Classification-Based Browsing for Image Databases

Erwan Loisant erwan@loisant.org

Tokyo Metropolitan University, Graduate School of Engineering

向下 イヨト イヨト

Image Search

The number of digital images is quickly increasing:

- World Wide Web
- Digital camera
- Mobile phones

(人間) システン イラン

Image Search

The number of digital images is quickly increasing:

- World Wide Web
- Digital camera
- Mobile phones

Such image collections need to be **organised** in order to be **retrieved** efficiently

Applications

- Private photograph collections (on a regular computer or a mobile device)
- Image providers catalogues
- Specialised image banks (astronomy...)

PHOTOGRAPH

ECOGRAPHY (MEDICAL IMAGE)

SPACE PHOTOGRAPH

SATELLITE IMAGE

3

イロト イポト イヨト イヨト

Image Specificities

- *Multimedia* suggests the use of different kinds of data together...
- ... However we use it for non-classical data

・回 ・ ・ ヨ ・ ・ ヨ ・

Image Specificities

- *Multimedia* suggests the use of different kinds of data together...
- ... However we use it for non-classical data

Multimedia Data

- Can not be normalised
- Variable information density
- Information depends on the observer

・ 回 ト ・ ヨ ト ・ ヨ ト

Problem & Goal

Problem:

- Images are difficult to describe.
- Most people do not want to take the time to annotate their images.
- Proposals based on retrieval are difficult for users.

□→ ▲ 三→ ▲ 三→

э

Problem & Goal

Problem:

- Images are difficult to describe.
- Most people do not want to take the time to annotate their images.
- Proposals based on retrieval are difficult for users.

Goal

Build a proposal of **image search by navigation** to complement image retrieval. It should be:

- Easy to use: the user interaction should be mainly mouse clicks.
- Fast and responsive: the user should not have to wait for the results.
- Scalable: it should be applicable to large collections.

Part I

State of The Art

Erwan Loisant Classification-Based Browsing for Image Databases

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

• Content Information vs. Annotations

- Retrieval
- Navigation

- * 母 * * き * * き *

Content Information vs. Annotations

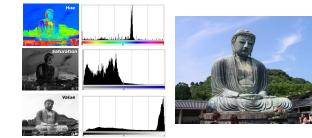
Outline

- Content Information vs. Annotations
- 3 Problem Definition: Search
 - Retrieval
 - Navigation

・ロト ・回ト ・ヨト ・ヨト

Content Information vs. Annotations

Content Information vs. Annotations

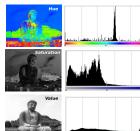


Erwan Loisant Classification-Based Browsing for Image Databases

イロン イロン イヨン イヨン 三星

Content Information vs. Annotations

Content Information



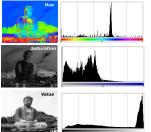
イロン イロン イヨン イヨン 三星

Content Information vs. Annotations

Content Information

Annotations

- Buddha
- Kamakura
- Japan


・ロト ・回ト ・ヨト ・ヨト

Monument

Content Information vs. Annotations

Content Information

Annotations

- Buddha
- Kamakura
- Japan

・ロン ・回 と ・ ヨ と ・ ヨ と

Monument

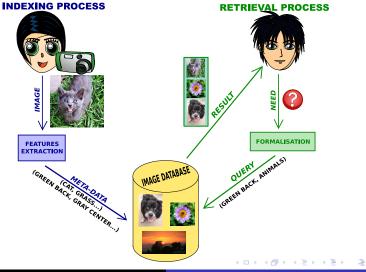
 \bigcirc Objective, automatic \times Semantic gap

 \bigcirc Good semantics \times Subjective, manual (\rightarrow cost)

Retrieval Navigation

Outline

• Content Information vs. Annotations


3 Problem Definition: Search

- Retrieval
- Navigation

イロト イポト イヨト イヨト

Retrieval Navigation

Image Retrieval in a Nutshell

Erwan Loisant Classification-Based Browsing for Image Databases

Defining the Search

Different kinds of search methods (not an exhaustive list):

- Retrieval
 - Formal queries
 - Similarity search
 - Queries with relevance feedback
- Navigation

(本間) (本語) (本語)

Retrieval Navigation

Formal Queries (Chabot, by Ögle & Stonebraker)

RETRIEVE (q.all) FROM q IN photocd_bib WHERE q.shoot_date\$>\$"Jan 1 2000" and MeetsCriteria("MostlyBlue",q.histogram) and MeetsCriteria("SomeWhite",q.histogram)

・ 同 ト ・ ヨ ト ・ ヨ ト

Retrieval Navigation

Formal Queries (Chabot, by Ögle & Stonebraker)

RETRIEVE (q.all) FROM q IN photocd_bib WHERE q.shoot_date\$>\$"Jan 1 2000" and MeetsCriteria("MostlyBlue",q.histogram) and MeetsCriteria("SomeWhite",q.histogram)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Formal Queries (Chabot, by Ögle & Stonebraker)

RETRIEVE (q.all) FROM q IN photocd_bib WHERE q.shoot_date\$>\$"Jan 1 2000" and MeetsCriteria("MostlyBlue",q.histogram) and MeetsCriteria("SomeWhite",q.histogram)

Problem: who is able to write this kind of query?

- 4 同 5 - 4 三 5 - 4 三 5

Retrieval Navigation

Similarity Search - Sample Image

イロト イポト イヨト イヨト

Retrieval Navigation

Similarity Search - Sample Image

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Retrieval Navigation

Similarity Search - Sample Image

Problem: usually, the user has no sample image.

Retrieval Navigation

Relevance Feedback

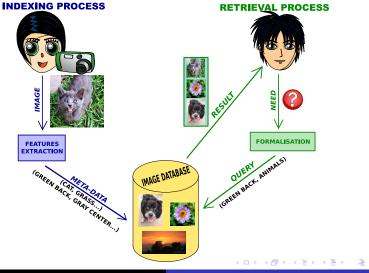
The user marks "good" images and "bad" images.


Erwan Loisant Classification-Based Browsing for Image Databases

イロト イヨト イヨト イヨト

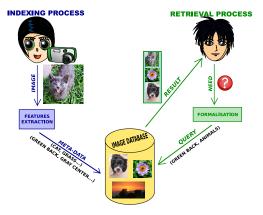
Retrieval Navigation

Relevance Feedback


The user marks "good" images and "bad" images.

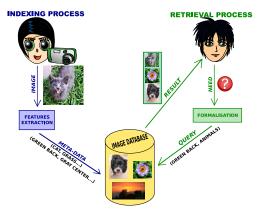
Problem: write a query that accepts all examples and reject all counter-example is known to be **NP-complete**.

Retrieval Navigation


Image Retrieval (Reminder)

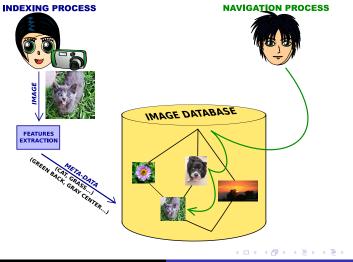
Erwan Loisant Classification-Based Browsing for Image Databases

Retrieval Navigation


Image Retrieval (Reminder)

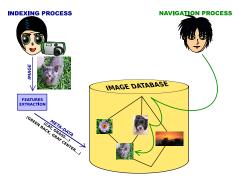
- *PROBLEM 1*: Formalisation is not trivial.
- PROBLEM 2: Query processing can be costly.

Retrieval Navigation


Image Retrieval (Reminder)

- Assumption: There are few insertions.
- Assumption: There are a lot of searches (at best O(log(n))).

Retrieval Navigation


Why Navigation?

Erwan Loisant Classification-Based Browsing for Image Databases

Retrieval Navigation

Why Navigation?

The cost of insertion is higher, but:

- NO FORMALISATION PHASE: Easy for the user.
- NO QUERY PROCESS PHASE: Quick and responsive.

・ロト ・回ト ・ヨト ・ヨト

Previous Work linked to Navigation

There are few proposals on navigation. It can still be compared to:

- Show the images on a map, according to location only (Geobloggers...): *Limited to place.*
- Combine the place and the time space into *events*: Use only two dimensions is limited.
- Organise the images on a virtual space according to content similarity (Santini's El Niño...): Based on retrieval → long processing time.

Retrieval Navigation

A Modigliani's Painting with Similar Images (Santini)

- 17 ▶

Retrieval Navigation

A Modigliani's Painting with Similar Images (Santini)

PROBLEM: Based on retrieval, with a costly query process.

___>

Navigating an Image Collection using Galois' Lattices Additional Clustering User-Personalisation and Sub-Lattices From a Fuzzy Model to Crisp Descriptions

Part II

Efficient Structures for Navigating an Image Collection

Erwan Loisant Classification-Based Browsing for Image Databases

- 4 回 ト 4 ヨ ト 4 ヨ ト

Navigating an Image Collection using Galois' Lattices Additional Clustering User-Personalisation and Sub-Lattices From a Fuzzy Model to Crisp Descriptions

Outline

Avigating an Image Collection using Galois' Lattices

- A Meta-Model for Navigation-Based Image "Retrieval"
- Navigation on a Concept Lattice
- Experiments
- 5 Additional Clustering
 - Details on the Clustering Method
 - Hypermedia Representation
- 6 User-Personalisation and Sub-Lattices
 - Masking Lattices
 - Node Masking
- From a Fuzzy Model to Crisp Descriptions
 - Proposal
 - Experiments and Conclusions

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Outline

- Avigating an Image Collection using Galois' Lattices
 - A Meta-Model for Navigation-Based Image "Retrieval"
 - Navigation on a Concept Lattice
 - Experiments
- 5 Additional Clustering
 - Details on the Clustering Method
 - Hypermedia Representation
- 6 User-Personalisation and Sub-Lattices
 - Masking Lattices
 - Node Masking
- From a Fuzzy Model to Crisp Descriptions
 - Proposal
 - Experiments and Conclusions

イロン イヨン イヨン イヨン

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Provide a system for navigation-based image search.

- Define a metamodel to describe images.
- Define a navigation structure for the user.

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Goal

Provide a system for navigation-based image search.

- Define a metamodel to describe images.
- Define a navigation structure for the user.

Objectives

- Metamodel:
 - Low cost: the metrics should be fast to process.
 - Match human perception: the metrics should have a meaning for a human observer.
- Navigation:
 - Easy to use: the user interaction should be mainly mouse clicks.
 - Fast and responsive: the user should not have to wait for the results.

ヘロン 人間と 人間と 人間と

Work Domain

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

We restrict our study to "classical" photographs:

- Rectangular, with no transparency channel
- Colour images
- Excluding specific images, such as:
 - Medical images
 - Satellite images
 - Photographs of the space

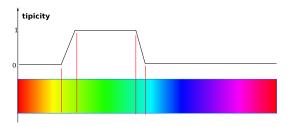
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Meta-Model Overview

Our model is based on content information:

- Dominant colours for each part of a syntactical division (similar to the use of histograms, a fast to calculate metric)
- General geometrical measures (orientation, elongation and size)

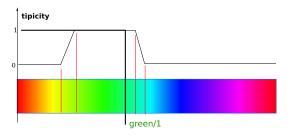

Merits

- Fuzzy logic \rightarrow good representation of the human perception.
- Syntactical division \rightarrow more efficient than segmentation but still offers a good semantic separation.

・ロト ・回ト ・ヨト ・ヨト

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Fuzzy Logic (the green label)

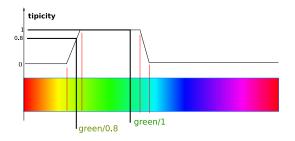


A fuzzy subset is defined by a *trapeze*. A fuzzy label is a description associated to a tipicity.

イロン イヨン イヨン イヨン

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Fuzzy Logic (the green label)

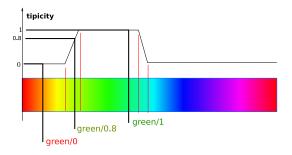


A fuzzy subset is defined by a *trapeze*. A fuzzy label is a description associated to a tipicity.

• green/1 \rightarrow a green pixel.

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Fuzzy Logic (the green label)



A fuzzy subset is defined by a *trapeze*. A fuzzy label is a description associated to a tipicity.

- green/1 \rightarrow a green pixel.
- green/0.8 \rightarrow an almost green pixel.

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Fuzzy Logic (the green label)

A fuzzy subset is defined by a *trapeze*. A fuzzy label is a description associated to a tipicity.

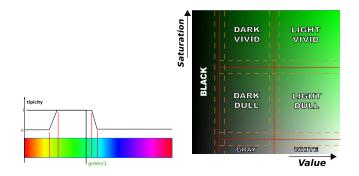
- green/1 \rightarrow a green pixel.
- green/0.8 \rightarrow an almost green pixel.
- $green/0 \rightarrow a not$ green pixel.

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Segmentation of the Colour Space

- We chose the HSV (Hue, Saturation, Value) model, each property makes sense for human observers
- 7 fuzzy subsets are defined on hue
- For a given hue, the saturation/value plan is divided into black, white, grey and 4 coloured parts

Examples of labels


- Black
- Light Desaturated Red (i.e. "pink")
- Dark Saturated Blue

Navigating an Image Collection using Galois' Lattices Additional Clustering User-Personalisation and Sub-Lattices

From a Fuzzy Model to Crisp Descriptions

Saturation and Value

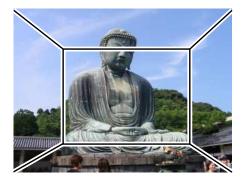
A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

イロン イヨン イヨン イヨン

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Heuristic Segmentation

For performance reasons, we use a *heuristic segmentation* rather than a real segmentation algorithm.


イロト イポト イヨト イヨト

3

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Heuristic Segmentation

For performance reasons, we use a *heuristic segmentation* rather than a real segmentation algorithm.

イロン イヨン イヨン イヨン

Used Properties

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

- $\mathcal{D}_{area} = \{tiny, small, medium, large, huge\}$
- *D*_{orientation} = {portrait, square, landscape}
- $\mathcal{D}_{elongation} = \{none, standard, panoramic, elongated\}$
- $\mathcal{D}_{colour} = \mathcal{C} \times \{top, bottom, left, right, centre\}$

 $\begin{array}{l} \mathcal{C} \text{ being the set of colours defined as:} \\ \mathcal{C} = \{ white, gray, black \} \\ \bigcup (\{ red, orange, \ldots, cyan, magenta \} \times \{ vivid, light \} \times \{ dark, light \}) \end{array}$

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Properties of the Big Buddha Photograph

+ landscape/1, standard/1, large/0.70, medium/0.30

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Conclusions on the Metamodel

The metamodel we defined:

- Has a low cost: histograms are fast to calculate.
- Match human perception: the fuzzy division of the colour space and the syntactical division of the images gives good semantic measures.

Galois' Lattice

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

- A *lattice* is a graph structure:
 - Directed
 - With no cycle
 - Featuring a unique minimal node (no parents) and a unique maximal node (no child)

Galois' Lattice

A Galois' lattice is a special kind of lattice built from a binary relationship.

- Each node is a couple (images, properties) (I, P)
- If (I_2, P_2) is a child node of (I_1, P_1) , then $I_2 \subset I_1$ and $P_1 \subset P_2$

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Why choose Galois' Lattices?

Benefits for the user:

- The links between the nodes are semantic
 → understandable for the user.
- the browsing is optimal (no calculation)
 - \rightarrow fast and responsive.
- The user can go back very easily
 - \rightarrow helps to correct the users' mistakes.

Benefits for the system:

- Can be used both as index and retrieval.
- Intrinsically a multi-dimensional classification technique.
- Insensitive to correlations.

Note: the high complexity of the construction algorithm limits us in the collection size (not adaptated to the world wide web).

Example (1/2)

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

}

Consider the following images/properties relationship:

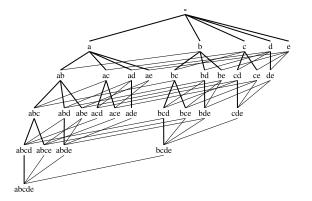
	img1	img2	img3	img4
blackbottom	1	1	0	0
yellowcentre	1	0	1	1
redtop	0	0	1	0

Example (2/2)

SPECIALISATION

The associated Galois' lattice is:

A Meta-Model for Navigation-Based Image "Retrieval"


Navigation on a Concept Lattice

Navigating an Image Collection using Galois' Lattices

Additional Clustering User-Personalisation and Sub-Lattices From a Fuzzy Model to Crisp Descriptions

A Bigger Lattice

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Figure: A bigger Galois' lattice

・ロト ・回ト ・ヨト ・ヨト

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

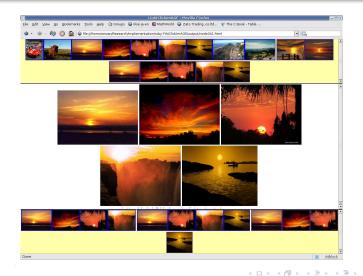
Constructing a Galois' Lattice

- We need an incremental algorithm
 - Godin et. al published such an algorithm in 1995

Complexity:

- Time complexity *in the worst case*: exponential (*eⁿ*) with respect to the total number of images
- Empirical average time complexity:
 - Add an element: o(n) with respect to the initial number of images
 - From scratch: $o(n^2)$ with respect to the total number of images
 - For large dataset: the limit is known to be n.log(n).

イロン イヨン イヨン イヨン


A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Hypermedia Representation (User-Interface)

- The lattice is built on an images-descriptions binary relationship;
- For each node, a detailed representation and a quick representation is defined;
- Each node is represented as an hypermedia page (XHTML)
- The user can browse the resulting set of web pages to find the image he/she is looking for

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

User Interface

2

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Data Set

About 5,000 images, extracted from Flickr (http://flickr.com) using some of the most popular tags: *art, city, flower, party, sunsets, travel, birthday, dog, snow,* and *nature.*

イロト イポト イヨト イヨト

-

Data Set

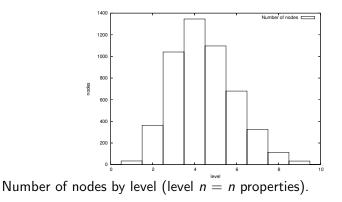
A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

About 5,000 images, extracted from Flickr (http://flickr.com) using some of the most popular tags: *art*, *city*, *flower*, *party*, *sunsets*, *travel*, *birthday*, *dog*, *snow*, and *nature*.

CITY

SNOW

FLOWER


DOG

SUNSET

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Statistics on the Resulting Lattice

▲ □ ► ▲ □ ►

< E

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Conclusion

Several advantages:

- Easy to use, since there is no query formalisation phase.
- Very fast to navigate through a graph structure that has been computed off-line (no calculation, optimal).
- It is insensitive to correlations.
- It helps to correct the users' mistakes very easily.

A Meta-Model for Navigation-Based Image "Retrieval" Navigation on a Concept Lattice Experiments

Conclusion

Several advantages:

- Easy to use, since there is no query formalisation phase.
- Very fast to navigate through a graph structure that has been computed off-line (no calculation, optimal).
- It is insensitive to correlations.
- It helps to correct the users' mistakes very easily.

But drawbacks:

- The time complexity of the construction algorithm is $O(n^2)$ \rightarrow scalability problem.
- A local explosion of the number of nodes may appear.

Details on the Clustering Method Hypermedia Representation

Outline

- 4 Navigating an Image Collection using Galois' Lattices
 - A Meta-Model for Navigation-Based Image "Retrieval"
 - Navigation on a Concept Lattice
 - Experiments
- 5 Additional Clustering
 - Details on the Clustering Method
 - Hypermedia Representation
- 6 User-Personalisation and Sub-Lattices
 - Masking Lattices
 - Node Masking
- From a Fuzzy Model to Crisp Descriptions
 - Proposal
 - Experiments and Conclusions

Details on the Clustering Method Hypermedia Representation

Problem Definition

- Regarding the complexity $(O(n^2))$ of the construction algorithm, to build a lattice with more than about 10,000 images would be very long.
- Additionnally, such a lattice would be too big to be browsed comfortably by the user.
- However, there are databases much bigger than this (several millions for Corbis)

・ロト ・回ト ・ヨト ・ヨト

Details on the Clustering Method Hypermedia Representation

Problem Definition

- Regarding the complexity $(O(n^2))$ of the construction algorithm, to build a lattice with more than about 10,000 images would be very long.
- Additionnally, such a lattice would be too big to be browsed comfortably by the user.
- However, there are databases much bigger than this (several millions for Corbis)

Problem

Considering the scalability limits of Galois' lattices, can these graphs be useful for such large collections?

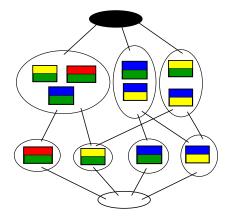
イロン イヨン イヨン イヨン

Details on the Clustering Method Hypermedia Representation

A Galois' Lattice of Clusters

Associate a clustering technique to our Galois' lattice proposal.

- The meta-data of images are calculated.
- Images are organised into clusters of similar images (using a linear time complexity algorithm)
- A Galois' lattice is built on the clusters
- Navigation becomes on two-levels
 - inter-cluster navigation
 - intra-cluster navigation


Benefits

- Time complexity: square O(n²) → linear O(n + (n/C)²) (n for the clustering and (n/C)²) for the lattice construction with C number of clusters, (n/C)² ≪ n.
- \bullet Images grouped by clusters \rightarrow easier for the user to browse the collection.

 $) \land (\cap$

Details on the Clustering Method Hypermedia Representation

A Navigation on Two Levels

・ロト ・回ト ・ヨト ・ヨト

3

Details on the Clustering Method Hypermedia Representation

A Navigation on Two Levels

・ロト ・回ト ・ヨト ・ヨト

2

Details on the Clustering Method Hypermedia Representation

The Clustering Technique

- Based on the techniques of SaintEtiQ
- Osing the fuzzy descriptions detailed in previous part
 - e.g. 1.0/vivid dark green + 0.8/vivid light blue
- 3 A cluster hierarchy is built incrementally
 - from the most general (the root)
 - to the more specific (the *leaves*)
- Each cluster is labelled using a notation similar to images
- Solution Linear time complexity (O(n), results from SaintEtiQ)

Details on the Clustering Method Hypermedia Representation

The SaintEtiQ projet

- SEQ is a clustering project from Nantes University (France)
- It uses fuzzy logic to generate summaries of data (in the general case)
- Main authors:
 - Noureddine Mouaddib
 - Guillaume Raschia
 - Régis Saint-Paul
- G. Raschia, N. Mouaddib, A fuzzy set-based approach to database summarization, *Int. Journal of Fuzzy Sets and Systems*, 129(2):137-162, July 2002
- http://www.simulation.fr/seq/ (English)

What is a Clustering?

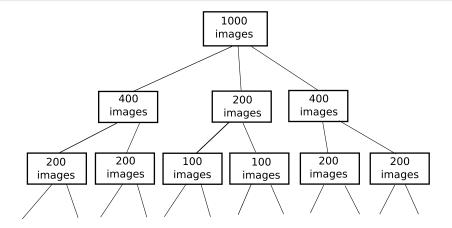
Details on the Clustering Method Hypermedia Representation

Given a sequential presentation of tuples (images) and their associated descriptions, the main goals of concept formation are:

- identifying clusters that group the tuples into categories;
- defining an intentional description (i.e., a summary) that corresponds to each category;
- organising these summaries into a hierarchy.
- Additionally, in our case the learning is incremental.

Details on the Clustering Method Hypermedia Representation

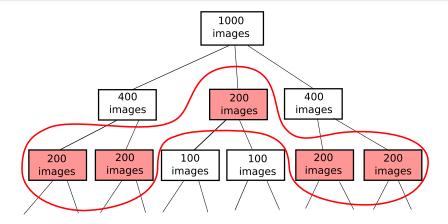
Incremental Algorithm


Inserting a New Tuple in the Cluster Hierarchy:

```
Insert(Node n, Image i)
  if n.children == [] // Leaf node
    add(n, i);
    return;
  else
    result = Match(n.children); // Ordered list
    if StrongMatch(i, result[0]);
      Insert(result[0], i)
    else
      CreateNewNode(n. i):
    EvaluateSplitting(result[0]);
    EvaluateMerging(result[0], result[1]);
end of Insert;
                                     ・ロン ・回 と ・ヨン ・ヨン
```

-

Details on the Clustering Method Hypermedia Representation


Selecting Clusters for the Lattice Generation

(日) (同) (E) (E) (E)

Details on the Clustering Method Hypermedia Representation

Selecting Clusters for the Lattice Generation

(日) (同) (E) (E) (E)

Details on the Clustering Method Hypermedia Representation

Hypermedia Representation

From the user point of view, the navigation becomes two-levels.

- Inter-clusters navigation: similar to navigating a lattice of images.
- Intra-clusters navigation
 - The average cluster size is about 200 elements

We assume that a user can view about **50 thumbnails** on the same screen. Thus, for about **200 images** a navigation structure is not required.

・ロト ・回ト ・ヨト

Details on the Clustering Method Hypermedia Representation

Hypermedia Representation

From the user point of view, the navigation becomes two-levels.

- Inter-clusters navigation: similar to navigating a lattice of images.
- Intra-clusters navigation
 - The average cluster size is about 200 elements

We assume that a user can view about **50 thumbnails** on the same screen. Thus, for about **200 images** a navigation structure is not required.

Problem

How to select the first 50 elements to present?

Details on the Clustering Method Hypermedia Representation

Algorithm

Selecting the best n representatives of the cluster z (recursive algorithm) for intra-cluster search:

Choose(n integer, z cluster) returns a set of images
if (z content <= n) then
 return all z content
else if (z is a leaf) then
 return n random samples
else return for (each z_child) do
 Choose((n / number_of_children(z)), z_child)
end of Choose;</pre>

(日) (同) (E) (E) (E)

Conclusion

Details on the Clustering Method Hypermedia Representation

We associate a scalable clustering technique to our Galois' lattice approach.

- Time complexity for construction: square $O(n^2) \rightarrow \text{linear } O(n + \left(\frac{n}{C}\right)^2)$ (*n* number of images).
- The two-levels approach makes navigation easier for the user.

We can provide a navigation structure for very large databases

Example

5,000 clusters of 200 images \rightarrow 1,000,000 images

Masking Lattices Node Masking

Outline

- 4 Navigating an Image Collection using Galois' Lattices
 - A Meta-Model for Navigation-Based Image "Retrieval"
 - Navigation on a Concept Lattice
 - Experiments
- 6 Additional Clustering
 - Details on the Clustering Method
 - Hypermedia Representation
- 6 User-Personalisation and Sub-Lattices
 - Masking Lattices
 - Node Masking
- From a Fuzzy Model to Crisp Descriptions
 - Proposal
 - Experiments and Conclusions

イロン イヨン イヨン イヨン

Masking Lattices Node Masking

Problem

- The user should be able to identify parts of the structure as irrelevant, in order to work on a reduced structure
- A Galois lattice being a multidimensional structure, naive approaches to modify it may be exponential.

イロト イポト イヨト イヨト

-

Masking Lattices Node Masking

• The user should be able to identify parts of the structure as irrelevant, in order to work on a reduced structure

• A Galois lattice being a multidimensional structure, naive approaches to modify it may be exponential.

Goal

Problem

Provide the user an efficient way to personalise the structure to his needs.

(Feedback querying provides an answer, but the problem of query generation is NP-complete.)

Masking Lattices

Masking Lattices Node Masking

We propose to provide **user-personalisation** by applying user-defined *masks*. The resulting lattice is called a **sub-lattice** of the Galois' lattice.

- During the retrieval process, the user selects either *elements* to mask or *properties* to mask.
- At any time, the user can ask for calculation of a *lattice mask*.

Benefits

• Efficient way to provide user-personalisation.

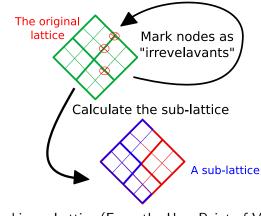
Processing is done before-hand, on a sub-lattice each step's time complexity is O(1). \neq Feedback querying: NP-complete problem.

・ロト ・回ト ・ヨト ・ヨト

Masking Lattices Node Masking

Algorithm

The user can mark nodes as *irrelevant* for his search. To determine the nodes and edges to mask:

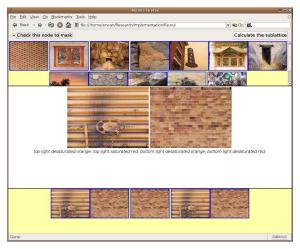

- Minimum and maximum nodes cannot be masked,
- Any edge connecting a masked node will be masked,
- Edges are added to ensure unicity of the *min* and the *max*
- Nodes are merged to avoid nodes with a single child or single parent

Algorithmic complexity: O(n) (n being the number of nodes to mask).

・ロト ・回ト ・ヨト

Masking Lattices Node Masking

Process

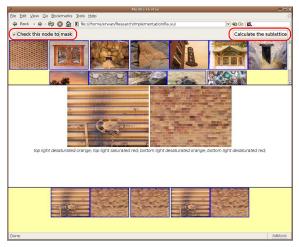


Masking a Lattice (From the User Point of View)

イロン イヨン イヨン イヨン

Masking Lattices Node Masking

Example


An irrelevant node

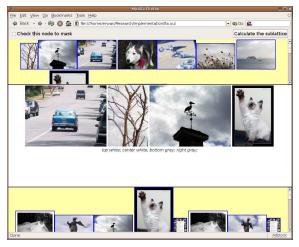
A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃⇒

Masking Lattices Node Masking

Example

An irrelevant node


A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃ >

< Ξ.

Masking Lattices Node Masking

Example

A more relevant structure

Conclusions

Masking Lattices Node Masking

Our proposal:

- Provides user-personalisation, allowing users to define sub-lattices.
- Does not deny the performances advantages.

Compared to other systems, it is:

- More relevant than a system based solely on a pre-calculated structure.
- More efficient than a system based on feed-back querying (O(n) for the sub-lattice calculation, O(1) for navigation).

Proposal Experiments and Conclusions

Outline

- 4 Navigating an Image Collection using Galois' Lattices
 - A Meta-Model for Navigation-Based Image "Retrieval"
 - Navigation on a Concept Lattice
 - Experiments
- 5 Additional Clustering
 - Details on the Clustering Method
 - Hypermedia Representation
- 6 User-Personalisation and Sub-Lattices
 - Masking Lattices
 - Node Masking
- From a Fuzzy Model to Crisp Descriptions
 - Proposal
 - Experiments and Conclusions

Problem

Proposal Experiments and Conclusions

Problem

A non-adaptative algorithm leads to the creation of too many *virtual nodes*

Virtual Node: a node with no image matching its exact set of properties. Virtual nodes are required for the navigation, but too many virtual nodes make the navigation more difficult.

- 4 回 2 - 4 三 2 - 4 三 3

Problem

Problem

A non-adaptative algorithm leads to the creation of too many virtual nodes

Proposal

Virtual Node: a node with no image matching its exact set of properties. Virtual nodes are required for the navigation, but too many virtual nodes make the navigation more difficult. *Example*: Using a threshold of 0.3:

- {*blue*/0.5, *red*/0.31}, {*blue*/0.5, *yellow*/0.31} and {*blue*/0.5, *green*/0.31} will lead to the creation of **3 nodes**
- {*blue*/0.5, *red*/0.29}, {*blue*/0.5, *yellow*/0.29} and {*blue*/0.5, *green*/0.29} will be integrated into the **same node**.

Proposal Experiments and Conclusions

Our Approach: Insertion by Node Matching

Idea

When inserting a new image (with fuzzy value associated), try to match an existing node for the binarisation process.

- The building process remains incremental;
- New images are inserted into existing nodes rather than in a new node.

Our Approach: Insertion by Node Matching

Idea

When inserting a new image (with fuzzy value associated), try to match an existing node for the binarisation process.

- The building process remains incremental;
- New images are inserted into existing nodes rather than in a new node.

Benefits

- The number of nodes is reduced without information loss.
- Thus, the average path to a given image is shortened.
- The number of element in each node is increased.


To search images in such a structure is easier.

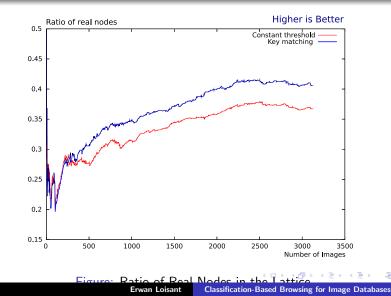
Proposal Experiments and Conclusions

Algorithm

For a given image:

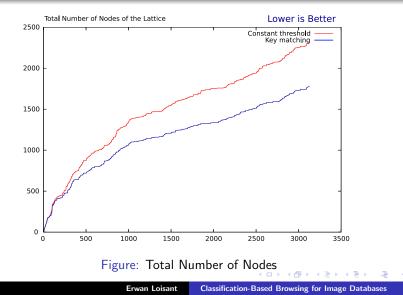
- Descriptions are ordered by tipicity
- Descriptions under a T_{min} threshold are discarded, descriptions over a T_{max} threshold are kept;
- Starting from the set of descriptions under *T_{min}*, we remove descriptions successively and try to match the resulting key with existing keys in the lattice;
- If no match can be found, an average threshold is used.

Experiments


Proposal Experiments and Conclusions

Done on the collection of Flickr.com images described previously (5,000 images);

- Navigation structures built for:
 - The naive solution (constant threshold);
 - Our proposal (node matching).
- Metrics: the structure quality:
 - Cardinal;
 - Average node size;
 - Ratio of *real* nodes (opposed to *virtual* nodes).
- The resulting structures have been tested on a few users.


Proposal Experiments and Conclusions

Results: Real nodes

Proposal Experiments and Conclusions

Results: Total Number of Nodes

Proposal Experiments and Conclusions

Results: Average Size of a Node

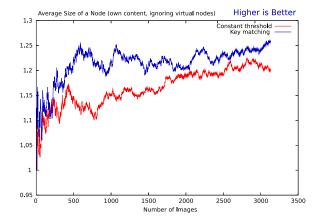


Figure: Average Size of a Node (excluding virtual nodes)

< 1[™] >

-

Proposal Experiments and Conclusions

Results: Average Size of a Node

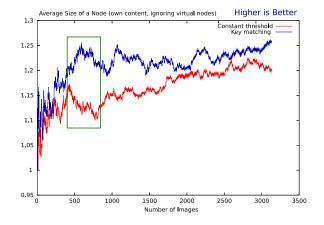


Figure: Average Size of a Node (excluding virtual nodes)

< 🗇 🕨

< E.

Conclusions

Proposal Experiments and Conclusions

Node matching insertion produced a structure of better quality than other approaches:

- The number of nodes is reduced without information loss.
- Thus, the average path to a given image is shortened.
- The number of element in each node is increased.

Consequently, the user experience is better due to a more compact structure.

Part III

Conclusion

Erwan Loisant Classification-Based Browsing for Image Databases

・ロン ・回 と ・ ヨ と ・ ヨ と

Erwan Loisant Classification-Based Browsing for Image Databases

・ロ・ ・ 日・ ・ 日・ ・ 日・

Erwan Loisant Classification-Based Browsing for Image Databases

・ロ・ ・ 日・ ・ 日・ ・ 日・

Achievements

In this study, we looked for a way to replace query by navigation in image databases.

- We presented a technique to search for images by browsing an hypermedia representation of a Galois lattice
- We presented several extensions to:
 - Address the scalability problem by using a clustering technique
 - Allow the user to customise the structure for his needs
 - Make a better use of the fuzzy description of the images to build a better structure

- 4 回 ト 4 ヨ ト 4 ヨ ト

Benefits and Limits

Benefits:

- **Easy to use:** the user does not have to describe formally his needs, he just selects the images he "likes". He can still give feedback to personalise the search.
- Fast and responsive: browsing is optimal since it is done on a static structure.
- **Scalable:** Associated with a clustering technique, it can reach very large collections.

Limits:

• Not applicable for open collections such as the World Wide Web.

・ 同 ト ・ ヨ ト ・ ヨ ト

・ロ・ ・ 日・ ・ 日・ ・ 日・

Further Work

- Application to other media types, such as video. Requires:
 - A suitable metamodel
 - A compact way to represent the medium
- Mobile computing
 - Insertion requires no interaction
 - A mobile phone can provide additional metadata
 - The user interaction is very simple

向下 イヨト イヨト