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Abstract

The last years witnessed an explosive progress in networking, storage, and processing technologies
resulting in an unprecedented amount of digitalization of data. There is hence a considerable need for tools
or techniques to delve and efficiently discover valuable, non-obvious information from large databases. In
this situation, Knowledge Discovery in Databases offers a complete process for the non-trivial extraction of
implicit, previously unknown, and potentially useful knowledge from data. Amongst its steps, data mining
offers tools and techniques for such an extraction. Much research in data mining from large databases
has focused on the discovery of association rules which are used to identify relationships between sets
of items in a database. The discovered association rules can be used in various tasks, such as depicting
purchase dependencies, classification, medical data analysis, etc. In practice however, the number of
frequently occurring itemsets, used as a basis for rule derivation, is very large, hampering their effective
exploitation by the end-users. In this situation, a determined effort focused on defining manageably-sized
sets of patterns, called concise representations, from which redundant patterns can be regenerated. The
purpose of such representations is to reduce the number of mined patterns to make them manageable by
the end-users while preserving as much as possible the hidden and interesting information about data.

Many concise representations for frequent patterns were so far proposed in the literature, mainly
exploring the conjunctive search space. In this space, itemsets are characterized by the frequency of
their co-occurrence. A detailed study proposed in this thesis shows that closed itemsets and minimal
generators play a key role for concisely representing both frequent itemsets and association rules. These
itemsets structure the search space into equivalence classes such that each class gathers the itemsets
appearing in the same subset (aka objects or transactions) of the given data. A closed itemset includes
the most specific expression describing the associated transactions, while a minimal generator includes
one of the most general expressions. However, an intra-class combinatorial redundancy would logically
results from the inherent absence of a unique minimal generator associated to a given closed itemset.
This motivated us to carry out an in-depth study aiming at only retaining irreducible minimal generators
in each equivalence class, and pruning the remaining ones. In this respect, we propose lossless reductions
of the minimal generator set thanks to a new substitution-based process. We then carry out a thorough
study of the associated properties of the obtained families. Our theoretical results will then be extended to
the association rule framework in order to reduce as much as possible the number of retained rules without
information loss. We then give a thorough formal study of the related inference mechanism allowing to
derive all redundant association rules, starting from the retained ones. In order to validate our approach,
computing means for the new pattern families are presented together with empirical evidences about
their relative sizes w.r.t. the entire sets of patterns.

We also lead a thorough exploration of the disjunctive search space, where itemsets are characterized
by their respective disjunctive supports, instead of the conjunctive ones. Thus, an itemset verifies a
portion of data if at least one of its items belongs to it. Disjunctive itemsets thus convey knowledge
about complementary occurrences of items in a dataset. This exploration is motivated by the fact that,
in some applications, such information — conveyed through disjunctive support — brings richer knowledge
to the end-users. In order to obtain a redundancy-free representation of the disjunctive search space, an
interesting solution consists in selecting a unique element to represent itemsets covering the same set of
data. Two itemsets are equivalent if their respective items cover the same set of data. In this regard, we
introduce a new operator dedicated to this task. In each induced equivalence class, minimal elements are
called essential itemsets, while the largest one is called disjunctive closed itemset. The introduced opera-
tor is then at the roots of new concise representations of frequent itemsets. We also exploit the disjunctive
search space to derive generalized association rules. These latter rules generalize classic ones to also offer
disjunction and negation connectors between items, in addition to the conjunctive one. Dedicated tools
were then designed and implemented for extracting disjunctive itemsets and generalized association rules.
Our experiments showed the usefulness of our exploration and highlighted interesting compactness rates.
Keywords: Association rule, Closed itemset, Closure operator, Concise representation, Data mining,
Disjunctive closed itemset, Disjunctive support, Equivalence class, Essential itemset, Generalized associ-
ation rule, Itemset, Minimal generator.






Résumé

Durant ces derniéres années, les quantités de données collectées, dans divers domaines d’application de
Pinformatique, deviennent de plus en plus importantes. Cela suscite le besoin d’analyser et d’interpréter
ces données afin d’en extraire des connaissances utiles. Dans cette situation, le processus d’Extraction de
Connaissances & partir des Données est un processus complet visant & extraire des connaissances cachées,
nouvelles et potentiellement utiles & partir de grands volumes de données. Parmi ces étapes, la fouille
de données offre les outils et techniques permettant une telle extraction. Plusieurs travaux de recherche
en fouille de données concernent la découverte des régles d’association, permettant d’identifier des liens
entre ensembles de descripteurs (ou attributs ou items) décrivant un ensemble d’objets (ou individus
ou transactions). Les régles d’association ont montré leur utilité dans plusieurs domaines d’application
tels que la gestion de la relation client en grande distribution (analyse du panier de la ménagére pour
déterminer les produits souvent achetés simultanément, et agencer les rayons et organiser les promotions
en conséquence), la biologie moléculaire (analyse des associations entre génes), etc.

De maniére générale, la construction des régles d’association s’effectue en deux étapes : Pextraction
des ensembles d’items (ou itemsets) fréquents, puis la génération des régles d’association a partir de des
itemsets fréquents. Dans la pratique, le nombre de motifs (itemsets fréquents ou régles d’associations)
extraits ou générés, peut étre trés élevé, ce qui rend difficile leur exploitation pertinente par les utilisateurs.
Pour pallier ce probléme, certains travaux de recherche proposent I'usage d’un noyau de motifs, appelés
représentations concises, & partir desquels les motifs redondants peuvent étre régénérés. Le but de telles
représentations est de condenser les motifs extraits tout en préservant autant que possible les informations
cachées et intéressantes sur des données.

Dans la littérature, beaucoup de représentations concises des motifs fréquents ont été proposées, explo-
rant principalement ’espace de recherche conjonctif. Dans cet espace, les itemsets sont caractérisés par la
fréquence de leur co-occurrence. Ceci fait I’objet de la premiére partie de ce travail. Une étude détaillée
proposée dans cette thése prouve que les itemsets fermés et les générateurs minimaux sont un moyen de
représenter avec concision les itemsets fréquents et les régles d’association. Les itemsets fermés structurent
l’espace de recherche dans des classes d’équivalence tels que chaque classe regroupe les itemsets apparais-
sant dans le méme sous-ensemble (appelé aussi objets ou transactions) des données. Un itemset fermé
inclut ’expression la plus spécifique décrivant les transactions associées, alors qu’un générateur minimal
inclut une des expressions les plus générales. Cependant, une redondance combinatoire intra-classe résulte
logiquement, de ’absence inhérente d’un seul générateur minimal associé & un itemset fermé donné. Ceci
nous a motivé & effectuer une étude approfondie visant & maintenir seulement les générateurs minimaux
irréductibles dans chaque classe d’équivalence, et d’élaguer les autres. A cet égard, il est proposé une
réduction sans perte d’information de ’ensemble des générateurs minimaux grice & un nouveau processus
basé sur la substitution. Une étude compléte des propriétés associées aux familles obtenues est présentée.
Les résultats théoriques sont ensuite étendus au cadre de régles d’association afin de réduire autant que
possible le nombre de régles maintenues sans perte d’information. Puis, est présentée une étude formelle
compléte du mécanisme d’inférence permettant de dériver toutes les régles d’association redondantes, a
partir de celles maintenues. Afin de valider 'approche proposée, les algorithmes de construction de ces
représentations concises de motifs sont présentés ainsi que les résultats des expérimentations réalisées en
terme de concision et de temps de calcul.

La seconde partie de ce travail est consacrée & une exploration compléte de 1’espace de recherche
disjonctif des itemsets, ou ceux-ci sont caractérisés par leurs supports disjonctifs. Ainsi dans ’espace
disjonctif, un itemset vérifie une transaction si au moins un de ses items y est présent. Les itemsets
disjonctifs véhiculent ainsi une connaissance au sujet des occurrences complémentaires d’items dans un
ensemble de données. Cette exploration est motivée par le fait que, dans certaines applications, une telle
information peut étre utile aux utilisateurs. Lors de I'analyse d’une séquence génétique par exemple, le
fait d’engendrer une information telle que “présence d’un géne X ou la présence d’un géne Y ou ...”
présente un intérét pour le biologiste.

Afin d’obtenir une représentation concise de I’espace de recherche disjonctif, une solution intéressante
consiste & choisir un seul élément pour représenter les itemsets couvrant le méme ensemble de données.
Deux itemsets sont équivalents si leurs items respectifs couvrent le méme ensemble de données. A cet
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égard, un nouvel opérateur consacré & cette tache, a été introduit. Dans chaque classe d’équivalence
induite, les éléments minimaux sont appelés itemsets essentiels, alors que le plus grand élément est
appelé itemset fermé disjonctif. L’opérateur présenté est alors & la base de nouvelles représentations
concises des itemsets fréquents. L’espace de recherche disjonctif est ensuite exploité pour dériver des régles
d’association généralisées. Ces derniéres régles généralisent les régles classiques pour offrir également des
connecteurs de disjonction et de négation d’items, en plus de celui conjonctif. Des outils (algorithme
et programme) dédiés ont été alors congus et mis en application pour extraire les itemsets disjonctifs et
les régles d’association généralisées. Les résultats des expérimentations effectuées ont montré l'utilité de
notre exploration et ont mis en valeur la concision des représentations concises proposées.

Mots clés : Fouille de données, Classe d’équivalence, Itemset, Itemset essentiel, Itemset fermé, Itemset
fermé disjonctif, Générateur minimal, Opérateur de fermeture, Régle d’association, Régle d’association
généralisée, Représentation concise, Support disjonctif.
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Chapter 1

Introduction

With the development of computer tools, we noted these last years a flood of information stored in large
databases [Berry and Linoff., 2004]. The need to interpret and analyze these data raises much interest.
Thus, the setting of new data analysis solutions became a real challenge for the scientific community.
To overcome the lack of extracted knowledge from stored data, new methods were hence proposed,
gathered under the generic term of Knowledge Discovery in Databases (KDD) [Fayyad et al., 1996, Han
and Kamber, 2006]. According to Frawley et al. [Frawley et al., 1992]: “The Knowledge Discovery in
Databases indicates the interactive and iterative process for extracting implicit knowledge, previously
unknown and potentially useful starting from stored data in databases”.

Within a KDD process, the data mining is the step focusing on the mining part of interesting patterns.
For this purpose, this multidisciplinary field is at the confluence of various others, such as statistics,
database management, mathematics, artificial intelligence, etc. In few years, the data mining became
a research field in full progress aiming at exploiting the great quantities of data collected in various
domains using computer sciences. The term “data mining” gathers different complementary tasks, such
as prediction, grouping by similarity, classification, cluster analysis, etc. These tasks are divided into
several techniques, such as association rules, decision trees, neural networks, etc. [Han and Kamber,
2006].

In this thesis, we are interested in two pattern classes, namely frequent itemsets and association rules.
In data mining, frequent itemsets and association rules are among the most popular research topics
[Han et al., 2007]. These pattern classes are closely related since the extraction of the former is usually
considered as a starting point for getting the latter. Association rule mining is a fundamental topic in
data mining and has been extensively investigated since its inception in [Agrawal et al., 1993]. Its key idea
consists in looking for relationships between sets of items, commonly called itemsets, where the presence
of some items suggests that others follow from them. A typical example of a successful application of
association rules was the market basket analysis [Agrawal et al., 1993], where the discovered rules can
lead to important marketing and management strategic decisions. In this case, each transaction consists
of a list of bought articles (or products). The purpose was to identify the groups of articles frequently
bought together. The association analysis, applied to sales transactions, is then called market basket
analysis [Agrawal et al., 1993]. It starts from the finest data which compose a transaction: sales of the

elementary articles. The mining of associations then aims at finding relations or correlations which could



2 Introduction

exist between products (for example, 80% of customers who buy tomato and salad also buy oil.), but also
between product sales (for example, when the sales of milk increase then the sales of chocolate increase
with a confidence of 60%).

The use of association rules was then extended to various applications analyzing for example economic,
financial, or medical data. In the general case, given a set of items (or attribute) and a set of objects
(or transactions), the frequent pattern mining problem consists of getting out, from a dataset, patterns
having a number of occurrences (i.e., conjunctive support or support for short) greater than or equal to
a user-defined threshold. An association rule is defined under the general form: If Condition(s), then
Result(s) where the Condition(s) and Result(s) parts are composed by sets of items from the dataset.

In practice, the number of frequent itemsets, and hence association rules, can be overwhelmingly
large hampering their effective exploitation by the end-users. In order to reduce the number of mined
rules, statistical measures were introduced, amongst the most known are the support and confidence
[Geng and Hamilton, 2006]. Nevertheless, if the minimal support threshold is set too low or the data is
highly correlated, no matter how efficient the frequent pattern mining algorithm is, generating all frequent
patterns is impossible. Moreover, the set of patterns presents redundancy in the sense that many patterns
convey the same information [Ashrafi et al., 2007]. To overcome this problem, several proposals have been
made to construct only a manageably-sized set of patterns from which we can regenerate all frequent
patterns along with to their exact frequencies. Such a reduced set is better known as ezxact concise (or
condensed) representation. A concise representation only stores a non-redundant cover of all frequent
patterns. In many practical situations, this cover is considerably smaller than the complete collection
of all frequent patterns. Therefore, a concise representation can be used in those situations where it is

impossible or inefficient to get out all frequent patterns.

1.1 Motivations and Contributions

Within the traditional association analysis, the conjunction connector — linking items — got the monopoly
[Ceglar and Roddick, 2006]. This was motivated by the original application pertaining to market basket
analysis. In this respect, a growing number of approaches explored the conjunctive search space where
items are characterized by the frequency of their simultaneous occurrence (or co-occurrence). The aim
of such an exploration is to get out a lossless nucleus of itemsets, from which the remaining ones can
be derived. Beyond high compactness rates, an exact concise representation makes it possible to guess
the frequency status of an itemset and to exactly retrieve its exact support in the case that itemset
is (potentially) interesting w.r.t. statistical measures. Many exact concise representations of frequent
patterns were thus proposed in the literature [Bastide et al., 2000b, Boulicaut et al., 2003, Bykowski
and Rigotti, 2003, Calders and Goethals, 2007, Casali et al., 2005a, Kryszkiewicz, 2002, Liu et al.,
2007, Muhonen and Toivonen, 2006, Pasquier et al., 1999b].

Among the numerous concise representations, the ones based on closed itemsets [Pasquier et al., 1999b]
and minimal generators [Bastide et al., 2000b] (aka free itemsets [Boulicaut et al., 2003] or key itemsets
[Stumme et al., 2002] or intent reducts [Xie and Liu, 2005]) got a large interest since their respective
proposals. The representation based on closed itemsets heavily relies on an operator [Ganter and Wille,
1999] which makes it possible mapping an important number of elements — from the frequent itemset

search space — into a single element within that of frequent closed itemsets. On its side, the minimal
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generator-based representation takes advantage from its efficient computation thanks to the interesting
structural properties offered by the minimal generator set [Stumme et al., 2002].

In fact, these itemsets are closely linked. Indeed, once applied, the aforementioned operator partitions
the set of frequent itemsets into equivalence classes. Each class contains itemsets characterizing the
same set of objects. These itemsets hence share the same closure obtained by intersecting the associated
objects. The closed itemset is then the unique mazimal set of items characterizing a set of objects. While,
often several minimal generators constitute the minimal elements of each class. Semantically speaking,
a closed itemset thus includes the most specific expression, while a minimal generator includes one of the
most general expressions describing the associated set of objects.

The aforementioned link between closed patterns and minimal generators explains why they are often
simultaneously used for concisely representing pattern classes, like frequent itemsets (e.g. [Li et al.,
2005, Li et al., 2007, Phan Luong, 2002, Soulet and Crémilleux, 2008, Xie et al., 2006]), association
rules (e.g. [Bastide et al,, 2000a, Ben Yahia et al., 2009b, Kryszkiewicz, 2002]), sequential patterns
(e.g. [Balcazar and Casas-Garriga, 2007, Lo et al., 2008]), etc. In this respect, the interesting structural
properties of the minimal generator set made it a key step for mining important pattern classes as well

as for knowledge interpretation. For example,

(¢) they allow the efficient mining (resp. construction) of the set of frequent itemsets [Bastide et al.,
2000b] and of frequent closed itemsets [Pasquier et al., 1999b, Stumme et al., 2002] (resp. partially
ordered structure [Hamrouni et al., 2005b]). Indeed, minimal generators are the first elements of
their respective equivalence classes to be reached. Furthermore, “to be (frequent) minimal gen-
erator” induces an anti-monotone constraint, exploited in achieving better performances. Indeed,
each superset of an itemset not fulfilling the constraint is ensured not to be a (frequent) minimal
generator. Hence, this constraint dramatically facilitates the localization of the elements to be
retained, and thus reduces the cost of the processing to be carried out [Mannila and Toivonen,
1997].

(it) they are at the roots of various concise representations of frequent itemsets [Calders et al., 2005,
Kryszkiewicz, 2002, Liu et al., 2007]. They are also used in other fields, like graph theory (as mini-
mal transversals [Berge, 1989]), database design (as minimal keys [Maier, 1983]), etc. Interestingly,
minimal generators are used for mining complex pattern classes, like sequential patterns [Balcazar
and Casas-Garriga, 2007, Lo et al., 2008], etc.

(iv) they play a key role in the rule set construction since they are at the origin of a variety of com-
pact subsets of the implication/association rule sets of a context [Ceglar and Roddick, 2006,
Kryszkiewicz, 2002, Pasquier, 2009], which are hence called as generic bases. Traditionally, a
generic basis is considered as an irreducible nucleus of the underlying rule set from which redun-
dant ones can be derived without any loss of information [Pasquier, 2009]. In this context, many
proposals have shown that generic bases, containing association rules whose implications are be-
tween minimal generators and closed itemsets, convey the maximum of information since they are of
minimal premises and of maximal conclusions [Bastide et al., 2000a, Kryszkiewicz, 1998, Pasquier,
2009]. For these reasons, such association rules are considered as the most informative ones [Bastide
et al., 2000a], since they preserve the minimum description length principle (MDLP) [Grunwald,
2007, Rissanen, 1978].
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(i47) they are, according to the MDLP, the preferred representation of an equivalence class in applica-
tions like model selection, classification, etc. [Li et al., 2006]. Indeed, being usually strictly smaller
in size than their closed itemsets (unless themselves closed), they offer minimal combinations of
conditions necessary to identify a class of situations. This reduces the economic cost of a decision

process.

Unfortunately, the number of minimal generators is usually larger than that of closed itemsets. This is
explained by the fact that several minimal generators cohabit in the same equivalence class and, hence,
convey the same information. Thus, a same piece of knowledge is redundantly conveyed by distinct
minimal generators. For example, this occurs in the case of association rules where minimal generators
are used in the premise part. The same problem applies for the equivalence classes having their supersets
for minimal seeds, which involves a highly combinatorial redundancy.

This situation motivated us to explore the issue of how to reduce the number of minimal generators per
equivalence class without information loss. Our aim is thus to approach as much as possible the “ideal”
case which consists in only retaining a unique irreducible minimal generator per equivalence class. This
issue thus concerns the study of the internal interchangeability of the minimal generators. This consists
in localizing minimal generators mutually reachable by permutation of their respective subsets. This will
allow to group them in finer equivalence classes, induced by a dedicated substitution operator. Then, only
a representative in each class will be retained, while the remaining ones will be omitted since redundant.

The obtained results can be useful for the different extensions and applications of minimal generators
or their similar constructs. Here, they will be applied to generic bases of association rules to reduce
without information loss the number of rules to be retained. A new approach will then be proposed,
dedicated to the extraction of a lossless subset of generic association rules based on redundancy-free

minimal generators as a starting point.

In the literature, other item links such as the complementary/mutually occurrences — rather than item
co-occurrences — were neglected [Steinbach and Kumar, 2007], and only some recent works highlight the
added-value of this type of knowledge. Indeed, the focus has been mainly on mining items linked through
the conjunctive connector, i.e., conjunctive itemsets. Association rule forms that have been mainly of
interest also convey relation between conjunctions of itemsets [Ceglar and Roddick, 2006]. However, in
practice the following situations can arise. Suppose that a market basket data is under treatment, and
the manager is searching for items ci, ca, ..., and ¢, whose selling implies that of at least one of two
competitive products a and b (or probably both), i.e., the items fulfilling the condition: ¢; V ¢a V ...V
¢n = a V b is always true. Such a rule conveys knowledge about the items sold simultaneously with
a or b. Since the disjunction connector V is inclusive, the simultaneous selling of ¢; and ¢; (¢ # j) is
possible. On the other hand, in a textmining application related to text translation from a language /3
to a language l5, an analyst may be interested in the possible translations in the language l> of a given
term ¢ belonging to the language /1. In this respect, ¢t may have several translations try, trs, ..., and
tr, in the language > according to its usage context. Thus, a rule like try V tro V ...V tr, = tis
interesting since it summarizes the possible translation of ¢. In both cases, more computations may be
performed to get more precise information about the effect of a given product (resp. terms) among ¢;
(resp. t;) on the appearance of a and b (resp. t). Various other applications of disjunctive itemsets are

possible in the contexts of social network analysis and bioinformatics, as previously mentioned in [Zhao
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et al., 2006]. In such situations, the disjunction connector linking items can bring key information as well
as a summarizing method of the conveyed knowledge. Such knowledge may not be obtained even by a
collection of conjunctive patterns [Nanavati et al., 2001].

Due to the close link between frequent itemsets and association rules, it is more advantageous to mine a
concise representation of frequent itemsets that offers direct access to the disjunctive support of frequent
itemsets. Such a representation can be used as a starting point for mining generalized rules (i.e., also
involving disjunction and negation of items) based on frequently occurring itemsets. In this respect,
we initially focus on the unique representation in the literature exploring the disjunctive search space,
namely that based on essential itemsets [Casali et al., 2005a].

Being the equivalent of minimal generators within the disjunctive search space, essential itemsets
bring interesting knowledge about the complementary occurrence of items in a dataset. However, several
essential itemsets can characterize the same set of objects. This motivated us to propose a new disjunctive
closure operator dedicated to the disjunctive search space to avoid such a redundancy.

The disjunctive closure operator will offer a reduced exact representation of frequent itemsets. This
representation also allows the efficient derivation of the different types of itemset supports, i.e., conjunc-
tive, disjunctive and negative. In addition, the proposed closure operator constitutes an interesting tool
for the efficient exploration of the disjunctive search space. Such an exploration can be used for example
towards the derivation of generalized association rules. These latter rules generalize classic association
rules — positive rules — to also offer disjunction and negation connectors between items, in addition to the
conjunctive one. The associated quality measures can thus be derived using a representation based on
disjunctive itemsets. In the literature, generalized association rules are useful in different applications.
For example, they are used as an intermediate step for defining concise representations for frequent item-
sets [Ceglar and Roddick, 2006]. They are also exploited to provide the end-users with some new forms
of association rules [Griin, 1998, Kim, 2003, Nanavati et al., 2001].

The main contributions of this thesis are thus twofold:

1. A study of the redundancy within the set of minimal generators that can be extracted from a
dataset aiming at only retaining without information loss those that are actually irreducible. The

obtained results will be applied to reduce the number of generic association rules.

2. An exploration of the disjunctive search space through the introduction of a new disjunctive closure
operator. In particular, we propose a new exact concise representation of frequent itemsets only
based on disjunctive closed itemsets. In addition, new association rule forms will be efficiently

derived, aiming to offer richer knowledge to the end-users.

The evaluation protocol of these contributions consists of experimental studies carried out on dense
and sparse benchmark databases commonly used for evaluating data mining contributions as well as a

comparison with other methods reported in the literature.

1.2 Thesis Organization

The rest of this thesis is organized as follows:
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Chapter 2 briefly describes the mathematical background of frequent itemset and association rule min-
ing. Moreover, a characterization of the approaches dedicated to the extraction of subsets of

association rules is described.

Chapter 3 is dedicated to a thorough analysis of the main concise representations of frequent itemsets.
Their respective link with the central concept of minimal generator will also be highlighted. This
chapter also presents a critical comparative study of the surveyed concise representations. This

chapter extends the work we proposed in [Ben Yahia et al., 2006].

Chapter 4 focuses on the lossless reduction of the minimal generator set. A pioneer attempt, proposed
in the literature, is thoroughly studied. The associated system is shown to be extracted with a
loss of information. It is thus followed by our first solution which is lossless. Interestingly, the
associated system constitutes a perfect cover of the minimal generator set, since being a subset of
this latter set. We also introduce a second system as a lossless reduction of the minimal generator
set having for advantage its interesting structural properties. New mining tools are designed for
getting the proposed systems. Experimental results prove that our approach allows pruning a large
number of minimal generators and, thus, to reach as much as possible the ideal case, i.e., one
irreducible minimal generator per closed itemset. The main content of this chapter was published
in [Hamrouni et al., 2007b, Hamrouni et al., 2008a].

Chapter 5 is motivated by the fact that the results obtained in the previous chapter are extensible to
generic association rules. Our aim is thus to show that these latter rules are no longer irredundant
and can be further reduced. The proposed approach in this chapter is based on our perfect cover of
the minimal generator set. An axiomatic system is also proposed for losslessly deriving redundant
association rules starting from retained ones. To efficiently extract the lossless subsets of generic
association rules, a new algorithm is proposed. Its main feature is that it constructs the precedence
links between closed itemsets and simultaneously derives these latter itemsets only using minimal
generators as a starting point. Carried out experiments show interesting compactness rates of
the proposed cover set, as well as its efficient extraction. The main content of this chapter was
published in [Hamrouni et al., 2006, Hamrouni et al., 2008a).

Chapter 6 offers a new disjunctive closure operator. The purpose of this operator is to structure the
disjunctive search space into associated disjunctive equivalence classes. The structural properties
of this operator are thoroughly studied. Its introduction makes it possible to concisely represent
the disjunctive search space through only maintaining disjunctive closed itemsets. A new concise
representation of frequent itemsets is then proposed based on the disjunctive closure of frequent
essential itemsets. A dedicated algorithm to its extraction is also proposed. The obtained experi-
mental results show that the disjunctive closed pattern-based representation highlights interesting
compactness rates whenever compared to the main concise representations of the literature. Our
main publications related to this chapter are [Denden et al., 2008, Hamrouni et al., 2007a, Hamrouni
et al., 2009b].

Chapter 7 introduces a novel approach for extracting generalized association rules. It thus starts by
extending the framework of classic association rules through taking into account various possible

connectors as well as negative items. An overview of the possible mined forms of generalized
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association rules is then presented, in addition to how are calculated the associated supports in the
general case. Aiming at reducing the number of extracted rules, a selection process of generalized
rules is then described. We also propose new algorithms covering the whole process of generalized
association rules extraction. The experimental results show that our approach allows the efficient

extraction of various association rule forms. A part of this chapter was published in [Hamrouni
et al., 2008b].

Chapter 8 concludes this thesis and points out our perspectives for future work.
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Chapter 2

Preliminary Notions

2.1 Introduction

The main interest of association rule mining is the identification of significant and hidden relations or
correlations between data contained in a database. Such relations can be useful for the end-users, like
domain experts, decision makers, etc. These latter can exploit them for various objectives aiming at
improving their decision quality.

In this chapter, we present the problem of association rules mining based on frequent itemsets. We also
recall the mathematical background of Formal Concept Analysis (FCA). This latter is used as a starting
point for the derivation of lossless subsets of association rules, called generic bases.

The organization of the chapter is as follows: Section 2.2 presents the basic definitions related to
frequent itemsets search. Section 2.3 details the FCA mathematical settings. The association rule
framework is described in Section 2.4 where the link between the FCA and the extraction of lossless

association rule subsets is stated. Section 2.5 concludes this chapter.

2.2 Itemset Search Space

This section presents some basic definitions that will be used in the remainder.

2.2.1 Extraction Context and Itemsets

In this thesis, we will consider datasets represented using binary contexts defined as follows.

Definition 1 (EXTRACTION CONTEXT)

An extraction context (or context for short) is a triplet K = (O, Z, M), where O is a finite set of objects
(or transactions), T is a finite set of items (or attributes) and M is a binary (incidence) relation (i.e.,
M C O xTI). A couple (0,i) € M if the object o € O has the item i € T.

Example 1 Consider the context given in Table 2.1, used as a running erample through this chapter.
Here, O = {1,2,3,4,5} andZ = {4, B, C, D, E, F}. The couple (3, E) € M since it is crossed in the

matriz, on the contrary of the couple (5, B) whose associated cell is not crossed in the matriz.
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A|B|C|D|E]|F
1| X | X | X | X
2 X | X | X
3| x| X X | X
4 || X | X | X | X | X | X
5 X | X X

Table 2.1: An extraction context.

An itemset is a set of items. For example, {C, D, E} is an itemset composed by the items C, D and E. In
the remainder, we use a separator-free form for the sets, e.g., CDE stands for the itemset {C, D, E}. The
terms dataset and (extraction) context are also used interchangeably throughout the remainder of the

thesis. It is the same for transaction and object.

2.2.2 Itemset Supports: Links and Associated Constraints
An itemset can be characterized by different kinds of support. The latter are detailed in the following

definition.

Definition 2 (SUPPORT OF AN ITEMSET)
Let K = (O, Z, M) be an extraction context. We distinguish three kinds of support associated to a

non-empty itemset 1:
- Conjunctive support: Supp(AI) = |[{o€ O|(VieI,(o,i) € M)},
- Disjunctive support: Supp(VI) = |[{o€ O|(F i€ I,(o,i) € M)}|, and,

- Negative support: Supp(I) = [{o€ O|(V i€ I,(0,i) ¢ M)}|.

Roughly speaking, the different supports are defined as follows:

e Supp(AI) is the number of transactions containing all items of I. In this case, I can be seen as
a conjunction of items (i.e., i1 A iz A ...A i,) such that the appearance of one of its items is

conditioned by the appearance of all remaining ones to say that I satisfies a given transaction.

e Supp(VI) is the number of transactions containing at least one item of I. In this case, I can be seen
as a disjunction of items (i.e., i1 V ia V ...V i,) such that the presence of one item of I in a given

transaction is sufficient to satisfy it independently from the remaining items.

e Supp(I) is the number of transactions that do not contain any item of I. In other words, they contain

the respective negations of all items of I (4.e., iy A dg A ... A ip).

Example 2 Consider the context depicted by Table 2.1. The different supports that can be associated to
the itemset BC are: Supp(ABC) = 2, Supp(VBC) = 5, Supp(BC) = 0.
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Note that the conjunctive support of the empty set is equal to |O| since included in all objects. While

the disjunctive support is not defined on this pattern since it does not contain any item.

The next proposition summarizes important properties related to the itemsets supports.

Proposition 1 Leti € Z, and I, I; C Z. The following properties hold:
o Supp(Ni) = Supp(Vi).
o Supp(AI) < Supp(VI) for I # 0.
o If I C I, then Supp(AI) > Supp(AlL).

o IfI # 0 and I C I, then Supp(VI) < Supp(VIy).
Given the respective disjunctive supports of the subsets of an arbitrary itemset, we are able to derive its
conjunctive support using the inclusion-ezclusion identities [Galambos and Simonelli, 2000, Narushima,

1982]. Furthermore, thanks to the De Morgan’s law, we are able to straightforwardly derive its negative

support. Lemma 1 shows these important equations.

Lemma 1 Let I C T be an arbitrary itemset. Its conjunctive and negative supports are respectively
derived as follows [Galambos and Simonelli, 2000]:

esup(nn) = S (0 supp(v ) (1)

pcI,CI

o Supp(I) = [O] — Supp(VI) (2)

Example 3 Consider the context of Table 2.1. Given the respective disjunctive supports of BC’ subsets,

its conjunctive and negative supports are inferred as follows:

e Supp(N\BC) = ('1)|M| - Supp(VBC) + (—1)“’| -1 Supp(VB) + (—1)'0‘ -1 Supp(VC) = - Supp(VBC)
+ Supp(VB) + Supp(VC) = -5 +3 + 4 = 2.

e Supp(BC) = |O| - Supp(VBC) =5 - Supp(VBC) =5 -5 = 0.

To prune the search space of itemsets, different types of constraints were investigated. Anti-monotone

and monotone constraints, defined in the following, are the most used ones [Bonchi and Lucchese, 2006].

Definition 3 (ANTI-MONOTONE CONSTRAINT)
Let I CZ. A constraint QQ is said to be anti-monotone if V Iy C I: I satisfies Q = I; satisfies Q.

Definition 4 (MONOTONE CONSTRAINT)
Let I CZ. A constraint Q) is said to be monotone if V Iy O I: I satisfies Q = I; satisfies Q.

Example 4 By setting a minimum conjunctive support threshold, we define an anti-monotone constraint,
commonly called the frequency constraint. Dually, the disjunctive frequency constraint, relying on a

minimum disjunctive support threshold, is a monotone one.

The next proposition states an important result about the conjunction of constraints of the same type.
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Proposition 2 The conjunction of anti-monotone (resp. monotone) constraints results in an anti-

monotone (resp. monotone) constraint.
A proof of this proposition can be found in [Lee et al., 2006].

Hereafter, Supp(AI) will simply be denoted Supp(I). In addition, if there is no risk of confusion, the
conjunctive support will be called support. The next section focuses on frequent itemsets, induced by the

frequency constraint.

2.2.3 Frequent Itemsets

Since in practice we are mainly interested in itemsets that occur at least in a given number of transactions,

we introduce the notion of frequency.

Definition 5 (FREQUENCY OF AN ITEMSET)

The frequency of an itemset I C T in a context KC, denoted by Freq(I), is equal to Freq(I) = Suf)Tpr)

In the remainder, we will mainly use the support of itemsets instead of their frequency.

Definition 6 (FREQUENT OR INFREQUENT ITEMSET)
An itemset I is said to be frequent in KC if Supp(I) is greater than or equal to a user-specified threshold,

denoted minsupp. Otherwise, I is said to be infrequent or rare.

Example 5 Consider the itemset CDE of the context given in Table 2.1. Both transactions 2 and 4
contain this itemset. Hence, Supp(CDE) = 2. The frequency of CDE is then equal to % If minsupp = 1,
then CDE is considered as frequent in K since Supp(CDE) = 2 > 1.

Notation 1 For the sake of readability, in the tables and figures presenting experimental results, the

value of minsupp can be sketched in percentage. Let us suppose this value equals to . It indicates that
a x 0]

the minimum number of objects which must be satisfied is equal to 100

By setting the minsupp threshold, we only consider frequent itemsets (and not the whole set of item-
sets). Hereafter, we will denote by FZ the set of frequent itemsets that can be extracted from a context
K for a given minsupp. The next proposition sheds light on an important property of the set of frequent
itemsets. It states that all subsets of a frequent itemset are also frequent. Conversely, the supersets of

an infrequent itemset are also infrequent.

Proposition 3 Let I C Z. We have [Agrawal et al., 1996]:
o IfI € FI, thenV I, C I, 1, € FI.
o If1 ¢ FI, thenV I, D I, I, ¢ FI.

This result follows from the fact that the constraint induced by setting minsupp is anti-monotone (cf.
Definition 3). Since the supersets of infrequent itemsets are expected to be infrequent, the set Z (and
consequently the context K) will be reduced to frequent items. Infrequent ones will thus be pruned. The
set of frequent itemsets induces an order ideal (or down-set) in (P(Z), C) when partially ordered w.r-.t.

set inclusion. An order ideal is defined as follows:
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Definition 7 (ORDER IDEAL)
A subset S of P(Z) is an order ideal in (P(Z), C) if it fulfills the following properties [Ganter and Wille,
1999):
-Ifx e S, thenVy
-Ifx ¢ S, thenV y

x,y €S5.

c
Dz, y¢S.

The set S is hence downward closed since for each x € S, all its subsets are in S. An order ideal
splits the power-set of items into two disjoint parts: the first contains itemsets fulfilling the associated
constraint, while the second part contains those not fulfilling it. Both parts are delimited thanks to a
positive and a negative border, respectively [Mannila and Toivonen, 1997]. The positive border contains
the mazimal, w.r.t. set inclusion, elements among those that fulfill the constraint associated to the order
ideal. While the negative border gathers the minimal, w.r.t. set inclusion, elements among those that do

not fulfill the constraint. These borders are formally defined as follows:

Definition 8 (POSITIVE, NEGATIVE BORDER)
Let (P(Z), C) be a partially ordered set of elements and S be a subset of P(Z) s.t. S is an order ideal
in (P(Z), C). S can be represented by its positive border Bd™(S) or its negative border Bd~(S) defined

as follows:

Bd*t(S) = mazc{I € S},
Bd~(S) = minc{I € P(Z) \ S}.

Dually, a monotone constraint induces an order filter [Ganter and Wille, 1999] in (P(Z), C). If an

element belongs to this latter order, then it is the same for all its supersets (c¢f. Definition 4).

2.2.4 Concise Representations for Frequent Itemsets

Several reported works shed light on the huge number of frequent itemsets that can be extracted from
a given context. In this situation, extracting a subset of itemsets constitutes an interesting solution for
concisely representing frequent itemsets [Calders et al., 2005, Ceglar and Roddick, 2006, Kryszkiewicz,
2002]. To be lossless, this subset should enable the derivation of the whole set of frequent itemsets,
associated to their exact supports. In this case, it is called exact concise representation of frequent

itemsets. Definition 9 summarizes this concept:

Definition 9 (EXACT CONCISE REPRESENTATION OF FREQUENT ITEMSETS)
Let £ be a set of itemsets. £ is said to be an exact concise representation of the set of frequent itemsets
if, starting from £, we are able to guess whether an arbitrary itemset I is frequent or not. In addition, if

I is frequent, then we can exactly determine its conjunctive support.

In fact, the concept of concise representation for frequent itemsets derives from a more general frame-
work, called the e-adequate representation introduced in [Mannila and Toinoven, 1996]. We begin by
describing this framework. After that, we adapt it to our context. Intuitively, an e-adequate representa-
tion is a representation which can substitute another one in order to answer the same request(s), more
effectively, possibly at the cost of an error bounded by the parameter €. Such a representation is defined

as follows:
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Definition 10 (e-ADEQUATE REPRESENTATION)

Let S be a class of structures. Let Q be a class of queries for S. The value of a query Q € Q on a structure
s € S is assumed to be a real number in [0, 1] and is denoted by Q(s). An e-adequate representation for
S, w.r.t. a class of queries Q, is a class of structures C, a representation mapping rep: S — C and a
query evaluation function m: Q X C — [0, 1] s.t. VQ € Q,V s € S, |Q(s) - m(Q, rep(s))| < e.

In our case, the class of structures S is composed by the different set of frequent itemsets that can
be drawn from all possible binary extraction contexts £C, defined over a set of items Z, a set of objects
O, and for a minimum support threshold minsupp. Thus, S = {FZx | K € £C}. The set of queries
represents those searching for the frequency of itemsets of size no more than |Z|. This set is as follows:

Q = {Qx | X C I} where the value of Qx in a context K € EC is defined by Qx(K) = Freq(X) =
Supp(X)
0]
the different contexts of EC: C = {rep(K) | K € £C}. Finally, m is the function by which the frequency

. While rep is a given concise representation of frequent itemset, C is the application of rep on

of an arbitrary itemset is assessed starting from the representation rep.

To establish the link between an exact concise representation of frequent itemsets and the concept of
e-adequate representation, we note that exact representations form 0-adequate representations of the set
of frequent itemsets. Indeed, for an arbitrary context and a given minsupp value, they allow the exact
retrieval of the respective frequencies of frequent itemsets. The error € is hence equal to 0. This is not
the case of approximate concise representations, like the J-free set-based one [Boulicaut et al., 2003] and
maximal frequent itemsets [Bayardo, 1998|, from which only an approximation is possible when searching
for the frequency of an arbitrary itemset.

An exact concise representation is also called perfect cover if it fulfills the conditions stated by the

following definition:

Definition 11 (PERFECT COVER)
A cover of a set of patterns S is a set Sy that allows recovering S without information loss. S1 is said

perfect if it is always a subset of S.

It is also important to note that exact concise representations are preferable to the whole set of frequent
itemsets w.r.t. the minimal description length principle (MDLP) [Grunwald, 2007, Rissanen, 1978]. This
principle states that the best theory describing a set of data is the one minimizing the description length
of the theory plus the description length of the data described (or compressed) by the theory. It seeks
to minimize the description length of the entire data. In the general case, this principle can be roughly

described as follows:

Definition 12 (MINIMUM DESCRIPTION LENGTH PRINCIPLE (MDLP)) [Grunwald, 2007]
Given a set of hypothesis H learned from a set of data D, the best hypothesis H € H is the one that
minimizes:
L(D, H) = L(H) + L(D|H)
in which
o L(H) is the length in bits of the description of H, and,

e L(D|H) is the length, in bits, of the description of the data D when encoded with H.
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If we bring this principle into the context of concise representations of frequent itemsets, then the
description length of the theory (here, a concise representation CR) given the input data (here, the set
FZIx of frequent itemsets associated to a context K € £C) is computed as: L(FZx, CR) = L(CR) +
L(FZIx|CR). The MDLP thus seeks a concise representation that minimizes L(FZx, CR).

To reduce the size of pattern sets, different proposals rely on Formal Concept Analysis [Ganter and

Wille, 1999]. The next section is dedicated to its mathematical background.

2.3 Formal Concept Analysis

Formal Concept Analysis (FCA) mathematical foundations [Ganter and Wille, 1999] have been used as
a theoretical basis for various tasks (e.g. [Sassi et al., 2007, Stumme et al., 1998, Valtchev et al., 2004]).
In our context, some concise representations of frequent patterns are based on FCA. Let us recall its

basic constructs.

2.3.1 Galois Connection and Compound Operators

We begin by defining the Galois connection used to make the link between the power-sets P(Z) and P(O)

associated respectively to the set of items Z and the set of objects O.

Definition 13 (GALOIS CONNECTION)
Let K = (O, Z, M) be an extraction context. The application v is defined from the power-set of objects
(i-e., P(O)) to the power-set of items (i.e., P(ZI)). It associates to a set of objects O the set of items i

€ 7 that are common to all objects o € O:

¥ :P(O) = P)
O ¢(0)={ieZ|VoeO, (oi)e M}

In o dual way, the application ¢ is defined from the power-set of items (i.e., P(Z)) to the power-set of
objects (i.e., P(O)). It associates to a set of items I the set of objects o € O that contains all items i €
I:

¢:P(Z)— P(O)
I—¢(I)={oec0O|Viel, (oi) e M}

The couple of applications (v, ¢) is a Galois connection between the power-set of O and that of T [Barbut
and Mongjardet, 1970, Ganter and Wille, 1999].

Definition 14 describes the properties that must satisfy an operator to be qualified as a closure or a
kernel one [Ganter and Wille, 1999].

Definition 14 (CLOSURE, KERNEL OPERATOR)
Let (S,C) be a partially ordered set and x, y be two elements of S. An operator h defined from (S,C) to
(S,Q) is called a closure operator if it is:

(i) extensive, i.e., x C h(x),
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(i1) isotone, i.e., x C y = h(x) C h(y), and,
(it3) idempotent, i.e., h(h(z)) = h(x).
Given the closure operator h applied on the partially ordered set (S,C), an element x € S is said to be
closed if its image by h is equal to itself, i.e., h(x) = x.
If an operator h', defined from (S,C) to (S,C), is such that h'(x) C x, then I’ has the property to be

contractive. If it is also isotone and idempotent, then h' is said to be a kernel operator.
The following definition introduces the closure operators associated to a Galois connection.

Definition 15 (GALOIS CLOSURE OPERATORS)

Let us consider the power-sets P(Z) and P(QO), with the inclusion relation C, i.e., the partially ordered
sets (P(I),<) and (P(O),C). The operators v = ¢ o @ from (P(Z),C) to (P(I),C), and w =1 o
¢ from (P(O), Q) to (P(O),C) are closure operators of the Galois connection [Barbut and Mongjardet,
1970, Ganter and Wille, 1999]. They define closure systems on (P(Z),C) and (P(O), C), respectively.

The operator v generates closed subsets of items, while w generates closed subsets of objects.
This leads us to the definition of a formal concept.

Definition 16 (FORMAL CONCEPT)
A pair ¢ = (0, I) € O x I, of mutually corresponding subsets, i.e., O = (I) and I = ¢(O), is called

a formal concept, where O is called extent of c and I is called its intent.
Example 6 The pair (14, 4BCD) is a concept from the extraction context given by Table 2.1.

The operators join and meet provide the least upper bound (LUB) and the greatest lower bound

(GLB), respectively, of a couple of formal concepts.

Definition 17 (JOIN AND MEET OPERATORS)

Let (O1,11) and (Os, I5) be two formal concepts. The operators join (V) and meet (\) are respectively
defined as follows [Ganter and Wille, 1999]:

° (01,11) \Y (02,12) = (W(Ol UOQ),Il ﬂ[g),
° (01,11) A (02,12) = (01 ﬂOg,fy(Il UIQ)).

Proposition 4 presents the partial order on formal concepts w.r.t. set inclusion [Ganter and Wille,
1999).

Proposition 4 A partial order on formal concepts is defined as: ¥ ¢1 = (O1, I1) and ca = (O2, 1) two

formal concepts, c1 < co if O2 C O, or equivalently I C Is.

In the case where two formal concepts fulfill the condition of Proposition 4, they are said to be comparable.
Otherwise, they are said to be incomparable. When partially sorted with set inclusion, formal concepts

form a structure called Galois (concept) lattice, defined as follows.

Definition 18 (GALOIS (CONCEPT) LATTICE)
Given a context IC, the set of formal concepts C is a complete lattice Lo = (C, <), called Galois (con-

cept) lattice, when C is considered with set inclusion between concepts intents (or extents) [Barbut and
Mongjardet, 1970, Ganter and Wille, 1999].
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(4, ABCDEF)

(14, ABCD) (34, ABEF) (24, CDE) (45, CDF)

\ > S/

(134, AB) | | (1245, CD) | | (234.E) (345, F)

W

(12345, 0)

Figure 2.1: The Galois lattice associated to the extraction context of Table 2.1.

Example 7 Figure 2.1 presents the Galois lattice associated to the context given by Table 2.1.

The next definition presents two particular elements within a Galois lattice.

Definition 19 (BoTTOM, TOP OF A GALOIS LATTICE)

Within o Galois lattice, the element O x ¥(O) is called bottom of the lattice, and denoted L. While
the element ¢(Z) x T is called top of the lattice, and denoted T. The extent (resp. intent) part of the
bottom element is then the largest (resp. smallest) one, w.r.t. set inclusion, among the extents (resp.

intents) of the lattice concepts. It is the reverse for the top element.

Example 8 Considering Figure 2.1, the bottom of the lattice is (12345, ). While the top element is
(4, ABCDEF).

2.3.2 Equivalence Classes, Closed Itemsets and Minimal Generators

Once applied, the closure operator v induces an equivalence relation on the power-set of items P(7)
splitting it into so-called equivalence classes [Bastide et al., 2000b], which will further be denoted ~-

equivalence classes. A y-equivalence class is then defined as follows:

Definition 20 (7y-EQUIVALENCE CLASS)
A ~-equivalence class contains a set of itemsets sharing the same set of objects and, hence, having the

same closure computed using the operator .

Example 9 Consider the context given by Table 2.1. Since the itemsets BD and ACD share the same set of
objects, namely {1, 4}, they belong to the same y-equivalence class. They hence have a common closure,
namely ABCD.

In each ~-equivalence class, the largest itemset (w.r.t. set inclusion) is called a closed itemset while the
minimal ones are called minimal generators. The respective definitions of these particular itemsets are

given below.
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Definition 21 (CLOSED ITEMSET)
An itemset I C T is said to be closed if v(I) = I [Pasquier et al., 1999b].

Example 10 Given the context depicted by Table 2.1, the itemset ABCD is a closed one since it is the
mazimal set of items common to the set of objects {1, 4}. The itemset ACD is not closed since all objects

containing the itemset ACD also contain the item B.

The set of closed itemsets extracted from K will further be denoted CZ. Each closed itemset (CI)

constitutes the intent part of a formal concept.

Definition 22 (MINIMAL GENERATOR)

o An itemset Iy C T is said to be a minimal generator of a closed itemset I if v(I) = I and, V Iy C I,
if I, C I and v(I3) = I, then Iy = I, [Bastide et al., 2000b].

o A minimal generator is also called a O-free itemset [Boulicaut et al., 2003] or a key itemset [Stumme
et al., 2002] or an intent reduct [Xie and Liu, 2005].

Example 11 Consider the CI ABCD described by the previous erxample. ABCD has AC as a minimal
generator (MG). Indeed, v(AC) = ABCD and the closure of each proper subset of AC is different from
ABCD: v(0) =0, v(4) = 4B and v(€) = ¢D. The CI ABCD has also other MGs which are AD, BC and BF.
Hence, MG p¢p = {AC, AD, BC, BF}. ABCD is then the largest element of its v-equivalence class, whereas
AC, 4D, BC and BF are the minimal ones. All these itemsets share the objects {1, 4}.

The set of MGs associated to a CI T (resp. an extraction context K) will further be denoted MG

(resp. MG). The next proposition states the relation between elements of MG w.r.t. set inclusion.
Proposition 5 The minimal generators of a closed itemset are incomparable w.r.t. set inclusion.

Proof. The proof is based on the minimality status of a MG within its associated y-equivalence class.
Indeed, let g1 and g2 be two MGs of a CI I. Suppose that g; C go. This necessarily leads to the fact
that go is not a MG, which is in contradiction with the fact that go € MG;. Thus, all elements of MG/

are incomparable w.r.t. set inclusion. ¢

The next proposition states an important property of the minimal generator set.

Proposition 6 The set MG of minimal generators that can be extracted from a context K is an order
ideal in (P(Z), C) [Stumme et al., 2002].

Since the conjunction of two anti-monotone constraints is also an anti-monotone constraint, the set

FMG of frequent minimal generators is also an order ideal.
Example 12 For minsupp = 1, Table 2.2 shows, for each frequent CI, its MGs and its support value.

Using supports, CIs and MGs are characterized as follows.

Proposition 7 Let I, I' C Z,
e [ is a closed itemset iff Supp(I) > maz{Supp(I') | I C I'}.
e [ is a minimal generator iff Supp(I) < min{Supp(I') | I' C 1}.
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Frequent CI | Frequent MGs | Support

0 0 5
E E 3
F F 3
AB A, B 3
o)) C,D 4
CDE CE, DE 2
CDF CF, DF 2
ABCD AC, AD, BC, BD 2
ABEF AE, AF, BE, BF, EF 2
ABCDEF ACE, ACF, ADE, ADF, 1
BCE, BCF, BDE, BDF,
CEF, DEF

Table 2.2: The list of frequent closed itemsets, and for each one, the corresponding minimal

generators, and support.

Specific elements within ~y-equivalence classes are called pseudo-closed itemsets and are defined as

follows.

Definition 23 (PSEUDO-CLOSED ITEMSET)
An itemset X C T is pseudo-closed iff v(X) # X and V'Y C X, such that Y is a pseudo-closed itemset,
we have v(Y) C X [Guigues and Dugquenne, 1986].

Example 13 Considering Table 2.2, the itemset EF is a pseudo-closed one since v(EF) = ABEF = EF. In

addition, all subsets of EF are not pseudo-closed itemsets since they are equal to their respective closures.

2.3.3 Iceberg Lattice

In a Galois lattice, the concepts whose intents are frequent, i.e., containing frequent Cls, constitute a
join-semi-lattice. Such a structure is called Iceberg lattice [Stumme et al., 2002] and is formally defined

as follows:

Definition 24 (ICEBERG LATTICE)

Let FCI be the set of frequent Cls of a context K. When the set FCZ is partially ordered w.r.t. set inclu-
sion, the resulting structure only preserves the Join operator [Ganter and Wille, 1999]. This structure is
called a join semi-lattice or an upper semi-lattice [Mephu Nguifo, 1994], and is hereafter referred
to as “Iceberg lattice” [Stumme et al., 2002].

Since the Iceberg lattice only maintains frequent ClIs, the top of the lattice can be pruned due to the
infrequency of the corresponding CI. In this case, a new top element is added which covers all frequent
CIs, which makes it a lattice again [Stumme et al., 2002]. Hereafter, we will only consider the current
frequent CIs. When necessary to be added (due to its infrequency), the top element simply contains the

set of items Z. This latter is ensured to be closed and covering all frequent ClIs.
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ABCDEF

(ABCD, 2) (ABEF, 2) (CDE, 2) (CDF, 2)

N 2/

(AB, 3) (CD, 4) (E.3) (F.3)

W

{,5)

Figure 2.2: For minsupp = 2, the Iceberg lattice associated to the context of Table 2.1.

Example 14 For minsupp = 2, Figure 2.2 shows the Iceberg lattice corresponding to our context depicted
in Table 2.1. Fach node contains the couple composed by a frequent CI and its support. The extent part
of each concept is reduced to the associated support which corresponds to the cardinality of the extent part.
In this case, the top element contains the CI ABCDEF. Since the latter is infrequent, its support is not
shown in the figure. In addition, the precedence links between ABCDEF and the Cls of its lower cover are

drawn with dashed lines.

Each node (or equivalently, CI) in the Iceberg lattice has an upper cover, formally defined as follows:

Definition 25 (UPPER COVER)

The upper cover of a CI f (denoted Cov*(f)) consists of the Cls that immediately cover f in the Iceberg
lattice. The set Cov'(f) is given as follows: Cov'(f) = {f1 € FCI | f C f1 and P fo € FCT s.t. f C
f2 C fi}

Example 15 Let us consider the CI AB of the Iceberg lattice depicted by Figure 2.2. Then, we have:
Cov"(4B) = {ABCD, ABEF}.

Dually, a node in the Iceberg lattice has a lower cover, formally defined as follows:

Definition 26 (LOWER COVER)

The lower cover of a Cl f (denoted Cou,(f)) consists of the Cls that are immediately covered by f in
the Iceberg lattice. The set Cou(f) is given as follows: Cov/(f) = {f € FCI | fi C f and B fo € FCI
st. f1 C faCf)

Example 16 Consider the C1 ABEF of the Iceberg lattice of Figure 2.2. Then, we have: Cov;(4BEF) =
{E, F, 4B}.
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2.4 Association Rule Extraction

2.4.1 Association Rule Framework

As an important topic in data mining, association rule mining research [Ceglar and Roddick, 2006] has
progressed in various directions since its inception. The formalization of the association rule extraction
problem was initially introduced by Agrawal et al. [Agrawal et al., 1993]. The derivation of association
rules is achieved starting from the set FZ of frequent itemsets extracted from a context /C, for a minimal

support threshold minsupp. The next definitions introduce the association rule framework.

Definition 27 (ASSOCIATION RULE)
An association rule R is a relation between itemsets and is of the form R: X = (Y\X), such that X
and Y are two itemsets, and X C Y. The itemsets X and (Y\X) are, respectively, called the premise

(or antecedent) and the conclusion (or consequent) of the association rule R.

Definition 28 (SUPPORT, CONFIDENCE OF AN ASSOCIATION RULE)
Let R: X = (Y\X) be an association rule. The support of R, Supp(R), is equal to Supp(Y). While its

Y
confidence is equal to Conf(R) = %

Note that the confidence of R is always greater than or equal to its frequency: Conf(R) > Freq(R) =

Su%(ﬁ%). Indeed, we have Supp(X) < |0O].

Definition 29 (VALID, EXACT, APPROXIMATE ASSOCIATION RULE)

An association rule R is said to be valid (or strong) if:

o its support value Supp(R) is greater than or equal to the user-specified threshold, minsupp, and,

e its confidence value Conf (R) is greater than or equal to a user-specified threshold, denoted minconf.

If Conf(R) = 1, then R is called ezact association rule, otherwise it is called approzimate association

rule.

Notation 2 As for the minsupp threshold, the value of minconf can be sketched in percentage in the

tables and figures presenting experimental results.

Given user-specified minimum support and confidence, the problem of association rule mining can be

split into two steps as follows [Agrawal et al., 1993]:
e Extract all frequent itemsets, i.e., having the support value greater than or equal to minsupp.

e Generate valid association rules from frequent itemsets. This generation is limited to rules having

the confidence value greater than or equal to minconf.

These steps are solved by a pioneer algorithm in the data mining field, namely APRIORI [Agrawal
and Srikant, 1994]. The second step is relatively straightforward. However, the first one presents a
great challenge because the set of frequent itemsets may grow exponentially with |Z|. The problem of

discovering association rules is an exponential one (in the length of the longest frequent itemset). In
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fact, from a frequent itemset I, 2/l - 1 non trivial association rules can be generated. However, these
rules can be generated in a straightforward manner, i.e., without accessing the disk resident context.
Therefore, the cost of this step is found to be low compared to that of the frequent itemsets extraction.
An efficient algorithm, called GEN-RULES, is proposed in [Agrawal et al., 1993] for generating association
rules starting from the set of frequent itemsets. Nevertheless, the number of association rules generated
may grow up to several millions [Stumme et al., 2001, Zaki, 2004]. In addition, it was proven that a large
number of rules are redundant in the sense that they convey the same information as others [Ashrafi
et al., 2007, Ben Yahia et al., 2009b].

2.4.2 Generic Bases of Association Rules

In the literature related to association rule mining, the problem of the relevance and the usefulness of
association rules is of paramount importance. Indeed, an overwhelming quantity of association rules
can be extracted even from small real-life datasets, among which a large number is redundant (i.e.,
conveying the same information) [Bastide et al., 2000a, Stumme et al., 2001, Zaki, 2004]. This is always
a real hamper towards their effective exploitation by the end-users. The survival of the association rule
extraction technique is thus owed to the retrieval of compactly sized with added-value knowledge. Many
approaches were hence proposed for reducing large sized sets of association rules, while preserving the
most interesting ones. For example, some works relied on the use of other quality measures, in addition to
the support and the confidence, like lift, conviction, dependency, etc. [Geng and Hamilton, 2006, Guillet
and Hamilton, 2007], while others introduced user-defined constraints during the mining process or as
a post-processing step [Bonchi and Lucchese, 2006, Boulicaut and Jeudy, 2001, Lee et al., 2006, Srikant
et al., 1997]. Another interesting approach consists in extracting generic bases. Such an approach is
mainly based on the closure operators of the Galois connection used in Formal Concept Analysis (FCA)
[Ganter and Wille, 1999).

The FCA-based approach focuses on extracting irreducible nuclei of all association rules — generic
bases — from which the remaining redundant association rules can be derived without information loss.
These generic bases hence define a compact set of relevant association rules that is easier to interpret for
the end-user. Since their size is reduced and as they are generating sets, they also constitute efficient
solutions for the long-term storage on secondary memories and the computer-aided management of a set
of valid association rules [Pasquier, 2009]. According to the approach based on FCA, the redundancy

within association rules is defined as follows [Bastide et al., 2000a]:

Definition 30 (ASSOCIATION RULE REDUNDANCY)

Let AR be the set of valid association rules that can be drawn from a context K for a minimum support
threshold minsupp and a minimum confidence threshold minconf. An association rule Ri: X1 = Y7 €
AR is said redundant with respect to (or derivable from) a rule Ry: X2 = Yo € AR iff:

1. Supp(R1) = Supp(R2) and Conf(R1) = Conf(R2), and,
2. X2 QXl andY1 C}/Q.

Example 17 Suppose we have both rules Ry1: ABC = D and Ry: ABC = DE. If ABCD and ABCDE belong to
the same ~-equivalence class, then Supp(ABCD) = Supp(ABCDE). Hence, Supp(R1) = Supp(Rs2). More-

over, Conf(R;) = Conf(Rs2), since they have the same premise. Indeed, Conf(R1) = % =
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Supp(R>)

Supp(4BC)
confidence values while D C DE.

= Conf(R2). Consequently, Ry is redundant w.r.t. Ry since they share the same support and

Based on Definition 30, for an association rule X; = Y7, if there is no other rule X5 = Y5 such that
Supp(R1) = Supp(R2), Conf(R1) = Conf(R2), Xo C X3, and Y7 C Y3, then X; = Y; is said minimal
non-redundant [Bastide et al., 2000a]. Note that this definition ensures that non-redundant association

rules will hence have minimal premises and maximal conclusions.

Example 18 Let Ri: ABC = DE be an association rule and suppose that Supp(4BC) = Supp(4B). Then,
Ry is clearly redundant w.r.t. Ry: AB = CDE.

In addition, suppose that we have a rule Rs: BC = DE and Supp(BCDE) = Supp(ABCDE). Then, Rs is
redundant w.r.t. the rule Ry: BC = ADE.

In both cases, the premise part is required to be minimal, while the conclusion part to be mazimal.

In fact, the correctness of Definition 30 relies on the fact that R; can be derived starting from Ro
without information loss. Since the appearance of the approach adapting the FCA to association rule
mining through the extraction of frequent closed itemsets, several generic association rule bases were
introduced [Kryszkiewicz, 2002]. Definition 31 describes the properties that characterize a generic basis

once it is extracted without loss of information.

Definition 31 (GENERIC BASIS PROPERTIES)
A generic basis B, to which is associated an appropriate inference mechanism, is said to fulfill the ideal

properties of an association rule representation if it is [Kryszkiewicz, 2002]:
1. lossless: B must enable the derivation of all valid association rules,
2. sound: B must forbid the derivation of association rules that are not valid, and,

3. informative: B must allow to exactly retrieve the support and confidence values of each derived

association rule.

The generic basis B is said to verify the property of derivability if it is lossless and sound.

If a generic basis fulfills the aforementioned properties, then it ensures the regeneration of redundant
valid association rules without information loss. It also makes it possible the derivation of their exact sup-
port and confidence values. The majority of generic bases convey association rules presenting implications
between minimal generators and closed itemsets [Ashrafi et al., 2007, Bastide et al., 2000a, Ben Yahia
et al., 2009b, Kryszkiewicz, 2002, Li, 2006, Pasquier, 2009]. This ensures obtaining association rules with
minimal premise part and maximal conclusion part. Such rules convey the maximum of information,
and are hence qualified as the most informative association rules [Bastide et al., 2000a, Kryszkiewicz,
1998, Pasquier, 2009]. Indeed, they offer the maximum of information (conveyed by the items in the
conclusion part) using the minimum of conditions (through the items in the premise part). In this re-
spect, these rules are the preferred ones w.r.t. the minimum description length principle (MDLP) since
patterns with the shortest description are privileged [Grunwald, 2007, Rissanen, 1978].

In [Zaki, 2004], the authors propose rules with minimal premise part and minimal conclusion part.

There are also other forms of rules using pseudo-closed itemsets or closed itemsets in premise, like the
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Guigues-Duquenne basis [Guigues and Duquenne, 1986] and the Luxenburger basis [Luxenburger, 1991]
respectively. Note that the minimum description length principle can also be used in the context of
association rules to evaluate the conciseness of a rule set [Geng and Hamilton, 2006]. The shortest

premises, i.e., those composed by MGs, are thus the most preferred ones according to this principle.

2.4.3 Extraction of Informative Association Rules

In the following, we present a couple of association rule subsets that are sufficient to derive the whole set

of redundant association rules. This couple is defined as follows [Bastide et al., 2000a]:

1. The generic basis for exact association rules is defined as follows:

Definition 32 (GENERIC BASIS FOR EXACT ASSOCIATION RULES)

Let FCZ be the set of frequent closed itemsets extracted from a context K. For each entry f in
FCZ, let MG be the set of its minimal generators. The generic basis for exact association rules
GB is given by: GB = {R: g = (f \ g) | f € FCT and g € MG and g # f}. !

2. The transitive reduction of the informative basis [Bastide et al., 2000a], which is a cover of all

approximate association rules, is defined as follows:

Definition 33 (TRANSITIVE REDUCTION OF THE INFORMATIVE BASIS)

Let FMG be the set of frequent minimal generators extracted from a context K. The transitive
reduction RZ is given by: RT = {R| R: g = (f \ g) | f € FCT and g € FMG and ~(g) €
Cov*(f) and Conf(R) > minconf}.

In comparison to the other generic bases, the basis (GB, RZ) fulfills the ideal properties of an association
rule representation (summarized by Definition 31) [Kryszkiewicz, 2002]. The association rules forming
this couple are minimal non-redundant ones [Bastide et al., 2000a] w.r.t. Definition 30. They are
also informative, since having minimal premises and maximal conclusions. This property simplifies the
interpretation by the end-user, as association rules with smaller premises are easier to interpret, and the
information in each rule is maximized to minimize their number [Pasquier, 2009]. In this respect, this
couple also offers interesting compactness rates vs. the whole set of association rules when compared to
the remaining representations [Bastide et al., 2000a, Ben Yahia et al., 2009b].

Given an Iceberg lattice — in which each frequent closed itemset is decorated by its list of minimal
generators — the derivation of the basis (GB, RZ) can be straightforwardly performed [Hamrouni et al.,
2005b]. Indeed, approximate generic association rules represent “inter-node” implications, assorted with
the confidence value, between two adjacent comparable y-equivalence classes, i.e., from a frequent closed
itemset to another frequent closed itemset immediately covering it. For example, referring to the Iceberg
lattice depicted by Figure 2.2 and Table 2.2, the approximate generic association rule c’2°ABD is generated
from both ~-equivalence classes topped respectively by the frequent closed itemsets CD, having C for
minimal generator, and ABCD. Conversely, exact generic association rules are “intra-node” implications,
with a confidence value equal to 1, extracted from each node in the partially ordered structure. For

example, from the closed itemset CDE, this exact generic association rule is derived: CE=-D.

!The condition g # f ensures discarding non-informative association rules of the form g = 0.
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Therefore, the problem of mining association rules may be reformulated under the redundancy removal

point of view as follows [Ben Yahia et al., 2006]:

1. Discover frequent CIs and their associated MGs. Also, the upper cover of each frequent CI should

be available.

2. From the information discovered in the first step, derive generic bases of association rules (from

which all remaining rules can be derived).

2.5 Conclusion

A traditional problem of the data mining field is the search for association rules in databases, introduced
by Agrawal et al. [Agrawal et al., 1993]. Given the high number of frequent itemsets, and consequently
the high number of the (redundant) association rules that can be drawn even from small amount of data,
a new approach relying on the mathematical background of Formal Concept Analysis was proposed. The

main purpose is to reduce the number of extracted rules without information loss.

In the next chapter, we will give a thorough survey of the main concise representations of frequent

itemsets proposed in the literature. A comparative study of these representations will also be presented.
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Chapter 3

Main Concise Representations of

Frequent Itemsets

3.1 Introduction

The growth of the interest in the frequent itemset mining is owed to the usefulness of frequent itemsets in
many important fields. Indeed, thanks to these itemsets, human experts can obtain pertinent correlations
between dataset items. Therefore, they can acquire a deeper understanding thanks to the mined patterns.
In real-life datasets, carried out experiments showed that the number of frequent itemsets is huge when the
dataset is dense or the minimum support threshold is set too low [Calders et al., 2005]. This phenomenon
makes the exploitation and the handling of such amount of extracted knowledge very difficult. In order to
offer a manageable set of elements from which the derivation of all frequent itemsets is possible, the notion
of exact concise representation was introduced. In the literature, many exact concise representations were

proposed, amongst which the main ones are those based on:
1. The frequent closed itemsets [Pasquier et al., 1999b],
2. The frequent minimal generators [Boulicaut et al., 2003, Liu et al., 2007, Phan Luong, 2002],
3. The frequent non-derivable itemsets [Calders and Goethals, 2007],
4. The frequent closed non-derivable itemsets [Muhonen and Toivonen, 2006], and,
5. The frequent essential itemsets [Casali et al., 2005a].

The exact representations based on the set of frequent minimal generators are not described hereafter since
they were shown in the literature to be always of larger size than that based on frequent closed itemsets
[Calders and Goethals, 2003]. Nevertheless, we will establish the link of each described representation
with minimal generators. Indeed, these key itemsets will be proved to be at the roots of the different
representations.

In this chapter, we thus focus on exact concise representations of frequent itemsets. It is however
important to mention that many approximate concise representations were proposed in the literature,
like maximal frequent itemsets [Bayardo, 1998] (and their dual, ¢.e., minimal infrequent itemsets), o-

free sets [Boulicaut et al., 2003], condensed frequent pattern bases [Pei et al., 2004], J-clusters [Xin
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et al., 2007], and o-tolerance closed frequent itemsets [Cheng et al., 2006]. Although, they offer very
high compactness rates, we did not treat them since they do not allow deriving the exact frequency of
itemsets. Moreover, their accuracy closely depends on the tolerated error bound. The use of concise
representations was also extended to many pattern classes. For example, they are at the roots of different
works aiming at concisely representing pattern classes such as association rules [Ceglar and Roddick,
2006], associative classification rules [Baralis and Chiusano, 2004], sequential patterns [Balcazar and
Casas-Garriga, 2007, Lo et al., 2008, Raissi et al., 2008], graphs [Yan and Han, 2003], trees [Balcazar
et al., 2007], minimal transversals [Hébert et al., 2007], multidimensional patterns [Casali et al., 2009, Pei
et al., 2006], etc.

In the remainder, we describe the main exact concise representations of frequent itemsets that were
proposed in the literature. Then, we carry out a critical comparative study of the surveyed representa-

tions.

3.2 Frequent Closed Itemset-based Representation

3.2.1 Description

The concise representation based on frequent closed itemsets (CIs) was introduced by Pasquier et al.
[Pasquier et al., 1999b]. The set of frequent Cls is defined as follows:

Definition 34 (SET OF FREQUENT CLOSED ITEMSETS)

Consider a context K and the closure operator ~v. The set of frequent closed itemsets that can be drawn
from K, denoted FCZ, is defined as follows: FCT = {I C T | v(I) = I and Supp(I) > minsupp}.

The smallest closed itemset, w.r.t. set inclusion, containing an itemset I is obtained by applying v on I.
Since I and its closure belong to the same ~y-equivalence class, then we have Supp(I) = Supp(y(I)).
Theorem 1 states that the set of frequent CIs represents an exact concise representation of the set FZ

of frequent itemsets.

Theorem 1 The set FCZ of frequent closed itemsets, associated to their respective supports, is an exact

concise representation of the set FZ [Pasquier et al., 1999b].

Indeed, given an itemset I, thanks to FCZ, we are able to guess whether I is frequent or not. In the
affirmative case, its exact support can be derived from FCZ. In the remainder, the representation based
on FCI will be denoted FCIs_rep.

3.2.2 Mining Algorithm

Thanks to the large success of this representation, many algorithms were proposed to extract the set
of frequent CIs (e.g. CLOSE [Pasquier et al., 1999b], LCM [Uno et al., 2004], and PRINCE [Hamrouni
et al., 2005b]). Many comparative studies were hence carried out in the literature on these algorithms
[Ben Yahia et al., 2006, Ceglar and Roddick, 2006, Goethals and Zaki, 2003, Zheng et al., 2001]. In
this respect, the frequent itemset mining implementations (FIMI) repository [Bayardo et al., 2004] offers

efficient implementations dedicated to the extraction of frequent Cls.
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Example 19 Consider the context given by Table 2.1 (cf. page 12) and consider minsupp = 1. The
application of the A-CLOSE algorithm [Pasquier et al., 1999a] for example allows the extraction of the
set of frequent Cls. This algorithm mines in a first step the set F MG of frequent minimal generators
thanks to o levelwise traversal of the search space. For each candidate, it checks whether it is a frequent
minimal generator using Definition 7 (cf. page 20). For example, AC is a frequent minimal generator
since Supp(4C) = 2 > minsupp and Supp(4C) < min{Supp(D), Supp(4), Supp(C)} = 3. It also benefits
from the key property of the set FMG being an order ideal (cf. Proposition 6, page 20). For example,
since the itemset CD ¢ FMG, its super-set ACD cannot be a frequent minimal generator.

Once the set FMG extracted, A-CLOSE delves in the context to get the closure of each frequent minimal
generator. For each element, A-CLOSE computes of the transaction in which it appears. For example, the
closure of AC results from the intersection of transactions 1 and 4, i.e., ABCD and ABCDEF, and is hence
equal to ABCD.

The obtained set FCTI is sketched by Table 2.2 (cf. page 21). Given this set, we are able to derive
the conjunctive support of any frequent itemset. Suppose we are interested in deriving the support of 4B.
Since the latter is a frequent CI, then its support is equal to 3. Suppose now we are interested in deriving
the support of the itemset ABC. This latter is not a frequent CI. We then search for the smallest frequent
CI containing ABC, i.e., the frequent CI ABCD. Since an itemset has the same support as its closure, we
have Supp(4BC) = Supp(4BCD) = 2.

3.2.3 Discussion

The cardinality of the representation based on frequent closed itemsets cannot exceed the cardinality of
the whole set of frequent itemsets. It is hence a perfect cover [Pasquier et al., 1999b]. Moreover, this
representation was extensively used as a starting point for extracting generic bases of rules of association.
Such bases allow to concisely represent valid association rules while allowing the faithful retrieval of
their respective support and confidence values. Unfortunately, this representation is not very attractive
whenever handling weakly correlated (or sparse) contexts. Indeed, in these contexts, each itemset is often

equal to its closure. Thus, the reduction ratio of this concise representation becomes very poor.

3.2.4 Link with Minimal Generators

As described in Chapter 2 (¢f. page 19), closed itemsets and minimal generators are closely related.
Indeed, once the Galois closure operator v applied on the power-set of items, it partitions itemsets in
~v-equivalence classes. In each class, a CI is the unique maximal element w.r.t. set inclusion while at least
a MG is a minimal one. MGs are hence the first reachable elements within each class which explains
why many algorithms rely on, for efficiently extracting Cls.

From a concise representation point of view, frequent MGs do not constitute by themselves an exact
concise representation of frequent itemsets. They hence must be augmented by other itemsets, like the
infrequent [Kryszkiewicz, 2001] or frequent [Liu et al., 2007] part of the associated negative border. It is
then clear that the FCIs_rep is always smaller than frequent M G-based representations. Nevertheless,
the order ideal property of the frequent MG set motivated the efficient extraction of such representations
[Hamrouni et al., 2006, Hamrouni et al., 2005b, Liu et al., 2007].
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The next section proposes a generalization of frequent minimal generators leading to the definition of

the concise representation based on frequent non-derivable itemsets.

3.3 Frequent Non-Derivable Itemset-based Representation

3.3.1 Description

The notion of non-derivable itemset was introduced in [Calders and Goethals, 2002]. In order to present
the non-derivability property, we need to recall the notion of deduction rule, presented in the following

definition.

Definition 35 (DEDUCTION RULE)
Let I, J C T be two itemsets s.t. I C J. The deduction rule, linking the support of J to that of I, denoted
by Ri(J), is one of the following inequalities [Calders and Goethals, 2007]:

Sup(7) < > (DN Supp(a) if |1\I] s odd,
ICJ'cJ

Supp(J) > Z DN Supp( ) if [J\I] s even
1cJ'cy

The definition of a frequent non-derivable itemset is then as follows:

Definition 36 (FREQUENT NON-DERIVABLE ITEMSET)

Let J C T be an itemset. J is said to be non-derivable if there is no couple of deduction rules from
which the support of J can exactly be retrieved. J is a frequent non-derivable itemset if J is also
frequent [Calders and Goethals, 2007].

Roughly speaking, an itemset is said non-derivable if the combination of the supports of its subsets does
not allow to exactly derive its support. Otherwise, it is said derivable. Thus, deduction rules partition
the set of frequent itemsets into two disjoint subsets: the first contains non-derivable itemsets, i.e.,
those for which an access to the context is required for computing their exact supports. These itemsets
will be retained in the representation. The second subset contains derivable itemsets, whose respective
supports can be exactly derived given those of their associated proper subsets. The next theorem states

an important result about deduction rules.

Theorem 2 Let J C Z. The deduction rules associated to J, i.e., {Ry(J) | I C J}, are sound and
complete for deducing tight upper and lower bounds on the support of J [Calders, 2004].

Example 20 Consider the context depicted by Table 2.1 (cf. page 12). In order to simplify the notations,
we will use in this example the notation Sy to denote the support of I. Let us determine the support of the

itemset ABC using deduction rules. The set of deduction rules associated to ABC is given by the following
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system:
Sipe < Sp—Si1—Ss—S¢+ Sip+ Sac+ Spe (Ry)
Sise = —Si+ Sus+ Sue (Ra)
Sipe > —Sp+ Suz+ Sae (Rs)
Sipe = —Se¢+ Sic+ Sae (Re)
Size < S (Rup)
Sue < Suc (Rae)
Sipe < Spe (Rse)
Sipe = 0 (Rase)

Let us detail the method for obtaining these rules. Let Ry be a given deduction rule, and o(I,J) be the
right part of Ry (for example, o(B, ABC) = - Sy + Sap + Sse). Fach deduction rule is hence in the form
of S ; o(I,J). The sign of the inequality is obtained from the cardinality of |J\I|. Indeed, according
to Definition 35, if |J\I| is even (resp. odd), then o(I,J) is a lower bound (resp. upper bound) of Sj;.
Consequently, Ry = Sy > o(1,J) (resp. Ry = Sy < o(1,J)).

Consider for example the rule Ry. Since |ABC\(| = 3, then o(0, 4BC) is an upper bound and, hence,
we have Ry = Sype < o(0, 4BC). Moreover, since o((, ABC) = Sy — Sy — Sy — S¢ + Sup + Sic + Spe, we
obtain Ry = Sype < Sy — Ss— Sp— Se¢+ Syp+ Suc+ Sze-

By numerically assessing the above system of deduction rules, we obtain the following system:

Sie < 2 (Rop)
Sie > 2 (Ra)
Sie > 2 (Rs)
Sie > 0 (Re)
Sipe < 3 (Rus)
Sipe < 2 (Rue)
Sie < 2 (Rse)
Sie > 0 (Ruse)

From rules Ry and R4, we deduce that Sype = 2. Let us remark that in this case, using these deduction
rules, we are able to exactly compute the support of Sypc without accessing the extraction context. This
is nevertheless conditioned by the fact that the associated supports of all proper subsets of ABC must be

known.

The next theorem states that the set N'DZ of frequent non-derivable itemsets is an exact representation

of frequent itemsets.

Theorem 3 The set N'DI of frequent non-derivable itemsets, associated to their respective supports, is
an exact concise representation of the set FZ [Calders and Goethals, 2007].

In the remainder, the representation based on N'DZ will be denoted NDIs _rep.

3.3.2 Mining Algorithm

The frequent non-derivable itemsets fulfill the order ideal property. Indeed, “to be non-derivable” was

shown to be an anti-monotone constraint [Calders and Goethals, 2007]. Since the conjunction of two
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anti-monotone constraints, namely “to be non-derivable” and “to be frequent”, is also anti-monotone,

then the set N'DZ forms an order ideal as stated by the following proposition:
Proposition 8 The set NDZ of frequent non-derivable itemsets is an order ideal in (P(Z), C).

Such a constraint is used as an efficient way for pruning candidates. In this respect, Calders and
Goethals proposed a breadth-first algorithm, called NDI [Calders and Goethals, 2007], to extract the
frequent non-derivable itemsets. Note that in [Calders and Goethals, 2005], they also proposed a depth-
first algorithm, called dfNDI, for mining this representation. The search space is traversed right-to-left,

ensuring to reach an itemset after all its proper subsets were already treated.

Example 21 Consider the context depicted by Table 2.1 (cf. page 12). For minsupp = 1, the set NDI

of frequent non-derivable itemsets is shown by Table 3.1.

Frequent non-derivable itemset | Support
0 5
A 3
B 3
C 4
D 4
E 3
F 3
AB 3
CD 4

Table 3.1: The set N'DZ for minsupp — 1.

3.3.3 Discussion

The main advantage of this representation is that it has a reduced cardinality for the majority of the
real-life contexts. Moreover, it has made possible to define a new way for characterizing association rules
through the so-called non-derivable association rules [Goethals et al., 2005]. Nevertheless, non-derivable
itemsets do not have particular semantics being able to bring the end-users with further information
about the mined context. Indeed, they are based on a numerical reduction without any added-value
from the structural point of view, contrary to minimal generators and closed itemsets. In addition, the
regeneration process of frequent itemsets starting from this representation is very expensive [Liu et al.,
2007, Mielikdinen et al., 2006]. Indeed, for a derivable itemset of size n, the computation process of
its support is performed in two steps: the first consists in checking whether all its proper subsets are
frequent, otherwise it will be infrequent and the process will stop. The second step consists in evaluating
2™ deduction rules. The evaluation of 2" deduction rules is also usually required during the extraction
process for a candidate itemset having all its proper subsets frequent non-derivable itemsets, i.e., verifying
the anti-monotone constraint of being frequent non-derivable. Note however that some optimizations were

proposed by the authors trying to optimise the evaluation cost of deduction rules.
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3.3.4 Link with Minimal Generators

It is worth noting that the representation based on frequent non-derivable itemsets is basically a general-
ization of minimal generators with respect to the considered subsets of a given itemset. Indeed, for testing
if an arbitrary itemset is a minimal generator, its support is only compared with those of its immediate
subsets. On the other hand, the frequent non-derivable itemsets rely on a larger neighborhood exploration
(also called depth in [Calders and Goethals, 2003]) since using all proper subsets of an itemset. This
explains why the representation based on frequent non-derivable itemsets is smaller than that based on
frequent minimal generators. Indeed, the former requires by far more comparisons through deduction
rules than the latter. For example, for an itemset of size n, 2" deduction rules need to be evaluated to
check whether it is non-derivable or not, while only n are used for checking its minimality status within
the associated y-equivalence class. Note however that the determination of the lower and upper support
bound may be stopped when their current temporary values become equal. On the other hand, the regen-
eration process of frequent itemsets starting from frequent non-derivable itemsets is awfully costly [Liu
et al., 2007, Mielikiinen et al., 2006] compared to that starting from frequent minimal generator-based
representations [Liu et al., 2007].

Noteworthily, other exact concise representations can be categorized in the same pool as non-derivable
itemsets being also different generalizations of minimal generators with respect to the used subset
neighborhood. These representations are those based on disjunction-free sets [Bykowski and Rigotti,
2001, Bykowski and Rigotti, 2003] and (generalized) disjunction-free generators [Kryszkiewicz, 2002],

etc. A unified view of most of these representations was proposed in [Calders and Goethals, 2003].

The next section presents an exact concise representation of frequent itemsets resulting from a combi-

nation of the concept of non-derivability and the Galois closure operator.

3.4 Frequent Closed Non-Derivable Itemset-based Representa-

tion

3.4.1 Description

The frequent closed non-derivable itemsets have been introduced by Muhonen and Toivonen [Muhonen
and Toivonen, 2006]. This representation combines the concise representations presented above, namely
those based on frequent closed itemsets and frequent non-derivable itemsets, respectively. Indeed, its
basic idea consists in applying the Galois closure operator on frequent non-derivable itemsets in order
to generate a more compact representation than the set of frequent non-derivable itemsets. The next
theorem states that the obtained set preserves the exactness of the regeneration process of frequent

itemsets.

Theorem 4 The set CN'DI of frequent closed non-derivable itemsets, associated to their respective sup-

ports, is an exact concise representation of the set FI [Muhonen and Toivonen, 2006].

In the remainder, we will denote this concise representation by CNDIs_rep.
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3.4.2 Mining Algorithm

For determining the set CN'DZ, the first step consists in extracting the set N'DT using one of the dedicated
algorithms to this task (¢f. previous section). Then, the second step is devoted to the computation of the

respective closures of the elements of N"DZ by means of an additional access to the extraction context. !

Example 22 Consider the context given by Table 2.1 (cf. page 12). For minsupp = 1, the set CN'DT
of frequent closed non-derivable itemsets is depicted by Table 3.2. For example, consider the frequent
non-derivable itemset A. Since its closure is AB, then AB € CN'DI.

Frequent closed non-derivable itemset | Support
0 5
E 3
F 3
AB 3
CD 4

Table 3.2: The set CN'DZ for minsupp = 1.

3.4.3 Discussion

Since the concise representation CNDIs rep simply gathers the conjunctive closures of frequent non-
derivable itemsets, its cardinality is always smaller than or equal to those of NDIs rep and FCIs_rep.
Nevertheless, its extraction is quite complicated since relying on the extraction of frequent non-derivable
itemsets. An additional access to the context is also required to compute closures. The regeneration of
frequent itemsets from this representation inherits the same difficulty when using frequent non-derivable
itemsets. Finally, the representation based on frequent closed non-derivable itemsets also lacks a semantic
part since it is simply resulting from taking closure of numerically retained itemsets, i.e., the non-derivable

ones.

3.4.4 Link with Minimal Generators

The link of the frequent closed non-derivable itemset-based representation with minimal generators derives
from those of its “ancestors” with this important concept. Indeed, this representation is in fact the result
of taking closures of a generalization of minimal generators w.r.t. the used neighborhood, namely non-
derivable itemsets.

Moreover, the computation of frequent closed non-derivable itemsets can be optimized if we further
concentrate on minimal generators. Indeed, each closed non-derivable itemset can easily be shown to
be the closure of at least a non-derivable minimal generator. By “non-derivable minimal generator”, we

indicate an itemset which is both “non-derivable” and “minimal generator”. Hence, instead of computing

'The authors offer such an algorithm, called FIRM, whose source code is available on Muhonen’s website at:
http://www.cs.helsinki.fi/u/jomuhone/firm/firm-3-3-3.tar.gz.
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the whole set of frequent non-derivable itemsets for which the associated closures must be computed, we
can only use the set of frequent non-derivable minimal generators. This set being the result of three anti-
monotone constraints, namely “to be frequent”, “to be non-derivable” and “to be minimal generator”, will
give rise to an order ideal. Indeed, the conjunction of the three aforementioned anti-monotone constraints
will also give an anti-monotone constraint.

To get out the set of frequent non-derivable minimal generators, a slight modification of algorithms
dedicated to frequent non-derivable itemset mining has to be performed. Its main aim is to only retain
the itemsets fulfilling the minimal generator constraint among the set of frequent non-derivable itemsets.
A comparison between the actual support of a frequent non-derivable itemset and the minimum of its
immediate subsets supports is hence sufficient. The detection of minimal generators within these algo-
rithms will hence optimize the candidate generation and closure computation steps. Indeed, the number

of frequent non-derivable minimal generators is lower than that of frequent non-derivable itemsets.

The next section presents the unique concise representation for frequent itemsets relying on the dis-

junctive support, in addition to the conjunctive one.

3.5 Frequent Essential Itemset-based Representation

3.5.1 Description

The representation based on frequent essential itemsets was introduced by Casali et al. [Casali et al.,
2005a]. The notion of essential itemset is based on the inclusion-exclusion principle [Galambos and
Simonelli, 2000, Narushima, 1982]. In this respect, this representation offers the possibility to retrieve all
kinds of support sketched in Definition 2 (cf. page 12).

In this subsection, we will mainly concentrate on the conjunctive and the disjunctive supports of an
itemset. The negative support can easily be derived from the disjunctive support as shown in Definition
2. Hence, to avoid confusion between both supports, we will explicitly mention the nature of the support:
conjunctive or disjunctive. Nevertheless, the use of the term “frequent” is restricted to the conjunctive

support in the sense that a frequent itemset have a conjunctive support greater than or equal to minsupp.
Let us begin by introducing the definition of frequent essential itemset.

Definition 37 (FREQUENT ESSENTIAL ITEMSET)
An itemset I C T is essential if Supp(VI) > max{Supp(V(I\{i})) |i € I}. I is a frequent essential

itemset if it is simultaneously frequent and essential.

Example 23 Consider the context given by Table 2.1 (cf. page 12) for minsupp = 1. The itemset AB
is not an essential itemset since Supp(VAB) = Supp(VA) = 3. Whereas AC is an essential itemset since
Supp(VAC) = 5, in conjunction with the facts that Supp(VAC) # Supp(V4) (since Supp(V4) = 3) and
Supp(VAC) # Supp(VC) (since Supp(VC) = 4). The itemset AC is also frequent since Supp(4C) = 2 >

MINSUPP.-

Remark 1 It is important to note that Definition 37 is slightly modified w.r.t. the original one given in

[Casali et al., 2005a]. Indeed, it also include the implicit consideration of the empty set as an essential
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itemset although the disjunctive support is not defined on this pattern since it does not contain any item.
This consideration is argued by the fact that this will allow ensuring that the set of essential itemsets is an
order ideal in (P(Z), C) — useful property for the efficient mining of these patterns (cf. next subsection).
The same process has been recently highlighted in [Kryszkiewicz, 2009]. In addition, we affect to the empty
set the cardinality of the set of objects (i.e., |O|) as support what ensures the correct regeneration of its
conjunctive support during the expansion process to the whole set of frequent itemsets starting from the
representation based on frequent essential itemsets. Note that, this assignation does not have any effect on
the support of the other itemsets since the support of the empty set is not used in the inclusion-exclusion

identities.

In the remainder, we will denote by FEZ the set of frequent essential itemsets that can be extracted
from an extraction context /. The following lemma shows how we can obtain the disjunctive support of

a frequent itemset given the set FET.
Lemma 2 Let I € FI. Supp(VI) = maz{Supp(VI1) | Iy C I and I, € FEI} [Casali et al., 2005a].

The following definition presents the set Argmax associated to a frequent itemset I. This set contains
the frequent essential itemsets contained in I and having the maximum disjunctive support among those
of the subsets of I.

Definition 38 (ARGMAX)
Let I € FI. J € Argmax(I) if J C I, J € FET and Supp(VJ) = maz{Supp(VIy) | I C I}.

To derive the conjunctive support of a frequent itemset I, a straightforward manner is to use the
equality shown in Lemma 1. However, an optimized way of the computation can be performed using an
element of the set Argmax associated to I. The following lemma [Casali et al., 2005a] shows how this

can be done.

Lemma 3 Let I € FI and J € Argmax(I). We then have:

Supp(I) = »_ (-H)!"

0cI,CI

Supp(VJ) if JC L4
Supp(V I1) elsewhere

Proof. The proof of this formula is based on the inclusion-exclusion identities (¢f. Lemma 1, page 13),
and on the fact that V I s.t. J C I; C I: Supp(VIy) = Supp(VJ) (¢f. Lemma 2). &

The following theorem indicates how to derive the conjunctive support of a frequent itemset once the

set of frequent essential itemsets is extracted.

Theorem 5 Let I € FI\FEZL and J € Argmax(I). We then have:

Supp(I) = Z D)= Supp( v 1)
pcI,CI
JZh
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Proof. If we apply the inclusion-exclusion identities, we get:

Supp(I) = > ()" Supp(v 1) =
0cI,CI

ST oI Supp(vin) + Y (D) Supp( v )
0cILCI JCI,CI
JZI

There are 2!11-171

itemsets encompassed between J and I. These itemsets have Supp(VJ) for disjunc-
tive support (according to Lemma 3). Among this set of itemsets, there is the same number of itemsets

with odd cardinality than those with even cardinality. Hence, the second part of the sum is equal to 0.

It is worth noting that the optimization offered through Theorem 5 does not apply for an essential
itemset I since in this case J = Argmax(I) = I. Thus, there is no support to be pruned within the

inclusion-exclusion identity associated to I.

Remark 2 A remark about Theorem 5 concerns the fact that in [Casali et al., 2005a], the authors

considered that the itemset J should not be a superset of I. Indeed, the formula was given as follows:

Supp(I) = > (-D)!"1" Supp( v 1)
0cI,CI
LZT

In the proof they gave [Casali et al., 2005b], they claim that the latter formula results from the following
decomposition:

Supp(I) = > ()" Supp(v 1) =

0WcICI

ST 0" Supp(vny + Y (1) Supp( v 1)
0cnCI JCLILCI
Il,@.]

Howewver, if we consider that I = ABCD, J = AB and I, = ABC, then I, belongs to the first part of the sum
(0 C 4BC C 4BCD and ABC ¢ AB) as well as to the second part (4B C ABC C ABCD). Hence, both parts of

the sum are not disjoint. The formula is then erroneous.

Although their usefulness, the set of frequent essential itemsets suffers from a main limitation. Indeed,
having only the information offered by FEZ, we are not able to decide whether a given itemset I is
frequent or not. Since the application of Theorem 5 to derive the conjunctive support of I mainly relies
on this information and to overcome this limitation, Casali et al. augment the set FEZ with the set of
maximal frequent itemsets Bd* (FZ). The latter will be used to check whether I is frequent or not. The

following theorem summarizes the concise representation based on frequent essential itemsets.

Theorem 6 The set FEL of frequent essential itemsets, associated to their respective disjunctive sup-
ports, augmented by the set Bd*(FI) of mazimal frequent itemsets is an ezact concise representation of
the set FI of frequent itemsets [Casali et al., 2005a].

In the remainder, the frequent essential itemset-based representation will be denoted FEIs rep.



40 Main Concise Representations of Frequent Itemsets

3.5.2 Mining Algorithm

To extract the frequent essential itemset-based representation, Casali et al. proposed a levelwise algo-
rithm, called MEP 2 [Casali et al., 2005a]. This algorithm benefits from the fact that the set of frequent
essential itemsets fulfills the interesting property of being an order ideal in (P(Z), C). This is stated by

Proposition 9.
Proposition 9 The set of frequent essential itemsets is an order ideal in (P(Z), Q).

Hence, if [ is a frequent essential itemset, then each subset of [ is also a frequent essential itemset. In a
dual way, if I is not a frequent essential itemset, then each superset of I cannot be a frequent essential
itemset. This interesting property helps levelwise algorithms to efficiently be adapted to extract this
set. In this respect, the unique algorithm allowing to extract this set, i.e., the MEP algorithm, is an

adaptation of the well known levelwise APRIORI algorithm [Agrawal and Srikant, 1994].

Example 24 Consider the context given by Table 2.1 (cf. page 12) for minsupp = 1. The application
of the MEP algorithm gives the exact concise representation composed by:

e Bd*(FI) = {ABCDEF},

o The set FEI which is summarized in Table 3.3.

Note that we give the conjunctive support of frequent essential itemsets only for the sake of exhaustivity.
Indeed, the MEP algorithm does not extract the exact conjunctive supports of frequent essential itemsets.
It only checks their frequency status by testing their inclusion in at least an element of Bd*(FZ) [Casali
et al., 2005a]. Thus, during the regeneration process, in the case where an itemset belongs to FEL, its
conjunctive support must also be computed using an inclusion-exclusion identity. Table 8.8 also contain
the couple (0, 5) added as aforementioned to ensure the exact regeneration of the empty set conjunctive
support.

Given the set FET augmented with Bd™(FI), we are able to derive the conjunctive support of any
frequent itemset. Suppose we are interested in computing the conjunctive support of the itemset DF starting
from the disjunctive supports of its subsets, i.e., using Theorem 5. Since DF is a frequent essential
itemset, Argmax(DF) = {DF}. Then, the formula proved in the theorem is reduced to the application of
the inclusion-exclusion identities given in Lemma 1 (cf. page 13). Hence, Supp(DF) = - Supp(VDF) +
Supp(VD) + Supp(VF) =-5 +4 +3 = 2.

Suppose now that we have to compute the conjunctive support of the itemset CEF. The latter is a frequent
itemset since it is included in the single element forming Bd*(FT), namely ABCDEF. According to Theorem
5, Supp(CEF) can be computed starting from the disjunctive supports of its subsets that do not include
CE, since CE € Argmax(CEF). Note that CF also belongs to Argmax(CEF). Hence, the conjunctive support
of the itemset CEF is computed as follows: Supp(CEF) = (—1)'0”_1 Supp(VCF) + (—1)‘“'_1 Supp(VEF)
+ (DY Supp(ve) + (-1D)ET Supp(VE) + (DI Supp(VF) = - Supp(VCF) - Supp(VEF) +
Supp(VC) + Supp(VE) + Supp(VF) =-5-4 +4 +3 +3 =1.

3.5.3 Discussion

To the best of our knowledge, this representation is the unique one in the literature relying on the

disjunctive support as a way for characterizing its elements. For several real-life contexts and for given

MEP is the acronym of Mining Essential Patterns.
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Frequent essential | Disjunctive | Conjunctive | Frequent essential | Disjunctive | Conjunctive

itemset support support itemset support support

0 5 5 A 3 3

B 3 3 C 4 4

D 4 4 E 3 3

F 3 3 AC ) 2

AD 5 2 AE 4 2

AF 4 2 BC ) 2

BD 5 2 BE 4 2

BF 4 2 CE ) 2

CF 5 2 DE ) 2

DF 5 2 EF 4 2

AEF 5 2 BEF ) 2

Table 3.3: The set FEL for minsupp = 1.

settings of the minsupp threshold, the cardinality of the representation based on frequent essential itemsets

is lower than that of the representation based on frequent closed itemsets [Casali et al., 2005a]. Moreover,

it makes it possible to efficiently determine the disjunctive and negative supports of frequent itemsets.

Nevertheless, this representation suffers from its augmentation by the positive border of frequent itemsets,

which leads to three main limitations:

1. A heterogeneity within the concise representation: indeed, the elements of Bd*(FZ) are

characterized by the conjunctive support and the maximum size of the itemsets within the as-
sociated y-equivalence classes. While the frequent essential itemsets are characterized by their
disjunctive supports. This obliges storing a membership flag of each itemset of this representation
to the associated set. Noteworthily, an itemset can simultaneously be a frequent essential itemset

and a maximal frequent itemset, which constitutes a first form of redundancy.

. An increase in the size of the representation: this becomes clear especially for dense contexts
where the size of BdT(FZ) can even exceed that of FEZ. In addition, this representation does not
take into account the fact that several essential itemsets can characterize the same set of objects,

which constitutes a second form of redundancy.

. An external algorithmic dependency: The dependence of any algorithm extracting this concise
representation to another one dedicated to the extraction of maximal frequent itemsets, like the
Max-MINER algorithm [Bayardo, 1998].

3.5.4 Link with Minimal Generators

Here, we will establish the link between two spaces: the conjunctive search space and the disjunctive

search space. In each one, itemsets are characterized using the corresponding support. To understand
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where are localized minimal generators and essential itemsets in their respective search space, let us recall

their associated characterization. Let I C 7:

e [ is a minimal generator iff Supp(I) < min{Supp(I') | I' CZ and I' C I}.
o ] is an essential itemset iff Supp(VI) > max{Supp(VI') | I' CZ and I' C I}.

Thus, minimal generators and essential itemsets are dually defined w.r.t. conjunctive and disjunctive
supports respectively. This derives from the fact that to be frequent w.r.t. a minimum conjunctive support
threshold (like minsupp in our case) induces an order ideal. While to be frequent w.r.t. a minimum
disjunctive support threshold induces an order filter. Indeed, the conjunctive (resp. disjunctive) support
is a decreasing (resp. increasing) function of the size of itemsets.

Let us now split the disjunctive/conjunctive itemsets into equivalence classes w.r.t. the associated
support in the sense that two itemsets belong to the same equivalence class if they have the same
support. With respect to the aforementioned characterization, minimal generators and essential itemsets
are hence the minimal itemsets, w.r.t. set inclusion, within their associated classes.

Since two itemsets can have the same supports while not being present in the same objects (i.e.,
do not have the same extent), we can refine the aforementioned classes by dividing them into smaller
ones according to a tougher constraint: two itemsets belong to the same equivalence class if they verify
the same set of objects. This constraint obviously covers the previous one, i.e., the equality of itemset
supports. Then, we will for example obtain the y-equivalence classes w.r.t. the conjunctive support. In
both cases, minimal generators and essential itemsets are the minimal elements of their respective classes
while their associated closure is unique in the associated equivalence class.

To summarize, the set of minimal generators and the set of essential itemsets have common structural
properties in their associated search space. From the point of view of concise representations of frequent
itemsets, none of them constitutes an exact representation by itself. They must hence be augmented to

ensure the exactness of the regeneration process.

The next section presents a critical comparative study of the surveyed concise representations.

3.6 Comparative Study of Concise Representations for Frequent

Itemsets

In the light of what was previously presented in this chapter, we notice that the exact concise represen-

tations have main differences that we organize according to the following axes:

1. Composition: This axis describes the nature of the itemsets contained in a given representation.

2. Main features characterizing the itemsets composing the representation: This axis sheds
light on how are characterized the itemsets of the representation, such as the associated measures

(i.e., conjunctive/disjunctive support), deduction rules, and the size of the itemsets.

3. Mining algorithms: In order to extract an exact concise representation, some algorithms are

proposed. Here, we present the most known ones.

4. Link with minimal generators: This axis summarizes how a given concise representation is

linked to minimal generators.
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Regeneration mechanism: Each concise representation has its proper regeneration mechanism

allowing to derive the whole set of frequent itemsets associated to their respective supports.

Advantages: This axis presents the main advantages of the concise representations proposed in

the literature. Here, we distinguish four major advantages:

(a) Efficient derivation of the disjunctive and negative supports: This featureis very
important since avoiding to evaluate inclusion-exclusion identities to derive disjunctive and
negative supports starting from conjunctive ones. The evaluation of these identities can be

costly when the number of itemsets frequent is large (especially for dense contexts).

(b) Homogeneity: Thanks to this feature, it is possible to know if the associated representation

is composed of itemsets of the same search space (w.r.t. the associated supports), etc.

(c) Derivation of generic association rules: Generic association rules are lossless subsets
of the whole set of association rules [Pasquier, 2009]. They hence allow to only manipulate a

reduced number of rules and thus to remove redundancy within association rules.

(d) Efficient derivation of generalized association rules: Contrary to classic asso-
ciation rules having positive items in both premise and conclusion parts, generalized asso-
ciation rules offer richer knowledge. Indeed, they convey various forms of connectors between
items, like conjunction, disjunction and negations. They hence reveal the finest items corre-
lations to the end-users. Thus, they help them to obtain a deeper analysis about the mined

context, which improves their decisions.

Table 3.4 summarizes the results of our critical study on the main exact concise representations of the

literature. Note that we did not include frequent closed non-derivable itemset-based representation in the

summarizing table since it is a combination of closed and non-derivable itemsets. The main observations

are as follows:

1.
2.

The concept of minimal generator plays a key role in the setting of each concise representation.

The derivation of the conjunctive supports of frequent itemsets is straightforward starting from
the frequent closed itemset-based representation. Nevertheless, the efficient derivation of their

disjunctive and negative supports is not straightforwardly possible.

The representation based on frequent closed itemsets is the unique one exploited in the literature
towards extracting generic association rules. Note however that the frequent non-derivable itemsets
were extended to association rules through the introduction of non-derivable association rules in
[Goethals et al., 2005].

The regeneration of the frequent itemsets starting from the frequent non-derivable itemsets is ex-
pensive in running time. Indeed, the computation of the conjunctive support of a derivable itemset
requires the evaluation of 2/!! deduction rules. While the representation based on frequent essential
itemsets only requires the evaluation of one inclusion-exclusion identity in order to determine the

conjunctive support of the frequent itemsets.

The concise representation based on frequent essential itemsets is the unique one offering the
possibility for an efficient derivation of various generalized association rule forms. Indeed, deriving

disjunctive and negative supports starting from this representation is straightforward.
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Representation based Representation based Representation based
Axis on frequent closed on frequent non-derivable | on frequent essential

itemsets

itemsets

itemsets

1- Composition

frequent closed

itemsets

frequent non-derivable

itemsets

frequent essential +

maximal itemsets

2- Main features

Galois closure
operator +

conjunctive support

deduction rules +

conjunctive support

disjunctive support +
conjunctive support +

size of itemsets

3- Mining algorithms

CLosg, LCM, PRINCE, etc.

NDI and dfNDI

MEP

4- Link with minimal

generators

closures of frequent

minimal generators

generalizations of frequent
minimal generators w.r.t.

the explored neighborhood

dual of minimal
generators w.r.t. the

associated search space

5- Regeneration mechanism

the support of an itemset
is equal to that of the
smallest frequent closed

itemset containing it

evaluation of 2"
deduction rules for

each itemset of size n

evaluation an inclusion-
exclusion identity for

each itemset

6- Advantages

(a) Efficient derivation No No Yes
of the disjunctive and

negative supports

(b) Homogeneity Yes Yes No
(c) Derivation of generic Yes No No
association rules

(d) Efficient derivation of No No Yes

generalized association

rules

Table 3.4: Comparison of the main exact concise representations proposed in the literature.

3.7 Conclusion

In this chapter, we presented the main exact concise representations proposed in the literature. We also

highlighted their main advantages and limitations. Our critical study of these representations sheds light

on the following observations:

1. Minimal generators play an important role in almost all concise representations of the literature.

Indeed, they are used as an efficient mean for computing representations, like the frequent closed

itemset-based one. In addition, they are at the basis of various generalizations leading to differ-

ent concise representations, like the frequent non-derivable itemset-based one. Nevertheless, the

existence in general of more than one minimal generator per 7-equivalence class augments the

redundancy ratio within the extracted knowledge. Indeed, a same part of knowledge will be redun-

dantly conveyed by the distinct patterns (for example, the itemsets and their uses in association

rule mining).

In this respect, one of the main issues addressed in this thesis consists in exploring efficient methods

for a lossless reduction of the minimal generator family (¢f. Chapter 4). This is extended to




3.7 Conclusion 45

the association rule framework through redundancy removal within generic association rules (cf.
Chapter 5).

2. The representation based on frequent essential itemsets constitutes an interesting alternative to
represent in an exact way the set of the frequent itemsets. Indeed, it makes it possible to efficiently
determine the various forms of support of the frequent itemsets. Thus, it constitutes for example a
powerful starting point for obtaining a more reduced concise representation for frequent itemsets.
In addition, it can give rise to some interesting association rule forms, to go beyond the classic ones.
Nevertheless, it mainly suffers from the necessity to add the positive border of frequent itemsets
to make it an exact representation. In this situation, such an addition necessarily augments the
size of the representation and, more dramatically, leads to a dependency on algorithms for mining
maximal frequent itemsets. This representation also suffers from the heterogeneity of its elements

with respect to their support — disjunctive vs. conjunctive.

In order to palliate these limitations, we propose a new exact concise representation based on a
new closure operator dedicated to the disjunctive search space and, hence, to essential itemsets in
particular (¢f. Chapter 6). Moreover, we show how this new representation is able to overcome
the limits of the representation based on frequent essential itemsets. The obtained results will also

be applied for extracting generalized association rules (c¢f. Chapter 7).
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Space






Chapter 4

Lossless Reductions of the Minimal
Generator Family of an Extraction

Context

4.1 Introduction

Standing at the “antipodes” of closed itemsets (CIs) within their respective vy-equivalence classes induced
by the Galois closure operator, minimal generators (MGs) [Bastide et al., 2000a] are the minimal elements
of a class while the ClIs [Pasquier et al., 1999b] are the largest. They hence help delimit the classes and
ease their detection/traversal. Although their study grasped little interest compared to that paid to CIs,
MGs appear to be at the crossroads of many theoretical and practical problem settings related to closure
systems. Indeed, they are used in graph theory (as minimal transversals [Berge, 1989]), database design
(as minimal keys [Maier, 1983]), and data mining, to cite but a few. The computational complexity of
some decision and counting problems related to MGs of closed sets were investigated in [Hermann and
Sertkaya, 2008].

Practically speaking, it has been shown in [Li et al., 2006] that, in applications related to inductive
inference, model selection and classification, MGs are highly instrumental and even preferable to Cls
w.r.t. the minimal description length principle (MDLP) [Grunwald, 2007, Rissanen, 1978]. Indeed,
they are usually strictly smaller in size terms than their CIs (unless themselves closed), and hence offer
minimal combinations of conditions necessary to identify a class of situations. Simultaneously used with
their CIs, MGs also offered a concise representation of odds ratio and relative risk patterns of a binary
context [Li et al., 2005], and of mined frequent itemsets from data streams [Xie et al., 2006]. In addition,
they made possible a structural localization of statistically important y-equivalence classes w.r.t. some
measures [Li et al., 2007]. Moreover, MGs are used for mining complex pattern classes, like sequential
patterns [Balcidzar and Casas-Garriga, 2007, Lo et al., 2008], etc.

In general, many MGs belong to the same y-equivalence class which leads to one-to-one correspondence
between the knowledge pieces involving these MGs. Consequently, some redundancy clearly still exists

for real-life contexts. In this respect, a study of intra-class redundancies in MGs was initiated by Dong
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et al., who proposed a way to derive MGs from other ones in the same y-equivalence class [Dong et al.,
2005]. The overall reduction principle may be roughly summarized as follows: an arbitrary total order is
defined on the itemset family and the unique irreducible members are kept. This results in a split of the
global MG family into succinct and redundant parts. Thus, the succinct system of minimal generators
was introduced as a concise representation from which the entire MG family can be retrieved without
any information loss. However, contrary to the authors’ claims in [Dong et al., 2005], we prove that the
original succinct system of minimal generators is loss-prone since some redundant MGs are impossible
to derive in some cases. Furthermore, for a given context, the systems resulting from different imposed
total order relations on itemsets do not necessarily share the same size, again contradicting what was
stated in [Dong et al., 2005].

In this chapter, we carry out a thorough study of the succinct system of minimal generators. This
allows us to clarify several aspects and to highlight interesting properties of this system, not mentioned
in [Dong et al., 2005]. We then propose a second approach that overcomes the flaws of the original system.
Our redefined succinct system of minimal generators allows to obtain an exact representation of the MG
family. In addition, for a given extraction context, the new definition leads to equal-size families w.r.t.
the total order relation. Unfortunately, this definition leads to the loss of the order ideal structure which
greatly complicates its practical extraction. As a hybrid approach between the first and second ones, we
introduce a third system that overcomes their worst limitations. We present its definition and show that
it preserves the precious order ideal property together with further structural properties that underly a
lossless reduction mechanism. Finally, an experimental evaluation illustrates the benefits of our approach
towards offering to the end-users a redundancy-free set of minimal generators.

The main contribution of this chapter is thus to show how to reach, without information loss, the case
where each ~v-equivalence class only contains irreducible minimal generators. This is helpful for real-life
contexts. Indeed, an antimatroid closure space, which corresponds to the case where each y-equivalence
class contains a unique minimal generator [Pfaltz and Taylor, 2002], is unlikely to happen in real-life
contexts which leads to a highly combinatorial redundancy. Reducing such combinatorial variations
within the MG family is hence a central issue for its results in smaller-size storage and for making easier
further manipulations. Indeed, in applications based on MGs such as association rule mining [Ceglar
and Roddick, 2006] and association rule-based classification [Baralis and Chiusano, 2004], reducing the
number of MGs without information loss will help saving spaces on which results will be stored and will
ease their interpretation for the end-users. This is argued by the fact that only MGs bringing further
knowledge are maintained while being able to losslessly derive redundant ones.

The chapter is organized as follows: Section 4.2 is a detailed study of the succinct system of minimal
generators as defined by Dong et al. Section 4.3 expands on our first solution towards a lossless reduction
of the MG family through its definition as well as its structural properties. Section 4.4 presents the main
features of our hybrid approach as well as a regeneration mechanism allowing deriving the whole set of
MGs. Section 4.5 proposes a discussion of the proposed MG families. In Section 4.6, an algorithm for
extracting the hybrid family is proposed, followed by a study of its properties. Section 4.7 discusses the

main related work. The empirical evidences about the soundness of our work are shown in Section 4.8.
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4.2 Original Succinct System of Minimal Generators

In this section, we will study the main characteristics of the original succinct system of minimal generators
(OSSMG) [Dong et al., 2005]. We then clarify the aspects of the definition that remained unclear and
show its flaws. Please note that we mainly refer to the SSMG _MINER algorithm proposed by the authors
[Dong et al., 2005]. In fact, the concrete examples related to SSMG _MINER are the unique source of

precise information about several aspects of the target structure.

4.2.1 Description

In [Dong et al., 2005], Dong et al. showed that the minimal generator (MG) set may contain redundant
information. In fact, some MGs associated to a closed itemset (CI) can be derived from other ones by
a process based on subsets substitution. They hence tried to remove the redundancy within the MG
set and to achieve a succinct representation of MGs. Thus, Dong et al. introduced the succinct system
of minimal generators as a concise representation of the MG set. The main idea was then to remove
the redundant information by choosing one (e.g., the smallest w.r.t. a given total order) MG of a CI,
to elect it as its representative MG, and discarding those containing at least a non-representative MG
[Dong et al., 2005]. In each y-equivalence class induced by the Galois closure operator, the purpose is
only to retain those MGs that cannot be derived from other ones of the same ~-equivalence class. The
authors hence proposed to set up a relation between itemsets. This relation is defined as follows [Dong
et al., 2005]:

Definition 39 (ITEMSET RELATION)

Let f be a closed itemset. Let X and Y be two itemsets. X and Y are called f-equivalent, denoted X
~r Y, if:

(i) X and Y are two minimal generators of a closed itemset f1 s.t. f1 C f.

(i1) X can be obtained from Y by replacing a subset Zy of X (Z1 C X) by a subset Zs of Y (Zy C Y)
s.t. Zy =y Zo.

Example 25 To illustrate this definition, consider the context given by Table 2.1 (cf. page 12). The
associated list of closed itemsets and their respective minimal generators is given in Table 4.1 (cf. page
54). The relation between itemsets given in the case (i) is fulfilled by 4 and B w.r.t. the CI ABCD. Indeed,
both are MGs of AB which is included in ABCD. Hence, 4 = 3¢p B. While the relation given in the case
(i1) s fulfilled by AC and BC also w.r.t. ABCD. Indeed, by replacing A by B in the MG AC, we obtain BC.

This replacement is sound since 4 ~p¢p B.

Surprisingly enough, ~; is not an equivalence relation since the transitivity property is not fulfilled,
as this will be shown in Subsection 4.2.3. Dong et al. aimed at using this relation to split the MGs,
associated to a given CI, into disjoint equivalence classes. To avoid confusion with the y-equivalence
classes induced by the Galois closure operator -, the latter will be denoted o-equivalence classes. The
achievement of the goal of deriving a minimal non-redundant subset of MGs is carried out by only
maintaining a unique MG for each o-equivalence class. The choice of the representative member of a
o-equivalence class is of paramount importance. Dong et al. proposed to freely choose a representative

MG for the minimal CIs. For the other CIs, the authors proposed to choose one of the canonical MGs,
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i.e., those that do not contain any non-representative MG of a subsumed CI. Even though the authors
do not give a precise way to choose the representative MG, the illustrative examples of their paper hint
that shorter sets are considered as smaller and are hence favored [Dong et al., 2005]. In other words,
the cardinality of MGs constitutes the first criterion when choosing a representative MG among a set of

canonical ones belonging to the same o-equivalence class.

4.2.2 Clarification of Imprecise Aspects

Several aspects remain unclear in the presentation of the OSSMG in [Dong et al., 2005]. For instance, the
selection of the representative itemset for each y-equivalence class seems to be defined procedurally rather
than analytically: a climb in the Boolean lattice is used to guide the choice which is some way randomly
performed for the minimal CIs. On upper levels of the CI lattice, the representative is chosen among the
sets that are canonical w.r.t. already fixed part of the representative MG set (thus enforcing the order
ideal structure of the target OSSMG). After cross-checking with the algorithmic description, it becomes
clear that a global order on items is used which makes all the choices on the lowest level deterministic.
Moreover, the choice among canonicals on upper levels is fixed by a preference for smaller-size sets. The

following definition of a total order on itemsets summarizes this:

Definition 40 (TOTAL ORDER RELATION)

Let =< be a total order over the set of items, i.e., ¥V i, j € T s.t. i # j, either i < j or j < i holds. This
relation is extended to itemsets as follows: let X andY be two distinct itemsets sorted w.r.t. <. Let | X]|
(resp. |Y|) be the cardinality of X (resp. Y) and xy (resp. yi) be its k" item. We then distinguish two

cases:
o [ X|<|Y]: X <Y.
o |X| =|Y|: if there is an integer t s.t. x; < y: andV k € {1, ..., (t - 1)}, xx = yi, then X < Y.

Otherwise, ¥ < X.

Example 26 Consider the alphabetic order on items as the basis for the total order relation < on item-

sets. ' For exzample:
e D < BE since |D| < |BE|.
e ABD < ABE since |ABD| = |ABE|, and the third item of ABD, namely D, is smaller w.r.t. < than that

of ABE, namely E, while their respective first two items are the same.

The cardinality-based criterion used in the definition of the total order relation preserves the spirit of
MGs. Indeed, the smallest itemset, w.r.t. =<, in each y-equivalence class will necessarily be a MG. Three

categories of MGs emerge [Dong et al., 2005] which we formalize as follows:

Definition 41 (MINIMAL GENERATORS CATEGORIES)
The set MGy, of the MGs associated to a CI f, can be portioned into three distinct subsets as follows:

'In the remainder, we will only mention the criterion used to order items (e.g., alphabetic order). The latter

order is then extended to be a total order relation on itemsets, as shown in Definition 40.
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(i) MGrep; = {g € MGy | # g1 € MGy s.t. g1 < g}: the MGrepy set contains the smallest MG,

giwen a total order relation =<, which constitutes the representative MG of f.

(it) MGecany = {g€ MGy | (g ¢ MGreps) A (Vg1 Cg,3 f1 st fr =v(g1) and g1 € MGrepy,)}: the
MG cany set contains the canonical MGs of f. A canonical MG is not the smallest one in MGy,
and hence is not the representative MG of f. Nevertheless, all its subsets are the representative

MGs of their respective y-equivalence classes.

(1) MGredy = {g € MGy |3 g1 Cyg,3 f1 st fr =7v(91) and g1 ¢ MGreps, } = MG\ (MGreps
U MGeanys): the MGreds set contains the redundant MGs of f. A redundant MG contains at

least a subset which is not a representative MG.

Definition 42 introduces the set of succinct MGs according to the approach of Dong et al.

Definition 42 (SET OF SUCCINCT MINIMAL GENERATORS)

A MG is said to be succinct if it is either a representative or a canonical one. The set MGsucy of
succinct MGs associated to the CI f is then equal to the union of MGrepy and MGeany: MGsucy =
MGrepy U MGcany.

Example 27 Consider the context K depicted by Table 2.1 (cf. page 12) for minsupp = 1. Let the
alphabetic order be the total order relation <. This relation is used to sort the MGs associated to the
Cls shown in Table 4.1. Note that for 10 Cls, there are 30 MGs, from which only 14 are succinct
ones. There are as many Cls as representative MGs, i.e., 10, and only 4 canonical ones (which
are underlined in the table). The MG AC is a representative one since it is the smallest MG w.r.t.
=, among those of ABCD. Indeed, AC < AD, AC < BC and AC < BD. The MG B is not the representative
of its CI 4B since 4 < B. Nevertheless, its unique subset (i.e., ) is a representative MG. Hence, B
is a canonical MG. Finally, the MG DF is a redundant one since at least one of its subsets is not a

representative MG (D, for example).

The definition of a succinct system of minimal generators according to Dong et al. is as follows [Dong
et al., 2005]:

Definition 43 (ORIGINAL SUCCINCT SYSTEM OF MINIMAL GENERATORS)
A succinct system of minimal generators w.r.t. a total order relation <, consists of, for each closed

itemset, the representative minimal generator and a possibly empty set of canonical minimal generators.

Noteworthily, for a given context, there may be several OSSMGs depending on the choice of the
total order relation <. The context, shown in Table 4.2 (Top) page 58, represents such an example and
is discussed later in Subsection 4.2.3. It is also important to point out that the OSSMG is clearly a
generalization of the clone items framework which only focuses on items playing symmetric roles within
CIs [Gély et al., 2005] (cf. Section 4.7, page 76). Indeed, instead of single items, the OSSMG considers
subsets of items.

Proposition 10 states the relation between the number of representative MGs and that of ClIs, while

Proposition 11 provides an interesting property of the set of canonical MGs.
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# CI MGs Succinct M Gs | Support
1 0 0 0 5
2 E E E 3
3 F F F 3
4 AB A, B A, B 3
5 cD C, D C, D 4
6 CDE CE, DE CE 2
7 CDF CF, DF CF 2
8 ABCD AC, AD, BC, BD AC 2
9 ABEF AE, AF, BE, BF, EF AE, AF, EF 2
10 || ABCDEF | ACE, ACF, ADE, ADF, ACE 1
BCE, BCF, BDE, BDF,
CEF, DEF

Table 4.1: The list of closed itemsets, and for each one, the corresponding minimal generators,

succinct minimal generators and support.

Proposition 10 The cardinality of the set of representative MGs is equal to that of Cls.

Proof. There is only one CI per v-equivalence class, which is also the case of representative MGs. Indeed,

the total order relation < ensures the uniqueness of the representative MG associated to a given CI. <

Proposition 11 The set MGcan contains incomparable elements w.r.t. set inclusion.

Proof. According to Definition 41, two distinct canonical MGs are necessarily incomparable w.r.t. set

inclusion. Indeed, the contrary would lead to a contradiction with the status of the largest one.

Remark 3 If the set MGcan is empty, then the set MGred is necessarily empty. However, the reverse

is not always true.

Proposition 13 states that the subsets of a representative MG are also representative ones. This
proposition is required to show that the set MGsuc is an order ideal in (P(Z), C). Using Lemma 4 and
Proposition 12, the proof of this proposition stresses on the fact that the admission of the contrary, i.e.,
the existence of a subset which is not a representative, would lead to a contradiction with the “smallest”

status of a representative MG, w.r.t. <.
Lemma4 Let X, Y CZ. If y(X) =~(Y), thenV Z CZ, v(X U Z) = (Y U Z) [Pasquier, 2000].

In our context, with X U Y, we will indicate the ordered set of items, w.r.t. the total order relation <,

contained in X orin Y.
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Proposition 12 Let X, Y, Z be three itemsets s.t. X N Z =0 andY N Z =0. If X XY, then (X U
Z) 2 (Y U Z).

Proof. The proof straightforwardly derives from the definition of the total order relation (¢f. Definition
40) when | X| < |Y|, and from the properties of the lexicographic order when | X| = |Y|. ¢

Example 28 Let the alphabetic order be the total order relation =<:
- Since D < BE, then (D U AF) < (BE U AF) (i.e., ADF < ABEF).
- Since ABD < ABE, then (4BD U CF) < (ABE U CF) (i.e., ABCDF < ABCEF).

Proposition 13 All subsets of a representative MG are also representative ones.

Proof. Let g be a representative MG and f its closure. Suppose, we have g1 C g and g1 ¢ MGrepy, with
f1 = 7v(g1)- Let go be the representative MG of f;. Consequently, g2 < g1. Since v(g1) = v(g2), then,
according to Lemma 4, we have v(g1 U (¢ \ 91)) = v(92 U (g \ 1)), and hence v(g) = v(g2 U (g \ g1))-
Let g3 be equal to (g2 U (g \ g1)). According to the second case in Definition 40 and to Proposition 12,
we have g3 < g since go < g1, 92 N (g \ g1) =0 and g1 N (g \ g1) = 0. Note that go N (g \ ¢1) is ensured
to be empty since otherwise g will not be a MG, which is in contradiction with the initial assumption
that g is a representative MG. Indeed, if go N (g \ g1) = ¢ # 0, then v(g1 U ¢) = v(g1), and hence (g1
U ¢) is not a MG. Since (g1 U ¢q) C g, then g is also not a MG since the MG set is an order ideal w.r.t.

set inclusion.

Two situations need then to be distinguished :

1. If g3 is a MG, then g cannot be a representative MG, which is also in contradiction with the initial

assumption that g is a representative MG.

2. If g3 is not a MG, then there is a MG g4 s.t. g4 C g3 and v(g4) = v(g3). Since |g4| < |gs|, then
g4 < g3 (according to the first case in Definition 40), and hence g4 < g. This result is also in

contradiction with the starting assumption.

Thus, we can conclude that each subset of ¢ is necessarily a representative MG.

Hence, according to Proposition 13, if f is a CI, then MGsuc; = MGrep; U MGceany = {g € MGy|
Vg1 C g, 1 € MGrepy, with fi = v(g1)}. Thanks to Proposition 14, we show that the succinctness of

MGs is an anti-monotone constraint. Hence, the set MGsuc is an order ideal in (P(Z), Q).
Proposition 14 Let g be an itemset. g fulfills the following two properties:

1. If g € MGsuc, thenV ¢1 s.t. g1 C g, g1 € MGsuc.

2. If g ¢ MGsuc, thenV g1 s.t. g C q1, g1 ¢ MGsuc.
Proof.

1. g € MGsuc =V g1 s.t. g1 C g, g1 € MGrepy, with fi = v(g1) (according to Definition 41) =
Vg1 st g1 C g, 1 € MGsucy, (since MGrepy, C MGsucy,) =V ¢1 s.t. g1 C g, g1 € MGsuc
(since MGsucy, € M(Gsuc).
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2. g ¢ MGsuc =V ¢1 s.t. g C g1, g1 € MGredy, with f; = v(¢g1) (indeed, g1 has at least a
non-representative subset, namely g, since the latter is not a succinct MG, and hence is not a
representative one) => V g1 s.t. g C g1, g1 ¢ MGsucy, (according to Definition 41, g; cannot
be redundant and succinct at the same time) = V g1 s.t. ¢ C g1, 1 ¢ MGsuc (we have g; ¢
MGsucy,. In addition, g1 ¢ (MGsuc\MGsucy,) since the closure of g7 is unique and is equal to

f1)-

Proposition 15 The set FMGsuc, of the succinct frequent MGs extracted from the context K, is an
order ideal in (P(I), C).

Proof. The proof is based on Proposition 14 and on the fact that the frequency constraint is also an
anti-monotone constraint. Since the conjunction of two anti-monotone constraints (i.e., to be simultane-
ously succinct and frequent) results in an anti-monotone constraint, the set F MGsuc is an order ideal
in (P(I), ©). ¢

This interesting property allows us to propose an efficient algorithm to extract the OSSMG according
to the definition of Dong et al. Indeed, to check whether a given MG g of size k is a succinct one or not,

the proposed algorithm takes advantage of this property by limiting the test to its subsets of size (k - 1).

4.2.3 Unveiling Problems in the OSSMG

As mentioned in Subsection 4.2.1, the application of the relation ~; does not induce an equivalence
relation on the MG set of a CI. Indeed, let us consider Table 4.1 (¢f. page 54). Let us concentrate on
the y-equivalence class having ABCD for CI. We have AC ~2ypep BC ~ypep BD but AC %,pcp BD. Hence, this
relation is not an equivalence one, since the transitivity property is not fulfilled. In their work [Dong

et al., 2005], the authors also made the following claims:

Claim 1: The OSSMG is a lossless representation of the MG set, i.e., if g is a redundant MG, then g

can be inferred from the OSSMG without loss of information.

Claim 2: The cardinality of the OSSMG is insensitive w.r.t. the total order relation <.

To infer the redundant MGs of each y-equivalence class, Dong et al. proposed to replace the subsets
(one or more) of its succinct MGs by non-representative MGs having, respectively, the same closures as
those of the replaced subsets [Dong et al., 2005]. For example, the redundant MG ADE can be inferred
from the succinct MG ACE by replacing its subset CE by DE. Indeed, both M Gs CE and DE have the same
closure as shown in Table 4.1.

To be fulfilled, both claims closely rely on how maintaining representative members of the different
o-equivalence classes, from where the remainder can be derived using the relation ~;. However, localizing
such members by pruning redundant elements, containing non-representative subsets, can lead to:

e A o-equivalence class without a representative member: It is the case of the o-equivalence
class §; = {ECF, EDF, ACB, ABD, ABF, CBF, BDF} associated to the closed itemset EACBDF (c¢f. Table 4.2
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(Bottom) for the ascending support order). Indeed, each element of this o-equivalence class contains at
least a non-representative M G. Hence, such o-equivalence class will not be taken into account and all its
elements will then not be derived, which presents a loss of information, in the contrary to the statement
of Claim 1.

e A o-equivalence class with more than one candidate for being the representative mem-
ber: It is the case of the o-equivalence class So = {BDF, BDA, BFA, BFC, BAC, DFE, FCE} associated to the
closed itemset BDFACE (cf. Table 4.2 (Bottom) for the descending support order). Indeed, BDF, BDA and
BFA have all their subsets as representative MGs. Even one can choose the smallest candidate and elect
it as the representative member, the definition given by Dong et al. lacks the important part allowing to
delete the remaining candidates.

Noteworthily, the elements of S; and Sy are exactly the same while sorted according to two different
order relations. In &7, there is no representative member while in Sy, there are three possible ones. This
fact shows that the cardinality of the OSSMG closely depends on the selected total order relation, in
the contrary to the statement of Claim 2. It is however important to note that this claim seemed to
hold when confronted to the extraction context depicted by Table 2.1, page 12. Indeed, for different total
order relations (e.g., the alphabetic order, the ascending/descending support order, etc.), we obtain the
same number of succinct MGs (cf. Table 4.1). It is the same for the running example used in the proper
paper of Dong et al. [Dong et al., 2005]. Nevertheless, if we consider the context sketched by Table 4.2
(Top), we find that their claim is clearly erroneous. Indeed, as shown by Table 4.2 (Bottom), the total
number of succinct MGs is equal to 23 if the alphabetic order is of use, whereas it is equal to 22 in the
case of the ascending support order, and 25 in the case of the descending support order. The difference
occurs within the ~y-equivalence class number 11.

Even if the second flaw (i.e., that related to the size of the different OSSMGs associated to a given
extraction context) can be regarded as not having a dramatic consequence, fixing the first one (i.e.,
the loss of information) is a compelling issue since the need for ezact concise representations is always
conditioned by the ability to discover all redundant information without consulting the initial extraction
context. Hence, aiming to ensure the completeness of the derivation of all redundant MGs, we introduce,
in the next section, new definitions allowing to palliate the flaws that we revealed in the work proposed
by Dong et al. Before that, let us analyze why the original definition failed in the regeneration process
of redundant MGs.

In fact, in their work, Dong et al. looked for a classic way to reduce a set, i.e., by breaking it into
equivalence classes that are further shrunk to a unique representative element. Thus, they based their
system definition on a substitution-based =~ relation. Although ~; was wrongfully assumed to be an
equivalence relation, this did not result in a major flaw in the construction of the OSSMG. Indeed, the
authors put, implicitly, the requirement for it being an order ideal (through the definition of a canonical
element). We have shown above that this ideal can be assimilated to a total order on itemsets, itself
induced by an order on items. The exact composition of the ideal, however, strongly depends on the
chosen total order relation: different orders could result in different sets becoming representative and
canonical.

What Dong et al. seem to have miscalculated is the interplay between the ideal and the partition of

the Boolean lattice into substitution-based o-equivalence classes. Indeed, they hastily concluded that
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X X

X X

X X X

H alphabetic order ‘ ascending support order H descending support order ‘
#| cr | MaGs | o MGs | c1 | wmas |
1 0 0 0 0 0 0
2 A A A A A A
3 B B B B B B
4 C C C C C C
5 D D D D D D
6 BE E EB E BE E
7 F F F F F F
8 AB AB AB AB BA BA
9 ACF AC, AF, CF ACF AC, AF, CF FAC FA, FC, AC
10 AD AD AD AD DA DA
11 | ABCDEF | AE, ABC, || EACBDF | EA, ECF, | BDFACE | AE, BDF,
ABD, ABF, EDF, ACB, BDA, BFA,
ACD, ADF, ACD, ABD, BFC, BAC,
BCF, BDF, ABF, ADF, DFA, DFC,
CDF, CEF, CBF, CDF, DFE, DAC,
DEF BDF FCE

12 BCDE BC, BD, CE, ECBD EC, ED, CB, BDCE | BD, BC, DE,
DE BD CE

13 BF BF BF BF BF BF

14 CD CD CD CD DC DC

15 DF DF DF DF DF DF

16 BEF EF EBF EF BFE FE

Table 4.2: (Top) An extraction context. (Bottom) The list of closed itemsets, and for each
one, the corresponding minimal generators for different total order relations. The succinct MGs,

according to the definition of Dong et al., are indicated with bold letters.
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whatever the order, there will always be at least one canonical element per o-equivalence class, which
is of course wrong. Moreover, their claim of invariance for the OSSMG size upon the choice of the
total order relation seems to come from either (7) belief that there will be a unique canonical element
in each o-equivalence class, also wrong, or (ii) a discrepancy between the analytical description and the
SSMG _MINER algorithm which clearly keeps all the canonical elements that are found.

One main observation is that three different phenomena interact in the original definition:

1. The substitution-based relation,

2. The minimal generator status of a set within its v-equivalence class which induces an order ideal

of its own,

3. An additional ordering on the Boolean lattice of itemsets which induces a different, yet somehow
connected to the previous one, order ideal composed of the representative itemsets. The latter ideal
is completed with its “shell” of canonical elements which constitute its outside frontier, or negative
border (actually a subset of it), and the result is another, a bit larger ideal combining both sorts
of MGs.

It is however impossible to always have all three constructs “aligned”, i.e., that all substitution-based
classes of MGs intersect the second order ideal to a unique element. In practice, it may happen that
several from such elements belong to the same substitution class, just as there could be none in some

classes.

4.3 New Succinct System of Minimal Generators

In this section, we will introduce a new lossless reduction of the MG set that repairs the flaws pointed

out in the proposal of Dong et al.

4.3.1 Description

In our attempt to fix the main flaws of the original succinct system of minimal generators, we propose a
relation allowing to divide the set of M Gs associated to a given CI f into correctly defined o-equivalence
classes. The intuition behind such a relation is that if Y and Z are two itemsets having the same closure
(i.e., v(Y) = v(Z)), then their respective supersets, obtained by adding the same items to Y and Z, will
also have the same closure. We can hence derive the supersets of Z thanks to those of Y by substituting
Y by Z. Note that in the case of the MG family, such supersets are obtained by adding items not already
belonging to Y and Z, otherwise they will not be MGs. This relation hence uses a substitution operator
denoted Subst allowing to replace a subset Y of an itemset X by another itemset Z belonging to the

same y-equivalence class as Y. This operator is then defined as follows:

Definition 44 (SUBSTITUTION OPERATOR)
Let X, Y and Z be three itemsets s.t. Y C X, v(Y) =~v(Z), and (X\Y) N Z = 0. The substitution
operator Subst, w.r.t. X, Y and Z, is defined as follows: Subst(X,Y, Z) = (X\Y) U Z.

To prove that X and Subst(X, Y, Z) have the same closure, we need the following lemma.
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Lemma 5 Let X and Y be two itemsets. X and Y fulfill the following property: v(X UY) = v(v(X)
U v(Y)) [Pasquier, 2000].

Proposition 16 X and Subst(X, Y, Z) belong to the same v-equivalence class.

Proof. Let W be the result of Subst(X, Y, Z), i.e., W = (X\Y) U Z. We will show that X and W have
the same closure. Using Lemma 5, we have: v(X) = v((X\Y) UY) = v(v(X\Y) U v(Y)). Since v(Y)
= 7(Z), then 7(X) = y(v(X\Y) U y(Y)) = 7(v(X\Y) U ~(Z)) = 7((X\Y) U Z) = v(W). Hence,
v(X) = v(W). Thus, we can conclude that X and W necessarily belong to the same y-equivalence class.
¢

For each ~-equivalence class C (or equivalently, for each CI f), the substitution operator induces an
equivalence relation on the set MG portioning it into o-equivalence classes. The definition of a o-
equivalence class requires that we redefine the notion of redundant MG under the point of view of the
substitution operator Subst. Indeed, according to the definition given by Dong et al. (see Definition
41), redundant MGs are blindly pruned according to purely syntactic properties, that only consist in
checking the order of their subsets w.r.t. =<, in their respective y-equivalence classes. Hence, we propose
to incorporate a semantic part based on the actual concept of redundancy. This is captured by the

following definition.

Definition 45 (MINIMAL GENERATORS REDUNDANCY)
Let g and g1 be two MGs belonging to the same v-equivalence class.

e g is said to be a direct redundant (resp. derivable) with respect to (resp. from) g1, denoted g1 +
g, 4f 392 C g1, 3 g5 € MG s.t. v(92) = v(g93) = Subst(g1, g2, g93) = g.

e g is said to be a transitive redundant with respect to g1, denoted g1 F g, if there is a sequence of
n MGs geni, gens, ..., genn, such that gen; & gengiy1y (1 € {1, ..., (n - 1)}) where geny = g1 and

genn = g.

Remark 4 It is worth noting that the substitution relation - can be considered as a special case of the
well known Armstrong aziom of pseudo-transitivity [Armstrong, 1974]:

X-Y;WY -2
WX —-Z7

In the substitution Subst(WY, Y, X) = WX we formalized, the following constraints on the above
general rule apply: (i) X and Y belong to the same ~v-equivalence class (hence Y — X is also true), (ii)
X,Y, WX and WY are MGs, and (iii) Z is the closure of WY

The next proposition states that it is sufficient to use immediate, and not all, subsets of MGs to get

redundant ones.

Proposition 17 Let g and g1 be two MGs belonging to the same ~y-equivalence class. If g1 + g, then
there are two MGs g2 and g3 s.t. 92| = |g1| - 1, |g3| = |g| - 1, and Subst(g1, g2, g3) = g holds.

Proof. Suppose we have g1 - g. There are then two MGs ¢} and g4 s.t. Subst(g1, g5, g5) = g, where g}
C g1, 93 € MG and v(g5) = 7(g3)-
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Let W = g1\g5- The MG g is then equal to W U g;. Let Wy C W s.t. [Wh| = [W]| -1, g0 = Wi U},
and g3 = W1 U g5. We then have go (resp. g3) as an immediate subset of g1 (resp. g). Being respective
subsets of two MGs, go and g3 are also two MGs.

We have to prove that we can obtain g; F g using g2 and g3 instead of ¢4 and g5. This requires proving
that Subst(g1, g2, g3) = g holds. We have g2 C g1. We also have (g1\g2)Ngs = 0, since otherwise g; is
not a MG, which it is in contradiction with the initial hypothesis. It remains to be proven that v(g2) =
7(93)-

We have v(g2) = v(W1 U g5) = v(v(W1) U~(gh)). According to the definition of the substitution
operator Subst (cf. Definition 44), we have v(g5) = v(g5). Thus, v(g2) = v(v(W1) U~(g5)) = v(W1Ug})
= 7(g3). We then have v(g2) = 7(gs)-

It follows that Subst(g1, g2, g3) = g holds. Hence, the MG g is then redundant w.r.t. the MG ¢;
using their respective immediate subsets, namely g2 and g3, within the substitution operation. <
According to the previous proposition, to check whether g; F g, it is sufficient to use their respective
immediate subsets and not all. This constitutes an important optimization for computing redundant
MGs.

Proposition 18 presents the properties fulfilled by both substitution relations.

Proposition 18 The substitution relations - and E respectively fulfill the following properties:
o The substitution relation & is reflexive, symmetric.

o The substitution relation F is reflexive, symmetric and transitive.

Proof. Let g, ¢’ and ¢g” be three MGs belonging to the same ~-equivalence class.
e The relation I is:

- reflexive: According to the definition of the substitution relation - (¢f. Definition 45), if go =
g3, we straightforwardly have g I g.

- symmetric: Suppose we have g F ¢’. According to Definition 45, there is then g» and g3 s.t.
Subst(g, g2, g3) = ¢'. Hence, according to Definition 44, Subst(g’, g3, g2) = g, which leads
to g’ - g.

e The relation F is:

- reflexive: For n = 2, the operator F is simply reduced to the operator F-. Since g I g, then we

have g F g.

- symmetric: Suppose we have g F ¢’. According to Definition 45, there is then a sequence of
MGs, constructed by successive direct substitution using F, that starts in ¢ and finish in
g'. Tt is hence sufficient to permute, in each application of I, the substituted itemset by the

corresponding substitute and vice versa to get ¢’ F g.

- transitive: Suppose we have g F ¢’ and ¢’ F ¢”’. This means the existence of a first sequence of
substitutions starting from ¢ and reaching ¢’, and a second one from ¢’ to ¢”. The union of
both sequences while considering ¢’ as a connection point leads to a third sequence starting

in g and leading to ¢g”. We thus obtain g F ¢”.
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¢

According to Proposition 18, the F operator fulfills the reflexive, symmetric and transitive properties.
Hence, it induces an equivalence relation on the MGs of a given CI, portioning them into o-equivalence

classes. The formal definition of a o-equivalence class is as follows:

Definition 46 (0-EQUIVALENCE CLASS)
Let f be a CI. If g € MGy, then the o-equivalence class of g, denoted by o-ECy,, is the subset of MGy

consisting of all elements that are transitively redundant w.r.t. g. In other words, we have: 0-EC,; = {g1
e MGy |gE g1}

To uniquely define a representative MG for each o-equivalence class, we adopt the same total order
relation between itemsets used in the original approach (¢f. Definition 40, page 52). Once this relation

established, we can define succinct and redundant MGs as given by Definition 47.

Definition 47 (SUCCINCT AND REDUNDANT MINIMAL GENERATORS)
Let = be a total order relation and o-EC be a o-equivalence class. The smallest MG in o0-EC, w.r.t. <,

is called succinet MG, while the remaining ones are tagged as redundant ones.

Definition 47 makes it possible, for each o-equivalence class, to only maintain a representative MG — the
succinct one — and, hence, eliminate the remaining ones since they are redundant w.r.t. the maintained
one according to Definition 45. Obviously, each MG having all its immediate subsets unique in their
~v-equivalence classes will constitute a o-equivalence class by itself. Indeed, no substitution is possible in
this case. Algorithm 1 offers a straightforward method for extracting the different o-equivalence classes

associated to a CI f.

Algorithm 1: 0-EQUIVALENCE _CLASSES__MINER
Input: The set MG of the MGs associated to f.

Output: The o-equivalence classes and the set MGsucy of succinct MGs associated to

f-

1Begin
2| §:= MGy;
3| MGsucy = 0;
4| 1:=0;
5| While (S # ) Do
6 t:=1+ 1;
7 gs == min<(S); /*gs is the smallest MG in S w.r.t. <.*/
8 MGsucy = MGsucy U {gs};
9 o-EC; .= {gs} U{g €S| ygs F g}
10 S := S\o-EC;;

11End
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Remark 5 The different o-equivalence classes associated to a given CI f are a partition of MG . They

hence verify the following properties:

1.Vie{l,..., MGsucs|}, 0-EC; # 0,
2.Vi,j€{1,...,  MGsucy|} s.t. i # j, 0-EC; N 0-EC; =0, and,
3. USMGsel o RO, = MGy

Example 29 Let us consider the extraction context depicted by Table 4.2 (cf. page 58), the ascending
support order as a total order relation < and the y-equivalence class having for CI EACBDF. Using Algo-
rithm 1, the M Gs associated to EACBDF are divided as follows:

1. First, S = MGpacppr = {EA, ECF, EDF, ACB, ACD, ABD, ABF, ADF, CBF, CDF, BDF} and i = 1. E4 is
the smallest MG in S. Hence, 0-ECy = {EA} U {9 € S | EAE g}. However, none MG can be deduced
from EA. Thus, c-ECy = {E4}.

2. Second, S = S\oc-EC, = {EA, ECF, EDF, ACB, ACD, ABD, ABF, ADF, CBF, CDF, BDF}\{EA} = {ECF, EDF,
ACB, ACD, ABD, ABF, ADF, CBF, CDF, BDF} and i = 2. ECF is the smallest one in S. Hence, 0-ECy =
{ECF} U {g € S | ECF = g} — {ECF} U {EDF, ACB, ABD, ABF, CBF, BDF}. Indeed, Subst(ECF, EC, ED) —
EDF € MG gyeppr (ECF &= EDF, and hence ECF E EDF), Subst(ECF, EC, CB) = CBF € MG gy¢ppr (ECF - CBF,
and hence ECF E CBF), Subst(CBF, CF, AC) = ACB € MG gycppr (ECF = ACB since ECF & CBF and CBF b
ACB), etc.

8. Finally, S = S\o-ECy = {ECF, EDF, ACB, ACD, ABD, ABF, ADF, CBF, CDF, BDF}\{ECF, EDF, ACB, ABD,
ABF, CBF, BDF} = {ACD, ADF, CDF} and i = 3. ACD is the smallest MG in S. Hence, c-EC3 = {ACD} U
{9 € S| ACDE g} = {4CD} U {ADF, CDF} since Subst(ACD, AC, AF) = ADF (ACD - ADF, and hence ACD
E ADF) and Subst(ACD, AC, CF) = CDF (ACD - CDF, and hence ACD = CDF).

Thus, MG gyeppr is divided into three o-equivalence classes as follows (succinct MGs are marked with
bold letters): MG gicspr — {EA} U {ECF, EDF, ACB, ABD, ABF, CBF, BDF} U {ACD, ADF, CDF}. Note that ECF
was not considered as a succinct MG according to the original definition that was introduced by Dong et
al., since its subset CF is not the representative MG of its C1 ACF. Hence, all MGs belonging to o-EC,

cannot be inferred according to their definition, contrary to ours.

Remark 6 For the same context, if we consider the descending support order as a total order relation
=, then we will note that the OSSMG, as formerly defined by Dong et al., can even contain redundancy
in comparison to our definition. Indeed, thanks to the substitution operator Subst, MGpprycr is divided
as follows: MG gprace = {AE} U {BDF, BDA, BFA, BFC, BAC, DFE, FCE} U {DFA, DFC, DAC}. The storage of
the MGs BDA and BF4 is then redundant and useless since they can simply be inferred starting from the
succinct MG BDF (BDF = BDA and BDF E BF4). Indeed, Subst(BDF, BD, BC) = BFC, Subst(BFC, FC, F4)
= BFA, Subst(BFA, FA, AC) = BAC, and finally, Subst(BAC, BC, BD) = BDA.

Using the new definitions of both succinct and redundant MGs (¢f. Definition 47), we can now

introduce the redefined succinct system of minimal generators (RSSMG) as follows:

Definition 48 (REDEFINED SUCCINCT SYSTEM OF MINIMAL GENERATORS)

Given a total order relation <, the redefined succinct system of minimal generators is the set of all succinct
MGs of the Cls.

According to Proposition 19, the number of succinct MGs associated to each CI f (i.e., [MGsucy|) is

equal to the number of o-equivalence classes induced by the substitution relation F, independently of
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the chosen total order relation. Hence, the cardinality of the set MGsuc remains unchanged even if
we change the total order relation. In other words, the different RSSMGs associated to an extraction

context have the same size, whatever the inherent total order relation.

Proposition 19 Whatever the used total order relation =, the substitution operator Subst maintains

unchanged the elements belonging to each o-equivalence class.

Proof. Let =1 and =3 be two different total order relations. Let f be a CI and MG be the set of its
associated MGs. Using <1, MG will be divided into o-equivalence classes. Let o-EC<, be one of them
and gs, be its succinct MG (i.e., the smallest one in o-EC<, w.r.t. <1). 0-EC<, can be represented
by a tree, denoted T<,. The root of T<, contains the succinct MG gs,. In this tree, a node N, which
represents a MG g, points to a node Ny, which represents a MG g, if ¢ F g1. Hence, from whatever
node in T<,, we can access the remaining nodes as follows: we move downward from the node N to the
node N; using the relation g - g1 and conversely, from N; to N using the dual relation g; - g. Indeed,
if Subst(g, g2, g3) = g1 where go C g and g3 € MG s.t. v(g93) = 7(g2), then we also have Subst(g1, g3,
g2) = g since the relation F is symmetric (c¢f. Proposition 18, page 61).

Now, consider the set 0-EC<, ordered w.r.t. the second total order relation <s. The obtained new
set will be denoted 0-EC<, and its associated succinct MG will be denoted gs,. Hence, if we transform
the tree T<, in a new one, denoted T<, and rooted in g,,, then we are able to reach all remaining
MGs contained in 0-EC<, thanks to the substitution-based operations as explained above. Thus, the
modification of the total order relation does not affect the content of the o-EC<, since it does not involve
the deletion of any node in T, .

Furthermore, this modification does not augment the o-EC<, size by an additional redundant MG.
Indeed, suppose that a MG denoted gneq, not already belonging to o-EC<,, will be added to 0-EC<,
once we shift the total order relation from =<1 to <2 (i.€., gs, F gnew but gs, ¥ gnew). Since gs, F gs,
(95, € 0-ECx,) and gs, F gnew, then gs; E gnew. Indeed, starting from the fact that the relation F is
transitive (c¢f. Proposition 18), then g, should belong to o-EC<, (according to Definition 46). This
result is in contradiction with the starting assumption (g1 ¥ gnew). Thus, g2 ¥ gnew-

Therefore, we can conclude that the elements belonging to o-EC<, are exactly the same as those

contained in 0-EC<,, ordered w.r.t. <, instead of <;. <

Example 30 If we review both Example 29 and Example 6, we note that 0-EC1, 0-ECs and 0-EC3 are
ezactly the same for both examples, even though they are sorted according to the ascending support order

and to the descending support order, respectively.

4.3.2 Regenerating All Minimal Generators

According to Proposition 20 given hereafter, the succinct system of minimal generators, as redefined in

Definition 48, becomes an ezact concise representation of the MG set.
Proposition 20 The definition of the RSSMG ensures the inference of each redundant MG g.

Proof. Since g is a redundant MG, then ¢ is not the smallest one in its o-equivalence class. Hence,

according to the definition of a o-equivalence class (see Definition 46), there is necessarily a succinct MG
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gs belonging to the RSSMG whose substitution process certainly leads to ¢ (gs F g), since the number

of MGs belonging to each o-equivalence class is finite.

In conclusion, both Proposition 19 and Proposition 20 allow to correct the claims of Dong et al. [Dong
et al., 2005] thanks to the new consideration of the concept of redundancy within the MG set. In
addition, the RSSMG is a perfect cover of the MG set. Proposition 21 shows this interesting property
of the RSSMG.

Proposition 21 The redefined succinct system of minimal generators is a perfect cover of the MG

family.

Proof. The proof is ensured by the fact that the RSSMG is only composed by MGs and that the cardi-
nality of MGsuc is always smaller than that of MG.

Finally, we note that the cardinality of the RSSMG is intrinsic to the associated context, in the sense
that it is independent of all the (subjective) constraints/preferences, like the order relation choice, end-
user’s preferences w.r.t. the items, etc. In this respect, we showed that this system can be an interesting

mean for a formal characterization of the extraction contexts sparseness [Hamrouni et al., 2009a].

4.3.3 Problems in the RSSMG

As shown in the previous section, this new definition of the succinct system of minimal generators
constitutes a lossless reduction of the MG family of constant size w.r.t. the total order relation =.
Nevertheless, this approach still presents a main limitation. Indeed, the interesting order ideal property
— which is usually exploited as an efficient pruning of the search space — is not preserved. In fact, the
choice of the unique class member to keep in the RSSMG has been disconnected from any order. For
example, if we consider the extraction context given in Table 4.2 and the ascending support order as
a total order relation, the MG ECF will be characterized as a succinct MG since it is the smallest one
in its o-equivalence class. However, its subset CF is not the smallest one in its y-equivalence class (or
equivalently, is not a representative MG w.r.t. the original definition given by Dong et al.). Hence,
additional tests have to be performed to guess whether a MG is a succinct one or not. Thus, the
compaction of the RSSMG is conditioned by the necessity of more extensive computation effort in the

construction of the system, in particular, for testing reducibility between M Gs.

To overcome this limitation, the next section offers a lossless reduction of the MG family while pre-
serving the interesting order ideal property of the obtained system. We start with a summary of the
relative merits of both proposed succinct systems of minimal generators, which motivates the develop-
ments presented in the remainder of the chapter.

It is worth pointing out that the picture gets more regular on the higher granularity level, i.e., within
a y-equivalence class. Indeed, whatever the used item order for its generation, the ideal of representa-
tive/canonical MGs has at least one element in each y-equivalence class. This fact admits an immediate
proof based on the same induction employed in the completeness proof for our expansion procedure (cf.
Subsection 4.4.2). Moreover, one can easily show that given a y-equivalence class, the representative, i.e.,

minimal set w.r.t. any linear extension of the C-induced order, which is the case here, is necessarily a
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MG. As canonical elements from the border are also required to be MGs, one might (t00) easily conclude
that the entire border is in the MG family. Unsurprisingly, this does not hold in the general case: there
will be non-MG elements whose every subset is representative. The existence of these elements seems to
have been missed by Dong et al., although they play the same role in the substitution mechanism as the
canonical MGs. In fact, this is the main reason for their expansion mechanism to be incomplete, i.e., to
fail in the recovery of some of the redundant MGs from the OSSMG.

One may now question the interplay between the substitution and the total order, i.e., in what sense the
representative/canonical sets are irreducible for substitution? After all, the substitution is a reversible
operator, so that any MG within a o-equivalence class could have been chosen as its distinguished
element to be kept. Although [Dong et al., 2005] says little on that point, our analysis shows that the
representative/canonical order ideal structure is crucial. Indeed, it works like a magnetic nucleus for
substitution in the sense that when properly performed, i.e., in the right direction, it transforms an
arbitrary itemset into a member of the representative ideal or of its (complete) border. Here, the right
direction is the substitution of a subset Z; in the argument X by the representative Z5 in the y-equivalence
class of Z;. We prove below that this inevitably “attracts” the result within the aforementioned set where
such substitutions can no more be performed.

Our proposal is about completing the succinct representation with all those non-MGs from the border
of the order ideal of representative MGs, as in many cases they are the unique point from which some of
the redundant MGs can be reached by substitution. The details of our approach come in the following

paragraphs.

4.4 Directed Substitution-Free Sets

The idea behind our hybrid approach is to “repair” the flaws in the proposal of Dong et al. while preserving

the exactness label of the obtained representation, as in the proposed system in the previous section.

4.4.1 Description

Here is an illustration of the above arguments: Assume the ascending support order on items in Table 4.2
and consider the MGs of EACBDF. As pointed out above, it is impossible to derive ECF from the resulting
original succinct system of minimal generators (OSSMG). Indeed, its subset CF is a non-representative
MG (AC is the representative in its y-equivalence class). Hence, it remains outside the system, whereas
neither EA nor ACD have a derivation chain that ends at ECF. If we look the case other way round, the only
sensible substitution from CF backwards is CF/AC. This produces EAC, a curious set whose every subset is
a representative (hence it belongs to the border of the corresponding ideal) without the set itself being
even a MQG. Clearly, adding EAC to the OSSMG would restore its completeness. This leads to a larger

definition of the canonicity which we provide below.

Definition 49 (NEGATIVE BORDER OF REPRESENTATIVE MINIMAL GENERATORS)

Let MGrep be the set of the representative MGs that can be extracted from a context K. The negative
border of MGrep is: Bd~(MGrep) ={X CI |VY C X,Y € MGrep and X ¢ MGrep}.

Since canonical itemsets form the negative border of the representative ideal, the old canonical MGs of
Dong et al. are obviously included in it (MGcan C Bd~ (MGrep)), together with the canonical non-MG
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elements. Moreover, the frequency constraint further splits it into four subsets.

In order to formalize the irreducibility status of the above sets, we rely on a constrained substitution
operator. Actually, we distinguish two complementary “directions” for the substitution depending on the
status of the involved sets. Thus, a positive (resp. negative) substitution for an itemset X amounts to
replace a subset Z; of X by a set Z5 of the same closure as Z; which is larger (resp. smaller) w.r.t.
the itemset order. We focus on the relations between the set X and the set Y induced by one of the
substitutions defined through Definition 50 and Definition 51.

Definition 50 (POSITIVE SUBSTITUTION)
Let X, Y CZ,7Z, C X and Zy C T s.t. v(Z1) = v(Z2). The positive direct and transitive substitution
operators, denoted respectively - and 1, are defined as follows:

e Y is said to be a positive direct redundant (derivable) with respect to (from) X, denoted X T
Y, if Subst(X, Z1, Z2) =Y and Z1 < Zs.

o Y is said to be a positive transitive redundant w.r.t. X, denoted X ET Y, if there is a sequence
of n itemsets I, Ia, ..., In, such that I; =% I;pqy (i€ {1, ..., (n-1)}) withl, = X and I,, =Y.

Definition 51 (NEGATIVE SUBSTITUTION)
Let X, Y CZ,7Z1 C X and Zs C T s.t. v(Z1) = v(Z3). The negative direct and transitive substitution
operators, denoted respectively == and E~, are defined as follows:

o Y is said to be a negative direct redundant (derivable) with respect to (from) X, denoted X +~
Y, if Subst(X, Z1, Z2) =Y and Zy X 7.

o Y is said to be a negative transitive redundant w.r.t. X, denoted X E™ Y, if there is a sequence
of n itemsets Iy, Iy, ..., In, such that I; =~ Iy (i € {1, ..., (n-1)}) with I, = X and I,, =Y.

The operator =T (resp. ") is reflexive, symmetric but not necessarily transitive, while the operator =+

(resp. E7) fulfills the three properties.

It is noteworthy that each substitution is either positive or negative, i.e., there is no neutral substitution.
Moreover, positive substitutions produce results that are larger w.r.t. < than the initial sets and hence
have bigger ranks in the order (X F* Y implies X < Y), while the negative ones have the opposite
effect. In particular, if the replaced set is a representative, then the substitution is necessarily positive,
while, conversely, if a representative replaces another set, then it is negative. This is formally shown
using Definition 52 and Proposition 22 as follows.

The following definition introduces the function p which associates to each itemset its rank w.r.t. the

total order relation <.

Definition 52 (RANK FUNCTION)

Given the total order relation < and an itemset X, the rank function p is defined as follows:
p:P(Z) — N
X = p(X)
such that by default, p(0) =0, andVY, Z CZ, p(Y) < p(Z) iff Y < Z.

It is worth noting that, once the total order relation adopted, the rank of each itemset is immediately set.

Proposition 22 shows the effect of a positive/negative substitution on the rank of the obtained itemset.



68 Lossless Reductions of the Minimal Generator Family of an Extraction Context

Proposition 22 Let X and Y be two itemsets s.t. X # Y.
-IfFX ET Y, then p(X) < p(Y).
-IFX Y, then p(X) > p(Y).

Consider now the irreducible elements for the negative substitution, i.e., elements for which such
substitution could not be applied. We call them directed substitution-free sets (denoted DSFSs).

Definition 53 (DIRECTED SUBSTITUTION-FREE SETS)
Let DSFS be the collection of the directed substitution-free sets that can be extracted from a context K.

Example 381 Consider the context in Table 4.2 (cf. page 58) with the ascending support order on items.
The itemset EAC is a DSFS, as mentioned above, whereas the family comprises EA and ACD, but not ECF.

Clearly, the set of DSFSs equals the union of representative MGs and their negative border (DSFS
= MGrep U Bd~ (MGrep)). The next proposition is therefore immediate.

Proposition 23 The set DSFS is an order ideal of (P(I), C).

Given its structure, the DSFS family can be easily constructed by a levelwise algorithm that, addition-
ally, enumerates itemsets in the order <. Thus, all the DSF'Ss at a particular level are easily recognizable
since all their subsets (in particular the maximal ones) belong to the already discovered part of the family.
An additional effort is necessary to identify the representative itemsets among all the family members. To
that end, the order properties are exploited. In fact, a representative is the first itemset to be examined
within its y-equivalence class. Hence, to establish that a DSF'S is a representative, it is enough to check

that its closure has not been produced by a previously extracted DSFS.

4.4.2 Regenerating All Minimal Generators

So far, we have established that any total order on itemsets generates a core ideal in the Boolean lattice
that works as an irreducible nucleus for swapping subsets with equivalent ones. On the reverse side
of the question, there is the expansion process: it starts with the DSF'Ss and retrieves the entire MG
family. Unsurprisingly, the positive substitution is used to that end. Moreover, as for each negative
substitution there is a reverse positive one, and vice versa, every itemset from the Boolean lattice is
necessarily reachable by at least one chain of positive substitutions starting from a DSF'S. In particular,
redundant M Gs are reachable in this way.

Following to the above arguments, we claim that every redundant MG can be derived from a DSFS
of the same closure, using positive substitutions. More specifically, starting from the DSFS X, and
operating successive substitutions of a representative subset Z; by a non-representative set Z, from the
same y-equivalence class will necessarily result in the generation of the entire MG family. Hence we can
assert that the above retrieval mechanism, in its most general form is a complete mean for computing

the MGs. Now we will prove that the expansion process starting from the set DSFS is complete.

Proposition 24 The expansion process is complete. Indeed, given the set DSFS of the DSFSs that

can be drawn from an extraction context IC, we are able to derive all minimal generators:
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Vge MG, I1g€ DSFS st. gE g.

Proof. Let g be a minimal generator. We show by induction on the rank of g how it can be reached
starting from an element of DSFS.

Base case: g = () is trivial, since () always belongs to DSFS because it is always the smallest element
in P(Z).

General case: We will mainly concentrate on redundant minimal generators. Indeed, if g is not a
redundant one then it is contained in DSFS. Hence, it is trivial that g can be derived from an element
of DSFS (obviously, itself). Let g be a redundant minimal generator. p(g) is necessarily greater than 0
(p(g) > 0) since the empty set can never be a redundant minimal generator.

Inductive hypothesis: ¥ g C T with p(§) < p(g), 39 € DSFS s.t. gET 3.

Let Y be the subset of g having the maximal rank among the non-representative subsets of g. Such
an itemset Y necessarily exists since otherwise g would not be redundant. Furthermore, Y is necessarily
a direct subset of g. Indeed, the existence of a smaller subset Z which is a redundant minimal generator
implies that all direct subsets of ¢ including Z are also redundant. Since the itemsets size is a dominant
factor for determining =<, then Y (which we supposed to be maximal) is necessarily the biggest (for <)
among the direct subsets of ¢ containing Z.

Let T be the itemset s.t. T = min<{I CZ | y(I) = v(Y)}. Let W = Subst(g, Y, T'). We necessarily
have p(W) < p(g) since g =~ W (according to Proposition 22).

Since p(W) < p(g), by hypothesis, 3 G € DSFS s.t. g ET W. Since W +* g, we also have g FT g.
Hence, g is derivable starting from DSFS.

Another concern with the retrieval is the correctness of the mechanism, i.e., the warranty that only
MGs will be retrieved. To that end, we employ a straightforward support test: An itemset is a MG
whenever its support is strictly lower than the support of all its proper subsets. For efficiency reasons,
this test is limited to maximal subsets only. Obviously, such a test requires a levelwise traversal of the
Boolean lattice, which is a classic approach of frequent itemset mining. Consequently, we may assert that

the expansion is correct as well.
Proposition 25 The expansion process is correct.

Proof. By construction, all derived elements from a DSFS are explicitly checked for being MGs.

Proposition 25 states that the expansion process is correct w.r.t. the derivation of minimal genera-
tors (useful in the case where only these latter itemsets are looked for by the regeneration process).

Theorem 7 states the adequacy of our global approach.

Theorem 7 The set DSFS of the directed substitution-free sets (DSFSs) is a lossless representation of

the minimal generator set.

Proof. The proof straightforwardly derives from Proposition 24 and Proposition 25.

Interestingly, the DSFS family is not only a lossless reduction of the MG family but also that of the
whole set of frequent itemsets. This is stated thanks to the following theorem.
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Theorem 8 The set DSFS of the directed substitution-free sets (DSFSs) is a lossless representation of
the set of frequent itemsets.

Proof. As shown by the proof of Proposition 24, each frequent itemset contracts to a DSFS by negative

substitutions. It is hence simply derivable from a DSFS using positive ones. <

4.5 Analysis and Comparison of the Proposed Systems

To sum up, the DSF'S family is the complete structure necessary to ensure that every MG can be reached
by a substitution-based expansion process that is well directed and hence cycle-free. The DSFSs can be
efficiently mined, due to the order ideal form of the family as it does not even require the discovery of all
MGs. Despite the significant progress with respect to the previous two studies, there are issues with our
framework that are yet to be clarified.

First, while both succinct systems of minimal generators only rely on MGs, our construct of the DSF'Ss
involves further sets from (yet laying not too far in) the Boolean lattice. The impact of these elements
on the size of the representation needs to be examined. Some clues on how many non-MG DSFSs could
appear are provided in Section 4.8.

Another issue, somewhat related to the previous one, concerns the expansion mechanism. An important
feature thereof would be to limit all substitutions to MG subsets. In other terms, it would be much simpler
and more efficient always to replace a representative MG Z; by a non-representative one Z5, and not any
arbitrary set from the same ~y-equivalence class.

Finally, the minimality of the DSFS family is an important issue as well. Whereas it is definitely
minimal for the entire Boolean lattice, it could be in some cases that a proper subset of the DSF Ss suffices
to generate all the MGs. For instance, if there are more than one DSF'S in the same o-equivalence class,
then clearly only the smallest of them w.r.t. the total order is of need. Moreover, some non-MG DSFSs
may not be of use for the expansion towards all MGs, so it could be useful to remove them from the
effective representation. Provided a method for eliminating unnecessary DSFSs is designed, the trade-off

between reduction rate and cost should also be looked at.

We now sketch the main properties of the MG families respectively associated to the three proposed

approaches. We also compare them w.r.t. set inclusion. In the remainder of this section, we simply
denote by DSF'S the set of DSFSs.
Table 4.3 presents the properties fulfilled by each family w.r.t. the following axes:

1. Lossless: is the family extracted without information loss?
2. Perfect: is the family a subset of the MG family? 2

3. Total order relation <: Can the elements composing the family change w.r.t. <7 and, does

its size depend on <?

4. Order ideal: does the family constitute an order ideal structure?

*Tt is unnecessary to check this feature if the family is extracted with information loss.
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Approach || Lossless | Perfect Total order < Order ideal
w.r.t. content | w.r.t. size
OSSMG No - Yes Yes Yes
RSSMG Yes Yes Yes No No
DSFS Yes No Yes Yes Yes

Table 4.3: Properties of the proposed minimal generator families.

Family; vs. Familys, || Comparison

OSSMG ws. RSSMG

e OSSMG ¢ RSSMG (c¢f. Table 4.2 (¢f. page 58) for
the ascending support order, BDA € OSSMG but BDA ¢
RSSMG)

e RSSMG ¢ OSSMG (c¢f. Table 4.2 for the descending
support order, ECF € RSSMG but ECF ¢ OSSMG)

OSSMG wvs. DSFS
e OSSMG C DSFS

RSSMG wvs. DSFS

e RSSMG ¢ DSFS (c¢f. Table 4.2 for the descending sup-
port order, ECF € RSSMG but ECF ¢ DSFS)

e DSFS ¢ RSSMG (RSSMG is a perfect cover of the MG

family and, hence, cannot contain non-MG DSF'Ss)

Table 4.4: Comparison of the proposed minimal generator families w.r.t. set inclusion.

On the other hand, Table 4.4 allows to compare the different approaches w.r.t. set inclusion. It results
from both tables that:

1. OSSMG, RSSMG, and DSF'S respective contents depend on the total order relation <. Never-
theless, only the size of OSSMG and DSF'S can change once =< is modified.

2. RSSMG and DSF'S are lossless reductions of the MG set, contrary to OSSMG.
3. RSSMG is a perfect cover of the MG family, contrary to DSF'S.

4. DSFS offers a lossless reduction of the MG family while preserving the interesting order ideal
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Notation Description

c : A candidate itemset.

c.Supp : The support of c.

c.FCI : The closure of c.
c.Direct_subsets : The list of immediate subsets of c.

Table 4.5: Notations used by the DSFS MINER algorithm.

property, contrary to RSSMG.
5. OSSMG is a subset of DSFS. The difference is the set of non-MG DSFSs.

6. RSSMG is incomparable (w.r.t. set inclusion) with OSSMG and DSF'S.

From an algorithmic point of view, aiming at exploiting the key property of order ideal, we propose in

the next section a new algorithm, called DSFS _MINER, for an efficient extraction of the DSFS family.

4.6 The DSFS MINER Algorithm

4.6.1 Description

Now, we sketch the key ideas related to an algorithm allowing the extraction of the DSFSs. This
algorithm, called DSFS _MINER, uses a breadth-first (or levelwise) browsing of the search space. In each
iteration, it hence treats minimal generator (MG) candidates by ascending size. For a given size, the
associated candidates are sorted w.r.t. the total order relation <. This is naturally obtained as soon as
items are ordered w.r.t. <. Indeed, the procedure we use to generate candidates of size (i + 1), using
those of size i, respects the total order relation since it combines each time two itemsets X and Y, s.t.
X <Y, sharing their first (¢ - 1) items. The latter items will be augmented by the remaining one in X
and, then, by the remaining one in Y. Hence, the total order relation will always be respected.

The pseudo-code of the DSF'S  MINER algorithm is given by Algorithm 2. While Table 4.5 summarizes
the attributes characterizing a candidate. In the pseudo-code, the acronym FDSFS denotes the Frequent
Directed Substitution-Free Sets that can be extracted from the extraction context K. While the set of
frequent closed itemsets, which can be extracted from /C, is denoted FCZ. The set of candidates, to be
tested during the i*" iteration whether they are representative frequent MGs or not, is denoted F MGrep;.

Since by definition, the representative MG is the smallest one in its vy-equivalence class, w.r.t. =<, ¢
is a representative if it is the first one to produce the associated closure of its y-equivalence class (cf.
Algorithm 2, lines 12-13). To generate candidates of size (i + 1) starting from representative frequent
MGs of size i, DSFS__MINER uses the GEN-REPRESENTATIVE procedure whose pseudo-code is given by
Algorithm 3. The running of the latter is illustrated by Example 32.

Example 32 Consider the context given by Table 4.2 (Top), page 58. Let minsupp be equal to 1 and the
total order relation be the ascending support one. We will mainly focus on how our new definition is able

to take in consideration an itemset such as EAC thanks to the tests used in the GEN-REPRESENTATIVE
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Algorithm 2: DSFS_MINER
Input: - An extraction context K where items are sorted w.r.t. the total order relation

=, and the threshold of support minsupp.
Output: - The set FDSFS.
1Begin
2| FDSFS := {0};
8| FCI:={y(D)};
s| FMGrep: = {{j} | j € T\ v(0)};
5| ForEach (i = 1; FMGrep; #0 ; i++) Do

6 FMGrep; := GEN-CLOSURE(FMGrep;); /*The GEN-CLOSURE procedure
produces closures as done in [Pasquier et al., 1999b]. It also computes the
candidates supports.*/

7 ForEach (c € FMGrep;) Do

8 If (c.Supp < minsupp) Then

9 ‘ FMGrep; := FMGrep; \ {c};

10 Else

11 FDSFS = FDSFS U {c};

12 If (c.FCI ¢ FCZI) Then

13 | Fez = Fer v {eFery;

14 Else

15 L FMgGrep; := FMGrep; \ {c};

16 FMGrep(i1) := GEN-REPRESENTATIVE(F MGrep;);

17| Return FDSFS;
18End

procedure (cf. Algorithm 8). Indeed, when generating the set of representative MG candidates of size
3, we have the 2-representative frequent MGs EA and EC that have their first item in common. Hence,
by composing them we obtain the candidate EAC (cf. lines 2-6). After that, EAC will be tested to check
whether all its subsets are representative frequent MGs. It is the case. Hence, the value of the variable
is-deleted remains equal to 0. While that of is-covered will change and become equal to 1 since EAC
is included in the closure of its subset EA, equal to EACBDF (cf. lines 7-17). After this test, we have the
information that EAC has all its subsets as representative frequent MGs but is not a MG since it has the
same closure than one of its subsets. Hence, it is a frequent non-MG DSFS. Thus, EAC belongs to the
frequent part of the negative border. It will then be retained as an element of the representation (cf. lines
18-20).
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Algorithm 3: GEN-REPRESENTATIVE
Input: - The set FMGrep;.

Output: - The set FMGrep(; 1)
1Begin

2| /*The combinatorial phase of APRIORI-GEN [Agrawal and Srikant, 1994] w.r.t. the
total order relation <*/

3| insert into FMGrep(; 1)

a| select p[1], p[2], ..., pli - 1], pli], q[7]

5| from FMGrep; p, FMGrep; q

6| where p[1] = q[1], p[2] = q[2], .., pli - 1] = q[i - 1], p[i] < qli];

7| ForEach (c € FMGrep(;,1)) Do

8 is-deleted := 0; /*This variable checks whether c is deleted because one of its
immediate subsets is not a representative frequent MG of its y-equivalence
class.*/

9 is-covered := 0; /*This variable checks whether ¢ is covered by the closure of

one of its immediate subsets.*/

10 ForEach (¢ € c.Direct_subsets) Do

11 If (c; ¢ FMGrep;) Then

12 FMGrep(iy1) := FMGrep;i \ {c};
13 is-deleted := 1;

14 break;

15 Else

16 If (¢ C ¢;.FCI) Then

17 L is-covered :— 1;

18 If (¢s-deleted = 0 and is-covered = 1) Then
19 FDSFS = FDSFS U {c};

20 | FMGrep(iy1) := FMGrepi) \ {c}

21| Return FMGrep(ii1);
22End

4.6.2 Correctness and Complexity

The next theorem states the soundness and the correctness of the DSFS MINER algorithm.

Theorem 9 The DSFS_MINER algorithm is sound and correct. It exactly extracts all elements belong-
ing to the set DSFS.
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Proof. The conjunction of two anti-monotone constraints, namely “to be frequent” and “to be minimal
generator” is also anti-monotone. Thus, a levelwise algorithm guarantees that all frequent minimal gen-
erators are extracted as well as the associated negative border [Mannila and Toivonen, 1997]. In the case
of the DSFS _MINER algorithm, only candidates having all their subsets representative frequent minimal
generators will be maintained. The other ones will be pruned since they do not fulfill the condition of
the DSF'S set being an order ideal (¢f. Proposition 23). During this candidate generation step, non-MG
DSF'Ss will be retained in DSFS. These latter, belonging to Bd~ (MGrep), are checked using the closure
of their subsets. In addition, since DSFS MINER also computes the closure of each frequent minimal
generator g, this allows testing whether g is the first one that gives rise to a given closure. This means
that ¢ is a representative minimal generator of its y-equivalence class. In this case, g will be used as a
seed for generating candidates of larger size. In the case where g is a frequent minimal generator but not
the first generating a closure, g will be added to DSFS. However, g will not be used for generating next

candidates. Indeed, g is a canonical minimal generator. Thus, DSFS MINER is sound and correct. <

Proposition 26 shows the complexity of the DSFS MINER algorithm.

Proposition 26 In the worst case, the theoretical complezity of DSFS__MINER is in O((n® +m x n)
x 2™), where n = |Z| and m = |O)|.

Proof. In the following, we suppose that items are sorted according to a total order relation. Thus,
inclusion, intersection, union and difference operations between two itemsets are in O(n). In the worst
case, any set of items appears at least once in the context, and each candidate is a frequent MG, equal to
its closure. Consequently, there is a unique element within each y-equivalence class, namely the associated
representative MG. Thus, there are no redundant MGs. We have 2™ frequent itemsets such that each

one forms its proper y-equivalence class. Then, DSFS MINER has to perform the following tasks:
1. Initializing sets which is in O(m x n) (c¢f. Algorithm 2, page 73, lines 2-4),
2. Incrementing ¢ from 1 to n is in O(n) (c¢f. line 5),
3. Computing the closures and supports of candidates which is in O((m x n) x 2™) (¢f. line 6),

4. Verifying if candidates are representative frequent MGs or not. This is done in O(n x 2™) (cf.
lines 7-15),

5. Generating candidates in O(2" - n), since 2™ - n - 1 candidates are to be generated in the worst

case (cf. Algorithm 3, page 74, lines 2-6),

6. Testing whether candidates are MGs or non-MG DSFSs. This is carried out in O(n? x (2" - n))
(¢f. lines 7-20 in Algorithm 3).

Hence, the total cost isin O(m x n+n + (m x n) X 2" +n x 2" + 2" -n + n? x 2" -n3) = O((m
x n + n?) x 2m).

Thus, the complexity in the worst case of the DSFS_MINER algorithm is bounded by O((m x n +
n?) x 2"). &
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4.7 Related Work and Discussion

In this part, we will mainly concentrate on the concept of clone items [Gély et al., 2005, Medina et al.,
2006] since it is closely related to our work. Clone items can be roughly considered as a restriction of our
approach to itemsets of size one (i.e., items). Indeed, the authors only concentrated on items playing
symmetric roles within implications premises of the Guigues-Duquenne basis [Guigues and Duquenne,
1986]. This can be considered as equivalent to our approach for y-equivalence classes having two or more
items as MGs (like the couple (4, B) and the couple (C, D) of Table 4.1 (¢f. page 54)). The authors [Gély
et al., 2005, Medina et al., 2006] show that, for a couple like (A, B), items A and B present symmetries
which can be seen as redundant information since for all implications containing A in the premise there
exists the same implications where A is replaced by B [Medina et al., 2006]. Thus, they propose to ignore
all implications containing B but not A without loss of information [Medina et al., 2006]. This reduction
process was applied to the Guigues-Duquenne basis [Guigues and Duquenne, 1986]. This basis presents
implications between pseudo-closed itemsets and their associated closed itemsets. Note that clone items

when applied to pseudo-closed itemsets are called P-clone items [Gély et al., 2005].

4.8 Experimental Results

In these experiments, we compare the cardinality of FDSFS to that of the succinct frequent MGs as
defined by Dong et al. (denoted F MGsuc) and to that of the whole set of frequent MGs (denoted FMG).
For the sake of clarity, we give the cardinality of DSFS as a sum of those of its components, i.e., the
representative frequent M Gs (denoted F MGrep), the canonical frequent MGs (denoted F MGcan) and
the canonical frequent non-MG elements. The latter set represents the difference between FDSFS and
FMGsuc. It will hence be denoted DIF Fi.. Since a representative frequent MG is unique in its -
equivalence class, the cardinality of the set FCZ of frequent closed itemsets (CIs) is equal to that of
FMGrep. It will hence not be given. Note that this cardinality is insensitive w.r.t. the total order

relation <.

Hereafter, we will give some representative results obtained from the PumsB, MUSHROOM, CHESS,
ConNECT, and T40I10D100K datasets (¢f. Appendix A for their detailed description). The ascending
support order is chosen as an example of a total order relation <. Obtained results are summarized in
Table 4.6, and graphically sketched in Figure 4.1.

For the PuMsB and MUSHROOM datasets, we notice an important lossless reduction reaching a peak
of 2.70 and 1.75 times, respectively, when comparing the number of frequent MGs to that of frequent
DSFSs (¢f. the seventh column in Table 4.6). Indeed, a large part of the frequent MGs proves to be
redundant. It is important to mention that this ratio increases proportionally to the decrease of the
minsupp value. This can be explained by the fact that once minsupp is lowered, ~-equivalence classes
become larger which augments the number of the associated MGs and, hence, redundant ones. For the
PumsB dataset, the number of canonical elements is too small. Hence, we can assume that there is an
average of 1 frequent DSFS per y-equivalence class. For the MUSHROOM dataset, this number is larger
than that of the first dataset. Nevertheless, w.r.t. the number of frequent ClIs, that of canonical elements

is still very low which makes possible to get, in average, only 1.17 frequent DSFS per y-equivalence
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minsupp (%) || |FMG| || |FMGrep| | |[FMGean| | |[DIFF| | |[FDSFS]| I.J:];/‘\S/l.ggI ||‘]f/a‘éfi)||
PuwmsB
90 2, 032 1, 467 3 0 1, 470 1.38 1.00
85 13, 795 8, 514 5 7 8, 526 1.62 1.00
80 67, 860 33, 308 5 8 33, 321 2.04 1.00
75 248, 406 101, 083 5 8 101, 096 2.48 1.00
70 658, 565 241, 259 6 11 241, 276 2.70 1.00
MUSHROOM
10 7, 631 4, 897 471 545 5, 913 1.29 1.21
5 21, 160 12, 854 1,207 | 1, 251 15, 312 1.38 1.19
3 37,973 22, 230 1,943 | 1,911 26, 084 1.46 1.17
2 57, 728 31, 767 2,644 | 2, 479 36, 890 1.56 1.16
1 103, 517 51, 672 3,818 | 3,576 59, 066 1.75 1.14
CHESS
90 504 504 0 506 1.00 1.00
80 5,114 5,114 0 6 5,120 1.00 1.00
70 23, 992 23, 992 0 16 24, 008 1.00 1.00
60 98, 804 98, 778 1 28 98, 807 1.00 1.00
50 372, 604 369, 451 2 63 369, 516 1.01 1.00
CONNECT
90 3, 487 3, 487 0 22 3, 509 0.99 1.01
80 15, 112 15, 112 0 43 15, 155 1.00 1.00
70 35, 881 35, 881 0 54 35, 935 1.00 1.00
60 68, 350 68, 350 0 71 68, 421 1.00 1.00
50 130, 112 130, 112 0 80 130, 192 1.00 1.00
T40110D100K

5.00 317 317 0 0 317 1.00 1.00
2.50 1, 222 1, 222 0 0 1, 222 1.00 1.00
2.00 2,294 2,294 0 0 2,294 1.00 1.00
1.50 6, 540 6, 540 0 0 6, 540 1.00 1.00
1.00 65, 237 65, 237 0 0 65, 237 1.00 1.00

Table 4.6: Size of the different sets for benchmark contexts.

class. Noteworthily, the number of canonical elements which are MGs is nearly equal to that of non-MG

DSFSs (i.e., the canonical elements which are not MGs). It is also interesting to note that the ratio
between the cardinality of the set ZDSFS and that of frequent Cls (or equivalently F MGrep) decreases

proportionally to the decrease of minsupp values (c¢f. the last column in Table 4.6). The efficiency of our

approach hence increases once the minsupp value decreases.

It is important to mention that for the PUMSB context, the redundancy is mainly caused by the fact

that there are some couples of items having the same closure (like A and B of Table 4.1, page 54).
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Figure 4.1: Size of the sets FMG, FMGrep, and FDSFS for benchmark contexts.

Hence, using only an item, instead of both items forming each couple, was sufficient to eliminate all
the redundancy. This is not the same for the MUSHROOM context where detecting such couples is not
sufficient to completely remove the redundancy. This clearly proves the advantage of our approach as a

generalization of redundancy removal within MGs independently from their sizes.

The case of the CHESS dataset is also very interesting. At a glance, for minsupp values greater than
60%, statistics are far from indicating that CHESS is a dense dataset. Indeed, each v-equivalence class
only contains a unique frequent M@G, i.e., the representative one. Nevertheless, the latter is in general
different from its closure which leads to the existence of some canonical elements in FDSFS. These
elements are necessarily non-MGs (i.e., belong to DZFF). Hence, for these values of minsupp, the size
of FDSFS is slightly greater than that of FMG. For minsupp = 50%, the size of FDSFS becomes
lower than that of F MG since, in this case, there are redundant frequent MGs whose number (equal to
(|JFMG| - |FMGrep| - |FMGcan|), i.e., 3, 531) is by far greater than the cardinality of DZFF (equal
to 63). It is important to note that we got the same behavior for the CONNECT dataset. For this latter
and although it is also known to be a “dense” one, each frequent CI extracted from this dataset has only

a unique frequent MG, and hence there are no redundant ones.

For the sparse dataset T40I10D 100K, each itemset is equal to its closure. Hence, the set FDSFS is
simply equal to the set FMGrep. Indeed, T40I110D100K behaves as a “worst case” dataset [Hamrouni
et al., 2005a] where each v-equivalence class is reduced to a unique element. Consequently, for this
context, the respective curves representing the size of the sets FMG, FMGrep and FDSFS collapse
(¢f. Figure 4.1). The same behavior is also noted when dealing with the KOSARAK and RETAIL datasets.
The same applies for the T10I4D100K unless we set the minsupp support too low. In this latter case,

some redundant MGs appeared.

50

2z}
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It is worth noting that when we adopted other total order relations (e.g., descending support order,
lexicographic order, etc.), the cardinalities of F MGcan and DZF Fx are almost unchanged. In addition,
when a change occurred, the difference is too tiny. On the other hand, the compactness rates obtained
using the RSSMG [Hamrouni et al., 2008a] are similar to those offered by the DSFSs. Obtained results
prove that our approach allows to almost reach the ideal case: a unique irreducible MG per y-equivalence
class. Noteworthily, the reduction ratio from the number of all frequent MGs to that of succinct ones
can be considered as a new measure for a finer contexts classification. Indeed, according to this new
classification we investigated in [Hamrouni et al., 2009a], we obtained for example that the PUMSB and

CHESS do not belong to the same pool, while CHESS and CONNECT share the same one.

4.9 Conclusion

Exploring real-life contexts is a difficult task due to the large number of frequent itemsets (and hence
association rules) that can be extracted, even for high minsupp values. The simultaneous use of both
concepts — MG and CI — can help augmenting the added value of such an exploration. Nevertheless,
the fact that a unique CI can be associated to many MGs augments the combinatorial redundancy
within these latter. The removal of such redundancy is hence an important challenge that motivated a
push towards deeper understanding of their structural properties, computational behavior, connections
to other constructs, etc.

In this chapter, we studied the main properties of the succinct system of minimal generators as formerly
defined by Dong et al. to be a representation of the MG set. Once the limitations of the current definition
pointed out, we introduced a new one aiming to make of, on the one hand, the associated family an ezact
representation of the minimal generator (MG) set and, on the other hand, its size independent from the
adopted total order relation. Unfortunately, the new succinct system of minimal generators causes the
loss of the interesting order ideal structure. In this situation, we introduced a generation operator for
MGs and a family of irreducible elements for the operator, called directed substitution-free sets, which
jointly constitute a concise yet lossless representation of the entire MG family, preserving the order ideal
structure. Our work follows an original idea from the literature that was developed to a theoretically
sound construct and provided with both deeper structural results and computational means. Empirical
evidences for the benefits of our approach have been obtained as well. They confirmed that the proposed
redundancy removal techniques makes it possible getting, in average, almost as many CIs as irreducible

MGs, thanks to the elimination of an important number of redundant ones.

The next chapter presents an approach relying on the different kinds of minimal generators we detailed
in this chapter. The purpose is to efficiently extract a lossless subset of association rules only containing

succinct and informative ones.
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Chapter 5

Succinct and Informative Association
Rules

5.1 Introduction

Benefiting from the mathematical framework of closure operators used in Formal Concept Analysis [Gan-
ter and Wille, 1999], generic bases of association rules were the first milestone towards losslessly reducing
redundancy within association rules. In this context, they were flagged as irreducible nuclei of association
rules from which redundant ones can be derived without any loss of information [Bastide et al., 2000a].

The study we have made in the previous chapter has shown that the MG set still contains some
redundancy (c¢f. Chapter 4, page 51) through the original succinct system of minimal generators. We
also proved that the redefined system (c¢f. chapter 4, page 59) allows to overcome the limitations of
the original one. Indeed, it offers a perfect cover of the MG family. This motivated us to extend the
proposed system to the association rule framework to dramatically eliminate redundancy even within
generic bases of association rules. This mainly relies on avoiding generic rules based on redundant MGs.
Indeed, the inherent absence of a unique MG associated to a given CI offers an “ideal” gap towards a
tougher redundancy removal.

In the remainder, to avoid confusion, we adopt the same notations used in the previous chapter. Hence,
we will denote by RSSMG the redefined succinct system of minimal generators, while OSSMG denotes
the original one. The main claim of this chapter is thus to mark a novel milestone towards a trilogy:
“efficiency, effectiveness, meeting the end-user’s needs”. For this purpose, we present an approach towards
extracting a succinct and informative set of association rules for pushing further the compactness of mined
knowledge beyond the limits tagged by generic bases of association rules. The retained set of rules will
also be lossless in the sense that redundant ones will be derivable without information loss if desired.
Our approach relies on the different kinds of MGs, detailed in the previous chapter. These kinds are
representative, canonical and redundant MGs according to OSSMG, and succinct ones according to
RSSMG. This will be ensured as follows:

1. We incorporate the RSSMG into the framework of generic bases to reduce as far as possible the

redundancy within generic association rules. Thus, after a thorough study of the best known
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generic bases, we apply the RSSMG to the basis (GB, RZ) formerly proposed by Bastide et al.
[Bastide et al., 2000a], since it gathers many interesting properties (¢f. page 26). We then study the
obtained generic rules - once the RSSMG applied - to check whether they are extracted without
loss of information. For this reason, we give a thorough formal study of the related inference

mechanisms allowing to derive all redundant association rules starting from the retained ones.

2. We propose an original algorithm, called IMG _EXTRACTOR, ! for efficiently mining succinct asso-
ciation rules based on minimal generators as a starting point. The IMG EXTRACTOR algorithm
amortizes the prohibitive cost of the precedence relation determination by avoiding the itemset
closure computation “pitfall” and the subset-superset tests between the frequent Cls. Indeed, by
only comparing succinct frequent MGs belonging to the OSSMG, IMG _EXTRACTOR allows a
shrewd construction of a partially ordered structure called the minimal generator lattice (MGL).
This structure is an isomorphic structure to an Iceberg lattice in which each v-equivalence class is
reduced to the corresponding set of frequent MGs. From this structure, frequent Cls are simply
derived, jointly with generic association rules based on RSSMG. These generic association rules

form the succinct generic association rule bases.

To prove the soundness of the proposed approach, an extensive performance study was conducted. In
this respect, practical performances of the IMG _EXTRACTOR algorithm have been compared to those
of the SSMG_ MINER algorithm [Dong et al., 2005] which is to the best of our knowledge the unique
existing algorithm allowing the OSSMG extraction. The SSMG MINER algorithm allows the extraction
of the succinct frequent MGs belonging to the OSSMG, and the list of the frequent CIs. Nevertheless,
it does not bear the cost of the retrieval of the precedence relations between frequent Cls. Hence, it does
not allow a straightforward extraction of generic association rules without associating it with another
algorithm, contrary to IMG EXTRACTOR. Our experiments were carried out on benchmark datasets,
dense and sparse. Obtained results are very encouraging. Indeed, on the one hand, they show that our
approach makes it possible to eliminate without information loss an important number of redundant
generic association rules and thus, to only present succinct and informative ones to the end-users. On the
other hand, although our IMG EXTRACTOR algorithm performs the partial order construction task, it
largely outperforms the SSMG __MINER algorithm.

The organization of the chapter is as follows: Section 5.2 is devoted to the presentation of the succinct
generic association rules. In order to derive all redundant association rules that can be extracted from a
context, an axiomatic system and a study of its main properties are also provided in Section 5.3. Section
5.4 offers a detailed description of the IMG _EXTRACTOR algorithm. In section 5.5, several experiments

illustrate the utility of the proposed approach.

5.2 Succinct and Informative Generic Bases

In this section, we put the focus on the integration of the redefined succinct system of minimal generators
(RSSMG) within the framework of generic bases of association rules [Pasquier, 2009]. This integration
aims at further reducing the number of extracted rules, through exploiting the redundancy within MGs

(¢f. Definition 45, page 60). In this respect, it is important to mention that although the directed

1IMG_EXTRACTOR stands for Irreducible Minimal Generators Extractor.
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substitution-free sets (DSF'Ss) can also be used, the choice of RSSMG is argued by the fact that it is a
perfect cover of the MG family. This mainly ensures always obtaining rules with minimal premises and
maximal conclusions. Moreover, the size of the obtained rule set is independent from the adopted total
order relation <.

In this respect, our purpose is to obtain, without information loss, a more compact set of association
rules from which the remaining redundant ones can be faithfully generated if desired. Thus, only a small
set of rules needs to be presented to the end-user, which can later selectively derive other rules of interest.
Succinct MGs are well suited for such a task, since they offer the minimal possible premises. They are also
the most interesting ones since correlations in each succinct MG cannot be predicted given correlations
of its subsets and those of the other (redundant) MGs. The definition of a succinct association rule is

hence as follows:

Definition 54 (SUCCINCT ASSOCIATION RULE)

Let AR be the set of valid association rules that can be drawn from a context KC for a minimum support
threshold minsupp and a minimum confidence threshold minconf. Given a total order relation <, an
association rule R1: X1 = Y1 € AR is said to be succinct iff A Ry: Xo = Y3 € AR such that Supp(R1)
= Supp(R2) and Conf(R1) = Conf(Rs) with either Xo C X1 and Y1 C Ys, or X5 F X;.

In other words, succinct association rules are non-redundant ones according to the classic definition (cf.
Definition 30, page 24) which ensures obtaining rules with minimal premises and maximal conclusions.
In addition, they must fulfill the condition that their associated premises are composed by non-redundant

MGs (or equivalently, by succinct MGs).

The basis (§GB, SRT) of succinct generic association rules that we introduce is then defined as follows
[Hamrouni et al., 2008a]:

Definition 55 (SUCCINCT GENERIC BASIS FOR EXACT ASSOCIATION RULES)

Let FCI be the set of frequent Cls extracted from a context IC. For each entry f in FCZ, let MGsucy
be the set of its succinct MGs. The succinct generic basis SGB for exact association rules is given by:
SGB ={R: g = (f\g) | f € FCI and g € MGsucy and g # f}.

Definition 56 (SUCCINCT TRANSITIVE REDUCTION FOR APPROXIMATE ASSOCIATION RULES)
Let F MGsuc be the set of the succinct frequent MGs extracted from a context IC. The succinct transitive
reduction SRZ for approxzimate association rules is given by: SRZ = {R: g = (f\g) | f € FCZ and g
€ FMGsuc and f € Cov*(f1) with f1 = v(g) and Conf (R) > minconf}.

Example 33 Consider the context K given by Table 2.1 (c¢f. page 12). For the sake of simplicity, the
alphabetic order is considered as total order relation < among itemsets, although any other total order
could be obviously used. In this case, the OSSMG and the RSSMG are the same. In this respect, Table
4.1 (cf. page 54) shows, for each CI, the following information: its MGs, its succinct MGs and its
support. For example, the MG AC is succinct, since it is the smallest one w.r.t. < among those of ABCD.
Indeed, AC < 4D, AC < BC and AC = BD, and 4D, BC and BD are transitive redundant starting from AC.
Being given an Iceberg lattice - in which each frequent CI is accompanied by its succinct frequent MG s

- the derivation of these generic association rules is straightforwardly performed. Indeed, consider our
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({ACE}: ABCDEF, 1)

D ——

({AC}: ABCD, 2)| |({AE, AF, EF}: ABEF, 2)| |({CE}: CDE, 2)| |({CF}: CDF, 2)

==

({A,B}: AB, 3)| |({C, D}: CD, 4)| |({E}:E,3) |({F}:F,3)

T

({td3:4,5)

Figure 5.1: For minsupp = 1, the Iceberg lattice associated to the extraction context given by
Table 2.1.

running context for a minsupp value equal to 1. The associated Iceberg lattice is depicted by Figure 5.1.
Each one of its y-equivalence classes contains a frequent CI f accompanied by the set of its set MG sucy
of succinct frequent MGs, and its support, in the form (MGsucs: f, Supp(f)).

A succinct exact generic association rule is an “intra-node” implication, with a confidence value equal to
1, within a y-equivalence class of the Iceberg lattice. The use of the RSSMG allows, for example, to only
extract the succinct exact generic association rule ACE= BDF from the ~y-equivalence class having ABCDEF
for frequent CI, instead of 10 if redundant frequent MGs were of use (as indicated by the last entry in
Table 4.1, page 54). While, a succinct approzimate generic association rule represents an “inter-node”
implication, assorted with the confidence measure, between a vy-equivalence class and another belonging to
its upper cover. For example, for minconf = 0.40, only the association rule 4”2 BDEF is extracted from
both ~y-equivalence classes having, respectively, ABCD and ABCDEF for frequent CI instead of 4 if redundant
frequent MGs were of use (as indicated by the seventh entry in Table 4.1, page 54). The complete set of
succinct generic association rules is reported in Table 5.1. The cardinality of SGB (resp. GB) is equal to
11 (resp. 27), while that of SRZ (resp. RI) is equal to 18 (resp. 25). Hence, using the RSSMG, we
were able to discard 16 (resp. 7) redundant exact (resp. approrimate) genmeric association rules, which
constitutes a reduction of 59.25% (resp. 28.00%). Note that the total number of association rules,
which can be retrieved from IC, is no less than 665. This clearly shows the important compactness rate

offered by (succinct) generic bases.

Remark 7 In [Deogun and Jiang, 2005], the authors baptized succinct association rules those ob-
tained using a pruning strategy based on a model called mazimal potentially useful (MarPUF) as-
sociation rules. However, such reduction is done with information loss since the capability to regenerate
the whole set of valid association rules is not ensured. It is important to mention that this approach and

ours can be easily combined towards a more reduced set of association rules.
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The SGB basis
Ry: A=B Ry: B=A R3: C=D
Ry4: D=C Rs5: AC=BD Rg: AE=BF
R7: AF=BE Ry: EF=AB Ry: CE=D
Rio: CF=D Ri1: ACE=BDF

The SRZ basis
Ri: 0 0'=6>0AB Ry: 0 0'=8>0CD R3: 0 0'=6>0E
Ry 0 2¥F Rs: A%¥Bep Re: B*acD
Ry \%YBEF Rg: B2 AEF Ry: E2¥pBF
Rio: E=2'cD Rip: FUABE | Ryy: FX'CD
Ris: ACXYBDEF | Ryy: AE“2’BCDF | Rys: AF2’ BCDE
Rig: EF=2’ ABCD | Ry7: CE=2’ABDF | Rjg: CF=2 ABDE

Table 5.1: The complete set of succinct generic association rules.

5.3 Derivation of Redundant Association Rules

In the following, we study the structural properties of the new generic bases introduced in the previous
subsection. The study requires checking the ideal properties of an association rule representation (cf.
Definition 31, page 25). Since it was shown in [Kryszkiewicz, 2002] that the basis (GB, RT) is extracted
without loss of information, it is sufficient to show that it is possible to derive without loss of information
all association rules that belong to the basis (GB, RZ) starting from the basis (SGB, SRZ). Thus, all
redundant association rules can be straightforwardly derived from (SGB, SRT).

Association rules belonging to the basis (SGB, SRZ) are implications between succinct frequent min-
imal generators (MGs) and frequent closed itemsets (CIs). Hence, to derive the basis (GB, RZ), redun-
dant frequent MGs need to be deduced since they form the premises of redundant generic association
rules, i.e., those belonging to (GB, RZ) and discarded from (SGB, SRZ). In order to derive all asso-
ciation rules belonging to (GB, RZ), we propose a new axiom called the substitution axiom. Thus,
from each association rule R: X = (Y\X) of (SGB, SRZ) where X € FMGsuc and Y € FCZ, we
propose to derive, using the substitution axiom, the set of redundant generic association rules given by:
Red_Gen_Assoc_Rulesp, x — (v\x) = {R: Z = (Y\Z) | Z € FMGred s.t. X F Z}, where F MGred

denotes the set of redundant frequent minimal generators associated to a context K.

The substitution axiom proceeds according to the following steps:

Step 1: The set GB (resp. RZI) is firstly initialized to SGB (resp. SRT).

Step 2: Association rules belonging to (GB, RZ) are processed in an ascending order of their respective
sizes. 2 Thus, for an association rule R: X = (Y\X) € (GB, RZ) where X € FMGsuc and Y €

2The size of an association rule X = Y is equal to the cardinality of X U Y.
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FCZ, the set of redundant generic association rules associated to each association rule R;: X; =
(Y1\X1), such that X1 C X and Y; C Y, were already derived.

Step 2.1: For each association rule R: X = (Y\X) € GB, derive the set of redundant generic
association rules Red_Gen_ Assoc_ Rulesg. x — (v\x) = {R': Z = (Y\Z) | Z is the result
of the substitution of a subset of X, say V, by T such that {Ry: V = (I\V), Ry: T =
(I\T)} € GB where I € FCT and 3 Z; C Z such that Z; = (Y\Z;) € GB}.

Step 2.2: For each association rule R: X = (Y\X) € RZ, derive the set of redundant generic
association rules Red_ Gen_ Assoc_Rulesp. x — (yv\x) = {R": Z = (Y\Z) | Z is the result
of the substitution of a subset of X, say V, by T such that {Ry: V = (I\V), Ry: T =
(I\T)} € GB where I € FCT and 3 Z; C Z such that Z; = (Y\Z1) € RZ}. ¢

Note that comparing Z to Z; ensures discarding the case where a substitution leads to an already

existing association rule or to a one having a non-minimal generator as a premise.

Example 34 From the association rule R: AC = BD belonging to SGB, we will show how to derive
association rules belonging to GB which are redundant w.r.t. R. Before that the rule R is processed, all
association rules whose respective sizes are lower than that of R (i.e., lower than 4) were handled and
redundant association rules were derived from such association rules. Among the handled association
rules, we find those having for premises the 1-subsets of AC, i.e., A = B and C = D. To derive the
redundant generic association rules associated to R, the first 1-subset of AC, i.e., 4, is replaced by the
frequent MG having its closure, i.e., B. Then, we augment GB by the following association rule: BC =
AD. The second 1-subset of AC, i.e., C, is then replaced by D. Thus, we add the association rule 4D = BC
to GB. The same process is applied to BC = AD. We hence obtain both association rules: AC = AD and
BD = AD and only the latter one will be added to GB. Indeed, there is already an association rule in GB
s.t. Z1 = (ABCD\Z1) and Zy C AC (Zy being itself equal to AC). From the association rule BD = 4D, no

other will be determined and the treatments come to an end.

Now, we prove that the substitution axiom allows the basis (SGB, SRZ) to be lossless and sound.

Then, we show that this couple is also informative.

Proposition 27 The basis (SGB, SRI) is lossless: ¥V R: X = (Y\X) € (SGB, SRI), the set
Red Gen_Assoc_Rulesp = {R': Z = (Y\Z) | Z € FMGred s.t. X E Z} of the redundant generic

association rules with respect to R, is completely derived thanks to the proposed substitution axiom.

Proof. The sorting imposed in Step 2 of the substitution axiom ensures that, before a rule R is pro-
cessed, all association rules whose respective sizes are lower than that of R were handled, and redundant
generic association rules were then derived from such association rules. Hence, all information required
to derive association rules belonging to Red Gen_Assoc_Rulesyr are gathered thanks to the different
sets Red_Gen_ Assoc_Rulesg, such that R1:X; = (Y1\X1), X; € FMGsuc, Y1 € FCZ and Y7 C Y.
Using these sets, all redundant frequent MGs, with respect to X, are straightforwardly derived. Indeed,
for each subset X; of X, the different frequent MGs belonging to its equivalence class are already known
as they are the premises of association rules belonging to the sets Red Gen_Assoc_Rulesg, defined
above. Hence, all association rules belonging to (GB, RZ) can be deduced from (SGB, SRZ) using the
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substitution axiom. Therefore, the basis (SGB, SRT) is lossless.

Proposition 28 The basis (SGB, SRT) is sound: ¥ R': Z = (Y\Z) € Red_ Gen_ Assoc_ Rulesgp.x - (v\ x),
Supp(R') = Supp(R) and Conf(R') = Conf(R).

Proof. On the one hand, Supp(R) is equal to Supp(Y'). It is also the case for Supp(R’). Hence, Supp(R’)
= Supp(R). On the other hand, X and Z are two frequent MGs belonging to the same ~-equivalence

. Supp(Y) Supp(Y)
class. Hence, Supp(X) is equal to Supp(Z). Thus, Conf(R') = = = Conf(R).
(%) (%) f(R) Supp(Z) Supp(X) f(R)
Therefore, the basis (SGB, SRT) is sound. ¢

The property of derivability is fulfilled by the basis (SGB, SRZ) since it is lossless and sound. Now, we
show that this couple allows the retrieval of the exact values of the support and the confidence associated

to each derived association rule.

Proposition 29 The basis (SGB, SRT) is informative: the support and the confidence of all derived

association rules can exactly be retrieved from (SGB, SRT).

Proof. Association rules belonging to the basis (SGB, SRZ) are of the following form: g = (f\g) where
g € FMGsuc and f € FCZ. Therefore, we are able to reconstitute all necessary frequent CIs by concate-
nation of the premise and the conclusion parts of the generic association rules belonging to (SGB, SRI).
Since the support of a frequent itemset I is equal to the support of the smallest frequent CI containing
it [Pasquier et al., 1999b], then the support of I and its closure can be straightforwardly derived from
(8GB, SRT). Hence, the respective support and confidence values of all redundant association rules can
exactly be retrieved. Thus, the basis (SGB, SRT) is informative. <

The substitution axiom is proved to be lossless, sound and informative; allowing to derive all association
rules forming (GB, RZ) as well as their ezact support and confidence values. Since the basis (GB, RT)
is shown to be extracted without loss of information [Kryszkiewicz, 2002], we can deduce that the basis
(S8GB, SRT) is also extracted without information loss. In order to find the complete set of walid
redundant association rules, which can be extracted from a context /I, the axiom of transitivity proposed
by Luxenburger [Luxenburger, 1991] should be applied to the RZ basis to derive association rules forming
the informative basis ZB for the approximate association rules [Bastide et al., 2000a]. Then, the cover
operator proposed by Kryszkiewicz [Kryszkiewicz, 2002] or the lossless and sound axiomatic system
proposed by Ben Yahia and Mephu Nguifo [Ben Yahia and Mephu Nguifo, 2004] makes it possible to
derive all valid redundant association rules starting from the couple (GB, ZB). The complete process
allowing to derive all valid (redundant) association rules (denoted AR), starting from the basis (SGB,
SRIT), is hence as follows:

substitution azxiom transitivity ariom

(§GB, SRI)— — — — — —(GB, RT) — — — — — —(GB, IB)

cover operator or Ben Yahia and Mephu Nguifo axiomatic system
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5.4 The IMG EXTRACTOR Algorithm

In this section, we introduce a new algorithm, called IMG _EXTRACTOR, allowing to efficiently extract
the frequent CI set and, for each frequent CI, its associated succinct frequent MGs as well as the
succinct generic association rules belonging to the basis (SGB, SRZ). Hence, the knowledge offered
to the end-users becomes by far more useful since an important amount of redundancy is removed.
IMG EXTRACTOR takes as input a total order relation =<, an extraction context IC, the minimum
threshold of support minsupp and the minimum threshold of confidence minconf. It operates in three

successive steps:
1. Determination of the MG set,
2. Construction of the minimal generator lattice (MGL), and,
3. Extraction of the succinct generic association rule bases.

Note that the IMG_ EXTRACTOR algorithm inherits from the PRINCE algorithm [Hamrouni et al.,
2005b] its first step. However, as explained in the remainder, it has for advantage w.r.t. this latter
a reduction of the lattice construction cost thanks to the localization of redundant MGs. In addition,
IMG _EXTRACTOR is able to extract generic rules as well as succinct ones while PRINCE is only dedicated

to generic association rules.

5.4.1 Determination of the Minimal Generator Set

Following a breadth-first (or levelwise) strategy, the IMG EXTRACTOR algorithm traverses the search
space by level in a bottom-up manner. It determines the set FMG of the frequent MGs, extracted
from the extraction context K and sorted by decreasing support values. IMG _EXTRACTOR also keeps
track of the infrequent part of the negative border of the frequent minimal generator set, denoted GBd~
[Kryszkiewicz, 2001]. 3 In the second step, the set 7 MG will serve as a backbone to construct the MGL.
As shown by the following proposition, the union of the sets F MG and GBd~ will be used, in the second

step, as an exact concise representation of frequent itemsets:

Proposition 30 Let X be an itemset. If 3 Z € GBd™ and Z C X, then X is infrequent. Otherwise, X
is frequent and Supp(X) = min {Supp(g) | g € FMG and g C X} [Kryszkiewicz, 2001].

Beyond the usual pruning based on support (w.r.t. minsupp), IMG _EXTRACTOR uses pruning strate-
gies exploiting the order ideal shape of the F MG set. In this respect, a candidate ¢ that does not have
all its immediate subsets as frequent minimal generator will be pruned. In addition, ¢ must not have the
same support as one of its subsets, otherwise it will not be a minimal generator.

It is important to mention that in the next section, we will see the importance of redundant MGs
in the construction of the partially ordered structure. Indeed, without them, some precedence relations
between ~-equivalence classes can be missed. This explains why we do not prune them in this step.

The pseudo-code of the procedure, called GEN-MGS, covering this step is given by Algorithm 4. This
procedure requires an access to the extraction context as long as the set of minimal generator candidates
is not empty. This access is performed through the GEN-NEXT-MGs procedure (¢f. Algorithm 5) whose

3An itemset belongs to GBA™ if it is an infrequent MG and all its subsets are frequent MGs.
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Notation Description

MGCy, (resp. FMGy) : Set of k-candidate (resp. k-frequent) minimal generators.

c : Element of MGCy or FMGy.

c.Direct_subsets : List of (k - 1)-subsets of c.

c.Actual_Supp : Actual support of c.

c.Estimated_Supp : Estimated support of ¢, which will contain the minimum support

of its direct subsets.

c.Upper_cover : List of the immediate successors of the v-equivalence class of c.

c.FCI : Frequent closed itemsets of c.

Table 5.2: Notations used by the IMG _EXTRACTOR algorithm.

goal is to extract the set of frequent minimal generators of larger size and to affect infrequent candidates
to the negative border. The notations used by the aforementioned procedures as well as the remaining
steps of IMG _EXTRACTOR are summarized in Table 5.2.

A unique trie is sufficient to store the MG set. This choice is argued by the fact that this set is an
order ideal. This key property allows optimizing the memory space since the path from the root to each

node represents a MG and, hence, there are no useless nodes.

5.4.2 Construction of the Minimal Generator Lattice

In this step, the frequent MG set will form a MGL, and this without performing any access to the

extraction context. Let us begin by defining the minimal generator lattice.

Definition 57 (MINIMAL GENERATOR LATTICE)
A minimal generator lattice (MGL) is an isomorphic structure to an Iceberg concept lattice, i.e., the
precedence relation is that amongst frequent closed itemsets. For each equivalence class of the MGL, its

label is reduced to the associated frequent MGs.

The main idea is how to construct the partially ordered structure without computing itemset closures,
i.e., how guessing the precedence relations by only comparing the succinct frequent MGs? To achieve this
goal, the list of the immediate successors of each y-equivalence class will be incrementally constructed.
Hereafter, by the term “immediate successor”, we indicate a representative frequent MG.

The processing of FMG is done according to the order imposed in the first step (i.e., by decreasing
support values). It is worth noting that this sorting does not infringe any adopted total order relation
<. Indeed, for each ~-equivalence class having a given support, the representative frequent MG will
necessarily have the smallest size since the browsing of the search space was carried out in a levelwise
manner. Furthermore, if two frequent MGs or more belong to the same y-equivalence class and have the
same size, then the total order relation < clearly indicates which one precedes the other w.r.t. <.

Before describing in detail this step, let us take an example recalling the different types of MGs
according to the OSSMG.
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Algorithm 4: GEN-MGs
Input: - An extraction context C, and the threshold of support minsupp.

Output: - The set FMG of frequent minimal generators, the GBd~ border, and the

closure of the empty set.
1Begin
2| MGC, :=1;
3| COMPUTE-SUPPORT (MGC;) /*Computation of item supports*/ ;
4| ().Actual_Supp := |O|;
5| FMG, = {0};
6| ForEach (¢ € MGC,) Do

7 If (c.Actual_Supp = /O/) Then

8 ‘ ().FCI := (.FCI U ¢;

9 Else

10 If (c.4ctual_Supp > minsupp) Then
11 c.Direct_subsets := {0};

12 FMG := FMGy U ¢

13 Else

14 | GBd~ = GBA~ U

15| ForEach (k =1 ; FMG, #0 ; k++) Do
16 FMG (j41) = GEN-NEXT-MGS(FMGy);

17] FMG := U{FMG;|i=0...k};
18End

Example 35 Let us consider once again Table 4.1 (cf. page 54), summarizing for each CI its (succinct)
MGs. The MG AC is a representative one, since it is the smallest w.r.t. < among those of the CI ABCD.
Indeed, AC < 4D, AC < BC and AC < BD. The MG EF is not the representative of its CI ABEF, since AE <
EF. Nevertheless, its 1-subsets (i.e., E and F) are the representative MGs of their respective Cls. Hence,
EF is o canonical MG. Finally, the MG ADE is a redundant one, since at least one of its subsets is not

a representative MG (DE, for example).

For each frequent MG g of size k (k > 1), the treatments closely depend whether ¢ is a succinct frequent
MG or a redundant one (or equivalently, whether all its (k - 1)-subsets are representative frequent MGs
or not). Recall that during the previous step, the links to the (k - 1)-subsets of g were stored when
checking for the order ideal property. We hence distinguish the following two cases:

1. If g is a succinct frequent MG: g will be introduced into the MGL by only comparing it to
the immediate successor lists of its (k - 1)-subsets. This is based on the isotony property of the closure
operator vy [Davey and Priestley, 2002]. Indeed, let g; be one of the (k - 1)-subsets of g, g1 C g = v(g1)

C v(g)- Thus, the vy-equivalence class C4 to which belongs g is a successor (not necessarily an immediate
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Algorithm 5: GEN-NEXT-MGS
Input: - The set FMG;.

Output: - The set FMG 141y
1Begin

2| /* Generating candidates using the APRIORI-GEN procedure [Agrawal and Srikant,
1994] */
MGC (k11) = APRIORI-GEN(FMG,)

4| /* Testing the order ideal property of frequent minimal generators */

]

5| ForEach (c € MGC;41)) Do

6 c.Estimated_Supp := |OJ; /* maximal possible support */

7 ForEach (c¢; such that |c1| = k and ¢; C ¢) Do

8 If (¢; ¢ FMGy) Then

9 Mgc(kJrl) = MQC(kH) \ 6

10 break;

11 End For;

12 c.Estimated_Supp := min(c.Estimated_Supp, c¢j.Actual_Supp);
13 c.Direct_subsets := c.Direct_subsets U cy;

14| /* Computation of candidates supports and pruning infrequent ones */
15| COMPUTE-SUPPORT (MGC (41));
16| ForEach (c € MGC ;1)) Do

17 If (c.Actual_Supp # c.Estimated_Supp and c.Actual_Supp > minsupp) Then
18 ‘ FMG (kg1) = FMG 141y U ¢

19 Else

20 If (c.Adctual_Supp < minsupp) Then

21 L GBd~ :— GBd~ U ¢;

22| Return FMG ;)
23End

one) of the y-equivalence class Cy4, to which belongs gi. Let us denote by L the immediate successor
list of g;. If L is still empty when ¢ is compared to it, then g is simply added to L. Otherwise, g is
compared to the elements already belonging to L using Proposition 31, by replacing the itemsets X and
Y respectively by g and one of the elements of L. The processing order has the advantage of restricting
comparisons to the case where Supp(X) is lower than or equal to Supp(Y’). The following lemma will be

used in the proof of Proposition 31.

Lemma 6 Let X, Y CZ, (X CY A Supp(X) = Supp(Y)) = (v(X) =~4(Y)) [Stumme et al., 2002].
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Proposition 31 Let X, Y C Z, Cx and Cy be their respective y-equivalence classes:
1. If Supp(X UY) = min {Supp(X), Supp(Y)}, then Cx and Cy are comparable:

(a) X andY belong to the same ~v-equivalence class if Supp(X) = Supp(Y).
(b) Cx (resp. Cy) is a successor (resp. predecessor) of Cy (resp. Cx) if Supp(X) < Supp(Y).

2. If Supp(X UY) # min {Supp(X), Supp(Y)}, then Cx and Cy are incomparable.
Proof.

1. (a) (X C(XUY)A Supp(X) = Supp(X UY)) = (v(X) = v(X UY)) (according to Lemma
6) (1)
(Y C(XUY)A Supp(Y) = Supp(X UY)) = (7(Y) =~4(X UY)) (according to Lemma
6) (2)
According to (1) and (2), v(X) = v(Y) and thus X and Y belong to the same ~y-equivalence
class (i.e., Cx and Cy are identical).
(b) (X C(XUY) A Supp(X) = Supp(X UY)) = (v(X) = (X UY)) (according to Lemma
6) (1)
(Y C(XUY)ASupp(Y) # Supp(X UY)) = (4v(Y) C (X UY)). However, according to
(1), v(X) = v(X UY) and, thus, v(Y) C v(X). Hence, Cx (resp. Cy) is a successor (resp.

predecessor) of Cy (resp. Cx).

2. Suppose that Cx and Cy are comparable. This means either v(Y) C v(X) or v(X) C v(Y). The
treatment of both cases is similar. Let us look at the first one: 7(Y) C v(X) = Y C v(Y) C
~v(X). Thanks to the extensivity property of a closure operator, we have X C v(X), and hence
(XUY) CH(X). Thus, X C (X UY) C v(X). By the isotony property of a closure operator,
we have v(X) C (X UY) C v(y(X)), and thanks to the idempotency property, we have v(X)
CH(X UY) CH(X). Thus, v(X) = v(X UY). This result is in contradiction with the fact that
Supp(X) > Supp(X U Y). Consequently, Cx et Cy are incomparable.

¢

In our case, the itemsets X and Y are both minimal generators. Let Z be equal to (X U Y). The
computation of the support of Z is performed in a direct manner if Z belongs to FMG U GBd™. Indeed,
in this former case, we can directly access the support of Z being known since the first step. Cx and Cy
are then incomparable since Supp(X) # Supp(Z) (otherwise, Z should not be a minimal generator). If Z
does not belong to F MG U GBd ™, then Proposition 30 will be applied. It is worth noting that the support
computation stops, in this latter case, as soon as we find a minimal generator W that is included in Z
and having a support strictly lower than that of X (as mentioned above Supp(X) < Supp(Y')). Hence,
Supp(Z) < Supp(W) < Supp(X) and then Supp(X) # Supp(Z). Cx and Cy are thus incomparable.

To maintain the concept of equivalence class throughout the processing of the F MG list, IMG _EXTRACTOR
uses the MANAGE-EQUIVALENCE-CLASS function. Indeed, this function is used if g is compared to the
representative frequent MG of its y-equivalence class, say R. The MANAGE-EQUIVALENCE-CLASS func-

tion then replaces all occurrences of g by R in the immediate successor lists where g was added. Then,
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comparisons to carry out with g will be made only with R. Thus, for each y-equivalence class, only
its representative frequent MG appears in the immediate successor lists. Hence, this function allows to

optimize the management of the y-equivalence classes by dramatically reducing unnecessary comparisons.

2. If g is a redundant frequent MG: g will not be introduced into the MGL. However, it is
necessary to take care to compare the representative frequent MG of C, with the immediate successor
lists of only the representative (k - 1)-subsets of g. Otherwise, some links in the MGL can be lost.
Indeed, consider the example given by Table 4.1 (¢f. page 54) associated to the context of Table 2.1 (¢f.
page 12). If we do not consider the redundant frequent MGs of the equivalence class having ABCDEF for
frequent CI, then the precedence relation between this equivalence class and that having CDF for frequent
CI will be lost (¢f. Figure 5.1, page 84). It would be then the same for some succinct generic approximate
association rules (c¢f. Table 5.1, page 85). The reason is that CF, the representative frequent MG of CDF,
is not a subset of ACE, ACE being the unique succinct frequent MG of ABCDEF.

Nevertheless, to optimize the treatments, we will use a second function called LOCATE-EQUIVALENCE-
Crass. Indeed, if g is a redundant frequent MG, this means that at least one of its (k - 1)-subsets is a
redundant frequent MG. Let us note by g1 this subset, by ¢ the item appearing in g and not in ¢; (i.e., {c}
= (g\g1)) and by R4 the representative frequent MG of Cg,. A call to the LOCATE-EQUIVALENCE-CLASS
function makes it possible to locate the equivalence class to which belongs g and hence, the representative
frequent MG of Cg4, say R. This function avoids comparing g to the immediate successor lists of all its (k
- 1)-subsets. Indeed, only the comparison of R with the immediate successor lists, of the representative
(k - 1)-subsets of g, is needed. Using Definitions 40 (¢f. page 52) and 41 (¢f. page 52) and Lemma 5
(¢f. page 60), we will show that a call to the LOCATE-EQUIVALENCE-CLASS function correctly computes
R since the latter already exists in the MGL. In our context, with X U Y, we will indicate the ordered

sequence of items contained in X or in Y.
Proposition 32 The LOCATE-EQUIVALENCE-CLASS function correctly locates R.

Proof. Using Lemma 5, we have:

7(g) = (g1 U {e}) = v(v(g91) U~r({c}))
Since v(g1) = v(R1),
Y(v(g1) Uv({e})) = v(v(R1) Uv({e})) = v(R1 U {c}) = (W) s.t. W =Ry U {c}.

Since v(g) = v(W), g and W necessarily belong to the same equivalence class. We then distinguish the
following two cases:

o If W is a frequent MG, then W < g since Ry < g (first property in Definition 40). From the definition
of a representative MG (Definition 41), R < W. Since R < W and W < g, then R < g.

o If W is not a frequent MG, then there is a frequent MG Z s.t. Z C W and v(Z) = v(W). Since |Z]
< |W] and |W| < |gl|, |Z] < |g| and thus Z < g (second property in Definition 40). From Definition 41,
R < Z. Consequently, R < g since R = Z and Z < g.

We conclude that in both cases, R was already treated and was thus correctly introduced into the MGL.

¢
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It is worth noting that the performed treatments in this step allow to manage only one immediate
successor list for all the succinct frequent MGs belonging to the same ~-equivalence class. Hence, this
optimizes both runtime and memory consumption.

The pseudo-code of the second step is given by the GEN-ORDER procedure (Algorithm 6). In this
algorithm, we use the denotation Supp to indicate the actual support of g since we will not have to
distinguish any more between this latter and the estimated support of g. At the end of the execution of
the GEN-ORDER procedure, g.Upper_cover is empty if g is not the representative frequent MG of C, or
if the latter is a maximal y-equivalence class, i.e., not covered by any other. Otherwise, this list will only

contain representative frequent MGs.

5.4.3 Extraction of the Succinct Generic Association Rule Bases

In this step and for each ~-equivalence class C of the MGL, two main tasks are performed: deriving
the corresponding frequent closed itemset (CI) f and then extracting the associated succinct generic
association rules. These tasks are far from being time-consuming as sketched out in the remainder.
Indeed, IMG _EXTRACTOR efficiently derives frequent CIs using Proposition 33. The proof of this
latter proposition relies on the links between minimal generators (MGs) and the important concepts in
lattice construction of face and minimal blocker, studied in [Pfaltz and Taylor, 2002]. These concepts are
presented through the following definitions and Theorem 10 [Pfaltz and Taylor, 2002].

Definition 58 (FACE)
Let f and f1 € FCI. If f immediately covers f1 in the Iceberg lattice, then the face of f compared to f,
corresponds to f\fi.

Definition 59 (MINIMAL BLOCKER)

Let G = {G1,...,G,} be a family of n sets. A blocker B of the family G is a set such that its intersection
with all the sets G; € G is not empty. B is said to be minimal if there is no blocker By of G included in
B.

Theorem 10 Let f € FCI and MGy be the set of its frequent MGs. If fi € FCI such that f im-
mediately covers fi in the Iceberg lattice, then the face of f compared to f1 is a minimal blocker of
MGy.

Proposition 33 Let f, fi € FCI such that f immediately covers f1 in the Iceberg lattice. Let MGy be
the set of the frequent MGs of f. The closure f can be obtained as follows: f =U {g| g € MG} U fi.

Proof. Let B be the set resulting from the union of the frequent MGs of f (i.e., B = U{g|g € MG/ }).
Since B is a blocker of MG, then the face of f compared to f1 (i.e., f \ f1), which is a minimal blocker
of MG according to Theorem 10, is included in B. Thus, it is sufficient to compute the union of f; with
B to derive the frequent CI f. <

It is worth noting that the derivation of f is performed in a straightforward manner since the ~-

equivalence class, to which belongs a given frequent MG g, is necessarily located in the second step even
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Algorithm 6: GEN-ORDER
Input: - The set F MG of frequent minimal generators, and the total order relation <.
Output: - The partially ordered structure MGL.

1Begin

2| ForEach (¢ € FMG) Do

3 Sy = 0

4 So 1= 0

5 ForEach (g1 € g.Direct_subsets) Do

6 If (g1 is a representative frequent MG) Then

7 ‘ S1:=81U{n};

8 Else

9 L Sy =8 U{q};

10 If (S; =) Then

11 ForEach (g; € S1) Do

12 ForEach (g2 € g1.Upper_cover) Do

13 If (g.Supp = g2.Supp = Supp(g U g2)) Then

14 L MANAGE-EQUIVALENCE-CLASS(g, g2);

15 Else If (g.Supp < go.Supp and g.Supp = Supp(g U g2)) Then
16 g will be compared with g,.Upper_cover;

17 For the remaining elements of g;.Upper_cover, g will only be compared

with each MG g3 s.t. gs.Supp > g.Supp;

18 If (V g2 € g1.Upper_cover, Cy and Cq4, are incomparable) Then
19 L g1-Upper_cover := g;.Upper_cover U {g};

20 Else

21 R := LOCATE-EQUIVALENCE-CLASS(g, g1);

22 ForEach (g; € S1) Do

23 ForEach (g2 € g,.Upper_cover and g>.Supp > R.Supp) Do

24 If (R.Supp = Supp(R U ¢2)) Then

25 L R will be compared with g».Upper_cover;

26 If (V g2 € g1.Upper_cover, Cr and C4, are incomparable) Then
27 L g1-Upper_cover := g;.Upper_cover U {R};
28End

if g is a redundant frequent MG (¢f. Algorithm 6, line 21). Hence, a simple bottom-up sweeping of the
MGL is sufficient to completely derive f and to extract the associated succinct generic association rules.
Another advantage of such a way of the lattice traversal is that only the storage of the upper cover of
each equivalence class is needed. Indeed, the storage of the lower cover is redundant and useless. Note

that for each y-equivalence class, the derivation of the associated succinct frequent MGs belonging to
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RSSMG is performed thanks to the o-EQUIVALENCE CLASSES _MINER function we proposed in the
previous chapter (c¢f. Algorithm 1, page 62).

The traversal of the MGL is carried out from the bottom of the lattice until reaching maximal -
equivalence classes. The closure of the empty set was computed at the beginning of the first step by
simply collecting, if there are, the items belonging to all objects of the context. If it is not empty, the
succinct generic exact association rule, having the empty set for premise and its closure for conclusion, is
extracted. Then, IMG EXTRACTOR extracts the succinct generic approximate association rules between
Cp and the v-equivalence classes belonging to the upper cover of Cy. Their respective closures are derived
thanks to Proposition 33, using the associated frequent MGs and the closure of the empty set. These
~y-equivalence classes are then stored which makes it possible to apply the same process to them. By
the same manner, IMG _EXTRACTOR treats higher levels of the MGL until reaching the maximal ~-
equivalence class(es).

The pseudo-code of this step is given by the GEN-SGRB procedure (Algorithm 7). For each frequent
MG g, the FCI attribute allows storing the frequent CI corresponding to C, if g is its representative. In
the GEN-SGRB procedure, L; indicates the list of v-equivalence classes from which are extracted the
valid succinct generic association rules. By Lo, we note the list of y-equivalence classes which immediately
cover those forming L;. A test is carried out to check whether a y-equivalence class does not belong to
Lo. This test consists in checking if the corresponding frequent CIs were already computed (c¢f. line 8 in
Algorithm 7).

Example 36 Consider the context K given by Table 2.1 (cf. page 12). Let the minsupp and minconf
values be, respectively, equal to 1 and 0.4. We consider the lexicographic order among items as a total
order relation <. The first step allows the determination of the closure of the empty set, equal to the
empty set, the sorted set FMGx, giwen by Table 4.1 (cf. page 54), and the negative border of MGs
GBd~, equal to the empty set. During the second step, IMG EXTRACTOR processes the elements of
FMG to construct the MGL. Consider for example the 2-frequent MG AE. The latter is a succinct
frequent MG since all its 1-subsets are the representative frequent MGs of their respective frequent Cls
(as depicted by Table 4.1). Hence, AE will be compared to the immediate successor lists of both 4 and E
(¢f. Algorithm 6, lines 11-19). Since Cy has Cy¢ as an immediate successor, AE is then compared to AC:
Supp(4E U AC) = Supp(ACE) # min {AE.Supp, AC.Supp}. Hence, C4z and Cy¢ are incomparable. AE is
then added to the immediate successor list of 4. The immediate successor list of the second subset E is
still empty and AE is simply added to it. If we consider the case of the 3-frequent MG ACF, the latter
is a redundant frequent MG since AF is not the representative frequent MG of its vy-equivalence class.
Instead of performing unnecessary treatments by comparing ACF to the immediate successor lists of all its
2-subsets, the representative frequent MG of Cyer will be found (cf. Algorithm 6, line 21). Since AE is
the representative frequent MG of Cyr, the representative frequent MG of Cycr is that of Cyg U (acF \ar))
(i-e., Cycg) and is equal to ACE. The latter will only be compared to the immediate successor lists of
the representative 2-subsets of ACF, i.e., AC and CF (cf. Algorithm 6, lines 22-27). ACE was already
compared to the immediate successor list of AC since the latter is one of its direct subsets. Hence, this new
comparison is redundant and is thus not performed. ACE will then be compared to the immediate successor
list of CF. Since the latter is still empty, ACE is simply added to it. At the end of this second step, the
MGL is built. During the third step, an ascending sweeping is carried out from Cy. Since v(0) = 0, no
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Algorithm 7: GEN-SGRB

Input: - The structure MGL, and the minimum threshold of confidence minconf.

Output: - The frequent CI associated to each equivalence class, the succinct generic

basis of exact rules (denoted SGB) and the transitive reduction of approximate

rules (denoted SRZ).

1Begin

2| 8GB :=0; SRZ := 0; Ly := {0}; Lo := 0

3| While (L; # () Do

a ForEach (g € L;) Do

5 If (9.FCI # g) Then

6 SGB = SGB U {(t = (¢.FCI \ t), g.Supp) | t € FMGsuc and t € Cy};

7 ForEach (g; € g.Upper_cover) Do

8 If (g1.FCI = () Then

9 g1.FCI =U {t € FMG |t € Cy, } U g.FCI,

10 Ly =Ly U {91};

1 If (791.Supp > minconf) Then
g.Supp S

g1.oupp

SRT := SRT U {(t FCI N\t .S ==

12 {( = (gl \ )7 g1-oupp, g.Supp
and t € Cy};

13 L1 = LQ;

14 Ly == 0;

15End

) | t € FMGsuc

exact association rule is extracted from Cy. .Upper_cover = {4, C, E, F}. The frequent CI associated

to C, is then found and is equal to AB. The succinct generic approzimate association rule ) = AB, of a

support value equal to 3 and a confidence value equal to 0.6, is then extracted. It is the same for C¢, Ck

and Cr. Using the same process and from the upper cover of Cy, IMG EXTRACTOR performs a bottom-up

traversal of the MGL until reaching the non covered y-equivalence class having ABCDEF for frequent CI.

The complete set of succinct generic association rules, sketched by Table 5.1, is thus straightforwardly

extracted.

5.4.4 Correctness and Complexity

The following theorem proves the soundness and the correctness of the IMG EXTRACTOR algorithm.

Theorem 11 The IMG __EXTRACTOR algorithm is sound and correct. It extracts all succinct frequent

MGs and derives all frequent Cls and all valid succinct generic association rules.
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Proof. During the first step, a candidate MG c is pruned only if its estimated support is equal to its actual
support or if it does not verify the order ideal property of MGs. Otherwise, ¢ is a MG and by comparing
its actual support to minsupp, the IMG _EXTRACTOR algorithm adds it to the frequent MG set FMG
or to the negative border of MGs GBd~. Thus, at the end of the first step of IMG _EXTRACTOR, all
frequent MGs are extracted in addition to the negative border of MGs.

During the second step, IMG _EXTRACTOR takes care to introduce all succinct frequent MGs into the
minimal generator lattice (MGL). Indeed, based on Proposition 14 (¢f. page 55), IMG EXTRACTOR
checks whether a frequent MG g is a succinct one or not. After that, treatments depend on the nature of
g: succinct or redundant. In the former case, g will simply be compared to the immediate successor list of
all its (k - 1)-subsets. This is based on the isotony property of the closure operator ~. In this case, both
properties sketched by Proposition 31 are treated in Algorithm 6. The MANAGE-EQUIVALENCE-CLASS
function allows to manage each y-equivalence class once g is compared to the representative frequent MG
R of its vy-equivalence class. Then, comparisons will be done using R instead of g without affecting the
correctness of the algorithm. Indeed, R and g share the same properties since they belong to the same
~v-equivalence class. In the latter case — g is redundant — the LOCATE-EQUIVALENCE-CLASS function
allows to find the representative frequent MG R of C,; as shown by Proposition 32. Then, R will only
be compared to the immediate successor having supports greater than the support of R. Indeed, R is
the unique succinct frequent MG belonging to C, that appears in the different immediate successor lists.
Hence, it is useless to compare it to those having the same support since none of them will be added to
the y-equivalence class of R. At the end of this step, the minimal generator lattice is completely built.

During the third step, all v-equivalence classes are taken in consideration when deriving frequent Cls
as well as valid succinct generic association rules. Indeed, each equivalence class C, except Cy, has at least
one immediate predecessor. Hence, the representative of C belongs at least to one immediate successor
list of another ~v-equivalence class, say C;. When treating C1, the frequent CI is completely derived using
Proposition 33. C is also added to the list of y-equivalence classes from which valid succinct generic
association rules will be derived in the next iteration. Thus, at the end of this step, all frequent CIs and

all valid succinct generic association rules are entirely derived. ¢

Proposition 34 evaluates the complexity of the IMG _EXTRACTOR algorithm.

Proposition 34 In the worst case, the theoretical complezity of IMG _EXTRACTOR is in O((n3+m) x
2"™), where n = |Z| and m = |O|.

Proof. The worst case is obtained whenever any set of items appears at least once in the context, and
each extracted itemset is a frequent closed minimal generator. Thus, the frequent itemset lattice strictly
overlaps both the Iceberg lattice and the minimal generator lattice. The number of frequent closed
minimal generators is hence equal to 2. Each frequent MG is equal to its closure and is hence the
representative frequent MG of its vy-equivalence class. We assume that each object contains n distinct
items.

During the first step (¢f. Algorithm 4, page 90, and Algorithm 5, page 91), IMG EXTRACTOR
performs two main tasks. The first task consists in the candidate support computations and is bounded
by O(m x 2"). The second task consists in pruning non-MG candidates. This is done in O(n? x 27).
The cost of the first step is then bounded by O((n? +m) x 2m).
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During the second step (¢f. Algorithm 6, page 95), and for each frequent MG g of size k (< n),
IMG _EXTRACTOR verifies whether g is a succinct frequent MG or not. This is carried out in O(n).
Since in the worst case g is a representative and hence a succinct generator, IMG _EXTRACTOR performs
(k x (n—k)) comparisons which will be bounded by n?. Indeed, g has k immediate subsets (i.e., those of
size (k- 1)). Each (k - 1)-subset g1 has, in the worst case, (n — k) immediate successors when comparing
g with g;.Upper_cover. Each comparison is performed by making the union of g with an element of
g1-Upper_cover. The union cost is O(n). The search of the support of the resulting itemset costs O(n)
since it is a frequent MG. The cost of the second step is then bounded by O((n + ((n +n) x n?)) x 27),
i.e., O(n? x 2"),

During the third step (¢f. Algorithm 7, page 97), and for each y-equivalence class C, IMG _EXTRACTOR
performs two complementary tasks. The first consists in deriving the corresponding frequent CI. This
is carried out by performing the union of the frequent MG of C and the frequent CI associated to an
equivalence class which is immediate predecessor of C. The first task then costs O(n) in the worst case.
The second task consists in deriving valid informative association rules. As each frequent MG is also
closed, there is no exact succinct generic association rule. However, by fixing minconf to 0, there are k
approximate succinct generic association rules, for a y-equivalence class whose frequent closed minimal
generator is of size k. To derive each approximate succinct generic association rule, IMG EXTRACTOR
computes the difference between the frequent CI of C and the corresponding premise. This is performed
in O(n). The second task then costs O(k x n) (k will be bounded by n). Hence, the cost of the third
step is bounded by O((n + n?) x 27), i.e., O(n? x 2").

Thus, in the worst case, the theoretical complexity of IMG EXTRACTOR is bounded by the sum of
the costs of its three steps which is in O((n® +m) x 2"). &

It is important to mention that although IMG _EXTRACTOR builds the Iceberg lattice, its theoretical
complexity remains of the same order of magnitude as that of algorithms only dedicated to the extraction
of frequent CIs [Kuznetsov and Obiedkov, 2002, Pasquier, 2000].

5.5 Experimental Results

In this section, we shed light on the compactness rate obtained through the proposed generic bases of asso-
ciation rules. After that, we lead a thorough analysis of the performances of the IMG EXTRACTOR algo-
rithm compared to those of the SSMG _ MINER algorithm [Dong et al., 2005]. Note that SSMG _ MINER
does not allow a straightforward extraction of generic association rules without associating it with an-
other algorithm. The source code of the SSMG __MINER algorithm, kindly provided by its authors, is
implemented using the ascending support order as a total order relation <. Hence, in order to allow a
fair comparison, the IMG _ EXTRACTOR algorithm also uses this order. *

All experiments were carried out on a PC equipped with a 2.4GHz Pentium IV and 512MB of main
memory (with 2GB of swap space) and running the GNU/Linux distribution S.U.S.E 9.0. To rate
the different behaviors of the considered algorithms, we ran experiments on benchmark datasets (cf.

Appendix A for their detailed description). Hereafter, we use a logarithmically scaled ordinate axis in all

“The source code of the IMG _EXTRACTOR algorithm is available at:

http://www.cck.rnu.tn/sbenyahia/software _release.htm.
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figures.
The next subsection describes the compactness rate brought by our approach. Then, we compare
through a detailed analysis the performances of IMG _EXTRACTOR to those of SSMG __MINER.

5.5.1 Extracted Rule Compactness

We compared both bases (SGB, SRZ) and (GB, RZ) using the couple size as an evaluation criterion, for
a fixed minsupp value. Representative results we obtained are graphically sketched by Figure 5.2. The as-
sociated experiments were carried out for the PUMsB (resp. CONNECT, MUSHROOM and T40110D100K)
context for a minsupp value equal to 70% (resp. 50%, 0.01% and 1%). Note that the choice of each
minsupp value is performed according to the context density. For each context, the minconf value varies
between the aforementioned minsupp value and 100%.

Figure 5.2 points out that removing redundancy within the frequent MG set offers an interesting lossless
reduction of the number of the extracted generic association rules. Indeed, our approach allows to remove
in average 63.03% (resp. 49.46%) of the redundant generic association rules extracted from the PumMsB
(resp. MUSHROOM) context. The maximum rate of redundancy reaches 68.11% (resp. 53.84%) for the
PuMsB (resp. MUSHROOM) context, for a minconf value equal to 100% (resp. 20%).

For the CONNECT and T40I10D100K contexts, the respective curves representing the size of the basis
(8GB, SRT) and those representing the size of the basis (GB, RZ) collapse. Indeed, these two contexts
do not generate redundant frequent MGs, and hence there are no redundant generic association rules.
Furthermore, for the T40I10D100K context, no exact association rule is generated since each frequent
MG is itself a CI.
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Figure 5.2: For a fixed minsupp value, the size of the basis (GB, RZ) vs. that of the basis (SGB,
SRI) for benchmark contexts.

Obviously, once the minsupp value fixed, the size of both sets GB3 and SGB remains unchanged along

with the variation of minconf values. In this respect, our next experiment studies the variation of the size
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Figure 5.3: For a fixed minconf value, the size of the generic basis GB (resp. RZ) vs. that of
the succinct generic basis SGB (resp. SRZ) for benchmark contexts.

of the generic bases (SGB, SRT) and (GB, RZ) w.r.t. minsupp. For this purpose, we set the minconf
value to 0%, while the minsupp value varies between 60% and 90% (resp. 0.01% and 1%) for the
PuMsB (resp. MUSHROOM) context. Our aim is to evaluate the reduction rate within valid ezact generic
association rules (i.e., the generic basis GB) compared to that within approzimate ones (i.e., the RZ
basis).

Figure 5.3 shows that, for the PUMSB context, in average 62.46% (resp. 49.11%) of the exact (resp.
approximate) generic association rules are redundant, and the maximum rate of redundancy reaches
68.46% (resp. 62.65%) for a minsupp value equal to 65% (resp. 65%). For the MUSHROOM context, in
average 50.55% (resp. 52.65%) of the exact (resp. approximate) generic association rules are redundant,
and the maximum rate of redundancy reaches 53.23% (resp. 57.86%) for a minsupp value equal to
0.20% (resp. 0.10%).

Please note that we used very low support thresholds in our experiments. This explains the important
number of mined valid association rules. That is because, for very low support values, the number of
frequent itemsets increases exponentially and, consequently, the number of induced association rules also
increases exponentially. In this respect, it is worth indicating the benefit brought by generic bases in
general and the basis (S§GB, SRZ) in particular towards helping the end-users browsing interesting rules
only. For example, for the MUSHROOM context and minsupp = 10%, the size of (SGB, SRT) is 25, 609
while that of the complete set of valid association rules is 380, 791, 946 which constitutes a reduction
rate equal to 1, 486.95. ® Our experiments hence clearly indicate that our approach can advantageously

be used to eliminate, without loss of information, a large number of redundant (generic) association rules.

5.5.2 Runtime

Figure 5.4 shows the runtime of the IMG EXTRACTOR algorithm compared to those of the SSMG MINER
algorithm. In these experiments, the minconf value used in IMG EXTRACTOR is set to 0. Thus, our
algorithm is in the worst case w.r.t. the number of mined rules since, for each minsupp value, it extracts
all valid succinct generic association rules.

In almost all experiments, our algorithm turned out to be faster. For example, for the MUSHROOM

5The set of valid association rules is provided by the implementation of Bart Goethals available at:
http://www.adrem.ua.ac.be/~ goethals/software/.
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(resp. T1014D100K) dataset, IMG EXTRACTOR is, in average, 39.74 (resp. 30.95) times faster than
SSMG _MINER and the difference between both algorithms reaches 68.82 (resp. 49.47) times for a min-
supp value equal to 0.01% (resp. 0.10%). Furthermore, due to a lack of memory space, SSMG _MINER
executions were not able to come to an end for some datasets and for low minsupp values. This happened
for the PUMSB (resp. RETAIL and T40110D100K) dataset for a minsupp value equal to 60% (resp.
0.01% and 0.50%) after more than 4 (resp. 7 and 8) hours of execution. For these three datasets and
for the other tested minsupp values, IMG _EXTRACTOR largely outperforms SSMG _MINER. For the
CONNECT (resp. CHESS) dataset, IMG _EXTRACTOR outperforms SSMG _MINER for minsupp values
greater than or equal to 60% (resp. 70%). However, SSMG _MINER gets the better for low minsupp
values even if the difference only reaches 1.58 (resp. 3.39) times for a minsupp value equal to 50% (resp.
60%).

It is important to mention that on average the time spent by the third step of IMG _EXTRACTOR
does not exceed 0.08% of the total time. This clearly shows that once the partially ordered structure

built, the derivation of succinct association rules becomes straightforward.
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Figure 5.4: Performances of IMG _EXTRACTOR compared to those of SSMG _MINER for bench-

mark contexts.

We believe that the obtained results are mainly due to the following observations. The SSMG MINER
algorithm uses a depth-first left-to-right order to traverse the search space. Hence, it extracts from
each visited node a potential frequent CI f and a potential frequent MG g. A highly time-consuming

subsumption checking is then of paramount importance to check whether a superset of f, with the
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same support, was already extracted. If it is the case, then g is compared to the potential frequent
MGs, already belonging to its y-equivalence class, to remove the non-minimal ones. After that, g is
compared to the actual representative frequent MG of its y-equivalence class, say R, and can take its
place if ¢ < R. The modification of the representative frequent MG is a consequence of the depth-first
traversal since the latter does not respect the total order relation <. If such a modification occurs,
then SSMG _MINER performs an expensive treatment to remove redundant frequent MGs. Indeed,
all previously extracted frequent MGs having R as a subset are removed since R became a potential
canonical one. Hence, this removal also requires a costly search of such supersets of R. On its side,
IMG _EXTRACTOR straightforwardly extracts the frequent MG set and does not compute closure but
simply derives them. In addition, the removal of a redundant frequent MG is performed by only checking
if all its direct subsets are representative frequent M Gs or not. Furthermore, each representative frequent
MG of a given y-equivalence class is found once for all and will not be replaced by another frequent MG.
Nevertheless, it should be recalled that the task of IMG _EXTRACTOR is much more involved, than that
of SSMG MINER, since it bears the construction of the partially ordered structure. Thanks to the
use of efficient functions and optimizations (described in Section 5.4), IMG _EXTRACTOR presents very
interesting performances since it reduces the cost of such a construction as much as possible by avoiding

unnecessary and redundant comparisons.

5.6 Conclusion

In this chapter, we described an approach aiming at extracting a lossless subset of association rules. This
approach relied on the different types of MGs we presented in the previous chapter. Our approach has
two main features covering the two complementary axes “effectiveness” and “efficiency”. On the one hand,
the proposed concise representation of association rules is only composed by succinct and informative
ones based on the redefined succinct system of minimal generators (RSSMG). In addition, it is lossless in
the sense that non-retained rules, i.e., redundant ones, are derivable without information loss if desired.
In this respect, we proposed a complete axiomatic mechanism allowing deriving valid redundant rules
starting from succinct generic bases. On the other hand, aiming at offering an efficient tool for extracting
the proposed representation, we designed a fast algorithm, called IMG _EXTRACTOR, which has for main
originality its shrewd construction of the precedence relation between closed itemsets (CIs). Indeed, this
is carried out simply using the set of frequent minimal generators (MGs). The distinction between the
different types of MGs as presented in the original succinct system of minimal generators (OSSMG) was
sharply exploited for reducing the cost of such a construction. Once the partially ordered structure built,
deriving Cls as well as retained rules becomes an easy task. Finally, an experimental study confirms
that relying on RSSMG allows to eliminate, as much as possible, redundant (generic) association rules,
and hence to offer to the end-users a more interesting knowledge. In addition, since IMG EXTRACTOR
exploits several optimizations, obtained results show that, although it constructs the partially ordered

structure, it largely outperforms the SSMG MINER algorithm.

In the next part, we will explore the disjunctive search space by proposing new concise representations
of frequent itemsets based on a disjunctive closure operator. We also generalize association rules through

disjunctions.
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Chapter 6

Disjunctive Closure and Associated
Exact Concise Representations of

Frequent Itemsets

6.1 Introduction

Many concise representations were proposed in the literature, like those based on frequent closed itemsets
[Pasquier et al., 1999b], minimal generators [Liu et al., 2007], disjunction-free sets [Bykowski and Rigotti,
2001, Bykowski and Rigotti, 2003], (generalized) disjunction-free generators [Kryszkiewicz, 2002], (closed)
non-derivable itemsets [Calders and Goethals, 2007, Muhonen and Toivonen, 2006], and essential itemsets
[Casali et al., 2005a]. Considering the set of frequent itemsets as data, all those representations follow the
minimum description length principle (MDLP) [Rissanen, 1978] which is based on the following insight:
any regularity in the data can be used to describe the data using fewer symbols than the number of symbols
needed to describe the data literally [Grunwald, 2007]. In practice, they were used in various applications
where frequent itemsets and their associated supports are useful [Calders et al., 2005, Mielikdinen et al.,
2006].

The exact concise representation based on frequent essential itemsets presents a noteworthily singular-
ity: it explores the disjunctive search space. In this space, itemsets are characterized by their respective
disjunctive supports. Thus, an itemset verifies an element of a context (or object) if one of its items
belongs to this object. Various applications of disjunctive patterns are possible in the contexts of mar-
ket basket analysis [Nanavati et al., 2001], medical data analysis [Ralbovsky and Kuchar, 2007], social
network analysis and bioinformatics [Zhao et al., 2006], etc.

In the disjunctive search space, an essential itemset contains a minimal, w.r.¢. set inclusion, set of items
among those itemsets characterizing a common set of objects. To bridge both disjunctive and conjunctive
search spaces, the inclusion-exclusion identities [Galambos and Simonelli, 2000] are of use to deduce the
conjunctive supports of itemsets starting from their disjunctive supports. Hence, this representation offers
a basis for straightforwardly deriving the conjunctive, disjunctive and negative frequencies of a pattern

[Casali et al., 2003, Casali et al., 2005a]. From a structural point of view, the set of frequent essential
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itemsets offers an interesting structural property thanks to its order ideal shape. This makes it useful,
for example, for assessing a given context density as performed in [Flouvat et al., 2005].
In spite of such interesting structural and compactness properties, this exact concise representation

presents two major limitations:

1. Tt is not self-contained in the sense that the set of frequent essential itemsets does not make it
possible by itself to decide whether an itemset is frequent or not. Hence, to get out this information,
this set has to be burdened by the positive border of frequent itemsets, composed by the frequent

maximal itemsets [Bayardo, 1998];

2. Several essential itemsets may characterize the same set of data and, therefore, they present a

certain form of redundancy.

In this respect, a compelling and thriving issue is to find a closure operator related to essential itemsets
in the sake of getting a more reduced concise representation, following the minimum description length
principle. Indeed, a gain in compactness terms can be reached thanks to the non-injectivity property
of the closure operator since many essential itemsets will be mapped into a single element within the
disjunctive search space.

Furthermore, the simultaneous use of essential itemsets and disjunctive closed itemsets can also ease
the detection of their respective disjunctive equivalence classes and, hence, the traversal of the disjunctive
search space. This can intensively be explored in many applications as done within the conjunctive search
space thanks to their correspondences; minimal generators [Bastide et al., 2000a] and closed itemsets
[Pasquier et al., 1999b], respectively. Indeed, these particular itemsets are structurally localized within
the associated lattice, which gives them more semantics, contrary to other itemsets numerically retained
(like non-derivable itemsets) independently from their localization. A scrutiny of the dedicated related
work also highlighted the importance of essential and disjunctive closed itemsets as well as their close

links with important pattern classes (see Section 6.7).

In this chapter, our main contributions are threefold:

1. We introduce a new closure operator associated to the disjunctive search space as well as its

theoretical properties.

2. We show that the set of the disjunctive closures of frequent essential itemsets does not constitute

by itself an exact concise representation of frequent itemsets.

3. We lead a thorough study of the finest sets of elements that can be added to gain the exactness label.
The correctness of the associated exact representations is then proved as well as a description of an
algorithm, called DCPR__ MINER, for their mining. The targeted representation aims at palliating

the limitations of that based on frequent essential itemsets as follows:

(a) Getting out a more compact representation than that based on frequent essential itemsets
by exploiting the non-injectivity property of the introduced closure operator. In fact, we have
to only retain the disjunctive closed itemsets that ensure to exactly recovering the whole set

of frequent itemsets.

(b) Ensuring the homogeneity of the obtained concise representation by only keeping itemsets

characterized by their disjunctive support.
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Exhaustive experiments, focusing on the compactness aspect, show the effectiveness of the concise
representation uniquely composed by disjunctive closed itemsets compared to the pioneering ones
of the literature. Here again, the minimum description length principle allows for an objective
comparison of alternative models regardless of their form or number of parameters in case the
interest is in model selection [Rissanen, 1978|. In addition, to the best of our knowledge, our work

is the first one allowing the extraction of such a cover thanks to a disjunctive closure operator.

The chapter is organized as follows: Section 6.2 details the disjunctive closure operator and its main
properties. Then, Section 6.3 describes the structural properties of the disjunctive search space. New
disjunctive closure-based representations of (frequent) itemsets are then introduced in Section 6.4. We
then propose, in Section 6.5, an algorithm for extracting the proposed disjunctive itemset-based repre-
sentations of frequent itemsets. The empirical evidences about the utility of our approach are provided

in Section 6.6. We also discuss related work in Section 6.7.

6.2 Disjunctive Connection and Compound Operators

6.2.1 Description

The basic idea of our new concise representations is to apply a closure operator on frequent essential
itemsets to obtain a more compact representation while preserving their interesting properties. As this
will be structurally characterized in the next section, the disjunctive itemsets will be divided into subsets,
and each subset simply represented by a unique element: the disjunctive closed itemset. This relies on
the non-injectivity property of any closure operator. The application of this operator makes it possible
to reduce the number of itemsets to be retained in the representation while being able to regenerate the
whole set of frequent itemsets without information loss.

The targeted operator is different from that applied in the case of conjunctively closed itemsets [Pasquier
et al., 1999b]. Indeed, essential itemsets are characterized within the “disjunctive search space” and no
more within the “conjunctive one”. Thus, as shown by Definition 37 (¢f. page 37), they are characterized
by their disjunctive supports and no more by their conjunctive ones. Hence, a new disjunctive closure
operator has to be devised.

The presentation of the new disjunctive closure requires that we define the corresponding applications

ensuring the link from the power-set of items P(Z) to that of objects P(QO) and vice versa.

Definition 60 (DISJUNCTIVE CONNECTION)
Let K = (O, Z, M) be an extraction context. The operators ensuring the connection between the P(Z)
and P(O) are as follows [Hamrouni et al., 2009b]:
£:P(0) — P(T)
O — f(0) = {icZ|(30ec0) (((0,i) € M) A((V 01 € O\O)((01,7) ¢ M)))}
g:P(1) - P(O)
I —g(I) = {o€0|(Fiel)((o,i)e M)}

Let us semantically explain these operators. With respect to set inclusion, f(O) is the maximal set of
items which only appear in the objects of O. Dually, g(I) is the largest set of objects which contain at

least an item of I.
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Example 37 In this chapter, we will consider the context depicted by Table 6.1. Indeed, this latter will
constitute o key erample for illustrating our second contribution indicated in the introductory section,
namely the limitation of disjunctive closures associated to frequent essential itemsets w.r.t. the exactness
label of a concise representation. For this context, we have: f({{}) =0, f({2, 8, 5, 6, 7}) = {B, C},

g({A, C}) = {1’ 2,8, 4,9, 6, 7}: and g({B’ D}) = {27 4, 9, 6, 7}'

A|B|C|D
1] X

2 || X | X

3 || X X
4 || X X
5 X | x| X
6 || X | X X
7 X X | X

Table 6.1: An extraction context.

Based on the operators introduced in Definition 60, we present the compound operators f o g and g o

f.

Definition 61 (DISJUNCTIVE COMPOUND OPERATORS)
Let K = (O, T, M) be an extraction context. Let f and g be the operators as introduced in Definition
60. We define the resulting compound operators as follows [Hamrouni et al., 2009b]:
h=fog:P(Z)—P(I)

I —h{) ={ieZlVoeO) (((0,i) e M) = (F i1 €I)((0,41) € M))}
W =gof:P(O)—PO)

O —W(0) = {0c0l3Fiecl) (((0,i) e M)A ((V 01 € O\O) ((01,7) &€ M)))}

Let us semantically explain these compound operators. Let I be an itemset, h(I) = f o g(I) is equal
to the largest set of items which only appear in the objects that contain at least an item of I. Let O
be a set of objects, h'(O) = g o f(O) is equal to the set of objects that contain at least an item only
appearing in the objects of O.

Example 38 Consider the context given by Table 6.1. We have: h(4C) = f o g(4C) = f({1, 2, 3, 4,
5, 6, 7}) = ABCD, h(BC) = f o g(BC) = [({2, 8, 5, 6, 7}) = BC, and I'({4}) =g o f({4}) = g(0) =
0, W' ({4, 6, 7)) =go f({4, 6, 7}) =g(D) = {4, 6, 7}.

Using itemset supports, we can also characterize the disjunctive closure of an arbitrary itemset as

shown by the following definition.

Definition 62 The disjunctive closure of an itemset I is equal to: h(I) = I U {i € T\I| Supp(VI) =
Supp(V(I U {i}))}.
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Thus, h(I) is the maximal itemset, w.r.t. set inclusion, containing I and having the same disjunctive
support. It can be obtained incrementally if we have the disjunctive support of the proper supersets of
I by considering items that do not change the disjunctive supports of I. The appearance of these items

in the context is consequently dependent on that of a nonempty subset of I.

Example 39 Consider the context given by Table 6.1. Let us look once again for the disjunctive closure
of 4C. We have Supp(VAC) = Supp(VABC) and Supp(VAC) = Supp(VACD). Indeed, B and D appear each
time 4 or C appear. Thus, B and D belong to the closure of AC since their presence does not affect its

disjunctive support. Consequently, h(4C) = ABCD.

6.2.2 Properties

In the following, we present and prove the main theoretical properties of the (compound) operators we

introduced.

Proposition 35 The following properties hold for all I, I, Io € P(Z) and O, O1, O3 € P(O):

(1) O1 € Oz = f(O1) C f(O2) (1) I € Ir = g(I) € g(I2)

(@) 1 ¢ h(D) (@) H(0) C 0

3) I € I = h(I1) C h(Dy) (3) 01 C 05 = I(O1) € W(05)
(4) £(0) = F(W(0)) (@) o(1) = g(h(D))

(5) h(I) = h(h(I)) (57) W'(0) = W'(n'(0))

(6) g(I) CO < IC f(O)

Proof.

- Property (1) O1 € Oy = f(01) C f(O2).

e Suppose that Oy C Os. If i € f(Oq), then from Definition 60, we have (3 0 € O1) (((0,i) € M) A
((V 01 € O\O1)((01,7) € M))). Since by hypothesis, we have O1 C Oa, then (3 0 € O3) ((0,i) € M).
Let us show that i verifies the second clause. Since we have (V¥ 01 € O\O1)((01,1) € M), then (¥ 01 €
O\O2)((o01,1) & M) also holds. Hence, (30 € O2) (((0,i) € M)A ((V 01 € O\O2)((01,1) &€ M))) is
true. This implies that i € f(O2). We conclude that f(O1) C f(O2).

- Property (1’) I C I, = g(I1) C g(I2).

o Suppose that I C I and let o € g(I1). According to Definition 60, we have the veracity of the clause
(Fie L)((o,i) € M). Since I C I, then (3 i € I)((0,i) € M) is also true. Thus, o € g(I3). We
conclude that g(I1) C g(Is).

- Property (2) (f o g is extensive) I C f o g(I).
o Let i € I. By definition (cf. Definition 61), we have f o g(I) = {i € Z|(WV o € O) (((0,i1) € M) =
(Fi1 € I)((0,i1) € M))}. If we take iy =i, then i € f o g(I). We then conclude that I C f o g(I).
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- Property (2’) (g o f is contractive) g o f(O) C O.

e Leto € g o f(O). According to the definition of g o f (cf. Definition 61), we deduce that o verifies
(i eI (((0,i) € M)A ((Vor € O\O) ((01,i) & M))). Now, suppose that o ¢ O. We will have
((0,7) & M) which is in contradiction with the fact that o € g o f(O). Hence, o € O. We can thus
conclude that g o f(O) C O.

- Property (3) (f o g is isotone) I C I = f o g(I1) C f o g(I2).
o We have I; C Is.

= g(I1) C g(I2) (according to Property (17)).

= fog(lh) C f o g(lz) (according to Property (1)).

- Property (8’) (g o f is isotone) O1 C Oz = g o f(O1) C g o f(O2).
o We have O7 C Os.

= f(O1) C f(O2) (according to Property (1)).

= go f(O1) C go f(O2) (according to Property (17)).

- Property (4) f(O) = f o go f(O)-

o We will prove this property by proving the inclusion in both directions.

(<)

We have g o f(O) C O (according to Property (2°)). Hence, f o g o f(O) C f(O) (according to Property
(1))-

(2)

We have I C f o g(I) (according to Property (2)). For the particular case where I = f(O) and by
replacing I by f(O), we obtain f(O) C f o g o f(O).

We can then conclude that f(O) = f o g o f(O).

- Property (4°) g(I) = g o f o g(I).

o We will prove this property by proving the inclusion in both directions.

(S)

We have I C f o g(I) (according to Property (2)). Hence, g(I) C g o f o g(I) (according to Property
(17)).

(2)

We have g o f(O) C O (according to Property (2°)). In particular, for O = g(I) and by replacing O by
9(I), we obtain g o f o g(I) C g(I).

We can then conclude that g(I) = g o f o g(I).

- Property (5) (f o g is idempotent) f o g(I) = f o go f o g(I).
e We have g(I) = g o f o g(I) (according to Property (4°)). By applying f on both sides of the equality,
we obtain f o g(I) = f ogo fog(I).

- Property (5°) (g o f is idempotent) g o f(O) = go f o go f(O).
o We have f(O) = f o g o f(O) (according to Property (4)). By applying g on both sides of the equality,
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we obtain g o f(O) =go fogo f(O).

- Property (6) g(I) € O < I C f(0).

o We will prove this equivalence by proving that both implications hold.

(=)

Suppose that g(I) C O. Then, we have f o g(I) C f(O) (according to Property (1)). Since we also
have I C f o g(I) (according to Property (2)), we conclude by transitivity that I C f(O).

(=)

Suppose that I C f(O). Then, we have g(I) C g o f(O) (according to Property (1°)). Since we also
have g o f(O) C O (according to Property (27)), we conclude by transitivity that g(I) C O.

Hence, g(I) CO & I C f(0). &

The following two propositions straightforwardly derive from Proposition 35.
Proposition 36 The operator h is a closure operator.

Proof. According to Proposition 35, h fulfills the conditions required by the definition of a closure oper-
ator (c¢f. Definition 14, page 17). Indeed, it is extensive (¢f. Property (2)), isotone (¢f. Property (3))
and idempotent (cf. Property (5)). <

Proposition 37 The operator h' is a kernel operator.

Proof. According to Proposition 35, b’ is contractive (¢f. Property (2’)), isotone (cf. Property (3’)) and
idempotent (c¢f. Property (5°)). It is hence a kernel operator according to Definition 14 (¢f. page 17).
¢

6.3 Structural Characterization of the Disjunctive Search Space

The definition of the closure operator h structurally characterizes the disjunctive closure of any itemset 1.
This allows to straightforwardly compute disjunctive closed itemsets freely either using a breadth-first or
a depth-first traversal of the search space. Thanks to this operator, the disjunctive search space is parti-
tioned into so-called disjunctive equivalence classes w.r.t. the relation “has the same disjunctive closure”.
In each class, the associated disjunctive closed itemset is the unique maximal element w.r.t. set inclusion,
while the corresponding essential itemsets are the minimal ones. The elements of each equivalence class
share the same set of objects and, hence, have the same disjunctive support and disjunctive closure. The
exploration of the disjunctive search space using the operator h will be at the origin of the new concise
representations for the set of frequent itemsets as explained in the remainder.

Now, we begin by presenting the definition of a disjunctive closed itemset.

Definition 63 (DISJUNCTIVE CLOSED ITEMSET)
An itemset I is said to be disjunctive closed if h(I) = I. Equivalently, I is disjunctive closed iff Supp(VI)
< min{Supp(V(IU{i}))| i € T\1}.
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A disjunctive closed itemset is then the maximal set of items only contained in the set of objects where
at least an item of I appears, and nowhere else. Since the disjunctive support augments proportionally
to itemset sizes, i.e., Supp(V I1) < Supp(V I) if I; C I, it is sufficient to only compare the disjunctive
support of I with those of its immediate supersets, instead of all, to check whether it is a disjunctive
closed itemset or not. Let us give some examples of the closure operator h that will be at the roots of

the concise representations we will introduce.

Example 40 Given the context depicted by Table 6.1, the itemset BC is a disjunctive closed itemset, since
it is equal to the largest set of items only contained in the set of objects where B or C appears, i.e., {2, 3,
5, 6, 7}. Hence, h(BC) = BC. Using disjunctive supports, we have Supp(V BC) =5 < min{Supp(V4BC),
Supp(VBCD) } = 6. While ACD is not a disjunctive closed itemset since B only appears in the set of objects,
equal to O, where at least one item of ACD appears. Actually, h(ACD) = ABCD.

Note that as for the frequent essential itemset-based representation (c¢f. Remark 1, page 37), we need
to add the couple (0, |O|) to the representation to make it lossless w.r.t. the empty set. This does not
affect the structural properties of disjunctive closed itemsets nor the homogeneity of the representations
we will propose in the remained. The set of all disjunctive closed itemsets that can be drawn from a
context I will be denoted DCZ.

The following proposition shows how to select the disjunctive closure of an arbitrary itemset I among
those belonging to DCZ.

Proposition 38 Let I C Z. The itemset h(I) is the smallest disjunctive closure containing I: h(I) =
minc{l, € DCT | I C I }.

Proof. The proof straightforwardly derives from the definition of a disjunctive closed itemset. <

Proposition 39 establishes the link between the disjunctive support of an itemset and that of its closure.
Proposition 39 Let I C 7. Supp(VI) = Supp(Vh(I)).
Proof. According to Property (4’) (cf., Proposition 35), we have g(I) = g o f o g(I). Hence, g(I) =
g(h(I)). We then have: |g(I)| = |g(h(I))|. It follows that Supp(VI) = Supp(Vh(I)). &

Proposition 40 shows that it is possible to deduce the disjunctive closure of an itemset thanks to one
of its subsets.
Proposition 40 Let I, I; C T be two itemsets. We then have:

(I €1 C (1)) = (h(I) = h(I1))-

Proof. We have I C I C h(I). Since h is isotone as being a closure operator, we obtain h(I;) C h(I) C
h(h(I1)). Thanks to the idempotency property, we get h(l1) C h(I) C h(l1). Thus, we can conclude
that h(I) = h(l). ¢

Thanks to Proposition 41, we establish the link between disjunctive closed itemsets and essential

itemsets.
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Proposition 41 Let ET be the set of all essential itemsets that can be extracted from a context K.
V(I CI),3(1 €DCT and Iy € ET) such that h(ls) = h(I) =1, and I, C I.

Proof. Let X € £T be a maximal subset of I such that Supp(VX) = Supp(VI). Hence, g(X) = g(I). By
applying f, we have: f o g(X) = f o g(I). Hence, h(X) = h(I). Since I C h(I), then I C h(X). We
can then conclude that there is a disjunctive closed itemset Iy = h(X) associated to an essential itemset,

namely X, that contains I. It is hence sufficient to take Io = X. <

It is important to mention that Proposition 39 and Proposition 40 offer a new characterization of es-
sential itemsets. Indeed, recall that their original characterization was based on their associated supports
as follows: I C 7T is an essential itemset if Supp( V I) > max{Supp(VI\{i}) | i € I} (¢f. Definition 37,

page 37). The new characterization, based on disjunctive closed itemsets, is as follows:
Proposition 42 Let I C Z. I is an essential itemset if V Iy C I, I g h(I).

Proof. Suppose that 3 I; C I s.t. I C h(I1). According to Proposition 40, we have h(I) = h(I1). Thanks
to Proposition 39, we have Supp(VI1) = Supp(Vh(I1)) = Supp(Vh(I)) = Supp(VI). Since Supp(VI;) =
Supp(VI), then I is not an essential itemset. Thus, if I is an essential itemset, thenV I; C I, I € h(I1). ¢

It is also worth noting that some essential itemsets as well as disjunctive closed itemsets can be charac-
terized using disjunctive rules, as done in [Bykowski and Rigotti, 2001, Bykowski and Rigotti, 2003] for
the disjunctive-free sets. Indeed, an itemset I is an essential of size greater than or equal to 2 if there is
no item ¢ € I s.t. i = V(I\{i}) is always satisfied. This means that ¢ must appear in an object in which
no item of (I\{i}) appears. On the other hand, an itemset I is a disjunctive closed of size greater than
or equal to 1 if there is no item ¢ € Z\I s.t. i = VI is always satisfied. This means that ¢ must appear

in an object in which no item of I appears.

The following proposition ensures that it is possible to derive the disjunctive support of each subset of

an arbitrary itemset starting from DCZ.
Proposition 43 Let I CZ. VYV I} C I, the disjunctive support of I; can be exactly derived from DCZL.

Proof. The set DCZ contains all the disjunctive closed itemsets that can be drawn from a context K.
Hence, V I, C I, h(I;) € DCZ. We can thus retrieve the exact disjunctive support of I; thanks to
Proposition 39. <

6.4 Disjunctive Closure-based Concise Representations of Fre-

quent Itemsets

6.4.1 New Concise Representation for All Itemsets

Let us begin by introducing a concise representation of the whole set of itemsets based on disjunctive

closed itemsets. This is stated in Theorem 12.
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Theorem 12 The set DCZI of disjunctive closed itemsets, associated to their respective disjunctive sup-

ports, is an exact concise representation of the whole set of itemsets.

Proof. Let I C 7. It was proven through Proposition 43 that the disjunctive support of I and those of
its subsets can be exactly derived from DCZ. Then, by applying an inclusion-exclusion identity using
the obtained disjunctive supports (¢f. Lemma 1, page 13), we are able to obtain the exact conjunctive

support of I. <

The set DCZ is thus not only a concise representation of frequent itemsets but also that of the whole
set of itemsets that can be drawn from a context (i.e., even the associated supports of infrequent itemsets

can be derived using DCT).

Example 41 Consider the context given by Table 6.1. The associated disjunctive lattice is sketched by
Figure 6.1, where each node contains a disjunctive itemset along with its disjunctive support. Different
sets of itemsets are also indicated. The essential itemsets are shown with bold letters, while the itemsets
belonging to DCZL are underlined. The set FEL induces an order ideal, as shown in Figure 6.1 for
minsupp = 1. The elements belonging to the negative border of FEZL, denoted Bd— (FET), are in italics.
An example of a disjunctive equivalence class, induced by the disjunctive closure operator, is also sketched.
Its minimal element is the essential itemset 4 and its largest one is the disjunctive closed itemset ABCD.
Please note that if, for example, an itemset is in bold letters and is also underlined, then this means that
it is both an essential itemset and a disjunctive closed one, e.g., the itemset BC. As an indication, the

itemsets belonging to BdT(FI) are marked by dashed circles.

1 A disjunctive
(ABCD, 7) I" — ~®equivalence class

| €ABC.7) | | (ABD.7) || GACD:7) |1 [ (BCD.6) |
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Figure 6.1: The disjunctive lattice associated to the context depicted by Table 6.1.

6.4.2 Effect of Setting the Conjunctive Frequency Constraint

In practice, the end-users are mainly interested in frequent itemsets and not in all itemsets. The selection
of frequent itemsets can be done as a post-treatment by comparing the obtained supports with minsupp.
Nevertheless, it is more advantageous to restrict the representation to only the required elements while

preserving the exact regeneration of frequent itemsets. Among these elements, disjunctive closed itemsets
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having at least a frequent essential itemset as a generator should obviously be maintained. Indeed, they
cover at least a frequent itemset, namely the associated frequent essential itemset. These closed sets,
along with their associated disjunctive supports, will hence constitute the key information allowing to
derive the ezact disjunctive and, hence, conjunctive supports of frequent itemsets. The subset of DCZ

containing these closures will be denoted EDCZ. ! This set is then as follows:

Definition 64 (SET OF ESSENTIAL DISJUNCTIVE CLOSED ITEMSETS)
The set EDCT is equal to: EDCT = {h(I) € DCI| I € FEI}.

Example 42 Consider Figure 6.1. For minsupp = 1, ABCD € EDCI, since it has 4 for frequent essential

itemset.

The next lemma compares the size of EDCZ with that of FEZ.
Lemma 7 The cardinality of EDCZ is at most equal to that of FEL.

Proof. To each frequent essential itemset is associated a unique element in EDCZ. Hence, the size of the
set EDCZ will be lower than or equal to that of FEZ.

Thanks to Lemma, 8, we can correctly derive the disjunctive supports of frequent itemsets from the
elements of EDCZ. Once disjunctive supports derived, Lemma 1 (¢f. page 13) will then be used when

desired to deduce their conjunctive and negative supports.

Lemma 8 Let FI be the set of frequent itemsets, I C I and Ly, = minc{l; € EDCT | 1 C I} if it

exists. We then have:
VIe FI, (3 Lnin) N (Supp(VI) = Supp(V Inin)).

Proof. The proof straightforwardly derives from that of Proposition 41 (¢f. page 115) and the fact that

the disjunctive closure of a frequent itemset I is the smallest one covering it among those of EDCZ. <

As mentioned above, a concise representation of frequent itemsets based on disjunctive closed item-
sets must contain the elements of £DCZ. Nevertheless, is this set sufficient to offer an exact concise
representation?

During the regeneration process of frequent itemsets, the minimal infrequent itemsets are also checked
since they have all their subsets frequent. Let I be such an itemset. If I is not covered by any closure of
EDCI, then it is infrequent according to Lemma 8. However, the itemset I can be covered by an element
belonging to £DCZ, while having its proper closure not in £DCZ. Indeed, recall that the set £DCT
results from combining two constraints of different types, namely a monotone one through the disjunctive
support and an anti-monotone constraint using minsupp. Some key disjunctive closed itemsets for a
correct regeneration process may thus be pruned since they have all their essential itemsets infrequent.
This leads to affecting to I a wrong disjunctive support which, in some cases, will incorrectly make I

frequent instead of infrequent. Let us take a concrete example.

!Stands for frequent Essential-based Disjunctive Closed Itemsets
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Example 43 Let us consider the context shown in Table 6.1. According to Figure 6.1, for minsupp
= 1, we have EDCI = {B,(,D,BC, BD, CD,ABCD}. The first sixz closed itemsets of EDCI are equal to
their respective frequent essential itemsets. While the last one has the frequent essential itemset 4 as a
generator. Note that BCD ¢ EDCT since its generator, namely itself, is an infrequent essential itemset.
Indeed, the conjunctive support of BCD is equal to O (cf. Figure 6.1 where it is shown not to belong to the
order ideal induced by setting minsupp to 1).

Let us regenerate the set of frequent itemsets starting from EDCZ. We begin by 1-itemsets, i.e., 4, B,
C and D. The smallest closure containing 4 is ABCD. Hence, its disjunctive support is equal to 7, which
also corresponds to its conjunctive support. It is the same for the remaining 1-itemsets. Thus, we find
that their associated conjunctive supports are respectively equal to 7, 3, 3 and 3. We hence have the four
candidates as frequent.

We then handle candidate 2-itemsets. Thanks to the anti-monotone property of the frequency, an
arbitrary itemset will only be treated if all its subsets were already proved to be frequent itemsets. This
can be ensured thanks to a levelwise [Agrawal et al., 1996] or o depth-first right-to-left [Calders and
Goethals, 2005] traversal of the search space. Consider the case of AB whose subsets 4 and B are shown
to be frequent. The smallest closure in EDCL containing AB is ABCD. The disjunctive support of AB
is then equal to 7. By applying an inclusion-exclusion equality (cf. Lemma 1), we have Supp(4B) =
—Supp(V AB) + Supp(V 4) + Supp(V B) = -7 + 7 + 3 = 3. The itemset 4B is hence frequent. The same
process is applied for the remaining candidate 2-itemsets.

Let us now focus on the candidate 3-itemset BCD whose all subsets are frequent and which hence must be
checked. When we retrieve the disjunctive support of BCD from EDCL, we will assign to BCD the disjunctive
support of the smallest element (w.r.t. set inclusion) in EDCT subsuming it, i.e., ABCD. When computing
the conjunctive support of BCD, we obtain Supp(BCD) = Supp( V BCD) - Supp( V BC) - Supp( V BD) -
Supp( Vv €D) + Supp(V B) + Supp(V C) + Supp(VD) =7-5-5-5+3 +3 +3 = 1. However,
the actual disjunctive support of BCD is equal to 6 and not 7. Its actual conjunctive support is then equal
to 0 and not 1. Consequently, the obtained result will falsify the frequency status of BCD w.r.t. minsupp
since it will be wrongly classified as frequent instead of infrequent. The flow is due to the pruning of
the disjunctive closed itemset BCD whose unique generator is the infrequent essential itemset BCD (i.e.,
itself).

The previous example clearly shows that EDCZ cannot constitute by itself an exact concise repre-
sentation of frequent itemsets. We thus need to retain some closures, in addition to EDCZ, that ensure
correctly flagging the frequency status of itemsets whenever a wrong computation can arise. The following

subsection explores this issue.

6.4.3 New Concise Representations of Frequent Itemsets

We propose, in this section, new concise representations of frequent itemsets. These representations are
homogeneous in the sense that they are only composed by disjunctive itemsets. They hence require only
exploring the disjunctive search space while offering the direct retrieval of the different types of support
of frequent itemsets. These representations hence avoid the exploration of the conjunctive search space
since they do not require supplementary information from the conjunctive search space in order to check

whether an itemset is frequent or not.
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A. Disjunctive Search Space-based Representation

The first representation consists in a straightforward solution to ensure the exactness of the representation
based on £DCZ. This is carried out thanks to the set FET of frequent essential itemsets. The exactness

of this representation is stated by the following theorem.

Theorem 13 The set EDCI U FEL of disjunctive itemsets, associated to their respective disjunctive

supports, is an exact representation of the set of frequent itemsets FI.

Proof. Let I be an arbitrary itemset. If there is an itemset I s.t. Iy € FET and I} C I C h(Iy), then
h(I) = h(Iy) since h is isotone as being a closure operator. Hence, Supp(VI) = Supp(VI;). Since the
disjunctive support of I is correctly derived, then its conjunctive support can be exactly computed thanks
to Lemma 1 (¢f. page 13), and then compared vs. minsupp to retrieve its frequency status. If there is
not such an itemset 7, then I is necessarily encompassed between an infrequent essential itemset and its

closure. Consequently, I is infrequent since the set of frequent itemsets is an order ideal. ¢

The proof of Theorem 13 can be treated as a naive algorithm for determining frequent itemsets and their
supports. Indeed, this can straightforwardly be done in a levelwise manner that regenerates 1-frequent
itemsets, 2-frequent itemsets, and so forth. As shown in the proof, this representation ensures the easy
derivation of the disjunctive support of each frequent itemset, and hence the negative one using De
Morgan’s law. Since it is composed by particular elements within the disjunctive search space, namely
essential and disjunctive closed itemsets, then it will be denoted DSSR, which stands for Disjunctive

Search Space-based Representation.

B. Disjunctive Closed Itemset-based Representations

Now, we propose to only add some disjunctive closed itemsets to EDCZ, instead of FEZ. This will ensure
obtaining the same kind of itemsets — disjunctive closed — within the resulting representation [Hamrouni
et al., 2007a]. In this respect, the added itemsets constitute the set BDCZ. ? This set contains disjunctive
closures of odd-sized infrequent seeds belonging to the negative border of F£Z. Having all their respective
subsets as frequent itemsets, such seeds need to be checked during the regeneration process w.r.t. the
constraint “to be frequent”. In this situation, whenever their closures not retained in the representation,
a wrong derivation of their exact disjunctive supports can be misleading w.r.t. their infrequency (cf. the
case of the infrequent itemset BCD detailed in Example 43). The set BDCZ is formally defined as follows:

Definition 65 (SET OF ALL ADDED DISJUNCTIVE CLOSED ITEMSETS)
Let ET be the set of all essential itemsets that can be extracted from a context KC. The set BDCI is defined
as follows: BDCZ = {h(I) € DCZ| (I € Bd—(FEI)NET) A (|I] is odd)}

Example 44 For minsupp = 1, BCD € BDCZ. Indeed, its unique essential itemset is itself. Moreover,
the essential itemset BCD is an odd-sized infrequent itemset, having all its proper subsets frequent. Hence,

it belongs to the negative border of frequent essential itemsets.

2Stands for Border-based Disjunctive Closed Itemsets
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It is important to mention that in the definition of the set BDCZ, we did not consider the disjunctive
closures of even-sized infrequent essential itemsets belonging to the border of FEZ. This is argued by the
fact that the absence of such closures does not affect the exactness of the regeneration process as proved
in the following. Infrequent non-essential itemsets belonging to Bd~ (FEZ) were also omitted since they
are already included in EDCT (¢f. Proposition 40). Note however that both sets EDCZ and BDCZI are
not necessarily disjoint in the sense that a same closure can belong to both sets. Indeed, a disjunctive
closure can simultaneously have as seeds a frequent essential itemsets (and hence belong to £DCZ) and an
odd-sized infrequent essential itemsets (and hence belong to EDCT). However, since in the representation
EDCT U BDCI we take the union of both sets, such a redundancy is necessarily removed. The exactness
of the representation based on EDCZ and BDCT is provided by Theorem 14.

Theorem 14 The set EDCI U BDCZL of disjunctive closed itemsets, associated to their respective dis-

Junctive supports, is an ezxact concise representation of the set FI of frequent itemsets.

Proof. Let I CZ. If 31, C I s.t. I is infrequent, then I is also infrequent. Otherwise (i.e., VI C I,
I, € FI), we need to show that the frequency status of I is correctly retrieved starting from £EDCZ U
BDCI. In addition, its conjunctive support must be exactly computed if it is frequent. Two cases have

to be distinguished:

1. If I is frequent, then its disjunctive support will be correctly derived thanks to Lemma 8 (cf.
page 117). Indeed, I is either a frequent essential itemset and its closure is in EDCZ, or encom-
passed between a frequent essential itemset and its closure, obviously the latter belonging to EDCT.
Once its disjunctive support derived, the computation of the conjunctive support becomes then

straightforward thanks to an inclusion-exclusion identity.

2. If I is infrequent, then two cases arise:

(a) If I 4s not an essential itemset, then it is contained in the disjunctive closure of one of
its subsets. By hypothesis, this latter is frequent and hence its closure belongs to EDCZ. Also
in this case, the disjunctive support of I will be correctly derived and hence its conjunctive
support. By comparing the conjunctive support of I with minsupp, we get the information

that [ is infrequent.

(b) If I 4s an essential itemset, then necessarily I € Bd=(FEZ) N EZ. Let hs be the
smallest disjunctive closed itemset in £DCI containing I. If h, does not exist then I is
immediately guessed to be infrequent (thanks to Lemma 8). Otherwise, from Formula (1) of
Lemma 1, we have:

Supp() => (-1 Supp(v 1) = (-1 Supp( v 1)+ (1) Supp( v 1).

bchLcr bchcrI
Hence, according to the size of I we have:

i. If |I| is even, then Supp(I) = —Supp(V I) + Z (—1)ul|715upp( V I) < minsupp
0chcI
(since I is infrequent). Since I C hg, we have Supp( VvV I) < Supp( V hs). Hence,

—Supp(Vhs) + > (D" Supp(v L) < =Supp(vI) + Y ()" Supp( v 1)

0cncI OcIcI
< minsupp. This inequality points out that even if h is not necessarily the disjunctive

closure of I, we can detect that I is infrequent.
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ii. If |I| is odd, then by applying the same process as for the previous case, we are not able
to detect in all the cases the frequency status of I. Indeed, in this case, (-1) |I|_1.5'upp(\/1 )
is a positive quantity and not a negative one as in the case where |I| is even. Hence, if h;
is not the correct closure of I, then h(I) has all its essential itemsets infrequent. It then
belongs to BDCZ (c¢f. Definition 65) and its addition to the representation is necessary

to ensure the correct detection of the status of I.

Thus, the set EDCZ U BDCZ is an exact concise representation of FZ. <

The proof of Theorem 14 can easily be transformed to a naive algorithm for deriving frequent itemsets and

their associated supports starting from our representation. In the remainder, the concise representation
EDCI U BDCL will be denoted BDCIs_ rep.

According to Lemma 8 (¢f. page 117), we can further reduce the cardinality of the obtained repre-
sentation. This is carried out by only retaining, in the set BDCZ, each closure not already belonging
to EDCT which is covered by at least a disjunctive closed itemset from £DCZ. Hereafter, the resulting
subset of BDCZ after this pruning will be denoted ADCZ, ? and is formally introduced by the following

definition.

Definition 66 (SET OF ADDED DISJUNCTIVE CLOSED ITEMSETS)
The set ADCT is defined as follows: ADCT = {I € BDCT | (I ¢ EDCTI) and (3 I' € EDCT s.t. 1 C

)},

Both sets EDCZ and ADCZ are thus ensured to be disjoint (i.e., EDCI N ADCZ = (). Indeed, each
closure of EDCZ has at least a frequent essential itemset as a seed, while all the essential itemsets of a
closure belonging to ADCZ are infrequent. The next theorem states the correctness of the representation
EDCT U ADCT.

Theorem 15 The set EDCT U ADCT of disjunctive closed itemsets, associated to their respective dis-

Jjunctive supports, is an eract concise representation of the set FI of frequent itemsets.

Proof. The proof is based on that of Theorem 14 and on Lemma 8. Indeed, if an itemset [ is not covered
by any element of EDCZ, then we can directly assert that I is infrequent (¢f. Lemma 8). Therefore,
thanks to the extensivity property of any closure operator, h(I) cannot be subsumed by any element of
EDCI. Thus, it can be pruned from BDCZ while ensuring the correctness of the regeneration mecha-
nism (¢f. proof of Theorem 14). The set EDCZ U ADCT is then an exact concise representation of FZ. ¢

In the remainder, the concise representation EDCZ U ADCZ will be denoted DCIs_rep.

6.4.4 Features of the Proposed Representations

In addition to the exact retrieval of frequent itemsets as well as their different kinds of support, the

proposed concise representations present several interesting properties.

3Stands for Added Disjunctive Closed Itemsets.
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A. Case of the DCIs_rep Representation

The DCIs_rep representation offers the following main advantages:

1. Homogeneity: The DCIs_rep set overcomes the heterogeneity problem since it only involves
disjunctive itemsets (wvs., for example, FEZ U BdT(FTI)). Its elements have the same structural
properties. Indeed, they are the top elements of their associated equivalence classes within the
disjunctive search space. This ensures the homogeneity of the representation since all its elements

are also provided with the same type of support, i.e., the disjunctive support.

2. Redundancy free: Redundancy is due to the fact that a set of disjunctive itemsets can charac-
terize the same set of objects. This is avoided in our case since such a set is simply represented by

a unique disjunctive closed itemset, thanks to the proposed disjunctive closure operator.

3. Small size: £DCT is the smallest set that concisely represents the equivalence classes containing
at least a frequent itemset, since only a unique element is maintained per class. In addition, the
size of ADCZT is expected to be very small compared to Bd™(FZ), since its elements must fulfill
many easy-to-check constraints. This will be confirmed by experiments where DCIs_rep is shown

to provide very interesting compactness rates.

4. Low regeneration cost: It is worth mentioning that our concise representation allows retrieving
the conjunctive support faster than from frequent non-derivable itemsets. Indeed, for an itemset
I of size n, the retrieval process of Supp(I) from this representation requires the costly evaluation
of 2" deduction rules based on Bonferroni-inequalities [Mielikdinen et al., 2006]. The computation
cost for inferring supports is then awfully high which makes this representation not very easy to use
[Liu et al., 2007, Mielikdinen et al., 2006]. Note also that taking closures of frequent non-derivable
itemsets to obtain the closed non-derivable representation complicates both the extraction process
of this latter, as well as the regeneration process of frequent itemsets. On its side, the frequent closed
itemset-based representation [Pasquier et al., 1999b] allows retrieving the conjunctive support of I
by searching for the smallest closure containing it. However, it does not allow the straightforward
derivation of its disjunctive and negative supports. While the retrieval of Supp(I) from our concise
representation only needs to evaluate a unique inclusion-exclusion identity. Moreover, given at
hand Supp(I1) such that I; is an immediate subset of I and I\I; = i, we can straightforwardly

deduce the support of I. Indeed, it derives from Formula (1) in Lemma 1 that:

Supp(I) = Supp(L) + > (1)1l Supp( v 1)

iCICI
The regeneration process can also be further optimized as follows. Let us suppose that the small-
est closure covering an itemset I belongs to ADCZ. Since this latter set gathers closures whose
associated equivalence classes only contain infrequent itemset, the itemset I is hence necessarily
infrequent. Thus, we do not need to compute its conjunctive support. Nevertheless, for the sake
of homogeneity, the closures belonging to £EDCZ and those belonging to ADCT were included in
DClIs_rep without distinguishing their membership.

In this situation, a solution is to assign a common support for the closures belonging to ADCZ, for

example 0, during the mining process. The choice of this value is interesting since a disjunctive
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support cannot be equal to 0, what allows distinguishing the membership of a closure. Indeed, if
its support is different from 0, then it belongs to EDCZ. Otherwise, it belongs to ADCZ. This also
does not affect the correctness of the regeneration process since the associated supports of closures
belonging to ADCZ will not be used for computing conjunctive supports. They will only ensure
checking whether an itemset is infrequent when the smallest closure covering it has a support equal
to 0. Consequently, this solution allows to avoid the computation of its conjunctive support since
ensured to be infrequent. This is carried out without affecting the homogeneity of the proposed

representation.

B. Case of the DSSR Representation

In addition to some common properties with the DCIs_rep representation, the DSSR representation

(c¢f. page 119) presents the following interesting features:

1. Structural characterization of disjunctive equivalence classes: This is carried out thanks
to the elements contained in this representation, namely essential itemsets and their disjunctive
closures. This also ensures the homogeneity of the representation w.r.t. the explored search

space.

2. Low regeneration cost: In this respect, it offers the same advantage as the DCIs_rep represen-

tation (see above).

3. Optimized storage: This representation can be stored in a very compact way and without
information loss. This is carried out as follows: DSSR = {(e, f\e, Supp(Ve)) | e € FET and f
= h(e) € EDCTI}. Each disjunctive closed pattern, like f, is then simply derivable by getting the

union between e and f\e.

6.5 The DCPR_MINER Algorithm

In this section, we introduce a new algorithm, called DCPR__MINER, * dedicated to the extraction of
the disjunctive closed itemset-based representations, namely BDCIs rep and DCIs_rep. Note that a
slight modification of this algorithm makes it possible mining the DSSR representation. Indeed, this
algorithm will be shown to extract both sets composing DSSR, namely EDCZ and FEZ. It is hence
sufficient to omit the extraction of both sets ADCZ and BDCZ.

6.5.1 Description

The disjunctive closed itemsets composing both representations have, for associated seeds, the set FET
of frequent essential itemsets and a subset of the infrequent part of the associated negative border.
Interestingly, these latter seeds form a downward closed set. Thus, a levelwise traversal of the search
space is indicated for localizing them without overhead w.r.t. those of the negative border [Mannila and
Toivonen, 1997]. Indeed, the negative border consists of exactly those itemsets which, on the basis of

other information, could be frequent essential, and on which the constraint “to be frequent essential”

4DCPR_MINER is the acronym of Disjunctive Closed Pattern-based Representation Miner.
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should therefore be checked. The DCPR__MINER algorithm is thus designed to adopt such a traversal
technique for localizing the required seeds. Once located, their disjunctive closure will be efficiently
derived as explained hereafter. In this respect, the computation of the disjunctive closures of equal-size
itemsets can be performed using a unique pass over the extraction context.

According to Definition 62 (¢f. page 110), a naive method for obtaining the closure of I is to augment it
by the items maintaining its disjunctive support unchanged. However, this requires knowing beforehand
the disjunctive support of (I U {i}) for each item i € Z\I, which can be very costly. In this situation,
DCPR__MINER relies on an efficient method based on an exploitation of the complementary of an itemset
w.r.t. the set of items of the context. Indeed, the disjunctive closure h(I) of an itemset I is the maximal
set of items that only appear in the transactions having at least an item of I (¢f. Definition 61, 110).

Hence, we firstly compute the set h(I) of items that appear in the objects that does not contain any item

of an essential itemset I. Then, by evaluating the set Z\h(I), we simply obtain h(T).

Example 45 Consider the extraction context given by Table 6.1 (cf. page 110). Let us compute the
disjunctive closure of the essential itemset BC. The item 4 appears in o transaction that does not contain
neither B nor C (cf. transaction 1, for example). It is the same for the item D (cf. transaction 4, for
example). Then, h(BC) = AD. Consequently, h(BC) = Z\h(BC) = ABCD\4D = BC.

By definition, essential itemsets are the minimal elements in the associated disjunctive equivalence
classes (c¢f. Definition 37, page 37). Therefore, they are the first elements from which the disjunctive
closures are computed whenever a levelwise traversal of the search space is adopted. Dually, the dis-
junctive closures can be used to efficiently detect essential itemsets. Indeed, an essential itemset must
not be covered by the closure of one of its immediate subsets (c¢f. Proposition 42, page 115). This new
characterization of essential itemsets, adopted by DCPR__ MINER, allows the detection of essential item-
sets without computing their disjunctive supports. Indeed, we only need to have at hand the disjunctive

closures of the immediate subsets of an itemset to guess whether it is essential or not.

The pseudo-code of DCPR__MINER is depicted by Algorithm 8, while Table 6.2 summarizes the
associated notations. The mining of the disjunctive closures of £EDCZ and BDCZ, associated to their
supports, is carried out by means of the COMPUTE _SUPPORTS CLOSURES procedure (c¢f. line 4 in
Algorithm 8). The pseudo-code of this procedure is given by Algorithm 9. Thanks to one pass over the
extraction context, this procedure computes the conjunctive and disjunctive supports of i-candidates as
well as the complementary, w.r.t. the set of items Z, of their associated disjunctive closed itemsets. Then,
it deduces the disjunctive closures of frequent candidates from their complementary and inserts them in
EDCTI (cf. line 16 in Algorithm 9). While the disjunctive closures of odd-sized infrequent itemsets are
added to BDCZ (cf. line 20).

The generation of (i + 1)-candidates is performed by the APRIORI-GEN procedure [Agrawal and
Srikant, 1994], applied on the retained i-frequent essential itemsets (cf. line 5 in Algorithm 8). The
next instruction (cf. line 6) ensures that each element of C(;;1) has all its immediate subsets as frequent
essential itemsets. For this purpose, a candidate having an immediate subset which is not a frequent
essential itemset is withdrawn. While pruning non-essential itemsets from C(; 1) is performed thanks to
the characterization of essential itemsets using disjunctive closures. Indeed, Proposition 42 allows the

pruning of a candidate which is included in the disjunctive closure of one of its immediate subsets, since
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Notation Description

Ci (resp. L;) : Set of candidate (resp. frequent) essential itemsets of size i.
Xi : Itemset of size i.

X;.h : Disjunctive closure of Xj.

X;.h : Complementary of X;.h w.r.t. T (i.e., X;.h = I \ X;.h).

X;.Conj_Supp (resp. X;.Disj Supp) : Conjunctive (resp. disjunctive) support of Xj.

Table 6.2: Notations used by the DCPR_ MINER algorithm.

Algorithm 8: DCPR_MINER
Input: - An extraction context K, and the minimum threshold of support minsupp.

Output: - The exact concise representation DCIs rep = EDCZ U ADCT.

1Begin
2| EDCI = {(0, |O))}; BDCT := 0; i :==1; C; = T;

3| While (C; # 0) Do

4 COMPUTE_ SUPPORTS__ CLOSURES(K, minsupp, C;, L;, EDCZL, BDCI);
5 C(i+1) == APRIORI-GEN(L;);

6 Ciiv1) = {X(it1) € Cligny |V Yi C X(iyy, Vi € Ly and X401y € Yi-h};
7 1 =1+ 1;

8| ADCZ :={X € BDCT | (X ¢ EDCT) and (3 Y € EDCZ, X C Y)}
9| Return DCIs_rep;
10End

it is necessarily not an essential itemset.
Finally, the set ADCZ is derived from both sets BDCZ and £DCZ, as shown by line 8 in Algorithm 8.

Example 46 Consider the context depicted by Table 6.1 and let minsupp = 1. First, DCPR__MINER
initializes EDCT to the couple { (0, 7)} added to ensure the exact regeneration of the empty set conjunctive
support, while BDCI, i and C1 are respectively set to ), 1 and . Then, it iterates over the context to
compute the conjunctive and disjunctive supports as well as disjunctive closures of 1-essential candidates,
2-essential candidates, and so on. The iteration process stops whenever the candidate set is found to be
empty.

Initiallyy DCPR__MINER considers the set C1 of 1-essential candidates. For these itemsets, the con-
junctive and disjunctive supports as well as the complementary of their associated disjunctive closures are
computed by the COMPUTE _SUPPORTS _CLOSURES procedure thanks to an access to the context. The
result of this access is shown in Table 6.3 (Left). Then, this procedure constructs the set L1 containing
frequent 1-essential itemsets. It also deduces their closures starting from their respective complementary.
These closures will be included in EDCI, since all items are frequent. Table 6.3 (Right) shows the result
of this step.
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Algorithm 9: COMPUTE_SUPPORTS _CLOSURES
Input: - A context K, the minimum support threshold minsupp, and the set of

candidate essential itemsets C;.
Output: - The set of frequent essential itemsets £;, and the updated sets EDCT and

BDCT.
1Begin
2| L;:=0;
3| ForEach (o € O) Do
4 ForEach (X; € C;) Do
5 Q:= X; NI /*I denotes the items associated to the object 0.*/;
6 If (2 =0) Then
7 | Xih= X hU
8 Else
9 X;.Disj _Supp = X;.Disj Supp + 1;
10 If (= X;) Then
11 L X;.Conj_ Supp := X;.Conj_Supp + 1,

12| ForEach (X; € (;) Do

13 If (X;.Conj_Supp > minsupp) Then

14 L;:= L;U{X;};

15 X;.h = I\ X;.h;

16 EDCT = EDCT U {(X;.h, X;.Disj _Supp)};

17 Else

18 If (i is odd) Then

19 Xi.h := I\ X;.h;

20 \; BDCI := BDCZ U {(X;.h, X;.Disj_Supp)};

21End

Thus, L1 = Cy = {4, B, ¢, D}, EDCT = {(0, 7), (B, 8), (¢, 3), (D, 8), (4BCD, 7)} and BDCI
= (). Then, DCPR__MINER generates the set Co of the mext iteration thanks to the APRIORI-GEN
procedure. After this step, Co = {4B, AC, AD, BC, BD, CD}. In order to only retain essential itemsets
in Co, the instruction of line 6 is executed to prune the candidates included in the disjunctive closure
of one of their respective immediate subsets. The candidates 4B, AC and AD will hence be pruned from
Co since included in the closure of 4, namely ABCD. This latter set is then reduced to {BC, BD, CD}, and
the COMPUTE _ SUPPORTS__CLOSURES procedure will then handle its elements. The result of the access
step is shown in Table 6.4 (Left). After this step, the construction of the sets Lo, EDCI and BDCI is

performed. Since the size of these candidates is even, the set BDCI remains unchanged. However, the
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sets Lo and EDCT will be updated. This step is shown in Table 6.4 (Right). Thus, Lo = {BC, BD, CD}.
The set EDCT is augmented by {(BC, 5), (BD, 5), (CD, 5)}.

After that, the APRIORI-GEN procedure is called in order to generate the set Cs equal to {BCD}. Since
BCD is not included in any closure of its immediate subsets, then it is an essential itemset. A third access
to the context is then required. The access output is given by Table 6.5. The set EDCI remains unchanged,
while the set BDCT = {(BCD,6)}.

Access step Construction step
X, || Conj_Supp | Disj_Supp | T || X, e FT2 | n| Xi.h € EDCIT | X\.h € BDCT?
A 7 7 0 yes | ABCD yes no
B 3 3 | ACD yes B yes no
C 3 3 | ABD yes C yes no
D 3 3 | ABC yes D yes no

Table 6.3: The access (Left) and the construction (Right) steps for the first iteration.

Access step Construction step
Xy || Conj_Supp | Disj_Supp | T || X2 € FI? | h | Xoh € €DCT? | Xo.h € BDCT?
BC 1 5 | AD yes | BC yes no
BD 1 5 | AC yes | BD yes no
CD 1 5 | AB yes | CD yes no

Table 6.4: The access (Left) and the construction (Right) steps for the second iteration.

Access step Construction step
Xs || Conj_Supp | Disj_Supp | % || Xs € F12 | n | Xsh € €DCT? | X3.h € BDCT?
‘ BCD H 0 ‘ 6 ‘ A m no ‘ BCD ‘ no ‘ yes

Table 6.5: The access (Left) and the construction (Right) steps for the third iteration.

The iteration process ends since there is no size 4 candidate. The construction of the set ADCI then
begins starting from BDCI. Since BCD is covered by an element of EDCZL, namely ABCD, then ADCI =
{(BCD,3)}.

Finally, the DCPR_ MINER algorithm outputs the ezact representation DCIs_rep = {(0, 7), (B8, ),
(¢, 8), (D, 8), (BC, 5), (BD, 5), (€D, 5), (BCD, 6), (ABCD, 7)}.

By analyzing the sets built by the DCPR__MINER algorithm, we can point out that it operates in two
generic steps. The first one, called EXTRACTION, consists in extracting the elements of the sets EDCZ and
BDCT associated to their disjunctive supports from the extraction context (cf. lines 2-7). The second
step, called COVER__TEST, consists in constructing the set ADCZ by only maintaining the elements of
BDCIT covered by a disjunctive closure of EDCT (cf. line 8). Consequently, DCPR__MINER can easily
be adapted either to the extraction of the representation BDCIs rep or DCIs_rep. For this purpose,
we only need to omit the COVER__TEST step to return the former representation, while this step should

be retained to get the latter one. Thus, users interested in obtaining better performances can omit the
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CoVER__ TEST step, while users that prefer high compactness rates can execute the whole algorithm.

6.5.2 Correctness and Complexity
The following theorem ensures the soundness and the correctness of the DCPR_ MINER algorithm.

Theorem 16 The DCPR__MINER algorithm is sound and correct. It exactly extracts all the closures

belonging to DCls_rep, associated to their disjunctive supports.

Proof. The conjunction of two anti-monotone constraints, namely “to be frequent” and “to be essential”,
is also anti-monotone. Hence, a levelwise algorithm like DCPR_MINER guarantees that all frequent
essential itemsets are extracted as well as the associated negative border [Mannila and Toivonen, 1997].
For each candidate essential itemset, the algorithm also computes the items that cannot belong to its
disjunctive closures. It thus allows a correct derivation of the required disjunctive closed itemsets re-
spectively forming EDCT and BDCZ. After that, a cover test allows only retaining in BDCZ the closures
which are at least covered by an element of £DCZ. This step gives the set ADCZ. Thus, DCPR__MINER

is sound and correct. <

Proposition 44 gives the theoretical complexity of the DCPR__MINER algorithm.

Proposition 44 The worst case complexity of the EXTRACTION step is bounded by O((n?+m xn)x2"),

(ZO x 2™), where n
2
= |Z| and m = |0O|. The theoretical complexity of DCPR_MINER is bounded by the sum of those of its

two steps.

while the worst case complexity of the COVER_TEST step is bounded by O(n x (

Proof. First of all, let us recall the respective role of both distinct steps of the DCPR__ MINER algorithm.
The first, namely EXTRACTION, mines the closures belonging respectively to EDCZ and BDCZ. While
the second step, namely COVER__TEST, derives ADCZ from BDCI.

e Complexity of the EXTRACTION step: The theoretical complexity of this step is equal to those of

its associated instructions which are as follows:

1. The cost of the initializations carried out in line 2 (¢f. Algorithm 8, page 125) is in O(1).

2. The worst case complexity of the COMPUTE__SUPPORTS_ _CLOSURES procedure (cf. line 4)
is reached whenever any set of items appears at least once in the context, and each candidate
is a frequent essential itemset. There are hence 2" - 1 frequent essential itemsets, equal to

their respective closures. The cost of this procedure is then as follows:

(a) The cost of the initialization of the set £; for i = 1..n isin O(n) (¢f. line 2 in Algorithm
9, page 126).

(b) The cost of the computation of the disjunctive and conjunctive supports of itemset
candidates X; as well as the complementary of X;.h, namely X;.h, is bounded by O((m
x n) x 2") (c¢f. Algorithm 9, lines 3-11).

(¢) The cost of the pruning of candidates w.r.t. the minimum support threshold minsupp

as well as the construction of disjunctive closures starting from their complementary is
in O(n x 2™) (¢f. Algorithm 9, lines 12-20).
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3. There are, in the worst case, 2" - n - 1 candidates to be generated using the APRIORI-GEN
procedure (c¢f. Algorithm 8, line 5). The cost of this step is in O(2" - n).

4. The cost of pruning candidates through the characterization of essential itemsets using dis-

junctive closures (cf. Algorithm 8, line 6) is in O(n? x (2" - n)).

5. The cost of the incrementation of ¢ from 1 to n is in O(n) (¢f. Algorithm 8, line 7).

Consequently, the cost of this step is bounded by O(n + (m x n) x 2" +n x 2" + 2" - n + n?
X (2"-n)+n)=0((m xn+n?>+n+1)x2"-n%+n)=0((n?+m xn) x 2").

In the worst case, the complexity of the EXTRACTION step is then bounded by O((n? + m x n)
x 2M).

e Complexity of the COVER _TEST step: In this step, each closure of BDCZ is checked whether it
is covered by at least an element of EDCZ (¢f. line 8 in Algorithm 8). In the affirmative case,
it will belong to ADCZ. The complexity of this step is then at most equal to O(n x |[BDCI| x
|EDCZ|). We will now assess the size of both sets, i.e., EDCT and BDCZ, in the worst case.

The set BDCZT gathers the closures of odd-sized infrequent essential itemsets belonging to Bd~ (FET).
Its size is hence bounded by that of Bd~(FEZ). The cardinality of this latter border is at most

equal to ([;) .

Now, we assess the size in the worst case of the set £DCZ. For this purpose we suppose that each
essential itemset is equal to its closure. Hence, we have at most 2" - 1 disjunctive closures. The
size of EDCT is thus at most equal to 2" - 1.

In t}le WOISt CaSE, tlle COIIlpleXity Of the COVEI{ IESI Step 1'5 (n x < z )
2
X 2”)-

¢

It is important to mention that the complexity in the worst case of the COVER_TEST step is not
reachable in practice. Indeed, there is not a context that maximizes at the same time the size of EDCT
and that of BDCZT to reach the bounds we used in our computation. In addition, there is not a context
that simultaneously gives the respective worst case theoretical complexities of the DCPR__MINER steps.
Hence, the worst case complexity of DCPR__MINER is roughly bounded by the sum of those of its two
steps.

6.6 Experimental Results

In this section, our objective is to show, through extensive experiments, that our concise representation
provides interesting compactness rates compared respectively to the representations based on frequent
closed itemsets, frequent (closed) non-derivable itemsets and frequent essential itemsets. Note that from
a performance point of view, the disjunctive closed itemsets were shown in [Denden et al., 2008] to be
efficiently extracted using the DCPR_ MINER algorithm.

The experiments were carried out on benchmark contexts (c¢f. Appendix A for a detailed description

of these contexts). All experiments were carried out on a PC equipped with a 3GHz Pentium (R)
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and 1.75GB of main memory, running the GNU/Linux distribution Fedora Core 7 (with 2GB of swap
memory). In order to extract the aforementioned concise representations, we used the source codes of

the following algorithms:
1. DCPR__MINER is used in order to extract the representation based on disjunctive closed itemsets.
2. LCM [Uno et al., 2004] was applied to extract frequent (closed) itemsets.
3. NDI [Calders and Goethals, 2007] allows the extraction of frequent non-derivable itemsets. ©
4. FIRM is used in order to extract frequent closed non-derivable itemsets. 7

5. MEP [Casali et al., 2005a] extracts the representation based on frequent essential itemsets.

Obtained results are presented as follows. Table 6.6 and Table 6.7 compare the size of EDCZ (resp.
ADCT) with that of FEZ (resp. Bd™(FI)) on dense and sparse contexts, respectively. Both tables
also compare the size of ADCT (resp. Bd™(FI)) to that of EDCT (resp. FETI). The purpose of these
comparisons is to highlight the effect of the added part (i.e., ADCZ and Bd*(FZI)) vs. that of the
core part (i.e., EDCT and FET) on the size of the associated representation. Note that the symbol “/”
indicates that a ratio cannot be computed, since the size of ADCT is equal to 0. Figure 6.2 and Figure
6.4 graphically sketch the obtained results for dense and sparse contexts, respectively.

Table 6.8 and Table 6.10 compare the size of our concise representation DCIs_rep to those of the
literature as well as to that of the set of frequent itemsets, respectively on dense and sparse contexts.
In this respect, Table 6.9 and Table 6.11 present the compactness rates offered by our representation in
comparison to the whole set of frequent itemsets and to the other representations. Obtained results are
also graphically sketched by Figure 6.3 and Figure 6.5 for dense and sparse contexts, respectively. For
these tables, the abbreviation “FZ” (resp. “FCIs_rep”’, “NDIs_rep”’, “CNDIs_rep”, and “FEIs_rep”)
is used to stand for the set of frequent itemsets (resp. frequent closed, frequent non-derivable, frequent
closed non-derivable and frequent essential itemset-based representation). We also use the symbol “” to
designate a case where an execution error occurred. For example, to show the cardinality of CNDIs_rep,
the authors of [Muhonen and Toivonen, 2006] have chosen a specific interval of minsupp values for some
contexts also used in our tests. Nevertheless, beyond these intervals, we noticed that their program comes

to an end with an execution error.

In the literature dedicated to concise representations of frequent itemsets (e.g., [Boulicaut et al., 2003,
Calders et al., 2005]), it was shown that dense contexts present the most interesting cases. Indeed,
within such contexts, the compactness ratio between the size of the set of frequent itemsets and those of
concise representations is high. On the contrary, equivalence classes extracted from sparse contexts are
often reduced to the associated generators and cannot be further compacted. The number of extracted
frequent itemsets is hence small even for low minsupp values. This makes the size reduction rates brought
by concise representations meaningless in such contexts. The next paragraphs give a thorough analysis

of the obtained results.

5The source code of LCM is available at: http://research.nii.ac.jp/~ uno/code/lcm50.zip.

5The source code of NDI is available at: http://www.adrem.ua.ac.be/~ goethals/software/files /ndi.tgz.
"The source code of FIRM is available at: http://www.cs.helsinki.fi/u/jomuhone/firm /firm-3-3-3.tar.gz.
8The source code of MEP was kindly provided by its authors.
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1. DCIs_rep vs. FI:

1.1. Results on dense contexts: For the different minsupp values, the compactness rate offered
by our concise representation DCIs_rep, w.r.t. the size of FZ, is considerably high (¢f. Table
6.9). For example, it reaches almost 1, 116, 705 times for CONNECT with minsupp = 20%.

This clearly shows the necessity to set up concise representations for such type of contexts.

1.2. Results on sparse contexts: The size of DCIs_rep is lower than or equal to that of FZ
for the different contexts. However, the obtained results confirm that the compactness rates
offered by the pioneer concise representations of the literature are often low on such datasets.
Indeed, the size of DCIs_rep is almost equal to that of FZ for different sparse datasets,
such as KosARAK and T10I4D100K. This makes the associated curves collapse (cf. Figure
6.5 (Left)). Interestingly, for the ACCIDENTS dataset, we note a reduction reaching 8.23 for
minsupp = 20% (cf. Table 6.11).

2. DCIs_rep vs. FEIs_rep:

2.1. Results on dense contexts: The size of DCIs_repis always smaller than that of FEIs rep
(¢f. Table 6.9). Considering Table 6.6, the cardinality of £DCZ is always lower than that
of FEZ. By comparing the respective cardinalities of ADCZ and Bdt(FZI), we note that
the associated ratio reaches high values whenever the size of ADCZ is smaller than that of
Bd*(FZ). This occurs for the CONNECT, CHESS and PUMSB contexts which explains why
our representation is largely smaller than FEIs rep on these contexts. For MUSHROOM,
ADCT is smaller than Bd* (FZI) for high minsupp values while it is the opposite for low ones,
although the ratio values are too small. It is also the opposite for PUMSB* w.r.t. minsupp

values while preserving the low ratio values.

When comparing the size of ADCZ to that of EDCT, we note that the former only constitutes
at most 0.30 that of the latter. For the different contexts, the ratios also decrease proportion-
ally to the decrease of minsupp values (¢f. Table 6.6). This clearly shows that, in addition
to ensuring the homogeneity of the representation, ADCZ is very compact. While the size
of Bd™(FI) often exceeds and reaches 20.48 times that of FEZ (cf. Table 6.6). Thus, in
addition to the heterogeneity caused by this border, its size for dense contexts makes the

representation based on frequent essential itemsets, very large.

2.2. Results on sparse contexts: As for dense contexts, the size of DCIs_rep is always smaller
than that of FEIs rep (c¢f. Table 6.11). By comparing the respective size of the couple
of sets constituting each representation, we notice that the size of EDCZ is equal to that
of FET for the KOSARAK, RETAIL and T40I110D100K contexts. While its size is slightly
reduced for T10I14D 100K for very low minsupp values and ACCIDENTS for all minsupp values.
Consequently, for the KoSARAK and T10I4D100K contexts, the curves representing the size
of the sets EDCT and FET collapse (c¢f. Figure 6.4 (Left)). In fact, for sparse contexts, the
main advantage of our representation is that it avoids the use of elements from the conjunctive
search space contrary to FEIs_rep, which heavily relies on Bd™(FZ). This border clearly
increases the size of FEIs_rep. For example, the size of Bd*(FZI) reaches 13, 933.50 times
the size of ADCZ (c¢f. Table 6.7). It is worth noting that this latter set is almost empty for
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all contexts, except ACCIDENTS. Indeed, its size for the other four contexts does not exceed
10. In the figures associated to the KosARAK and T40I10D100K datasets, only the curve
representing the size of Bd(FZI) appears (cf. Figure 6.4 (Right)) since the size of ADCZ is

always equal to 0.

In comparison to dense contexts, the size of Bd™ (FZ) is more reduced for sparse ones. How-
ever, even for these latter contexts, ADCZ offers better compactness rates w.r.t. the associated
representation. Indeed, the size of ADCZ does not exceed 0.11 for the ACCIDENTS context
while decreasing whenever minsupp values lowered (c¢f. Table 6.7). As mentioned above, for
the other four contexts, its size is equal (or almost equal) to O w.r.t. that of EDCZ. On the
other hand, the size of Bd*(FZ) can be even equal to that of F£Z while being omnipresent
for almost all contexts and especially RETAIL, T10I14D100K and T40I110D100K (cf. Table
6.7).

3. DCIs_rep vs. FCIs_rep, NDIs_rep and CNDIs_rep:

3.1. Results on dense contexts: For the CHESS, CONNECT and PUMSB contexts, the cardinal-

ity of DCIs_ rep is significantly reduced compared to those of the other representations. It
is also the case for the PumMsB* context w.r.t. FCIs_rep and FEIs rep. Nevertheless, for
the MUSHROOM context, the size of DCIs_rep is quite greater than the size of FCIs_rep
and NDIs_rep for minsupp values lower than 20%.

For the different contexts, the program allowing the extraction of CNDIs rep comes to an
end with an execution error for low minsupp values. This can be explained by the very high
memory space used by this program when computing the associated closures of non-derivable
itemsets. Indeed, all these latter itemsets are maintained in memory throughout this step of
the execution. It is also worth noting that DCIs_rep is, in most cases, less sensitive to the

variation of minsupp values than the other concise representations (¢f. Figure 6.3).

3.2. Results on sparse contexts: Our representation is the smallest one for the ACCIDENTS

context. For the remaining contexts, its size is almost equal to that of FCIs_rep while it
is greater than those of NDIs rep and, consequently, CNDIs rep. In this respect, two
remarks are noteworthy: (i) The size of CNDIs_rep is almost equal to that of NDIs_rep.
Hence, in such contexts, computing the closed itemsets associated to non-derivable ones to
obtain CNDIs_rep is often useless, since each itemset is equal to its closure. (i7) To belong to
NDIs_rep, an itemset I must have a support not ezactly derivable using the deduction rules
based on the conjunctive supports of all its subsets [Calders and Goethals, 2007]. The main
advantage of NDIs rep is then brought by the large neighborhood explorations to retain
or not an itemset within the representation. While in our cases, DCIs_rep relies on taking
closures of essential itemsets. These latter itemsets are based on a simple comparison of their
support with those of their immediate subsets. An important question is then: what will be

the effect of enlarging the neighborhood for essential itemsets on the compactness rates?
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Figure 6.2: Size of EDCT vs. FET (Left), and ADCT vs. Bd(FZ) (Right) for dense contexts.
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Figure 6.3: Size of DCIs_rep vs. the whole set of frequent itemsets (Left), FEIs rep (Middle),

and the remaining representations (Right) for dense contexts.
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Figure 6.4: Size of EDCT vs. FET (Left), and ADCT vs. Bdt(FI) (Right) for sparse contexts.
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Figure 6.5: Size of DCIs_rep vs. the whole set of frequent itemsets (Left), FEIs rep (Middle),

and the remaining representations (Right) for sparse contexts.
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| minsupp | [IDCIs rep] I |[FEIs rep| I Ratios
T T
%) || 1epez| | |Aapez] \FET| | |Bd(FT)| ||é7:17€CII|| V”’ﬁmgg )| ||?gg§|‘ |Bc|l fg'z )|
CONNECT
90 23 0 177 222 8.00 / 0.00 1.26
80 84 0 305 673 3.66 / 0.00 2.21
70 162 0 491 1, 220 3.04 / 0.00 2.49
60 266 28 823 2, 103 3.10 75.11 0.11 2.56
50 463 127 1, 316 3, 748 2.85 29.51 0.27 2.85
40 820 243 1, 949 6, 213 2.38 25.57 0.30 3.19
30 1, 626 361 3, 045 11, 039 1.87 30.58 0.22 3.63
20 4, 726 789 6, 621 32, 583 1.40 41.30 0.17 4.92
10 19, 798 2, 603 22,943 130, 986 1.16 50.32 0.13 5.71
5 70, 799 11, 940 75, 346 413, 053 1.06 34.59 0.17 5.48
MusHROOM
40 80 12 111 41 1.39 3.42 0.15 0.37
30 183 31 248 63 1.36 2.03 0.17 0.26
20 760 182 1, 101 158 1.45 0.87 0.24 0.14
10 4, 433 1, 025 5, 984 547 1.35 0.53 0.23 0.09
5 || 17,815 2, 740 22, 966 1, 442 1.29 0.53 0.15 0.06
4| 22,128 3, 033 28, 317 1, 918 1.28 0.63 0.14 0.07
3 39, 723 4, 069 50, 553 2, 628 1.27 0.65 0.10 0.05
2 70, 845 5, 591 88, 507 3, 761 1.25 0.67 0.08 0.04
1 186, 274 10, 782 230, 475 6, 768 1.24 0.63 0.06 0.03
CHESS
90 41 3 85 34 2.10 11.33 0.08 0.40
80 130 21 242 226 1.87 10.76 0.16 0.94
70 350 71 592 891 1.69 12.55 0.20 1.51
60 774 144 1, 315 3, 323 1.70 23.08 0.19 2.53
50 1, 696 276 2, 810 11, 463 1.66 41.53 0.16 4.08
40 3, 564 555 5, 978 38, 050 1.68 68.56 0.16 6.37
30 7, 958 867 13, 154 134, 624 1.65 155.28 0.11 10.24
20 20, 369 2, 149 33, 186 509, 355 1.63 237.02 0.11 15.35
10 70, 355 5, 844 114, 220 2, 339, 525 1.62 400.33 0.08 20.48
PumMmsB
90 264 55 530 259 2.01 4.71 0.21 0.49
85 597 51 1, 546 1, 083 2.60 21.24 0.09 0.70
80 1, 048 32 3, 107 3, 145 2.97 98.28 0.03 1.01
75 1, 388 82 4, 632 7, 076 3.34 86.30 0.06 1.53
70 1, 986 158 6, 582 11, 737 3.32 74.28 0.08 1.78
65 3, 319 233 10, 413 18, 179 3.14 78.02 0.07 1.75
60 5, 317 234 17, 257 37, 388 3.25 159.78 0.04 2.17
55 7, 694 451 25, 901 92, 221 3.37 203.58 0.06 3.56
50 11, 029 523 38, 643 193, 939 3.50 370.82 0.05 5.02
40 34, 086 1, 490 124, 719 741, 009 3.66 497.32 0.04 5.94
30 108, 851 3, 579 442, 793 5, 198, 357 4.07 1, 452.46 0.03 11.74
20 487, 187 13, 319 2, 182, 184 | 30, 222, 301 4.48 2, 269.11 0.03 13.85
Pumss*
70 18 0 18 6 1.00 / 0.00 0.35
60 72 0 72 6 1.00 / 0.00 0.08
50 225 31 249 27 1.11 0.87 0.14 0.11
40 1, 446 138 1, 947 82 1.35 0.59 0.10 0.04
30 6, 889 667 10, 076 324 1.46 0.49 0.10 0.03
20 || 53,762 2, 826 100, 499 1, 786 1.87 0.63 0.05 0.02
10 513, 640 14, 329 1, 397, 666 16, 437 2.72 1.15 0.03 0.01

Table 6.6: Size of EDCT vs. FET and ADCI vs. Bd™(FI) for dense contexts.
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| minsupp | [IDCIs rep| I |[FEIs rep| I Ratios |
¥ ¥
%) || 1epez| | |apcz) | |FeT | 1Bat(FT))| |(|€’;fgz|| |B|‘f41§g|)| ||“§gg§|| |B‘|1f(€§|f)|
ACCIDENTS
50 2, 242 256 2,613 216 1.17 0.84 0.11 0.08
40 6, 856 646 8, 044 762 1.17 1.18 0.09 0.09
30 23, 657 1, 932 27, 437 2,729 1.16 1.41 0.08 0.10
20 || 100, 857 7,267 || 114, 650 11, 896 1.14 1.64 0.07 0.10
KOSARAK
1.00 384 0 384 88 1.00 / 0.00 0.23
0.50 1, 619 0 1, 619 307 1.00 / 0.00 0.19
0.40 2, 523 0 2, 523 467 1.00 / 0.00 0.19
0.30 5, 012 0 5, 012 814 1.00 / 0.00 0.16
0.25 8, 833 0 8, 833 1, 187 1.00 / 0.00 0.13
0.20 39, 465 0 39, 465 3, 022 1.00 / 0.00 0.08
RETAIL
10.00 10 0 10 5 1.00 / 0.00 0.56
5.00 17 0 17 4 1.00 / 0.00 0.25
1.00 160 0 160 78 1.00 / 0.00 0.49
0.50 581 0 581 284 1.00 / 0.00 0.49
0.10 7, 587 2 7, 587 3, 452 1.00 1, 726.00 0.00 0.46
0.05 | 19,234 5 || 19, 234 8, 143 1.00 | 1, 628.60 0.00 0.42
T10I14D100K
1.00 386 0 386 370 1.00 / 0.00 0.96
0.50 1,074 0 1,074 585 1.00 / 0.00 0.55
0.40 2, 001 0 2, 001 761 1.00 / 0.00 0.38
0.30 4, 475 2 4, 475 1, 293 1.00 646.50 0.00 0.29
0.20 12, 945 6 12, 950 1, 938 1.00 323.00 0.00 0.15
0.10 || 26,678 5| 26,688 4, 054 1.00 810.80 0.00 0.15
0.05 || 51,907 9 || 51,917 12, 062 1.00 | 1, 340.22 0.00 0.23
0.04 || 61,006 3 || 61,016 17, 725 1.00 | 5, 908.33 0.00 0.29
0.03 79, 971 2 79, 982 27, 867 1.00 | 13, 933.50 0.00 0.35
0.02 127, 519 10 127, 531 50, 258 1.00 5, 025.80 0.00 0.39
T40I10D100K
10 83 0 83 82 1.00 / 0.00 1.00
5 317 0 317 302 1.00 / 0.00 0.96
4 441 0 441 405 1.00 / 0.00 0.92
3 794 0 794 700 1.00 / 0.00 0.88
2 2, 294 0 2, 294 2, 015 1.00 / 0.00 0.88
1| 65,237 0| 65,237 21, 692 1.00 / 0.00 0.33

Table 6.7: Size of EDCT vs. FET and ADCL vs. Bd+(FZI) for sparse contexts.
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minsupp |FT | | FCIs_rep| | | NDIs rep| | | CNDIs _rep| | | FEIs _rep| || | DCIs_rep |
(%)
CONNECT
90 27, 128 3, 487 199 177 399 23
80 533, 976 15, 108 348 305 978 84
70 4, 129, 840 35, 876 545 491 1, 711 162
60 21, 250, 672 68, 344 894 - 2, 926 294
50 88, 173, 344 130, 112 1, 397 - 5, 064 590
40 339, 915, 256 239, 373 2, 066 - 8, 162 1, 063
30 || 1, 331, 673, 368 460, 357 3, 221 - 14, 084 1, 987
20 || 6, 157, 510, 380 1, 483, 199 7,574 - 39, 204 5, 515
10 - 8, 035, 412 29, 167 - 153, 929 22, 401
5 - 28, 384, 574 91, 050 - 488, 399 82, 739
MUSHROOM
40 566 140 146 117 152 92
30 2, 736 427 329 275 311 214
20 53, 584 1, 197 1, 143 731 1, 259 942
10 574, 432 4, 885 4, 347 2, 655 6, 531 5, 458
5 3, 755, 512 12, 843 11, 569 6, 546 24, 408 20, 555
4 5, 131, 853 16, 733 14, 382 8, 240 30, 235 25, 161
3 9, 987, 059 22, 231 19, 426 10, 824 53, 181 43, 792
2 23, 596, 651 31, 768 28, 253 - 92, 268 76, 436
1 90, 751, 402 51, 640 48, 719 - 237, 243 197, 056
CHESS
90 623 499 95 93 119 44
80 8, 228 5, 084 281 276 468 151
70 48, 732 23, 893 684 669 1, 483 421
60 254, 945 98, 393 1, 596 1, 567 4, 638 918
50 1, 272, 933 369, 451 3, 425 3, 341 14, 273 1, 972
40 6, 439, 703 1, 361, 158 7,185 7, 015 44, 028 4, 119
30 37, 282, 963 5, 316, 468 15, 147 - 147, 778 8, 825
20 289, 154, 814 22, 808, 625 34, 761 - 542, 541 22, 518
10 || 4, 553, 779, 005 123, 243, 073 98, 664 - 2, 453, 745 76, 199
Pumss
90 2, 608 1, 467 586 460 789 319
85 20, 535 8, 514 1, 792 1, 147 2, 629 648
80 142, 157 33, 308 3, 642 2, 136 6, 252 1, 080
75 672, 630 101, 083 5, 549 3,171 11, 708 1, 470
70 2, 698, 265 241, 259 7, 875 4, 564 18, 319 2, 144
65 8, 099, 128 496, 199 12, 609 7, 575 28, 592 3, 552
60 19, 529, 992 1, 074, 628 21, 323 12, 081 54, 645 5, 551
55 48, 790, 118 2, 729, 796 32, 121 . 118, 122 8, 145
50 165, 903, 541 7,121, 265 47, 764 - 232, 582 11, 552
40 || 3, 474, 538, 312 44, 434, 213 149, 211 - 865, 728 35, 576
30 - 698, 928, 543 470, 828 - 5, 641, 150 112, 430
20 - || 7, 453, 502, 677 - - 32, 404, 485 500, 506
PumsB*
70 30 18 21 18 24 18
60 168 69 76 69 78 72
50 680 249 277 238 276 256
40 27, 355 2, 611 1, 884 1, 595 2, 029 1, 594
30 432, 699 16, 155 7,926 6, 596 10, 401 7, 556
20 || 7, 122, 280, 454 122, 202 49, 642 - 102, 275 56, 588
10 - 1, 512, 866 450, 855 - 1, 414, 103 527, 969

Table 6.8:

Size of the different concise representations for dense contexts.
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. | FT | | FCIs rep | | NDIs rep | | CNDIs rep | | FEIs rep |
mnsupp | DCIs_rep | | DCIs rep | | DCIs rep | | DCIs_rep | | DCIs_rep | | DCIs_rep |
(%) B B
CONNECT
90 23 1, 233.09 158.50 9.05 8.05 18.09
80 84 6, 433.45 182.02 4.19 3.67 11.77
70 162 25, 651.18 222.83 3.39 3.05 10.62
60 294 72, 527.89 233.26 3.05 - 9.98
50 590 149, 700.07 220.90 2.37 - 8.60
40 1, 063 320, 070.86 225.40 1.95 - 7.68
30 1, 987 670, 530.40 231.80 1.62 - 7.09
20 5, 515 1, 116, 704.82 268.99 1.37 - 7.11
10 22, 401 - 358.72 1.30 - 6.87
5 82, 739 - 343.07 1.10 - 5.90
MUSHROOM
40 92 6.22 1.54 1.60 1.29 1.66
30 214 12.85 2.00 1.54 1.29 1.46
20 942 56.94 1.27 1.21 0.78 1.34
10 5, 458 105.27 0.90 0.80 0.49 1.20
5 20, 555 182.71 0.62 0.56 0.32 1.19
4 25, 161 203.97 0.67 0.57 0.33 1.20
3 43, 792 228.06 0.51 0.44 0.25 1.21
2 76, 436 308.72 0.42 0.37 - 1.21
1 197, 056 460.54 0.26 0.25 - 1.20
CHESS
90 44 14.49 11.60 2.21 2.16 2.74
80 151 54.85 33.89 1.87 1.84 3.11
70 421 116.03 56.89 1.63 1.59 3.53
60 918 278.02 107.30 1.74 1.71 5.06
50 1, 972 645.83 187.44 1.74 1.70 7.24
40 4, 119 1, 563.79 330.54 1.74 1.70 10.69
30 8, 825 4, 225.18 602.50 1.72 - 16.75
20 22, 518 12, 841.62 1, 012.95 1.54 - 24.09
10 76, 199 59, 762.45 1, 617.41 1.29 - 32.20
PuMmsB
90 319 8.20 4.61 1.84 1.45 2.48
85 648 31.74 13.16 2.77 1.77 4.06
80 1, 080 131.75 30.87 3.38 1.98 5.79
75 1, 470 457.88 68.81 3.78 2.16 7.97
70 2, 144 1, 259.11 112.58 3.67 2.13 8.55
65 3, 552 2, 280.80 139.74 3.55 2.13 8.05
60 5, 551 3, 518.92 193.63 3.84 2.18 9.85
55 8, 145 5, 990.93 335.19 3.94 - 14.50
50 11, 552 14, 362.70 616.51 4.14 - 20.14
40 35, 576 97, 667.98 1, 249.03 4.19 - 24.34
30 112, 430 - 6, 216.62 4.19 - 50.18
20 500, 506 - 14, 891.96 - - 64.74
Pumss*
70 18 1.76 1.06 1.24 1.06 1.35
60 72 2.37 0.97 1.07 0.97 1.08
50 256 2.67 0.98 1.09 0.93 1.08
40 1, 594 17.17 1.64 1.18 1.00 1.27
30 7, 556 57.27 2.14 1.05 0.87 1.38
20 56, 588 125, 864.25 2.16 0.88 - 1.81
10 527, 969 - 2.87 0.85 - 2.68

Table 6.9: The compactness rates offered by the representation based on disjunctive closed

itemsets for dense contexts.
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minsupp (%) || [FZ|[|FCIs rep| [ [ NDIs rep| | | CNDIs rep| [ [FEIs rep ||| | DCIs_rep | |
ACCIDENTS
50 8, 058 8, 058 2, 850 2, 850 2, 829 2, 498
40 32, 529 32, 529 8, 704 8, 704 8, 806 7, 502
30 || 149, 546 149, 530 28, 558 28, 558 30, 166 25, 589
20 || 889, 884 887, 389 110, 370 110, 367 126, 546 108, 124
KoSArRAK
1.00 384 384 384 384 472 384
0.50 1, 619 1, 619 1, 616 1, 616 1, 926 1, 619
0.40 2, 523 2, 522 2, 514 2, 513 2, 990 2, 523
0.30 5, 012 4, 983 4, 915 4, 895 5, 826 5, 012
0.25 8, 833 8, 771 7, 830 7, 786 10, 021 8, 833
0.20 39, 465 35, 865 17, 297 17, 117 42, 427 39, 465
RETAIL
10.00 10 10 10 10 15 10
5.00 17 17 17 17 21 17
1.00 160 160 160 160 238 160
0.50 581 581 581 581 865 581
0.10 7, 590 7,573 7, 580 7, 568 11, 039 7, 589
0.05 19, 243 19, 115 19, 178 19, 096 27, 377 19, 239
T10I14D100K
1.00 386 386 386 386 756 386
0.50 1, 074 1,074 1,074 1, 074 1, 659 1, 074
0.40 2, 002 1, 993 1, 987 1,979 2, 762 2, 001
0.30 4, 553 4,510 4, 377 4, 369 5, 768 4, 477
0.20 | 13,256 13, 108 11, 475 11, 434 14, 888 12, 951
0.10 27, 533 26, 807 24, 120 23, 901 30, 742 26, 683
0.05 53, 386 46, 994 44, 365 42, 800 63, 979 51, 916
0.04 62, 865 55, 844 53, 113 51, 266 78, 741 61, 009
0.03 82, 164 71, 266 69, 536 66, 462 107, 849 79, 973
0.02 || 129, 876 107, 823 109, 486 102, 869 177, 789 127, 529
T40I110D100K
10 83 83 83 83 165 83
5 317 317 317 317 619 317
4 441 441 441 441 846 441
3 794 794 794 794 1, 494 794
2 2, 204 2, 294 2, 294 2, 294 4, 309 2, 294
1 65,237 65, 237 42, 312 42, 312 86, 929 65, 237
Table 6.10: Size of the different concise representations for sparse contexts.
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. FI FCIs rep NDIs rep CNDIs rep FEIs rep
minsupp || | DCIs_rep | | DCllls_lrep | || DCIs__rep|| || DCIs_rep || | [DCIs_rep | | || DCIs_rep ||
(%)
ACCIDENTS
50 2, 498 3.23 3.23 1.14 1.14 1.13
40 7, 502 4.34 4.34 1.16 1.16 1.17
30 25, 589 5.84 5.84 1.12 1.12 1.18
20 108, 124 8.23 8.21 1.02 1.02 1.17
KoOSARrRAK
1.00 384 1.00 1.00 1.00 1.00 1.23
0.50 1, 619 1.00 1.00 1.00 1.00 1.19
0.40 2, 523 1.00 1.00 1.00 1.00 1.19
0.30 5, 012 1.00 1.00 0.99 0.98 1.16
0.25 8, 833 1.00 0.99 0.89 0.88 1.13
0.20 39, 465 1.00 0.91 0.44 0.43 1.08
RETAIL
10.00 10 1.00 1.00 1.00 1.00 1.56
5.00 17 1.00 1.00 1.00 1.00 1.25
1.00 160 1.00 1.00 1.00 1.00 1.49
0.50 581 1.00 1.00 1.00 1.00 1.49
0.10 7, 589 1.00 1.00 1.00 1.00 1.45
0.05 19, 239 1.00 0.99 1.00 0.99 1.42
T10I4D100K
1.00 386 1.00 1.00 1.00 1.00 1.96
0.50 1, 074 1.00 1.00 1.00 1.00 1.55
0.40 2, 001 1.00 1.00 0.99 0.99 1.38
0.30 4, 477 1.02 1.01 0.98 0.98 1.29
0.20 12, 951 1.02 1.01 0.89 0.88 1.15
0.10 26, 683 1.03 1.00 0.90 0.90 1.15
0.05 51, 916 1.03 0.91 0.85 0.82 1.23
0.04 61, 009 1.03 0.92 0.87 0.84 1.29
0.03 79, 973 1.03 0.89 0.87 0.83 1.35
0.02 127, 529 1.02 0.85 0.86 0.81 1.39
T40I10D100K

10 83 1.00 1.00 1.00 1.00 2.00
5 317 1.00 1.00 1.00 1.00 1.96
4 441 1.00 1.00 1.00 1.00 1.92
3 794 1.00 1.00 1.00 1.00 1.88
2 2, 294 1.00 1.00 1.00 1.00 1.88
1 65, 237 1.00 1.00 0.65 0.65 1.33

Table 6.11: The compactness rates

itemsets for sparse contexts.

offered by the representation based on disjunctive closed
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Figure 6.6: A disjunctive equivalence class: for each itemset, the associated couple of values gives

its conjunctive support (on the left) and disjunctive support (on the right).

6.7 Related Work and Discussion

In this section, we discuss the main related work to the contributions proposed in this chapter.

First of all, let us make an alignment between the disjunctive and the conjunctive search spaces. We will
hence find that disjunctive equivalence classes correspond to conjunctive equivalence classes — gathering
itemsets having the same Galois closure [Ganter and Wille, 1999] — within the conjunctive search space.
An essential itemset is then the mapping of the concept of minimal generator [Bastide et al., 2000b].
While a disjunctive closed itemset is the mapping of the concept of conjunctive closed itemset [Pasquier
et al., 1999b]. It is also worth noting that a disjunctive equivalence class can contain itemsets having
distinct conjunctive supports and, hence, belonging to distinct conjunctive equivalence classes. This is

illustrated by the following example.

Example 47 Consider the context shown in Table 6.1 (cf. page 110). The largest disjunctive equivalence
class, i.e., whose support is equal to |O|, namely 7, is depicted by Figure 6.6. It is composed by the mazimal
disjunctive closed itemset ABCD, its associated essential itemset 4, and, some itemsets encompassed between
4 and ABCD (gathered within the dashed ellipse). Each itemset is associated to a couple of numerical
values. The first one corresponds to its conjunctive support while the second value is equal to its disjunctive
one. By examining the itemsets of this class, we note that their respective disjunctive supports are equal
while their conjunctive supports can differ (e.g., Supp(4BCD) = 0 while Supp(4) = 7). Thus, the itemsets
belonging to distinct conjunctive equivalence classes can share the same disjunctive closure and, hence,

be gathered within the same disjunctive equivalence class.

From the semantic aspect, contrary to frequent closed itemsets, disjunctive closed ones offer the possibility
to take into account complementary information, i.e., items that are for example mutually exclusive. For
a given itemset I, its disjunctive closure gathers items whose appearances depend on that of a nonempty
subset of I. This is not possible using frequent closed itemsets since this requires that all items of I
simultaneously appear. Moreover, for an arbitrary itemset I, its associated closed itemset only gives an
idea about the set of items S that closely depend on all the items of /. However, an item ¢ € S can appear
in a transaction that does not contain I, but only a proper subset. While the disjunctive closure of I
gathers items that closely depend on the set of items contained in /. Indeed, the membership of an item
to the disjunctive closure of I requires that a subset of I appears in the associated transactions. This can
for example be useful for analyzing gene-expression data through localizing groups of genes of which the

appearance depends on other groups. In addition, disjunctive closed itemsets offer an interesting starting
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point for the extraction of generalized association rules [Nanavati et al., 2001, Toivonen, 1996a] which
can be useful in some real-life applications. Indeed, such rules offer the possibility to present conjunction,
disjunction and negation of items in both premise and conclusion parts. In this respect, in addition to
the conjunctive support, our representation offers direct access to the disjunctive support of frequent
itemsets, and hence to their negative support through De Morgan’s law.

The concepts of essential and disjunctive closed itemsets are also closely related to many important
pattern classes as detailed in the following. They can be considered as particular cases of composite items
[Ye and Keane, 1997] where the disjunction of (infrequent) items is used to compose new items, the
composite items. By introducing composite items, Ye and Keane highlighted the usefulness of infrequent
items in some applications. For example, consider the context of Table 6.1 and let minsupp = 4, B and
C are hence infrequent items since their support is equal to 3. Nevertheless, the support of B V C is
equal to 5 and, hence, Supp(B V C) > minsupp. The disjunct B vV C will be considered as a new item (a
composite one) even if, actually, it is composed of two items. It will be used during the mining process
since it is frequent which makes B and C useful. The work of Shima et al. [Shima et al., 2004] can be
considered as an extension of composite items, since it takes into account particular disjunctive normal
forms (DNFs) where disjuncts may contain a conjunction of items — frequent closed itemsets — and not
only a single item. Indeed, the authors proposed to extract minimal and closed DNFs. A minimal (resp.
closed) DNF does not have a subset (resp. superset) with the same support. The disjuncts associated
to such DNFs are thus constituted by frequent closed itemsets.

It is important to establish the link between essential itemsets and minimal transversals of a hypergraph
[Eiter and Gottlob, 1995]. For this purpose, consider essential itemsets of the disjunctive equivalence class
whose disjunctive support is equal to the cardinality of the whole set of objects . These itemsets are
hence the minimal ones that intersect all objects of an arbitrary context. If we consider objects as
hyperedges and items as vertices, the aforementioned itemsets are thus the minimal transversals of the
corresponding hypergraph. Note that each set of essential itemsets corresponding to a given disjunctive
equivalence class C can be considered as the minimal transversals of a hypergraph. This latter structure
is then represented by the hyperedges corresponding to the objects verified by the itemsets belonging to
C. While the set of vertices corresponds to the set of items contained in the corresponding disjunctive
closed itemset.

Essential and disjunctive closed itemsets can also be considered as specific cases of error-tolerant
itemsets [Yang et al., 2001]. Indeed, an itemset X is an error-tolerant itemset having an error tolerance
€ and a support k w.r.t. a context K if there are k objects of K in which at least a fraction 1 - € of the

items from X are present [Yang et al., 2001]. In our case, an essential or disjunctive closed itemset X
X1 -

| X|
in an object is sufficient to satisfy it. Note that if ¢ = 0, i.e., no error is allowed, k = Supp(X). The

is an error-tolerant itemset for € = and k = Supp(VX). Indeed, the presence of one item of X

conjunctive and disjunctive supports hence constitute the lower and upper bounds of the support of X,

respectively.

We will establish the link between our work and that recently proposed in [Soulet and Crémilleux,
2008]. In this respect, our disjunctive closure operator h ensures obtaining a preserving function w.r.t.
the disjunctive support according to [Soulet and Crémilleux, 2008]. Indeed, for an arbitrary itemset, our

operator ensures that once ¢ € h(X), we have: on the one hand, Supp(VX) = Supp(V(X U{i})), and on
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the other hand, Supp(VY) = Supp(V(Y U {i})),V X C Y. This latter equality results from the isotony
property of any closure operator: if i € h(X), theni € h(Y),V X CY.

In comparison to our work, that of [Soulet and Crémilleux, 2008] does not propose any concise repre-
sentation for frequent itemsets using the preserving function associated to the disjunctive support. In
addition, although they give a definition of a closure operator adequate to a condensable function, °
the authors did not pay attention to the corresponding link between the power-set of items and that of
objects as we did in this paper. Indeed, their definition mainly relies on an incremental augmentation
of a given itemset X by those items that do not modify the value of the condensable function for X.
The authors proposed to extract the closed itemsets adequate to a condensable function under an anti-
monotone constraint applied to the minimal seeds giving these closures. However, they did not study
the effect of such a pruning on the obtained set of closed itemsets w.r.t. the point of view of concise
representations. Indeed, consider for example the closure operator associated to the disjunctive support,
i.e., our disjunctive closure operator h. The minimal elements within the associated equivalence classes
are the essential itemsets. Let us also consider the anti-monotone constraint offered by the frequency
constraint through setting a minimum support threshold minsupp. The obtained set once h is applied
on essential itemsets, pruned w.r.t. minsupp, is EDCZ. However, this latter set is not an exact concise
representation of the itemsets adequate to the disjunctive support, i.e., disjunctive itemsets. Indeed,
consider the context we used in this chapter depicted by Table 6.1 (¢f. page 110). For minsupp = 1,
EDCT = {(, 3), (C, 3), (D, 3), (BC, 5), (BD, 5), (CD, 5), (ABCD, 7)} (¢f. Example 46, page 125 for
details on the extraction of this set). If X = BCD, we will get ABCD as the closure of BCD. Indeed, the
process used in [Soulet and Crémilleux, 2008] for getting the value of the function on an itemset X is
the same as ours. Hence, it consists in looking for the smallest closure in the representation containing
X. Consequently, the disjunctive support of BCD will be considered to be equal to 7. This is obviously
wrong since the closure of BCD is itself, and was already pruned since BCD is infrequent w.r.t. minsupp
= 1 (its actual disjunctive support is 6). Noteworthily, this constitutes one of the main contributions
proposed in this paper. Indeed, the pruning of BCD also made £DCT not an exact concise representation
for frequent itemsets (¢f. Example 43, page 118). This motivated us to lead an in-depth exploration
for ensuring the exactness of the proposed representation based on EDCZ (c¢f. Subsection 6.4.3, page
118). Unfortunately, the authors in [Soulet and Crémilleux, 2008], neither stated explicitly that, once
the anti-monotone constraint applied, the obtained set of closed itemsets — adequate to a condensable
function f (e.g. EDCT for the disjunctive support and the minsupp constraint) — may not be an exact
representation of itemsets adequate to f, nor highlighted an error bound or the need for adding other
elements, as we did here, ensuring the exactness of the regeneration process.

Now, we will make the link between our work and that of Zhao et al. [Zhao et al., 2006, Zhao, 2006].
Actually, the authors proposed connection operators to link P(Z) and P(O) for the case of disjunctive
Boolean expressions, called OR-clauses. Nevertheless, their definition of the operator ¥ linking P(O) to
P(Z) (performed by the operator f in our case) depends on the operator ® ensuring the dual direction
(performed by the operator ¢ in our case) and was not independently given. The following definition

presents the operators proposed in [Zhao et al., 2006]:

Definition 67 (CONNECTION OPERATORS)

9A condensable function is either a preserving function or a combination of more than one preserving function.
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Let K = (O, I, M) be an extraction context, P(I) the set of all possible OR-clauses over Z, and P(O)
the power-set of objects. Let I € P(Z) and O € P(O). Given two partially ordered sets (P(Z),C ) and
(P(O),C), the following operators form a connection over P(Z) and P(O):
d:P(Z)— P(O)

I —®(I)={ocO|3iclst (0,i) € M}
v :P(O) —P(I)

O —¥(0)={icZ| o) C O}

However, the authors neither gave the expression of the resulting closure operator nor carried out a
thorough analysis of the inherent theoretical properties. We can clearly notice that these operators do
not allow the direct computation of the disjunctive closure of an itemset. Indeed, the inter-dependency
between the connection operators ® and ¥ makes necessary to maintain the list of objects identifiers to
which each item belongs (aka tidset [Zaki and Hsiao, 2002]) before starting the mining process. A main
feature of our closure operator is that it does not present such an inter-dependency. Zhao et al. proposed
an algorithm, called BLOSOM-CO, for mining closed OR-clauses (the equivalent of disjunctive closed
itemsets in our case) whose disjunctive support is encompassed between two user-defined thresholds, and
of size (i.e., number of items) lower than a given threshold. However, they did not study the effect of
setting the conjunctive frequency constraint during the mining process. They did not also explore the
framework of concise representations for frequent itemsets. Due to the inter-dependency between the
operators they proposed, the designed algorithm is based on a combination of a depth-first traversal of
the search space and the use of tidsets. However, this leads to larger memory consumption for storing
tidsets which constitutes a real hamper, especially for low minsupp values. It is also worth noting that

the authors did not make the connection between minimal OR-clauses and essential itemsets.

From an algorithmic point of view, the DCPR__MINER algorithm can easily be adapted to efficiently
extract a new exact concise representation associated to frequent correlated itemsets w.r.t. the bond
measure [Omiecinski, 2003]. Even not mentioned in [Omiecinski, 2003], this measure is based on the dis-
junctive support. Indeed, the bond of an arbitrary itemset X is equal to the ratio between its conjunctive
support and the cardinality of the set of objects that contain any item of X. This latter cardinality is

obviously equal to its disjunctive support.

6.8 Conclusion

In this chapter, we introduced a new disjunctive closure operator and we thoroughly studied its theoret-
ical properties. Based on this operator, we structurally characterize the disjunctive search space. Then,
we introduced a new concise representation of frequent itemsets based on the disjunctive closed itemsets
having at least a frequent essential itemset as a seed. In addition to interesting compactness rates, this
representation allows a straightforward computation of the disjunctive and negative supports. Moreover,
it is only composed of disjunctive closed itemsets which ensure its homogeneity. An algorithm, called
DCPR__ MINER, was proposed for its extraction. In nearly all experiments we performed, the obtained
results showed that our representation is significantly smaller than the pioneering ones of the literature.
Therefore we have proposed a concise representation (model) of frequent itemsets that distills the mean-

ingful information with respect to the minimum description length principle, especially in the case of



6.8 Conclusion 147

dense contexts.

The next chapter proposes a complete approach allowing the extraction of (subset of) generalized
association rules. The introduced approach relies on essential and disjunctive closed itemsets as a starting

point.



148 Disjunctive Closure and Associated Representations of Frequent Itemsets




Chapter 7

(zeneralization of Association Rules

through Disjunction

7.1 Introduction

The main moan that can be addressed to the contributions related to association rules is their focus
on the simultaneous occurrence (or co-occurrence) between items [Steinbach and Kumar, 2007]. Indeed,
almost all related work neglect the other kinds of relations, like mutually exclusive or complementary
occurrences [Tzanis and Berberidis, 2007], which can also bring information of worth interest for the
end-users. Such kind of knowledge can naturally be conveyed through disjunctive patterns. In this
regard, the added-value of association rules having disjunctions of literals ! in the premise or conclusion
part has been highlighted in some contributions [Nanavati et al., 2001, Steinbach and Kumar, 2007].
For example, these rules were shown to be useful for software change impact analysis [Hattori et al.,
2008|, and feature model mining [She, 2008]. In fact, such kind of rules offers advantages compared to
the hierarchy/taxonomy-based generalization [Srikant and Agrawal, 1995]. Indeed, they do not depend
upon a pre-defined taxonomy. They also do not suffer from the problem of overgeneralization since the
taxonomy approach mainly considers fixed disjuncts.

In this chapter, we propose a new approach covering the whole process allowing the extraction of
generalized association rules. These latter rules generalize positive ones by also allowing the disjunction
and negation connectors between items [Toivonen, 1996a]. Indeed, in some situations, the information
conveyed by a generalized association rule — and in particular disjunctive ones — may not be obtained
even by a collection of conjunctive association rules [Nanavati et al., 2001]. Moreover, the use of the
disjunctive operator in association rules allows, for example, to obtain rules linking frequently occurring
itemsets and rare ones. Such relationships are difficult to mine using conjunctive association rules unless
the value of the minimum support threshold set too low, which leads to an overwhelming rule set.

As a starting point, the introduced approach relies on a concise representation of frequent itemsets based
on disjunctive itemsets. Such a representation allows the derivation of the exact conjunctive supports of

frequent itemsets while preserving the easy access to their respective disjunctive and negative supports.

! A literal is an item or the negation of an item.
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This makes it possible to compute the values of quality measures. Indeed, it was shown in [Hébert and
Crémilleux, 2007] that almost all interestingness measures for association rules are expressed depending
on the support of the rule and those of its associated premise and conclusion. In addition, the use of
disjunctive itemsets — in particular closed and essential itemsets — provides an interesting starting point
towards mining association rules conveying complementary occurrences between items, rather than co-
occurrences. Indeed, these latter relationships — co-occurrences within literals — were explored in-depth
in the literature through association rules having conjunction of literals, called literalsets, in premise
and conclusion parts. This leads to what is commonly known as positive and negative association rules.
While disjunctive association rules only have recently begun to grasp the interest of researchers. In this
respect, we give an overview of the possible mined forms of generalized association rules. After that, we
select subsets of generalized rules to be extracted. This required the construction of a partially ordered
structure, obtained w.r.t. set inclusion between disjunctive closed itemsets.

We restrict ourselves in this work to disjunctive closed itemsets whose minimal seeds, i.e., essential
itemsets, are frequent with respect to a minimum conjunctive support threshold. This is argued by the fact
that, within the association rule framework, this threshold as well as the confidence-based one have a key
role in the reduction of the number of extracted association rules [Ceglar and Roddick, 2006, Kryszkiewicz,
2002]. In addition, the use of a partially ordered structure will allow to select representative subsets of
association rules. This nucleus of rules will be of paramount help for avoiding to overwhelm end-users
by highly-sized rule lists. Moreover, once this structure built, extracting generalized rules becomes a
straightforward task.

The remainder of the chapter is organized as follows. The next section starts by extending the frame-
work of classic association rules through taking into account the various possible connectors as well as
negative items. It then presents an overview of the possible mined forms of generalized association rules,
and shows how are calculated the associated supports in the general case. Section 7.3 details the selec-
tion process of generalized rules to be extracted and their quality measures estimation using the adopted
concise representation of frequent itemsets. Section 7.4 proposes algorithms covering the different steps
of the extraction process. Experimental results focusing on the mining time as well as the quantitative

aspect are reported and analyzed in Section 7.5. Section 7.6 discusses the related work.

7.2 Overview of Generalized Association Rule Forms

In this section, we are interested in going beyond classic association rules only conveying conjunction
of items in the premise and/or conclusion parts. This is carried out through defining the framework of
generalized association rules in the general case. Then, we describe some main rule forms, and show how

their associated supports are computed.

7.2.1 Generalized Association Rule Framework

An association rule R: X = Y based on an itemset Z, denoted Z-based rule, is such that X =
{z1,29,.. ;2 CZ, and Y = {y1,92,..-,ym} C Z be two itemsets, X N Y =, and X UY = Z.
An association rule is usually considered as interesting w.r.t. two statistical metrics, namely the support

and the confidence [Kryszkiewicz, 2002]. The formulae of these measures for an arbitrary rule are as
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follows:

Supp(X NY) _ Supp(X = Y)
Supp(X) Supp(X)

Let us recall that a rule is said to be ezact whenever its confidence value is equal to 1. Otherwise, it

Supp(X = Y) = Supp(X AY); and, Conf(X =Y) =

is said to be approximate. In addition, it is said to be interesting or wvalid if its support and confidence
values are greater than or equal to their respective minimum thresholds minsupp and minconf. It is
clear that whenever we have the ability to assess Supp(X = Y'), the derivation of the confidence value is

straightforward, since we only have to divide the support of the rule by that of the premise part.

Generalized association rule forms extend the framework of classic association rules by:

1. Allowing the use of negative items, in addition to positive ones, within the same rule. The negative
item i w.r.t. a positive item i conveys the information about the absence of i in transactions, rather

than its presence.

2. Allowing the links between items using the disjunction connector, in addition to the conjunction

one.
The definition of a generalized association rule requires that of a Boolean expression which is as follows:

Definition 68 (BOOLEAN EXPRESSION)
A Boolean expression is the logical connection of a set of items using the conjunction, disjunction and

negation connectors.

Note that for a Boolean expression, parentheses are, whenever necessary, used to demarcate clauses and
priority within operators. A clause is then composed by a set of literals linked using either the logical

conjunction or the disjunction connector.
Example 48 Let 4, B and C be three items, then (4 A B) V C is a Boolean expression.

Definition 69 (GENERALIZED ASSOCIATION RULE)

Let T be a set of items and x;, y; € I. A generalized association rule is of the form:

Q(xli Z2, .-, .’L'n) = U(yh Y2, -, yn)

where o(x1, T2, ..., Tn) and V(y1, Y2, - ., Yn) are two Boolean expressions which do not have any item

n common.

Example 49 Let T = {4, B, C, D, E} be a set of items. The rules A N B= C A D and AV E = D are

two examples of generalized association rules.
We now present the support and the confidence of a generalized association rule.

Definition 70 (SUPPORT, CONFIDENCE OF A GENERALIZED ASSOCIATION RULE)

Let R be a generalized association rule o(x1, x2, ..., n) = (Y1, Y2, -« -, Yn),

e The support of R, Supp(R), is equal to the number of transactions that simultaneously satisfy

both Boolean expressions o(x1, T2, -.., Tn) and v(y1, y2, ---, yn). Hence,
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SUpp(R) = SUpp(Q(ZEl, T2, ---, :EN) A U(y17 Y2, ---, yn))

e The confidence of R, Conf(R), is the ratio between its support and the support of the Boolean

expression representing the premise part. Hence,

S’U;pp(@(l'l, L2y « -y :En) A U(ylv Y2, ..., yn))
Supp(o(x1, T2, ..., Tn)) .

Conf(R) =

The next lemma states the interval in which varies the confidence of a generalized rule.

Lemma 9 Let R: o(x1, x2, ..., Tn) = (Y1, Y2, - - -, Yn) be a generalized association rule. If Supp(o(x1,
Z2, ..., Tn)) # 0, then Conf(R) € [0, 1].

Proof. The support of o(x1, 2, ..., Tn) A (Y1, Y2, --., Yn) is lower than or equal to that of o(z1, 2,
..., Tn). Indeed, each transaction that satisfies the former also verifies the latter. Hence, Conf (R) < 1.
Both supports also have positive values. Hence, Conf(R) > 0. Thus, Conf(R) € [0, 1]. $

Example 50 Consider the context given by Table 2.1 (cf. page 12) and the generalized association rule
R: AV E= D. Supp(R) = Supp((4 V E) A D). Since the premise and the conclusion are simultaneously

satisfied by the transactions 1, 2 and 4, then Supp(R) = 3. While Conf(R) = %

disjunctive itemset 4 V E is also fulfilled by the transaction 3 (which does not contain D), then Supp(4 V
3
E) = 4. Consequently, Conf(R) = 1= 0.75.

. Since the

7.2.2 Support Retrieval of Generalized Association Rule Forms

Let X = {x1,22,...,2,} CZ,and Y = {y1,y2,..-,Ym} C Z be two itemsets s.t. X N'Y = (. The
generalized association rule forms using a conjunction, disjunction or negation of items in the premise

and conclusion parts are as follows:

1. Ri:xy Ao Ao ANy = y1 AYa A eo e Ay

2. Ro:xi Axo Ao Az =y1V Y2V ...V Y.
3. Ra:z1 Ao A . ATy =YL AY2 Ao AU,

4. Ry: 1V 29V ...V = Y1 AY2 A oo A Y.
5 Rs:x1V 22V ...V =11V y2V ...V Y.
6. Re: x1V 22V ...V T =T AR A ... NYpnp.
7. Ri: Ti ANTa N oo ATy = Y1 AY2 A oot A Yy

8 Re: T1 ANTa AN .. .ANTpy=y1V Y2V ...V Y.
9. Ro: TIATZA ... AT = TIATZA ... AT

These association rules bring richer information to the end-user than those presented in the literature,
since they involve various Boolean connectors in both the premise and the conclusion parts, and not only

the conjunction one. We present now an overview of the process by which we are able to retrieve the
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o Supp((x1 Naxa Ao ANxp) A(ya Vo ya Vo ooV ym)) = Supp(zy ANz A oo A xy) —
Supp(x1 ANza A ... AZy ATTATG2 A ... AYm) [Galambos and Simonelli, 2000] (3)
o Supp(z1 Ama A AT ATIATEA . ATm) = . (D) Supp(zi Aza AL Az A S)

SC{Y1,mnym} (4)
[Toivonen, 1996a]
e Supp(A A B) = Supp(A) + Supp(B) - Supp(A V B), where A and B are two Boolean (5)
expressions.
e Supp(A N B) = Supp(A V B) - Supp(A), where A and B are two Boolean expressions. (6)

Table 7.1: Formulae used for support computation.

supports of the association rules presented above. For this purpose, the two formulae of Lemma 1 (cf.

page 13) will be useful, in addition to the ones shown in Table 7.1.

The respective supports of the different proposed forms of association rules are then computed as

follows:

1. Supp(R1) = Supp(x1 Azo A . AT AYL AYya Ao o AYm)-

2. Supp(R2) = Supp((x1 Az . Ax )N Y1V y2V ...V ym)) = Supp(z1AzaA. . . Axy) — Supp(xi Aza A
N ATINTRA. . AG) = Supp(aiAzah. . Axn) — Y (D) Supp(ar Aza AL A A S).
Sg{yla---7yWL}
3. Supp(Rs) = Supp(z1 Az AT  ATTATEA. . ATm) = > (-1)*1Supp(z1 AzaA. . Az AS).
Sg{yla---7yWL}
4. Supp(R4) = Supp((xz1V x2V ...V ) Ayt Ay2 Ae . AYm) = Supp(y1 Ays A. . . Aym) — Supp(TTAT3 A
AT AP AY A Aym) = Supp(i Aya A Aym) — D (1) Supp(S Ay AL Aym).
SC{z1,..., T}

5. Supp(Rs5) = Supp((x1V 2V ...V o) Ay1V Y2V ...V ym)) = Supp(x1 V 22V ...V z,) +
Supp(y1 V Y2V ...V Ym) — Supp(z1V 22V ...V 2,V 1V g2 VoV ym)-

6. Supp(Re) = Supp((z1V x2V ...V 2 ) ATAIAGIA. .. AUm ) = Supp(T1 A2 A. . . AUm) — Supp(TTAT2 A

CATIATARA AT =Y (D) supp(s) — > -1)1% Supp(2").
SC{y1,--sym} Z'C{® 15T, Y155 Ym }

7. Supp(Rr7) = Supp(TTATIA .. . AT Ayt AY2 Ao AYm) = Z (—1)‘S‘Supp(5/\y1/\.../\ym).

SC{z1,..., Tn}
8. Supp(Rs) = Supp(TINT2A. . AT A(Y1V Y2V ...V ym)) = Supp(TIANT2A. . .AT) — Supp(TTAT3 A
A __ s ’

CATAATATRA AT = > (D) Supp(s) - 3 1) Supp(2").
Sg{zl,...,mn} Z’Q{Il7~~~,Imy1,---7ym}

9. Supp(Ro) = Supp(TINT2N .. . AT AGIATZ A .. ATYm) = |O] — Supp(x1V 22V ...V 2,V Y1V

Y2V ...V ym)-
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In this respect, it is worth noting that disjunctive rules as defined in [Bykowski and Rigotti, 2001,
Bykowski and Rigotti, 2003] and generalized disjunctive rules as defined in [Kryszkiewicz, 2002] are
special cases of Ro. The difference between them lies in the number of items used in the conclusion part.
Moreover, an interesting case pointed out by Rs-like rules occurs when {y1,y2,...,¥ym} is an essential
itemset and h({y1,92,-.-,ym}) = {T1,22,. .., Zn} U {y1,¥2,- -, Um} = {T1,%2, .-, TnyY1,Y2, - -, Ym }
(and, hence, Supp(V {y1,y2,.--,Ym}) = Supp(V {z1,22,...,Zn,¥1,Y2,---,Ym}), ¢f. Proposition 39,
page 114). Indeed, in such a case, this rule is an exact one since its confidence value is equal to 1:

_ Supp(V X) + Supp(VY) — Supp(V (X UY))
Supp( V X)

Conf(Rs)

Supp(\/ {zl,xg,...,:rn})JrSupp(\/ {ylay%vym})*SUPP(\/ h({y15y277ym})) =1
Supp(V {x1,22,...,2n}) )

Moreover, R5 will have a maximal premise part and a minimal conclusion part, w.r.t. the number of
items. This is at the opposite of minimal non-redundant rules where premise and conclusion parts are
required to be minimal and mazimal, respectively (cf. page 26). In addition, it is important to mention
that, thanks to the properties of the closure operator h, the rules VX = VY and h(X) = h(Y) have the
same values of support and confidence.

Once a rule of the form R5 is extracted, it is straightforward to derive the corresponding one of the form
Ry thanks to De Morgan’s law (¢f. Formula (2) in Lemma 1). Indeed, the support and the confidence

of Ry are expressed as follows w.r.t. those of Rs5:
Supp(Ro) = |O| — Supp(Rs), and,

O] — Supp(Rs)
|O] = Supp(z1V z2V ...V xp)

Note also that, thanks to Formula (3), we have Supp(R3) = Supp(x1 Axa A ... A 2yp) - Supp(R2).

Conf(Ry) =

7.3 Selection of Subsets of Generalized Association Rules

7.3.1 Description of the Selected Subsets

To be able to derive the required information necessary for computing the associated quality measures of
an association rule, a concise representation of frequent itemsets is adopted. In our case, we consider as a
starting point the concise representation DSSR based on frequent essential itemsets and their associated
disjunctive closed itemsets (c¢f. page 118). This choice is motivated by the fact that essential and dis-
junctive closed itemsets structurally characterize the associated disjunctive equivalence classes. Hence,
they can be successfully used towards extracting representative subsets of generalized association rules.
Interestingly, they are respectively the mapping of minimal generators and conjunctive closed itemsets.
These latter itemsets were at the roots of the main generic bases of association rules proposed in the liter-
ature [Ceglar and Roddick, 2006, Kryszkiewicz, 2002]. This encourages the use of their correspondences

within the disjunctive search space.

Example 51 Consider the context given by Table 2.1 (cf. page 12). Table 7.2 presents the DSSR

representation for minsupp = 1. In this respect, each disjunctive closed itemset is associated to its
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frequent essential itemsets and disjunctive support. Note that even not used during the rule mining step,

the empty set is mentioned here for the sake of completeness of DSSR.

Disjunctive closed itemset | Frequent essential itemsets | Disjunctive support

0 0 5

E E 3

F F 3
AB A, B 3
CcD C,D 4
EF EF 4
ABE AE, BE 4
ABF AF, BF 4
ABCDEF AC, AD, BC, BD, 5

CE, CF, DE, DF, AEF, BEF

Table 7.2: The DSSR representation for minsupp = 1.

Starting from DSSR, the disjunctive support of each frequent itemset is at hand since the representa-
tion is composed of disjunctive itemsets. Its negative support simply follows using De Morgan’s law. In
addition, its conjunctive support can be deduced using Lemma 1 (¢f. page 13). Now, we will present an
overview of the process by which we retrieve subsets of generalized association rules and evaluate their
associated supports using DSSR. Rules can be classified according to the number of nodes (one or two)

required for their extraction. We then distinguish two cases:

e An intra-node rule: it is extracted using itemsets standing within the same disjunctive equivalence
class. Such a rule highlights relationships between a frequent essential itemset and its disjunctive

closure f (here we have an f-based rule).

e An inter-node rule: it is extracted using two itemsets belonging to two comparable disjunctive equiv-
alence classes. In this respect, let N; and N2 be the respective nodes representing these classes
within a partially ordered structure w.r.t. set inclusion. The associated disjunctive closed itemset
of N1, denoted f1, is one of the immediate predecessors of that of N5, denoted f,. Let e; be a
frequent essential itemset of f1. An inter-node rule describes relationships between either f; and

f2 or e; and fo (here we have an fo-based rule).

Both kinds of rules — intra-node and inter-node — can either be exact or approximate. 2 To reduce the
number of mined rules, we mainly consider four rule forms under some constraints on the content of the
premise and the conclusion parts. This is detailed in the following paragraphs.

Let X and Y be two itemsets such that either X or Y is a frequent essential itemset or a disjunctive

closed one, and Z = X U Y is a disjunctive closed itemset. The considered forms under the constraint

21t is worth noting that, in the classic association rule framework, an intra-node rule mined from a conjunctive

equivalence class is always found to be an exact one.



156 Generalization of Association Rules through Disjunction

on the premise X and the conclusion Y are as follows as well as the way of computation of the associated

support:

e Form 1: disjunction of items in premise and conclusion VX = VY: Supp(VX = VY) =
Supp((VX) A (VY)) = Supp(VX) + Supp(VY') - Supp((VX) V (VY)) = Supp(VX) + Supp(VY)
- Supp(VZ),

e Form 2: negation of items in premise and conclusion X=Y: Supp(y = ?) = Supp(y A
Y) = Supp(((VX)V (VY))) = Supp(Z) = |O| - Supp(VZ),

e Form 3: disjunction of items in premise and negation of items in conclusion VX = Y:
Supp(VX = Y) = Supp((VX) AY) = Supp((VX) V (VY)) - Supp(VY) = Supp(VZ) - Supp(VY),

and,

e Form 4: negation of items in premise and disjunction of items in conclusion X = VY:

Supp(X = VY) = Supp(X A (VY)) = Supp((VX) V (VY)) - Supp(VX) = Supp(VZ) - Supp(VX).

Form 1 (resp. 2, 3 and 4) we select corresponds to an instantiation of the form Rs5 (resp. Ro, Re
and Rg) described in the previous section. Indeed, here we require the premise or the conclusion to be
a frequent essential itemset and the rule to be based on a disjunctive closed itemset. Consequently, for
each rule, the support of Z is known since it belongs to DSSR. It is the same for either X or Y since one
of them is assumed to be a frequent essential itemset or a disjunctive closed itemset. Once the respective
supports of X, Y and Z are obtained, the derivation of the associated rules consists in simple arithmetic

operations for computing the associated support and confidence values.

We are mainly interested in the aforementioned rule forms since there is a lack in the literature of algo-
rithms designed for their extraction, especially those relying on the disjunction connector. The selected
rules convey relationship between specific itemsets, namely disjunctive closed itemsets and essential ones.
This restriction makes it possible to avoid the extraction of an overwhelming number of valid rules in the
case where any itemset is allowed to be used in the premise or conclusion parts. Noteworthily, the used
concise representation for frequent itemsets, namely DSSR, is suitable for such an extraction. Indeed, it
is composed of disjunctive closed itemsets and essential ones and, hence, does not require deriving their
respective disjunctive supports. This allows, for example, the efficient derivation of association rules
involving disjunction/negation of items in their respective premises and conclusions. On the contrary,
many algorithms for extracting all valid positive association rules exist in the literature, mainly based
on the pioneer APRIORI algorithm [Agrawal and Srikant, 1994]. Moreover, the described process is com-
plementary to that covered by both the PRINCE [Hamrouni et al., 2005b] and the IMG_ EXTRACTOR
[Hamrouni et al., 2006] algorithms we proposed for extracting lossless subsets of positive association rules
as well as the adaptation of the PRINCE algorithm for mining generic association rules based on literalsets
[Gasmi et al., 2007]. Note however that the proposed process here also allows to compute the support
and confidence values of each rule involving a conjunction of items, like in the form R (¢f. previous
section). Furthermore, Formula (4) makes it possible to consider a rule based on a literalset, whose

positive variation is a frequent itemset. ® Indeed, its support will be computed using some subsets of the

3The positive variation of {x1, x2, ..., Zn, U1, T2, - - -, Ym} is equal to {z1, T2, ..., Tn, Y1, Y2, - - - Ym }-
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positive variation, which is frequent. These subsets are then also frequent and, hence, their supports are

exactly derivable from our representation.

For each of the four rule forms, Table 7.3 summarizes the different possible content of the premise and

conclusion parts. In this table, f; and f5 denote two disjunctive closed itemsets s.t. f; is an immediate

predecessor of fo, while e; denotes a frequent essential itemset of f.

Form 1 Form 2
Ri1 | Ver = V(fi\er) | Ria | V(fi\e1) = Ver || Ra1 | & = (fi\e1) || Rz | (fi\e1) = &1
Riz | Ver = V(f2\e1) || Ria | V(f2\e1) = Ver || Ras | & = (fa\er) || Roa | (fo\er) = &1
Ris | V= V(LA | Ris | VIL\A) = VA || Res | fi = (\f1) || Ros | (\f1) = fi
Form 3 Form 4
Ry | Ver= (fi\er) || Rs2 | V(fi\er) =& || Ru | & = V(fi\er) | Raz | (fi\er) = Ve
Rsz | Ver = (fa\e1) || Rsa | V(f2\er) =& || Raz | &1 = V(fa\e1) || Ras | (f2\er) = Ver
Rss | Vi = (fo\f1) | Rss | V(f2\f1) = Fi || Ras | i = V(£2\F)) || Ras | (f2\F1) = VS

Table 7.3: The selected association rule forms.

The association rules of Form 1 are shown in couples (R1;, Ri(;41)) with i € {1, 2, 3}, s.t. the premise
part of Ry; constitutes the conclusion part of Ri(;41), and vice versa. Such rules are reversed w.r.t.
the content of the premise and conclusion parts. It is the same for rules of Form 2. Let us for example
analyze the couple of rules (R11, Ri2) of Form 1, i.e., Ri1: Ver = V(fi\e1) and Ria: V(fi\e1) =
Ve;. Considering simultaneously both rules R;; and R;5 aims at bringing information about the possible
correlation between the disjunctive itemsets Ve; and V(f1\e1). In this respect, both rules have the same
support value. While their respective confidence values depend on the support of their associated premise
part. In the case where Supp(Vei) = Supp(V(fi\e1)), then both rules Ry; and Rjo will have the same
support and confidence values. Hence, their associated premise and conclusion parts depend one on the
other by the same degree.

Each rule Rs; (j € {1, 2, 3, 4, 5, 6}) of Form 3 has its reverse in Form 4. For example, the reverse of
R31 is Ryo. In this respect, the rules R3s: V(f1\e1) = &1 (of Form 3) and Ry1: &1 = V(f1\e1) (of Form
4) are given in Table 7.3 only for illustrative purpose. Indeed, both rules will always be discarded since
having a support equal to 0: Supp(Rs2) = Supp(Ra1) = Supp((V(fi\e1)) A &) = Supp((V(fi\e1)) V
(Ver)) - Supp(Ver) = Supp(Vf1) - Supp(Ve1) = 0 (e is an essential itemset of f; and, hence, Supp(V f1)
= Supp(Ver)).

Thus, in the general case, a rule R; has the same support as its reverse Re. However, their confidences
depend on the support of the premise and that of the conclusion of R;, respectively. Thus, the validity of
R; does not imply that Rs is valid, unless the conclusion part of Ry (being the premise part of Ry) has
a support lower than or equal to that of the premise part of R,. Experimental results will reveal that, in
many cases, there are as many valid rules as valid reverse rules. Note also that the confidence measure

of Ry is equal to the recall measure [Geng and Hamilton, 2006] of Rs, and vice versa.



158 Generalization of Association Rules through Disjunction

The next subsections explain two complementary tasks: the first focuses on how are respectively
assessed the quality measures of the selected rules. The second subsection describes the elimination

process of duplicated rules.

7.3.2 Assessing Quality Measures of Selected Rules

In this subsection, we will concentrate on the assessment of the respective support and confidence values
of the selected generalized association rules. The same process as that we describe here applies for the
remaining quality measures, using the rules support and those of their associated premises and conclusions
[Geng and Hamilton, 2006, Hébert and Crémilleux, 2007]. These measures can be considered and their
values used towards selecting the most appropriate ones for each association rule form.

In the remainder, for the sake of simplicity, we assume that X is a frequent essential itemset or a
disjunctive closed itemset. Since Y = Z\X, then Y does not necessarily belong to DSSR and, may
even not be a frequent itemset. Nevertheless, its disjunctive support may be required to assess the
interestingness measures of the associated rule (like in Form 1). To this end, we bound the support of
Y using a lower bound, denoted b _Supp, and an upper bound, denoted ub Supp. These bounds are
shown by Definition 72. This definition requires that we introduce specific subsets of the sets FEZ and
EDCT w.r.t. Y. This is done as follows:

Definition 71 (MINIMAL SUPERSETS AND MAXIMAL SUBSETS)
Let Y C Z. The minimal supersets and mazimal subsets of Y are as follows:

e The set of minimal supersets of Y in EDCZ is defined as follows: MINIMAL SUPERSETS(Y) =
minc{f €e EDCT |Y C fand A fr € EDCT s.t. Y C f1 C f}.

o The set of mazimal subsets of Y in FET is defined as follows: MAXIMAL_SUBSETS(Y) = mazc {e
€FET|eCY and Aey € FEL s.t. e Cep C YL

The bounds are defined as follows:

Definition 72 (UPPER AND LOWER BOUNDS OF DISJUNCTIVE SUPPORT)

LetY C Z. The upper and lower bounds of the disjunctive support of Y are defined as follows:
o ub_Supp(VY) = min{Supp(Vf) | f € MINIMAL SUPERSETS(Y) },
o Ib_Supp(VY) = max{Supp(Ve) | e € MAXIMAL_SUBSETS(Y) }.

Both sets MINIMAL _ SUPERSETS(Y) and MAXIMAL_SUBSETS(Y) optimize the computation of the
upper and lower bounds, respectively. Indeed, their introduction mainly relies on the fact that the
disjunctive support proportionally decreases w.r.t. the reduction of itemsets size. Conversely, it augments
whenever the itemsets size increases. Thus, to obtain the upper bound, it is sufficient to consider the
minimal supersets among disjunctive closed itemsets covering Y. Whereas to get the lower bound, it is
sufficient to consider maximal subsets among frequent essential itemsets contained in Y.

An interesting situation happens if Y belongs to DSSR, or is encompassed between a frequent essential
itemset and its disjunctive closure. In this case, Ib_ Supp(VY) = ub_Supp(VY'). Hence, the support and
the confidence of each rule where Y is involved will be exactly computed. Otherwise, the value of support
and that of confidence will be, respectively, bounded by a minimal and a maximal possible value using

the bounds associated to the support of Y. This last case may lead to the appearance of a third type
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of rules — in addition to exact and approximate — denoted approximated rules. Such rules are defined as

follows:

Definition 73 (APPROXIMATED ASSOCIATION RULE)
An association rule is said to be approximated if it has either its support or its confidence not exactly

determined.

Then, only approximated rules having minimum possible values of support and confidence greater than or
equal to minsupp and minconf, respectively, will be retained. Note that an approximated rule is different
from an approximate rule in the sense that the latter has its support and confidence exactly computed
(with a confidence value lower than 1), which is not the case of the former. Such approximated rules were
shown to be of added value in the case of positive rules [Boulicaut et al., 2003, Cheng et al., 2008, Kanda
et al., 2001].

Noteworthily, the bounds b Supp(VY') and ub_Supp(VY') always exist. Indeed, since the set of items
7 is pruned w.r.t. minsupp, then Y will be composed of frequent items even if it is infrequent. These
items are obviously frequent essential itemsets of size 1, which ensures the existence of the lower bound
Ib_Supp(VY). The itemset Y is also covered by at least a disjunctive closed itemset, namely Z, which
ensures the existence of the upper bound ub_ Supp(VY').

Example 52 Consider Table 7.2 depicting the DSSR representation associated to Table 2.1 (cf. page
12) and minsupp = 1. Let minconf = 0.7. Consider the intra-node rule Ry of Form 1 based on
the disjunctive closed itemset ABCDEF and its frequent essential itemset AC: VAC = VBDEF. Supp(R;)
= Supp(VAC) + Supp(VBDEF) - Supp(VABCDEF) = Supp(VBDEF). Indeed, AC and ABCDEF belong to the
same equivalence class. Since BDEF is neither a frequent essential itemset nor a disjunctive closed one, we
need to evaluate its support using DSSR. We have BD C BDEF C h(BD) = ABCDEF, then lb_ Supp(VBDEF)
= ub_ Supp(VBDEF) = 5. Hence, Supp(R1) = 5 and Conf(Ry1) = 1. Ry is hence a valid exact rule.

Consider now the inter-node rule Ry of Form 1 based on ABCDEF and its immediate predecessors ABF:
VABF = VCDE. Supp(R2) = Supp(VABF) + Supp(VCDE) - Supp(VABCDEF). We will assess the support
of CDE since not belonging to DSSR. Since CE C CDE C h(CE), then Ib_ Supp(VCDE) = ub_Supp(V CDE)
= 5. Hence, Supp(R2) =4 +5 -5 =4 and Conf(R1) = 1. Ry is also a valid exact rule although it
relies on itemsets belonging to different equivalence classes, namely ABF and ABCDEF. Here, we took X =
ABF. If we set Y = ABF in the sense that we consider ABF as a conclusion instead of a premise, then the
obtained rule R3: VCDE = VABF will have the same support as Ro while being approzimate. Indeed, its

Supp(Rs) 4 _ o
Supp(V CDE) 5

Let us look to the inter-node rule Rs of Form 2 based on ABCDEF and its immediate predecessors ABF:
ABF = CDE. In this case, Supp(R2) = |O| - Supp(VABCDEF) =5 -5 = 0. Hence, this rule is not valid.

It is the same for the rule CDE = ABF.

confidence value is equal to

As mentioned above, if Y is not encompassed between a frequent essential itemset and its disjunctive
closure, then its support cannot be exactly determined and will simply be bounded. Now, let us discuss
in the general case the effect of Ib_ Supp(VY') and ub_ Supp(VY') on the minimum and maximum bounds
that will have the support and confidence values of the associated rule. This is closely related to two

main facts:
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1. The sign “4” or “-” of the support of Y within the formula of the support of the rule, i.e., the
support of Y will be subtracted or added. For example, in Form 1, the sign is “+”, while it is
“” in Form 3. In this respect, if the associated sign is “-”, the maximal (resp. minimal) possible

value of support of Y, i.e., ub_Supp(VY') (resp. Ib_Supp(VY)), will lead to the minimal (resp.

maximal) value of the support of the associated rule. The opposite reasoning applies for the sign

1R
+".

2. The position of Y in the associated rule, i.e., in the premise or conclusion part. Indeed, if Y is
in the conclusion part, then its support will only be used in the computation of the support of
the associated rules. While, if Y is in the premise part, its support will also contribute to the
computation of the confidence of the rule. In this latter case, ub_ Supp(VY) (resp. Ib_Supp(VY'))

will lead to the minimal (resp. maximal) possible value of the confidence of the associated rule.

The different possible cases are summarized in Table 7.4. In this table, ub_ Supp(R) (resp. Ib_Supp(R))
denotes the maximal (resp. minimal) possible value of the support of the association rule R. While,
ub_ Conf(R) (resp. Ib_ Conf(R)) denotes the maximal (resp. minimal) possible value of the confidence
of the association rule R. The symbol “[1” indicates that the bound value of the support of Y does not

affect neither the support nor the confidence bounds of R.

Associated bound Associated sign Associated position
€44 e Premise Conclusion

ub_ Supp(VY) ub_Supp(R) | Ib_Supp(R) || Ib_Conf(R) O

Ib_Supp(VY) Ib_Supp(R) | ub_Supp(R) || ub_Conf(R) O

Table 7.4: Summary of the approximations.

Example 53 No approzimated rule can be extracted starting from the DSSR representation depicted by
Table 7.2. Indeed, the support of Y is always exactly derived. Let us consider then the extraction context
of Chapter 6 (cf. Table 6.1, page 110). This context offers an interesting situation to illustrate the content
of this subsection. Let minsupp = 1 and minconf = 0.5. As we saw in the aforementioned chapter, the
disjunctive closure of the frequent essential itemset 4 is equal to ABCD. Consider now the following couple
of rules of Form 1: Ry: VA = VBCD, and Ry: VBCD = VA. In this case, Y = BCD. However, BCD is
an infrequent itemset whose disjunctive closure is equal to itself. We hence need to assess the disjunctive
support of BCD. Since MINIMAL_SUPERSETS(BCD) = {ABCD}, and MAXIMAL_SUBSETS(BCD) = {BC,
BD, €D}, we then deduce that:
o ub_ Supp(VBCD) = min{Supp(Vf) | f € MINIMAL_SUPERSETS(BCD )} = min{Supp(VBCD)} = min{7}
=T.
o Ib_Supp(VBCD) = max{Supp(Ve) | e € MAXIMAL_SUBSETS(BCD)} = max{Supp(VBC), Supp(VBD),
Supp(VCD) } = max{5, 5, 5} = 5.

The sign associated to BCD in the support formula of the rules Ry and Ry is “+”. Indeed, Supp(R;1) =
Supp(R2) = Supp(V4) + Supp(VBCD) - Supp(VABCD) = Supp(VBCD), since Supp(V4) = Supp(VABCD).

Consequently, Ry and Ro will share the same bounds:
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o ub_Supp(Ry) = ub_Supp(R2) = ub_Supp(VBCD) = 7.
o lb Supp(Ry) = Ib_Supp(R2) = Ib_Supp(VBCD) = 5.
However, with respect to the confidence measure, we will not have the same scenario. Indeed, the

position of BCD — as a premise or a conclusion of the associated rule — will play a key role. In this respect,
~ Supp(R1)  Supp(V BCD) 7 ) 5
e Conf(Ry) = Supp(h) ~ Supp(d) Hence, ub_Conf(R;) = = while Ib_ Conf(Ry) = 2
Supp(R2) Supp( V BCD)
g g = 1' = = 1.
e Conf(R2) Supp( v BCD)  Supp( v BCD) Hence, ub_ Conf(R2) = lb_ Conf(R>)

The case of Ry is interesting, since although its support is only bounded, the value of its confidence is

ezactly computed.

7.3.3 Eliminating Duplicated Rules

In this section, we focus on the selected rule forms (¢f. Table 7.3, page 157) in order to avoid extracting
the same intra- or inter-node rule more than once. Our aim is to locate the scenarios involving such
situations. The different cases are discussed in the following paragraphs. We will use the DSSR rep-

resentation associated to our running context (cf. Table 7.2, page 155) as a basis for illustrative examples.

e Scenario 1: If a frequent essential itemset e; is equal to its disjunctive closure fi, then we did
not use e; during the rule derivation step. This avoids extracting duplicated rules involving either e; or

f1, being equal. The use of f; only is indeed sufficient.

Example 54 Let fo be an immediate successor of fi1 and consider for example f1 (resp. e1 and f2) as
equal to F (resp. F and EF). Since fo\f1 = f2\e1 = E, only rules involving f1 and f2 need to be mined.
Indeed, let us look at the following couple of rules of Form 1: Ry: V(f2\f1) = Vfi1, and Ra: V(f2\e1)
= Ve;i. Since ey = f1 = F, then Ry = Rs.

e Scenario 2: Suppose that a disjunctive closed itemset f has exactly two distinct associated essential
itemsets e; and ey such that e; U e3 = f and e; N ez = 0. In this case, it is sufficient to extract

intra-node rules associated to only one essential itemset (either e; or es), since f\e; = ez and, dually,

f\€2 = €1.

Example 55 Let f (resp. e; and e3) be equal to AB (resp. 4 and B). Since AB\4 = B, we only use either
A or B for extracting intra-node rules. Indeed, the rules involving A are the same as those relying on B.

This avoids duplicating generation of the same rules.

e Scenario 3: Following the same spirit as the previous case, suppose that a disjunctive closed itemset f
has exactly two immediate predecessors fi and f3 s.t. f1 U fo = f and fi; N fo = 0. Then, it is sufficient

to extract inter-node rules using either f; or fs.

Example 56 Let f (resp. f1 and f3) be equal to ABE (resp. AB and E). Since ABE\AB = E, each rule
involving ABE and AB has its duplicate within rules invoking both ABE and E. Thus, only using AB is

sufficient.

It is important to mention that the frequent essential itemsets associated to f; and fs do not involve any

duplication and, hence, are used without any restriction.
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Remark 8 Suppose that o disjunctive closed itemset [ has an essential itemset e and an immediate
predecessor or one of its essential itemsets, say q, s.t. ¢ U e = f and g N e = (. Although this case also
leads to duplicated rules (the same reasoning applies as the previous two cases), we will tolerate such a
case since the associated duplicated rules do not involve the same disjunctive equivalence classes. Indeed,
rules extracted using f and e are intra-node ones, since belonging to the same equivalence class. While
those based on f and q are inter-node ones, since belonging to two comparable classes. This distinction
may help interpreting such rules.

Let us for example consider f (resp. e and q) as equal to ABE (resp. AE and B). B is a frequent essential
itemset associated to the closure AB which is an immediate predecessor of ABE. Each rule involving ABE
and AE will be an intra-node rule. It will have its duplicate when using ABE and B. Nevertheless, the
obtained rule in this latter case will be an inter-node one since ABE and B do not belong to the same

equivalence class, contrary to ABE and AE.

7.4 Extraction of Generalized Association Rules

In this section, we describe the process by which the selected generalized association rules will be ex-
tracted. In this respect, in order to derive inter-node rules (c¢f. previous section), disjunctive closed
itemsets need to be sorted w.r.t. set inclusion. Then, a complementary algorithm will be used for

deriving generalized rules. This is detailed in the following paragraphs.

7.4.1 Building the Partially Ordered Structure

Here, we describe an algorithm for building a partially ordered structure amongst disjunctive closed

itemsets. This structure is formally defined as follows:

Definition 74 (PARTIALLY ORDERED STRUCTURE)
The set of disjunctive closed itemsets EDCI forms a partially ordered structure L = (EDCZ, C) when
EDCT is sorted with set inclusion between disjunctive closed itemsets. In this structure, each element f

in EDCT is connected to the set of its immediate predecessors forming its lower cover:
o Cou(f) ={fr| /L €EDCT and f, C f and } fo € EDCT s.t. f1 C fo C f}.
It is also connected to the set of its immediate successors forming its upper cover:

o Cov'(f) ={fi| fLr €EDCT and f C f1 and } fo € EDCT s.t. f C fo C f1}.

The construction of this structure is carried out using a new algorithm, called POSB. # The POSB
algorithm takes as input the DSSR representation s.t. to each disjunctive closed itemset is associated
its set of frequent essential itemsets and disjunctive support. A node in the partially ordered structure
will be associated to each disjunctive closed itemset.

The pseudo-code of POSB is shown by Algorithm 10, while its associated notations are summarized in

Table 7.5. Our algorithm inherits two main optimizations used in the literature by algorithms dedicated

4POSB is the acronym of Partially Ordered Structure Builder.
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to the Hasse diagram building (like [Baixeries et al., 2009, Valtchev et al., 2000] 3). These optimizations
are the sorting of disjunctive closed itemsets, and the use of a border. Indeed, the set of disjunctive
closed itemsets EDCZ is sorted w.r.t. the increasing itemset size. Since closures of equal size are not
comparable, this sorting avoids unnecessary comparisons. In addition, it makes possible that the closure
under treatment to be of the largest size in comparison to the already handled closures. Thus, it suffices
to find its lower cover among the nodes inserted in the partially ordered structure. On the other hand,
the border is found to be an anti-chain w.r.t. set inclusion containing maximal closures among those
already treated.

However, the algorithms proposed in the literature do not directly fit to our situation. Indeed, although
the intersection of two disjunctive closed itemsets is obviously a disjunctive closed itemset, this latter
does not necessarily belong to EDCZ. This is due to the fact that it could have all its essential itemsets
infrequent and, hence, has been already pruned. On their side, the algorithms for building the Hasse
diagram mainly rely on the fact that the intersection of two concepts was already treated and it suffices to
locate the corresponding node within the already built part of the Hasse diagram. Recall that for obtaining
the set £DCZ, two constraints of different natures were combined: a monotone constraint through the
disjunctive support and an anti-monotone one through setting minsupp (cf. page 13). Consequently,
some disjunctive closed itemsets resulting from the intersection of others may be pruned since they have

all their essential itemsets infrequent. This is illustrated thanks to the following example.

Example 57 Consider a context containing the following transactions: A, B, ABC, ABD, and ABCD. Let
minsupp = 2. In this situation, the set of frequent essential itemsets FEZL is equal to {4, B, C, D, AB}.
The associated set of disjunctive closed itemsets EDCT is then {C, D, ACD, BCD, ABCD}. By intersecting
the closures ACD and BCD, the result is CD which is not present in EDCT since the associated essential
itemset, namely itself, is infrequent since Supp(CD) = 1.

In the case of the Valtchev et al. algorithm, the elements to be sorted are associated to the Galois
closure operator. More precisely, they correspond to the conjunctive closed itemsets. For minsupp = 2,
they form the set of frequent closed itemsets FCI equal to {0, 4, B, AB, ABC, ABD, ACD, ABCD}. In this
case, the intersection of each couple of elements from FCI also belongs to FCI.

The POSB algorithm incrementally inserts disjunctive closed itemsets one at a time to a structure
which is only partially finished to obtain at the end the entire one (¢f. Algorithm 10). Let f be the
current disjunctive closed itemset to be inserted in the partially ordered structure. f will be compared
to the elements of the border B (¢f. lines 5-11). If an element b € B is included in f (¢f. lines 7-9), then
it is an element of its lower cover. A link between the node representing b and that representing f will
be constructed thanks to the LOWER__COVER__ INSERTION procedure (c¢f. Algorithm 11). The element b
will then be deleted from the border. If b is not included in f but its intersection with f is not empty (cf.
lines 10-11), then the LOWER_COVER_MANAGEMENT procedure will identify the common immediate
predecessors of both b and f (¢f. Algorithm 12). Finally, f will be added to the border. It is important
to note that in the LOWER__COVER_MANAGEMENT procedure, a prohibited list is associated to each

disjunctive closed itemset to be inserted in the partially ordered structure. Indeed, when updating the

®Both described algorithms in [Baixeries et al., 2009, Valtchev et al., 2000] construct the Hasse diagram
representing the subset-superset relationship among concepts in the Galois lattice. They begin at the bottom of

the lattice and then recursively identify the lower neighbors of each concept.
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f : A disjunctive closed itemset.

B :  The set containing the elements of the border.

b :  An element of the border B.

Prohibited_List : The list of the treated nodes in the partially ordered structure.

Table 7.5: Notations used by the POSB algorithm.

precedence link between disjunctive closed itemsets, a node can be visited more than once since it can
be an immediate predecessor of many other nodes. This list will avoid such useless treatments by only

allowing the visit of nodes that do not belong to it.

Algorithm 10: POSB
Input: - The set EDCL of disjunctive closed itemsets.

Output: - The set EDCZ ordered by set inclusion.

1Begin

2| B:=10;

3| ForEach (f € £DCT) Do

4 Prohibited_ List = ();

5 ForEach (b € B) Do

6 inter == b N f;

7 If (inter = b) Then

8 LowER_COVER_ INSERTION(f, b);
9 B := B\ b;

10 Else If (inter # () Then

11 LOWER_ COVER_ MANAGEMENT(f, b);
12 B=BU/f;

13End

Example 58 Consider the set of disjunctive closed itemsets sorted by increasing size in Table 7.2. The
first two disjunctive closed itemsets E and F share the same size. They are hence immediately inserted
in the border, since no precedence relation can link them. After that, the disjunctive closed itemset AB is
compared to the element of the border, i.e., E and F. Since none of them is included in 4B, this closure is
simply added to the border. It is the same for the disjunctive closed itemset CD.

At this step, the border is composed by E, F, AB and CD. The closure under treatment now is EF.
Since both E and F are included in EF, they will be removed from the border and inserted as an immediate
predecessor of EF. This is done thanks to a call to the LOWER_COVER__INSERTION procedure. Then, ABE
will be compared to the element of the border. Since 4B is included in ABE, it will also be removed from the

border and set as an immediate predecessor of ABE. The intersection of this latter with EF is neither equal to
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Algorithm 11: LOWER__ COVER__ INSERTION
Input: - A disjunctive closed itemset f, and an element pred to be inserted in its lower

cover.

Output: - The updated lower cover of f.

1Begin

2| ForEach (I € Coy/(f)) Do

3 inter := 1 N pred;

4 If (inter = pred) Then

5 L return;

6 Else If (inter = 1) Then
|| L Couls) = Cou(h) \ &
8| Covi(f) := Covi(f) U pred;

9End

EF nor to the empty set. Consequently, the POSB algorithm calls the LOWER_ COVER_ M ANAGEMENT
procedure. This latter procedure will search for the immediate predecessors of ABE among the predecessors
of EF. It also stores in a prohibited list the visited nodes which makes it possible to avoid performing the
same treatment more than once. The precedence relation between ABE and its immediate predecessor E is
then established.

The border now contains EF, CD, and ABE to which will be compared the closure to be inserted in the
partially ordered structure, i.e., ABF. The intersection of this latter with EF is equal to F, which will be
inserted as an immediate predecessor of ABF. It is the same for AB w.r.t. the element of border ABE. ABF
will then be added to the border without removing any element since it covers none of them. The last
closure to be treated is ABCDEF. Since it subsumes all elements of the border, a precedence link will be
established between each element and ABCDEF.

At the end of the POSB algorithm execution, we obtain the partially ordered structure illustrated by
Figure 7.1. In this figure, the disjunctive closed itemsets listed in Table 7.2 are partially ordered w.r.t.
set inclusion. FEach one of them represents an equivalence class, to which is associated the corresponding

frequent essential itemsets and disjunctive support.

Thus, the construction of the precedence links in our situation requires more attention than in the
case of manipulating conjunctive closed itemsets. Noteworthily, the POSB algorithm can be used in the
general case for partially ordering itemsets pruned w.r.t. a conjunction of constraints of different natures

(like the monotone and anti-monotone ones in our case).

The next theorem states the soundness and the correctness of the POSB algorithm.

Theorem 17 The POSB algorithm is sound and correct. It exactly determines the lower cover of each

closure belonging to EDCI.
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Algorithm 12: LOWER_ COVER_ MANAGEMENT
Input: - A disjunctive closed itemset f, and an element b of the border B.

Output: - The updated lower cover of f.

1Begin

2| ForEach (pred_b € Coy/(b)) Do

3 If (pred_b ¢ Prohibited List) Then

4 inter := pred_b N f;

5 If (inter = pred_b) Then

6 L LowEeER_COVER_INSERTION(f, pred_b);

7 Else If (inter # () Then

8 L LOWER_ COVER_ MANAGEMENT( f, pred_Db);
9 Prohibited List := Prohibited List U pred_ b;
10End

ABCDEF

Figure 7.1: The partially ordered structure associated to the disjunctive closed itemsets given
by Table 7.2.

Proof. The POSB algorithm sorts the closure of EDCZ by increasing size. Thus, during its processing, a
disjunctive closed itemsets f € EDCI is necessarily of size higher than or equal to those already inserted
in the partially ordered structure. Hence, all elements belonging to its lower cover were already treated.
In addition, f will be correctly linked to its lower cover. Indeed, the comparison, w.r.t. set inclusion,
between f and already treated closures is performed starting from the largest ones, i.e., the elements of
the border B, until reaching the largest closures included in f. These latter closures correspond to the

elements of the lower cover of f.
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FEI; :  The set of frequent essential itemsets associated to a disjunctive
closed itemset f.

SET_PREM_CL; : The set containing frequent essential and disjunctive closed item-
sets that will play the role of premise or conclusion w.r.t. a rule

based on a disjunctive closed itemset f.

EGAR :  The set of valid exact generalized association rules.
AGAR :  The set of valid approximate generalized association rules.
ApGAR :  The set of valid approximated generalized association rules.

Table 7.6: Notations used by the GARS algorithm.

Let us now analyze the worst case complexity of the POSB algorithm. In the worst case, each essential
itemset is frequent and equal to its disjunctive closed itemset. Hence, the set EDCZ contains all disjunctive
closed itemsets since there is no pruned disjunctive closure. The partially ordered structure constitutes
thus a complete lattice. In this case, the complexity of the POSB algorithm is of the same order of

magnitude than that of the algorithm proposed in [Valtchev et al., 2000].

7.4.2 Deriving Generalized Association Rules

In this subsection, we describe the GARS algorithm 8 allowing the extraction of the selected generalized
association rules. Its pseudo-code is given by Algorithm 13. The associated notations are listed in Table
7.6. To this algorithm, we brought some modifications allowing to avoid the derivation of useless rules
(¢f. previous section).

For each disjunctive closed itemset f € EDCZ, the first step in the GARS algorithm consists in
searching for the subsets that will play the role of premise and, then, conclusion of each rule based on f.
These itemsets are its frequent essential itemsets, its immediate predecessors contained in Cov,(f), and
their respective frequent essential itemsets (cf. line 3).

For each element X of SET_PREM_CLy (cf. lines 4-10), the algorithm determines the difference,
denoted Y, between f and X (i.e., Y = f \ X). Then, the COMPUTE _BOUNDS procedure computes the
upper and lower bounds of the support of Y (¢f. line 6). After that, two cases have to be distinguished:

1. If the upper and lower bounds of the support of Y are equal (¢f. lines 7-8), then Supp(VY') is
exactly known. The GENERATE _RULES__ExXAcT_BOUNDS procedure is hence called. Indeed,
in this case, each rule using X (in premise or conclusion) and Y (conversely, in conclusion or
premise) will be determined with its exact value of support and confidence (¢f. Subsection 7.3.1
for the different forms of selected generalized rules and their associated formulae). The minsupp
and minconf thresholds are then used to only retain valid rules. Then, for each valid rule, its value
of confidence allows distinguishing its membership to the set EGAR of exact generalized association

rules or to the set AGAR of approximate ones.

2. If the upper bound of the disjunctive support of Y is different from the lower one (cf. lines 9-10),

SGARS is the acronym of Generalized Association Rules Selector.



168 Generalization of Association Rules through Disjunction

Algorithm 13: GARS
Input: - The partially ordered structure, minsupp and minconf.

Output: - The sets EGAR, AGAR and ApGAR.

1Begin

2| ForEach (f € £DCT) Do

3 SET_PREM_CL; := FEI; U Cov)(f) U {e | e € FEIy, s.t. fi € Covi(f) };

4 ForEach (X € Ser_PrEM_CLs) Do

5 Y= f\X;

6 CoMPUTE_BOUNDS(up_ Supp(VY), Ip_ Supp(VY));

7 If (up_ Supp(VY) = Ip_Supp(VY)) Then

8 GENERATE _RULEs _ExacT_BounDs(f, X, Y, Supp(VY), minsupp,
minconf);

9 Else

10 GENERATE _RULES _APPROXIMATED BOUNDS(f, X, Y, up_ Supp(VY),

| Ip_ Supp(VY'), minsupp, minconf);
11End

then the GENERATE RULES _APPROXIMATED BOUNDS procedure is called. In this situation,
the support and/or the confidence of rules using Y may not be exactly determined. Consequently,
their associated lower and upper bounds are computed (c¢f. Subsection 7.3.2). If the support of
a rule, under this case, is exactly determined then it is simply compared to minsupp. Otherwise,
the lower bound of support must be higher than or equal to minsupp. The same reasoning applies
for the confidence computation. Indeed, if the confidence value is exactly computed then it is
simply compared to minconf. Otherwise, the lower bound of the confidence value must be greater
than or equal to minconf. A rule which fulfills the validity conditions w.r.t. minsupp and minconf
is qualified to be valid. In this situation, if either its support or its confidence is approximately
determined, the associated valid rule will be inserted in the set ApGAR. Otherwise, it is added
according to its confidence value to EGAR or AGAR.

The next theorem shows the soundness and the correctness of the GARS algorithm.

Theorem 18 The GARS algorithm is sound and correct. It exactly determines all valid selected gen-

eralized association rules.

Proof. The GARS algorithm iterates on the elements of EDCZ. For each closure f € EDCZ, it determines
its subsets — essential and disjunctive closed itemsets — that will be used in the associated generalized
rules. The computation of the support and confidence of mined rules is performed according to the
associated formulae and compared to the minimum thresholds to only retain valid rules. Thus, all valid

selected rules will be mined. <
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7.5 Experimental Results

In this section, we will describe the experimental results we obtained. Through the carried out exper-
iments, we focused on the mining time as well as the number of extracted valid rules. The considered
benchmark contexts are described in Appendix A. All experiments were carried out on a PC equipped
with a 3GHz Pentium (R) and 1.75GB of main memory, running the GNU/Linux distribution Fedora
Core 7 (with 2GB of swap memory).

The whole process for extracting the generalized association rules was implemented in C++ into a
tool, called GARM. 7 To the best of our knowledge, our tool is the unique one allowing the extraction of
generalized association rules through a dedicated exploration of the disjunctive search space. Moreover,
no previous approach has considered essential and disjunctive closed itemsets as a basis for mining
generalized association rules. In addition, there is no publicly available tool for mining disjunctive rules.
The purpose of our experiments is twofold. On the one hand, we focus on a comparison of the mining
time of the different components covering the process of generalized association rule mining. Recall that

the GARM tool gathers the following components:

1. The first one extracts the DSSR representation thanks to two complementary steps. These latter
are carried out thanks to a slight modification of our DCPR_ MINER algorithm (c¢f. page 123).
The first step allows the extraction of the sets EDCZ and FEZ. The second makes it possible to

gather, for a given disjunctive closed itemset, its associated frequent essential itemsets.

2. The second component constructs the partially ordered structure w.r.t. set inclusion between

disjunctive closed itemsets using the POSB algorithm.

3. The third one derives the valid generalized association rules which are under the selected rule forms
(¢f. Table 7.3, page 157). In addition, it simultaneously eliminates duplicate ones. This is carried
out thanks to the GARS algorithm.

On the other hand, we concentrate on the quantitative aspect through a comparison of the number of
mined valid rules w.r.t. their associated type, i.e., exact, approximate or approximated. The different
experiments are carried out by varying either minsupp or minconf values.

Before going in detail in the interpretation of the obtained results, it is worth recalling that, once the
support of the difference evaluated using the DSSR representation (cf. previous section), the derivation
of the valid association rules having one of the considered forms becomes an easy task. Indeed, this
consists in simple arithmetic operations using the respective supports of the premise, the conclusion and
the rule. In addition, the extraction of approximated rules can be made optional in our tool. Indeed,
we can easily restrict the extraction to valid rules whose respective supports and confidences are exactly
determined. Note also that the restriction can be carried out w.r.t. association rule forms by allowing
only some of them to be mined. Here, we preferred to omit such restrictions, which can however be useful

according to the application to only retain rules of interest for the end-users.

We will begin by describing the effect of the minsupp variation on: (i) the runtime of the different

components of GARM, (7i) the number of mined rules through a global point of view only distinguishing

TGARM is the acronym of Generalized Association Rule Miner.
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rules w.r.t. their type and, then, thanks to a local point of view taking into account also the rule
forms. Then, we study the effect of the minconf variation on both runtime and mined rule number. In
the different tables sketching the obtained results, “Comp.” (resp. “Approx” and “Apted”’) stands for

“Component” (resp. “Approximate”’ and “Approximated”).

7.5.1 Effect of the minsupp Variation

In these experiments, the value of minsupp varies and that of minconf is set to the associated relative
MINSUPP

0] . o
Table 7.7 and Table 7.8 present representative results on the mining time (in seconds) of the three

minimum support threshold, i.e.,

components of GARM for dense and sparse contexts, respectively. While Figure 7.2 and Figure 7.3
graphically sketch the obtained results for dense and sparse contexts, respectively. Our results show the
efficiency of our tool towards extracting generalized association rules. In this respect, the time consumed
by each component, w.r.t. the total time, closely depends on the context characteristics. Nevertheless,
the second and third components are in general faster than the first one. Interestingly, once the partially
ordered structure built thanks to the second component, the derivation of generalized association rules
performed by the third one is in almost all cases the fastest step (c¢f. the last three columns in Table 7.7
and Table 7.8). This highlights the added value of such a structure not only for reducing the number
of mined rules but also as a basis for efficient computations of the required supports. With respect to
the variation of minsupp values, we note that as far as the value of minsupp decreases, the number of
frequent essential itemsets and, hence, disjunctive closed itemsets increases. This augmentation leads to

the increase of the mining time as well as the number of extracted generalized association rules.

For dense and sparse contexts respectively, Table 7.9 and Table 7.10 show our main results on the total
number of valid generalized association rules distinguished w.r.t. their type (i.e., exact, approximate
and approximated). These results are also respectively shown in Figure 7.4 and Figure 7.5. Obtained
results highlight that the number of mined generalized association rules closely depends on the context
density. Indeed, the higher the value of this latter, the larger the associated equivalence classes are. This
increases the number of essential itemsets per class. Consequently, the number of rules involving essential
itemsets and disjunctive closed itemsets will greatly augment. This fact augments the number of rules
even for high minsupp values for the dense contexts such as CONNECT and PUMSB. In this respect, it is
always worth recalling that generalized association rules — disjunctive ones in particular — reach minimum
support threshold much easier than conjunctive association rules. This fact highlights the added-value,
w.r.t. the rule number reduction, of only considering frequent essential itemsets and their closure, and
not any itemset.

For the KOoSARAK, RETAIL, and T40I10D100K contexts, we only obtained approximate generalized
association rules. Indeed, the number of exact rules is equal to O for the tested minsupp values. This
is due to the fact that, for these contexts, each frequent essential itemset is equal to its disjunctive
closure, which is not the case for contexts such as MUSHROOM and PUMSB. Moreover, the number of
approximated rules is also equal to 0. This is explained as follows. Let us recall that we search for
the support of the difference between the disjunctive closed itemset, on which is based the rule, and the
premise (or conclusion) containing either a disjunctive closed itemset or a frequent essential rules. In the

case of RETAIL, KOSARAK, and T40I10D 100K contexts, the support of the difference is always exactly
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Figure 7.2: Mining time of generalized association rules from dense contexts.

determined, which leads to the absence of approximated association rules. Indeed, this difference is always
encompassed between a frequent essential itemset and its disjunctive closure. Since each equivalence class
is limited to a unique element, the difference is an essential itemset (equal to its closure) which explains
why its support is always determined.

For the T10I14D100K, some exact and approximated generalized association rules are mined for low
minsupp values. This can be explained by the fact that although almost all disjunctive equivalence classes
contain a unique essential itemset, some of the classes have frequent essential itemsets that are different
from their disjunctive closure. This makes possible to extract rules that are either exact or approximated.
Note however that the number of approximated rules closely depends on the minsupp value. Indeed, the
appearance of such rules is connected to the possibility (or not) to exactly derive the support of the
difference. Such a derivation relies on the content of disjunctive equivalence classes, and more precisely,
frequent essential itemsets and their associated closures. The appearance of these latter itemsets in the
DSSR representation depends on the minsupp value. Note that the same scenario also occurred for the
CONNECT dataset when the minsupp value was lowered from 75% to 65%.

For the smallest value of minsupp per dataset used in our tests, Table 7.11 also details for each bench-
mark dataset the number of generalized association rules per type (exact, approximate or approximated)
and per rule form (¢f. Table 7.3, page 157). In this table and for lack of space, “T” (resp. “E”, “A”,
“Ap”, and “Tot”) refers to “Type”’ (resp. “Exact”, “Approximate”, “Approximated”, “Total”). Note also
that some dataset names are abbreviated. For the KosarRAK, RETAIL and T40I10D100K datasets, we
omit the repartition of exact and approximated rules since their total number is equal to 0.

Table 7.11 mainly highlights that Form 1 - involving disjunction of items in premise and in conclusion

— has the higher number of valid rules. This can be explained by the fact that the disjunction of items
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Figure 7.3: Mining time of generalized association rules from sparse contexts.
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Context || minsupp Comp. 1 Comp. 2 || Comp. 3 Total T?):’;“i“;e T?)‘t’:‘l“;“:e T?):’;";“fe
(%) || Step 1 | Step 2 time (%) (%) (%)
CONNECT 90 2.1984 | 0.0020 0.0022 0.0107 2.2133 99.42 0.10 0.48
85 2.1365 | 0.0028 0.0038 0.0212 2.1643 98.84 0.18 0.98
80 2.1496 | 0.0034 0.0068 0.0380 2.1978 97.96 0.51 1.78
75 2.1802 | 0.0044 0.0112 0.0588 2.2546 96.90 0.50 2.60
65 2.2408 | 0.0074 0.0244 0.1108 2.3834 94.38 1.02 4.65
60 2.2709 | 0.0098 0.0402 0.1618 2.4827 91.86 1.62 6.52
55 2.3069 | 0.0127 0.0760 0.2352 2.6308 88.17 2.89 8.94
50 2.3427 | 0.0160 0.1798 0.3827 2.9212 80.74 6.16 13.10
45 2.4174 0.0213 0.4302 0.7472 3.6161 67.44 11.90 20.66
40 2.5328 0.0243 1.0443 0.9813 4.5827 55.80 22.79 21.41
35 2.7689 | 0.0299 3.4640 2.2542 8.5170 32.86 40.67 26.47
30 3.0990 | 0.0400 7.9639 3.6207 14.7236 21.32 54.09 24.59
PumMmsB 90 3.1823 | 0.0052 0.0403 0.1015 3.3293 95.74 1.21 3.05
85 3.0641 0.0162 0.4919 0.7354 4.3076 71.51 11.42 17.07
80 3.1239 | 0.0342 2.9364 1.9693 8.0638 39.17 36.41 24.42
75 3.1990 | 0.0505 6.8037 3.6467 13.6999 23.72 49.66 26.62
70 3.5852 | 0.0778 19.5460 8.7276 31.9366 11.47 61.20 27.33
65 4.1989 | 0.1229 81.0964 25.3739 || 110.7921 3.90 73.20 22.90
MusH- 40 0.1400 | 0.0013 0.0069 0.0238 0.1720 82.15 4.01 13.84
ROOM 35 0.1446 | 0.0018 0.0136 0.0455 0.2055 71.24 6.62 22.14
30 0.1490 | 0.0029 0.0296 0.0803 0.2618 58.02 11.81 30.67
25 0.1655 | 0.0043 0.1008 0.2153 0.4859 34.95 20.75 44.30
20 0.2274 0.0129 1.6332 1.2396 3.1131 7.72 52.46 39.82
15 0.3701 | 0.0232 9.1475 3.9346 13.4754 2.92 67.88 29.20
CHESS 90 0.0837 | 0.0009 0.0030 0.0071 0.0947 89.38 3.17 7.50
85 0.0884 | 0.0014 0.0065 0.0185 0.1148 78.22 5.66 16.12
80 0.0875 | 0.0021 0.0122 0.0352 0.1370 65.40 8.91 25.69
75 0.0936 | 0.0033 0.0316 0.0718 0.2003 48.38 15.78 35.84
70 0.0995 | 0.0050 0.1070 0.1521 0.3636 28.74 29.43 41.88
65 0.1303 | 0.0079 0.3538 0.3858 0.8778 15.74 40.31 43.95
60 0.1966 | 0.0122 1.0902 0.6955 1.9945 10.47 54.66 34.87
55 0.2468 | 0.0200 3.7233 1.4192 5.4093 4.93 68.83 26.2/
50 0.3678 | 0.0269 11.4860 2.8852 14.7659 2.67 .79 19.54

Table 7.7: Mining time (in second) of generalized association rules from dense contexts.
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Context || minsupp Comp. 1 Comp. 2 || Comp. 3 Total T(;'i::):lllzur]l-e T(i':;“;":e T(i;’;“t’“:e
(%) Step 1 | Step 2 time (%) (%) (%)
KosArAKk 1.00 12.0809 0.0032 0.1019 0.1792 12.3652 97.713 0.82 1.45
0.90 12.4514 0.0037 0.1645 0.2239 12.8435 96.98 1.28 1.7
0.80 13.8207 0.0045 0.2924 0.2685 14.3861 96.10 2.03 1.87
0.70 16.2875 0.0061 0.6825 0.3794 17.3555 93.88 3.98 2.19
0.60 19.6858 | 0.0088 1.9262 0.5942 22.2150 88.65 8.67 2.68
0.50 26.4366 0.0125 5.6164 0.8738 32.9393 80.30 17.05 2.65
0.45 31.2231 0.0157 10.4114 1.1056 42.7558 73.06 24.35 2.59
0.40 39.0474 0.0197 21.0048 1.4477 61.5196 63.51 84.14 2.85
RETAIL 10.00 0.8074 0.0004 0.0011 0.0009 0.8098 99.75 0.14 0.11
7.50 0.7914 0.0005 0.0013 0.0021 0.7953 99.57 0.17 0.26
5.00 0.7909 0.0004 0.0015 0.0037 0.7965 99.35 0.19 0.46
2.50 0.8252 0.0006 0.0039 0.0080 0.8377 98.58 0.47 0.95
2.00 0.8463 | 0.0008 0.0070 0.0135 0.8676 97.64 0.80 1.56
1.00 1.0789 0.0014 0.0113 0.0334 1.1250 96.03 1.00 2.97
0.50 2.3869 0.0040 0.1127 0.1331 2.6367 90.68 4.27 5.05
T1014- 1.00 2.8381 0.0024 0.0189 0.0028 2.8622 99.24 0.66 0.10
D100K 0.50 8.5903 0.0069 0.0975 0.2035 8.8982 96.62 1.10 2.28
0.45 12.2011 0.0088 0.1424 0.3180 12.6703 96.37 1.12 2.51
0.40 19.4357 0.0145 0.5272 0.6773 20.6547 94.17 2.55 3.28
0.35 29.0230 0.0192 1.1450 1.0416 31.2288 93.00 3.66 8.84
0.30 49.9765 | 0.0457 6.5793 2.2136 58.8151 85.05 11.19 3.76
0.25 97.5089 0.0597 38.8410 4.6734 || 141.0830 69.16 27.58 3.81
T40I10- 5.00 5.3281 | 0.0021 0.0157 0.0037 5.3496 99.64 0.29 0.07
D100K 4.50 5.5353 | 0.0023 0.0181 0.0067 5.5624 99.55 0.33 0.12
4.00 6.1850 0.0028 0.0226 0.0148 6.2252 99.40 0.36 0.24
3.50 7.7510 0.0036 0.0304 0.0322 7.8172 99.20 0.39 0.41
3.00 11.5457 | 0.0050 0.0465 0.0698 11.6670 99.00 0.40 0.60
2.50 23.6067 0.0087 0.0842 0.1538 23.8534 99.01 0.35 0.64
2.40 34.0378 | 0.0087 0.0976 0.1852 34.3293 99.18 0.28 0.54
2.30 59.5699 0.0098 0.1161 0.2232 59.9190 99.48 0.20 0.37
2.20 84.9241 0.0112 0.1381 0.2637 85.3371 99.58 0.16 0.51
2.10 || 129.7740 0.0129 0.1675 0.3167 || 130.2711 99.63 0.1 0.24
2.00 || 180.3630 0.0149 0.2081 0.3864 || 180.9724 99.67 0.12 0.21

Table 7.8: Mining time (in second) of generalized association rules from sparse contexts.
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Context || minsupp || # Exact | # Appro | # Apted Total Toili’ff;tber Toﬁl":‘;‘;:%er ToﬁlAnP:xt;c':)er
(%) number (%) (%) (%)
CONNECT 90 359 49 0 408 87.99 12.01 0.00
85 524 156 38 718 72.98 21.73 5.29
80 641 361 152 1, 154 55.55 31.28 18.17
75 795 717 202 1, 714 46.38 41.83 11.79
65 1, 259 1, 449 190 2, 898 4344 50.00 6.56
60 1, 561 1, 859 334 3, 754 41.58 49.52 8.90
55 1, 954 2, 640 396 4, 990 89.16 52.91 7.93
50 2, 388 3, 824 620 6, 832 34.95 55.97 9.08
45 2, 879 4, 891 1, 794 9, 564 30.10 51.14 18.76
40 3, 351 7, 413 2, 778 13, 542 24.75 54.74 20.51
35 3, 994 10, 208 5, 086 19, 288 20.71 52.92 26.37
30 5, 060 14, 498 11, 488 31, 046 16.30 46.70 37.00
PuwmsB 90 746 1,734 290 2, 770 26.93 62.60 10.47
85 2, 437 6, 475 2, 854 11, 766 20.71 55.03 24.26
80 4, 735 16, 211 3,660 || 24, 606 19.24 65.88 14.88
75 7, 317 24, 997 4, 5564 36, 868 19.85 67.80 12.35
70 10, 075 31, 901 12, 194 54, 170 18.60 58.89 22.51
65 14, 965 54, 879 18, 616 || 88, 460 16.92 62.04 21.04
MusH- 40 141 326 267 734 19.21 44.41 36.38
ROOM 35 201 665 450 1, 316 15.27 50.58 84.20
30 249 1, 044 829 2, 122 11.78 49.20 39.07
25 470 2, 390 2, 018 4, 878 9.64 49.00 41.36
20 1, 284 9, 078 8,242 || 18, 604 6.90 48.80 44.0
15 2, 239 22, 691 18, 370 43, 300 5.17 52.40 42.43
CHESS 90 123 119 4 246 50.00 48.37 1.63
85 206 336 58 600 34.33 56.00 9.67
80 338 582 142 1, 062 31.82 54.80 13.38
75 500 1, 116 328 1, 944 25.72 57.41 16.87
70 729 2,071 820 3, 620 20.14 57.21 22.65
65 1, 066 3, 522 1, 364 5, 952 17.91 59.17 22.92
60 1, 470 4, 506 4,102 || 10, 078 14.59 1471 40.70
55 1, 934 7, 296 6, 780 16, 010 12.08 45.57 42.35
50 2, 616 11, 472 11,102 || 25, 190 10.39 45.54 44.07

Table 7.9: Number of mined generalized association rules from dense contexts.
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Context || minsupp || # Exact | # Appro | # Apted Total Toﬁli’f;:;tber Toﬁl":‘;‘;:%er Tof:ﬁf:;ier
(%) number (%) (%) (%)
KOSARAK 1.00 0 5, 750 0 5, 750 0 100 0
0.90 0 7, 286 0 7, 286 0 100 0
0.80 0 9, 248 0 9, 248 0 100 0
0.70 0 13, 046 0 13, 046 0 100 0
0.60 0 19, 614 0 19, 614 0 100 0
0.50 0 29, 648 0 29, 648 0 100 0
0.45 0 37, 696 0 37, 696 0 100 0
0.40 0 48, 760 0 48, 760 0 100 0
RETAIL 10.00 0 24 0 24 0 100 0
7.50 0 66 0 66 0 100 0
5.00 0 120 0 120 0 100 0
2.50 0 270 0 270 0 100 0
2.00 0 464 0 464 0 100 0
1.00 0 1, 160 0 1, 160 0 100 0
0.50 0 4, 622 0 4, 622 0 100 0
T1014- 1.00 0 88 0 88 0.00 100.00 0.00
D100K 0.50 0 6, 842 0 6, 842 0.00 100.00 0.00
0.45 0 10, 060 0 10, 060 0.00 100.00 0.00
0.40 6 22, 299 7 22, 312 0.03 99.94 0.08
0.35 30 34, 296 0 34, 326 0.09 99.91 0.00
0.30 198 70, 964 8 71, 170 0.28 99.71 0.01
0.25 426 149, 199 5 149, 630 0.28 99.71 0.01
T40110- 5.00 0 120 0 120 0 100 0
D100K 4.50 0 224 0 224 0 100 0
4.00 0 512 0 512 0 100 0
3.50 0 1, 128 0 1, 128 0 100 0
3.00 0 2, 454 0 2, 454 0 100 0
2.50 0 5, 404 0 5, 404 0 100 0
2.40 0 6, 438 0 6, 438 0 100 0
2.30 0 7, 778 0 7,778 0 100 0
2.20 0 9, 282 0 9, 282 0 100 0
2.10 0 11, 148 0 11, 148 0 100 0
2.00 0 13, 546 0 13, 546 0 100 0

Table 7.10: Number of mined generalized association rules from sparse contexts.
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Figure 7.5: Number of mined generalized association rules from sparse contexts.

reaches minimum thresholds much easier than the other forms. In addition, we note that, in many cases,
there are as many valid rules as valid reverse rules. For example, the number of rules following Rgs is

always the same as those of Ryg.

7.5.2 Effect of the minconf Variation

Now, we concentrate on the variation of the mining time and the number of extracted rules when the
value of minsupp is fixed and that of minconf varies. With respect to the mining time, such a variation
only affects that of the third component since minconf is only used in this component. The number
of approximate and approximated rules can also change, which is not the case of the number of exact
These
variations are depicted by Table 7.12 and Table 7.13 for dense and sparse contexts, respectively. They

generalized association rules. Indeed, exact rules have always a confidence value equal to 1.

are also respectively sketched by Figure 7.6 and Figure 7.7. The selected minsupp value is given under
the name of the context in the associated table.

According to the obtained results, we notice that, in general, the mining time of generalized association
rules increases proportionally to the decrease of minconf values. Nevertheless, the augmentation is not
very sensitive to the variation of minconf. Moreover the number of approximate and approximated rules
decreases when the value of minconf increases. This can be explained by the fact that we only retain
valid rules, i.e., those the minimum confidence value of which is higher than or equal to minconf. Once
this latter is set to a higher value, the validity constraint becomes harder to be verified by a rule, even if
its support is greater than or equal to minsupp.

The experiments we carried out confirm that, once the partially ordered structure built, the derivation

of generalized association rules becomes straightforward. Indeed, this last component does not influence
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Dataset T Form 1 Form 2
R11 | R12 | R13| R14 | R15| RI16 Tot || R21 | R22 | R23 | R24 | R25 | R26 Tot
CoNNECT E [ 1,420 | 2,220 524 0 890 0] 5,054 3 0 0 0 0 3 6
(30%) A 803 0| 1,732 | 2,256 | 2,832 | 3,722 | 11,345 0 0 0 0 3 0 3
Ap 807 | 807 | 2,974 | 2,974 | 1,962 | 1,962 | 11,486 0 0 0 0 0 0 0
PUMSB E [ 3,197 | 7,802 | 3,541 0 425 0 | 14,965 0 0 0 0 0 0 0
(65%) A | 4,605 0 | 12,378 | 15,919 | 10,776 | 11,201 | 54,879 0 0 0 0 0 0 0
Ap || 2,089 | 2,089 | 5,910 | 5,910 | 1,309 | 1,309 | 18,616 0 0 0 0 0 0 0
MUsH. E 229 [ 612 402 0 268 o[ 1,511 ] 638 2 0 0 0 88 728
(15%) A 628 0| 1,121 | 1,523 | 2,716 | 2,984 | 8,972 0 0 | 1,556 0| 1,875 | 1,695 | 5,126
Ap || 1,150 | 1,150 | 3,661 | 3,661 | 1,973 | 1,973 | 13,568 0| 391 0| 1077 0 571 | 2,039
CHEss E 703 | 1,295 417 0 201 0] 2,616 0 0 0 0 0 0 0
(50%) A 592 0 958 | 1,375 | 4,173 | 4,374 | 11,472 0 0 0 0 0 0 0
Ap || 1,087 | 1,087 | 2,930 | 2,930 | 1,534 | 1,534 | 11,102 0 0 0 0 0 0 0
[ Ko. (0.4%) | A | 0 | 0 | 0 | 0] 6552 | 6552 13,004 [ o] 0] 0 | 0] 6552 ] 6552 | 13,104 |
[ Re. (05%) ]| A | 0 | 0 | 0 | 0] 624 ] 624 1,248 o] 0] 0 | 0] 624 ] 624 1,248 |
T10 E o[ =213 0 0 0 0 213 || 213 0 0 0 0 0 213
(0.25%) A 426 0 420 420 | 18,589 | 18,589 | 38,444 0 0| 420 0 | 18,590 | 19,009 | 38,019
Ap 0 0 0 0 1 1 2 0 0 0 0 0 1 1
[ Ta0 2%) || A ] 0 | 0 | 0 | 0] 1695 ] 1695 ] 3390 [ o] 0] 0 | 0] 1,695 1,695 | 3,390
Dataset T Form 3 Form 4
R31 | R32 | R33| R34| R35| R36| Tot || R41 | R42 | R43 | R44| R45| R46 | Tot
CoNNECT E 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(30%) A 42 0 0 0| 1127 405 | 1,574 0 42 2 0 405 | 1,127 | 1,576
Ap 0 0 0 2 0 0 2 0 0 0 0 0 0 0
PUMSB E 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(65%) A 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ap 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MusH. E 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(15%) A 273 0 100 266 | 2,145 928 | 3,712 0| 273 | 889 | 100 | 1,474 | 2,145 | 4,881
Ap 223 0 220 623 354 546 | 1,966 0| 223 0] 22 0 354 797
CHEss E 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(50%) A 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ap 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[ Ko. (0.4%) | A ]| 0 | 0 | 0 | 0] 6373 4903 11,276 [ o[ 0] 0 | 0] 4903 [ 6,373 | 11,276 |
[ Re. (05%) ]| A ] 0 | 0 | 0 | 0] 554 ] 509 1,063 o] o] 0 | 0] 509 [ 554 ] 1,063 |
T10 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0.25%) A 213 0 0 0 | 18,822 | 17,333 | 36,368 0| 213 0 0 | 17,333 | 18,822 | 36,368
Ap 0 0 0 0 1 0 1 0 0 0 0 0 1 1
[ Tao 2%) [ A ] 0 | 0 | 0 | 0] 1,689 [ 1694 ] 338 o] 0] 0 | 0] 1,604 [ 1,689 | 3,383

Table 7.11: Detailed number of mined generalized association rules per selected form.

the performances of the GARM tool.

7.6 Related Work and Discussion

Contributions related to association rule mining mainly concentrated on the classic rule form, namely
that presenting conjunction of items in both premise and conclusion parts. In this respect, many concise
representations for such rules were proposed in the literature [Ceglar and Roddick, 2006, Kryszkiewicz,
2002].

Some works focused on taking into account negative items within the mined association rules. Since

the majority of items are not present in each object, a huge quantity of association rules with negation
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Context || minconf || Runtime || # Appro | # Apted || Total rule ToﬁlAnlzlpr:l%er Tof’:l‘:‘::;ier
(%) || Comp. 3 number (%) (%)
CONNECT 35 3.6136 13, 666 11, 487 25, 153 54.33 45.67
(830%) 40 3.5639 13, 331 11, 475 24, 806 53.74 46.26
45 3.5537 13, 190 11, 380 24, 570 53.68 46.32
50 3.5499 12, 924 11, 290 24, 214 58.37 46.68
55 3.6312 12, 653 11, 172 23, 825 53.10 46.90
60 3.6007 12, 494 11, 018 23, 512 53.14 46.86
70 3.5580 11, 250 10, 498 21, 748 51.78 48.27
80 3.4814 10, 847 9, 958 20, 805 52.1/ 47.86
90 3.4294 9, 717 8, 412 18, 129 53.60 46.40

PuUMSB 75 3.6832 24, 997 4, 554 29, 551 84.59 15.41
(75%) 80 3.6261 24, 943 4, 554 29, 497 84.56 15.44
85 3.6818 24, 924 4, 553 29, 477 84.55 15.45
90 3.6390 23, 880 4, 444 28, 324 84.91 15.69

95 3.7789 22, 280 4, 384 26, 664 83.56 16.44

MUSHROOM 20 3.7657 22, 454 18, 031 40, 485 55.46 44.54
(15%) 30 3.6490 21, 065 16, 419 37, 484 56.20 43.80
40 3.5339 19, 075 14, 690 33, 765 56.49 48.51
50 3.4037 16, 700 12, 829 29, 529 56.55 43.45
60 3.2730 13, 955 10, 648 24, 603 56.72 438.28

70 3.1144 10, 979 8, 399 19, 378 56.66 43.34
80 3.0111 7, 981 5, 858 13, 839 57.67 42.33
90 2.7817 5, 125 3, 309 8, 434 60.77 39.23
CHESS 60 2.9597 11, 321 11, 095 22, 416 50.50 49.50
(50%) 65 2.9615 10, 910 10, 739 21, 649 50.39 49.61
70 2.8043 10, 568 10, 275 20, 843 50.70 49.30

75 2.7948 10, 327 9, 857 20, 184 51.16 48.84
80 2.7880 9, 903 9, 408 19, 311 51.28 48.72
85 2.8126 9, 305 9, 143 18, 448 50.44 49.56
90 2.7629 8, 717 8, 848 17, 565 49.63 50.37
95 2.6172 7, 377 6, 991 14, 368 51.84 48.66

Table 7.12: Variation of the mining time and the number

w.r.t. minconf values for dense contexts.

of mined generalized association rules
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Context || minconf || Runtime || # Appro | # Apted || Total rule Tof:;:‘;‘;:‘;er Toﬁl‘:‘:;ier
(%) || Comp. 3 number (%) (%)
KosArAK 10 0.3394 11, 658 0 11, 658 100 0
(0.70%) 20 0.2980 10, 235 0 10, 235 100 0
30 0.2794 9, 536 0 9, 536 100 0
40 0.2419 8, 260 0 8, 260 100 0
50 0.2078 7, 052 0 7, 052 100 0
60 0.1727 5, 842 0 5, 842 100 0
70 0.1357 4, 560 0 4, 560 100 0
80 0.1148 3, 828 0 3, 828 100 0
90 0.0701 2, 289 0 2, 289 100 0
RETAIL 10 0.1194 4,139 0 4, 139 100 0
(0.50%) 20 0.1116 3, 853 0 3, 853 100 0
30 0.1029 3, 537 0 3, 537 100 0
40 0.0900 3, 099 0 3, 099 100 0
50 0.0728 2, 496 0 2, 496 100 0
60 0.0549 1, 861 0 1, 861 100 0
70 0.0408 1, 364 0 1, 364 100 0
80 0.0308 1, 017 0 1, 017 100 0
90 0.0219 709 0 709 100 0
T10I14D100K 10 0.4975 16, 163 7 16, 170 99.96 0.04
(0.40%) 20 0.4336 13, 975 7 13, 982 99.95 0.05
30 0.3982 12, 753 4 12, 757 99.97 0.08
40 0.3805 12, 131 4 12, 135 99.97 0.08
50 0.3632 11, 557 4 11, 561 99.97 0.03
60 0.3417 10, 857 4 10, 861 99.96 0.04
70 0.3218 10, 128 3 10, 131 99.97 0.08
80 0.2868 8, 824 2 8, 826 99.98 0.02
90 0.2229 6, 577 2 6, 579 99.97 0.08
T40I10D100K 10 0.0682 2, 417 0 2, 417 100 0
(3.00%) 20 0.0496 1, 735 0 1, 735 100 0
30 0.0377 1, 302 0 1, 302 100 0
40 0.0350 1, 231 0 1, 231 100 0
50 0.0351 1, 228 0 1, 228 100 0
60 0.0348 1, 225 0 1, 225 100 0
70 0.0329 1, 154 0 1, 154 100 0
80 0.0213 719 0 719 100 0
90 0.0017 38 0 38 100 0

Table 7.13: Variation of the mining time and the

w.r.t. minconf values for sparse contexts.

number of mined generalized association rules
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is often extracted. Thus, existing approaches have tried to address this problem through the use of
additional background information about the data [Savasere et al., 1998], incorporating item correlations
[Antonie and Zaiane, 2004], and additional rule interestingness measures [Morzy, 2006, Wu et al., 2004],
etc.

In [Kim, 2003, Nanavati et al., 2001], the authors were interested in using the disjunction connector
within the association rule mining task. In addition to the inclusive disjunction connector, i.e., the oper-
ator V, Nanavati et al. were also interested in the exclusive disjunction connector, denoted @ [Nanavati
et al., 2001]. In this respect, two items A and B are said to be mutually exclusive, i.e., A®B, whenever the
negative association rule A = B (or equivalently, B = R) is an exact rule. The authors hence proposed
two kinds of rules: the simple disjunctive rules and the generalized disjunctive ones. Simple disjunctive
rules are those having either the premise or the conclusion (i.e., not simultaneously both) composed by
a disjunction of items. This disjunction can be inclusive (the simultaneous occurrence of items is possi-
ble) or exclusive (two distinct items cannot occur together). On the other hand, generalized disjunctive
rules are disjunctive rules whose premises or conclusions contain a conjunction of disjunctions. These
disjunctions can either be inclusive or exclusive. In [Kim, 2003], the author mainly focuses on getting
out association rules having conclusions containing mutually exclusive items, i.e., the presence of one of
them leads to the absence of the others. This is expressed in [Nanavati et al., 2001] using the operator
@. Other forms of generalized association rules were described in [Griin, 1998]. They are as follows: for
all z;, y; € 7,

1. Rules having their premise or conclusion part composed of negated items, i.e., those of the form

TINT2N ATy S YIAYI AN oA AY, O TLANT2 N ATy, = Y1 AY2 Aot o A Y-

2. Rules having disjunctive premises or conclusions, i.e., those of the form x4 Axzas A ... A z), =

Y1V y2V ...V ynorzriV oV ...V Tp = yY1 Ay2 Ao A Y.

All these rule forms were included and enriched thanks to those taken into account in our work. In
[Shima et al., 2005], Shima et al. extract what they called disjunctive closed rules. In their work, a
disjunctive closed rule simply stands for a clause under the disjunctive normal form (DNF') such that its
disjuncts are constituted by frequent closed itemsets [Shima et al., 2004]. Elble et al. used disjunctive
rules to handle numerical attributes by considering disjunctions between intervals [Elble et al., 2003]. In
classification association rule mining, a disjunctive rule having a premise (resp. conclusion) composed by
a conjunction (resp. disjunction) of items is called multiple target rule [Li and Jones, 2006]. Finally, it
is worth recalling that such a rule form has also been used as an intermediate step for defining concise
representations for frequent itemsets (e.g., those based on disjunction-free sets [Bykowski and Rigotti,

2001, Bykowski and Rigotti, 2003] and (generalized) disjunction-free generators [Kryszkiewicz, 2002]).

7.7 Conclusion

In this chapter, we introduced a novel approach for extracting generalized association rules. We started
by extending the framework of classic association rules through taking into account various connectors
as well as negative items. An overview of the possible mined forms of generalized association rules
was also presented, in addition to how are calculated the associated supports in the general case. To

avoid that our approach be restrictive to some association rule forms regardless the others, we adopted
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as a starting point an exact concise representation of frequent itemsets. On the one hand, having at
hand such a representation allows the exact derivation of the support of each literalset whose positive
variation is a frequent itemset. On the other hand, the fact that this representation is based on disjunctive
itemsets, namely essential and disjunctive closed itemsets, makes easier the extraction of rules containing
disjunction of items as well as negated ones.

As a next step, towards reducing the number of mined rules, a selection process of subsets of generalized
association rules was then described. As a result, we mainly concentrated on four generalized association
rule forms. We also distinguished both intra-node and inter-nodes rules. These latter rules required
the construction of a partially ordered structure obtained w.r.t. set inclusion between disjunctive closed
itemsets. An approximation process of the quality measures was also discussed. This approximation
is useful once a given support required for their computation may not be exactly derived from the
representation. We also led a study allowing the elimination of duplicated rules.

For mining generalized association rules, we designed new complementary algorithms covering the
different steps of our approach. This results in a new tool, called GARM. The experimental tests
consisted essentially in analyzing the behavior of our tool regarding the mining time of its components
and the number of mined association rules per type and per rule form. Experimental results proved the
effectiveness of the proposed approach, and that the number of exact, approximate and approximated

rules closely depends on dataset characteristics.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

The increasing opportunity of quickly collecting and cheaply storing large volumes of data highlighted
the need for extracting concise information to be efficiently manipulated and intuitively analyzed. In this
situation, the use of data mining tools become of paramount importance in order to transform the stored
data into possible useful knowledge through the extraction of patterns (e.g. itemsets, association rules,
clusters, etc.). To help the end-users efficiently and effectively interpreting and analyzing the extracted
patterns, the size of the pattern sets should be as concise as possible while preserving as much as possible
their hidden interesting information.

In this thesis, we were mainly interested in two complementary pattern classes, namely frequent itemsets
and association rules. These pattern classes are the most mined ones in data mining. When confronted to
real-life applications, the number of frequent itemsets and association rules proves to be very large ham-
pering their effective interpretations by the end-users. In this situation, a high number of approaches was
devoted to the proposal of concise representations of frequent patterns aiming at only retaining subsets
of the whole set, while being able to derive non-retained (or redundant) patterns without information

loss. Such subsets are called ezact concise representations.

A central concept in the design of almost all concise representations of frequent itemsets as well as
association rules is the concept of minimal generator. In this respect, we carried out a critical survey
of exact concise representations of frequent itemsets proposed in the literature. Its main result is that
the different representations are either based on a generalization/extension of minimal generators, or can
be obtained using these latter patterns as an efficient computation mean. Moreover, the most known
concise representations of association rules (aka generic bases) convey rules with minimal premise parts,
composed by minimal generators. Nevertheless, several minimal generators characterize the same set of
objects and, consequently, convey redundant knowledge.

In this regard, we focused on the intrinsic properties of the minimal generator family that can be drawn
from a context. Our review of the literature showed that a unique attempt was proposed for removing
redundancy within minimal generators, through the succinct system of minimal generators [Dong et al.,

2005]. This system splits the whole set of minimal generators into two parts: the first contains useful (or
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succinct) minimal generators, and the second part gathers those that can be derived starting from the
succinct ones. Our study of the structural properties of this system revealed that it preserves the order
ideal property. This important result was not established in the original contribution [Dong et al., 2005].
In addition, after a thorough study of the aforementioned system w.r.t. the exactness of the regeneration
process, we proved that it misses some redundant minimal generators in some cases, which makes it not
an exact representation of the minimal generator set. In this situation, we introduced a new lossless
system. The key idea of our proposal is that minimal generators belonging to the same equivalence class
can be split into finer classes using a substitution process applied on their respective subsets. This process
is based on the Armstrong axiom of pseudo-transitivity [Armstrong, 1974]. It makes possible retaining a
representative minimal generator per substitution-based class. The obtained system constitutes hence a
perfect cover of the minimal generator set. Since it is not an order ideal contrary to the original system,
we proposed a hybrid family — the directed substitution-free sets — whose purpose is to simultaneously
maintain the main feature of each system, i.e., the order ideal structure while being lossless. This was
done by simply adding some particular elements to the first system. The proposed systems were then
extended to association rules by removing redundancy from generic bases. Carried out experiments con-
firm that our study makes it possible getting, in average, almost as many closed itemsets as irreducible

minimal generators. Thus, it allows to eliminate, as much as possible, redundant generic association rules.

We also explored the disjunctive search space. This was motivated by the fact that, in some applications,
the mined knowledge on the complementary occurrences of items — conveyed through disjunctive support
— brings richer knowledge to the end-users. In this respect, we took as a starting point the unique
concise representation of frequent itemsets whose some of the elements belong to the disjunctive search
space. This representation is that based on frequent essential itemsets [Casali et al., 2005a]. Since
several essential itemsets can satisfy the same set of objects, they hence characterize the same class. In
this situation, we introduced a new closure operator dedicated to the disjunctive search space. We also
thoroughly studied the induced structural properties. Once applied, each disjunctive equivalence class
is characterized by a unique disjunctive closed itemsets. This operator offered a new characterization
of essential itemsets. Indeed, they constitute the minimal elements within the equivalence classes the
proposed operator induces. Based on disjunctive closed itemsets, we proposed a new exact concise
representation of frequent itemsets. This representation is the first one uniquely relying on disjunctive
itemsets and, hence, obtained through only the traversal of the disjunctive search space. The obtained
experimental results highlighted interesting compactness rates.

Our exploration of the disjunctive search space allows the direct derivation of the disjunctive and nega-
tive supports of itemsets. This constituted a motivating starting point for mining generalized association
rules. We thus considered as a starting point an exact concise representation of frequent itemsets only
containing specific elements from the disjunctive search space, namely frequent essential itemsets and
their associated disjunctive closed itemsets. Although we mainly focused on rules containing disjunction
of items as well as negated ones, having at hand such a concise representation is important. Indeed,
it allows the derivation of the exact frequency of each literalset whose positive variation is a frequent
itemset. This makes our proposal generic and, thus, not restricted to some association rule forms, re-
gardless the others. In addition to the two commonly considered types of rules — exact and approximate

— we also considered approximated rules, and we detailed how quality measures of these rules are ap-
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proximated. Our experiments showed the usefulness of exploring the disjunctive search space towards

extracting generalized association rules.

8.2 Short and Long Term Perspectives

The obtained results open some short-term and long-term perspectives. Short-term perspectives are as

follows:

Post-processing the mined association rules: Although we concentrated in this thesis on subsets
of (generalized) association rules, the number of mined rules remains large in some cases. This
highlights the importance of post-processing the mined rules towards further pruning them w.r.t.

user’s preference, use of a combination of quality measures or summarization techniques, etc.

Reducing the disjunctive closed itemset-based concise representation: The concise representa-
tion DCIs_rep we proposed (c¢f. page 121) is homogeneous in the sense that it is only composed
by disjunctive closed itemsets associated to their disjunctive supports. However, it results from the
union of two disjoint sets, namely EDCZ and ADCZ. Both sets convey different knowledge since
the former has the set of frequent essential itemsets as a seed, while the latter — added to ensure
the exact regeneration of frequent itemsets — has some particular infrequent essential itemsets as a
generator. Note that these latter elements can further be pruned using a recent optimization high-
lighted in [Kryszkiewicz, 2009]. In addition, an issue which deserves further exploration is about
the possible existence of a regeneration mechanism ensuring the exact regeneration of frequent
itemsets starting from EDCZ, without using ADCZ.

Long-term perspectives are described in the following:

Generalization of the obtained results to other pattern classes and similar constructs: The
implications of the redundancy removal we carried out for the minimal generator set will constitute
an interesting issue. Indeed, this key concept — minimal generator — is at the roots of the design
of different pattern classes. Minimal generators also have similar constructs in different important
fields. It will hence be challenging to study which proposed results can be directly applied and those
requiring to be adapted according to the pattern class under treatment. For example, through the
conjunctive/disjunctive search space, the redundancy removal within each set of itemsets fulfilling
the order ideal property, like the non-derivable itemsets, essential itemsets, etc., follows the same
process as for minimal generators. Nevertheless, when dealing with minimal generators of sequential
patterns, the fact that in an equivalence class may cohabit more than one closed sequential pattern
[Lo et al., 2008] should be taken into consideration.

Interestingly, the succinct and informative association rules, we obtained once the redundancy
within minimal generators taken into consideration, can be extended to implication-closed sets.
Indeed, the closure operator induced by an extraction context and the closure operator induced by

the set of implications that are valid in this context coincide [Hermann and Sertkaya, 2008].

The proposed disjunctive closure operator can also be extended to the general case of Boolean
expressions, instead of single items, as well as to other pattern classes. We also think being a

promising issue the extension of the proposed process for generalized association rule mining to
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take into account different tasks, like classification through decision trees where disjunctive rules
are of paramount importance. Another interesting perspective is to extract new classification rules
having as a premise part containing disjunction of items, instead of the ubiquitous conjunction of

items.

Design, implementation and evaluation of new mining algorithms: From an algorithmic point
of view, at its current stage, our study of the redundancy within minimal generators focuses on the
efficient generation of the DSF'S family. Thus, besides our own method, other algorithms from the
literature working with M Gs could be adapted for this task, both breadth-first search ones, e.g.,
TITANIC [Stumme et al., 2002], and depth-first ones, e.g., the right-to-left search GR-GROWTH
algorithm [Li et al., 2006]. Of course, it will be interesting to compare performances of these
algorithms on different datasets. The same strategy applies for the extraction of the disjunctive
closed itemset-based representation of frequent itemsets. In this respect, we can benefit from the
significant performance improvements of algorithms dedicated to frequent closed itemset mining
[Bayardo et al., 2004, Ben Yahia et al., 2006]. The next step in this direction is the design of
efficient expansion methods, i.e., ones yielding to the entire sets from the representations proposed

in this thesis.

Setting hybrid mining approaches: In this important issue, we intend to set up a platform that
offers an adaptive selection of the “most adequate” mining tool of interesting patterns according to
the dataset under treatment. The main goal is to guide, through meta-rules, for example the choice
of the search space — conjunctive or disjunctive — to be explored. Our investigations show that this
issue is highly correlated with that of determining the relation between their associated closure
operators applied, respectively, on a given context and its dual. This latter context is obtained by
replacing the presence of an item in the initial context by its absence and vice versa. This will make
it possible setting up a hybrid approach aiming at exploring either the conjunctive or the disjunctive
search space according to context characteristics. Indeed, thanks to such a relation, we can for
example adapt the extraction algorithms of conjunctive/disjunctive closed itemsets proposed in the

literature by choosing either the original context, or the dual context.

A more challenging problem is how to decide which one choosing to be mined: the initial context or
its dual? The answer should take into consideration the sparseness/density of both contexts as well
as the mining task to which is dedicated the algorithm (for example, frequent itemsets vs. frequent
closed itemsets). In this respect, we started a study based on the succinct system of minimal
generators (SSMG) having for purpose a formal characterization of the sparseness of a context
[Hamrouni et al., 2009a]. As a result, we introduced the first formal definition of this concept.
From a practical point of view, to ensure the efficiency of the mining task, the detection of context
sparseness should be performed on the fly. This can for example be done using a representative

sample of the whole context [Toivonen, 1996b]. However, this raises the following questions:

() What will be the “good” size of this sample?

(i1) What will be the optimal number of portions the whole interval of sparseness values should be

divided into to ensure an acceptable precision degree of the obtained contexts categorization?

The answer a priori closely depends on the difficulty level of the mining process. A theoretical study
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and validating experiments have to be carried out to get bounds for sample sizes, in connection
with the desired accuracy of the results. Another important theoretical issue consists in analyzing
the relation between the sparseness measure of a context and that of its dual. This question is
highly correlated with that of determining the relation between their respective lattices, obtained
thanks to the Galois closure operator and the proposed disjunctive closure operator, respectively.
An in-depth analysis of the common characteristics of both conjunctive and disjunctive search

spaces as well as their differences w.r.t. the mined patterns is thus a thriving issue.

Further exploration of generalized association rules: In this thesis, we mainly concentrated on
generalized rules under a generalization of the support-confidence framework. In order to reduce
even more the number of extracted rules while retaining interesting ones for the end-users, the
selection of the right quality measures [Geng and Hamilton, 2006, Hébert and Crémilleux, 2007]
that suit each generalized association rule form is necessary. These measures should then be
generalized to also take into consideration the disjunction and negation of items. This will allow
guiding the mining process according to the couple (rule form, measure). In this respect, the
proposed process can easily be adapted to efficiently extract generalized association rules based
on correlated patterns w.r.t. the bond measure [Omiecinski, 2003]. In addition, searching for the
relationships between the various rule forms deserves a thorough investigation. Its main motivation
is to extend the concept of concise representation to generalized association rules. The purpose is
thus to only retain a subset of valid rules — w.r.t. a given set of quality measures — while being
able to derive the remaining redundant ones without information loss. Adequate axiomatic systems
need thus to be set up taking into account the used connectors between items. Noteworthily, this
exploration can exploit the results offered by the general GUHA approach [Hajek and Havréanek,
1978, Hajek and Holena, 2003].

Extension of visualization tools: To make easier the manipulation and interpretation of generalized
association rules by the end-users, visualization tools are also of paramount importance. Indeed,
these latter make possible the end-users to concentrate on particular areas of interest, by zoom-
ing them for example. This motivates the extension of existing prototypes for association rule
visualization to the generalized case. For example, our CBVAR prototype [Ben Yahia et al.,
2009a, Couturier et al., 2007] was designed to visualize thousands of positive association rules
thanks to a clustering-based technique. Interestingly, this prototype covers the mining step as well
as the visualization step of association rules. In the generalized case, the mining component can be
ensured using the proposed GARM tool. However, the visualization step should be extended w.r.t.
the connectors involved within the visualized rules and the type of items (positive or negative).
The integration of quality measures, in addition to the support and confidence ones, as well as

user-specified constraints will also be helpful for further pattern pruning.

Note that the visualization component of CBVAR can be straightforwardly used once coupled with
the proposed IMG _EXTRACTOR algorithm, w.r.t. succinct association rules. However, we think
that a careful study of the effect of the total order relation choice, on the quality of the extracted
rules according to the data under consideration, presents an interesting issue towards increasing

the knowledge usefulness.

Extraction of rare patterns and minimal transversal of hypergraphs: In this thesis, we mainly
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focused on frequent itemsets as well as valid association rules w.r.t. a minimum support threshold
minsupp. It is however worth noting the increase interest within the data mining community in
getting out rare patterns [Weiss, 2004], and especially rare itemsets and rare association rules [Liu
et al., 1999, Yun et al., 2003]. Rare patterns convey information about rare situations/events
useful for detecting, for example, the causes of rare diseases from medical data [Koh and Rountree,
2005], the suspicious transactions from financial data [Manning et al., 2008], etc. Such patterns are
often missed in a frequent pattern mining process since their frequencies do not reach the minsupp
threshold. In this situation, the adaptation of the concise representations proposed here should
take into account the difference in the structural properties of both sets of frequent itemsets and
of rare ones. Indeed, the former is an order ideal, while the second is an order filter (a rare itemset

has all its superset also rare).

We also aim at exploiting our exploration of the disjunctive search space towards the efficient
detection of minimal transversals of a hypergraph [Berge, 1989, Fredman and Khachiyan, 1996].
This latter structure can be represented through an extraction context such that objects represent
hyperedges, while items stand for the corresponding vertices. Within the aforementioned search
space, essential itemsets belonging to the disjunctive equivalence class having for support the car-
dinality of the whole object set are the corresponding minimal transversals. Since this equivalence
class is the top one within the disjunctive lattice (its disjunctive closure being equal to the whole
set of items), levelwise search algorithms would examine many unnecessary candidates. In this
situation, it will be interesting to benefit from the proposed disjunctive closure operator in order

to efficiently detect the targeted class and, hence, its essential itemsets.

Application of the obtained results for real-life datasets: The application of the obtained results
on real-life datasets is actually a challenging task. In this respect, it is highly interesting to extract
the proposed concise representations to deal with bioinformatics data [Wang et al., 2005] and,
in particular, gene-expression data analysis. In gene-expression datasets, items represent gene
expression properties, while objects stand for biological situations (or biological experiments).
The frequent itemsets hence denote sets of genes that are frequently co-regulated and thus can be
suspected to participate to a common function within the cells [Besson et al., 2005]. These datasets
offer the most interesting cases for the application of concise representation since they are dense
and strongly correlated [Becquet et al., 2002, Besson et al., 2005, Gasmi et al., 2005]. They hence

produce equivalence classes containing a large number of patterns, sharing common characteristics.

In this situation, the redundancy removal within the minimal generator/essential itemset set can
be useful towards reducing the number of generalized association rules that can be drawn from
such datasets. In addition, taking into consideration the absence of genes (i.e., negative items) can
be a useful tool for analyzing the effect of the absence of one or more genes in the evolution of the
other ones. A biologist can beforehand select the most interesting rule forms w.r.t. the research

purposes. For example, the possible mined gene interactions can be as follows:

e Intra-biological situation correlations: in this first case, the interactions are between genes
that simultaneously appear in the same biological experiments. The use of minimal generators

and their associated closures can be helpful in this case.
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e Inter-biological situations correlations: in this second case, the interactions are between com-
plementary occurrence genes, i.e., those that characterize different experiments. Here, the

use of essential and disjunctive closed itemsets can be helpful to catch useful information.
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Appendix A

Description of Benchmark Contexts

The benchmark contexts we used in our experiments are freely downloadable from the FIMI website at:
http://fimi.cs.helsinki.fi/data. The first five contexts are commonly considered in the literature to be
dense, i.e., containing many long frequent itemsets at various levels of minsupp values [Bayardo, 1998].
While the last five are considered to be sparse, i.e., containing a large number of items but only a few of

them frequently occur in the context. Here, we describe the content of each context.

e CHESS: This dataset is derived from the steps of Chess games. The format for the objects in this
dataset is a sequence of 37 item values. Each object is a board-description for this chess endgame.
The first 36 items describe the board. The last (37") item is the classification: “win” or “no
win”. This context is available in the UC Irvine Machine Learning Database Repository (at
http://www.ics.uci.edu/~mlearn/MLRepository.html).

e CoNNECT: This dataset contains all legal 8-ply positions in the game of connect-4 in which neither
player has won yet, and in which the next move is not forced. This context is also available in the

UC Irvine Machine Learning Database Repository.

e MusHroOM: This dataset includes descriptions of hypothetical samples corresponding to 23 species
of gilled mushrooms. Each species is identified as definitely edible, definitely poisonous, or of un-
known edibility and not recommended. This latter class was combined with the poisonous one.

This context is also available in the UC Irvine Machine Learning Database Repository.

e PumMsB: PUMSB contains census data from PUMS (Public Use Microdata Samples). Each object
represents the answers to a census questionnaire, including the age, tax-filing status, marital sta-

tus, income, sex, veteran status, and location of residence of the respondent.

PumsB*: PuMSB* contains census data from PUMS (Public Use Microdata Samples). Each object

represents the answers to a census questionnaire, including the age, tax-filing status, marital status,
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income, sex, veteran status, and location of residence of the respondent. PumsB* is obtained after
deleting all frequent items for a minimum support threshold set to 80% in the original PuMsB

dataset (i.e., items which appear in more than 80% of the transactions contained in PUMSB).

Note that the versions of the five aforementioned datasets available on the FIMI website were
prepared by R. J. Bayardo from the UCI datasets and PUMS.

e AccCIDENTS: This dataset of traffic accidents is obtained from the National Institute of Statistics
(NIS) for the region of Flanders (Belgium) for the period 1991-2000 [Geurts, 2003]. The traf-
fic accident data contains a rich source of information on the different circumstances in which

the accidents have occurred: details about the accident (type of collision, injuries,...), traffic

conditions (maximum speed, priority regulation, ...), environmental conditions (weather, light
conditions, time of the accident, ...), road conditions (road surface, obstacles, ... ), human condi-
tions (alcohol, ...) and geographical conditions (location, physical characteristics,. .. ).

e KosARAK: This dataset was provided to the FIMI website by F. Bodon. It contains data corre-

sponding to (anonymized) click-stream data of a Hungarian on-line news portal.

e RETAIL: The dataset contains information about the market basket of clients in a Belgian supermar-
ket [Brijs, 2003, Brijs et al., 1999]. Data were collected over three non-consecutive periods. This
results in approximately 5 months of data. Each record in the dataset contains information about
the date of purchase, the receipt number, the article number, the number of items purchased,
the article price in Belgian Francs and the customer number. Although most of the products are
identified by a unique bar code, some article numbers in the dataset represent a group of products
rather than an individual product item. In total, 5, 133 customers have purchased at least one

product in the supermarket during the data collection period.

e T10I4D100K: This dataset is a synthetic dataset generated using the generator from the IBM Al-
maden Quest research group, based on the algorithm introduced in [Agrawal and Srikant, 1994].
This generator is available at: http://www.almaden.ibm.com/software/quest/Resources/index.shtml.
The goal of this generation is to create objects similar to those obtained in a supermarket environ-
ment. By applying certain distribution laws, the obtained datasets tend to mimic the real world
compared to given characteristics. The data are generated in order to correspond, on average, to

the input characteristics while respecting a certain distribution and the existence of exceptions.

The different parameters for the generation are as follows:

1. The average size of objects (T),
2. The average size of maximal potentially frequent itemsets (I),

3. The number of objects (D).
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e T40I10D100K: Identically to T10I4D100K, this dataset is also generated by the generator from
the IBM Almaden Quest research group. The differences between this dataset and T10I14D100K

are the parameters given to the generator.

Table A.1 summarizes the characteristics of the considered contexts. Note that the respective numbers
of items shown in Table A.1 for the PuMsB and PumMmsB* datasets are somewhat different from the
numbers reported in many contributions. Indeed, we only consider items that appear at least one time.
For example, although the minimum item identifier in PUMSB is 0 and the maximum item identifier is 7,

116, there are only 2, 113 distinct item identifers that appear in the dataset.

Context H # of items | # of objects | Avg. size of objects | Max. size of objects
CHESS 75 3, 196 37.00 37
CONNECT 129 67, 557 43.00 43
MUSHROOM 119 8, 124 23.00 23
PUMSB 2, 113 49, 046 74.00 74
PUMSB* 2, 088 49, 046 50.48 63
ACCIDENTS 468 340, 183 33.81 52
KOSARAK 41, 270 990, 002 8.10 2, 498
RETAIL 16, 470 88, 162 10.31 e
T10I14D100K 870 100, 000 10.10 30
T40I110D100K 942 100, 000 39.61 78

Table A.1: Characteristics of the considered benchmark contexts.
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