mil-
lions de non fiables, les ordinateurs personnels autonomes (les fournisseurs) connecté à Internet pour
échanger des informations ou de calcul des ressources les uns avec les autres. Fournisseurs de met-
tre leurs fonctionnalités de calcul ou de ressources au service d’autrui (les consommateurs) pour des
raisons de collaboration ou pour leurs propres avantages. D’une part, les services Web sont un exemple
clair de la concurrence massive de calcul distribué lors de leur invocation encourt un coût monétaire.
D’autre part, quelques exemples de coopération massive de calcul distribué sont les projets SETI@home
et distributed.net. En effet, dans ces environnements les participants ont des intérêts envers des requêtes
ainsi que l’autonomie de quitter et rejoindre le système à volonté. Par exemple, un participant, don de
ses ressources de calcul à plusieurs projets de recherche, mais désire d’effectuer en moyenne plus de
requêtes de certains projets spécifiques que des autres.

Le fait de considérer à grande échelle, ouvert (pour les participants autonomes) des systèmes dis-
tribués a une autre conséquence : la possibilité de participants, ou, plus généralement, dysfonctionnement
des participants. En fait, comme l’échelle d’un système distribué est augmentée du nombre de partici-
pants, la possibilité que l’un d’eux est soumis à l’échec augmente également. Études des participants
dans la disponibilité à grande échelle systèmes distribués, tels que Overnet, Napster et Gnutella montrent
qu’il existe un important roulement en raison de l’échec. Enconséquence, dans ce contexte, l’utilité des
applications distribuées est de plus en plus limitée par la disponibilité plutôt que de performance. Ce
problème de traiter avec les participants des échecs a été largement étudié par plusieurs travaux dans
les systèmes distribués. En raison de l’autonomie, cependant, un fournisseur peuit être malicieux, c’est-
à-dire de être byzantine, et, par conséquent, il peut erroner ou tout simplement ne retourner pas des
résultats, pour une requête. C’est pourquoi certains systèmes distribués font la réplication de la même
requête (c’est-à-dire qu’elle crée de sauvegarde des requêtes pour une requête) sur plusieurs fournisseurs
pour comparer leurs résultats. Il est, par exemple, la politique de SETI@home. Par conséquent, la répli-
cation d’une requête peut répondre à deux objectifs : comparer les résultats des requêtes de différents
fournisseurs et à soutenir d’éventuels fournisseurs échecs. Dans ce chapitre, nous nous concentrons sur
celles-ci et l’ancien rapport aux travaux futurs. En effet,la réplication requête a un coût qui ne devrait pas
être négligée car elle car elle peut rapidement utiliser toutes les ressources de calcul dans le système. Le
système de point de vue, de recherche nécessite la réplication soit plus puissant fournisseurs ou d’autres
fournisseurs. Les participants de point de vue, il n’est pasévident qu’un participant a la même intention,
et donc la même satisfaction, à être utilisés comme source primaire que comme source de sauvegarde. À
notre connaissance, aucun modèle tolérance de fautes a traité avec les intentions et de la satisfaction des
participants, par conséquent, aucune requête de reproduction technique est appropriée pour des systèmes
d’information distribués avec des participants autonomesqui ont des intérêts à envers les requêtes.

4 Un timeout évite les attentes trop longues.

XXVIII Extended Abstract in French

Modèle de satisfaction qui considère les pannes des participants

Rappelez-vous que dans le chapitre , nous avons proposé un modèle pour caractériser les participants
de leurs intentions à long terme, qui définit déjà les définitions de certains des participants satisfac-
tion. Toutefois, nous n’avons pas considéré dans ce modèle que les requêtes ont différent criticits pour
un consommateur, que les résultats produits par un fournisseur ne peuvent pas être renvoyés à un con-
sommateur en raison de la panne du consommateur ou du fournisseur. Ce dernier point implique, en
d’autres termes, le modèle que nous avons proposées supposequ’étant donné une requêteq, les résul-
tats de chaque fournisseur dePq est retourné à le consommateur. Dans cette section, nous libérons cette
hypothèse et proposons des définitions de satisfaction qui d’envisagent la possibilité que seuls les résul-

tats d’un ensemblê̂Pq ⊆ Pq de prestataires sont retournés au consommateur en raison des pannes des
participants. En outre, nous proposons une définition satisfaction globale, qui considère la probabilité de
non-participants, devrait caractériser le bonheur de tousles participants concernés par l’attribution d’une
requête.

La satisfaction des consommateurs Comme défini dans le chapitre , il est par le biais de sa satisfaction
que le consommateur peut évaluer s’il est, ou non, les résultats qu’il attend du médiateur. Considérant
que le consommateur désire des résultats différents pour une requête, nous avons défini la satisfaction
du consommateur afin que plus des résultats il aura, plus il sera satisfait. Toutefois, ce n’est pas toujours
le cas lorsque les fournisseurs tombent en panne et que les requêtes ont different valeurs de criticits.
Par exemple, un consommateur, exigeant deux résultats pourune requête critique basse, il peut être plus
satisfaits de recevoir un seul résultat d’un fournisseur envers qu’il a une intention de1 que de recevoir
les résultats de deux fournisseurs à qui il a une intention de1 et−1, respectivement. Cela dépend de
la criticité de la requête pour recevoir autant de résultatsdont le consommateur a besoin. Intuitivement,
si une requête a une criticitéγ = 1 (respectivementγ = 0) signifie que le consommateur ne serait
pas satisfait du tout si il n’a pas reu tous les résultats dontil a besoin (resp. signifie que la satisfaction
du consommateur dépend fortement du nombre de résultats, ilreoit). Pour tenir compte de cela, soit
̂̂
Pq l’ensemble des fournisseurs dont les résultats sont retournés au consommateur, nous modifions la
satisfaction coefficient1n de l’équation 1.3 comme suit,

1− γ

n− γ · ||
̂̂
Pq||

(5)

Nous illustrons le comportement de ce coefficient de satisfaction au-dessus de la Figure 4.1. Observez
que le plus critique est une requête et le nombre de résultatsreues diminue, le coefficient de satisfaction
diminue, ce qui conduit également à une diminution de satisfaction. Il est intéressant de noter que, lorsque
la criticit d’une requête prend la valeur de1, le coefficient de satisfaction toujours les valeurs zéro sile
nombre de résultats n’est pas requis par le consommateur. Ensuite, compte tenu de l’Équation 4.1 et le
fait que les fournisseurs tombent en panne, nous définissonsla satisfaction du consommateur comme
suit.

Definition 10. Consumer Satisfaction Concerning a Single Query Allocation (revisited)

δs(c,
̂̂
Pq) =

∣∣∣∣∣∣∣∣∣∣∣

1− γ

n− γ · ||
̂̂
Pq||
·
(∑

p∈
ccPq

(
−→
CIq[p] + 1)

/
2
)

if γ < 1

1

n
·
(∑

p∈
ccPq

(
−→
CIq[p] + 1)

/
2
)

otherwise

Extended Abstract in French XXIX

 1
 2

 3
 4

 5 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.05
 0.1

 0.15
 0.2

 0.25

sa
tis

fa
ct

io
n

 c
o

e
ff
ic

ie
n

t

results criticity

Figure 2 – Number of results vs query’s criticity when a consumer requires five results.

La satisfaction d’un fournisseur Comme on l’a noté à ce jour, un fournisseur peut évaluer, par le biais
de sa satisfaction, si le médiateur, il attribue ces questions qui répondent à ses intentions. Inversement à un
consommateur, le fait qu’une requête a une haute criticité,ou non, n’a pas d’influence sur la satisfaction
d’un prestataire. A son tour, le fait que le fournisseur effectue une requête et ses résultats ne sont pas
retournés au consommateur peut impacter de manière significative sur sa satisfaction (en fonction de son
coût). La raison en est que le prestataire est généralement égoistes et, par conséquent, le fait de dépenser
les ressources de calcul à effectuer des requêtes dont elle recueille aucun avantage ne répond pas à leurs
intentions à toutes. Ainsi, compte tenu de cela, nous définissons à nouveau la satisfaction d’un prestataire
p ∈ P ok

q ∩ Pq comme suit.

Definition 11. Provider Satisfaction Concerning a Single Query Allocation

δs(p, P̂ r
q ,
̂̂
Pq) =

∣∣∣∣∣∣∣∣

(−−→
PPIp[q] + 1

)
/2 if p ∈

̂̂
Pq(

−
−−→
PPIp[q] + 1

)
/2 if p ∈ (Pq\P̂ r

q) ∩ P ok
q(

1−
−−→
PCq[p]

)
/2 if p ∈

(
P̂ r

q \
̂̂
Pq

)
∩ P ok

q

Rappelez-vous que vecteur
−−→
PPIp contient les intentions exprimées parp vers lesk dernires requêtes

proposé. L’idée qui derrièrre la définition ci-dessus est que si un fournisseur effectue une requête et ses
résultats produits sont retournés au consommateur, sa satisfaction est relative à une telle allocation est
alors basée sur son intention (ligne1 de l’équation ci-dessus). Sinon, si un fournisseur n’xecute pas une
requête, sa satisfaction concernant cette requête répartition est fondée sur les effets négatifs de son inten-
tion (ligne2). Cela signifie que si un fournisseur négatif exprime une intention d’effectuer une requête
et il n’est pas attribué la requête, il est satisfait avec le médiateur d’emploi parce qu’elle ne dépense pas
au calcul des ressources pour effectuer une requête qu’il n’aime pas. Dans la définition ci-dessus, nous
estimons également que les cas où un fournisseur effectue une requête et de ses produits résultat n’est
pas retourné au consommateur (ligne3). Dans ce cas, nous supposons que le prestataire n’est pas satisfait
de l’exécution des requêtes pour rien. Ainsi, nous définissons la satisfaction du fournisseur sur la base de
son coût pour effectuer une requête. Nous traduisons le coûtdes valeurs dans l’intervalle[0..0, 5], ce qui
signifie que le prestataire a toujours un faible taux de satisfaction dans de tels cas.

XXX Extended Abstract in French

global de satisfaction Nous faisons précisément dans cette section la satisfaction globale en ce qui
concerne une requête d’allocation. L’un des principaux objectifs lorsqu’ils traitent avec des fournisseurs
d’indisponibilité dans la requête des allocations est de créer des requêtes de sauvegarde afin que les
réponses à court temps de réponse sont assurées pour les consommateurs. Dans autonome des systèmes
distribués, l’attribution de sauvegarde des requêtes n’est pas une tâche facile dû à autonomie des partici-
pants. Jusqu’à présent, nous avons défini la requête des problèmes d’allocation dynamique et autonome
des systèmes distribués comme une maximisation de la satisfaction globale. Toutefois, selon les défi-
nitions des sections 4.2.1 et 4.2.2, les intentions des participants sont contradictoires, c’est lors de la
création de sauvegarde des requêtes consommateurs améliore la satisfaction (en assurant leur satisfac-
tion). Nous définissons la satisfaction globale par l’examen de ce point contradictoires. Dans ce but, nous
considérons la probabilité de défaillance des participants.

Tout d’abord, il convient de noter que nous supposons que leserreurs ne sont pas relationées. Ainsi,
la probabilité qu’un participanti ne pas échouer dans une unité de temps est de1 − failProbabilityi.
Soit tq le délais requis par un fournisseurp (qui ne figure pas dans la notation pour des raisons de clarté)

pour traiter une requêteq. Par conséquent, la probabilitéA(
itq) quei ne pas échouer dans un intervalle

de temps discrettq (c’est-à-dire que toujours être disponible au cours du temps intervalle (tq) est donnée
par l’équation ci-dessous.

A
tq
i = (1− fi)

tq (6)

Compte tenu de cela, voyons d’abord caractériser la probabilité qu’une requête, être traités avec
succès par au plush fournisseurs dont les pires classé fournisseur a un rangr, soit la probabilité de
trouver au plus h jusqu’à ce que les fournisseurs de rangr en vecteur

−→
R q ne manquent pas, avant de

retourner les résultats d’une requête.

Lemma 1. La probabilité de succèsSh
q (P̂ r

q) qu’une requêteq a pour être traite par au plush four-

nisseurs dêP r
q est donnée par

Sh
q (P̂ r

q) =
∑

P ok
q ⊆cP r

q

||P ok
q ||≤h

(∏

p∈P ok
q

A
tq
p

∏

p∈cP r
q \P

ok
q

(1−A
tq
p)
)

Démonstration.La probabilité qu’un ensemble de fournisseurs avec succès effectue une requête est don-
née par sa probabilité disponible. Par l’équation Equation4.2, la probabilité de disponibilit d’un ensem-
ble P ok

q de fournisseurs dans l’ensemblêP r
q est

∏
p∈P ok

q
A

tq
p ·
∏

p∈cP r
q \P

ok
q

(1 −A
tq
p). Par conséquent, la

probabilité de succès d’une requêteq à être effectuée par au plush fournisseurs danŝP r
q est donnée par

la somme disponible probabilité de tous les différents ensemblesP ok
q in P̂ r

q qui satisfont la contrainte

||P ok
q || ≤ h, doncSh

q (P̂ r
q) =

∑

P ok
q ⊆cP r

q

||P ok
q ||≤h

(∏

p∈P ok
q

A
tq
p

∏

p∈cP r
q \P

ok
q

(1−A
tq
p)
)

.

Permettez-nous maintenant de caractériser la probabilitéque les résultats produits par un fournisseur
et un ensemble de fournisseurs sont retournés au consommateur.

Lemma 2. Soit x la cardinalit de
̂̂
Pq, i.e. ||

̂̂
Pq||, etant donné une requêteq, la probabilité Sa

q (P̂ r
q , x)

que les résultats des fournisseurs de
−→
R q[a] et d’autresx − 1 fournisseurs danŝP r

q est retourné au

Extended Abstract in French XXXI

consommateurq.c est donnée par la formule

Sa
q (P̂ r

q , x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

ccPq⊆cP r
q

||
ccPq||<x

−→
R q[a]∈

ccPq

(∏

p∈
ccPq

A
tq
p

∏

p∈cP r
q \

ccPq

(1−A
tq
p)
)

if x < q.n

∑

ccPq⊆cP r
q

||
ccPq||=x

−→
R q[a]∈

ccPq

(∏

p∈
ccPq

A
tq
p

∏

p=
−→
Rq [j]

j≤max(k)
−→
R q[k]∈

ccPq

p/∈
ccPq

(1−A
tq
p)
)

else

Démonstration.Nous utilisons un raisonnement proche celui du Lemma 3. Globalement, étant donné
une requêteq, deux cas peuvent exister pour qu’un fournisseur de

−→
R q[a] retourne son produit suite au

consommateurq.c : (i) que moins deq.n fournisseursP̂ r
q est disponible au cours intervalle de temps

discrettq, et (ii) que la même ou plus de qn fournisseurs deP̂ r
q est disponibles en temps discret au cours

de l’intervalletq, mais tout au plusx− 1 fournisseurs ont un score plus élevé que
−→
R q[a].

Dans le premier cas, le fournisseur
−→
R q[a] ne doit pas être disponible au cours de l’intervalle de temps

tq pour tre dans l’ensemble. Ainsi, la probabilitéSa
q (P̂ r

q , x) que les rsultats de
−→
R q[a] soient retournés à

qc , quandx < q.n, est donnée par la somme disponible probabilité de tous les ensembles différentŝ̂Pq

dansP̂ r
q qui satisfont la contrainte

−→
R q[a] ∈

̂̂
Pq. Par conséquent, l’Équation 4.2 et la disponibilité pour le

x < q.n cas,Sa
q (P̂ r

q , x) =
∑

ccPq⊆cP r
q

||
ccPq||<x

−→
R q[a]∈

ccPq

(∏

p∈
ccPq

A
tq
p

∏

p∈cP r
q \

ccPq

(1−A
tq
p)
)

.

Dans le second cas, à l’inverse du premier cas, fournisseur de
−→
R q[a] doivent être disponibles au cours

de l’intervalle de temps discrettq, mais doit également avoir au moins lesq.n pire classement en
−→
R q[a]

pour tre dans l’ensemblê̂Pq. Ainsi, la probabilitéSa
q (P̂q, x) que les résultats de

−→
R q[a] soient retournés

à q.c, lorsquex = qn, est donnée par la somme disponible probabilité de tous les différents ensembles
̂̂
Pq dansP̂ r

q qui satisfont aux contraintes
−→
R q[a] ∈

̂̂
Pq et ∄

−→
R q[j] ∈ P̂ r

q : j < a. Par conséquent, par

l’Equation 4.2 et la disponibilité pour le casx = q.n, Sa
q (P̂ r

q , x) =
∑

ccPq⊆cP r
q

||
ccPq||=x

−→
R q [a]∈

ccPq

(∏

p∈
ccPq

A
tq
p

∏

p=
−→
Rq [j]

j≤max(k)
−→
R q[k]∈

ccPq

p/∈
ccPq

(1 −

A
tq
p)
)

.

Ensuite, nous avons officiellement la satisfaction globaleen ce qui concerne l’attribution d’une re-
quête en théorème 6. Depuis la satisfaction globale est calculée par le médiateur, étant donné une requête
q, nous considérons comme suit vecteur

−→
PIq à représenter les intentions des fournisseurs dePq, mais

que
−→
PIq[p] =

−−→
PPIp[q].

XXXII Extended Abstract in French

Theorem 1. La satisfaction globaleΘ(P̂ r
q) de l’affectation d’une requêteq à un ensemblêP r

q est,

Θ(P̂ r
q) =

r∑

j=1

(
A

tq
−→
Rq [j]

·
(
A

tq
c · S

n−1
q (P̂ j−1

q) ·
−→
PIq[
−→
R q[j]] +

(
1−A

tq
c

)
· Sn−1

q (P̂ j−1
q) ·

−−→
PCq[

−→
R q[j]] +

(
1− Sn−1

q (P̂ j−1
q)

)
·
−−→
PCq[

−→
R q[j]]

))
+

||Pq||∑

j=r+1

A
tq
−→
Rq [j]

· −
−→
PIq[
−→
R q[j]] +

A
tq
c ·

n∑

j=0

(
1− γ

n− γ · j
·

r∑

a=1

(
Sa

q (P̂ r
q , j) ·

−→
CIq[

−→
R q[a]]

))

Démonstration.Pour plus de clarté, nous procédons à démontrer l’équation ci-dessus ligne par ligne.
La satisfaction globale de l’affectation d’une requêteq est la somme des prévisions de satisfaction des
fournisseurs dePq et la satisfaction des consommateurs devraitq.c. Nous avons d’abord se concentrer
sur les fournisseurs. Compte tenu Definition 33, trois cas seproduisent : (i) lorsque les fournisseurs sont

dans l’ensemblê̂Pq, (ii) lorsque le prestataire est dans l’ensemble(P̂ r
q \
̂̂
Pq) ∩ P ok

q , et (iii) lorsque le

prestataire est dans l’ensemble(Pq\P̂ r
q) ∩ P ok

q . En effet, dans tous ces trois cas, un fournisseur dePq

doit être dansP ok
q à calculer sa satisfaction. Cette probabilité est donnée par l’Équation 4.2,Atq

−→
Rq [j]

.

Pour qu’un fournisseur
−→
R q[j] dansP̂ r

q ∩P ok
q soit danŝ̂Pq, le consommateursq.c doit être disponible

au cours de l’intervalle de temps discret requis par
−→
R q[j] pour traiterq, ce qui est donnée par l’Équa-

tion 4.2,Atq
c , et que la plupart des autresq.n−1 fournisseurs avec un classement inférieur àj également

soit dans la sériêP r
q ∩P ok

q , ce qui est donnée par le Lemme 3,Sn−1
q (P̂ j−1

q). Donc, la probabilité que les

résultats produits par les fournisseurs dêP r
q est retourné àq.c est,

r∑

j=1

(
A

tq
−→
R q[j]

· A
tq
c · S

n−1
q (P̂ j−1

q) ·
−→
PIq[
−→
R q[j]]

)

ce qui est multiplié par l’intention de
−→
R q[j] car ses résultats sont retournés àq.c. Cela prouve la première

ligne de la satisfaction globale.

Maintenant, un fournisseur
−→
R q[j] dansP̂ r

q ∩ P ok
q ne soit paŝ̂Pq pour deux raisons principales :

D’abord parce queq.c tombe en panne dans l’intervalle de temps discrettq, et, deuxièmement, parce
qu’au moinsq.n autres fournisseurs avec un classement inférieur àj dansP̂ r

q ∩ P ok
q . Par l’Équation 4.2

et le Lemme 3, nous avons que la probabilité que la première possibilité se produit est,

r∑

j=1

(
A

tq
−→
Rq [j]

·
(
1−A

tq
c

)
· Sn−1

q (P̂ j−1
q) ·

−−→
PCq[

−→
R q[j]]

)

et que la seconde possibilité se produit est,

r∑

j=1

(
A

tq
−→
R q[j]

·
(
1− Sn−1

q (P̂ j−1
q)

)
·
−−→
PCq[

−→
R q[j]]

)

Extended Abstract in French XXXIII

qui sont multipliés par le cot
−→
R q[j] car ses résultats ne sont pas retournés àq.c dans les deux possibilités.

Cela prouve la deuxième et troisième lignes de la satisfaction globale.
Pour finaliser avec le fournisseur, nous allons maintenant examiner le cas où un fournisseur ne peut

être attribué une requête. Par l’Équation 4.2, la probabilité qu’un ensemble de fournisseurs de rangj > r
soit dans(Pq\P̂ r

q) ∩ P ok
q est,

||Pq||∑

j=r+1

A
tq
−→
Rq[j]

· −
−→
PIq[
−→
R q[j]]

qui est multipliés par l’intention ngative du fournisseur
−→
R q[j]. Cela prouve la quatrime ligne de la satis-

faction globale.
Concernant un consommateur, pour calculer sa satisfaction, le consommateur doit être disponible

dans un intervalle de temps discrettq, Atq
c . Les prévisions de satisfaction d’un consommateurq.c con-

cernant un fournisseur
−→
R q[a] ∈

̂̂
Pq est donnée par la multiplication de la probabilité du fournisseur

−→
R q[a] et d’autresj − 1 fournisseurs danŝP r

q dans
̂̂
Pq et l’intention deq.c vers

−→
R q[a]. Ainsi, par le

Lemme 4, la satisfaction attendue du consommateursq.c concernant un ensemblê̂Pq est donnée par la
formule

A
tq
c ·

r∑

a=1

(
Sa

q (P̂ r
q , j) ·

−→
CIq[
−→
R q[a]]

Par conséquent, par définition 32, la satisfaction attenduedu consommateursq.c concernant tous les

ensembles dê̂Pq dans llocRProvidersqr est,

A
tq
c ·

n∑

j=0

(
1− γ

n− γ · j
·

r∑

a=1

(
Sa

q (P̂ r
q , j) ·

−→
CIq[

−→
R q[a]]

))

qui finalement se prouve la dernière (la cinquième) ligne de l’équation de la satisfaction globale.

Une méthode basée sur la satisfaction pour faire la réplication non systématique de re-
quêtes

Nous présentons dans cette section l’algorithme pour fairela réplication de requêtes nomméeSbQR.
À l’inverse de plusieurs travaux qui crént un fournisseur desauvegarde par requête (nb = 1), SbQR fait
la réplication des requêtes dans le but d’accroître la satisfaction des participants. Ainsi, il ne réplique une
requte si cela implique une augmentation de la satisfactionglobale (voir Theoreme 6). L’algorithme 4
montre les principales étapes du processus de la réplication de requêtes.SbQR reoit en entrée une requête
q, les vecteurs

−→
R q,
−→
CIq ,

−→
PIq et

−−→
PCq. Nous assumons que

−→
R q est générée par une fonction de scorage

comme celle de la Definition 26), mais, sans perte de généralité, le vecteur
−→
R q peut être générée par une

autre fonction de scorage comme celle d’utilisationUt.
Tout d’abord, pour définir le nombrenb de fournisseurs de sauvegarde,SbQR initialisesnb à zero et

r au nombre de requûetes requise par le consommateurQ.c (lignes 2 and 3, respectivement, de l’algo-
rithme 4). En fixant la valeur der àn, a veut dire que lesnb fournisseurs de sauvegarde sont considérer à

partir de
−→
R q[n + 1] à

−→
R q[||Pq ||]. Comme deuxième phase, il construit l’ensembleP̂ r

q et P̂ r+1
q (lignes 4-

7). Finallement,SbQR vérifie si la satisfaction globale par rapport l’ensemblêP r+1
q est plus grande

que celle concernant l’ensemblêP r
q (ligne 8). Ce calcul est donné par le théorème 7. En cas écheant,

XXXIV Extended Abstract in French

Algorithm 2 : Réplication de requêtes basée sur la satisfaction

Input : q,
−→
R q,
−→
CIq,

−→
PIq,

−−→
PCq

Output : nb

begin1

// Variables setting
nb = 02

r = n3

// Provider sets setting
for i = 1 to r do4

add provider
−→
R q[i] to P̂ r

q5

add provider
−→
R q[i] to P̂ r+1

q6

add provider
−→
R q[r + 1] to P̂ r+1

q7

// Computing the number of backup providers

while Θ(P̂ r
q) < Θ(P̂ r+1

q) do8

incrementnb by one (nb = nb + 1)9

incrementr by one (r = r + 1)10

if there exists provider
−→
R q[r + 1] then11

add provider
−→
R q[r] to P̂ r

q12

add provider
−→
R q[r + 1] to P̂ r+1

q13

else14

break loop ;15

end16

il incrémente le nombre de fournisseurs de sauvegarde et ajoute le prochaine mieux class l’ensembles

fournisseurŝP r
q et P̂ r+1

q . Alors, il recommence à partir de la ligne 8 jusqu’àΘ(P̂ r
q) ≥ Θ(P̂ r+1

q) ou s’il

n’y a plus des fournisseurs dans le vecteur
−→
R q (lignes 9-15). Bien sûr, l’algorithme 4 peut être optimisé,

mais notre objectif est de montrer quel sont les phases dans le processus de réplication de requêtes.

Validation

L’objectif principal est d’analyser comment les méthodes d’allocation tiennent compte des notions de
satisfaction (avec un intérêt particulier pourSbQA). Pour cela, nous avons procédé en deux temps. Dans
une première étape, nous avons mesuré lessatisfactionsen considérant que les participants sont captifs
(aucune possibilité de quitter le système). Puis dans un second temps, nous avons donné la possibilité
aux participants de quitter le système pour étudier l’impact de cette autonomie.

Paramètres des simulations

En utilisant SimJava, nous avons développé en Java un simulateur pour représenter un système d’in-
formation distribué comme défini dans [LCLV07]. Pour toutesles méthodes que nous avons testées, la

Extended Abstract in French XXXV

configuration est la même (c.f. Tableau 2.1). Seule la technique d’allocation diffère.

Nous initialisons les participants avec une valeur de satisfaction de0.5 qui évolue avec les200 tâches
entrantes et les500 tâches proposées. Autrement dit, la valeur du paramètrek est200 pour les clients
et 500 pour les fournisseurs. Le nombre de clients, fournisseurs et médiateurs dans le système est200,
400 et 1, respectivement. Nous avons affecté les ressources suffisantes au médiateur de sorte qu’il ne
cause pas de goulot d’étranglement dans le système. L’utilisation d’un fournisseurp à un moment donné
t (notée par la fonctionUt(p)) dénote la charge dep à t. Inspirés de [GBGM04], nous supposons que
les fournisseurs obtiennent leurutilisation comme l’équation 7 où la fonctioncostp(q) dénote le coût de
traitement de la tâcheq par le fournisseurp et la fonctioncap(p) dénote la capacité de traitement dup.

Ut(p) =

∑

q∈Qp

costp(q)

cap(p)
(7)

D’une part, nous supposons qu’un fournisseur calcule sonintention pour traiter une tâcheq comme
dans [QRLV06] (voir équation 8). Cette technique permet à unfournisseur de prendre en compte à
la fois sonutilisation et sespréférencesen portant une attention plus ou moins soutenue ? l’une ou
l’autre en fonction de sasatisfactionactuelle. Pour cela, la satisfactionδs(p) utilisée ici est basée sur les
préférences, notéesprfp(q)).

pip(q) =

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

(prfp(q)
1−δs(p))(1 − Ut(p))δs(p),

si(prfp(q) > 0) ∧ (Ut(p) < 1)

−

“

`

(1 − prfp(q)) + ǫ
´1−δs(p)`

Ut(p) + ǫ
´δs(p)

”

sinon

(8)

D’autre part, pour simuler une hétérogénéité élevée desintentionschez les clients, nous divisons l’ensem-
ble de fournisseurs en trois classes selon l’intérêt des clients : ceux pour qui les clients ont un grand in-
térêt (60% des fournisseurs), un intérêt moyen (30% des fournisseurs) et un intérêt faible (10% des four-
nisseurs). Par simplicité, nous nommons ces groupes de fournisseurs lestrès-intéressants, moyennement-
intéressantset peu-intéressantsrespectivement. Les clients obtiennent leursintentionsenvers les four-
nisseurstrès-intéressantsentre0, 34 et1, envers les fournisseursmoyennement-intéressantsentre−0, 54
et 0, 34 et envers les fournisseurspeu-intéressantsentre−1 et −0, 54. Sans perte de généralité, nous
pourrions utiliser d’autres mécanismes pour obtenir lesintentionsdes clients (par exemple, en utilisant
les langagesTCLou Rush). Nous nous basons sur les résultats présentés dans [SGG02]pour paramétrer
l’hétérogénéité des capacités des fournisseurs.10% des fournisseurs ont une capacité faible,60% des
fournisseurs ont une capacité moyenne et30% des fournisseurs ont une capacité forte. Par simplic-
ité, nous nommons ces trois groupes de fournisseurs lestrès-capables, moyennement-capableset peu-
capables. Les fournisseurstrès-capablessont trois fois plus puissants que les fournisseursmoyennement-
capableset sept fois plus que les fournisseurspeu-capables. Finalement, nous produisons deux classes
de tâches qui sont traitées par les fournisseurstrès-capablesdans un temps de1.3 et 1.5 secondes, re-
spectivement. Les tâches arrivent au système avec une distribution de Poisson, couramment utilisée dans
des environnements ouverts [Mar02].

Dans cet article, nous ne considérons pas le problème de la bande passante et nous supposons que
tous les fournisseurs disposent des mêmes capacités réseau. Finalement, nous supposons que les clients
ne demandent qu’un seul résultat par tâche et que tous les fournisseurs dans le système peuvent satisfaire
toute tâche entrante (pas de problème de “matchmaking”).

XXXVI Extended Abstract in French

Table 2 – Paramètres des simulations.

Paramètre Définition Valeur
nbConsumers Nombre de clients 200
nbProviders Nombre de fournisseurs 400
nbMediators Nombre de médiateurs 1
qDistribution Distribution dans laque-

lle les tâches arrivent au
sytème

Poisson

iniSatisfaction Satisfaction initiale 0.5
conSatSize Valeur dek pour les

clients
200

proSatSize Valeur dek pour les four-
nisseurs

500

nbRepeat Nombre de répétitions par
simulation

10

Méthodes de référence

Capacity based

Dans le contexte des systèmes d’information distribués, les deux techniques les plus connues pour
faire de l’allocation de tâches sont basées sur la charge [ABKU99, GBGM04] et la capacité [MTS90,
RM95, SKS92]. Nous ne considérons pas les méthodes basées sur la charge car, à la différence de celles
basées sur la capacité, elles supposent que tous les fournisseurs et toutes les tâches sont homogènes.
Le principe des méthodes basées sur la capacité est d’affecter chaque tâche entrante aux fournisseurs qui
sont les moins utilisés parmi ceux de l’ensemblePq. Capacity based s’est avéré meilleur queLoad Ba-
sed dans des systèmes hétérogènes. Donc, nous comparonsSbQA à cette approche (que nous nommons
Capacity based pour simplicité) dans nos simulations.

Mariposa

Diverses approches économiques ont été proposées [FNSY96,FYN88, SAL+96] pour faire de l’al-
location de tâches. Mariposa [SAL+96] est l’un des premiers systèmes utilisant des techniquesde micro-
économie. Mariposa a montré de bonnes performances dans desenvironnements ouverts et hétérogènes.
C’est pourquoi nous l’avons implémenté et comparé à notre proposition. Dans Mariposa, chaque tâche
entranteq arrive à un médiateur (broker) qui trouve l’ensemblePq et demande à chaque fournisseur de
Pq sonoffre pour traiterq. Les fournisseurs calculent leurs offres en fonction de leurs préférences et de
leur charge actuelle. Une fois cesoffresobtenues le médiateur alloue la tâche aux fournisseurs ayant fait
l’ offre la plus basse.

Résultats expérimentaux

Si les participants sont autonomes, ils peuvent quitter le système parmécontentementou famine.
Néanmoins, le choix du seuil de départ est très subjectif et peut dépendre de nombreux facteurs. Nous
supposons que les participants dans le système supportent des seuils élevés demécontentementet de
famine. Un client décide de quitter le système parmécontentementsi sasatisfactionest inférieure à0.5,
c’est-à-dire si les allocations ne lui sont pas favorables.D’autre part, un fournisseur décide de quitter

Extended Abstract in French XXXVII

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

S
a

ti
s
fa

c
ti
o

n
 M

e
a

n
, µ
(δ

s,
 P

)

Temps (secondes)

Libra
Mariposa

Extended Abstract in French XXXIX

 0

 20

 40

 60

 80

 100

10080604020

P
o

u
rc

e
n

ta
g

e

Charge de travail

Libra
Mariposa

Capacity based

Figure 7 – Départs des clients avec une charge exprimée en fonction des capacités initiales du système ;
agents autorisés à quitter le système.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

e
s
)

Charge de travail

Libra
Mariposa

Capacity based

Figure 8 – Temps de réponse avec une charge exprimée en fonction des capacités initiales du système ;
agents autorisés à quitter le système.

nous voyons queMariposa-likea des problèmes pour garantir un bon équilibre des tâches tandis SbQA
a des performances proches à celles deCapacity based. On peut expliquer cela par le fait que les
fournisseurstrès-capableset très-intéressantsmonopolisent les tâches dansMariposa-like, créant ainsi
des famines chez les autres fournisseurs. Par ailleurs, nous avons pu voir pendant nos expérimentations
queSbQA a quelques difficultés à répartir la charge entre les fournisseurs, en particulier lorsque la charge
totale du système est inférieure à40%. En revanche, quand la charge de travail augmenteSbQA devient
plus efficace car les fournisseurs commencent à s’intéresser à leur charge.

La figure 6 montre le nombre de départs chez les fournisseurs avec les trois méthodes. Nous voyons
queCapacity based et Mariposa-likeperdent presque tous les fournisseurs pour toutes les charges de
travail, sauf quand elle est en dessous du30%, tandis queSbQA perd uniquement28% de fournisseurs

XL Extended Abstract in French

SbQA Capacity based

low med high total low med high total
C.I.P. 1% 5% 13% 5% 16% 31%

D P.A. 2% 9% 8% 19% 3% 34% 15% 52%
P.C. 13% 6% 0% 13% 30% 9%

low med high total low med high total
C.I.P. 0% 0% 4% 0% 0% 0%

S P.A. 4% 0% 0% 4% 0% 0% 0% 0%
P.C. 2% 2% 0% 0% 0% 0%

low med high total low med high total
C.I.P. 0% 0% 6% 0% 0% 38%

O P.A. 0% 3% 3% 6% 3% 8% 27% 38%
P.C. 1% 4% 1% 0% 18% 20%

Table 3 – Reasons of the provider’s departures for a workloadof 80% of the total system capacity.

SbQA Mariposa-like
low med high total low med high total

C.I.P. 1% 5% 13% 1% 7% 11%
D P.A. 2% 9% 8% 19% 0% 15% 4% 19%

P.C. 13% 6% 0% 5% 12% 2%
low med high total low med high total

C.I.P. 0% 0% 4% 0% 2% 6%
S P.A. 4% 0% 0% 4% 3% 3% 2% 8%

P.C. 2% 2% 0% 3% 5% 0%
low med high total low med high total

C.I.P. 0% 0% 6% 0% 0% 65%
O P.A. 0% 3% 3% 6% 1% 15% 49% 65%

P.C. 1% 4% 1% 0% 30% 35%

Table 4 – Reasons of the provider’s departures for a workloadof 80% of the total system capacity.

en moyenne. La figure 7 illustre les départs de clients.Capacity based et Mariposa-likeperdent en
moyenne38% et 25% de clients respectivement. Sur cette expérimentation,SbQA montre encore une
fois son avantage en ne perdant aucun client.

Finalement, nous évaluons l’impact des départs des participants sur le temps de réponse (figure 8).
Le temps de réponse est défini comme le temps écoulé entre l’émission d’une tâche et la réponse. Nous
pouvons voir ici queSbQA assure de meilleurs temps de réponse. Nous constatons aussiqueCapa-
city based est meilleur queMariposa-likecar, comme vu précédemment,Mariposa-likesurcharge les
fournisseurs qui sont les plus capables et intéressants.

Tous ces résultats démontrent la grande adaptabilité deSbQA aux attentes des participants, ce qui
fait queSbQA est fortement approprié aux environnements autonomes.

Extended Abstract in French XLI

SbQA Capacity based

low med high total low med high total
C.I.P. 1% 5% 13% 5% 16% 31%

D P.A. 2% 9% 8% 19% 3% 34% 15% 52%
P.C. 13% 6% 0% 13% 30% 9%

low med high total low med high total
C.I.P. 0% 0% 4% 0% 0% 0%

S P.A. 4% 0% 0% 4% 0% 0% 0% 0%
P.C. 2% 2% 0% 0% 0% 0%

low med high total low med high total
C.I.P. 0% 0% 6% 0% 0% 38%

O P.A. 0% 3% 3% 6% 3% 8% 27% 38%
P.C. 1% 4% 1% 0% 18% 20%

Table 5 – Reasons of the provider’s departures for a workloadof 80% of the total system capacity.

Discussion

Dans nos expérimentations, nous avons vu que les fournisseurs quittent le système parmécontente-
mentdansCapacity based et parfaminedansMariposa-like. Les fournisseurs qui décident de quitter
le système avec ces deux méthodes sont pour la plupart ceux qui sont les plus capables et qui sont les
plus demandés par les clients. AvecSbQA, des fournisseurs quittent aussi le système, ceci principale-
ment pour des raisons demécontentementqui s’expliquent dans la très grande majorité des cas par des
problèmes d’adéquation : ces fournisseurs sont considéréscomme étant peu intéressants par les clients
ou comme ayant de trop faibles capacités. D’autre part nous avons vu que les départs de clients ont
aussi une certaine importance. En effet, si le nombre de tâches diminue, les fournisseurs ont moins de
possibilités d’être satisfaits.

Conclusion

Nous avons considéré le problème de l’allocation de tâches dans des environnements ouverts oû les
participants ont des attentes particulières. Dans ce cadre, prendre en compte lesintentionsdes participants
de façon à ce que leur attentes soient satisfaites est crucial pour le bon fonctionnement d’un système.
Dans cette thèse, nous avons proposé une méthode d’allocation de tâches (SbQA) tout en considérant et
satisfaisant lesintentionsdes participants.

SbQA diffère fortement des travaux précédents. Il arbitre entreles différents participants en se basant
sur leurssatisfactions. Il favorise ainsi le point de vue des uns ou des autres, points de vue qui sont
exprimés par lesintentions. Cela a entre autre pour conséquence de réduire les problèmes defaminechez
les fournisseurs.

Nous avons comparéSbQA avec deux méthodes importantes (Capacity based et Mariposa-like) et
avons montré par expérimentation queSbQA présente de nombreux avantages. Les résultats prouvent
queCapacity based et Mariposa-likeperdent plus de20% de clients alors qu’aucun client ne quitte le
système avecSbQA.

Dans l’approche exposée dans cette thèse, un médiateur quantifie la pertinence d’allouer une tâche â
tel ou tel fournisseur en considérant l’intentiondu client et du fournisseur. Il favorise le moins satisfait des
deux. D’autres solutions sont envisageables. Par exemple,il peut être naturel pour un médiateur de faire

XLII Extended Abstract in French

en sorte qu’un fournisseur (resp. un client) soit satisfaitdu travail de médiation. Cela nécessite l’introduc-
tion d’une notion de satisfaction par rapport à la médiation, qui est différente de la satisfaction présentée
ici. Quel que soit le contexte, un fournisseur recevantn tâches aura la même satisfaction. En revanche,
sa satisfaction par rapport à la médiation sera d’autant plus forte que le contexte lui sera défavorable.
Autrement dit, une technique de médiation n’a aucun mérite àsatisfaire un participant lorsque ses désirs
sont en adéquation avec son environnement. Nous pensons intégrer cette notion dans une version future.

Lors d’expérimentations5 faisant intervenir plusieurs médiateurs, nous avons constaté, sous certaines
conditions, des phénomènes d’auto-organisation : clientset fournisseurs partageant les mêmes intérêts
se regroupent autour du même médiateur. Nous souhaitons explorer ce phénomène que nous n’avons pas
observé avec les autres approches.

Enfin, le problème adressé dans cette thèse comme celui adressé par les approches économiques est
de réguler un système tout en satisfaisant les participants. Nous comptons donc développer une version
économique deSbQA pour analyser en détail les apports spécifiques de l’économie.

5Les expérimentations en question ne sont pas celles présentées dans cette thèse.

Introduction

Over the last few years, a tremendous number of information sites, providing a variety of content and
services, have emerged on the Internet to form large-scale distributed information systems. This is mainly
fostered by the current requirements on scalability and availability of information. Information sites (the
providers) are heterogeneous in terms of capacity and data.Heterogeneous capacity means that some
providers are more powerful than others and can treat more queries per time unit. Data heterogeneity
means that providers provide different data and thus produce different results for a same query. Queries
are also heterogeneous, that is, some queries consume more providers’ resources than others. Moreover,
in these kind of large-scale systems, consumers and providers (which we refer to participants) are usually
autonomous in the sense that they are free to leave the mediator at any time and do not depend on anyone
to do so. Besides, in these environments, participants usually have special interests towards queries. In
such environments, it is well known that query allocation iscrucial for the well operation of the system
because of participants’ autonomy and heterogeneity.

In this thesis, we focus on query allocation in the context oflarge-scale distributed information sys-
tems with a mediator that allows consumers to access providers (information sites) through queries [Mil02,
ÖV99, RS97]. Providers declare theircapabilitiesfor performing queries to the mediator and consumers
pose queries to the mediator. Then, the main function of the mediator is to allocate each incoming query
to a provider among those that can deal with each query (i.e.,among the set of relevant providers). A
simple solution is that the mediator returns the set of relevant providers for each incoming query and
let the consumers choice the providers they prefer. Severalmatchmaking solutions have been proposed
in the literature to do so [KH95, LH04, PKPS02]. Nevertheless, given the great number and diversity
of providers (services), the selection of the right provider becomes a hard task for consumers. This is
why, in addition to find the set of relevant providers, a mediator must be able to narrow down the set
of relevant providers, or to directly allocate the query to some of them, according to a given criteria.
Much work in this context has focused on distributing the query load among the providers in a way
that maximizes overall performance (typically high throughput and short response times), i.e.query load
balancing(qlb) [ABKU99, GBGM04, MTS90, RM95, SKS92].

Nevertheless, participants usually have certain expectations with respect to the mediator, which are
not only performance-related (see Example 1). Such expectations mainly reflect theirpreferencesto al-
locate and perform queries in the long run. Consumers’ preferences may represent e.g. their interests to-
wards providers (based on reputation for example) or their interests in quality of service. Providers’ pref-
erence may represent, for example, their topics of interests, relationships with other participants, or strate-
gies. These participants’ preferences (expectations) areclearly illustrated by Google AdWords [goo],
which proposes relevant commercial providers to consumersand relevant consumers to commercial
providers according to some keywords of their interest.

Example 1 (Participants’ Preferences).
Consider a provider that represents a courier company. During the promotion of its new international
shipping service, the provider is more interested in treating queries related to international shipments
rather than national ones. Once the advertising campaign isover, the provider’s preferences may change.
Similarly, consumers expect the system to provide them withinformation that best fits their preferences.

In this context, because of participants’ autonomy,dissatisfactionmay lead participants to leave the

1

2 Introduction

Figure 9 – Overview of Query Allocation in Distributed Systems with Autonomous Participants.

mediator, which in turn may cause some loss of system capacity to perform queries as well as some loss
of system functionalities. If a participant’s departure isnot justified, a domino effect could lead all partic-
ipants to quit the mediator. In the case of a single mediator,leaving the mediator is equivalent to depart
from the system, but it could be that, in a multi-mediator system, a participant registers to another com-
peting mediator. Thus, it is quite important to have a query allocation strategy that balances queries such
that participants are satisfied. Participant’ssatisfactionmeans that the query allocation method meets
its expectations. To make this possible, a natural solutioncould be to take the participants’ preferences
into consideration when allocating queries. However, preferences are usually considered as private data
by participants (e.g. in an e-commerce scenario, enterprises do not reveal their business strategies). In
addition, preferences are quite static data, i.e. long-term, while the desire of a participant to allocate and
perform queries may depend not only on its preferences, but also on its context and thus is more dy-
namic, i.e. short-term. For instance, in Example 1, even if the provider (the courier company) prefers to
perform queries related to international shipments duringits advertising campaign, it is possible that, at
some time, it may not desire to perform such queries because of other local reasons, e.g. byoverload.
Thus, participants are required to express their desire to allocate and perform queries via theirintention,
which may stem e.g. from combining their preferences and other local consideration such asload and
reputation (see Figure 9).

Considerable effort has focused on the semantic description of provider so that those providers having
the highest semantic score be selected [MSZ01, PSK03]. However, this does not always fit the partici-
pants’ intentions. Economic solutions [FNSY96] can claim to take participants’ intentions into account
by integrating them into autility function[Kre90], which is usually money-related. Moreover, unlikesev-
eral economical models [FNSY96, FYN88, SAL+96], queries must be always treated whenever possible
(if there exits at least one provider to perform it) even if providers do not desire to deal with them. This
is because consumers that do not get results may become dissatisfied and thus simply leave the system,
which may hurt providers as well. Thus, adequate techniquesfor query allocation (or dynamic provider
selection) are still needed.

In such distributed information systems, query allocationis a challenge for several reasons.
• There is no definition of satisfaction to reflect how well the system meets the participants’ inten-

tions in the long-run.
• Participants’ expectations may be contradictory among them as well as with respect to the system

performance.
• The query allocation process should be adaptable to applications and self-adaptable to changes in

the participants’ expectations because such expectationsusually change in the course of time.
• Participants’ departures may have consequences on the functionalities provided by the system.

Introduction 3

The providers’ departure may mean the loss of important system capabilities and the consumers’
departure is a loss of queries for providers.

To the best of our knowledge, this problem has never been addressed before in its whole generality.
Thus, our main objective in this thesis is to provide a complete solution to this problem.

Motivation

Let us illustrate distributed information systems with autonomous participants by means of a general
e-commerceexample. Consider a public e-marketplace where thousands of companies can share infor-
mation and do business (such as ebay-business [eba] and freightquote [fre]). Here, business is understood
in a very general sense, not necessarily involving money. Each site, which represents a company, pre-
serves itspreferencesto allocate and perform queries. To scale up and be attractive over time, in [FFS98]
it was stated that an e-marketplace should :
• protect, in the long-run, the participants’intentionsfor doing business,
• allow consumers to quickly obtain results, and
• allocate queries so that providers should have the same possibilities for doing business, i.e. to avoid

query starvation.
Consider a simple scenario where a company (eWine), which desires to ship wine from France to

USA, requests the mediator for companies providing international shipping services, such as freightquote [fre].
Here, a query is a call for proposals that providers have to answer in order to provide their services. Sup-
pose thateWine, to make its final choice, desires to receive proposals from the two best providers
that meet itsintentions. Similarly, providers desire to participate only in those negotiations that involve
queries meeting theirintentions. The entire treatment of this scenario encompasses different aspects.

First, query planning processes may be required. This problem is addressed in different ways in the
literature [ÖV99]. Thus, we do not consider this problem in this thesis and we can indifferently assume
that it is done by the consumer or any other site.

Second, it needs to identify the sites that are able to deal with eWine’s query, i.e. to find the relevant
providers. There is a large body of work on matchmaking, see e.g. [KH95, LH04], so we do not focus on
this problem in this thesis.

Third, the mediator should obtaineWine’s intentionsto deal with such providers and the providers’
intentionto deal witheWine’s query, which can be done following the architecture proposed in [LCLV07].
For simplicity, we assume in this example that theintentionsvalues are binary. Assume that the resulting
list contains, for simplicity, only5 providers :p1, . . . ,p5. Table 6 shows these providers with theirinten-
tion to perform the query andeWine’s intentionto deal with each of them. To better illustrate the query
allocation problem in these environments, we also show in Table 6 the providers’available capacity.
However, it is not always possible to know this information since providers may consider it as private.

Suppose, then, thatp5 is overloaded, i.e. has no more resources for doing business, and thatp2 and
p4 do not intend to deal witheWine’s query (notice that this does not means they can refuse it) because
e.g.p2 is more interested in its new shipping service to the Asian continent (such as in Example 1) andp3

has bad experience witheWine. Also, assume thateWine does not intend to deal withp1 nor p3 since
it does not trust them e.g. because of their reputation or itspast experiences.

Finally, the mediator needs to select the two most availableproviders, such thateWine’s and providers’
intentionsbe respected. To the best of our knowledge, no existing e-marketplace is able to do so. In fact,
currentqlb methods, whose aim is to select the most available providers, also fail in such scenarios since
neitherp2 intends to deal with the query norp1 is of eWine’s interest. Thus, allocating the query to

4 Introduction

Providers Provider’s Intention Consumer’s Intention Available Capacity
p1 Yes No 0.85
p2 No Yes 0.57
p3 Yes No 0.22
p4 No Yes 0.15
p5 Yes Yes 0

Table 6 – Providers foreWine’s query.

these providers dissatisfiesp2 andeWine in such a query allocation. And, whether this occurs several
times may cause their departure from the system. The only satisfactory option, regarding the participants’
intention, is p5. But, allocating the query top5 may considerably hurt response time by overloading it
and the mediator may desire to avoid such phenomena. Again, whether this occurs several times may
also penalize consumers with long response times, which maycause their departure from the system.
Furthermore,eWine desires to receive two different proposals.

So,what should the mediator do in the above scenario ? Should it consider the consumer’s inten-
tion ? the providers’ intention ? the providers’ available capacity ? all three ? Which importance should
the mediator pay to each of them ?And, how can one know that the mediator is meeting, or not, the
participants expectations in the long-run ?In this thesis, we focus on given an answer to these questions
so that one can evaluate or design query allocation methods for autonomous environments, i.e. systems
with autonomous participants.

Contributions

We carried out the work presented in this thesis in the context of Atlas Peer-to-Peer Architecture
(APPA) [AM07] and of several joint projects including : the Grid4All European STREP project [gri], the
ANR Massive Data Projects MDP2P [mdp], and Respire project [res]. Generally speaking, the objective
of this thesis is to provide a complete query allocation framework for distributed information systems
with autonomous participants. Especially, we focus on characterizing participants’ intentions, allocating
queries by considering participants’ intentions, scalingup query allocation, and creating backup queries
to deal with participants’ failures. In particular, our main contributions are the following.

Our first set of contributions is the following,
• We propose a new model to characterize the participants’ intentions in the long-run, which allows

evaluating a system from a satisfaction point of view. Also,we formally define the utilization of
a provider and make precise the query starvation notion in distributed information systems with
autonomous providers. A particularity of this model is thatit allows comparing query allocation
methods having different approaches to regulate the system, such as the economical andqlb meth-
ods. Moreover, this model facilitates the design and evaluation of new query allocation methods
for distributed systems that are confronted to autonomous participants (Section 1.3).

• We finally define the properties that allow evaluating the quality of query allocation methods and
propose measures to do so (Section 1.4).

Then, our second main contribution is a query allocation framework that considers participants’
intentions besidesqlb. In particular,
• We proposeSatisfaction-based Query Load Balancing(SbQA, in short), a flexible framework with

self-adaptingalgorithms to allocate queries while considering bothqlband participants’ intentions.

Introduction 5

Salient features ofSbQA are that :
– it affords consumers the flexibility to trade their preferences for the providers’ reputation (Sec-

tion 2.2),
– it affords providers the flexibility to trade their preferences for their utilization (Section 2.3),
– it allows a mediator to trade consumers’ intentions for providers’ intentions (Section 2.4.1), and
– it affords the mediator the flexibility to adapt the query allocation process to the application by

varying several parameters (Section 2.4.2).
• We demonstrate, through experimental validation, thatSbQA significantly outperforms baseline

methods, theCapacity based and Mariposa-like methods, and yields significant performance
benefits. We demonstrate the self-adaptability ofSbQA to participants’ expectations and its adapt-
ability to different kinds of application. We also show thatapplying the proposed measures over
the provided model allows the prediction of possible departures of participants (Section 2.6).

After, we aim at scaling query allocation up to several mediators while ensuring as good system
performance as in systems with a single mediator. Our third main set of contributions is the following.

• We discuss the challenges of using virtual money as a means ofregulation in the query allocation
process and make precise how the virtual money circulates within the system.

• We proposeEconomic Satisfaction-based Query Allocationmethod ($bQA, for short). Generally
speaking,$bQA is SbQA using virtual money. In particular,
– We define a way in which a provider computes its bid by considering its preferences, its sat-

isfaction, its current utilization, and its current virtual money balance. Also, we propose three
strategies that allows a provider to bid for queries in the presence of several mediators.

– We define how a mediator allocates queries by considering both consumers’ intentions and
providers’ bids. And, we define how a mediator should invoiceproviders.

– We state the communication cost of$bQA and demonstrate that its additional cost with respect
to SbQA is not high.

• We analytically demonstrate that$bQA allows scaling up to several mediators with no additional
network cost with respect to a single mediator.

• Finally, from a methodological point of view, it is important to compare three microeconomic
methods (included$bQA) with a non-microeconomic method using satisfaction as a “money in-
dependent” measure.

Finally, the fourth main contribution is the study of an interesting variation of the fault-tolerance
problem that captures the participants’ satisfaction. In particular,

• We propose a satisfaction model that considers participants’ failures and define the expected sat-
isfaction of participants concerning the allocation of a given query, which we call the the global
satisfaction. The global satisfaction definition takes into consideration participants’ failure proba-
bility as well as their intentions.

• We proposeSbQR (for Satisfaction-based Query Replication), a query replication technique to
compute the backup queries rate in accordance to participants’ satisfaction.

• We experimentally demonstrate thatSbQR better performs, from a satisfaction and performance
point of view, than replicating all incoming query. We also demonstrate that by replicating each
incoming query the system suffer serious problems of performance for high workloads, but worse
it loses more query results than when one does not apply a fault-tolerant technique.

6 Introduction

Thesis Outline

This thesis is structured as follows. We propose in Chapter 1a model that characterizes participants’
intentions in the long-run, which allows us, among others, to know if a mediator is meeting the par-
ticipants’ intentions. In Chapter 2, we propose a complete,flexible, and self-adapting query allocation
framework that considers bothqlb and participants’ intentions. The proposed framework can be used
in many environments since it can be adapted to applications. We propose in Chapter 3 a query alloca-
tion method that allows handling several mediators while ensuring both good system performance and
participants’ satisfaction. In Chapter 4, we propose a non systematic query replication method to deal
with participants’ failures in distributed information systems with autonomous participants. Finally, we
conclude this thesis and discuss future directions of research.

CHAPTER1
Participants

Characterization and
Measures

As said in the introduction of this thesis, we consider open distributed information systems where
participants (consumers and providers) are free to join andleave the mediator at will. Entrance may be
motivated by some expected benefits while exit may result from disappointment, which is in general due
to dissatisfaction. In this context, dissatisfaction means a degree of penaltyto participants’ expectations.
This is why it is crucial, to the good operation of the system,to preserve the most possible diversity at
both levels, to avoid having participants leave the system.However, to the best of our knowledge, there
is no work that characterizes how well a mediator meets the participants’ intentions in the long-run.
Economical models considerutility [Kre90, MCWG95], which may be related tosatisfactionbut does
not exactly fit, andindividual rationality[San99], which is not a long-run notion. Thus, the characterizing
properties must be defined in a new model, so that one can evaluate in the long-run if a mediator isfair
or not with respect to participants. Therefore, in this chapter, our goal is to propose a model that defines
such long-run notions of participants and that allows us to know if a mediator is meeting the participants’
expectations. The content of this chapter is based on our material published in [QRLV07b, QRLV07c].
Our main contributions are the following :

• We propose a new model to characterize the participants’ intentions in the long-run, which allows
evaluating a system from a satisfaction point of view. In this model, we formally define the query
starvation notion in distributed information systems withautonomous providers. Also, we define
a measure to evaluate the way in which a query allocation method performs from a participants’
satisfaction point of view. A particularity of this model isthat it allows comparing query allocation
methods having different approaches to regulate the system, such as the economical andqlb meth-
ods. Moreover, this model facilitates the design and evaluation of new query allocation methods
for distributed systems that are confronted to autonomous participants.

• We finally define the properties that allow evaluating the quality of query allocation methods and
propose measures to do so.

This chapter is structured as follows. We define the problem we address in Section 1.1. We present in
Section 1.2 a traditional characterization of providers. In Section 1.3, we propose a model to characterize
participants’ intentions in the long-run. In Section 1.4, we define some measures that allow the evaluation
of the system performance. Then, we present in Section 1.5 related work. Finally, we conclude this
chapter in Section 1.6.

7

8 CHAPITRE 1 — Participants Characterization and Measures

1.1 Problem Statement

The fact that queries and resources come from autonomous participants requires special attention.
One obvious consequence is that participants are not homogeneous. The heterogeneity may be with
respect to capacities, but a new heterogeneity notion comesfrom the fact that participants usually have
different goals. For example, two participants from the same organization may have different objectives
and even contradictory. Thus, the main concern of a system isto satisfy participants when allocating them
queries. The common quantitative considerations (e.g. response time and throughput) for query allocation
are no longer enough to evaluate this kind of systems. The objectives and relationships of participants
are as much important as these common quantitative considerations since dissatisfied participants may
use their autonomy to leave the system. This possibility is also part of the specificity of Internet-based
systems where computational resources are not captive as ina cluster of PCs. In this chapter, we aim
at proposing a model that characterizes participants’ intentions, in particular, we aim at mesuring the
satisfactionof participants and theefficiencyof query allocation methods to satisfy providers.

Formally, we wish to modelize a distributed system that consists of a setC of consumers and a set
P of providers. LetPq denote the set of providers that are able to perform a queryq, whereNq = ||Pq||
andPq ⊆ P . A consumerc ∈ C is free to express its intention for allocating its queryq to each provider

p ∈ Pq, which are stored in vector
−→
CIq. Similarly, a providerp ∈ Pq is free to express its intention for

performing a queryq. A providerp ∈ P tracks its expressed intentions for performing thek last proposed
queries (allocated to it or not) into vector

−−→
PPIp. We denote thek last proposed queries top by setPQk

p.
The expressed intentions of a participant in thek last interactions with the system denote somehow its
expectations. The values of participants’ intentions are between the interval[−1..1]. A positive value
means that a provider (resp. a consumer) intends to perform (allocate) a query, while a negative value
means that a provider (a consumer) does not intend to perform(allocate) a query. It is worth remembering
that this does not means it can refuse to perform (resp. allocate) the query. A null value, i.e. a0 value,
denotes a participant’s indifference.

Intuitively, a mediator satisfies participants if it meets their intentions. Nevertheless, the problem is
to which extent the mediator should meet these intentions. An extreme point of view is that, at each inter-
action, i.e. query allocation, all participants’ intentions are met. This is not always possible, in particular
when no provider wants to perform a query and if we want each query to be treated. A more realistic
view of satisfaction is that each participant benefits in the“long-run”. Thus, in this chapater, we restrict
ourselves to the following problem.

Problem Statement Develop a model that characterizes, in the long-run, the participants’ intentions
for allocating and performing queries so that one can evaluate if the system is meeting, or not, their
intentions when it allocates them queries.

1.2 A Usual Characterization of Providers

Generally, providers are characterized according to theircapacities to perform queries by defin-
ing the providers’ load notion. Providers’ load is usually defined in terms of number of queries that
providers have in their run queue [ABKU99], but this approach assumes that queries and providers are
homogeneous. That is, it assumes that providers have the same capacities to perform queries and that
queries require the same computational resources to be treated by providers. Recently,Roussopoulos
and Baker[RB06] defines providers’ load in terms of their maximum capacity. The maximum capacity
is a contract each provider advertises indicating the maximum number of queries a provider claims to

CHAPITRE 1 — Participants Characterization and Measures 9

handle per time unit. The advantage of this proposal is that it is not affected by changes in the workload.
However, this approach inherently assume that queries are homogeneous.

Unlike above approaches, we consider providers’ and queries’ heterogeneity by defining providers’
load in terms of their current utilization. This is also known as thecapacity-basedapproach. We formalize
such a heterogeneity as follows. A provider has a finitecapacityto perform queries, denoted by function
cap whose values are greater than zero. The capacity of a provider denotes the number of computational
units that it can have. Similarly, a query has acost, cost > 0, that represents the computational units
that the query consumes at a given provider. LetQp denote the set of queries that have been allocated
to a providerp and that it has not already treated, i.e. the pending queriesat p. The load of a providerp
is defined as the cost sum of all queries inQp, formally

∑
q∈Qp

costp(q). Thus, generally speaking, the
utilizationof a provider,U, denotes its load with respect to its capacity. Formally, wedefine the utilization
of p at timet as the computational units that setQp consumes atp (see Definition 12).

Definition 12. Provider’s Utilization

Ut(p) =

∑

q∈Qp

costp(q)

cap(p)

The provider’s utilization values are in the interval[0..∞] because its load theoretically increases up
to∞. We say that a providerp is overutilizedat timet if the cost sum of all queries inQp crosses its own
capacitycap(p), i.e. if Ut(p) > 1.

1.3 Satisfaction Model

In this section, we go further in the characterization of a participant. We are interested in two more
characteristics of participants that show how they perceive the system in which they interact :adequation
andsatisfaction. Such a characterization needs to use the memory of participants. While a consumerc ∈
C tracks itsk last issued queries in setIQk

c , recall that a providerp ∈ P tracks thek last proposed queries
to it in setPQk

p. It is worth noting that, because of autonomy, preserving the participants’ intentions is
quite important so that they stay in the system. At first glance, the system should satisfy participants in
each interaction with them. However, this is simply not possible in reality, considering that a query is
generally not allocated to all relevant providers. Furthermore, it is not because a single query allocation
penalizes a participant’s intention that it decides to leave the system. A participant generally considers
the last queries to measure its happiness in the system and toevaluate if it should leave the system. A
way to achieve this is to make a regular assessment over all their past interactions with the system, but
participants have a limited memory capacity. Thus, they regularly assess only theirk last interactions with
the system. This is why we define the characteristics of participants over thek last interactions. Clearly,
thek value may be different on each participant depending on its memory capacity. For simplicity, we
assume they all use the same value ofk. Also, we are interested in a third characteristic of providers :
the intention-based profit. The intention-based profit allows a provider to evaluate ifit is getting enough
interesting queries to survive in the system. Besides thesethree characteristics (adequation, satisfaction,
profit), we are interested in two characteristics of a query allocation mehtod : theAllocation Efficiency
with respect to a Consumerand theAllocation Efficiency with respect to a Provider. Notice that these
characteristics are only observable by the mediator.

In the following, we define above participants’ characteristics in Sections 1.3.1, 1.3.2 and 1.3.3, and
the query allocation method’s characteristics in Section 1.3.4. Then, we conclude this section by given

10 CHAPITRE 1 — Participants Characterization and Measures

some final remarks of the proposed model. Before presenting this, let us make two general remarks. First,
the participant’s characteristics may evolve with time, but for the sake of simplicity we do not introduce
time in our notations. Second, the following presentation can be expressed with respect to participants’
intentions (context-dependent and more dynamic data) or with respect to their preferences (context-
independent and quite static data). However, applying the following characterization to intentions and
preferences yields to different results, because the intentions of participants consider their context (such
as their strategy and utilization) and their preferences donot. While in almost all information systems
preferences tend to be private information, intentions tend to be public. Since we only intend to observe
the system behavior, we develop the following definitions for intentions.

1.3.1 Participants’ Adequation

From a general point of view, two kinds of adequation could beconsidered :
• The system adequation to a participant,δsa, e.g. a system where a provider (respectively consumer)

cannot find any query (resp. provider) it desires is considered inadequate to such a participant.
• The participant’s adequation to the system,δa, e.g. a provider (respectively consumer) that no

consumer wants to deal with (resp. issuing queries that no provider intends to treat) is considered
inadequate to the system.

While the first adequation notion only considers the information that a participant can obtain from the
system, the adequation of a participant allows it to evaluate if other participants are in general interested
in it. Let us illustrate both adequations via an example. Consider the case of the courier company of
the Example 1, which is interested in its new international shipping service. A market place may be
adequate to such a courier company because many consumers are interested in sending products abroad.
But the courier company may be not adequate to the market place because its services are expensive and
hence many consumers do not want to deal with it. Both adequation notions are needed to evaluate if it
is possible for a participant to reach its goals in the system. A participant cannot know what the other
participants think about it, except if it has a global knowledge of the system. Therefore, we consider the
participant’s adequation to the system as a global characteristic.

1.3.1.1 Consumer

The two kinds of adequation are intuitively useful to answerthe following questions :
• “How well do the intentions of a consumer correspond to the providers that were able to deal with

its last queries ?” –System Adequation w.r.t. Consumer– , and
• “How well do the last queries of a consumer correspond to the intentions of the providers that were

able to deal with ?” –Consumer Adequation.
Let us first introduce the system’s adequation concerning a consumer. The systemadequationto a

consumer characterizes the perception that the consumer has from the system. For example, in our moti-
vating example given in the introduction of this document,eWine considers the mediator as interesting
(i.e. adequate), in such a query allocation, because it advertises providers thateWine considers inter-
esting :p2, p4, andp5. Formally, we define the system adequation regarding a consumer c ∈ C and
concerning a queryq, denoted byδsa(c, q), as the average ofc’s intentions towards setPq (Equation 1.1).
Its values are in the interval[0..1].

δsa(c, q) =
1

Nq
·
∑

p∈Pq

((−→
CIq[p] + 1

)/
2
)

(1.1)

CHAPITRE 1 — Participants Characterization and Measures 11

We thus define the system adequation to a consumer as the average over the adequation values con-
cerning itsk last queries (see Definition 13). Recall that setIQk

c denotes thek last queries issued by
consumerc. Its values are between0 and1, and the closer the value to1, the more a consumer considers
the system as adequate.

Definition 13. System Adequation w.r.t. a Consumer

δsa(c) =
1

||IQk
c ||
·
∑

q∈IQk
c

δsa(c, q)

Conversely to Definition 13 that evaluates how much a consumer is interested in providers that can
deal with its queries, the consumer’s adequation to the system evaluates how much providers are inter-
ested in the queries of this consumer. Going back to our motivating example, we can say thateWine is
adequate to the system regarding queryq since great part of providers desire to treat its query. According
to this intuition, the adequation of a consumerc to the system concerning its interaction with the system
for allocating its queryq, notedδa(c, q), is defined as the average of the intentions shown by setPq to-

wards its queryq (Equation 1.2). Its values are between0 and1. Vector
−→
PIq denotes thePq ’s intentions

to performq.

δa(c, q) =
1

Nq
·
∑

p∈Pq

((−→
PIq[p] + 1

)/
2
)

(1.2)

Thus, we define the consumer’s adequation to the system as theaverage over theδa values obtained
in its k last queries. Its values are between0 and1. The closer the value to1, the greater theadequation
of a consumer to the system.

Definition 14. Consumer Adequation

δa(c) =
1

||IQk
c ||
·
∑

q∈IQk
c

δa(c, q)

1.3.1.2 Provider

The two kinds of adequation concerning a provider are usefulto answer the following questions :
• “How well do the intentions of a provider correspond to the last queries that the mediator has

proposed to it ?” –System Adequation w.r.t. Provider– , and
• “How well does a provider correspond to the consumer’s intentions ?” –Provider Adequation.
As for a previous section, in this section, we start by introducing the system adequation concerning a

provider and then we define the provider’s adequation. The system adequation w.r.t. a provider evaluates
if the system corresponds to the intentions of a provider. Intuitively, this corresponds to a market survey,
that is, what any enterprise does for evaluate the market where it desires to launch a product. Considering
our motivating example, one can consider the mediator as adequate top1, p3, andp5, becauseeWine’s
query is of their interest. However, it is difficult to conclude by considering only one query. An average
over thek last interactions is more informative. Thus, we define the adequation of the system w.r.t. a
providerp ∈ P , δsa(p), as the average ofp’s shown intentions towards setPQk

p. Remember thatPQk
p is

the set ofk last proposed queries top.

12 CHAPITRE 1 — Participants Characterization and Measures

Definition 15. System Adequation w.r.t. a Provider

δsa(p) =

∣∣∣∣∣∣∣

1

||PQk
p||
·
∑

q∈PQk
p

((−−→
PPIp[q] + 1

)/
2
)

0 if PQk
p = ∅

The values that this adequation can take are in the interval[0..1]. The closer the value is to1, the
greater the adequation of the system to a provider is. Now, the adequation of a provider to the system
allows to evaluate if consumers are interested in interacting with it. To illustrate theProvider Adequation,
we use again our motivating example. One may considerp1 andp3 as inadequate to the system (with
regards to what they can perceive) sinceeWine does not want to deal with. Nevertheless, the most
important is to evaluate that interaction over setPQk

p of queries. So, we formally define the adequation
of a providerp ∈ P to the system over the lastk proposed queries as follows.

Definition 16. Provider Adequation

δa(p) =

∣∣∣∣∣∣∣

1

||PQk
p||
·
∑

q∈PQk
p

((−→
CIq[p] + 1

)/
2
)

0 if PQk
p = ∅

Its values are in the interval[0..1]. The closer the value to1, the greater the adequation of a provider
to the system.

1.3.2 Participants’ Satisfaction

This section is devoted to the characterization of the provider’s happiness with the things it is doing
in and receiving from the system. As for adequation, two kinds of satisfaction could be considered :
• The satisfaction of a participant with what it gets from the system,δs, e.g. a provider (respectively

consumer) that receives queries (resp. results from the providers) it does not want is not satisfied.
• The participant’s satisfaction with the job that the query allocation method does,δas, e.g. a provider

(respectively consumer) that performs queries (resp. thatgets providers) it does not want is not sat-
isfied with the query allocation method whether there exist queries (resp. providers) of its interests
that it does not get.

To illustrate both satisfactions, consider again the case of the courier company of the Example 1. This
courier company may be dissatisfied, in a market place, because consumers are rarely interested in doing
their shipments abroad and thus almost all queries it performs are requests for national shipments. Nev-
ertheless, it is possible that this courier company is satisfied with the query allocation method because all
the incoming queries requesting for international shipments are allocated to it. Both satisfaction notions
may have a deep impact on the system, because participants may decide whether to stay or to leave the
system based on them. While the first kind of satisfaction depends on the participants, the second one
may be the result of the query allocation method design. Before presenting these notions, let us say that
our satisfaction definitions do not directly consider either response times (for consumers) nor the number
of performed queries (for providers). Instead, it is up to a participant to consider such aspects, if it is
interested in, when computing their intentions.

1.3.2.1 Consumer

The characteristics we present here are useful to answer thefollowing questions :

CHAPITRE 1 — Participants Characterization and Measures 13

• “How far do the providers that have dealt with the last queries of a consumer meet its intentions ?”
– Consumer Satisfaction– , and

• “Does the query allocation method propose the best providers (regarding consumers’ intentions)
to a consumer ?” –Consumer Allocation Satisfaction.

Thesatisfactionof a consumer allows this consumer to evaluate if a mediator is allocating its queries
to the providers from which it desires to get results. To define the notion over itsk last issued queries,
we first define the satisfaction of a consumer concerning the allocation of a given query. The average of
intentions expressed by a consumer to the providers that performed its query is an intuitive technique to
define such a notion. Nevertheless, a simple average does nottake into account the fact that a consumer
may desire different results. Indeed, a consumer may desireto receive results fromn different providers.
Let us illustrate this using our motivating example. Assumethat the mediator allocateseWine’s query
only to p2, to whicheWine has an intention of1, but it was requiring two providers. A simple average
would not take this into account. This is why the following equation takes this point into account using
n instead of||P̂q||, whereP̂q denotes the set of providers that performedq.

δs(c, q) =
1

n
·
∑

p∈cPq

((−→
CIq[p] + 1

)/
2
)

(1.3)

In above equation, parametern stands for the number of required results by consumerc. Theδs(c, q) val-
ues are in the interval[0..1]. The satisfaction of a consumer is then defined as the averageover its obtained
satisfactions concerning itsk last queries. Its values are between0 and1. The closer the satisfaction to
1, the more the consumer is satisfied.

Definition 17. Consumer Satisfaction

δs(c) =
1

||IQk
c ||
·
∑

q∈IQk
c

δs(c, q)

Since this notion of satisfaction does not consider the context, it does not allow to evaluate the
efforts made by the query allocation method to satisfy a consumer. Let us illustrate this by means of our
motivating example. Assume thateWine has an intention of1, 0.9, and0.7 for allocating its query top2,
p4, andp5, respectively. Now, suppose that the mediator allocates the query top4. Such a query allocation
corresponds toeWine’s high intentions, soeWine is satisfied. However, there is still a provider to which
its intention is higher (p2). TheConsumer Allocation Satisfactionnotion, denoted byδas(c), allows to
evaluate how well the query allocation method works for a consumer. Its values are in the interval[0..∞].

Definition 18. Consumer Allocation Satisfaction

δas(c) =
1

||IQk
c ||
·
∑

q∈IQk
c

δs(c, q)

δsa(c, q)

If the obtained value is greater than1, the consumer can conclude that the query allocation method
acts to its favor. Conversely, if the value is smaller than1, the query allocation method dissatisfies the
consumer. Finally, a value equal to1 means that the query allocation method is neutral.

1.3.2.2 Provider

Intuitively, it is through the characteristics we present in this section tha a provider may answer the
following two questions :

14 CHAPITRE 1 — Participants Characterization and Measures

• “How well do the last queries that a provider has treated meetits intentions ?” –Provider Satisfac-
tion – , and

• “Does the query allocation method give the best queries (regarding providers’ intentions) to a
provider ?” –Provider Allocation Satisfaction.

Conversely to the adequation of a provider, its satisfaction only depends on the queries that it per-
forms and is independent of the other queries that have been proposed to it. Let us exemplify the satisfac-
tion notion using our motivating example. Suppose that in our example, the mediator allocateseWine’
query top2. In such a query allocation,p2 is not satisfied since it did not intend to perform the query.
Thus, one can say thatp2 may quit the system by dissatisfaction, but it is possible that it does not do so
because it receives in general interesting queries from thesystem. Indeed, what is more important for
a provider is to be globally satisfied with the queries it performs. LetSQk

p (with SQk
p ⊆ PQk

p) denote
the set of queries that providerp performed among the set of proposed queries (PQk

p). We define the
satisfaction of a providerp ∈ P as its intention average over setSQk

p (see Definition 19). Theδs(p)
values are between0 and1. The closer the value to1, the greater thesatisfactionof a provider.

Definition 19. Provider Satisfaction

δs(p) =

∣∣∣∣∣∣∣

1

||SQk
p||
·
∑

q∈SQk
p

((−−→
PPIp[q] + 1

)/
2
)

0 if SQk
p = ∅

The satisfaction notion evaluates whether the system is giving queries to a provider according to its
(those of the provider) intentions so that it fulfills its objectives. So, as for consumers, a provider is simply
not satisfied when it does not get what it expects. Here again,there are different reasons for this. First, it
may be because the system does not have interesting resources, i.e. the system has a low adequation w.r.t.
the provider. Second, the query allocation method may go against the provider’s intention. The latter
is measured by theallocation satisfactionnotion. In other words, by means of this notion a provider
can evaluate how well the query allocation method works for it. Conversely to a consumer that always
receives results at each interaction, a provider is not allocated all the proposed queries. So the formal
definition is a little different. We formally define the allocation satisfaction notion of a providerp ∈
P , denoted byδas(p), as the ratio of its satisfaction to the adequation that the system has towards it.
Resulting values are between0 and∞.

Definition 20. Provider Allocation Satisfaction

δas(p) =
δs(p)

δa(p)

If the allocation satisfaction of a providerp is greater than1, the query allocation method works well
for p (from the point of view ofp). If the value is smaller than1, the closer it is to zero, the morep
is dissatisfied with the query allocation method. Finally, avalue equal to1 means the query allocation
method is neutral.

1.3.3 Provider Intention-based Profit

We strongly believe that in addition to evenly distribute query load among provider at some timet, a
query allocation method should also be fair (regarding the providers’ utilization) in the long-run. That is,
with all other parameters being equal, providers should have, in average, almost the same utilization in

CHAPITRE 1 — Participants Characterization and Measures 15

some discrete time interval. Furthermore, we believe that an autonomous provider considers its intentions
towards the queries it performed in such a discrete time interval. This is clearly illustrated by an e-
commerce application where a provider may be in starvation,whatever the number of queries it received,
because it simply does not obtain much benefits from the queries it obtained in a given time interval.
This is why we make precise, in this section, whatquery starvationmeans in distributed information
systems with autonomus providers. To this end, we introducethe Intention-based Profit, π, definition.
The intention-based benefit of a provider denotes the sum of the intentions it expressed towards a set of
queries that it performed in a given discrete time interval.Let datep(q) denote the date in which a query
q has been performed by providerp, we formally define the Intention-based Profit of a provider in a time
interval [t′, t], with t′ < t, as follows.

Definition 21. Provider’s Intention-based Profit

πp(t
′, t) =

∑

q∈SQk
p

date(q)∈[t′,t]

−−→
PPIp[q]

Its values are in the interval of−∞ and+∞. Recall that setSQk
p denotes the set of queries that

providerp performed among the set ofk last queries that the mediator proposed to it. Then, letStp be
the minimal intention-based profit that a providerp can support, we say thatp is in starvation in a discrete
time interval[t′, t] if and only if,

starv(p) = πp(t
′, t) < Stp (1.4)

Notice that a consumer may also suffer from starvation : in those cases that it does not receive the
number of answers it requires, i.e. when̂Pq < n. We do not introduce a starvation notion for a consumer
because we already considered this in the definition of its satisfaction (see Definition 17).

1.3.4 Query Allocation Method Efficiency

Having formally defined the participants’ characteristics(adequation, satisfaction, and profit), we
proceed to introduce the efficiency notion, which is a characteristic of the query allocation method.
Intuitively, this characteristic allows to answer the following two questions :
• “How well does the query allocation method perform regarding a consumer ?” –Allocation Effi-

ciency w.r.t. a Consumer, and
• “How well does the query allocation method perform concerning a provider ?” –Allocation Effi-

ciency w.r.t. a Provider.

1.3.4.1 Consumer

Thequery allocation efficiency w.r.t. a consumerc ∈ C, δae(c), is then defined as in Definition 22.
Its values are between0 and∞. As for theallocation satisfactionnotion, thequery allocation efficiency
w.r.t. a consumerallows to evaluate the job done by the query allocation method for a consumer. But,
this evaluation is objective since it considers the consumer’s adequation to the system in addition to the
system’s adequation to the consumer.

Definition 22. Allocation Efficiency w.r.t. a Consumer

δae(c) =
1

||IQk
c ||
·
∑

q∈IQk
c

δs(c, q)

δsa(c, q) · δa(c, q)

16 CHAPITRE 1 — Participants Characterization and Measures

If the efficiency value of the query allocation regarding a consumer is greater than1, the query
allocation method does a good job for it. In contrast, if the value is smaller than1, the query allocation
method does not do a good job for it.

1.3.4.2 Provider

We then define the efficiency of the query allocation regarding a providerp ∈ P , denoted by the
functionδae(p), as the ratio of its satisfaction to the product of the adequation that the system has towards
it by its adequation. Its values are in[0..∞].

Definition 23. Allocation Efficiency w.r.t. a Provider

δae(p) =
δs(p)

δsa(p) · δa(p)

As for a consumer, if the efficiency value of the query allocation with regards to a provider is greater
than1, the query allocation method does a good job for it. If the value is smaller than1, the efficiency of
the query allocation is not good. And, in the case the value is1, the query allocation method is neutral to
the provider.

1.3.5 Discussion

The model we presented in this section can be applied with different purposes. First, to evaluate
how well a query allocation method satisfies the participants’ intentions. Second, to try to explain the
reasons of the participants’ departures from the system. For example, to know if they are leaving the
system because(i) they are dissatisfied with the queries they perform,(ii) they are dissatisfied with the
mediator’s job, or(iii) the system is simply inadequate to them. To do so, one has to apply the system
measures, which reflect a global behavior, over all conceptsof the model :adequation, satisfaction, and
allocation efficiency(see Section 1.4). Third, to design new self-adaptable query allocation methods that
meet the participants’ intentions in the long-run (see Chapter 2).

As noted earlier, even if the model can be applied to thepreferencesandintentionsof participants, the
interpretation of results is not the same. Thus, two different levels ofsatisfactionexist : at thepreferences’
andintentions’ level. On the one hand, thesatisfactionat thepreferences’ level reflects the happiness of
a participant with what it is doing in the system. On the otherhand, it is with thesatisfactionat the
intentions’ level that a participant evaluates if the mediator generally gives to it the queries it asks for.
Thus, a participant can know if it is properly computing itsintentionsby evaluating bothsatisfactions.
For instance, a participant can observe that its expressedintentionsdo not allow it to be satisfied at its
preferences’ level even if the mediator does a good job for it and then it issatisfied at itsintentions’ level.

As final remark, reputation does not directly appear, but it is clear that it has a major role to play in the
manner that participants work out theirintentions. Thus, it is taken into account as much as participants
consider it important. Moreover, notice that several possibilities to compute participants’ satisfaction
may exist. For example, participants’ satisfaction may decrease with the time or consider the number of
received queries. However, to explore, explain, and compare all the possibilities to compute participants’
satisfaction is well beyond the scope of this thesis. In fact, such a study is an open problem and could be
the topic of a new doctoral dissertation.

CHAPITRE 1 — Participants Characterization and Measures 17

1.4 System Measures

The system measures we use are the same for consumers and providers, and can be used to evaluate
the δsa, δa, δs, δas, δae, andUt values of a participant. Thus, for simplicity, theg function denotes one
of these functions andS denotes either a set of consumers or providers, i.e.S ⊆ C or S ⊆ P . To better
evaluate the quality of a query allocation method for balancing queries, one should reflect :
• the effort that a query allocation method does for either maximizing or minimizing a setS of g

values –efficiency– ,
• any change in a setS of g values –sensitivity– , and
• the distance from the minimal value to the maximal one in a setS of g values –balance– .
A well-known measure that reflects theefficiencyof a query allocation method is themeanµ function.

Because participants’ characteristics (see Section 1.3) are additive values and may take zero values, we
utilize the arithmetic mean to obtain this representative number (Equation 1.5).

µ(g, S) =
1

||S||

∑

s∈S

g(s) (1.5)

However, themeanmeasure might be severely affected by extreme values. Thus,we must reflect the
g values’ fluctuations inS, i.e. thesensitivityof a query allocation method. In other words, we evaluate
how fair a query allocation method is w.r.t. a setS of g values. An appropriate measure to do so is the
fairness indexf proposed in [JCH84] (defined in Equation 1.6). Its values arebetween0 and1.

f(g, S) =

(∑

s∈S

g(s)
)2

||S||
∑

s∈S

g(s)2
(1.6)

Intuitively, the greater thefairnessvalue of a setS of g values, the fairer the query allocation process
with respect to such values. To illustrate thesensitivityproperty, suppose that there exist two competitive
mediatorsm andm′ in our motivating example. Assume, then, that the set of providers registered tom
andm′ areP = {p1, p2, p3} andP ′ = {p′1, p

′
2, p

′
3}, respectively. Now, consider that thesatisfactionof

such providers areδs(p1) = 0.2, δs(p2) = 1, δs(p3) = 0.6, δs(p
′
1) = 1, δs(p

′
2) = 0.7, andδs(p

′
3) = 0.9.

Reflecting thesensitivityof both mediators w.r.t.satisfaction(0.77 and0.97 for m andm′ respectively),
we can observe that companies have almost the same chances ofdoing business inm′, which is not the
case inm.

Finally, a traditional measure that reflects the ensuredbalanceby a query allocation method is the
Min-Max ratio. TheMin-Max ratio σ is defined in Equation 1.7 (wherec0 > 0 is some fixed constant).
Its values are between0 and1. The greater thebalancevalue of a setS of g values, the better thebalance
of such values. TheMin-Max ratio is useful to know whether there exists a great different between the
most satisfied entitys ∈ S and the less satisfied entitys′ ∈ S (with s 6= s′), and then, one can evaluate
if this is because of the query allocation method or the entity’s adequation.

σ(g, S) =
min
s∈S

g(s) + c0

max
s′∈S

g(s′) + c0
(1.7)

The above three measures are complementary to evaluate the global behavior of the system, and the
use of only one of them may cause the loss of some important information.

18 CHAPITRE 1 — Participants Characterization and Measures

1.5 Related Work

To the best of our knowledge, economic models are the only ones that are related to the model we
proposed in this chapter. Economics is a social science thatstudies how individuals, firms, governments,
and organizations make choices ; and how these choices determine the way wealth is produced and dis-
tributed. It is subdivided into macroeconomics and microeconomics. Macroeconomics studies aggregated
indicators to understand how the whole economy functions [Bla85]. In other words, it deals with the per-
formance, structure, and behavior of a national or regionaleconomy as a whole. Macroeconomic models
and their forecasts are used by both governments and large corporations to assist in the development and
evaluation of business strategy. Microeconomics [MCWG95,Kre90], which examines how individual
decisions and behaviors affect the supply and demand of goods and services, which determines prices.
In other words, it studies how individuals make decisions toallocate limited resources. Indeed, in this
work we are interested in the participants themselves and for this reason we focus in microeconomics.

In microeconomics, one describes participants’ preferences by means of autility function. A utility
function assigns a numerical value to each element of a set ofchoices, ranking such elements according
to the participants’ preferences [MCWG95]. That is, for each query (good or service) a participant com-
putes itsmarginal utility of participating in the allocation of such a query. Notice that, in our case, the
participants’ intentions represent somehow their marginal utility. Then, a participant computes itstotal
utility gained in a given set of queries by adding its marginal utility gained in each query. For simplic-
ity, in the remainder of this section, we only use the term utility to denote total utility. In other words,
as the satisfaction notion, the utility is an abstract concept that measures the happiness or gratification
of participants by consuming or performing queries. Furthermore, the utility as well as the satisfaction
makes no assumption about the way in which participants compute their marginal utility function and
intention function, respectively. This is because both marginal utility and intention functions depend on
applications and participants. We go beyond this by proposing a way in which participants can com-
pute their intentions. For all this, utility is clearly related to the notion of satisfaction we presented in
this chapter, but the satisfaction notion differs from the total utility in three ways. First, the satisfaction
is bounded by0 and1 and normalized while the utility is neither bounded nor normalized. Therefore,
one can easily compare the satisfaction of participants. Second, while utility generally considers all the
queries that a participant consumed or performed, satisfaction only considers thek last queries. This is
very useful when participants have a limited capacity. Finally, utility is generally reduced to monetary
concerns only, which is not the case for the satisfaction notion.

We now introduce two well-known economic properties : Pareto-optimality and Nash equilibrium.
First, Pareto-optimality is a situation which exists when resources have been allocated in such a way that
no-participant can be made better off without sacrificing the well-being of at least one participant. Other-
wise, we say that there exists a Pareto improvement. Thus, a query allocation is said to be Pareto optimal
when no further Pareto improvements can be made. However, itis not obvious to satisfy participants since
several Pareto solutions may exist. Second, in game theory [vNM44] the Nash-equilibrium [Nas51] is a
condition in which no participant would want to change its strategy given the strategies adopted by other
participants. Participants are said to be in equilibrium ifa change in strategies by any one of them would
lead that participant to earn less than if it remained with its current strategy. As for the Pareto-optimality
property, several Nash-equilibriums may exist, but also itmay not exist a Nash-equilibrium in some
cases. Furthermore, as most of the economic properties, both Pareto-optimality and Nash-equilibrium
properties focus on only one interaction. As a result, most of the economic approaches [FNSY96], which
are based on one of these economic properties, look for the happiness of participants in solely one query
allocation and not in the long-run. In contrast, the satisfaction notion we proposed represents the happi-

CHAPITRE 1 — Participants Characterization and Measures 19

ness of participants in several interactions, i.e. in the long-run.
In the field of distributed rational decision making [San99], participants are assumed to beindivid-

ually rational : the utility of any participant in the process is no less thanthe utility it would have by
not participating. This is not relevant in environments where participants may have the interest that the
system be efficient and hence, in some query allocations, they may be interested in participating in some
query allocations even if this means to lose sometimes. Furthermore, it is not relevant in cooperative
contexts where some participants may be imposed, which implies having a lower utility in participating.
Therefore, the satisfaction notion is still relevant because it is a long-run notion.

Qu et al.[QLM06] propose a definition of consumer’s satisfaction, called theUser Satisfaction Met-
ric (USM), that is quite related to ours. They define USM of a givenconsumer as the sum average of
the consumer’s satisfaction in each query it has issued. Nevertheless, unlike our consumer’s satisfac-
tion definition, their USM definition assumes that consumersare only interested in response times and
information freshness. Indeed, this is very important for consumers in some applications, such as in web-
database systems, but in other applications consumers may be interested in some other criteria, such as
providers’ reputation. Our satisfaction definitions are more general by computing participants’ satisfac-
tion with respect to their intentions, which are individually computed by participants considering their
own preferences.

1.6 Chapter Summary

In this chapter, we addressed the problem of modeling autonomous participants with special interests
towards queries. We proposed a model that defines long-run notions to know if the system is adequate
to participants and if it is meeting their intentions. To thebest of our knowledge, this model is the first
effort to characterize participants in their generality. Summarizing, our main contributions in this chapter
are the following.
• We characterized the participants’ intentions in a new model, which allows to evaluate a system

from a satisfaction point of view. The definitions that we proposed are original, considering the
long-run notions ofadequationand satisfaction. They are independent of the way participants
compute their intentions and how the mediator considers them. This model facilitates the evalu-
ation and the design of query allocation methods for these environments. The proposed model is
general, and thus, can be used for any distributed system architecture.

• We defined the provider’sintention-based profitnotion, which allows a provider to evaluate if it
performed the required providers to survive. In particular, we made precise the query starvation
notion in environments where providers have some preferences towards queries.

• We proposed three different measures to evaluate the quality of query allocation methods : the
meanmeasure reflects the effort that a query allocation method does for equally either maximizing
or minimizing a given set of values ; thefairnessmeasure evaluates how fair a query allocation
method is ; thebalancemeasure measures the Min-Max values.

Future Work In this chapter, we proposed a model that defines many notionsto characterize, in the
long-run, participants’ intentions. One of these notions is participants’ satisfaction that, generally speak-
ing, denotes the happiness of a participant with the things it obtains from the system. We presented a way
to compute participants’ satisfaction, but several possibilities to do so may exist. This requires a depth
study to explore different satisfaction definitions, whichis out of the scope of this thesis. Thus, in a future
work, we plan to explore a large number of possibilities to compute participants’ satisfaction so that we

20 CHAPITRE 1 — Participants Characterization and Measures

can understand the advantages and disadvantages of each of them. The satisfaction notion we presented
in this chapter is somehow linked to the notions of trust [AD01, AG07] and reputation [KSGM03] from
distributed systems. This study is well beyond the scope of this thesis, thus we report it to a future work.
Recently, we observed that, from a general point of view, sociology [Mac04] focus on a similar problem
to that we focused on, i.e. we model the satisfaction of participants. We are interested in exploring this
discipline in order to study the possible links that could exist between its properties and the properties
we presented in this chapter.

CHAPTER2
Satisfaction-based
Query Allocation

One of the problems that has been thoroughly investigated inthe area of query allocation isquery load
balancing(qlb) [ABKU99, GBGM04, MTS90, RM95, SKS92], which main objective is to maximize
overall system performance (specifically throughput and response times) by balancing query load among
providers. Nevertheless, as seen so far (Example 1), in distributed information systems where participants
are autonomous the participants’ intentions are not only performance related. In such environments, when
a participant is no longer satisfied with the mediator, the only way to express its dissatisfaction is to leave
it, which may have consequences on the capacity and functionalities provided by the system. On the one
hand, a provider departure decreases the system’scapacity(which denotes the aggregate of all providers’
capacity) and, as a result, may significantly hurt the systemperformance. On the other hand, providers’
departure can result in losing in system’s functionalities, but also consumers’ departure is a loss of queries
for providers. Therefore, to preserve full system capacityand functionalities in these environments, it is
quite important to take into account participants’ intentions in addition toqlb. This is particularly timely
with the potential profusion of software based on web services in particular and on services oriented to
architecture in general.

In this chapter, we propose a query allocation framework that considers participants’ intentions
besidesqlb. The content of this chapter is based on our material published in [LQRV07, QRLV06,
QRLV07a, QRLV07b]. Our main contributions are the following :
• We proposeSatisfaction-based Query Load Balancing(SbQA, in short), a flexible framework with

self-adaptingalgorithms to allocate queries while considering bothqlb and participants’ intentions.
Salient features ofSbQA are that :
– it affords consumers the flexibility to trade their preferences for the providers’ reputation,
– it affords providers the flexibility to trade their preferences for their utilization,
– it allows a mediator to trade consumers’ intentions for providers’ intentions, and
– it affords the mediator the flexibility to adapt the query allocation process to the application by

varying several parameters.
• We demonstrate, through experimental validation, thatSbQA significantly outperforms baseline

methods, theCapacity based and Mariposa-like methods, and yields significant performance
benefits. We demonstrate the self-adaptability ofSbQA to participants’ intentions and its adapt-
ability to different kinds of application. We also show thatapplying the proposed measures over
the provided model allows the prediction of possible departures of participants.

The remainder of this chapter is organized as follows. In Section 2.1, we formally define the query
allocation problem in systems with autonomous participants having special interests towards queries.
As part of theSbQA framework, we define a way to compute consumers’ and providers’ intentions in
Sections 2.2 and 2.3, respectively. Then, in Section 2.4, wedefine a way to allocate queries by considering

21

22 CHAPITRE 2 — Satisfaction-based Query Allocation

both consumers’ and providers’ intentions and define a strategy to adapt query allocation to different
kinds of application. We give some final remarks onSbQA in Section 2.5. In Section 2.6, we validate
SbQA performance to allocate queries and demonstrate its adaptability to participants’ intentions and
applications. We then survey related work in Section 2.7. Finally, we conclude this chapter in Section 2.8.

2.1 Problem Definition

We consider a system consisting of a mediatorm, of a set of consumersC and of a set of providersP .
These sets are not necessary disjoint, an entity may play more than one role. Provider are heterogeneous :
(i) they have different processing capabilities and(ii) they may provide different results, e.g. because they
have different private data. We assume that providers compute their utilizationU as defined in Section 1.2.

Queries are formulated in a format abstracted as a tripleq = < c, d, n > such thatq.c ∈ C is the
identifier of the consumer that has issued the query,q.d is the description of the task to be done (e.g.
a SQL statement), andq.n ∈ N∗ is the number of providers to which the consumer wishes to allocate
its query. Indeed, a consumer may want to query different providers, in particular in the case they can
provide different answers. Parameterq.d is intended to be used within a matchmaking procedure to find
the set of providers that are able to treatq, denoted by setPq. As noted so far, such techniques are out
of the scope of this paper and thus we assume there exists one in the system, e.g. [KH95, LH04], that is
sound and complete : it does not return false positive nor false negatives. We useNq for denoting||Pq||,
or simplyN when there is no ambiguity onq.

Consumers send their queries to mediatorm that allocates each incoming queryq to q.n providers in
Pq. And, a consumer poses a query to a mediator when it cannot locally perform the query or just because
it has certain benefits by outsourcing the query. We only consider the arrival offeasible queries, that is
those queries in which there exists at least one provider, which is able to perform them, in the system.
For the sake of simplicity we only use, throughout this paper, the term “query” to denote a feasible query.
Query allocation of some queryq among the providers inPq is a vectorAll−→ocq, or simplyAll−→oc when
there is no ambiguity onq,

∀p ∈ Pq, All−→ocq[p] =
1 if p getsq
0 otherwise

(2.1)

We assume that each incoming queryq must be treated, even if no provider desires to perform it. This
leads to

∑
p∈Pq

All−→oc [p] = min(q.n, N). In other words, in the case thatq.n > Nq, consumerq.c gets

Nq queries instead ofq.n. In the following, the set of providers such thatAll−→ocq[p] = 1 is notedP̂ r
q ,

where, given a predefined scoring function,r denotes the worst provider’s score in setP̂ r
q . For simplicity,

when the knowledge ofr is not required, we only usêPq to denoteP̂ r
q . Notice that, without any loss of

generality, in some cases, e.g. when consumers pay serviceswith real money, query allocation just means
that providers are selected for participating in a negotiation process with consumers.

Participants are free to express their intentions to allocate and perform queries. The way in which
participants compute their intentions is considered as private and hence it is not revealed to others, which
is the case of several current applications (e.g. in ane-commercescenario, enterprises do not reveal
their business strategies). However, even if this information is private, the way in which participant
compute their intentions has an indirect impact on the system’s behavior. For instance, if participants are
interested in short response times, as a result the system will ensure low response times. But, if they are
not interested in, the resulting system will have a poor performance.

CHAPITRE 2 — Satisfaction-based Query Allocation 23

In these environments, where participants are autonomous,it is crucial to consider their intentions
when allocating queries to avoid massive participants’ departure from the system and hence to preserve
the total system capacity, i.e. the aggregate capacity of all providers (e.g. in terms of computational or
physical resources). To summarize, we can state the problemas follows.

Query Allocation Problem Given a mediatorm confronted to autonomous participants,m should
allocate each incoming queryq to a setP̂q such that||P̂q|| = min(q.n,Nq), short response times,
system capacity, and participants’ satisfaction are ensured in the long long-run.

2.2 Consumer’s Side

When a consumer is required by the mediator to give its intention for allocating its queryq to a given
providerp, it computes its intention based on both its preferences towardsp andp’s reputation. The idea
is that a consumer makes a balance between its preferences for allocating queries and the providers’
reputation, in accordance to its past experience with providers. For example, if a consumer does not have
any past experience with a providerp, it pays more attention to the reputation ofp. A consumer may
base its preferences on different criterias, such as quality of service, response times or price of services.
Hence, several ways to compute preferences exist. Dealing with the way in which a consumer obtains its
preferences is beyond the scope of this thesis.

We formally define the intention of a consumerc ∈ C to allocate its queryq to a given provider
p ∈ Pq as in Definition 24. Functionprfc(q, p) givesc’s preference (which may denote e.g. some interest
to quality of serviceor response time) for allocatingq to p, and functionrep(p) gives the reputation ofp.
Values of both functions (prf andrep) are in the interval[−1..1].

Definition 24. Consumer’s Intention

cic(q, p) =

prfc(q, p)υ × rep(p)1−υ if prfc(q, p) ≥ 0 ∧ rep(p) ≥ 0

−
((

1− ((prfc(q, p) + 1)/2)
)υ
×
(
1− ((rep(p) + 1)/2)

)1−υ
)
elseif prfc(q, p) < 1∧

∧ rep(p) < 1

−
((

1− ((prfc(q, p) + 1)/2) + ǫ
)υ
×
(
1− ((rep(p) + 1)/2) + ǫ

)1−υ
)

else

Parameterǫ > 0, usually set to0.01, prevents the consumer’sintentionfrom taking zero values when
the consumer’s preference or provider’s reputation valuesis equal to1. Parameterυ ∈ [0..1] ensures a
balance between the consumer’s preferences and the providers’ reputation. In particular, ifυ = 1 (resp.
0) the consumer only takes into account its preferences (resp. the provider’s reputation) to allocate its
query. So, if a consumer has enough experience with a given provider p, it setsυ > 0.5, or else it sets
υ < 0.5. Whenυ = 0.5, it means that a consumer gives the same importance to its preferences and the
provider’s reputation.

2.3 Provider’s Side

The provider’s intention to perform a given query is based onits preferences for performing such
a query and its current utilization. Nonetheless, the question that arises is :what is more important
for a provider, its preferences or its utilization ?We propose to balance, on the fly, the preferences and
utilization of a provider according to its satisfaction. Intuitively, on the one hand, if a provider is satisfied,
it can then accept sometimes queries that do not meet its intentions. On the other hand, if a provider is

24 CHAPITRE 2 — Satisfaction-based Query Allocation

(a) when provider’ssatisfactionis 0 (b) when provider’ssatisfactionis 1 (c) when provider’ssatisfactionis 0.5

Figure 2.1 – Tradeoff betweenpreferenceandutilization for getting providers’intention.

dissatisfied, it does not pay so much attention to its utilization and focuses on its preferences so as to
obtain queries that meet its intentions. To do so, the satisfaction it uses to make the balance has to be
based on its preferences and not on its intentions. Thus, thesatisfaction definition of Section 1.3.2.2 has
to be adapted to the preferences of a provider by using itspreferencesinstead of its intentions. As for
a consumer, a provider may compute its preferences either byconsidering its context or independently
of its context. For example, a provider may no longer desire to perform some kind of queries when it
is overutilized and another provider may always have the same preferences for queries no matter its
utilization. In fact, several strategies can be adopted by aprovider to compute its preferences. However,
how a provider implements its preference’s function,prf, is out of scope of this paper. We just assume
that providers’ preferences are in the interval[−1..1].

We thus define the intention of a providerp ∈ Pq to deal with a given queryq as in Definition 25.
Functionprfp(q) ∈ [−1..1] givesp’s preference to performq.

Definition 25. Provider’s Intention

pip(q) =

∣∣∣∣∣∣∣∣

prfp(q)
1−δs(p) × (1− Ut(p))δs(p), if prfp(q) ≥ 0 ∧ Ut(p) ≤ 1

−
((

1− ((prfp(q) + 1)/2)
)1−δs(p)

×
(
Ut(p)

)δs(p)
)

else if prfp(q) < 1 ∧ Ut(p) > 0

−
((

1− ((prfp(q) + 1)/2) + ǫ
)1−δs(p)

×
(
Ut(p) + ǫ

)δs(p)
)

else

Parameterǫ > 0, usually set to0.01, prevents the intention of a provider from taking0 values when
its preference or its utilization is equal to0. Figure 2.1 illustrates the behavior that functionpi takes
for different provider’s satisfaction values. We can observe in Figure 2.1(a) that when a provider is not
satisfied at all, its utilization has no importance for it andits preferences denote its intentions. In contrast,
when a provider is completely satisfied, its utilization denotes its intentions (see Figure 2.1(b)). In the
case that a provider has a satisfaction of0.5 (Figure 2.1(c)), we observe that its preferences and utilization
have the same importance for it. Moreover, we can observe in Figure 2.1 that a provider shows positive
intentions, whatever its satisfaction is, only when it is not overutilized and queries are of its interests.
This helps satisfying providers while keeping good response times in the system.

2.4 Mediator’s Side

So far, we assumed that a matchmaking technique has found theset of providers that are able to
deal with a queryq, denoted by setPq. Therefore, we only focus on the allocation ofq among setPq.

CHAPITRE 2 — Satisfaction-based Query Allocation 25

Given a queryq, SbQA allows the mediator to trade consumers’ intentions for providers’ intentions
according to their satisfaction (Section 2.4.1). Furthermore, SbQA affords the mediator the flexibility
to regulate the system w.r.t. some predefined function and adapt the query allocation process to the
application by varying its parameters (Section 2.4.2). In Section 2.4.3, we describe the way in which
SbQA allocates queries among providers and analyze, in Section 2.4.4, the number of messages that the
mediator transfers over the network to allocate an incomingqueryq.

2.4.1 Scoring and Ranking Providers

A natural way to perform query allocation is to allocate queries in a consumer-centric fashion, such
as several e-commerce applications do. This leads to take into account the consumers’ intentions only,
which may seems correct at first glance. However, doing so mayseverely penalize providers’ intentions
and hence it may cause their departure from the mediator, which implies a loss of capacity and function-
ality of the system but also a loss of revenues for the mediator when it is paid by providers after each
transaction (e.g. in ebay sellers pay a percent of the transactions they conclude). Respectively, if a medi-
ator only considers the providers’ intentions when allocating queries, consumers may quit the mediator
by dissatisfaction, which in turn may cause the departure ofproviders. This is why we decide to balance
consumers’ and providers’ intentions with the aim that bothof them be satisfied.

Thus, given a queryq, a provider is scored by considering both its intention for performingq and
q.c’s intention for allocatingq to it. That is, thescoreof a providerp ∈ Pq regarding a given queryq is
defined as the balance between theq.c’s andp’s intentions (see Definition 26).

Definition 26. Provider’s Score

scrq(p) =

∣∣∣∣∣

(−→
PIq[p]

)ω(−→
CIq[p]

)1−ω
if
−→
PIq[p] > 0 ∧

−→
CIq[p] > 0

−
((

1−
−→
PIq[p] + ǫ

)ω(
1−
−→
CIq[p] + ǫ

)1−ω
)

else

Vector
−→
PIq[p] denotesPq ’s intentionsto performq. Parameterǫ > 0, usually set to1, prevents the

provider’sscorefrom taking0 values when the consumer or provider’sintentionis equal to1. Parameter
ω ∈ [0..1] ensures a balance between the consumer’sintentionfor allocating its query and the provider’s
intentionfor performing such a query. In other words, it reflects the importance that the query allocation
method gives to the consumer and providers’intentions. To guarantee equity at all levels, such a balance
should be done in accordance to the consumer and providers’ satisfaction. That is, if the consumer is more
satisfied than the provider, then the query allocation method should pay more attention to the provider’s
intentions. Thus, we compute theω value as in Equation 2.2. Conversely to provider’s intention, the
query allocation module has not access to private information. Thus, the satisfaction it uses must be
based on the intentions.

ω =
((

δs(c)− δs(p)
)

+ 1
)/

2 (2.2)

Figure 2.2 illustrates the tradeoff between the consumer and provider’ intention for obtaining the
ω value. One can also setω’s value according to the kind of application. For instance,if providers are
cooperative (i.e. notselfish) and the most important is to ensure the quality of results, one can setω near
or equal to0. Finally, providers are ranked from the best to the worst scored, the

−→
R q vector. Intuitively,

−→
R q[1] is the best scored provider to deal withq,

−→
R q[2] the second, and so on up to

−→
R q[N] which is the

worst. As a result, ifq.n <= N the q.n best ranked providers are selected, or else all theN providers
are selected.

26 CHAPITRE 2 — Satisfaction-based Query Allocation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.2

 0.4
 0.6

 0.8
 1

Provider Sat.
 0

 0.2
 0.4

 0.6
 0.8

 1

Consumer Sat.

 0
 0.2
 0.4
 0.6
 0.8

 1

Figure 2.2 – The values thatω can take.

2.4.2 Regulating the System

The mediator can proceed to allocate queries by consideringonly the providers’ ranking based on
their score (

−→
R), which affords participants to take the control of the query allocation process. However,

the mediator may have certain objectives or goals that it aims to achieve. It is possible that the mediator
wants to regulate the system regarding some predefined function τ , e.g. to ensure good response times
to consumers. To allow this, we propose theKnBest strategy and assume that the mediator applies it
to allocate queries.KnBest is inspired by thetwo random choices (TRC)paradigm [Mit01, ABKU99].
The idea is that, given a queryq, the mediator selects a setKn of kn providers that either maximize
or minimize functionτ from setK, where setK is a random selection ofk′ providers from setPq

of providers. We can indifferently assume thatk′ andkn values are predefined by the administrator or
defined on the fly by the mediator. Then, it allocatesq to theq.n best ranked providers among setKn

of providers. We explain further the query allocation principle in Section 2.4.3. We assume, without any
loss of generality, that functionτ denotes functionU, which means that the mediator strives to regulate
the system with respect to providers’ utilization (i.e. to performqlb). The following theorem summarizes
theKnBest’s properties that bound its behavior.

Theorem 2. Given a queryq, the behavior of a query allocation method usingKnBest is bounded by
the following properties,

(i) if k′ = 2q.n ∧ kn = q.n, KnBest has aTRC behavior.
(ii) if k′ = Nq ∧ kn = q.n, KnBest has aCapacity based behavior.
(iii) if k′ = Nq ∧ kn = k′, KnBest has anIntention based behavior.

Proof. Say a query allocation methodqa implements theKnBest strategy. The following is the same
for any value that parameterq.n can take.

Consider thatqa setsk′ = 2q.n ∧ kn = q.n. In this case,qa allocates a queryq to the less utilized
providerp ∈ P among a set of2q.n random selected providers fromPq. This leads to satisfy the below
equation,

∀p ∈ P̂q, ∄p′ ∈ K\P̂q : U(p′) < U(p)

which is also ensured by a query allocation method using aTRC process. This proves property(i).
Now, consider thatqa setsk′ = Nq ∧ kn = q.n. In this case,qa allocates an incoming queryq to

the less utilized providers in setPq, which is also the objective of aCapacity based method. Thus, both

CHAPITRE 2 — Satisfaction-based Query Allocation 27

qa andCapacity based ensure the following equation,

∀p ∈ P̂q, ∄p′ ∈ Pq\P̂q : U(p′) < U(p)

which proves property(ii) .
Finally, consider thatqa setsk′ = Nq ∧ kn = k′. Doing so, an incoming queryq is allocated byqa

to a set̂Pq such that,
∀p ∈ P̂q, ∄p′ ∈ Pq\P̂q : scrq(p

′) > scrq(p)

Thus, the only thing that is considered byqa is the participants’ intentions and thus it will have anIn-
tention based behavior. In other words, the mediator has no control to regulate the system. We call this
way to operate theintention basedapproach. This proves property(iii) .

The great advantage of usingKnBest is that it allows the mediator to adapt the query allocation
process to the application by varying its parameters. To illustrate this, consider the following examples.
First, if providers and incoming queries are homogeneous, the mediator can take aTRCbehavior (which
has been proved to operate well in homogeneous distributed systems [Mit01]) when allocating queries by
setting parameters ofKnBest as in property(i). Second example, consider that providers and incoming
queries are heterogeneous and that the most important is to performqlb with no consideration for partic-
ipants’ intentions. In this case, the mediator can allocatequeries following aCapacity based behavior,
by setting parameters ofKnBest as in property(ii) . Finally, consider that participants are autonomous
and there is no other objective in the system than satisfyingparticipants, the mediator can then allocate
queries based only on the participants’ intentions by setting parameters ofKnBest as in property(iii) .

As we focus on heterogeneous distributed information systems in this thesis, we assume thatk′ is
always equal toN in the rest of this chapter (i.e. we discard the random selection phase).

2.4.3 Query Allocation Principle

We now describe how the mediator allocates queries. Figure 3.2(a) illustrates the generalSbQA
system architecture and Algorithm 3 shows the main steps of the query allocation process. Given a query
q and a setPq of providers that are able to performq, the mediator first asks forq.c’s intention for
allocatingq to each providerp ∈ Pq (line 2 of Algorithm 3). In parallel, it also asks forPq ’s utilization
(with the assumption that functionτ denotes functionU) andintentionfor performingq (lines 3 and 4).
Then, it waits for this information from bothq.c and setPq or for a giventimeout(line 5). Once such

vectors
−→
CIq,

−→
U , and

−→
PIq are computed (where

−→
U stores theutilization of each provider inPq), the

mediator selects thekn less utilized providers, denoted by setKn, from setPq (line 6). This selection
phase can be solved using a sorting algorithm, so, in the worst case, its complexity isO

(
N log2(N)

)
.

Next, the mediator computes the score of each providerp ∈ Kn by making a balance betweenq.c’s and
p’s intentions(line 7 and 8) and computes the ranking of providers inKn (line 9), whose complexity is
O
(
kn log2(kn)

)
in the worst case. Finally, the mediator allocatesq to theq.n bestscoredproviders in

setKn and sends the mediation result to allPq providers (lines 10 and 11). Notice that in the case that
q.n ≥ kn, the mediator thus allocatesq to all kn providers. Indeed, Algorithm 3 can be optimized, but
our goal is to show the steps involved in the query allocationprocess.

2.4.4 Communication Cost

We analyze the communication cost ofSbQA in terms of number of messages that the mediator
should transfer over the network to perform a query. The communication cost ofSbQA is given by the

28 CHAPITRE 2 — Satisfaction-based Query Allocation

Figure 2.3 – SQLB system architecture.

following theorem.

Theorem 3. The total number of transferred messages bySbQA to perform a query is3(N + 1) + n.

Proof. As we saw in the previous section, given any incoming queryq, the mediator transfersmssg0 =
2N + 2 messages over the network to ask the consumer’sintentionsand theutilization andintentionof
providers in setPq. Then, it selects thekn least utilized providers in setPq and allocatesq to theq.n best
scored providers in setKn. After this, the mediator informs all providers in setPq of the mediation result
and waits for results from theq.n selected providers. This implies to exchangemssg1 = N +n messages
among the mediator and participants, wheren stands forq.n. Finally, the mediator transfersmssg2 = 1
messages to give results toq.c. Thus, the total number of messages transferred over the network by the
mediator to perform a query ismssg0 + mssg1 + mssg2 = 3(N + 1) + n.

This is not a high cost considering that microeconomic-based query allocation methods transfers
3N + n + 1 messages to perform a query :N messages to ask for providers’ bid,N messages for
receiving providers’ bid,N messages to inform providers of the mediation result,n messages to get
results from selected providers, and1 message to return results to the consumer. We can further reduce
the number of exchanged messages by using participants’representatives[LCLV07] or by introducing
again the random selection phase (see Section 2.4.2). However, the problem of reducing communication
cost is orthogonal to the problem we address in this thesis.

CHAPITRE 2 — Satisfaction-based Query Allocation 29

Algorithm 3 : QueryAllocation
Input : q, kn, Pq

Output : All−→ocq

begin1

// Consumer’s intentions
fork ask forq.c’s intentions towards each provider inPq;2

// Providers’ intention
foreach p ∈ Pq do3

fork ask for the utilization and intention of providerp with regards toq ;4

waituntil
−→
CIq,

−→
U , and

−→
PIq be calculated or a giventimeout;5

// qlb regulation
Kn ← selectkn less utilized providers from setPq ;6

// Scoring and ranking providers
foreach p ∈ Kn do7

computep’s score concerning
−→
CIq[p] &

−→
PIq[p] ;8

rank setKn of providers regardingscrp(q),
−→
R q ;9

// Query Allocation

for i = 1 to min(n, kn) do All−→oc [
−→
R q[i]]← 1 ;10

for j = min(n, kn) + 1 to N do All−→oc [
−→
R q[j]]← 0 ;11

end12

2.5 Discussion

We pointed out in Sections 2.2 and 2.3 that there exist several ways a participant can compute its
preferences. To the best of our knowledge, there is no work that proposes a comparison study of these
different preference functions and hence it is still an openproblem. We believe that such a study may be
quite interesting to allow a participant knowing which strategy it can adopt to compute its preferences.
Similarly, several manners to compute the consumers’ and providers’ intentions exist. This is also an
open problem that should be explored so as to identify the best ways for a participant to adapt their
intentions to their context and application. Improving on these functions is not the focus of our work.
Instead, our framework is designed so it can leverage any existing preference and intention function.

Moreover, the score function of a query allocation method isusually based on specific demands,
which are given by the application challenges that one wantsto solve. Thus, a large number of specific
query allocation methods with different behaviors may exist. For example, the score function of aqlb
method is designed for those applications whose goal is to ensure good system performance. However,
when the behavior of a query allocation method is specific to an application, it cannot be applied else-
where, and worse, it cannot perform in environments where participants change their interests on the
fly. Therefore, we proposed a score function that makes no assumption about either the kind of appli-
cation nor the way in which a participant obtains its preferences. It just allocates queries based on the
participants’ intentions. But, we are aware that sometimesa mediator, or even the system administrator,
is required to satisfy some constraint, e.g. to ensure a specific Quality of Service, no matter what partici-
pants prefer. This is why we also proposed a strategy that allows the query allocation method to regulate
the system with regards to a given function. As a result, conversely to specific query allocation methods,

30 CHAPITRE 2 — Satisfaction-based Query Allocation

SbQA is quite general, self-adaptable to the interests of participants, and adaptable to the application.
This allowsSbQA to perform in many kinds of environments and to perform as well as any specific
query allocation method by tuning its parameters or if participants desire so.

2.6 Experimental Validation

Our experimental validation, in this section, has three main objectives :
• To evaluate how well different query allocation methods operate in distributed systems with au-

tonomous participants.
• To analyze ifSbQA satisfies participants while ensures goodqlb because it is not obvious that

when adding new criteria a query allocation method still gives good results for an initial criteria.
• To study how well our measures capture query allocation methods’ operation.
To do so, we carry out four kinds of evaluations. First, we evaluate the general query allocation

process by applying the satisfaction model and measures we present in Chapter 1. Second, we evaluate
the impact of participants’autonomyon performance. Third, we evaluate the self-adaptability of SbQA
to participants’ intentions. Finally, we analyze the effects of varying the values ofkn parameter, i.e. we
evaluate theSbQA’s adaptability to different kinds of applications.

2.6.1 Setup

We built a Java-based simulator that simulates amono-mediatordistributed information system,
which follows the mediation system architecture presentedin [LCLV07]. For all the query allocation
methods we tested, the following configuration (Table 2.1) is the same and the only change is the way in
which each method allocates the queries to providers. Before defining our experimental setup let us say
that the definition of a synthetic workload for environmentswhere participants are autonomous and have
special interests towards queries is an open problem.Pieper et al.[PPS07] discuss the need of bench-
marks for scenario-oriented cases, which are similar to thecase we consider, but this remains an open
problem. Another possibility to validate our results is to consider real-world data over long periods of
time. However, even if we had (we don’t) the resources to obtain real-world data, the validation would
get biased towards the specific applications. Therefore, inour experiments, we decided to generate a very
general workload that can be applied for different applications and environments in order to thoroughly
validate our results.

Participants work out theirsatisfaction, adequation, andallocation satisfactionas presented in Sec-
tion 1.3. We initialize them with a satisfaction value of0.5, which evolves with their last200 issued
queries and500 queries that have passed through providers. That is, the size of k is 200 for consumers
and500 for providers. The number of consumers and providers is200 and400 respectively, with only
one mediator allocating all the incoming queries. We assignsufficient resources to the mediator so that
it does not cause bottlenecks in the system. We assume that all providers in the system are able to per-
form each incoming query to the system, i.e. for any incomingqueryq the size of setPq is 400. We
also assume that consumers and providers compute their intentions as defined in Sections 2.2 and 2.3,
respectively. For simplicity, we setυ = 1, i.e. the consumers’ preferences denote their intentions.

To simulate high heterogeneity of the consumers’ preferences for allocating their queries to providers,
we divide the set of providers into three classes according to the interest of consumers : to those that
consumers havehigh interest(60% of providers),medium interest(30% of providers), andlow interest
(10% of providers). Consumers randomly obtain their preferences between.34 and1 for high-interest

CHAPITRE 2 — Satisfaction-based Query Allocation 31

Parameter Definition Value
nbConsumers Number of consumers 200
nbProviders Number of providers 400
nbMediators Number of mediators 1
qDistribution Query arrival distribution Poisson
iniSatisfaction Initial satisfaction 0.5
conSatSize k last issued queries 200
proSatSize k last treated queries 500
nbRepeat Repetition of simulations 10

Table 2.1 – Simulation parameters.

providers, between−.54 and .34 for medium-interest providers, and between−1 and−.54 for low-
interest providers. On the other side, to simulate high heterogeneity of the providers’ preferences towards
the incoming queries, we also create three classes of providers : those that havehigh adaptation(35% of
providers),medium adaptation(60% of providers), andlow adaptation(5% of providers). Here, adap-
tation stands for thesystem adequation w.r.t. a providernotion we defined in Section 1.3.1.2. Providers
randomly obtain their preferences between−.2 and1 (high-adaptation), between−.6 and.6 (medium-
adaptation) or between−1 and .2 low-adaptation). More sophisticated mechanisms for obtaining such
preferences can be applied (for example using theRushlanguage [SBD94]), but this is well beyond
the scope of this thesis and orthogonal to the problem we address in this chapter. Without any loss of
generality, the participants’ intentions, in the long run,are static in our simulations. We assume this to
evaluate the query allocation methods in a long-term trend,but our satisfaction model allows intentions
to be dynamic.

We set the providers’ capacity heterogeneity following theresults presented in [SGG02]. We gener-
ate around 10% of providers with low-capacity, 60% with medium-capacity, and 30% with high-capacity.
The high-capacity providers are3 times more powerful than medium-capacity providers and still 7 times
more powerful than low-capacity providers. We generate twoclasses of queries that consume, respec-
tively, 130 and150 treatment units at the high-capacity providers. High-capacity providers perform both
classes of queries in almost1.3 and1.5 seconds, respectively. We assume that providers compute their
utilization as in Definition 12.

We do not consider the random selection phase because we consider heterogeneous distributed sys-
tems. In other words, we assume in all our experimentations thatk′ is equal toN . We assume that queries
arrive to the system in aPoissondistribution, as found in dynamic autonomous environments[Mar02].
Since our main focus is to study the way in which queries are allocated, we do not consider in this thesis
the bandwidth problem and assume that all participants havethe same network capacities. Finally, for
the sake of simplicity, we assume that consumers only ask forone informational answer (i.e.n = 1) and
all the providers in the system are able to perform all the incoming queries.

2.6.2 Baseline Methods

2.6.2.1 Capacity based

In distributed information systems, there are two well-known approaches to balance queries across
providers :Load Based andCapacity based methods. We discardLoad Based [GBGM04, ABKU99]
methods since, unlikeCapacity based, they inherently assume that providers and queries are homo-

32 CHAPITRE 2 — Satisfaction-based Query Allocation

geneous. InCapacity based [MTS90, RM95, SKS92] methods, one common approach is to allocate
each queryq to providers that have the highest available capacity (i.e.the least utilized) among setPq of
providers.Capacity based has been shown to be better thanLoad Based in heterogeneous distributed
information systems. Thus, we useCapacity based in our simulations. Note thatCapacity based does
not take into account the consumers nor providers’ intentions.

2.6.2.2 Mariposa-like

Economical models have been shown to provide efficient queryallocation in heterogeneous sys-
tems [FNSY96, FYN88, SAL+96]. Mariposa [SAL+96] is one of the most important approaches to
allocate queries in autonomous environments. In this approach, all the incoming queries are processed
by a broker site that requests providers forbids. Providers bid for obtaining queries based on a local
bulletin board and then the broker selects the set of bids that has an aggregate price and delay under a
bid curve provided by the consumer. In Mariposa, providers modify their bids with their current load
(i.e. bid × load) in order to ensureqlb. Since Mariposa has shown good results, we implemented a
Mariposa-likemethod to compare it withSbQA. In our Mariposa-likeimplementation we assume that
consumers are only interested in the price for getting results. Note that different economical methods
may lead to different performance results than those presented here.

2.6.3 Results

We start, in Section 2.6.3.1, by evaluating the quality of the three query allocation methods, with re-
gards to satisfaction andqlb, in environments where participatns are not allowed to leave the system (i.e.
with captive participants). In Section 2.6.3.2, we evaluate how well these methods deal with the possible
participants’ departure bydissatisfaction, query starvation, or overutilization. Then, in Section 2.6.3.3,
we show the self-adaptability ofSbQA to participants’ intentions. In these three first sections,we assume
thatkn = k′, i.e. setKn denotes setPq considering thatk′ = N . Finally, in Section 2.6.3.4, we study
the adaptability ofSbQA to the kind of application by varying parameterkn.

2.6.3.1 Quality Results with Captive Participants

If participants are autonomous, they may leave the system bydissatisfaction, query starvation, or
overutilization. Nevertheless, the choice of such departure’s thresholds is very subjective and may depend
on several external factors. Thus, for these first experiments, we considercaptiveparticipants, i.e. they
are not allowed to leave the system. To measure the quality ofthe three methods, we apply the measures
defined in Section 1.4. We ran a series of experiments where each one starts with a workload of30% that
uniformly increases up to100% of the total system capacity.

We first analyze the providers results. Figure 2.4(a) shows the satisfaction mean ensured by the three
methods. The satisfaction used in this measurement is basedon the providers’ intentions, i.e. what the
mediator can see. We observe in these results that providersare more satisfied withSbQA than with the
two others. As the workload increases, providers’ satisfaction decreases because their intentions decrease
as they are loaded (just because utilization becomes the most important for them). Thus,SbQA cannot
satisfy the providers’ intentions for high workloads sincetheir adequation (based on intentions) is low.
Capacity based andMariposa-likedo not satisfy the providers’ intentions from the beginning, simply
because they allocate queries based on other criteria, which do not exactly meet intention.

Nonetheless, this does not reflect what providers really feel with respect to their preferences. To show
this, we need to measure the mean ensured by the three methodsconcerning the providers’ satisfaction

CHAPITRE 2 — Satisfaction-based Query Allocation 33

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

S
a

ti
s
fa

c
ti
o

n
 M

e
a

n
, µ
(δ

s,
 P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(a) Providers’ satisfaction mean based on
intentions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

S
a

ti
s
fa

c
ti
o

n
 M

e
a

n
, µ
(δ

s,
 P

)
Time (seconds)

SQLB
Mariposa-like

Capacity based

(b) Providers’ satisfaction mean based on
preferences.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000

A
llo

c
.
S

a
t.
 M

e
a

n
, µ

(δ
a

s,
 P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(c) Providers’ allocation satisfaction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

S
a

ti
s
fa

c
ti
o

n
 F

a
ir
n

e
s
s
,
f(δ s
,
P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(d) Provider satisfaction fairness.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000

A
llo

c
.
S

a
t.
 M

e
a

n
, µ

(δ
a

s,
 C

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(e) Consumers’ allocation satisfaction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

S
a

ti
s
fa

c
ti
o

n
 F

a
ir
n

e
s
s
,
f(δ s
,
C

)
Time (seconds)

SQLB
Mariposa-like

Capacity based

(f) Consumer satisfaction fairness.

Figure 2.4 – Participants’ satisfaction results for a workload range from30 to 100% of the total system
capacity when participants are captive.

based on their preferences. Although we can measure such a satisfaction in our simulations, this is not
always possible since such preferences are usually considered as private. Figure 2.4(b) shows the results
of these measurements. We observe thatSbQA has the same performance asMariposa-likeeven if it
considers the consumers’ intentions. When the workload is close to100%, the providers’ satisfaction
slightly decreases withSbQA. As noted earlier, this is because providers pay more attention to their
utilization for obtaining their intentions, thus their preferences are less considered by theSbQA method.

It is worth noting that, as expected,Capacity based is the only one among these three methods
that penalizes the providers. This is clear in Figure 2.4(c), which illustrates the mean ensured by these
three methods with respect to the providers’ allocation satisfaction. We observe that providers are not
satisfied withCapacity based having, in general, allocation satisfaction values under1. Then, based
on these results, we can predict that when providers will be free to leave the system,Capacity based
will suffer from serious problems with providers’ departures by dissatisfaction reasons. Figure 2.4(d)
illustrates the satisfaction fairness ensured by the threemethods. We see that they guarantee almost the
same satisfaction fairness. However, as seen in the previous results, this does not mean that providers are
satisfied with all three methods.

Now, let us analyze the consumer results. Figure 2.4(e) illustrates the allocation satisfaction mean
concerning the consumers’ intentions. We observe that whileSbQA is the only one to satisfy consumers,
the two others are neutral to consumers (mean values equal to1). These results allows us to predict that
Capacity based andMariposa-likemay suffer from consumer’s departures whileSbQA does not. The
SbQA’s mean decreases for high workloads because of providers. Remember that providers’ satisfac-

34 CHAPITRE 2 — Satisfaction-based Query Allocation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2000 4000 6000 8000 10000

U
ti
liz

a
ti
o

n
 M

e
a

n
, µ

(U
t,
 P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(a) Query load mean.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

U
ti
liz

a
ti
o

n
 F

a
ir
n

e
s
s
,
f(

U t,
 P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(b) Query load fairness.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

U
ti
liz

a
ti
o

n
 M

in
-M

a
x
, σ

(U
t,
 P

)

Time (seconds)

SQLB
Mariposa-like

Capacity based

(c) Query load min-max.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 A

llo
c
.
E

ff
.
M

e
a

n

Workload (% of the total system capacity)

SQLB
Mariposa-like

Capacity based

(d) Allocation efficiency w.r.t. con-
sumers.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 A

llo
c
.
E

ff
.
M

e
a

n

Workload (% of the total system capacity)

SQLB
Mariposa-like

Capacity based

(e) Allocation efficiency w.r.t. providers.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100
R

e
s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

Workload (% of the total system capacity)

SQLB
Mariposa-like

Capacity based

(f) Response times

Figure 2.5 – (a) and (c) : query load balancing results for a workload range from30 to 100% of the
total system capacity when participants are captive, (d) and (e) : allocation efficiency results for different
workloads, and (f) : ensured response times. All these results are with captive participants.

tion decrease because they take care of their utilization. So, SbQA pays more attention to providers’
satisfaction than to consumers’ satisfaction. Nonetheless, consumers are never penalized ! Conversely
to providers, we can observe in Figure 2.4(f) that consumers’ satisfaction fairness has less variations
because they are not in direct competition to allocate queries.

Concerningqlb, as expected,Capacity based better balances the queries among providers than
SbQA andMariposa-like(see Figure 2.5(a)). We can observe thatSbQA performs well, whileMariposa-like
has serious problems to balance queries. Thus,Mariposa-likemay lose providers by query starvation or
overutilization reasons. Figure 2.5(b) shows thatSbQA has some difficulties to be fair (w.r.t.qlb) for
workloads under40%. In contrast, when the workload increases,SbQA pays more attention toqlb and
becomes fairer. This is clearly illustrated in Figure 2.5(c), which shows the results about the utilization
Min-Max. The reason thatSbQA performs better for high workloads is that providers becomeoveruti-
lized and thus they take much more care with their utilization, which is not the case for low workloads.
Theseqlb results demonstrate the high adaptability ofSbQA to the variations in the workloads.

Figures 2.5(d) and 2.5(e) illustrate the allocation efficiency with respect to consumers and providers
for different workloads. These results clearly illustratethe superiority ofSbQA overCapacity based and
Mariposa-likesince we can observe,(i) on the one hand, thatSbQA significantly outperformsCapaci-
ty based in both cases ; and(ii) on the other hand, thatSbQA andMariposa-likehave the same allocation
efficiency w.r.t. providers, butSbQA significantly outperformsMariposa-like in the consumers’ case,
which demonstrates the equity at both levels ofSbQA.

CHAPITRE 2 — Satisfaction-based Query Allocation 35

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

Workload (% of the total system capacity)

SQLB
Mariposa-like

Capacity based

(a) Providers may leave bydissatisfac-
tion.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

Workload (% of the total system capacity)

SQLB
Mariposa-like

Capacity based

(b) Providers may leave bydissatisfac-
tion or starvation.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

Workload (% of the total system capacity)

SQLB
Mariposa-like

Capacity based

(c) Providers may leave bydissatisfac-
tion, starvation, or overutilization.

Figure 2.6 – Impact on performance of providers’ departure.

Finally, Figure 2.5(f) shows the ensured response times in these environments (with captive partic-
ipants). As is conventional, response time is defined as the elapsed time from the moment that a query
q is issued to the moment thatq.c receives the response ofq. As expected, theCapacity based method
outperforms the two others. However, even ifSbQA takes into account the participants’ intentions, it
only degrades performance by a factor of1.4 in average whileMariposa-likedoes so by a factor of3 !

All above results show thatCapacity based may severely suffer from providers’ departures by
dissatisfaction, whileMariposa-likemay also suffer from providers’ departures by query starvation or
overutilization. Furthermore, above results demonstratethe SbQA’s self-adaptability to changes in the
participants’ satisfaction and to the workload. This feature makes our proposal highly suitable for au-
tonomous environments. Furthermore, as concluding remark, we can say that even if not designed for
environments where participants are captive,SbQA ensures quite good response times and pays attention
to the quality of results and queries that consumers and providers get from the system, respectively.

2.6.3.2 Dealing with Autonomy

To validate our measurements and intuitions of previous section, we also ran several experimental
simulations where participants are given theautonomyto leave the system. Our main goal, in this section,
is to study the reasons by which providers leave the system and evaluate the impact on performance that
such departures may have. We evaluate the ensured response times by the three methods in autonomous
environments and compare it with those of the captive environments (see Figure 2.5(f)).

To do so, we have to set the thresholds under, or over, which a participant decides to leave the system.
To avoid any suspicion on the choice of such thresholds and tobe fair with baseline methods, we assume
that participants support high degrees of dissatisfaction, query starvation, and overutilization. Thus, a
consumer leaves the system, by dissatisfaction, if its satisfaction is smaller than its adequation, i.e. the
allocation method penalizes it. A provider leaves the system by
• dissatisfaction, if its satisfaction value is0.15 smaller than its adequation,
• query starvation, if its intention-based profit,π, is smaller than0.2 in a period of2 minutes, i.e.

the minimal intention-based profitstarv of a provider is0.2 (Equation 1.4), and
• overutilization, if its utilization is greater than220% of its optimal utilization, where the optimal

utilization of a provider is0.8 when the workload is80% of the total system capacity.
We ran a first series of experiments with different workloadswhere providers are allowed to leave

the system by dissatisfaction only (see Figure 2.6(a)). We can see that our approach outperforms both

36 CHAPITRE 2 — Satisfaction-based Query Allocation

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

D
e

p
a

rt
u

re
s

P
e

rc
e

n
t

Workload (% of the system capacity)

SQLB
Mariposa-like

Capacity based

(a) Number of providers’ departures.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

D
e

p
a

rt
u

re
s

P
e

rc
e

n
t

Workload (% of the system capacity)

SQLB
Mariposa-like

Capacity based

(b) Number of consumers’ departures.

Figure 2.7 – Participants’ departures.

Capacity based andMariposa-likebecause it better satisfies providers thanCapacity based, and better
ensuresqlb in the system thanMariposa-like. Recall that in previous section we note thatMariposa-like
tends to overutilize some providers (those that are the mostadapted to the incoming queries). This is
why, even ifMariposa-likebetter satisfies providers thanCapacity based (see Figure 2.4(b)), it ensures
higher response times thanCapacity based.

A second series of experiments allows providers to leave thesystem by dissatisfaction or starvation.
A provider might quit the system by starvation e.g. when it simply does not obtain the queries that it needs
to survive. Figure 2.6(b) illustrates these results. We observe again thatSbQA significantly outperforms
the other two methods for all workloads and that its performance is almost the same than last series of
experiments, which means thatSbQA generally does not suffer from starvation departures. Furthermore,
we can see thatCapacity based better performs thanMariposa-likebecause it better balances the query
load thanMariposa-like. As previous series of experiments, this is becauseCapacity based ensures a
betterqlb in the system.

Also, we run a series of experiments where providers are allowed to leave the system by dissatisfac-
tion, starvation, or overutilization. A provider may quit the system by overutilization if this implies for
example a loss of business for it, e.g. when overutilizationdeteriorates the quality of service provided by
a provider and consumers are interested in good quality of services. This results are illustrated by Fig-
ure 2.6(c). We observe that whileSbQA andMariposa-likedegrade their performance only by a factor
of 1.4 in average (w.r.t. Figure 2.5(f)),Capacity based does it by a factor of3.5 ! Figure 2.7(a) shows
the number of provider’s departures with the three methods.We observe that, except for a workload of
20%,Capacity based andMariposa-likelose almost all the providers for all workloads. Note thatSbQA
only loses28% of providers in average ! This demonstrates the high efficiency of SbQA in autonomous
environments.

We show, in Table 2.2, an analysis of providers’ reasons to leave the system when the workload is
80%. We observe that, as predicted in Section 2.6.3.1, providers leave the system withCapacity based
because of dissatisfaction, while they do so because of overutilization with Mariposa-like. Furthermore,
the providers that decide to leave in both methods are mainlythose that are the most adapted to incoming
queries and that consumers desire the most. WithSbQA, providers leave the system by dissatisfaction,
but such providers are mainly those that are low-capacity. In fact, we can see thatSbQA mainly maintains
the high-interest, high-adaptation, and high-capacity providers in the system.

Finally, Figure 2.7(b) shows the consumers’ departure by dissatisfaction with these three methods.
Again, SbQA is a clear winner with no consumer’s departures. Note that, the consumer’s departures

CHAPITRE 2 — Satisfaction-based Query Allocation 37

SbQA Capacity based Mariposa-like
low med high total low med high total low med high total

C.I.P. 1% 5% 13% 5% 16% 31% 1% 7% 11%
D P.A. 2% 9% 8% 19% 3% 34% 15% 52% 0% 15% 4% 19%

P.C. 13% 6% 0% 13% 30% 9% 5% 12% 2%
low med high total low med high total low med high total

C.I.P. 0% 0% 4% 0% 0% 0% 0% 2% 6%
S P.A. 4% 0% 0% 4% 0% 0% 0% 0% 3% 3% 2% 8%

P.C. 2% 2% 0% 0% 0% 0% 3% 5% 0%
low med high total low med high total low med high total

C.I.P. 0% 0% 6% 0% 0% 38% 0% 0% 65%
O P.A. 0% 3% 3% 6% 3% 8% 27% 38% 1% 15% 49% 65%

P.C. 1% 4% 1% 0% 18% 20% 0% 30% 35%

Table 2.2 – Reasons of the provider’s departures for a workload of 80% of the total system capacity.
[C.I.P. stands for Consumer Interest to Providers,P.A. stands for Provider’s Adequation, andP.C.
stands for Provider’s Capacity. And, the providers’ departure by dissatisfaction, query starvation, and
overutilization are given by rowsD, S, andO, respectively.]

have also a direct impact on performance since the less the incoming queries, the less the chances for
satisfying providers.

2.6.3.3 Adaptability to Participants’ Interests

Our objective in this section is to study how wellSbQA adapts to different participants’intentions.
With this in mind, we consider again captive environments such as in Section 2.6.3.1. For simplicity,
we evaluate providers with two different intentions : thosethat are only interested in their preferences
(the preference-based case), i.e. the providers’ preferences denote their intentions, and those that are
only interested in their load (theutilization-based case), i.e. providers compute their intentions based
on their utilization. Consumers work out their intentions regarding the providers’ capacity to perform
queries, such as in previous sections. We compare results ofSbQA in both cases with those obtained in
the normal case, i.e. when providers make a balance between their preferences and utilization to compute
their intentions, such as in Section 2.6.3.1.

Figure 2.8 shows the results of these experiments with a workload range from30 to 100% of the total
system capacity. We can observe in Figures 2.8(a) and 2.8(b)that the results are strongly related to the
participants’ intentions. We can observe in Figure 2.8(a) that, as expected, providers are more satisfied
in the preference-based case than in the utilization-basedcase. But, contrary to the expected, providers
are less satisfied in the preference-based case than in the normal case. During our experimentations,
we observed that those providers with high-adaptation tendto monopolize the queries, which causes
dissatisfaction to the medium and low- adaptation providers. This phenomenon does not occur in the
normal case becauseSbQA also considers the providers’ utilization. This is why providers are in average
less satisfied in the preference-based case than in the normal case. However, since in the normal case
providers pay more attention to their utilization as the workload increases, providers have the same
degree of satisfaction, for high workloads, in both preference-based and normal cases.

In Figure 2.8(b), we observe that consumers have the same degree of satisfaction in the three cases,

38 CHAPITRE 2 — Satisfaction-based Query Allocation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000

A
llo

c
.
S

a
t.
 M

e
a

n
, µ

(δ
a

s,
 P

)

Time (seconds)

normal case
utilization-based case
preference-based case

(a) Providers’ allocation satisfaction.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000

A
llo

c
.
S

a
t.
 M

e
a

n
, µ

(δ
a

s,
 C

)

Time (seconds)

normal case
utilization-based case
preference-based case

(b) Consumers’ allocation satisfaction.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2000 4000 6000 8000 10000

U
ti
liz

a
ti
o

n
 M

e
a

n
, µ

(U
t,
 P

)

Time (seconds)

normal case
utilization-based case
preference-based case

(c) Query load mean.

Figure 2.8 – Quality results for a workload range from30 to 100% of the total system capacity when par-
ticipants are captive and for three kinds of providers :(i) when they are interested only in their preferences
(the preference-based case), (ii) when they are just interested in their utilization (theutilization-based
case), and(iii) when their utilization is as important as their preferences(thenormal case).

but we can observe, in the preference-based case, a very small gain for high workloads. This is because
for high workloads, providers give more importance to theirutilization in both utilization-based and
normal cases. Hence, for high workloads, the query allocation pays more attention to providers and thus
the consumers’ satisfaction decreases in these both cases.

Now, concerningqlb, SbQA performs well in the utilization-based and normal cases while, in the
preference-based case,SbQA significantly degrades the providers’ utilization becauseproviders have no
consideration forqlb. On the other side, observe that, in the utilization-based case,SbQA follows the
behavior of theCapacity based approach (see Figures 2.8(a) and 2.8(c)) with regards to theproviders’
results, but it is much better from a consumer point of view.

All above results allow us to conclude thatSbQA allows participants to obtain from the system what
they want and not what the system considers relevant for them. In other words, our results demonstrate
that SbQA ensures good levels of satisfaction as far as the system is adequate to participants andvice
versa. Thus, if the participants correctly work out their intentions, SbQA allows them to reach their
intentions in the system.

2.6.3.4 Adaptability to Applications

We finally discuss how to adaptSbQA to different applications by varying the parameter ofKnBest.
Without any loss of generality, we assume in this thesis thatthe mediator wants to regulate the system
concerningqlb so as to ensure good response times. To better illustrate theeffects of varying parameter
kn (i.e. the regulation of the system concerningqlb), we consider two kinds of providers : those that do
not have any consideration for their utilization when they compute their intentions (the preference-based
case), and those that make a balance of their preferences andtheir utilization to compute their intentions
(the normal case).

For simplicity, we consider only two different applications in this work :(i) one where ensuring the
performance of the system is mandatory such as in distributed databases and(ii) other where participants’
satisfaction is mandatory and some level of system’s performance is desired such as ine-commercesce-
narios. For the first kind of application, the mediator should performqlb while guaranteeing interesting
results and queries to participants because of their autonomy. For the second kind of application, the
mediator’s priority is to satisfy providers while ensuringan acceptable system performance. To do so,

CHAPITRE 2 — Satisfaction-based Query Allocation 39

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000

A
llo

c
.
S

a
t.
 M

e
a

n
, µ

(δ
a

s,
 P

)

Time (seconds)

kn=k’
kn=2

kn=10

(a) Providers’ allocation satisfaction
mean.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000

A
llo

c
.
S

a
t.
 M

e
a

n
, µ

(δ
a

s,
 C

)
Time (seconds)

kn=k’
kn=2

kn=10

(b) Consumers’ allocation satisfaction
mean.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2000 4000 6000 8000 10000

U
ti
liz

a
ti
o

n
 M

e
a

n
, µ

(U
t,
 P

)

Time (seconds)

kn=k’
kn=2

kn=10

(c) Query load mean.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000

A
llo

c
.
S

a
t.
 M

e
a

n
, µ

(δ
a

s,
 P

)

Time (seconds)

kn=k’
kn=2

kn=10

(d) Providers’ allocation satisfaction
mean.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000

A
llo

c
.
S

a
t.
 M

e
a

n
, µ

(δ
a

s,
 C

)

Time (seconds)

kn=k’
kn=2

kn=10

(e) Consumers’ allocation satisfaction
mean.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2000 4000 6000 8000 10000

U
ti
liz

a
ti
o

n
 M

e
a

n
, µ

(U
t,
 P

)
Time (seconds)

kn=k’
kn=2

kn=10

(f) Query load mean.

Figure 2.9 – Quality results for aworkload range from30 to 100% of the total system capacity when
participants arecaptiveand : (a)-(c) providers compute their intentions based on their preferences and
utilization (thenormal case) and (d)-(f) providers compute their intentions based on their preferences
(thepreference-based case).

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

sp
o

n
se

 T
im

e
 (

se
co

n
d

s)

Workload (% of the total system capacity)

kn=k’
kn=2

kn=10

(a) when providers’ preferences denote their in-
tentions (thepreference-based case).

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

sp
o

n
se

 T
im

e
 (

se
co

n
d

s)

Workload (% of the total system capacity)

kn=k’
kn=2

kn=10

(b) when providers make a balance between
their preferences and utilization to compute
their intentions (thenormal case).

Figure 2.10 – Performance results with captive participants.

the mediator sets parameterkn = 2 and it setskn = 10 for the first kind of application and the second
one, respectively.

40 CHAPITRE 2 — Satisfaction-based Query Allocation

To clearly see the impact of parameterkn, we compare both results (i.e. whenkn = 2 andkn = 10)
with the case where the mediator has no control to regulate the system (i.e. whenkn = k′). Notice that
the previous sections assumed thatkn = k′, thus the results ofSbQA in the normal and preference-based
cases that we present in this section are the same as those we presented in Sections 2.6.3.1 and 2.6.3.3,
respectively. We present them again as references for both two otherkn sizes (kn = 2 andkn = 10).

We can see in Figures 2.9(a) and 2.9(d) that for all three differentkn values and both normal and
preference-based cases, providers are generally satisfiedwith the job done bySbQA, which is not obvious
in applications whenqlb is the most important (e.g. thekn = 2 case). Notice that providers are more
satisfied in the normal case as thekn value increases (see Figure 2.9(a)), but this is not the casefor
providers in the preference-based case whenkn = k′ andkn = 10 (see Figure 2.9(d)). This is because,
as noted in the previous section, the high-adaptation providers tends to monopolize the queries when
they compute their intentions based only on their preferences, i.e. the preference-based case. But, when
the mediator regulates the system with respect toqlb, it better distributes queries among providers and
thus avoids, in the preference-based case, the query starvation in the less adapted providers (i.e. in the
providers with medium and low-adaptation). Of course, whenkn takes small values the providers are
less satisfied (which is the case ofkn = 2) because the mediator pays less attention to the providers’
intentions. In these cases, however, even if the objective is the same for both,SbQA performs much better
than theCapacity based approach because it satisfies both consumers and providers (see Figures 2.4(c)
and 2.4(e) forCapacity based). In fact, we can observe in Figures 2.9(b) and 2.9(e) that the regulation
of the system has almost no impact on the consumers, which areequally satisfied for allkn values.

Concerningqlb, we can see in Figures 2.9(c) and 2.9(f) that the mediator canensure goodqlb even if
providers do not have any consideration to their utilization. Obviously, the smaller thekn value, the better
the ensuredqlb in the system. In these results, it is worth noting that, evenwhen ensuring participants’
satisfaction is the most important in an application (whenkn = k′), the way in whichSbQA computes
the providers’ score allows it to ensure an acceptableqlb in the system as far as providers take care of
their load, e.g. in the normal case (see Figure 2.9(c)). Thisis not the case for the preference-based case,
whenkn = k′, even if providers’ preferences are the same (see Figure 2.9(f)). But, by setting smallkn

values,SbQA can ensure good response times for consumers in both cases, no matter how providers
compute their intentions.

The ensured response times with differentkn values are shown by Figures 2.10(a) and 2.10(b). We
can observe that, as expected, the mediator can ensure good response times, even if providers are not
interested in, by playing with parameterkn (thekn = 2 andkn = 10 results). This is not the case when
the mediator does not regulate the system and providers do not care about the system performance (the
kn = k′ results for the preference-based case).

The results in this section demonstrate that with smallkn values, one can adaptSbQA to applications
where the mediator needs to regulate the system regarding a given predefined function (qlb in this work)
without mattering how participants compute their intentions. With highkn values, one can adaptSbQA
to applications where the mediator has to meet the participants’ intentions.

2.7 Related Work

The query allocation problem, which appears as a subproblemof query processing [Kos00], is very
general and is addressed in many domains such as distributeddatabases, networking systems, grid sys-
tems, and multi-agent systems. The assumptions and techniques to allocate queries often differ depend-
ing on the context and the applications’ goals. To the best ofour knowledge, the problem of allocating

CHAPITRE 2 — Satisfaction-based Query Allocation 41

queries by consideringqlb and the participants’ intentions has not received much attention and is still
an open field. In the following, we discuss five main domain related to our query allocation framework :
data mediators, multi-agent, web services, load balancing, and economic approaches.

2.7.1 Data Mediator Systems

Over the last years, data mediator systems [Wie92] have beenaccepted as a viable approach for in-
tegrating heterogeneous and distributed providers. Data mediators allow consumers to query different
providers that are typically wrapped to provide an uniform interface to a mediator. Two of the most
prominent approaches are TSIMMIS [GMPQ+97] and Information Manifold [LRO96]. In data mediator
systems, the mediator allocates queries to providers and integrates results for consumers, much like dis-
tributed database systems [ÖV99]. Nevertheless, data mediators require some global information such
as global schemas [TRV98], which is difficult to maintain in dynamic systems because source schemas
change frequently.SbQA does not require any global knowledge, but it does not address the data inte-
gration problem.

2.7.2 Multi-Agents

Multi-agent systems (MAS) focuses on systems in which many intelligent and autonomous agents
interact with each other [Syc98]. Agents can share a common goal or can pursue their own interests,
i.e. they can interact in a cooperative or selfish way. MASs have been used in recent years for creating
applications in dynamic, very large distributed environments, such as the Internet. In particular, MASs are
frequently used if there are different organizations with different goals and proprietary information want
to interact with each other. In MASs the query allocation (known as task allocation) is the problem of
assigning responsibility and problem-solving resources to an agent. In this context, the MAS designer can
make the assignment of a set of queries, but this approach is inflexible and inadequate for environments
with a high degree of dynamism and openness.

Davis and Smith[DS83] focused on the issue of flexible query allocation to multiple agents, whose
work resulted in the well-knownContract Net Protocol(CNP) [Smi81]. Given a query to allocate, this
protocol consists in four interaction phases, involving two roles :contractorandbidder. First, the con-
tractor agent announces the query (or set of queries), to be performed, to its neighbors (the bidders).
Second, the bidder agent replies its intention, via a bid, toperform the query (or each query). Third,
the contractor agent collects all bids from bidder agents, compares the collected bids, selects the best of
them according to its own criteria, and allocate the query accordingly. Finally, the selected bidder agent
confirms its intention to get such a query. This protocol has three great limitations :(i) it cannot detect
or resolve conflicts,(ii) it is network communication intensive, and(iii) contractors do not inform bidder
agents of the query allocation result (only the selected bidder agent is informed).

Improvements to CNP have been proposed and we briefly review some of these here.Sandholm[San93]
proposes the TRACONET system, which uses a variant of the classical CNP to allow negotiation over
the exchange of bundles of resources.Sandholm and Lesser[SL95] present ways of varying the stage of
commitment and how to implement varying levels of commitment. This allows a more flexible local de-
liberation a a wider variety of negotiation risk by allowingagents to back out of contracts.Sycara[Syc97]
presents a model based on the financial option pricing theoryto achieve flexible contracting schemes in
uncertain environments. This model allows studying contingent contracts involving multiple contractors
and bidders in an uncertain environment.Souza et al.[SRN03] present a new version of the CNP where
bidders first propagate constraints between them so as to guarantee the coherence of different operations

42 CHAPITRE 2 — Satisfaction-based Query Allocation

related to the same task (query).Aknine et al.[APS04] point out that when many contractors negotiate
simultaneously with many contractors, CNP can lead to unsatisfactory results. Thus, they introduce the
pre-bidding and pre-assignment phases before the bidding and assignment phases, respectively, of the
CNP.

Even the above works, CNP remains a simple protocol and thus there is no control to regulate the
system. Furthermore, it is generally assumed a rather smallnumber of agents and a detailed description
of the conditions of execution. To overcome this difficulty,several approaches of middle-agents have
been defined in the literature [DSW97, GKD97, NBN99, NFK+00]. A classical task of a middle-agent
is to locate and bind bidders (providers) with contractors (consumers) in dynamic environments. The
basic mediation process done by middle-agents has the following form. First, providers register their
capabilities to a middle-agent, which stores these advertisements in a local register. Languages to ad-
vertise capabilities have been defined, e.g. [?]. Second, consumers send their queries to a middle-agent,
which match it with its local register. Finally, the middle-agent returns the set of relevant providers or
the result of the query treatment. Most of the work in this context have focused on the matchmaking
problem [AEK+00, KH95,?]. A survey can be found in [KS01]. All these works are efficient but the
number of selected providers may remain too large.

Therefore, some works have investigated the possibility ofreducing the list of selected providers.
Zhang and Zhang[ZZ02] propose to perform classical matchmaking and then refine the result list of rel-
evant providers by considering the providers’ quality. InOno et al.[ONK+03], the middle-agent collects
and maintains private “word-of-mouth” trust information as well as capabilities from each agent and uses
this information for personalized trust-based mediation for each agent. This mediation is performed by
the middle-agent through mediation protocols and a trust propagation mechanism. However, the partici-
pants’intentionsare not considered by these works, which does not allow a participant to have an active
participation in the selection process.

D. Bernsteinet al. [BFLZ03] propose an adaptive approach to allocate queries,in file sharing-
systems, based on the machine learning methodology. In thisapproach, a consumer can perform partial
downloads from providers before finally settling on one. This approach allows the consumers to improve
response times by aborting bad download attempts until an acceptable provider is discovered. However,
the authors inherently assume that consumers are only interested in response times and providers have
no interests to perform queries.Gorobets and al.[GN04] propose uses an economic approach to model
dynamic systems of interacting agents. In this approach, a consumer sends queries to providers according
to its most preferences, i.e. the most preferred providers are first contacted by a consumer. A provider is
free to accept or reject a query in accordance to its preferences. If one query is rejected, the consumer
sends it to less preferred providers according to its ordering. This is repeated until the query is accepted
or the tolerance threshold is reached. In this latter case, the consumer carries out the query itself. After
this matching phase, the selected provider performs the query and delivers results to the consumer.

Nevertheless, [GN04] cannot adequately consider both consumer’s and provider’s preferences. It may
lead to two opposite cases : a consumer-centric or a provider-centric case. On the one hand, the consumer-
centric case occurs when the first consumer’s preferred provider accepts to deal with the query. In this
case, the proposed approach may discard more interested providers than the the selected and thus leading
to their dissatisfaction. On the other hand, the provider-centric case occurs when no provider wants to
deal with the query, which may lead to the consumer dissatisfaction.

CHAPITRE 2 — Satisfaction-based Query Allocation 43

Figure 2.11 – Cycle of a Web service invocation.

2.7.3 Web Services

Web services [web] are Internet-based, distributed modular applications that provide standard inter-
faces and communication protocols aiming at efficient and effective service integration. They are rapidly
becoming a standard for sharing data and functionality among loosely-coupled, heterogeneous systems
and started to show their usefulness in wide variety of domains such as business-to-business integration,
e-sourcing, and business process management. Thus, many enterprises are moving towards aservice ori-
ented architectureby putting their databases behind Web services, thereby providing a well-documented,
inter-operable method of interacting with their data.

Figure 2.11 illustrates the way in which a Web service is typically invoked by a consumer. Web
services (providers) advertise their capabilities to a registry, such as theUniversal Description Discovery
and Integration(UDDI) [udd], to make itself known and available to consumers. UDDI specification
is a standard for service discovery and is designed to function in a way similar to yellow pages, where
business and services can be looked up by name or by a standardservice taxonomy. The advertisement of
Web services is a an essential precondition for a transaction to take place. The registry directory can be
hosted and managed by a trusted entity (centralized approach) or by several Web services (in a peer-to-
peer fashion) [ACKM04]. To locate a Web service, a consumer send its query to the registry, which has
to find the Web services advertisement that match the query. As a result, the consumer receives the set of
Web services that are able to deal with its query, among whichit has to select the service that it prefers.
Then, it invokes the selected Web service to process its query. To support this interaction, Web services
must declare, using e.g.Web Services Description Language(WSDL) [CCMW], what information it
needs from the consumer, in what order, and in which format itexpects this information.

As Web services may change frequently or consumers requirements and preferences may also change,
Web services selection is a key challenge. A typical way to doso is that consumers analyze each service
description and select the service that more closely fits itsneeds. Nevertheless, given the great number
and diversity of services, the selection of the right service becomes a hard task for consumers. Consid-
erable effort has focused on the semantic description of Webservices and then a simple solution may be
to select those Web services having the highest semantic score [MSZ01, PSK03, wsm]. However, this
way to select Web services does not always fit the consumers’ preferences. Thus, adequate techniques
for dynamic Web service selection is still needed.

To address this problem, several Web service discovery mechanisms have been proposed with the aim
of narrowing down the Web service selection based onquality of service(QoS for short).Maximilien and
Singh[MS04a] propose an agent framework coupled with QoS for dynamic Web services selection. QoS
is collaboratively determined by participants via the agent framework. Ran [Ran03] extends the tradi-
tional Web service discovery model by adding a new role called aCertifier, which verifies the advertised
QoS of a Web service before its registration. Consumers verify the advertised QoS with the Certifier be-
fore invoking a Web service.Liu et al. [LNZ04] present an extensible and flexible QoS-based selection

44 CHAPITRE 2 — Satisfaction-based Query Allocation

model that takes into account the feedback from users as wellas other business related criteria. All these
works help consumers to have satisfactory transactions with the Web services.

Reputation mechanisms have been also proposed to narrow down the Web service selection.Ma-
jithia et al. [MARW04] propose a framework for reputation-based semantic Web service discovery.
This framework supports different contexts that either refer to particular application or particular types
of users. A weight is attached to each particular context, which reflects its importance to a particular
set of users.Maximilien and Singh[MS04b] propose a concrete framework for Web service selection
that considers the consumers’ preferences and Web services’ reputation. Their approach is based on
an architecture and programming model in which applications and services are represented by agents.
Works by [DD04, MP05] propose a Web service selection mechanism based on the consumers’ past-
experiences. A consumer report their experiences with Web services to global site, which is consulted
by other consumers before selecting a Web service.Jurca et al.[JFB07] propose a reputation manager
based on incentives for the clients to report honestly.

Moreover, Web service selection mechanisms based on other criteria than QoS and reputation have
been proposed by several groups. For example,Bonatti and Festa[BF05] formalize three kinds of optimal
service selection problems based on cost minimization and on two different quality maximization criteria.
They also study the complexity of and propose suboptimal solutions for these three problems.Balke and
Wagner[BW03] propose an algorithm to reduce the set of discovered Web services by considering the
consumers’ profile (preferences). Given a consumer’s queryand setA of discovered services (those that
can deal with the query), this algorithm proceeds in four phases. First, it groups all discovered services
by signature parameters and discards those that do not allows querying with all consumer’s query terms
(resulting setA′). Second, it obtains the service parameters that are not covered by the query. If existent,
it gets the preferred values for these obtained parameters.Third, it expands the query with the preferred
values and queries Web services in setA′. Finally, it collects results of all services inA′ and orders by
their importance.

Nevertheless, all of the aforementioned approaches consider providers as captive values and thus
providers cannot express their preferences (or intentions) to perform queries.Lamparter et al.[LASG07]
present a selection model that considers both consumers andproviders preferences. This model is based
on service configurations and associated preferences, which are both modeled in a formal way by at-
taching price information to property values. In this model, consumers and Web services show their
preferences to perform queries via arequestand offer, respectively. Given a query, the Web service
selection mechanism obtains the utility of a Web service by computing the difference between the con-
sumer’s request and the Web service’s offer. Then, it selects the Web service that maximizes such an
utility. However, by adding offers and requests to work out the utility, a request (resp. an offer) may
neutralize the offer (the request) whereby the selection mechanism does not correctly consider the offer
(the request), which may lead to the dissatisfaction of the consumer (the Web service). Furthermore, Web
services cannot express their preferences towards consumers.

2.7.4 Load Balancing Approaches

Query Load balancing is the act of distributing query load among a set of providers as evenly as
possible. Generally speaking, a query load balancing method is composed of two main parts, aload
metricand aload policy. The former is an estimator of the level of load or utilization of a given provider
and the latter is the uses the load metric to make query load balancing decisions. For example, the load
metric would be the number of queries in the run queue of providers and the load policy would be to send
incoming queries to those providers with the smallest load.Since the load balancing literature is quite

CHAPITRE 2 — Satisfaction-based Query Allocation 45

extensive, we only describe the most relevant to our work.
According to their load metric, we can classify qlb methods into two approaches :load basedand

capacity based. Generally, in load based methods [ABKU99, GBGM04], load isdefined as the number of
queries that providers have in their run queue. These methods usually allocate queries to those providers
with the highest inverse probability of their reported load. However, load based methods are not adequate
for heterogeneous systems because they inherently assume that providers and queries are homogeneous.
That is, unlike capacity based methods, they assume that providers have the same capacities to perform
queries and that queries require the same computational resources to be treated by providers. Capacity
based methods [MTS90, RM95, RB06, SKS92] already take into account such heterogeneity by defining
providers’ load (a.k.a. utilization) as the maximum query rate that a provider can treat. Then, a common
approach is to allocate each incoming query to providers that have the highest available capacity, i.e. the
least utilized, among a set of relevant providers. All theseworks mainly model and address the problem of
minimizing the providers’ load or utilization for improving system performance, such as short response
times and high throughput.

We can also classify qlb methods regarding their load policy. In this classification, two approaches
are well known : the shortest expected delay (sed) and the greedy throughput (gt) policies [KK92, WS,
Zho88]. On the one hand, thesedpolicy attempts to minimize response times by always selecting those
providers that faster perform queries at a given time. On theother hand, thegt policy strive to max-
imize the expected number of queries. However, unlikeSbQA, all above approaches do not consider
participants’ intentions, which drastically penalize participants’ autonomy as seen in Chapter 2.6.

Several methods have been proposed for providers selection[BFLZ03, QL07, RB03] with the as-
sumption that consumers selfishly want to choose providers that allow them to get results with short
response times. But, they do not consider providers’ intentions. Recently, many systems have been built
on top ofdistributed hash tables(DHTs) [RFH+01, SMLN+03, RD01] and several solutions have been
proposed to address load balancing problem [AHKV03, AMZ03,DW01]. Nevertheless, they do not
consider participants’ intentions.

2.7.5 Economic Approaches

Economic approaches can claim to take into account the participants’ intentions and have been shown
to provide efficient query allocation in heterogeneous systems [FYN88, SAL+96]. A survey of economic
models for various aspects of distributed system is presented in [FNSY96].

Mariposa [SAL+96] is one of the first systems to deal with the query allocation problem in distributed
information systems using abidding process. In Mariposa, all the incoming queries are processed by a
broker sitethat requests providers forbids. Providers bid for acquiring queries based on a local bulletin
board. Then, the broker site selects a set of bids that has an aggregate price and delay under a bid curve
provided by the consumer. Mariposa ensures a crude form of load balancing by modifying the providers’
bid with the providers’ load. Nevertheless, our experimentations show that, in some cases, providers
suffer from overutilization. Besides, queries may not be treated even if providers exist in the system.
This leads to a certain domination of the providers’ intentions over the consumers’ intentions.

In [PI06], the authors focus on the optimization algorithmsfor buyingandselling query answers,
and the negotiation strategy. Their query trading algorithm runs iteratively, progressively selecting the
best execution plan. At each iteration, the buyer sends requests for bids, for a set of queries, and sellers
reply with offers (bids) for dealing with them. Then, the buyer finds the best possible execution plan
based on the offers it received. These actions are iterated until either the found execution plan is not
better than the plan found in the previous iteration or the set of queries has not been modified (i.e. there

46 CHAPITRE 2 — Satisfaction-based Query Allocation

is no new subqueries). This approach uses some kind of bargaining between the buyer and the sellers,
but with different queries at each iteration. However, thisway of dealing with subqueries optimization
is orthogonal to our proposal and one may combine them to improve performance. In [LCLV07], the
authors propose an economicflexible mediationapproach that allocates queries by taking into account
the providers’quality (given by consumers) and the providers’ bids. In contrast toour approach, the
authors inherently assume that participants are captive. In addition, their proposed economic model is
complementary to our proposal and one can combine them to obtain an economic version ofSbQA.

2.8 Chapter Summary

We considered large-scale distributed information systems where participants are free to leave the
system at any time and have special interests towards queries. In this context, it is crucial to consider
the participants’intentionsto allocate and perform queries so that their intentions, response times, and
system capacity are ensured. We proposed, in this chapter, ageneral and complete framework, called
SbQA, to allocate queries among providers by considering the participants’ intentions in addition to
query load balancing(qlb). The originality ofSbQA is to perform all query demand while satisfying
participants’ intentions. In summary, our main contributions are the following.
• We proposed a manner to compute consumers’ intentions that considers their preferences and

providers’ reputations. The particularity of this approach is that it affords consumers the flexibility
to trade their preferences for providers’ reputation in accordance to their experience with providers.

• We proposed a manner to compute providers’ intentions, which allows providers to trade their
preferences for their utilization while keeping their strategic information private. The main idea
behind this approach is that providers be sensitive to workload variations so that they pay more
attention to their utilization when they becomes overutilized.

• We proposed a query mediation mechanism that considers bothconsumers’ and providers’ inten-
tions. The four strong points of this proposal is that :
– It allows a mediator to trade consumers’ intentions for providers’ intentions according to their

satisfaction.
– It strives to balance queries at runtime via the participants’ satisfaction, thus reducingstarvation.
– It affords a mediator the flexibility to regulate the system with respect to some predefined func-

tion and to adapt the query allocation process to the kinds ofapplication.
– It can ensure good levels of satisfaction as far as the systemis adequate to participants andvice

versa, which allows participants to reach their intentions in thesystem whether they correctly
work out their intentions and preferences.

• We evaluated and comparedSbQA with two baseline query allocation methods (Capacity based
andMariposa-like), in two kinds of environments :captiveandautonomous. We showed through
experimentation that, by considering together theqlb and satisfaction of participants,SbQA sig-
nificantly outperforms both baseline methods. We observed that participants are, in general, very
satisfied withSbQA andMariposa-like, which is not the case forCapacity based that suffers from
several providers’ departures due to dissatisfaction. However,Mariposa-likehas serious problems
for balancing queries correctly. On the one hand, we showed that, unlike the baseline methods,
SbQA maintains thehigh-interest,high-adaptation, andhigh-capacity providers in the system. On
the other hand, the results show that while baseline methodslose more than20% of consumers (for
all workloads),SbQA has no consumer’s departures ! We showed the self-adaptability of SbQA to
the intentions and satisfaction of participants. We also discussed its adaptability to different kinds

CHAPITRE 2 — Satisfaction-based Query Allocation 47

of applications. All these results demonstrate thatSbQA can scale up with autonomous partici-
pants, whileCapacity based andMariposa-likecannot.

Future Work In this chapter, we stressed the importance of studying manydifferent ways in which
participants can compute their preferences and intentions. We desire to study this in a future work so as to
understand which can be the best strategy to adopt by a participant given its context and the application.

CHAPTER3
Scaling Up Query

Allocation
In large-scale, heterogeneous information systems, mediators are widely used to perform query al-

location [ÖV99]. A set of participants (consumers and providers) with at least one of them playing the
role of mediator form aVirtual Organization(VO). The main function of a mediator is to allocate each
incoming query to providers that can answer it. As noted so far, we consider that participants may leave a
mediator at will and may express their intentions to allocate and perform queries. In these environments,
it is important to consider participants’ intentions to avoid they leave a mediator by dissatisfaction. In
previous chapter we presented a query allocation framework, calledSbQA, which considers intentions
and current satisfaction of participants. We experimentally demonstrated thatSbQA has very good sys-
tem performance when performing the query allocation task in distributed systems with a single mediator
(mono-mediator VO). However, a mediator may quickly becomea single point of failure for its VO as
well as a potential performance and scalability bottleneck. This is why it is crucial to have more than one
site that cooperatively play the role of mediator. In this case,SbQA does not scale well because it con-
siders current participants’ satisfaction, which a mediator can no longer compute itself as it also depends
on the query allocations made by other mediators. Thus, whenallocating a query, a mediator should keep
informed all other mediators of the mediation results to update participants’ satisfaction. This tends to
increase significantly the network traffic.

A way to avoid such a traffic overhead between mediators is that providers express their interest for
queries through “monetary” bids. Thus, the mediators no longer consider the providers’ satisfaction but
only their bids. This requires introducing some “virtual” money to be used by providers and mediators.
In this case, virtual money is totally disconnected from thereal money we use in current life. AsSbQA
is not designed to deal with bids, this also requires to consider other methods able to consider bids
and possibly other elements to allocate queries. Several works use microeconomic methods to allocate
queries or resources in distributed systems [DVR+07, LCLV07, PI07, SAL+96]. But, to our knowledge,
no microeconomic method has ever been evaluated through a measure that is outside the microeconomic
scope like satisfaction.

Therefore, in this chapter, our goal is twofold. First, withthe aim of scaling query allocation up to
several mediators, we want to adaptSbQA to systems with several mediators (multi-mediator) so that
it ensures as good system performance as in mono-mediator systems, i.e. as previous chapter. Second,
evaluate by the first time microeconomic methods from a satisfaction point of view. The content of
this chapter is based on our material published in [QRLCV07a, QRLCV07b, QRLCV08]. Our main
contributions are the following :
• We discuss the challenges of using virtual money as a means ofregulation in the query allocation

process and make precise how the virtual money circulates within the system.
• We proposeEconomic Satisfaction-based Query Allocationmethod ($bQA, for short). Generally

speaking,$bQA is SbQA using virtual money. In particular,

49

50 CHAPITRE 3 — Scaling Up Query Allocation

– We define a way in which a provider computes its bid by considering its preferences, its sat-
isfaction, its current utilization, and its current virtual money balance. Also, we propose three
strategies that allows a provider to bid for queries in the presence of several mediators.

– We define how a mediator allocates queries by considering both consumers’ intentions and
providers’ bids. And, we define how a mediator should invoiceproviders.

– We state the communication cost of$bQA and demonstrate that its additional cost with respect
to SbQA is not high.

• We analytically demonstrate that$bQA allows a VO to scale up to several mediators with no
additional network cost with respect to a VO with a single mediator.

• Finally, from a methodological point of view, it is important to compare different microeconomic
methods (included$bQA) with a non-microeconomic method using satisfaction as a “money in-
dependent” measure.

The rest of this chapter is organized as follows. We state in Section 3.1 the problem we address. In
Section 3.2, we stress the challenges of using virtual moneyas a means of regulation in the query alloca-
tion process and make precise the flow of virtual money. As part of the$bQA method, in Section 3.3, we
define a way to compute providers’ bids and propose three strategies that allow a provider to bid in the
presence of several mediators. And, in Section 3.4, we present a mediation mechanism to allocate queries
by considering both consumers’ intentions and providers’ bids, and present a way to invoice providers.
In Section 3.5, we analytically demonstrate that$bQA can easily scale up to several mediators. In Sec-
tion 3.6, we compare$bQA with two microeconomic methods and one non-microeconomic method and
validate$bQA’s performance in multi-mediator systems. Finally, we present related work in Section 3.7
and conclude in Section 3.8.

3.1 Problem Statement

We assume a distributed system to be a setI of participants which form aVirtual Organization(VO).
Each participant of a VO can play one or more of the following roles :consumerswhich send queries ;
providerswhich answer queries ; andmediatorswhich allocate consumers’ queries to providers. The set
of participants playing the role of consumer, resp. provider and mediator, is notedC, resp.P andM . We
assume that a VO may bex-redundant, there are several mediators acting as a single one by behaving
cooperatively. The introduction of redundancy into the assignment of mediators has been proved to have
gains in performance [YGM03]. We formally define a x-redundant VO in Definition 27 and illustrate a
x-redundant VO with3 participants playing the role of mediator in Figure 3.1.

Definition 27. x-redundant VO A VO is said to bex − redundant if and only if there is a setM
(||M || > 1) of participants playing the role of mediator and each provider in P is connected to each
mediator inM .

Mediators are responsible to allocate consumers’ queries to providers and hence it is up to them to
make everything work well. Intuitively, a mediator should allocate queries so that good system perfor-
mance is ensured. If performance is linked to clear notions in distributed systems (such as load distribu-
tion and answering time), intentions and satisfaction are less usual. However, participants’ satisfaction
has a deep impact on a system general behavior, particularlywhen the participants are autonomous. In-
deed, they can decide on their own either to enter a VO with thehope of improving their lot or to leave it
because of dissatisfaction. But also, they have special interests towards queries.

Consumers formulate queries as in previous chapter, i.e. ina format abstracted as a tripleq =<
c, d, n >. Recall thatc denotes the consumer identifier that issuedq, d the task to be done, andn the

CHAPITRE 3 — Scaling Up Query Allocation 51

Figure 3.1 – A x-redundant VO with 3 mediators.

number of answers thatc wishes to obtain. Because of autonomy, a consumer may be interested in the
way its query is treated. So, it should have some intention ofhow the system allocates its queryq among
providers. Recall that those intentions are denoted by vector

−→
CIq. By convention, values are in[−1..1].

Providers are heterogeneous :(i) they have different processing capabilities and(ii) they may provide
different results, for example because they have differentprivate data. The former point means that some
providers can treat more queries per time unit than others. Theutilization of a providerp ∈ P at a given
timet, Ut(p), is defined asp’s load with respect to its capacity. In other words, function Ut(p) denotes the
total cost of the queries that have been allocated top and have not already been treated at timet. Because
of autonomy, a provider may prefer to perform some queries than others so that it fulfills its objectives.
Thus, as for a consumer, a provider is simply not satisfied when it does not get what it expects.

We demonstrate in previous Chapter that, in these environments where participants are autonomous,
it is crucial to consider participants’ intentions and satisfaction when allocating queries to avoid massive
participants’ departure from the system and hence to preserve the total system capacity. To do consider
providers’ satisfaction in x-redundant VO is challenging since a provider receives queries from different
mediators transparently and hence providers’ satisfaction depends on the query allocations made by
all mediators in the x-redundant VO. In this case,SbQA cannot perform as well as in a VO with a
single mediator because the participants’ satisfaction computed by each mediator is local and hence it is
different. A simple solution is that consumers send their current satisfaction with their queries and that
the x mediators in a x-redundant VO frequently exchange messagesto update providers’ satisfaction.
Nevertheless, these up-to-date messages considerably increase the network traffic and may hurt system
performance. Furthermore, there will be always a time interval where satisfaction is not the same at all
mediators because of network latency. Thus, we define the query allocation problem we address in this
chapter as follows.

Problem Statement Let Pq denote the set of providers that can deal with a queryq. Given a x-
redundant VO with autonomous participants, a mediatorm ∈M should allocate each incoming queryq
to a set̂Pq ⊂ Pq such that||P̂q|| = min(q.n,N) as well as good system performance and participants’
satisfaction are ensured in the long long-run with a low network cost.

3.2 Use of Virtual Money

A way to avoid the traffic overhead between mediators due to providers’ satisfaction updates is that
providers express their intentions for queries through “monetary” bids. Thus, a mediator no longer con-
siders the providers’ satisfaction but only their bids. This requires introducing some “virtual” money to

52 CHAPITRE 3 — Scaling Up Query Allocation

(a) SQLB-based (b) virtual money-based

Figure 3.2 – General system architecture. Sitem denotes the mediator,c a consumer, andp a provider.

be used by providers and mediators. In this case, virtual money is purely virtual and is totally discon-
nected from the real money we use in current life. We could speak of tokens or jetons as well. This point
has to be stressed upon for two main reasons. First, we do not focus on any particular business model :
we only use the virtual money as a means to regulate the query allocation in the system. Indeed, after
a consumer has decided which providers it chooses, it might give real moneyto them because it uses
their services. This point is far beyond the focus of this thesis. Second, when using real money, one
can assume that consumers and providers get money from elsewhere. For example, when designing an
auction mechanism for e-commerce one can assume that peoplespend the money they have earned by
working (in real life). When dealing with virtual money, onecan no longer make such assumptions. In
fact, the general architecture of the virtual money-based system is almost the same as when one does not
use virtual money (see Figure 3.2), but we must deal with the four following additional points :

1. We must make precise the way in which virtual money circulates within the system since the
regulation of the system depends on it. This is a difficult task since it is a macroeconomic concern
and hence one must have a clear idea of the global system behavior. Besides, the policy used to
regulate the virtual money flow also depends on the query allocation method.

2. Providers no longer express their intentions directly tothe mediator. Instead, they express their
intentions throughbids, which also consider their current virtual money balance aswell as their
strategy to bid. This is challenging because a provider should compute its bid so that it generally
obtains the queries it prefers and do not become overloaded,which may degrade its offered ser-
vices. But also, a provider should not spend all its current virtual-money balance in a given query
allocation so as to have chances to get interesting queries in the future.

3. A mediator must compare and select providers based on their bids instead of their intentions. But,
in our context, this selection process is challenging because of consumers’ intentions, which do
not allow a mediator to select providers based only on their bids. Furthermore, the mediator must
satisfy both consumers and providers in the long-run.

4. As we consider systems where providers have to “pay” for performing or receiving queries, a
mediator must invoice providers after each query allocation. This is in some way similar to an
invoicing such as that of Google AdWords [goo], except we consider virtual money. Invoicing
providers in our context is challenging because some providers may be imposed a query that they
do not desire to perform.

CHAPITRE 3 — Scaling Up Query Allocation 53

In the next section, we make precise the way in which the virtual money circulates within the system
(point 1) and, in the remainder of this chapter, we discuss how we address the other3 points so as to
adaptSbQA to use virtual money as a means of regulation.

3.2.1 Flow of Virtual Money

The way in which virtual money circulates within a system is amacroeconomic concern and hence
we adopt a simple solution. First of all, only the providers and mediators deal with virtual money, i.e. the
consumers still show their intentions. Providers spend andearn virtual money through a mediator only.
On the one hand, they spend money by bidding on queries and to compensate other providers that have
been imposed a query. On the other hand, they earn money when they are imposed a query that they do
not desire to perform. Every time a provider has been allocated a query, has been imposed a query, or
has been required to compensate an imposed provider, it is informed, by the concerned mediator, of the
amount of virtual money it payed or won (in the case of imposition). Of course, a provider is completely
responsible of its virtual money balance and hence no provider can spend the virtual money of another
one. Therefore, a provider always has an exact mirror of its virtual money balance in local.

In contrast to providers, in our mediation process, mediators never looses money, but tends to accu-
mulate money coming from the providers in the course of time,thus making the providers poorer and
poorer. Indeed, this could distort the mediation process oreven block the system when the providers no
longer have money. A simple solution has been adopted : in case a mediator has earned an amount of
virtual money above a defined threshold, it distributes suchan amount of virtual money to providers in
an equitable way. From the providers’ point of view, this is another, regular, way of earning money. We
assume that there exists atrusted third-partyin the system that plays the role of bank, which is in charge
of the flow of virtual money. Several ways to implement the bank exist (using a DHT [SMLN+03] for
example), but this is well beyond the scope of this thesis. Without any loss of generality, we only assume
that there is a bank entity that allows mediators to control the flow of money in the system. For clarity, we
omit the bank in the remainder of this paper when we talk aboutthe virtual money balance of a provider.
Indeed, the flow of virtual money requires some network messages. We state this cost in the following
proposition.

Proposition 1. Only3 messages per query are required to control the flow of virtualmoney.

Proof (Sketch).First of all, we assume avickrey auction to allocate queries and hence no message is
required by a provider to discover the bids of other providers. Similarly, at first glance, a provider may
require a network message to know its current virtual money balance so as to bid for queries. However,
a mediator informs a provider of any change in its virtual money balance, thereby allowing a provider to
always know its current virtual money balance. Thus, no network message is required by a provider to
know its virtual money balance. Now, before a query mediation, two network messages are exchanged
between a mediator and the bank in order to validate the bids of providers, i.e. to verify if they have
enough virtual money that support their bids. After a query allocation, the concerned mediator sends
another network message to the bank, which is in charge of invoicing providers. Notice that the bank
requires no network message to invoice providers since it has both providers’ and mediators’ virtual
money balance in local. Finally, every time that the amount of virtual money earned by a mediator
exceeds a given threshold, the bank should inform the mediator, which replies with a virtual money
distribution table. However, this depends on several external factors, such as the kind of incoming queries
and the strategies of providers to bid, which we cannot predict a priori. Furthermore, these messages are
expected to occur after a large number of incoming queries and hence they do not impact the system

54 CHAPITRE 3 — Scaling Up Query Allocation

Table 3.1 – Virtual money balance along a sequence of mediations.

ω = 0.5 ; n = 2

performance. Thus, we neglect these messages in this analysis. To summarize, providers do not generate
messages while mediators need2 messages to validate bids and1 message to invoice providers.

Table 3.1 illustrates the flow of money along a sequence of fivemediations followed by redistribution
of money by a mediator, where parameterω ensured the balance between consumers’ and providers’
interests andn stands for the required answers by the consumers. At the initiation step, we quote the
providers’ and mediator’s initial money balance (σ), and the consumer’s intentions with regards to the
providers (which we assume are constant across these five mediations). Then, for each provider and each
query, we quote the bid (B), those which are allocated the query (∗) and the new money balance (σ).
Each time there is a change in provider’s money balance (respectively of the mediator), the new value is
in bold face. Notice that the allocation ofq3 is neither a competition nor an imposition, thus there is no
change in the money balances. After the five mediations, the mediator distributes the money it has piled
up (15.99) among the five providers.

3.3 Provider’s Side

In this section, we discuss how providers express their interests towards queries in x-redundant VOs.
In particular, we define in Section 3.3.1 the way in which a provider computes its bids to perform queries
and propose, in Section 3.3.2, three heuristics to manage providers’ virtual money balance.

3.3.1 Computing Bids

The way in which a provider compute its bid is independent of the query allocation method. This
amounts to consider truth-revealing providers, which rationally bid according to their preferences and
load. A simple way to obtain providers’bid, is that each provider maintains a local bulletin board, which
contains a billing rate for its resources based on its preferences to perform queries (denoted by function
prf ∈ [−1..1]). Then, a provider’s bid for getting a query may be the product of its current utilization by
the billing rate, such as in [SAL+96]. However, in our case, the context of a provider is more complex

CHAPITRE 3 — Scaling Up Query Allocation 55

because we have to consider its current satisfaction and current virtual money balance (denoted bybalp)
in addition to its preferences and load.

Thus, a provider first works out its intention to perform a given queryq as defined in Definition 25
and then it proceeds to work out its bid to perform such a query. Intuitively, the bid of a provider may
be the product of its intention by its current virtual money balance. The current virtual money balance
of a providerp is denoted bybalp. Nonetheless, such a procedure may lead a provider to spend all, or
almost all, its money on only one query. To avoid this, a provider offers at most only a defined percent of
its current virtual money balance, denoted by the constantc0 whose values are in]0..1]. Having said all
this, we formally define the bid of a provider as follows.

Definition 28. Provider’s Bid Given an incoming queryq, a providerp ∈ Pq computes its bid to perform
q, bidp(q), as follows,

bidp(q) =

∣∣∣∣∣∣

(prfp(q)
1−δs(p))× (1− Up(t))

δs(p) × (balp · c0) if(prfp(q) > 0)∧
∧ (Up(t) < 1)

−
(
(1− prfp(q) + 1)1−δs(p) × (Up(t) + 1)δs(p)

)
× c1 otherwise

As a provider may be paid by others if it is imposed a query, constantc1, is set to the initial virtual
money balance of a provider so that, in the worst case, a provider obtains what it got when it joined the
system. The idea behind the above definition is that a provider always sets a positive bid when it desires to
perform queries and it is not overutilized, otherwise it sets a negative bid. In traditional microeconomic-
based methods providers do not bid (or give a null bid) when they do not desire to perform a query.
However, this does not allow them to express how much unpleasant it is for them to perform a query and
how much overloaded they are. This is why we allow a provider to make negative bids. At first glance,
there is no difference between providers’ bids and intentions, but by showing bids providers can keep
private their real intentions, which is crucial in competitive environments.

3.3.2 Bidding in the Presence of Several Mediators

When a provider receives queries from different mediators,it should pay special attention to the way
in which it computes its bid so that it never bids more than itscurrent virtual money balance. To overcome
this difficulty, we propose3 heuristics that allow a provider to manage its virtual moneybalance in x-
redundant VOs. Before going to present these heuristics, let us say that, after the bidding phase of a query
q (i.e. the moment at which providers bid forq), a providerp locally stores in vector

−−→
CBp its bid bidp(q)

and removes such a bid from
−−→
CBp when it receives the invoice for such a query (how providers’invoice

are computed by a mediator is the focus of Section 3.4.2).

Optimistic An optimistic provider assumes that it gets all those queries to which it bids positively and
that it does not get those to which it expressed a negative bid. Thus, an optimistic providerp modifies its
current virtual money balance after the bidding phase of a given queryq as follows,

balp =

∣∣∣∣
balp − bidp(q), if bidp(q) > 0
balp else

(3.1)

Then, when providerp receives the final invoicebillq(p) concerning queryq from the respective mediator,
it sets its virtual money balance as below equation.

balp =

∣∣∣∣∣
balp +

−−→
CBp[q]− billq(p), if bidp(q) > 0

balp − billq(p) otherwise
(3.2)

56 CHAPITRE 3 — Scaling Up Query Allocation

Preventive A preventive provider assumes that it gets all those queriesto which it bids, independently
of its bid value. In other words, conversely to an optimisticprovider, it also assumes that it gets those
queries to which it made a negative bid. Thus, a preventive providerp modifies its current virtual money
balance after the bidding phase of a given queryq as follows,

balp = balp − bidp(q) (3.3)

and whenp receives the final invoice of queryq, it sets its virtual money balance as follows.

balp = balp +
−−→
CBp[q]− billq(p) (3.4)

Pessimistic A pessimistic provider assumes, conversely to an optimistic and a preventive provider, that
it never gets the queries to which it bids. Thus, a pessimistic providerp does not modifies its virtual
money balance after bidding for queries. It therefore modifies its current virtual money balance when it
receives the final invoice from the concerned mediator as follows.

balp = balp − billq(p) (3.5)

3.4 Mediator’s Side

Let us consider the allocation of some queryq initiated by some consumerc ∈ C. The providers inPq

bid onq. Providers’ bid are only public to the mediator and other participants cannot know such values.
Bids are represented by a vector

−→
B , with

−→
B [p] ∈

−→
R for all p ∈ Pq. If a bid is positive, the higher it is the

morep wants to be allocatedq. If it is negative, the lower it is the lessp wants to treatq. Intuitively, the
bid of a providerp reflects its intention to performq. Thus, this should lead to the providers’ satisfaction.
However, if only bids are considered as several other approaches [FNSY96, FYN88, PI07], a consumer
may be dissatisfied either because its intentions with respect to providers are not considered (when it
gets answers from providers it doesn’t desire to deal with) or because some its queries are not performed
(because no provider wants to treat them). Hence, to satisfyconsumers, a mediator :(i) directly considers
the consumer’s intentions (

−→
CI) ; and(ii) imposesthe query when not enough providers desire to perform

it, as in [ST01]. We detail the way in which a$bQA allocates queries among providers in Section 3.4.1
and define the way in which it invoices providers in Section 3.4.2.

3.4.1 Computing Providers’ Level

As SbQA, a mediator using$bQA allocates a queryq to themin(n,Nq) “best” providers, which are

given by vector of ranking
−→
R . Where

−→
R q[1] = p denotes the best ranked provider and

−→
R [min(n,Nq)]

stands for the worst ranked provider. Hence,All−→ocq[p] = 1 iff ∃i,
−→
R [i] = p andi ≤ min(n,Nq). Vector

−→
R is computed by a mediator regarding the providers’level, denoted by vector

−→
L , which means that

those providers having the highest levels are allocated queries. Thus, given an incoming queryq, the
level of eachp ∈ Pq is defined as the balance between the consumer’s intentions and the providers’ bid
with regards toq (Definition 29).

CHAPITRE 3 — Scaling Up Query Allocation 57

Table 3.2 –$bQA in a (a) competition and an (b) imposition case, withω = 0.5 andn = 2.
(a) (b)

Definition 29. Provider’s Level

−→
L [p] =

∣∣∣∣∣
(
−→
B [p] + 1)ω × (

−→
CIq[p] + 1)1−ω if

−→
B [p] ≥ 0

−(−
−→
B [p] + 1)ω × (

−→
CIq[p] + 1)ω−1 otherwise

It is worth noting that, conversely to the provider’s score (Definition 26 of previous chapter), a me-
diator, using$bQA, does not setω value with respect to participants’ satisfaction. Using$bQA, ω value
is static, i.e. it does not change in every query allocation.Values ofω are in the interval[0..1]. If ω = 0,
only the consumer’s intentions are considered by the mediator, thus leading to providers dissatisfaction.
Conversely, ifω = 1, the mediator only considers bids, leading to consumers dissatisfaction. This is why
a mediator should set parameterω according to the importance that it wants to pay to the consumers’ in-
tentions and providers’ bid. Indeed, given the level definition, we can note that a mediator might allocate
q to a provider that does not desire to deal withq. We call this an imposition case, otherwise, we have a
competition case.

Table 3.2(a) shows the case of a competition. The consumer asks for two providers, and more than
two of them bid positively. Providersp5 andp3 are allocated the query because they get the two highest
levels, respectively2.28 and2.24. Notice that the consumer’s intention with respect top5 is lower than
its intention with respect top3. Thus,p5 only got the query because of its bid (2.25) which is higher than
p3’s bid (1.79), meaning that it wanted the query more thanp3. Table 3.2(b) shows an imposition case
where no provider butp4 wants to treat the query, whereas the consumer asks for two providers. Provider
p5 is imposed the query because of both its bid (which is the highest negative bid) and the consumer’s
intention with respect to it, which leads to the value1.47 of its level. In both tables, the tuple “Trans” (for
money “Transfer”) denotes the amount of virtual money providers must pay for the query allocation.

3.4.2 Invoicing Providers

As start point, a natural strategy to invoice a provider thathave been allocated a given query is that
it pays what it bids. This kind of invoicing process is also know asfirst-price. However, it is well know
that following afirst-price invoicing, providers (or bidders) are incited to shade their bids below their
true value [MCWG95]. This may distort the whole system by having providers revealing false bids in
order to maximize their satisfaction (e.g. revenues) whileother providers reveal true bids and hence may
suffer from dissatisfaction or query starvation. Therefore, we adopt asecond-priceinvoice mechanism
(a.k.a.vickrey), which has been proved to give providers an incentive to bidtheir true value [Vic61].
However, we cannot directly compare providers’ bids because of consumers’ intentions. To overcome
this difficulty, we introduce thetheoretical bid(proposed in [LCLV07]), which corresponds to the amount

58 CHAPITRE 3 — Scaling Up Query Allocation

that a provider should bid for reaching a level. Withω 6= 0 andα = 1 if l ≥ 0 or α = −1 otherwise, the
theoretical bid of a providerp to reach a levell, denoted by functionbth(p, l), is given by,

bth(p, l) = α ·max(((α × l)
1
ω (
−→
CIq[p] + 1)

α(ω−1)
ω − 1), 0) (3.6)

For example, in Table 3.2(a), we have already noticed that provider p5 gets a level slightly higher than
p3’s, because of its higher bid and despite the lower consumer’s intention. In fact, to come exactly to
p3’s level,p5 should bid2.136 (theoretical bid). A mediator invoices providers based on above equation.
Remember that a query may be allocate to several providers, hence the mediator also needs to invoice a
provider with respect to the selection of another provider.As noted earlier, two cases could exist when
allocating queries : competition and imposition.

In a competition case, i.e. when all selected provider expressed a positive bid, a provider allocated
a query owes the amount of its theoretical bid to reach the level of the best provider that has not been
allocated the query. And, it does not pay by the selection of other selected providers. Formally, we define
thepartial bill of a providerp w.r.t. the selection of a providerp′, with

−→
B [p′] ≥ 0, as follows.

Definition 30. Provider’s Partial Invoice in a Competition Case

billq(p, p′) =

∣∣∣∣∣
bth(p,

−→
L [
−→
R q[q.n + 1]]) if p = p′,

−→
B [
−→
R q[q.n + 1]] ≥ 0, and q.n < Nq

0 otherwise

An imposition case occurs when at least one provider is imposed the query, i.e. when one provider
that does not desired to perform a query is allocated the query. Obviously, being imposed does not meet
at all the intention of an imposed provider. Thus, it would not be fair if a provider pays for an imposed
query. Hence, to keep it satisfied in the long run, the idea is to distribute the cost of the imposition of
queryq onall the providers inPq (in the spirit of [ST01], but also considering the consumer’s intentions).
Then, having obtained a reward, the an imposed provider is more likely, in the future, to obtain the queries
it expects (because it has more money) so leading to its satisfaction. We formally define thepartial bill
of a providerp w.r.t. the selection of a providerp′, with

−→
B [p′] < 0, as follows.

Definition 31. Provider’s Partial Invoice in an Imposition Case

billq(p, p′) =

∣∣∣∣∣∣∣∣∣

−bth(p,
−→
L [
−→
R q[q.n + 2]])

Nq
if p 6= p′

bth(p,
−→
L [
−→
R q[q.n + 1]]) −

bth(p,
−→
L [
−→
R q[q.n + 2]])

Nq
else

Having defined the partial bill for both competition and imposition cases, thebill that a provider must
pay for having obtained a given query is then defined as the sumof all its partial bills (Equation 3.7).
Formally, a mediator invoices each providerp ∈ Pq as follows,

billq(p) =
∑

p′∈cPq

billq(p, p′) (3.7)

Overall, a selected provider never pays more than its own bidand only pays for the selection of other
provider when the latter has been imposed the query. Moreover, the invoicing process we presented here
never requires a mediator from a financial point of view.

CHAPITRE 3 — Scaling Up Query Allocation 59

3.4.3 Communication Cost

As for SbQA, we analyze the communication cost of$bQA in terms of number of messages that
should be transferred over the network to perform a query. This is given by the following theorem.

Theorem 4. The total number of transferred messages by$bQA to perform a query is3(N + 2) + n.

Proof. Given a queryq and setPq of providers, the mediator first asks forq.c’s intention andPq ’s bids,
which return such an information to the mediator. The numberof exchanged messages at this phase
is mssg0 = 2N + 2. Once received the participants’ interests, the mediator verifies if providers have
enough virtual money to support their bids. This requiresmssg1 = 2 messages between the mediator and
the bank. Next, it computes the level of each provider inPq as defined in Section 3.4.1 and ranks them
according to their level. Having done this, the mediator invoices providers, informs allPq providers of the
mediation result, and waits for results from then selected providers. The number of transferred messages
at this phase ismssg2 = 1 to invoice providers,mssg3 = N to inform providers, andmssg4 = n to
receive results from selected providers. Finally, the mediator sends the results to consumerq.c, which
implies one more network message,mssg5 = 1. Thus,Mssg = mssg0 + mssg1 + mssg2 + mssg3 +
mssg4 + mssg5 = 3(N + 2) + n total messages are exchanged by a mediator, using$bQA, to perform
a query.

Corollary 1. The additional cost of performing$bQA w.r.t. SbQA is 3 network messages per query.

Proof. Implied by Theorems 3 and 4.

3.5 Cost of Federating Mediators

We refer to mediators federation as several mediators operating, from the query allocation point of
view, as a single mediator. That is, several mediators operate in a cooperative way for a shared purpose.
Of course, mediators federation comes at a cost. Independently of the query allocation method used by
mediators in anx-redundant VO, mediators must have an updated providers list of the VO. This needs
||M || − 1 messages every time a provider enters or leaves a VO. We do notconsider this network cost in
the following because such messages are required by any query allocation method. Now, when dealing
with ax-redundant VO, a mediator usingSbQA can no longer calculate the providers’ satisfaction itself.
This is because a provider uses several mediators and hence its satisfaction results from the queries
obtained with all of them. Thus, each mediator must exchangeinformation about providers’ satisfaction
after each query allocation, which significantly increasesnetwork traffic. We formally state this network
cost in the following proposition.

Proposition 2. Let Q denote a set of queries andNQ denote||Q||. Given a setQ of queries arriving
into a mediatorm in M of a x-redundant VO, usingSbQA, mediatorm must exchange(||M || − 1) ·NQ

messages to update providers’ satisfaction.

Proof. Since after the allocation of a queryq the satisfaction of any providerp ∈ Pq changes, a mediator
m ∈ M must send a message containing the new satisfaction values of providers inPq to all M\{m}
mediators in the x-redundant VO. Thus, given a setQ of incoming queries, a mediator must exchange
||M || − 1 messagesNQ times.

This is a cost that makesSbQA unsuitable for performing in x-redundant VOs where a large number
of mediators act as a single mediator to achieve a shared purpose. In contrast,$bQA has no network cost

60 CHAPITRE 3 — Scaling Up Query Allocation

when dealing with several mediators and continues to perform, from a satisfaction point of view, as in a
mono-mediator VO. We state this in the following theorem.

Theorem 5. $bQA always satisfies (i) consumers and (ii) providers in a x-redundant VO as well as in a
mono-mediator VO with no additional network cost.

Proof. Consider a x-redundant VO, denoted bySvo and a mono-mediator VO, denoted bySm, consisting
of the same set of participantsP . Consider also that the incoming queries inSvo are the same to those
arriving inSm. We prove both (i) and (ii) by contradiction.

(i) Assume to the contrary that, for the allocation of some query q, consumerq.c is not equally
satisfied bySvo andSm. If this is the case, we can know, by Definition 17, thatSvo allocatedq to a

set P̂q such that there exists at least a providerp ∈ P̂q
′

: p /∈ P̂q, whereP̂q
′

is the set of providers
selected bySm. Hence, we can know that the set of relevant providers found by Svo is different to the set
found bySm. This implies that providerp is not connected to the mediator that allocatedq in Svo, which
contradicts the definition of a x-redundant VO.

(ii) Assume to the contrary that a providerp ∈ P is not equally satisfied bySvo andSm. Then, by
Definition 19, we can know thatp did not perform the same set of queries inSvo as inSm. This means
thatp is not connected to all mediators inSvo so as to receive all queries it can perform, which contradicts
the definition of a x-redundant VO.

Finally, given the provider’s level definition (Definition 29), a mediator does not directly deal with
providers’ satisfaction because it is up to a provider to manage its virtual money balance so as to be
satisfied in the long-run (Definition 28). Thus, the mediatorhas no message to exchange among media-
tors to update providers’ satisfaction. Clearly, the invoice and bidding processes require computational
resources of mediators and providers, respectively, but these costs are negligible because of capacities
that current computers have.

Above theorem shows that even if$bQA generates3 more messages per query thanSbQA (Corol-
lary 1), it allows a VO, and hence a system, to scale up to as many mediators as the VO desires with
no loss in system performance. To discuss how queries may be forwarded to other VOs (inter-VO query
allocation) and the way in which a VO is created is well beyondthe scope of this thesis.

3.6 Experimental Validation

Our three main objectives in this experimental validation are :
• To evaluate how well$bQA selects and invoices providers and to analyze the impact of using

virtual money as a means of regulation when performing queryallocation.
• To analyze if$bQA satisfies participants as well asSbQA.
• To evaluate the performance of$bQA andSbQA when dealing with x-redundant VOs.
With this in mind, we carry out two kinds of evaluations. A first serie of experiments to compare

$bQA with some baseline methods in mono-mediator VOs so as to validate its performance. Then, we
vary the number of mediators and participants to evaluate the performance and scalability of$bQA.

3.6.1 Setup

We implemented our prototype in java and simulate x-redundant VOs, with different number of me-
diators, following the system architecture presented in [LCLV07]. We run our experiments in a computer

CHAPITRE 3 — Scaling Up Query Allocation 61

running Linux Ubuntu4.0.3 with a Petium IV processor of3 GHz and1 GB in RAM. The system con-
sists of200 consumers,400 providers. Participants compute their satisfaction as defined in Chapter 1.
They initialize their satisfaction with a value of0.5, which evolves with their last200 issued queries
and 500 queries that have passed through providers (i.e.k = 200 for a consumer andk = 500 for
a provider). Providers implement an optimistc strategy to bid for queries. We generate around 10% of
providers withlow-capacity, 60% withmedium, and 30% withhigh. Thehigh-capacity providers are3
times more powerful thanmedium-capacity providers and still7 times more powerful thanlow-capacity
providers [SGG02]. We generate two classes of queries thathigh-capacity providers perform in1.3 and
1.5 seconds, respectively, and assume that they arrive in aPoissondistribution, as found in dynamic
autonomous environments [Mar02].

Concerning participants’ departure, we assume on the one hand that a consumer leaves a mediator by
dissatisfaction if its satisfaction is smaller than0.7. On the other hand, we assume that a provider leaves
a mediator : by dissatisfaction if its satisfaction value issmaller than0.5 ; by query starvation if, in an
interval of2 minutes, it does not perform a set of queries towards which ithas a preference of at least
0.2 in average, and ; by overutilization if its utilization is greater than2. Finally, we repeat each serie of
experiments we run10 times and present the average results of all these experimentations.

3.6.2 Results

In Section 3.6.2.1, we start by evaluating the quality of$bQA and three other baseline methods
(SbQA included), with regards to participants’ satisfaction andresponse times. Then, in Section 3.6.2.2,
we study the scalability of both bothSbQA and$bQA in x-redundant VOs.

3.6.2.1 Quality Results in Mono-Mediator VOs

In this series of experiments we proceed as follows. First, to see the possible loss of performance
that $bQA may have, from the provider’s point of view, we compare it with a first-price sealed-bid
method (FPSB). FPSB allocates queries to those providers having made the highest bids and invoices
providers the amount of virtual money that they offered for the query. Second, to study the efficiency of
the way in which$bQA invoices providers, we compare it with a query allocation method that selects
providers as$bQA, but invoices them asFPSB. We call this new query allocation method asVirtual
Money-based Query Allocation(V MbQA). Finally, to validate$bQA, from a satisfaction point of view,
we compare it withSbQA. In these experiments, we assume that the mediator has enough resources
so that it does not cause a performance bottleneck. Moreover, to avoid that the fact of having several
mediators impacts these results, we run these experiments with a single mediator. We discard such an
assumption in the next section.

Figure 3.3 illustrate how these methods satisfy participants for different workloads. We observe in
Figure 3.3(a) that, as expected,FPSB is completely neutral to consumers because it does not take into
account their intentions. This is not the case forV MbQA, $bQA andSbQA, which consider consumers’
intentions to allocate queries. But, we observe that$bQA is the only one to ensure almost the same per-
formance asSbQA. Regarding the providers’ satisfaction in Figure 3.3(b), we can observe that$bQA
has again almost the same performance asSbQA, but also, we observe thatFPSB better performs than
$bQA. Indeed, this is becauseFPSB only considers providers’ bids while$bQA also considers con-
sumers’ intentions. However, we observed during our experiments thatFPSB andV MbQA methods
have some problems to balance queries because most adequateand preferred (by consumers) providers
tend to monopolize incoming queries.$bQA does not suffer from this phenomenon by establishing a

62 CHAPITRE 3 — Scaling Up Query Allocation

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 I
n

t.
 S

a
t.
 M

e
a

n

Workload (% of the total system capacity)

SbQA
$bQA

VMbQA
FPSB

(a) Consumers’ satisfaction mean based
on intentions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 S

a
ti
s
fa

c
ti
o

n
 M

e
a

n

Workload (% of the total system capacity)

SbQA
$bQA

VMbQA
FPSB

(b) Providers’ satisfaction mean based on
preferences.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 I
n

t.
 S

a
t.
 M

e
a

n

Workload (% of the total system capacity)

SbQA
$bQA

VMbQA
FPSB

(c) Providers’ satisfaction mean based on
intentions.

Figure 3.3 – Quality results in mono-mediator VOs for different workloads and with captive participants.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

Workload (% of the total system capacity)

SbQA
$bQA

VMbQA
FPSB

(a) Provider are not allowed to leave the
system.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

Workload (% of the total system capacity)

SbQA
$bQA

VMbQA
FPSB

(b) Providers may leave by dissatisfac-
tion, starvation or overutilization.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

R
e

s
p

o
n

s
e

 T
im

e
s

Number of Queries per Second

A single mediator

(c) Scale up.

Figure 3.4 – Impact on performance of providers’ departure.

more sophisticated invoice mechanism. This is why$bQA method satisfies providers’ intentions as well
asSbQA and much better thanFPSB andV MbQA (see Figure 3.3(c)). Remember that providers’
intentions is the merge of providers’ preferences with providers’ utilization.

We now analyze the performance of all four methods to ensure short response times. To this end, we
proceed to measure their ensured response times when providers are captive, i.e. they are not allowed
to quit the system, as well as when they may leave the system. Figure 3.4(a) illustrates the response
times ensured by these four methods when providers are captive, i.e. they are not allowed to quit the
system. We observe that$bQA significantly outperforms bothFPSB andV MbQA by ensuring almost
the same response times asSbQA. The low performance ofFPSB andV MbQA methods are mainly
due to fact that some providers (the most preferred and adequate providers) monopolize queries. Thus,
when providers are allowed to leave the system, these providers quit by overutilization while the least
adequate and preferred leave by starvation or dissatisfaction. We illustrate these results in Figure 3.4(b).
As expected, we can observe in these results that, conversely to FPSB andV MbQA, $bQA ensures
short response times because it balances well queries whilesatisfies participants.

Given these results, we can conclude that we can introduce virtual money, without any loss of sys-
tem’s performance, to regulate a system as long as we care about the way in which providers are selected
and invoiced. Nevertheless, as noted so far, a single mediator is a performance bottleneck that may not
allow a VO to scale up. To demonstrate this, we discard the assumption that a mediator has enough

CHAPITRE 3 — Scaling Up Query Allocation 63

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 I
n

t.
 S

a
t.
 M

e
a

n

Workload (% of the total system capacity)

SbQA
$bQA

(a) Consumers’ satisfaction mean based on in-
tentions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 S

a
tis

fa
ct

io
n

 M
e

a
n

Workload (% of the total system capacity)

SbQA
$bQA

(b) Providers’ satisfaction mean based on inten-
tions.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 A

llo
c
.
E

ff
.
M

e
a

n

Workload (% of the total system capacity)

SbQA
$bQA

(c) Allocation efficiency w.r.t. con-
sumers.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 A

llo
c
.
E

ff
.
M

e
a

n

Workload (% of the total system capacity)

SbQA
$bQA

(d) Allocation efficiency w.r.t. providers.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100
R

e
s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

Workload (% of the total system capacity)

SbQA
$bQA

(e) Response times.

Figure 3.5 – Quality results with captive participants for different workloads in a x-redundant VO with8
mediators.

resources to perform queries and run several experiments with different rates of incoming queries per
second. We illustrate these results in Figure 3.4(c). We canobserve that from9 queries per second the
mediator becomes performance bottleneck for the VO. This iswhy it is quite important to have several
mediators performing the query allocation task in a VO. We validate this in the following section.

3.6.2.2 Dealing with x-Redundant VOs

In previous section, we experimentally demonstrated that$bQA significantly outperforms bothFPSB
andV MbQA, and demonstrated that it ensures almost the same performance asSbQA. This is why we
only evaluate in this section the efficiency of$bQA andSbQA to scale query allocation up to several
mediators in x-redundant VOs. Moreover, we demonstrated inprevious section that asSbQA as$bQA
deal well with providers’ departure, thus we consider in these experimentations captive participants to
better study the scalability of both methods.

We start by evaluating the possible impact that, from a satisfaction and performance point of view, the
fact of having several mediator allocating queries could have. We run a series of experiments for differ-
ent workloads in a x-redundant VO with8 mediators. We observe in Figure 3.5(a) thatSbQA still better
satisfies consumers than$bQA, but this is no more the case for providers (see Figure 3.5(b)). This is also
illustrated in Figures 3.5(c) and 3.5(d) where we can observe thatSbQA has a better allocation efficiency
regarding consumers than$bQA, but $bQA’s allocation efficiency is better with respect to providers.

64 CHAPITRE 3 — Scaling Up Query Allocation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

16842

N
u

m
b

e
r

o
f
M

e
s
s
a

g
e

s

Number of Mediators

SbQA
$bQA

(a) Exchanged messages among media-
tors.

 0

 20

 40

 60

 80

 100

3216842

R
e

s
p

o
n

s
e

 T
im

e
s

Number of Mediators

SbQA
$bQA

(b) Speed up.

 0

 0.2

 0.4

 0.6

 0.8

 1

set4set3set2set1

A
v
e

ra
g

e
 S

a
ti
s
fa

c
ti
o

n
 M

e
a

n

Number of Participants

SbQA -- Consumers
SbQA -- Providers

$bQA -- Consumers
$bQA -- Providers

(c) Dealing with several participants.

Figure 3.6 – Performance results (a) and (b) for different workloads in a x-redundant VO with8 mediators
and captive participants, and ; (c) for a workload of60% of the total system capacity with50 consumers
and100 providers (set1),100 consumers and200 providers (set2),200 consumers and400 providers
(set3) and400 consumers and800 providers (set4).

SbQA has this deterioration regarding providers because of the time it takes to update providers’ satis-
faction at all mediators. Furthermore, the network messages generated bySbQA consume computational
resources at the mediators’ side, which degrades the response times ensured bySbQA (see Figure 3.5(e)).
This is not the case for$bQA, which exchanges no network message to update providers’ satisfaction
and hence it significantly outperformsSbQA.

Now, we run a series of experiments with the aim of analyzing the impact, from a performance point
of view, of having several mediators allocating queries. InFigure 3.6(a) we plot the number of network
messages exchanged bySbQA and$bQA for every1000 incoming queries and for different number
of mediators. Notice thatSbQA generates network messages to update providers’ satisfaction while
$bQA generates network messages to validate providers’ bids andinvoice providers. In these results, we
can observe that$bQA always generates3 network messages per query while the number of network
messages generated bySbQA depends on the number mediators in a x-redundant VO. Observethat from
4 mediatorsSbQA already generates the same number of messages as$bQA. Figure 3.6(b) illustrates
the response times ensured by these two methods with different number of mediators. We can see, on the
one hand, that$bQA’s performance does not depend on the number of mediators in ax-redundant VO
and hence its performance is constant. On the other hand, we observe thatSbQA cannot performs well
for a high number of mediators because of the number of messages it generates. These results show that
$bQA better deals with large numbers of incoming queries and mediators thanSbQA.

Finally, we analyze how wellSbQA and$bQA satisfy participants when the number of participants in
a VO varies. With this end, we run several experiments with a single mediator with a workload of60% of
the total system capacity, but with different number of participants. Figure 3.6(c) illustrates these results.
We can observe that both methods have the same performance nomatter the number of participants in
a VO. This means that both methods can scale up, in terms of number of participants, without a loss of
performance in satisfaction.

All above results demonstrate that, in contrast toSbQA, $bQA can easily scale up in terms of number
of participants, mediators, and incoming queries while satisfying participants as in monomediator VOs.

CHAPITRE 3 — Scaling Up Query Allocation 65

3.7 Related Work

In this chapter, we addressed the problem of scaling to several mediators and thus to a large number
of participants in distributed information systems. To solve this problem, we introduced the use of virtual
money to the query allocation process. Thus, related work can be divided into two parts : economic-
based query allocation approaches and design of scalable architectures. Since in Chapter 2 we already
surveyed the most important economic-based query allocation methods, in this section, we focus on
scalability. Scalability determines a key metric of distributed systems to describe in which sense this
system is able to cope with many occurrences of an event. Several definitions of scalability exist in the
literature. For example, [Hwa93] argues that strict scalability of a system demands that its efficiency
asymptotically remain constant as the system grows to largescale. In this chapter, we especially focused
on the relationship between computational needs of participants and the population size by increasing the
number of mediators in the system. Thus, we assumed that a system scales up when it supports the joins
of new participants without suffer from a decrease in systemperformance. Different network topologies
can allow a system to scale up in this context. In the following, we discuss the most important network
topologies that allow a system to scale up in number of participants.

3.7.1 Peer-to-Peer Networks

Peer-to-peer (P2P) networks are built on top of the physicalnetwork (typically the Internet), and
thus referred to as overlay network. The degree of centralization and the topology of the overlay network
strongly impact the nonfunctional properties of a P2P system, such as fault-tolerance, self-maintainability,
performance, scalability, and security. In the following,we present the three main classes of P2P net-
works : unstructured, structured, and hybrid.

3.7.1.1 Unstructured

In unstructured P2P networks, the overlay network is created in a nondeterministic (ad hoc) manner
and data placement is completely unrelated to the overlay topology. Each peer knows its neighbors, but
does not know the resources they have. Examples of these protocols are the Freenet [CMH+02] and
Gnutella. To analyze the properties, possibilities and limitations of pure Peer-to-Peer networks, we de-
scribe the basic Gnutella protocol in this section. Gnutella consists of a large number of nodes which may
be distributed throughout the world, without any central element. A node becomes part of the Gnutella
network by establishing some TCP-connections to other active Gnutella nodes, whose IP addresses it
may receive from a bootstrap server [SH03]. New nodes, to which the node can connect if an active
connection breaks, are explored by broadcasting PING messages in the virtual overlay network. These
PING messages are also used as keep alive pattern and are broadcasted in regular time intervals.

For routing Gnutella employs simple flooding of the request messages, i.e. queries and PING mes-
sages. Every new incoming PING or query, which has not been received before, is forwarded to all
neighbors except the one it received the message from, if thetime-to-live(TTL) value is at least one.
If a node receives the same message more than once, these messages are not further flooded. Response
messages, like PONG or query response messages, are routed back on the same path the request message
used, which is called backward routing. In Gnutella the virtual Peer-to-Peer layer is not matched to the
physical layer, which leads to zigzag routes, as described in [SK03]. Only enhancements, as described
by the approach of geo-sensitive Gnutella [SK03], provide means to adapt the virtual network to the
physical network. Fault-tolerance is very high since all peers provide equal functionality and are able to
replicate data. However, one of the main problems of unstructured networks is scalability.

66 CHAPITRE 3 — Scaling Up Query Allocation

Query routing is typically done by flooding the query to the peers that are in limited hop distance
from the query originator. This mechanism does not scale up to a large number of peers because of the
huge amount of load which they incur on the network. Furthermore, the incompleteness of the results can
be high since some peers containing relevant data may not be reached because they are too far away from
the query originator. More sophisticated and efficient query routing techniques in unstructured systems
can be found e.g. in [KGZY02, YGM02].

3.7.1.2 Structured

Structured networks have emerged to solve the scalability problem of unstructured networks. They
achieve this goal by tightly controlling the overlay topology and data placement. Data are placed at pre-
cisely specified locations and mappings between data and their locations (e.g. a file identifier is mapped
to a participant address) are provided in the form of a distributed routing table.Distributed hash table
(DHT) is the main representative of structured P2P networks. A DHT provides a hash table interface
with primitivesput(key, value) andget(key), where key is an object identifier, and each participant is
responsible for storing the values (object contents) corresponding to a certain range of keys. Each partic-
ipant also knows a certain number of other participant, called neighbors, and holds a routing table that
associates its neighbors’ identifiers to the correspondingaddresses. Most DHT data access operations
consist of a lookup, for finding the address of the providerp that holds the requested data, followed by
direct communication withp. In the lookup step, several hops may be performed accordingto participant’
neighborhoods.

Queries can be efficiently routed since the routing scheme allows one to find a participant responsi-
ble for a key inO(log N) routing hops, whereN is the number of participants in the network. Since a
participant is responsible for storing the values corresponding to its range of keys, autonomy is then
limited. Furthermore, DHT queries are typically limited toexact match keyword search. Active re-
search is on-going to extend the DHT capabilities to deal with more complex queries such as range
queries [GS04] and join queries [HHL+03]. Examples of P2P systems supported by structured networks
include Chord [SMLN+03], CAN [RFH+01], Tapestry [ZHS+04], Pastry [RD01], PIER [HHL+03], P-
Grid [ACMD+03], among others. P-Grid is not supported by a DHT, instead,it is based on a virtual
distributed search tree.

Because limited autonomy, DHT networks is unlikely to support systems as we consider in this
thesis : where providers usually desire to preserve their data in local. Nevertheless, one can imagine a
DHT-based system where providers publish in the network only their offered services. In this case, a
possibility to implement$bQA in these systems is by designing responsible participants of query me-
diations such as [APV07] does for designing responsible participants for timestamping data versioning.
Thus, consumers send their queries to one of these responsible participants in the network, which return
participants providing relevant services to their queries. Thus, this possibility requires that providers reg-
ister their functionalities and capabilities at these responsible participants. We would like to explore this
possibility in a future work.

3.7.1.3 Hybrid

Unstructured and structured P2P networks are considered “pure” because all their providers provide
the same functionality. In contrast, hybrid networks (a.k.a. super-peer networks) are a merge between
client-server systems and pure P2P networks. Like client-server systems, some participants (called super-
peers), act as dedicated servers for some other participants and can perform complex functions such

CHAPITRE 3 — Scaling Up Query Allocation 67

as indexing, query processing, access control, and meta-data management. Using only one super-peer
reduces to client-server with all the problems associated with a single server. Like pure P2P networks,
super-peers can be organized in a P2P fashion and communicate with one another in sophisticated ways,
thereby allowing the partitioning or replication of globalinformation across all super-peers. Super-peers
can be dynamically elected (e.g. based on bandwidth and processing power) and replaced in the presence
of failures. In a super-peer network, a requesting peer simply sends the request, which can be expressed
in a high-level language, to its responsible super-peer. The super-peer can then find the relevant peers
either directly through its index or indirectly using its neighbor super-peers. In fact, this hybrid network
topology is quite similar to that we considered in this chapter. Hence, one can, easily and in a transparent
way, implement$bQA in this kind of networks.

The main advantages of super-peer networks are efficiency and quality of service (i.e. the user-
perceived efficiency, e.g. completeness of query results, query response time, etc.). The time needed to
find data by directly accessing indices in a super-peer is very small compared with flooding. In addition,
super-peer networks exploit and take advantage of providers’ different capabilities in terms of CPU
power, bandwidth, or storage capacity as super-peers take on a large portion of the entire network load.
This significantly reduces the high message load, which can be observed in a Gnutella network. Thus, to
keep the advantages of Gnutella, i.e. the complete self organization and decentralization, super-peers are
introduced in [SR02]. In contrast, in pure P2P networks, allnodes are equally loaded regardless of their
capabilities. Access control can also be better enforced since directory and security information can be
maintained at the super-peers.

By introducing such enhancements, the load on the network can be reduced without introducing
preconfigured, centralized servers. The network is still scalable, but one super-peer should not have more
than 50 to 100 registered participants, depending on the processing power and the connection of the
super-peer. Thus it is necessary, that the number of super-peers increases according to the total number of
participants in the network.$bQA allows such a scalability because the creation of new mediators (super-
peers) does not incur additional network cost. Examples of super-peer networks include Napster [nap],
Publius [WRC00], Edutella [NWQ+02], and JXTA [jxt].

3.7.2 Grid-based Networks

The term “Grid” was coined in the mid90s to denote a proposed distributed computing infrastructure
for advanced science and engineering [Fe99]. In a regular grid topology, each node in the network is
connected with two neighbors along one or more dimensions. If the network is one-dimensional, and
the chain of nodes is connected to form a circular loop, the resulting topology is known as a ring. Grid
networks enables aggregation and sharing of these resources through by bringing together communities
with common objectives and creating virtual organizations(VOs) [Fos01].

Considerable progress has since been made on the construction of such an infrastructure (e.g. [BJB+00,
JGN99, SWDC97]), but the term “Grid” has also been conflated,at least in popular perception, to em-
brace everything from advanced networking to artificial intelligence. The real and specific problem that
underlies the Grid concept is coordinated computational resource sharing and problem solving in dy-
namic, multi-institutional VOs. This sharing is, necessarily, highly controlled, with participants defining
clearly and carefully just what is shared, who is allowed to share, and the conditions under which sharing
occurs. As noted so far, a set of participants defined by such sharing rules form what we call a VO.

The organization of participants in a Grid system determines its scalability. Figure 3.7 shows the pos-
sible organization that participants can have. The organization describes how the participants involved in
resource management make scheduling decisions, the communication organization between these par-

68 CHAPITRE 3 — Scaling Up Query Allocation

Figure 3.7 – Grid Organization.

ticipants, and the different roles the participants play inthe scheduling decision. In a flat organization
all participants can directly communicate with each other without going through an intermediary (e.g.
a mediator). In a hierarchical organization participants in the same level can directly communicate with
the participants directly above them or below them, or peer to them in the hierarchy. The fan out below
a participant in the hierarchy is not relevant to the classification. Most current Grid systems use this
organization since it has proven scalability. In a cell topology, the participants within the cell communi-
cate between themselves using flat organization. Designated participants within the cell function acts as
boundary elements that are responsible for all communication outside the cell. The internal topology of
a cell is not visible from another cell, only the boundary participants are. Cells can be further organized
in flat or hierarchical topologies. A Grid that has a flat cell topology has only one level of cells whereas
a hierarchical cell topology can have cells that contain other cells. The major difference between a cell
topology and hierarchical topology is that a cell topology has a designated boundary with a hidden inter-
nal organization whereas in the hierarchical topology the organization is visible to all participants in the
Grid.

There are many different approaches and models for developing Grid resource-management systems.
For example, Globus [FK97] system enables modular deployment of Grid systems by providing the re-
quired basic services and capabilities in the Globus Metacomputing Toolkit (GMT). This toolkit consists
of a set of components that implement basic services, such assecurity, resource location, resource man-
agement, data management, resource reservation, and communications. Most grid systems have for the
most part focused on either a computational Grid or a serviceGrid. The other category of system is the
Grid scheduler such as Nimrod/G [BAG00] and AppLeS [BW97] that is integrated with another Grid
RMS such as Globus [CFK+98, FK97] or Legion [CKKG]. These combinations are then usedto create
application oriented computational Grids that provide certain levels of QoS.

However, the harnessing the power of grids remains to be a challenging problem for users due to the
complexity involved in the creation and composition of applications and their deployment on distributed
resources. Resource brokers or mediators hide the complexity of grids by transforming consumer re-
quirements into a set of queries that are scheduled on the appropriate computational resources, managing
them and collecting results when they are finished. A broker/mediator must have the capability to locate
relevant providers to queries and must also have the abilityto select the best providers [AG00, COBW00,
VBW04].

Summarizing, Grid is a type of parallel and distributed system that enables the sharing, selection, and
aggregation of geographically distributed "autonomous" resources dynamically at runtime depending on
their availability, capability, performance, cost, and consumers’ requirements.

3.7.3 Multi-Agent Networks

Multi-agent systems (MAS) is the emerging subfield of artificial intelligence that aims to provide
both principles for construction of complex systems involving multiple agents and mechanisms for co-

CHAPITRE 3 — Scaling Up Query Allocation 69

Figure 3.8 – Acquaintance topology forms.

ordination of independent agents’ behaviors. Most of the onmulti-agent systems deals with systems in
which agents are peers of each other. However, as seen in Section 3.7.1.1, it seems unlikely that such
structures are the most appriopiate when hundreds or thousands of agents are required. For this reason,
MAS designers started to use metaphores from human social and economic ornganizations [Fox88].
For example, human organizations operate by enforcing avenues of communication and control between
individuals in order for the overall grouping to achieve itsgoals. Of rough equivalance, MASs use ac-
quaintance topologies to perform the same function of defining and constraining interaction. In fact,
these topologies may be the same as for P2P networks (see provious section) and the relationships be-
tween agents may be of master, slave, or peer. Generally speaking, the relationships among agents (the
participants) can be distinguished by the constraints within which participants interact with each other.
In Figure 3.8, we illustrate the three main organization forms of participants in MASs.

Figure 3.8(a) illustrates the most simple organization form, where each consumer can communicate
with each provider and vice versa. However, this organization does not allows participants to cooperate
because neither consumers nor providers are aware of the existent of other consumers and providers,
respectively. The organization form illustrated in Figure3.8(b) allows consumers and providers to com-
municate with each other consumer and provider, respectively. Therefore, participants can form groups
with other participnats, allowing them to cooperate. Topologically, this organization is fully connected
network that represents a fully connected peer MAS. The third organization form of MASs (see Fig-
ure 3.8(c)) is identical to the second one, with the exception that intermediary participant that facilates in-
termediary functions, such as matchmaking, brokering, query optimization, query planning, etc. [KH95].
Turner and Jennings[TJ00] discuss how a MAS can dynamically adapt its structurefor various popu-
lation size. In fact, one of the benefits of MAS is their scalability. Since they are inherently modular, it
should be easier to add new agents to a multiagent system thanit is to add new capabilities to a mono-
lithic system. Moreover, systems whose capabilities and parameters are likely to need to change over
time or across agents can also benefit from this advantage of MAS.

70 CHAPITRE 3 — Scaling Up Query Allocation

3.7.4 Small-World Networks

The notion of small world phenomenon originates from socialscience research [Mil67]. It has devel-
oped to become a very active current research topic in physics, computer science, and mathematics. It has
been observed that the small-world phenomenon is pervasivein a wide range of settings such as social
networks, biological environments, data/communication networks, the connectivity of the Internet, and
gene networks. More recent studies using the Internet have come to the same conclusion, see [DMW03].
For example, recent studies (e.g., [ZGG04]) have shown thatpeer-to-peer networks such as Freenet may
exhibit small world properties. Informally, a small world network can be viewed as a connected graph in
which two randomly chosen nodes are connected by just about six degrees of separation. In other words,
the average shortest distance between two randomly chosen nodes is approximately six hops. This prop-
erty implies that one can locate information stored at any random node of a small world network by only
a small number of link traversals.

Despite the excitement that followed the Milgram experiments [Mil67] there was no convincing
network model generating a network that is locally highly clustered and at the same time has a small
diameter until 1998. Then,Watts and Strogatz[WS98] analyzed three different kinds of real networks
and noted that graphs could be classified according to two independent structural features, namely the
clustering coefficient and average node-to-node distance,the latter also known as average shortest path
length. They measured that in fact many real-world networkshave a small average shortest path length,
but also a clustering coefficient significantly higher than expected by random chance. They then proposed
a novel graph model, now currently named the Watts and Strogatz model, with (i) a small average short-
est path length, and (ii) a large clustering coefficient. Viewed from another perspective, such a model
indicates that a small number of random edges decreases the average path length significantly since they
can be viewed as “short-cuts” spanning the regular graph. With this model a part of the riddle regarding
real networks was solved.

However, it was not untilKleinberg’s work in 2000 [Kle00] that a mathematical model was devel-
oped for how efficient routing can take place in such networks. Kleinberg showed that the possibility of
efficient routing depends on a balance between the proportion of shortcut edges of different lengths with
respect to coordinates in the base grid. Under a specific distribution, where the frequency of edges of
different lengths decreases inverse proportionally to thelength, simple greedy routing (always walking
towards the destination) can find routes inO(log2 N) steps on average, whereN is the size of the graph.
Recently,Hui et al. [HLY06] proposed protocols to create and manage a small-world structured P2P
network. They have demonstrated how a low average hop distance between nodes can reduce the number
of link traversals in object lookup.

3.7.5 Summary

In this section, we surveyed the most important distributedsystem architectures that allows a system
to deal with a great number of participants. We studied the P2P, Grid, multi-agent, and small-world
networks. Summarizing, we saw that the architectures that are close to that we considered in this chapter
are : the hybrid (or super-peer) topology from P2P networks,the cells topology from Grid networks,
and the multi-agent topology that uses intermediary agents. In these three topologies, one can implement
$bQA in a transparent way. For example, in a super-peer topology,super-peers can be used as mediators
for their cluster of peers. In fact, we discussed this in [QRLCV08]. In the cells topology, one can use
the boundary participants of cells, which are responsible to communicate with other cells, as mediators
for their cells. And, in a intermediary-based mutli-agent topology, intermediaries can play the role of

CHAPITRE 3 — Scaling Up Query Allocation 71

mediators for their cluster of agents.

3.8 Chapter Summary

We considered large-scale distributed information systems where several mediators may cooperate
to allocate queries. And, we assumed that participants are free to leave the system at any time and have
special interests towards queries. In particular, we addressed the problem of scaling query allocation up
to several mediators so that it does not suffer from performance bottlenecks due to a single mediator. The
challenge in these environments is to perform query allocation so that participants’ satisfaction be the
same as in systems with a single mediator while good system performance be also ensured. To overcome
this problem, we proposed in this chapter an economic version of SbQA, called$bQA, that uses virtual
money, instead of participants’ satisfaction, as a means ofregulation. In summary, our main contributions
are the following.
• We discussed the challenges of using virtual money as a meansof regulation and made precise

a way in which virtual money should circulate within a system. Then, we stated the number of
network messages needed by a mediator to control the flow of virtual money. Conversely to the
expected, we demonstrated that only a few number of network messages (3 per query) are required
to control the flow of virtual money.

• We defined a new way in which a provider computes its bids to getqueries, which allows it to con-
sider its preferences, its satisfaction, its current utilization, and its current virtual money balance.
Moreover, we defined3 strategies to bid for queries in the presence of several mediators.

• We proposed anEconomic Satisfaction-based Query Allocationmethod ($bQA, for short) that
considers both consumers’ intentions and providers’ bid while ensuring good system performance.
Generally speaking,$bQA is SbQA using virtual money as a means of regulation. The two strong
points of$bQA is that : it allows a mediator to balance consumers’ intentions and providers’ bids
according to the importance it desires to pay to both of them,and ; it allows a mediator to indemnify
imposed providers (i.e. those providers that do not desire aquery and perform the query) so that
they get interesting queries in the future. We analyticallydemonstrated that$bQA allows a VO to
scale up to several mediators with no additional network cost.

• We compared three microeconomic methods (included$bQA) with a non-microeconomic one
using satisfaction as a “money independent” measure. This is interesting from a methodological
point of view since it allows knowing the possible loss or gain of using virtual money as a means
of regulation. To our knowledge, besides query load and response time, no microeconomic method
has ever been evaluated through measures that are outside the microeconomic scope. A key result
of such a study is that, conversely to several proposals, onemust care about the selection, invoicing,
and bidding phases when designing a microeconomic query allocation method.

• We validated$bQA in x-redundant VOs, i.e. in VOs with several mediators. Results show that
$bQA can easily scale up in terms of number of : mediators, participants, and incoming queries.
In fact, a key result is that$bQA allows a VO to scale up while ensuring good system performance
and the same participants’ satisfaction as in VO with a single mediator.

Future Work We discussed in the first chapter that participants may be satisfied at two levels : con-
cerning their preferences and concerning their intentions. But, as we now introduced the use of virtual
money, we desire to integrate the virtual money into the provider’s satisfaction notion so that we can
see the differences with the other two levels of satisfaction. We desire to do this in a future work. Fur-

72 CHAPITRE 3 — Scaling Up Query Allocation

thermore, we want to study, via the model we proposed, different query allocation methods based on
microeconomics [MCWG95] and game theory [vNM44], which aregenerally studied with a utility func-
tion and the Pareto optimal property, respectively. With this study, we aim at seeing the efficiency of such
methods to meet participants’ intentions and as well as the gains of using satisfaction as an evaluation
measure.

CHAPTER4
Dealing with

Participants’ Failures
Nowadays Internet offers many opportunities in large-scale distributed systems. One of the most

recent solutions is the use of thousands or even millions of unreliable, autonomous personal computers
(the providers) connected to the Internet to share information or computational resources with each other.
Providers put their computational functionalities or resources at the service of others (the consumers) for
collaborative reasons or for their own benefits. On the one hand, Web services [web] are a clear example
of massive distributed competitive computation when theirinvocation incurs a monetary cost. On the
other hand, some examples of massive distributed cooperative computation are the SETI@home [set] and
distributed.net [dis] projects. Indeed, in these environments participants have special interests towards
queries and may enter and join the system at will. For example, a participant, donating its computational
resources to several research projects, may desire to perform in average more queries of some specific
projects than of others.

The fact of considering large-scale, open (for autonomous participants) distributed systems has an-
other consequence : the possibility of participants’failure, or more generally dysfunction of participants.
In fact, as the scale of a distributed system is increased in number of participants, the possibility that one
of them is subjected to failure also increases. Studies of participants’ availability in widely deployed dis-
tributed systems such as Overnet [BSV03], Napster and Gnutella [SGG03] show that there is a significant
churn due to failure. Hence, in this context, the utility of distributed applications is increasingly limited
by availability rather than performance. This problem of dealing with participants’ failures has been
extensively studied by several works in distributed systems [BBMS08, JBH+05, HBR+05a, HXcZ07,
LML01]. Because of autonomy, however, a provider may act maliciously, i.e. may be Byzantine [LSP82],
and hence it may return erroneous or incomplete results, or simply may return no result, for a query. This
is why some distributed systems replicate the same query (i.e. it creates backup queries for a query) on
several providers to compare their results. It is, for example, the policy of SETI@home [set]. Therefore,
query replication may meet two objectives : to compare queryresults of different providers and to sup-
port possible providers’ failures. In this chapter, we focus on the latter and report the former to future
work. Indeed, query replication cost should not be overlooked because it may quickly utilize all the com-
putational resources in the system. From the system point ofview, query replication requires either more
powerful providers or additional providers. From the participants point of view, it is not obvious that a
participant has the same intention, and thus the same satisfaction, to be utilized as primary source than
as backup source. To the best of our knowledge, no fault-tolerant model has dealt with participants’ in-
tentions and satisfaction, hence no query replication technique is appropriate for distributed information
systems with autonomous participants that may have specialinterests towards queries.

In this chapter, we propose a query replication technique that aims at bearing providers’ failures
while increasing participants’ satisfaction. In particular, our main contributions are the following :

73

74 CHAPITRE 4 — Dealing with Participants’ Failures

• We propose a satisfaction model that considers participants’ failures. In particular, we characterize
the fact that(i) queries have different importance ;(ii) a consumer may receive less results that
it expects because of providers’ failures ; and(iii) a provider may perform queries for nothing
because of backup queries and consumers’ failures.

• We define the global satisfaction, that is, the expected satisfaction of participants concerning the
allocation of a given query. A particularity of this definition is that it takes into consideration both
participants’ intentions and participants’ failure probability.

• We proposeSatisfaction-based Query Replication(SbQR for short), a query replication technique
to compute the rate of backup queries according to the globalsatisfaction. TheSbQR’s goal is to
replicate those queries that allows to increase the global satisfaction.

• We experimentally demonstrate thatSbQR better performs, from a satisfaction and performance
point of view, than replicating all incoming query. We also demonstrate that by replicating each
incoming query the system suffer serious problems of performance for high workloads, but worse
it loses more query results than when one does not apply a fault-tolerant technique.

The remainder of this chapter is organized as follows. We formally state the problem we address in
Section 4.1. Then, in Section 4.2, we propose definitions of participants’ satisfaction that consider both
participants’ failures and queries importance for consumers. In the same section, we define the expected
satisfaction of participants regarding a given query allocation. We proposeSbQR in Section 4.3. We
present in Section 4.4 the$bQA’s experimental results. We survey related work in Section 4.5 and we
finally conclude this chapter in Section 4.6.

4.1 Problem Definition

The distributed system we consider consists of a setI of autonomous participants. As in previous
chapters, autonomy means that a participant may enter and leave the system at any time because of their
own desire. Participants may play two different roles : consumer and provider. Moreover, we assume that
the system has at least one mediatorm, which is in charge of allocating queries so that everythingworks
well, from a satisfaction and performance point of view. A consumerc ∈ C (with C ⊆ I) poses a query
to a mediator when it cannot locally perform the query or justbecause it has certain gains by outsourcing
such a query. For example, a consumer may query the system to perform a given application because
(i) it has not enough resources to run the application, or(ii) other participant (a provider) performs the
application faster. We assume that a consumer informs the mediator of how much critical a query is
for it. A query is considered as critical by a consumer when itis crucial for it to get all the answers
it requires. We refer to this query importance ascriticity. For example, going back to our motivating
example,eWine’s query could have a high criticity becauseeWine wants to compare prices and some
other properties (such as delivery time) so as to receive a good service for its query. Thus, in order for a
mediator to consider this, a consumer formulates queries byincluding their criticity, that is, in a format
abstracted as a 4-tupleq = < c, d, n, γ >. Where the first three parameters are the same as in previous
chapters (consumer identifier, query description, and the number required answers, respectively) andγ
denotes how the query criticity, withγ ∈ [0..1]. The greater parameterγ is, the more critical the query
is. In the following, we simply usec, d, n, or γ when there is no ambiguity onq.

Until now, we discussed throughout this thesis the importance of allocating queries while satisfying
participants and ensuring good system performance (such asshort response times and system function-
alities). However, we did not consider the fact that in large-scale distributed information systems any
participanti ∈ I has a probabilityfi to fail, which may also impact on system performance as well as on

CHAPITRE 4 — Dealing with Participants’ Failures 75

participants’ satisfaction. We consider participants’fail-stop failures of participants and report Byzan-
tine and partial faults to future work (see [BBJ+08, BT98, FLSG06, NDMR08] for related work on this).
Fail-stop failures assumes that the only way a participant can fail is by simply not functioning at all
during a no-short time interval. Because of this, having allocated a queryq to a setP̂ r

q of providers, it
is possible that only a setP ok

q ⊆ Pq of providers be available after the treatment of a given query q.

Hence, it is possible that only the results of a set
̂̂
Pq ⊂ P̂ r

q of providers are returned to consumerq.c.

Indeed, the returned results may be less than the required bythe consumer, i.e.||
̂̂
Pq|| < q.n, which

may impact on the consumer’s satisfaction. Thus, in this chapter, we assume that a mediatorm creates
backup queries (i.e. replicates queries) to support participants’ failures and hence preserving both good
consumer’s satisfaction and good system performance.

Because of backup queries, when a mediator asks a provider for its intentions, besides its intention,
the provider also replies with the cost of performing a queryin the case its results are not returned to
the consumer. Vector

−−→
PCq, whose values are in the interval[0..1], contains the cost to perform a queryq

of each providerp ∈ Pq. Indeed, allocating backup queries means that those providers allocated backup
queries utilize their computational resources to produce results that may not be returned to the consumer.
This could significantly dissatisfy (depending on their cost

−−→
PCq) and overload providers, which may

cause their departure from the system. On the other side, consumers receiving no result for their critical
queries may leave the system by dissatisfaction. Thus, given all this, we formally state the problem we
address in this chapter as follows.

Problem Statement Given a setI of autonomous participants, eachi ∈ I with a failure probability
fi, mediatorm must allocate each incoming queryq to a set̂P r

q of min(q.n,N) providers so that results
for critical queries, participants’ satisfaction, and short response times are ensured.

4.2 Satisfaction Model for Faulty Participants

Remember that in Chapter 1 we proposed a model to characterize the participants’ intentions in the
long run, which already defines some definitions of participants’ satisfaction. However, we discard in
that model that(i) queries may have different criticity for a consumer,(ii) the results produced by a
provider may not be returned to a consumer because of consumer’s or provider’s failure. This last point
implies, in other words, the model we proposed in Chapter 1 inherently assumes that, given a queryq, the
results of each provider in̂P r

q is returned to the consumer. In this section, as noted early,we release such
an assumption and propose participants’ satisfaction definitions that consider the possibility that only

the results of a set̂̂Pq of providers are returned to the consumer (Sections 4.2.1 and 4.2.2). Moreover,
we propose a global satisfaction definition, which considers the failure probability of participants, to
characterize the expected satisfaction of the participants concerned by the allocation of a given query
(Section 4.2.3).

4.2.1 Consumer Satisfaction

As defined in Chapter 1, it is by means of its satisfaction thata consumer can evaluate if it gets, or
not, the results it expects from the mediator. Considering that a consumer may desire different results
for a query, we defined the consumer’s satisfaction so that the more results it gets the more satisfied it
is. However, this is not always the case when providers may fail and queries may have different criticity
values. For example, a consumer, requiring two results for agiven low critical query, may be more

76 CHAPITRE 4 — Dealing with Participants’ Failures

 1
 2

 3
 4

 5 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.05
 0.1

 0.15
 0.2

 0.25

sa
tis

fa
ct

io
n

 c
o

e
ff
ic

ie
n

t

results criticity

Figure 4.1 – Number of results vs query’s criticity when a consumer requires five results.

satisfied of receiving only one result from a provider towards which it has an intention of1 than receiving
results from two providers towards which it has an intentionof 1 and−1, respectively. This depends on
the query criticity for a consumer to receive as many resultsas it requires. Intuitively, if an incoming
query has a criticityγ = 1 (respectivelyγ = 0) means that the consumer would not be satisfied at all
if it did not receive all the results it requires (resp. meansthat the satisfaction of the consumer strongly

depends on the number of results it receives). To reflect this, let
̂̂
Pq denote the set of providers whose

results are returned to the consumer, we modify the satisfaction coefficient1n of Equation 1.3 as follows,

1− γ

n− γ · ||
̂̂
Pq||

(4.1)

We illustrate the behavior of this above satisfaction coefficient in Figure 4.1. Observe that as more
critical a query is and the number of received results decreases, the satisfaction coefficient decreases,
which also leads to a decrease of satisfaction. It is worth noting that when the criticity of a query takes
the value of1, the satisfaction coefficient always takes zero values if the number of results is not the
required by the consumer. Then, considering Equation 4.1 and the fact that providers may fail, we define
the satisfaction of a consumer as follows.

Definition 32. Consumer Satisfaction Concerning a Single Query Allocation (revisited)

δs(c,
̂̂
Pq) =

∣∣∣∣∣∣∣∣∣∣∣

1− γ

n− γ · ||
̂̂
Pq||
·
(∑

p∈
ccPq

(
−→
CIq[p] + 1)

/
2
)

if γ < 1

1

n
·
(∑

p∈
ccPq

(
−→
CIq[p] + 1)

/
2
)

otherwise

4.2.2 Provider Satisfaction

As noted so far, a provider can evaluate, by means of its satisfaction, if the mediator allocates it those
queries that meet its intentions. Conversely to a consumer,the fact that a query has a high criticity, or
not, does not influence the satisfaction of a provider. In turn, the fact that a provider performs a query
and its results are not returned to the consumer may significantly impact on its satisfaction (depending

CHAPITRE 4 — Dealing with Participants’ Failures 77

on its cost). This is because a provider is usually selfish andhence the fact of spending computational
resources to perform queries from which it obtains no benefitdoes not meet their intentions at all. Thus,
given this, we define again the satisfaction of a providerp ∈ P ok

q ∩ Pq as follows.

Definition 33. Provider Satisfaction Concerning a Single Query Allocation (revisited)

δs(p, P̂ r
q ,
̂̂
Pq) =

∣∣∣∣∣∣∣∣

(−−→
PPIp[q] + 1

)
/2 if p ∈

̂̂
Pq(

−
−−→
PPIp[q] + 1

)
/2 if p ∈ (Pq\P̂ r

q) ∩ P ok
q(

1−
−−→
PCq[p]

)
/2 if p ∈

(
P̂ r

q \
̂̂
Pq

)
∩ P ok

q

Remember that vector
−−→
PPIp contains the intentions expressed byp towards thek last proposed

queries. The idea behind the above definition is that if a provider performs a query and its produced
result is returned to the consumer, its satisfaction concerning such an allocation is then based on its
intention (line1 of above equation). Otherwise, if a provider does not perform a query, its satisfaction
concerning such a query allocation is based on its negative intention (line2). This means that if a provider
expresses a negative intention to perform a given query and it is not allocated the query, it is satisfied
with the mediator job because it does not spend computational resources to perform a disgusting query.
In the above definition, we also consider the case where a provider performs a query and its produced
result is not returned to the consumer (line3). In this case, we assume that a provider is not satisfied of
performing queries for nothing. Thus, we define the provider’s satisfaction based on its cost to perform
a query. We translate the cost values into the interval[0..0.5], which means that a provider always has a
low satisfaction in such cases.

4.2.3 Global Satisfaction

We make precise in this section the global satisfaction regarding a given query allocation. One of the
main goals when dealing with providers’ unavailability in query allocations is to create backup queries
so that answers with short response times are ensured to consumers. In autonomous distributed systems,
allocating backup queries is not an easy task because of participants’ autonomy. So far, we defined the
query allocation problem in dynamic and autonomous distributed systems as a global satisfaction max-
imization. However, according to the definitions of Sections 4.2.1 and 4.2.2, participants’ satisfaction
are contradictory, that is, when creating backup queries may improve consumers’ satisfaction (by en-
suring their required answers), it may decrease providers’satisfaction (by not returning their results to
consumers). We define the global satisfaction by considering this contradictory point. With this aim, we
consider the failure probability of participants.

First of all, it is worth noting that we assume that faults arenot correlated. Thus, the probability that
a participanti does not fail in a time unit is1−fi. Let tq denote the required time by a providerp (which
does not appear in the notation for clarity reasons) to perform a queryq. Consequently, the probability
A

tq
i thati does not fail in a discrete time intervaltq (i.e. that be always available during time intervaltq)

is given by below equation.

A
tq
i = (1− fi)

tq (4.2)

Given this, let us first characterize the probability that a query be successfully treated by at mosth
providers among which the worst ranked provider has a ranking r, that is, the probability that at mosth

providers until rankingr in vector
−→
R q do not fail before returning results of a given query.

78 CHAPITRE 4 — Dealing with Participants’ Failures

Lemma 3. The successful probabilitySh
q (P̂ r

q) that a given queryq has to be performed by at mosth

providers inP̂ r
q is given by,

Sh
q (P̂ r

q) =
∑

P ok
q ⊆cP r

q

||P ok
q ||≤h

(∏

p∈P ok
q

A
tq
p

∏

p∈cP r
q \P

ok
q

(1−A
tq
p)
)

Proof. The probability that a set of providers successfully performs a query is given by its available
probability. By Equation 4.2, the available probability ofa setP ok

q of providers in set̂P r
q is

∏
p∈P ok

q
A

tq
p ·

∏
p∈cP r

q \P
ok
q

(1 −A
tq
p). Consequently, the successful probability of a queryq to be performed by at most

h providers inP̂ r
q is given by the available probability sum of all different setsP ok

q in P̂ r
q that satisfy the

constraint||P ok
q || ≤ h, henceSh

q (P̂ r
q) =

∑

P ok
q ⊆cP r

q

||P ok
q ||≤h

(∏

p∈P ok
q

A
tq
p

∏

p∈cP r
q \P

ok
q

(1−A
tq
p)
)

.

Let us now characterize the probability that the results produced by a specific provider and a given
set of providers are returned to the consumer.

Lemma 4. Let x denote||
̂̂
Pq||, given a queryq, the probabilitySa

q (P̂ r
q , x) that the results produced by

provider
−→
R q[a] andx− 1 other providers in̂P r

q be returned to consumerq.c is given by,

Sa
q (P̂ r

q , x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

ccPq⊆cP r
q

||
ccPq||<x

−→
R q [a]∈

ccPq

(∏

p∈
ccPq

A
tq
p

∏

p∈cP r
q \

ccPq

(1−A
tq
p)
)

if x < q.n

∑

ccPq⊆cP r
q

||
ccPq||=x

−→
R q [a]∈

ccPq

(∏

p∈
ccPq

A
tq
p

∏

p=
−→
Rq [j]

j≤max(k)
−→
R q[k]∈

ccPq

p/∈
ccPq

(1−A
tq
p)
)

else

Proof. We use a reasoning close to Lemma 3. Overall, given a queryq, two cases can exist in order
for provider

−→
R q[a] returns its produced result to consumerq.c : (i) that less thanq.n providers inP̂ r

q

be available during discrete time intervaltq, and (ii) that the same or more thanq.n providers inP̂ r
q be

available during discrete time intervaltq, but at mostx− 1 providers have a higher score than
−→
R q[a].

In the first case, provider
−→
R q[a] must only be available during the discrete time intervaltq to be in

̂̂
Pq. Thus, the probabilitySa

q (P̂ r
q , x) that

−→
R q[a]’s results be returned toq.c, whenx < q.n, is given by

the available probability sum of all different setŝ̂Pq in P̂ r
q that satisfy the constraint

−→
R q[a] ∈

̂̂
Pq. Hence,

by Equation 4.2 and for thex < q.n case,Sa
q (P̂ r

q , x) =
∑

ccPq⊆cP r
q

||
ccPq||<x

−→
R q [a]∈

ccPq

(∏

p∈
ccPq

A
tq
p

∏

p∈cP r
q \

ccPq

(1−A
tq
p)
)

.

CHAPITRE 4 — Dealing with Participants’ Failures 79

In the second case, conversely to the first case, provider
−→
R q[a] must be available during the discrete

time intervaltq, but also must have at least theq.n worst ranking in
−→
R q to be in

̂̂
Pq. Thus, the probability

Sa
q (P̂q, x) that

−→
R q[a]’s results be returned toq.c, whenx = q.n, is given by the available probability sum

of all different setŝ̂Pq in P̂ r
q that satisfy the constraints

−→
R q[a] ∈

̂̂
Pq and∄

−→
R q[j] ∈ P̂ r

q : j < a. Hence,

by Equation 4.2 and for thex = q.n case,Sa
q (P̂ r

q , x) =
∑

ccPq⊆cP r
q

||
ccPq||=x

−→
R q [a]∈

ccPq

(∏

p∈
ccPq

A
tq
p

∏

p=
−→
Rq [j]

j≤max(k)
−→
R q[k]∈

ccPq

p/∈
ccPq

(1−A
tq
p)
)

.

Then, we formally state the global satisfaction with respect to the allocation of a given query in
Theorem 6. Since the global satisfaction is computed by the mediator, given a queryq, we consider in the
following vector

−→
PIq to represent the intentions of providers inPq, but notice that

−→
PIq[p] =

−−→
PPIp[q].

The complexity of the global satisfaction computation isθ(n · r2). Of course, this computation is not
optimal, but, in this thesis, we only focus on studying the possible impact of considering the intentions
and failures probabilities of participants when replicating queries. We report a possible optimization of
this computation to future work.

Theorem 6. The global satisfactionΘ(P̂ r
q) of allocating a given queryq to a setP̂ r

q as,

Θ(P̂ r
q) =

r∑

j=1

(
A

tq
−→
R q[j]

·
(
A

tq
c · S

n−1
q (P̂ j−1

q) ·
−→
PIq[
−→
R q[j]] +

(
1−A

tq
c

)
· Sn−1

q (P̂ j−1
q) ·

−−→
PCq[

−→
R q[j]] +

(
1− Sn−1

q (P̂ j−1
q)

)
·
−−→
PCq[

−→
R q[j]]

))
+

||Pq||∑

j=r+1

A
tq
−→
R q[j]

· −
−→
PIq[
−→
R q[j]] +

A
tq
c ·

n∑

j=0

(
1− γ

n− γ · j
·

r∑

a=1

(
Sa

q (P̂ r
q , j) ·

−→
CIq[

−→
R q[a]]

))

Proof. For clarity, we proceed to demonstrate above equation line per line. The global satisfaction of
allocating a given queryq is the sum of the expected satisfaction of providers inPq and the expected
satisfaction consumerq.c. We first focus on the providers side. Given Definition 33, three cases may

occur : (i) when a provider is in set̂̂Pq, (ii) when a provider is in set(P̂ r
q \
̂̂
Pq) ∩ P ok

q , and (iii) when a

provider is in set(Pq\P̂ r
q) ∩ P ok

q . Indeed, in all these three cases, a provider inPq must be inP ok
q to

compute its satisfaction. This, probability is given by Equation 4.2,Atq
−→
Rq [j]

.

In order for a provider
−→
R q[j] in P̂ r

q ∩ P ok
q to be in set̂̂Pq, consumerq.c must be available during the

discrete time interval required by
−→
R q[j] to performq, which is given by Equation 4.2,Atq

c , and that at
most otherq.n − 1 providers with a ranking smaller thanj also be in set̂P r

q ∩ P ok
q , which is given by

Lemma 3,Sn−1
q (

̂
P j−1

q). Thus, the probability that the results produced by providers in P̂ r
q be returned

80 CHAPITRE 4 — Dealing with Participants’ Failures

to q.c is,
r∑

j=1

(
A

tq
−→
R q[j]

· A
tq
c · S

n−1
q (P̂ j−1

q) ·
−→
PIq[
−→
R q[j]]

)

which is multiplied by
−→
R q[j]’s intention since its results are returned toq.c. This proves the first line of

the global satisfaction equation.

Now, a provider
−→
R q[j] in P̂ r

q ∩ P ok
q may not be in set̂̂Pq for two main reasons : first, because

consumerq.c fails in the discrete time intervaltq, and ; second, because at leastq.n other providers with
a ranking smaller thanj be inP̂ r

q ∩P ok
q . By Equation 4.2 and Lemma 3, we have that the probability that

the first possibility occurs is,

r∑

j=1

(
A

tq
−→
Rq [j]

·
(
1−A

tq
c

)
· Sn−1

q (P̂ j−1
q) ·

−−→
PCq[

−→
R q[j]]

)

and that the second possibility occurs is,

r∑

j=1

(
A

tq
−→
R q[j]

·
(
1− Sn−1

q (P̂ j−1
q)

)
·
−−→
PCq[

−→
R q[j]]

)

which are multiplied by
−→
R q[j]’s cost since its results are not returned toq.c in both of two possibilities.

This proves the second and third lines of the global satisfaction equation.
To finalize with the provider’ side, we now consider the case that a provider not be allocated a query.

By Equation 4.2, the probability that a set of providers withrankingj > r be in(Pq\P̂ r
q) ∩ P ok

q is,

||Pq||∑

j=r+1

A
tq
−→
Rq[j]

· −
−→
PIq[
−→
R q[j]]

which is multiplied by
−→
R q[j]’s negative intention since its not allocatedq. This proves the fourth line of

the global satisfaction equation.
Concerning the consumer’s side, as for a provider, to compute its satisfaction, a consumer must be

available in a discrete time intervaltq, A
tq
c . The expected satisfaction of consumerq.c w.r.t. a given

provider
−→
R q[a] ∈

̂̂
Pq is given by the multiplication of the probability that provider

−→
R q[a] and other

j − 1 providers inP̂ r
q be in

̂̂
Pq andq.c’s intentions towards

−→
R q[a]. Hence, by Lemma 4, the expected

satisfaction of consumerq.c concerning a set̂̂Pq is given by,

A
tq
c ·

r∑

a=1

(
Sa

q (P̂ r
q , j) ·

−→
CIq[

−→
R q[a]]

Consequently, by Definition 32, the expected satisfaction of consumerq.c concerning all possible sets
̂̂
Pq in P̂ r

q is,

A
tq
c ·

n∑

j=0

(
1− γ

n− γ · j
·

r∑

a=1

(
Sa

q (P̂ r
q , j) ·

−→
CIq[
−→
R q[a]]

))

which finally proves the last (fifth) line of the global satisfaction equation.

CHAPITRE 4 — Dealing with Participants’ Failures 81

4.3 Non Systematic Query Replication Based on Satisfaction

We present in this sectionSatisfaction-based Query Replication(SbQR for short), a new method
to replicate queries so as to handle with participants’ failures. Conversely to several works that create
a backup provider per query (nb = 1), SbQR replicates incoming queries with the aim of increasing
participants’ satisfaction. Thus, it only replicates a query when this implies an increase of the global
satisfaction (see Theorem 6). Algorithm 4 shows the main steps of the query replication process.SbQR

receives as input the queryq to be allocated, ranking vector
−→
R q, vector

−→
CIq of consumers’ intentions,

vector
−→
PIq of providers’ intentions, and vector

−−→
PCq of providers’ cost. We assume that

−→
R q is generated

by using providers’ score as ranking function (see Definition 26), but, without any loss of generality,
vector

−→
R q could be generated by using any other ranking function (suchas the utilizationUt function).

First of all, to set the numbernb of backup providers,SbQR initializes nb to zero andr to the number
of required answers by consumerq.c (lines 2 and 3, respectively, of Algorithm 4). By settingr to n, it
means that thenb backup providers are to be considered from the

−→
R q[n + 1] to

−→
R q[||Pq ||] providers. As

second step, it builds the setŝP r
q andP̂ r+1

q (lines 4-7). Finally,SbQR verifies if the global satisfaction

concerning set̂P r+1
q is greater than that concerning set̂P r

q (line 8). This computation is given by Theo-
rem 7. If so, it increments the number of backup providers andadd the next best ranked providers to sets

P̂ r
q andP̂ r+1

q . Then, it restarts from line 8 untilΘ(P̂ r
q) ≥ Θ(P̂ r+1

q) or there is no more new providers in

vector
−→
R q (lines 9-15). Indeed, Algorithm 4 can be optimized, but our goal is to show the steps involved

in the query replication process.

Theorem 7.

Θ(P̂ r+1
q)−Θ(P̂ r

q) = A
tq
−→
Rq [r+1]

·

(
A

tq
c · Sn−1

q (P̂ r
q) ·
−→
PIq[

−→
R q[r + 1]] +

(1−A
tq
c) · Sn−1

q (P̂ r
q) ·
−−→
PCq[

−→
R q[r + 1]] +(

1− Sn−1
q (P̂ r

q)
)
·
−−→
PCq[

−→
R q[r + 1]] +

−→
PIq[
−→
R q[r + 1]]

)
+

A
tq
c ·

n∑

j=0

(
1− γ

n− γ · j
·
(r∑

a=1

(
Sa

q (P̂ r+1
q , j) − Sa

q (P̂ r
q , j)

)
·
−→
CIq[a] +

Sr+1
q (P̂ r+1

q , j) ·
−→
CIq[

−→
R q[r + 1]]

))

Proof. Our demonstration is derived from algebraic reductions of Theorem 6 (theΘ(P̂ r+1
q) − Θ(P̂ r

q)
case). For clarity reasons, we demonstrate equation of Theorem 6 line per line. First, in case that a

provider is considered to get a queryq and is also considered to be in set̂̂Pq, we have

r+1∑

j=1

(
A

tq
−→
Rq [j]

· A
tq
c · S

n−1
q (P̂ j−1

q) ·
−→
PIq[
−→
R q[j]]

)
−

r∑

j=1

(
A

tq
−→
Rq [j]

· A
tq
c · S

n−1
q (P̂ j−1

q) ·
−→
PIq[

−→
R q[j]]

)

and hence all values from1 up tor are eliminated by the subtraction because of Lemma 3. Consequently,
we only consider ther + 1 value, that is,

A
tq
−→
Rq [r+1]

· A
tq
c · S

n−1
q (P̂ r

q) ·
−→
PIq[
−→
R q[r + 1]]

82 CHAPITRE 4 — Dealing with Participants’ Failures

Algorithm 4 : Satisfaction-based Query Replication

Input : q,
−→
R q,
−→
CIq,

−→
PIq,

−−→
PCq

Output : nb

begin1

// Variables setting
nb = 02

r = n3

// Provider sets setting
for i = 1 to r do4

add provider
−→
R q[i] to P̂ r

q5

add provider
−→
R q[i] to P̂ r+1

q6

add provider
−→
R q[r + 1] to P̂ r+1

q7

// Computing the number of backup providers

while Θ(P̂ r
q) < Θ(P̂ r+1

q) do8

incrementnb by one (nb = nb + 1)9

incrementr by one (r = r + 1)10

if there exists provider
−→
R q[r + 1] then11

add provider
−→
R q[r] to P̂ r

q12

add provider
−→
R q[r + 1] to P̂ r+1

q13

else14

break loop ;15

end16

which demonstrates the first line (of Theorem 7). When a provider is expected to get queryq and not

expected to be in set̂̂Pq, we have the case in which consumerq.c is expected to fail,

r+1∑

j=1

(
A

tq
−→
Rq[j]
·
(
1−A

tq
c

)
·Sn−1

q (P̂ j−1
q)·

−−→
PCq[

−→
R q[j]]

)
−

r∑

j=1

(
A

tq
−→
Rq [j]
·
(
1−A

tq
c

)
·Sn−1

q (P̂ j−1
q)·

−−→
PCq[

−→
R q[j]]

)

and also have the case in which at leastq.n other providers with a ranking smaller thanj be inP̂ r
q ∩P ok

q ,

r+1∑

j=1

(
A

tq
−→
Rq[j]

·
(
1− Sn−1

q (
̂
P j−1

q)
)
·
−−→
PCq[

−→
R q[j]]

)
−

r∑

j=1

(
A

tq
−→
Rq[j]

·
(
1− Sn−1

q (
̂
P j−1

q)
)
·
−−→
PCq[

−→
R q[j]]

)

In both cases, values from1 up to r are eliminated by the subtraction and hence we only considerthe
r + 1 value. Consequently, we have below equation for the first case,

A
tq
−→
Rq[r+1]

·
(
1−A

tq
c

)
· Sn−1

q (P̂ r
q) ·
−−→
PCq[

−→
R q[r + 1]]

and,
A

tq
−→
Rq [r+1]

·
(
1− Sn−1

q (P̂ r
q)
)
·
−−→
PCq[

−→
R q[r + 1]]

CHAPITRE 4 — Dealing with Participants’ Failures 83

for the second case. The above two equations demonstrate lines2 and3, respectively. Now, for those
providers that are expected to not get queryq we have,

||Pq||∑

j=r+2

A
tq
−→
Rq [j]

· −
−→
PIq[
−→
R q[j]] −

||Pq||∑

j=r+1

A
tq
−→
Rq[j]

· −
−→
PIq[
−→
R q[j]]

Notice that all values fromr + 2 up to ||Pq|| are again eliminated by the subtraction. But, conversely to
previous equations, ther + 1 value remains in the right side and thus we take its negative value, which
implies the following equation,

A
tq
−→
Rq[r+1]

·
−→
PIq[
−→
R q[r + 1]]

This equation demonstrates the fourth line. Finally, to demonstrate the final line (i.e. the expected satis-
faction concerning the consumer), we focus on the consumer’s side of Theorem 6 and thus we have the
following subtraction,

A
tq
c ·

n∑

j=0

(
1− γ

n− γ · j
·

r+1∑

a=1

(
Sa

q (P̂ r+1
q , j) ·

−→
CIq[
−→
R q[a]]

))
−

A
tq
c ·

n∑

j=0

(
1− γ

n− γ · j
·

r∑

a=1

(
Sa

q (P̂ r
q , j) ·

−→
CIq[

−→
R q[a]]

))

Conversely to all above equations, even if we have repeated iterations (from1 up tor), the subtraction

cannot eliminate such values because of Lemma 4, which considers set̂̂Pq. In other words,Sa
q (P̂ r+1

q , j)

is different toSa
q (P̂ r

q , j) even for a same valuej, which is not the case forSn−1
q (P̂ j

q). Therefore, we can
only reduce above equation by grouping values from1 up tor,

A
tq
c ·

n∑

j=0

(
1− γ

n− γ · j
·
(r∑

a=1

(
Sa

q (P̂ r+1
q , j)− Sa

q (P̂ r
q , j)

)
·
−→
CIq[a]

))

and separating ther + 1 value,

A
tq
c ·

n∑

j=0

(1− γ

n− γ · j
· Sr+1

q (P̂ r+1
q , j) ·

−→
CIq[

−→
R q[r + 1]]

)

Thus, we have the following equation,

A
tq
c ·

n∑

j=0

(
1− γ

n− γ · j
·
(r∑

a=1

(
Sa

q (P̂ r+1
q , j) − Sa

q (P̂ r
q , j)

)
·
−→
CIq[a]+

Sr+1
q (P̂ r+1

q , j) ·
−→
CIq[

−→
R q[r + 1]]

))

which demonstrate the fifth line (of Theorem 7).

84 CHAPITRE 4 — Dealing with Participants’ Failures

Parameter Definition Value
nbConsumers Number of consumers 150
nbProviders Number of providers 300
nbMediators Number of mediators 1
qDistribution Query arrival distribution Poisson
iniSatisfaction Initial satisfaction 0.5
γ Query criticity from 0.3 to 1
fRate Participant failure rate 0.03/second
nbRepeat Repetition of simulations 10

Table 4.1 – Simulation parameters.

4.4 Experimental Validation

In this section, we validateSbQR by comparing it withreplicateAll, which is a traditional query
replication method that only allocates each incoming queryto one backup provider, no matter how many
results a consumer desires [KLL97]. For our validations, weassume thatSbQA ranks providers and
selects the best providers required by a consumer and thatSbQR andreplicateAll only select thenb

best ranked providers after then first ranked providers. To clearly see theSbQR’s gains, we also compare
it to SbQA, that is, to the case when one never creates backup queries (for clarity, we call this case the
none case). We carry out our validations with three main objectives :
• To evaluate how well, from a satisfaction point of view,SbQR operates distributed information

systems where participants have special interests towardsqueries.
• To evaluate the impact on performance due to the backup queries generated bySbQR.
• To analyze ifSbQR can adapt to different queries’ criticity and to different probabilities of partic-

ipants’ failure.
With this in mind, we first evaluateSbQR from a satisfaction and performance point of view (Sec-

tion 4.4.2). Then, we study in Section 4.4.2.1 how wellSbQR performs when queries have a high criticity
and finally study, in Section 4.4.2.2, how well it deals with high failures probabilities of providers.

4.4.1 Setup

We modify our java-based simulator, which we used for the validation of Chapter 2, so that it
considers participants’ failures and different values of queries criticity. We implementedSbQR and
replicateAll methods on top ofSbQA, that is,SbQA ranks providers and selects then best ranked
providers and asSbQR asreplicateAll selects thenb best ranked providers aftern to perform backup
queries. For both of them, the following configuration is thesame and the only change is the way in
which each method replicate queries. So far, we discussed that the definition of a synthetic workload for
the environments we consider is an open problem. This is why we decide, in these experiments, to gener-
ate again a very general workload that can be applied for different applications. Since the way in which
a mediator creates backup queries is independent of other mediators, we consider in these experiments
only 1 mediator allocating queries to better study the impact of generating backup queries. Also, we
assume that the mediator has enough computational resources so that it is not a performance bottleneck
for the system.

We generated a network with150 consumers and300 providers who compute their satisfaction as
presented in Sections 4.2.1 and 4.2.2, respectively. We initialize their satisfaction with a value of0.5,

CHAPITRE 4 — Dealing with Participants’ Failures 85

which evolves with their last150 issued queries (for consumers) and400 queries that have passed
through providers. We consider that all300 providers are able to perform any incoming query issued
by consumers. We assume that a participant has a probabilityof 0.03 of failure per second. We generate
around 10% of providers withlow-capacity, 60% withmedium, and 30% withhigh. Thehigh-capacity
providers are3 times more powerful thanmedium-capacity providers and still7 times more powerful
than low-capacity providers [SGG02]. Concerning participants’ preferences, to simulate high hetero-
geneity, we divide the set of providers into three classes according to the interest of consumers (as in
Chapter 2.6) : to those that consumers havehigh-interest (60% of providers),medium-interest (30% of
providers), andlow-interest (10% of providers). Also, we create three classesof providers : those that
havehigh-adaptation (35% of providers),medium-adaptation (60% of providers), andlow-adaptation
(5% of providers).

We run our experiments over10000 seconds and repeat each series of experiments10 times to present
the average results of all these experimentations. We generate two classes of queries thathigh-capacity
providers perform in1.3 and1.5 seconds, respectively, and assume that they arrive in aPoissondistri-
bution, as found in high dynamic environments [Mar02]. Consumers issue queries with a criticity that
they generate at random between0.3 and1. For the sake of simplicity, we assume that consumers only
ask for one informational answer (i.e.n = 1). Finally, since our goal is to study how wellSbQR repli-
cates queries, we assume captive participants in these experiments so that participants’ departure (by
dissatisfaction, overutilization, or starvation) does not impact on results.

4.4.2 Results

In Figure 4.4.2, we illustrate the results of a series of experiments with different workloads. We start
by illustrating in Figure 4.2(a) the number of queries that remains without answers due to providers’
failure. A queryq without answers means that all providers in setP̂q failed before returning the result of
q. We can observe that, for low workloads, bothSbQR andreplicateAll has less queries without answers
than thenone case. However, conversely to the expected, this is not the case for high workloads. While
SbQR starts from workloads over 80% (i.e.20k incoming queries) of the total system capacity to have a
few more queries without answers than thenone case,replicateAll starts from workloads over 60% (i.e.
15k incoming queries) of the total system capacity to have muchmore queries without answers than the
none case. This is because, by replicating each incoming query,replicateAll significantly overutilizes
those providers that are the most preferred by consumers andthat the system is most adapted, which,
given Equation 4.2, increases the probability of failure ofa provider before returning the result of a given
query. In contrast,SbQR considers the failure probability and intentions of participants to decide if a
query should be created or not. This is whySbQR has, in average,30 more queries without answers than
thenone case for high workloads.

In Figure 4.2(b), we illustrate the number of backup queriescreated bySbQR. As expected, we ob-
serve that the number of created backup queries increases asthe number of incoming queries increases.
But, the number of created backup queries decreases for highworkloads because providers express neg-
ative intentions when they become overutilized and hence the fact of replicating queries implies to de-
crease the global satisfaction. As a result,SbQR only replicates those queries that allow increasing the
global satisfaction while ensuring more answered queries thanreplicateAll. Moreover, as seen in Sec-
tion 2.6.3.1,SbQA better balances queries in the system as the number of incoming queries increases.
This is why,replicateAll allowsSbQA to ensure a betterqlb than withSbQR and thenone case (see
Figure 4.2(c))). Nevertheless, to create much more backup queries is reflected in the response times en-
sured byreplicateAll (see Figure 4.2(d)). We observe that whileSbQR has a performance quite close

86 CHAPITRE 4 — Dealing with Participants’ Failures

 0

 100

 200

 300

 400

 500

 600

 700

 800

25k20k15k10k5k

Q
u

e
ri
e

s
 w

it
h

o
u

t
a

n
s
w

e
rs

Incoming queries

SbQR
replicateAll

none

(a) Untreated queries.

 0

 100

 200

 300

 400

 500

 600

25k20k15k10k5k

B
a

c
k
u

p
 q

u
e

ri
e

s

Incoming queries

SbQR

(b) Backup queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 U

ti
liz

a
ti
o

n
 M

in
M

a
x

Workload (% of the total system capacity)

SbQR
replicateAll

none

(c) Query load min-max.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

Workload (% of the total system capacity)

SbQR
replicateAll

none

(d) Response times.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 I
n

t.
 S

a
t.
 M

e
a

n

Workload (% of the total system capacity)

SbQR
replicateAll

none

(e) Consumers’ satisfaction mean based
on preferences.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100
A

v
e

ra
g

e
 S

a
ti
s
fa

c
ti
o

n
 M

e
a

n

Workload (% of the total system capacity)

SbQR
replicateAll

none

(f) Providers’ satisfaction mean based on
preferences.

Figure 4.2 – Results with faulty participants and differentworkloads.

to the performance to thenone case,replicateAll significantly increases response times.
Concerning participants’ satisfaction, we observe in Figure 4.2(e) that, for a workload of 20% and

40% of the total system capacity, consumers have a satisfaction slightly higher, or equal, withreplicateAll
than withSbQR. But, this is no more the case for higher workloads where consumers are significantly
more satisfied withSbQR than withreplicateAll because, as seen in Figure 4.2(a),replicateAll penal-
izes consumers with several queries without answers. We also observe that consumers are more satisfied,
for workloads under 80% of the total system capacity, withSbQR than thenone case. And, for work-
loads over 80% of the total system capacity, consumers are slightly less satisfied withSbQR than the
none case. On the other side, we can observe in Figure 4.2(f) that providers are significantly more satis-
fied withSbQR than withreplicateAll or thenone case. In particular, we can see that providers are less
satisfied withreplicateAll than thenone case. This is becausereplicateAll always generates backup
queries and thus there exist several cases where providers work for nothing, which dissatisfy them.

All above results demonstrate the efficiency ofSbQR to replicate queries so to increase participants’
satisfaction while ensuring good system performance. In the following, we go further with our valida-
tions with the aim of evaluating how wellSbQR deals with different queries criticity and with high
probabilities of participants’ failure.

4.4.2.1 Varying Criticity of Queries

First of all, let us say that to better evaluate the impact of queries criticity, we assume in these
experimentations that consumers require two results from different providers, i.e.q.n = 2. In this case, a

CHAPITRE 4 — Dealing with Participants’ Failures 87

 0

 100

 200

 300

 400

 500

 600

10080604020

Q
u

e
ri
e

s
w

ith
o

u
t
a

n
sw

e
rs

Workload (% of the system capacity)

low-critical
medium-critical

high-critical

(a) Untreated queries.

 0

 100

 200

 300

 400

 500

 600

25k20k15k10k5k

B
a

ck
u

p
 q

u
e

ri
e

s

Incoming queries

low-critical
medium-critical

high-critical

(b) Backup queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 I
n

t.
 S

a
t.
 M

e
a

n

Workload (% of the total system capacity)

SbQR
replicateAll

none

(c) Consumers’ satisfaction with a query
criticity of 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 I
n

t.
 S

a
t.
 M

e
a

n

Workload (% of the total system capacity)

SbQR
replicateAll

none

(d) Consumers’ satisfaction with a query
criticity of 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 S

a
ti
s
fa

c
ti
o

n
 M

e
a

n
Workload (% of the total system capacity)

SbQR
replicateAll

none

(e) Providers’ satisfaction with a query
criticity of 1.

Figure 4.3 – Results with different query criticity values and different workloads.

queryq without answers denotes a result for less than the required.For example, a consumer, requiring
3 results for a given query, that receives1 result, we say that there were2 queries without answer.

Having stressed this, we start again by discussing the number of queries without answers and of the
number of created backup queries. Notice that the criticityof queries does not impact on the performance
of replicateAll and thenone case becausereplicateAll replicates all incoming queries independently
of their criticity and in thenone case no query is replicated. This is why we only show the results for
SbQR. In Figures 4.3(a) and 4.3(b), we illustrate the number of queries thatSbQR has without answers
and the number of created backup queries, respectively, fordifferent workloads and for different values
of criticity : with value of0 (low-critical), with value of0.5 (medium-critical), and with value of1 (high-
critical). We can observe in Figure 4.3(a) that, as expected, SbQR has more queries without answers for
low-critical queries than for medium and high-critical queries. This is becauseSbQR tends to replicate
much more queries for medium and high-critical queries thanfor low-critical queries (see Figure 4.3(b)).
It is worth noting that providers quickly becomes overutilized for high-critical queries and henceSbQR
decreases the number of backup queries it creates from workloads of60% of the total system capacity
(15k) while it does so for medium-critical queries from80% of the total system capacity (2k). This
phenomenon does not occur for low-critical queries since the number of backup queries created bySbQR
does not overutilize providers.

Concerning consumers’ satisfaction, we show in Figures 4.3(c) and 4.3(d) these results for critic-
ity values of1 and0, respectively, and for different workloads. We can observethat all threeSbQR,
replicateAll, andnone case, suffer for high workloads since it is in these cases that there are more

88 CHAPITRE 4 — Dealing with Participants’ Failures

 0

 1000

 2000

 3000

 4000

 5000

25k20k15k10k5k

B
a

c
k
u

p
 q

u
e

ri
e

s

Incoming queries

low-probability
medium-probability

high-probability

(a) Backup queries with a high probabil-
ity of failure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 I
n

t.
 S

a
t.
 M

e
a

n

Workload (% of the total system capacity)

SbQR
replicateAll

none

(b) Consumers’ satisfaction with a high
probability of failure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 S

a
ti
s
fa

c
ti
o

n
 M

e
a

n

Workload (% of the total system capacity)

SbQR
replicateAll

none

(c) Providers’ satisfaction with a high
probability of failure.

Figure 4.4 – Results with a high-probability of failure and different workloads.

queries without answers, which, given the criticty, significantly impact consumers’ satisfaction. This is
why they less suffer for criticity values of0 than for criticity values of1. In fact, we can see that for a
criticity value of0, SbQR has the same performance as thenone case except for a workload of100%
of the total system capacity. Notice that, given our Definition 33, the criticity of queries does not impact
at all on providers’ satisfaction. We show this in Figure 4.3(e) where we can observe that providers has
the same satisfaction as in Figure 4.2(f) of previous section. In conclusion, we can say that, even for
high-critical queries,SbQR can ensure good consumers’ satisfaction while providers are also satisfied.

4.4.2.2 Dealing with High Probabilities of Providers’ Failure

We now validateSbQR in systems where providers have different probabilities offailure per second :
with a probability of0.006 (low-probability), with a probability of0.05 (medium-probability), and with
a probability of0.1 (high-probability). Moreover, we assume that queries arrive with a criticity of1. As
in previous section, we assume that consumers ask for two answers per query, i.e.q.n = 2.

In Figure 4.4(a), we can observe that the higher the failure probability of providers is, the more are the
backup queries created bySbQR so as to ensure that consumers get answers for their queries.However,
we can observe again that when providers become overutilized, SbQR starts to decrease the number of
backup queries it creates. This is whySbQR creates less backup queries from workloads of80% of the
total system capacity (i.e. from20k incoming queries). In Figure 4.4(b), we can observe that inthe worst
caseSbQR satisfies consumers as well as thenone case. This not the case forreplicateAll that better
satisfies consumers than thenone case only for workloads of20% and40% of the total system capacity.
On the other side, we can see in Figure 4.4(c) thatSbQR always satisfies providers thanreplicateAll
and thenone case. In these results, it is worth noting all threeSbQR, replicateAll, andnone case, the
providers’ satisfaction is smaller than in previous section because of providers failures. Notice that in
these two last results (Figures 4.4(b) and 4.4(c)) the performance ofSbQR is close to thenone case
because participants fail several times (due to their high-probability of failure) and they compute their
satisfaction only for those queries in which they do not fail.

4.5 Related Work

Most work on distributed query processing [Kos00] has been done to support access to multiple dis-
tributed, autonomous sources (providers), particularly addressing issues relating to heterogeneity, con-

CHAPITRE 4 — Dealing with Participants’ Failures 89

sistency, and availability. However, systems have tended to gather data to a central site for some query
processing issues such as query planning and inter-site joins. Furthermore, the emergence of new dis-
tributed systems such as grid computing [Fe99] provides support and motivation for the evolution of the
more open query processing espoused in this thesis and in [BKK+01], where participants contribute not
just data but also computational services. In these environments many widely distributed and autonomous
providers may be utilized in the execution of a particular query and hence providers’ failures may be not
only likely but also costly. It is then better to tolerate possible faults of participants rather than throwing
away the query or the work already done.

A possibility to deal with this is to duplicate logical resources such as data or queries at different
physical locations. Replicating data near the point of its use makes communication both cheaper and
faster. Data replication has been the focus of several worksin different research areas [BE08, JQL06,
MPV06, PGVA08]. Then, a simple solution to support failuresis to re-allocate failed queries, after their
failure detection, to those providers having a replica of the data or service. However, this solution inher-
ently assumes that providers agree to share their data with others and that services are homogeneous, i.e.
that providers produce quite similar results for a same query, which is not the case for the environments
we consider. Moreover, this may significantly penalize consumers with long response times. Therefore,
dealing with participants’ failures in a preventive way so that a consumer gets, in short times, the number
of results it requires for its queries is a key goal in large-scale distributed computing. Query replication
allows this and may tremendously increases the performanceof large distributed systems. In case of
provider’s failure the consumer still has access to the requested service or data at a different location.
Notice that data replication and query replication are complementary approaches and one can use both
two approaches together to have better performances when supporting providers’ failures.

In this chapter, we addressed the problem of dealing with participants’ failure by replicating queries
when this improves the global satisfaction (i.e. the satisfaction of participants increases). Research in fault
tolerance aims at making distributed systems more reliableby handling providers’ failures in complex en-
vironments. Fault tolerance in distributed systems is a wide area with a significant body of literature that
is vastly diverse in methodology and terminology. Thus, in Section 4.5.1, we discuss the most relevant
works based on query replication only. But, since some of these works use rollback-recovery protocols
to restore failed query processes, we discuss the most relevant protocols to recover query processes from
providers’ failures in Section 4.5.2. Finally, we make someconcluding remarks in Section 4.5.3.

4.5.1 Query Replication

To ensure that a consumer get answers for their queries despite providers’ failures, one can replicate
a same query over a set of redundant, physically independentproviders so that if some of these fail, the
remaining ones provide the answer to the query. In other words, a query is allocated to some backup
providers (which we refer to backup queries) besides the providers required by a consumer (which we
refer to primary queries). We say that a set of redundant providers masks the failure of a provider in the
redundant group whenever the required answers are returnedto the consumer despite such a provider’s
failure. The output of a set of redundant providers is a function of the outputs of each provider in such
a group. For example, a redundant group output can be the output generated by the fastest providers of
the group, the output generated by some distinguished providers of the group, or the result of a majority
vote on group providers’ outputs. A group of backup providers able to mask from its consumer any
l concurrent providers’ failures will be termedl-fault tolerant ; whenl is 1, the group will be called
single-fault tolerant, and whenl is greater than1, the group will be called multiple-fault tolerant. The
specific mechanisms needed for managing a redundant provider group in a way that masks member

90 CHAPITRE 4 — Dealing with Participants’ Failures

Figure 4.5 – Passive redundancy model.

providers’ failures and at the same time makes the group behavior functionally indistinguishable from
that of single provider strongly depend on the synchronization policies used. For any incoming query, the
synchronization policy of a set of redundant providers prescribes the degree of local state synchronization
that must exist among the redundant providers. Fault-tolerant techniques based on query replication can
be classified into two categories :passive redundancyor active redundancymodel. We discuss both
models in the following two sections.

4.5.1.1 Passive Redundancy

In the passive replica model, as well know as the primary-backup model [BMST93], some of the
replicas, called the primary providers, plays a special role : they actively performs queries and only
them return their produced results to the mediator. The principle of this model, which we illustrate in
Figure 4.5, is as follows. Given a queryq issued by a consumerq.c, the mediator allocatesq to theq.n
providers required byq.c plusnb backup providers. Theq.n providers performq return their produced
result to the mediator, while thenb backup providers are in standby. In other words, onlyq.n primary
queries are running actively at any one time and those queries on the remaining providers (the backup
queries) are non-active process. Primary providers regularly checkpoints their state to backup providers,
which are either waiting for a checkpointing message or saving a checkpointing message. Finally, in
case that a primary provider does not fail, it returns its results to the mediator, which finally sends the
q.n required results to consumerq.c. If a primary provider fails, a backup provider takes over the role of
the primary provider by reading the last checkpointed stateso as to recover a state that existed before the
primary provider’s failure. In this way, the failure can be masked to consumers, which only experience a
delay in getting results.

Several commercial systems such as Delta-4 and Tandem [NF92, SB89, SS92] use the passive re-
dundancy model to support fault-tolerance. The Paralex system [DGB+96], which also supports fault-
tolerance by passive replication, dynamically balances queries among providers by the “late binding” of
primary queries. Similarly,Kim et al. [KLL97] proposed a query allocation algorithm to dynamically
balance queries among providers. They duplicate each incoming query and uses common techniques of
checkpointing (see Section 4.5.2) to reflect primary queries’ state in backup queries. [KLL97] consider
the possibility of a single provider failure only.Lee et al.[LKH +95] duplicate incoming queries once,
but re-generate backup providers as many times as primary providers fails. This allows to support several
providers’ failure. The only restriction, that they do to allow this, is that as primary queries as backup
queries be allocated to different providers.

For achieving high availability, research in stream processing systems has focused also on passive
replication by storing data and checkpointing [HBR+05b]. Commercial workflow systems [Cor03] also

CHAPITRE 4 — Dealing with Participants’ Failures 91

Figure 4.6 – Active redundancy model.

rely on this model to achieve high availability. Exotica workflow system [KAGM96], instead of backing
up process states, logs changes to the workflow components, which store inter-query messages. Recently,
Bansal et al.[BBJ+08] proposed a query replication algorithm based on the passive redundancy model
for partial-fault tolerant applications, such as SDIMS [YD04] and PIER [HHL+03] that likely to be able
to tolerate some missing objects while processing a query (e.g. AVG, MEDIAN, etc.) on a distributed
database.

However, all above research works are inappropriate for theenvironments we focus on because it
inherently assumes that providers are homogeneous from a functionality and data point of view such
that they provide the same results for queries. Furthermore, to maintain replicas may incur significant
overheads to provide strict consistency requirements [YV01] and such overheads can limit the benefits
of checkpointing approaches.

4.5.1.2 Active Redundancy

In the active replication technique, also calledstate-machineapproach [Sch93], all replicas play
the same role : there is here no centralized control, as in thepassive redundancy model. This model
prescribes that local providers’ states are closely synchronized to each other by letting all providers
execute all queries in parallel and go through the same sequence of state transitions. In other words, as
primary queries as backup queries are active processes running at any one time. The principle of the
active redundancy model, which we illustrate in Figure 4.6,is as follows. Given a queryq issued by a
consumerq.c, the mediator allocatesq to theq.n providers required byq.c plus nb backup providers.
Theq.n andnb providers performq in parallel and return their produced result to the mediator. Finally,
the mediator returns the results from theq.n fastest or best ranked provider toq.c. An advantage of
this model is that it does not require checkpointing messages to maintain backup queries and that it is
appropriate to environments where providers perform queries differently and provide different results.

Several proposals have been done based on this model. For example,Oh and Son[OS92] proposed
and scheduling algorithm for multiprocessor systems basedon the active redundant model. The reli-
ability of a query is ensured by creating1 backup query of each incoming query. Similarly,Shatz et
al. [SWG92] proposed a query allocation algorithm that maximizes the reliability of heterogeneous sys-
tems.Hashimoto et al.[HTK02] proposed a scheduling algorithm to achieve fault tolerance in multipro-
cessor systems. Their algorithm first partitions a parallelprogram into subsets of queries, based on the
notion of height of a query graph. For each subset, the algorithm then duplicates once and schedules the
query in the subset successively. Thus, as for [OS92], theirproposed algorithm can tolerate a single pro-
cessor failure.Girault et al. [GKS03] proposed an algorithm consisting of a set of scheduling heuristics
that actively replicates each incoming query a fixed number of times, sayr, therefore producing sched-

92 CHAPITRE 4 — Dealing with Participants’ Failures

ules that tolerated− 1 provider failures. Moreover, a number of rules for transforming non fault-tolerant
services implemented by non-redundant application programs into fault-tolerant services implemented
by active redundant model have been proposed in [Nie90].

A common assumption of all above research works is that a backup query has the same load as a
primary query. Therefore, to replicate all incoming query implies having several active processes, which
may quickly utilize all computational resources in the system. Recently, probabilistic approaches have
been recently proposed to improve the reliability without increasing too much the number of redundant
providers. In probabilistic approaches providers, hardware, or software components are characterized by
a probability of failure, which can depend on e.g. the query duration and query complexity. Then, given
a set of relevant provider to perform a given query a precise analysis can determine for each incoming
query if duplication is required. An advantage of a probabilistic approach is that no assumption on the
number of tolerated failures is made.

Assayad et al.[AGK04] proposed a bi-criteria scheduling heuristic for scheduling data-flow graphs
of operations onto parallel heterogeneous architectures according to two criteria : the minimization of the
schedule length and the maximization of the probability that an operation be successfully treated. Gen-
erally speaking, the proposed algorithm is a set of heuristics, based on a bi-criteria compromise function
that introduces priority between the operations to be scheduled, and that chooses on what providers they
should be scheduled. In this proposal each processor and communication link is associated with a failure
rate. The authors then tackle the problem of improving reliability by using the active model query repli-
cation. If the system reliability or the schedule length requirements are not met, the a parameter of the
compromise function can be changed and the algorithm re-executed. This process is iterated until both
requirements are met.

Berten et al.[BGJ06], authors proposed two probabilistic algorithms toreplicate queries in order
to (i) given a maximum tolerated probability of provider’s failure, minimize the number of required
redundant providers such at least one of them terminates a query, and(ii) given the number of redundant
providers find the best achievable reliability. Given a set of incoming queriesQ, both algorithms increase
the number of query replicas according to one of the following 5 heuristics. First, each incoming query
q ∈ Q is replicated. Second, only the queryq ∈ Q whose number of subqueries minimally increases
the number of required providers is replicated. Third, a query q ∈ Q is replicated if it is allocated to
that provider having the highest failure probability. Fourth, the queryq ∈ Q having a high probability
of failure and a great number of subqueries. Finally, this fifth heuristic combines the second and third
heuristics, that is, it is replicated the queryq ∈ Q that requires a low the number of providers and
that is allocated to that provider having a high failure probability. However, authors assume an identical
multiprocessor platform.

4.5.2 Rollback-Recovery Protocols

The problem of rollback-recovery in distributed systems has been extensively studies (see [EAWJ02]
for a survey in message-passing systems). Rollback recovery treats a distributed system as a collection
of application processes that communicate through a network. It achieves fault tolerance by periodically
saving the state of a process during failure-free execution, and restarting from a saved state upon a failure
to reduce the amount of lost work. The saved computation state of a query is called a checkpoint, and
the procedure of restarting from previously checkpointed state is called rollback-recovery. A checkpoint
can be saved on either stable storage or the volatile storageof another process, depending on the failure
scenarios to be tolerated. The providers have access to a stable storage device that survives all tolerated
failures so that upon a failure, a failed provider uses the saved information to restart the computation

CHAPITRE 4 — Dealing with Participants’ Failures 93

Figure 4.7 – Recovery line, rollback propagation, and domino effect.

from an intermediate state, thereby reducing the amount of lost computation. The recovery information
includes at a minimum the states of the participating providers, called checkpoints. Other recovery pro-
tocols may require additional information, such as logs of the interactions with input and output devices,
events that occur to each provider, and messages exchanged among the providers. We briefly discuss
checkpointing protocols in Section 4.5.2.1 and logging protocols in Section 4.5.2.2.

4.5.2.1 Checkpointing Protocols

In checkpointing protocols, each provider periodically saves its state on stable storage. The state
should contain sufficient information to restart a query execution. A consistent global checkpoint refers
to a set of local checkpoints, one from each primary query, which forms a consistent system state. Any
consistent global checkpoint can be used for system restoration upon a failure. To minimize the amount
of lost work, the most recent consistent global checkpoint,called the recovery line [Ran75], is the best
choice. Figure 4.7 gives an example where primary providersare allowed to take their checkpoints inde-
pendently, without coordinating with each other. A black bar represents a checkpoint, and each provider
is assumed to start its execution with an initial checkpoint. Suppose providerp2 fails and rolls back
to checkpointcpc. The rollback “unsends” messagem and so providerp1 is required to roll back to
checkpointcpb to “unreceive”m. The rollback ofp2 thus propagates top1, therefore the term rollback
propagation.p1’s rollback further “unsend”m′ and forcesp0 to roll back as well. Such cascading roll-
back propagation can eventually lead to an unbounded rollback, called the domino effect [Ran75]. The
recovery line for the single failure ofp2 consists of the initial checkpoints. Thus, the system has toroll
back to the beginning of its execution and loses all useful work in spite of all the checkpoints that have
been taken.

To avoid the domino effect, several techniques have been developed to prevent it. One such technique
is to perform coordinated checkpointing in which primary providers coordinate their checkpoints in or-
der to save a system-wide consistent state [CL85]. This consistent set of checkpoints can then be used to
bound rollback propagation. Alternatively, communication-induced checkpointing forces each primary
provider to take checkpoints based on information piggybacked on the application messages received
from other processes [Rus80]. Checkpoints are taken such that a system-wide consistent state always ex-
ists on stable storage, thereby avoiding the domino effect.Therefore, checkpoint-based rollback-recovery
relies solely on checkpointed states for system state restoration and depending on when checkpoints are
taken, existing approaches can be divided into uncoordinated checkpointing, coordinated checkpointing
and communication-induced checkpointing.

94 CHAPITRE 4 — Dealing with Participants’ Failures

Figure 4.8 – Logging for deterministic replay.

4.5.2.2 Logging Protocols

Log-based rollback recovery uses checkpointing and logging to enable providers to replay the execu-
tion of a given query after a failure beyond the most recent checkpoint. This is useful when interactions
with the outside world are frequent since it enables a provider to repeat its execution and be consistent
with messages sent to other providers without having to takeexpensive checkpoints before sending such
messages. Additionally, log-based recovery generally is not susceptible to the domino effect, thereby
allowing primary providers to use uncoordinated checkpointing if desired. Log-based recovery relies on
the piecewise deterministic (PWD) assumption [SY85]. Under this assumption, the rollback recovery
protocol can identify all the nondeterministic events executed by each process, and for each such event,
logs a determinant that contains all information necessaryto replay the event should it be necessary dur-
ing recovery. If the PWD assumption holds, log-based rollback-recovery protocols can recover a failed
process and replay its execution as it occurred before the failure.

Log-based recovery relies on the assumptions underlined ina piecewise deterministic (PDW) execu-
tion model [SM94, SBY88] and employs an additional logging protocol. Under the PDW assumption, a
query execution consists of a sequence of state intervals, each starting with a nondeterministic event such
as a message receipt from another query process. The execution within each state interval is determinis-
tic. Thus, by logging every nondeterministic event during failure-free execution and replaying the logged
events in their original order during recovery, a provider can replay a query execution beyond the most
recent checkpoint. A query state is recoverable if there is sufficient information to replay the execution
up to that state despite any future failures in the system.

In Figure 4.8, suppose messagesm5 andm6 are lost upon the failure affecting both providersp1 and
p2, while all the other messages survive the failure. Messagem7 becomes an orphan message because
providerp2 cannot guarantee the regeneration of the samem6 after the rollback, andp1 cannot guarantee
the regeneration of the samem7 without the originalm6. As a result, the surviving providerp0 becomes
an orphan process and is forced to roll back as well. As indicated in Figure 4.8, providers statesX, Y and
Z then form the maximum recoverable state [JZ90], i.e., the most recent recoverable consistent system
state. Providersp0 (p2) rolls back to checkpointcpa (cpc) and replays messagem4 (m2) to reachX (Z).
Providerp1 rolls back to checkpointcpb and replaysm1 andm3 in their original order to reachY .

4.5.3 Concluding Remark

As seen in this section,SbQR is quite related to probabilistic approaches for query replication
(e.g. [AGK04, BGJ06]) since both of them consider the failure probability of providers to dynamically
set the replication rate of queries. However,SbQR significantly differs from works on fault tolerance

CHAPITRE 4 — Dealing with Participants’ Failures 95

in two main points. First, in addition to the failure probability of providers,SbQR considers the failure
probability of consumers. This consideration is quite important in environments where providers are au-
tonomous because repeated consumers’ failures may cause dissatisfaction departures from the system
of those providers that perform their queries. This is because such providers waste their computational
resources for producing results that are finally not returned to the consumer. Second,SbQR goes fur-
ther than a simple consideration of failures probabilities: it considers both participants’ intentions and
queries’ criticity to set the replication rate of queries. This allowsSbQR to only replicate those queries
that increase participants’ satisfaction.

4.6 Chapter Summary

We addressed in this chapter the problem of dealing with participants’ failures in distributed informa-
tion systems where participants are autonomous and have special interests towards queries. In particular,
we focused on query replication based on the active replica model. The addressed problem is challeng-
ing because replicating queries may decrease system performance and may also dissatisfy providers.
But, if queries are not replicated, consumers may be dissatisfied because they may get no answer for
their queries due to providers’ failure. We proposed aSatisfaction-based Query Replicationtechnique,
SbQR, that decides to replicate those queries that allows to increase participants’ satisfaction (global
satisfaction) while ensuring system performance. To our knowledge, this is the first work that addresses
the problem of participants’ failures with a satisfaction point of view and hence it opens a new issue in
this field. In summary, our main contributions in this chapter are the following.
• We proposed a satisfaction model that considers participants’ failures. In particular, we revisited

the consumer’s satisfaction definition so as to characterize the fact that queries have different
criticity and that a consumer may receive less results than it expects because of providers’ failures.
We also revisited the provider’s satisfaction definition inorder to consider the fact that a provider
may perform queries for nothing because of backup queries orconsumers’ failures.

• We defined the global satisfaction that denotes the expectedparticipants’ satisfaction concerning
the allocation of a given query. This definition considers : the participants’ intentions ; the partici-
pants’ failure probability, and ; the probability that a query has to be successfully treated.

• We proposedSbQR, a query replication technique to compute the rate of backupqueries according
to the global satisfaction. In other words,SbQR replicates only those queries that allow to increase
the satisfaction of participants. A particularity ofSbQR is that it makes no assumption on how
many providers’ failures can occur at any one time.

• We demonstrated thatSbQR significantly outperforms those techniques that replicateall incoming
query (thereplicateAll technique). We also demonstrated thatSbQR dynamically adapts to the
workload and ensures a good performance even for high probabilities of providers’ failure. A key
point of our validation is thatreplicateAll suffers from serious problems of performance for high
workloads, but worse it loses more query results than when one does not replicate queries at all.

Future Work As noted above, to deal with participants’ failures, we opted to increase the number of
providers that have to perform a query when the global satisfaction is increased only. Now, we plan to
study, in a near future, the possibility of reducing the number of required providers to perform a query
when this also implies to increase the global satisfaction.For example, given an incoming query with a
low criticity and requiring results from3 different providers, it could be better to allocate it to1 provider
because of its criticity and other two providers (which should get the query) do not desire to perform

96 CHAPITRE 4 — Dealing with Participants’ Failures

it. Autonomy and intentions of participants introduce other problem : a participant may act maliciously,
that is, it may be Byzantine [LSP82]. We also desire to address this, in a future work, so that consumers
obtain high probability of correct acceptance of results with low additional computation, i.e. with a small
number of required providers.

Moreover, as participants, in mediator-based distributedsystems mediators can fail and can also be
Byzantine. Indeed, when a mediator fails, one loses the queries that the mediator was mediating at that
moment, but also one loses some information about participants (such as their satisfaction and current
money balance). In a future work, we plan to implement a dynamic mechanism of mediators’ replacement
that allows ensuring the continuity of both consumers’ queries and participants’ information. Finally,
notice that we validatedSbQR on the top ofSbQA. We now are interested in validatingSbQR on the
top of $bQA so as to handle with participants’ failures in multi-mediator systems. We reported this to
future work because our objective, in this chapter, was to only study the impact on system performance
of considering participants’ satisfaction when replicating queries.

Conclusion

We summarize in this chapter the main contributions of this thesis and discuss some future directions
of research for query processing in large-scale distributed information systems where participants are
autonomous and have special interests towards queries.

Summary

This work took place in the context of theAtlas Peer-to-Peer Architecture(APPA) [AM07] and of
several joint projects including : the Grid4All European STREP project [gri], the ANR Massive Data
Projects MDP2P [mdp], and Respire project [res]. In this thesis, we have addressed the query allocation
problem in large-scale distributed systems where participants (consumers and providers) may join and
leave the system at any time, but also they have special interests towards queries. This work was mainly
motivated by the great interest of several enterprises, individuals, and research groups to collaborate,
share, and do business in a previously impossible scale. Forexample, just to mention the most important,
applications such as SETI@home, eBay, as well as Web 2.0 follow this common goal. Most of the
works in this context has focused on distributing the query load among the providers in a way that
maximizes system performance (typically high throughput and short response times), i.e.query load
balancing(qlb) [ABKU99, GBGM04, MTS90, RM95, SKS92]. However, these workare not adequate
for the environments we considered in this thesis because ofinterests of participants, which are not
only performance related. In this thesis, we aim at providing a complete solution to the query allocation
problem in this kind of distributed information systems. Toachieve this goal, we proceed in fourth steps.
First, we proposed a general model to characterize participants’ interests in the long run and defined some
properties that allow evaluating query allocation methods. Second, we proposed a set of algorithms that
allows allocating queries while considering participants’ satisfaction, participants’ intentions, and the
kinds of application. Third, we proposed a query allocationmethod based on virtual money that allows
to scale up to several mediators with a small network cost. Finally, we proposed a query replication
technique based on satisfaction and failure probability ofparticipants in order to preserve participants’
satisfaction even in the presence of faulty participants, i.e. participants that can fail by unexpected reasons
such as network failures.

Main Contributions

Generally speaking, the main objective of this thesis has been to provide a complete query allocation
framework for distributed information systems that satisfies participants by respecting, in the long-run,
their intentions to allocate and perform queries. In particular, our main contributions are as follows.

Modeling We characterized, in the long-run, the participants’ intentions in a new model that allows
evaluating a system from a satisfaction point of view [QRLV07b, QRLV07c]. We also made precise what
providers’ utilization and query starvation means in distributed information systems with autonomous
participants. We showed that this model can easily be used todesign new query allocation methods for
distributed systems that are confronted to autonomous participants. Similarly, we defined some system

97

98 Conclusion

properties that allow evaluating the quality of query allocation methods and propose measures to do
so. Finally, we demonstrated that the proposed model can predict possible participants’ departures from
the system and allows comparing query allocation methods having different approaches to regulate the
system.

Query Allocation We formally defined the query allocation problem in distributed information sys-
tems with autonomous participants. We proposedSbQA (for Satisfaction-based Query Load Balanc-
ing) [LQRV07, QRLV06, QRLV07a, QRLV07b], a flexible framework with self-adaptingalgorithms to
allocate queries while considering bothqlb and participants’ intentions and that afford :(a) consumers
the flexibility to trade their preferences for the providers’ reputation ;(b) providers the flexibility to trade
their preferences for their utilization ;(c) a mediator to trade consumers’ intentions for providers’ in-
tentions according to their satisfaction ; and(d) a mediator the flexibility to adapt the query allocation
process to the application by varying several parameters. We analytically demonstrated that, to perform
queries,SbQA only requires2 more network messages per query than baseline methods. We experimen-
tally demonstrated thatSbQA significantly outperforms baseline methods and yields significant perfor-
mance benefits. Similarly, we demonstrated the self-adaptability of SbQA to participants’ intentions and
its adaptability to different kinds of application. Also, we demonstrated with ourSbQA validation that it
can scale up in systems with autonomous participants, whilebaseline method cannot. Finally, using the
Berkeley Open Infrastructure for Network Computing(BOINC) platform, we demonstrated the flexibility
and efficiency ofSbQA to satisfy participants while allocating queries [QRLV08].

Scale Up We aimed at scaling query allocation up to several mediators[QRLCV07a, QRLCV07b,
QRLCV08]. To this end, we first exposed the challenges of using virtual money as a means of regulation
and made precise a way in which virtual money should circulate within a system. We formally stated the
number of network messages required by a mediator to controlthe flow of virtual money. And, conversely
to the expected, we demonstrated that only3 network messages are required, per query, to control the flow
of virtual money. We proposed$bQA (for Economic Satisfaction-based Query Allocation) for distributed
information systems with several mediators allocating queries cooperatively. In particular :(a) we defined
how a provider may compute its bid by considering its preferences, its satisfaction, its current utilization,
and its current virtual money balance. Similarly, we definedthree strategies that allows a provider to
bid for queries in the presence of several mediators ;(b) we defined how a mediator allocates queries
by considering both consumers’ intentions and providers’ bids and how it should invoice providers even
when one of them is imposed a query ; and(c) we formally demonstrated that$bQA requires only3 more
network messages thanSbQA. Moreover, we analytically demonstrated that$bQA allows a VO to scale
up to several mediators with no additional network cost withrespect to a VO with a single mediator,
which makes$bQA strong with respect to baseline methods. Finally, we experimentally demonstrated
that$bQA can easily scale up in terms of number of mediators, participants, and incoming queries, while
ensuring good system performance and the same participants’ satisfaction as in systems with a single
mediator. A key result is that, conversely to several proposals, one must pay the same attention to the
selection, invoicing, and bidding phases when designing a microeconomic query allocation method.

Query Replication We focused on query replication based on the active replica model so as to deal
with participants’ failures in environments where participants are autonomous and have special interests
towards queries. In this context, we first proposed a satisfaction model that considers participants’ fail-
ures. In particular, we characterized the fact that querieshave different criticity and that a consumer may

Conclusion 99

receive less results than it expects because of providers’ failures. We similarly characterized the fact that a
provider may perform queries for nothing because of backup queries or consumers’ failures. This leads to
revisited consumer’s and provider’s satisfaction definitions that consider such new considerations. Also,
we defined the expected participants’ satisfaction (noted as global satisfaction) concerning the allocation
of a given query, which considers the participants’ intentions, the participants’ failure probability, and the
probability that a query has to be successfully treated. Then, we proposedSbQR (for Satisfaction-based
Query Replication), a query replication technique to compute the rate of backup queries according to the
global satisfaction. The goal ofSbQR is to replicate only those incoming queries that allows to increase
global satisfaction. A strong feature ofSbQR is that, conversely to most query replication approaches,
it makes no assumption on how many providers’ failures can occur at any one time. Finally, we experi-
mentally demonstrated thatSbQR significantly outperforms those techniques that replicateall incoming
query. We also demonstrated thatSbQR dynamically adapts to the workload and ensures a good perfor-
mance even for high probabilities of providers’ failure. A key result is that by replicating all incoming
query causes serious problems of performance for high workloads, but worse originates more losses of
query results than when one does not replicate queries at all, which is not the case forSbQR.

Future Work

Although this thesis provide a complete query allocation framework for large-scale distributed sys-
tems with autonomous participants, there are still severalopen issues and important directions of future
work. We discussed all these points at the end of each chapter(in the summary sections). Then, we
only present here the research directions that we desire to pursue :(i) explore different ways to compute
the preferences, intentions, and satisfaction of participants,(ii) study the links between the satisfaction
notion we presented in this thesis and the notions of trust [AD01, AG07] and reputation [KSGM03]
from distributed systems,(iii) analyze the satisfaction of providers at their bid level andevaluate from
a satisfaction point of view different query allocation methods based on microeconomics,(iv) explore
the sociology [Mac04] field to study the possible links between its properties and the properties of the
model we proposed in this thesis,(v) analyze the possible gains or losses, in system performanceand
participants’ satisfaction, of reducing the number of providers required by a consumer,(vi) study, from
a satisfaction point of view, Byzantine [LSP82] faults of participants and mediators, and handle with
fail-stop failures of mediators, and finally(vii) validateSbQR in multi-mediator systems, that is, on the
top of$bQA.

Appendixes

APPENDIXA
The SbQA Prototype

We implemented theSbQA protype in Java and constructed a SimJava-based network to simulate
network messages between participants and mediators. In this appendix, we present aSbQA’s demo we
realized using the BOINC platform, a distributed platform for volunteering computing. The goal of such
a demo is to show the great benefits of usingSbQA for allocating queries. Then, we discuss theSbQA
implementation within the STREP European Grid4All project[gri].

A.1 SbQA’s demo : A BOINC example

We present in [QRLV08] a demonstration session to show the flexibility and efficiency ofSbQA
to allocate queries. In this demonstration, we use theBerkeley Open Infrastructure for Network Com-
puting (BOINC) platform as an example of highly autonomous environments. BOINC is a middleware
system for volunteer computing. In this context, the consumers are projects, which are usually from
the academia, that require computational resources to perform queries and the providers are volunteers
that donate computational resources to BOINC-based projects. Participants (i.e. both consumers and
providers) in BOINC are autonomous as stated in Section . A query is an independent computational
task, specified by a set of input files and an application program. Incoming queries are dispatched by
a server (the mediator) to providers. As providers may be malicious, consumers may create several in-
stances of a query so as to validate results returned by providers.

In BOINC, providers can express their intentions by specifying the fraction of computational re-
sources devoted to each consumer. This allows providers to devote more resources to those consumers
(projects) in which they are interested. However, this may waste idle computational resources of providers
when their interesting consumers do not issue queries. For example, a provider may donate its computa-
tional resources to two consumersca andcb in a fraction of80% and20%, respectively. In this case,cb

cannot use more than the assigned20% of computational resources even ifca is not generating queries.
SbQA could allow BOINC-providers to express their intentions ina more flexible way so that their do-
nated computational resources be properly exploited whiletheir intentions be also satisfied. On the other
side, consumers cannot express their intentions with respect to providers in BOINC. Our framework
may be used by BOINC designers to allow consumers to express intentions towards providers such as
reputation-based preferences. To illustrate the benefits of SbQA, we provide a set of GUIs that enable the
user to setup the experimentations andSbQA and that enable the display of all the relevant information
(e.g. participants’ satisfaction and response times) to illustrate howSbQA performs. Figure A.1 shows
some of these GUIs.

To demonstrate theSbQA’s benefits, we mainly focus on : the way in which queries are allocated
by SbQA ; how it adapts the query allocation process to the participants’ intentions, and ; how it can be
adapted to the kind of applications. With this in mind, we consider a system consisting, for simplicity,
of three consumers, i.e. three different research projects. For clarity, we assume that those projects are

103

104 ANNEXE A

(a) Capturing volunteer settings (b) Drawing results on-line

Figure A.1 – Some SbQA GUIs.

the SETI@home [set], proteins@home [pro], and Einstein@home [ein]. We create a set of volunteers
devoting their computational resources to all three projects in a way that :(i) SETI@home is popular,
i.e. the majority of providers want to collaborate in this project,(ii) proteins@home is normal, i.e. great
number, but not most, of providers want to collaborate in this project,(iii) Einstein@home is unpopular,
i.e. most providers desire to collaborate, in this project,with a small fraction of computational resources.
Then, we consider the following example scenarios.

Scenario 1. First of all, using the proposed satisfaction model, we compare, from a satisfaction point
of view, the way in which BOINC allocates queries, which is equivalent to theCapacity based method,
with theMariposa-likemethod. In this evaluation, we assumecaptive environments, that is, participants
are not allowed to quit the BOINC platform. An example of these environments is when consumers use
BOINC as platform for grid computing and they put in dedicated computers at their service [des]. This
scenario demonstrates that our satisfaction model allows analyzing different query allocation techniques
even if the way in which they allocate queries differs.

Scenario 2. We evaluate again baseline techniques, as in Scenario 1, but this time considering that
BOINC is used as platform for volunteer computing, i.e. whenparticipants are autonomous to leave the
system. On the one hand, we assume that a provider leaves the BOINC platform if its satisfaction is
smaller than0.35. On the other hand, we assume that a consumer stops using BOINC if its satisfaction is
smaller than0.5. This scenario allows us to see that using our satisfaction model one can predict possible
participant’s departure by dissatisfaction.

Scenario 3. We evaluateSbQA in an environment as in scenario 1 and compare its performance re-
sults (participants’satisfactionand response times) with those of baseline techniques. In such a compar-
ison, we show thatSbQA’s performance is not far from those of baseline techniques.This demonstrates
thatSbQA is suitable for captive environments even if it was not designed for.

Scenario 4. We run again the evaluation of Scenario 3 but, now, in autonomous environments instead
of captive ones. Our objective is to illustrate thatSbQA can significantly improve the performance of
BOINC-based projects by preserving most volunteers onlineand hence more computational resources.

Scenario 5. We consider the same evaluation of Scenario 3, but we modifythe manner in which
participants compute theirintentionsso that projects be interested only in response times and volunteers
be interested in their load. In this case, we show thatSbQA significantly improves response times and
balances better queries among volunteers, which is what participants prefer. This proves thatSbQA

ANNEXE A 105

adapts to the participants’ interests and thus can deal withheterogeneous participants (from their interests
point of view), which may allow BOINC-based projects to havemore volunteers.

Scenario 6. We consider an application whose goal is to ensure low response times to consumers
and that is still composed by autonomous providers. We assume again that participants compute their
intentionsby considering their preferences. An example of this application is when the BOINC platform
is used for grid computing, but the computational resourcescomposing the grid are still donated by
volunteers. In this context, besides ensuring low responsetimes, BOINC should ensure some level of
satisfaction at the providers’ side so that they do not quit their resources from the grid. We demonstrate
that SbQA can be adapted to perform in such applications by varying parameterkn of the KnBest
strategy and the manner in which the mediator scores providers, i.e. by varying parameterω.

Scenario 7. We allow people attending the demo to play the role of a consumer or provider. The goal
is to enable a person to set her own preferences and intentions, and observe how the different mediations
react and which ones allow her to reach her objectives. Allowing this, people attending the demo could
obtain a clear picture of the performance that the differentmediations may have when they are confronted
to human participants having different interests. In this scenario, we aim at demonstrating that theSbQA
mediation used bySbQA is the only one that allows a participant to reach its objectives in all cases.

A.2 SbQA within Grid4All

Grid4All embraces the vision of a democratic Grid as a ubiquitous utility whereby domestic users,
small organizations and enterprises may share their resources and services, and use resources via the
Internet without having to individually invest and manage computing and information technology (IT)
resources. Generally speaking, Grid4All aims at bringing global computing to the broader society beyond
that of academia and large enterprises by providing an opportunity to small organizations and individuals
to reap the cost benefit of resource sharing without, however, the burdens of management, security and
administration. Specifically, the objectives of the Grid4All project are :
• Alleviate administration and management of large scale distributed IT infrastructure,
• Provide self-management capabilities to provide scalability and resilience to failures and volatility,
• Widen the scope of Grid technologies by enabling on-demand creation and maintenance of dy-

namically evolving scalable virtual organizations even short lived,
• Capitalize on Grids as revenue generating sources to implement utility models of computing but

using resources on the Internet.
In the context of Grid4All, there is the need for the discovery of available participants providing

suitable resources and services for incoming queries. To achieve this, it is implemented aSemantic In-
formation Service(SIS) that facilitates the discovery of both resources and services within the grid. SIS
provides a matching and selection service between participants that provide or query resources and ser-
vices within grid environments. SIS may be queried by software agents as well as by human users to
select advertised resources and services. For resources aswell as for services, queries are first matched
to resources/services and a the list of found participants is ranked, or narrow down, according to partic-
ipants’ preferences. Thus, SIS is internally composed by two services : theMatchmaking Service(MS)
and theSelection Service(SS). Generally speaking, SIS works as follows. Given an incoming query into
SIS, MS first found the relevant participants providing the resources or services requested by the query.
Then, it passes the found participants to SS, which ranks, ornarrows down, the list of providers accord-
ing to both (i) the participants’ preferences, i.e. the preferences of the consumer and the found providers,
and (ii) the query load of providers. To this end, participants declare, at any time, their preferences to SS

106 ANNEXE A

so as to get those providers and queries they prefer at the topof (or included in) the list of participants
returned by SIS.SbQA plays the role of SS within SIS, that is, it is used as the basisof ranking and
selection of resources and services in Grid4All.

A.2.1 Grid4All Example Application

In this section, we discuss the importance of SS (i.e. ofSbQA) within Grid4All by means of one
of the Grid4All example applications. We consider the market-oriented environment Grid application,
which allows participants (e.g. home users, enterprises, and organizations) to share their computational
resources and services to others. Resources and services are made available through markets initiated
either by providers, consumers or third party entities. Markets are initiated by means of resource/service
orders that participants issue in a distributed manner. Such an order can be either the request of a con-
sumer, or an offer of a provider. Adopting such a distributedmarket model, resource consumers and
providers negotiate over resources using auctions that runin markets.

The SIS provides a registry of the e-markets available. Consumers query the SIS for orders that
match certain attributes and criteria. SIS uses MS to locateorders that concern matching resources,
which returns the available providers (or e-markets) relevant to the query. Then, SIS may return the
list of relevant providers to consumers or only then most relevant providers. But, doing so has the
following drawbacks. First, the list of relevant providerscan be large, which can make difficult the
selection task to the consumer. Second, this allows that some providers monopolize queries (or that
some providers become overutilized) while some other providers suffer from query starvation (or that
some computational resources are not exploited). Finally,if only the properties of resources and services
are considered to select providers, as consumers as providers may become dissatisfied in the long-run
because their preferences towards providers and queries, respectively, are not considered. It is here that
SS plays an important role to the well operation of the systemby ranking and selecting if necessary
the relevant providers according to the preferences of participants. In other words, on the one hand, SS
allows consumers to see their preferred providers in the topof the lists of providers returned by SIS. On
the other hand, SS allows providers to generally get queriesof their interests and to have almost the same
chances as other providers of doing business.

A.2.2 Selection Service Specification

In this section, we present the interface exposed by SS to both MS and participants. In the following,
we present the exposed SS’s methods and indicate if a method is internal (invoked by MS) or external
(invoked by participants).

Method : informFinalSelection
Parameters : String queryId The identifier of the query

Collection selectedProvidersId The identifier of the set ofproviders that the con-
sumer finally chose.

Description : This method allows to memorize the providers who get the queries so that SS
updates participants’ satisfaction and providers’ load.

Type : internal

ANNEXE A 107

Method : selectProviders
Parameters : String queryId The identifier of the query.

Collection queryTypes The set of leaf concepts (of the ontology) that
concerns the query. This is a collection of
Strings.

String consumerId The identifier of the query source that hasini-
tiated the query.

Collection providersId The set of relevant providers’ identifier that
can deal with the query.

<int nbRequiredProviders> The number of required providers by the con-
sumer.

Description : This method allows to narrow down the set of relevant providers found by MS so
as to facilitate the final choice of consumers.

Type : internal

Method : subscribeConsumer
Parameters : String consumerId The identifier of the consumer to create inSS.
Description : This method allows MS to subscribe a consumer in SS so as to after considering

its preferences when narrowing down a set of relevant providers.
Type : internal

Method : subscribeProvider
Parameters : String providerId The identifier of the provider to create inSS.
Description : This method allows MS to subscribe a provider in SS so as to after considering its

preferences when narrowing down a set of relevant providers.
Type : internal

Method : unsubscribeConsumer
Parameters : String consumerId The identifier of the consumer to delete from

SS.
Description : This method allows MS to unsubscribe a consumer from SS. By deleting a con-

sumer, it can no more declare its preferences in SS.
Type : internal

Method : unsubscribeProvider
Parameters : String providerId The identifier of the provider to delete from

SS.
Description : This method allows MS to unsubscribe a provider from SS. By deleting a provider,

it can no more declare its preferences in SS.
Type : internal

108 ANNEXE A

Method : setQueryTypes
Parameters : Collection queryTypes The set of leaf concepts (of the MS ontology)

that a query could be concerned.
Description : This method allows MS to declare types that a query can be concerned so that

providers can after declare its preferences towards them.
Type : internal

Method : getQueryTypes
Parameters : – none –
Description : This method allows a provider to know the types that a query can be so as to after

declare its preferences towards them.
Type : external

Method : setConsumerPreferences
Parameters : String consumerId The identifier of the consumer whose prefer-

ences have to be updated.
HashMap preferences The new consumer’s preferences

Description : This method allows a consumer to set its preferences towardsproviders, which
are abstracted as a tuple <providerId, preferenceValue>.

Type : external

Method : setProviderPreferences
Parameters : String providerId The identifier of the provider whose prefer-

ences have to be updated.
HashMap preferences The new provider’s preferences

Description : This method allows a provider to set its preferences towardsquery, which are
abstracted as a tuple <queryType, preferenceValue>.

Type : external

Method : setConsumerPreferencesByDefault
Parameters : String consumerId The identifier of the consumer.

double preferenceValue The preference default value for unknown
providers

Description : This method allows a consumer to modify its preferences by default, which is
utilized when it does not know a given provider.

Type : external

ANNEXE A 109

Method : setProviderPreferencesByDefault
Parameters : String providerId The identifier of the provider.

double preferenceValue The preference default value for unknown
query types

Description : This method allows a provider to modify its preferences by default, which is uti-
lized when it does not know a given query type.

Type : external
The SbQA PrototypeNotations

Notations

δa(i) Adequation of a given participanti.

δsa(i) System adequation with respect to a given participanti.

P̂q Set of providers that received a given queryq to perform.

P̂ r
q Set of providers that received a given queryq to perform and wherer is the rank of the

worst ranked provider in such a set.

δas(i) Allocation Satisfaction of a given participanti.

All−→ocq Query allocation vector of a given queryq to a given set of providers.

At
i The probability that a given participanti be available at time intervalt.

P ok
q Set of providers that did not fail during the treatment of a given queryq.

σ(g, S) Ratio of the minimal and maximalg’s values in a given setS.

bidp(q) The bid made by a given providerp for performing a given queryq.
−→
B Vector of bids shown by a given set of providers.

billq(p) The bill that a given providerp must pay for the allocation of a given queryq.

cap(p) Computational capacity of a given providerp to perform queries.

cic(q, p) The intention of a consumerc for allocating a given queryq to a given providerp.
−→
CIq Vector of the intentions shown by a consumer to see its queryq be performed by some

providers.

C Set of consumers in the system.

δae(i) Query allocation efficacy function with respect to a given participant i.

fi The probability of failure of a given participanti.

f(g, S) g’s values fairness in a given setS.

k The memory size of a participant to track previous queries.
−→
L Vector of levels of the set of providers that are able to perform a given query.

Sh
q (P ′) The probability that a given queryq has to be performed by at mosth providers in a given

setP ′.

µ(g, S) g’s values arithmetic mean in a given setS.

M Set of mediators in the system.

IQk
c Set of thek last issued queries by a given consumerc.

PQk
p Set of thek last queries proposed by mediator(s) to a given providerp.

−−→
CBp Vector of bids made by a given providerp to those queries the mediator is still mediating.
−−→
PPIp Vector of the intentions shown by a given providerp to perform thek last queries proposed

by a mediator.

111

112 ANNEXE A

I Set of participants in the system, i.e. the set of consumers,providers, and mediators together.

Qp Set of pending queries at a given providerp.

pip(q) The intention of a given providerp for performing a given queryq.

πp(t, t
′) Profit of a given providerp at time interval[t..t′].

prfp(q) Preference of a given providerp for performing a given queryq.

P
−→
rf q

c Vector of preferences of a given consuler consumerc for allocating its queryq to the set of
providers that are able to performq.

−−→
PCq Vector of query costs at some providers to perform a given query q.

P Set of providers in the system.
−→
PIq Vector of the intentions shown by a given provider to performa queryq.

q.c The identifier of the consumer that has issued queryq.

q.d The description of the task to be done to produce results for aqueryq.

q.γ The importance for a consumer to receive theq.n results for its queryq.

q.n The number of results required by a consumer for its queryq.

Q Set of incoming queries into the system.

costp(q) Cost of a given queryq at a given providerp.
−→
R q Rank vector of a set of providers concerning a given queryq.

Pq Set of providers that are able to perform a given queryq.

rep(p) Reputation of a given providerp.

̂̂
Pq Set of providers whose produced results for a given queryq are returned to the consumer.

δs(i) Satisfaction of a given participanti.

scrq(p) Score of a given providerp for performing a given queryq.

balp The current balance of virtual money of a given providerp.

SQk
p Set of thek treated queries by a given providerp among the set ofk last proposed queries.

Θ(P ′) The global satisfaction of allocating a given query to a given set of providersP ′.

bth(p, l) The theoretical bid that a given providerp should to make for reaching a given levell.

tq Time units that a given provider requires to perform a queryq.

Ut(p) Utilization of a given providerp at timet.
−→
U Utilization vector of a given set of providers.

Bibliography

[ABKU99] Yossi Azar, Andrei Broder, Anna Karlin, and Eli Upfal.
Balanced Allocations.
SIAM Journal on Computing, 29(1) :180–200, 1999.

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju.
Web Services : Concepts, Architecture, and Applications.
Springer, 2004.

[ACMD+03] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta,Zoran Despotovic, Manfred
Hauswirth, Magdalena Punceva, and Roman Schmidt.

P-Grid : a Self-Organizing Structured P2P System.
SIGMOD Record, 32(3) :29–33, 2003.

[AD01] Karl Aberer and Zoran Despotovic.
Managing Trust in a Peer-2-Peer Information System.
In Proceedings of the International Conference on Information and Knowledge Manage-

ment (CIKM), pages 310–317, 2001.

[AEK+00] Khaled Arisha, Thomas Eiter, Sarit Kraus, Fatma Ozcan, Robert Ross, and V. S. Subrah-
manian.

IMPACT : Interactive Maryland Platform for Agents Collaborating Together.
IEEE Intelligent Systems, 14(2) :64–72, 2000.

[AG00] D. Abramson and J. Giddy.
High Performance Parametric Modeling with Nimrod/G : Killer Application for the

Global Grid ?
In Proceedings of the International Symposium on Parallel andDistributed Processing

(IPDPS), page 520, 2000.

[AG07] Donovan Artz and Yolanda Gil.
A Survey of Trust in Computer Science and the Semantic Web.
Web Semantics, 5(2) :58–71, 2007.

[AGK04] Ismail Assayad, Alain Girault, and Hamoudi Kalla.
A Bi-Criteria Scheduling Heuristics for Distributed Embedded Systems Under Reliability

and Real-Time Constraints.
In Proceedings of the International Conference on DependableSystems and Networks

(DSN), pages 347–356, June 2004.

[AHKV03] Micah Adler, Eran Halperin, Richard Karp, and Vijay Vazirani.
A Stochastic Process on the Hypercube with Applications to Peer-to-Peer Networks.
In Proceedings of the International ACM Symposium on Theory ofComputing (STOC),

pages 575–584, 2003.

[AM07] Reza Akbarinia and Vidal Martins.
Data Management in the APPA System.
Grid Computing, 5(3) :303–317, 2007.

[AMZ03] Gagan Aggarwal, Rajeev Motwani, and An Zhu.

113

114 BIBLIOGRAPHY

The Load Rebalancing Problem.
In Proceedings of the International ACM Symposium on ParallelAlgorithms and Archi-

tectures, pages 258–265, 2003.
[APS04] Samir Aknine, Suzanne Pinson, and Melvin F. Shakun.

An Extended Multi-Agent Negotiation Protocol.
Autonomous Agents and Multi-Agent Systems, 8(1) :5–45, 2004.

[APV07] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez.
Data Currency in Replicated DHTs.
In Proceedings of the International Conference on Managementof Data (SIGMOD),

pages 211–222, 2007.
[BAG00] Rajkumar Buyya, David Abramson, and Jonathan Giddy.

Nimrod/G : An Architecture for a Resource Management and Scheduling System in a
Global Computational Grid.

In Proceedings of the International Conference on High Performance Computing in
Asia ?Pacific Region (HPC-Asia), 2000.

[BBJ+08] Nikhil Bansal, Ranjita Bhagwan, Navendu Jain, Yoonho Park, Deepak Turaga, and Chitra
Venkatramani.

Towards Optimal Resource Allocation in Partial-Fault Tolerant Applications.
In Proceedings of the International Conference on Computer Communications (INFO-

COM), pages 1319–1327. IEEE, April 2008.
[BBMS08] Magdalena Balazinska, Hari Balakrishnan, SamuelMadden, and Michael Stonebraker.

Fault-Tolerance in the Borealis Distributed Stream Processing System.
ACM Transactions on Database Systems, 33(1) :1–44, 2008.

[BE08] André Brinkmann and Sascha Effert.
Data Replication in P2P Environments.
In Proceedings of the International Symposium on Parallelismin Algorithms and Archi-

tectures (SPAA), pages 191–193, 2008.
[BF05] Piero A. Bonatti and P. Festa.

On Optimal Service Selection.
In Proceedings of the International World Wide Web Conference(WWW), pages 530–538.

ACM, May 2005.
[BFLZ03] Daniel S. Bernstein, Zhengzhu Feng, Brian N. Levin, and Shlomo Zilberstein.

In Proceedings of the International Workshop on Peer-to-PeerSystems (IPTPS), pages
237–246. Springer, February 2003.

[BGJ06] Vandy Berten, Joël Goossens, and Emmanuel Jeannot.
A Probabilistic Approach for Fault Tolerant Multiprocessor Real-Time Scheduling.
In Proceedings of the International Conference on Parallel and Distributed Processing

Symposium (IPDPS), 2006.
[BJB+00] Judy Beiriger, Wilbur Johnson, Hugh Bivens, Steven Humphreys, and Ronald Rhea.

Constructing the ASCI Computational Grid.
In Proceedings of the International Symposium on High Performance Distributed Com-

puting (HPDC), pages 193–200, 2000.
[BKK +01] Reinhard Braumandl, Markus Keidl, Alfons Kemper, Donald Kossmann, Alexander

Kreutz, Stefan Pröls, Stefan Seltzsam, and Konrad Stocker.
Objectglobe : Ubiquitous Query Processing on the Internet.

BIBLIOGRAPHY 115

The Very Large Data Bases Journal, 10(1) :48–71, 2001.
[Bla85] Mark Blaug.

Economic Theory in Retrospect.
Cambridge University Press, 1985.

[BMST93] Navin Budhiraja, Keith Marzullo, Fred Schneider,and Sam Toueg.
chapter The Primary-Backup Approach, pages 199–216.
ACM Press, 2nd edition, 1993.

[BSV03] R. Bhagwan, S. Savage, and G. M. Voelker.
Understanding Availability.
In Proceedings of the International Workshop on Peer-to-PeerSystems (IPTPS), pages

256–267, February 2003.
[BT98] Philippe Bonnet and Anthony Tomasic.

Partial Answers for Unavailable Data Sources.
In Proceedings of the International Conference on Flexible Query Answering Systems

(FQAS), pages 43–54, 1998.
[BW97] Fran Berman and Rich Wolski.

The AppleS Project : A Status Report.
In Proceeding of the International Symposium on NEC Research, May 1997.

[BW03] Wolf-Tilo Balke and Matthias Wagner.
Towards Personalized Selection of Web Services.
In Proceedings of the International World Wide Web Conference(WWW). ACM, May

2003.
–Alternate Paper Tracks–.

[CCMW] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language (wsdl) version 1.1, http://www.w3.org/tr/wsdl.

[CFK+98] Karl Czajkowski, Ian Foster, Nicholas Karonis, Carl Kesselman, Stuart Martin, Warren
Smith, and Steven Tuecke.

A Resource Management Architecture for Metacomputing Systems.
In Proceedings of the International Workshop on Job Scheduling Strategies for Parallel

Processing (JSSPP), pages 62–82, 1998.
[CKKG] Steve Chapin, Dimitrios Katramatos, John Karpovich, and Andrew Grimshaw.

The Legion Resource Management System.
[CL85] Mani Chandy and Leslie Lamport.

Distributed Snapshots : Determining Global States of Distributed Systems.
ACM Transactions on Computer Systems, 3(1) :63–75, 1985.

[CMH+02] Ian Clarke, Scott Miller, Theodore Hong, Oskar Sandberg, and Brandon Wiley.
Protecting Free Expression Online with Freenet.
IEEE Internet Computing, 6(1) :40–49, 2002.

[COBW00] Henri Casanova, Graziano Obertelli, Francine Berman, and Richard Wolski.
The Apples Parameter Sweep Template : User-Level Middleware for the Grid.
In Proceedings of the International Conference on supercomputing (SC), 2000.

[Cor03] IBM Corporation.
IBM Websphere V5.0 : Performance, Scalability, and High Availability : Websphere

Handbook Series.
IBM Redbook, July 2003.

116 BIBLIOGRAPHY

[DD04] Julian Day and Ralph Deters.
Selecting the best web service.
In Proceedings of the International Conference of the Centre for Adavanced Studies on

Collaborative Research (CASCON), pages 1193–307. IBM Press, October 2004.

[des] The SZTAKI Project, http ://desktopgrid.hu.

[DGB+96] Renzo Davoli, Luigi-Alberto Giachini, Özalp Babaoglu,Alessandro Amoroso, and
Lorenzo Alvisi.

Parallel Computing in Networks of Workstations with Paralex.
IEEE Transactions on Parallel Distributed Systems, 7(4) :371–384, 1996.

[dis] distributed.net project. http ://www.distributed.net/.

[DMW03] Peter Dodds, Roby Muhamad, and Duncan Watts.
An Experimental Study of Search in Global Social Networks.
Science, 301(5634) :827–829, August 2003.

[DS83] Randall Davis and Reid Smith.
Negotiation as a Metaphor for Distributed Problem Solving.
Artificial Intelligence, 20(1) :63–100, 1983.

[DSW97] Keith Decker, Katia P. Sycara, and Mike Williamson.
Middle-Agents for the Internet.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),

pages 578–583. Morgan Kaufmann, August 1997.

[DVR+07] Rajdeep Dash, Perukrishnen Vytelingum, Alex Rogers, Esther David, and Nicholas Jen-
nings.

Market-Based Task Allocation Mechanisms for Limited Capacity Suppliers.
IEEE Transactions on Systems, 37(3) :391–405, 2007.

[DW01] John Douceur and Roger Wattenhofer.
Competitive Hill-Climbing Strategies for Replica Placement in a Distributed File System.
In Proceedings of the International Conference on Distributed Computing, pages 48–62,

2001.

[EAWJ02] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David Johnson.
A Survey of Rollback-Recovery Protocols in Message-Passing Systems.
ACM Computing Surveys, 34(3) :375–408, 2002.

[eba] The eBay System, http ://business.ebay.com.

[ein] The Einstein@home Project, http ://einstein.phys.uwm.edu.

[Fe99] Ian Foster and Carl Kesselman (editors).
The Grid : Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

[FFS98] Trevor Fong, Danielle Fowler, and Paula Swatman.
Success and Failure Factors for Implementing Effective Electronic Markets.
International Journal of Electronic Markets, 8(1) :45–47, 1998.

[FK97] Ian Foster and C. Kesselman.
Globus : A Metacomputing Infrastructure Toolkit.
Journal of Supercomputer Applications and High Performance Computing, 11(2) :115–

128, Summer 1997.

[FLSG06] Antonio Fernandez, Luis Lopez, Agustin Santos, and Chryssis Georgiou.

BIBLIOGRAPHY 117

Reliably Executing Tasks in the Presence of Untrusted Entities.
In Proceedings of the International Symposium on Reliable Distributed Systems (SRDS),

pages 39–50, 2006.

[FNSY96] Donald Ferguson, Christos Nikolaou, Jakka Sairamesh, and Yechiam Yemini.
Market-Based Control : A Paradigm for Distributed ResourceAllocation, chapter Eco-

nomic Models for Allocating Resources in Computer Systems,pages 156–183.
World Scientific, 1996.

[Fos01] Ian Foster.
The Anatomy of the Grid : Enabling Scalable Virtual Organizations.
In Proceedings of the European Conference on Parallel Computing (Euro-Par), pages

1–4, 2001.

[Fox88] Mark Fox.
Distributed Artificial Intelligence, chapter An Organizational View of Distributed Sys-

tems, pages 140–150.
Morgan Kaufmann, 1988.

[fre] Freightquote.com, http ://www.freightquote.com.

[FYN88] Donald Ferguson, Yechiam Yemini, and Christos Nikolaou.
Microeconomic Algorithms for Load Balancing in Distributed computer systems.
In Proceedings of the International Conference on Distributed Computing Systems

(ICDCS), pages 491–499, June 1988.

[GBGM04] Prasanna Ganesan, Mayank Bawa, and Hector Garcia-Molina.
Online Balancing of Range-Partitioned Data with Applications to Peer-to-Peer Systems.
In Proceedings of the International Conference on Very Large Data Bases (VLDB), pages

444–455, September 2004.

[GKD97] Michael R. Genesereth, Arthur M. Keller, and OliverM. Duschka.
Infomaster : An Information Integration System.
In Proceedings of the International Conference on Managementof Data (SIGMOD),

pages 539–542. ACM, May 1997.

[GKS03] Alain Girault, Hamoudi Kalla, and Yves Sorel.
An Active Replication Scheme that Tolerates Failures in Distributed Embedded Real-

Time Systems.
In Proceedings of the International Conference on DependableSystems and Networks

(DSN), pages 159–168, June 2003.

[GMPQ+97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. D. Ullman,
V. Vassalos, and J. Widom.

The TSIMMIS Approach to Mediation : Data Models and Languages.
Journal of Intelligent Information Systems, 8(2) :117–132, 1997.

[GN04] Alexander Gorobets and Bart Nooteboom.
Agent Based Computational Model of Trust.
Technical report, Erasmus Research Institute of Management (ERIM), RSM Erasmus

University, 2004.

[goo] Google adwords, http ://adwords.google.com.

[gri] Grid4all project, http ://www.grid4all.eu/.

[GS04] Jun Gao and Peter Steenkiste.

118 BIBLIOGRAPHY

An Adaptive Protocol for Efficient Support of Range Queries in DHT-Based Systems.
In Proceedings of the International Conference on Networks Protocols (ICNP), pages

239–250, 2004.
[HBR+05a] Jeong-Hyon Hwang, Magdalena Balazinska, Alexander Rasin, Ugur Çetintemel, Michael

Stonebreaker, and Stan Zdonik.
High-Availability Algorithms for Distributed Stream Processing.
In Proceedings of the International Conference on Data Engineering (ICDE), pages 779–

790. IEEE, April 2005.

[HBR+05b] Jeong-Hyon Hwang, Magdalena Balazinska, Alexander Rasin, Ugur Cetintemel, Michael
Stonebraker, and Stan Zdonik.

High-Availability Algorithms for Distributed Stream Processing.
In Proceedings of the International Conference on Data Engineering (ICDE), pages 779–

790. IEEE, 2005.

[HHL+03] Ryan Huebsch, Joseph Hellerstein, Nick Lanham, Boon-Thau Loo, Scott Shenker, and
Ion Stoica.

Querying the Internet with PIER.
In Proceedings of the International Conference on Very Large Data Bases (VLDB), pages

321–332, 2003.
[HLY06] Ken Hui, John Lui, and David Yau.

Small-World Overlay P2P Networks : Construction, Management and Handling of Dy-
namic Flash Crowds.

Computer and Telecommunications Networkwing, 50(15) :2727–2746, 2006.

[HTK02] Koji Hashimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno.
Effective Scheduling of Duplicated Tasks for Fault-Tolerance in Multiprocessor Systems.
IEICE Transactions on Information and Systems, E85-D(3) :525–534, 2002.

[Hwa93] K Hwang.
Advanced Computer Architecture.
Mc-Graw-Hill Series in Computer Science, 1993.

[HXcZ07] Jeong-Hyon Hwang, Ying Xing, Ugur Çetintemel, andStanley B. Zdonik.
A Cooperative, Self-Configuring High-Availability Solution for Stream Processing.
In Proceedings of the International Conference on Data Engineering (ICDE), pages 176–

185, April 2007.

[JBH+05] Flavio Junqueira, Ranjita Bhagwan, Alejandro Hevia, Keith Marzullo, and Geoffrey
Voelker.

Surviving Internet Catastrophes.
In Proceedings of the International Annual Technical Conference on USENIX (ATEC),

pages 45–60, 2005.
[JCH84] Raj Jain, Dah-Ming Chiu, and W. Hawe.

A Quantitive Measure of Fairness and Discrimination for Resource Allocation in Shared
Computer Systems.

Technical report, DEC-TR-301, Digital Equipment Corporation, 1984.

[JFB07] Radu Jurca, Boi Falting, and Walter Binder.
Reliable QoS Monitoring Based on Client Feedback.
In Proceedings of the International World Wide Web Conference(WWW), pages 1003–

1012. ACM, May 2007.

BIBLIOGRAPHY 119

[JGN99] William Johnston, Dennis Gannon, and Bill Nitzberg.
Grids as Production Computing Environments : The Engineering Aspects of NASA’s

Information Power Grid.
In Proceedings of the International Symposium on High Performance Distributed Com-

puting (HPDC), 1999.
[JQL06] Yingwei Jin, Wenyu Qu, and Keqiu Li.

A Survey of Cache/Proxy for Transparent Data Replication.
In Proceedings of the International Conference on Semantics,Knowledge, and Grid

(SKG), page 35, 2006.
[jxt] Jxta, http ://www.jxta.org.
[JZ90] David B. Johnson and Willy Zwaenepoel.

Recovery in Distributed Systems Using Optimistic Message Logging and Checkpointing.
Algorithms, 11(3) :462–491, 1990.

[KAGM96] Mohan Kamath, Gustavo Alonso, Roger Guenthor, andC. Mohan.
Providing High Availability in Very Large Workflow Management Systems.
In Proceedings of the International Conference on Extending Database Technology

(EDBT), pages 425–442, March 1996.
[KGZY02] Vana Kalogeraki, Dimitrios Gunopulos, and D. Zeinalipour-Yazti.

A Local Search Mechanism for Peer-to-Peer Networks.
In Proceedings of the International Conference on Information and Knowledge Manage-

ment (CIKM), pages 300–307, 2002.
[KH95] Daniel Kuokka and Larry Harada.

Matchmaking for Information Agents.
In Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI),

pages 672–678, August 1995.
[KK92] Orly Kremien and Jeff Kramer.

Methodical analysis of adaptive load sharing algorithms.
IEEE Transactions on Parallel and Distributed Systems, 3(6) :747–760, 1992.

[Kle00] Jon M. Kleinberg.
The Small-World Phenomenon : An Algorithm Pperspective.
In Proceedings of the International Symposium on Theory of Computing (STOC), pages

163–170, 2000.
[KLL97] Jong Kim, Heejo Lee, and Sunggu Lee.

Replicated Process Allocation for Load Distribution in Fault-Tolerant Multicomputers.
IEEE Transactions on Computers, 46(4) :499–505, 1997.

[Kos00] Donald Kossmann.
The State of the Art in Distributed Query Processing.
ACM Computing Surveys, 32(4) :422–469, 2000.

[Kre90] David Kreps.
A Course in Microeconomic Theory.
Princeton University Press, February 1990.

[KS01] Matthias Klusch and Katia Sycara.
Coordination of Internet agents : models, technologies, and applications, chapter Broker-

ing and Matchmaking for Coordination of Agent Societies : A Survey, pages 197–224.
Springer, 2001.

120 BIBLIOGRAPHY

[KSGM03] Sepandar Kamvar, Mario Schlosser, and Hector Garcia-Molina.
The Eigentrust Algorithm for Reputation Management in P2P Networks.
In Proceedings of the International World Wide Web Conference(WWW), pages 640–651,

2003.

[LASG07] Steffen Lamparter, Anupriya Ankolekar, Rudi Studer, and Stephan Grimm.
Preference-based Selection of Highly Configurable Web Services.
In Proceedings of the International World Wide Web Conference(WWW), pages 1013–

1022. ACM, May 2007.

[LCLV07] Philippe Lamarre, Sylvie Cazalens, Sandra Lemp, and Patrick Valduriez.
A Flexible Mediaton Process for Large Distributed Information Systems.
International Journal of Cooperative Information Systems, 16(2) :299–332, June 2007.

[LH04] Lei Li and Ian Horrocks.
A Software Framework for Matchmaking Based on Semantic Web Technology.
International Journal of Electronic Commerce, 8(4) :39–60, Summer 2004.

[LKH +95] Heejo Lee, Jong Kim, SungJe Hong, ByungHo Yae, and HaeSook Kim.
Fault-Tolerant Process Allocation with Load Balancing.
In Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS),

pages 124–129, December 1995.

[LML01] Yibei Ling, Jie Mi, and Xiaola Lin.
A Variational Calculus Approach to Optimal Checkpoint Placement.
IEEE Transactions on Computers, 50(7) :699–708, 2001.

[LNZ04] Yutu Liu, Anne Ngu, and Liangzhao Zeng.
QoS Computation and Policing in Dynamic Web Service Selection.
In Proceedings of the International World Wide Web Conference(WWW), pages 66–73.

ACM, May 2004.

[LQRV07] Philippe Lamarre, Jorge-Arnulfo Quiané-Ruiz, and Patrick Valduriez.
Libra : Une Méthode de Médiation Auto-Adaptative en Fonction des Attentes des Partic-

ipants.
In Proceedings of the Journées Francophones sur les Systèmes Multi-Agents (JFSMA),

pages 65–74, October 2007.

[LRO96] Alon Levy, Anand Rajaraman, and Joann Ordille.
Querying Heterogeneous Information Sources Using Source Descriptions.
In Proceedings of the International Conference on Very Large Data Bases (VLDB), pages

251–262, September 1996.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine Generals Problem.
ACM Transactions on Programming Language Systems, 4(3) :382–401, 1982.

[Mac04] John Maclonis.
Sociology.
Prentice Hall, 10th edition, February 2004.

[Mar02] Evangelos Markatos.
Tracing a Large-Scale Peer to Peer System : An Hour in the Lifeof Gnutella.
In Proceedings of the IEEE/ACM International Symposium on Cluster Computing and

the Grid (CCGrid), pages 65–74, May 2002.

BIBLIOGRAPHY 121

[MARW04] Shalil Majithia, Ali Shaikh Ali, Omer Rana, and David Walker.
Reputation-based Semantic Service Discovery.
In Proceedings of the International Workshops on Enabling Technologies ; Infrastructure

for Collaborative Enterprises (WETICE), pages 297–302. IEEE Computer Society,
June 2004.

[MCWG95] Andreu Mas-Colell, Michael Whinstonand, and Jerry Green.
Microeconomic Theory.
Oxford University Press, June 1995.

[mdp] Mdp2p project, http ://www.sciences.univ-nantes.fr/lina/atlas/mdp2p/.

[Mil67] Stanley Milgram.
The Small World Problem.
Psicology Today, 1(69) :60–67, 1967.

[Mil02] Renée miller, editor.
IEEE Data Engineering Bulletin : Special Issue on Integration Management, 25(3),

September 2002.

[Mit01] Michael Mitzenmacher.
The Power of Two Choices in Randomized Load Balancing.
IEEE Transaction on Parallel and Distributed Systems, 12(10) :1094–1104, 2001.

[MP05] Umardand Manikrao and T. V. Prabhakar.
Dynamic Selection of Web Services with Recommendation System.
In Proceedings of the International Conference on Next Generation Web Services Prac-

tices (NWESP), pages 117–121. IEEE Computer Society, August 2005.

[MPV06] Vidal Martins, Esther Pacitti, and Patrick Valduriez.
A Survey of Data Replication in P2P Systems.
Technical report, inria-00122282, INRIA, 2006.

[MS04a] Michael Maximilien and Munindar Singh.
A Framework and Ontology for Dynamic Web Services Selection.
IEEE Internet Computing, 8(5) :84–93, 2004.

[MS04b] Michael Maximilien and Munindar Singh.
Toward Autonomic Web Services Trust and Selection.
In Proceedings of the International Conference on Service Oriented Computing (ICSOC),

pages 212–221. ACM, November 2004.

[MSZ01] Sheila McIlraith, Tran Cao Son, and Honglei Zeng.
Semantic Web Services.
IEEE Intelligent Systems, 16(2) :46–53, 2001.

[MTS90] Ravi Mirchandaney, Don Towsley, and John Stankovic.
Adaptive Load Sharing in Heterogeneous Distributed Systems.
Journal of Parallel and Distributed Computing, 9(4) :331–346, August 1990.

[nap] Napster, http ://www.napster.com.

[Nas51] John Nash.
Non-cooperative games.
The Annals of Mathelatics, 54(2) :286–295, 1951.

[NBN99] Marian H. Nodine, William Bohrer, and Anne H. Ngu.
Semantic Brokering over Dynamic Heterogeneous Data Sources in InfoSleuth(tm).

122 BIBLIOGRAPHY

In Proceedings of the International Conference on Data Engineering (ICDE), pages 358–
365. IEEE Computer Society, March 1999.

[NDMR08] Dushyanth Narayanan, Austin Donnelly, Richard Mortier, and Antony Rowstron.
Delay Aaware Querying with Seaweed.
The Very Large Data Bases Journal, 17(2) :315–331, 2008.

[NF92] A. Nanjia and David Finkel.
Transaction-Based Fault-Tolerant Computing in Distributed Systems.
In Proceedings of the International Workshop on Fault-Tolerant Parallel and Distributed

Systems, pages 92–97, July 1992.

[NFK+00] Marian H. Nodine, Jerry Fowler, Tomasz Ksiezyk, Brad Perry, Malcolm Taylor, and Amy
Unruh.

Active Information Gathering in Infosleuth.
International Journal of Cooperative Information Systems, 9(1-2) :3–28, March-June

2000.

[Nie90] Lambert Nieuwenhuis.
Static Allocation of Process Replicas in Fault-Tolerant Computing Systems.
In Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS),

pages 298–306, June 1990.

[NWQ+02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker,Michael Sintek, Ambjörn
Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch.

EDUTELLA : a P2P Networking Infrastructure Based on RDF.
In Proceedings of the International Conference on World Wide Web (WWW), pages 604–

615, 2002.

[ONK+03] Chihiro Ono, Satoshi Nishiyama, Keesoo Kim, Boyd C. Paulson, Mark Cutkosky, and
Cutkosky J. Petrie.

Trust-Based Facilitator : Handling Word-of-Mouth Trust for Agent-Based E-Commerce.
Electronic Commerce Research, 3(3-4) :201–220, July-October 2003.

[OS92] Yingfend Oh and Sang Son.
An Algortihm for Real-Time Fault-Tolerant Scheduling in Multiprocessor Systems.
In Proceedings of the EuroMicro Workshop on Real-Time Systems(ECRTS), pages 190–

195, June 1992.

[ÖV99] Tamer Özsu and Patrick Valduriez.
Principles of Distributed Database Systems.
Prentice-Hall, 2nd edition, 1999.

[PGVA08] Prasanna Padmanabhan, Le Gruenwald, Anita Vallur, and Mohammed Atiquzzaman.
A Survey of Data Replication Techniques for Mobile Ad Hoc Network Databases.
The Very Large Data Bases Journal, 17(5) :1143–1164, 2008.

[PI06] F. Pentaris and Y. Ioannidis.
Query Optimization in Distributed Networks of Autonomous Database Systems.
ACM Transactions on Database Systems (TODS), 31(2) :537–583, 2006.

[PI07] Fragkiskos Pentaris and Yannis Ioannidis.
Autonomic Query Allocation Based on Microeconomics Principles.
In Proceedings of the International Conference on Data Engineering (ICDE), pages 266–

275. IEEE, April 2007.

BIBLIOGRAPHY 123

[PKPS02] Massimo Paolucci, Takahiro Kawamura, Terry Payne, and Katia Sycara.
Semantic matching of web services.
In Proceedings of the International Semantic Web Conference (ISWC), pages 333–347,

June 2002.
[PPS07] Sean Pieper, JoAnn Paul, and Michael Schulte.

A New Era of Performance Evaluation.
IEEE Computer, 40(9) :23–30, September 2007.

[pro] The proteins@home Project, http ://biology.polytechnique.fr/proteinsathome.
[PSK03] Massimo Paolucci, Katia Sycara, and Takahiro Kawamura.

Delivering Semantic Web Services.
In Proceedings of the International World Wide Web Conference(WWW). ACM, May

2003.
–Alternate Paper Tracks–.

[QL07] Huiming Qu and Alexandros Labrinidis.
Preference-Aware Query and Update Scheduling in Web-Databases.
In Proceedings of the International Conference on Data Engineering (ICDE), pages 356–

365, 2007.
[QLM06] Huiming Qu, Alexandros Labrinidis, and Daniel Mosse.

Unit : User-centric transaction management in web-database systems.
In Proceedings of the International Conference on Data Engineering (ICDE), pages 1–10,

April 2006.
[QRLCV07a] Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre,Sylvie Cazalens, and Patrick Valduriez.

Satisfaction balanced mediation.
In Proceedings of the International Conference on Information and Knowledge Manage-

ment (CIKM), pages 947–950, November 2007.
[QRLCV07b] Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre,Sylvie Cazalens, and Patrick Valduriez.

A Satisfaction Balanced Query Allocation Process for Distributed Information Systems.
In Proceedings of the Journées Francophones sur les Bases de Données Avancées (BDA),

October 2007.
[QRLCV08] Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre, Sylvie Cazalens, and Patrick Valduriez.

Managing Virtual Money for Satisfaction and Scale Up in P2P Systems.
In Proceedings of the International EDBT Workshop on Data Management in Peer-to-

Peer Systems (DAMAP), March 2008.
[QRLV06] Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre, and Patrick Valduriez.

Satisfaction-based Query Load Balancing.
In Proceedings of the International Conference on Cooperative Information Systems

(CoopIS), pages 36–53, November 2006.
[QRLV07a] Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre, and Patrick Valduriez.

KnBest - A Balanced Request Allocation Method for Distributed Information Systems.
In Proceedings of the International Conference on Database Systems for Advanced Ap-

plications (DASFAA), pages 237–248, April 2007.
[QRLV07b] Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre, and Patrick Valduriez.

SQLB : A Query Allocation Framework for Autonomous Consumers and Providers.
In Proceedings of the International Conference on Very Large Data Bases (VLDB), pages

974–985, September 2007.

124 BIBLIOGRAPHY

[QRLV07c] Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre, and Patrick Valduriez.
Un Modèle pour Characteriser des Participants Autonommes dans un Processus de Mé-

diation.
In Proceedings of the Journées Francophones sur les Modèles Formels de l’Interaction

(MFI), volume 8, pages 389–396. Lamsade, May 2007.
[QRLV08] Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre, and Patrick Valduriez.

A Self-Adaptable Query Allocation Process.
In Proceedings of the Journées Francophones sur les Bases de Données Avancées (BDA),

October 2008.
[Ran75] Brian Randell.

System Structure for Software Fault Tolerance.
pages 437–449, 1975.

[Ran03] Shuping Ran.
A Model for Web Services Discovery with QoS.
SIGecom Exch., 4(1) :1–10, 2003.

[RB03] Mema Roussopoulos and Mary Baker.
Cup : Controlled update propagation in peer to peer networks.
In Proceedings of the International USENIX Annual Technical Conference, pages 167–

1680, June 2003.
[RB06] Mema Roussopoulos and Mary Baker.

Practical load balancing for content requests in peer-to-peer networks.
Distributed Computing, 18(6) :421–434, 2006.

[RD01] Antony Rowstron and Peter Druschel.
Pastry : Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-

Peer Systems.
In Proceedings of the IFIP/ACM International Conference on Distributed Systems Plat-

forms, pages 329–350, 2001.
[res] Respire project, http ://respire.lip6.fr.
[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.

A Scalable Content-Addressable Network.
In SIGCOMM ’01 : Proceedings of the 2001 conference on Applications, technologies,

architectures, and protocols for computer communications, pages 161–172, 2001.
[RM95] Erhard Rahm and Robert Marek.

Dynamic Multi-Resource Load Balancing in Parallel Database Systems.
In Proceedings of the International Conference on Very Large Data Bases (VLDB), pages

395–406, September 1995.
[RS97] Mary Roth and Peter Schwarz.

Don’t Scrap It ! Wrap It ! A Wrapper Architecture for Legacy Data Sources.
In Proceedings of the International Conference on Very Large Data Bases (VLDB), pages

266–275, August 1997.
[Rus80] David Russell.

State Restoration in Systems of Communicating Processes.
IEEE Transactions on Software Engineering, 6(2) :183–194, 1980.

[SAL+96] Michael Stonebraker, Paul Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff Sidell, Carl
Staelin, and Andrew Yu.

BIBLIOGRAPHY 125

Mariposa : A Wide-Area Distributed Database System.
The International Journal on Very Large Data Bases, 5(1) :48–63, 1996.

[San93] Thuomas Sandholm.
An Implementation of the Contract Net Protocol Based on Marginal Cost Calculations.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 256–

262. The AAAI Press/The MIT Press, July 1993.

[San99] Tuomas Sandholm.
Multiagent Systems, a modern approach to Distributed Artificial Intelligence, chapter Dis-

tributed Rational Decision Making, pages 201–258.
The MIT Press, 1999.

[SB89] Neil Speirs and Peter Barret.
UsingPassive Replicates in Demlta-4 to Provide DependableDistributed Computing.
In Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS),

pages 184–190, June 1989.

[SBD94] Adam Sah, Jon Blow, and Brian Dennis.
An Introduction to the Rush Language.
In Proceedings of the International Workshop on TCL, June 1994.

[SBY88] Robert Strom, D. Bacon, and Shaula Yemini.
Volatile Logging in Fautl-Tolerant Distributed Systems.
In Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS),

pages 44–49, 1988.

[Sch93] Fred Schneider.
Distributed Systems, chapter Replication Management Using the State-Machine Ap-

proach, pages 169–197.
ACM Press, 2nd edition, 1993.

[set] Seti@home project, http ://setiathome.berkeley.edu/.

[SGG02] Stefan Saroiu, Krishna Gummadi, and Steven Gribble.
A Measurement Study of Peer-to-Peer File Sharing Systems.
In Proceedings of the International Conference on MultimediaComputing and Network-

ing (MMCN), January 2002.

[SGG03] S. Saroiu, P. Krishna Gummadi, and S. D. Gribble.
Measuring and Analyzing the Characteristics of Napters andGnutella Hosts.
Multimedia Systems, 9(2) :170–184, 2003.

[SH03] Rüdiger Schollmeier and Felix Hermann.
Topology-Analysis of Pure Peer-to-Peer Networks.
In Proceedings of the Kommunikation in Verteilten Systemen (KiVS), pages 359–370,

2003.

[SK03] Rüdiger Schollmeier and Gerald Kunzmann.
GnuViz - Mapping the Gnutella Networks to its Geographical Locations.
Praxis der Informationsverarbeitung und Kommunication (PIK), 26(2) :74–79, 2003.

[SKS92] Niranjan Shivaratri, Phillip Krueger, and Mukesh Singhal.
Load Distributing for Locally Distributed Systems.
IEEE Computer, 25(12) :33–44, December 1992.

[SKWL99] Katia P. Sycara, Matthias Klusch, Seth Widoff, andJianguo Lu.

126 BIBLIOGRAPHY

Dynamic Service Matchmaking Among Agents in Open Information Environments.
SIGMOD Record, 28(1) :47–53, 1999.

[SL95] Thuomas Sandholm and Victor Lesser.
Issues in Automated Negotiation and Electronic Commerce : Extending the Contract Net

Framework.
In Proceedings of the International Conference on Multi-Agent systems (ICMAS), pages

328–335. The MIT Press, June 1995.

[SM94] Reinhard Schwarz and Friedemann Mattern.
Detecting Causal Relationships in Distributed Computations : In Search of the Holy Grail.
Distributed Computing, 7(3) :149–174, 1994.

[Smi81] Reid Smith.
The Contract Net Protocol : High-Level Communication and Control in a Distributed

Problem Solver.
IEEE Transactions on Computers, C-29(12) :1104–1113, 1981.

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, Frans Kaashoek, Frank
Dabek, and Hari Balakrishnan.

Chord : A Scalable Peer-to-Peer Lookup Protocol for Internet Applications.
IEEE/ACM Transactions on Networking, 11(1) :17–32, 2003.

[SR02] A Singla and Ch Rohrs.
Ultrapeers : Another Step Towards Gnutella Scalability.
Technical report, Lime Wire, November 2002.

[SRN03] P. Souza, C. Ramos, and J. Neves.
The Fabricare Scheduling Prototype Suite : Agent Interaction and Knowledge Base.
Journal of Intelligent Manufacturing, 14(5) :441–455, October 2003.

[SS92] Daniel Siewiorek and R. S. Swarz.
Reliable System Design : The Theory and Practice.
New York : Digital Press, 1992.

[ST01] Yoav Shoham and Moshe Tennenholtz.
Fair Imposition.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),

pages 1083–1088, August 2001.

[SWDC97] Rick Stevens, Paul Woodward, Thomas DeFanti, and Charles Catlett.
From the I-WAY to the National Technology Grid.
Communications of the ACM, 40(11) :50–60, 1997.

[SWG92] Sol Shatz, Jia-Ping Wang, and Masanori Goto.
Task Allocation for Maximizing Reliability of DistributedComputer Systems.
IEEE Transactions on Computers, 41(9) :1156–1168, 1992.

[SY85] Robert Strom and Shaula Yemini.
Optimistic Recovery in Distributed Systems.
ACM Transactions Computer Systems, 3(3) :204–226, 1985.

[Syc97] Katia Sycara.
Using Option Pricing to Value Commitment Flexibility in Multiagent Systems.
Technical report, CMU-CS-97-193, School of Computer Science, Carnegie Mellon Uni-

versity, 1997.

BIBLIOGRAPHY 127

[Syc98] Katia P. Sycara.
Multiagent Systems.
AI Magazine, 19(2) :79–92, Summer 1998.

[TJ00] Phillip J. Turner and Nicholas Jennings.
Improving the Scalability of Multi-Agent Systems.
In Proceedings of the International Workshop on Infrastructure for Multi-Agent Systems,

pages 246–262, 2000.

[TRV98] Anthony Tomasic, Louiqa Raschid, and Patrick Valduriez.
Scaling Access to Heterogeneous Data Sources with DISCO.
IEEE Transanctions on Knowledge and Data Engineering (TKDE), 10(5) :808–823,

1998.

[udd] The UDDI Technical White Paper, http ://www.uddi.org.

[VBW04] Srikumar Venugopal, Rajkumar Buyya, and Lyle Winton.
A Grid Service Broker for Scheduling Distributed Data-oriented Applications on Global

Grids.
In Proceedings of the International Workshop on Middleware for Grid Computing

(MGC), pages 75–80, 2004.

[Vic61] Willinam Vickrey.
Counterspeculation, auctions, and competitive sealed tenders.
International Journal of Finance, 16(1) :8–37, March 1961.

[vNM44] John von Neumann and Oskar Morgenstern.
Theory of Games and Economic Behavior.
Princeton University Press, 1944.

[web] Web Services, http ://www.w3.org/2002/ws/.

[Wie92] Gio Wiederhold.
Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25(3) :38–49, March 1992.

[WRC00] Marc Waldman, Aviel Rubin, and Lorrie Faith Cranor.
Publius : A Robust, Tamper-Evident, Censorship-Resistant, Web Publishing System.
In Proceedings of the USENIX Conference on Security Symposium, pages 59–72, August

2000.

[WS] Abel Weinrib and Scott Shenker.
Greed is not enough : adaptive load sharing in large heterogeneous systems.
In Proceedings of the International Conference on Computer Communications (INFO-

COM), pages 986–994.

[WS98] Duncan Watts and S Strogatz.
Collective Dynamics of ’Small-World’ Networks.
Nature, 393(6684) :440–442, June 1998.

[wsm] Web Service Modeling Ontology, http ://www.w3.org/submission/wsmo/.

[YD04] Praveen Yalagandula and Michael Dahlin.
A Scalable Distributed Information Management System.
In Proceedings of the International Conference on Applciations, Technologies, Architec-

tures, and Protocols for Computer Communications (SIGCOMM), pages 379–390,
2004.

128 BIBLIOGRAPHY

[YGM02] Beverly Yang and Hector Garcia-Molina.
Improving Search in Peer-to-Peer Networks.
In Proceedings of the International Conference on Distributed Computing Systems

(ICDCS), pages 5–14, 2002.

[YGM03] Beverly Yang and Hector Garcia-Molina.
Designing a Super-Peer Network.
In Proceedings of the International Conference on Data Engineering (ICDE), pages 49–

60, 2003.

[YV01] Haifeng Yu and Amin Vahdat.
The Costs and Limits of Availability for Replicated Services.
In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), pages

29–42, 2001.

[ZGG04] Hui Zhang, Ashish Goel, and Ramesh Govindan.
Using the Small-World Model to Improve Freenet Performance.
Computer and Telecommunications Networkwing, 46(4) :555–574, 2004.

[Zho88] Songnian Zhou.
A trace-driven simulation study of dynamic load balancing.
IEEE Transactions on Software Engineering, 14(9) :1327–1341, 1988.

[ZHS+04] Ben Zhao, Ling Huang, Jeremy Stribling, Sean Rhea, Anthony Joseph, and John Kubia-
towicz.

Tapestry : A Resilient Global-Scale Overlay for Service Deployment.
IEEE Journal on Selected Areas in Communications, 22(1) :41–53, 2004.

[ZZ02] Zili Zhang and Chengqi Zhang.
An Improvement to Matchmaking Algorithms for Middle Agents.
In Proceedings of the International Conference on AutonomousAgents and Multiagent

Systems (AAMAS), pages 1340–1347. ACM, July 2002.

A Satisfaction-Based Query Allocation Framework for Distributed
Information Systems

Abstract

In large-scale distributed information systems, where participants (consumers and providers) are autonomous
and have special interests for some queries, query allocation is a challenge. Much work in this context has fo-
cused on distributing queries among providers in a way that maximizes overall performance (typically through-
put and response time). However, participants usually havecertain expectations with respect to the mediator,
which are not only performance-related. Such expectationsmainly reflect theirintereststo allocate and perform
queries, e.g. their interests towards: providers (based onreputation for example), quality of service, topics of
interests, and relationships with other participants. In this context, because of participants’ autonomy,dissatis-
faction is a problem since it may lead participants to leave the mediator. Participant’ssatisfactionmeans that
the query allocation method meets its expectations. Thus, besides balancing query load, preserving the par-
ticipants’ interests so that they are satisfied is also important. In this thesis, we address the query allocation
problem in these environments and make the following main contributions. First, we provide a model to char-
acterize the participants’ perception of the system regarding their interests and propose measures to evaluate
the quality of query allocation methods. Second, we proposea framework for query allocation, calledSbQA,
that dynamically trades consumers’ interests for providers’ interests based on their satisfaction. Third, we pro-
pose a query allocation approach, called$bQA, that allows a query allocation method (specificallySbQA)
to scale up in terms of the numbers of mediators, participants, and hence of performed queries. Fourth, we
propose a query replication method, calledSbQR, which allows supporting participants’ failures when allo-
cating queries while preserving participants’ satisfaction and good system performance. Last, but not least, we
analytically and experimentally validate our proposals and demonstrate that they yield high efficiency while
satisfying participants.

Keywords: distributed information systems, query allocation, mediation, autonomous participants, participants’
satisfaction, scale up, participants’ failure

Allocation de Requêtes dans des Systèmes d’Information
Distribués avec des Participants Autonomes

Jorge-Arnulfo QUIANÉ-RUIZ

Résumé

Nous nous intéressons aux systèmes d’informations où les participants (clients et fournisseurs) sont autonomes,
c.à.d. ils peuvent décider de quitter le système à n’importequel moment, et qu’ils ont des intérêts particuliers
pour certaines requêtes. Dans ces environnements, l’allocation de requêtes est un défi particulier car les attentes
des participants ne sont pas seulement liées aux performances du système. Dans ce contexte, l’insatisfaction
des participants est un problème car elle peut les conduire àquitter le système. Par conséquent, il est très
important de répondre aux attentes des participants de sorte à ce qu’ils soient satisfaits. Dans cette thèse, nous
abordons ce problème en apportant quatre contributions principales. Primo, nous fournissons un modèle pour
caractériser la perception des participants par rapport ausystème et proposons des mesures qui permettent
d’évaluer la qualité des méthodes d’allocation de requêtes. Secundo, nous proposons une méthode d’allocation
de requêtes,SbQA, qui permet d’équilibrer à la volée les intérêts tant des clients que des fournisseurs en se
basant sur leur satisfaction. Tertio, nous proposons$bQA : une version économique deSbQA qui permet de
passer à l’échelle en nombre de médiateurs, de participants, et par conséquent, de requêtes traitées. Quarto,
nous proposonsSbQR : une méthode de réplication de requêtes qui permet de supporter les pannes éventuelles
des participants, tout en préservant leur satisfaction.

Mots-clés : systèmes d’information, allocation de requêtes, médiation, participants autonomes, satisfaction des
participants, passage à l’échelle, panne des participants

ACM Classification

Categories and Subject Descriptors :H.2.4 [Database Management]: Systems—Distributed databases,
Query processing; H.4.0 [Information Systems Applications]: General.

General Terms : Design, Information Systems, Management, Performance, Reliability.

Discipline : Informatique
Spcialit : Bases de Données

Laboratoire :L ABORATOIRE D’ I NFORMATIQUE DE NANTES ATLANTIQUE .
UMR CNRS. , rue de la Houssinire,BP   –   Nantes, CEDEX .

http://www.acm.org/class/

	Page de garde
	Pages liminaires
	Rsum en anglais
	Rsum
	Classification ACM
	Remerciements
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Extended Abstract in French

	Corps du document
	Introduction
	1 Participants Characterization and Measures
	1.1 Problem Statement
	1.2 A Usual Characterization of Providers
	1.3 Satisfaction Model
	1.3.1 Participants' Adequation
	1.3.2 Participants' Satisfaction
	1.3.3 Provider Intention-based Profit
	1.3.4 Query Allocation Method Efficiency
	1.3.5 Discussion

	1.4 System Measures
	1.5 Related Work
	1.6 Chapter Summary

	2 Satisfaction-based Query Allocation
	2.1 Problem Definition
	2.2 Consumer's Side
	2.3 Provider's Side
	2.4 Mediator's Side
	2.4.1 Scoring and Ranking Providers
	2.4.2 Regulating the System
	2.4.3 Query Allocation Principle
	2.4.4 Communication Cost

	2.5 Discussion
	2.6 Experimental Validation
	2.6.1 Setup
	2.6.2 Baseline Methods
	2.6.3 Results

	2.7 Related Work
	2.7.1 Data Mediator Systems
	2.7.2 Multi-Agents
	2.7.3 Web Services
	2.7.4 Load Balancing Approaches
	2.7.5 Economic Approaches

	2.8 Chapter Summary

	3 Scaling Up Query Allocation
	3.1 Problem Statement
	3.2 Use of Virtual Money
	3.2.1 Flow of Virtual Money

	3.3 Provider's Side
	3.3.1 Computing Bids
	3.3.2 Bidding in the Presence of Several Mediators

	3.4 Mediator's Side
	3.4.1 Computing Providers' Level
	3.4.2 Invoicing Providers
	3.4.3 Communication Cost

	3.5 Cost of Federating Mediators
	3.6 Experimental Validation
	3.6.1 Setup
	3.6.2 Results

	3.7 Related Work
	3.7.1 Peer-to-Peer Networks
	3.7.2 Grid-based Networks
	3.7.3 Multi-Agent Networks
	3.7.4 Small-World Networks
	3.7.5 Summary

	3.8 Chapter Summary

	4 Dealing with Participants' Failures
	4.1 Problem Definition
	4.2 Satisfaction Model for Faulty Participants
	4.2.1 Consumer Satisfaction
	4.2.2 Provider Satisfaction
	4.2.3 Global Satisfaction

	4.3 Non Systematic Query Replication Based on Satisfaction
	4.4 Experimental Validation
	4.4.1 Setup
	4.4.2 Results

	4.5 Related Work
	4.5.1 Query Replication
	4.5.2 Rollback-Recovery Protocols
	4.5.3 Concluding Remark

	4.6 Chapter Summary

	Conclusion

	Annexes
	A The SbQA Prototype
	A.1 SbQA's demo: A BOINC example
	A.2 SbQA within Grid4All
	A.2.1 Grid4All Example Application
	A.2.2 Selection Service Specification

	Notations
	Bibliography

	Dernire de couverture

