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1
Introduction

La performance des processeurs et la capacité de stockage ne cessent de
s’améliorer. Cependant, le ralentissement et l’embouteillage au niveau

des entrées/sorties sur les disques ne permettent pas d’augmenter indé-
finiment la performance des machines séquentielles. Pour cela, depuis le
début des années 80, les chercheurs dans le domaine de bases de données
ont commencé à s’intéresser au parallélisme. Bubba (Boral et al. 1990) et
Gamma (DeWitt et al. 1990) sont des exemples des systèmes homogènes
de bases de données parallèles sur des architectures à disques répartis
(l’architecture Shared Nothing 1). L’objectif principal de ces systèmes est
l’accélération linéaire des algorithmes parallèles. Cependant, cette accélé-
ration n’est pas toujours atteignable à cause des coûts de communication
et du déséquilibre probable des charges des différents processeurs en
présence du déséquilibre des données (Mourad et al. 1994, Seetha and Yu
December 1990, Kitsuregawa and Ogawa 1990, Hua and Lee 1991, Wolf
et al. 1994, Hua et al. 1995, DeWitt et al. 1992, Harada and Kitsuregawa
1995, Bamha and Hains 2000; 1999).

L’opération d’équi-jointure (ou simplement la jointure) est l’une des
opérations la plus utilisée dans les Systèmes de Gestion de Base de Données
(SGBD). La jointure de deux relations R et S sur l’attribut A de R et
l’attribut B de S est la relation, R ⋊⋉ S, formée de l’ensemble des tuples
du produit cartésien R × S satisfaisant R.A = S.B.
La jointure est une opération très coûteuse. Pour cela, sa parallélisation
est bien étudiée par le comité de chercheurs dans le domaine de base de
données afin d’atteindre des performances acceptables. Des algorithmes
ont été proposés dans (Bamha and Hains 2000, Bamha 2005) pour l’éva-
luation de la jointure sur des architectures Shared Nothing homogènes.
Ces algorithmes garantissent une accélération presque linéaire même en
présence de déséquilibre de données tout en réduisant fortement les coûts
de communication.

Cependant, d’autres types de requêtes telles que le "Group-By Join",
souvent utilisées dans les systèmes interactifs d’aide à la décision, le trai-
tement analytique en ligne (OLAP) et les entrepôts de données, n’ont pas
été bien étudiées par les chercheurs. Ces systèmes sont largement utilisés
dans les services bancaires et financiers, les grands distributeurs de pro-
duits alimentaires, la fabrication de produits de grande consommation,

1l’architecture Shared Nothing : une architecture où chaque processeur dispose de sa
propre mémoire et de ses propres disques.
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2 Chapitre 1. Introduction

les télécommunications et le transport. Ils aident les analystes et les ges-
tionnaires à analyser des données et à prendre des décisions. Ils stockent
des bases de données contenant des informations historisées de tailles
importantes. En plus, ces systèmes permettent d’effectuer des analyses
complexes sur ces données et d’obtenir des données agrégées (Han and
Kamber 2000). A cette fin, les fonctions d’agrégat sont souvent utilisées.
Elles peuvent être appliquées au résultat de la jointure de plusieurs rela-
tions constituées de milliards de tuples. Par ailleurs, le temps d’exécution
de ces fonctions doit rester raisonnable. Il est donc nécessaire d’exploiter
le parallélisme (Liang and Orlowska 2000) en utilisant des algorithmes
parallèles qui soient efficaces même en présence de déséquilibre de don-
nées tout en réduisant au minimum les coûts de communication entre
les différents processeurs et les coûts de lecture/écriture sur les disques
des résultats des jointures intermédiaires (Gupta et al. 1995, Li et al. 2005,
Taniar and Rahayu 2001).

Aujourd’hui, avec l’émergence des applications telles que la physique
des hautes énergies, la modélisation climatique et la bioinformatique
qui sont des applications intensives en manipulation de données, des
chercheurs géographiquement répartis sur plusieurs sites ont besoin d’ac-
céder et d’interroger des bases de données de tailles énormes. Ces bases
de données sont distribuées sur les sites de plusieurs organisations. Les
requêtes exécutées par ces chercheurs exigent également le transfert d’un
volume énorme de données sur le réseau dans un délai raisonnable. Pour
des telles applications, les systèmes parallèles ne sont pas suffisants. Pour
cela, Foster et Kesselman ont introduit, en 1998, dans leur livre The Grid :
Blueprint for a Future Computing Infrastructure (Foster and Kesselman 1999)
la notion de grille. Ils ont défini la grille comme étant une infrastructure
matérielle et logicielle qui fournit un accès fiable, cohérent, omniprésent, peu
coûteux et avec une très grande capacités de calcul. Cependant, la volatilité
et l’hétérogénéité de nœuds, peuvent dégrader la performance des algo-
rithmes sur la grille bien qu’ils sont très efficaces pour l’évaluation de la
jointure sur des architectures Shared Nothing (SN) homogènes.

Les applications web telles que Google Analytics 2, Google Earth 3, Perso-
nalized Search 4 et Facebook 5 ont besoin de stocker de volumes de données
importants et d’appliquer des opérations de recherche et d’extraction sur
ces données. Pour répondre à ces besoins de stockage et de manipulation
de données, des systèmes de stockage distribués de données structurées
comme BigTable (Chang et al. 2006) et HBase6 sont utilisés. Ces systèmes
s’appuient sur les systèmes de fichiers distribués comme Google File System
(GFS) (Ghemawat et al. 2003) et Hadoop Distributed File System (HDFS)7.
Le modèle de programmation parallèle Map-Reduce permet d’effectuer
des calculs parallèles et distribués sur les données stockées dans le DFS

2Google Analytics : http://www.google.com/analytics/ .
3Google Earth : http://earth.google.com/ .
4Personalized Search : www.google.com/psearch .
5Facebook : http://www.facebook.com/ .
6HBase : http://hadoop.apache.org/hbase/ .
7HDFS : Hadoop Distributed File System, http://hadoop.apache.org/hdfs/ .

http://www.google.com/analytics/
http://earth.google.com/
www.google.com/psearch
http://www.facebook.com/
http://hadoop.apache.org/hbase/
http://hadoop.apache.org/hdfs/
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(Distributed File System) (Dean and Ghemawat 2004).

Dans cette thèse, nous nous intéressons particulièrement :
– au traitement de requête "Group-By Join" sur des architectures Shared No-

thing. Les algorithmes que nous proposons garantissent une accélé-
ration presque linéaire même en présence d’un fort déséquilibre de
données. Dans ces algorithmes, le résultat intermédiaire de jointure
n’est pas matérialisé ainsi le coût des opérations de lecture/écriture
sur les disques est réduit. En plus, le coût de communication est for-
tement réduit car seuls les tuples qui participent effectivement à la
jointure sont redistribués.

– au traitement de la jointure et multi-jointures sur des architectures dis-
tribuées hétérogènes. Nous proposons une approche dynamique de
distribution des tâches sur les processeurs qui prend en compte les
caractéristiques et la charge de chaque processeur afin d’avoir un
temps d’exécution presque équitable sur tous les processeurs durant
toutes les étapes du traitement. Dans cette approche, les paquets de
données non traités sur un processeur chargé sont transférés vers
d’autres processeurs moins chargés dans le but de traiter d’une ma-
nière très efficace l’effet du déséquilibre des valeurs de l’attribut de
jointure et du déséquilibre du résultat de la jointure. Les coûts de
communication et de lecture/écriture sur le disque sont également
fortement réduits car seuls les tuples qui participent effectivement
au résultat de la jointure sont redistribués.

– au traitement de jointure sur des architectures grille. L’algorithme qu’on
propose optimise l’allocation des ressources et minimise le coût de
communication sur la grille. Cet algorithme est aussi insensible au
déséquilibre de données et à la volatilité des machines.

– au traitement de l’opération de semi-jointure sur les Distributed File Sys-
tems en utilisant le modèle de programmation Map-Reduce-Merge
(Yang et al. 2007) et les histogrammes distribués.

L’analyse théorique de complexité et les tests réalisés confirment une
accélération presque linéaire pour nos algorithmes.

Organisation du mémoire

Dans le chapitre 2, nous présentons les notions de base dans les do-
maines de base de données et des architectures parallèles et distribuées.
Nous commençons par un rappel sur les opérations et les requêtes dans
les systèmes de gestion de base de données. Après avoir présenté les
différentes architectures des systèmes de base de données parallèles, nous
faisons une présentation des modèles de programmation parallèle avec
une justification de notre choix du modèle du coût BSP (Bulk Synchro-
nous Parallel) pour l’analyse de la complexité de nos algorithmes sur les
systèmes parallèles et distribués. Nous présentons aussi la grille de calcul
et le cloud computing avec une comparaison entre ces deux architectures.

Dans le chapitre 3, nous présentons l’état de l’art de travaux sur
le traitement de la jointure et des requêtes de "Group-By Join" sur les
architectures parallèles et distribuées. Nous commençons par une pré-
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sentation des algorithmes parallèles basiques pour traiter la jointure sur
des architectures parallèles homogènes ainsi que le problème du déséqui-
libre des données qui peut mener à la dégradation des performances de
ces algorithmes. Nous faisons aussi un tour d’horizon des algorithmes
d’équilibrage de charges, présentés dans la littérature, pour le traitement
de la jointure sur des architectures Shared Nothing homogènes. Cependant,
la performance de ces algorithmes peut se dégrader sur les architectures
distribuées hétérogènes et sur la grille. Cela est dû aux caractéristiques
hétérogènes des nœuds dans ces deux architectures et leur volatilité dans
la grille. Pour cela, des algorithmes adaptatifs ont été proposés dans
la littérature pour rééquilibrer les charges des nœuds tout au long de
l’évaluation de la jointure. Nous présentons aussi le modèle Map-Reduce-
Merge utilisé dans le cloud computing pour le traitement de la semi-jointure.

Dans le chapitre 4, nous présentons une nouvelle approche pour le
traitement des requêtes de jointure avec regroupement dans deux algo-
rithmes : GBJFA-Join utilisé pour le traitement de requêtes de "Group-By
Join" sur des architectures SN homogènes dans le cas où les attributs de
jointure figurent également parmi les attributs du Group-By et GAJFA-
Join algorithme utilisé quand les attributs de jointures et du group-by sont
distincts. Ces algorithmes sont basés sur l’utilisation des histogrammes
distribués. Dans nos algorithmes, l’histogramme d’une relation R sur l’at-
tribut de la jointure x est la liste des couples (v, nv) où nv est le nombre
de tuples de R ayant la valeur v pour x. Ces histogrammes sont organisés
sous la forme d’arbre balancé (B+-tree) pour accélérer les opérations de re-
cherche. En plus, ils sont totalement distribués, car dans toutes les phases
de nos algorithmes, ils sont répartis sur tous les nœuds, et jamais centra-
lisés sur un seul nœud. Ils nous donnent une connaissance détaillée de la
distribution des valeurs de l’attribut de jointure ainsi que de la distribu-
tion du résultat de jointure. Ils sont, donc, très efficaces pour le traitement
de requête de "Group-By Join" même en présence de déséquilibre des don-
nées. Nous avons réussi à réduire à la fois le coût de communication et de
lecture/écriture sur les disques car dans nos algorithmes :

– l’utilisation des histogrammes nous permet de trouver les tuples
qui participent effectivement au résultat de la jointure. Ainsi, seuls
ces tuples sont redistribués, ce qui réduit les coûts de communica-
tion. L’utilisation des histogrammes permet de réduire également le
nombre de paquets de données et par conséquent le coût total du
traitement de la jointure.

– la fonction d’agrégat est partiellement évaluée avant la redistribution
des données. Cela aide à réduire la taille des opérandes de la jointure
et par conséquent le coût de la phase de redistribution des données
ainsi que le temps global de traitement.

– les résultats intermédiaires de jointure ne sont pas matérialisés. Ceci
aide également à réduire les coûts inutiles de lecture/écriture des
données sur les disques.

Les performances de ces algorithmes ont été étudiées en utilisant le mo-
dèle de coût BSP qui prévoit une accélération presque linéaire pour nos
algorithmes. Les tests réalisés ont confirmé la validité de cette prévision.
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Dans le chapitre 5, nous proposons l’algorithme DFA-Join pour l’éva-
luation de la jointure sur les systèmes distribués hétérogènes et multi-
utilisateurs. Cet algorithme est basé sur une technique parallèle de dis-
tribution de charges en deux-étapes : La première étape est statique où
chaque processeur reçoit une charge proportionnelle à sa capacité. La
deuxième est dynamique ainsi, les charges des processeurs surchargés
sont transférées vers les processeurs les moins chargés. Nous présentons
aussi, l’algorithme PDFA-Join, une version pipelinée de DFA-Join pour
l’évaluation des requêtes complexes avec multi-jointures. Nous mon-
trons aussi que PDFA-Join peut être appliqué de manière efficace dans
différentes stratégies d’exécution parallèles permettant d’exploiter non
seulement le parallélisme intra-opérateur mais aussi le parallélisme inter-
opérateur pipeliné. Le modèle de coût et l’étude expérimentale effectuée
sur la plate-forme Grid’5000 ont montré que nos algorithmes ont une
accélération presque linéaire sur des architectures hétérogènes même en
présence d’un fort déséquilibre des données.

Dans le chapitre 6, nous présentons l’algorithme GDFA-Join pour l’éva-
luation de la jointure sur les grilles. Cet algorithme est une variante de
l’algorithme DFA-Join. Il prend en compte la réplication possible de don-
nées sur plusieurs nœuds pour réduire le coût de traitement de la jointure.
Il est aussi conçu pour tolérer les pannes d’un ou de plusieurs nœuds.
L’étude de coût de l’algorithme GDFA-Join et l’étude expérimentale ont
montré qu’il a une accélération presque linéaire même en présence de
déséquilibre des données.

Dans le chapitre 7, nous étendons les travaux réalisés sur les join-
tures au traitement des semi-jointures sur une architecture Cloud. Dans ce
cadre, nous présentons l’algorithme CFA-semi-Join pour l’évaluation de la
semi-jointure sur les systèmes de fichiers distribués. La semi-jointure de S
par R est la relation S ⋉ R composée des tuples de la relation S qui appa-
raissent dans la jointure de R et S (R ⋊⋉ S). L’algorithme CFA-Semi-Join est
basé sur le modèle de programmation Map-Reduce-Merge et l’utilisation
des histogrammes distribués. Comme dans nos algorithmes précédents,
l’utilisation des histogrammes nous permet de déterminer les tuples qui
apparaissent dans le résultat final de la jointure, et seulement ces tuples
sont redistribués. Donc, les coût de communication et de lecture/écriture
sur disques sont fortement réduit, tout en traitant de manière efficace le
problème du déséquilibre des résultats de jointure. L’étude de coût de
chaque phase de l’algorithme CFA-Semi-Join montre qu’il a une accéléra-
tion presque linéaire même en présence de déséquilibre des données.

La conclusion ainsi que nos perspectives de travail sont présentées
dans le chapitre 8.
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the grid infrastructure with some existing middlewares and systems. Fi-
nally, we review cloud computing and compare it with grid computing.
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2.1 Relational database model

The Relational database was born in 1970 with Codd’s paper "A Relatio-
nal Model of Data for Large Shared Data Banks" (Codd 1970). A relational
database is formed of one or multiple tables or relations. Each table is
formed of rows known as tuples describing one or more data categories
in columns. Data stored in these tables is manipulated using a Structured
Query Language (SQL). These queries allow us to apply several opera-
tions on the relations such as join, projection, restriction, group by and
aggregate functions.

2.1.1 Basic operations in database management systems

In this section, we will review the join and semi-join operations. Then,
we will give the different kinds of queries involving aggregate functions,
group by and/or join operations mainly simple aggregate and "GroupBy-
Join" queries.

We will use the following relations that represent respectively : the sup-
pliers, the products and quantity of a product shipped by a supplier in a
specific date.

SUPPLIER (Sid, Sname, City)

PRODUCT (Pid, Pname, Category)

SHIPMENT (Sid, Pid, Date, Quantity)

Join operation

The θ-join of two relations R and S on attribute A of R and attribute B
of S (A and B of the same domain) is the relation written as R ⋊⋉A θ B S,
containing the pairs of tuples from R and S for which R.A θ S.B where
θ ∈ {=, 6=, <, >,≤,≥}. If the operator θ is the equality operator, then this
operation is called an equi-join. In general, join refers to equi-join.

Figure 2.1 is an example of the join of SUPPLIER relation and SHIPMENT
relation on the common attribute Sid. This query is written in SQL (Struc-
tured Query Language) as :

SELECT SUPPLIER.Sid, Sname, City, Pid, Date, Quantity

FROM SUPPLIER, SHIPMENT

WHERE SUPPLIER.Sid = SHIPMENT.Sid;

To find the final result, each two tuples of SUPPLIER and SHIPMENT
having respectively the same values of Sid attribute are concatenated to
form one tuple in SUPPLIER ⋊⋉ SHIPMENT.

Semi-join operation

The semi-join of S by R is the relation S ⋉ R composed of the tuples of S
which occur in the join of R and S.
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The semi-join reduces the size of the join operands and satisfies :

R ⋊⋉ S = R ⋊⋉ (S ⋉ R) = (R ⋉ S) ⋊⋉ (S ⋉ R).

Figure 2.2 shows the result of SUPPLIER ⋉ SHIPMENT.

1000
1000
1004
1004
1004
1005
1005

Sid

20045
20135
40984
35468
98345
87935
24356

Pid

13/10/2008
10/01/2009
14/02/2009
20/02/2009
20/02/2009
15/04/2009
20/05/2009

Date

1000
1001
1002
1003
1004
1005
1006

Sid 

Dupont
Durand
Mitchell
Picard
Daniel
Mitchell
Picard

Sname

Paris
Orléans
Lille
Orléans
Marseille
Calais
Lyon

City

700
300
550
430
800
900
250

Quantity

1000
1000
1004
1004
1004
1005
1005

Sid

Dupont
Dupont
Daniel
Daniel
Daniel
Mitchell
Mitchell

Sname

Paris
Paris
Marseille
Marseille
Marseille
Calais
Calais

City

20045
20135
40984
35468
98345
87935
24356

Pid

13/10/2008
10/01/2009
14/02/2009
20/02/2009
20/02/2009
15/04/2009
20/05/2009

Date

700
300
550
430
800
900
250

Quantity

SUPPLIER                                 SHIPMENT

SHIPMENTSUPPLIER                                 

Fig. 2.1 – Join operation example.

1000

1004

1005

Sid

Dupont

Daniel

Mitchell

Sname

Paris

Marseille

Calais

City

SHIPMENTSUPPLIER                                 

Fig. 2.2 – Semi-join operation : SUPPLIER ⋉ SHIPMENT.

Simple aggregate queries

In this category, we have queries involving scalar aggregate or Group-By
queries. In scalar aggregate queries, the result is a single value related to
all the tuples of the relation. Whereas, Group-By queries produce a single
value for each group of tuples of a relation.

The following query is an example of scalar aggregate queries allowing to
find the total amount of products shipped by all the suppliers using the
aggregate function SUM 1.

SELECT SUM(Quantity) FROM SHIPMENT;

So, in this query, we simply find the sum of the values related to attribute
Quantity of all the tuples of relation SHIPMENT.

1The main aggregate functions in DBMS are : SUM, COUNT, AVG, MIN and MAX.



2.1. Relational database model 11

An example of Group-By query is :
SELECT Sid, SUM(Quantity)

FROM SHIPMENT

GROUP BY Sid;

In this query, we compute the sum of values related to the attribute
Quantity of each group of tuples having the same value of Sid. This grou-
ping is permitted by using the Group By clause. So, the above query is
used to find the total quantity of the products shipped by each supplier.

In all the previous queries, the aggregate functions were used in the
projection part of the relational queries, but they may also be used in the
HAVING part, for example :

SELECT Sid, SUM(Quantity)

FROM SHIPMENT

GROUP BY Sid

HAVING SUM(Quantity) >200;

In such queries, the having part is treated after the group by part (Shatdal
and Naughton 1994).

"GroupBy-Join" queries

As we have seen in simple aggregate queries, aggregate functions can be
applied on the tuples of a single table. But, in most SQL queries they
are applied on the output of the join of multiple relations. Such queries
are known as "GroupBy-Join" queries. We can distinguish two types of
"GroupBy-Join" queries illustrated using the following example.

Query 1 :
SELECT p.Pid, p.Pname, SUM (Quantity)

FROM PRODUCT as p, SHIPMENT as s

WHERE p.Pid = s.Pid
GROUP BY p.Pid, p.Pname;

Query 2 :
SELECT p.Category, SUM (Quantity)

FROM PRODUCT as p, SHIPMENT as s

WHERE p.Pid = s.Pid
GROUP BY p.Category;

The purpose of Query1 is to find the total quantity of each product ship-
ped by all the suppliers, while that of Query2 is to find the total amount
of each category of product shipped by all the suppliers. The difference
between Query1 and Query2 lies in the group-by and join attributes. In
Query1, the join attribute (Pid) is part of the group-by attributes. This
is not the case in Query2 where group-by and join attributes are totally
different. This difference plays an important role in "GroupBy-Join" query
processing especially in PDBMS. Where for Query1, it is preferable to
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carry out the group-by and aggregate functions first and then the join
operation (Taniar et al. 2000, Taniar and Rahayu 2001). This helps in re-
ducing the size of the relations to be joined. As a consequence, applying
the group-by and aggregate functions before the join operation in PDBMS
results in a huge gain in the communication cost and thus in the execution
time of such queries. In the contrary, group-by cannot be applied before
the join on Query2, because the join attribute (Pid) is different from the
group-by attribute (category).

2.1.2 Join processing on mono-processor systems

Three main sequential algorithms, for evaluating the join operation on
mono-processor systems, are known:

– Nested loop join,
– Sort-Merge join,
– Hash based join.

We will review, in the following subsection, these algorithms with their
execution costs. We consider that we want to find the join of two relations
R and S and that the common join attribute is x. The term ||R|| (resp. ||S||)
represents the number of tuples of R (resp. S) and |R| (resp. ||S||) is the
size (expressed in bytes or number of pages) of R (resp. S). The term cr/w
represents the cost to read/write a page of data from/to disk. In all these
algorithms, R and S are read from disk with a cost : O

(

cr/w ∗ (|R| + |S|)
)

and the join result R ⋊⋉ S is written to disk with a cost O(cr/w ∗ |R ⋊⋉ S|).
Thus, the total disk access cost is : O

(

cr/w ∗ (|R| + |S| + |R ⋊⋉ S|)
)

.

Nested loop join algorithm

This is the simplest join algorithm. In this algorithm (Algorithm. 1), for
each tuple of R all the tuples of S are scanned. Each two tuples of in-
put relations that satisfy the join condition are appended to form the join
result.

Algorithm 1: Nested loop join algorithm.
⊲ for each tuple r in relation R do

⊲ for each tuple s in relation S do
⊲ if r.x = s.x then

⊲ write the tuple < r, s > to the join result ;
⊲ endif

⊲ endfor
⊲ endfor

This algorithm induces ||R|| ∗ ||S|| join attribute values comparisons. Thus,
the total result of computing the join using the Nested loop join algorithm
is :

O(cr/w ∗ (|R| + |S| + |R ⋊⋉ S|) + tcomp ∗ ||R|| ∗ ||S||),

where tcomp is the needed time to compare the join attribute values related
to two tuples of relations R and S.
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Sort-Merge join algorithm

This is a two-step algorithm. In the first step, the two relations are sorted
based on the join attribute. Then, in the second step, the two sorted tables
are merged in order to find the final join result as shown in Algorithm.
2. The costs of sorting R and S are respectively : O

(

||R|| ∗ log(||R||)
)

and
O
(

||S|| ∗ log(||S||)
)

(Taniar et al. 2008b). The cost of merging the two rela-
tions is : O

(

||R|| + ||S||
)

. So, the total cost of computing the join using the
Sort-Merge join algorithm is :

O
(

cr/w ∗ (|R|+ |S|+ |R ⋊⋉ S|) + ||R|| ∗ log(||R||) + ||S|| ∗ log(||S||) + ||R||+ ||S||
)

.

Algorithm 2: Sort-Merge join algorithm.
⊲ Sort tuples of relation R ;
⊲ Sort tuples of relation S ;
⊲ Read a tuple r of R ;
⊲ Read a tuple s of S ;
⊲ while r 6= EOF or s 6= EOF do

⊲ if r.x = s.x then
⊲ write the tuple < r, s > to the join result ;
⊲ read the next tuple r of R ;
⊲ read the next tuple s of S ;

⊲ else if r.x > s.x then
⊲ read the next tuple s of S ;

⊲ else
⊲ read the next tuple r of R ;

⊲ endif
⊲endwhile

Hash based join algorithm

Several hash based algorithms are presented in the literature such as Grace
hash and Hybrid hash join. The main idea behind these algorithms is to (a.)
hash the smallest relation, known as build relation, in order to create a hash
table using a hash function applied on the values of the join attribute,
(b.) then probe the largest relation, known as probe relation, as shown in
Algorithm 3.
The cost of this algorithm is of the order :

O(
(

cr/w ∗ (|R| + |S| + |R ⋊⋉ S|) + th ∗ ||R|| + ts ∗ ||S||
)

,

where ts is the time needed to search for an entry in the hash table and th
is the time to add an entry to the hash table. In this algorithm, probing can
be done at a constant cost, since the inner relation (R) is in main memory
after the build phase and has a hash access path on the join attribute
(Zeller and Gray 1990). Whenever the hash tables cannot fit in memory,
input relations are partitioned into buckets and written back to disks. So,
the above algorithm can be applied without memory shortage.
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Algorithm 3: Hash based join algorithm.
⊲ Hash function h() ;
⊲ /* Build the hash table of the smallest relation R. */
⊲ for each tuple r of relation R do

⊲ write r into the hash table with index entry h(r.x) ;
⊲ endfor
⊲ /* Probe S */
⊲ for each tuple s of relation S do

⊲ probe the hash table for index h(s.x) ;
⊲ if index h(s.x) exists in the hash table then

⊲ for each record r′ with index entry h(s.x) do
⊲ if r′.x = s.x then

⊲ write the tuple < r′, s > to the join result ;
⊲ endif

⊲ endfor
⊲ endif

⊲ endfor

2.2 Parallel Architectures and Programming models

Flynn (Flynn 1966) has proposed in 1966 a taxonomy of computer archi-
tectures. He based his taxonomy on the notion of instructions and data
streams that can be simultaneously treated by the machine. The term
stream refers to a sequence of either instructions or data. The four cate-
gories of Flynn’s taxonomy are :

– SISD machine : Single Instruction Single Data machine. This is a
conventional serial computer (uniprocessor) that processes only one
stream of instructions and one stream of data. SISD machine is also
known as von Neumann computer.

– SIMD machine : Single Instruction Multiple data machine. In this
category, machines have multiple processing units under the super-
vision of a single control unit. At any given time, all the processing
units synchronously execute the same instruction but on different
data streams. ILLIAC-IV is an example of SIMD machine.

– MIMD machine : Multiple Instructions Multiple Data machine. A
MIMD machine is formed of multiple processors each executing its
own instruction stream to process its allocated data stream. MIMD
machine exploits asynchronous parallelism. Cray X-MP, Tandem/16

and Meiko Computing Surface (CS-1) are examples of MIMD ma-
chines.

– MISD machine : Multiple Instructions Single Data machine. A MISD
machine is formed of multiple processors executing independent
streams of instructions on the same data stream. The C.mmp built at
Carnegie-Mellon University by William Wulf on 1971 is an example
of MISD machine.

In the rest of this section, we will review three main parallel database
architectures that fall under the MIMD machines. Then, we present several
parallel programming models that can be followed to implement parallel
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algorithms on parallel systems. These models also allow us to study the
execution cost of the algorithms using their cost models.

2.2.1 Parallel database Architectures

Parallel database architecture can be divided into three principal
categories : shared memory, shared disk, and shared nothing architectures.

Shared-Memory architectures

In the Shared Memory (SM) architectures, all the processors have a direct
access to a common shared main memory and to all shared disks using a
bus interconnection network as shown in figure 2.3.

   Disk    Disk    Disk

CPU1 CPUnCPU2 Main Memory

Bus

Fig. 2.3 – A Shared-Memory architecture.

In this architecture, the choice of the degree of parallelism is flexible
and load balancing is easy to achieve because all needed data are located
in a central shared memory. In addition, the communication cost is not
high since all the processors have a direct access to the common data
located in the central main memory.
This architecture has a main drawback : it is limited to a small number of
processors (Taniar et al. 2008a). This is due to the following facts :

– many processors may need to access shared data which results in
memory and bus contention,

– the physical bus interconnection network has a limited capacity of
data transfer. So processor-to-memory connection becomes a bottle-
neck since the bus is shared by all the processors.

To conclude, load balancing in shared memory architectures is easy to
achieve. However, these systems suffer from availability and scalability
limitation problems (Rahm 1996).

Shared-Disk architectures

In the Shared Disk architectures (SD), each processor has its own local main
memory while all the processors share the secondary memory as shown in
figure 2.4. So, each processor can access any disk in the system. However,
a processor can only read/write data in its local main memory but not in
the local memory of other processors. In this architecture, communications
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are performed throughout a high speed interconnection bus.

   Disk    Disk    Disk

CPU1

Main memory

CPUn

Main memory

CPU2

Main memory

Bus

Fig. 2.4 – A Shared-Disk architecture.

The main advantage of shared disk architectures lies in the flexibility
of choosing the degree of parallelism due to sharing the data stored in
disks by all the processors. Load balancing between processors is easily
achieved because intermediate data are available to all nodes through the
shared disks. In addition, data sharing problems, in this architecture, is
minimized because each processor stores its active data in its local me-
mory. On the other hand, this architecture suffers from communication
and disk bottleneck if many processors need to read/write data on the
shared disks. Since the main memory is not shared by the processors,
each processor has its own data cache. Hence, a cost overhead is needed
to maintain the cache consistency.

Shared-Nothing architectures

In a Shared-Nothing (SN) architecture, each processor has its own local
main memory and disks as shown in figure 2.5. So a processor cannot
directly access neither the main memory nor the disks of other processors.
Communication between processors is established by message passing
through an interconnection network.
In this architecture, the database is partitioned over the processors and

CPU1

Main memory

CPUn

Main memory

CPU2

Main memory

   Disk(s)    Disk(s)    Disk(s)

Interconnection network

Fig. 2.5 – A Shared-Nothing architecture.

each processor can have a direct access to data stored in its local disk.
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To access data of other processors, a distributed query and transaction
execution is needed (Rahm 1996).

The main advantage of SN architecture is its scalability due to the
fact that each processor is independent of the others. However, in this
architecture, it is not easy to achieve load balancing between processors.
It also suffers from high communication costs.

2.2.2 Parallel programming models

Several parallel programming models were presented in the literature.
PRAM model is one of the first introduced ones. This model considers
shared memory and uniform memory access. This is not realistic in paral-
lel programming where communication cost is one of the most important
factors. For this reason, other portable models such as BSP, LogP, CGM
and EM-BSP were invented. These models take into account this factor.
We review these models in the rest of this section.

The PRAM model

Forturne et al. (Fortune and Wyllie 1978) have introduced the Parallel
Random Access Machine (PRAM) model for parallel computing. The
PRAM model consists of p processors. Each one has its own private local
memory, and they all share a global memory. In PRAM model, processors
execute the computation instructions synchronously. At each step of a
PRAM algorithm, some processors are active and execute : read, write or
compute instructions. The other processors are inactive. In a read step,
each active processor reads one global memory location into its local
memory. In a compute step, each active processor executes a single ope-
ration and writes the result into its local memory. In a write step, each
active processor writes one local memory location into the global memory.

It was necessary to define some memory access restrictions to resolve read
and write conflicts to the same shared memory location. Depending on the
restrictions on memory access, we have 4 different PRAM models :

– Exclusive Read, Exclusive Write (EREW) PRAM : At each time
step, one and only one processor can read or write the same sha-
red memory location.

– Concurrent Read, Exclusive Write (CREW) PRAM : At each time
step, simultaneous reads of the same memory location are allowed,
but only one processor can write to a shared memory location.

– Concurrent Read, Concurrent Write (CRCW) PRAM : At each time
step, both simultaneous reads and writes of the same memory loca-
tion are allowed. In CRCW PRAM model, we also need to specify
what happens when several processors write to the same memory
locations.

– Queue Read, Queue Write (QRQW) PRAM (Gibbons et al. 1994;
1999) : At each time step, each memory location can be read or writ-
ten by any number of processors. Concurrent read or write to a lo-
cation are serviced one-at-a-time. The access time to read or write
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a location is proportional to the number of concurrent readers or
writers to the same location.

The BSP model

Bulk-Synchronous Parallel (BSP) model is a programming model introduced
by L. Valiant (Valiant August 1990). It offers a high degree of abstraction
like PRAM models and yet allow portable and predictable performance
on a wide variety of multi-processor architectures (Skillicorn et al. 1997).
A BSP computer contains a set of processor-memory pairs, a communica-
tion network allowing inter-processor delivery of messages and a global
synchronization unit which executes collective requests for a synchroniza-
tion barrier. Its performance is characterized by 3 parameters expressed as
multiples of the local processing speed :

– the number of processor-memory pairs p,
– the time l required for a global synchronization,
– the time g for collectively delivering a 1-relation (communication

phase where every processor receives/sends at most one word).
The network is assumed to deliver an h-relation in time g × h for any arity
h.

P1 P2 PpP3

Synchronization barrier

Synchronization barrier

B
S

P
 su

p
erstep

Fig. 2.6 – A BSP superstep.

A BSP program is executed as a sequence of supersteps, each one divi-
ded into (at most) three successive and logically disjoint phases. In the
first phase, each processor uses its local data (only) to perform sequen-
tial computations and to request data transfers to/from other nodes. In
the second phase, the network delivers the requested data transfers. And
in the third phase, a global synchronization barrier occurs, making the
transferred data available for the next superstep. The execution time of a
superstep s is thus the sum of the maximal local processing time, of the
data delivery time and of the global synchronization time :

Time(s) = max
i:processor

w(s)
i + max

i:processor
h(s)

i ∗ g + l

where w(s)
i is the local processing time on processor i during superstep

s and h(s)
i = max{h(s)

i+ , h(s)
i− } where h(s)

i+ (resp. h(s)
i− ) is the number of words
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transmitted (resp. received) by processor i during superstep s. The exe-
cution time, ∑s Time(s), of a BSP program composed of S supersteps is
therefore a sum of 3 terms : W + H ∗ g + S ∗ l where W = ∑s maxi w(s)

i and
H = ∑s maxi h(s)

i . In general W, H and S are functions of p and of the size
of data n, or (as in the present application) of more complex parameters
like data skew and histogram sizes. To minimize execution time of a BSP
algorithm, its design must jointly minimize the number S of supersteps
and the total volume H (resp. W). In addition, for each superstep s, the
volume h(s)

i (resp.w(s)
i ) must be balanced on all processors.

The LogP model

LogP, described in (Culler et al. 1993), is a distributed memory multipro-
cessor model where processors communicate by point-to-point messages.
The model parameters are :

– L : an upper bound on the latency incurred in communicating a mes-
sage containing a word (or small number of words) from its source
module to its target module.

– o : the processor time overhead required to transmit or receive a mes-
sage, during which the processor cannot perform other operations.

– g : the gap, defined as the minimum time interval between conse-
cutive message transmissions or consecutive message receptions at
a processor. 1

g corresponds to the available per-processor communi-
cation bandwidth.

– P : the number of processor/memory couples.

The terms L, o and g parameters are measured as multiples of the pro-
cessor cycle. In LogP model, processors work asynchronously and at
most ⌈ L

g ⌉ messages can be in transit, on the network, at any time. In
LogP model, sending a small message (a datum) from one processor
to another requires a time of L + 2 ∗ o. Sending a long message for-
med of k bytes, by point-to-point messages, requires sending ⌈ k

w⌉ in
2 ∗ o + (⌈ k

w⌉ − 1) ∗ max{g, o} + L cycles, where w is the underlying mes-
sage size of the machine.

LogP model only deals with short messages. So, an extension of this
model, named LogGP was described in (Alexandrov et al. 1995) to model
small and long messages communication. LogGP extends LogP model
where a G parameter is added. This parameter captures the bandwidth
obtained for long messages and 1

G represents the available per processor
communication bandwidth for long messages. Thus, sending a k byte
message, in LogGP model, requires 2 ∗ o + (k − 1) ∗ G + L. Other LogP
extensions, such as (Löwe et al. 1997), were also presented in the literature
for the same aim.

BSP model can be efficiently simulated by LogP and vice-versa. Ho-
wever, Bilardi et al. (Bilardi et al. 1996) claim that BSP is somewhat
preferable to LogP due to its greater simplicity and portability. However,
it was shown in (Bilardi et al. 1996, Eisenbiegler et al. 1998), that from an
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asymptotic point of view, the two models are equivalent.

The CGM model

Dehne et al. have introduced in (Dehne et al. 1993), the Coarse Grained Mul-
ticomputer (CGM) model. A CGM(n, p) machine is formed of p processors
with O( n

p ) local memory for each processor. The size of the local memory
of each processor is larger than O(1). The processors are connected using
an interconnection network where each processor can exchange messages
of size O(log n) with any one of its immediate neighbors in constant time.
A CGM algorithm is a sequence of phases, alternating between local com-
puting and global communication. The CGM model represents a special
case of the BSP model where all the communication operations of one su-
perstep are done in the h-relation (h = O( n

p )) (Alves et al. 2002), i.e. each
processor sends O( n

p ) data and receives O( n
p ) data.

The External Memory BSP (EM-BSP) model

In applications such as astronomical simulation, weather prediction, geo-
graphic information systems, computational biology, virtual reality, 3D
simulation and modeling and genetic sequencing, the size of internal me-
mory of the computer is only a small fraction of the problem size. External
Memory (EM) algorithms are needed for such applications because the
size of the main memory is always insufficient (Dehne et al. 1997; 2002).
Parallel processing represents an important issue for EM algorithms for
the same reasons that parallel processing is of practical interest in non-EM
algorithm design (Dehne et al. 1997; 2002, Gava 2005). However, to obtain
an acceptable performance, blockwise access to data and fully parallel
disk I/O, when more than one disk is present, are critical issues in EM-
algorithms (Dehne et al. 2002).

EM-BSP model, an extension of BSP model, was presented in (Dehne
et al. 1997) to include secondary local memories. In this model, each pro-
cessor has, in addition to its main memory, an external memory formed
of a set of disks. EM-model has, in addition to the BSP parameters, the
following ones :

– M is the local memory size of each processor,
– D is the number of drives for each processor,
– B is the transfer block size of a local disk drive,
– G is the ratio of local computational capacity (number of local com-

putation operations) divided by the local I/O capacity (number of
blocks of size B that can be transfered between the local disks and
memory per unit time).

The model is restricted to the case where all processors have the same
number of disks because it is mostly the case in practice. Each disk drive
consists of a sequence of tracks. The tracks can be accessed by direct
random access using their unique track number. Each processor can use
all of its D disk drives concurrently, and transfer D ∗ B items from/to the
local disks to/from its local memory in a single I/O operation and at cost
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G. A processor is assumed to store in its main memory at least one block
from each local disk at the same time, i.e. M ≥ D ∗ B.

As in BSP model, the computation on the EM-BSP model proceeds in
a succession of supersteps. EM-BSP model adapts the communication and
computation supersteps from the BSP model and allows multiple disk
I/O operations during the computation phase of the superstep. For an
h-relation, g ∗ h + L time units are charged per communication superstep.
The I/O cost of a computation superstep is tI/O = maxv

j=1 wj
I/O where

wj
I/O is the I/O cost incurred by processor j. Each I/O operation costs G

time steps. For a computation superstep with at most tcomp local opera-
tions, on each processor, tcomp + tI/O + L time units are charged. Thus, the
total cost of each superstep is : tcomp + tcomm + tI/O + L.

Chosen Model

We have chosen to use the BSP cost model to study the execution time of
each step of our parallel algorithms on parallel architectures. This choice
was due to the simplicity and portability of this model on different pa-
rallel architectures. In addition, its parameters g, p and l allow to describe
the parallel machine characteristics and give a realistic performance pre-
diction of the execution cost of the algorithms. For our algorithms, the
exchanged messages have a large size, so using LogP model makes our
cost analysis more complex without guaranteeing better performance or
prevision. The CGM model is not adequate with our algorithms because
data redistribution and load rebalance of processors are done in the h-
relation with unpredictable value of h. The EM-BSP model, would have
been a good choice for us. However, in our algorithms, we consider that
each processor reads/writes data from/to one disk only. So, using the
EM-BSP model will complicate the analysis cost without providing bet-
ter performance prevision for our algorithms. Thus, to simplify the cost
analysis, we used, in addition to the BSP parameters, a parameter ci

r/w
that represents the disk Input/Output cost of each processor and allows
to simulate the case of multiple disks attached to a processor.

2.3 The GRID

Foster gave in his paper, "What is the Grid ? A Three Point Checklist" (Foster
2002), three points to specify if a system is a grid or not. According to this
checklist, a grid system:

– coordinates resources that are not subject to centralized control,
– uses standard, open, general-purpose protocols and interfaces,
– delivers nontrivial qualities of services.

So, the grid infrastructure enables users to share autonomous geogra-
phically distributed computing and data storage resources belonging to
different administrative domains in a transparent way.
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In order to efficiently access and employ the heterogeneous and vola-
tile resources of the grid, we need software tools that allow us to (Wankar
2008, Taniar et al. 2008a) :

– identify the resources needed to run the application,
– schedule the execution of the tasks on the grid resources,
– monitor the execution state of the jobs and system components,
– locate, transport and replicate data,
– manage security issues.

These software tools are known as Grid Middleware.

In the following subsections, we review Globus and gLite grid middleware
systems. Then, we present several examples of existing grid systems.

2.3.1 Grid Middleware

Several middleware systems are implemented to build grid infrastructures
such as : Gridbus 2, NetSolve/GridSolve 3, UNICORE 4, Legion 5 and Advan-
ced Resource Connector (ARC) 6. We will briefly present Globus and gLite
which are the mostly used middleware systems.

Globus toolkit

Globus 7 is an open source project that offers software tools for building
grid systems and applications. Globus toolkit (Foster 2005) provides a
set of software services and libraries for : security, resource management
and access, information infrastructure, data management, communication,
fault detection and portability.
The primary components of Grid toolkit are :

– Grid Resource Allocation and Management (GRAM) : provides a web
service interface for remote job submission and control ;

– Grid Security Infrastructure (GSI) : addresses massage protection, au-
thentication, delegation, and authorization ;

– GridFTP : a high-performance, reliable and secure data transfer pro-
tocol ;

– Monitoring and Discovery Service (MDS) : provides tools and APIs for
discovering, publishing and accessing information about the grid
resources.

Users can employ some or all the toolkit components to build their own
applications. Globus toolkit is the most used grid middleware which is
rapidly evolving (Taniar et al. 2008a).

2Gridbus,http://www.gridbus.org/ .
3NetSolve/GridSolve, http://icl.cs.utk.edu/netsolve/ .
4UNICORE, http://www.unicore.eu/ .
5Legion, http://www.legion.virginia.edu/ .
6ARC, http://www.nordugrid.org/middleware/ .
7Globus, http://www.globus.org/ .

http://www.gridbus.org/
http://icl.cs.utk.edu/netsolve/
http://www.unicore.eu/
http://www.legion.virginia.edu/
http://www.nordugrid.org/middleware/
http://www.globus.org/


2.3. The GRID 23

gLite

gLite 8 is part of the EGEE project 9 funded by the European Union. It was
born from the collaboration of more than 80 people in 12 different acade-
mic and industrial research centers. The gLite middleware is formed of a
set of components to enable both computing and storage resource sharing.
gLite integrates components from other middleware projects, such as
Condor 10 and the Globus toolkit, in addition to components developed for
the LCG project 11.
The development of the middleware is organized into three different
activities :

1. Data management, workload management, monitoring, accounting,
computing element, logging and bookkeeping services ;

2. Security services ;

3. Network monitoring and provisioning services.

The gLite Grid services follow a Service Oriented Architecture (SOA). So, it
will be easy to connect the software to other Grid services. This will also
facilitate compliance with upcoming Grid standards, for instance the Web
Service Resource Framework (WSRF) 12 from OASIS 13 and the Open Grid
Service Architecture (OGSA) 14 from the Open Grid Forum (OGF) 15.

2.3.2 Grid infrastructure examples

There are many projects for building grid infrastructures such as : the
Austrian Grid 16, D-Grid 17, BEgrid 18, EGEE 19, Grid’5000 20 and EGI 21.
We will briefly review some of these infrastructures.

EGEE

The Enabling Grids for E-sciencE (EGEE) is an European project, launched
in 2004, for building grid infrastructure. The project gives access to resear-
chers from diverse scientific domains to a grid infrastructure available 24

hours a day, 7 days a week. As stated in the above section, EGEE employs

8gLite : Lightweight Middleware for Grid Computing, http://glite.web.cern.
ch/glite/ .

9EGEE: Enabling Grids for E-sciencE, http://www.eu-egee.org/ .
10Condor, http://www.cs.wisc.edu/condor/ .
11LCG project : A data storage and analysis infrastructure for the high energy physics

community that will use the Large Hadron Collider at CERN, http://lcg.web.cern.
ch/LCG/ .

12WSRF, http://www.oasis-open.org/committees/tc_home.php?wg_

abbrev=wsrf .
13OASIS, http://www.oasis-open.org .
14OGSA, http://forge.ogf.org/sf/projects/ogsa-wg .
15OGF, http://ogf.org/ .
16The Austrian Grid, http://www.austriangrid.at/ .
17D-Grid : The German Grid Initiative, http://www.d-grid.de/index.php?id=

1&L=1 .
18BEgrid : The Belgian Grid for Research, http://www.begrid.be/index.php .
19EGEE: Enabling Grids for E-sciencE, http://www.eu-egee.org/ .
20Grid’5000, https://www.grid5000.fr/ .
21EGI : The European Grid Initiative, http://web.eu-egi.eu/ .

http://glite.web.cern.ch/glite/
http://glite.web.cern.ch/glite/
http://www.eu-egee.org/
http://www.cs.wisc.edu/condor/
http://lcg.web.cern.ch/LCG/
http://lcg.web.cern.ch/LCG/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org
http://forge.ogf.org/sf/projects/ogsa-wg
http://ogf.org/
http://www.austriangrid.at/
http://www.d-grid.de/index.php?id=1&L=1
http://www.d-grid.de/index.php?id=1&L=1
http://www.begrid.be/index.php
http://www.eu-egee.org/
https://www.grid5000.fr/
http://web.eu-egi.eu/
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gLite as the grid middleware. The grid was developed under the following
three objectives :

– build a consistent, robust and secure Grid network that will attract
additional computing resources ;

– continuously improve and maintain the middleware in order to de-
liver a reliable service to users ;

– attract new users from industry as well as science and ensure that
they receive the high standard of training and support they need.

On January 2009, EGEE connected 267 sites from 54 countries, with ap-
proximately 114,000 CPUs available to users 24 hours a day and a 20 PB
of storage capacity.

Grid’5000

Grid’5000 (Cappello et al. 2005) is a French research effort, started in 2003,
for developing a large scale nation wide infrastructure for Grid research.
17 laboratories, in France, are involved in Grid’5000 in order to offer to
the community of grid researchers a testbed allowing experiments in :
network protocols, operating systems, Grid or P2P middleware, applica-
tion runtime, programming environments and applications.
Grid’5000 currently connects resources distributed on 9 sites in France.
Each local site platform is formed of at least one cluster. The total number
of processors of all the sites is approximately 3202 (5714 cores). The sites
are connected by the RENATER 22 Education and Research Network. All
clusters are connected to Renater with at least 1Gb/s link. The processors
of each cluster are connected via Myrinet or Infiniband.

Grid’5000 doesn’t employ a specific Grid middleware. However, se-
veral services are offered to allow: the reservation of processors by the
users, deploy the reserved machines with their personal computing envi-
ronment and stock data. The most important ones are :

– OAR 23 used as a resource manager for large clusters. OAR doesn’t
execute jobs on the resources but manages them (reservation, access
granting) in order to allow users to have access to reserved resources
and use them. OAR-GRID is used to reserve nodes from different
sites of Grid’5000.

– Kadeploy 24 which is a deployment system for cluster and grid com-
puting. It allows the users to deploy their own computing environ-
ment.

– A local NFS on each site.
22RENATER: Le Réseau National de télécommunications pour la Technologie l’Ensei-

gnement et la Recherche, http://www.renater.fr/ .
23OAR: Resource Management System for High Performance Computing, http://

oar.imag.fr/index.html .
24Kadeploy, http://kadeploy.imag.fr/ .

http://www.renater.fr/
http://oar.imag.fr/index.html
http://oar.imag.fr/index.html
http://kadeploy.imag.fr/


2.3. The GRID 25

EGI

The European Grid Initiative (EGI) 25 Design Study, launched in September
2007 and ended on November 2009, is an effort to establish an European
sustainable grid infrastructure. Many European countries have launched
National Grid Initiatives (NGI) for building grid infrastructures at national
level. The goal of EGI is to link existing NGIs and support the creation of
new ones. To this day, 42 NGIs in Europe participated in EGI. Some of the
main objectives of EGI, as stated in their website, are :

– Coordinate the integration and interaction between NGIs ;
– Provide global services and support that complement and/or coor-

dinate national services (Authentication, VO-support, security, etc) ;
– Coordinate middleware development and standardization to en-

hance the infrastructure by soliciting targeted developments from
leading EU and National Grid middleware development projects ;

– Advise National and European Funding Agencies in establishing
their programs for future software developments based on agreed
user needs and development standards ;

– Integrate, test, validate and package software from leading grid
middleware development projects and make it widely available ;

– Link the European infrastructure with similar infrastructures elsew-
here.

The EGI entity will start operation in 2010.

2.3.3 Cost notations for the grid architecture

The BSP cost model is not adequate with grid architecture because it
assumes that all system components have equal computation and com-
munication characteristics. So, we will use the following notations, which
represent the characteristics of the used machines, to study the cost of
each step of parallel algorithms for grid.

Network parameters

– mp : Communication message protocol cost per page of data,
– ml : Communication message latency for one page of data.

We consider that the values of the following parameters are determined
based on the slowest processor and network characteristics in the system.

Nodes parameters

– ci
r/w : Read/write cost of a page of data on a local disk of node i,

– ti
r : Time to read a record from the main memory of node i,

– ti
w : Time to write a record to the main memory of node i,

– ti
d : Time to compute destination join evaluating node of a tuple on

node i,
– ti

h : Time to add an entry to a B+-tree on processor i.

25EGI : The European Grid Initiative, http://web.eu-egi.eu/ .

http://web.eu-egi.eu/
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2.4 Cloud computing

Foster et al. (Foster et al. 2009) defined Cloud Computing as :

"A large-scale distributed computing paradigm that is driven by
economies of scale, in which a pool of abstracted, virtualized,
dynamically-scalable, managed computing power, storage, platforms,
and services over the Internet."

So, Cloud computing gives users access to dynamically scalable and often
virtualized computing and storage resources, provided as services, over
the internet. Users do not need to know where the resources are or how
they are configured. They pay for the service provider only for the services
that they use. Cloud computing can be seen as several layers of services
(Armbrust et al. 2009), mainly :

– Infrastructure-as-a-Service (IaaS) : delivers computer infrastructure
(computing resources and storage) as services. Amazon EC2 26, IBM
Blue Cloud 27 and Sun Grid 28 are examples of IaaS.

– Platform-as-a-Service (PaaS) : delivers operating systems and some
specific applications such as Apache and MySQL for Web-based ap-
plications as services. IBM IT Factory, Google AppEngine 29 and
Force.com 30 are examples of PaaS.

– Software-as-a-Service (SaaS) : delivers applications as services over
the internet. Google Apps is an example of SaaS.

2.4.1 Cloud Computing versus Grid Computing

In their paper "Cloud Computing and Grid Computing 360-Degree Compa-
red" (Foster et al. 2009), Foster et al. have posed the following question :
Is "Cloud Computing" just a new name for Grid ?". Then they claimed that
there is no straightforward answer to such question. However, they ar-
gued that cloud computing does not only overlap with grid computing, it
has indeed evolved out of grid computing and relies on grid computing
as its backbone and infrastructure. However, the main differences may be
classified by the following aspects :

– Business Model : in the cloud business model, the user pays to the
service provider based on his consumption. On the other hand, the
grid business model is project-oriented where users have certain
number of CPU hours that they can employ.

– Compute Model : usually, grid systems are based on a batch-
scheduled compute model for reserving the computing resources
requested by users. In such a batch-scheduled model, jobs may wait
in the Local Resource Manager (LRM) wait queue until all the requested
computing resources are available for the duration of the job. At this
time, resources are allocated and dedicated to the job. In contrast,
resources in cloud computing are shared by all the users at the same
time.

26Amazon Elastic Compute Cloud (Amazon EC2) : http://aws.amazon.com/ec2/ .
27IBM Blue Cloud: http://www.ibm.com/ibm/cloud/ .
28Sun Grid : http://www.sun.com/software/sge/ .
29Google AppEngine : http://code.google.com/intl/fr/appengine/ .
30Force.com: http://www.salesforce.com/platform/ .

http://aws.amazon.com/ec2/
http://www.ibm.com/ibm/cloud/
http://www.sun.com/software/sge/
http://code.google.com/intl/fr/appengine/
http://www.salesforce.com/platform/
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– Security Model : security is one of the main issues of grid systems.
This is mainly due to the fact that, grids connect heterogeneous and
dynamic resources of different organizations where each grid site
may have its own administration domain and operation autonomy.
On the other hand, Cloud computing security model is simpler and
less secure because clouds usually give access to dedicated data cen-
ters belonging to the same organization. In cloud computing , Web
forms are used to create and manage users account informations.
These web forms allow users to reset their passwords and receive
new passwords via Emails in an unsafe and unencrypted communi-
cation.

Grid’5000 introduced in section 2.3.2 and Amazon EC2 allow users to
upload their own operating systems. However, in Grid’5000 a user has an
exclusive employments rights and access to his reserved machines. This
is not the case with Amazon EC2 where machines are shared by several
users at the same time.

2.4.2 Distributed File Systems

Internet search engines such as Google and Yahoo need to manage and
query a huge amount of data every day. Parallel processing of such
queries on hundreds or thousands of nodes is obligatory to obtain a rea-
sonable processing time (Dean and Ghemawat 2004). However, building
parallel programs on parallel and distributed systems is complicated.
This is because programmers must treat several issues such as load ba-
lancing between processing nodes, fault tolerance, network performance,
etc. Search engine companies have developed Distributed File Systems
(DFS) and parallel programming infrastructures that treat these parallel
processing related issues without the explicit participation of the pro-
grammers (Lämmel 2007). Hadoop (hadoop), Google’s File System (GFS)
(Ghemawat et al. 2003) and BigTable (Chang et al. 2006) are examples of
such DFS. These systems form the infrastructure of Yahoo’s and Google’s
cloud computing systems. They are build from thousands of commodity
machines and assure scalability, reliability and availability issues (hadoop,
Ghemawat et al. 2003, Chang et al. 2006). To reduce disk Input/Output,
each file in such storage systems is divided into chunks or blocks of data
and each block is replicated on several nodes for fault tolerance.

Parallel programs are easily written on such systems following the
Map/Reduce paradigm where a program is composed of a workflow of
user defined map and reduce functions (Dean and Ghemawat 2004).

2.4.3 Map-Reduce Programming Model

Google’s Map-Reduce programming model presented in (Dean and Ghe-
mawat 2004) is based on two functions : Map and Reduce. Dean and Ghe-
mawat stated that they have inspired their Map-Reduce model from Lisp
and other functional languages. Users must implement two function Map
and Reduce having the following signatures :
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map : (k1, v1) −→ list(k2, v2),
reduce : (k2, list(v2)) −→ list(v3).

The user must write the map function that has two input variables, a key
k1 and an associated value v1. Its output is a list of intermediate key/value
pairs (k2, v2). This list is partitioned by the Map-Reduce library depending
on the values of k2, where all pairs having the same value of k2 belong to
the same group.
The reduce function, that must also be written by the user, has two input
parameters : an intermediate key k2 and a list of intermediate values
list(v2) associated with k2. It applies the user defined merge logic on
list(v2) and outputs a list of values list(v3).

2.5 Summary

In this chapter, we reviewed three main architectures in parallel
programming : parallel systems, grid systems and cloud computing. Each
one of these architectures is adequate with some kinds of applications as
we have seen in chapter 1. We also reviewed several programming models
adequate with these architectures. In chapter 3, we will review algorithms
presented in the literature for treating database queries, mainly those
involving join, semi-join and "GroupBy-Join" queries.
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In this chapter, we present the state of the art of the domain of treating
database queries on parallel, distributed, grid and cloud systems where

we review parallel algorithms, presented in the literature, for evaluating
the join on such systems. Data skew may degrade the performance of
parallel algorithms, so we present the different types of data skew. We also
review several algorithms for treating "Group-By Join" queries on parallel
architectures.
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3.1 Join algorithms for homogeneous parallel archi-
tectures

Join operation is one of the most widely used operations in relational
database systems, but it is also a heavily time consuming operation. For
this reason it was a prime target for parallelization. The main idea behind
parallel join algorithms is to :

1. Distribute tuples of the relations to be joined among system’s pro-
cessors using hash partitioning or range partitioning (DeWitt and Gray
1992) based on the values of the join attribute. The aim of this redis-
tribution phase is to send tuples having the same join attribute value
to the same processing node.

2. Then, compute the join of local fragments. To this end, we can use
the serial Nested loops join algorithm, sort-merge algorithm or hash based
join algorithm.

Three basic parallel algorithms for treating join queries on parallel systems
were presented in the literature : Grace-hash (Kitsuregawa et al. 1983), Hy-
brid hash join (Schneider and DeWitt 1990) and Sort-merge join (Schneider
and DeWitt 1989). However, the performance of these algorithms degrades
in the presence of data skew mainly Attribute Value Skew (AVS) and may
produce highly skewed join result sizes on the processors known as Join
Product Skew (JPS). In the rest of this section, we will review these basic
algorithms. Then, we present the different kinds of data skew. Finally, we
review parallel join algorithms for treating data skew on homogeneous
parallel systems.

3.1.1 Basic parallel join algorithms

In the following subsections, we will briefly review Grace-hash (Kitsure-
gawa et al. 1983), Hybrid hash join and Sort-merge algorithms. We consider
that we want to find the result of the join of two relations R and S. We
also consider that S is the inner join relation (the smaller relation used
generally to build the hash table) and R is the outer join relation (used
generally to probe the hash table).

Grace-hash join algorithm

This is a three-phase algorithm that proceeds as follows (Kitsuregawa et al.
1983) :

1. partition S tuples into N buckets, using a hash function h1() applied
on the join attribute value of each tuple. These buckets are then dis-
tributed over the processors using a hash function h2() ;

2. apply the same hash function h1() on the tuples of relation R to
partition R into N buckets. Then, distribute these buckets using the
same hash function h2() ;

3. join the respective matching buckets to find R ⋊⋉ S.

N is chosen to be very large in order to reduce the chance that the size
of any partitioned bucket will exceed the memory capacity of the proces-
sor used to compute the join. If the formed buckets are much smaller than
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the memory capacity, then several buckets are combined in the join phase
to form more optimal size buckets.

Hybrid-hash join algorithm

Hybrid-hash join algorithm (Schneider and DeWitt 1990) is similar to
Grace-hash join algorithm. However, in the first phase of Hybrid-hash join
algorithm, the first partitioned bucket of S is kept in memory and the
other N − 1 buckets are distributed over the processors as in Grace-hash
join algorithm. In the second phase, the tuples of R hashed to the first
bucket are used to immediately probe the in-memory bucket of S and the
other N − 1 buckets are distributed over the processors as in Grace-hash
join algorithm. The join of the remaining N − 1 buckets is performed as in
Grace-hash join algorithm.

Sort-merge algorithm

In Sort-merge algorithm (Schneider and DeWitt 1989), the tuples of R and
S are redistributed over the processors using a hash function applied on
the values of the join attribute. After the redistribution phase, the serial
sort-merge algorithm (section 2.1.2) is applied on each processor to com-
pute R ⋊⋉ S.

3.1.2 Data skew in parallel architectures

Research has shown that the join operation is parallelizable with near-
linear speed-up on parallel systems such as Shared Nothing machines1 but
only under ideal balancing conditions : data skew may have disastrous
effects on the performance of parallel algorithms on such architectures
(Bamha and Hains 2000; 1999, Seetha and Yu December 1990, DeWitt et al.
1992, Mourad et al. 1994).

Walton (Walton et al. 1991) has classified data skew into two
categories : (1) Intrinsic skew and (2) Partition skew.

1. Intrinsic skew : also known as Attribute Value Skew (AVS) occurs
when attribute values are not distributed uniformly. This means that
some attribute values appear with frequencies much higher than the
others. The AVS is a data property and does not change between
algorithms. However, in order to benefit from parallelism, the used
algorithms must follow distribution techniques that balance the load
of different processors even in the presence of AVS.

2. Partition skew : this kind of skew appears in parallel join algorithms
when the load of different processors is not uniform. Some types of
partition skew can occur even when the input data are uniformly
distributed. Partition skew can be divided into four categories :

(a) Tuple Placement Skew (TPS) : the initial distribution of tuples
varies between the processors.

1Shared Nothing machines : a distributed architecture where each processor has its
own memory and own disks.
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(b) Selectivity Skew (SS) : this occurs when the selectivity of selec-
tion predicates varies between processors.

(c) Redistribution Skew (RS) : this occurs when the number of
tuples received by each processor after redistribution is not uni-
form.

(d) Join Product Skew (JPS) : this occurs when the join result size is
not uniform on all the processors. The JPS may occur even if
the input relations do not suffer from AVS.

Remark 1 In practice, the imbalance of the data related to the use of the hash functions can be
due to :

– a bad choice of the hash function used. This imbalance can be avoided by
using the hashing techniques presented in the literature making it possible
to distribute evenly the values of the join attribute with a very high proba-
bility (Carter and Wegman April 1979),

– an intrinsic data imbalance which appears when some values of the join
attribute appear more frequently than others. By definition a hash function
maps tuples having the same join attribute values to the same processor.
There is no way for a clever hash function to avoid load imbalance that
results from these repeated values (DeWitt et al. 1992).

The algorithms presented above, for treating join operation, are ineffi-
cient due to the following reasons :

1. The communication cost, in these algorithms, is very high because
all the tuples of the relations are redistributed between processors.
Some of these tuples may not even contribute in the result of the join
operation. This may also induce high disk input/output whenever
distributed data does not fit in memory.

2. These algorithms cannot solve the problem of data skew because
data redistribution is generally based on hashing data into buckets
and hashing is known to be inefficient in the presence of high fre-
quencies (Bamha 2005, Schneider and DeWitt 1989, Seetha and Yu
December 1990).

3. The size of the join result on different processors may be highly ske-
wed (JPS) which degrades the performance of parallel algorithms
when treating complex queries.

So, finding load balancing mechanisms for join computing on parallel and
distributed systems was and is still one of the main interests of database
research community.

3.1.3 Parallel join algorithms for treating data skew

Several parallel algorithms were presented to handle data skew while
treating join queries on parallel database systems. We will review some of
these algorithms and give their drawbacks.
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Bucket Spreading Parallel Hash Algorithm (BSJ)

This algorithm, presented in (Kitsuregawa and Ogawa 1990), proposes
a dynamic bucket allocation mechanism for evaluating join operations
on Super Database Computer (SDC). SDC is a Shared Nothing architecture
where nodes are connected through a highly functional Omega intercon-
nection network. This network allows to evenly partition and distribute a
bucket over the system machines.

The algorithm proceeds as follows :

1. the tuples of both relations are partitioned into buckets using a hash
function,

2. then each formed bucket is evenly partitioned into subbuckets which
are distributed over the processors through the Omega network. This
subbucket size balancing task is performed by the Omega network
without any intervention of the processors,

3. a bucket size tuning task is performed by a master processor in order
to form buckets having approximately same sizes. This step does not
need to be executed on each processor because the subbuckets are
flatly distributed. Hence, tuning on one processor is representative
to tuning buckets on all processors. Finally, the tuned buckets are
evenly allocated to the processors to compute the join. However, be-
fore computing the join, each processor must gather the fragments
(subbuckets) of its assigned buckets which are stored on other nodes.

This algorithm is not efficient because the tuples of both relations are
redistributed twice. In addition, the Flat bucket distribution step neces-
sitates the employment of an expensive Omega network which does not
scale well with the rest of the system (Hua and Lee 1991). Finally, the Join
Product Skew (JPS) is not treated which may degrade the performance of
the algorithm while treating multi-join queries.

Tuple Interleaving Parallel Hash Join (TIJ)

TIJ algorithm (Hua and Lee 1991) is based on BSJ algorithm. However
here, instead of using an Omega interconnection network to partition
each bucket uniformly over all the processors, they use a software control
technique known as tuple interleaving strategy. In this algorithm, each
processor partitions both relations into p buckets using a hash function
where p is greater than the number of processors N. During this step,
the tuples of each bucket are spread uniformly across the N processors
in the following manner : tuple i of each bucket is sent to processor of
index (((i − 1) mod N) + 1). Using this tuple interleaving strategy, the N
subbuckets related to each bucket should have the same size. Then, a coor-
dinating processor is used to tune the size of subbuckets in order to form
N uniform buckets and assigns each bucket to a processor. After that,
the processors exchange the tuples of the local subbuckets as directed in
the mapping information received from the coordinator processor. After
redistribution, each processor performs the join of the received tuples.
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In this algorithm, all the processors stay inactive during the bucket
tuning phase performed by the coordinator node. In addition, it doesn’t
treat the JPS problem.

Adaptive Load Balancing Parallel Hash Join (ABJ)

This algorithm, also presented in (Hua and Lee 1991), is formed of four
phases as follows :

1. Split phase : the tuples of both relations are partitioned, in paral-
lel, into a large number of buckets. After that, each created bucket
is statically allocated to a computing node as in Grace Hash Join
algorithm.

2. Partition Tuning phase : this phase is divided into two steps :

– Bucket Retaining stage : for each relation, each processor chooses
from the received buckets only n buckets such that : ∑

n
j=1 |Bij| ≤

|A|
N

and ∑
n+1
j=1 |Bij| >

|A|
N where |A| is the size of the treated relation,

|Bij| is the size of bucket j on processor i and N is the number of
processors. The remaining buckets are allocated in the next stage.

– Bucket Relocating stage : Each processor i sends the value of
∑

n
j=1 |Bij| and the size of the excess buckets to a coordinator node,

which in its turn reallocates these buckets to underflow proces-
sors. After that, the coordinator node broadcasts this information
to all the nodes and the excess buckets are sent to their destina-
tions.

3. Bucket Tuning phase : small buckets are combined to form more
optimal size join buckets on each processor.

4. Join Phase : the join of the buckets is performed on each processor.

The performance of ABJ algorithm degrades in the presence of highly
skewed data because a disk overflow may occur in the split phase. Mo-
reover, redistributing the skewed buckets takes longer time than the other
buckets which increases the total communication cost. In addition, the
excess buckets must be distributed two times. So, to overcome these
drawbacks, Hua et al. have presented the ABJ+ algorithm (Hua and Lee
1991).

Extended Adaptive Load Balancing Parallel Hash Join (ABJ+)

ABJ+ algorithm proceeds in four phases as follows :
1. Split phase : the tuples of both relations are partitioned into small

subbuckets which are written into local disks.
2. Partition tuning : each processor sends the total size of the subbu-

cket to a coordinator node, which in its turn computes the sum of the
received data from all the processors. Then, it allocates the buckets
to the computing processors as follows :
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– it sorts the buckets in decreasing order according to their size.
– buckets are allocated to processors in the sorted order, where each

bucket is assigned to the processor with the largest matching sub-
bucket. The coordinator node stops assigning buckets to a proces-
sor i when it satisfies the following condition : ∑

n
j=1 |Bij| ≤

|A|
N and

∑
n+1
j=1 |Bij| >

|A|
N where |A| is the size of the treated relation, |Bij|

is the size of bucket j on processor i and N is the number of pro-
cessors. This process is executed for each bucket. After that, the
allocation information is broadcasted to all the processors which
use this information to redistribute the buckets.

3. Bucket Tuning phase : small buckets are combined to form more
optimal size join buckets on each processor.

4. Join Phase : the join of the buckets is performed on each processor.

This algorithm is not adequate in the presence of highly skewed data
because all tuples related to a skewed value of the join attribute are sent
to the same processor. In addition, it does not solve the problem of JPS.

Sampling based Load Balancing join algorithms

In (DeWitt et al. 1992), simple range, weighted range partitioning, virtual
processor partitioning - round robin and virtual processor partitioning - pro-
cessor scheduling algorithms were presented to evaluate join operation in
the presence of skewed data. These algorithms are based on two ideas :
(a) virtual processor partitioning where the number of created partitions
is much greater than the number of processors in the system and (b)
sampling used to compute statistical information about the values of the
join attribute.

In virtual processor partitioning - round robin algorithm, the inner rela-
tion is sampled. Then, a range partitioning vector is created using these
samples. The number of partitions defined by this vector is a multiple
of the number of processors. After that, the tuples of build relation are
partitioned into buckets using the range partitioning vector. These buckets
are distributed over the processors using round-robin partitioning and an
in-memory hash table corresponding to the received tuples is created on
each processor. Finally, the tuples of the probing table are redistributed
using the same range partitioning vector and join is computed on each
processor.

Virtual processor partitioning - processor scheduling algorithm is the same as
virtual processor partitioning - round robin algorithm, but instead of using
round robin allocation in allocating buckets to processors, the LPT (Lar-
gest Processing Time) heuristic scheduling algorithm (Graham 1969) is
used.

These algorithms are better than the other presented algorithms be-
cause using sampling avoid the need of a linear traversal of all tuples of
the relations. It also treats the AVS of the build relations better than ABJ+
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algorithm, but AVS is ignored in the probe relations. In addition, it does
not treat JPS.

Drawbacks of the presented algorithms

Algorithms presented in this section are not efficient for treating join ope-
ration on parallel systems due to the following reasons :

– they cannot be scalable (and thus cannot guarantee linear-speedup)
because their routing decisions are generally performed by a coordi-
nator processor while the other processors are idle,

– they cannot solve the load imbalance problem as they base their rou-
ting decisions on incomplete or statistical information. In addition,
they generally induce high communication costs during data redis-
tribution since all the tuples are redistributed and not necessarily
only relevant data,

– they cannot solve data skew problem because data redistribution is
generally based on hashing data into buckets and data hashing is
known to be inefficient in the presence of high frequencies (DeWitt
et al. 1992).

OSFA-Join : Optimal Symmetric Frequency Adaptive Join algorithm

Optimal skew-handling parallel algorithms for evaluating join on homo-
geneous Shared Nothing (SN) machines were presented in (Bamha and
Hains 1999; 2000, Bamha 2005). These algorithms override the drawbacks
of the algorithms stated earlier because the creation of communication
templates, used for data redistribution among processors, is based on
using fully distributed histograms that hold complete data-distribution in-
formation. This step is jointly performed in parallel by all processors,
each one not necessarily computing the list of its own messages, so as to balance
the overall process. This makes these algorithms scalable because we do
not have idle processors waiting for a coordinator node. In addition, the
communication cost is minimal because only tuples that participate in the
join operation are redistributed. These algorithms also avoid the problem
of Join Product Skew (JPS) while balancing the load of different processors
even in the presence of Attribute Value Skew (AVS).

To compute the join of two relations, R and S, OSFA-Join proceeds as
follows :

1. Each processor i creates, in parallel, the local histograms denoted by
Hist(Ri) and Hist(Si) related to partitions Ri and Si of R and S respec-
tively. The histograms hold the local frequency related to each value
of the join attribute, i.e., the number of local tuples holding this value
for the join attribute. These histograms are created under the form of
a balanced tree which is a data structure that maintains an ordered
set of data to allow efficient search and insert operations.

2. The local histograms of R and S are distributed over the processors
using a hash function in order to find the global frequency of each
join attribute value. Each processor i merges the received entries
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to form the global distributed histograms denoted by Histi(R) and
Histi(S) in parallel. Thus, Histi(R) and Histi(S) denote the histogram
of R and S respectively.

3. Each processor i computes the intersection of Histi(R) and Histi(S)

to form the histogram of R ⋊⋉ S. This histogram, Histi(R ⋊⋉ S), holds
the join attribute values that will appear in the join result with the
frequency related to each value.

4. Now, all the processors participate in creating the communication
templates used to redistribute only tuples that participate effectively
in the join. So, each processor i creates the templates for each join
attribute value v ∈ Histi(R ⋊⋉ S) as follows :
– if the frequency of v in R and S are smaller than a certain threshold

frequency fo, then it is considered that tuples related to v do not
have any effect on AVS and JPS. So, these tuples are redistributed
by hashing.

– if the frequency of v in R is greater or equal to fo and is also greater
than the frequency of v in S, then they consider that v needs special
treatment because it may cause AVS or JPS. So, tuples of R related
to v are evenly partitioned over all processors and that of S are
duplicated.

– if the frequency of v in S is greater or equal to fo and is also greater
than the frequency of v in R, then tuples of S related to v are evenly
partitioned over all processors and that of R are duplicated.

The value of fo is set to p ∗ log(p), where p is the number of proces-
sors.

5. Tuples of R and S participating effectively to the join result are re-
distributed according to the communication templates.

6. Each processor computes the join of the received tuples.

In the contrary to algorithms presented in (DeWitt et al. 1992), the mecha-
nism used in creating the communication templates in OSFA-Join allows
to balance the load of different processors even in the presence of AVS
in R and S. In addition, the size of the join result in all the processors is
approximately the same, so it avoids JPS.

Bamha and Hains have proved, using the BSP cost model (section 2.2.2),
that histogram management has a negligible cost when compared to the
provided efficiency gains in reducing communication costs and avoiding
load imbalance. They have also proved, using the same model, that these
algorithms have a near-linear speed-up performance on homogeneous SN
architecture. This was also assured by a series of experimental results.

3.2 Parallel processing of simple aggregate and GroupBy-
Join queries

The input tables of simple aggregate and GroupBy-Join queries may rapidly
grow every day especially in OLAP systems (Datta et al. 1998). Moreover,
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the output of these queries must be obtained in a reasonable processing
time. For these reasons, parallel processing of queries involving aggregate
functions, group-by and/or join operations results in huge performance
gain, especially in the presence of parallel DBMS (PDBMS). However, the
use of efficient parallel algorithm in PDBMS is fundamental in order to
obtain an acceptable performance (Bamha and Hains 2000; 1999, Mourad
et al. 1994, Seetha and Yu December 1990).
In the following subsections, we present parallel algorithms already pre-
sented in the literature for treating simple aggregate and GroupBy-Join
queries in parallel.

3.2.1 Parallel processing of simple aggregate queries

Two simple parallel algorithms for processing simple aggregate queries on
shared nothing architecture were presented in (Shatdal and Naughton
1995). The first one is Two Phase Algorithm and the second is Repartitio-
ning Algorithm.

Two Phase Group By Algorithm

As its name states, this algorithm is formed of two phases. In the first
phase, the aggregate function is applied on the local tuples of each proces-
sor. Then, in the second phase, the resulting tuples are redistributed using
a hash function applied on the Group By attributes among the processors.
Hence, after this partitioning step, aggregate results having same values
of Group By attributes are found on the same processor. So, a global
application of the aggregate function is performed on each processor in
order to obtain the final result.

Repartitioning Group By Algorithm

In this algorithm, the local tuples on each processor are partitioned on the
Group By attributes using a hash function. After this distribution step, the
aggregate function is applied based on the designated grouping. We can
see that in this algorithm, the aggregate function is applied only one time,
but all the tuples of the base relation are redistributed over the processors.

The implementation results of these algorithms showed that the two phase
algorithm performs better when the number of groups is low. However,
repartitioning algorithm overrides the other algorithm when the number
of groups is high, because it avoids the double execution of the aggregate
function. The effect of data skew of the performance of both algorithms
was also studied, mainly selectivity skew and tuple placement skew. In the
presence of high selectivity skew, the two phase algorithm proves to have
a better performance thanks to the local aggregation in the first phase
which allows us to evenly distribute the load of different processors in
the second phase. This is not the case for the second algorithm, because
after the distribution phase the load of the different processors is skewed
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because the hash function is applied on the tuples of the skewed base re-
lation.
However, the second algorithm has a better performance in the presence
of tuple placement skew, because in the first phase of the two phase al-
gorithm, processors with low number of tuples must wait for the skewed
processors to finish processing the first phase before starting the global
aggregation phase.

3.2.2 Parallel processing of "GroupBy-Join" Queries

We have seen in section 2.1.1 of chapter 2, that aggregate functions can be
applied on the result of the join of two or more relations. In traditional
algorithms that treat such queries, join operation is performed in the
first step and then the group-by operation (Chaudhuri and Shim 1994,
Yan and Larson 1994). But the response time of these queries may be
significantly reduced if the group-by operation is performed before the
join (Chaudhuri and Shim 1994), because group-by reduces the size of the
relations and thus minimizing the join and data redistribution costs.
Several optimization techniques were introduced in the literature in order
to generate the query execution plan with the lowest processing costs
(Yan and Larson 1994; 1995, Chaudhuri and Shim 1994, Gupta et al. 1995).
Their aim is to study the necessary and sufficient conditions that must
be satisfied by the relational query in order to be able to push the Group
By past join operation and to find when this transformation helps in
decreasing the execution time.

However, we can divide "GroupBy-Join" queries into two categories de-
pending on the group-by and join attributes as follows :

1. if the join attributes are part of the group-by attributes, then we can
apply the group-by operation before the join,

2. if the join and group-by attributes are different, then the join opera-
tion must be applied before the group-by operation.

In the following subsections, we review the parallel algorithms for
evaluating both categories of "GroupBy-Join" queries. We consider that
the two relations to be joined are R and S and that the aggregate function
is applied on an attribute of R.

Evaluating Group By before Join operation

Three basic parallel algorithms for executing group-by operations before
join operations are presented in (Taniar and Rahayu 2006). These algo-
rithms can be applied when the join and group-by attributes are the same.

– Early Distribution Scheme :
In this algorithm, tuples of base relations are redistributed using
a hash function, in a first phase, based on the group-by/Join at-
tributes before applying the join and group-by operations. In the
second phase, the aggregate function is evaluated based on the
designated grouping, and then the result is joined with the other
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table (S). The communication cost in this algorithm is high because
all the tuples of the base relations are redistributed. However, the
cost of its join operation is reduced because the group-by operation
is performed before the expensive join operation.

– Early Group By with Partitioning Scheme

This is a three-phase algorithm which are : local grouping phase,
distribution phase and final grouping and join phase.
In the first phase, the group-by and aggregate function are applied
on the local tuples of relation R on each processor. Then, in the
distribution phase, the aggregation result and the tuples of S are
redistributed over the processors using a hash function applied on
the group-by/join attribute. Finally, in the third phase, the global
aggregation step is performed on the temporary aggregate results
received by each processor, then joined with the tuples of S.
Applying the group-by operation before the distribution and the
join operations helps in reducing the volume of exchanged data.
But in this algorithm, all the tuples of the group-by results are
redistributed even if they do not contribute in the join result. This
is a drawback, because in some cases only few tuples of relations
formed of million of tuples contribute in the join operation, thus the
distribution of all these tuples is useless.

– Early Group By with Replication Scheme

In this algorithm, the aggregate function is partially applied on each
processor. After that, the resulting tuples of this aggregation step
are replicated on all the processors. Then, the global aggregation
step is applied and finally the join of the aggregation result and the
tuples of S is computed. We can see that, in this algorithm, we do not
redistribute the tuples of S. However, the replication of the aggregate
result introduces high communication and disk Input/Output costs
and limits the scalability of the algorithm.

Evaluating Group By after Join operation

In (Jiang et al. 1999, Taniar et al. 2000) three parallel algorithms are pro-
posed for evaluating "GroupBy-Join" queries when the join and Group-By
attributes are different. In the following three subsections, we present
these algorithms and we give their drawbacks.

– Join Partition Method (JPM)

This algorithm is formed of four phases (fig.3.1). The first phase is
the data partitioning phase where the two relations to be joined are
partitioned into N buckets by applying a partitioning method such
as range partitioning on the join attribute (N is the number of pro-
cessors). After that, the buckets will be redistributed on the different
processors.
In the second phase, join and local aggregate, the join operation is
performed, in parallel on each processor, using any sequential join
algorithm. After that, the aggregate operation is applied locally on
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each processor.
The third phase is a re-distribution phase where a partitioning method
is applied on the group-by attribute in order to send tuples having
the same values of this attribute to the same processor.
The final phase is the global aggregation phase where each proces-
sor applies the aggregate and group-by operations on the received
tuples in order to find the final result.
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Records from where they are originally stored

Partitioning on the

Local join and 

Redistribution on the

Global aggregate

join attribute

local aggregate function

group−by attribute

Fig. 3.1 – Join partition method (JPM) (Taniar et al. 2000).

The main drawback of this algorithm lies in applying the partition
or hash functions on the join attribute of the base relations. This may
cause a skew in the load of different processors if we have a skew
in the distribution of the values of the join attribute (Bamha 2005,
Schneider and DeWitt 1989, Seetha and Yu December 1990). We may
also have a skew in the result of the join (JPS) which also affects the
performance of this algorithm because the join result is the input of
the local aggregation step.

– Aggregate Partition Method (APM)

This is a two phase algorithm (fig. 3.2) where in the first phase, data
partitioning and broadcasting, the table that contains the group-by at-
tribute will be partitioned into N buckets by applying partitioning
method on this attribute. After that, these buckets are distributed on
the processors and the second table is broadcasted to all processors.
The second phase is the join and aggregate phase where each proces-
sor performs the join of the received fragments of the first relations
with the entire second table. After that, the aggregate and group-by
operations are computed on each processor.

1 2 3 4

Records from where they are originally stored

group−by attribute, and
broadcast the other table.

Join, Group−By, 
and Aggregation operations.

Partitioning one table on the

Fig. 3.2 – Aggregation partition method (APM) (Taniar et al. 2000).
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In this algorithm, we do not need to redistribute the join result in or-
der to apply the group-by and aggregate function because all tuples
having the same value of the group-by attribute will be found on
the same processor after the redistribution of the first phase. But it
introduces other expensive costs, especially communication costs be-
cause the relation that does not contain the group-by attribute must
be fully replicated on all the processors which makes the algorithm
inextensible. In addition, it may suffer from high input/output costs
due to hash table overflow in the second phase.
The performance tests presented in (Taniar et al. 2004) show that the
performance of the aggregate partition method is better than that of
the join partition method when the number of produced joins is big,
but not when it is relatively small. The speed-up tests also show that
both algorithms have a non-linear acceleration and that skew has a
great impact on their performance. This algorithm suffers also from
scalability due to full data replication.

– Hybrid Partition Method (HPM) :
In this method, presented in (Jiang et al. 1999), the N processors are
divided into m logical clusters, each containing N/m processors. In
the first step, the table that contains the group-by attribute is par-
titioned over the different clusters using the APM method. In the
second step, within each cluster, the received fragment of the first
table and the broadcasted table are partitioned by the join attributes
using the JPM method.
In this algorithm, the table that contains the group-by attribute is
purely partitioned on all the processors. This is not the case for the
second table which is to some degree replicated (Taniar et al. 2000),
hence the communication cost stays high. In addition, it does not
solve the problem of data skew because the partitioning method is
applied, as in JPM, on the tuples of the base relations which may be
highly skewed.

These algorithms suffer from the same drawbacks stated in section
3.1.2 related to parallel join algorithms. In addition, "Group-by Join" algo-
rithms fully materialize the intermediate results of the join operation. This
is a significant drawback because the size of the result of this operation is
generally large. In addition, the Input/Output cost in these algorithms is
very high where it is reasonable to assume that the output relation cannot
fit in the main memory of every processor. So, it must be reread from disk
in order to evaluate the aggregate function.

3.3 Adaptive join algorithms for heterogeneous paral-
lelism

Today, with the rapid development of network technologies, query pro-
cessing on distributed systems that may connect heterogeneous pools
of machines is gaining the interest of database and scientific computing
communities due to their processing power and memory capacity. But, the
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heterogeneity of these systems has introduced new challenges which were
not present in parallel systems such as shared nothing machines, because
in order to benefit effectively from the power of distributed systems no
processor must be idle while other processors are overloaded (Karatza
and Hilzer 2002). Hence, the actual characteristics of resources such as
CPU power, Input/Output speed, connection speed, available memory,
etc. must be taken into consideration while assigning jobs to the nodes.
It is known that in parallel systems where machines are usually homoge-
neous, workload imbalance may be due to uneven load distribution, but
in heterogeneous distributed systems it may be due to load distribution
which is not proportional to the actual capabilities of each machine (Gou-
naris 2005). Moreover, in multi-user systems the capacity of a machine
may highly vary from one instant to another.

Algorithms used for join processing on homogeneous parallel systems
may not be effective on heterogeneous systems even if they efficiently
handle the problem of data skew because they use a static strategy in load
allocation. Hence, in order to obtain an acceptable performance on such
systems an adaptive or a dynamic load distribution strategy must be used
(Karatza and Hilzer 2002). This strategy must also take in consideration
the power of each machine and react with the system state.

Several adaptive algorithms are presented in the literature for treating
join operations on heterogeneous distributed systems. These algorithms
try to balance the load of the processors throughout all the join proces-
sing phases by dynamically adapting the size of tasks assigned to each
processor according to its actual performance capabilities. The difference
between most of the adaptive algorithms lies in the manner they treat
monitoring, assessment and response which are (Paton et al. 2009) :

– monitoring : collecting information about the progress state of the
query or the system’s state,

– assessment : analyzing the monitored information to know if there is
a need to rebalance the load,

– response : if balancing load is needed, then necessary reactions are
determined to address the problem.

In the rest of this section, we present some of these algorithms.

3.3.1 Expanding Hash-based Join Algorithms

Zhang et al. (Zhang et al. 2004) proposed three adaptive hash-based al-
gorithms for evaluating join operations on such environments where a
non-static redistribution strategy is used. In these algorithms, they ad-
dressed the problem of buffer overflow while building the hash tables
by dynamically allocating additional machines. The algorithms start by
creating the hash table of the build relation on a specific number of
nodes. During this phase, if the memory of a node is used up, additional
nodes will be employed in order to maintain the buckets in memory.
The experimental results showed that the performance of the algorithms
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significantly degrades in the presence of skewed data. This is because they
use hash functions for assigning join attribute values to the computing
nodes. However, it is known that hash functions are not efficient in the
presence of skewed data. In addition, the communication cost is high
because all tuples of both relations are redistributed even those which do
not participate in the final join result.

3.3.2 DITN : Data In The Network

Raman et al. presented in (Raman et al. 2005) an adaptable dynamic algo-
rithm for treating queries on a DITN architecture. This architecture is built
as a prototype on top of IBM’s Web-sphere Information Integrator. It is for-
med of a CPU-Wrapper whose task is not to wrap data sources, but non-
dedicated heterogeneous compute nodes known as co-processors. These
co-processors are not expected to store data, instead relations are stored
on a shared storage system. So, co-processors access directly this storage
device to treat its assigned tasks.
To compute T1 ⋊⋉ T2 ⋊⋉ . . . ⋊⋉ Tk, Ti’s are logically divided into par-
titions such that Ti = T1

i ∪ T2
i ∪ · · · ∪ Tpi

i . So, the join is equivalent to
(T1

1 ∪ T2
1 ∪ · · · ∪ Tp1

i ) ⋊⋉ . . . ⋊⋉ (T1
k ∪ T2

k ∪ · · · ∪ Tpk
k ) and each component

of this join is assigned to a co-processor. In order to handle the failure or
overload of a co-processor, the CPU-Wrapper keeps track of when each co-
processor finishes its work-unit. If a co-processor takes a long time, then
the CPU-Wrapper will consider that it has failed or is overloaded. So, the
CPU-Wrapper reassigns the work-unit of this co-processor to the fastest
processor that has already finished its task. Then, when one of these two
co-processors finishes treating the work-unit, the CPU-Wrapper cancels
the treatment of the other co-processor.

The drawback of this algorithm lies in the use of a central disk storage
unit. However, they claim that this structure will not cause a bottleneck
on the network because its bandwidth is much larger than the bandwidth
of query processing operators such as sort, join or even scan.

3.3.3 Redundant data maintenance algorithm

This dynamic algorithm (Paton et al. 2009) is based on the idea of repli-
cating each hash table on three processors chosen randomly. During hash
table building or probing, whenever a tuple is to be hashed, it is sent
to the two most lightly loaded processor of the three assigned nodes for
the relevant bucket. An extra attribute is stored for each tuple indicating
the index of the second processor that holds its replica. During probing
phase, each tuple is sent to two of the three processors associated with its
buckets. The replica on the most lightly processor is called primary and
on the second most lightly one is called secondary. At each node, while
probing, if a tuple matches an entry in the hash table, then the join result
is only generated if it is a primary probe unless the matching tuple is
stored only on the other two nodes.
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When a processor is overloaded, the join operation is performed on the
two other processors without the need to redistribute the buckets of the
loaded one. However, the drawback of this algorithm is that an additional
cost is added to maintain replicas of all hash table entries and to replicate
the tuples of both relations on two processors.

3.4 Query processing on the grid

Several projects for building grid systems (the Globus toolkit 2, the Euro-
peans DataGrid project 3, the Grid Physics Network project (GriPhyN) 4,
Particle Physics Data Grid (PPDG) 5, etc. ) have developed softwares and
services to address basic grid functionalities such as : security, authenti-
cation, data management and access, and resource discovery. This made
query processing on the grid feasible, but new challenges are also intro-
duced which were not present in parallel systems such as Shared Nothing
machines. The main challenges are due to the following facts :

– Grid systems usually connect heterogeneous pools of autonomous
resources through different and unstable bandwidths. Hence, to ef-
fectively benefit from the power of the grid, the actual characteristics
of resources such as CPU power, Input/Output speed, connection
speed, available memory, etc. must be taken into consideration while
assigning jobs to the nodes. This issue was not treated in parallel al-
gorithms for join processing on parallel systems where the main aim
of such algorithms is to balance the work load of the homogeneous
machines forming the parallel system. However, in grid architectures
workload imbalance may also be due to load distribution which is
not proportional to the actual capabilities of each machine (Gounaris
2005, Yang et al. 2005, Gounaris et al. 2005).

– Grid sites that belong to different organizations are usually connec-
ted through the WAN. Hence, communication between nodes of re-
mote sites is a main barrier for implementing scalable algorithms.

– Grid is an autonomous and volatile environment. Hence, compu-
ting or data nodes may suddenly become unavailable. Thus, fault
tolerance is a main issue that must be reviewed in existing parallel
join algorithms.

Therefore, to benefit from the processing power and storage capacity of
grid systems, these issues must be handled by the employed parallel
algorithms.

In this section, we will review the algorithms presented in the literature
for processing relational queries on the grid. These algorithms can be
divided into two categories : (a) static distributed query processing algo-
rithms and (b) adaptive ones.

2www.globus.org
3http ://eu-datagrid.web.cern.ch/eu-datagrid/
4www.griphyn.org
5www.ppdg.net
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3.4.1 Static distributed query processing algorithms

In (Mach and Schikuta 2007), the performance of the three well known
Hash join, Nested Loop and Sort Merge Join parallel algorithms (presented in
section 3.1) is tested on a Static Simplified Grid Organization. The tests sho-
wed that Hash join algorithm outperforms the other two algorithms when
the size of the buffers of deployed nodes is greater than ten percent the
size of the smaller relation. However, they assumed that the performance
of the nodes does not drop below a given value during query execution
and that the availability of each node is guaranteed. These two conditions
are generally unrealistic in grid architectures. In addition, hash join algo-
rithms cannot solve the problem of data skew, because data redistribution
is based on hashing data into bucket. Moreover, this algorithm induces
high communication cost since all the tuples are redistributed over the
network and not necessarily only relevant ones.

An algorithm for evaluating join on data grid where the relations to be
joined are fully replicated on several machines is presented in (Yang et al.
2005). In this algorithm, a well known relation reduction technique is used
in order to reduce the redistributed volume of data where only tuples
that effectively participate in the join are redistributed. In addition, the
execution nodes are selected using an edge-weight-minimum-matching-
algorithm where the grid infrastructure is considered as a weighted
complete bigraph. This strategy helps in decreasing the exchange time
of data between processors, but their algorithm can only be applied if
the relations to be joined are fully replicated. This represents a serious
problem for scalability.

OGSA-DQP (Lynden et al. 2009) is a service-based Distributed Query
Processor on the grid. It is based on OGSA-DAI 6 which is a service-based
middleware that supports access, sharing, management and coordinated
use of heterogeneous physical data sources on the grid by providing
a uniform service interface to grid databases (Antonioletti et al. 2005).
OGSA-DQP extends OGSA-DAI by adding two services : DQP coordinator
service and DQP evaluator service. The DQP coordinator service receives
a perform document from the client. The query is compiled to produce
a partitioned query plan. Each partition will be executed on a DQP eva-
luator. The evaluators read the data from OGSA-DAI data services and
invoke needed analysis services for processing the query. In OGSA-DQP,
both pipelined and partitioned parallelism are used to evaluate queries
which help in decreasing the query processing time.

The main drawbacks of these algorithms are that :
– they do not follow strategies to rebalance the load between proces-

sors during query execution. This is an important issue because,
as we mentioned earlier, the performance of some grid nodes may
highly vary during query processing,

– they do not treat data skew problems which may degrade the per-
formance of parallel processing.

6OGSA-DAI : The Open Grid Service Architecture - Data Access and Integration.
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– they induce high communication and disk input/output costs du-
ring redistribution phase, since all input relations are redistributed
across the network and not necessarily only relevant data.

3.4.2 Adaptive distributed query processing algorithms

To avoid the drawbacks of existing grid join algorithms, adaptive distri-
buted query processing has been introduced. This category of approaches
follow adaptive strategies to rebalance the load during query processing
between processors if one (or more) processor becomes overloaded or
unavailable.

Adaptive Grid Query Evaluation Service (AGQES)

In (Gounaris et al. 2005), a service oriented adaptive query processing
architecture is introduced for evaluating queries on the grid. This archi-
tecture, which is an extension of OGSA-DQP, helps to adapt to changes
in the performance of grid nodes where their load is dynamically reba-
lanced during intra-operation execution. In this architecture, each AGQES
(Adaptive Grid Query Evaluation Service) combines a query engine, and
three adaptive components : Monitoring Event Detector, Diagnoser and
Responder. The local query engine of each AGQES sends to the Monitoring
Event Detector component low-level monitoring information describing
the processing cost of a tuple. In its turn, the Monitoring Event Component
groups the received information and notifies the Diagnoser if the change
in the performance is higher than a certain threshold. The Diagnoser col-
lects the information from the Monitoring Event Detectors and if workload
imbalance is detected, the Responder is notified. In addition, the Diagno-
ser proposes a new workload distribution vector (w1, w2, . . . , wn), where
wi is the number of tuples sent to processor pi and n is the number of
processors. When the Responder receives a notification it decides whether
to apply the proposed workload distribution vector or not depending on
the progress of execution. If distribution policy must be notified, then the
concerned evaluators that produce data and the diagnosers are informed.

The redistribution of data to rebalance the load follows a cache based
strategy which is mainly employed to assure fault-tolerance as described
in (Smith and Watson 2005). In this fault-tolerance technique, data exchan-
ged between two nodes are cached on the source node until they are fully
processed by the destination node. So in AGQES, the assigned load of an
overloaded processor is transferred to other processors using the cached
data on the source processors which were already sent to the overloaded
one.

These approaches, and other adaptive ones presented in section 3.3,
are very sensitive to the problem of data skew which may degrade the
performance of parallel and distributed algorithms when evaluating join
operations. In addition, during join computation, all the tuples of input
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relations are redistributed even if they do not participate in the join result.
This induces high communication and disk Input/Output costs whenever
the exchanged data does not fit in the memory.

3.5 Map-Reduce model and join operation

Map-Reduce model is mainly used to process homogeneous datasets.
This model is not quite adequate for evaluating join operations where
heterogeneous datasets need to be merged (Pike et al. 2005). However,
it can still be used for evaluating such queries using a homogenization
process (Yang et al. 2007). In this process, to compute the join R ⋊⋉ S of
two relations R and S, a map/reduce process is applied on R and another
one on S. It adds a tag representing the data source (i.e R or S) into each
tuple. It also extracts the common join attribute of R and S. The output
of these two processes is homogeneous. So, a final map/reduce process is
executed to merge entries having the same values of the join attribute but
different data sources tags. This process is not efficient due to the high
map-reduce communication costs and the extra disk space used to store
the intermediate homogeneous results (Yang et al. 2007). To override these
problems an extension of Map-Reduce model called Map-Reduce-Merge
model was presented in (Yang et al. 2007). The user of this model must
implement three functions Map, Reduce and Merge having the following
signatures :

map : (k1, v1)α −→ list(k2, v2)α

reduce : (k2, list(v2))α −→ (k2, list(v3))α

merge : ((k2, list(v3))α, (k3, list(v4))β) −→ list(k4, v5)γ where α, β and
γ represent dataset lineages.

The map and reduce functions in this model are similar to those of
Map-Reduce model. The main difference is in the reduce function where
the output is a list of key/value instead of just values.
To compute R ⋊⋉ S, we apply a Map-Reduce process on R and another one
on S. Here α and β are equal because we need to compute an equi-join.
The merge function reads the result of the two reducers and combines
each pair of couples having the same values of k2 and k3.

Hash based algorithms presented in (Yang et al. 2007) are inefficient in
the presence of skewed data. In addition, they involve high communica-
tion costs since all the tuples of input relations are redistributed across the
network.

3.6 conclusion

In this chapter, we reviewed:
– parallel algorithms for treating join operations and "GroupBy-Join"

queries on SN homogeneous systems,
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– adaptive parallel algorithms for treating join operations on distribu-
ted heterogeneous and grid systems,

– map-reduce-merge cloud computing model for treating join opera-
tions.

We also stated their advantages and drawbacks.

In the following chapters, we propose and present our parallel algorithms
based on fully distributed histograms usage. These algorithms override the
drawbacks of algorithms seen in this chapter.

For the case of "GroupBy-Join" queries, we partially apply the group by
operation and aggregate function before evaluating the join even when
the join and group by attributes are distinct. In addition, we do not fully
materialize the join result. This helps us to highly reduce the communica-
tion and disk input/output costs.

We also present a dynamic frequency adaptive parallel algorithm for trea-
ting join queries on heterogeneous distributed systems. This algorithm
follows a two-step static and dynamic load balancing strategy of different
nodes throughout join processing. A pipelined version of this algorithm is
also presented for treating complex join queries. In addition, we propose
a fault tolerant variant of this algorithm for treating join queries on the
grid.

A skew insensitive parallel algorithm based on map-reduce-merge model
for treating semi-join operations is also proposed.

In all our algorithms, we use fully distributed histograms to determine join
attribute values that appear in the join result. Then, only tuples of input
relations associated to these values are redistributed over the nodes. This
helps to reduce the communication costs to a minimum, in addition to the
number of join buckets (and therefore join computation time). Deploying
these histograms also provides us with a detailed frequency distribution
information of join attribute values. This helps in treating the effect of
Attribute Value Skew (AVS) and avoid the Join Product Skew (JPS).

For scalability issue and to guarantee perfect balancing properties during
all the join computation steps, communication templates and data redis-
tribution are performed jointly by all the processors, each one is in charge
of data redistribution of a subset of the join attribute values and not neces-
sarily its own values. This avoids the slowdown of coordinator processors
during tasks generation and reallocation in existing dynamic parallel join
algorithms.
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In this chapter, we are interested in treating SQL queries involving join,
group-by operation and aggregate functions. Such queries, known as

"GroupBy-Join" queries, are fairly common in many decision support ap-
plications. In these queries, the aggregate function allows us to obtain
summarized data for each group of tuples based on a designated grou-
ping. However, the size of the input relations is usually very large. So, the
parallelization of these queries is highly recommended in order to obtain
a desirable response time. Several parallel algorithms that treat such que-
ries have been presented in the literature. However, their most significant
drawbacks are that they are very sensitive to data skew and involve ex-
pensive communication and Input/Output costs in the evaluation of the
join operation.
In this chapter, we present two algorithms that overcome these drawbacks
because :

– they evaluate "GroupBy-Join" queries without the need to materia-
lize the join result. Thus, they reduce the communication cost and
the needed Input/Output access operations to the disks.
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– we use a load assignment technique based on exact data distribution
information and not statistical ones. This allows us to avoid load
imbalance even in the presence of highly skewed data.

The performance of these algorithms is analyzed using the scalable and
portable BSP (Bulk Synchronous Parallel) cost model which predicts a near
optimal linear speedup even for highly skewed data. These performance
predictions were also validated by the practical test results.
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4.1 Introduction

In this chapter, we give a detailed presentation of our algorithms :
GAJFA-Join (Group-by After Join Frequency Adaptive-Join) published in
(Hassan and Bamha 2007) and GBJFA-Join (Group-by Before Join Fre-
quency Adaptive-Join) published in (Hassan and Bamha 2006) for treating
"GroupBy-Join" queries. GAJFA-Join algorithm is used for evaluating
"GroupBy-Join" queries when group-by and join attributes are different
and GBJFA-Join for the case where the join attributes are part of the group-
by attributes. Our algorithms override the problems of the algorithms
presented in the literature (section 3.2.2) for evaluating "GroupBy-Join"
queries. Our main contribution is that, in these algorithms, we do not
need to materialize the join operation result, in the contrary to traditio-
nal algorithms where the join operation is evaluated first and then the
group-by and aggregate functions (Yan and Larson 1994). GAJFA-Join
and GBJFA-Join algorithms are also insensitive to AVS and JPS and their
communication and disk Input/Output costs are highly reduced.

In these algorithms, we partially evaluate the aggregate function before
redistributing the tuples even when the group-by and join attributes are
different. This helps in reducing the cost of data redistribution. We also
use distributed histograms of both relations in order to find the tuples
that participate in the result of the join operation. Thus, we decrease the
Input/Output cost during the build and probe phases of computing the
join. It is proved in (Bamha and Hains 2005; 1999), using the BSP model,
that the histogram management has a negligible cost when compared to
the gain it provides in reducing the communication cost.
In traditional algorithms, all the tuples of the output of the join opera-
tion are redistributed using a hashing function. In the contrary, in our
algorithms, we only redistribute the result of the semi-joins which are,
in general, very small compared to the size of input relations. Using
semi-join in parallel and distributed machines to evaluate "GroupBy-Join"
queries helps in reducing the amount of data transferred over the network,
and therefore in decreasing the communication cost (Chen and Yu 1993,
Stocker et al. 2001). The performance of GAJFA-Join and GBJFA-Join algo-
rithms is analyzed using the BSP cost model (section 2.2.2) which predicts
for these algorithms a near linear speedup even for highly skewed data.
The results of the practical tests assure these performance predictions
and prove that it outperforms the traditional algorithms for evaluating
such queries. We will present GAJFA-Join algorithm in section 4.2 and
GBJFA-Join in section 4.3.

4.2 The GAJFA-Join algorithm : Evaluating "GroupBy-
Join" queries when group-by and join are different

In this section, we present a detailed description of a new parallel algo-
rithm used to evaluate the "GroupBy-Join" queries when the group-by
attributes are different from the join attributes. We assume that the re-
lation R (resp. S) is partitioned among the processors by horizontal
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fragmentation and that the fragments Ri for i ∈ P = {1, ..., p} are almost
of the same size on every processor, i.e. |Ri| ≃

|R|
p where p is the number

of processors.
For simplicity of description, we consider that the query has only one join
attribute x and that the group-by attribute set consists of one attribute
y of R and another attribute z of S. We also assume that the aggregate
function f is applied on the values of the attribute u of S. So, the query
can be expressed in SQL as :

SELECT R.y, S.z, f (S.u)
FROM R, S
WHERE R.x = S.x
GROUP BY R.y, S.z ;

However, our algorithm can also be used if one or both of R.y and S.z is
not included in the query (cf. remark 2 on page 57).

In the rest of this chapter, we use the following notations for each relation
T ∈ {R, S} :

– T denotes a relation,
– |T| denotes the size (expressed in bytes or number of pages) of T,
– ||T|| denotes the number of tuples of T,
– h denotes a hash function,

h : T −→ N

t 7−→ n
where t is a tuple of T and n is the node’s index that t is hashed to,

– Ti denotes the fragment of T placed on node i,
– ci

r/w denotes the cost of reading/writing a page of data from/to the
disk of processor i,

– AGGRw
f ,u(T) 1 is the result of applying the aggregate function f on

the values of the attribute u of every group of T tuples having iden-
tical values of the group-by attributes w. AGGRw

f ,u(T) is formed of a
list of tuples (v, fv) where fv is the result of the aggregate function
of the group of tuples having value v for the attribute w (w may be
formed of more than one attribute),

– AGGRw
f ,u(Ti) denotes the result of applying the aggregate function

on the attribute u of relation Ti,
– AGGRw

f ,u,i(T) is processor i’s fragment of the result of applying the
aggregate function on T,

– AGGRw
f ,u(T)(v) is the result fv of the aggregate function of the group

of tuples having value v for the group-by attribute w in relation T,
– AGGRw

f ,u(Ti)(v) is the result fv of the aggregate function of the
group of tuples having value v for the group-by attribute w in sub-
relation Ti,

– Histw(T) denotes the histogram2 of relation T with respect to the
attribute w, i.e. a list of pairs (v, nv) where nv 6= 0 is the number of
tuples of relation T having the value v for the attribute w. We can

1 AGGRw
f ,u(T) is implemented as a balanced tree (B+-tree) : a data structure that main-

tains an ordered set of data to allow efficient search and insert operations (cf. Appendix A
page 158).

2Histograms are implemented as balanced trees (B+-tree).
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see that Histw(T) = AGGRw
count,w(T) . The histogram is often much

smaller and never larger than the relation it describes,
– Histw(Ti) denotes the histogram of fragment Ti,
– Histw

i (T) is processor i’s fragment of the histogram of T,
– Histw(T)(v) is the frequency of value v in relation T,
– Histw(Ti)(v) is the frequency of value v in sub-relation Ti.

GAJFA-Join algorithm proceeds in six phases. We will give an upper
bound of the execution time of each superstep using BSP cost model. The
notation O(. . . ) hides only small constant factors : they depend only on
the program implementation but neither on data nor on the BSP machine
parameters.
A running example will be used in order to illustrate the different phases
of the algorithm. We consider that relations R and S are partitioned on 3

processors.

Algorithm 4: GAJFA-Join algorithm steps
In Parallel (on each processor) i ∈ [1, p] do
1◮ Create the local histogram Histx,y(Ri) of relation Ri and, on the fly,

create Hist
′x(Ri) which holds the frequency of each value of the

attribute x in Histx,y(Ri) (Algo. 5) ;
⊲ Create the local histogram AGGRx,z

f ,u(Si) of relation Si and, on the fly,

create Hist
′x(Si) which holds the frequency of each value of the

attribute x in AGGRx,z
f ,u(Ri) ;

2◮ Create Hist
x,y

(Ri) holding tuples of Histx,y(Ri) that participate to the
join result (Algo. 6) ;

⊲ Create AGGR
x,z
f ,u(Si) holding tuples of AGGRx,z

f ,u(Si) that participate to
the join result ;

3◮ Create communication templates for only tuples participating to final
join result,

4◮ Redistribute Hist
x,y

(Ri) and AGGR
x,z
f ,u(Si) as indicated in the

communication templates ;
5◮ Create, AGGRy,z

f ,u

(

(R ⋊⋉ S)i
)

, the result of applying locally the aggregate
function and the join result on each processor i (Algo. 9) ;

6◮ Redistribute AGGRy,z
f ,u

(

(R ⋊⋉ S)i
)

using a hash function applied
on (y, z) to compute globally the aggregate function ;

EndPar

Phase 1 : Creating local histograms

In this phase, the local histograms Histx,y(Ri)(i = 1, ..., p) of blocks Ri are
created, in parallel, by a scan of the fragment Ri on each processor i in
time of the order O(ci

r/w × maxi=1,...,p |Ri| + maxi=1,...,p ||Ri||).
Figure 4.1 shows an example of such local histograms where for each
entry (xj, yj, f reqj) of Histx,y(Ri) : f reqj represents the number of tuples of
Ri having values xj and yj for the attributes R.x and R.y respectively.
In addition, the local fragments AGGRx,z

f ,u(Si)(i = 1, ..., p) of blocks
Si are also created, in parallel on each processor i, by applying
the aggregate function f on every group of tuples having identi-
cal values of the couple of attributes (x, z) in time of the order
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Fig. 4.1 – An example of Histx,y(Ri) of local blocks Ri.

O(ci
r/w × maxi=1,...,p |Si| + maxi=1,...,p ||Si||). In this algorithm the aggregate

function may be MAX, MIN, SUM or COUNT. For the aggregate func-
tion AVG a similar algorithm that merges the COUNT and the SUM
algorithms is applied.
Figure 4.2 represents AGGRx,z

f ,u(Si) related to the running example where
the SUM aggregate function is applied.

In this algorithm, we only redistribute the tuples of Histx,y(Ri) and
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AGGRx,z
f,u(S2) AGGRx,z

f,u(S3)AGGRx,z
f,u(S1)

Fig. 4.2 – An example of AGGRx,z
f ,u(Si) related to Si.

AGGRx,z
f ,u(Si) that participate effectively in the join result. These tuples are

determined in phase 2, but we need first to compute the frequency of each
value of the attribute x in Histx,y(Ri) and AGGRx,z

f ,u(Si). So, while creating
Histx,y(Ri) (resp. AGGRx,z

f ,u(Si)), we also create, on the fly, their local histo-



The GAJFA-Join algorithm 57

grams Hist
′x(Ri) (resp. Hist

′x(Si)) with respect to x. Thus, Hist
′x(Ri) and

Hist
′x(Si) hold respectively the frequency of each value of the attribute x

in Histx,y(Ri) and AGGRx,z
f ,u(Si) for i = 1, ..., p. Hence, they can be written

as :
{

Hist
′x(Ri) = Histx

(

Histx,y(Ri)
)

,
Hist

′x(Si) = Histx
(

AGGRx,z
f ,u(Si)

)

.

In fact, the difference between Histx(Ri) and Hist
′x(Ri) is that Histx(Ri)

holds the frequency of each value of the attribute x in relation Ri (i.e., for
each value v of the attribute x, we find the number of tuples of Ri having
value v of x), while in Hist

′x(Ri) we count tuples having the same values
of the attributes (x, y) only once. Figures 4.3 and 4.4 represent Hist′x(Ri)

and Hist′x(Si) related to Histx,y(Ri) and AGGRx,z
f ,u(Si) shown in figures 4.1

and 4.2 respectively.

We use Algorithm 5 to create Histx,y(Ri) and Hist
′x(Ri). A similar algorithm

is used to create AGGRx,z
f ,u(Si) and Hist

′x(Si), but instead of computing
the frequency of (x, y) to create Histx,y(Ri), we apply here the aggregate
function on (x, z) to create AGGRx,z

f ,u(Si).

In principle, this phase costs :

Timephase1 = O
(

ci
r/w × max

i=1,...,p
(|Ri| + |Si|) + max

i=1,...,p
(||Ri|| + ||Si||)

)

.
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Fig. 4.3 – An example of local histograms Hist′x(Ri).
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Fig. 4.4 – An example of local histograms Hist′x(Si).

Remark 2 If the group-by attribute R.y is not included in the query, then we only compute
Histx(Ri) on each processor i. And in this case, we replace Histx,y(Ri) and
Hist

′x(Ri) by Histx(Ri) in all the remaining steps of the algorithm. A similar
treatment also applies if S.z is not included in the query.

Phase 2 : Local semi-joins computation
In order to minimize the communication cost, only tuples of Histx,y(R)
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Algorithm 5: Computing Histx,y(Ri) and Hist
′x(Ri)

⊲ Par (on each node in parallel) i = 1, . . . , p
/* Create two B+-trees to store histogram’s entries. */
⊲ Histx,y(Ri) = NULL ;
⊲ Hist

′x(Ri) = NULL ;
⊲ for every tuple t of Ri do

⊲ if Histx,y(Ri)(t.x, t.y) = 0 then
⊲ Insert a new tuple (t.x, t.y, 1) into Histx,y(Ri) ;
⊲ f req1 = Hist

′x(Ri)(t.x) ;
⊲ if f req1 6= 0 then

⊲ Increment the frequency of t.x in Hist
′x(Ri) ;

⊲ else

⊲ Insert a new tuple (t.x, 1) into Hist
′x(Ri) ;

⊲ endif
⊲ else

⊲ Increment the frequency of (t.x, t.y) in Histx,y(Ri) ;
⊲ endif

⊲ endfor
⊲ endPar

and AGGRx,z
f ,u(S) that will be present in the join result are redistributed.

These tuples are effectively the result of the following local semi-joins :
{

Hist
x,y

(Ri) = Histx,y(Ri) ⋉ AGGRx,z
f ,u(S) and

AGGR
x,z
f ,u(Si) = AGGRx,z

f ,u(Si) ⋉ Histx,y(R).

For scalability issue, we do not duplicate AGGRx,z
f ,u(S) and Histx,y(R) on

all the processors. So, to compute Hist
x,y

(Ri) and AGGR
x,z
f ,u(Si), we use the

following steps.

a : Computing global partitioned histograms

First of all, we need to evaluate the global partitioned histograms Hist′xi (R)

and Hist′xi (S) (fig. 4.5) for i ∈ P . Hence, the tuples of Hist′x(Ri) and
Hist′x(Si) are redistributed by applying a hash function on the values of
the attribute x. This allows us to send the tuples of Hist′x(R) and Hist′x(S)

having the same value of x to the same processor. Here, we use the hash
function (x mod 3) + 1.

b : Creating Hist′xi (R ⋊⋉ S)

After that we create, in parallel on each processor i, Hist′xi (R ⋊⋉ S) (fig.
4.6). Hist′xi (R ⋊⋉ S) holds for each value v of the join attribute x, such that
v ∈ Hist′xi (R) ∩ Hist′xi (S), the couple

(

v, Hist′xi (R)(v) × Hist′xi (S)(v)
)

.
Now, we know the values of x that will be present in the result of

the join operation. So, to reduce the communication costs, only tuples of
Histx,y(Ri)i∈P and AGGRx,z

f ,u(Si)i∈P having values of x ∈ Hist′xi (R ⋊⋉ S) are
redistributed for further treatment.
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Algorithm 6: Computing the local semi-joins Hist
x,y

(Ri) and
AGGR

x,z
f ,u(Si) on each processor i.

In Parallel (on each processor) i ∈ [1, p] do

a◮ Hash the local histogram Hist
′x(Ri) to create global histogram

fragment’s Hist
′x
i (R) on each processor i ;

⊲ Hash the local histogram Hist
′x(Si) to create global histogram

fragment’s Hist
′x
i (S) on each processor i ;

b◮ Merge Hist
′x
i (R) and Hist

′x
i (S) to create join histogram fragment’s,

Hist
′x
i (R ⋊⋉ S), by intersecting Hist

′x
i (R) and Hist

′x
i (S) on each

processor i ;

⊲ Compute Hist
′x[i]

(Rj) = Hist
′x[i](Rj) ∩ Hist

′x
i (R ⋊⋉ S), where

Hist
′x[i](Rj) is the partition of Hist

′x(Rj) sent to processor i
from processor j (j ∈ {1, . . . , n}) ;

⊲ Compute Hist
′x[i]

(Sj) = Hist
′x[i](Sj) ∩ Hist

′x
i (R ⋊⋉ S), where

Hist
′x[i](Sj) is the partition of Hist

′x(Sj) sent to processor i
from processor j (j ∈ {1, . . . , p}) ;

c◮ Send each partition Hist
′x[i]

(Rj) (resp. Hist
′x[i]

(Sj)) from processor i
to processor j (j ∈ {1, . . . , p}) ;

⊲ Create Hist
x,y

(Ri) = Histx,y(Ri) ∩ (∪
p
j=1Hist

′x[j]
(Ri)) ;

⊲ Create AGGR
x,z
f ,u(Si) = AGGRx,z

f ,u(Ri) ∩ (∪
p
j=1Hist

′x[j]
(Si)) ;

Endpar
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Fig. 4.5 – Global histograms Hist′xi (R) and Hist′xi (S) example.
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(Si) computation example.
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c : Creating Hist
x,y

(Ri) and AGGR
x,z
f ,u(Si).

Now, we compute on each processor j, Hist
′x[j]

(Ri) and Hist
′x[j]

(Si) for
i ∈ P (cf. figure 4.7), where :







Hist
′x[j]

(Ri) = Hist
′x[j](Ri) ∩ Hist′xj (R ⋊⋉ S) and

Hist
′x[j]

(Si) = Hist
′x[j](Si) ∩ Hist′xj (R ⋊⋉ S).

Here, Hist
′x[j](Ri) is the partition of Hist′x(Ri) which was sent to processor

j from processor i in step (a) (this also applies on Hist
′x[j](Si)).

After computing Hist
′x[j]

(Ri) and Hist
′x[j]

(Si), we perform a communica-
tion step where each processor j sends each fragment Hist

′x[j]
(Ri) and

Hist
′x[j]

(Si) to processor i. After redistribution, each processor i merges the
received tuples in order to create Hist

′x
(Ri) which represents the values of

x that appear in the join result. Now, we can compute, on each processor
i in parallel, Hist

x,y
(Ri) (fig. 4.8) and AGGR

x,z
f ,u(Si) (fig. 4.9). However, we

do not need to materialize AGGRx,z
f ,u(S) and Histx,y(R) because Hist

x,y
(Ri) is

simply Histx,y(Ri)∩
(

P
⋃

j=1

Hist
′x[j]

(Ri)
)

= Histx,y(Ri)∩ Hist
′x

(Ri) and similarly

AGGR
x,z
f ,u(Si) = AGGRx,z

f ,u(Si) ∩
(

P
⋃

j=1

Hist
′x[j]

(Si)
)

= AGGRx,z
f ,u(Si) ∩ Hist

′x
(Si).
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Fig. 4.8 – Hist
x,y

(Ri) (i ∈ {1, 2, 3}) example.

The cost of this phase is :
Timephase2 = O

(

maxi=1,...,p ||Histx,y(Ri)|| + maxi=1,...,p ||AGGRx,z
f ,u(Si)||+

min
(

g × |Histx(R)| + ||Histx(R)||, g × |R|
p + ||R||

p

)

+

min
(

g × |Histx(S)| + ||Histx(S)||, g × |S|
p + ||S||

p

)

+ l
)

,

where g is the BSP communication parameter and l the cost of a barrier
of synchronization.

We recall (cf. proposition 1 of Appendix A) that, in the above equation,
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Fig. 4.9 – AGGR
x,z
f ,u(Si) (i ∈ {1, 2, 3}) example.

the terms :

min
(

g × |Histx(R)| + ||Histx(R)||, g ×
|R|
p

+
||R||

p

)

,

and
min

(

g × |Histx(S)| + ||Histx(S)||, g ×
|S|
p

+
||S||

p

)

,

represent the necessary time to compute the global histograms,
Histx

i=1,...,p(R) and Histx
i=1,...,p(S) respectively, starting from the local histo-

grams Histx(Ri) and Histx(Si) (i = 1, ..., p). However, the number of tuples
of Hist

′x(Ri) and that of Histx(Ri) are equal, what differs is only the value
of the frequency attribute in these histograms. So, |Hist

′x(Ri)| = |Histx(Ri)|

(this also applies to Hist
′x(Si) and Histx(Si)). Hence, the above cost still

holds for computing Hist
′x
i=1,...,p(R) and Hist

′x
i=1,...p(S).

During semi-join computation, we store on each processor i, an ex-
tra information called index(v) ∈ {LF, HFR, HFS} for each value v ∈
Hist′xi (R ⋊⋉ S). This information allows us to decide if, for a given value
v, the frequencies of tuples of Histx,y(R) and AGGRx,z

f ,u(S) having the value
v are greater (resp. lesser) than a threshold frequency f0. It also permits
us to choose dynamically the probe and the build relation for each value
v of the join attribute. This choice highly reduces the global redistribution
cost. In this algorithm, by evaluating AGGRx,z

f ,u(S), we partially apply the
aggregate function on the attribute u of S and thus reducing the volume
of data. This also applies to Histx,y(R), where all tuples having the same
values of (x, y) are represented by a single tuple, but we will still consider
that the frequencies of some tuples of AGGRx,z

f ,u(S) and Histx,y(R) having a
value v of the attribute x is high. So, in order to balance the load between
all the processors, these tuples must be evenly redistributed.
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In the rest of this chapter, we use the threshold frequency : f0 = p × log(p).
On each processor i, for a given value v ∈ Hist

′x
i (R) ∩ Hist

′x
i (S),

– the value index(v) = LF, means that the frequency of tuples of rela-
tions Histx,y

i (R) and AGGRx,z
f ,u,i(S) associated to value v are less than

the threshold frequency (i.e. Hist
′x
i (R)(v) < f0 and Hist

′x
i (S)(v) < f0),

– the value index(d) = HFS, means that Hist
′x
i (S)(v) ≥ f0 and

Hist
′x
i (S)(v) > Hist

′x
i (R)(v),

– the value index(d) = HFR, means that Hist
′x
i (R)(v) ≥ f0 and

Hist
′x
i (R)(v) ≥ Hist

′x
i (S)(v).

Note that unlike the algorithms presented in (Shatdal and Naughton 1995,
Taniar et al. 2000) where both relations R and S are redistributed, we will
only redistribute Histx,y(Ri) ⋉ AGGRx,z

f ,u(S) and AGGRx,z
f ,u(Si) ⋉ Histx,y(R) to

find the final result. This will highly reduce the communication costs. It
also helps to reduce the number of join buckets and thus the disk access
costs. At the end of this phase, we will divide the semi-joins Hist

x,y
(Ri) and

AGGR
x,z
f ,u(Si) on each processor i into three sub-histograms in the following

way :

Hist
x,y

(Ri) =
⋃

m∈{HASH,PAR,DUP}

Hist
(m)x,y

(Ri)

and
AGGR

x,z
f ,u(Si) =

⋃

m∈{HASH,PAR,DUP}

AGGR
(m)x,z
f ,u (Si)

where :
– All the tuples of Hist

(PAR)x,y
(Ri) (resp. AGGR

(PAR)x,z
f ,u (Si)) are associa-

ted to values v such that index(v) = HFR (resp. index(v) = HFS),
– All the tuples of Hist

(DUP)x,y
(Ri) (resp. AGGR

(DUP)x,z
f ,u (Si)) are associa-

ted to values v such that index(v) = HFS (resp. index(v) = HFR),
– All the tuples of Hist

(HASH)x,y
(Ri) and AGGR

(HASH)x,z
f ,u (Si) are associa-

ted to values v such that index(v) = LF, i.e. the tuples associated to
values which occur with frequencies less than a threshold frequency
f0 in both relations R and S.

Tuples of Hist
(PAR)x,y

(Ri) and AGGR
(PAR)x,z
f ,u (Si) are associated to high

frequencies for the join attribute. These tuples have an important ef-
fect on Attribute Value Skew (AVS) and Join Product Skew (JPS). So,
we will use an appropriate redistribution technique in order to effi-
ciently treat the effect of AVS and avoid the problem of JPS. To this
end, tuples related to each join attribute value in Hist

(PAR)x,y
(Ri) (resp.

AGGR
(PAR)x,z
f ,u (Si)) will be evenly partitioned over the processors. In order

to obtain a valid join result, we are obliged to duplicate associate tuples
of AGGR

(DUP)x,z
f ,u (Si) (resp Hist

(DUP)x,y
(Ri)) on the p processors. The tuples

of relations Hist
(HASH)x,y

(Ri) and AGGR
(HASH)x,z
f ,u (Si) (are associated to very

low frequencies for the join attribute) have no effect neither on AVS nor
JPS. These tuples will be redistributed using a hash function.

Phase 3 : Creating the communication templates

Skewed attribute values (those having high frequencies) are also those
which may cause join product skew in standard join algorithms. To avoid
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the slowdown usually caused by AVS and the imbalance of the size of
local joins, we use an appropriate treatment for high attribute frequencies
as follows :

3.a We partition the histogram Hist
′x(R ⋊⋉ S) into two sub-histograms :

Hist(HF)′x(R ⋊⋉ S) and Hist(LF)′x(R ⋊⋉ S) in the following manner :
– the values v ∈ Hist(HF)′x(R ⋊⋉ S) are associated to high frequencies

of the join attribute (i.e. index(v) = HFR or index(v) = HFS),
– the values v ∈ Hist(LF)′x(R ⋊⋉ S) are associated to low frequencies of

the join attribute (i.e. index(v) = LF),
this partition step is performed in parallel, on each processor i, by a local
traversal of the histogram Hist

′x
i (R ⋊⋉ S) in time :

Time3.a = O
(

max
i=1,...,p

||Hist
′x
i (R ⋊⋉ S)||

)

.

3.b Communication templates for high frequencies :
We create the communication template : the list of messages which constitutes
the relations’ redistribution. This step is performed jointly by all processors,
each one not necessarily computing the list of its own messages, so as
to balance the overall process. So, each processor i computes a set of
necessary messages related to the values v it owns in Hist(HF)′x

i (R ⋊⋉ S).
Communication template is derived by applying algorithm 7 on the tuples
of relations Hist

(PAR)x,y
(R) which is mapped to multiple nodes. We also

apply the same algorithm to compute the communication template of
AGGR

(PAR)x,z
f ,u (S), but we replace Hist

′x(R) by Hist
′x(S).

Algorithm 7: Communication templates for Hist
(PAR)x,y

(R).

⊲for each couple (v, nv) ∈ Hist
′x(R) do

⊲ if (nv mod p = 0) then

⊲ each processor j will hold a block of size block j(v) =
nv

p
of tuples

associated to value v ;
⊲ else
⊲ Pick a random value j0 between 0 and (p − 1) ;

⊲ if
(

processor’s index j is between j0 and j0 + (nv mod p)
)

then

⊲ the processor of index j will hold a block of size : block j(v) = ⌊
nv

p
⌋ + 1 ;

⊲ else

⊲ the processor of index j will hold a block of size : block j(v) = ⌊
nv

p
⌋ ;

⊲ endif
⊲ endif

⊲endfor

In the above algorithm, ⌊x⌋ is the largest integral value not greater than
x and block j(v) is the number of tuples of value v that processor j should
own after redistribution of the fragments Ti of relation T. We have chosen
to use a random value of j0 for each value v in order to avoid sending
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the additional tuples to the same set of processors (these whose index is
between j0 and block j(v) = ⌊

nv

p
⌋ + 1).

The absolute value of Restj(v) = Histj(T)(v) − block j(v) determines the
number of tuples of value v that processor j must send (if Restj(v) > 0)

or receive (if Restj(v) < 0). For v ∈ Hist(HF)′x
i (R ⋊⋉ S), processor i owns

a description of the layout of tuples of value v over the network. It may
therefore determine the number of tuples of value v which every proces-
sor must send/receive. This information constitutes the communication
templates. This step is thus completed in time :

Time3.b = O
(

||Hist(HF)′x(R ⋊⋉ S)||
)

.

The tuples associated to low frequencies (i.e. tuples having v ∈

Hist(LF)′x
i (R ⋊⋉ S)) have no effect neither on the AVS nor on the JPS.

These tuples are simply mapped to processors using a hash function and
thus, no communication template computation is needed.

The creation of the communication templates has, therefore, taken the
sum of the above two steps :

Timephase3 = O
(

max
i=1,...,p

||Hist
′x
i (R ⋊⋉ S)|| + ||Hist(HF)′x(R ⋊⋉ S)||

)

.

Phase 4 : Data redistribution

4.a Redistribution of tuples having v ∈ Hist(HF)′x
i (R ⋊⋉ S) :

Each processor i holds, for each one of its local values v ∈ Hist(HF)′x
i (R ⋊⋉

S), the non-zero communication volumes it prescribes as a part of com-
munication template : Restj(v) 6= 0 for j = 1, . . . , p. This information will
take the form of sending orders forwarded to their target processors in a
first superstep, followed by the actual redistribution superstep where each
processor obeys all the received orders.
Each processor i, first splits the processors indices j into two groups :
those for which Restj(v) > 0 and those for which Restj(v) < 0. This is
done by a sequential traversal of the Restj(v) array.
Let α (resp. β) be the number of j’s where Restj(v) is positive (resp.
negative) and Proc(k)k=1,...,α+β the array of processor indices for which
Restj(v) 6= 0 in the manner that : Restproc(j)(v) > 0 for j = 1, . . . , α

and Restproc(j)(v) < 0 for j = 1, . . . , α + β. A sequential traversal of
Proc(k)k=1,...,α+β determines the number of tuples that each processor j
will send. The sending orders related to a value v are computed using
algorithm 8. Figure 4.10 gives an example of the value Rest associated to
a value of the join attribute and the corresponding sending orders.

The maximal complexity of this algorithm is : O
(

||Hist(HF)′x(R ⋊⋉ S)||
)

,
because for a given v, no more than (p − 1) processors can send data
and each processor i is in charge of redistribution of tuples having v ∈

Hist(HF)′x
i (R ⋊⋉ S). For each processor i and v ∈ Hist(HF)′x

i (R ⋊⋉ S), all the
order_to_send(j, i, . . . ) are sent to processor j when j 6= i in time :

O
(

g × |Hist(HF)′x(R ⋊⋉ S)| + l
)

.
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Thus, this step costs :

Timephase4.a = O
(

g × |Hist(HF)′x(R ⋊⋉ S)| + ||Hist(HF)′x(R ⋊⋉ S)|| + l
)

.

Algorithm 8: Sending orders for join attribute value v.
⊲ i := 1 ;
⊲ j := α + 1 ;
⊲ while (i ≤ α) do
⊲ n_tuples = min(Restproc(i)(v),−Restproc(j)(v)) ;
⊲ order_to_send(Proc(i),Proc(j),v,n_tuples) ;
⊲ Restproc(i)(v) := Restproc(i)(v) - n_tuples ;
⊲ Restproc(j)(v) := Restproc(j)(v) + n_tuples ;
⊲ if Restproc(i)(v) = 0 then i := i + 1 ; endif

⊲ if Restproc(j)(v) = 0 then j := j + 1 ; endif

⊲ endwhile

43 1 5 2

24 10 −12 −2 −20

Processor:

Rest:

12

2

10

10Communications:
.

Fig. 4.10 – Sending orders as a function of Rest values.

4.b Redistribution of tuples with values v ∈ Hist(LF)′x
i (R ⋊⋉ S) :

Tuples of Hist
(HASH)x,y

(Ri) and AGGR
(HASH)x,z
f ,u (Si) (i.e. tuples having

v ∈ Hist(LF)′x
i (R ⋊⋉ S)) are associated to low frequencies. So, they have no

effect neither on the AVS nor the JPS. These relations are redistributed
using a hash function.

At the end of steps 4.a and 4.b, each processor i, has local knowledge of
how the tuples of semi-joins Hist

x,y
(Ri) and AGGR

x,z
f ,u(Si) will be redistri-

buted. Redistribution is then performed in time :

Timephase4.b = O
(

g ×
(

|Hist
x,y

(Ri)| + |AGGR
x,z
f ,u(Si)|

)

+ l
)

.

Thus, the total cost of the redistribution phase is the sum of the costs of
the above two steps :
Timephase4 = O

(

g × max
i=1,...,p

(

|Hist
x,y

(Ri)| + |AGGR
x,z
f ,u(Si)| + |Hist(HF)′x(R ⋊⋉ S)|

)

+||Hist(HF)′x(R ⋊⋉ S)|| + l
)

.

We mention that, we only redistribute the tuples of the semi-joins
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Hist
x,y

(Ri) and AGGR
x,z
f ,u(Si), where |Hist

x,y
(Ri)| and |AGGR

x,z
f ,u(Si)| are

generally very small compared to |Ri| and |Si|. In addition, |Hist
′x(R ⋊⋉ S)|

is generally very small compared to |Histx,y(R)| and |AGGRx,z
f ,u(S)|. Thus,

we highly reduce the communication cost.

Algorithm 9: Join and local aggregate function computation.
⊲ Par (on each node in parallel) i = 1, . . . , p
⊲ AGGRy,z

f ,u((R ⋊⋉ S)i) = NULL ;
/* Create a B-tree to store histogram’s entries*/

⊲ for each tuple t of relation Hist
(PAR)x,y

(Ri) do

⊲ f req = Hist
(PAR)x,y

(Ri)(t.x, t.y);

⊲ for each entry (t.x, z, v1) ∈ AGGR
(DUP)x,z
f ,u (S)(t.x, z) do

⊲ v2 = AGGRy,z
f ,u((R ⋊⋉ S)i)(t.y, z) ;

⊲ if v2 6= 0 then

⊲ Update AGGRy,z
f ,u((R ⋊⋉ S)i)(t.y, z) = f (Ff ( f req, v1), v2) ;

⊲ else

⊲ Insert a new tuple (t.y, z, Ff ( f req, v1)) into the histogram AGGRy,z
f ,u((R ⋊⋉ S)i) ;

⊲ endif
⊲ endfor

⊲ endfor

⊲ for each tuple t of relation AGGR
(DUP)x,z
f ,u (Si) do

⊲ fv = AGGR
(DUP)x,z
f ,u (t.x, t.z) ;

⊲ for each entry (t.x, y, v1) ∈ Hist
(PAR)x,y

(R) do

⊲ v2 = AGGRy,z
f ,u((R ⋊⋉ S)i)(y, t.z) ;

⊲ if v2 6= 0 then

⊲ Update AGGRy,z
f ,u((R ⋊⋉ S)i)(y, t.z) = f (Ff (v1, fv), v2) ;

⊲ else

⊲ Insert a new tuple (y, t.z, Ff (t. fv, v1)) into the histogram AGGRy,z
f ,u((R ⋊⋉ S)i) ;

⊲ endif
⊲ endfor

⊲ endfor

⊲ for each tuple t of relation Hist
(HASH)x,y

(Ri) do

⊲ f req = Hist
(HASH)x,y

(Ri)(t.x, t.y);

⊲ for each entry (t.x, z, v1) ∈ AGGR
(HASH)x,z
f ,u (Si) do

⊲ v2 = AGGRy,z
f ,u((R ⋊⋉ S)i)(t.y, z) ;

⊲ if v2 6= 0 then

⊲ Update AGGRy,z
f ,u((R ⋊⋉ S)i)(t.y, z) = f (Ff ( f req, v1), v2) ;

⊲ else

⊲ Insert a new tuple (t.y, z, Ff ( f req, v1)) into the histogram AGGRy,z
f ,u((R ⋊⋉ S)i)

⊲ endif
⊲ endfor

⊲ endfor
⊲ endpar
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Phase 5 : local computation of the aggregate function

At this step, each processor has partitions of Hist
x,y

(R) and AGGR
x,z
f ,u(S).

The tuples of Hist
(PAR)x,y

(Ri), Hist
(DUP)x,y

(Ri), Hist
(HASH)x,y

(Ri) can
be joined with the tuples of AGGR

(DUP)x,z
f ,u (Si), AGGR

(PAR)x,z
f ,u (Si),

AGGR
(HASH)x,z
f ,u (Si) respectively. But, the frequencies of tuples of

Hist
(PAR)x,y

(Ri) and AGGR
(PAR)x,z
f ,u (Si) are, by definition, greater than the

corresponding (matching) tuples in Hist
(DUP)x,y

(Ri) and AGGR
(DUP)x,z
f ,u (Si)

respectively. So, we will choose Hist
(PAR)x,y

(Ri) and AGGR
(PAR)x,z
f ,u (Si) as the

build relations and Hist
(DUP)x,y

(Ri) and AGGR
(DUP)x,z
f ,u (Si) as probe relations.

Hence, we need to duplicate the probe relations to all processors in time :

Timephase5.a = O
(

g ×
(

|Hist
(DUP)x,y

(R)| + |AGGR
(DUP)x,z
f ,u (S)|

)

+ l
)

.

Now, using Algorithm 9, we are able to compute the local aggregate
function, on each processor, without the necessity to fully materialize the
intermediate results of the join operation. In this algorithm, we denote the
aggregate function by F and we use the following binary function where
D is the domain of the aggregate attribute :

Ff : N ×D −→ D

such that :

Ff (n, v) =

{

n × v if f ∈ {SUM, COUNT}
v if f ∈ {MIN, MAX, AVG}

In this algorithm, we create on each processor i, the relation
AGGRy,z

f ,u((R ⋊⋉ S)i) that holds the local results of applying the aggre-
gate function on every group of tuples having the value of the couple of
attributes (y, z). AGGRy,z

f ,u((R ⋊⋉ S)i) has the form (y, z, v) where y and z are
the group-by attributes and v is the result of the aggregate function.

Figure 4.11 shows an example of applying this algorithm on proces-
sor 1. For simplicity of presentation, we use histograms Hist

x,y
(R1) and

AGGR
x,z
f ,u(S1) having small sizes.

The cost of applying this algorithm is :

Timephase5.b = O
(

ci
r/w × maxi=1,...,p

(

|Hist
(PAR)x,y

(Ri) ⋊⋉ AGGR
(DUP)x,z
f ,u (S)|+

|Hist
(DUP)x,y

(R) ⋊⋉ AGGR
(PAR)x,z
f ,u (Si)| +

|Hist
(HASH)x,y

(Ri) ⋊⋉ AGGR
(HASH)x,z
f ,u (Si)|

)

)

.

So, the total cost of this phase is :
Timephase5 = O

(

g ×
(

|Hist
(DUP)x,y

(R)| + |AGGR
(DUP)x,z
f ,u (S)|

)

+ l+

ci
r/w × maxi=1,...,p

(

|Hist
(PAR)x,y

(Ri) ⋊⋉ AGGR
(DUP)x,z
f ,u (S)|+

|Hist
(DUP)x,y

(R) ⋊⋉ AGGR
(PAR)x,z
f ,u (Si)|+

|Hist
(HASH)x,y

(Ri) ⋊⋉ AGGR
(HASH)x,z
f ,u (Si)|

)

)

.

Phase 6 : global computation of the aggregate function
In this phase, a global application of the aggregate function is carried
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1 3 300

X Y Freq

1 1 100

Hist
x,y

(R1)

1 3 200
1 3 100
2 3 200
2 4 50
2 5 50
3 3 40
3 4 100
3 7 100
4 1 150
4 3 100
4 4 200
4 10 50
4 10 100
4 15 200

4 10 80
4 12 100
4 14 100
4 20 50

4 5 80

4 25 50

1 15 300

AGGR
x,z
f,u(S1)

X Z SUM(U)

1 10 200
1 12 130
1 12 200
1 18 150

1 10 150

2 15 40
2 21 100
2 25 150
2 30 200
3 10 50
4 1 200
4 4 140
4 12 250
4 12 50
4 13 100
4 14 50
4 12 100
4 13 50
4 20 100

1 2 200

2 10 30

AGGR
y,z
f,u

(

(R ⋊⋉ S)1

)

1 2 100 × 200 + . . .

Y Z Freq * SUM(U)

1 10 100 × 150 + 100 × 200 + . . .
1 15 100 × 300 + . . .
1 12 100 × 130 + 100 × 200 + 150 × 250 + 150 × 50 + . . .
1 18 100 × 150 + . . .
3 2 300 × 200 + 200 × 200 + 100 × 200 + . . .
3 10 300 × 150 + 300 × 200 + 200 × 150 + 200 × 200 + 100 × 150 + 100 × 200 + . . .
3 15 300 × 300 + 200 × 300 + 100 × 300 + . . .
3 12 300 × 130 + 300 × 200 + 200 × 130 + 200 × 200 + 100 × 130 + 100 × 200 + . . .
3 18 300 × 150 + 200 × 150 + 100 × 150 + . . .
. . .

Fig. 4.11 – An example of applying the join operation and aggregate function.

out. For this purpose, every processor redistributes the local aggregation
results, AGGRy,z

f ,u((R ⋊⋉ S)i), using a common hashing function. The input
attributes of the hashing function are y and z. After hashing, every pro-
cessor applies the aggregate function on the received messages in order
to compute the global result AGGRy,z

f ,u(R ⋊⋉ S).

AGGRy,z
f ,u(R ⋊⋉ S) is formed of three attributes. The first two are the

group-by attributes (y and z) and the third is the result of applying the
aggregate function. The time of this step is :

Timephase6 = O
(

min
(

g × |AGGRy,z
f ,u(R ⋊⋉ S)| + ||AGGRy,z

f ,u(R ⋊⋉ S)||,

g ×
|R ⋊⋉ S|

p
+

||R ⋊⋉ S||
p

)

+ l
)

.

In this step, we apply the same result used to redistribute the histograms
(cf. proposition 1 of Appendix A) in redistributing AGGRy,z

f ,u((R ⋊⋉ S)i).
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The global cost of evaluating the "GroupBy-Join" queries in this algo-
rithm is the sum of redistribution cost and local computation of aggregate
function. It is of the order :

Timetotal = O
(

ci
r/w × max

i=1,...,p
(|Ri| + |Si|) + max

i=1,...,p
(||Ri|| + ||Si||)+

min
(

g × |Histx(R)| + ||Histx(R)||, g ×
|R|
p

+
||R||

p

)

+

min
(

g × |Histx(S)| + ||Histx(S)||, g ×
|S|
p

+
||S||

p

)

+

||Hist(HF)′x(R ⋊⋉ S)|| + max
i=1,...,p

||AGGRx,z
f ,u(Si)||+

g × max
i=1,...,p

(

|Hist
x,y

(Ri)| + |AGGR
x,z
f ,u(Si)| + |Hist(HF)′x(R ⋊⋉ S)|

)

+

g ×
(

|Hist
(DUP)x,y

(R)| + |AGGR
(DUP)x,z
f ,u (S)|

)

+

min
(

g × |AGGRy,z
f ,u(R ⋊⋉ S)| + ||AGGRy,z

f ,u(R ⋊⋉ S)||, g ×
|R ⋊⋉ S|

p
+

||R ⋊⋉ S||
p

)

+ ci
r/w × max

i=1,...,p

(

|Hist
(PAR)x,y

(Ri) ⋊⋉ AGGR
(DUP)x,z
f ,u (S)|+

|Hist
(DUP)x,y

(R) ⋊⋉ AGGR
(PAR)x,z
f ,u (Si)| + max

i=1,...,p
||Histx,y(Ri)||+

|Hist
(HASH)x,y

(Ri) ⋊⋉ AGGR
(HASH)x,z
f ,u (Si)|

)

+ l
)

.

Remark 3 In the traditional algorithms, the aggregate function is applied on the output of the
join operation. The sequential evaluation of the "groupBy-Join" queries requires
at least the following lower bound :

boundin f1 = Ω
(

ci
r/w × (|R| + |S| + |R ⋊⋉ S|)

)

.

Parallel processing with p processors requires therefore :

boundin fp =
1
p
× boundin f1 .

Using our approach, the evaluation of the "GroupBy-Join" queries when the join
attributes are different from the group-by attributes has an optimal asymptotic
complexity when :
max

(

|Hist
(DUP)x,y

(R)|, |AGGR
(DUP)x,z
f ,u (S)|, |Hist(HF)′x(R ⋊⋉ S)|

)

≤ ci
r/w × max(

|R|
p

,
|S|
p

,
|R ⋊⋉ S|

p
),

this is due to the fact that the local join results have almost the same size and all
the terms in Timetotal are bounded by those of boundin fp . This inequality holds
if we choose a threshold frequency f0 greater than p (which is the case for our
threshold frequency f0 = p × log(p)).
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4.3 The GBJFA-Join algorithm : Evaluating "GroupBy-
Join" queries when join attributes are part of

group-by attributes

In this section, we present a detailed description of our parallel algorithm
GBJFA-Join used to evaluate "GroupBy-Join" queries when the join attri-
butes are part of the group-by attributes. We assume that the relation R
(resp. S) is partitioned among the processors by horizontal fragmentation
and that the fragments Ri for i = 1, ..., p are almost of the same size on
each processor, i.e. |Ri| ≃

|R|
p where p is the number of processors. For

simplicity of description, we consider that the query has only one join
attribute x and that the group-by attribute set consists of x, an attribute
y of R and another attribute z of S . We also assume that the aggregate
function f is applied on the values of the attribute u of S. So, the treated
query is the following :

Select R.x, R.y, S.z, f (S.u)
From R, S
Where R.x = S.x
Group By R.x, R.y, S.z ;

This algorithm can also be used if one or both of R.y and S.z is not
included in the query.

In the rest of this section, we present the algorithm which proceeds in
four phases. We also give an upper bound of the execution time of each
step.

Phase 1 : Creating local histograms

In this phase, the local histograms Histx(Ri)i=1,...,p (resp. Histx(Si)i=1,...,p)
of blocks Ri (resp. Si) are created, in parallel, by a scan of the fragment
Ri (resp. Si), on processor i, in time ci

r/w × maxi=1,...,p |Ri| + maxi=1,...,p ||Ri||

(resp. ci
r/w × maxi=1,...,p |Si| + maxi=1,...,p ||Si||) where ci

r/w is the cost of wri-
ting/reading a page of data from disk.

In addition, the local fragments AGGRx,z
f ,u(Si)i=1,...,p of blocks Si are created,

on the fly, while scanning relation Si in parallel, on each processor i,
by applying the aggregate function f on every group of tuples having
identical values of the couple of attributes (x, z). At the same time, the
local histograms Histx,y(Ri)i=1,...,p are also created.
In principle, this phase costs :

Timephase1 = O
(

ci
r/w × max

i=1,...,p
(|Ri| + |Si|) + max

i=1,...,p
(||Ri|| + ||Si||)

)

.

Phase 2 : Creating the histogram of R ⋊⋉ S
The first step, in this phase, is to create the histograms Histx

i (R)
and Histx

i (S). To this end, each processor i partitions the local histo-
grams Histx(Ri) and Histx(Si) into p partitions Histx[j](Ri)(j = 1, . . . , p)

and Histx[j](Si)(j = 1, . . . , p) using a hash function. We can see that
Hist(Ri) = ∪

p
j=1Histx[j](Ri) and Hist(Si) = ∪

p
j=1Histx[j](Si). Then, each
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processor i sends to each other processor j a fragment Histx[j](Ri) (resp.
Histx[j](Si)) of Histx(Ri) (resp. Histx(Si)). After redistributing these par-
titions, each processor i merges the messages it received to constitute
Histx

i (R) and Histx
i (S). While merging, each processor i also retains a

trace of the network layout of the values v of the attribute x in its Histx
i (R)

(resp. Histx
i (S)) : this is nothing but the collection of messages it has

just received. This information will help in forming the communication
templates in phase 3.

The cost of redistribution and merging step is (cf. proposition 1 of
Appendix A) :

Timephase2.a = O
(

min
(

g × |Histx(R)|+||Histx(R)||, g ×
|R|
p

+
||R||

p

)

+ min
(

g × |Histx(S)| + ||Histx(S)||, g ×
|S|
p

+
||S||

p

)

+ l
)

,

where g is the BSP communication parameter and l the cost of a barrier
of synchronization.

We recall that, in the above equation, for a relation T ∈ {R, S}, the
term min(g × |Histx(T)| + ||Histx(T)||, g × |T|

p + ||T||
p ) is the necessary time

to compute Histx
i=1,...,p(T) starting from the local histograms Histx(Ti)i=1,...,p.

The histogram Histx
i (R ⋊⋉ S) 3 is then computed on each processor i.

Histx
i (R ⋊⋉ S) holds for each value v of the join attribute x belonging to

both Histx
i (R) and Histx

i (S) the couple (v, Histx
i (R)(v) × Histx

i (S)(v)) in
time :

Timephase2.b = O
(

max
i=1,...,p

(

min(||Histx
i (R)||, ||Histx

i (S)||)
)

)

.

The total cost of this phase is :

Timephase2 =Timephase2.a + Timephase2.b =

O
(

min
(

g × |Histx(R)|+||Histx(R)||, g ×
|R|
p

+
||R||

p

)

+ min
(

g × |Histx(S)| + ||Histx(S)||, g ×
|S|
p

+
||S||

p

)

+ max
i=1,...,p

(

min(||Histx
i (R)||, ||Histx

i (S)||)
)

+ l
)

.

Phase 3 : Data redistribution

In order to reduce the communication cost, only tuples of Histx,y(R)

and AGGRx,z
f ,u(S) that will be present in the join result will be redistributed.

These are the tuples of the semi-joins : Hist
x,y
i (R) = Histx,y

i (R) ⋉ Histx(R ⋊⋉

S) and AGGR
x,z
f ,u(Si) = AGGRx,z

f ,u(Si) ⋉ Histx(R ⋊⋉ S) for i = 1, . . . , p.
Hist

x,y
i (R) and AGGR

x,z
f ,u(Si) are computed in step (3.a) without the need to

duplicate Histx(R ⋊⋉ S) on all the processors. Then, they are redistributed
in step (3.b) to compute the final result.

3The size of Hist(R ⋊⋉ S) ≡ Hist(R) ∩ Hist(S) is generally very small compared to
|Hist(R)| and |Hist(S)| because Hist(R ⋊⋉ S) contains only values that appears in both
relations R and S.
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3.a Computing Hist
x,y

(Ri) and AGGR
x,z
f ,u(Si) :

To this end, we first compute on each processor j the intersections :

Hist
x[j]

(Ri) = Histx[j](Ri) ∩ Histj(R ⋊⋉ S)

and
Hist

x[j]
(Si) = Histx[j](Si) ∩ Histj(R ⋊⋉ S)

for i = 1, . . . , p, where Histx[j](Ri) (resp. Histx[j](Si)) is the fragment of
Histx(Ri) (resp. Histx(Si)) which was sent by processor i to processor j
in the second phase. The cost of this step is :

O(∑
i
||Histx[j](Ri)|| + ∑

i
||Histx[j](Si)||).

We recall that, ∑i ||Histx[j](Ri)|| ≤ min(||Histx(R)||, ||R||p ), and

∑i ||Histx[j](Si)|| ≤ min(||Histx(S)||, ||S||p ). Thus, the total cost of this compu-
tation step is :

O
(

min
(

||Histx(R)||,
||R||

p

)

+ min
(

||Histx(S)||,
||S||

p

)

)

.

Now, each processor j sends each fragment Hist
x[j]

(Ri) (resp. Hist
x[j]

(Si))
to processor i (i = 1, . . . , p and , j 6= i). The cost of sending these fragments
from each processor j to all the other processors is at most of the order :

O
(

g ×
(

min
(

|Hist
x
(R)|,

|R|
p

)

+ min
(

|Hist
x
(S)|,

|S|
p

)

)

)

.

On the other hand, each processor i receives ∑j |Hist
x[j]

(Ri)| +

∑j |Hist
x[j]

(Si)| pages of data from the other processors. In fact,

|Hist
x
(Ri)| = ∑j |Hist

x[j]
(Ri)|. Thus, the cost of receiving these fragments,

on each processor i, is of the order :

O
(

g ×
(

|Hist
x
(Ri)| + |Hist

x
(Si)|

)

)

.

Therefore, the total cost of this communication stage is at most :

O
(

g ×
(

min
(

|Hist
x
(R)|,

|R|
p

)

+ min
(

|Hist
x
(S)|,

|S|
p

)

)

+ l

)

,

since ∑i ||Hist
x[j]

(Ri)|| ≤ min(||Hist
x
(R)||, ||R||p ) and ∑i ||Hist

x[j]
(Si)|| ≤

min(||Hist
x
(S)||, ||S||p ).

Remark 4 ∪j Hist
x[j]

(Ri) is simply the intersection of Histx(Ri) and the histogram Histx(R ⋊⋉ S)

which will be noted :

Hist
x
(Ri) = ∪j Hist

x[j]
(Ri) = Histx(Ri) ∩ Histx(R ⋊⋉ S).

Hence Hist
x
(Ri) is only the restriction of the fragment of Histx(Ri) to values

which will be present in the join of the relations R and S (this also applies to
Hist

x
(Si)).
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Now, each processor i evaluates Hist
x,y

(Ri) and AGGR
x,z
f ,u(Si), where

Hist
x,y

(Ri) = Histx,y(Ri) ∩ Hist
x
(Ri)

and
AGGR

x,z
f ,u(Si) = AGGRx,z

f ,u(Si) ∩ Hist
x
(Si).

The cost of this step is of the order :

O
(

max
i=1,...,p

(

||Histx,y(Ri)|| + ||AGGRx,z
f ,u(Si)||

)

)

,

which is the necessary time to traverse all the tuples of Histx,y(Ri) and
AGGRx,z

f ,u(Si) and access Hist
x
(Ri) and Hist

x
(Si) respectively, on each pro-

cessor i.

Therefore, the total cost of step 3.a is of the order :

Timephase3.a = O
(

min
(

||Histx(R)||,
||R||

p

)

+ min
(

||Histx(S)||,
||S||

p

)

+

g ×
(

min
(

|Hist
x
(R)|,

|R|
p

)

+ min
(

|Hist
x
(S)|,

|S|
p

)

)

+

max
i=1,...,p

(

||Histx,y(Ri)|| + ||AGGRx,z
f ,u(Si)||

)

+ l

)

.

3.b. Redistributing the tuples of Hist
x,y

(Ri) and AGGR
x,z
f ,u(Si) :

Now, each processor i distributes the tuples of Hist
x,y

(Ri) and
AGGR

x,z
f ,u(Si). After distribution, all the tuples of Hist

x,y
(Ri) and

AGGR
x,z
f ,u(Si) having the same values of the join attribute x are stored

on the same processor. So, each processor i merges the blocks of data
received from all the other processors in order to create Hist

x,y
i (R) and

AGGR
x,z
f ,u,i(S).

The cost of distributing and merging the tuples is of the order (cf. propo-
sition 1 of Appendix A) :
Timephase3.b =

O
(

min
(

g × |Hist
x,y

(R)| + ||Hist
x,y

(R)||, g ×
|R|
p

+
||R||

p

)

+ min
(

g × |AGGR
x,z
f ,u(S)| + ||AGGR

x,z
f ,u(S)||, g ×

|S|
p

+
||S||

p

)

+ l
)

,

where the terms :

min
(

g × |Hist
x,y

(R)| + ||Hist
x,y

(R)||, g ×
|R|
p

+
||R||

p

)

and
min

(

g × |AGGR
x,z
f ,u(S)| + ||AGGR

x,z
f ,u(S)||, g ×

|S|
p

+
||S||

p

)

represent the necessary time to compute Hist
x,y
i (R) and AGGR

x,z
f ,u,i(S)

starting from Hist
x,y

(Ri) and AGGR
x,z
f ,u(Si) respectively.



The GBJFA-Join algorithm 75

The total cost of the redistribution phase is :

Timephase3 = O
(

min
(

g × |Hist
x,y

(R)| + ||Hist
x,y

(R)||, g ×
|R|
p

+
||R||

p

)

+

min
(

g × |AGGR
x,z
f ,u(S)| + ||AGGR

x,z
f ,u(S)||, g ×

|S|
p

+
||S||

p

)

+

min
(

||Histx(R)||,
||R||

p

)

+ min
(

||Histx(S)||,
||S||

p

)

+

max
i=1,...,p

(

||Histx,y(Ri)|| + ||AGGRx,z
f ,u(Si)||

)

+ l
)

.

We mention that we only redistribute Hist
x,y

(Ri) and AGGR
x,z
f ,u(Si) and

their sizes are generally very small compared to |Ri| and |Si| respectively.
In addition, the size of |Histx(R ⋊⋉ S)| is generally very small compared to
|Histx(R)| and |Histx(S)|. Thus, we highly reduce the communication cost.

Phase 4 : Global computation of the aggregate function

In this phase, we compute the global aggregate function on each processor
using algorithm 10. In this algorithm, AGGRx,y,z

f ,u,i (R ⋊⋉ S) holds the final
result on each processor i. The tuples of AGGRx,y,z

f ,u,i (R ⋊⋉ S) have the form
(x, y, z, v) where v is the result of the aggregate function.

The cost of this phase is : O
(

maxi=1,...,p ||AGGRx,y,z
f ,u,i (R ⋊⋉ S)||

)

, because
the combination of the tuples of Hist

x,y
i (R) and AGGR

x,z
f ,u,i(S) is performed

to generate all the tuples of AGGRx,y,z
f ,u,i (R ⋊⋉ S).

Algorithm 10: Join and local aggregate function computation.
⊲ Par (on each node in parallel) i = 1, ..., p
⊲ AGGRx,y,z

f ,u,i (R ⋊⋉ S) = NULL /*Create a B-tree to store histogram’s entries.*/

⊲ for each tuple t of relation Hist
x,y
i (R) do

⊲ f req = Hist
x,y
i (R)(t.x, t.y)

⊲ for each entry (t.x, z, v1) ∈ AGGR
x,z
f ,u,i(S)(t.x, z) do

Insert a new tuple (t.x, t.y, z, Ff ( f req, v1)) into AGGRx,y,z
f ,u,i (R ⋊⋉ S) ;

EndFor
EndFor

EndPar
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Tab. 4.1 – Computing resource characteristics
Cluster CPU CPUs Cores Memory Storage

ID Speed (GHz) per node per CPU (GB)
3 2.33 2 2 4 160 GB / SATA

The global cost of evaluating the "GroupBy-Join" queries, when the
join attribute is part of the group-by attribute, using GBJFA-join algorithm
is of the order :

Timetotal = O
(

ci
r/w × max

i=1,...,p
(|Ri| + |Si|) + max

i=1,...,p
(||Ri|| + ||Si||)+

+ min(g × |Histx(R)| + ||Histx(R)||, g ×
|R|
p

+
||R||

p
)

+ min(g × |Histx(S)| + ||Histx(S)||, g ×
|S|
p

+
||S||

p
)

+ min
(

g × |Hist
x,y

(R)| + ||Hist
x,y

(R)||, g ×
|R|
p

+
||R||

p

)

+ min
(

g × |AGGR
x,z
f ,u(S)| + ||AGGR

x,z
f ,u(S)||, g ×

|S|
p

+
||S||

p

)

+ max
i=1,...,p

(

||Histx,y(Ri)|| + ||AGGRx,z
f ,u(Si)||

)

+ max
i=1,...,p

||AGGRx,y,z
f ,u,i (R ⋊⋉ S)|| + l

)

.

4.4 Performance Evaluation

In order to validate our theoretical predictions, we implemented GAJFA-
Join and GBJFA-Join algorithms on a Shared Nothing machine formed of
30 processors using MySQL-5.0.26-log database server and MPI-2 as a
Message Passing Interface for communications. The characteristics of the
nodes is shown in table 4.1. In the sensitivity analysis presented in this
section, the performance of GAJFA-Join algorithm used when the Group
By and join attributes are different is compared to the Join Partition Method
(JPM) presented in section 3.2.2. In the second case, i.e. when the join attri-
bute is part of the Group By attributes, we compared the performance of
GBJFA-Join algorithm to that of Early Distribution Scheme (EDS) presented
in section 3.2.2.
The skew in the frequencies of the Join Attribute Values (AVS) is an im-
portant factor that may affect the performance of the parallel database
algorithms. Hence, to study the effect of the AVS on the performance of
both algorithms, we used the Zipf (Zipf 1949, Christodoulakis 1984, Lu and
Tan 1992) model to determine the frequencies of the join attribute values.
Using this model, in a relation R with a domain {1, 2, . . . , D} of distinct
values for its join attribute, the ith distinct value has a number of tuples
given by the following expression :

‖vi‖ =
‖R‖

iz × ∑
D
j=1

1
jz
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where z is the skew factor. When z = 0 the distribution is uniform and
when z ≥ 1 it becomes highly skewed.

We have measured the JPS as the percentage of the maximum deviation
of the local join result size with respect to the average over all processors.

4.4.1 Speed-up test

To perform the speed-up test of both algorithms, we varied the number of
processors from 1 to 30.

Group By and Join attributes are different

We used two relations formed of 3 × 106 and 2 × 106 tuples and the Zipf
factor was fixed to 0.6 and 1 respectively. The final result was formed
of approximately 731 × 103 groups. Figure 4.12 shows that our algorithm
outperforms the Join Partition Method (JPM) even for this low value of
skewness.
The difference in the performance of the two algorithms is due to the
following reasons :

– In JPM algorithm all the tuples of the base relations are redistributed
even if they do not participate in the join operation. In the contrary,
in our algorithm, we partially apply the aggregate functions on the
base relations in the first phase, hence decreasing their sizes. After
that only the tuples of the aggregated relations that effectively ap-
pear in the join result will be redistributed. So, the communication
cost is highly reduced.

– In JPM, the result of the join operation is materialized before ap-
plying the aggregate and the group-by operations which results in
high input/output costs. This is not the case in our algorithm where,
in phase 5, we locally compute the aggregate function on each pro-
cessor without fully materializing the intermediate results of the join
operation.

In the figure 4.12, we can see that GAJFA-Join algorithm has a super-linear
speedup. This is due to the fact that increasing the number of nodes also
increases the size of the accumulated caches. So, the data buckets to be
joined can fit into caches, especially that in GAJFA-Join algorithm only
the tuples that are present in the join result are redistributed between the
processors. This results in decreasing the access costs to the disks and thus
the query computation time.

To compute the final result, in both algorithms, we send the tuples
of the intermediate join result having the same values of the group by
attributes to the same processor. Thus, the sizes of the final result on each
processor is similar in both algorithms. However, as we stated above, an
important point in GAJFA-Join algorithm is that we partially apply the
aggregate function before join computation and that we do not materialize
the join result. This can be seen in table 4.2 that shows the average size of
join result of both algorithms. This helps in decreasing the communication
and disk input/output costs.
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Fig. 4.12 – Speedup performance of GAJFA-Join algorithm.

Number of processors 5 10 15 20 25 30

GAJFA-join 147609 73889 49276 36965 29573 24645

average join result
JPM 3258419 1629209 1086139 814604 651683 543069

average join result

Tab. 4.2 – GAJFA-join average size of intermediate join results (expressed in number of
tuples).

Join attribute is part of the Group By attributes

Here, we used two relations formed of 106 and 4 × 106 tuples and the Zipf
factor was also fixed to 0.6. The final result was formed of 88524 groups.
As we can see in figure 4.13, our algorithm outperforms EDS algorithm
even for this low value of skewness.
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Fig. 4.13 – Speedup performance of GBJFA-join algorithm.

Table 4.3 shows that the size of the intermediate join result size in GBJFA-
Join algorithm is very small compared to that of EDS algorithm.

4.4.2 The Effect of Attribute Value Skew (AVS) test

In this test, we study the effect of the AVS on the performance of the
algorithms. So, we fixed the number of processors to 30 and we varied
the skew factor in one relation between 0 and 1.8. We can see in figures
4.14 and 4.15 that the performance of our algorithms is not affected by
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Number of processors 5 10 15 20 25 30

GBJFA-join 17704 8852 5901 4426 3540 2950

average join result
EDS 800023 400011 266674 200005 160004 133337

average join result

Tab. 4.3 – GBJFA-join average size of intermediate join results (expressed in number of
tuples).

the AVS factor, which is not the case of JPM and EDS algorithms whose
performance rapidly degrades when the AVS factor is increased.

0
5

10
15
20
25
30
35
40
45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8Jo
in

co
m

p
u

ta
ti

o
n

ti
m

e
(s

e
c)

AVS : Zipf parameter

GAJFA_Join_time

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆

JPM_time

r r r r r

r r

r

r

r

r

Fig. 4.14 – The effect of AVS on GAJFA-Join algorithm.

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8Jo
in

co
m

p
u

ta
ti

o
n

ti
m

e
(s

e
c)

AVS : Zipf parameter

GBJFA_Join_time

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆

EDS_time

r r r r r

r

r

r

r

r

r

Fig. 4.15 – The effect of AVS on GBJFA-Join algorithm.

4.5 Conclusion

In this chapter, we presented GBJFA-Join and GAJFA-Join algorithms used
to compute "GroupBy-Join" queries in a distributed architecture. GAJFA-
Join algorithm is used when the group-by and join attributes are not the
same and GBJFA-Join algorithm when they are the same. These algorithms
can be used efficiently to reduce the execution time of the query, because
we do not materialize the costly join operation which is a necessary step
in all the other algorithms presented in the literature for treating this type
of queries, thus reducing the Input/Output cost. They also help us to
balance the load of all the processors even in the presence of AVS and
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to avoid the JPS which may result from computing the intermediate join
results. In addition, the communication cost is highly reduced owing to
the fact that only histograms and the results of semi-joins are redistributed
across the network where their size is very small compared to the size of
input relations.

The BSP cost analysis and the implementation results assure that our
algorithms have a near optimal linear complexity even for highly skewed
data.
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The fast development of network technologies made the execution of
parallel programs on distributed systems that connect heterogeneous

machines feasible. However, we still face some challenges : Workload im-
balance, in such environment, may not only be due to uneven load dis-
tribution among machines, as in parallel systems, but also due to distri-
bution that is not adequate with the characteristics of each machine. In
this chapter, we present DFA-Join : a new parallel join algorithm for hete-
rogeneous distributed architectures based on a dynamic data distribution
and task allocation. This makes it insensitive to data skew and ensures
perfect balancing properties during all stages of join computation. The
performance of this algorithm is analyzed using the scalable and portable
BSP (Bulk Synchronous Parallel) cost model. We show that DFA-Join al-
gorithm guarantees optimal complexity and near linear speed-up while

81
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highly reducing the communication cost. A pipelined version of this al-
gorithm, called PDFA-Join, is also proposed to evaluate complex queries
involving multi-join operations on heterogeneous distributed systems.



5.1. Introduction 83

5.1 Introduction

In this chapter, we propose and present the performance results of DFA-
Join algorithm: a Dynamic Frequency Adaptive parallel algorithm to
evaluate join operations on heterogeneous distributed systems. In this
algorithm, we balance the load between processors in a manner that no
processor, in the system, may be idle while other processors are overloa-
ded even in the presence of highly skewed data. To this end, we use a
two-step (static and dynamic) load assignment approach. In the first static
step, each processor receives a number of buckets whose total join size is
proportional to its actual capacity. Then, during the join phase, overloaded
processors forward some of the non-treated buckets in their local buffers
to underloaded processors. This combination of static and dynamic ap-
proach allows us to efficiently handle the effect of AVS, on heterogeneous
systems, in a manner to get approximately the same processing time on
all processors. We can also control the join product skew using a thre-
shold value, where an idle processor does not accept additional load if its
local join result size is greater then the given threshold. In addition, we
use fully distributed histograms to find the tuples that participate in the
result of the join operation. Then, only these tuples are redistributed, thus
the communication cost is highly decreased. It is proved in (Bamha and
Hains 2005; 1999), using the BSP cost model, that histogram management
has a negligible cost when compared to the gain it provides in reducing
the communication cost and balancing load between processors. The per-
formance of our algorithm is analyzed using the BSP cost model which
shows that it guarantees optimal performance even for highly skewed
data on heterogeneous distributed multi-processor architectures. These
results were confirmed by a series of tests.

We also present, in this chapter, PDFA-Join algorithm: a Pipelined version
of DFA-join algorithm for treating complex queries leading to multi-joins.
We also analyze the performance of PDFA-Join algorithm using BSP cost
model.

DFA-Join algorithm is published in (Hassan and Bamha 2009b). PDFA-Join
algorithm is published in (Hassan and Bamha 2008) and an extended and
revised version of this paper is published in (Hassan and Bamha 2009a).

5.2 The DFA-join Algorithm : Evaluating Join Queries

on Heterogeneous Distributed Systems

In this section, we describe in detail the steps of DFA-join (Dynamic
Frequency Adaptive join) (algorithm 11) : a new parallel algorithm for
processing join operation on heterogeneous distributed systems for-
med of p processors having different characteristics of memory, disk
Input/Output speed, CPU power, etc. We assume that the relations to
be joined (R and S) are partitioned among processors by horizontal frag-
mentation. To ensure the extensibility of the algorithm, the processors are
partitioned into disjoint sets. Each set (group) of processors has a desi-
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gned local coordinator node responsible of balancing the load between
processors in the group. If a set of processors finishes its assigned tasks be-
fore the other sets, then it may ask them to transfer to it some of their load.

Algorithm 11: Parallel DFA-Join computation steps to evaluate the
join of R and S.

In Parallel (on each processor) i ∈ [1, p] do
1◮ Create the local histogram Histx(Ri) of relation Ri and, on the fly,

hash the tuples of relation Ri into different buckets according
to the values of the join attribute,

⊲ Create the local histogram Histx(Si) of relation Si and, on the fly,
hash the tuples of relation Si into different buckets according
to the values of the join attribute,

2◮ Hash the local histogram, Histx(Ri), to create global histogram’s
fragment, Histx

i (R), of relation R on each processor i,
⊲ Hash the local histograms, Histx(Si), to create global histogram’s

fragment, Histx
i (S), of relation S on each processor i,

⊲ Merge Histx
i (R) and Histx

i (S) to create join histogram’s
fragment, Histx

i (R ⋊⋉ S), by intersecting Histx
i (R) and

Histx
i (S) on each processor i,

3◮ The coordinator node determines the load of each node based
on the global join result size and the node’s processing capacity,

⊲ Create communication templates for only tuples participating
to final join result,

⊲ Filter generated buckets to create tasks to be executed on each
processor according to its capacity,

4◮ Exchange data bucket according to communication templates,
5◮ Execute join tasks (of each bucket) on each processor, and

store the join result on local disk.
Loop until no task to execute

⊲ Ask a local head node for jobs from overloaded processors,
⊲ Steal a job from a designated processor and execute it,
⊲ Store the join result on local disk.

End Loop
EndPar

DFA-Join Algorithm can be divided into the following five phases
where we use the same notations used in chapter 4 (page 54).

Phase 1. Creating local histograms :
In this phase, we create in parallel, on each processor i, the local histo-

gram Histx(Ri) (resp. Histx(Si)) (i = 1, . . . , p) of block Ri (resp. Si) by a linear
traversal of Ri (resp. Si) in time max

i=1,...,p
(ci

r/w × |Ri|) + max
i=1,...,p

(γi × ||Ri||) (resp.

max
i=1,...,p

(ci
r/w × |Si|) + max

i=1,...,p
(γi × ||Si||)) where ci

r/w is the cost to read/write

a page of data from/to disk on processor i and γi is the time needed for
executing one operation on processor i.
The cost of this phase is :

Timephase1 = O
(

max
i=1,...,p

ci
r/w × (|Ri| + |Si|) + max

i=1,...,p
γi × (||Ri|| + ||Si||)

)

.

During this step, the fragments of Ri (resp. Si) are partitioned into mul-
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tiple buckets using a hash function. If the generated buckets cannot fit into
the available memory, then they are written to disks and the above process
can be applied on each bucket without any memory shortage.

In practice, the extra cost related to the creation of local histograms is
negligible because these histograms are computed on the fly during the
step of the generation of relation’s buckets.

Phase 2. Computing global histogram fragments :
In order to minimize local join’s computation and communication

costs, only tuples that participate in the final join result will be redis-
tributed. These are the tuples of the local semi-joins Ri = Ri ⋉ S (resp.
Si = Si ⋉ R) on each processor i. To compute these semi-joins, we proceed
by applying the following steps :

a. Creating Histx
i (R) and Histx

i (S) of relations R and S :
We firstly compute the fragments of global histograms Histx

i (R) and
Histx

i (S) by redistributing the tuples of the computed local histograms
using a hash function. We use the following strategy for distributing the
tuples in order to respect the processing capacity of each processor. Firstly,
Histx(Ri) (resp. Histx(Si)) are partitioned, in parallel on each processor,
into multiple number of buckets using a hash function. The number of
used buckets is bigger than the number of employed processors. Then,
these buckets are distributed over processors according to their processing
capacities where processors with higher capabilities receive more buckets
than other processors.
We note by Histx[j](Ri) (resp. Histx[j](Si)) the fragment of Histx(Ri) (resp.
Histx(Si)) that will be sent to processor j from processor i. It is important
to mention here that the same hash function must be used for partitioning
Histx

i (R) and Histx
i (S), and that created buckets holding the same index

for both histograms must be sent to the same processor.
As we stated in remark 1 of page 33, using hash functions to redistribute
data may cause load imbalance on processors. However, this does not
arise here owing to the fact that histograms contain only distinct values
of the join attribute.

The cost of this step is :

Timephase2.a = O
(

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(R)| + γi × ||Histx(R)||
)

,

max
i=1,...,p

ωi ×
(

g × |R| + γi × ||R||
)

)

+

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(S)| + γi × ||Histx(S)||
)

,

max
i=1,...,p

ωi ×
(

g× |S|+ γi × ||S||
)

)

+ l
)

,

where ωj is the fraction of the total volume of data assigned to processor

j such that ωj =
1

γj

∑
p
k=1

1
γk

, γj is the execution time of one operation on

processor j, g is the BSP communication parameter and l the cost of syn-
chronization (you can review proposition 1 of appendix A for the proof of
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this cost).

b. Creating Histx
i (R ⋊⋉ S) on each processor i :

Now, we can easily create Histx
i (R ⋊⋉ S) in time of order :

Timephase2.b = O
(

max
i=1,...,p

(

γi × min(||Histx
i (R)||, ||Histx

i (S)||)
)

)

.

While creating Histx
i (R ⋊⋉ S), we also store for each value v ∈ Histx

i (R ⋊⋉ S)

an extra information index(v) ∈ {LF, HF} such that :
{

index(v) = HF if Histx(R)(v) ≥ fo or Histx(S)(v) ≥ fo,
index(v) = LF elsewhere (i.e. values associated to low frequencies).

In this algorithm, the value of fo is set to po × log(po), where po is the
maximum number of processor in a cluster.
During this step, each processor i also retains a trace of the network layout
of values v in its Histx

i (R) (resp. Histx
i (S)). This will be useful in the phase

of creating the communication templates.

c. Finding join attribute values of Histx[j](Ri) and Histx[j](Si) participating to the
join result on each processor j :

Now, we need to determine, on each processor j, the values v of the
join attribute in each partition Histx[j](Ri) (resp. Histx[j](Si)) that will be
present in the join result.
So, we compute, on each processor j, the intersections :

– Hist
x[j]

(Ri) = Histx[j](Ri)
⋂

Histx
j (R ⋊⋉ S) for i = 1, . . . , p and

– Hist
x[j]

(Si) = Histx[j](Si)
⋂

Histx
j (R ⋊⋉ S) for i = 1, . . . , p,

in time of order :

O
( p

max
j=1

(

γj ×
p

∑
i=1

||Hist[j]x(Ri)||
)

+
p

max
j=1

(

γj ×
p

∑
i=1

||Histx[j](Si)||
)

)

.

However, due to applying in step a, a hashing function which partitions
the buckets in a manner that takes into consideration the processing capa-
cities of each machine, we have :

{

∑
p
i=1 ||Histx[j](Ri)|| ≤ min(ωj × p × ||Histx(R)||, ωj × ||R||),

∑
p
i=1 ||Histx[j](Si)|| ≤ min(ωj × p × ||Histx(S)||, ωj × ||S||).

Thus, the total cost of this step is :
Timephase2.c = O

(

min
( p

max
i=1

ωi × γi × p × ||Histx(R)||,
p

max
i=1

ωi × γi × ||R||
)

+ min
( p

max
i=1

ωi × γi × p × ||Histx(S)||,
p

max
i=1

ωi × γi × ||S||
)

)

.

d. Distributing Hist
x[j]

(Ri) and Hist
x[j]

(Si) :

In this step, each processor j sends each fragment Hist
x[j]

(Ri) (resp.
Hist

x[j]
(Si)) to processor i. So, the number of data pages received by each

processor i from the other processors is :
p

∑
j 6=i,j=1

|Hist
x[j]

(Ri)| +
p

∑
j 6=i,j=1

|Hist
x[j]

(Si)|.



The DFA-join Algorithm 87

Hence, the cost of this communication step is at most of the order :

O
(

p

∑
j=1

g × |Hist
x[j]

(Ri)| +
p

∑
j=1

g × |Hist
x[j]

(Si)|
)

,

owing to the fact that :

{

Histx(Ri) =
⋃

j Histx[j](Ri) and
|Histx(Ri)| = ∑j |Histx[j](Ri)| ≥ ∑j |Histx[j](Ri)

⋂

Histx(R ⋊⋉ S)|

(this also applies to S), we have |Histx(Ri)| ≥ ∑j |Hist
x[j]

(Ri)| (resp.

|Histx(Si)| ≥ ∑j |Hist
x[j]

(Si)|).
So, the cost of this step is at most :

Timephase2.d = O
(

g ×
( p

max
i=1

|Histx(Ri)| +
p

max
i=1

|Histx(Si)|
)

+ l
)

.

e. Determining tuples of R and S that appear in join result :

Finally, the semi-joins Ri = Ri ⋉ S and Si = Si ⋉ R are computed on
each processor i. The tuples of Ri ⋉ S (resp. Si ⋉ R) are those whose join
attribute values belong to Hist

x
(Ri) (resp. Hist

x
(Si)). Thus, Ri ⋉ S (resp. Si ⋉

R) can be computed, in parallel on each processor i, by a linear traversal
of Ri (resp. Si) and consulting Hist

x
(Ri) (resp. Hist

x
(Si)) in time of order :

O
(

maxi γi × ||Ri|| + maxi γi × ||Si||)
)

.
During semi-join computation step, relation Ri (resp. Si) is divided, on the
fly, into two sub-relations : R

(HF)
i and R

(LF)
i (Ri = R

(HF)
i ∪ R

(LF)
i ) where :

– tuples of R
(HF)
i (resp. S

(HF)
i ) are associated to values v such that

index(v) = HF.
– tuples of R

(LF)
i (resp. S

(LF)
i ) are associated to values v such that

index(v) = LF.
Thus, the global cost of this phase is the sum of the above five steps :
Timephase2 =

O
(

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(R)| + γi × ||Histx(R)||
)

,

max
i=1,...,p

ωi ×
(

g × |R| + γi × ||R||
)

)

+

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(S)| + γi × ||Histx(S)||
)

,

max
i=1,...,p

ωi ×
(

g × |S| + γi × ||S||
)

)

+

max
i=1,...,p

γi × ||Ri|| + max
i=1,...,p

γi × ||Si|| + l
)

.

Phase 3. Creating the communication templates :
In heterogeneous systems, the actual capacity of each machine must

be taken into account while assigning data or tasks to each processor
in order to achieve an acceptable performance. In addition, available
capacities of machines in multi-user systems may rapidly change after
load assignment, and the state of an overloaded processor may rapidly
become underloaded during join computation. Thus, to benefit from the
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processing power of such systems, we must not have idle processors while
others are overloaded throughout all the join computation phase.

To this end, we use a two-step load assignment approach,
– the first step is a static one in which a coordinator node assigns to

each processor a load proportional to its actual capacities,
– the second step is a dynamic one and is executed throughout the

join computation phase. When a processor finishes join processing
of its assigned buckets, it asks its local coordinator node to forward
to it some of untreated buckets on other processors. To ensure the
extensibility of the algorithm, processors are partitioned into disjoint
sets of processors. Each set of processors has a designed local coor-
dinator node. Load is first balanced inside each set of processors and
whenever a set of processors finishes its assigned tasks, it asks the
head node of other set of processors for additional tasks.

The combination of static and dynamic approaches allows us to reduce
the join processing time because, in parallel and distributed systems, the
total executing time is the time taken by the slowest processor to finish its
task.

3.a. Static load assignment step :

In the static load assignment step we compute, in parallel on each pro-
cessor i, the size of the join of all tuples related to values v that belong to
Histx

i (R ⋊⋉ S). This is simply the sum of the frequencies Histx
i (R ⋊⋉ S)(v) for

all values v of the join attribute in Histx
i (R ⋊⋉ S). This value is computed by

a linear traversal of Histx
i (R ⋊⋉ S) in time : O

(

max
i=1,...,p

γi × ||Histx
i (R ⋊⋉ S)||

)

.

After that, all processors send the value ∑
v∈Histx

i (R⋊⋉S)

Histx
i (R ⋊⋉ S)(v) to a

designated coordinator node in time of order O(p × g + l). The coordi-
nator node, in its turn, calculates the total number of tuples in R ⋊⋉ S
(||R ⋊⋉ S||) by respectively computing the sum of values received from all
the processors.
Now, the coordinator node uses the value of ||R ⋊⋉ S|| and the information
related to the available capacities to assign to each processor i a join
volume (voli × ||R ⋊⋉ S||) proportional to its resources where the value of
voli is determined by the head node depending on the actual capacity of

each processor i such that
p

∑
i=1

voli = 1.

3.b. Communication templates creation :

Communication templates are list of messages that constitute the
relations redistribution. Owing to the fact that, attribute values v which
may lead to attribute value skew (AVS) (those having high frequencies :
index(v) = HF ) are also those which may cause join product skew (JPS) in
standard hash algorithms. These values need a special treatment. However
tuples associated to values with low frequencies (i.e. index(v) = LF) do
not have effect neither on AVS nor on JPS. So, these tuples will be simply
hashed into buckets in their source processors using a hash function and
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their treatment will be postponed to the dynamic phase.

To avoid the effect of AVS and JPS, we partition the histogram Histx
i (R ⋊⋉

S), on each processor i, into two sub-histograms : Hist(HF)x
i (R ⋊⋉ S) and

Hist(LF)x
i (R ⋊⋉ S) such that :
– v ∈ Hist(HF)x

i (R ⋊⋉ S) if index(v) = HF i.e. join attribute value with
high frequency in relation R or S,

– v ∈ Hist(LF)x
i (R ⋊⋉ S) if index(v) = LF i.e. join attribute value with

low frequency in both relations R and S.
This partitioning step is performed, while computing ∑v Histx

i (R ⋊⋉ S)(v)

in step 3.a, in order to avoid reading the histogram two times.

We can start now by creating the communication templates which are
computed, in a first time, on each processor i for only values v in
Histx

i (R ⋊⋉ S) such that the total join size related to these values is in-
ferior or equal to voli × ||R ⋊⋉ S|| starting from the value that generates the
highest join result and so on. Each processor creates order messages for data
redistribution as follows : For each value v in Histx

i (R ⋊⋉ S), processor i
creates communicating messages order_to_send(j, i, v) asking each pro-
cessor j that holds tuples of R or S having values v for the join attribute
to send them to it. If the processing capacity of a processor i does not
allow it to compute the join result associated to all values v of the join
attribute in Histx

i (R ⋊⋉ S) 1, then it will not ask the source processors j
holding the remaining values v to redistribute their associated tuples but
to partition them into buckets using a hash function and save them locally
for further join processing step in the dynamic phase. Hence, it sends
an order_to_save(j,v) message for each processor j holding tuples having
values v of the join attribute.
For very special cases where the size of the join result related
to a join attribute value v is greater than voli × ||R ⋊⋉ S||, pro-
cessor i sends to each processor j holding tuples related to v an
order_to_partition(j, i, rel_index, vol, v) message. Here, rel_index repre-
sents the relation with the highest frequency of v and vol represents the
number of tuples related to v that processor i can receive. These messages
will be treated by the destination nodes in the redistribution phase.
If Proc(v) is the number of processors holding tuples having value v for
the join attribute, then we need to create ∑v∈Hist(HF)x

i (R⋊⋉S)
Proc(v) on each

processor i. Thus, the maximal complexity of creating the communication
templates is of the order :

O( max
i=1,...,p

γi × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v)).

After creating the communication templates, on each processor i,
messages : order_to_send(j, i, .), order_to_save(j, .) and order_to_partition(j, ., ., .)
are sent to their destination processors j when j 6= i in time :

O
(

max
i=1,...,p

g × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v) × |order_messages| + l
)

,

1This is the case if voli × ||R ⋊⋉ S|| < ∑v Histi(R ⋊⋉ S)(v) on processor i.
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where |order_message| is the maximum size of the above three order mes-
sages.
So, the total cost of this step is :

Timephase3.b = O
(

max
i=1,...,p

γi × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v)+

max
i=1,...,p

g × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v) × |order_messages| + l
)

.

3.c. Task generation step :

After creating the communication templates, each processor i obeys
the communication order messages that it has just received. So, tuples
that must be sent to each processor are partitioned into multiple number
of buckets greater than p using a hash function. Hashing data assigned to
a processor into multiple number of buckets facilitates task reallocation in
the join phase (phase 5) from overloaded to idle processors. In addition,
each processor i partitions tuples whose join attribute value is indicated

in the order_to_save() messages or those of R
(LF)x
i (resp. S

(LF)x
i ) into bu-

ckets using the same hash function on all the processors. However, these
buckets will be kept for the moment in their source processors and their
redistribution and join processing operations will be postponed till the
dynamic phase.
In the presence of order_to_partition(j, i, rel_index, vol, .) messages, proces-
sor j partitions tuples of relation rel_index associated to v into po buckets
using Round-Robin partitioning. Then, processor j sends to processor i
one or more buckets of the po buckets whose size is bounded by vol. The
treatment of the remaining buckets is postponed until an idle processor
asks for additional tasks. However, to obtain a valid join result, a copy of
all the tuples related to v of the other relation must be sent to processor i
and to each processor that will treat one (or more) of these p buckets.
The cost of this step is :

Timephase3.c = O
(

max
i=1,...,p

γi × (||Ri|| + ||Si||)
)

.

The global cost of this phase is the sum of the above three steps :
Timephase3 =

O
(

max
i=1,...,p

γi × ||Histi(R ⋊⋉ S)|| + max
i=1,...,p

γi × (||Ri|| + ||Si||) + p × g + l+

max
i=1,...,p

γi × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v)+

max
i=1,...,p

g × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v) × |order_messages|
)

.

Phase 4. Redistribution phase :
After the partition step, the buckets are sent to their destination proces-
sors. It is important to mention here that only tuples of R and S that
effectively participate in the join result will be redistributed. So, each pro-
cessor i receives a fragment Ri (resp. Si ) of R (resp. S). This fragment is
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expected to be balanced using our redistribution strategy. We recall that
maxi ||Ri|| ≤ voli × ||R ⋊⋉ S|| and maxi ||Si|| ≤ voli × ||R ⋊⋉ S||. Therefore, in
this algorithm, the communication cost is highly reduced and is of the
order :

Timephase4 = O
(

g × max
i=1,...,p

(

|Ri| + |Si|
)

+ l
)

.

Phase 5. Join computation phase :
Buckets received by each processor are arranged in a queue. Each

processor executes successively the join operation of its waiting buckets.
If a processor finishes computing the join related to its local data and the
overall join operation is not finished, it sends to the local coordinator node
a message asking for more work. Hence, the local coordinator node will
assign to this idle processor some of the buckets related to join attribute
values that were not redistributed earlier in the static phase. However, if
all these buckets are already treated, the head node checks the number
of untreated buckets in the queue of the other processors, and it asks the
processor that has the maximal number of untreated buckets to forward a
part of them to the idle one. The number of sent buckets must respect the
capacity of the idle processor. The cost of local join computation is :

Timelocal_join = O
( p

max
i=1

(

ci
r/w × (|Ri| + |Si| + voli × |R ⋊⋉ S|)+

ti
h × ||Ri|| + ti

s × ||Si||
)

)

,

where ti
s is the time needed to search for an entry in the hash table and

ti
h is the time needed to add an entry to the hash table.

The global cost of join computation of two relations R and S using DFA-
Join algorithm is :
TimeDFA−join =

O
(

max
i=1,...,p

ci
r/w × (|Ri| + |Si|) + max

i=1,...,p
γi ×

(

||Ri|| + ||Si||
)

+ g × max
i=1,...,p

(

|Ri| + |Si|
)

+

max
i=1,...,p

(

ci
r/w × (|Ri| + |Si| + voli × |R ⋊⋉ S|) + ti

h × ||Ri|| + ti
s × ||Si||

)

+

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(R)| + γi × ||Histx(R)||
)

,

max
i=1,...,p

ωi ×
(

g × |R| + γi × ||R||
)

)

+

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(S)| + γi × ||Histx(S)||
)

,

max
i=1,...,p

ωi ×
(

g × |S| + γi × ||S||
)

)

+

max
i=1,...,p

γi × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v)+

max
i=1,...,p

g × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v) × |order_messages| + l
)

.

Remark 5 Sequential evaluation of the join of two relations R and S, on processor i, requires at
least the following lower bound (the time to scan the input relations and to store
the join result) :

boundin f1 = Ω
(

ci
r/w × (|R| + |S| + |R ⋊⋉ S|) + ti

h × ||R|| + ti
s × ||S||

)

.
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Tab. 5.1 – Computing resource characteristics

Cluster CPU CPUs Cores Memory Storage
ID Speed (GHz) per node per CPU (GB)
1 2.5 2 4 32 320 GB / SATA II
2 2.33 2 1 8 2x300 GB Raid0 / SATA
3 2.33 2 2 4 160 GB / SATA

Therefore, parallel join processing on p heterogeneous processors requires :

boundin fp = Ω
( p

max
i=1

(

ci
r/w × ωi × (|R| + |S| + |R ⋊⋉ S|)+

ωi × (ti
h × ||R|| + ti

s × ||S||)
)

.

DFA-Join algorithm has optimal asymptotic complexity when :

p
max
i=1

∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v) × |order_messages|

≤
p

max
i=1

(

ci
r/w × ωi × max(|R|, |S|, |R ⋊⋉ S|)

)

,

this is due to the fact that all other terms in TimeDFA−join are bounded by those
of boundin fp . The above inequality holds since we have :

p
max
i=1

∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v) × |order_messages| ≤
p

max
i=1

ωi × |R ⋊⋉ S|,

when the chosen threshold frequency fo is greater than po which is the maximum
number of processors in each cluster (this is case for our threshold frequency
fo = po × log(po)).

5.3 DFA-Join Performance Evaluation

We compared the performance of DFA-Join algorithm to the standard al-
gorithm based on pure hashing and to OSFA-Join (Optimal symmetric fre-
quency adaptive join) algorithm (Bamha 2005).
In the tests, we were interested in comparing the speed-up of the three al-
gorithms and the effect of data skew on their performance. The tests were
performed on three heterogeneous clusters of Grid’5000 platform 2 using
MySQL-5.0.51a-10 Database server and MPICH2 as Message Passing In-
terface for communications. The characteristics of the three cluster nodes
are presented in table 5.1. The network connectivity is provided by a single
Cisco 6509 switch. This switch provides one gigabit ethernet connection to
each cluster node.
To study the effect of data skew on the performance, the frequencies of join
attribute values have been taken to follow the Zipf (Zipf 1949, Christodou-
lakis 1984) as it is the case in most database tests. The number of tuples
of the ith distinct value of the join attribute in a relation R with a domain

2Grid’5000 is a grid research infrastructure formed of 5000 processors distributed over
nine sites in France (www.grid5000.fr).
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{1, 2, . . . , D} is given by the following expression : ||vi|| = ||R||
iz×∑

D
j=1

1
jz

where

z is the skew factor. The distribution is considered uniform if z = 0 and
highly skewed when z > 1.

The JPS (Join Product Skew) was measured as the percentage of the
maximum deviation of the local join result size with respect to the average
over all processors.

5.3.1 Speed-up test

To perform the speed-up test, we applied the three algorithms on two
relations formed of 8× 106 tuples and 4× 106 tuples respectively. The zipf
skew factor of one the relations was set to 0.6 and to 1 in the other.
The number of processors was varied from 1 to 96 chosen from the 3

heterogeneous clusters where the join result was formed of approxima-
tely 271 × 106 tuples. Figures 5.1 and 5.2 show that DFA-Join algorithm
outperforms OSFA-Join algorithm and the standard hash join algorithm.
The results also show that OSFA-Join algorithm is, in general, faster than
the standard hash join algorithm even on heterogeneous systems.
In DFA-Join algorithm, processors that finish before the others, ask for
more work. This may result in skew in the join result. In order to avoid
this, we used a skew deviation threshold percentage and processors that
exceed this load do not ask for more tasks even if they are idle while
others aren’t.

In the tests, we set the JPS threshold value to 20% and we can see in
figures 5.3 and 5.4 that the percentage of JPS in DFA-Join respected this
threshold. We can also see that we have a high JPS in standard hash join
which is not the case for DFA-Join and OSFA-Join algorithms.
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Fig. 5.1 – DFA-join Speed-up test for number of nodes ∈ {1, . . . , 50}.

5.3.2 The effect of Attribute Value Skew (AVS) test

To study the effect of AVS on DFA-Join algorithm, we fixed the number of
processors to 60 and the value of the Zipf skew factor was varied from 0 to
1.8. The test was applied on two relations of size 8× 106 and 4× 106 tuples
respectively. Figure 5.5, shows that OSFA-Join and DFA-Join algorithms are
much more faster than the standard hash join algorithm and that their
processing time remains balanced while varying the skew factor.
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Fig. 5.2 – DFA-join Speed-up test for number of nodes ∈ {50, . . . , 95}.
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Fig. 5.3 – DFA-join JPS percentage for number of nodes ∈ {1, . . . , 50}.
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Fig. 5.4 – DFA-join JPS percentage for number of nodes ∈ {50, . . . , 95}.

We can also deduce from figure 5.6 that the standard hash join algorithm is
very sensitive to the effect of data skew compared to DFA-Join and OSFA-
Join algorithms.

5.3.3 The effect of join selectivity

In this test, we are interested in studying the effect of the join selectivity
on the performance of the three algorithms. We applied the three algo-
rithms on two relations formed of 2 × 106 and 4 × 106 tuples where we
fixed the number of processor to 54. The selectivity factor 3 was varied

3The selectivity factor of R ⋊⋉ S is ||R⋊⋉S||
||R||×||S|| .
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Fig. 5.6 – The effect of AVS on Join result deviation of DFA-join.

from 8 × 10−4% to 6 × 10−3% generating join result size varying between
64 × 106 and 458 × 106 tuples. Figures 5.7 and 5.8 show that DFA-Join and
OSFA-Join are much more faster than the standard algorithms based on
hashing. These figures also show that DFA-Join outperforms OSFA-Join
algorithm. Figures 5.9 and 5.10 confirm that DFA-Join and OSFA-Join algo-
rithms generate a negligible join skew result which is not the case of the
standard hash based algorithm that suffers from high JPS.
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Fig. 5.8 – The effect of join selectivity on performance of DFA-Join (25 × 10−4 ≤
selectivity ≤ 6 × 10−3).
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Fig. 5.10 – The effect of join selectivity on Join result deviation of DFA-Join (25× 10−4 ≤
selectivity ≤ 6 × 10−3).

5.4 The PDFA-Join Algorithm : Evaluating Multi-join

Queries on Heterogeneous Distributed systems

In the rest of this chapter, we present a pipelined version of DFA-Join join
algorithm called PDFA-Join (Pipelined Dynamic frequency Adaptive join
algorithm). The aim of pipelining in PDFA-Join is to offer flexible resource
allocation and to avoid unnecessary disk input/output for intermediate
join result in multi-join queries. We show that PDFA-Join algorithm can be
applied efficiently in various parallel execution strategies making it pos-
sible to exploit not only intra-operator parallelism but also inter-operator
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parallelism. These algorithms are used in the objective to avoid the effect
of load imbalance due to data skew, and to reduce the communication
costs due to the redistribution of the intermediate results which can lead
to a significant degradation of the performance.

5.4.1 Limitations of Parallel Execution Strategies in Multi-join Queries

Parallel execution of multi-join queries depends on the execution plan of
simple joins that compose it. The main difference between these strategies
lies in the manner of allocating the simple joins to different processors and
in the choice of an appropriate degree of parallelism (i.e. the number of
processors) used to compute each simple join.

Several strategies were proposed to evaluate multi-join queries (Liu
and Rundensteiner 2005, Wilschut et al. 1995). They generally depend on
the parallel query execution plan. In these strategies intra-operator, inter-
operator and pipelined parallelisms can be used. These strategies are di-
vided into four principal categories presented thereafter. We will give for
each one its advantages and limitations.

Sequential Parallel execution

Sequential parallel execution is the simplest strategy to evaluate, in parallel,
a multi-join query. It does not induce inter-operator parallelism. Simple
joins are evaluated one after the other in a parallel way. Thus, at a given
moment, one and only one simple join is computed in parallel by all the
available processors.

This strategy is very restrictive and does not provide efficient resource
allocation due to the fact that a simple join cannot be started until all its
operands are entirely available, and whenever a join operation is execu-
ted on a subset of processors, all the other processors remain idle until
the next join operation. Moreover, this strategy induces unnecessary disk
Input/Output because intermediate results are written to disk and not
immediately used for the next operations.
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Fig. 5.11 – Sequential parallel execution.

The execution time of each join is then the execution time of the slo-
west processor. Figure 5.11 illustrates an example of a sequential parallel
execution. To reach acceptable performance, join algorithms used in this
strategy should reduce the load imbalance between all the processors and
the number of idle processors must be as small as possible.
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Fig. 5.12 – Parallel synchronous execution.

Parallel Synchronous execution

Parallel synchronous execution uses in addition to intra-operator paralle-
lism, inter-operator parallelism (M.-S. Chen and Wu). In this strategy se-
veral simple join operations can be computed simultaneously on disjoint
sets of processors. Figure 5.12 gives an example of a parallel synchronous
execution : processors 1 to 4 compute join 1 while processors 5 to 10 com-
pute join 2. Once these joins are finished, all the processors are used to
compute join 3 and then join 4.

The parallel execution time of an operator depends on the degree of
parallelism. The execution time decreases by increasing the number of
processors until the arrival at a point of saturation (called optimal degree
of parallelism) from which increasing the number of processors, increases
the parallel execution time (Rahm 1996, M.-S. Chen and Wu). The main
difficulty in this strategy lies in the manner of allocating the simple joins
to the available processors and in the choice of an appropriate degree of
parallelism to be used for each join.

In this strategy, the objective of such allocation is to reduce the latency
where the global execution time of all operators should be of the same
order. This also applies to the global execution time of each operator in
the same group of processors where the local computation within each
group must be balanced.

This Strategy combines only intra and inter operator parallelism in the
execution of multi-join queries and does not introduce pipelined paral-
lelism and large number of processors may remain idle if are not used
in inter-operator parallelism. This constitutes the main limitations of this
strategy for flexible resource allocation in addition to unnecessary disk
input/output operation for intermediate join result.

Segmented Right-Deep execution

Contrary to a parallel synchronous strategy, a Segmented Right-Deep execu-
tion (Chen et al. 1992, Liu and Rundensteiner 2005) employs, in addition
to intra-operator parallelism, pipelined inter-operator parallelism which is
used in the evaluation of the right-branches of the query tree.
An example of a segmented right-deep execution is illustrated in fi-
gure 5.13 where all the available processors initially compute join 1 and
disjoint sub-sets of processors are used to compute simultaneously joins 2,
3 and 4 using pipelined parallelism. Note that pipelined parallelism can-
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not start until the creation of the hash table of the join result of operation
1.

1

1..10

2

4

3

10

9

8

7

6

5

4

3

2

1

2..6

7..10

1
111111222222222222222

111111222222222222222

111111222222222222222

111111222222222222222

111111444444444   444  4444

111111333333  33   33     33

111111333333  33   33   333

111111333333  33   33   333

111111333333  33   33     33

111111333333  33   33     33

Processors

Time 

Joins

Fig. 5.13 – Segmented right-deep execution.
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Segmented right-deep execution offers more flexible resource alloca-
tion than parallel synchronous execution strategy : many joins can be
computed on disjoint sets of processors to prepare hash tables for pipeli-
ned joins. Its main limitation remains in the fact that pipelined parallelism
cannot be started until all the hash tables are computed. Moreover, no
load balancing between processors can be performed whenever pipelined
parallelism begins.

Full Parallel execution

Full Parallel execution (Wilschut and Apers 1991, Wilschut et al. 1995, Liu
and Rundensteiner 2005) uses inter-operator parallelism and pipelined
inter-operator parallelism in addition to intra-operator parallelism. In this
strategy, all the simple joins, associated to the multi-join query, are com-
puted simultaneously in parallel using disjoint sets of processors. Inter-
operator parallelism and pipelined inter-operator parallelism are exploi-
ted according to the type of the query tree.
The effectiveness of such strategy depends on the quality of the execution
plans generated during the query optimization phase and on the ability
to evenly divide load between processors in the presence of skewed data.

All existing algorithms using this strategy are based on static hashing
to redistribute data over the network which makes them very sensitive to
data skew. Moreover, pipelined parallelism cannot start until the creation
of hash tables of build relations. We recall that all join algorithms used in
these strategies require data redistribution of all intermediate join results
(and not only tuples participating to the join result) which may induce
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a high cost of communication. In addition, no load balancing between
processors can be performed when pipelined parallelism begins. This can
lead to a significant degradation of performance.

In the following section, we will present PDFA-Join (Pipelined Dyna-
mic Frequency Adaptive Join) : a new join algorithm which can be used
in different execution strategies allowing to exploit not only intra-operator
but also inter-operator and pipelined parallelism. This algorithm is proved
to induce a minimal cost for communication (only relevant tuples are re-
distributed over the network), while guaranteeing perfect load balancing
properties in a heterogeneous multi-processor machine even for highly
skewed data.

5.4.2 Parallelism in Multi-join Queries using PDFA-Join Algorithm

Pipelining was largely studied and successfully implemented in many
classical join algorithms, on Shared Nothing (SN) multi-processor ma-
chine, in the presence of ideal conditions of load balancing and in the
absence of data skew (Liu and Rundensteiner 2005). Nevertheless, these
algorithms are generally based on static hash join techniques and are thus
very sensitive to AVS and JPS.

The pipelined algorithm introduced in (Bamha and Exbrayat 2003)
solves this problem and guarantees perfect load balancing on homoge-
neous SN machines. However, its performance degrades on heterogeneous
multi-processor architectures where the load of each processor may vary
in a dynamic and unpredictable way.

We propose to adapt DFA-Join to pipelined multi-join queries to solve
the problem of data skew and load imbalance between processors on
heterogeneous multi-processors architectures during all the stages of join
computation.

Detailed Algorithm

In this section, we present a parallel pipelined execution strategy for the
multi-join query, Q = (R ⋊⋉a1 S) ⋊⋉b1 (U ⋊⋉a2 V), given in figure 5.15 (this
strategy can be easily generalized to any bushy multi-join query) where
R, S, U and V are source relations and a1, a2 and b1 are join attributes.

We will give in detail the execution steps to evaluate the join query
Q1 = R ⋊⋉a1 S (the same technique is used to evaluate Q2 = U ⋊⋉a2 V).
We assume that each relation T ∈ {R, S, U, V} is horizontally fragmented
among p processors.

PDFA-Join algorithm (Algorithm 12) can be divided into the following five
phases.
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Fig. 5.15 – Parallel execution of a multi-join query using PDFA-Join algorithm.

Algorithm 12: Parallel PDFA-Join computation steps to evaluate the
join of R and S on attribute a1 and preparing the next join on attribute
b1.

In Parallel (on each processor) i ∈ [1, p] do
1◮ Create the local histogram Hista1(Ri) of relation Ri and, on the fly,

hash the tuples of relation Ri into different buckets according to the
values of join attribute a1 ;

⊲ Create the local histogram Hista1(Si) of relation Si and, on the fly,
hash the tuples of relation Si into different buckets according to the
values of join attribute a1, ;

2◮ Create global histogram’s fragment, Hista1
i (R), of relation R on each

processor i ;
⊲ Create global histogram’s fragment, Hista1

i (S), of relation S on each
processor i ;

⊲ Merge Hista1
i (R) and Hista1

i (S) to create join histogram, Hista1
i (R ⋊⋉ S)

on each processor i ;
3◮ Create communication templates for only tuples that appear in join result ;
⊲ Filter generated buckets to create tasks to execute on each processor

according to its capacity ;
⊲ Create local histograms Histb1(Ri ⋊⋉ Si) of join result (of the buckets

associated to processor i) on attribute b1 of the next join using histograms
and communication templates (See Algo. 13.) ;

4◮ Exchange data stored on each bucket according to communication templates ;
5◮ Execute join tasks (of each bucket) on each processor, and store the join

result on local disk ;
Loop until no task to execute

⊲ Ask a local head node for jobs from an overloaded processor ;
⊲ Steal a job from a designated processor and execute it ;
⊲ Store the join result on local disk ;

endloop
endpar

Phase 1. Creating local histograms :
In this phase, we create in parallel, on each processor i, the local his-

togram Hista1(Ri) (resp. Hista1(Si)) (i = 1, . . . , p) of block Ri (resp. Si) by a
linear traversal of Ri (resp. Si) in time :

max
i=1,...,p

(ci
r/w × |Ri|) + max

i=1,...,p
γi × ||Ri||
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(resp. max
i=1,...,p

(ci
r/w × |Si|) + max

i=1,...,p
γi × ||Si||) where ci

r/w is the cost to

read/write a page of data from disk on processor i.
While creating the histograms, tuples of Ri (resp. Si) are partitioned, on
the fly, into N buckets using a hash function in order to facilitate the re-
distribution phase.
The cost of this phase is :

Timephase1 = O
(

max
i=1,...,p

ci
r/w × (|Ri| + |Si|) + max

i=1,...,p
γi × (||Ri|| + ||Si||)

)

.

Phase 2. Computing the histogram of R ⋊⋉ S :
In this phase, we compute Hista1

i (R ⋊⋉ S) on each processor i. This
helps in specifying the values of the join attribute that will be present
in the join result. So, only tuples of R and S that effectively participate
in the join result are redistributed, in a further phase, which allows us
to minimize the communication cost. The histogram of R ⋊⋉ S is for-
med of entries of the form (v, nv) such that v ∈ Hista1(R) ∩ Hista1(S) and
nv = Hista1(R)(v) × Hista1(S)(v). So, we must first compute the global
histograms Hista1

i (R) and Hista1
i (S) by redistributing the tuples of the local

histograms using a hash function that distributes the values of the join
attribute in a manner that respects the processing capacity of each proces-
sor.
The cost of this step is :

Timephase2.a =

O
(

min
(

max
i=1,...,p

ωi × p × (g × |Hista1(R)| + γi × ||Hista1(R)||),

max
i=1,...,p

ωi × (g × |R| + γi × ||R||)
)

+

min
(

max
i=1,...,p

ωi × p × (g × |Hista1(S)| + γi × ||Hista1(S)||),

max
i=1,...,p

ωi × (g × |S| + γi × ||S||)
)

+ l
)

.

where ωi is the fraction of the total volume of data assigned to pro-
cessor i such that : ωi = ( 1

γj
)/(∑

p
j=1

1
γj

), γi is the execution time of one
instruction on processor i, g is the BSP communication parameter and l
the cost of synchronization (section 2.2.2) (the detailed proof of this cost is
given in proposition 1 of Appendix A).

Now, we can easily create Hista1
i (R ⋊⋉ S) by computing in parallel,

on each processor i, the intersection of Hista1
i (R) and Hista1

i (S) in time of
order :

Timephase2.b = O
(

max
i=1,...,p

(

γi × min(||Hista1
i (R)||, ||Hista1

i (S)||)
)

)

.

While creating Hista1
i (R ⋊⋉ S), we also store for each value v ∈ Hista1

i (R ⋊⋉ S)

an extra information index(v) ∈ {LF, HF} such that :







index(v) = HF if Hista1(R)(v) ≥ fo or Hista1(S)(v) ≥ fo
(i.e. values having high frequencies)

index(v) = LF elsewhere (i.e. values associated to low frequencies).
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The used threshold frequency is fo = p × log(p). This information will be
useful in the phase of the creation of communication templates.
The total cost of this phase is the sum of Timephase2.a and Timephase2.b.

Timephase2 = O
(

min
(

max
i=1,...,p

ωi × p × (g × |Hista1(R)| + γi × ||Hista1(R)||),

max
i=1,...,p

ωi × (g × |R| + γi × ||R||)
)

+

min
(

max
i=1,...,p

ωi × p × (g × |Hista1(S)| + γi × ||Hista1(S)||),

max
i=1,...,p

ωi × (g × |S| + γi × ||S||)
)

+ l
)

.

We recall that the size of a histogram is, in general, very small compa-
red to the size of base relations.

Phase 3. Creating the communication templates :
To balance the load of all the processors throughout the join processing,
we use, as in DFA-Join algorithm, a two-step (static then dynamic) load
assignment approach which allows us to reduce the join processing time.
The steps of this algorithm are the same as that of phase 3 in DFA-Join
algorithm. However, during step 3.c of this algorithm, local histogram
of the join result, Histb1(R ⋊⋉ S), on attribute b1 is created directly from
Hista1(Ri) and Hista1(Si) using Algorithm 13.

Algorithm 13: Join result histogram’s creation algorithm on attribute
b1.

⊲Par (on each node) i ∈ [1, p] do

⊲ Histb1(Ri ⋊⋉ Si)=NULL ; /* Create an empty B+-tree to store histogram’s
entries. */

⊲for each tuple t of each bucket of relation Ri do
⊲ f req1 = Hista1(S)(t.a1) ;
⊲ if ( f req1 > 0) (i.e. tuple t will be present in R ⋊⋉ S) then

⊲ f req2 = Histb1(Ri ⋊⋉ Si)(t.b1) ;
⊲ if ( f req2 > 0) (i.e value t.b1 is present in Histb1(Ri ⋊⋉ Si)) then

⊲ Update Histb1(Ri ⋊⋉ Si)(t.b1) = f req1 + f req2 ;
⊲ else

⊲ Insert a new couple (t.b1, f req1) into the histogram Histb1(Ri ⋊⋉ Si) ;
⊲endif

⊲endif
⊲endfor

⊲endpar

Owing to the fact that the access to the histogram (equivalent to a
search in a B+-tree) is performed in a constant time, the cost of the crea-
tion of the histogram of join result is : O

(

maxi=1,...,p γi × ||Ri||
)

.

The global cost of this phase is :
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Timephase3 =

O
(

max
i=1,...,p

γi × ||Hista1
i (R ⋊⋉ S)|| + max

i=1,...,p
γi × (||Ri|| + ||Si||) + p × g + l+

max
i=1,...,p

γi × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v)+

max
i=1,...,p

g × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v) × |order_messages|
)

.

Phase 4. Data redistribution :
According to communication templates, buckets are sent to their des-

tination processors. It is important to mention here that only tuples of R
and S that effectively participate in the join result will be redistributed. So,
each processor i receives a partition R (resp. S) of R (resp. S). Therefore, in
this algorithm, communication cost is highly reduced and the global cost
of this phase is :

Timephase4 = O
(

g ×
p

max
i=1

(

|Ri| + |Si|
)

+ l
)

.

Phase 5. Join computation :
Buckets received by each processor are arranged in a queue. Each

processor executes successively the join operation of its waiting buckets.
The cost of this step of local join computation is :

Timelocal_join = O
( p

max
i=1

(

ci
r/w × (|Ri| + |Si| + voli × |R ⋊⋉ S|)+

ti
h × ||Ri|| + ti

s × ||Si||
)

)

,

where ts is the time needed to search for an entry in the hash table and
th is the time needed to add an entry to the hash table.
If a processor finishes computing the join related to its local data and the
overall join operation is not finished, it will send to the head node a mes-
sage asking for more work. Hence, the head node will assign to this idle
processor some of the buckets related to join attribute values that were not
redistributed earlier in the static phase. However, if all these buckets are
already treated, the head node checks the number of non treated buckets
in the queue of the other processors and asks the processor that has the
maximal number of non treated buckets to forward a part of them to the
idle one. The number of sent buckets must respect the capacity of the idle
processor.

The global cost of join computation of two relations R and S using PDFA-
Join algorithm is :

TimePDFA−Join =

O
(

max
i=1,...,p

ci
r/w × (|Ri| + |Si|) + max

i=1,...,p
γi ×

(

||Ri|| + ||Si||
)

+ max
i=1,...,p

(

|Ri| + |Si|
)

+

min
(

max
i=1,...,p

ωi × p × (g × |Hista1 (R)| + γi × ||Hista1 (R)||),

max
i=1,...,p

ωi × (g × |R| + γi × ||R||)
)

+
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min
(

max
i=1,...,p

ωi × p × (g × |Hista1 (S)| + γi × ||Hista1 (S)||),

max
i=1,...,p

ωi × (g × |S| + γi × ||S||)
)

+

max
i=1,...,p

γi × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v)+

max
i=1,...,p

g × ∑
v∈Hist(HF)x

i (R⋊⋉S)

Proc(v) × |order_messages|+

max
i=1,...,p

(

ci
r/w × (|Ri| + |Si| + voli × |R ⋊⋉ S|) + ti

h × ||Ri|| + ti
s × ||Si||

)

+ l
)

Remark 5 on page 91 related to DFA-Join algorithm also applies for
PDFA-Join algorithm. This shows PDFA-Join algorithm has an optimal
asymptotic complexity.

Discussion

To understand the whole mechanism of PDFA-Join algorithm, we compare
existing approaches (based on hashing) to our pipelined join algorithm
using different execution strategies to evaluate the multi-join query

Q = (R ⋊⋉a1 S) ⋊⋉b1 (U ⋊⋉a2 V).

A Full Parallel execution of DFA-Join algorithm (i.e. a basic use of DFA-
Join where we do not use pipelined parallelism) requires the evaluation
of Q1 = (R ⋊⋉a1 S) and Q2 = (U ⋊⋉a2 V) on two disjoint set of
processors, the join results of Q1 and Q2 are then stored on the disk. The
join result of query Q1 and Q2 are read from disk to evaluate the final join
query Q.

Existing approaches allowing pipelining, start by the evaluation of the
join queries Q1 and Q2, and then each generated tuple in query Q1 is im-
mediately used to build the hash table. However, the join result of query
Q2 is stored on the disk.
At the end of the execution of Q1, the join result of query Q2 is used to
probe the hash table. This induces unnecessary disk input/output. Exis-
ting approaches require data redistribution of all intermediate join result
(not only relevant tuples) this may induce high communication cost. Mo-
reover, data redistribution in these algorithms is based on hashing which
makes them very sensitive to data skew.

In PDFA-Join algorithm, we first compute in parallel the histograms of
R and S on attribute a1, and at the same time we compute the histograms
of U and V on attribute a2. As soon as these histograms are available, we
generate the communication templates for Q1 and Q2 and by the way the
histograms of the join results of Q1 and Q2 on attribute b1 are also compu-
ted. Join histograms on attribute b1 are used to create the communication
templates for Q which makes it possible to immediately use the tuples
generated by Q1 and Q2 to evaluate the final join query Q.

PDFA-Join algorithm achieves several enhancements compared to pi-
pelined join algorithm presented in the literature : During the creation
of communication templates, we create on the fly the histograms for the
next join, limiting by the way the number of accesses to data (and to the
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disks). Moreover, data redistribution is limited to only tuples participa-
ting effectively to join result, which highly reduces the communication
costs. Dynamic data redistribution in PDFA-Join makes it insensitive to
data skew while guaranteeing perfect load balance during all the stages
of join computation.

PDFA-Join can be used in various parallel strategies, however in the
parallel construction of the histograms for source relations, we can notice
that the degree of parallelism might be limited by two factors : the to-
tal number of processors available, and the original distribution of data.
A simultaneous construction of two histograms on the same processor
(which occurs when two relations are distributed, at least partially, over
the same processors) would not be really interesting compared to a se-
quential construction. This intra-processor parallelism does not bring ac-
celeration, but should not induce noticeable slowdown: histograms are
generally small, and having several histograms in memory would not
necessitate swapping. On the other hand, as relations are usually much
bigger than the available memory, we have to access them by blocks. As
a consequence, accessing one or several relations does not really matter.
Our pipeline strategy will really be efficient if different join operators are
executed on disjoint (or at least partially disjoint) sets of processors. This
brings us to limit the number of simultaneous builds. As a consequence,
we have to segment our query trees, similarly to segmented right-deep
trees, each segment (i.e. a set of successive joins) being started when the
former is over. Once the histograms are produced for both tables, we can
compute the communication templates, then distribute data, and finally
compute the join. Unfortunately, the computation of the communication
templates is the implicit barrier within the execution flow that prohibits
the use of long pipeline chains.

5.5 Conclusion

In this chapter, we presented, DFA-Join, a scalable parallel join algorithm
for heterogeneous architectures. We also presented a pipelined version
of DFA-Join algorithm called PDFA-Join for evaluating complex queries
with multi-join on such architectures. These algorithms are based on an
efficient dynamic data redistribution approach allowing to highly reduce
communication cost and massively reducing the number of join buckets
(and thus the global join computation) owing to the fact that these buckets
contain only tuples participating effectively to the join results. DFA-Join
and PDFA-Join algorithms guarantee perfect balancing properties on
multi-user homogeneous architecture as well as on heterogeneous distri-
buted architectures during all the stages of join computation.
Our experience with join operations and the BSP cost analysis show that
the overhead related to distributed histogram4 management remains very
small compared to the gain it provides in reducing communication time
and managing join buckets reallocation to balance load between proces-
sors. These algorithms proved to have an optimal complexity even for

4We recall that histograms are, in general, very small compared to the sizes of base
relations.
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highly skewed data.

We showed that PDFA-Join algorithm can be applied efficiently in various
parallel execution strategies offering flexible resource allocation and redu-
cing disks input/output of intermediate join result in the evaluation of
multi-join queries. This algorithm achieves several enhancements compa-
red to solutions suggested in the literature by reducing communication
costs to only relevant tuples while guaranteeing perfect balancing proper-
ties on heterogeneous multi-processor shared nothing architectures even
for highly skewed data.
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Scientific experiments in some research domains such as high energy
physics, global climate change, bio-informatics, molecular biology, etc.

generate a huge amount of data whose size is in the range of hundreds of
megabytes to petabytes. These data are stored on geographically distribu-
ted and heterogeneous resources. Researchers who need to analyze and
have a fast access to such data are also located all over the globe. Queries
executed by these researchers may require the transfer of huge amount
of data over the wide area network in a reasonable time. Due to these
emerging needs, the grid infrastructure which connects widely geogra-
phically distributed and heterogeneous computing and storage resources,
was born. In this chapter, we are interested in treating join queries on
the grid. We propose a new parallel algorithm allowing to highly reduce
communication and disk Input/Output costs. The algorithm is based on a
dynamic task allocation strategy which makes it insensitive to data skew
and ensures perfect load balancing properties during all the stages of join
computation. A cost analysis is also presented to prove the efficiency and
scalability of our approach.
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6.1 Introduction

The difficulty of processing queries on grid infrastructure is due to several
factors :

– The first one, is the heterogeneity of the used machines. In order to
benefit effectively from the power of such architecture, no processor
must be idle while other processors are overloaded throughout the
query evaluation phase. So, the actual characteristics of resources
such as CPU power, Input/Output speed, connection speed, avai-
lable memory, etc. must be taken into consideration while assigning
jobs to the nodes.

– The grid is usually a multi-user system, hence the load of a ma-
chine may highly vary from one instant to another. And thus, the
processing capacity of a node may rapidly degrade during query
processing.

– One or more nodes may fail during query processing, hence a
recovery process is needed in order to transfer the tasks already
assigned to the failed nodes to other available ones.

In order to override these problems, we present GDFA-Join : a new
Grid Dynamic Frequency Adaptive parallel algorithm for evaluating join
operations on the grid. In this algorithm, we use distributed histograms
to determine the tuples of input relations that effectively appear in the
join result, then only these tuples are redistributed. This helps to highly
reduce the communication and disk Input/output costs. However, before
redistributing these tuples between the processors, they are partitioned
into buckets in a manner that the sizes of the join of all associated buckets
are approximately equal even when input data are skewed. The size of
these buckets is determined based on several factors such as the size of
the join result which can be known using distributed histograms and
the processing capacity of the available nodes. After this partitioning
step, the buckets are distributed over the processors to compute the join
result. The number of buckets received by each processor depends on its
processing capacity. When a processor becomes inaccessible or overloa-
ded, its assigned buckets are forwarded to other processors by the data
nodes. We also give the cost of each phase of our algorithm. The cost
analysis shows that it is scalable and guarantees a highly low commu-
nication and disk Input/Output costs even in the presence of skewed data.

6.2 The GDFA-Join Algorithm : Evaluating join queries

on the Grid

In this section, we introduce GDFA-Join (Grid Dynamic Frequency Adap-
tive join) algorithm: a new parallel algorithm for evaluating join ope-
rations on the grid infrastructure. We assume that the grid connects
multiple clusters of heterogeneous machines having different characteris-
tics of memory, disk Input/Output speed, CPU power, etc. Each cluster
in the grid (fig. 6.1) has a local coordinator node responsible of balancing
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the load of its computing processors. For scalability, we also deploy a
hierarchy structure of intermediate coordinator nodes where each one
of these nodes is responsible of a set of sites. This hierarchical structure
allows us to decrease the coordinating communication costs between the
coordinator nodes of different clusters as much as possible.

Cluster 1

Data storage or computing node

Cluster local coordinator node

Intermediate coordinator node

Main coordinator node

Cluster 2 Cluster 3
Cluster 4

Cluster 5

Communication network

Fig. 6.1 – GDFA-Join grid architecture.

We assume that the relations R and S to be joined are partitioned respec-
tively into m and n partitions by horizontal fragmentation i.e. R = ∪m

i=1Ri

and S = ∪n
i=1Si. Data is replicated over several nodes of the grid for fault

tolerance and for the sake of ensuring high availability and robustness.
This replication also helps in accelerating access time to data.

Algorithm 14 shows the steps to be followed in order to compute the
join on grid systems. These steps can be divided into the following five
phases. We will give for each phase an upper bound of execution time.

In this algorithm, we use the following notations in addition to the
notations introduced in page 54 :

– numclust : the number of clusters forming the grid,
– mp : communication message protocol cost per page of data,
– ml : communication message latency for one page of data,
– ci

r/w : read/write cost of a page of data on local disk on processor i,
– ti

r : time to read a record from main memory of processor i,
– ti

w : time to write a record to main memory of processor i,
– ti

s : time of a simple search in a B+-tree on processor i,
– ti

h : time to add an entry to a B+-tree on processor i,
– PT : the list of processors’ indexes holding a replication of T,
– ProcHistx(R⋊⋉S) : the list of processors’ indexes that participate in com-

puting Histx(R ⋊⋉ S),
– rep(T) : the number of processors holding a replica of T,
– bucket_size : the size of generated join buckets specified by the coor-

dinator node.
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Algorithm 14: GDFA-Join (Grid Dynamic Frequency Adaptive Join)
algorithm.

1◮ On each participating cluster designated by the query parser
and optimizer
⊲ Create, in parallel, the local histograms of R (resp. S) on the

assigned nodes holding sub-relation of R (resp. S). On the fly,
partition the tuples into buckets using Round-robin method.

2◮ When the local histogram of each partition of R and S is
available on a sub-group, ProcHistx(R⋊⋉S), of processors, then

⊲ Hash the local histograms of R and S over the processors
ProcHistx(R⋊⋉S) to create their distributed global histogram
partitions ;

⊲ Create, Histx(R ⋊⋉ S), the histogram of R ⋊⋉ S, by finding
the intersection of the distributed global histograms of R and S ;

⊲ The main coordinator node determines the optimal join buckets
size based on the global join size and the processing capacities
of available nodes ;

3◮ Each processor in ProcHistx(R⋊⋉S), in parallel,
⊲ Divides the join attribute values into sub-groups in a manner that

the size of the join of tuples related to each subset is approximately
equal to the specified bucket size ;

⊲ Forwards the partitioning information to their destination
processors in ProcHistx(R⋊⋉S) ;

⊲ Forwards the partitioning information to processors not in
ProcHistx(R⋊⋉S) which have participated in creating the local
histograms and hold a replica of its local input data ;

4◮ Each processor holding a sub-relation of input data, filters a
number of generated buckets in step 1 according to its capacity
as indicated in the communication templates ;

5◮ Join computation :
⊲ assigning data buckets to computing nodes : local cluster

coordinator nodes assign data buckets to local processing
nodes according to their processing capacities ;

⊲ Exchange data buckets ;
⊲ Load balancing during join computation due to grid

multi-user characteristic : local coordinator nodes try to
balance the load locally during the join computation phase.
If this is not possible locally, then processors of other
sites are chosen by the intermediate coordinator nodes ;

Phase 1. Choosing nodes responsible of relations partitions :
The Grid architecture connects a huge number of nodes. So, we usually

have the possibility to assign to each partition of R and S at least one pro-
cessor that is responsible of creating their local histogram, then preparing
the buckets formed of tuples that effectively appear in the join result. This
assigning step is carried out by the query parser and optimizer. In this
step, some conflicts may arise. For example, if all the processors holding a
specific partition Sk of S are already assigned to treat partitions of R, then
Sk is immigrated to another processor that is not occupied. Thus, a wise
data placement and replication strategy must be used in order to decrease,
as much as possible, the need of migrating data between processors.
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Globus toolkit provides software services and libraries for grid computing
environments (Allcock et al. 2001). Some of these services (GridFTP, the
replica catalog and the Replica Management services) are dedicated for
data transfer and managing multiple copies of data sets over the grid.
The data management service offers tools that allow the user to replicate
data over the grid, but it leaves the definition of replication semantics for
the user. Thus, in order to decrease as much as possible the migration
of relations partitions between processors, we use a data management
strategy that avoids, when possible, saving relations that have possible
common join attributes on the same processors. This step needs the access
to database index and is performed in a constant time.

Phase 2. Creating local histograms of R and S :
In this phase, each processor i holding a fragment Rj of R (resp. Sk of S)

partitions it, in parallel, into a multiple number of buckets using Round-
robin method. We have chosen to use this partitioning method instead of
hash functions in order to create, on each processor, data buckets having
approximately the same number of tuples even if the data are highly
skewed. We will see, in further phases, the benefit of this partitioning and
data replication to accelerate data redistribution and recovery treatment
due to possible nodes failure.
On the fly, we also create the local histogram Histx(Rj) (resp. Histx(Sk)) of
Rj (resp. Sk) that holds the frequency nv of each join attribute value v of
Rj (resp. Sk).
We can notice that the histogram related to the same partition of R or S
is computed, in parallel, on several processors holding a replica of this
partition. We have chosen to follow this strategy, instead of evaluating
the histogram of each fragment on the fastest processor holding a copy
of this fragment, due to the dynamic characteristic of grid systems where
a node may suddenly become unavailable or an underloaded processor
may become overloaded. When the creation of the histograms related to
all the partitions of R and S is terminated on a subgroup, ProcHistx(R⋊⋉S), of
the assigned processors, these processors are informed by the coordinator
node to compute the global histogram of R ⋊⋉ S. So, we do not need to
wait all the used processors to finish computing the local histograms.
However, the histogram of each partition of R and S must be available on
at least one processor.

The cost of hashing tuples of Rj into buckets and creating its local histo-
gram is of the order :

O
(

min
i∈PRj

(

|Rj| × ci
r/w + ||Rj|| × (ti

r + ti
w + ti

h)
)

)

,

where |Rj| × ci
r/w represents the cost of loading data from the local disk(s)

of processor i and ||Rj|| × (ti
r + ti

w) is the cost of partitioning tuples into
buckets. The histograms are created, on the fly, during the creation of Rj’s
data buckets with cost ||Rj|| × ti

h.

Thus, the total cost of partitioning tuples of relation R into buckets and
creating the local histogram partitions on processors ProcHistx(R⋊⋉S) is of
the order (the same cost also applies for S) :
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m
max
j=1

(

min
i∈PRj

(

|Rj| × ci
r/w + ||Rj|| × (ti

r + ti
w + ti

h)
)

)

.

So, the global cost of this phase is :

Timephase2 = O
(

maxm
j=1

(

min
i∈PRj

(

|Rj| × ci
r/w + ||Rj|| × (ti

r + ti
w + ti

h)
)

)

+

maxn
j=1

(

min
i∈PSj

(

|Sj| × ci
r/w + ||Sj|| × (ti

r + ti
w + ti

h)
)

)

)

.

Phase 3. Creating the global histograms :
Communication cost is one of the factors that affects the total pro-

cessing time of the join operation in parallel and distributed systems.
So, decreasing this cost, as much as possible, results in accelerating the
treatment of this operation. To this end, only tuples related to join attri-
bute values that satisfy the join condition must be redistributed. In fact,
these are the values that appear in Histx(R ⋊⋉ S) : the global histogram
of R ⋊⋉ S. However, to compute the partition Histx

i (R ⋊⋉ S) of this global
histogram, on processor i, we firstly need to create the distributed glo-
bal histograms Histx

i (R) and Histx
i (S) by redistributing the tuples of the

local histograms on processors ProcHistx(R⋊⋉S) using a hash function. So,
each processor i ∈ ProcHistx(R⋊⋉S) holding a partition of R (resp. S) sends
to each processor j ∈ ProcHistx(R⋊⋉S) a partition Histx[j](Ri) (resp. Histx[j](Si))
of Histx(Ri) (resp. Histx(Si)) such that Histx(Ri) = ∪j∈ProcHistx(R⋊⋉S)

Histx[j](Ri)

(resp. Histx(Si) = ∪j∈ProcHistx(R⋊⋉S)
Histx[j](Si)).

The cost of this step is at most (a detailed proof of this cost is given in
proposition 2 of Appendix A) :

O
(

min
(

|Histx(R)|,
|R|
m

)

× (mp + ml) + min
(

|Histx(S)|,
|S|
n

)

× (mp + ml)+

min
( m

m + n
×
(

|Histx(R)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(R)|| × (ti
r + ti

h)
)

,

m
(m + n)2 ×

(

|R| × mp + max
i∈ProcHistx(R⋊⋉S)

||R|| × (ti
r + ti

h)
)

)

+

min
( n

m + n
×
(

|Histx(S)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(S)|| × (ti
r + ti

h)
)

,

n
(m + n)2 ×

(

|S| × mp + max
i∈ProcHistx(R⋊⋉S)

||S|| × (ti
r + ti

h)
)

)

)

.

Now, we can create Histx
i (R ⋊⋉ S) on each processor i of ProcHistx(R⋊⋉S), in

parallel, by computing the intersection Histx
i (R) ∩ Histx

i (S) with a cost of
the order :

O
(

max
i∈ProcHistx(R⋊⋉S)

(

min
(

||Histx
i (R)||, ||Histx

i (S)||
)

× (ti
r + ti

s + ti
h)
)

)

.

This cost is the necessary time to read each entry of the smallest histo-
gram. And, for each read entry, we need to test if the value of the join
attribute appears in the second histogram, and if it is the case, then we
must add a new entry to Histx

i (R ⋊⋉ S).
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During this step, each processor i also retains a trace of the network layout
of values v in its Histx

i (R) (resp. Histx
i (S)). This will be useful in the phase

of creating the communication templates.

It is important to mention here that using hash functions to distribute
the tuples of histograms does not create load imbalance on the processors
even if data of the input relations is highly skewed. This is due to the fact
that histograms hold for each join attribute value v a unique record (v, nv)
where nv represents its frequency. In addition, the size of these histograms
is very small compared to the size of the input relations and the overhead
related to the management of distributed histograms remains very small
compared to the gain that they provide in load balancing and reducing
communication costs.
When a processor i finishes from computing its assigned partition of
Histx(R ⋊⋉ S), it sends the sum of the frequencies related to the join attri-
bute values v such that v ∈ Histx

i (R ⋊⋉ S) to the local coordinator node.
Then, each local coordinator node sends the sum of the received values to
the main coordinator node. At the end of this step, the main coordinator
node knows the total number of tuples in R ⋊⋉ S. This information is used
while creating the communication templates in the next step.

The total cost of this phase is at most :
Timephase3 =

O
(

min
(

|Histx(R)|,
|R|
m

)

× (mp + ml) + min
(

|Histx(S)|,
|S|
n

)

× (mp + ml)+

min
( m

m + n
×
(

|Histx(R)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(R)|| × (ti
r + ti

h)
)

,

m
(m + n)2 ×

(

|R| × mp + max
i∈ProcHistx(R⋊⋉S)

||R|| × (ti
r + ti

h)
)

)

+

min
( n

m + n
×
(

|Histx(S)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(S)|| × (ti
r + ti

h)
)

,

n
(m + n)2 ×

(

|S| × mp + max
i∈ProcHistx(R⋊⋉S)

||S|| × (ti
r + ti

h)
)

)

+

max
i∈ProcHistx(R⋊⋉S)

(

min
(

||Histx
i (R)||, ||Histx

i (S)||
)

× (ti
r + ti

s + ti
h)
)

)

.

Phase 4. Join buckets creation :
In order to solve the problems presented in the introduction, we will

use a strategy based on creating buckets formed of tuples that effectively
appear in the join result. These buckets are created in a manner that the
size of the join of associated buckets of R and S are approximately equal.
So, the main coordinator node determines the size of the join buckets
bucket_size based on the final join result size and the computing characte-
ristics of the available nodes.

4.a Creating the partitioning schema of the join attribute values :
To create these data buckets, all the nodes in ProcHistx(R⋊⋉S) that have eva-
luated partitions of Histx(R ⋊⋉ S) participate in creating the communi-
cation templates. So, this step is performed jointly by all processors of
ProcHistx(R⋊⋉S) each one not necessarily computing the list of its own messages,
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in order to balance the overall process. To this end, each processor i di-
vides the set of join attribute values v ∈ Histx(R ⋊⋉ S) into multiple subsets.
And, the size of the join of tuples related to all values v in each subset is
approximately equal to the size bucket_size of buckets specified by the co-
ordinator node. So, each processor i ∈ ProcHistx(R⋊⋉S) executes algorithm 15

to create the communication templates for relation R. A similar algorithm
is executed for S.

Algorithm 15: Creating the communication templates related to R on
processor i in GFA-Join algorithm

In Parallel (on each processor) i ∈ [1, p] do
⊲ for each j ∈ ProcHistx(R⋊⋉S) do

⊲ bucket_index = 0 ;
⊲ size = 0 ;
⊲ for each value v ∈ Histx[i](Rj) do

⊲ if v ∈ Histx
i (R ⋊⋉ S) then

⊲ if size + Histx
i (R ⋊⋉ S)(v) ≤ bucket_size then

⊲ add a message order_to_hash(v, bucket_index, i) to the list of
messages of j ; /* Hash the tuples of R associated to v into a

bucket of index (bucket_index, i).*/
⊲ size += Histx

i (R ⋊⋉ S)(v) ;
⊲ else if Histx

i (R ⋊⋉ S)(v) ≤ bucket_size then
⊲ bucket_index += 1 ;
⊲ add a message order_to_hash(v, bucket_index, i) to the list of
messages of j ; /* Hash the tuples of R associated to v into a

bucket of index (bucket_index, i).*/
⊲ size = Histx

i (R ⋊⋉ S)(v).
⊲ else
⊲ if size 6= 0 then bucket_index += 1 ; endif
⊲ if Histx

i (R)(v) ≤ Histx
i (S)(v) then

⊲ add order_to_partition(v, bucket_index, i, ⌈Histx
i (R⋊⋉S)(v)

bucket_size ⌉, S_index) to
the list of messages of j ; /* Hash the tuples of R associated to v

into a bucket of index (bucket_index, i). */
⊲ else

⊲add order_to_partition(v, bucket_index, i, ⌈Histx
i (R⋊⋉S)(v)

bucket_size ⌉, R_index) to
the list of messages of j ; /* Divide the tuples of R associated to v

into ⌈
Histx

i (R⋊⋉S)(v)
bucket_size ⌉ buckets with indexes between bucket_index and

bucket_index + ⌈
Histx

i (R⋊⋉S)(v)
bucket_size ⌉ − 1. */

⊲ size = 0;

⊲ bucket_index += ⌈
Histx

i (R⋊⋉S)(v)
bucket_size ⌉;

⊲ endif
⊲ endif

⊲ endfor
⊲ endfor

EndPar

The global cost of algorithm 15 is at most of the order :

O
(

(

p

∑
j=1

||Histx[i](Rj)|| +
p

∑
j=1

||Histx[i](Rj)||
)

(ti
r + ti

w + 2 × ti
s)
)

.
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However, we have :

p

∑
j=1

||Histx[i](Rj)|| ≤ min
( m

m + n
× ||Histx(R)||,

||R||
m + n

)

,

and
p

∑
j=1

||Histx[i](Sj)|| ≤ min
( n

m + n
× ||Histx(R)||,

||S||
m + n

)

.

These inequalities hold, owing to the fact that, in the general case of join
attribute values frequency distribution, each processor in ProcHistx(R⋊⋉S)

is responsible of approximately ||Histx(R)||
m+n (resp. ||Histx(S)||

m+n ) join attribute
values, and in the same set of processors each join attribute value may
appear in at most m (resp. n) processors holding R (resp. S) partitions.
But, if the frequency of each join attribute value in R (resp. S) is equal to
1, then each processor will be responsible of ||R||

m+n (resp. ||S||
m+n ) values.

Thus, the cost of this algorithm is at most of the order :

O
(

max
i∈ProcHistx(R⋊⋉S)

min
( m

m + n
× ||Histx(R)||,

||R||
m + n

)

× (ti
r + ti

w + 2 × ti
s)+

max
i∈ProcHistx(R⋊⋉S)

min
( n

m + n
× ||Histx(S)||,

||S||
m + n

)

× (ti
r + ti

w + 2 × ti
s)
)

.

After that, the list of messages are sent to their destinations to create the
join buckets holding only tuples that appear in the join result.
The cost of this communication step is at most :

O
(

min
( m

m + n
× |Hist

x
(R)|,

|R|
m + n

)

× (mp + ml)+

min
( n

m + n
× |Hist

x
(S)|,

|S|
m + n

)

× (mp + ml)+

max
( m

max
i=1

|Hist
x
(Ri)| × mp,

n
max
i=1

|Hist
x
(Si)| × mp

)

)

,

where min
( m

m+n × |Hist
x
(R)|, |R|

m+n

)

× (mp + ml) (resp. min
( n

m+n ×

|Hist
x
(S)|, |S|

m+n

)

× (mp + ml)) is the cost of sending the list of partition
messages to processors of ProcHistx(R⋊⋉S) holding partitions of R (resp. S).
The cost of receiving the messages related to R (resp. S) partitions is of the
order : O(maxm

i=1 |Hist
x
(Ri)| × mp) (resp. O(maxn

i=1 |Hist
x
(Si)| × mp)). Here,

Hist
x
(Ri) (resp. Hist

x
(Si)) is the restriction of Histx(Ri) (resp. Histx(Si)) to

values of the join attribute that appear in the join result.

So, the total cost of this step is the sum of the above two costs :
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Timephase4.a =

O
(

max
i∈ProcHistx(R⋊⋉S)

min
( m

m + n
× ||Histx(R)||,

||R||
m + n

)

× (ti
r + ti

w + 2 × ti
s)+

max
i∈ProcHistx(R⋊⋉S)

min
( n

m + n
× ||Histx(S)||,

||S||
m + n

)

× (ti
r + ti

w + 2 × ti
s)+

min
( m

m + n
× |Hist

x
(R)|,

|R|
m + n

)

× (mp + ml)+

min
( n

m + n
× |Hist

x
(S)|,

|S|
m + n

)

× (mp + ml)+

max
( m

max
i=1

|Hist
x
(Ri)| × mp,

n
max
i=1

|Hist
x
(Si)| × mp

)

)

.

4.b Join buckets creation :
Now, we need to create the following semi-joins : Rj = Rj ⋉ S (j =
1, . . . , m) and Sk = Sk ⋉ R (k = 1, . . . , n). The fragment Rj (resp. Sk)
holds the tuples of Rj (resp. Sk) which participate in the join re-
sult. To create these semi-joins, each processor of ProcHistx(R⋊⋉S) obeys
the message orders it has just received. So, for each received message
order_to_hash(v, bucket_index, i), the processor saves all tuples having va-
lue v of the join attribute to a bucket of index (bucket_index, i). For mes-
sages order_to_partition(v, bucket_index, ⌈Histx

i (R⋊⋉S)(v)
bucket_size ⌉, relation_index), if

the relation has the index relation_index, then the tuples will be par-
titioned over ⌈

Histx
i (R⋊⋉S)(v)

bucket_size ⌉ buckets using Round-robin method. And
in this case, the indexes of the buckets are between bucket_index and
bucket_index − 1. If this is not the case (the relation does not have the
index relation_index), then all the tuples holding a value v are saved in a
bucket of index bucket_index. However, while redistributing the data, this
bucket must be sent to each processor that received an associated bucket
of the second relation in order to have a valid result. Each coordinator
node is responsible of assigning the computing nodes for the data buckets
of index (bucket_index, i) if processor i is in its cluster. This makes our
algorithm scalable because we do not have a central coordinator node that
manages all the tasks. So, the cost of computing Rj on processor i is of the
order :

O(||Rj|| × (ti
r + ti

w + ti
s)).

(This cost also applies for the partitions of S).
However, in this semi-join computation step, we can benefit from the repli-
cation of base relations to reduce its cost. We recall here that in the second
phase, each processor i holding a sub-relation of R or S has partitioned its
tuples over multiple buckets using the Round-robin method. So, we use
this partitioning to decrease the creation time of buckets containing tuples
that effectively participate in the join result.
To this end, we will assign to each processor that belongs to a set of pro-
cessors holding a replica of the same sub-relation of R or S a number of
buckets related to this sub-relation. Hence, each processor in ProcHistx(R⋊⋉S)

will forward the list of distribution messages it has received over these
processors. To reduce the communication cost, we follow the following
strategy to redistribute the communication templates. Each processor i in
ProcHistx(R⋊⋉S) holding a replication Rj of R forwards, in a first step, the
communication template to only one processor in PRj

1. And then, in a se-
cond step, each one of these two processors forwards the communication

1we recall that PRj is the list of processors holding a replication of Rj.
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templates to another two processors and so on. Following this method, we
only need log2(rep(Rj)) communication steps where rep(Rj) is the number
of processors holding a replication of Rj.
Thus, the communication cost relative to each partition Rj of relation R is
at most :

O
(

m
max
j=1

(

log2(rep(Rj)
) ×

(

|Hist
x
(Rj)| × (2 × mp + ml)

)

)

)

,

and to each Sj partition of S is at most :

O
(

n
max
j=1

(

log2(rep(Rj)
) ×

(

|Hist
x
(Sj)| × (2 × mp + ml)

)

)

)

.

Since we used the Round-robin method to create the data buckets in the
second phase, each processor i holding a replica of a partition Rj of R

will be responsible of approximately ||Rj ||
rep(Rj)

. Thus, the cost of creating Rj

(∀j ∈ {1, . . . , m}) and partitioning its tuples over the buckets, as specified
in the communication templates, is of the order :

O
(

m
max
j=1

(

max
i∈PRj

( ||Rj||

rep(Rj)
× (ti

r + ti
w + ti

s)
)

)

)

.

Similarly, the cost of creating Sj (∀j ∈ {1, . . . , n}) and partitioning its
tuples over the buckets, as specified in the communication templates, is of
the order :

O
(

n
max
j=1

(

max
i∈PSj

( ||Sj||

rep(Sj)
× (ti

r + ti
w + ti

s)
)

)

)

.

So, the total cost of this semi-join and partitioning step (4.b) is of the
order :

O

(

max
(

m
max
j=1

(

max
i∈PRj

( ||Rj||

rep(Rj)
× (ti

r + ti
w + ti

s)
)

)

,
n

max
j=1

(

max
i∈PSj

( ||Sj||

rep(Sj)
× (ti

r + ti
w + ti

s)
)

)

)

+

m
max
j=1

(

log2(rep(Rj)) ×
(

|Hist
x
(Rj)| ∗ (2 ∗ mp + ml)

)

)

+

n
max
j=1

(

log2(rep(Sj)) ×
(

|Hist
x
(Sj)| × (2 × mp + ml)

)

)

)

.

The total cost of this phase is at most :

Timephase4 = O

(

max
i∈ProcHistx (R⋊⋉S)

min
( m

m + n
× ||Histx(R)||,

||R||
m + n

)

× (ti
r + ti

w + 2 × ti
s)+

max
i∈ProcHistx (R⋊⋉S)

min
( n

m + n
× ||Histx(S)||,

||S||
m + n

)

× (ti
r + ti

w + 2 × ti
s)+

min
( m

m + n
× |Hist

x
(R)|,

|R|
m + n

)

× (mp + ml)+

min
( n

m + n
× |Hist

x
(S)|,

|S|
m + n

)

× (mp + ml)+

max
( m

max
i=1

|Hist
x
(Ri)| × mp,

n
max
i=1

|Hist
x
(Si)| × mp

)

+
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max
(

m
max
j=1

(

max
i∈PRj

( ||Rj||

rep(Rj)
× (ti

r + ti
w + ti

s)
)

)

,

n
max
j=1

(

max
i∈PSj

( ||Sj||

rep(Sj)
× (ti

r + ti
w + ti

s)
)

)

)

+

m
max
j=1

(

log2(rep(Rj)) ×
(

|Hist
x
(Rj)| × (2 × mp + ml)

)

)

+

n
max
j=1

(

log2(rep(Sj)) ×
(

|Hist
x
(Sj)| × (2 × mp + ml)

)

)

)

.

Phase 5. Join computation phase :
In this step, each coordinator node chooses, from its cluster, the proces-

sors with the highest performance and lowest load in order to compute
the join of the buckets. It is preferred to choose these processors from the
ones that do not hold data buckets related to the query. This is possible
due to the huge number of processors in grid architectures. The number
of computing processors is chosen based on the join result size and the
nodes performance and characteristics.

5.a Assigning data buckets to computing nodes :
As stated in phase 4, each coordinator node is responsible of assigning the
task of joining a set of buckets distributed over the nodes of the grid to
its local computing processors. So firstly, it will determine the number of
buckets that can be treated in the local nodes of its cluster based on their
computing characteristics and load. Then, each coordinator node asks the
nodes holding these buckets to forward them to the chosen processors.
However, if the site cannot treat all these buckets, then it will ask its in-
termediate coordinator node to find nodes on other clusters that can treat
the join of the remaining buckets. For scalability, load is first balanced in-
side each set of processors and whenever a set of processors finishes its
assigned tasks, it asks another local coordinator for additional tasks.
Each processor holding partitions of R or S, will forward these buckets to
the computing nodes as specified by the coordinator nodes with a total
cost of order :

O
(

max
( m

max
j=1

( |Rj|

rep(Rj)
× (mp + ml)

)

,
n

max
j=1

( |Sj|

rep(Sj)
× (mp + ml)

)

)

)

.

Each processing node i receives a partition Ri of R and a partition Si of S
relative to its processing capacity such that :

||Ri ⋊⋉ Si|| ≤ voli × ||R ⋊⋉ S||.

The cost of receiving these buckets is at most :

O
(

max
i∈ProcHistx(R⋊⋉S)

(|Ri| + |Si|) × mp

)

.

After receiving the buckets, each processor i evaluates their join with a
cost of the order :

O
(

max
i∈ProcHistx(R⋊⋉S)

(

ci
r/w ×

(

|Ri|+ |Si|+ voli × |R ⋊⋉ S|
)

+ ti
h × ||Ri||+ ti

s × ||Si||
)

)

.
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So, the total cost of this phase is of the order :
Timephase5 =

O
(

max
( m

max
j=1

( |Rj|

rep(Rj)
× (mp + ml)

)

,
n

max
j=1

( |Sj|

rep(Sj)
× (mp + ml)

)

)

+

max
i∈ProcHistx(R⋊⋉S)

(

ci
r/w ×

(

|Ri| + |Si| + voli × |R ⋊⋉ S|
)

+ ti
h × ||Ri|| + ti

s × ||Si||
)

+

max
i∈ProcHistx(R⋊⋉S)

(|Ri| + |Si|) × mp

)

.

5.b Load balancing during join computation :
The grid is a multi-user system. Hence, during the join computation phase
some processors may become over-loaded. If this happens then the local
coordinator node tries to balance the load of the computing processors
locally if possible, otherwise it will ask for the help from other clusters.

5.c Failure recovery :
If a join computing node becomes unavailable, then the coordinator node
chooses a processor from its site to replace this node. If this is not possible
then it will ask its intermediate coordinator node to propose processing
nodes in other site. After that the coordinator node asks the data nodes
that have already sent data buckets to the failed node to resend them to
the new one.

The global cost of computing the join operation on the grid using
GDFA-Join algorithm is :

TimeGDFA−Join =

O

(

maxm
j=1

(

min
i∈PRj

(

|Rj| × ci
r/w + ||Rj|| × (ti

r + ti
w + ti

h)
)

)

+

maxn
j=1

(

min
i∈PSj

(

|Sj| × ci
r/w + ||Sj|| × (ti

r + ti
w + ti

h)
)

)

+

min
(

|Histx(R)|,
|R|
m

)

× (mp + ml) + min
(

|Histx(S)|,
|S|
n

)

× (mp + ml)+

min
( m

m + n
×
(

|Histx(R)| × mp + max
i∈ProcHistx (R⋊⋉S)

||Histx(R)|| × (ti
r + ti

h)
)

,

m
(m + n)2 ×

(

|R| × mp + max
i∈ProcHistx (R⋊⋉S)

||R|| × (ti
r + ti

h)
)

)

+

min
( n

m + n
×
(

|Histx(S)| × mp + max
i∈ProcHistx (R⋊⋉S)

||Histx(S)|| × (ti
r + ti

h)
)

,

n
(m + n)2 ×

(

|S| × mp + max
i∈ProcHistx (R⋊⋉S)

||S|| × (ti
r + ti

h)
)

)

+

max
i∈ProcHistx (R⋊⋉S)

(

min
(

||Histx
i (R)||, ||Histx

i (S)||
)

× (ti
r + ti

h + ti
s)
)

+

max
i∈ProcHistx (R⋊⋉S)

min
( m

m + n
× ||Hist

x
(R)||,

||R||
m + n

)

× (ti
r + ti

w + 2 × ti
s)+
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max
i∈ProcHistx (R⋊⋉S)

min
( n

m + n
× ||Hist

x
(S)||,

||S||
m + n

)

× (ti
r + ti

w + 2 × ti
s)+

max
( m

max
i=1

|Hist
x
(Ri)| × mp,

n
max
i=1

|Hist
x
(Si)| × mp

)

+

max
(

m
max
j=1

(

max
i∈PRj

( ||Rj||

rep(Rj)
× (ti

r + ti
w + ti

s)
)

)

,

n
max
j=1

(

max
i∈PSj

( ||Sj||

rep(Sj)
× (ti

r + ti
w + ti

s)
)

)

)

+

m
max
j=1

(

log2(rep(Rj)) ×
(

|Hist
x
(Rj)| × (2 × mp + ml)

)

)

+

n
max
j=1

(

log2(rep(Sj)) ×
(

|Hist
x
(Sj)| × (2 × mp + ml)

)

)

+

max
( m

max
j=1

( |Rj|

rep(Rj)
× (mp + ml)

)

,
n

max
j=1

( |Sj|

rep(Sj)
× (mp + ml)

)

)

+

max
i∈ProcHistx (R⋊⋉S)

(|Ri| + |Si|) × mp+

max
i∈ProcHistx (R⋊⋉S)

(

ci
r/w ×

(

|Ri| + |Si| + voli × |R ⋊⋉ S|
)

+ ti
h × ||Ri|| + ti

s × ||Si||
)

)

.

Remark 6 Sequential evaluation of the join of two relations R and S on processor i requires at
least the following lower bound (the time to scan the input and to store the join
result) :

boundin f1 = Ω
(

ci
r/w × (|R| + |S| + |R ⋊⋉ S|) + ti

h × ||R|| + ti
s||S||

)

.

Therefore, parallel join processing on p heterogeneous processors requires :

boundin fp = Ω
(

max
i

(

ci
r/w × voli × (|R| + |S| + |R ⋊⋉ S|)+

voli × (ti
h × ||R|| + ti

s × ||S||)
)

)

.

GDFA-Join algorithm has optimal asymptotic complexity since all the terms in
TimeGDFA−Join are bounded by those of boundin fp .

6.3 GDFA-Join Performance Evaluation

One of the main goals of the grid is to allow users to access and to analyze
databases owned by different organizations. Thus, it is very probable that
these organizations use different database management systems such as
IBM, MySQL, Microsoft SQL server, Oracle, etc., or even different database
paradigms (relational, XML, object, etc.). So, a middleware is needed to
allow users to know the properties of structured data sources and access
them. OGSA-DAI is such a service-based middleware that supports access,
sharing, management and coordinated use of heterogeneous physical data
sources on the grid by providing a uniform service interface to databases
exposed to the grid (Antonioletti et al. 2005).
The main services of OGSA-DAI are the Grid Data Service (GDS) and
Grid Data Service Factory (GDSF). The GDS represents a client session
with a physical data resource, while GDSF service is used to represent the
presence of a physical data resource on the grid. GDS services are created
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Tab. 6.1 – Computing resource characteristics

Cluster CPU CPUs Cores Memory Storage
ID Speed (GHz) per node per CPU (GB)
1 2.0 2 1 2 80 GB / IDE
2 2.2 2 2 4 2x73 GB Raid0 / SAS
3 2.6 2 2 4 250 GB / SATA

by the GDSF and any client that needs to interact with the physical data
resource has to instantiate a GDS. We propose to use OGSA-DAI as a
middleware between database servers and our algorithm in order to allow
the potential access to heterogeneous data sources.

Instance
  GDS

Instance
  GDS

Query processing
   infrastructure        and

   optimizer

Query parser
            plan
2. Query execution1. Submit 

    a query

Client

   exchange
3. Data

OGSA−DAI

4. Result transfer

Fig. 6.2 – Interactions during query execution

Figure 6.2 shows the interactions that take place during query pro-
cessing. Firstly, the user submits the query to the query parser in order to
create the distributed query execution plan. The Grid Distributed Query
Service (GDQS) presented in (Alpdemir et al. 2004) can be used for this
purpose. Then, the query execution plan is sent to the grid nodes that are
designated by the query optimizer. To execute queries, processing nodes
need to access data distributed over the grid. To this end, OGSA-DAI
services are used as described earlier. Finally, the query results are sent to
the user using the GridFTP service.

We performed our tests on a heterogeneous set of machines of
Grid’5000. The characteristics of these machines are shown in table 6.1. In
the performance tests, we divided the nodes into 3 clusters. Each cluster
has its local coordinator node and all the sites share a common main coor-
dinator node. We compared the performance of GDFA-Join algorithm with
that of osfa-join. We recall here that the performance evaluation presented
in section 5.3 of chapter 5 shows that osfa-join algorithm outperforms the
basic hash join algorithms.

6.3.1 Speed-up test

In this test, we applied osfa-join and GDFA-Join algorithms on two rela-
tions formed of 107 tuples and 8 × 106 tuples and the join result is formed
of 650 × 106 tuples. The zipf skew factor in both relations was set to 0.5.
The maximum number of processors used is 85. Figures 6.3 and 6.4 show
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that GDFA-Join outperforms osfa-join algorithm. And figures 6.5 and 6.6
show that both algorithms do not suffer from JPS problems.
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Fig. 6.3 – GDFA-Join Speed-up test for number of nodes ∈ {15, . . . , 63}.
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6.3.2 The effect of Attribute Value Skew (AVS) test

The effect of AVS was studied for both algorithms where we fixed the
number of processors to 65 and we varied the zip f factor from 0 to 1.8. Fi-
gure 6.7 shows that GDFA-Join algorithm outperforms osfa-join algorithm.
Figures 6.8 shows that the percentage of JPS in GDFA-Join algorithm is hi-
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gher than the JPS percentage in osfa-join algorithm. This is normal since in
GDFA-Join algorithm, each node receives a load which is proportional to
its processing capacities. This is not the case of osfa-join algorithm where
all the nodes receive approximately the same load. In addition, during join
computation phase of GDFA-Join algorithm, idle nodes steal data buckets
from overloaded ones.

6.4 Conclusion

We have proposed, in this chapter, a new parallel algorithm called GDFA-
Join for evaluating join operations on the grid. This algorithm allows us
to benefit from data storage and processing capabilities provided by grid
architectures where load assigned to each computing processor respects
its processing capabilities. The algorithm allows us to optimize the com-
putation time using a load balancing strategy. This strategy balances the
load of processing nodes of each cluster, then between the different clus-
ters during all the stages of join computation. In order to guarantee the
scalability of our algorithm, we use a hierarchy structure of coordinator
nodes. Each coordinator node is responsible of balancing the load of its
local processors. And the intermediate nodes balance the load between
the clusters. In addition, each processor is in charge of histogram manage-
ment and communication templates associated to a subset of join attribute
values and not necessarily its own data. It is also insensitive to data skew
while reducing communication cost since only the tuples that effectively
appear in the join result are redistributed across the network.
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Semi-join is the most used technique to optimize the treatment of com-
plex relational queries on distributed architectures. However, the ove-

rhead related to semi-join computation can be very high due to data skew
and to the high cost of communication in distributed architectures. Inter-
net search engines needs to process vast amount of raw data every day.
Hence, systems that manage such data should assure scalability, reliabi-
lity and availability issues with reasonable query processing time. Hadoop
and Google’s File System are examples of such systems. In this chapter, we
present CFA-Semi-Join algorithm: a new Frequency Adaptive algorithm
based on Map-Reduce-Merge model and distributed histograms for pro-
cessing semi-join operations on Cloud systems. A cost analysis of this al-
gorithm shows that our approach is insensitive to data skew while highly
reducing communication and disk Input/Output costs.
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7.1 Introduction

In this chapter, we are interested in evaluating semi-join operation on Dis-
tributed File Systems (DFS). This operation is useful for reducing proces-
sing time of queries involving join operations, by means of selecting only
relevant data and thereby reducing massively the number of join buckets
(and thus join computation time) since these buckets contain only tuples
that appear effectively in the join result. Semi-join is also used to reduce
the amount of data transferred over the network and therefore the com-
munication costs in distributed architectures (Stocker et al. 2001).

However, parallel semi-join computation is very sensitive to data skew
and communication costs. To this end, we propose CFA-Semi-Join : a
new approach based on distributed histograms 1 and Map-Reduce-Merge
(Yang et al. 2007) model for evaluating semi-join operations on Distribu-
ted File Systems (DFS). Our approach is insensitive to data skew, owing
to the fact that we only redistribute the histogram’s entries : the list of
distinct couples (v, nv) where v represents a semi-join attribute value and
nv is the number of tuples having value v for the join attribute. We recall
that, on each node, we only have one couple representing each specific
value v. Hence, applying hash functions on such couples does not cause
load imbalance between processors even in the presence of highly skewed
input relations.
A cost analysis shows that our approach induces a low communication
cost because we only redistribute histogram’s entries (and not input rela-
tions data) while guaranteeing scalability and perfect balancing properties
during all the stages of semi-join computation.

Our algorithm called CFA-Semi-Join (Cloud Frequency Adaptive Semi-
Join) is published in (Hassan and Bamha 2010).

7.2 CFA-Semi-Join : A Map-Reduce-Merge based algo-
rithm for computing semi-joins

In this section, we propose a new algorithm called CFA-Semi-Join (Cloud
Frequency Adaptive semi-join) based on the Map-Reduce-Merge model
presented in Yang et al. (2007) for evaluating semi-join operations on
distributed file systems such as Hadoop Distributed File System (HDFS)
and GFS. Our approach is insensitive to data skew and is based on an
efficient technique allowing to highly reduce communication and disk
Input/Output costs.
To compute the semi-join, R ⋉ S, of two relations R and S, we assume that
the input relations R and S are divided into chunks (splits) of data. These
chunks are stored in a DFS. In such systems, each chunk is also replicated
on several nodes for reliability issues.

1Histograms are implemented as Balanced trees (B+-trees), and the size of these histo-
grams is very small compared to the sizes of input relations since the histograms contain
only the list of distinct join attribute values and their corresponding frequencies.
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Throughout this chapter, for a relation T ∈ {R, S}, we use the following
notations :

– |T| : number of pages forming T,
– ||T|| : number of tuples in T,
– Ti : the split(s) of relation T placed on processor i,
– (BRi)mapj : hashed bucket of index i related to R splits placed on

mapper j,
– (BSi)mapj : hashed bucket of index i related to S splits placed on

mapper j,
– LHist(BRi)mapj : local histogram of (BRi)mapj , i.e. the list of pairs

(v, nv) where v is a semi-join value and nv its corresponding fre-
quency in relation BRi on mapper mapj,

– LHist(BSi)mapj : local histogram of (BSi)mapj ,
– GHist(BRi) (resp. GHist(BSi)) : global histogram of buckets BRi

(resp. BSi),
– Hist(BRi ⋊⋉ BSi) : histogram related to join attribute values that

appear in both relations partitions BRi and BSi,
– LHist(BRi)mapj : the restriction of LHist(BRi)mapj to join attribute

values that appear in the semi-join result,
– GHist(R ⋊⋉ S) : join attribute values that appear in both R and S,
– ci

r/w : read/write cost of a page of data on local disk on processor i,
– ti

r : time to read a record from main memory of processor i,
– ti

w : time to write a record to main memory of processor i,
– ti

s : time of a simple search in a B+-tree on processor i,
– ti

h : time to add an entry to a B+-tree on processor i,
– mp : communication message protocol cost per page of data,
– ml : communication message latency for one page of data,
– v : semi-join attribute value,
– nv : number of tuples having value v for the semi-join attribute,
– σ : semi-join selectivity factor,
– NB_mappers : number of mapper nodes of each relation,
– NB_reducers : number of reducer nodes of each relation,
– NB_mergers : number of reducer nodes.
Our algorithm can be seen as a multi-pass hierarchical workflow of

several map, reduce and merge functions as shown in figure 7.1. It can
be divided into the following four phases. We will give for each phase an
upper bound of execution time.

1. Map phase :

We have two groups of mappers, the first group is responsible of trea-
ting R partitions and the second is responsible of S ones. Each mapper in
R (resp. S) group is assigned one or several file splits of R (resp. S). Each
mapper reads its assigned splits from the DFS. Tuples of these splits are
partitioned into buckets using a hash function applied on the value of the
join attribute (Algorithm 17). On the fly, we also compute the frequency
nv of each value of the join attribute v in each bucket. We have chosen
to use Balanced B+-trees 2 to store the couples (v, nv). We refer to these

2A balanced tree (B+-tree) is a data structure that maintains an ordered set of data to
allow efficient search and insert operations.
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B+-trees as histograms. At the end, we have on each mapper a list of local
histograms. The partitions of local histograms on all R-mappers (resp.
S-mappers) having the same index are designated to the same R-reducer
(resp. S-reducer).

Algorithm 16: Semi-join algorithm workflow.
1◮ Each R-mapper (resp. S-mapper) :

⊲ reads its assigned data splits from the DFS ;
⊲ partitions the read data into buckets and, on the fly, creates the local

histogram of each bucket (Algo. 17) ;
2◮ Each R-reducer/merger node (resp. S-reducer node) (Algo. 18) :

⊲ reads remotely the local histogram partitions holding its index ;
⊲ creates the distributed global histograms of R (resp. S) ;

3◮ Each R-reducer/merger node (Algo. 19) :
⊲ reads remotely the distributed global histograms of S ;
⊲ finds the semi-join attribute values that appear in the final result

by finding the intersection of distributed global histograms of R and S ;
⊲ creates the restriction of local histogram received in (3) to values

appearing in the final semi-join result ;
4◮ Each R-mapper node :

⊲ reads remotely the associated local histogram restriction created in (7) ;
⊲ merges the read data with the associated input data buckets to find

the final semi-join result (Algo. 20) ;

Algorithm 17: Map function for computing local histogram for a re-
lation T ∈ {R, S}.

map(String table, const String key) {
/* table : relation’s name, key : join attribute.*/

int hash_ f unction(String) ;
⊲ vector < B+-tree > LHist ;
⊲ for each tuple t in the assigned splits of table {

⊲ hash t into the bucket BTi where i = hash_ f unction(t.v) ;
⊲ if ( join attribute value t.v is already inserted in LHist(BTi)) then

increment the frequency relative to t.v in LHist(BTi) ;
⊲ else

add the couple (t.v, 1) to LHist(BTi) ;
endif

}
}
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Fig. 7.1 – Semi-join computation steps in CFA-Semi-Join algorithm.
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The cost of this phase is of the order :

Timephase1 = O
(

max
( NB_mappers

max
i=1

(

|Ri| × ci
r/w + ||Ri|| × (ti

r + ti
w + ti

h)
)

,

NB_mappers
max
i=1

(

|Si| × ci
r/w + ||Si|| × (ti

r + ti
w + ti

h)
)

)

)

.

where |Ri| × ci
r/w (resp. |Si| × ci

r/w) represents the cost of loading data from
the local disk(s) on processor i and ||Ri|| × (ti

r + ti
w) (resp. ||Si|| × (ti

r + ti
w))

is the cost of hashing tuples into buckets. The histograms are created, on
the fly, during the creation of R and S data buckets using Algorithm 17

with cost ||Ri|| × ti
h and ||Si|| × ti

h.

2. Reduce phase :

Each R-reducer (resp. S-reducer) reads its designated distributed local
histogram partition from each R-mapper (resp. S-mapper). Applying the
same hash function on all the mappers while partitioning (v, nv) allows us
to forward all entries having same values of v to partitions of the local his-
tograms holding the same index on all the mappers. Thus, the associated
records of local histograms on all mappers are sent to the same reducer.
Each reducer computes the sum of the frequencies nv related to each join
attribute value v in order to find its global frequency. We call this structure
the distributed global histogram.

Algorithm 18: Reduce function for computing distributed global his-
togram for a relation T ∈ {R, S}.

reduce(int reducer_id, vector <B+-tree> LHist(BTreducer_id)){
⊲ B+-tree GHist(BTreducer_id) ;
⊲ for each mapper mapi {

⊲ read remotely LHist(BTreducer_id)mapi ;
⊲ for each couple (v, nv) of LHist(BTreducer_id)mapi {

⊲ if ( v already exists in GHist(BTreducer_id) with frequency f reqv ) then
update f reqv+ = nv ;

⊲ else
insert (v, nv) into GHist(BTreducer_id) ;

endif
}

}
}

In order to give the cost of Algorithm 18, we study it from both map-
pers and reducers sides.

a. Local histogram distribution from the mappers side :
The cost of forwarding the local histograms of R from R-mapper i to R-
reducers is of the order :

O
( NB_mappers

max
i=1

NB_reducers

∑
j=0

|LHist
(

(BRj)mapi

)

| × (mp + ml)
)

.
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We give an upper bound to this cost using the following four cases :

a.1. Each semi-join attribute value appears in R with a frequency

equal to 1 :

In this case, we have ||GHist(R)|| = ||R||. So, if tuples of R are evenly
partitioned over the mappers, on each mapper mapi we have :

NB_reducers

∑
j=1

||LHist
(

(BRj)mapi

)

|| =
||GHist(R)||

NB_mappers
=

||R||
NB_mappers

.

So, the above forward cost can be written as :

O
( |GHist(R)|

NB_mappers
× (mp + ml)

)

≤ O
( |R|

NB_mappers
× (mp + ml)

)

.

The above inequality holds due to the fact that |GHist(R)| ≤ |R| since
histograms are only formed of couples (v, nv) where v is the semi-join
attribute value and nv is its corresponding frequency. Thus, the cost to
forward relation’s R local histograms is of the order :

O
(

min
( |GHist(R)|

NB_mappers
,

|R|
NB_mappers

)

× (mp + ml)
)

≤ O
(

min
(

|GHist(R)|,
|R|

NB_mappers

)

× (mp + ml)
)

.

a.2. All the semi-join attribute values appear in R with frequencies less

than NB_mappers :

In this case, we can partition R into NB_mappers relations
R1, R2, . . . , RNB_mappers such that the frequency of each semi-join attri-
bute value v in Rj is exactly equal to 1. So, as proved in case a.1, the cost
of distributing the local histograms of each partition Rj is of the order :

O
(

min
( |GHist(Rj)|

NB_mappers
,

|Rj|

NB_mappers

)

× (mp + ml)
)

.

Thus, the cost of forwarding the local histogram partitions of Ri on each
mapper i is of order :

O
(

NB_mappers

∑
j=1

min
( |GHist(Rj)|

NB_mappers
,

|Rj|

NB_mappers

)

× (mp + ml)
)

≤ O
(

min
(

|GHist(R)|,
|R|

NB_mappers

)

× (mp + ml)
)

.

This inequality holds owing to the fact that :
{

maxj |GHist(Rj)| ≤ |GHist(R)| and
∑i min(ai, bi) ≤ min(∑i ai, ∑i bi).

Remark 7 In practice, this partitioning step is carried out to only show the validity of the above
cost. And whenever a semi-join value appears with a frequency k, a couple (v, k)
is sent to its destination processor in one message and not k messages of the (v, 1).
This reduces massively the number of messages exchanged over the network.
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a.3. All the semi-join attribute values appear in R with frequencies grea-

ter than NB_mappers :

In this case, each mapper i is at most in charge of ||GHist(R)|| values
of semi-join attribute (i.e. all the semi-join attribute values of R appear in
Ri), and thus the cost of this step is of the order :

O
(

|GHist(R)| × (mp + ml)
)

≤ O
( |R|

NB_mappers
× (mp + ml)

)

.

This inequality holds because each semi-join attribute value appears with
a frequency greater than NB_mappers and thus :

||GHist(R)|| ≤
||R||

NB_mappers

and

|GHist(R)| ≤
|R|

NB_mappers
.

So, the forward cost is of the order :

O
(

min
(

|GHist(R)|,
|R|

NB_mappers

)

× (mp + ml)
)

.

a.4. General case :

The cost of this case can be deduced from cases b and c, where we
can divide R into two sub-relations R′ and R”. R′ holds tuples related
to semi-join attribute values with frequencies less than NB_mappers and
R” those whose frequencies are greater than NB_mappers. So, the cost of
forwarding the local histograms of R′ is :

O
(

min
(

|GHist(R′)|,
|R′|

NB_mappers

)

× (mp + ml)
)

,

and of R” :

O
(

min
(

|GHist(R”)|,
|R”|

NB_mappers

)

× (mp + ml)
)

.

The cost of forwarding R is thus the sum of the above two costs, which is
at most of the order :

O
(

min
(

|GHist(R)|,
|R|

NB_mappers

)

× (mp + ml)
)

.

This is due to the fact that :
{

GHist(R′) ∩ GHist(R”) = ∅ and
min(a, b) + min(c, d) ≤ min(a + c, b + d).

So, the cost of relation’s R local histogram forward step is at most :

O
(

min
(

|GHist(R)|,
|R|

NB_mappers

)

× (mp + ml)
)

.
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b. Receiving local histograms from the reducers side :
The cost of receiving the local histograms by each reducer j is of the order :

O
(

NB_reducers
max

j=1

NB_mappers

∑
i=1

|LHist
(

(BRj)mapi

)

| × (mp)
)

.

We give an upper bound to this cost and prove it using the following four
cases :

b.1. Each semi-join attribute value appears in R with a frequency equal

to 1 :

Using an appropriate hash function allowing to evenly partition the
distinct semi-join attribute values, we can send to each reducer approxi-
mately ||R||

NB_reducers records. Since ||GHist(R)|| = ||R|| and |GHist(R)| ≤ |R|,
the receiving cost of the local histogram partitions by each reducer i is of
the order |GHist(R)|

NB_reducers × mp. In addition, in order to create the distributed
global histogram, each reducer i merges the received records of local his-
togram partitions with a cost of the order : ||GHist(R)||

NB_reducers × (ti
r + ti

h).
Hence, the global cost of this step is at most :

O
( |GHist(R)|

NB_reducers
× mp +

||GHist(R)||

NB_reducers
× (ti

r + ti
h)
)

≤ O
( |R|

NB_reducers
× mp +

||R||
NB_reducers

× (ti
r + ti

h)
)

.

So, the cost on each reducer is at most :

O(min
(

|GHist(R)| × mp + ||GHist(R)|| × (ti
r + ti

h),

|R|
NB_reducers

× mp +
||R||

NB_reducers
× (ti

r + ti
h)
)

.

b.2. All the semi-join attribute values appear in R with frequencies less

than NB_reducers :

Following the same demonstration method used for the mappers,
we divide R into NB_reducers relations : R1, R2, . . . , RNB_reducers such that
the frequency of each semi-join value v is exactly equal to 1. Thus, the
receiving and local histograms’ records merging costs on each reducer
related to each partition Ri is at most :

O
(

min
(NB_mappers

NB_reducers
×
(

|GHist(Ri)| × mp + ||GHist(Ri)|| × (ti
r + ti

h)
)

,

NB_mappers
NB_reducers2 ×

(

|Ri| × mp + ||Ri|| × (ti
r + ti

h)
)

)

)

.

So, the total cost on each reducer is :

O
( NB_reducers

∑
i=1

min
(NB_mappers

NB_reducers
×
(

|GHist(Ri)| × mp + ||GHist(Ri)|| × (ti
r + ti

h)
)

,

NB_mappers
NB_reducers2 ×

(

|Ri| × mp + ||Ri|| × (ti
r + ti

h)
)

)

)

≤ O
(

min
(NB_mappers

NB_reducers
×
(

|GHist(R)| × mp + ||GHist(R)|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

,

NB_mappers
NB_reducers2 ×

(

|R| × mp + ||R|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

)

)

.



A Map-Reduce-Merge based approach for computing semi-joins 139

b.3. All the semi-join attribute values appear in R with frequencies grea-

ter than NB_reducers :

Owing to the fact that hashing histograms is insensitive to data skew,
by using an appropriate hash function (remark 1 on page 33), each reducer
will be responsible of approximately ||GHist(R)||

NB_reducers semi-join attribute values.
So, if each semi-join attribute value appears on each R-mapper, then each
reducer receives at most : NB_mappers× ||GHist(R)||

NB_reducers local histogram records.
Thus, the communication and records merging cost on each reducer is of
the order :

O
(NB_mappers

NB_reducers

(

|GHist(R)| × mp + ||GHist(R)|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

)

,

Since each semi-join attribute value appears with a frequency greater than
NB_reducers, we have :

{

|GHist(R)| ≤ |R|
NB_reducers and

||GHist(R)|| ≤ ||R||
NB_reducers .

And thus,
{

NB_mappers
NB_reducers |GHist(R)| ≤ NB_mappers

NB_reducers2 × |R| and
NB_mappers
NB_reducers ||GHist(R)|| ≤ NB_mappers

NB_reducers2 × ||R||.

So, the communication and records merging cost in this case is at
most :

O(min
(NB_mappers

NB_reducers
×
(

|GHist(R)| × mp + ||GHist(R)|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

,

NB_mappers
NB_reducers2 ×

(

|R| × mp + ||R|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

)

.

b.4. General case :
The cost for the general case is of the order :

O(min
(NB_mappers

NB_reducers
×
(

|GHist(R)| × mp + ||GHist(R)|| × (ti
r + ti

h)
)

,

NB_mappers
NB_reducers2 ×

(

|R| × mp + ||R|| × (ti
r + ti

h)
)

)

.

The prove is straightforward from cases b and c where we can follow the
same steps of case a.4.

So, the total cost of this phase is at most :
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Timephase2 =

O

(

max
(

min
(

|GHist(R)|,
|R|

NB_mappers

)

× (mp + ml)+

min
(NB_mappers

NB_reducers
×
(

|GHist(R)| × mp + ||GHist(R)|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

,

NB_mappers
NB_reducers2 ×

(

|R| × mp + ||R|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

)

,

min
(

|GHist(S)|,
|S|

NB_mappers

)

× (mp + ml)+

min
(NB_mappers

NB_reducers
×
(

|GHist(S)| × mp + ||GHist(S)|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

,

NB_mappers
NB_reducers2 ×

(

|S| × mp + ||S|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

)

)

)

.

3. Distributed global histogram merge phase :
At this step, each merger reads a partition of the distributed global
histogram related to R and its associated partition of S. After that, the
intersection of these two partitions, Hist(R ⋊⋉ S), is computed as shown
in Algorithm 19. Hist(R ⋊⋉ S) holds only the join attribute values that
appear in R and S. Now, we need to determine the values of the semi-join
attribute that appear in R ⋉ S. To this end, each merger reads from each
R-mapper the associated partition of the local histogram and computes
its intersection with Hist(R ⋊⋉ S) as shown in Algorithm 19.

Remark 8 In order to optimize the query execution, we can combine each merger with one
R-reducer. This helps to decrease communication costs because the partitions of
the local histograms of R are already read by the R-reducers. In addition, while
computing Hist(R ⋊⋉ S), we read locally the global histogram of R and remotely
those of S from S-reducers.

The global cost of this phase is at most :
Timephase3 =

O
( |GHist(S)|

NB_reducers
× (2 × mp + ml)+

NB_mergers
max
i=1

ti
r + ti

h + ti
s

NB_reducers
× min(||GHist(R)||, ||GHist(S)||)+

NB_mergers
max
i=1

NB_mappers

∑
j=1

||LHist((BRi)mapj)|| ×
NB_mergers

max
i=1

(ti
r + ti

s + ti
h)
)

≤ O
( |GHist(S)|

NB_reducers
× (2 × mp + ml)+

ti
r + ti

h + ti
s

NB_reducers
× min(||GHist(R)||, ||GHist(S)||)+

NB_mappers
NB_reducers

× min(||GHist(R)||,
||R||

NB_reducers
) ×

NB_mergers
max
i=1

(ti
r + ti

s + ti
h)
)

.

The term |GHist(S)|
NB_reducers × (2mp + ml) is the cost of forwarding and recei-

ving the global histogram partitions from S-reducers to the mergers and
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Algorithm 19: Global histogram merge function.
merge(int m_id, B+-tree GHist(BRm_id), B+-tree GHist(BSm_id)) {

/* m_id is the identifier of the merger. */
/* Find Hist(R ⋊⋉ S) which is the intersection of hist_R and hist_S. */
⊲ vector <B+-tree> LHist(BRm_id) ;
⊲ B+-tree Hist(BRm_id ⋊⋉ BSm_id) ;
⊲ read locally GHist(BRm_id) ;
⊲ read remotely GHist(BSm_id) from the associated S-mapper ;
⊲ for each couple (v, nR(v)) in GHist(BRm_id) {

⊲ if ( v ∈ GHist(BSm_id) with frequency nS(v) ) then
Insert (v, nR(v) × nS(v)) into Hist(BRm_id ⋊⋉ BSm_id) ;

}
/* Find the join attribute values in each Split of R that appear in

the join result. */
⊲ for each mapper mapi {

⊲ for each join attribute value v in LHist(BRmerger_id)mapi

⊲ if ( v ∈ Hist(BRm_id ⋊⋉ BSm_id) ) then

add v to LHist(BRmerger_id)mapi ;
endif

}
}

min( ||GHist(R)||
NB_reducers , ||GHist(S)||

NB_reducers ) × (ti
r + ti

h + ti
s) is the cost of creating the intersec-

tion of the global histograms of R and S.
The term maxNB_reducers

i=0 ∑
nR−maps
j=0 ||LHist((BRi)mapj)|| × (ti

r + ti
s + ti

h) is the cost
of creating LHist(BRi)mapj on reducer i which holds the semi-join attribute
values that appear in the semi-join result of each mapper mapi.

4. Semi-join merge phase :
At this step, we use a group of mergers where each one computes the
intersection of a set of hashed buckets of R created by the mappers in the
first phase with the associated list of semi-join values that appear in the
final semi-join result created in phase 3 (Algorithm 20). The union of the
results represents R ⋉ S.

Remark 9 In order to reduce communication costs, this merge phase may be executed on R-
mappers of the first phase which already store the buckets of R in their local disks.

The cost of forwarding the fragments of LHist(BRi)mapj from the mer-
gers to the mappers is :

NB_mappers

∑
j=1

|LHist(BRi)mapj | × (mp + ml).

The cost of receiving these fragments is :

NB_mergers

∑
i=1

|LHist(BRi)mapj | × mp.

The cost of computing the final semi-join result on mapper j is :
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Algorithm 20: semi-join merge function.
merge(int merger_id, vector <data_bucket> (BR[])merger_id,

vector <B+-tree> LHist(BR[])merger_id ) {
⊲ for each bucket (BRi)merger_id on merger merger_id{
⊲ for each tuple t in (BRi)merger_id

⊲ if ( t.v ∈ LHist(BRi)mapper_id ) then

Write t to the semi-join result buffer ;
endif

}
}

||Rj|| × (tj
r + σ × tj

w + tj
s) and the cost of writing this result is : σ × |Rj| × cj

r/w.

The global cost of this phase is at most :

Timephase4 = O
( NB_mappers

max
j=1

σ × |Rj| × cj
r/w +

NB_mappers
max
j=1

||Rj|| × (tj
r + σ × tj

w + tj
s)+

NB_mergers
max
i=1

NB_mappers

∑
j=1

|LHist(BRi)mapj | × (mp + ml)+

NB_mappers
max
j=1

NB_mergers

∑
i=1

|LHist(BRi)mapj | × mp
)

≤ O
( NB_mappers

max
j=1

(

||Rj|| × (tj
r + σ × tj

w + tj
s) + σ × |Rj| × cj

r/w

)

+

NB_mappers
NB_reducers

× |GHist(R ⋊⋉ S)| × (mp + ml)+

max
i

σ × |Ri| × mp

)

.

So, the total cost of this algorithm is the sum of the costs of all phases :
TimeCFA−Semi−Join =

O

(

max
( NB_mappers

max
i=1

(

|Ri| × ci
r/w + ||Ri|| × (ti

r + ti
w + ti

h)
)

,

NB_mappers
max
i=1

(

|Si| × ci
r/w + ||Si|| × (ti

r + ti
w + ti

h)
)

)

+

max
(

min
(

|GHist(R)|,
|R|

NB_mappers

)

× (mp + ml)+

min
(NB_mappers

NB_reducers
×
(

|GHist(R)| × mp + ||GHist(R)|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

,

NB_mappers
NB_reducers2 ×

(

|R| × mp + ||R|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

)

,

min
(

|GHist(S)|,
|S|

NB_mappers

)

× (mp + ml)+

min
(NB_mappers

NB_reducers
×
(

|GHist(S)| × mp + ||GHist(S)|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

,

NB_mappers
NB_reducers2 ×

(

|S| × mp + ||S|| ×
NB_reducers

max
i=1

(ti
r + ti

h)
)

)

)

+
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NB_mergers
max
i=1

ti
r + ti

h + ti
s

NB_reducers
× max(||GHist(R)||, ||GHist(S)||)+

NB_mappers
NB_reducers

× min(||GHist(R)||,
||R||

NB_reducers
) ×

NB_mergers
max
i=1

(ti
r + ti

s + ti
h)+

NB_mappers
NB_reducers

× |GHist(R ⋊⋉ S)| × (mp + ml)+

NB_mappers
max
j=1

(

||Rj|| × (tj
r + σ × tj

w + tj
s) + σ × |Rj| × cj

r/w

)

)

.

Remark 10 Using NB_mappers mappers and NB_reducers reducers, the computation of R ⋉ S
requires at least the following cost :

O(
NB_mappers

max
i=1

(

ci
r/w × (|Ri| + |Si| + σ × |Ri|) + ||Ri|| + ||Si||+

(mp + ml) × (|Ri| + |Si|)
)

+

mp ×
|R| + |S|

NB_reducers
+

NB_reducers
max
i=1

(ti
r + ti

s) × ||R|| + ti
h × ||S||

NB_reducers
),

(7.1)

where ci
r/w × (|Ri| + |Si|) is the cost of reading input relations from disk and

cr/w × σ × |Ri| is the cost of writing the semi-join result on the disk of processor i.
The term ||Ri|| + ||Si|| represents the cost of partitioning the tuples into buckets
that will be sent to the reducers. The term

(mp + ml) × (|Ri| + |Si|) + mp ×
|R| + |S|

NB_reducers

represents the cost of communicating data between mappers and reducers. And
(ti

r+ti
s)×||R||+ti

h×||S||
NB_reducers is the cost of computing the semi-join result. Our algorithm

has optimal asymptotic complexity when the number of reducers and the number
of mappers are of the same order since all the terms of the global cost are bounded
by those of equation 7.1.

In the contrary to algorithms based on hashing such as those presented
in Yang et al. (2007), our approach is insensitive to data skew. This is due
to the fact that we apply the hash function on the distributed histograms
which hold a single entry for each specific semi-join attribute value and
not directly on input relations data.
To compute semi-joins, we don’t need to compute the frequencies of the
semi-join attribute. Creating balanced tree which only contains the semi-
join attribute values is sufficient. However, we have chosen to follow this
strategy because it allows us to create efficient communication templates
for join queries. These communication templates allow us to create balan-
ced join buckets even in the presence of highly skewed data.

7.3 Conclusion

Map-Reduce based systems offer an easy programming model that auto-
matically manages parallel issues such as load balance and fault tolerance,
etc. Join and semi-join processing on such systems is based on hashing all
data of input relations which is known to be inefficient in the presence
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of data skew. In this chapter, we have introduced a semi-join algorithm
based on a Map-Reduce-Merge model and distributed histograms allo-
wing to highly reduce the communication costs owing to the fact that
only histograms are redistributed across the network and the sizes of
these histograms are very small compared to the sizes of input relations.
Distributed histograms computation allows us to avoid unnecessary disk
Input/Output and data redistribution while guaranteeing perfect load
balancing properties during all the stages of semi-join computation even
in the presence of highly skewed data. Each processor is in charge of a
subset of semi-join attribute values and not necessarily its own data.
Our experience with distributed histograms and join operation shows
that the overhead related to histogram management remains negligible
compared to the gain it provides in reducing communication and join
computation costs.



8Conclusion

Ce travail a porté sur le traitement des opérations de base de données
telles que les requêtes de regroupement et de jointure sur des architectures
distribuées. Dans ce cadre nous avons proposé une variété d’algorithmes
basés sur une approche complètement distribuée où chaque processeur
s’occupe d’un sous-ensemble des valeurs de l’attribut de jointure et non
de ses propres données : À aucune étape du traitement, les données ne se
trouvent centralisées sur un seul processeur, ce qui garantit l’extensibilité
de ces algorithmes.
Pour équilibrer les charges des différents processeurs, nous nous sommes
basés sur l’utilisation des histogrammes distribués pour la redistribution
des données et la génération des schémas de communications. Le sur-coût
lié à l’utilisation de ces histogrammes reste négligeable du fait que les
histogrammes distribués sont créés à la volée durant la phase de création
des buckets de données (durant l’étape de la phase de redistribution des
données) conjointement par tous les processeurs. Ces histogrammes nous
aident à avoir une information très détaillée sur la répartition des valeurs
de l’attribut de jointure qui participent effectivement dans le résultat de la
jointure avec leurs fréquences. Puis, seuls les tuples associés à ces valeurs
sont redistribués. Ceci permet, d’une part, de réduire considérablement
le nombre de buckets de jointures (et par conséquent le temps global de
traitement), et d’autre part, de minimiser les coûts de communication
et de lecture/écriture sur les disques lors de la phase de redistribution
des données. Les fréquences calculées sont utilisées, lors de la création
des schémas de communications, pour attribuer les charges ou les tâches
aux différents processeurs tout en respectant leurs puissances de calcul
même en présence d’un fort déséquilibre des données. Les schémas de
communications créés permettent également d’éviter le déséquilibre du
résultat de la jointure. Pour garantir l’extensibilité de nos algorithmes, la
tâche de création des schémas de communications est effectuée conjointe-
ment par tous les nœuds : chaque nœud s’occupe de la redistribution des
données d’un sous-ensemble de valeurs de l’attribut de jointure et non
de ses propres données. Nous rappelons que, dans le cas des algorithmes
conventionnels, l’extensibilité reste limitée puisque la tâche de création
des schémas de communications est effectuée par un nœud coordinateur
qui s’occupe de l’allocation des buckets de données aux différents nœuds.
En d’autres termes, pendant ce temps, tous les autres nœuds sont inactifs.

Dans la première partie de ce travail de thèse, nous avons développé
deux algorithmes, GAJFA-Join (Group-by After Join Frequency Adaptive

145



146 Chapitre 8. Conclusion

Join) et GBJFA-Join (Group-by Before Join Frequency Adaptive Join) pour
l’évaluation des requêtes de "Group-By Join" dans un environnement Sha-
red Nothing. Contrairement aux algorithmes présentés dans la littérature
pour l’évaluation de ces requêtes, nos algorithmes évitent de matérialiser
le résultat intermédiaire de la jointure tout en traitant de manière très
efficace les problèmes de déséquilibre des valeurs de l’attribut de join-
ture. Dans ces deux algorithmes, on applique partialement l’opération
de regroupement ainsi que la fonction d’agrégat avant la jointure même
quand les attributs de jointures et du group-by sont distincts. Ceci réduit
considérablement le volume des résultats intermédiaires et permet de
minimiser le coût de communication entre les nœuds du système.

Dans la deuxième partie de cette thèse, nous avons présenté deux algo-
rithmes, DFA-Join (Dynamic Frequency Adaptive Join) et PDFA-Join (Pi-
pelined Dynamic Frequency Adaptive Join), pour évaluer respectivement
la jointure et la multi-jointure sur les systèmes distribués hétérogènes et
multi-utilisateur. Un autre algorithme appelé GDFA-Join (Grid Dynamic
Frequency Adaptive Join) a été proposé pour l’évaluation de la jointure
sur les grilles. Comme pour les algorithmes GAJFA-Join et GBJFA-Join,
dans les trois algorithmes DFA-Join, PDFA-Join et GDFA-Join, nous utili-
sons les informations détaillées sur la distribution de valeurs de l’attribut
de jointure sous forme des histogrammes distribués. Comme expliqué
avant, ces histogrammes sont utilisés pour créer les schémas de com-
munications où seuls les tuples qui participent effectivement au résultat
de la jointure seront redistribués. Donc, les coûts de communication et
de lecture/écriture des données sur les disques sont optimisés même en
présence d’un fort déséquilibre des valeurs de l’attribut de jointure.

Sur les architectures hétérogènes, les charges des nœuds peuvent va-
rier de manière rapide et imprévisible. Ainsi, afin d’exploiter efficacement
la puissance de ces architectures, nous avons utilisé dans les algorithmes
DFA-Join et PDFA-Join une technique de rééquilibrage des charges en
deux-étapes : l’une statique et l’autre dynamique. Dans l’étape statique,
chaque nœud reçoit une charge proportionnelle à sa capacité de calcul.
Puis, dans l’étape dynamique les buckets de données appartenant aux
processeurs surchargés sont transférés vers les processeurs les moins
chargés durant l’évaluation de la jointure.

Dans l’algorithme GDFA-Join sur la grille, les tuples sont répartis en
buckets de telle sorte que les résultats des jointures locales soient à peu
près de même taille. Les schémas pour créer ces buckets sont réalisés par
tous les nœuds. Cela aide à garantir l’extensibilité des nos algorithmes.
Le nœud coordinateur de chaque cluster est responsable de l’attribution
des buckets à ses nœuds en respectant leurs puissances de calcul. Durant,
l’évaluation de la jointure, l’équilibrage des charges se fait de manière
hiérarchique : les charges sont dans un premier temps équilibrées au
sein de chaque cluster (ou groupe des processeurs) puis en suite entre
les différents clusters. Les trois algorithmes garantissent que la taille du
résultat de la jointure dans chaque nœud est proportionnelle à sa capacité
de calcul même en présence d’un fort déséquilibre des données. Dans
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les grilles, nous profitons de l’espace de stockage disponible pour la
réplication des données dans le but, de réduire l’embouteillage lié aux
lectures/écritures sur les disques, d’accélérer le temps d’évaluation de la
jointure et de traiter de manière efficace les pannes possibles d’un ou de
plusieurs nœuds.

Dans la dernière partie de cette étude, nous avons développé l’al-
gorithme CFA-Semi-Join (Cloud Frequency Adaptive Semi-Join) pour
l’évaluation des semi-jointures sur les systèmes de fichiers distribués.
Cet algorithme présente l’avantage de réduire fortement les coûts de
communication tout en traitant de manière très efficace les problèmes de
déséquilibre des données.

L’analyse de complexité de nos algorithmes (GAJFA-Join, GBJFA-
Join, DFA-Join, PDFA-Join, GDFA-Join et CFA-Semi-Join) et les résultats
expérimentaux obtenus montrent que ces algorithmes possèdent une ac-
célération presque linéaire.

Nous envisageons d’adapter l’algorithme PDFA-Join pour l’évaluation
des requêtes complexes sur les grilles. Cet algorithme doit être capable
d’exploiter non seulement le parallélisme intra-opérateur, mais également
le parallélisme inter-opérateur pipeliné. Il doit également être tolérant aux
pannes.

Il serait, aussi, intéressant de travailler sur le traitement de requêtes
complexes dans les systèmes de fichiers distribués (DFS). Comme dans
le cas de semi-jointures, nous pensons que l’utilisation des histogrammes
distribués pour créer des schémas de communications apporte la possibi-
lité de réduire le temps d’exécution d’une requête dans les systèmes de
fichiers distribués.

Les travaux présentés, dans cette thèse, peuvent être adaptés à d’autres
modèles de données (par exemple données XML distribuées) et également
à d’autres applications liées à la grille (découverte de services, gestion
de ressources distribuées, etc.). Les approches présentées peuvent être
étendues à d’autres applications parallèles telles que l’aide à la décision
et le data mining où des gros volumes des données sont distribués entre
les différents processeurs.

Récemment, des chercheurs motivés par l’extensibilité du système
Pair-à-Pair (P2P), ont commencé d’étudier le traitement des requêtes sur
cette architecture. Des approches basées sur les algorithmes de hachage
ont été présentées dans (Sattler et al. 2004, Huebsch et al. 2003) pour l’éva-
luation de la jointure sur les systèmes P2P. Nous pensons qu’adopter nos
techniques d’équilibrage de charge à cette architecture serait particulière-
ment prometteur dans l’optimisation du temps d’exécution des requêtes.
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Proposition 1 : The cost of creating the global histogram fragments,
Histx

i (R)i=1,...,p, on heterogeneous systems starting from the local histo-
grams Histx(Ri)i=1,...,p of the fragment Ri of relation R according to some
attribute x is of order 1 :

O
(

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(R)| + γi × ||Histx(R)||
)

,

max
i=1,...,p

ωi ×
(

g × |R| + γi × ||R||
)

)

+ l
)

if a hash function H that distributes the distinct values of the attribute x
among the p processors in a manner that respects the processing capacity
of each machine is used.

In the above equation, γi is the time needed for executing one opera-
tion on processor i and ωi is the fraction of the total volume of data that
must be assigned to processor i in a manner that respects its available
capacity in order to allow all participating processors to terminate their
assigned tasks approximately at the same time where ωi is given by the
following formula :

ωi =
1
γi

∑
p
k=1

1
γk

.

Remark 11 On homogeneous systems, γi has the same value on all the p processors. Thus,
ωi = 1

p ∀i ∈ {1, . . . , p}. So, the cost of creating the local histogram fragments
Histx(Ri)i=1,...,p becomes :

O
(

min
(

g × |Histx(R)| + ||Histx(R)||, g ×
|R|
p

+
||R||

p

)

+ l
)

. (A.1)

Proof : In order to prove this cost, we will consider four cases where the
difference between them lies in the frequency distribution of the attribute
x of relation R.

Case 1 : In this case, we consider that all the values of the attribute x ap-
pear in the relation R with a frequency equal to 1, hence ||Histx(R)|| = ||R||.
So if we use a hash function H on each processor i that distributes the
tuples of R in a manner that respects the processing power of each ma-
chine, then each processor will receive ωi × ||Histx(R)|| tuples from all the
processors in the system. So, the cost of creating Histx

i (R) is of the order :

O
(

max
i=1,...,p

ωi
(

g×|Histx(R)|+ γi ×||Histx(R)||
)

+ l
)

6 O
(

max
i=1,...,p

ωi
(

g×|R|+ γi ×||R||
)

+ l
)

.

(A.2)
The term ωi × g × |Histx(R)| is the necessary time for communicating data

and the term ωi ×γi × ||Histx(R)|| is the time needed to form Histx
i (R)i=1,...,p

starting from the blocks received by each processor i during the distribu-
tion of the local histograms Histx(Ri)i=1,...,p.
The histogram is formed of couples having the form (v, nv) where v are
the distinct values of attribute x of R and nv their corresponding frequen-
cies, hence |Histx(R)| 6 |R| which makes that the above inequality holds.
So, for the case where all the values of the attribute x have a frequency
equal to 1 in R, the fragments Histx

i (R) of the global histogram can be

1This is the generalized form of proposition 1 presented in Bamha and Hains (2005) for
computing Histx

i (R) in a Shared Nothing architecture.
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computed in time of the order :

O
(

min
(

max
i=1,...,p

ωi ×
(

g × |Histx(R)| + γi × ||Histx(R)||
)

,

max
i=1,...,p

ωi ×
(

g × |R| + γi × ||R||
)

)

+ l
)

6 O
(

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(R)| + γi × ||Histx(R)||
)

,

max
i=1,...,p

ωi ×
(

g × |R| + γi × ||R||
)

)

+ l
)

.

Case 2 : Now we consider that the frequency of all the values of the at-
tribute x in R is lower than p. In order to use the cost obtained in case 1,
relation R must be partitioned into p relations R1, R2, . . . , Rp such that the
frequency of each value v in relation Rj(j = 1, . . . , p) is exactly equal to 1.
So, the cost of creating Histx

i (Rj) of each relation Rj for j = 1, . . . , p accor-
ding to case 1 is of order :

O
(

min
(

max
i=1,...,p

ωi ×
(

g × |Histx(Rj)| + γi × ||Histx(Rj)||
)

,

max
i=1,...,p

ωi ×
(

g × |Rj| + γi × ||Rj||
)

)

+ l
)

,
(A.3)

hence, the necessary time for creating Histx
i (R) of relation R is :

O
(

∑
j=1,...,p

min
(

max
i=1,...,p

ωi ×
(

g × |Histx(Rj)| + γi × ||Histx(Rj)||
)

,

max
i=1,...,p

ωi ×
(

g × |Rj| + γi × ||Rj||
)

)

+ l
)

6 O
(

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(R)| + γi × ||Histx(R)||
)

,

max
i=1,...,p

ωi ×
(

g × |R| + γi × ||R||
)

)

+ l
)

.
(A.4)

The above inequality holds due to the fact that Histx
i (R) can be created by

simply fusioning the fragments Histx
i (Rj)j=1,...,p in time of order :

O
(

∑
j=1,...,p

max
i=1,...,p

ωi × γi × ||Histx
i (Rj)||

)

6 O
(

max
i,j

ωi × γi × ||Histx
i (Rj)|| × p

)

6 O
(

maxi ωi × γi × ||Histx(R)|| × p
)

and that ∑i min(ai, bi) 6 min(∑i ai, ∑i bi).
In practice, we do not need to partition relation R into p relations where
each processor distributes the couples (v, nv) related to all values v of the
join attribute x using a hash function even if nv > 1. However, we used
this technique here to demonstrate the validity of the cost model.

Case 3 : In this case, we consider that the frequencies of all the values of
the attribute x are higher than p. Hence, each processor i is responsible
of treating ωi × ||Histx(R)|| distinct values of R where ωi depends on the
processing power of each processor, and if each value v of attribute x is
found on all the p processors than each processor i will receive a block of
data of maximal size ωi × |Histx(R)| × p from all the other processors.
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So, if an appropriate hash function is used, each processor receives a
block of size ωi × |Histx(R)| with a communication cost of order :

O
(

max
i

(

g × ωi × |Histx(R)| × p
)

+ l
)

6 O
(

max
i

(

g × ωi × |R|
)

+ l
)

. (A.5)

This inequality holds due to the fact that ||Histx(R)|| 6
||R||

p because each
value v of x appears with a frequency higher than p, thus :

ωi × ||Histx(R)|| × p 6 ωi||R||.

After this step of communication, ||Histx
i (R)|| is created on each processor

i by a simple fusion of all the fragments of Histx(Rj)j=1,...,p received from all
processors j in time of the order : O

(

ωi × γi × ||Histx(R)|| × p
)

. Thus the cost of
creating Histx

i (R) is of order :

O
(

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(R)| + γi × ||Histx(R)||
)

,

max
i=1,...,p

ωi ×
(

g × |R| + γi × ||R||
)

)

+ l
)

.
(A.6)

Case 4 : The cost of the general case can be deduced from the previous three
cases where R is partitioned into two disjoint sub-relations R′ and R” such that
the tuples of R′ (resp. R”) are associated with frequencies lower (resp. higher)
than p for the join attribute x. Thus, using cases 1 and 2, the creation of the
histogram of R′ costs :

O
(

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(R′)| + γi × ||Histx(R′)||
)

,

max
i=1,...,p

ωi ×
(

g × |R′| + γi × ||R′||
)

)

+ l
)

,
(A.7)

and according to case 3 the creation of the histogram of R” costs :

O
(

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(R”)| + γi × ||Histx(R”)||
)

,

max
i=1,...,p

ωi ×
(

g × |R”| + γi × ||R”||
)

)

+ l
)

.
(A.8)

Owing to the fact that Histx(R) = Histx(R′) ∪ Histx(R”) and that min(a, b) +
min(c, d) 6 min(a + c, b + d), we can deduce that the cost of creating Histx

i (R) is
at most of order :

O
(

min
(

max
i=1,...,p

ωi × p ×
(

g × |Histx(R)| + γi × ||Histx(R)||
)

,

max
i=1,...,p

ωi ×
(

g × |R| + γi × ||R||
)

)

+ l
)

.
(A.9)



154 A. Appendix

Proposition 2 : We consider that relation R (resp. S) is partitioned into m (resp.
n) fragments such that R = ∪m

i=1Ri (resp. S = ∪n
i=1Si).

Let us consider that the local histogram partitions of R are created on m pro-
cessors of the grid and that of S on n processors according to some attribute
A. The cost of creating the distributed global histogram, Histx

i (R)i=1,...,m+n, on
a set of m + n processors (ProcHistx(R⋊⋉S)) starting from the local histograms
Histx(Ri)i=1,...,m of relation Ri of R is of the order :

O
(

min
(

|Histx(R)| × (mp + ml),
|R|
m

× (mp + ml)
)

+

min
( m

m + n
×
(

|Histx(R)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(R)|| × (ti
r + ti

h)
)

,

m
(m + n)2 ×

(

|R| × mp + max
i∈ProcHistx(R⋊⋉S)

||R|| × (ti
r + ti

h)
)

)

)

,

if a hash function H that evenly distributes the distinct values of the join
attribute A of the local histograms among the m + n processors is used.

In the above equation, mp is the communication message protocol cost per page
of data and ml is the communication message latency for one page of data. ci

r/w
is the read/write cost of local disk on processor i, ti

r is the needed time to read a
record from its main memory and ti

h is the time to add an entry to a B+-tree on
processor i.

Proof : In order to prove this cost we will consider four cases from the side
of the m processors that forward the local histogram partitions and other four
cases from the side of the m + n processors that receive the local histograms to
create the global histogram partitions. The difference between the cases lies in
the frequency distribution of the attribute A of relation R.

a. Cost of forwarding the local histogram partitions :
The cost of forwarding the local histogram partitions of R from the m processors
to the m + n processors of ProcHistx(R⋊⋉S) is of the order :

O
(

maxi|Histx(Ri)| × (mp + ml)
)

. (A.10)

We will give an upper bound of this cost to prove the scalability of our approach
using the following four cases :

a.1. Each join attribute value appears in R with a frequency equal to 1 :
In this case, we have ||Histx(R)|| = ||R||. So, if the tuples of R are evenly parti-
tioned over the m processors, then on each processor i, we have :

||Histx(Ri)|| =
||Histx(R)||

m
=

||R||
m

.

So, the above forward cost (A.10) can be written as :

O
( |Histx(R)|

m
× (mp + ml)

)

≤ O
( |R|

m
× (mp + ml)

)

.

The above inequality holds due to the fact that |Histx(R)| ≤ |R|, since histograms
are only formed of couples (v, nv) where v is the join attribute value and nv is its
corresponding frequency.
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Thus, the cost to forward relation’s R local histograms is at most :

O
(

min
( |Histx(R)|

m × (mp + ml), |R|m × (mp + ml)
)

)

≤ O
(

min
(

|Histx(R)| × (mp + ml), |R|m × (mp + ml)
)

)

.

a.2. All the join attribute values appear in R with frequencies less than m :
In this case, we can partition R into m relations R1, R2, . . . , Rm such that the fre-
quency of each join attribute value v in Rj (j = 1, . . . , m) is exactly equal to 1. So,
the cost of distributing the local histograms of each partition Rj as proved in case
a.1 is of the order :

O
(

min
( |Histx(Rj)|

m
× (mp + ml),

|Rj|

m
× (mp + ml)

)

)

.

Thus, the cost of forwarding the local histogram partitions of Ri on each proces-
sor i is at most :

O
( m

∑
j=1

min
( |Histx(Rj)|

m
× (mp + ml),

|Rj|

m
× (mp + ml)

)

)

≤ O
(

min
(

|Histx(R)| × (mp + ml),
|R|
m

× (mp + ml)
)

)

.

This inequality holds owing to the fact that :
{

|Histx(Rj)| ≤ |Histx(R)| and
∑i min(ai, bi) ≤ min(∑i ai, ∑i bi).

Remark 12 In practice, this partitioning step is carried out to only show the validity of the above cost.
And whenever a join value appears with a frequency k, a couple (v, k) is sent to its
destination processor in one message and not k messages (v, 1). This reduces massively
the number of messages exchanged over the network.

a.3. All the join attribute values appear in R with frequencies greater than m :
In this case, each processor i is at most in charge of ||Histx(R)|| values of join
attribute (i.e. all the join attribute values of R appear in Ri). So, the cost of this
step is of the order :

O
(

|Histx(R)| × (mp + ml)
)

≤ O
( |R|

m
× (mp + ml)

)

.

This inequality holds because each join attribute value appears with a frequency
greater than m and thus : ||Histx(R)|| ≤ ||R||

m and |Histx(R)| ≤ |R|
m .

So, the forward cost is of the order :

O
(

min
(

|Histx(R)| × (mp + ml),
|R|
m

× (mp + ml)
)

)

.

a.4. General case :
The cost of this case can be deduced from cases b and c, where we can divide R
into two sub-relations R′ and R”. R′ holds tuples related to join attribute values
with frequencies less than m and R” those whose frequencies are greater than m.
So, the cost of forwarding the local histograms of R′ is :

O
(

min
(

|Histx(R′)| × (mp + ml),
|R′|

m
× (mp + ml)

)

)

,

and of R” : O
(

min
(

|Histx(R”)| × (mp + ml), |R”|
m × (mp + ml)

)

)

.
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The cost of forwarding R is thus the sum of the above two costs which is of the
order :

O
(

min
(

|Histx(R)| × (mp + ml),
|R|
m

× (mp + ml)
)

)

.

This is due to the fact that :
{

Histx(R′) ∩ Histx(R”) = ∅ and
min(a, b) + min(c, d) ≤ min(a + c, b + d)

So, the cost of relation’s R local histogram forward step is of the order :

O
(

min
(

|Histx(R)| × (mp + ml),
|R|
m

× (mp + ml)
)

)

.

This also applies to S.

b. The cost of receiving the local histograms :
We will give the cost of receiving and merging the local histogram partitions by
the m + n processors from the m processors of R using the following four cases :

b.1. Each join attribute value appears in R with a frequency equal to 1 :
Using an appropriate hash function allowing to evenly partition the distinct
join attribute values, we can send to each processor approximately ||R||

m+n records.
Since, ||Histx(R)|| = ||R|| and |Histx(R)| ≤ |R|, the receiving cost of the lo-
cal histogram partitions by each processor i is of the order |Histx(R)|

m+n × mp. In
addition, in order to create the distributed global histogram, each processor i
merges the received local histogram partitions’ records with a cost of the order :
||Histx(R)||

m+n × (ti
r + ti

h).

The term ||Hist(R)||
m+n × ti

r is the needed time to read all the entries of the received

partitions of the local histograms. And, ||Hist(R)||
m+n × ti

h is the needed time to add
the new entries to the global histogram of R ⋊⋉ S.

Hence, the cost of this step is at most :

O
( |Histx(R)|

m + n
× mp + max

i∈ProcHistx(R⋊⋉S)

||Histx(R)||

m + n
× (ti

r + ti
h)
)

≤ O
( |R|

m + n
× mp + max

i∈ProcHistx(R⋊⋉S)

||R||
m + n

× (ti
r + ti

h)
)

.

So, the cost on each processor is of the order :

O
(

min
(

|Histx(R)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(R)|| × (ti
r + ti

h),

|R|
m + n

× mp + max
i∈ProcHistx(R⋊⋉S)

||R||
m + n

× (ti
r + ti

h)
)

)

.

b.2. All the join attribute values appear in R with frequencies less than m + n :
Following the same demonstration method used in case (a.2.), we divide R into
m + n relations : R1, R2, . . . , Rm+n such that the frequency of each join value v is
exactly equal to 1. Thus, the receiving and local histograms records merging cost
on each processor related to each partition Rj is :

O
(

min
( m

m + n
×
(

|Histx(Rj)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(Rj)|| × (ti
r + ti

h)
)

,

m
(m + n)2 ×

(

|Rj| × mp + max
i∈ProcHistx(R⋊⋉S)

||Rj|| × (ti
r + ti

h)
)

)

)

.
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So, the total cost on each reducer is :

O
( m+n

∑
i=1

min
( m

m + n
×
(

|Histx(Rj)| × mp + ||Histx(Rj)|| × (tr + th)
)

,

m
(m + n)2 ×

(

|Rj| × mp + ||Rj|| × (tr + th)
)

)

)

≤ O
(

min
( m

m + n
×
(

|Histx(R)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(R)|| × (ti
r + ti

h)
)

,

m
(m + n)2 ×

(

|R| × mp + max
i∈ProcHistx(R⋊⋉S)

||R|| × (ti
r + ti

h)
)

)

)

.

(Remark 12 also applies to this step).

b.3. All the join attribute values appear in R with frequencies greater than
m + n :
If we use an appropriate hash function, each processor will be responsible of
approximately ||Histx(R)||

m+n join attribute values. So, if each join attribute value
appears in each Ri (i ∈ (1, . . . , m)), then each processor of the m + n processors
receives at most : m × ||Histx(R)||

m+n local histograms records. Thus, the communica-
tion and records merging cost on each processor is of the order :

O
( m

m + n

(

|Histx(R)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(R)|| × (ti
r + ti

h)
)

)

Since each join attribute value appears with a frequency greater than m + n, we
have : ||Histx(R)|| ≤ ||R||

m+n and |Histx(R)| ≤ |R|
m+n .

So, m
m+n ||Histx(R)|| ≤ m

(m+n)2 × ||R|| and m
m+n |Histx(R)| ≤ m

(m+n)2 × |R|.
Thus, the communication and records merging cost in this case is of the order :

O(min
( m

m + n
×
(

|Histx(R)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(R)|| × (ti
r + ti

h)
)

,

m
(m + n)2 ×

(

|R| × mp + max
i∈ProcHistx(R⋊⋉S)

||R|| × (ti
r + ti

h)
)

)

.

b.4. General case :
The cost for the general case is of the order :

O(min
( m

m + n
×
(

|Histx(R)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(R)|| × (ti
r + ti

h)
)

,

m
(m + n)2 ×

(

|R| × mp + max
i∈ProcHistx(R⋊⋉S)

||R|| × (ti
r + ti

h)
)

)

.

The proof is straightforward from cases b2 and b3 where we can follow the
same steps of case a.4.

So, the total cost of creating the distributed global histogram of R starting from
the local ones is of the order :

O
(

min
(

|Histx(R)| × (mp + ml),
|R|
m

× (mp + ml)
)

+

min
( m

m + n
×
(

|Histx(R)| × mp + max
i∈ProcHistx(R⋊⋉S)

||Histx(R)|| × (ti
r + ti

h)
)

,

m
(m + n)2 ×

(

|R| × mp + max
i∈ProcHistx(R⋊⋉S)

||R|| × (ti
r + ti

h)
)

)

)

.
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B+ trees

A B+ tree is a form of balanced search trees where data are sorted in a manner
which allows efficient and rapid lookup, insertion and deletion of data. As shown
in figure A.1, a B+ tree is formed of nodes linked by pointers. A node may be an
internal or a leaf node.

6

4 8 9

3 6 7 8 9 10 142Level 2
Leaf nodes

Leaf node next leaf node

Level 1

Level 0
Root

Data pointer

Key value

Internal node

Pointer to

Reference value

Child pointer

Fig. A.1 – A B+ tree example.

An internal node, including the root node, holds entries formed of reference values
and child pointers. Each child pointer points to a node holding values less than or
equal to the reference value immediately to its right. However, the last pointer
points to a node holding values that are greater than the last reference value in
the internal node.

A leaf node holds entries formed of a key value and a data pointer to the storage
location associated with the key value. An extra pointer in each leaf node points
to its immediate sibling node (the node to its right).

We can see that in B+ trees, all data are stored in the leaf nodes and internal
nodes only hold referential data that helps to decrease the lookup time of data
stored at the leaves. In addition, the sequential linkage between the leaf nodes
allows us to access sequentially these nodes without the need to visit the internal
nodes.

Remark 13 To implement the histograms used in this thesis report, we can replace the data pointers of
the leaf nodes by the frequency of the key. In addition, for equi-join queries, we can use B
trees. However, B+ trees are more efficient for other types of θ-join queries.

A B+ tree of order m is a balanced tree where :
– each node has k keys such that m ≤ k ≤ 2m except the root which may

have between 1 and 2m keys,
– a node is either a leaf or an internal node that has k + 1 children,
– to store N keys, 1 + logm+1

N+1
2 levels is needed.
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Notations

General notations

– T denotes a relation,
– |T| denotes the size (expressed in bytes or number of pages) of T,
– ||T|| denotes the number of tuples of T,
– h denotes a hash function,

h : T −→ N

t 7−→ n
where t is a tuple of T and n is the nodes index that t is hashed to,

– Ti denotes the fragment of T placed on node i,
– nv : number of tuples having value v for the join or semi-join attribute,
– ci

r/w denotes the cost of reading/writing a page of data from/to the disk
of processor i,

– mp : communication message protocol cost per page of data,
– ml : communication message latency for one page of data,
– ci

r/w : read/write cost of a page of data on local disk on processor i,
– ti

r : time to read a record from main memory of processor i,
– ti

w : time to write a record to main memory of processor i,
– ti

s : time of a simple search in a B+-tree on processor i,
– ti

h : time to add an entry to a B+-tree on processor i.

Notations used in GAJFA-Join, GBJFA-Join, DFA-Join, PDFA-Join and GDFA-Join
algorithms :

– Histw(T) denotes the histogram2 of relation T with respect to the attribute
w, i.e. a list of pairs (v, nv) where nv 6= 0 is the number of tuples of relation
T having the value v for the attribute w. The histogram is often much
smaller and never larger than the relation it describes,

– Histw(Ti) denotes the histogram of fragment Ti,
– Histw

i (T) is processor i’s fragment of the histogram of T,
– Histw(T)(v) is the frequency (nv) of value v in relation T,
– Histw(Ti)(v) is the frequency of value v in sub-relation Ti,
– Histw[j](Ti) is the fragment of Histw(Ti) sent from processor i to processor

j,

– Hist
w[j]

(Ti) is the restriction of Histw[j](Ti) to entries related to entries of w
that appear in the final join result,

– Ti is the partition of T received by processor i as indicated by the commu-
nication template to compute the join result.

Notations specific to GAJFA-Join and GBJFA-Join algorithms :

– AGGRw
f ,u(T) 3 is the result of applying the aggregate function f on the

values of the attribute u of every group of tuples of T having identical
values of the group-by attributes w. AGGRw

f ,u(T) is formed of a list of
tuples (v, fv) where fv is the result of the aggregate function of the group
of tuples having value v for the attribute w (w may be formed of more than
one attribute),

– AGGRw
f ,u(Ti) denotes the result of applying the aggregate function on the

attribute u of relation Ti,

2Histograms are implemented as balanced trees (B+-tree).
3 AGGRw

f ,u(T) is implemented as a balanced tree (B+-tree) : a data structure that main-
tains an ordered set of data to allow efficient search and insert operations (cf. Appendix A
page 158).
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– AGGRw
f ,u,i(T) is processor i’s fragment of the result of applying the aggre-

gate function on T,
– AGGRw

f ,u(T)(v) is the result fv of the aggregate function of the group of
tuples having value v for the group-by attribute w in relation T,

– AGGRw
f ,u(Ti)(v) is the result fv of the aggregate function of the group of

tuples having value v for the group-by attribute w in sub-relation Ti.

Notations specific to GDFA-Join algorithms :

– numclust : the number of clusters forming the grid,
– PT : the list of processors’ indexes holding a replication of T,
– ProcHistx(R⋊⋉S) : the list of processors’ indexes that participate in computing

Histx(R ⋊⋉ S),
– rep(T) : the number of processors holding a replica of T,
– bucket_size : the size of generated join buckets specified by the coordinator

node.

Notations specific to CFA-Semi-Join algorithms :

– (BRi)mapj : hashed bucket of index i related to R splits placed on mapper j,
– (BSi)mapj : hashed bucket of index i related to S splits placed on mapper j,
– LHist(BRi)mapj : local histogram of (BRi)mapj , i.e. the list of pairs (v, nv)

where v is a semi-join value and nv its corresponding frequency in relation
BRi on mapper mapj,

– LHist(BSi)mapj : local histogram of (BSi)mapj ,
– GHist(BRi) (resp. GHist(BSi)) : global histogram of buckets BRi (resp.

BSi),
– Hist(BRi ⋊⋉ BSi) : histogram related to join attribute values that appear in

both relations partitions BRi and BSi,
– LHist(BRi)mapj : the restriction of LHist(BRi)mapj to join attribute values

that appear in the semi-join result,
– GHist(R ⋊⋉ S) : join attribute values that appear in both R and S,
– σ : semi-join selectivity factor,
– NB_mappers : number of mapper nodes of each relation,
– NB_reducers : number of reducer nodes of each relation,
– NB_mergers : number of reducer nodes.
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Mohamad AL HAJJ HASSAN
Parallélisme et équilibrage de charges dans le
traitement de la jointure sur des architectures

distribuées

Résumé :

L’émergence des applications de bases de données dans les domaines tels que le data warehousing,
le data mining et l’aide à la décision qui font généralement appel à de très grands volumes de données
rend la parallélisation des algorithmes des jointures nécessaire pour avoir un temps de réponse acceptable.
Une accélération linéaire est l’objectif principal des algorithmes parallèles, cependant dans les applications
réelles, elle est difficilement atteignable : ceci est dû généralement d’une part aux coûts de communications
inhérents aux systèmes multi-processeurs et d’autre part au déséquilibre des charges des différents pro-
cesseurs. En plus, dans un environnement hétérogène multi-utilisateur, la charge des différents processeurs
peut varier de manière dynamique et imprévisible.
Dans le cadre de cette thèse, nous nous intéressons au traitement de la jointure et de la multi-jointure sur
les architectures distribuées hétérogènes, les grilles de calcul et les systèmes de fichiers distribués. Nous
avons proposé une variété d’algorithmes, basés sur l’utilisation des histogrammes distribués, pour traiter
de manière efficace le déséquilibre des données, tout en garantissant un équilibrage presque parfait de
la charge des différents processeurs même dans un environnement hétérogène et multi-utilisateur. Ces
algorithmes sont basés sur une approche dynamique de redistribution des données permettant de réduire les
coûts de communication à un minimum tout en traitant de manière très efficace le problème de déséquilibre
des valeurs de l’attribut de jointure.
L’analyse de complexité de nos algorithmes et les résultats expérimentaux obtenus montrent que ces
algorithmes possèdent une accélération presque linéaire.
Mots clés : Systèmes de gestion de bases de données parallèles, Jointures parallèles, Multi-jointure, Les
Grilles de calcul, Les systèmes de fichiers distribués, Déséquilibre des données, Équilibrage dynamique de
charges.

Parallelism and load balancing in the treatment of the join on
distributed architectures

Résumé :
The appeal of parallel processing becomes very strong in applications which require ever higher performance
and particularly in applications such as : data-warehousing, decision support, On-Line Analytical Processing
(OLAP) and more generally DBMS. A linear speed-up is the main objective of parallel algorithms. However,
in real applications, it’s not obvious to reach this objective due to the high communication cost in parallel and
distributed systems and to the possible skew in the charge of different processors. In addition, on heteroge-
neous multi-user architectures, the load of each processor may highly vary in a dynamic and unpredictable
way.
In this thesis, we are interested in treating the join and multi-join queries on distributed multi-user heterege-
neous systems, grid systems and distributed file systems. We have proposed several algorithms based on
using distributed histograms. These algorithms are based on a dynamic data distribution and task allocation
which makes them insensitive to data skew and ensure perfect balancing properties during all stages of join
computation even on heteregeneous multi-user environment. The complexity analysis of our algorithms and
the experimental results show that they have a near-linear speedup.
Keywords : Parallel Database Management Systems, Parallel joins, Multi-join, Grid systems, Distributed File
Systems, Data skew, Dynamic load balancing.
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