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Résumeé

This chapter is an overview in French of the whole paper.

Les données dites multimédia (images, vidéos) se distimgies données classique par
une densité variable d’'information et I'impossibilité dermaliser ces données. Du fait de ces
particularités, de nouvelles techniques d’indexationeetatherche d’information ont du étre
etudiées.

Il'y a principalement deux problemes a résoudre pour la rebleed’information dans les
collections multimédia (ou les bases de données multimédiB la representation des don-
nées et (2) le processus de recherche du point de vue desétgilr. Dans le cas des bases de
données, I'indexation est fortement liée a ces deux pro&dem

Dans le cas particulier des images, on distingue trois gswthsses:

— larecherche par requétes formelles, heritée des basemdéas classiques

— la recherche avec boucle de retour, ou l'utilisateur faitip intégrante du processus de

recherche, et

— la navigation ou les images sont organisées en une steymteparée a I'avance, utilisée

comme index et comme structure de recherche.

C’est sur cette troisiéme approche que nos travaux se SOESpPEIOUS NOUS sommes en
effet interessés au treillis de Galois, une structure delgr@ermettant d’organiser les éléments
d’une relation binaire.

Une telle structure de navigation a plusieurs avantagesreiapproche classique basée sur
des requétes : en particulier, elle permet d’affranchitilisateur d’'une phase de rédaction de
requéte.

Naviguer au sein d’un collection d’'images par les treilis dé&a-
lois

Dans ce chapitre, nous présentons le meta-modele de damilé&esainsi que la premiére
proposition de technique de recherche d’'images par la abwiy
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La representation des données est semi-structurée, et pratposition est un ensemble
de métriques basées sur le contenu de I'image et classéesitslé modele MPEG-7. Ces
métriques sont principalement :

— Des informations de couleurs classées par zones. Lesucsgient issues d’une segmen-

tation de I'espace a partir du repere HSV (teinte, saturationinosité).

— Des informations sur la forme générale de I'image (tadl&ntation, élongation)

A partir de ces métriques, a chaque image est associée umlgles#attributs formant une
relation binaire entre les images et ces attributs. De celd¢ion binaire est calculé un treillis
de Galois, structure utile pour la navigation.

Partionnement complémentaire

Dans ce chapitre, nous proposons d’apporter des réponpestdame majeur posés par les
treillis de Galois : le passage a I'échelle.

Pour cela, la structure de navigation est améliorée par uplage a un systéme de partion-
nement, basé sur le projea®ITETIQ [60] de I'Université de Nantes.

Le treillis n’est alors plus construit sur les images dieecént mais sur des ensembles
d’'images similaires. La navigation devient elle aussi axdeiweaux, une navigatiomter-
partitionset une navigatiomtra-partition.

Personalisation et sous-treillis

L'information de contenu des images est généralementfinanfe pour représenter les
images telles qu’elles sont vues par un observateur hurRainexemple, on peut voir une
photographie de la Tour Eiffel similaire & une photograptad’Arc de Triomphe (deux monu-
ments parisiens) tandis qu’un systéme basé uniqguemerd santenu verra pluté I'image de la
Tour Eiffel proche d’'une image de la Tour de Tokyo (dont larierest la méme).

Cependant, se baser sur une annotation manuelle poseuptusieblémes : non seulement
cette annotation est trés couteuse, mais le résultat ggticifidPour une image donnée, deux
annotateurs fourniraient un résultat différent; méme un aenotateur fournirait un résultat
différent si on lui demandait d’annoter la méme image a quedcsemaines d’intervalle.

Dans ce chapitre, nous proposons donc d'offrir a l'utiksetla possibilité d’établir lui-
méme les liens entre les images qu'’il rencontre. Le problgera subjectivité devient caduque
puisque l'utilisateur effectue I'annotation pour lui-ménet le colt de I'annotation est indolore
puisque intégré au processus de recherche lui-méme.

Ceci est réalisé par I'application de masques sur une greicommune basée sur I'infor-
mation de contenu, resultant en une navigation sur destsegills de Galois. Ce procédé est
ainsi plus efficace que les systémes de recherche basésduwutie de retour, et plus pertinent
gu’un systéme basé uniquement sur une structure pré-éalcul
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Seuillage dynamique

Dans la partie présentant la navigation par treillis de Galwus avons vu qu’un modéle
flou était adapté a la representation des images, tandis queillis de Galois nécessitait une
relation binaire entre images et propriétés.

La solution la plus simple, utilisée dans la premiére paieette étude, consiste a appliquer
un seuil constant a toutes les images. Cependant, un télestuies sensible au bruit et des
nceuds réduits a un élément, rendant la navigation plus exafdnt leur apparition.

Dans ce chapitre, nous présentons une technique de seulifagmique tenant compte de la
structure existante lors de I'insertion de nouveaux élém&puand une image doit étre insérée,
l'insertion dans un nceud existant est préférée & la crédeamuveaux nceuds. Pour cela, un
seuil plus ou moins sévere est appliqué aux propriétés.






CHAPTER 1

INTRODUCTION

While the ultimate goal of computer science has always beemrnic the human brain [80],
in the first days of computing a computer was a machine usedrforpn mainly mathematical
and accounting operations. Shortly, its main goal becaroeganise data and make the retrieval
of information as easy as possible by way of so-called “degab’. It is interesting to note that
while the English word of “computer” describes itasnachine to counthe French word for
computer, “ordinateur”, mearess machine to sortto organise (data). The English word have
been decided very soon, while the French word have beenattaitien the first commercial
computers became available for companies, in the 196Gidjme when databases were already
the major applications.

Nowadays, a computer can be used for almost every need (ftesticacreation, to playing,
to communicating), though retrieving information fromdar and larger collections is still do-
minant. The fact that data sources are now interconnectaeyht new challenges to the data-
base/information retrieval communities. The time wheradeas rare and the format could be
precisely and strictly determined is over; this centurdsads heterogeneous. Retrieval should
be done using data of various nature, from various sounsesrious format and with various
quality.

Moreover, the increasing capacities of the storage devicade it possible even for end-
users to keep a large quantity of data, thus enlarging thet diehpplicability of database and
information retrieval techniques. Applications that usede based simply on a file-system
(thus allowing only hierarchical sorting) such as musicl@ggions or image viewers are now
backed-ended by a database. Consequently a user can nowisiavder owrmusic database
andphotograph databasmstead of relying simply on the file-system.

In the meanwhile, the nature of the data to index and retti@eame quite diverse. Origi-
nally, structured information appeared as “tables” intatienal database management systems
(RDBMS), the fields of which were limited to simple types, rdgnnumbers, strings, and a few
extras such as dates. Unstructured information appeasedtesly as normalised textual infor-
mation. Nowadays, it includes structured and semi-stredtmatural language texts, images,
sounds, and videos. To distinguish these new, non-clasiata from the former ones, we call
themmultimedia dataNote that if this name suggests that several data typessacktagether,
we follow the convention of the information retrieval comnity and use this term even if only
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one data type - such as images - is used. We use this term asddhg data type on which we
work cannot be easily and unambiguously described, begaasatains various information,
the interpretation of which depends on the observer’s ceilbu sensibility.

Among multimedia data, we are particularly interested iagms. In recent years, we saw
an explosion of the number and size of digitalised imagesonty on the world wide web
or on images providers catalogues but also in private dodies of individuals. The success
of digital cameras made digital images collection accésgi anyone, and recently mobile
phones equipped with a camera also participated in the grofiimage digital collections. In
Japan, from mid-2004 even cheapest devices were equippled @igital camera.

The images accumulated need to be organised in order torimveet easily when the user
needs to. Digital camera usually store additional inforaratvhen recording an image, using
the EXIF format: date, flash, focal length. .. A few of thes®imation, such as date, may be
relevant to classify images in a way useful for user. Othirmations may also be added to the
image when the photograph is taken, for example in mobil@pka positioning system is often
available and my be used to locate the photograph in the spaweever, these informations
are usually not enough to perform a useful classification.

Professional content providers (like Corbis) chose to tateomanually images using a
semantic thesaurus. In image hosting websites like Ftickr, any visitor can annotate the
image he or she is visioning by adding any keyword, calletiiwiElickr atag.

The professional annotation approach gives very goodtsgdult very few individuals are
willing to take the time to annotate their images for a bettassification. On the other hand,
the collaborative approach works well for some keyworde(tity names or real-world object)
but suffers from a lack of standardisation. For example,fenwebsite Flickr a tag such as
“cameraphone” is very popular (people who took picturesnftbeir mobile phone) but it has
no semantic meaning. A user looking for a photograph of a fagtiione equipped with a
camera will be submerged by photographs takenga mobile phone.

Consequently, several authors started to work on a way tn@sg images in a completely
automatic way, using information extracted from the pix#lthe image (content information).

Chapter 2 gives an overview of existing projects on conbasied image retrieval systems
(CBIR). As explained in this chapter, there exists sevepara@aches to retrieve images from
an image collection or an image database; the most classethlod beingjueryinga system
where images have been previously indexed.

In our work, we preferred to focus aravigatingthrough an image collection that have been
organised before-hand in a similarity-based structures @pproach cannot completely replace
qguery-based retrieval, but we believe that it is superipafswering some users’ needs. When a
user does not have a precise idea of what he or she is lookingrf@hen his or her idea cannot
be easily described by a query (either based on a languagerisua sketch), an approach
based on navigation allows him or her to quickly browse asait-of the collection in order to
rapidly locate the subset of images that s/he is lookingBemg a still visual media, images
are particularly adapted to this kind of approach. Effestivtextual documents have to be read,
audio files have to be listened to, and video files have to bgedldack (or a lot of images
extracted in order to build a still large storyboard). In trast, a rather large set of thumbnails
of images can be scanned by a human observer in a short time.
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Therefore, in this thesis, we introduce a technique for geting through an image collec-
tion using a graph structure useful both for indexing anavigating, namely a Galois’ lattice.
A prototype has been developed using some basic metaddta ondge content (mostly colour
information) presented in section 4. We also present @ffermprovements to this approach,
as well as details on implementation in a relational datalpagnagement system.

1.1 Querying vs. Browsing

The aim of our work is to provide a full proposal for conteriskd image retrieval, from
metadata extraction to image search itself, to be impleedkinto a fully working prototype.
Rather than successively executing query on a databaseaokaiis focused on a navigation-
based process that integrates the user into the searchsprand thus ensures a permanent
feedback between the user and the system.

A common problem in CBIR systems is that the user is usualgbiento understand the
underlying model used by the system. Cases where a userfilmo&ia image knowing which
colours or shapes he or she likes, and how to describe it,eerare. In a navigation pro-
cess, the user does not need to describe his or her need. He juss browses the collection,
constructing a path from an entry point to the images he onsbstly likes.

When looking at most proposals of navigation through a mdtia collection, we noticed
that they are usually built as a layer over similarity seatihy recreate a new state from user
input, and display it to the user for another interaction.

Kaesteret al’s work [34] proposes to combine several input methods tockei@r images,
including touch screen (to select parts of images or perfgestures) and speech recognition.
By using these non-classical input methods Kaester cowldyme a graphical interface that
makes the user feels like he or she is navigating the imagdbdsé¢, however this system is
still based on similarity search: the user will actuallyes¢limages or parts of the images for
the system to find images similar to these samples. The tiolteis stored by using multi-
dimensional indexing techniques.

In their project El Nifio, Santinet al. worked on integrating browsing and querying [69].
Their proposal is a set of search engines connected by a toetliat dispatches the queries to
the search engines, collects the results and displays théme user. Images are arranged on a
two-dimensional plane, and the user interacts with theegyshainly by two ways:

— By clicking on an image, the user asks the system to moveémiaige to the centre. From
the user’s point of view, he or she is moving inside the cdilbe; from the system’s point
of view, the user is launching the query “find and display thages similar this one.”

— By drag-and-dropping images, the user teaches the sysieitargies that were not
present. The user can then tell the system that from his godiat of view, two images
are similar. In other words, this is a user-personalisgtimtess.

Our work is very different from Santini’'s or Kaester's oneghe sense that it is based on

a navigation structure that is built before-hand. Consetiyehere is no calculation during the
search process; this leads to a very fast and responsivansyst
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Since other systems formulate a query at each iteration ltaee to face (1) the cost of the
formulation of a query using user feedback and (2) the colt@éxecution of this query. In a
multidimensional space, both of these operations are qugty.

Compared to other systems performing navigation througigercollections [32] [68], our
system has the particularity to use directly the index stmecfor the navigation itself. On the
contrary, the others build during retrieval process a pladih is not directly linked to the index
structure.

While we have to face a more costly process to index our imagese the collection is
indexed, the search process is very fast and responsivéidwddly, it is very easy to publish.
The navigation structure can even be produced in the form sétaof static XHTML (see
Figure 4.6), and for example burned on a CD-ROM.

1.2 Outline

State of the Art

This first part is a bibliographical work on content-basedgm® retrieval (CBIR). Here we
present the two problems of CBIR, the specificities of thenoh compared to classical pro-
blems ofdatabase®r information retrieval (1) the data representation and (2) the search pro-
cess itself from a user point of view.

Usually used techniques are also described in this part:

— Similarity measuresan approach even now widely used for CBIR, and

— feedback queryingalgorithmically more costly than simple similarity-bdsguery but

much more relevant. Moreover, feedback querying introddle idea of integrating user
into the search loop.

We then present a more recent approach for CBIR, whose thentyproposal is part of:
navigationthrough an image collection. In this section, we precisemthen advantage of navi-
gation over the other approaches: there is a continuityersdarch process; rather than incre-
mentally make queries on the system, the user just navigedadh it converging to the image
s/he was looking for.

Navigating an Image Collection Using Galois’ Lattices

In this chapter, we present the meta-model used as well arsiuproposal of navigation
through a collection of images.

Data representation is semi-structured, and our propssaset of metrics based on image
content and classified according the MPEG-7 model. Theseamiare mainly:

— Colour information classified by zone. Colours come fronegnsentation of the colour

space from the HSV space (hue, saturation, value).

— Informations on general shape of image (size, orientaélmmgation).

From these metrics, an attribute set is associated to eaaieifiorming a binary relation-
ship between the images and these attributes. From thisyhielationship a Galois’ lattice is
calculated. A Galois’ lattices is a structure useful forigation, detailed in section 4.2.3.
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During our experimentations, we were able to build a latatslightly more than 5,000
images, this number being mainly limited by the space coxiiylef the algorithm.

As a navigation structure, the advantages of Galois’ kedtare really numerous.

— First of all, it is very fast to navigate through a graph stuwe that has been computed
off-line. If we neglect the time required to load sample isgravigating from one node
to another is optimal, i.e., i®(1). This was one of the main requirements.

— Then, a Galois’ lattice is intrinsically a multi-dimensal classification technique. In-
deed, no dimension is privileged. Hence, it can be seen asictge that dichotomises
the hyper-cube associated to the property subsets alongygey-plane.

— Consequently, the distance from thef or sup nodes of the graph to any other node is
at most logarithmic in the number of used properties.

— Next, this tool is insensitive to correlations. There is distance computation. If all
images with a given property (almost) always exhibit anofireperty, then the images
will simply be located within the same node.

— Also, this tool helps to correct the users’ mistakes vesilgaNhenever a user selects
a direct descendant node, he or she adds implicitly a newtreamis If he or she figures
out, much later, when seeing more specific sample imagedgshikdrowsing direction is
slightly bad, he or she just has to move to a different diraceator node. This operation
removes a constraint and undoes the erroneous move withwirtchto go back to the
point where the “error” actually occurred.

— The Galois’ lattice structure easily hides unwanted fieesturl his is a problem that cannot
always be taken into account by similarity measures. (A tauexample is Surfimage
[50], but the measures are limited to mean and variance gfaagul Gaussian distribu-
tions.)

However, Galois’ lattice used as a navigation structure laés/e drawbacks.

— Constructing a Galois’ lattice is not an easy task. The toraplexity is inO(n?) where
n is the number of nodes (see the details in the section 4.2prEkical improvements on
this bound are still unknown to our knowledge, and algorithwariants do not achieve
actual improvements in the implementations [26].

— Also, the description space associated to a Galois’ &isiexponential in the number of
properties. (We easily use several hundreds!) Of courgeshiould not occur, unless we
index such a large number of images. However, if several @aaare common proper-
ties but have unique properties too, then a (localised) mampital explosion appears.

The first drawback, scalability, is addressed in section proposing to navigate amage
clustersrather than directly on images.

The second drawback is addressed is section 7 with a techtogouild the lattice while
limiting the creation of new nodes, and avoiding creatiomofles concerning a very small
number of elements.

Linf andsup are special nodes presented in the section 4.2, where Qattites are detailed.
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Complementary Clustering

In the previous section, we claimed tisg@labilityis an important issue for Galois’ lattice.
Indeed, the time complexity is quadratic and the space caxitplis exponential. Consequently,
depending on the computer speed and memory we can easitiyab@hlois on 5,000 images;
if the data have a lot of similar images, on a system with a fahemory we can expect to
reach 10,000 images. However, even with the increase of stanpower and the decrease of
memory price, itis very unlikely that we can ever build thddes lattice for a bigger collection
using current algorithms. This is a serious problem sindayt images collections may reach
the million of images.

Thus, we propose to improve the structure by associatimgatdustering system, based on
the SAINTETIQ project [60] of Nantes University.

The lattice is no longer constructed directly on images lusinilar images collections.
These collections are supposed to be different from eadrotnd internally homogeneous.
Navigation becomes two-level, amer-clusternavigation and amtra-clusternavigation.

Using such a technique, if we build about 3,000 clusters 6figtages, we can reach very
large databasesg. about one million images.

Personalisation and Sub-lattices

Content information of images is usually not enough to repnéthem as seen by a human
observer. For example, a photograph of the Eiffel Tower gplidograph of the Arc of Triumph
can be seen as very similar: both represent a monument sf Planvever, a system based only
on content will lack the information “Paris” and would ratheee the Eiffel Tower similar to
Tokyo Tower, that have the same shape.

However, using only manual annotation has several dravghack only this annotation is
very expensive, but the result is subjective. For a givergerta/o annotators would produce two
different results. Even the same annotator would produdBeaaeht result if asked to annotate
the same image after a few weeks.

In this chapter, we propose to offer to user to establish élhtisks between images he or
she can find. The problem of subjectivity becomes pointlegeiser establish the annotation
for himself; there can be no distortion between the annotatd the user. Moreover, the cost of
annotation is painless because it is integrated into thievet process.

This is implemented by applying masks on a structure commatl tisers based on image
content, resulting in a navigation on sub-lattices. Thiscpss is more efficient than systems
using a user feedback for querying, and more accurate tts@mnsg based solely on a structure
calculated before-hand.

Dynamic Threshold

In the part introducing Galois’ lattices, we establishedt thhile a fuzzy model was adapted
to represent images, a Galois’ lattice needs a binary oslstiip between images and descrip-
tions.
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The most trivial answer, used in our first prototype(dfck’% . [40] and in the first part
of this work, was to apply a constant threshold to all imag#éswever, such a threshold is
very sensible to noise and nodes reduced to a single elemppeéa making navigation more
complex.

In this part, we present a dynamic threshold technique ¢pdxnsting structure into account
when inserting a new node. When an image is to be insertetildnorithm will prefer to insert
it into an existing node rather than to create a new one. Teeeelit, the threshold applied to
property will vary according the existing lattice.
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CHAPTER 2

CONTENT-BASED IMAGE RETRIEVAL
(CBIR)

2.1 Introduction

Image databases are part of digital libraries. Researdorped in the last ten years led
to several prototypes: Amore (Advanced Multimedia-omehRetrieval Engine), BlobWorld,
CANDID [35], Chabot/Cypress [52], CORE (Content Object igsial Engine) [84], FIRST
(Fuzzy Image Retrieval SysTemh;nd 2., [39], IDQS (Image Database Query System) [83],
ImageRover, Jacob, MARS (Multimedia Analysis and Retili8ystem) [53], MetaSeek, MIR
(Multimedia Indexing and Retrieval), MMIS (Multimedia lmfmation System), MULTOS (MUL-
Timedia Office Server) [45], NeTra [38], Picasso [11], Picktr, PIQImage, PhotoBook [55],
QBIC (Query By Image Content) [19], RetrievalWare, SQUIhgBe Queries Using Image
Databases), Surflmage [49], Virage, VisualSEEK [73], WeES [10], WebSeer, Xenomania,
etc.

Although the wide use of image databases is quite recenthiénee been integrated in most
commercial systems (such as Multimedia Manager from IBMadler and SQL Server from
Microsoft) for several years. These systems may be usediicapons involving images, such
as interior design tools or simply retrieval in images atilens, from image providers (such as
Corbis’™), or personal photographs collections (like Google’s 84, or Gnome’s F-Spot). A
recent application is image hosting websites (such asigimk, Fotoflix.com or Buzznet.com)
offering to anyone to post photographs, either to shareth f@mily and friend or to publish
them publicly.

In the first section, we shall explain the specific problemaaige databases (IDB). In short,
it is needed to design a description scheme for images basedrmus informations (colour,
shape, format, human annotations...). Then for each propesimilarity measure must be
described. Finally, various retrieval methods have to Isegied to satisfy various users goals.
This tend to a very flexible architecture.

Second part will cover most common properties (both corbased and annotation-based)
used for IDB, as well as similarity measures on them. Theritlttee2 main retrieval techniques
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- query, relevance feedback and navigation - will be preskntith examples. A particular at-
tention will be given to navigation as the current proposa navigation-type retrieval method.

2.2 Generalities on Image Retrieval Systems

Most general case is the open systems case, such as the WdddWab, where images and
users are very various. First, using knowledge on the contpa is not possible. Moreover, the
user is not an expert and cannot understand most of the pieypassociated to images and
consequently the reason why some images may be returnead giteen query. Finally, an open
system has a quick turn-over rate: images are often addedeamuled, limiting the property
calculus to low-cost algorithms.

In the contrary, a lot of bases are limited to images of a paldr class. These domains are
numerous: news images, architecture images, medical Bpagt&anic images, satellite images,
face images, etc. Working on a particular class gives amditiinformations that must be ex-
ploited.

2.2.1 Problem definition

The main specificity of images as data is that, unlike for gxantextual information, the
similarity between two images is far to be the direct sinijeof low-level information, pixels.

2.2.1.1 Defining Content

The first difficulty of the study is on the definition of the wdi@bntent”. Image representa-
tion is semi-structured [1] and can be qualified as:

— irregular: several image types coexist (grey-scale, wplwith or without colour in-

dex...);

— incomplete: all informations are not necessarily exeddor all images. This is mainly
due to the cost of processes and the existence of heterageseorces, for example in
QBIC [19];

— extensible: one must be able to add new properties to takaacount new techniques or
integrate a new image type;

— applicative: images are not manipulated independentlyrdiher in a schema. In this
domain, authors agree to consider a hierarchy betweendogl-tlata and high level data
(semantic and logic) from artificial vision proposals [3].

Lower level is the intrinsic content, directly linked to tphysical signal and usually repre-
sented by a matrix of pixels, the canonic representationoatic processes can then extract
qualitative and general informations from images, the mlassical being histograms.

On the other hand, the external or semantic informationg hawe provided manually.
The title, subject, author are part of this category. Keydsaare the most generic metadata an
image can receive; they may be organised in a thesaurus offlnese metadata are usually
not quantifiable, but belief degrees may smooth the trams{tivery”, “quite”, “a little”). The
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problem then becomes the same as textual informationvalri@complete index, ambiguity,
time and space variable [20].

However, with the increasing digitalisation techniquesne semantic attributes may be
associated automatically to the image: author, place, aadetime, etc. These are a mix of
semantic and quantifiable informations.

In the same way, images associated to documents give additidormations. For example,
WebSEEK [10] and Google Images indexing web pages use theotagnt. Actually, these
systems make use of a manual index that is not done at the marh#re insertion into the
database but “at the source”.

Moreover, techniques to automate the semantic knowledgaation exist, applicable to
reduced images classes:

— After alearning phase, some keywords may be automatasdigciated to images regions

(sky, grass, leafs, skin...) [62] [56];

— Inthe domain of Renaissance paintings, [11] exploitssrirlam an art book to derive even
feelings from images. For examples, the religious feelgwgpresented by an important
qguantity of red and blue;

— Chabot [52] gives a simple horizon detection algorithnl¢xed images being landscape
images);

— [78] proposes a classification between indoor picturesoamdioor pictures;

— etc.

Finally, note that an image database, unlike an image vatrgystem, gives naturally addi-
tional informations. The schema of the database and thecapiph gives the structure of the
base and consequently the structure of included imageexXaonple, an image associated to a
“City” instance has a high probability to be an urban image.

Of course, the transition from visual content to metadafaagressive. For example, seg-
mentation techniques isolating significant regions fromnaage require knowledge and may
be very specific (adapted to medical images), or very gefferaéxample based on colour).

We can oppose the low-level data and the high-level data@ralcriteria:

— intrinsic to extrinsic content;

— general to specific properties;

— uantitative to qualitative properties

— automatic to manual extraction;

— objective to subjective properties.

The hierarchy defined causes a major difficulty for retriexahated to subjectivity. Indeed,
the system works on the low level data while the user thinkkerhigher level [67].

On the one hand, some authors prefer the minimal semantaocgigin. Indeed, experiments
show that using semantic informations greatly improveséselts quality [52] [9].

On the other hand, other authors prefer an approach wheyetlemlow-level data is ex-
plicitly used. There are two reasons to this choice: thetemte of datent semanticand the
introduction of subjectivity in high-level semantic.

First of all, combining low-level data leads to satisfyirggults. Then, a latent semantic
exist: for example the grass is usually green, the sky is éhgethe skin of Caucasian people
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is orange. CANDID actually makes use of this approach, wkerabining several low-level
characteristics can make an implicit high-level criteppear.

Another reason to limit deliberately the highest knowlethyel is because, becoming sub-
jective, it does not apply any longer to all users. [67] evguas that since the semantic of an
image cannot be formally described, we should limit the wtiadfinding correlation between
user’s goals and characteristics that can be extractedifmages. It is not reasonable to ask a
system to see a similarity between a portrait of the Freneki@ent Chirac and a photograph of
the Japanese Prime Minister Koizumi for the only reasontibtt of them are political leaders.
Even from the name it would be a hard task. Consequently agemetrieval system should
be limited to a system to find relevant images using visioracay but not automatic vision.
The system cannot “see” the images like an human would doyilivtather help a human to
classify them automatically.

2.2.1.2 Defining retrieval

Content being defined, an information retrieval system baset designed. However, the
users are various; for that reason the system should offeraeretrieval methods. Actually,
representing queries is as important as representing sndge precisely, an image retrieval
system is a couple of image representations and query sget®ns.

The following list presents several interrogation way4 tieve been implemented in several
prototypes:

— The oldest is of course queries from keywords describiegrttage contents, image da-

tabases becoming textual databases;

— the interrogation from a sample image quickly appearealjittage being one from the

base or provided by user;

— avariant is asking the user to sketch the image he or sheksp for (for example “a
red disk on a green background” to find rose images [19]);
for a better precision, especially in textures, an imagg lbeeconstructed from fragments
of other images from the base [38];

— an extension is an annotated sketch (globally or locatlyprecise characteristics that

should be taken into account [73] and possibly retrain th@patticular values;

— this last proposal is close to query using a formal langeagebining structural data and

visual content [52] [39];

— an extension of this approach is to provide semantic degmns like “find images inclu-

ding a character in a red dress with, at his feet, a small vautg;

— finally, relevance feedback approaches appeared, syste to discover or simply im-

prove conditions that will make an images subset relevant.

There are indeed a large panel of possibilities but it carldréied. We can actually classify
retrieval techniques into three basic and complementgpyoaghes, whatever the usage is to
be done:

— Formal querying where accent is put on specifying the imadmd, in other words the

construction of a query (even if the interrogation languags be very simple, reduced
to a linear function);
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— feedback querying where the user is a part of the retriecalgss;
— navigation-based “retrieval” allow the user to move intoedore-hand calculated struc-
ture.

Formal querying Formal querying may be done via a query language as well agrayxical
way, thus interactive.

Graphical querying is more comfortable and usually simgdifiorm of the query writing
[8] [38] [73]. However, it can be almost necessary in somesalike selecting a colour from a
palette rather than describing digital values [19].

Retrieval by formal query actually consists in specifyihng tlescription of a virtual image,
i.e. a value range that several attributes should resgeesetproperties being linked by an
implicit conjunction.

Despite the apparent simplicity of this “classical” apmioawo new elements appear. First,
it is better to use an approximate interrogation rather #atrict interrogation. Then, multi-
dimensional indexing problems appear.

Using a formal query language brings several advantagakoWws querying an image data-
base with a strong integration of digital data, images austg2] [39] as well as the application
schema. Still in the case of a multimedia DBMS, queries maydoe on a subset of the base [9]
improving both the process time and the result quality. @senay also become views allowing
to solve other queries [52]. Note that this is the only wayuddonon-interactive applications.

Feedback querying The previously described formal approach is valid neitlograd hoc
interrogation, nor for naive users. Feed-back queryingry ¥mportant in an image retrieval
system: images cannot be easily described. Consequerdhction “mistakes” are common
and require rewriting, until finally obtaining a relevantages subset.

It is necessarily interactive; the user is actually a parthef retrieval process. The result
of the query is not one of the subset successively displayéket screen but only the “last”.
Finally, the user decides when the retrieval process ish@aigunless the system is unable to
return any image). For that reason, for the user to perfoemdtrieval intuitively and efficiently,
the user interface should be carefully designed. In thisthayuser will make better use of his
cognitive capacities and improve the results converge@dteourse, the system performances
and reactivity will also improve the user experience and tine retrieval efficiency.

In the general approach, the user will annotate severalemag examples or counter-
examples. The system must features inference techniq@g#4Y: it will have to determine
automatically the relevant criteria. In other words, itliiave to discover weights that discri-
minate the examples from the counter-examples. At eacdtiber, the system constructs and
improves, with the help of the user, a new formal query.

Let’s note that the most commonly used approach used to epooom a unique sample
image, or a particular region from an image [83]. The useskws then to set weights on
different properties. This is between a formal approachafekdback approach: the final spe-
cification is obtained by the “right” weights and the “riglgimple image.
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Navigation After these two retrieval forms, the third way is the podgipio navigate through
the schema of the database (images but also related data imége database). It has been
showed that in certain cases, hypermedia can be an altegnai DBMS [51].

Navigation is a very efficient retrieval form that, as wellalevance feedback, combines the
system advantages with the user’s vision. Indeed, if thdagiities between images have been
stored in the base, find the images that are similar to a givaiges is done in an instant: the
system’s work has been done before-hand. Then, the usecl®tse an exploration direction
rather than another. The navigation technique itself maybee or less complex, but the main
work consists in a before-hand classification [9] [29] [7T)is approach being also interactive,
it can easily be combined with the previous retrieval mod23.[The interrogation allows to
find entry points in a “clusters” structure, then the navimaallows to explore these sub-spaces.

The classification results may also be used in formal quarnesges classes being interpre-
ted as views (subsets) or taxonomies (additional progrtiemore simply as binary associa-
tions between close images.

2.2.2 Architecture

From these generalities, we note that the points to make@teathe images representation,
the similarity measures, the physical index techniquesuser implication in retrieval process
and more recently the images classification.

Thus, the heart of an image retrieval system or an image ds¢amust be flexible [84].
First, it must adapt itself to new informations, known bettyand or learnt, that means that the
design must be very open. Then, it must discover the useaks o improve results relevance,
including experimented users.

On a technical point of view, chosen architecture shouldoeoa limiting factor. The mo-
dule should be adaptable as well in database driven applsads in more open systems, like
artificial vision systems. However, we will not talk abouisthspect.

2.3 Commonly Used Techniques
for Image Retrieval Systems

Elements introduced about architecture will now be payti@rmalised. We should indeed
deal with a set of extensible and application-adaptablaefts. For that reason, we will limit
our study to fundamental elements.

Images will be modelled as semi-structured objects thraugat of properties of very va-
rious nature. Several mathematical tools are used to dleaise one or more property types:
mathematical morphology, fractals, statistics, tramafo(Fourier, wavelet, Gabora. . .), etc. We
will keep statistical tools as simple as histograms as ashiadiiscuss the choice of good cha-
racteristics. Then, we will see how to build similarity meges on these properties as well as
on their combinations. A few inference techniques will bed:i
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2.3.1 Images representation

While being very important, images representation is vggmo Consequently, the schema
of an image class in an image retrieval system may only bedntted in a generic way, as a
semi-structured object:
I=0c" (2.1)

WhereC' is a polymorphic characteristics set. Later, we shall disgto talk about the set of
values of the”' characteristic as well as the relating— C function.

It is a hard task to find characteristics that represent tsedreimage content. These pro-
perties have to respect as much as possible the followiterieri that are sometimes opposed
[5]:

— exhaustivity: characteristics must cover the whole ingrdrelements of image;

— compacity: discriminant information coding must be cootpa order to reduce simul-
taneously storage and process costs, either before-handdmging relevant elements,
either later by dimensionality reduction techniques [16]

— robustness: characteristics must be tolerant to the ttmas@ppears for different reasons:
photograph taken in bad conditions, digitalisation don\wbor material, strong image
compression...

— discrimination: though characteristics are supposea todmplementary and used toge-
ther, each characteristic must by itself allow to differata a lot of image classes;

— precision: characteristics should be calculated withexipion equal to human eye, in
order to allow an advanced discrimination;

The compacity condition prevents the use of canonic reptasen of images. For instance,

Chabot stores only thumbnails in the database, imageshisielg stored on optical disks [52].

There are several pieces of data to take care of in order tnwg adequately an image

database [3]. The standardisation effort of MPEG-7 [47 s&f)arates:

1. the format information (stereo for audio, infra-red fovage. . .),

2. the physical information (sound energy, main colours. ..

the perceptual information (male voice, hot colour. . .),

the structural information (splitting a video into planan image into regions. . .),
the intrinsic metadata (keywords. . .),

. the miscellaneous annotations.

In this study, we will use the MPEG-7 classification to definetadata; however we will
not make use of every layer proposed by the MPEG-7 proposal.

R

2.3.1.1 Low-level data

Colour and textures are one of the most used low-level cteistics, because it is very
close to the description that a human observer may do. Sedoair models exists, answering
to different needs, from physical models (RGB being the m#rperceptual models based
on a separation of value, saturation and hue and normalisel@ls1(XYZ, L*u*v*, L*a*b*).
Texture is generally represented by granularity, conaadtdirection [19].
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Since [77], histograms are still a base for a large numberaggsitions:

(E;) — (E—1[0,1])

(e)jes = {e — ST e € (¢5)5es)

Where(E;) is a data family, indexed by elements of theet, andZ — [0, 1] is the function
associating its frequency to each data family, i.e., theesponding histogram.

Histograms may be single or multi-dimensional. For exampla quantified colour space,
one can create tri-dimensional histograms with= N x N for the coordinates system and
E =N x N x N for pixel values.

Histograms feature exhaustivity, robustness and pretisiowever, they are neither parti-
cularly compact nor very discriminant in large IDB [54].

The compacity problem may be solved by creating value ck&asdso reducing processing
time. In the case of colour, one may create conceptual dasse a non-uniform segmentation
of the colour space (9 hues iind[%, [39]). This segmentation may even suppress the tri-
dimensionality of the colour space, by replacing the thisegrams by a unique one. However
statistical measures cannot be done any longer on suclgtasto

The discrimination problem is deeper. It is due to the lackmfelation between an histo-
gram’s modalities. The compression we discussed abovesdlpartially but in a too strong
way since it limits the number of images classes that canappe

When using a full histogram is not possible, using an actéptaumber of inertia move-
ments (average then centred moments) can express as firq@gsible the histogram’s shape.
Most authors use only two to four moments. [76] shows that@praach by inertia moments
combines a maximum of advantages.

(B —=[0,1]) —[0,1]
P e k)

o (E=[0.1) —[0,1]
" b 30y — ()" R(j)

The inertia moments interpretation depends on the chosaracteristic. For a greyscale
histogram, average simply represents the average ingetts# standard deviation represents
contrast, the third represents asymmetry and finally thelicepresents the flatness.

As for texture, first moments are also used, at least four. é¥ew spatial orientation is
important and other techniques must be used to determinelgréty and directionality as well
as other characteristics such as rugosity, periodicigylegity, complexity, etc. [31]. Moreover,
there does not seem to exist a better representation maodektare [57] [56].

However, histograms or inertia moments are still a too garepresentation of an image.
In too large bases, several images may look very differenbh&ue very close histograms.

(2.2)

(2.3)

2.3.1.2 Colour models

The international standard for colour definition was essaleld by C.1.E. in 1931. However,
this colour model is not commonly used in the computer g@jtdustry.



CHAPTER 2 — Content-Based Image Retrieval (CBIR) 33

(1,0,0) (1,1,0)
red yellow
(1,0, 1)
(0,1,0) magenta
blue
©.0,1) (0,1,1)
. 0, cyan
green

(1, 1, 1) white

Figure 2.1 — The Red-Green-Blue colour model

For computer image manipulation, technical colour modkésRGB or CMYK are prefer-
red. Those models reflect the way pixels’ colours are prodibgethe rendering device. Those
technical models are not suitable for human intuitive col@presentation. For instance, the
pink colour is not easy to describe in term of red, green and blugbawation. More accurate
models, also saigerceptualmodels are then used. The first of those models was proposed by
A.H. Munsellin 1915.

The RGB colour model is also known as the additive model, since it is based on gdeid,
green and blue light. It is physically easy to create, thishy monitors and screens are using
this model to produce a colour image. However, the red, gaeehblue components have no
meaning for a human observer, and semantic information aslypseparated by this model.
Consequently, this model is not adapted to informationedt.

The HSV colour model is recognised to be one of the most perceptually evidentgerau
[25]. HSV stands for Hue, Saturation and Value. All those ponents are immediately unders-
tandable as they reflect the way artists compose their caloey first choose the Hue of the
colour from different tubes, next they set the saturatioadging white and finally set the value
by adding some black. In this mod&hkis seen as a red hue with some white in it to decrease its
saturation. In the HSV space, this description is represkloy the vectopink = (0.0,0.3, 1.0),
with:

— pink Hue = 0.0: hue is defined, on the chromatic circle, as an angl@.igr| where0

meanged,

— pink Saturation = 0.3: the saturation scale ranges frono 1;

— pinkValue = 1.0: the value is defined o, 1].

This model suffers one drawbacks when it comes to imageasvalrthe hue property is not
linearly perceptual. It means that zone colours such asmétue represent a large part of the
spectrum while yellow or green are represented by a verylgodion. The consequence is that
if the application does not take this into account, coloikes ted or blue are over-represented.
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Figure 2.2 — The Hue-Saturation-Value colour model

Figure 2.2 shows a representation of the HSV colour modehdteen represented as a cone
where the radius represents the hue; it also shows a slibésafdne for a hue corresponding to
a green value.

2.3.1.3 Medium Level Data

Information extracted until now are mainly about the imagets whole. Still, the most
relevant information after colour is the spatial dispasitof main colours. This is a part of
the pre-vision process, that is not conscious. Indeedetba®urs generally correspond to real
world objects. Without pretending this precision leveljimage may be separated into interes-
ting parts, with a minimum of hypothesis.

In order to provide more precise informations on spatiahragement of the pixels of an
image, we can first make minimal hypothesis on their compwsiThen, we can consider that
in the most of the cases the main object is close to the cehtleeamage [19]. Anyway, eye
is attracted to the centre [28]. We can expect this prop@ryrhages build in respect of the
usual photograph rules by segmenting the images along tlegsh lines (segmenting into
thirds, horizontally and vertically) [75]. To improve sptinformations relevance, a recursive
segmentation of the image (quad-trees10 [65] [33]) may opred until reaching a depth
or homogeneity level fixed before-hand. Finally, more adeahtechniques allow to express
and exploit spatial concentration of colours: auto-cagehms [29], retro-projection [8], Ragon
transformation [82], Delaunay triangulation [79], etc.gfurther, one must use image analysis
techniques. The main processes are segmentation and leatceation [3].

Segmentation techniques, very numerous, are used to eségaons of an image featuring
a certain homogeneity, regarding a given criteria. Usuidrea are colour or greyscale ho-
mogeneity (cognitive studies also showed that the humansegarticularly sensible to large
homogeneous colour zones [28] [5]) and texture homogerdayual or semi-automated ver-
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sions (flooding filling from a point chose by user, active t@rd 9]) provide significant regions,
possibly annotated with semantic informations, but at & leist.

Every histogram process can be extended to regions. Howesiag regions one can take

profit of new characteristics to improve the search results.

To eachr region, one can associate additional characteristicserel® shape and spatial

arrangement:

— surface £,.), perimeter f,) and orientationd.);

— absolute position: barycentr€((r) = u(h(r)) andCy(r) = p(h(r))), minimal borde-
ring rectangle,, y,, .., h, considering or not,.);

— relative position: Euclidean distance to the centre ogena
(Ce(r) = L2((%’ %>7 (Ca(r), Cy(r))));

— shape: stretching, eccentricity or elongatiéfp)(rectangularity (such as?s-), circula-
rity or compacity (*;T—Z Fourier transform approximations [7], moments [31] orlasg
and tangent vectors [19]).

Moreover, binary (or even n-ary) characteristics may be@ated between regions:

— comparisons on different properties;

— spatial relations: with (1) Allen relations [2péfore, meets, overlaps, starts, during, fi-
nishesandequaly, (2) parametric coordinatép, theta) [81], or (3) relation graphs bet-
ween objects of the same image, and even simple bi-dimesisaoijpcency histograms
on their respective colour [24].

2.3.1.4 High-Level Data

High-level data are considered by some authors as beingdkeuseful to perform relevant
retrieval in an image database [9]. The principles of higfel data indexing consists in provi-
ding semantic descriptions of the scene and real world tbjbat can be found in this scene.
Unfortunately, semantic usually has to be provided maglmdtause it requires a comprehen-
sion of the scene, except in particular case described inque part.

The keyword-based approach [8] is the most generic alieentd describe objectively as
well as subjectively, intrinsically as well as extrinsigadn image content:

Cy: I — 2% (2.4)

Other models can hardly be compared. However, one may glissih informations about
(1) image regions and perceptual informations associg®¢deal world objects and semantic
informations associated, and finally (3) establish a cati@h between (1) and (2).

EMIR2 [43] introduces an oriented structured graph deswgilsomposite structure of ob-
jects (a house being a compound of a roof and walls Spatialinformations are located on
nodes (points, segments, polygons...) and arcs (metiiase,cfar, vectorial: north, south,
east, west; and topological: cross, overlap, disjointtanich) of a description graph of the
two-dimensional scene. Finally,symbolicdescription separates formatted attributes (author,
size...) from generic concepts. Note that this higher Igveposition does not recognise ob-
jects in the image; only conceptual objects are describleds;Tthere is no effective correlation.
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It is also targeted to applications where semantic has aoritapt role. £/ 1 R? also includes
relevance notions and uncertainness.

On the other hand, [44] uses a simple segmentation whereregan is associated to a
colour attribute. Regarding semantic description, an akpeiented approach is used (class,
inheritance and aggregation). A link between two levelstaldished by a function associating
a semantic object to one or several regions. Then, a queguéme is provided on this data
structure.

CORE [84] goes further by providing several interpretagi¢concepts compounds) for the
same property (measure compounds) of an image. An integegtiplication is the STAR sys-
tem providing retrieval on company logos. These logos dameogessarily represent a real world
object, but they do have a symbolic interpretation.

These few propositions are enough to show how approachediffi@yin details, even if
there are similarities at a high abstraction level.

In the case of IDB, we propose to use directly the applicasicibema to obtain semantic
informations, more generic. § =< C, A > is a very simplified database schema, whérns
a set of classes andl a set of binary associations C C' x C' between these classes, then one
can define th&’'s property associating to each instance the set of classelsith vt is linked:

I —2¢

i—{dellicchni ed N(e,d)e AN(i,i') € (¢,d)}
One can, for instance, find the set of images that could reptegban landscapes by calcu-

lating {i € I|City € Cs(i)}.

Cs : (2.5)

2.3.2 Similarity measures

“To be intelligent is to find similarities” [14]. At one endhe first mathematical transfor-
mations are geometrical transformations, but they are tioct $or our purpose. At the other
end, topological similarities are too loose since a cup andgawould be similar. To deal with
similarities, one must define such a concept from graduabnores.

A similarity measure is usually define from a distance:

d:CxC—R (2.6)

respecting three axioms:

— auto-similarityvz € C, d(x,xz) = C (C being a constant);

— symmetry¥(z,y) € C?,d(z,y) = d(y, v);

— triangular inequalityy(z, y, 2) € C3,d(x,y) + d(y, z) > d(z, 2)

Distances are numerous in the literature, defined by scalaes, set values, vectorial va-
lues, etc.

Unfortunately, several experiences showed that humarepgon is not comparable to a
distance. Usually, it respects neither symmetry, nor ewto-similarity [66].

The general method should be as follows: whenever we wantieess a perceptual simi-
larity in a metric space, we have to define a it as a non-trimanotonic, and non decreasing
function f, on an underlying appropriate distance:
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CxC—10,1]

(c,d) — f(d(e,c)) (2.7)

2.3.2.1 Combination of measures

Another difficulty is how to combine several measures, ottefined on different domains
and sometimes with various weights. However, every expantal result shows that considering
several characteristics at the same time gives betteits¢lah with a unique property [58] [49].

Considering several characteristics in the same time mdpbe at the time where characte-
ristics are collected. [54] builds multi-dimensional bigtams combining orthogonally several
characteristics defined around a pixel (for example coladriatensity gradient). [73] operates
a segmentation of images simultaneously in the colour dom@uad texture domain, in this way
Savannah may be distinguished from lion’s hair by usinguiexinformation.

In a general case, independently established measuresesil to be combined. There are
at least four difficulties:

— different values domains;

— there are qualitative data;

— data may not be independent from each others;

— the relative importance of properties is neither equalcooistant.

Literature presents several combinations methods, watin tvn merits and drawbacks. We
classify them into four families:

— based on vote,

— measures in a vectorial space,

— probabilistic approach,

— and fuzzy logic.

Combination based on vote Several measures may be easily combined by voting techsique
[70]. Its simplicity is attractive. Images are classifiedependently on different characteristics.
Combination is done from the average rank, or median rangt &=& worst may be eliminated
to gain robustness.

Using this technique, one can combine characteristicsetkbn different domains. Impor-
tance of characteristics may be weighted.

Aggregation in a vectorial space Techniques based on measures in a vectorial space are the
most common ones. Characteristics have to be quantifiabén,each characteristic is an axis
in a multi-dimensional space, and a vector of charactesis$i a point in this space.
This approach can be applied as well to a multi-valuate@rait(such as histogram) that
one wants to reduce as to several independent measures.deribral case, it becomes a tree
of properties. It can even become recursive if the imagesrge@nised into compound objects.
When data can be assimilated to vectors, which is often thefoa histograms, Minkowsky
distances are often used:
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. CNx CN =R
P (0,0) = (S (v — )"

Wherep > 1. Most common distances are particular cases of Minkows&tadcesZ; is
the Manhattan distancé, the Euclidean distance, atd, = max{|z; — v;|}.

An important problem i®rthonormalityof the vectorial space. Considering for example a
greyscale histogram, it is obvious that entry that are cfos@ each others are almost equi-
valents. [76] shows histograms that are similar for humam layt can be made completely
different by a simple translation.

The quadratic distance, supposedly found by Mikihiro lakaf IBM laboratories in Tokyo,
seems to solve that problem:

L (2.8)

ey CN x CN — [0,1]
AT (0, 0") = 00 Y agrd(vy, V') d(vg, V'k)

It provides a correlation between axis as a symmetric méitmiorder to respect distance
axioms), its diagonal terms being 1 (each entry being smidatself). [27] and [73] use a
matrix such as; ; = (1 — d‘fi—’;) whered is the euclidean distance in the corresponding colour
space and,,., the normalisation factor.

Note thatl, is a particular case where the correlation matrix is idgnéihother particular
case is a binary matrix, equivalent to creating equival@tesses.

The only drawback of quadratic distance is the linear timaglexity (O(n)), but depen-
dencies between characteristics inside a given charstitesire common.

When independence of components is established, simpéesures fulfil. VisualSEEK [73]
uses a simple sum between spatial distance (being itsetilesisum) and the colour distance
(an adapted quadratic distance). [9] also proposes a subsofide distances between average
and standard deviation, respectively on four forth andetlefeannels of image.

Vectorial approach makes easy to take weight into accoumfoAhistograms, it becomes
especially useful when inertia moments are exploited. édgdaverage is more important than
standard deviation, itself more important than next i@emioments. For example, two images
with a different average colour are unlikely to be similatass all other moments are close,
which can be actually a translation of the colour spectrum.

A sum of quadratic differences, weighted by the inverse ofesponding variance, is used
for texture (granularity, contrast and directionality)athe form in QBIC [16]. Note that it is
possible to take into account weights that are internal tdatities in an histogram in order to
compare only a subset of modalities (implicitly the caseimmpte interfaces where only a few
dominant colours are specified).

(2.9)

Probabilistic aggregation Using probabilistic theory is an attractive idea [53] [12B] [49].

It allows to represent dissimilarities since dissimil@stare linked to the values appearance
frequency, naturally presenting the shape of a function distance. [49] makes a trivial Gaus-
sian hypothesis to reduce the distance on a charactefistaca quasi-probability (statically
normalised):
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CxC—1[0—¢1l+¢
de(c,!) —(pe—30¢) (2.10)

6o

’
d, : (c,d) 1

Implementation difficulties are known. To simplify, autBarsually suppose that characte-
ristics are independent to evaluate the similarity of awoaiion as a product [49] [9]:

CN x CN — [0,1]
(Uw U/) = H?:l S(Ui7 U;)

Of course, this is usually false, but according to experiséms is an acceptable approxi-
mation.

Unlike the vectorial model, weighting characteristics slo®t seem to be possible. Mo-
reover, characteristics such as regions and their spatations cannot be taken into account
neither in a vectorial point of view nor in a probabilisticipbof view. Another measure is
required.

(2.11)

S

Fuzzy aggregation Fuzzy aggregation [44] [53] fits more needs than probaluliseory. It is
even possible to combine quantitative data with qualiéadiata, if both are associated to fuzzy
characteristic functions:

it C —[0,1] (2.12)

[66] uses a proposition from Tversky approximating siniijabetween two binary stimuli
sets as a weighting functiohrepresenting overlap and difference§E), F') = af(E N F) —
Bf(E
F) =~ f(F
E) where E and F are strict sets. Tfidunction is chosen as the cardinality of the fuzzy set:

;O
Coe o u(v)
Intersection and difference operators are naturally eddrfrom fuzzy logic'smin and
max operators. Of course, this solution is just a candidate @nwadmat fuzzy logic proposes.
Note that weights are managed by modificators. Also notediyaéndencies between characte-
ristics have been studied [84] [66].

(2.13)

2.3.3 Feedback loop

In the retrieval process, the results’ quality measure tobgective, it strongly depends on
the user. Using feedback loop, one can evaluate the inteategdsults’ quality before to output
the actual results. As for any “smart” human-computer atgon, the goal is to discover what
characteristics matter to the user.

Techniques used in textual retrieval, based on the vettoddel [64], build a suite that have
been proved to converge in a finite time but with no guaranteetito a dichotomy between
relevant data and the rest [20]:
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ZUGP v ZvEN v
1P| [V

Wherea and 5 are weights to determiné? and N respectively the subset of relevant ele-
ment and the subset of non-relevant elements.

A variation from [32] is based on a principal components gsialto keep significant cha-
racteristics associated to images presented as example®jact significant characteristics
associated to counter-examples.

To speed-up convergence, learning techniques should lae imsthe probabilistic model,
[49] supposes that values that can take different charatitsrinto account respect a Gaussian
distribution, and that these characteristics are indepainto propose:

~B (2.14)

Upt1 = Up + Q0

P, -(v|i € pertinents) = H Py, 0, (v]i € pertinents) (2.15)
j=1

The problem is equivalent to finding the best values for ayerand standard deviation.
For this, a gradient descent optimisation algorithm is psaul; it constructs a hypothesis suite.
These are linked by a factor €]0, 1] (rather close to 1) that progressively reduces variance.
Average is adjusted regarding relevant images, while amahnumber of relevant images is
included under the defined Gaussian curve.

A more generic approach is proposed in [41]. It is based ong&db formulation of a
guery taking into account regions of an image (own charesties and links between them).
Determining a query that keeps examples and rejects ceexéenples is proved to be an NP-
complete problem (reduction to the minimum cover probleg])[2A genetic algorithm is used
to solve it.



CHAPTER 3

NAVIGATION THROUGH AN | MAGE
COLLECTION

Due to the visual nature of thenagemedia type, navigation appeared as a powerful and
user-friendly way to find images in a collection or a databak# the image media is a visual
one, thus requiring feedback from the user to determingaalee of results to his or her needs,
but being a still media (unlike video), to represent an imagjag a small space is quite easy.

The nature of image and the popularity of the world wide wednited in a lot of proposals
using navigation to find images from a large collection ortablase. While most proposals will
fitin the first one, we divide these proposals into two categor

1. Proposals using navigation only for user-interface,kegping a classical retrieval me-
thod (queries or relevance-feedback) for the engine, and

2. proposals using a navigation structure as a search comeepsing the same structure
for indexing and interaction with the user.

3.1 Disposing Images in a Space

A lot of proposals dispose images in a space, usually usstgrties (thus similarity search).
Display device (screen) being usually two-dimensionaktpooposals [69] use a two-dimensional
space: a plan.

Ifimages are to be displayed on a space, one may intuitivaiht¥o make use of tHecation
information when itis available. This approach is used bgléd@ggers (http://www.geobloggers.com,
illustrated in figure 3.1. Geoblogger is basically a worldoméhere images appear at the place
they have been taken. Similar proposal also usdithe information. Combining space and
time is usually interesting since they usually represy@nts Indeed, pictures taken the 6 of
August, 1945 in Hiroshima will obviously represent picia the atomic bomb that hit this
city. Such images will have a strong semantic link betweeah edhers. Photographs taken at
either a different place or a different time may have a coteplaifferent meaning.

Kaesteret al's work [34] proposes to combine several input methods tockef@r images,
including touch screen (to select parts of images or perfgestures) and speech recognition.
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Figure 3.1 — Images Displayed According their Geographication
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Figure 3.2 — A Modigliani’s Painting with Similar Images [69

By using these non-classical input methods Kaester couldyme a graphical interface that
makes the user feels like he or she is navigating the imagdds¢. This system is however
still based on similarity search: the user will actuallyestlimages or parts of the images for
the system to find images similar to these samples. The tiolteis stored by using multi-
dimensional indexing techniques.

3.1.1 The EI Nifio Project

In their project El Nifio, Santinet al. worked on integrating browsing and querying [69].
Their proposal is a set of search engines connected by a toethiat dispatches the queries to
the search engines, collects the results and displays théme user. Images are arranged on a
two-dimensional plane, and the user interacts with theegyshainly by two ways:

— By clicking on an image, the user asks the system to movéntlaige to the centre. From
the user’s point of view, he or she is moving inside the coibec from the system’s
point of view, the user is launching the query “show the insagjenilar this one”. This is
illustrated in the figure 3.2 where images are organisedmaltiue Modigliani’s painting
(in the middle).
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— By drag-and-dropping images, the user teaches the systetargties that were not
present. The user can then tell the system that from his godiat of view, two images
are similar. In other words, this is a user-personalisgtiatess.

3.2 Using a Navigation Structure

A different approach is to navigate on a structure that idt ln@fore-hand. This is basi-
cally what is used inside structured documents, or humaeekdirectories such agahoo!
(http://www.yahoo.com) odmoz Open Directory Proje¢http://dmoz.org).

These structures can be of different shapes, and accomlitingstshape different tours [4]
may be performed on it.

— The simplest model is tHanked listsmodel: the user can navigate using links to niegt

andpreviouselement.

— A more elaborated one is thgerarchical model: a second level, the parent/child rela-
tionship, is added. The user can gecificby choosing a child node or ggeneralby
selecting a parent node. For example, indi@oz Open Directory Projecket’s consider
a user browsing the categofpp: Conputers: Software: Databases.Heor
she can for example go up to thep: Conput ers: Sof t war e category or choose
to go down in one of the subcategories, for exanfgp: Conput ers: Software:
Dat abases: Obj ect-Oi ent ed. This kind of hierarchy can be assimilated to an
anthology.

In these structures, a given node usually have a single fpaoele. Multiple parents is simu-
lated by creating links between categories. For exaniplp; Conput ers: Progranmm ng:
Languages: Dat abase appearsasalinkinthe categdrgp: Conputers: Software:
Dat abases.

Finally, a graph allows to define a more complex structurere/tiee user is not limited
to go specific or go back from where he or she is coming from. él@r one should be very
careful while using a graph structure: if it is too complexdtthe user can literally get lost in
the structure and thus be unable to find what he or she is Igd&m

3.2.1 Navigation Structures for Multimedia Data

Most of the individuals or companies with limited needs miga their images using direc-
tory and files. Usually, they use one directory to store tbellection and create a new directory
for each event. By doing that, they are creating a structucgganise their data.

Tools like Google’s Picasa (http://www.picasa.com) egtédns model by proposing to add
tags or titles to images, and propose navigation and retrreere adapted to images that what
a general purpose file browser provides. This is useful feraxeho need only a rough classi-
fication of images; however most users will not care aboutrgpthgs or titles individually to
images. This will be limited to a per-directory tagging.

In order to organise images while asking the user for a mimnad interaction, the use
of content-based information is required. However, whoataining latent semantic, content-
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based information usually have no direct meaning for a usereover high-dimensionality
is usually involved. A navigation structure based on conbased should thus be build very
differently from a navigation structure based on an antiplo

Navigation through an image collection is usually doneegitlsing a similarity search as a
base, or on a structure created by a human operator. Thesebban almost no research work
on a structure automatically created from content-basednration, but this will be the goal of
the current proposal.
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CHAPTER 4

NAVIGATING AN |IMAGE COLLECTION
USING GALOIS’ L ATTICES

This chapter presents our first proposal, Galois’ latticesdudirectly as an indexing and
navigation structure. First, we will describe the meta-glodle use in the section 4.1. This
model will be used not only in this first proposal but also ie @xtensions that will be presented
in the next chapters.

Then, in the section 4.2, we will present our proposal basedoncept latticesa useful
graph structure, helping the user to browse an image calteotganised before-hand.

Finally, the implementation of this work will be detailedsection 4.3 and the results of the
experiments we conducted will be presented in the sectin 4.

4.1 A meta-model for navigation-based “retrieval” on images

Considering the MPEG-7 model presented in section 2.3.lhaseally take into account
the levels 1 to 4 in order to focus on content-based retriéwador colour information, we chose
the HSV (Hue-Saturation-Value) colour model from the medaiesented in section 2.3.1.2.
The HSV colour models combines a good perceptual fidelity tonaprocessing cost; the
problem of the non-linearity of hue will introduce no biaa the definition of fuzzy subsets
on this axis will take it into account.

Also, we restrict our attention to “standard” images, it&@g-dimensional, rectangular, wi-
thout transparency channel, that are not bounded to angylartarea (e.g., satellite or medical
images). Specific kinds of images require adequate desergpthat can be far different from
the ones introduced hereatfter.

A lot of properties can be used to represent an image, adatetaithe section 2.3.1. Howe-
ver, considering too much properties at once generallyessifome drawbacks. Firstly, query
performances degrade rapidly, the so-called “high dinmadity curse problem.” This is not a
problem here since building the hypertext of images is ddfién@. Hence, navigation offers
optimal performances both from the processing and storage pf view, because the links
are “hard-coded.” Secondly, common weighted queries aresensitive to correlated features
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[72]. The technique that we use, namely concept latticetailéd later in the section 4.2), is
insensitive to this problem due to the absence of weightseagn of distances.

The sequel of this section presents some reasonable chioipesvide a fuzzy linguistic
description of an image through its colour features and ig¢peoperties. There are other pro-
perties such as texture (briefly cited in section 2.3.1.1)Wmipurposely renounce to use them
for cost and performances reasons.

Definition 1 (Description Space)The description spac® consists of the union of several
sub-descriptions:

D = Darea U Dorientation U Delongation U (TegiOTL X Dhue>U
(region X Dsaturation) U (region X Dintensity) (41)

4.1.1 Fuzzy linguistic labels for colour

Fuzzy linguistic Labels (FL) likpink need to be described over the colour domain, namely,
the HSV space. Each FLis associated to a membership functjarwith values within|0, 1],
reflecting how well the Flc describe the colour of a particular image or region of an n&gr
instance, th@inklabel could be represented over the HSV colour space thargksitembership
function yu:.x (R, s, v) with high membership values associated to colours with admse to
red, a low saturation and a very high value.

Definition 2 (Fuzzy Subset)A fuzzy subset of a setX is defined by a membership function
(or characteristic functionj 4 whereVe € X, ua(z) € [0, 1]. pa(z) represents the membership
degree ofr in the fuzzy subset.

This general approach [63] allows to represent any FL withizy set directly defined
over the colour domain. Coverage of the colour space is reduo ensure that any image will
have at least one representation in terms of linguisticrgases. Allowing FL to be defined
separately from each other induces a greater flexibility,thea domain coverage has to be
checked after the user is done with setting all label defingi It is likely that some holes
will remain uncompleted.

To overcome this, another method has been used. With thisagheany colour linguistic
labelc is formed from the concatenation of elementary laléls c.s andc.v defined on each
of the H, S and V dimension. The membership function assediatith ¢ is computed as a
conjunction of the elementary label membership functions:

pe(h, 5,0) = pren(h) @ pre.s(s) @ pe.n(v)

where® represents a T-norm (max for instance) used to compute thigiroction of the
individual channels. In this test, we used the followingtipian:

— Hue :red, orange yellow, green cyan blue magenta

— Saturation vivid anddull

— Value :darkandbright
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Colour labels are formed by combining those terms (gwid bright red. Under a certain value
level, colour is perceived as black. In the same way, coloperceived as grey or white, under
a certain saturation level. Hence, to the above collectiocotour terms, we addlack dark
grey, bright grey, andwhite resulting in a total of 32 individual terms. This number isthre
range of the QBIC system which defines a set of 25 colours.

This method is much simpler from the user’s point of view, #imel coverage of the HSV
space is guaranteed as long as each dimension is well covength is trivial to achieve.

4.1.1.1 Zone colour characterisation

Colour perception results from the juxtaposition of indival pixels. The perceived colour
of an arrangement of pixels ranges from uniform pure colowdmplex colour arrangement
without dominating colour.

Considering our linguistic representation of colours hggigel colour is expressed in terms
of colour labels with different weights. For a pixel, the glei is the membership degree of its
colour to the fuzzy set associated to a colour label. Foams, in our paradigm of representa-
tion, a pink pixel could be defined as two colour labels:

— vivid bright redwith a membership degree 0fl;

— dull bright red with a membership degree 010.

Considering a regio as a collection of adjacent pixels, the relative importangée) of a
colour labeld insideS, is computed as the sum of membership degrgés) of each pixel:

> pa(p)

peS

Y S )

d'eD peS

with D the set of all colour labels.

4.1.2 Syntactical division

An image usually contains several real-world objects, amhgting these semantically
independent objects leads to a more accurate descriptionagfe colours, thus considerably
improving the results’ quality. Segmentation algorithnesfprm this separation by identifying
homogeneous zone, using colour informations and sometewage informations also.

However, due to:

1. the high algorithmic cost of the segmentation algorithamsl

2. the failure of these algorithms to recognise real-wotdeots made of several parts of
different colour and texture,

we relied on a syntactical division of the images rather thamal segmentation.

Considering general photographic pictures, the main subjgen stands in the centre and
the surrounding areas represent the image backgroundditicerd colour homogeneity is ex-
pected to be enhanced if smaller zones are considered. hdsdape picture, for instance, the
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Figure 4.1 — Syntactical Division: Big Buddha

sky is likely to have blue or grey hues, while the ground widipably be green. Among different
divisions we tried, a division into five trapezoids seemedadgnodel to separate semantics in
the general case.

These five trapezoids are respectively the centre, theleftiight, the top, and the bottom
part of the image. Figure 4.1 shows an sample image featdangakura’s Big Buddha divided
into trapezoids. The central zone covers 49% of the totéhserand the four surrounding zones
are trapezoids, the wideness of which is 15% of the imageneste

4.1.3 General geometrical measures

Along with colour, we consider geometrical measures toasgnt therea, theorientation
and theelongationof the image.

The use of orientation and elongation for image search ieabvious: an image wider
than high is usually called a “landscape” image precisetiahee most landscape images have
these proportions. Even when it is not an actual landscalp@oscape-oriented image usually
represents several real-world objects, a very large imaggglusually a panoramic view. On
the contrary, an image higher than wide is called a “pofttagicause portraits usually have
these proportions. When it is not a portrait, a portraielithage usually represents a close-up
of a unique real-world object. Thus, there is an implicitretation between the orientation and
the elongation, and parts of the semantics of the image.

The area is also an important measure since users may bestetiby retrieving images of
a certain size according to their needs.

4.1.3.1 Numerical Features

First, Dyrea, Dorientations @3NADejongation are format informations (MPEG-7 level 1), related
to the whole image, based on the followingcalarfunctions:
— area(i) = width(i) x height(i),

— orientation(i) = M, and
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— elongation(i) = |4O‘(i) —1].

wherea(i) = atan,% is the angle of the diagonal.

These formulae %ave been chosen among various alternafivegrientation of the image
(i.e., portrait or landscape) is independent of the areheifrhage.

Also, using an absolute value removes the correlation lEtvegientation and elongation
measures: the covariance is null pnz/2]. (However, correlation is perfect per halves, i.e.,
on [0, /4] and[r /4, w /2] independently, due to the functional dependency betwedentation

and elongation.)

4.1.3.2 Linguistic Variables

The introduced numerical features are used in turn to peovidtadata on images as subsets
of the following descriptions:

Darea = {tiny, small, medium, large, huge} (4.3)

D orientation = {portrait, square, landscape} (4.4)
Deiongation = {none, standard, panoramic, elongated} (4.5)
Dhye = {red,orange, ..., cyan, blue, magenta} (4.6)
Dsaturation = {vivid, light, pale} (4.7)

Dintensity = {black, dark, light, white} (4.8)

These discrete subsets are obtained from the correspoiudinglinguistic variables and fuzzy
subsets, and subsequent thresholding.

Figure 4.2 illustrates the classical way to define the fuz#yssts of a linguistic variable as
trapezes or trapeze-like shapes, i.e., to each member df-descriptionD; we associate an
arbitrary membership function.

Definition 3 (Scalar Fuzzy Value)The fuzzy value of a scalar property with respect to a fuzzy
subsetA is directly given by its membership function:

R x D; — [0,1]
(z, A) = pa(z)

wherei € {area, orientation, elongation}.

FV;: (4.9)

Definition 4 (Vectorial Fuzzy Value) The fuzzy value of an histogranwith respect to a subset
A'is computed as follows:

([0 1] 0, 1]) x D; — [0,1]

FV;
J fO X,UA )dl’

(4.10)

wherej € {hue, saturation, intenszty}.

Definition 5 (Fuzzy Description) A fuzzy description is a set of fuzzy subset names and corres-
ponding non null fuzzy values:

RU ([0,1] — N) — 2P0

PP e (A FVip, )| A € D, A FVi(p, 4) > 0)

(4.11)
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Figure 4.2 — Therientation linguistic variable with its three fuzzy subsets

4.1.4 Binary model

In order to use a Galois’ lattice, we have to remove the fuzamivership degrees and
produce a binary relationship. In this section we presemivalt way to remove the fuzzy
membership degree, but in the chapter 7 we will propose arbetty to build a Galois’ lattice
from a fuzzy relationship.

Definition 6 (Discrete Description)A discrete description is obtained from a fuzzy description
and thresholdsy;:
RU([0,1] — N) — 2P

(4.12)

For instance, thelongation of an image could bg(standard, 0.3), (panoramic, 0.7)gnd
would lead to{ standard, panoramic }f the a-cut is set ta0.3. Similarly, from{ (red, 0.5),-
(orange, 0.1),(blue, 0.4),(magenta, 0.2)Me obtain{ red, blue, magenta With a threshold of
0.2.

Definition 7 (Discrete metadata)Finally, the complete metadata description of an image is
given by:
7Z—¢P
M : i = Ugegenerar PDald(i))V (4.13)
Ureregion Ugeccompl (r DDalha(r(i)))) }

where:
— general = {area, orientation, elongation}
— region = {top, bottom, le ft, right, center}
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— cComp = {hue, saturation, intensity}
— r(7) is the function that extracts the pixels of the padf the image.

Exemple 4.1. D = {medium, ..., standard} U Colourset

whereColourset is:
red pale black top

I [ ¢ |I®

magenta vivid white bottom

Size of the Description Space The area, orientation, andelongation linguistic variables
can generate discrete descriptions of O up to 2 items, becsach trapeze overlaps only its
direct neighbour(s). However, a finer discrimination colelad to a higher degree of overlap-
ping, denoted:. In addition, the expected level of overlapping dependshencbrresponding
threshold: in general, the higher the threshold is, thedesslapping can occur. Formally, the
number of possibilities is bounded by:

P(D;) = 1+ A%, (4.14)

where 1 stands for the empty set adf} (the number of arrangements-afitems within a set
of n objects) gives the number of casescohsecutivduzzy values that are over the chosen
threshold.

In contrast, théue, saturation, andintensity variables generate an exponential number
of cases. For instance, the set of different hues that ajpp@arimage can be any subset of all
the possible hues, for a sufficiently lawcut. Therefore, the number of possibilities is bounded

by:

P(D;) = 274! (4.15)
Finally, the size of the concept space associatdd i®bounded by the following formula:
11 P(D;)x
i€{area,orientation,elongation}
|region| x H P(D;) (4.16)

j€{hue,saturation,intensity}

With the current values, the size of the concept space iady@ + 5+ 4) x (1+ 3+ 2) x
(1T+5+4)x5x(27x28x29) =10 x 6 x 10 x 5 x (128 x 8 x 16) = 49, 152, 000. This
is far beyond the size of the biggest image database that awe &f) and gives a hint about the
discriminative power of this technique.

However, we do expect several images to be grouped undeathe description, even for
small databases in order to achieve an actual classificgfidr rare risk is to have a set a
images that pairwise share only one property. This wouldigece a combinatorial explosion,
i.e., a lattice with an exponential number of nodes.)

That is close to what we did observe on our example (see thieseéc4), the only problem
is that the number of properties for an image is not equitdiigled. Most of the images have
an average number of properties.
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4.1.5 Resulting models

In this section we described a fuzzy model for image rettjévaluding colour informations
as well as general shape informations (orientation, elomgashape). For colour informations,
a syntactical division of the image into five parts (top, bott left, right and centre) have been
used in order to separate real-world objects in an efficieyt w

We also derived a binary model (similar to a model based omkeys) by applying a
threshold to the fuzzy model. However, the only reason tttaufuzzy model was not to derive
a binary model from it. It will be used later:

— Inthe chapter 5, when will be described an additional elirsg) to improve the scalability.

The fuzzy model will be used to perform the clustering praces
— In the chapter 7, techniques more elaborated than sim@sftblding will be presented.

4.2 Navigation on a concept lattice

The images representation being defined, in this sectiorhai describe how to organise
the collection so the user can browse it.

Browsing techniques are numerous, from mere guided and@udeurs [23, 30] to advan-
ced tours [42]. Whatever technique is used, it requires gtracturing of the data. For instance,
a guided tour corresponds roughly to a linked list and malimen constructed from a set by
possibly selecting some items and specifying a given ordivden them.

Images are described by various properties, their soecalttadataletailed in the previous
section. If we envisage only simple tours on simple propsrtike the list of all the grey-level
images, the user will be unsatisfied with lengthy lists. Commly several properties is unavoi-
dable. We propose here fétiick’%,, aconcept lattice touon the metadata of the images. In
short, this structure allows, through mere clicks, eitlogiocus on more and more constrained
images (e.g., mainly blue, panoramic images with a stroxigite), or on the contrary to have
a fast access to general classes of images (e.g., justeyrelihages).

First, in the section 4.2.1 we will present Galois’ (congéattices and how to build them.
Then, in section 4.2.3 we will detail our proposal of hypedmdirowsing of such a structure.

4.2.1 Galois’ Lattices

Definition 8 (metadata) A simplemetadatatructure is defined in the form of a binary relation:
R:IxD (4.17)

whereZ = N x N — [0, 1]” is the set of images, arfdl is a set of admissible descriptions.

Note that admissible metadata vary from application to iappbn. They can be related
to the intrinsic content of the images, e.g., colour, or thay add some semantics to them,
e.g., through mere keywords. This first definition remainlsinarily vague to permit several
techniques to be used.
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However, in the current state of the system, we resiitd discrete values, using the mo-
del based on the colour information and the general shagepied en the previous section. A
better usage of fuzzy descriptions is detailed in the sedtioNVe base our proposal on Galois’
lattices. An image lattice is just another instantiatiom&alois’ (or concept) lattice. (This ma-
thematical structure has been largely exploited in the békhowledge discovery [26], and of
object-oriented hierarchy design.) Basically, it allo@steate a special kind of directed acyclic
graph, the nodes of which group a set of instances, i.eexgensionand a set of descriptions,
i.e., anintention

We derive aGalois’ lattice from this relation. The reader interested by a more detailed
Galois’ lattice formal description may read [26].

A lattice is an oriented graph, without any loop, and inchgdaninferior node(no edge
ends to this node) andsaperior nodgno edge starts at this node). IrGalois’ lattice, nodes
are pairs( X, X’) whereX C Z and X’ C D. We noteC = Z x D, the set of pairs (possible
nodes). These pairs must bemplete pairsdefined as follows [26]:

Definition 9 (Complete Pair) A pair (X, X’) is complete with respect to R if and only if the
two following properties are satisfied:

- X'={deD|Vie X, (i,d) € R}

- X={ieIlVde X', (i,d) € R}

Only maximally extended pairs (for which there is no other pa’;, X) such asX € X;
and X’ € X7) are kept.

Basically, that means that an images X featuresat leasteach propertyl € X’ and a
propertyd € X' is respected bwt leasteach imageé € X. The X set is calledntentionand
the X’ setextension

The following property may easily be demonstrated:

Property 1. Given two complete pair§ X, X/), (X,, X3)) € C*
XiC Xy = X, C X (4.18)
We can now define partial order between pairs:
V(O = (X1, X1),Cy = (X0, X)) € C2,01 < Cy = X, C Xy <= X}, C X]

This partial order is used to generate the lattice graph l&sse: there is an edgé’, Cs) if
C; < Cy and there is no other elemefit in the lattice such a€', < C5 < Cs.

Exemple 4.2.

From R = {(imgi, blackbottom),

(tmgy, yellowcentre), (imgs, blackbottom),
(1mgs, yellowcentre), (img3, redtop),
(img4, yellowcentre)}

We deriver(img,) = {blackbottom},
r(img1) = {blackbottom, yellowcentre},
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( {il,ig,g, i, 5} )

( {black botton} ) {yellow centrg )

{i1,i2} {1,314}
( {black bottom, yellow centre ( {yellow centre, red top )
{i1} {is}

%

Figure 4.3 — An example of an image lattice

( {black bottom, yellow centre, red t@p)

r(imgs) = {yellowcentre, redtop} and
r(imgy) = {yellowcentre};

and conversely’(redtop) = {imgs},
' (blackbottom) = {imgy, img,} and
' (yellowcentre) = {imgy, imgs, imgys}.

In addition, in a Galois’ lattice, all the possible interSens for which at least a descendant
node is non empty are added.

Intuitively, we are interested in the set of images thatshaactlythe same description, and
moreoverat leastthe same description.

4.2.2 Building a Galois’ lattice

Since a Galois’ lattice depends on global properties of thesiclered binary relationship,
building a Galois’ lattice is not a trivial problem. Howey#rere have been a lot of research on
this problem.

Ganter’'sNextClosurealgorithm [21] is often cited as a reference algorithm, tochhmost
authors compare their own proposal.

Later, Godin et. al. [26] proposed an incremental algoritbrbuild a Galois’ lattice, with
an empiric square time complexitg)(n?)). Recently, Levy et. al.'s [37] proposed a parallel
algorithm called ELL. This algorithm is interesting to lié very large lattice using a cluster
of machines. However, this algorithm is not incrementalsthot adapted to our case where it
should be possible to add images to an existing structure.

For this work, we chose Godin’s algorithm [26] that is:

— Incremental, thus allowing us to update the structure,
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abcd abce abde bcde
abcde

Figure 4.4 — A sample Galois’ lattice as a (hyper-)cube ofadision 5 — including its prefix-tree
(strong lines) —
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— of square complexity}(n?)), which is good regarding the difficulty of the problem and
the other proposals.

4.2.3 Using a Galois Lattice as a Navigation Structure

Our approach does not use Galois’ lattices only for indexiagalso for browsing itself,
from the user’s point of view. A set of XHTML pages is constedcfrom the Galois’ lattice,
that is stored either in central memory or in a database neamegt system (DBMS). These
pages being generated only after a new image is insertethiatstructure, the user will browse
a set of static pages; consequently, the navigation prasegstimal (O(1)) if we neglect the
time to load and display images.

For one node of the Galois lattice, corresponding tardantion (a set of descriptions)
and anextensiona set of images featuring at least these descriptions) XéflEML page is
generated.

The intention is not displayed to the user. We consider tiauser should make up his or
her choice by visualising sample images, not by abstratting@r her needs. Consequently, a
node is only represented by a set of images.

Rather than using the complete extension of a node to regritgsee use what we call the
reduced contenf this node.

Definition 10 (Reduced content)
The reduced content of a node( X, X') is defined as:

Y={ieZIlVde X' (i,d) € R)}

It means that the reduced content of a node is the set of intagefeatures all the descrip-
tions of its intention, and only these descriptions. Notg #ince the extensioN is the set of
images featuringt leastthe descriptions in the intentiak’, Y is subset ofX'. The calculation
of the reduced content has been integrated into Godin’emental lattice building algorithm
[26], and does not change its complexity.

A node is represented as follows:

— When the reduced content of a node is not the empty set, imagges are used to re-

present this node.

— When the reduced content is the empty set, the node’s epieg®on is built recursively

from the reduced content of its children nodes.

— In the top of the page, links to father nodes using thesesiodpresentations are provi-

ded.

— Similarly, in the bottom of the page, links to children nedesing these nodes’ represen-

tations are provided.

4.3 Implementation

From a performances point of view, constructing a conceptéais not an easy task. Basi-
cally, the complexity is irO(n?) wheren is the number of nodes, and theoretical improvements
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lattice «— ()

for image €7 do

- - center « center(i); top « top(i); bottom <« bottom(i); left « left(i); right «—
right (i)

- - metadata « ()

- - metadata. | nsert ( DD geq(area(image)))

- - metadata. | nsert ( DD yientation(0rientation(image)))

- - metadata. | nsert ( DD ongation(elongation(image)))

- - metadata. | nsert ("center " + DDiyiensity(Rintensity(center))))

- - metadata. | nsert ("center " + DDgupuration(Psaturation(center))))
- - metadata. | nsert ("center " + DDpye(hpye(center))))

- - metadata. | nsert ("top " + DDijntensity(Pintensity(top))))

- - metadata. | nsert ("right " + DDpye(hpue(right))))
- - lattice. | nsert (image, metadata)
end for

Figure 4.5 — Algorithm for constructing an image latticenfran image databage

on this bound do not achieve actual improvements in the imeigations [26]. Furthermore,
the number of nodes can become exponential in the numbeopégy values.

Therefore, constructing an image lattice is an operatian ¢an be done only off-line for
large sets of images. The result is stored into the datalidseertheless, we can still envisage
to use it on-line for presenting the few first results of a guer

However, there exists an incremental algorithm. It cossistadding an image, based on
its associated metadata, into an existing concept laffizs. happens to be very fast as long as
new images do not create new nodes. Empirically, the contplekadding one new node is in
O(n) wheren is the number of nodes in the original lattice, whereas timeptexity of adding
a new image into an existing node is only(xlog n).

Therefore, the outer utilised algorithm is very simple ($&gure 4.5). In point of fact, it
is exactly the translation of Function 4.13. Actually, thetadata consists of a set of strings in
order to avoid a union type.

It is linear in the number of descriptors and the sizes of hages:

O(Z |D,| + |region| x Z |D;| + Z width(i) x height(i)).

jeJ1 JEJ2 Viel

With :
— J; = {area, orientation, elongation}
— Jy = {black, white, darkgrey, lightgrey }U({saturated, desaturated} x{dark, light} x
{red, orange, yellow, green, cyan, blue, magenta})
Furthermore, as descriptors are bounded by constants atiggathe outer algorithm is
actually linear in the sizes of the images.
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Light ClickimAGE - Mozilla Firefox

File Edit View Go Bookmarks Tools Help [3Groups @ rikaija-en @ Mathworld @ Zzat coltd... ‘@ The C Book - Table ...

@- - @ O & O fewhomerewar hfimplementati by-Fla/ClickimAGE joutput/node341 htrl [=8

po—p—

IE3]

Adblock

Figure 4.6 — The XHTMLClick}% . user's interface

We applied it to a small database of 3,000 images from a pdbheain collection, described
later in section 4.4. Most of the images are located at thiboof the lattice structure, whereas
the upper nodes have no actual images, just an intension, frbe the lattice, a set of XHTML
pages have been generated.

Figure 4.6 shows a screenshot of browsing a navigationtsteiasing a web browser. Each
node is represented as a page divided into three parts tiditoy the XHTML tagdi v. Top
part contains a “tiny” representation of father nodes, i@ mpiart a “standard” representation of
current node, and bottom part a “tiny” representation oldrbn nodes. The user does not need
to describdormally hes query, he or she just has to click on images “he likes” ttobopart (if
he or she wants a more specific query) or in top part (if he omsirgs a more general query).
In this way, naive user (who are not computer scientist) eailyeget a set of images he or she
likes.

4.3.1 Indexing a Galois Lattice in a RDBMS

In our first prototype, the user navigates through a set argegteXHTML pages. However,
from these pages the structure can not be processed aggddtetthe structure and add new
images.

In order to keep this structure, we use a mapping of the stred a database management
system (DBMS). Although our implementation of the Galoitit® construction algorithm
is object-oriented, our schema being quite simple a relatiodatabase management system
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GaloisLattices

+Id: num
Attributes Primary Key
+Id: int
Primary key 1..%
+Label: String
__ Images L \\Z
+Id: int ** Intention 0.. . redecessor
Primary key . GaloisNodes — Edge
+URI: String [l X Extension 0., +IdNode: int successor
Unified Ressource Identifier Primary key P. . *

Figure 4.7 — The database schema

(RDBMS) fulfils our needs. Thus, we chose this model overahbjedel to keep more control
over the database.

4.3.2 Architecture

Figure 4.8 shows the architecture of our prototype. It cgissn three modules: (1) Galois-
Lib, a library for creating and manipulating Galois’ laggwritten in C language for perfor-
mance reasons. Lattices are constructed incrementalhg tise algorithm proposed by [26].
The other modules are written in Ruby scripting languageM@tadata calculus module, based
on the third-party library ImageMagick for image procegsamd (3) Output generation module,
that generates the XHTML pages for navigation itself.

4.4 EXxperiments

We prepared a set of about 3,000 images, extracted from temét databaselickr.com
Flickr.com is a web site where anyone can upload their phiafdts to share them with their
relatives, or anonymous visitors, and add key word anrmtafiso-calletigs such as “Tokyo”,
“wedding”, or “dog.” We randomly selected these 3,000 inggging nine tags among the most
popular ones (Flickr proposes such a list, city, flower, party, sunsetsbirthday, dog snow
andnature

By using as a source a web site where anyone can post his omimeplwotographs, we
are sure to use @al world data set. All the images are photographs that people agtiaddk,
and have been chosen because they represent a tag that iarpGpusequently, we consider
our data set as being quite representative of the photogrégatt need to be indexed by an
individual.

To select which descriptions to keep and which descriptiortiscard, we set the-cut to
0.3. For colour informations for example, that means that argn@our should cover at least
30% of one area to be kept in the metadata.
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Input Images Navigation
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Figure 4.8 — TheClick’7. ; architecture
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Figure 4.9 — Number of properties per image

4.4.1 Results

Figure 4.9 is calculated on the metadata of the collectiodependently of the Galois’
lattice. It shows how many properties an image features;amesee than using ancut of 0.3
on this collection all images are described between 2 andlddld, and most of the images have
5 labels.

That means that non-empty nodes (node having a norreddiced contentwill be in the
first 10 levels; in other words, the information will be fouimthese 10 first levels.

Figure 4.4.1 shows the number of nodes in each l&dels the total number of properties;
consequently, the superior node is in 84€" level (all properties). Similarly, the inferior node is
in the level O (no properties). The rest is strongly depehdarnhe average number of properties
by images, illustrated by the histogram of figure 4.9.

The number of nodes in central levels (level 3, 4, 5) may loek/\high compared to the
number of images indexed. However, one should note thatshaseconnected to fathers and
children; there is no connection between nodes of the samk Tehe number of connection for
each node appears to be reasonable.
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Level | Nodes || Level | Nodes
0 1 6 680
1 34 7 325
2 364 9 33
3 1041 8 113
4 1346 10 2
5 1097 34 1




CHAPTERS

ADDITIONAL CLUSTERING

While navigation structures based on Galois’ latticesraf@yeral advantages, it has a a few
disadvantages too. The most important problem is the stgtal this structure: the time com-
plexity to build a Galois’ lattice is ifD(n?) [26], wheren is the number of images. Generally
speaking, for large data sets, the actual limit is known to#e(n. logn) [71].

In this chapter, a solution to this scalability issue is msgd. We make use of a clustering
method to divide the navigation process into two levels. §baeral level will be between
homogeneous collections of images, and the specific leVebavbetween images of the same
collection. This proposal addresses the scalability grobkince the number of sub-collections
will remain limited even on a very large set of data.

In this section, we propose to improve the navigation stmecscalability by constructing
the lattice not usingmagesas the base element ltltisters of images

We propose to divide the navigation process into two levidie.general level is a navigation
betweercollections of imagesThese collections are supposed to be different from edwrst
and internally homogeneous. The specific level is insidelaged set of images that are close
to each others.

To build an appropriate set of images, we combine this firsd kif classification technique
with a clustering technique [60], the time complexity of wiiis only inO(n). The net result
is aGalois’ lattice of clustersthe advantages of which are:

1. the image database is classified orthogonally along algweaperties, i.e., a kind of mul-
tidimensional indexing is achieved;

2. the speed at which the image database can be browsed asetssob similar images
retrieved is at most logarithmic in the number of features,independendf the number
of images; and

3. the foreseen possibility to use this structure for phatsiedexing of large image data-
bases.

In addition, the introduced browsing technique being based classification tool, it has
the native property to group images into categories, i.gereeralised form of thgr oup by
clause in querying languages.

First, in the section 5.1 we will present thaISTETIQ system that is used to perform the
classification technique. Then, in the section 5.2 we withdehe hypermedia representation
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we use to present thattice of clusterdo the user and provide him (or her) an efficient user
interface.

5.1 Details on the Clustering Method

The KINTETIQ system [60] has been designed as a general database ssatmoarnpro-
cess, the summarisation of image databases as descrilbedibeine of its application. For the
summarisation task, image instances are processed aasataiocords with attributes being the
image property and attribute values being the propertyrgeecs of each instance, as defined
in section 4.1.2.

Understandability and self-descriptive representatimuomaries as well as database brow-
sing ability are expected features of any summarisationge®. Then, the symbolic/numerical
interface provided by Zadeh'’s fuzzy set theory, and more@safly linguistic variables and
fuzzy partitions, are considered as fundamental thedsatikground in most of the approaches
to linguistic summarisation. Significant works have beenalio this area, for instance by Yager
[85], Bosc et al. [6], Cubero et al. [13], Dubois and Pradd,[L&e and Kim [36]

Considering all these approaches to database summanmis&tiol T ETIQ benefits the same
robustness and intelligibility of summary descriptions,am application of fuzzy set theory.
But in contrary to the approaches based on quantified statsnf@s] and gradual rules [6,
13], SAINTETIQ does not assume there exist input and output variablesnodel is able to
provide polythetic summaries, i.e. defined over all thaelaites. Moreover, SINTETIQ builds
summaries with different granularity, rather than just sidering a rewriting process into a
predefined vocabulary as the Attribute Oriented Inducbased approach do [15]. Finally, the
construction of summaries iNASNTETIQ is driven by data, in opposite to the naive approach
with exhaustive generation of hypothetical summariesereesd in [36].

The S\INTETIQ model considers a primary relatiof &R, . .., A,,) in the relational data-
base model, and constructs a new relatio(R, . . ., A,,), in which tuples: are summaries and
attribute values are fuzzy sets on linguistic labels deswjia sub-part, (R) of R. Summaries
z are then stored as fuzzy tuples into the relation lRoreover, summaries are defined with
different granulates, and organised into a hierarchy floemhost general (the root) to the most
specific (the leaves).

For instance, the summazeyof R*, represented on Figure 5.1 is defined as:

2.CENTER = {1.0/db. orange+ 0.8/db. violet+
0.5/db. red |

2.TOP = {1.0/vd. green} ,
2.BOTTOM = {1.0/dd. violet + 0.8/dd. green+
0.5/black + 0.8/vb. yellow ,

z.LEFT = {1.0/vd. violet + 0.8/vd. red+
0.5/vd. green} ,
2RIGHT = {1.0/vd.violet+ 0.8/dd. green+

0.5/black} ,
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rIntentional description

Center : pink
Left : dark color Right : dark
Top : vivid dark green  Bottom : dark, vivid bright yellow

:ﬁ; "i

Center : db. violet Center : db. red

Left : vd. violet Right : vd. violet Left: vd. red  Right: dd. green

Top : vd. green Bottom : do. violet Top : vd. green Bottom : dd. green
2,

S
i
P~ gt
v
|

Center : db. orange Center : db. red
Left : vd. green Right : black Left: vd. green Right : dd. green
Top : vd. green Bottom : vb. yellow Top : vd. green Bottom : black

\. J

Figure 5.1 — Example of an image summary

wherevb, vd, db, dd.means respectivelivid bright, vivid dark dull bright, dull darknuances
of the colour as explained in section 4.1. Membership gradeslour features are computed
from the descriptions of the collection of imagesif{R) as stated in [63].

5.1.1 Learning summaries from data

The SAINTETIQ system performs the database summarisation process lwathef a
concept formation algorithm [17]. The process integrag@sriing and classification tasks, sor-
ting each tuple through a summary hierarchy, and at the sameeupdating summary descrip-
tions and related measures.

Most of human learning can be regarded as a gradual procesmoépt formation : ob-
servation of a succession of objects allows to induce a gnathierarchy that summarises
and organises human experience. In other words, concepatmn is the fundamental activity
which structures objects into a concise form of knowledge tan be efficiently used in the
future. Itincludes the classification of new objects based subset of their propertiethé pre-
diction ability), as well as the qualitative understanding of those objemsed on the generated
knowledge (he observation ability

The concept formation task is very similar to ttenceptual clusteringssue as defined by
Michalski and Stepp [46], with the added constraint thatre®y is incremental.

More formally, given a sequential presentation of tupled greir associated descriptions,
the main goals of concept formation are:

1. identifying clusters that group the tuples into categgyri
2. defining an intentional description (i.e., a summaryj tdoaresponds to each category;
3. organising these summaries into a hierarchy.
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Incremental learning methods are basically dynamic: i@t is a stream of objects that
are assimilated one at a time. Thus, incremental procesddsabany time an estimated know-
ledge structure of an unknown real one. Therefore, a primarivation for using incremental
systems is that knowledge may be rapidly updated with eashotgect. Indeed, incremental
learners are driven by new objects, such that each stepghithe hypothesis space occurs in
response to some new experience.

The fuzzy summary formation task is performed as a seardugfr a space of summary
hierarchies, and hill-climbing is a basic Artificial Intgiénce search method providing a pos-
sible way of controlling that search. Indeed, the systenptimtop-down classification process,
incorporating a new tupléeinto the root of the hierarchy and descending the tree acuptd
the hill-climbing search.

At a nodez, the algorithm considerisicorporatingthe current tuple into each child node
of 2z as well ascreatinga new child node accommodatingFurthermore, the system evaluates
the preference omergingthe two best children nodes efandsplitting the best child node.
Then SAINTETIQ uses a heuristic objective function [59] based on conaadttypicality of
summary descriptions to determine the best operator ty &@p@ach level of the hierarchy.

Furthermore, bidirectional operators, such as splitting merging, make local modifica-
tions to the summary hierarchy. They are used to weakentsétysof the object ordering,
simulating the effect of backtracking in the space of sunynhégrarchies, without storing pre-
vious hypotheses on the resulting structure. Thus, thesysibes not adopt a purely agglo-
merative or divisive approach, but rather uses both kindoefators for the construction of the
tree.

To reduce effects of this well-known drawback of concepthfation algorithms, one can
consider an optimisation and simplification step, for insgwith an iterative hierarchical re-
distribution [18] which considers the movement of a set oesbations, represented by an
existing cluster (summary), through the overall summaeydrchy, either by applying an addi-
tional iterative optimisation step [18], or by considersmne extended bidirectional operators,
as well as defining a new learning strategy [61]. The mostasteng optimisation and sim-
plification of hierarchical clustering seems to be the tigeahierarchical redistribution which
considers the movement of a set of observations, represbytan existing cluster (summary),
overall the summary hierarchy.

Finally, the main advantage of hill-climbing search is wgvImemory requirement, since
there are never more than a few states in memory, by contragtarch-intensive methods as
depth-first or breadth-first ones.

5.1.2 Selecting summaries for lattice generation

Building the lattice is a complex task and the number of n@@ssibly incorporated within a
reasonable amount of time is bound to a rather small valyssraéng on the computer memory
and performance. For this reason, we will need to select aeschoumber. of summaries for
incorporation.

The extensive content of any of the hierarchy node is defisati@union of the extensive
content of it’s children nodes. Therefore, in order to av@dundancy, only leaf nodes will be
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incorporated in the lattice. Hence, selecting an uppel levde means to discard all its lower
level children.

The list of the leaf nodes is first build. The number of initedves is likely to be high as
it reflects the number of description modalities found inithage database. The list is sorted
according to the parent measures :

— Extensive content cardinalityhe size of the effective content of the summary.

— Similarity: the extensive content homogeneity, whereeans that all the summary content

shares the same set of descriptors.
Those measures are defined in theN8 ET1Q process and updated during the summarisation
task. From them, a comparison function is build which firstess summaries by decreasing
cardinality and then, those with the same cardinality adex@d by increasing similarity.

While the number of remaining leaves is greater than theiredunumbem, leaves with
the lowest parent score are cut and all sibling nodes arageglby their parent. Of course, this
parent node is inserted in the ordered list according tontsarent ranking. As all the non-leaf
nodes have at least two child nodes, this operation redheeckst at each step. At the end of
this process, the list preseni®r less summaries, ready to be incorporated into the lattice

5.1.3 Building Galois’ lattice of summaries

Each of the selected summaries has an intensional desariptiere each attributes is as-
sociated with a fuzzy set of descriptors. As discussed iticged.1.2, a Galois’ lattice needs
a crisp set of descriptors to be built. A threshold methed-(cut) is used to select summary
descriptors relevant enough to be used for the lattice géper It is to be noted that a sum-
mary can possibly provide many descriptors for each atgifimage region), which is perfectly
handled byClick[%, ..

5.2 Hypermedia representation

5.2.1 Inter-clusters navigation

Representation of a Galois’ lattice navigation structara hypermedia way depends on the
documentype. Representing an image is obvious since HTML propdsssty tag, but others
documents may need investigation. To use Galois’ latticefgiven document type, we have
to be able to represent a document in two ways [40]:

— a small-sized displayable representation, used for thigai@on task and

— a complete representation for investigation once theggijate document is found.

The user interface displays, for any given position on théiGalattice, all the possible
navigation directions as hyperlinks thanks to the firstespntation. Superior nodes (as defined
in section 4.2) are displayed at the top of the screen andrloages at the bottom of it. The
middle of the screen is used to display the actual conteriteoturrent node using the second
representation.
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In this application, documents are image summaries. Theramnrepresentation (feature
descriptors) is used during the search process and the etemppresentation when the relevant
document is found or in order to display the current nodeeamnt

5.2.2 Intra-clusters navigation

Each summary contains a subset of the images of the origimede database. The limi-
ted size of the screen and the chosen thumbnail image seetlgidetermines the maximum
number of imagesV which will be displayed at the same time. In section 1.2, ve¢est that
considering d0° images database, each summary will contain an avera@f# dfnages about
a quarter of which will be displayable at the same time if wanimMa keep a reasonable size
for the thumbnail images. Therefore, it is somehow intémgsio provide users with the most
relevant subset of images stored in a summary. This furalitgrprovides the user with an
overview of the summary content as accurate as possible dirshglimpse. The following of
this section briefly describes how we take advantage of tiietberarchy structure to choose
those samples [63]:

Choose(n integer, z summary) returns a set of inages
if (z content <= n)
then return all z content
else if (z is a leaf)
then return n random sanpl es
el se return for (each z_child) do
Choose((n / nunber_of _children(z)), z child)
end of Choose;

In this function, parameter refers to the number of images which are needed for immediate
display.If the summary is a leaf, it reflects that images a®g/ \nomogeneous according to
the set of feature we used and that a random selection of thémpravide a good idea of
the summary content [74]. On the other hand, the childrestence denotes that during the
summary process, two different categories of images waleschsufficiently different to justify
this subdivision. Therefore, representative images ofransary should primarily be taken in
each of its children to provide a representative sampleetthmmary content. Of course, the
last part of this pseudo-algorithm is very simplified as mécessary to deal with the different
situations where the number of childrenzois greater, lower or is not an integer divisorof

It is somehow interesting to provide users with a relevabhsstiof images stored in a sum-
mary. This functionality provides the user with an overvigithe summary content as accurate
as possible. If we want to avoid scroll bars, the limited eorgize and the chosen size for thumb-
nail images directly determines the Maximum Number of Exe@®MNE) that the program
can display.

prototype images for summaries with child nodes

The children existence denotes that during the summarnepsotwo different categories of
images were ranked sufficiently different to justify thiddivision. Therefore, representative



CHAPTER 5 — Additional Clustering 73

images for a concept should primarily be taken in each ofliildi@n to provide a representative
sample of the summary content. Child nodes are ordereddiogdo their satisfaction degrees
to the parent summary. Examples are taken one at a timesiaoriher, from each child summary
until the MNE count is reached. If there are less child nodas MNE, a second example could
be taken from each child summary and this operation coul@épeated until the MNE count is
reached, or there is no more image. The way images are chasieie child summaries is the
same than the one used to choose images inside leaves asdrikee in the following.

prototype images for children or leaves

Images inside a leaf or inside child summaries are closegmtw each other in regard
of the current specialisation level. At that level, they aggd to be homogeneous. Choosing
representative images inside an homogeneous set has nosense and thatis why we propose
three different ways to achieve the selection:

— First, images are ordered according to their satisfactegrees with the summary des-
cription. This order provides a way to choose represemainages. As shown eatrlier,
this rank is based on the computed distance between lingdescription of images and
summary intentions. If only one sample image is requireel) the first of this list should
be chosen. But, if more than one image is needed, we have tselsnbsequent images
in a way to maximise the between-image distance. Obvioaklypsing images in their
satisfaction order would exhibit very similar images, nring the information carried by
each sample.

— Secondly, the summary process restricts the featuresaisestriminate images to those
with a referring vocabulary. In order to choose represematmages of a summary in a
leaf, other features or similarity measures may be usedstithinate images. In a leaf,
the number of images is supposed to be a reasonably smaétsofbthe all database
content (since chosen features have to be relevant to miseie images). Centroid me-
thods may therefore be applied and more time consuming ctatigu of image distances
may be used to choose image samples.

— However, a random choice of the samples in the summarycoceld be as accurate as
the above methods. According to Squire and Pun [74], randamitipn homogeneity is
only 30% lower than human partition one. Thus, the more hanegus is the summary,
the more a random choice will be similar to more sophistitatethods.






CHAPTER 6

USER PERSONALISATION AND
SUB-L ATTICES

Content information is usually not enough to represent esas seen by a human observer.
For example, one may see an image representing the EiffedfTasvsimilar to an image repre-
senting the Arc de Triomphe (two monuments of Paris) whilgsiesn based only on content
would rather see the Eiffel Tower image close to an image &yddower (same shape).

However, rely on human annotation leads to several problaotonly manual annotation
is very costly, but it remains a subjective annotation. Twaaators will produce a different
annotation on the same image, even the same annotator waddqge different annotations if
he or she is asked to annotate the same image at differers.time

Thus, we propose to offer user the possibility to define hifrmgbjective annotations by
applying masks on navigation structures. That means hids pathe graphs or connections
to display a subgraph closer to user’'s expectation, taksey'si needs and specificities into
account. This is done by keeping an underlying common stradb all users and all retrieval
processes, consequently keeping the advantages of a{@fiodecalculated structure: the most
costly processes are done before-hand, and retrievdliggakt and reactive.

The problem of subjectivity becomes pointless since ugabésh the annotation for him-
self; there can be no distortion between the annotator andgér. Moreover, the cost of anno-
tation is painless because it is integrated into the redligrocess.

6.1 Masking lattices

The time complexity of the Galois’ lattice construction @lighm being experimentally
o(n?) [26], it allows to reach a size of 10,000 instances [40]. lis tase, a node explosion
can happen and the path to the wanted image may be long. Morebgescriptions are ran-
domly distributed on the image set, the number of edges carelyeimportant and lead to
confusion when user is to choose between too many childréeso

In order to reduce the number of node by hiding only non-@tewne, and by limiting
processing time, we propose to take the original Galoiickaas a base to apply a mask.
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A mask is a filter applied to a given Galois’ lattice to hidereénts, that can be nodes or
links. It should be noted that while the resulting graph mai/lbre a Galois’ lattice since it will
not represent a binary relation between two sets, it has @ lagtice (the axioms defining a
lattice are presented in the section 4.2). Since the usébvawse a direct representation of
the resulting graph, every lattice axiom is mandatory taenghat this browsing will allow the
user to reach every non-masked image in a natural navigpdtim

6.1.1 Formalisation

Different kinds of masking serve different goals. For exéanpne may want to reduce the
cardinal of the images set or the cardinal of the descrigginHowever, any kind of masking
is represented in the same way.

Definition 11. Given a lattice V', £), alattice mask\/ is defined as/ = (N, Enr, Ea, Nage)
whereN,; ¢ N, Ey C €, E4 € N? and Ny C N2 Also, Ny is such asv(Ny, N,) €
Ny, Ny is a father node ofV,.

N, represents the set of nodes to be maskagdthe set of edges to be maskéd, the set
of edges to be added and,,. the set of pair of nodes to be merged.

6.2 Masking techniques

In this section, we present one kind of filterimgpde maskinglt consists in masking some
sets of images if the system already have informations albat kind of images are relevant
to current retrieval and which images are not. Applying sadiitering will result in hiding
complete nodes to user if most of its members are irrelewacuitrent search.

6.2.1 Node masking

The system operatesn@de maskingvhen it has gathered informations about what kind of
images user is looking for, enough to reduce the number ofj@s#o propose but not enough
to give user a final result. Node identified as irrelevant twent retrieval should be masked.

A node masking operation is defined by a node filtering fumcti@n nodes:
[N —{0,1}

The selection of nodes to mask is done by asking the user &npbes of images to be masked,
and inferring an approaching query. To ensure good perfoces a low-complexity algorithm
is chosen over better but high-complexity algorithms usesystems mainly based on relevance
feedback.
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Algorithm

Considering a node filtering functiof and a Galois latticé&’ = (N, €), we noteNp =
N € N|f(N) = 0 the set of nodes to mask. The following gives a algorithm temeine a
maskM = (Ny, Fyr, Fiy) that applied ta will result in a lattice according to section 4.2.1.

Nm<- Nf \ {mn(Q, mx(Q};
FORALL n in Nm
FORALL e connecting n:
add e to Em
FORALL p, parent node of Nf
CASE car di nal (non_masked_chil dren(p)):
0: FORALL c, child of Nf
add (p, c) to Ea;
1: IF c, unique children of p
has no ot her parent:
add (p, ¢) to Fm add (p, c) to Em
el se: not hing
FORALL c, children node of Nf
CASE car di nal (non_nmasked_parent(c)):
0: FORALL p, parent of Nf
add (p, c) to Ea;
1: IF p, unique parent of c
has no other child:
add (p, ¢) to Fm add (p, c)to Em
el se: not hing

Actually, this algorithm performs the following operatsn

— The set of nodes to mask will be equal to the set of nodes ddfinthe filtering function,

except that the minimum and maximum nodes cannot be masked,

— any edge connected to a masked node will be masked

— if a node other thamin(G) ends with no parent, it should be connected to all parent of

its last former parent

— if a node other thamaz(G) ends with no child, it should be connected to all child of its

last former child

— if a node ends with a unique child and this child has a unicguerd, these nodes should

be merged,

— ifa node ends with a unique parent and this parent has aeiohjld, these nodes should

be merged.

The complexity of this algorithm depends on the number ofesdd mask, and the average
number of parents and children a node can have. Experinhent@&l noticed that this number
does not exceed a certain maximum. Indeed, since the |losVjpewperties are correlated regar-
ding their semantic meaning, we noticed that the number itdreim for a given node doesn't
reach the number of properties but is at worst 25% it.
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Thus, we conclude that this algorithm has an empiric lineangexity according the num-
ber of nodes to mask, i.e., M(n). This complexity is acceptable regarding the number of sode
to consider.

If a node had more than one parent, and all of them are mask#u iprocess, then the
result will depend on the last node masked by the algorithnte2he order to process nodes is
arbitrary chosen, this algorithm is not deterministic. Hoer, parent nodes sharing all the same
role, we do not see that point as a issue. There is a symmedidgon when masking children.

6.3 Conclusions

This masking technique provide a simple user-personadisadllowing power-users to go
further a simple browsing of the image collection.

It results in improving our previous proposal by adding usestomisation without denying
the performances advantages. It is consequently moreegifitian a system based on feed-back
guerying or similarity search, and more relevant than aesysiased solely on a pre-calculated
structure.



CHAPTER 7

FROM A Fuzzy MODEL TO CRISP
DESCRIPTIONS

We have seen in section 4.1 that a fuzzy model is adapted twidesmages (based itself
on numerical features), but to build a Galois’ lattice wedaebinary relationship: in a given
image, a given property is either present or not. This is foeonly for a Galois’ lattice but
also for any navigation structure that does not weight linédsveen (groups of) images. Should
the links be weighted, one should set a threshold to decidthgha neighbour should appear.

The most trivial answer, the one used in the original proljmssented in the chapter 4, isto
rely on a constant threshold, determined empirically. Hewedoing so leads to the construc-
tion of sparse areas in the structure. In this chapter, wpgs® to limit the empiric space
complexity by limiting these sparse areas as well as istlatements.

Static or dynamic, the threshold has to be chosen in ordeatishs two conditions:

— adequacy to human perception: a human observer shouldfitbsttime agree with the
system to see a property as “present” or not. This can berwatdoy a form of training
or just statistical analysis.

— building an efficient structure: the threshold should pi@la number of properties per
instance that is neither too small (it would lack precisjargr too big (this would hurt
performances as well as avoid the system to discover sitreéasince each image would
be too specific). Objective criteria exist, particularlg therformance measure; however,
subjective criteria such as the satisfaction of the uséneease of browsing are important
but require exhaustive and costly experiments.

To achieve this goal, we present two techniqwesiable thresholdandkey matching inser-

tion.

Variable threshold takes into account global propertidésreeapplying a different threshold
to each property. By doing so we wanted to increase the digtative power of each property,
however as detailed in the conclusion the results were tisf@ag.

Key matching insertion is a different approach, that kedysihcremental nature of the
construction algorithm. During the lattice constructithre algorithm is such as new images will
be inserted in existing nodes when possible rather tharemtemew nodes. Note that when a
new node is created for a new image, several nodes are gatresdked to ensure that the axioms
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of Galois’ lattices are respected; thus, nodes reduceditayiesmages have a great impact on
the lattice size. The benefit of limiting the structure sg@&ot only to save memory and disk,
but also to provide a better navigation structure to the.usdeed, a subgraph containing a
great number of nodes for a small number of images would midiging for the user.

7.0.1 Variable Threshold

A key problem when trying to reduce noise (i.e., eliminatmgdes that contain too few
images with too few differences with respect to neighbayinodes) while producing binary
descriptors from fuzzy ones is that building a Galois’ ttis costly. Consequently, iterating the
construction of successive Galois’ lattices, even just gwnerations, each generation helping
to remove noise for the next lattice is not a reasonable opiiberefore, for a given property,
we search for a way to prevent it to form small nodes.

This process is based on two functions:

— A presencdunction: for a given property, it represents the preserfahis property in

the data set;

— A mappingfunction from the presence function to a threshold, to deiee which thre-

shold should be used for a given (image, property) couplardegg its isolation degree.

7.0.1.1 Introducing a presence function

We declare a presence function as follows:

f:D—[1,00) (7.1)

for a given Galois’ latticeR = 7 x D.
As a first approximation, we propose the following isolattegree computatiofi, named
simple presencepplied to latticer:

D — [0,00)
fi: g 2 pald) (7.2)
|Z]

wherep, : Z — [0, 1] represents the membership degree of a given image in thg futwset
associated to descriptieh

For a given property, this function computes the sum of thenbegship degrees for all the
images; thus it represents the importance of this propertlye set.

With adequate data structures, the cost of this pre-progessep is only inO(|R|), i.e.,
optimal.

7.0.1.2 Finding an appropriate mapping function

Next, the mapping function should provide a threshold fonemisolation degree. Basi-
cally, the more the element is isolated, the more it is likelype noise and a severe threshold
should be applied. We expect the mapping funciido have the following properties:



CHAPTER 7 — From a Fuzzy Model to Crisp descriptions 81

1. g(0) = Thax WhereT ., is a constant experimentally fixed.
2. lim f = T,;, whereT,,;, is a constant experimentally fixed.

3. ¢'(x) < 0: the function should obviously be decreasing to have isdl@ements to be
filtered by a greater threshold.

4. ¢"(z) > 0:in order to be perceptually linear, the threshold shouldd@easing faster for
small values ofc (humber of neighbours). Thus the second derivative shoaifgdsitive.

A logarithmic function is commonly used to translate humarcpption, but (1) it does not
have anY = constant line as an asymptote, and (2) it is decreasing too fast fomeeds:
to keep the function in &, Timax), We must apply a very factor so strong that it makes the
curve look like the one of a linear growth function. Thus, aease to base our proposal on the
inverse function.

The simplest function that fits our needs is the following

R—R

g: 1
I'—)Am—i-B—i_C

(7.3)

where A, B andC are positive constants. Applying the conditioh®) = Ti..x and lim f =

Trin, We Obtain:
R—R
g: T = Tmin + %1

Ar+
+ Tmax —Tinin

It comes that the derivative functigi(z) is:
—A
2
(Az + ——)

Tmax— min

g'(x) =

which is actually negative for all positive values:afso f is a decreasing function. Then, the
second derivative is:
2A2

(Az + 7t

Tmax_Tmin

g"(x) =

which is actually positive, ensuring that the derivativadtion is increasing, thus the absolute
value of the derivative function is decreasing.

7.0.2 Key Matching Fuzzy Insertion

The alternative described above is rather complex sinceadedfind adequate functions.
In this section, we propose another technique to build ai&addtice from a fuzzy relationship.
Here, we shall not convert the fuzzy descriptors into crigpsobut rather build incrementally
the lattice and select which descriptions to aseording to the existing latticelThe goal of
this procedure is still to avoid noise and build a latticehmgbmpact nodes in order to get an

'For the domain set i8l, we should define our mapping function fradéh— R. However, in order to define
properties on the derivative and the second derivativetioms we work directly olR — R.
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Figure 7.1 — Key Matching

efficient navigation structure. The difference with theyiweas approach is that, at each step, the
actual structure and the content of the lattice help in degithe way to manage the next image

insertion. Therefore, the variable threshold is deterchishgnamically for each image and each

descriptor.

Using a simple threshold technique, we noticed that somes dirthe lattice were very
sparse. When images only share a few properties, the resulbe at worse an exponential
explosion of the number of nodess. each descriptions combination results in the creation of
a new node. The resulting structure is obviously bad forgetion, since (1) the user will have
to specify (implicitly) each description to enter and (2¢ thumber of children of a given node
will be very big, thus the user’s choice will become harder.

Using this technique, we intend to force the creation of raketscriptions (a set of descrip-
tion appearing together in a lot of nodes) and thus creatétertupiality structure.

Hereafter, we call “key” the set of descriptions associatea given image. The following
algorithm is used in order to determine which descriptiamsuéd be used when inserting a
given image into an existing lattice:

— Descriptions are ordered from the description having tgbadst membership degree to
the description having the lowest membership degree (sped-v.1);

— Descriptions under &,,;,, threshold are discarded and descriptions oVErf,.a threshold
are kept;

— Starting from the set of descriptions ovEy.., we add successively the descriptions in
the interval[T,..x, Twin) @nd try to match the longest resulting key with existing kieys
the lattice;

— When a matching key is found, this key is used to insert tregam

— If no matching key are found, the image is inserted with #teo$ descriptions over the
thresholgfmintTmax

Since the number of properties for a given image is barelsteon, this algorithms has a
linear complexityO(n), wheren is the number of nodes of the existing lattice.

The benefit of this algorithm is as follows: the goal beingaduce the number of nodes for
better retrieval, this algorithm ensures that a given imageserted, whenever possible, into an
existing node. In fact, the standard lattice constructigor@thm appears to be very efficient,
i.e., logarithmic when inserting an element, the key of whatready exists. Therefore, this
modified insertion method promises to be more efficient.
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7.1 Evaluation and Experiments

In order to determine which of is these two empirical apphescis actually interesting,
we have to conduct some experiments and compare them, Urntatve constant threshold
approach as the baseline. On the basis of the code that wiésnia test Galois’ lattice-based
navigation, we conducted such experiments (1) to deteriitne proposed approaches give
results interesting enough from the computational costtpdiview and (2) to determine which
parameters give the best results from the noise reductiion poview.

Based on the same code that was written to test Galois’ dattior the basic navigation
process, we conducted experiments:

1. to determine if our extension actually gives the expentsdlts, and

2. to ensure that there is no increase of the time complakigyused the image collection
detailed in section 4.4.

On this set, as well as on subsets, a Galois’ lattice is coctst for different values of the
parameters. Several metrics are calculated on theseeliticorder to evaluate the quality of
the lattice in term of usability. Results of thariable thresholdechnique are based on previous
experiments performed on a base of 1,700 images.

7.1.0.1 Metrics

We define the following metrics on a lattice:

— Cardinal: the number of nodes of the lattice; since infdromais hard to find in a too
large structure, we prefer a lattice with a limited numbenodes.

— Average size of nodes: the size of a node is defined as thearwhimages in itseduced
content The reduced content of a node is defined in section 4.2.3;s@etuwather than
extension in order to match the representation of the nades the user’s point of view,
also described in the same section.

— Ratio ofreal nodes: we calvirtual nodea node, theeduced contendf which is reduced
to the empty set. Non-virtual nodes are called real nodeis. ffiktric shows the propor-
tions of nodes actually containing data in the lattice, tineual nodes being only useful
for navigating.

We made measures on the variable threshold as well as on kehinmfuzzy insertion.
We then compared them to the trivial technique, based on staonthreshold. For constant
insertion, we chose a thresholdBf= 0.3. For key matching insertion, we cho%g;, = 0.2
andT,,., = 0.4. These values were determined empirically, trying to mataman perception,
and we chose on purpose the threshold of constant insegitmeaaverage df,,,;, and7},.y.
In this way, we ensure than the difference observed is nota@aedifference in the threshold
choice.

7.1.1 Results

Figure 7.2 and 7.3 show respectively the average node sistandard deviation on the
node size for different values of the factdras well as the curve for a constant threshold. These
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Figure 7.2 — Average node size, for different valuesidbr variable thresholding

curves are fofl,;, = 0.2, T,,.x = 0.4, and the isolation function used is the simple isolation
function f;.

On these curves, we cannot see a clear advantage in favce ghtiable threshold-based
technique using theimple isolatiorfunction. The curves are very close to what we observed
on curves of constant threshold for different value of thresholdT".

We analyse these poor results as being a side-effect thatvmetexpect beforehand: most
images featured a similar number of properties, and corsgtyuthe relevant subpart of the
lattice is even more reduced.

However, key matching fuzzy insertion demonstrates a aliderence with respect to
constant threshold. Figure 7.4 shows the percentage ofnagids, i.e., nodes that actually
contain information, while other nodes are only presenefoavigational purpose. Of course,
with only one image, the lattice is reduced to a unique nodedbntains this image and thus is
not virtual. Consequently, when the number of imagess tbe ratio isl; however, in order to
have a better representation of other parts of the graphhaseca scale that stopsiat 0.5.

Figures 7.5 and 7.6 respectively show the total number oés@ihd the average size of a
node. The total number of nodes is clearly lower for key matginsertion; in this sense the
structure will be easier to browse than the big structuré byithe trivial algorithm. Having
less nodes, the lattice built by key matching obviously higgdr nodes. However, the size of
each node is still small enough for a comfortable browsing.

When looking at figure 7.6, we notice that there are sevecall lextrema on both curves.
Moreover, local extrema on the lower curve, representigctimstant threshold approach, do
not correspond to local extrema for the key matching upperecu=or example, around 700,
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there is a local maximum for the key matching approach whiedurve for constant threshold
is still decreasing. In fact, after the 693rd image, theritise of a new category starts: images
tagged withflower (after art and city). Photographs related titower are very specific: the
border is green representing leaves or grass, and the ceot®urful representing the flower
itself. Consequently, new descriptions and new combinatappear, forcing the key matching
algorithm to create new nodes reduced to one element: thage/size of a node decreases.
Shortly after, when enough nodes have been created, thegevsize of a node increases again.
Before the 693rd image, when images where quite similasitesof each node was increasing
for the key matching algorithm whilst the constant thredragorithm failed to see similarities
in the descriptions.

Unfortunately, user’s experience is not as easily quabtdiaCurrently, our personal expe-
rience as well as the comments of a few volunteers confirm tiitestical results: retrieving
images from a lattice built with key matching is easier thainwonstant threshold. The reason
is mainly that the number of nodes has been reduced, in pkmtithere are fewer virtual nodes.
Thus, browsing from one part of the lattice to another is lbasher and more informative.

7.2 Conclusions

In this section, we presented two techniques to build a Gdktice from a fuzzy relation-
ship. The second method we presented improved the resattingfure quality compared to the
trivial method (applying a constant threshold to each dpson in each image).

By improving qualitywe mean that the number of small nodes have been reduced; such
nodes create zones that require a lot of user interactioma femall amount of information.
Moreover, this improvement is done without impacting thgoathmic complexity of the lattice
construction algorithm.

While it has been tested on an image lattice, it is importamtdte that this technique can
be used to build a Galois lattice from any fuzzy relationshpparticular, since the clustering
technique presented in the chapter 5 produces fuzzy deswipf each cluster, kttice of
clusterscan be build using the proposal presented in this chapter.






CHAPTER 8

CONCLUSIONS

In this study, we looked for a way to replace query by nava@ato search for images in
an image collection or a database. Our work resulted in antqak based on Galois’ lattices,
a graph structure that shown to be useful for both indexirdyratrieval by grouping images
sharing common properties.

While lacking precision for users who need detailed queltésan easy-to-use yet powerful
search for users who prefer to browse fastly an importanbfstages. This Galois’ lattices-
based technique could be applied to other media type, bsifpiaiticularly adapted to images
since it is a still media that can be visualised quickly evea reduced format.

On the one hand an image search based on navigation throdgis'Gattice had several
advantages:

— Navigation is very fast,

— a Galois’ lattice is intrinsically a multi-dimensionabsisification technique,
the tool is insensitive to correlations,

it helps to correct users’ mistakes very easily,

the Galois’ lattice structure easily hides unwanted fiesstu

But there were also notable drawbacks, the biggest probknghhe lack of scalability.
We addressed the scalability problem by combining the Galattice to a clustering tech-
nique; then we improved the structure quality by taking glgiroperties into account, without
increasing the algorithmic complexity of the lattice constion. Finally, we introduced a user
personalisation process to take into account the differeatls of users.

Compared to other techniques based on navigation, thefigtgcdf our approach is to
be solely based on a before-hand calculated structuregh@mno query. Consequently, it is
extremely fast and responsive, allowing user to go and baokigh the structure without having
to wait for a query result processing.

The main application we thought for our proposal is a stmgcta build a static collection,
for example the catalogue of an image provider. Howeverctivestruction algorithm being
incremental it can be used for a dynamic collection, sineedbllection does not exceed a
certain size (a few thousands of images using the basic pabpo
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8.1 Benefits and Limits to Our Proposal

Since most content-based image retrieval systems (CBH)a@sed on separate models for
the indexing and retrieval processes, they cannot be easiypared to our proposal based on a
single graph structure both for indexing and retrieving.

From a user point of view, our approach has the following athges:

— First of all, we benefit of advantages specific to Galoisidas, detailed in the section 1.2.

Its main advantages are that navigation is very fast, eamywhen the user is not able to
describe his needs and is insensitive to correlations. iBe$@ese advantages, the current
proposal is the first to make use of Galois’ lattice direcHyaanavigation structure.

— Since the main problem of Galois’ lattices;alability, has been addressed by using a

complementary clustering technique, our proposal carye&sich one million images.

However, its major weak points is that the scalability pesblhas been solved by adding a
new navigation level, in order to build the lattice on a seaiiumber of elements. The com-
plexity still remains the same. While building a navigatgiructure over a very large collection
(one million images) is now possible, this does not meanttieasystem is actually scalable, i.e.
of linear complexity. A linear augmentation of resourcesinet permit a linear augmentation
of the number of images.

That means that our system is not adapted to open collediaisas the world wide web.
We don’t think that any system based on Galois’ lattices aandeful for such application; it
should be applied on quite stable collections such as sioiesl images providers catalogues,
or individuals’ photograph collections.

8.2 Further Work

While we explored deeply the use of Galois’ lattices for gation through image collec-
tions, there are still work directions to be explored.

8.2.1 Applications to Other Media Type

In this study, we focused oimages However, we think that Galois’ lattices may also be
interesting for other kind of visual media, such as videos.

One member of the Nantes’ University BADRI research teamafr@sdy started to apply
this work to video. As well as any other kind of media, two tgnare required to build a
navigation structure based on Galois’ lattices.

— A suitable metamodel,e. a set of descriptions that can be associated to any element

along with a membership degree (a real number of the intéval.)

— A compact way to represent it, in order to show to user theéstdof a node. It should be

possible to display between 10 and 20 elements on the sasenscr

Additionally, if the Galois’ lattice is combined with a cligsing process as described in
the chapter 5, define an adapted way to navigate inside a nedegvigate through a small
collection of elements - between 10 and 100 - independehtlyedattice) can be necessary.
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Applying the current proposal to media type such as audai,dre not visual, would raise
more problems. Unless the audio extract is mainly speecltéimebe converted to text, the user
needs tdistento the extract in order to decide whether it is relevant orfaphis or her needs.
Obviously, the user can only listen to one extract at timeatThhakes a big different with image
retrieval, where the user can see from 10 to 20 images at agylan

8.2.2 Mobile Computing

In this scope, an interesting applicatiomisbile computingindeed, recent mobiles phones
are equipped with a digital camera. In some country like dagigital camera for mobile phone
became a common accessory, and recently even cheapestawcequipped with a high-
resolution camera.

Using these devices, users quickly take a lot of photogrémdisare stored on the device
itself or a memory card. Due to the limitation of input dewa mobile phones, adding key-
words and organising images is a hard task; on such devioeay@matic organisation of
images would be an advanced in the possibility of user tosscttehis own data.

We believe that Galois’ lattices could be a good way to orgmaiuser’s images on his mo-
bile phone equipped with a digital camera. For this appbeatour proposal has the following
advantages:

— Since our approach is based solely on content informatiearting a new image requires
no user interaction. This is precious since typing on a Skagbile phone’s keyboard is
quite painful.

— A mobile phone can provide additional information, maildgalisation and date. Since
Galois’ lattices is insensible to correlation, we can jusd dhese information as new
metadata to take part of them.

— The user interaction of our system is already very simge:user navigates only by
clicks. This is much easier to adapt to a mobile phone keybtwn an interface that
would be based on queries, or even feedback querying.

The main issue to be solved is the small screen of these detgen with screen resolution
increasing (recent models have2&) x 320 pixels resolution, and this number is likely to
increase), the useful size of the screen will still be limitey the size of the device itself;
the device have to fit in the hand of users. Consequently, acgdpto a desktop computer far
less images can be displayed simultaneously on the screen.
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