

Structures de systèmes moléculaires d'intérêt pharmaceutique isolés par spectroscopie IRMPD et spectrométrie de mobilité ionique

Jean-Christophe POULLY

Équipe AMIBES

Directeur de thèse : Charles Desfrançois

Relation structure/activité biologique

Fabrication par les ribosomes sous forme de chaîne linéaire, puis <u>repliement</u>

Mauvais repliement: cause de certaines maladies neurodégénératives

Ex: amyloïde β impliquée dans Alzheimer, Parkinson...

Traitement possible: médicament empêchant le mauvais repliement

Reconnaissance moléculaire spécifique

Ligand (par exemple Récepteur biologique **Complexe non-covalent** médicament) ACTIF

Spécifique = un ligand donné est reconnu par un seul récepteur

: Pas de complexe

But de nos études

Relation structure/reconnaissance spécifique mieux décrite par *l'ajustement induit*

Description des changements de structure en phase gazeuse

Pourquoi en phase gazeuse?

- Propriétés intrinsèques, sans effets de solvant
- Comparaison directe avec des calculs de chimie quantique
- Ions : stœchiométrie contrôlée

Mais comment enlever le solvant?

Source électrospray

Avantages pour nos études

- Molécules diluées dans une solution (mL)
- Concentration faible (µmol.L⁻¹)
- Distribution d'états de charge
- Ionisation douce sans fragmentation
- Complexes conservés

Effet de la mise en phase gazeuse sur la structure des ions moléculaires ?

Spectrométrie de mobilité ionique

Interprétation : comparaison avec des calculs*

Collaboration avec P. Dugourd et R. Ballivian, LASIM Université Lyon 1

* Programme MobCal, M. F. Jarrold (Indiana University, USA)

Spectroscopie IRMPD + spectrométrie de masse

Avantages: stœchiométrie parfaitement définie (sélection en masse)

Absorption IR détectée par **fragmentation** des ions ¹⁰

La fragmentation en détails

Processus répété jusqu'à dissociation de l'ion

Taux de fragmentation proportionnel à l'intensité IR

Interprétation

Déplacements spectraux = information sur les interactions moléculaires

Interprétation

Structure

Problème : durée des calculs

Comment simuler les spectres d'absorption IR de « gros » systèmes?

SIMULATIONS QM/SE au niveau B3LYP/6-31+g(d):AM1

On ne retient que les fréquences calculées en B3LYP¹³

Un exemple : la vancomycine

Les deux structures optimisées doivent être très proches

J. C. Poully et al., J. Phys. Chem. A 2009 113 8020

Méthodologie d'étude

- 1. Recherche de conformations par REMD*
- 2. Tri par énergie
- 3. Regroupement par familles de structure
- 4. Tri par calcul de section efficace de collision
- 5. Simulation de spectre d'absorption IR
- 6. Attribution en termes de structure

* Dynamique moléculaire par échange de répliques, collaboration avec Florent Calvo (Université Lyon 1) ¹⁵

Première partie

Structure secondaire de brins d'amyloïde β en phase gazeuse

La protéine amyloïde β

\approx 40 acides aminés, protéine naturelle

Structure native non-toxique

Feuillet β : germe des oligomères (plaques = agrégats d'amyloïde β)

Études antérieures

En phase gazeuse:

- Mobilité ionique : M. Bowers
- Échange H/D :
 - E. Krause

Structure, agrégation

En solution:

- Grande diversité conformationnelle
- Différents solvants = différentes structures
- TFE : ε = 30; favorise les structures en hélice α

But de nos études

Avec la spectroscopie IRMPD, la spectrométrie de mobilité ionique et les calculs QM/SE:

- Polarité du solvant
- État de charge
- Longueur du brin

Influence sur la structure secondaire de l'amyloïde β en phase gazeuse?

Résultats expérimentaux avec le TFE

Mobilité ionique

Spectroscopie IRMPD

Une seule famille de conformations
Faible effet de l'état de charge 2

Calculs de sections efficaces de collision

Simulations QM/SE

Spectres IR de $[A\beta_{12-28} + 2H]^{2+}$ calculés au niveau B3LYP/6-31g(d):AM1

- Positions moyennes : aucun conformère n'est satisfaisant
- Intensités relatives : bon accord pour H

Influence de la longueur du brin

Hélice favorisée en phase gazeuse par le TFE pour les deux brins?

Plus d'informations grâce à la mobilité ionique...

Étude du brin 1-28 avec l'eau

Largeur maximale : • 30 Å² pour l'état de protonation 3H⁺

Valeur moyenne :

• augmente avec le nombre de protons

- Hétérogénéité conformationnelle faible
- Dépliement de la structure induite par répulsion coulombienne

État de charge	[Aβ ₁₋₂₈ + 3H] ³⁺	[Aβ ₁₋₂₈ + 4H] ⁴⁺
Section efficace mesurée (Ų)	525	575

Brin déplié : $\Omega_{calc} = 951 \text{ Å}^2$

Désordogné gløbutaire : $\Omega_{calc} = 550 \text{ Å}^2$

Hélice
$$\alpha$$
 : Ω_{calc} = 700 Å²

État de charge	[Aβ ₁₋₂₈ + 5H] ⁵⁺
Section efficace mesurée (Ų)	650

Désordonné déplié : $< \Omega_{calc} > = 654 \text{ Å}^2$

Hélice α :
$$\Omega_{calc}$$
 = 700 Å²

Conclusions des études sur les brins d'amyloïde β isolés

- Influence du solvant sur la structure en phase gazeuse
- Tendance de la phase liquide conservée
- Validation de l'approche expérimentale spectroscopie IRMPD + spectrométrie de mobilité ionique pour les gros systèmes

Effet de la complexation

Amyloïde β 1-28 + 5H⁺

— Sans bi-indole

— Avec bi-indole

Collaboration avec D. Weaver, Halifax (Canada)

Seconde partie

Reconnaissance moléculaire spécifique en phase gazeuse

Vancomycine = ligand naturel

Antibiotique de dernier recours contre certaines infections bactériennes

Attachement spécifique au récepteur = mort de la cellule

Un modèle de la reconnaissance spécifique

Ajustement induit : structure cristalline

PDB: 1fvm Vancomycine: PDB 1aa5 PDB = Protein Data Bank Études antérieures du même système en phase gazeuse

Fragmentation et spectrométrie de masse

- Étude des modes positif et négatif
- affinité relative de différents récepteurs
- énergie de liaison

Pas d'étude structurale directe...

Mode positif: résultats expérimentaux pour l'état de protonation 2H⁺

Vancomycine protonée

Complexe protoné

La structure native n'est pas conservée

Recherche du site de complexation

Site de reconnaissance spécifique

Site de complexation proposé en mode positif³⁹

Peu de données IR sur les espèces déprotonées... 40

Étude du récepteur déprotoné

Mesure du spectre de la phénylalanine déprotonée: COO⁻ libre (1330, 1640 cm⁻¹) J. Oomens *et al., J. Am. Chem. Soc.* (2009) **131**, 4310)

Résultats en mode négatif: vancomycine

Signature spectroscopique expérimentale de la complexation

Engagement du COO⁻ dans des liaisons hydrogènes

Complexe déprotoné

Ajustement induit mesuré en phase gazeuse

Conclusions

- Approche et résultats très différents selon l'état de charge des ions
- Site de complexation non-spécifique en mode positif
- Structure native conservée en mode négatif
- Efficacité des techniques expérimentales complémentaires utilisées
- Test positif de la méthode QM/SE

Perspectives : refroidissement des ions

Boyarkin et al., J. Am. Chem. Soc., 2006, 128 (9), 2816

Nouveau montage expérimental

Avantages par rapport à l'électrospray

- Désorption laser sous vide
- Couplage avec un jet supersonique
- Spectroscopie IR de meilleure résolution
- Étude d'ions et de neutres possible
- Meilleure préservation de la structure native

Remerciements

EQUIPE AMIBES

Mécanique Élec

Électronique

Optique

Informatique

Administration

Expériences avec le laser CLIO : J. LEMAIRE et P. MAITRE (Université Paris Sud)

Collaboration GDR : R. BALLIVIAN, F. CALVO, F. CHIROT et P. DUGOURD (Université Lyon 1)

Et merci de votre attention!

Le complexe doublement déprotoné

Conformation zwitterionique de la vancomycine dans le complexe déprotoné

J. Laskin et al. Chem. Eur. J. (2009) 15, 2081

Récepteur déprotoné

Intensité (u. a.)

Simulations au niveau de calcul B3LYP/aug-cc-pVDZ

