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Abstract

We study curves with linear series that are exceptional with regard to their secant

planes. Working in the framework of an extension of Brill-Noether theory to pairs of

linear series, we prove that a general curve of genus g has no exceptional secant planes,

in a very precise sense. We also address the problem of computing the number of linear

series with exceptional secant planes in a one-parameter family in terms of tautological

classes associated with the family. We obtain conjectural generating functions for the

tautological coefficients of secant-plane formulas associated to series g2d−1
m that admit

d-secant (d−2)-planes. We also describe a strategy for computing the classes of divisors

associated to exceptional secant plane behavior in the Picard group of the moduli space

of curves in a couple of naturally-arising infinite families of cases, and we give a formula

for the number of linear series with exceptional secant planes on a general curve equipped

with a one-dimensional family of linear series.
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1 Introduction: Brill–Noether theory for pairs

of linear series

Determining when an abstract curve C comes equipped with a map to Ps of degree m

is central to curve theory. There is a quantitative aspect of this study, which involves

determining formulas that describe the expected behavior of linear series along a curve.

There is also an aspect that we will call validative: it involves checking that the expected

behavior holds. The Brill–Noether theorem, which is both quantitative and validative,

asserts that when the Brill–Noether number ρ(g, s,m) is nonnegative, ρ gives the dimension

of the space of series gs
m on a general curve C of genus g, and that there is an explicit simple

formula for the class of the space of linear series Gs
m(C).

In what follows, let Gs
m denote the moduli stack of curves of genus g with linear series

gs
m [Kh1, Kh2]. Since every linear series without base points determines a map to projective

space, it is natural to identify a series with its image. Singularities of the image of a curve

under the map defined by a series come about because the series admits certain subseries

with base points; abusively, we refer to these subseries as “singularities” of the series itself.

Eisenbud and Harris [EH1] showed that a general g3
m on a general curve of genus g has no

double points, or equivalently, that no inclusion

g2
m−2 + p1 + p2 →֒ g3

m

exists, for any pair (p1, p2) of points along the curve. They also showed that series with

double points sweep out a divisor inside the space of all series g3
m along curves of genus g.

Generalizing the preceding example, we say that an s-dimensional linear series gs
m has
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a d-secant (d− r − 1)-plane provided an inclusion

gs−d+r
m−d + p1 + · · · + pd →֒ gs

m (1.1)

exists. Geometrically, (1.1) means that the image of the gs
m intersects a (d − r − 1)-

dimensional linear subspace of Ps in d-points; such a linear subspace is a “d-secant (d−r−1)-

plane”. On the other hand, since our point of view places more emphasis on linear series

than on their images, it is convenient to use “d-secant (d − r − 1)-plane” to mean any

inclusion (1.1).

Next, let

µ(d, s, r) := d− r(s+ 1 − d+ r).

The invariant µ computes the expected dimension of the space of d-secant (d− r − 1)-

planes along a fixed gs
m. For example, when µ(d, s, r) = 0, we expect that the gs

m admits

finitely many d-secant (d − r − 1)-planes. An answer to the quantitative question of how

many was known classically in special cases, and Macdonald [M] gave an essentially complete

solution in the nineteen-fifties. The validative question has been addressed by Farkas in his

recent preprint [Fa2].

In this work, we study the analogous problem in case the series gs
m is allowed to move.

Namely, we attempt to describe both quantitatively and validatively the behavior of linear

series with secant planes in flat families of curves. There are a number of reasons why

such a study is of broader interest. The structure of the cone of effective divisor classes

on the moduli space of curves plays a fundamental rôle in the birational geometry of the

moduli space of curves. A fundamental invariant of an effective divisor class is its slope

[HM]. Over the past twenty-five years, a variety of effective divisors have been constructed,
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but the question of which slopes arise among effective divisors on Mg is far from settled.

Whenever ρ + µ = −1, we expect a divisor on Mg associated to curves that admit linear

series with exceptional secant plane behavior. Using techniques introduced by Eisenbud

and Harris, applied to pairs of series as in (1.1), we prove that the expectation holds.

Further, using techniques due to Eisenbud and Harris, Kleiman, and Ran, we determine a

conjecturally complete set of relations for the tautological coefficients of the corresponding

secant-plane divisor classes whenever r = 1 or r = s. When r = 1, we go further, and

determine conjectural generating functions for the tautological coefficients; as a byproduct

of this analysis, we are able to write down explicit conjectural formulas for the slope of the

corresponding divisors.

1.1 Acknowledgements, and a note on chronology

This work constitutes my doctoral thesis, and it was carried out under the supervision of Joe

Harris. I thank Joe, and also Steve Kleiman at MIT, for countless valuable conversations.

Special thanks are also due to Izzet Coskun, Noam Elkies, and Ziv Ran for their helpful

interventions at critical stages of this project. Thanks are due to Sabin Cautis, Dawei Chen,

Deepak Khosla, and Maksym Fedorchuk for further help with geometry and to Emeric

Deutsch, Dragos Oprea, Lauren Williams, and Akalu Tefera for help with combinatorics.

After the bulk of this work was written, the preprint [Fa2] appeared. Our Theorem 1

is proved there, via a different argument. Our proof, which was obtained independently, is

significantly simpler, if less far-reaching, than Farkas’. Moreover, our argument is used in

an essential way to determine the boundary coefficients b1 and b2 of secant-plane divisors

on Mg. All of the results in Section 1 had been obtained by late December 2006, when a
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research statement announcing them was circulated.

1.2 Roadmap

The material following this introduction is organized as follows. In the second section, we

address the validative problem of determining when a curve possesses linear series with

exceptional secant planes. The first two theorems establish that on a general curve, there

are no linear series with exceptional secant planes when the expected number of such series

is zero. We show:

Theorem 1. Assume that ρ = 0 and µ = −1. Under these conditions, a general curve C

of genus g admits no s-dimensional linear series gs
m with d-secant (d− r − 1)-planes.

We prove Theorem 1 by showing that on a certain semistable model of a g-cuspidal

rational curve, there are no linear series with exceptional secant planes whenever ρ = 0 and

µ = −1. Our argument is based on Schubert calculus, together with the theory of limit

linear series developed by Eisenbud and Harris, and proceeds along much the same lines as

the limit linear series-based proof of the Brill–Noether theorem given in [HM, Ch. 5]. An

upshot of Theorem 1 is that the loci inside Mg whose classes we compute in section 2 are

indeed divisors. Moreover, a slight elaboration of the argument we use to prove Theorem 1

yields a stronger statement. Namely, we have:

Theorem 2. If ρ + µ = −1, then a general curve C of genus g admits no s-dimensional

linear series gs
m with d-secant (d− r − 1)-planes.

Theorem 2 suggests that there are many more secant-plane divisors on the moduli space

worth studying besides those treated in Sections 3 through 6 of this thesis. Finally, we
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prove the following theorem, which gives geometric significance to the enumerative study

carried out in Section 7:

Theorem 3. If ρ = 1 and µ = −1, then there are finitely many linear series gs
m with

d-secant (d− r − 1)-planes on a general curve C of genus g.

In Section 3, we begin our quantitative study of curves with exceptional secant planes.

We attempt to solve the problem of computing the expected number of linear series with

exceptional secant planes in a given one-parameter family by computing the number of

exceptional series along judiciously-chosen “test families”. Our general secant-plane formula

reads

Nd−r−1
d = Pαα+ Pββ + Pγγ + Pcc+ Pδ0δ0,

so five relations are needed to determine the tautological coefficients Pα, Pβ, Pγ , Pc, and

Pδ0 . Whenever r = 1 or r = s, we find four out of the five relations needed; in general, we

conjecturally obtain four out of five relations, with a fourth relation hinging on a conjecture

about secant planes to K3 surfaces (Conjecture 1, Section 3.2). Section 3.3 is devoted

to establishing the enumerative nature of our two most basic relations among tautological

coefficients, which are derived from the study of the enumerative geometry of a fixed curve

in projective space carried out in [ACGH].

When r = 1, our results are strongest, and a key player in the sections to follow enters in

Section 3.4; namely, a generating function for the expected number Nd of d-secant (d− 2)-

planes to a g2d−2
m . We show:

Theorem 4.

∑

d≥0

Ndz
d =

(
2

(1 + 4z)1/2 + 1

)2g−2−m

· (1 + 4z)
g−1
2 .
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The work of Lehn [Le] suggests that such a generating function should exist. We first

discovered a crude version of this formula experimentally, and a conversation with Dragos

Oprea led the author to deduce the “smooth” version given above. As we will see in the

proof of Theorem 4, there is an intimate relation between Nd and Catalan numbers, whose

generating series is 2
(1+4z)1/2+1

. Unfortunately, to prove Theorem 4, we are forced to rely

upon Macdonald’s classical formula for d-secant (d− 2)-planes to a g2d−2
m , as our attempts

at a purely combinatorial proof have thus far met with only partial success. We hope to

settle this point more satisfactorily in a subsequent paper.

In Section 4, we deduce a conjectural fifth relation among tautological secant-plane

divisor coefficients whenever r = 1 or r = s, by calculating secant-plane formulas in a variety

of particular cases. Our computations, carried out in Maple, are based on an application

of Kleiman’s multiple point formula [Kl] to the projection of an incidence correspondence

of curves and secant planes onto a Grassmann bundle of secant planes. In Section 4.4, we

use our generating function for Nd obtained in Section 3.4, together with the fifth relation

obtained via multiple-point formulas, to (conjecturally) determine generating functions for

the tautological coefficients P , whenever r = 1. In Section 4.5, we use the generating

functions determined in Section 4.4 in order to realize each of the tautological coefficients

P as linear combinations of generalized hypergeometric functions. In Section 4.6, we list

secant-plane formulas in a number of particular examples.

Sections 5 and 6 are devoted to calculations of secant-plane divisor classes on Mg. In

Section 5.1, we review Deepak Khosla’s computation of the Gysin pushforward from A1(Gs
m)

to A1(M̃g,1), where M̃g,1 ⊂ Mg,1 is a partial compactification of the space of smooth marked

curves of genus g. Applying Khosla’s result, we compute the coefficients bλ and b0 associated
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to the Hodge class and the boundary class of irreducible nodal curves, respectively, of secant-

plane divisor classes on Mg. As a consequence, we deduce in Section 5.2 that the slope

of secant-plane divisors is computed by bλ
b0

whenever r = 1 or r = s and g ≤ 23. We

then specialize to the case r = 1, and use our hypergeometric formulas for tautological

coefficients to prove, in Section 5.3, that secant-plane divisors on Mg are nonempty when

r = 1. The class of each secant-plane divisor depends on the degree of incidence, d, as

well as a second parameter, a. In Section 5.4, we determine explicit formulas for the slopes

of secant-plane divisors in the case r = 1, for small values of a. We also determine the

asymptotics of the slope function as d approaches infinity, for arbitrary (fixed) values a.

In Section 6, we compute the coefficients b1 and b2 (corresponding to boundary classes

δ1 and δ2, respectively)) of secant-plane divisors on Mg, as functions of bλ and b0. Our

Theorem 6 states that the pullback of any secant-plane divisor class Sec under the map

j2 : M2,1 → Mg given by attaching marked genus-2 curves to a general “broken flag” curve

is supported along the locus of curves with marked Weierstrass points.

Finally, in Section 7 we prove an enumerative formula for the number of linear series

with exceptional secant planes along a general curve when ρ = 1. Namely, we have:

Theorem 7. Let ρ = 1, µ = −1. The number N ′,d−r−1
d of linear series gs

m with d-secant

(d− r − 1)-planes on a general curve of genus g is given by

N ′,d−r−1
d =

(g − 1)!1! · · · s!
(g −m+ s)! · · · (g −m+ 2s− 1)!(g −m+ 2s+ 1)!

·

[(−gm+m2 − 3ms+ 2s2 −m+ s− g)A

+ (gd+ g −md−m+ 2sd+ 2s+ d+ 1)A′]

where A and A′ compute, respectively, the expected number of d-secant (d− r)-planes to a
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gs+1
m that intersect a general line, and the expected number of (d+ 1)-secant (d− r)-planes

to a gs+1
m+1. Note that formulas for A and A′ were computed by Macdonald in [M].

Subsequently, we specialize to the case r = 1, where we obtain a hypergeometric formula

for the number N ′,d−2
d of (2d − 1)-dimensional series with d-secant (d − 2)-planes along a

general curve when ρ = 1. Using that formula, we prove Theorem 8, which characterizes

exactly when N ′,d−2
d is positive, and we determine the asymptotics of N ′,d−2

d as d approaches

infinity.
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2 Validative study

We begin by proving the following theorem.

Theorem 1. Assume that ρ = 0 and µ = −1. Under these conditions, a general curve C

of genus g admits no s-dimensional linear series gs
m with d-secant (d− r − 1)-planes.

The theorem asserts that on C, there are no pairs of series (gs−d+r
m , gs

m) ∈ Gs−d+r
m (C)×

Gs
m(C) satisfying (1.1) for any choice of d-tuple (p1, . . . , pd) ∈ Cd. To prove it, we specialize

C to a broken flag curve C̃ of the type used in Eisenbud and Harris’ proof of the Giesker-

Petri theorem [EH2]: C̃ is a semi-stable curve comprised of a “spine” of rational curves Yi,

some of which are linked via a sequence of rational curves to g elliptic “tails” E1, . . . , Eg.

See Figure 1. It then suffices to show that C̃ admits no limit linear series gs−d+r
m →֒ gs

m

satisfying (1.1).

Assume for the sake of argument that C̃ does in fact admit a (limit linear) series

gs−d+r
m →֒ gs

m satisfying (1.1); we will obtain a contradiction by showing that (1.1) is

incompatible with basic numerical restrictions obeyed by the vanishing sequences of the

gs
m and gs−d+r

m at intersection points of rational components along the spine of C̃. Recall

[HM, p. 276] that since ρ(g, s,m) = 0, the set of vanishing sequences of gs
m at the points of

attachment pi = Yi ∩Yi−1 is in bijective correspondence with the set of s-dimensional series

along C or C̃.

In what follows, let VZ denote the aspect of the gs
m along the component Z ⊂ C̃. We

will systematically use the following three basic facts from the theory of limit linear series

[EH3]:

• LS1. At a node p along which components Y, Z ⊂ C̃ intersect transversely, the
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vanishing sequences a(VY , p) and a(VZ , p) verify

ai(VY ) + as−i(VZ) ≥ m

for all 0 ≤ i ≤ s. Moreover, if ρ(g, s,m) = 0, then each of the preceding inequalities

is an equality.

• LS2. Assume that ρ(g, s,m) = 0, and that a set of compatible bases for V along C̃

has been chosen, in the sense that VYi ⊂ VYi+1 , for every i.

– If Yi is linked via rational curves to an elliptic tail, then

aj(VYi+1 , pi+1) = aj(VYi , pi) + 1

for all 0 ≤ j ≤ s except for a single index j, for which

aj(VYi , pi+1) = aj(VYi , pi).

– If Yi is not linked via rational curves to an elliptic tail, then

a(VYi+1 , pi+1) = a(VYi , pi).

• LS3. The vanishing sequences of a linear series along points in P1 are in bijection with

Schubert cycles in H∗(G(s,m),Z), the integral cohomology ring of the Grassmannian

of s-dimensional subspaces of an m-dimensional projective space. A smooth rational

curve P1 admits a linear series gs
m with ramification sequences αi = α(V, ri) at distinct

points of ri ∈ P1 if and only if the product of the corresponding Schubert cycles is

nonzero in H∗(G(s,m),Z).
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Figure 1: A broken flag curve.

• LS4. Let (L, V ) denote a linear series along a reducible curve Y ∪qZ. If Z is a smooth

and irreducible elliptic curve, then the aspect VZ of the linear series along Z has a

cusp at q, i.e., the ramification sequence α(Vz, q) satisfies

α(Vz, q) ≥ (0, 1, . . . , 1).

For convenience, we make the following simplifying assumption, which we will remove

later.

No qi lies along an elliptic tail.

Note that, by repeated blowing-up, we are also free to assume that no qi lies at a point

of attachment linking components of C̃.

Now fix a component Yi along the spine. If it is interior to the spine, then it has at least

two special points pi = 0 and pi+1 = ∞ corresponding to the intersections with adjacent

rational components Yi−1 and Yi, respectively, along the spine. Furthermore, if it is linked

to an elliptic tail, then it has an additional special point, call it 1. If Yi is not interior to

the spine, then it has two special points, one of which (either pi or pi+1, which we label by
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0 or ∞, respectively) corresponds to an intersection with an adjacent component along the

spine and another, 1, arising from the fact that Yi is linked to an elliptic tail.

Denote the vanishing orders of VYi at 0 (resp., ∞) by aj (resp., bj), 0 ≤ j ≤ s; if

VYi is spanned by sections σj(t), 0 ≤ j ≤ s in a local uniformizing parameter t for which

ordt(σi) < ordt(σj) whenever i < j, then ai := ordt(σi). Denote the corresponding vanishing

orders of the gs−d+r
m along Yi by uj and vj , respectively. Note that the sequence (uj) (resp.,

(vj)) is a subsequence of (aj) (resp, (bj)). Recall that (uj) and (vj) correspond to Schubert

cycles in H∗(G(s− d+ r,m),Z).

Now assume that a simple base point of our gs−d+r
m lies along Yi; the existence of the

base point imposes restrictions on the Schubert cycles corresponding to (uj) and (vj). To

make sense of these, we introduce the following terminology: we say that (uj) and (vj) are

complementary if

uj = ak(j) and vj = bs−k(s−d+r−j)

for some sequence of nonnegative integers k(j), j = 0, . . . , s− d+ r. If the gs−d+r
m along C̃

has a base point along Yi, then (uj) and (vj) fail to be complementary to one another by a

precise amount, as follows.

Lemma 1. Assume that a base point of the gs−d+r
m lies along Yi, and that uj = ak(j), j =

0, . . . , s− d+ r. Then

vj = bs−k(s−d+r−j)−k′(j), j = 0, . . . , s

for some sequence of nonnegative integers k′(j), j = 0, . . . , s− d+ r, at least (s− d+ r) of

which are equal to 1 or more.

A similar statement applies to the case where multiple base points of the gs−d+r
m lie
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along Yi:

Lemma 2. Assume that the gs−d+r
m along Yi has base points i1p1 + · · · + id−1pd, where

i1, . . . , id−1 are nonnegative and i1 + · · · + id−1 ≤ d. Then

vj = bs−k(s−d+r−j)−k′(j), j = 0, . . . , s

for some sequence of nonnegative integers k′(j), j = 0, . . . , s− d+ r, at least (s− d+ r) of

which are equal to at least (i1 + · · · + id−1). For the remaining index j,

k(j) ≥ i1 + · · · + id−1 − 1.

Given (vj), define the sequence (u′j), j = 0, . . . , s − d + r by setting u′j := m − vj for

every j. If Yi is interior to C̃, then, by LS1, (u′j) is a subsequence of the vanishing sequence

a(VYi+1,pi+1) = (a′0, . . . , a
′
s). Letting

u′j = a′k′′(j),

the first lemma asserts that the sequences k(j) and k′′(j) satisfy

k′′(j) ≥ k(j) + 1

for at least (s−d+r) values of j. In other words, the base point forces (s−d+r) vanishing

order indices k(j) to “shift to the right” by at least one place. More generally, Lemmas 1 and

2 imply that d base points, possibly occurring with multiplicities, force at least d(s− d+ r)

shifts of vanishing order indices. On the other hand, shifts of vanishing order indices are

constrained; namely, each index can shift at most s − (s − d + r) = d − r places. So the

maximum possible number of shifts is (s− d+ r + 1)(d− r).

18



Now notice that

(s− d+ r + 1)(d− r) − d(s− d+ r) = µ,

while µ = −1 by assumption. So provided all base points occur along interior com-

ponents of the spine of C̃, we have a contradiction. A trivial modification of the same

argument yields a contradiction whenever base points lie along either of the two ends of the

spine. So, modulo our simplifying assumption, we have reduced to proving Lemmas 1 and

2.

Proof of Lemmas 1 and 2. Consider first the case where the component Y along which

the base point p lies has three special points 0, 1, and ∞. Assume, moreover, that p is

a simple base point. The Schubert cycle corresponding to p in H∗(G(s − d + r,m),Z) is

σ(p) = σ1,...,1. On the other hand, by LS4, the gs−d+r
m along Y has at least a cusp at 1; i.e.,

the corresponding Schubert cycle σ(1) satsifies

σ(1) ≥ σ1,...,1,0.

Meanwhile, by LS3, the intersection

σ(0) · σ(1) · σ(∞) · σ(p) ∈ H∗(G(s− d+ r,m)) (2.1)

is necessarily nonzero. Since σ(p) = σ1,...,1, (2.1) is clearly nonzero if and only if the corre-

sponding intersection

σ(0) · σ(1) · σ(∞)

is nonzero in H∗(G(s − d + r,m − 1),Z). In particular, we must have

σ(0) · σ(∞) · σ1,...,1,0 6= 0 ∈ H∗(G(s− d+ r,m− 1)).
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Assume that the vanishing sequence of the gs
m along Y at 0 is

a(VY , 0) = (a0, . . . , as)

and that, correspondingly, the vanishing sequence of the gs−d+r
m at 0 is

(u0, . . . , us−d+r) = (ak(0), . . . , ak(s−d+r)).

We then have

σ(0) = σak(s−d+r)−(s−d+r),...,ak(1)−1,ak(0)

The sequence

(v0, . . . , vs−d+r) = (bs−k(s−d+r), . . . , bs−k(0))

is complementary to (u0, . . . , us−d+r). Let σ(0∨) denote the Schubert cycle corresponding

to (vj); then

σ(0∨) = σbs−k(0)−(s−d+r),...,bs−k(s−d+r)
.

The key observation to make is as follows. Combining LS1 and LS2, we have

bs−i = m− 1 − ai (2.2)

for every i in {0, . . . , s}, except for a unique index j for which bs−j = m − aj . It follows

that the intersection

σ(0) · σ(0∨) ∈ H∗(G(s− d+ r,m− 1))

is either 0 or is supported at a point, depending upon whether

bs−k(j) = m− 1 − ak(j)

for all j in {0, . . . , s− d+ r} or not.
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Note, on the other hand, that

σ(0) · σ1,...,1,0

is supported along a union of Schubert cycles

σ(0′) = σak(s−d+r)−(s−d+r)+k′′′(s−d+r),...,ak(1)−1+k′′′(1),ak(0)+k′′′(0)

for some sequence of nonnegative integers k′′′(j), j = 0, . . . , s−d+r, at least each (s−d+r)

of which are equal to at least one.

Now write

σ(∞) = σbs−k(0)−(s−d+r)−k′(0),...,bs−k(s−d+r)−k′(s−d+r).

If the intersection

σ(0′) · σ(∞) = σak(s−d+r)−(s−d+r)+k′′′(s−d+r),...,ak(0)+k′′′(0)

· σbs−k(0)−(s−d+r)−k′(0),...,bs−k(s−d+r)−k′(s−d+r)

is nonzero, then the (s− d+ r + 1) sums of complementary indices

ak(s−d+r) − (s− d+ r) + k′′′(s− d+ r) + bs−k(s−d+r) − k′(s− d+ r)

. . .

ak(0) + k′′′(0) + bs−k(0) − (s− d+ r) − k′(0)

are each at most m− 1− (s− d+ r). By (2.2), coupled with the fact that (s− d+ r) values

of k′′′(j), j = 0, . . . , s − d + r are nonzero, it follows that the same is true of the values of

k′(j), j = 0, . . . , s − d + r. The conclusion of the first lemma follows immediately in the

case where Y has three special points. The preceding argument also extends immediately

to cover those cases where multiple base points i1p1 + · · · + inpn lie along Y . Finally, if Y

has only two special points instead of three, simply note that by LS1 and LS2, we have

bs−i = m− ai
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for every i in {0, . . . , s}, and argue as before. ✷

To complete the proof of Theorem 1, we explain how to remove the simplifying assump-

tion inserted at the beginning. Namely, assume that the gs−d+r
m admits a base point p along

an elliptic tail E. Say that E intersects the rational component Z of C̃ in a node q of C̃.

Note that the vanishing sequence at q of the gs−d+r
m along E is bounded above by

(m− s+ d− r − 2, . . . ,m− 3,m− 1);

otherwise, the subpencil of sections of the gs−d+r
m along E that vanish to maximal order

define (upon removal of the (m − 3)-fold base point (m − 3)q) a g1
1, which is absurd. It

follows, by LS1, that the vanishing sequence at q of the gs−d+r
m along Z is at least

(1, 3, . . . , s− d+ r + 2),

which in turn implies that the same estimate holds for the vanishing sequence of the gs−d+r
m

along the rational component Yi of the spine of C̃ linked to E at the corresponding node q̃.

In other words, if the gs−d+r
m has a base point along E, then the gs−d+r

m also has a base

point and a cusp along Yi. So, in effect, we are reduced to the “simplified” setting, and are

free to argue as before.

An elaboration of the preceding argument yields the following generalization of Theorem

1.

Theorem 2. If ρ + µ = −1, then a general curve C of genus g admits no s-dimensional

linear series gs
m with d-secant (d− r − 1)-planes.

To prove Theorem 2, we argue much as before, and assume that a flag curve C̃ carries

an inclusion (1.1). We stipulate that base points of the gs−d+r
m lie along the spine of C̃, away
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from intersections of components of C̃. Like before, we obtain the theorem by analyzing the

vanishing sequences of the gs−d+r
m along a component of C̃ at the points 0 and ∞, under

the assumption that a base point lies along that component. The result follows from the

following statement, proved along the lines of Lemmas 1 and 2 above:

Lemma 3. Assume that ρ is nonnegative. If a flag curve C̃ carries an inclusion (1.1), then

the vanishing order indices of the gs−d+r
m shift at least d(s− d+ r) − ρ times.

As a consequence, whenever ρ + µ = −1, a flag curve C̃ carries no inclusions (1.1),

which implies Theorem 2.

Proof. Note that, by the Brill-Noether theorem, C̃ carries no gs
m, so ρ is automatically

nonnegative. When ρ is positive, a modified version of the conditions on vanishing sequences

in the case ρ = 0 given in LS2 applies. Given a choice of compatible bases for the gs
m along

C̃, we have

a(VYi+1 , pi+1) ≥ a(VYi , pi),

and, moreover, whenever Yi is linked to an elliptic tail, there is at most one index j, 0 ≤

j ≤ s, for which

aj(VYi , pi) = aj(VYi+1 , pi+1).

On the other hand, it is no longer the case that the other (s − d + r) vanishing orders ak

satisfy

ak(VYi , pi) = ak(VYi+1 , pi+1) + 1;

rather, the total amount by which “jumps” in vanishing orders exceed 1 is at most ρ.

Now say that Yi is linked to an elliptic tail and that, for some index k,

ak(VYi , pi) = ak(VYi+1 , pi+1) + ν(k)
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for some integer ν(k) ∈ {1, . . . , ρ+ 1}. In place of (2.2), we instead deduce that

bs−k ≤ m− ν(k) − ak. (2.3)

As before, we study intersections of Schubert cycles

σ(0) · σ(∞) · σ1,...,1,0

in H∗(G(s− d+ r,m− 1)), which are sums of intersections

σ(0′) · σ(∞) = σak(s−d+r)−(s−d+r)+k′′′(s−d+r),...,ak(0)+k′′′(0)

· σbs−k(0)−(s−d+r)−k′(0),...,bs−k(s−d+r)−k′(s−d+r).

If such an intersection is nonzero, then, just as before, the (s − d + r + 1) sums of

complementary indices

ak(s−d+r) − (s− d+ r) + k′′′(s− d+ r) + bs−k(s−d+r) − k′(s− d+ r)

. . .

ak(0) + k′′′(0) + bs−k(0) − (s− d+ r) − k′(0)

are each at most m− 1− (s− d+ r). By (2.3), coupled with the fact that (s− d+ r) values

of k′′′(j), j = 0, . . . , s − d + r are nonzero, it follows that at least (s − d + r − τ) values of

k′(j), j = 0, . . . , s− d+ r are nonzero, where τ is the number of indices k for which ν(k) is

strictly greater than 1. Lemma 3 follows immediately.

We next prove a finiteness result for linear series with exceptional secant planes on a

general curve in the case where ρ = 1.

Theorem 3. If ρ = 1 and µ = −1, then there are finitely many linear series gs
m with

d-secant (d− r − 1)-planes on a general curve C of genus g.
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Proof. Since the space of linear series on a general curve is irreducible whenever ρ is positive,

it suffices to show that some linear series without d-secant (d−r−1)-planes exists on C. To

this end, it suffices to show that some smoothable linear series without d-secant (d− r− 1)-

planes exists on a flag curve C̃ obtained by specialization from C.

We construct a particular choice of flag curve and linear series as follows. Fix a smooth

irreducible elliptic curve Ẽ with general j-invariant, together with a general curve Ỹ of

genus (g−1). Next, specialize Ẽ and Ỹ to flag curves E and Y . Glue E and Y transversely,

letting q denote their intersection. Let

C ′ := Y ∪q E.

Furthermore, let Gs
m(C ′) denote the space of limit linear series along C ′, and let

Gs
m(C ′)(1,1,...,1,1)

denote the subspace of Gs
m(C ′) comprising limit linear series VY for which

α(VY , q) ≥ (0, 1, . . . , 1, 2). (2.4)

The vanishing sequence corresponding to (1, 1, . . . , 1, 1) is (1, 2, 3, . . . , s, s+ 1); by LS1,

we deduce that

a(VE , q) ≥ (m− s− 1,m− s,m− s+ 1, . . . , s− 3, s− 2, s− 1),

i.e., that

α(VE , q) ≥ (m− s− 1, . . . ,m− s− 1). (2.5)

Now let

rY = (1, . . . , 1) and rE = (m− s− 1, . . . ,m− s− 1).
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The modified Brill-Noether numbers ρ(Y, (rY )q) and ρ(E, (rE)q), which compute the ex-

pected dimensions of the spaces of limit linear series along Y and E with ramification at q

prescribed by (2.4) and (2.5), respectively, are

ρ(Y, (rY )q) = ρ(g − 1, s,m) − (s+ 1) = ρ(g, s,m) + s− (s+ 1) = 0

and

ρ(E, (rE)q) = ρ(1, s,m) − (s+ 1)(m− s− 1) = 1.

Since Ỹ and Ẽ are general, their respective spaces of limit linear series Gs
m(Y, (rY )q) and

Gs
m(E, (rE)q) are of expected dimension, by Eisenbud and Harris’ generalized Brill–Noether

theorem [EH3]. It follows immediately that Gs
m(C ′)(1,...,1) is of expected dimension, so every

linear series in Gs
m(C ′)(1,...,1) smooths, by the Regeneration Theorem [HM, Thm 5.41].

To prove Theorem 3, it now suffices to show that no limit linear series in Gs
m(C ′)(1,...,1)

admits an inclusion (1.1). Note, however, that

a(VY , q) ≥ (1, . . . , 1)

implies that along any component of the spine of C ′, any gs
m satisfies

bs−i ≥ m− 1 − ai

for every index i ∈ {0, . . . , s}. (This is clear along E, where the special points 0 and ∞ have

vanishing sequences (0, 1, . . . , s) and (m− s− 1,m− s, . . . ,m− 1), and along Y it follows

from the fact that ρ(Y, (rY )q) = 0.) It now follows by the same argument used to prove

theorems 1 and 2 that no limit linear series in Gs
m(C ′)(1,...,1) admits an inclusion (1.1).
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Y
. . .

q E

︷ ︸︸ ︷
(g − 1) elliptic tails along Y

Figure 2: C ′ = Y ∪E. Here a(VY , q) = (1, . . . , 1) and a(VE , q) = (m− s− 1, . . . ,m− s− 1).

3 Quantitative study

In this section, we study the following problem. Let π : X → B denote a one-parameter

(flat) family of curves whose generic fiber is smooth, with some finite number of special fibers

that are irreducible curves with nodes. We equip each fiber of π with an s-dimensional series

gs
m. That is, X comes equipped with a line bundle L, and on B there is a vector bundle V

of rank (s+ 1), such that

V →֒ π∗L.

If µ = −1, we expect finitely many fibers of π to admit linear series with d-secant (d −

r − 1)-planes. We then ask for a formula for the number of such series, given in terms of

“tautological” invariants associated with the family π.

One natural approach to the problem is to view those fibers whose associated linear

series admit d-secant (d− r − 1)-planes as a degeneracy locus for a map of vector bundles

over B. This is the point of view adopted by Ziv Ran in his work [R2, R3] on Hilbert

schemes of families of nodal curves. Used in tandem with Porteous’ formula for the class

of a degeneracy locus of a map of vector bundles, Ran’s work shows that the number of

d-secant (d− r − 1)-planes is a function Nd−r−1
d of tautological invariants of the family π,

namely:

α := π∗(c
2
1(L)), β := π∗(c1(L) · ω), γ := π∗(ω

2), δ0, and c := c1(V) (3.1)
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where ω = c1(ωX/B) and where δ0 denotes the locus of points b ∈ B for which the corre-

sponding fiber Xb is singular.

In other words, for any fixed choice of s, we have

Nd−r−1
d = Pαα+ Pββ + Pγγ + Pcc+ Pδ0δ0 (3.2)

where the arguments P are polynomials in m and g with coefficients in Q. Unfortunately,

the computational complexity of the calculus developed by Ran to evaluate Nd−r−1
d grows

exponentially with d. On the other hand, given that a formula (3.2) in tautological invariants

exists, the problem of evaluating it reduces to producing sufficiently many relations among

the coefficients P .

In fact, the polynomials P satisfy one “obvious” relation, obtained by normalizing L by

a factor from B that trivializes V, and noting that the formula (3.2) is invariant under such

normalizations. Namely, we require that

Pαπ∗

(
c1(L) − π∗c1(V)

s+ 1

)2

+ Pβπ∗

(
c1

(
L − π∗c1(V)

s+ 1

)
· ω

)
+ Pγγ + Pδ0δ0

= Pαπ∗(c
2
1(L) + Pβπ∗(c1(L) · ω) + Pγγ + Pδ0δ0 + Pc.

The coefficient of c in the left-hand expression is − 2m
s+1Pα − 2g−2

s+1 Pβ ; since the coefficient of

c on the right-hand expression is Pc, we deduce that

2mPα + (2g − 2)Pβ + (s+ 1)Pc = 0. (3.3)

3.1 Test families

To find additional relations among the tautological coefficients P , our strategy is to evalu-

ate the formula (3.2) along test families whose secant-plane behavior we understand, and
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thereby obtain relations among the coefficients of (3.2) that determine the polynomials P .

Our test families are as follows:

1. Family one. Projections of a generic curve of degree m in Ps+1 from points along a

disjoint line.

2. Family two. Projections of a generic curve of degree m+ 1 in Ps+1 from points along

the curve.

3. Family three. Generic pencils of curves of class [C] on K3 surfaces X ⊂ Ps with Picard

number two that contain smooth curves of degree m and genus g. (Such surfaces were

shown to exist, for a dense set of (d,m, s), in [Kn2, Thm. 1.1].)

Now assume that µ(d, s, r) = −1. Let A denote the expected number of d-secant (d − r)-

planes to a curve of degree m and genus g in Ps+1 that intersect a general line. Let A′

denote the expected number of (d + 1)-secant (d − r)-planes to a curve of degree (m + 1)

and genus g in Ps+1. The expected number of fibers of the first (resp., second) family with

d-secant (d− r − 1)-planes equals A (resp., (d+ 1)A′).

Determining those relations among the tautological coefficients induced by the three

families requires knowing the values of α, β, ω, γ, and c along each family π : X → B.

These are determined as follows.

• Family one. The base and total spaces of our family are B = P1 and X = P1 × C,

respectively. Letting π1 and π2 denote, respectively, the projections of X onto P1 and

C, we have

L = π∗2OC(1), ωX/P1 = π∗2ωC , and V = OG(−1) ⊗OP1
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where G = G(s, s+1) denotes the Grassmannian of hyperplanes in Ps+1. Accordingly,

α = β = γ = δ0 = 0, and c = −1.

It follows that

Pc = −A.

• Family two. This time, X = C × C and B = C. Here

L = π∗2OC(1) ⊗O(−∆), ωX/P1 = π∗2ωC , and V = OG(−1) ⊗OC .

Consequently, letting H = c1(OC(1)), we have

α = −2∆ · π∗2(m+ 1){ptC} + ∆2 = −2m− 2g,

β = (π∗2H − ∆) · π∗2KC = 2 − 2g,

c = −m− 1, and γ = δ0 = 0.

It follows that

(−2m− 2g)Pα + (2 − 2g)Pβ + (−m− 1)Pc = (d+ 1)A′.

• Family three. Let S denote a K3 surface in Ps, such that

Pic S = ZH ⊕ Z[C].

where H is the class of a hyperplane section, while C is a smooth, irreducible curve of

genus g such that C ·H = m. The base locus of a pencil of curves of class [C] consists

of [C]2 = (2g − 2) points. Accordingly, we have

X = Bl2g−2 ptsS and B = P1.
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Clearly, c1(L) = H. Likewise, the relative dualizing sheaf of our family is given by

ωX/P1 = ωX ⊗ π∗OP1(2).

Now let f denote the class of a fiber of π, and let Ei, 1 ≤ i ≤ 2g−2, denote the classes

of the exceptional divisors of the blow-up X → S. Then

ω = KX + 2f

=

2g−2∑

i=1

Ei + 2

(
[C] −

2g−2∑

i=1

Ei

)
= 2[C] −

2g−2∑

i=1

Ei.

Whence,

γ = 4[C]2 +

2g−2∑

i=1

E2
i = 6g − 6, α = H2 = 2s− 2, and

β = 2[C] ·H = 2m.

We compute δ0 as follows. Let C2 ⊂ H0(OS(C)) denote the two-dimensional subspace

of sections defining our pencil. Let X2 denote the fiber product X ×P1 X , equipped

with projections π1 and π2 onto each of its factors. Now let

E := (π1)∗(π
∗
2OX (C) ⊗OX2/OX2(−∆));

over a point p ∈ P1, Ep comprises sections of OS(C) modulo those vanishing to order

2 at p.

Note that the singular fibers of π comprise the locus where the evaluation map

C2 ⊗OS
ev−→ E

fails to be surjective. It follows that δ0 = c2(E). On the other hand, it is not hard to

see that there is an exact sequence

0 → OS(C) ⊗ T ∗
S → E → OS(C) → 0;
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it follows that

ct(E) = ct(OS(C)) · ct(OS(C) ⊗ T ∗
S )

= (1 + t[C]) · (1 + t(α1 + 2[C]) + t2(α1[C] + [C]2 + α2))

where αi = ci(T ∗
S ). We deduce that

δ0 = 2α1[C] + 3[C]2 + α2.

Here α1 = c1(KS) =
∑2g−2

i=1 Ei, while

α2 = χ(S) = 24.

It follows that δ0 = 6g + 18.

Finally, the vector bundle V → P1 is trivial, since the Ps to which the fibers of X → P1

map is fixed. So c = 0.

Therefore, the third family yields the relation

(2s− 2)Pα + 2mPβ + (6g − 6)Pγ + (6g + 18)Pδ0 = NK3 (3.4)

where NK3 denotes the number of fibers of π with exceptional secant-plane behavior.

3.2 The value of NK3

If r = 1, then µ = −1 forces d = 2s − 1 and d − r − 1 = s − 2, so S admits no d-secant

(d − 2)-planes, by [Kn1, Thm. 1.1]. It follows that NK3 = 0 when r = 1. At the other

extreme, if r = s then the assumption that µ = −1 forces

d = 2s− 1 and d− r − 1 = s− 2.
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By Bézout’s theorem, the degree-(2s − 2) surface S admits no (s − 2)-planes, so again we

have NK3 = 0.

For a general choice of (d,m, r, s), the value of NK3 is unclear. However, we conjecture

that the following is true.

Conjecture 1. Let X ⊂ Ps be a K3 surface with Picard group

Pic X = ZL⊕ ZΛ

where

L2 = 2s− 2,Λ2 = 2g − 2, and Λ · L = m.

If

ρ(g, s,m) = 0 and µ(d, s, r) = −1, (3.5)

then X admits no d-secant (d− r − 1)-planes, except possibly when m = 2s and g = s+ 1.

NB: The hypothesis that ρ(g, s,m) = 0 implies that

m = s(a+ 1), and g = (s+ 1)a, (3.6)

for some positive integer a. When a = 1, i.e., when m = 2s and g = s+1, the curves of class

L on X are canonical curves. As soon as any such curve admits a d-secant (d−r−1)-plane,

it admits an r-dimensional family of such secant planes. Consequently, those canonical

curves with d-secant (d − r − 1)-planes comprise a locus of codimension at least 2. As a

result, the case a = 1 has no bearing on our determination (in Sections 4-6) of the classes

of secant-plane divisors on Gs
m or Mg.

The following argument supports our conjecture. Assume that some d-secant (d−r−1)-

plane to X exists. Let Z ⊂ X denote the intersection of that plane with X. We will obtain
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a contradiction, under the additional assumption that Z be curvilinear. Provided Z is

curvilinear, there is some smooth hyperplane section Y of X that passes through Z.

Note H1(X,L) = 0, because L is globally generated. Whence, the exact sequence

defining Z in X

0 → L⊗ IZ/X → L→ L⊗OZ → 0

induces an exact sequence

0 → H0(X,L⊗ IZ/X) → H0(X,L)
ev−→ H0(X,OZ) → H1(X,L⊗ IZ/X) → 0

in cohomology. Here h0(X,OZ) = d, and rk(ev) = d − r because Z determines a d-secant

(d− r − 1)-plane to X, by assumption. It follows that

h1(X,L⊗ IZ/X) = r. (3.7)

On the other hand, we clearly have

L⊗ IY/X
∼= OX ,

while the adjunction theorem on X implies IZ/Y (KX + L) ∼= OY (KY − Z), i.e., that

L⊗ IZ/Y
∼= OY (KY − Z).

It follows that the exact sequence of (twisted) ideal sheaves

0 → L⊗ IY/X → L⊗ IZ/X → L⊗ IZ/Y → 0

induces an exact sequence

H1(X,OX) → H1(X,L⊗ IZ/X) → H1(Y,OY (KY − Z)) → H2(X,OX)

→ H2(X,L⊗ IZ/X)
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in cohomology. Here H1(X,OX) = 0, while

H2(X,OX) ∼= H0(X,KX)∨ ∼= H0(X,OX)∨ ∼= C,

H1(Y,OY (KY − Z)) ∼= H0(Y,OY (Z)), and

H2(X,L⊗ IZ/X) ∼= H2(X,L) ∼= H0(X,−L)∨ = 0.

By (3.7), it follows that Z defines a gr
d with ρ(g, r, d) = −1 along the canonical curve Y .

Note that Lazarsfeld’s theorem [La, Lem. 1.3] states that provided there are no multiple

or reducible curves of class L on X, the gr
d defined by Z is Brill–Noether general, which

yields the desired contradiction. More precisely, Lazarsfeld shows that provided a certain

vector bundle F admits no nontrivial endomorphisms, there are no multiple or reducible

curves of class L on X. Further, as was pointed out in [FKP], to show that F admits no

nontrivial endomorphisms, it suffices to show that on X there is no decomposition

L = M +N (3.8)

where M and N are effective and verify h0(M) ≥ 2, h0(N) ≥ 2.

To see why, recall that the argument of [La, Lem. 1.3] establishes that if F admits

nontrivial endomorphisms, then c1(F∗) = L decomposes nontrivially as a sum of effective

classes M +N , where

M = c1(M̃) and N = c1(Ñ)

for suitably chosen coherent sheaf quotients M̃ and Ñ of F∗. But Lazarsfeld also shows

that F∗ is generated by its global sections, so det M̃ and det Ñ are also generated by their

global sections (and are nontrivial); it follows that h0(M) ≥ 2 and h0(N) ≥ 2.

To show that no decomposition (3.8) exists, we assume the opposite and argue for a

contradiction. Note that if a decomposition (3.8) exists, then because det M̃ and det Ñ are
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generated by their global sections, h1(M) = h1(N) = 0, and the Riemann-Roch formula

yields

h0(M) = 2 +
1

2
M2 and h0(N) = 2 +

1

2
N2.

Since h0(M) ≥ 2, h0(N) ≥ 2, we have

M2 ≥ 0 and N2 ≥ 0. (3.9)

On the other hand, we also have

M · Λ ≥ 0 and N · Λ ≥ 0. (3.10)

Now let

M = αL+ βΛ and N = (1 − α)L− βΛ.

Then

M2 = (αL+ βΛ)2

= α2(2s− 2) + β2(2g − 2) + 2αβm ≥ 0,

N2 = ((1 − α)L− β)2

= (1 − α)2(2s− 2) + β2(2g − 2) − 2(1 − α)βm ≥ 0,

M · Λ = (αL+ βΛ) · Λ

= αm+ β(2g − 2) ≥ 0, and

N · Λ = ((1 − α)L− β) · Λ = (1 − α)m− β(2g − 2) ≥ 0.

Note that the last two inequalities combine to yield

0 ≤ αm+ β(2g − 2) ≤ m. (3.11)
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There are now two cases to consider, namely: (α > 0, β < 0), and (α < 0, β > 0). The

argument is virtually identical in either case; we present it in the first case.

First, observe that (3.11) implies that

−β
α

(2g − 2) ≤ m ≤ − β

(α− 1)
(2g − 2). (3.12)

Similarly, the inequality deduced from M2 ≥ 0 above implies that

m ≤ −α
β

(s− 1) − β

α
(g − 1). (3.13)

Now let x = −β
α > 0. Then (3.13) may be rewritten as

(g − 1)x2 −mx+ (s− 1) ≥ 0.

The left-hand side of (3.12) forces

x ≤ m−
√
m2 − 4(g − 1)(s− 1)

2g − 2
, i.e.,

−β ≤
(
m−

√
m2 − 4(g − 1)(s− 1)

2g − 2

)
α.

The right-hand side of (3.12) now forces

m ≤ (m−
√
m2 − 4(g − 1)(s− 1))

α

α− 1
, i.e.,

1 − 1

α
≤ 1 −

√
m2 − 4(g − 1)(s− 1)

m
, i.e.,

α ≤ m√
m2 − 4(g − 1)(s− 1)

.

Next, we apply (3.6), with a ≥ 2. We deduce that α ≤ 1 necessarily, except when a = 2,

when α = 2 is also a possibility.

Similarly, if (α < 0, β > 0), we conclude that −α ≤ 1 except possibly when a = 2, when

α = −2 is also a possibility.

We now analyze the possibilities that remain.
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• If α = 1, then the left-hand side of (3.11) yields −β ≤ m
2g−2 = s(a+1)

2(s+1)a−2 , which forces

β = 0.

• Similarly, if α = 0, then the right-hand side of (3.11) yields β = 0.

• If α = −1, then the right-hand side of (3.11) yields β ≤ m
g−1 = s(a+1)

(s+1)a−1 , so that

β = 0 or 1. Then (3.11) forces β = 1. But then M ·L = (−L+Λ)·L = m−(2g−2) ≥ 0

forces m ≥ 2g − 2, which contradicts (3.6).

• If a = 2 and α = −2, then the right-hand side of (3.11) forces β ≤ 2. So either

(α, β) = (−2, 1), or (α, β) = (−2, 2). But the left-hand side of (3.11) precludes

(α, β) = (−2, 1), and the condition that N2 ≥ 0 precludes (α, β) = (−2, 2).

3.3 Formulas for A and A′, and their significance

Formulas for A and A′ were calculated by Macdonald [M] and [ACGH]. Such formulas are

only valid so long as the loci in question are actually zero-dimensional. On the other hand,

for the purpose of calculating class formulas for secant-plane divisors on Mg, it suffices to

verify that Macdonald’s formulas are enumerative for a certain “dense” subset of of the

set of 4-tuples (d,m, r, s). Namely, it suffices to show that for every fixed triple (d, r, s),

Macdonald’s formulas are enumerative whenever m = m(d, r, s) is sufficiently large. To do

so, we view the curve C ⊂ Ps+1 in question as the image under projection of a non-special

curve C̃ in a higher-dimensional ambient space. We then re-interpret the secant behavior of

C in terms of the secant behavior of C̃; the latter, in turn, may be characterized completely

because C̃ is non-special.

Given a curve C̃, let L be a line bundle of degree m̃ on C̃, let V ⊂ H0(C̃, L); the pair
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(L, V ) defines a linear series on C̃. Now let S
ed(L) denote the vector bundle

S
ed(L) = (π

1,..., ed
)∗(π

∗
ed+1

L⊗O
Sym

ed+1
eC
/O

Sym
ed+1

eC
(−∆

ed+1
))

over Sym
edC̃, where πi, i = 1 . . . d̃+ 1 denote the d̃+ 1 projections of Sym

ed+1C̃ to C̃, π
1,..., ed

denotes the product of the first d̃ projections, and ∆
ed+1

⊂ Sym
ed+1C̃ denotes the “big”

diagonal of (d̃ + 1)-tuples whose ith and (d̃ + 1)st coordinates are the same. The bundle

S
ed(L) has fiber H0(L/L(−D)) over a divisor D ⊂ Sym

edC̃.

Note that the d̃-secant (d̃− r̃− 1)-planes to the image of C̃ under (L, V ) correspond to

the sublocus of Sym
edC̃ over which the evaluation map

V
ev−→ S

ed(L) (3.14)

has rank (d̃− r̃).

Moreover, by Serre duality,

H0(ω
eC
⊗ L∨ ⊗O

eC
(p1 + · · · + p

ed
))∨ ∼= H1(L(−p1 − · · · − p

ed
)); (3.15)

both vector spaces are zero whenever ω
eC
⊗ L∨ ⊗O

eC
(p1 + · · ·+ p

ed
) has negative degree. In

particular, whenever

m̃ ≥ 2g − 1 + d̃, (3.16)

the vector space on the right-hand side of (3.15) is zero. It follows that the evaluation

map (3.14) is surjective for the complete linear series (L,H0(O
eC
(D)) whenever D ⊂ C̃ is

a divisor of degree m̃ verifying (3.16). Equivalently, whenever (3.16) holds, every d̃-tuple

of points in C̃ determines a secant plane to the image of (L,H0(O
eC
(D)) is of maximal

dimension (d̃− 1).
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Now let s̃ := h0(O
eC
(D)). Somewhat abusively, we will identify C̃ with its image in Pes.

Let C denote the image of C̃ under projection from an (s̃−s−2)-dimensional center Γ ⊂ Pes

disjoint from C̃.

Note that d̃-secant (d̃ − r̃ − 1)-planes to C are in bijective correspondence with those

d̃-secant (d̃ − 1)-planes to C̃ that have at least (r̃ − 1)-dimensional intersections with Γ.

These, in turn, comprise a subset S ⊂ G(d̃− 1, s̃) defined by

S = V ∩ σ
s− d̃+ r̃ + 2, . . . , s− d̃+ r̃ + 2︸ ︷︷ ︸

er times

(3.17)

where V, the image of Sym
edC̃ in G(d̃− 1, s̃), is the variety of d̃-secant (d̃− 1)-planes to C̃,

and the term involving σ denotes the Schubert cycle of (d̃ − 1)-planes to C̃ that have at

least (r̃ − 1)-dimensional intersections with Γ. For a general choice of projection center Γ,

the intersection (3.17) is transverse; it follows that

dimS = d̃− r̃(s− d̃+ r̃ + 2), (3.18)

In particular, if d̃ = d+ 1 and r̃ = r, then dimS = 1 + µ(d, s, r) = 0, which shows that for

any choice of (d, r, s), the formula for A′ is enumerative whenever m = m(d, r, s) is chosen

to be sufficiently large.

Similarly, to handle A, note that there is a bijection between d̃-secant (d̃− r̃− 1)-planes

to C that intersect a general line and d̃-secant (d̃−1)-planes to C̃ that have at least (r̃−1)-

dimensional intersections with Γ, and which further intersect a general line l ⊂ Pes. These,

in turn, comprise a subset S ′ ⊂ G(d̃− 1, s̃) given by

S ′ = V ∩ σ
s− d̃+ r̃ + 2, . . . , s− d̃+ r̃ + 2︸ ︷︷ ︸

er times

,s−ed+er+1
. (3.19)
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For a general choice of projection center Γ and line l, the intersection (3.19) is transverse.

In particular, if d̃ = d and r̃ = r − 1, then dimS ′ = 0, which shows that for any choice of

(d, r, s), the formula for A is enumerative whenever m is sufficiently large.

Note that the equation µ = −α− 1 may be rewritten in the following form:

s =
d+ α+ 1

r
+ d− 1 − r.

As a result, r necessarily divides (d+ α+ 1), say d = γr − α− 1, and correspondingly,

s = (γ − 1)r + γ − α− 2.

In particular, whenever ρ = 0 and µ = −1, we have 1 ≤ r ≤ s. As a result, we will focus

mainly on the two “extremal” cases of series where r = 1 or r = s.

3.4 The case r = 1

As a special case of [ACGH, Ch. VIII, Prop. 4.2], the expected number of (d + 1)-secant

(d− 1)-planes to a curve C of degree (m+ 1) and genus g in P2d is

A′ =
d+1∑

α=0

(−1)α

(
g + 2d− (m+ 1)

α

)(
g

d+ 1 − α

)
. (3.20)

In fact, the formula for A in case r = 1 is implied by the preceding formula. To see why,

note that d-secant (d−1)-planes to a curve C of degree m and genus g in P2d that intersect

a disjoint line l are in bijection with d-secant (d− 2)-planes to a curve C of degree m and

genus g in P2d−2 (simply project with center l). It follows that

A =
d∑

α=0

(−1)α

(
g + 2d− (m+ 3)

α

)(
g

d− α

)
.
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Remark. Denote the generating function for the formulas A = A(d, g,m) in case r = 1 by

∑
d≥0Nd(g,m)zd, where

Nd(g,m) := # of d− secant (d− 2) − planes to a g2d−2
m on a genus-g curve.

(As a matter of convention, we let N0(g,m) = 1, and N1(g,m) = c1(L).)

We have the following apparently new generating function for Nd(g,m) (here we view

g and m as fixed, and we allow the parameter d to vary).

Theorem 4.

∑

d≥0

Nd(g,m)zd =

(
2

(1 + 4z)1/2 + 1

)2g−2−m

· (1 + 4z)
g−1
2 . (3.21)

Proof. We will in fact prove that

∑

d≥0

Nd(g,m)zd = exp

(∑

n>0

(−1)n−1

n

[(
2n− 1

n− 1

)
m+

(
4n−1 −

(
2n− 1

n− 1

))
(2g − 2)

]
zn

)
. (3.22)

To see that the formulas (3.22) and (3.21) are equivalent, begin by recalling that the gen-

erating function C(z) =
∑

n≥0Cnz
n for the Catalan numbers Cn =

(2n
n )

n+1 is given explicitly

by

C(z) =
1 −

√
1 − 4z

2z
.

On the other hand, we have
(
2n−1
n−1

)

n
=

(
2 − 1

n

)
Cn−1;
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whence, (3.22) may be rewritten as follows:

∑

d≥0

Nd(g,m)zd = exp

[∑

n>0

(−1)n−1

[[(
2 − 1

n

)
(m− 2g + 2)Cn−1z

n

]
+ 4n−1 · (2g − 2)

zn

n

]]

= exp

[
(2m− 4g + 4)z

∑

n>0

(−1)n−1Cn−1z
n−1

− (m− 2g + 2)
∑

n>0

(−1)n−1Cn−1

zn

n
+ (2g − 2)

∑

n>0

(−4)n−1 z
n

n

]

= exp

[
(2m− 4g + 4)zC(−z) − (m− 2g + 2)

∫
C(−z)dz

+ (2g − 2)

∫
1

1 + 4z
dz

]

where
∫

denotes integration of formal power series. Here

−
∫
C(−z)dz =

∫
1 − (1 + 4z)1/2

2z
dz

= −(1 + 4z)1/2 − ln((1 + 4z)1/2 − 1)

2
+

ln((1 + 4z)1/2 + 1)

2
+

ln z

2
.

We deduce that

∑

d≥0

Nd(g,m)zd = exp

[
(2g − 2 −m)

(
ln 2 − ln((1 + 4z)1/2 + 1)

)
+

(g − 1) ln(1 + 4z)

2

]
,

and (3.21) follows.

To prove (3.22), proceed as follows. Begin by fixing a positive integer d > 0, and let C

denote the image of a g2d−2
m that is sufficiently “nonspecial” in the sense of the preceding

section. Then, as noted in the preceding section, Nd(g,m) computes the degree of the locus

of d-tuples in SymdC for which the evaluation map (3.14) has rank (d− 1). In fact, we will

find it more convenient to work instead on the usual d-tuple product Cd. Clearly, Nd(g,m)

computes 1
d! times the degree Ñd(g,m) of the locus along which the corresponding evaluation

map has rank (d − 1), since there are d! permutations of any given d-tuple corresponding

to a given d-secant plane.

On the other hand, Porteous’ formula implies that Ñd(g,m) is equal to the degree of
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the determinant ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 · · · cd−1 cd

1 c1 · · · cd−2 cd−1

· · · · · · · · · · · · · · ·

0 · · · 0 1 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.23)

where ci denotes the ith Chern class of the secant bundle Sd(L) over Cd. Note [R1] that

the Chern polynomial of Sd(L) is given by

ct(S
d(L)) = (1 + l1t) · (1 + (l2 − ∆2)t) · · · (1 + (ld − ∆d)t)

where li, 1 ≤ i ≤ d is the pullback of c1(L) along the ith projection Cd → C, and ∆j , 2 ≤

j ≤ d is the (first Chern class of the) diagonal defined by

∆j = {(x1, . . . , xd) ∈ Cd|xi = xj for some i < j}.

In particular, modulo li’s, we have

ci = (−1)isi(∆2, . . . ,∆d)

where si denotes the ith elementary symmetric function. In general, it’s not hard to check

that if si(x1, . . . , xd) is the ith elementary symmetric function in the indeterminates xi,

then ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1 s2 · · · sd−1 sd

1 s1 · · · sd−2 sd−1

· · · · · · · · · · · · · · ·

0 · · · 0 1 s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∑

i1,...,id≥0

i1+···id=d

xi1
1 · · ·xid

d .
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It follows that the term of degree one in (2g − 2) and zero in m of the determinant (3.23)

is equal to the term of appropriate degree in

(−1)d
∑

i1,...,id−1≥0

i1+···id−1=d

∆i1
2 · · ·∆id−1

d . (3.24)

Similarly, the term of degree zero in (2g−2) and one in m of (3.23) is equal to the term

of corresponding degree in

(−1)d−1
∑

i1,...,id−1≥0

i1+···id−1=d−1

d∑

j=1

ajlj∆
i1
2 · · ·∆id−1

d (3.25)

where aj = 1 if j = 1 and aj = ij + 1 whenever 2 ≤ j ≤ d.

As an immediate consequence of the way in which the coefficients aj are defined, the

intersection (3.25) pushes down to

(−1)d−1
∑

i1,...,id−1≥0

i1+···id−1=d−1

(
1 +

d−1∑

j=1

(ij + 1)

)
∆i1

2 · · ·∆id−1

d

= (−1)d−1(2d− 1)
∑

i1,...,id−1≥0

i1+···id−1=d−1

∆i1
2 · · ·∆id−1

d .

(3.26)

Lemma 4. Up to a sign, the term of degree zero in (2g− 2) and degree one in m in (3.26)

is equal to
(

2d− 1

d− 1

)
(d− 1)! ·m.

Lemma 5. Up to a sign, the term of degree one in (2g−2) and zero in m in (3.24) is equal

to
(

4d−1 −
(

2d− 1

d− 1

))
(d− 1)! · (2g − 2).

To go further, the following observation will play a crucial rôle. For any d ≥ 1, let Kd

denote the complete graph on d labeled vertices v1, . . . , vd, whose edges ei,j = vivj are each
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oriented with arrows pointing towards vj whenever i < j. Very roughly, the degree of our

determinant (3.23) computes a sum of monomials involving ∆i and lj , where 2 ≤ i ≤ d and

1 ≤ j ≤ d, and so may be viewed as a tally S̃ of (not-necessarily connected) subgraphs of

Kd, each counted with the appropriate weights. By the Exponential Formula [St, 5.1.6], the

exponential generating function for the latter, as d varies, is equal to eES , where ES is the

exponential generating function for the corresponding tally of connected subgraphs, which

correspond, in turn, to the intersections described in Lemmas 4 and 5.

More precisely now, fix an integer d ≥ 1, and consider subgraphs of Kd having some

number τ of connected components G1, . . . , Gτ . (Strictly speaking, we are not merely

interested in subgraphs, but in graphs supported on Kd in which at most one edge appears

with multiplicity 2, so our terminology is abusive.) Say that the component subgraph Gi has

ne(i) vertices; we stipulate that either these are connected by ne(i) edges, or else that Gi has

a unique “marked” vertex and (ne(i)−1) edges. Marked vertices vj correspond to instances

of lj , while edges ei,j correspond to small diagonals ∆i,j = {(x1, . . . , xd) ∈ Cd|xi = xj}

associated to d-tuples whose ith and jth coordinates agree. Note that

∆j =

j−1∑

i=1

∆i,j (3.27)

for every 2 ≤ j ≤ d. In the case where no marked vertex appears, at most one edge ei,j

may appear with multiplicity 2, in which case it corresponds to ∆2
i,j .

In the case where Gi has no marked vertices, assign to each vertex vj in Gi a weight

wGi,j =

(
indeg(Gi, j)

i1, . . . , ij−1

)

where indeg(Gi, j) is equal to the indegree of vj in Gi, i.e., the total number of edges of Gi
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incident with vj , counted with their nonnegative multiplicities i1, . . . , ij−1. Let

wGi =
∏

j

wGi,j

where the product is over all vertices vj appearing in Gi.

Similarly, in the case where Gi contains a marked vertex, assign to each vertex vj in Gi

(including the marked vertex) the weight

wGi,j = (indeg(Gi, j))!,

and let

wGi = (2n(ei) + 1)
∏

j

wGi,j

where the product is over all vertices vj appearing in Gi.

Now let

P
(1)
Gi

:= (−1)n(ei)+1w(Gi)(2g − 2), and P
(2)
Gi

:= (−1)n(ei)w(Gi)m.

Set P
(k)
G :=

∏τ
i=1 P

(k)
Gi
, k = 1, 2. Then PG := P

(1)
G + P

(2)
G represents the contribution of

the intersection product corresponding to G to the degree of the determinant (3.23); PG is

a polynomial in m and (2g− 2) with integer coefficients. Here the P
(k)
Gi
, k = 1, 2 correspond

to monomial intersection products of the forms

w(Gi)∆i1,i′1
· · ·∆in(ei)

,i′
n(ei)

, and w(Gi)lj∆i1,i′1
· · ·∆in(ei)−1,i′

n(ei)−1
,

respectively. The fact that our weights w(Gi) have been appropriately chosen, i.e., that the

degree of the determinant (3.23) is computed by
∑

G PG, follows easily from our remarks

preceding the statements of Lemmas 4 and 5, together with standard intersection theory

on Cd. We use the basic facts that

lj · ∆i,j = p∗im{ptC},
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and

∆2
i,j = −p∗iωC · ∆i,j = −(2g − 2)p∗i {ptC} · ∆i,j

for every choice of (i, j). Here pi denotes the projection of Cd to the ith copy of C.

On the other hand, it is not hard to see that given any subset B ⊂ {1, . . . d}, the values

of the functions f1 and f2 that compute the weighted tallies of all connected subgraphs of

the complete graph on B with or without marked vertices, respectively, depend only on

the cardinality of B. Let f̃1 and f̃2 denote the functions that compute the corresponding

“disconnected” weighted tallies of subgraphs of Kd. Allowing d to vary, we obtain expo-

nential generating functions Efi
and E

efi
for fi and f̃i, respectively, where i = 1, 2. The

Exponential Formula implies that Efi
and E

efi
are related by

E
efi

= exp(Efi
),

for i = 1, 2. Now let

f̃ :=
∑

G

PG.

Since every subgraph of Kd of interest to us can be realized as the union of a subgraph

(possibly disconnected) with marked vertices and a subgraph without marked vertices, the

exponential generating function E
ef

of f̃ satisfies

E
ef
= E

ef1
· E

ef2

by [St, Prop. 5.1.3].

Consequently, to prove Theorem 4 it would suffice to prove Lemmas 4 and 5. Unfortu-

nately, thus far we have been unable to push the combinatorics through to obtain complete

proofs of Lemmas 4 and 5, though we have partial proofs, which we present at the end of
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this section. On the other hand, we can give an easy proof of (3.22) by appealing to (3.20),

as follows. Namely, the Exponential Formula implies that

∑

d≥0

Nd(g,m)zd = exp(
∑

n>0

[φ1m+ φ2(2g − 2)]zn)

where φ1 and φ2 are rational functions of n. It suffices to show that

φ1 = (−1)n−1

(
2n−1
n−1

)

n
and φ2 = (−1)n−1

4n−1 −
(
2n−1
n−1

)

n
. (3.28)

Now let π̃ = g − 1. Note that (3.20) implies that

Nd(g,m) =

d∑

α=0

(−1)α

(
π̃ + 2d− 1 −m

α

)(
π̃ + 1

d− α

)
. (3.29)

We view the expression on the right side of (3.29) as a polynomial in m and π with coef-

ficients in Q[d], whose term of degree 1 in m and degree 0 in π̃ is φ1, and whose term of

degree 0 in m and degree 1 in π̃ is φ2. As a matter of notation, given any polynomial Q in

m and π̃, we let [mαπ̃β]Q denote the coefficient of mαπ̃β in Q.

To prove the first identity in (3.28), note that, by (3.29),

φ1 = [m]

n∑

α=0

(−1)α

(
π̃ + 2n− 1 −m

α

)(
π̃ + 1

n− α

)

= [m]
n∑

α=0

(−1)α

(
2n− 1 −m

α

)(
π̃ + 1

n− α

)

= [m]
n∑

α=n−1

(−1)α

(
2n− 1 −m

α

)(
π̃ + 1

n− α

)

= [m]

(
(−1)n−1

(
2n− 1 −m

n− 1

)
+ (−1)n

(
2n− 1 −m

n

))

= (−1)n−1

(
2n− 1

n− 1

)(
−

2n−1∑

i=n+1

1

i

)
+ (−1)n

(
2n− 1

n

)(
−

2n−1∑

i=n

1

i

)

= (−1)n−1

(
2n−1

n−1

)

n
.
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Similarly, to prove the second identity in (3.28), note that, by (3.29),

φ2 =
1

2
· [π̃]

n∑

α=0

(−1)α

(
π̃ + 2n− 1 −m

α

)(
π̃ + 1

n− α

)

=
1

2
· [π̃]

n∑

α=0

(−1)α

(
π̃ + 2n− 1

α

)(
π̃ + 1

n− α

)

=
1

2
· (−1)n

(n−2∑

i=0

(
2n− 1

i

)
(n− 2 − i)!

(n− i)!
−

(
2n− 1

n− 1

) 2n−1∑

i=n+1

1

i
+

(
2n− 1

n

) 2n−1∑

i=n+1

1

i

)

=
1

2
· (−1)n

(n−2∑

i=0

(
2n− 1

i

)(
1

n− i− 1
− 1

n− i

)
−

(
2n− 1

n− 1

)(
1 − 1

n

))
.

Note that

4n−1 = 22n−1/2 =
1

2
·
2n−1∑

i=0

(
2n− 1

i

)
=

n−1∑

i=0

(
2n− 1

i

)
.

Whence, to show that φ2 = (−1)n−1

(
4n−1−(2n−1

n−1 )
n

)
, it suffices to show that

(n− 1)

(
2n− 1

n− 1

)
=

n−2∑

i=0

(
n

n− i− 1
− n

n− i
+ 2

)(
2n− 1

i

)
.

We have checked the latter identity with the SumTools package for Maple, which implements

the Wilf–Zeilberger algorithm [PWZ] for checking identities involving binomial coefficients.

NB: It is not hard to check that 2
(1+4z)1/2+1

= C(−z), so (3.21) may be reexpressed in the

following more compact form:

∑

d≥0

Nd(g,m)zd = C(−z)2g−2−m · (1 + 4z)
g−1
2 . (3.30)

Towards a combinatorial proof of Lemma 4. The only terms of relevance (i.e., of degree one

in m and zero in (2g − 2)) in (3.26) correspond to (d− 1)-tuples (i1, . . . , id−1) that satisfy

the additional constraint

j∑

k=1

ik ≤ j, for all 1 ≤ j ≤ d− 1. (3.31)
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Notice that the number of such (d − 1)-tuples is exactly the (d − 1)st Catalan number

C(d− 1).

We now expand (3.26) according to (3.27). The monomials of relevance in the resulting

expanded intersection product are exactly those in which no diagonal factor ∆i,j is repeated.

Accordingly, proving the lemma now transposes into the following combinatorial prob-

lem. Let Kd denote the complete graph on d labeled vertices v1, . . . , vd, whose edges ei,j are

marked as before. Consider the set T of connected spanning trees on Kd. To each vertex

vj , 2 ≤ j ≤ d of a graph G in T , assign the weight

wG,j = (indeg(G, j))!.

where indeg(G, j) denotes the total indegree of the vertex vj inG. Now set wG =
∏

2≤j≤dwG,j .

In light of (3.26), it then suffices to show that

(2d− 1)
∑

G∈T

wG =

(
2d− 1

d− 1

)
(d− 1)!,

i.e., that

∑

G∈T

wG =
(2d− 2)!

d!
. (3.32)

Since T has C(d − 1) elements, (3.39) will follow provided we can show that the average

weight wG over all G in T equals (d− 1)!.

To this end, let ai1,...,id−1
denote the number of connected spanning trees on Kd with

indegrees i1, . . . , id−1 at vertices v2, . . . , vd. Clearly, we have

∑

G∈T

wG =
∑

i1,...,id−1

ai1,...,id−1
i1! . . . id−1!

where the ij , 1 ≤ j ≤ d − 1 are nonnegative integers whose sum equals (d − 1), and which

satisfy the constraint (3.31). It then suffices to show that for any given choice of (d −
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1)-tuple (i1, . . . , id−1) satisfying our constraints, the average value of all aj1,...,jd−1
arising

from permuting (i1, . . . , id−1) (while still respecting (3.31)) equals (d−1)!
i1!...id−1! . As a matter of

terminology, let an admissible permutation of a given (d−1)-tuple (i1, . . . , id−1) denote a (d−

1)-tuple obtained by permuting (i1, . . . , id−1) that satisfies (3.31). Let φ(i1, . . . , id−1) denote

the number of admissible permutations of a given (d − 1)-tuple (i1, . . . , id−1). Note that

φ(i1, . . . , id−1) is exactly the number of Dyck paths associated to the corresponding partition

(λe1
1 , . . . , λ

el
1 ) of (d−1), obtained by discarding every instance of zero in (i1, . . . , id−1). Here

λei
i denotes a sequence of ei identical terms λi. See [De1, Sect. 2] for generalities and

terminology related to Dyck paths. We will follow the conventions established there. We

then have

φ(i1, . . . , id−1) =
(d− 1)!

(d− k)!e1! . . . el!
(3.33)

where k =
∑l

i=1 ei, by [St, Thm. 5.3.10]. Accordingly, we have reduced to showing that

aλ =
(d− 1)!

(d− k)!e1! . . . el!
· (d− 1)!

(λ1!)e1 . . . (λl!)el
(3.34)

where aλ :=
∑

(j1,...,jd−1) a(j1,...,jd−1) is the total number of connected spanning trees with

indegree sequences (j1, . . . , jd−1) that are admissible permutations of a fixed indegree se-

quence (i1, . . . , id−1) corresponding to the partition λ = (λe1
1 , . . . , λ

el
l ). At present, we are

unable to prove (3.34); however, we have a recursive strategy for computing the sums aλ

that we now describe.

Namely, fix 1 ≤ m ≤ l, let λ = (λe1
1 , . . . , λ

el
l ) where λi < λj whenever i < j, and consider

those connected spanning trees T whose indegrees correspond to λ, and whose indegree at vd

is λm. The indegrees of the remaining vertices correspond to λ̂ = (λe1
1 , . . . , λ

em−1
m , . . . , λel

l ).

If, for a given tree T , we delete all edges passing through vd, what remains is a subgraph
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G of Kd with (d − 1 − λm) edges, whose number of vertices depends on the number cG of

connected components of G. Associated with each such graph is a partition λ̃ of (d−1−λm)

subordinate to λ̂, and for a given G, cG is equal to the number of parts in the corresponding

partition. Since each connected component has one more vertex than it has edges, we see

immediately that

(d− 1 − λm) + cG ≤ d− 1,

i.e., that

cG ≤ λm. (3.35)

The key point underlying our recursive strategy for computing aλ is that writing down

the contribution to aλ of any particular partition λ̃ subordinate to λ̂ is a simple matter. To

begin with, we have
(

d−1
(d−1−λm)+cG

)
choices for the vertex set of G. Next, let

λ̂ =

cG∐

i=1

λ̂i (3.36)

be the decomposition of λ̂ that defines λ̃. For every 1 ≤ i ≤ cG , let

λ̃i :=
∑

j=1

card(λ̂i),

so that λ̃ = (λ̃1, . . . , λ̃cG ). There are then

(
d− 1 − λm + cG

λ̃

) cG∏

i=1

a
bλi

possible choices for G. Finally, there are
∏cG

i=1(λ̃i + 1) ways of completing any given G to a

connected spanning tree with indegree λm at vd. So altogether, we see that

aλ =

m∑

i=1

∑

(
‘cG

i=1
bλi,eλ)

cG≤λm

((
d− 1

d− 1 − λm + cG

)(
d− 1 − λm + cG

λ̃

) cG∏

i=1

a
bλi

cG∏

i=1

(λ̃i + 1)

)

where the inside sum is taken over all decompositions (3.36) that respect (3.35).
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Towards a combinatorial proof of Lemma 5. This time, our lemma reduces to the following

combinatorial problem. Consider the set S of connected spanning graphs supported along

Kd, with d edges. To each vertex vj , 2 ≤ j ≤ d of a graph G in S, assign the following

weight wG,j :

wG,j =

(
indeg(G, j)

i1, . . . , ij−1

)
.

Let wG =
∏

2≤i≤dwG,j . We must show that

∑

G∈S

wG =

(
4d−1 −

(
2d− 1

d− 1

))
(d− 1)!.

Let S1 ⊂ S (resp. S2 ⊂ S) comprise graphs containing one edge appearing with multi-

plicity 2 (resp., graphs all of whose edges appear with multiplicity 1). Clearly, S = S1 ∪S2.

Then, since 4d−1 =
∑d−1

i=0

(
2d−1

i

)
, it will suffice to show that

∑

G∈S1

wG =

(
2d− 1

d− 2

)
· (d− 1)! (3.37)

and

∑

G∈S2

wG =

(d−3∑

i=0

(
2d− 1

i

))
· (d− 1)!. (3.38)

We attempt to prove (3.37) as follows. As before, let ai1,...,id−1
denote the number of

connected spanning trees on Kd with indegrees i1, . . . , id−1 at vertices v2, . . . , vd. Our task

is to show that

∑

i1,...,id−1

d−1∑

j=1

(
ij + 1

2

)
i1! . . . (̂ij !) . . . id−1!ai1,...,id−1

=

(
2d− 1

d− 2

)
· (d− 1)!.

To this end, we assume the fact, conjectured earlier, that the average value of all aj1,...,jd−1

arising from permuting (i1, . . . , id−1) while respecting (3.31) equals (d−1)!
i1!...id−1! . Letting

φ(i1, . . . , id−1) denote the number of permutations of (i1, . . . , id−1) that satisfy (3.31), we
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are then reduced to showing that

∑

i1,...,id−1

0≤i1≤···≤id−1

φ(i1, . . . , id−1) ·
d−1∑

j=1

(
ij + 1

2

)
=

(
2d− 1

d− 2

)
;

by (3.33), this amounts to the statement that

∑

λ

(d− 1)!

(d− k)!e1! . . . el!

l∑

i=1

ei

(
λi + 1

2

)
=

(
2d− 1

d− 2

)
(3.39)

where k =
∑l

i=1 ei and the sum in (3.39) is over all partitions λ = (λe1
1 , . . . , λ

el
l ) of (d− 1).

Unfortunately, verifying (3.39) also remains out of reach for the moment.

Proving (3.38) seems to be an order of magnitude more difficult than proving the already-

unproven (3.37). We limit ourselves to the following observations, which hint at the difficulty

of establishing (3.38). Let a′i1,...,id−1
denote the number of connected subgraphs G with d

edges supported along Kd, all of whose edges appear with multiplicity 1, and for which

indeg(vj) = ij , for all 2 ≤ j ≤ d. Note that it is always possible to remove some edge of

such a subgraph in order to yield a connected spanning tree. Accordingly, a (d − 1)-tuple

(i′1, . . . , i
′
d−1) describes a set of admissible indegrees (i.e., it arises as the set of indegrees

of a connected spanning subgraph of Kd on d edges) provided it is obtained from a set of

indegrees (i1, . . . , id−1) of a connected spanning tree via

i′k = ik for all k 6= j, while i′j = ij + 1,

for some index 2 ≤ j ≤ d.

Lemma 6. The number of admissible (d− 1)-tuples (i′1, . . . , i
′
d−1) so obtained is given by

4
d−3∑

i=0

(
2i+3

i

)

i+ 4
.
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Proof. Let

I = {(i1, . . . , id−1)|ij ≥ 0 for all j,
k∑

j=1

ij ≤ k for all k, and
d−1∑

j=1

ij = d− 1}

denote the set of admissible (d−1)-tuples of indegrees corresponding to connected spanning

trees of Kd, and let

I ′ = {(i′1, . . . , i′d−1)|0 ≤ ij ≤ j for all j, (i′j) = (ij) + ek for some k, (ij) ∈ I}

denote the set of admissible (d−1)-tuples of indegrees corresponding to connected spanning

subgraphs of Kd with d edges. There is a bijection between I and the set of Dyck paths of

semilength (d− 1), given by

(i1, . . . , id−1) ⇐⇒ (U D . . .D︸ ︷︷ ︸
i1 times

) · · · (U D . . .D︸ ︷︷ ︸
id−1 times

). (3.40)

Similarly, there is a bijection between I ′ and the set of (unordered) pairs

AI ={(P,Ui)|P is a Dyck path of semilength (d− 1) and Ui

is the ith U appearing in the second ascent of P}.
(3.41)

Namely, given any element (P,Ui) in AI , insert a D directly after the U corresponding to

Ui in P , forming
∼
P . The descent sequence of

∼
P is then an element of I ′. In this way we

obtain a map from AI to I ′, which is easily checked to be one-to-one and surjective. For

example, for surjectivity, argue as follows. Given any (d − 1)-tuple (i′1, . . . , i
′
d−1), form a

sequence
∼
P of U ’s and D’s via

(i′1, . . . , i
′
d−1) ⇐⇒ (U D . . .D︸ ︷︷ ︸

i′1 times

) · · · (U D . . .D︸ ︷︷ ︸
i′d−1 times

),

much as before. Clearly, the path
∼
P has at least two nontrivial ascents; deleting a single D

appearing in the second descent of
∼
P yields a Dyck path.
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On the other hand, as E. Deutsch [De2] has shown, the set AI has cardinality 4
∑d−3

i=0
(2i+3

i )
i+4 ;

for the sake of completeness, we sketch Deutsch’s generating function argument, which im-

plies the desired result.

As is well known, every nonempty Dyck path P admits a decomposition

P = UADB

where A and B are (possibly empty) Dyck paths. Our first step will be to determine the

bivariate generating function G(t, z) for Dyck paths with given first ascent marked by t and

semilength marked by z, i.e., the coefficient of tjzk in the expansion of G(t, z) equals the

number of Dyck paths of semilength k with first ascent length j. Note that

G(1, z) = C(z)

where C(z) is the generating function for Catalan numbers, which satisfies C(z) = 1 +

zC(z)2. Note also that the length of the first ascent of P is one more than the length of the

first ascent of A, and is independent of the length of the first ascent of B. It follows that

G(t, z) = 1 + tzG(t, z)G(1, z) = 1 + tzG(t, z)C(z),

i.e., that

G(t, z) =
1

1 − tzC(z)
. (3.42)

Now let G̃(t, z) denote the bivariate generating function for Dyck paths with second

ascent marked by t and semilength marked by z. Note that if A is of the form

A = U . . . U︸ ︷︷ ︸
n times

D . . .D︸ ︷︷ ︸
n times
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for some n ≥ 0, then the second ascent of P is the first ascent of B; otherwise, the second

ascent of P is the second ascent of A. Letting

Q(z) =
1

1 − z
(3.43)

denote the generating function of the sequence (U . . . U︸ ︷︷ ︸
n times

D . . .D︸ ︷︷ ︸
n times

)n≥0, we now find that

G̃(t, z) = 1 + zQ(z)G(t, z) + z(G̃(t, z) −Q(z))G̃(t, z),

which, in view of (3.42) and (3.43), simplfies to

G̃(t, z) =
1 − tz

(1 − z)(1 − tzC)
. (3.44)

Finally, let Ĝ(z) denote the generating function for the total lengths of second ascents of

Dyck paths of given semilength. According to [De2, p. 171], we have

Ĝ(z) =
dG̃

dt

∣∣∣∣
t=1

=
z2C(z)4

1 − z
, by (3.44).

(3.45)

On the other hand, from [De1, (B.5)], we have that

[zn]C(z)s = s ·
(
2n+s

n

)

2n+ s

for every pair of positive integers (n, s), where the left-hand side of the preceding equality

denotes the coefficient of zn in Cs. It follows from (3.45) that

[zn]Ĝ(z) =

∞∑

j=2

[zn−j ]C(z)4 =

n∑

j=2

[zn−j ]C(z)4 = 4

n∑

j=2

(
2n−2j+4

n−j

)

2n− 2j + 4
,

i.e., that

[zn]Ĝ(z) = 4

n−2∑

i=0

(
2i+4

i

)

2i+ 4
= 2

n−2∑

i=0

(
2i+4

i

)

i+ 2
= 4

n−2∑

i=0

(
2i+3

i

)

i+ 4
.
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NB: It is conceivable that the methods of [Le] may be used to prove (3.22), though we

haven’t checked this.

3.5 The case r = s

From [ACGH, Ch. VIII, Prop. 4.2], we see that the expected number of 2s-secant (s− 1)-

planes to a curve C of degree (m+ 1) and genus g in Ps+1 is

A′ =
(−1)(

s
2)

2
[((1 + t1)(1 + t2))

m−g−s(1 + t1 + t2)
g(t1 − t2)

2]ts+1
1 ts+1

2
.

Similarly, Macdonald’s formula [M, Thm. 4] specializes nicely in the case r = s. It

implies that the expected number of (2s − 1)-secant (s − 1)-planes to a curve C of degree

m and genus g in Ps+1 that intersect a disjoint line is

A =
(−1)(

s
2)

2
[((1 + t1)(1 + t2))

m−g−s(1 + t1 + t2)
g(t1 − t2)

2(2t1t2 + t1 + t2)]ts+1
1 ts+1

2
.

To see this, simply note that the condition imposed by requiring an (s−1)-plane to intersect

a line in Ps+1 defines the Schubert cycle σ1 in G(s−1, s+1); the formula for A above follows

from Macdonald’s by a straightforward calculation.

4 Divisor class calculations via multiple-point formulas

Unfortunately, the secant-plane divisor coefficients P are not uniquely determined by the

relations obtained in the preceding section; rather, an additional relation is needed. In this

section, we will describe an alternative method for computing secant-plane divisor classes.

Using this alternative approach, we are led to the following conjecture, which is borne out

in every computable case.
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Conjecture 2. When r = 1, the polynomials Pα, Pβ, Pγ , and Pδ0 satisfy

2(d− 1)Pα + (m− 3)Pβ = (6 − 3g)(Pγ + Pδ0); (4.1)

when r = s, the polynomials P satisfy

2(s− 1)Pα + (2m− 3s)Pβ = (6s− 3m)Pγ − (15m− 30s+ 12 − 6g)Pδ0 . (4.2)

Key observation: Because every divisor on the stack Gs
m of curves with linear series (see

[Kh1] and [Kh2] for its construction) is determined by its degrees along 1-parameter families

of linear series, our general formula (3.2) for Nd−r−1
d determines the class of a secant-plane

divisor in Gs
m as a sum involving tautological classes on Gs

m.

The upshot of the latter observation is that the conjectural relations (4.1) and (4.2),

coupled with the four relations among tautological coefficients P obtained in Section 3,

determine the classes of secant-plane divisors on Gs
m.

4.1 Set-up for multiple-point formulas

Our alternative method for calculating secant-plane formulas is as follows. As before, we let

π : X → B denote a one-parameter family of curves, whose total space X comes equipped

with a line bundle L, and whose base space B comes equipped with a rank-(s + 1) vector

bundle V →֒ π∗L. When either r = 1 or r = s (and, conjecturally, in general), the

fact that NK3 = 0 expresses the coefficient Pδ0 in terms of the other secant-plane divisor

coefficients, none of which depend upon the number of singular fibers in π. Consequently,

we will assume that every fiber of π is a smooth curve. As before, the pair (L,V) defines

a map f : X → PV∗ of B-schemes, whose fibers over points in B are maps from curves to

s-dimensional projective spaces.
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Now let G denote the Grassmann bundle of (d−r−1)-dimensional subspaces of fibers of

PV∗ over B, and let IX ⊂ X ×BG denote the incidence correspondence canonically obtained

from f . The secant-plane locus of interest to us is (the pushforward to B of) Kleiman’s dth

multiple-point locus [Kl] associated with the projection ρ : IX → G. Because every fiber of

π is a smooth curve, π is a curvilinear map. Consequently, according to [Kat], the Chow

class mk of the kth multiple point locus of ρ satisfies

mk = ρ∗ρ∗mk−1 +
k∑

i=1

(−1)ipimk−i (4.3)

for certain polynomials pi, 1 ≤ i ≤ k in the Chern classes of the virtual normal bundle Nρ

of ρ. More accurately, (4.3) applies provided every multiple-point locus mi, 1 ≤ i ≤ k has

the expected dimension. We will address this issue, in our particular case, in a moment.

Note that [Kaz, bot. p.11] gives an explicit generating series for the polynomials pi.

4.2 Evaluation of multiple-point formulas

Evaluating the iterative formulas (4.3) requires computing the Chern classes of the virtual

normal bundle Nρ. These we calculate as follows. Letting QG denote the quotient bundle

on G, note that because IX ⊂ X ×B G is the zero locus of the natural map of vector bundles

L∗ → QG ,

its normal bundle NIX /X×BG is simply the pullback of L ⊗QG to IX . On the other hand,

NIX /X×BG and Nρ fit into an exact sequence

0 → TX/B → NIX /X×BG → Nρ → 0,
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which implies that their Chern polynomials are related by

ct(Nρ) = c(−TX/B)c(NIX /X×BG)

= (1 + tω + t2ω2)c(NIX /X×BG)

where ω = c1(ωX/B) is the first Chern class of the relative dualizing sheaf of π.

It is now a relatively straightforward matter to write a computer program to compute

secant-plane divisor classes; this we have done in Maple. Code is available upon request.

4.3 Validity of multiple-point formulas

To establish the validity of our expressions for secant-plane divisor classes arising from

multiple-point formulas, we argue along much the same lines as in Section 3.3. By The-

orem 1, every secant-plane locus (in the case where ρ = 0 and µ = −1) is a divisor, as

expected. So Porteous’ formula, applied to a suitable evaluation map of vector bundles

V → Sd(L)

over X d
B, accurately predicts the class Z of the zero-dimensional subscheme of X d

B comprised

of d-tuples that define (d− r − 1)-planes on the image of f . The pushforward of Z to B is

the secant-plane locus of interest to us. In order to calculate the pushforward of Z to B,

on the other hand, it suffices to calculate the pushforward for sufficiently large values of m,

the degree of the restriction of L to any fiber of π.

Now assume m >> 0. In order to show that for every 1 ≤ i ≤ d, the ith multiple-point

locus Mi of ρ has the expected dimension, it suffices, by upper-semicontinuity, to exhibit

a special family of linear series gs
m with multiple-point loci of the expected dimension. An

easy modification of the argument in Section 3.3 shows that the family defined by projecting
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a sufficiently general curve of degree m in Ps+1 from points along a disjoint line has the

desired property.

4.4 The case r = 1

When r = 1, the results of the preceding subsections imply that

Pα =

[
m+ 1 − 2d

2g

]
Nd(g,m) −

[
d+ 1

2g

]
Nd+1(g,m+ 1),

Pβ =
−mPα + dNd(g,m)

g − 1
, and

Pc = −Nd(g,m).

(4.4)

Similarly, assuming the conjectural relation (4.1), we find that

Pγ =
1

12

[(
(2g + 6)(d− 1)

2 − g
+ (s− 1)

)
Pα +

(
(g + 3)(m− 3)

2 − g
+m

)
Pβ

]

=

[
5(d− 1)

6(2 − g)

]
Pα +

[
(g + 3)(m− 3)

12(2 − g)
+
m

12

]
Pβ , since s = 2d− 1, and

Pδ0 = − 1

12

[
s− 1 +

2(d− 1)(g − 1)

2 − g

]
Pα − 1

12

[
m+

(m− 3)(g − 1)

2 − g

]
Pβ

=

[
− (d− 1)

6(2 − g)

]
Pα − 1

12

[
m+

(m− 3)(g − 1)

2 − g

]
Pβ, since s = 2d− 1.

(4.5)

Given our generating function (3.21) forNd(g,m) (and, thus, for Pc, since Pc = −Nd(g,m)),

determining generating functions for Pα = Pα(d, g,m), Pβ = Pβ(d, g,m), Pγ = Pγ(d, g,m),

and Pδ0 = Pδ0(d, g,m) is now a purely formal matter. Namely, let

Zg,m(z) :=

(
2

(1 + 4z)1/2 + 1

)2g−2−m

· (1 + 4z)
g−1
2 . (4.6)

Then, according to (3.21),

∑

d≥0

Nd(g,m)zd = Zg,m(z).
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By (4.4), it follows that

∑

d≥0

Pα(d, g,m)zd =
1

2g
·
∑

d≥0

[(m+ 1 − 2d)Nd(g,m) − (d+ 1)Nd+1(g,m+ 1)]zd

=

(
m+ 1

2g
− z

g

d

dz

)
Zg,m(z) −

(
1

2g
· d
dz

)
Zg,m+1(z)

= Zg,m(z)

[
1

2
− 1

2(1 + 4z)1/2

]
.

Similarly, we have

∑

d≥0

Pβ(d, g,m)zd = − m

g − 1

∑

d≥0

Pα(d, g,m)zd +
z

g − 1
· d
dz
Zg,m(z)

= Zg,m(z)

[
2z

1 + 4z
− 4z

(1 + 4z)1/2((1 + 4z)1/2 + 1)

]
,

and conjecturally also

∑

d≥0

Pγ(d, g,m)zd = −
(

5

6(2 − g)

) ∑

d≥0

Pα(d, g,m)zd + z

(
5

6(2 − g)

)
d

dz

∑

d≥0

Pα(d, g,m)zd

+

(
(g + 3)(m+ 3)

12(2 − g)
+
m

12

) ∑

d≥0

Pβ(d, g,m)zd

= Zg,m(z)

[
z(32z2 − 7(1 + 4z)3/2 + 36z + 7)

6(1 + 4z)5/2((1 + 4z)1/2 + 1)

]
and

∑

d≥0

Pδ0(d, g,m)zd =

(
1

6(2 − g)

) ∑

d≥0

Pα(d, g,m)zd − z

(
1

6(2 − g)

) ∑

d≥0

Pα(d, g,m)zd

−
(

1

12m
+

(m− 3)(g − 1)

12(2 − g)

) ∑

d≥0

Pβ(d, g,m)zd

= Zg,m(z)

[
z(32z2 − (1 + 4z)3/2 + 12z + 1)

6(1 + 4z)5/2((1 + 4z)1/2 + 1)

]
.

Remark: Note that the quotients
P

d≥0 Pγ(d,g,m)zd

Zg,m(z) and
P

d≥0 Pδ0
(d,g,m)zd

Zg,m(z) determine exponen-

tial generating functions for the constant terms of Pγ(d, g,m) and Pδ0(d, g,m), respectively,

when these are viewed (for fixed choices of d) as polynomials in m and (2g − 2). To see

why, note that Pγ(d, g,m) may be viewed as the outcome of performing a weighted count

of (d+1)-edged subgraphs G of the complete labeled graph on d vertices with the following
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property. Namely, we require that G possess a unique connected (d̂ + 1)-edged subgraph

on d̂ vertices, for some d̂ ≤ d, and that the remaining connected components of G have

either d edges, or (d − 1) edges and a marked vertex corresponding to some pullback of

c1(L). On the other hand, it is easy to see that the exponential generating function for the

constant terms of Pγ(d, g,m) exactly counts (up to a weighting scheme, which we will not

specify here) connected (d + 1)-edged connected subgraphs of the complete labeled graph

on d vertices. So our assertion about
P

d≥0 Pγ(d,g,m)zd

Zg,m(z) follows from [St, Prop. 5.1.1]; the

corresponding assertion about
P

d≥0 Pδ0
(d,g,m)zd

Zg,m(z) is proved similarly.

Now let

X(z) :=
z(32z2 − 7(1 + 4z)3/2 + 36z + 7)

6(1 + 4z)5/2((1 + 4z)1/2 + 1)
, and Y (z) :=

z(32z2 − (1 + 4z)3/2 + 12z + 1)

6(1 + 4z)5/2((1 + 4z)1/2 + 1)
.

The function Y (z) has Taylor series

1

6
(3z2 − 20z3 + 105z4 − 504z5 + 2310z6 − 10296z7 + 45045z8 − 194480z9 + . . . ).

In fact, it is not hard to show that

[zn]Y (z) =
(−1)n−2

6
· (2n− 1)!

n!(n− 2)!
.

Similarly, X(z) has Taylor series

1

6
(−3z2 + 28z3 − 177z4 + 960z5 − 4806z6 + 22920z7 − 105837z8 + 477688z9 − . . . ),

and we have

[zn]X(z) = (−1)n−1

(
1

2

(
2n

n

)
(n+ 1) − 22n−1 − 1

6
· (2n− 1)!

n!(n− 2)!

)
.

To conclude that Pγ and Pδ0 have the generating functions predicted by (4.5), or equiva-

lently, that the tautological coefficients satisfy the conjectural relation (4.2), it suffices to

show that the following.
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Conjecture 3. The exponential generating function for the constant terms of Pγ(d, g,m)

(resp., Pδ0) is X(z) (resp., Y (z)).

Moreover, in order to verify Conjecture 3, it suffices to verify the statement for either Pγ

or Pδ0 , since each of these is related to the other via the “K3” relation (3.4). The relative

simplicity of the expression [zn]Y (z), in particular, suggests that a combinatorial proof of

Conjecture 3 should be within grasp. We plan to address this matter in a subsequent paper.

4.5 From generating functions to generalized hypergeometric series

Using the results of the preceding subsection, it is possible to realize Pc, Pα, Pβ, Pγ , and Pδ0

as linear combinations of generalized hypergeometric series. Namely, we have the following

result.

Theorem 5. When r = 1, the tautological secant-plane divisor coefficients Pα = Pα(d, g,m),

Pβ = Pβ(d, g,m), and Pc = Pc(d, g,m) are given by

Pc = − g!(2g − 2 −m)!

(g − 2d)!d!(2g − 2 −m+ d)!
3F2

[ −g
2 + m

2 + 1 − d, −g
2 + m+3

2 − d, −d

g+1
2 − d, g

2 + 1 − d

∣∣∣∣1
]
,

Pα =
g!(2g − 2 −m)!

2(g − 2d)!d!(2g − 2 −m+ d)!
3F2

[ −g
2 + m

2 + 1 − d, −g
2 + m+3

2 − d, −d

g+1
2 − d, g

2 + 1 − d

∣∣∣∣1
]

− (g − 1)!(2g − 2 −m)!

2(g − 2d− 1)!d!(2g − 2 −m+ d)!
3F2

[ −g
2 + m

2 + 1 − d, −g
2 + m+1

2 − d, −d

g+1
2 − d, g

2 − d

∣∣∣∣1
]
,

Pβ =
2(g − 2)!(2g − 2 −m)!

(g − 2d)!(d− 1)!(2g − 3 −m+ d)!
3F2

[ −g
2 + m

2 + 1 − d, −g
2 + m+3

2 − d, 1 − d

g+1
2 − d, g

2 + 1 − d

∣∣∣∣1
]
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− 2(g − 1)!(2g − 1 −m)!

(g + 1 − 2d)!(d− 1)!(2g − 2 −m+ d)!
3F2

[ −g
2 + m

2 + 1 − d, −g
2 + m+3

2 − d, 1 − d

g
2 + 1 − d, g+3

2 − d

∣∣∣∣1
]
,

Moreover, when d ≥ 3, we have, assuming Conjecture 3:

Pγ =
8(g − 5)!(2g − 1 −m)!

3(g + 1 − 2d)!(d− 3)!(2g −m+ d− 4)!
3F2

[ −g
2 + m

2 + 1 − d, −g
2 + m+3

2 − d, 3 − d

g
2 + 1 − d, g+3

2 − d

∣∣∣∣1
]

− 7(g − 2)!(2g − 1 −m)!

12(g − 2d)!(d− 1)!(2g − 2 −m+ d)!
3F2

[ −g
2 + m

2 + 1 − d, −g
2 + m+1

2 − d, 1 − d

g+1
2 − d, g

2 + 1 − d

∣∣∣∣1
]

+
3(g − 5)!(2g − 1 −m)!

(g − 1 − 2d)!(d− 2)!(2g − 3 −m+ d)!
3F2

[ −g
2 + m

2 − d, −g
2 + m+1

2 − d, 2 − d

g+1
2 − d, g

2 − d

∣∣∣∣1
]

+
7(g − 5)!(2g − 1 −m)!

12(g − 3 − 2d)!(d− 1)!(2g − 2 −m+ d)!
3F2

[ −g+1
2 + m

2 − d, −g
2 − 1 + m

2 − d, 1 − d

g
2 − 1 − d, g−1

2 − d

∣∣∣∣1
]
,

and

Pδ0 =
8(g − 5)!(2g − 1 −m)!

3(g + 1 − 2d)!(d− 3)!(2g −m+ d− 4)!
3F2

[ −g
2 + m

2 + 1 − d, −g
2 + m+3

2 − d, 3 − d

g
2 + 1 − d, g+3

2 − d

∣∣∣∣1
]

− (g − 2)!(2g − 1 −m)!

12(g − 2d)!(d− 1)!(2g − 2 −m+ d)!
3F2

[ −g
2 + m

2 + 1 − d, −g
2 + m+1

2 − d, 1 − d

g+1
2 − d, g

2 + 1 − d

∣∣∣∣1
]

+
(g − 5)!(2g − 1 −m)!

(g − 1 − 2d)!(d− 2)!(2g − 3 −m+ d)!
3F2

[ −g
2 + m

2 − d, −g
2 + m+1

2 − d, 2 − d

g+1
2 − d, g

2 − d

∣∣∣∣1
]

+
(g − 5)!(2g − 1 −m)!

12(g − 3 − 2d)!(d− 1)!(2g − 2 −m+ d)!
3F2

[ −g+1
2 + m

2 − d, −g
2 − 1 + m

2 − d, 1 − d

g
2 − 1 − d, g−1

2 − d

∣∣∣∣1
]
.

The same formulas for Pγ and Pδ0 hold when d = 2, except that in each case the first

hypergeometric summand should be suppressed. Finally, Pγ(1, g,m) = Pδ0(1, g,m) = 0.
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Proof. Recall (see, e.g., [PWZ]) that

pFq

[ a1, . . . , ap

b1, . . . , bq

∣∣∣∣φ
]

=

∞∑

k=0

(a1)
(k) · · · (ap)

(k)

(b1)(k) · · · (bq)(k)
φk

where (u)(k) = Γ(u+k)
Γ(u) is the Pochhammer symbol.

Using (3.30), we find that

Pc(d, g,m) = −[zd](C(−z)2g−2−m · (1 + 4z)
g−1
2 )

= −
d∑

k=0

[zk]C(−z)2g−2−m · [zd−k](1 + 4z)
g−1
2 .

Here

[zk]C(−z)2g−2−m = (−1)k 2g − 2 −m

k + 2g − 2 −m

(
2k + 2g − 3 −m

k

)
.

It follows that

Pc(d, g,m) = −
d∑

k=0

(−1)k 2g − 2 −m

k + 2g − 2 −m

(
2k + 2g − 3 −m

k

)
4d−k

( g−1
2

d− k

)
. (4.7)

Using [Ko, Algorithm 2.2], we check easily that the expression on the right side of (4.7)

equals

−4d

(g−1
2

d

)
3F2

[ g − 1 − m
2 , g − m+1

2 , −d

2g − 1 −m, g+1
2 − d

∣∣∣∣1
]
.

On the other hand, for every nonnegative integer n, we have the following equality of

hypergeometric series [GR]:

3F2

[ w, x, −n

y, z

∣∣∣∣1
]

=
(−w − x+ y + z)n

(z)n
3F2

[ −w + y, −x+ y, −n

y, −w − x+ y + z

∣∣∣∣1
]
.

Taking w = g − 1 − m
2 , x = g − m+1

2 , y = g+1
2 − d, z = 2g − 1 −m, and n = d, we deduce

that

−4d

(g−1
2

d

)
3F2

[ g − 1 − m
2 , g − m+1

2 , −d

2g − 1 −m, g+1
2 − d

∣∣∣∣1
]
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= −4d

(g−1
2

d

)
(g
2 + 1 − d)d

(2g − 1 −m)d
3F2

[ −g
2 + m

2 + 1 − d, −g
2 + m+3

2 − d, −d

g+1
2 − d, g

2 + 1 − d

∣∣∣∣1
]

Finally, it is elementary to check that

4d

(g−1
2

d

)
(g
2 + 1 − d)d

(2g − 1 −m)d
=

g!(2g − 2 −m)!

(g − 2d)!d!(2g − 2 −m+ d)!
;

it follows that

Pc = − g!(2g − 2 −m)!

(g − 2d)!d!(2g − 2 −m+ d)!
3F2

[ −g
2 + m

2 + 1 − d, −g
2 + m+3

2 − d, −d

g+1
2 − d, g

2 + 1 − d

∣∣∣∣1
]
,

as desired. The proofs of the the other equalities are similar.

4.6 Examples

In this subsection, we record several secant-plane formulas in cases where either r = 1 or

r = s.

• r = 1, d = 2, s = 3. In this case, Nd−r−1
d = N0

2 comprises 3-dimensional linear series

with double points. We have

2!N0
2 = (−6 + 2m)α− 4β + (2g − 2 + 3m−m2)c− γ + δ0.

• r = 1, d = 3, s = 5 (case of 5-dimensional series with trisecant lines). We have

3!N1
3 = (3m2 − 27m− 6g + 66)α+ (72 − 12m)β + (28 − 3m)γ + (3m− 20)δ0

+ (24 −m3 + 9m2 + 6mg − 26m− 24g)c.

• r = 1, d = 4, s = 7 (case of 7-dimensional series with 4-secant 2-planes). We

have

4!N2
4 = (−1008 + 168g − 24mg − 72m2 + 452m+ 4m3)α+ (360m− 1440 + 48g − 24m2)β+

+ (372g − 360 + 342m− 119m2 −m4 + 18m3 − 12g2 − 132mg + 12m2g)c

+ (12g − 720 + 130m− 6m2)γ + (6m2 − 98m− 12g + 432)δ0.
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• r = 1, d = 5, s = 9 (case of 9-dimensional series with 5-secant 3-planes). We

have

5!N3
5 = (1020mg − 60m2g − 4500g + 60g2 + 19560 + 5m4 + 1735m2 − 150m3 − 9270m)α

+ (240mg − 2400g + 33600 − 40m3 − 10160m+ 1080m2)β

+ (20000 + 60mg − 800g + 370m2 − 10m3 − 4640m)γ

+ (20m3g − 60mg2 − 420m2g + 6720 + 480g2 + 2980mg − 5944m+ 30m4

− 355m3 + 2070m2 −m5 − 7200g)c

+ (60mg + 640g + 10m3 + 2960m− 290m2 − 10720)δ0.

• r = 2, d = 3, s = 2 (case of 2-dimensional series with triple points). We have

3!N0
3 = (3m2 − 18m− 6g + 30)α+ (18 − 3m)β + 4γ − 2δ0

+ (12m2 − 2m3 + 6mg − 22m+ 12 − 12g)c.

• r = 3, d = 5, s = 3 (case of 3-dimensional series with 5-secant lines). We have

4!N1
5 = (10m4 − 180m3 + 1250m2 + 5160 − 60m2g − 4020m+ 600mg + 60g2 − 1620g)α

+ (360m2 − 20m3 + 4800 + 60mg − 2200m− 480g)β + (1520 − 450m+ 40m2 − 80g)γ

+ (2400 + 2190m2 + 1940mg − 2640g − 635m3 − 60mg2 − 480m2g

+ 40m3g − 3680m− 5m5 + 90m4 + 240g2)c+ (40g − 20m2 + 210m− 640)δ0.

Note that in each of the above examples, we have realized the class of a divisor on the stack

Gs
m in terms of tautological classes c, α, β, γ, and δ0.

5 Secant-plane divisors on Mg

Thus far, we have seen how to determine the coefficients Pα, Pβ, Pγ , and Pδ0 of secant-plane

divisors on the space of linear series Gs
m. For the sake of calculation, we have assumed ρ = 0;
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whenever this is the case, every secant-plane divisor pushes forward to a divisor on Mg.

Khosla’s determination of the Gysin map [Kh1] (see also [Kh2]), which we review now, will

allow us to compute the coefficients of the Hodge class λ and of the “irreducible” boundary

divisor δ0, of secant-plane divisors on Mg.

5.1 Recapitulation of Khosla’s work

Let M̃g,1 denote the open substack of Mg,1 equal to the complement of the closure of the

substack swept out by reducible unions of smooth curves intersecting transversely in two

points. Let π̃ : C → M̃g,1 denote the universal curve, with relative dualizing sheaf ω̃. Recall

that for all g ≥ 3 [Ha],

Pic(M̃g,1) ⊗ Q = Qλ⊕ Qδ0 ⊕g−1
i=1 Qδi ⊕ Qψ.

Here

λ = c1(π̃∗ω̃) and ψ = c1(ω
fMg,1/ fMg

),

while δ0 corresponds to irreducible nodal curves, and δi, i ≥ 1 corresponds to reducible

unions of curves of genera i and (g − i) marked along the component of genus i.

There is, correspondingly, a Deligne-Mumford stack Gs
m of curves with linear series.

When ρ is nonnegative, a unique component of the stack of linear series, which we denote

abusively by Gs
m, dominates the moduli stack. Moreover, the projection η : Gs

m → M̃g,1 is

generically smooth with fiber dimension ρ.

Now let π : Cs
m → Gs

m denote the universal curve. There is a coherent sheaf L on Cs
m

with torsion-free fibers, whose degree is m on the marked component of every fiber, and

whose degree is zero on unmarked components of fibers. Furthermore, L is trivialized along
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the marked section of π. It is not hard to see that the preceding two properties characterize

L uniquely. Finally, there is a subbundle

V → π∗L

whose fibers are marked aspects of linear series.

In [Kh1, Thm. 3.5], Khosla computes the images under the Gysin pushforward

η∗ : A1(Gs
m) → A1(M̃g,1)

of the tautological classes

α = π∗(c
2
1(L)), β = π∗(c1(L) · c1(ω)), and c = c1(V)

where ω = ωCs
m/Gs

m
is the relative dualizing sheaf. Note that α, β, and c are precisely those

tautological classes that appear in the basic secant-plane formula (3.2). Moreover, there is

no mention of the standard class γ = π∗(c
2
1(ω)) here; that is because, as explained in [HM],

γ = 12λ− δ0. (5.1)

For our purposes, the contributions of ψ and of δi, i ≥ 1 to the pushforwards of the

standard classes are immaterial, so we omit them. Khosla’s formulas, streamlined in this

way, read as follows.

η∗α = mN

[
(gm− 2g2 + 8m− 8g + 4)

(g − 1)(g − 2)
λ+

2g2 − gm+ 3g − 4m− 2

6(g − 1)(g − 2)
δ0

]
,

η∗β = mN

[
6

g − 1
λ− 1

2(g − 1)
δ0

]
, and

η∗c = N

[−(g + 3)ξ + 5s(s+ 2)

2(g − 1)(g − 2)
λ+

(g + 1)ξ − 3s(s+ 2)

12(g − 1)(g − 2)
δ0

]
(5.2)

where

N =
g! · ∏s

i=1 i!∏s
i=0(g −m+ s+ i)!

is the degree of the covering η, and

ξ = 3(g − 1) +
(s− 1)(g + s+ 1)(3g − 2m+ s− 3)

g −m+ 2s+ 1
.

(5.3)
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Using the equations (5.2), (5.1), and (4.4), we can explicitly determine the class Sec of

any secant-plane divisor on Mg, modulo the boundary classes δi, i ≥ 1 whenever r = 1 or

r = s. Namely, we have, modulo contributions from boundary divisors corresponding to

reducible curves,

Sec = Pαη∗α+ Pβη∗β + Pcη∗c+ Pγ ·N(12λ− δ0) +NPδ0δ0

= bλλ− b0δ0

(5.4)

where bλ = bλ(d) and b0 = b0(d) are explicitly determined rational functions of g and m,

for any given choice of d.

5.2 Slope calculations

Recall [HM] that the slope of an effective divisor D ⊂ Mg with class

D = bλλ− b0δ0 −
⌊ g

2
⌋∑

i=1

bi (5.5)

is defined to be the quantity

s(D) =
bλ

mini{bi}
.

As explained in [FP, Cor. 1.2], we have s(D) = bλ
b0

whenever g ≤ 23 and provided

bλ
b0

≤ 6 +
11

⌊g
2⌋ + 1

, and

bλ
b0

≤ 88828

12870
whenever 20 ≤ g.

(5.6)

Using the computer, one checks that the ratio bλ
b0

of the first two coefficients in the expansion

(5.5) of Sec in terms of standard classes satisfies the conditions 5.6 whenever g ≤ 23 and

either r = 1 or r = s. It follows that whenever r = 1 or r = s,

s(Sec) =
bλ
b0

(5.7)
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for all g ≤ 23. We expect, moreover, that the equation (5.7) holds for all g. In the following

table, we compile slopes of some secant-plane divisors in the case r = 1.

Genus g d s m bλ
b0

− (6 + 12
g+1) bλ

b0
− (6 + 11

⌊ g
2
⌋+1

) bλ
b0

− 8828
12870

8 2 3 9 0 −13/15 N/A

12 2 3 12 693/12389 −3952/6671 N/A

16 2 3 15 756/13379 −3257/7083 N/A

20 2 3 18 1539/30247 −1632/4321 −7775369/27805635

12 3 5 15 308/6539 −2117/3521 N/A

18 3 5 20 32232/596239 −130031/313810 N/A

16 4 7 16 2520/46427 −11357/24579 N/A

20 5 9 20 2508/47159 −2529/6737 −12023068/43352595

Note that all entries in the second-to-last column are negative, as are all entries in the

last column in all cases where g ≥ 20. It follows that bλ
b0

computes the slope in every case

listed. On the other hand, the fact that

bλ
b0

−
(

6 +
12

g + 1

)
≥ 0

in every case shows that in each case, the slope of Sec is at least that of the Brill–Noether

divisor on Mg. The lone zero at the top of column 5 is explained by the fact that every

curve of genus 8 that admits a g3
9 with nodes also carries a g2

7, and ρ(8, 2, 7) = −1. So the

corresponding secant-plane divisor is a Brill–Noether divisor on M8.

5.3 Nonemptiness of secant-plane divisors with r = 1

Using Theorem 5, we can verify that secant-plane divisors on Mg are nonempty whenever

ρ = 0 and r = 1. Namely, since the pushforward A1(Gs
m) → A1(Mg) is finite and nonzero,

74



it suffices to show that the classes of the corresponding secant-plane divisors on Gs
m are

nonzero. Moreover, in light of the calculation carried out for our first test family in Sec-

tion 3.1, the desired nonvanishing property will follow from showing that the tautological

coefficient Pc = Pc(d, g,m) is nonzero for every specialization

g = a(s+ 1) = 2ad, and m = (a+ 1)s = (2d− 1)(a+ 1) (5.8)

where a and d are positive integers, a ≥ 2. (Note that the equations (5.8) encode the fact

that ρ = 0. The possibility that a = 1 is precluded because in that case the corresponding

series g2d−1
m are canonical, and do not determine a divisor in G2d−1

m , essentially because every

canonical curve that admits a (d − 2)-secant plane admits a one-parameter family of such

planes.) Moreover, by Theorem 5, we have

Pc = Pc(a, d) = − (2ad)!(2ad− 2d+ a− 1)!

(2ad− 2d)!d!(2ad− d+ a− 1)!
3F2

[ −a
2 + 1

2 , −a
2 + 1, −d

ad+ 1
2 − d, ad+ 1 − d

∣∣∣∣1
]
.

(5.9)

Using (5.9), it is not hard to check that

−Pc(a, d) =
(2ad)!

(2ad− d+ a− 1)!d!
Q(a, d) (5.10)

where

Q(a, d) =

⌊a−1
2

⌋∑

i=0

(−1)i ((2a− 2)d+ a− 1)!

((2a− 2)d+ 2i)!
· d!

(d− i)!
· (a− 1)!

(a− 1 − 2i)!
· 1

i!
. (5.11)

Whenever a ≥ 2 and d ≥ 1, the ith summand in the sum (5.11) has larger absolute value

than the (i + 1)th summand; consequently, Pc(a, d) is negative for all a ≥ 2 and d ≥ 1.

Nonemptiness follows immediately.
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5.4 Slopes of secant-plane divisors with r = 1

Note that for any particular choice of a ≥ 2, the ith summand in (5.11) is a polynomial of

degree (a− 1 − i). It follows that

Pc(a, d) = − (2ad)!

(2ad− d+ a− 1)!d!

[
((2a− 2)d+ a− 1)!

((2a− 2)d)!
− ((2a− 2)d+ a− 1)!d

((2a− 2)d+ 2)!
· (a− 1)(a− 2) +O(da−3)

]
.

Similarly, we have

Pα(a, d) =
(2ad)!

2(2ad− d+ a− 1)!d!

⌊ a−1

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a− 1)!

((2a− 2)d+ 2i)!
· d!

(d− i)!
· (a− 1)!

(a− 1 − 2i)!
· 1

i!

− (2ad− 1)!

2(2ad− d+ a− 1)!d!

⌊ a

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a− 1)!

((2a− 2)d+ 2i− 1)!
· d!

(d− i)!
· a!

(a− 2i)!
· 1

i!

=
(2ad)!

2(2ad− d+ a− 1)!d!

[
((2a− 2)d+ a− 1)!

((2a− 2)d)!
− ((2a− 2)d+ a− 1)!d

((2a− 2)d+ 2)!
· (a− 1)(a− 2) +O(da−3)

]

− (2ad− 1)!

2(2ad− d+ a− 1)!d!

[
((2a− 2)d+ a− 1)!

((2a− 2)d− 1)!
− ((2a− 2)d+ a− 1)!d

((2a− 2)d+ 1)!
· a(a− 1) +O(da−2)

]
,

Pβ(a, d) =
2(2ad− 2)!

(2ad− d+ a− 2)!(d− 1)!

⌊ a−1

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a− 1)!

((2a− 2)d+ 2i)!
· (d− 1)!

(d− 1 − i)!
· (a− 1)!

(a− 1 − 2i)!
· 1

i!

− 2(2ad− 1)!

(2ad− d+ a− 1)!(d− 1)!

⌊ a−1

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i+ 1)!
· (d− 1)!

(d− 1 − i)!
· (a− 1)!

(a− 1 − 2i)!
· 1

i!

=
2(2ad− 2)!

(2ad− d+ a− 2)!(d− 1)!

[
((2a− 2)d+ a− 1)!

((2a− 2)d)!
− ((2a− 2)d+ a− 1)!(d− 1)

((2a− 2)d+ 2)!
· (a− 1)(a− 2) +O(da−3)

]

− 2(2ad− 1)!

(2ad− d+ a− 1)!(d− 1)!

[
((2a− 2)d+ a)!

((2a− 2)d+ 1)!
− ((2a− 2)d+ a)!(d− 1)

((2a− 2)d+ 3)!
· (a− 1)(a− 2) +O(da−3)

]
,
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Pγ(a, d) =
8(2ad− 5)!

3(2ad− d+ a− 3)!(d− 3)!

⌊ a−1

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i+ 1)!
· (d− 3)!

(d− 3 − i)!
· (a− 1)!

(a− 1 − 2i)!
· 1

i!

− 7(2ad− 2)!

12(2ad− d+ a− 1)!(d− 1)!

⌊ a

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i)!
· (d− 1)!

(d− 1 − i)!
· a!

(a− 2i)!
· 1

i!

+
3(2ad− 5)!

(2ad− d+ a− 2)!(d− 2)!

⌊ a+1

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i− 1)!
· (d− 2)!

(d− 2 − i)!
· (a+ 1)!

(a+ 1 − 2i)!
· 1

i!

+
7(2ad− 5)!

12(2ad− d+ a− 1)!(d− 1)!

⌊ a+3

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i− 3)!
· (d− 1)!

(d− 1 − i)!
· (a+ 3)!

(a+ 3 − 2i)!
· 1

i!

=
8(2ad− 5)!

3(2ad− d+ a− 3)!(d− 3)!

[
((2a− 2)d+ a)!

((2a− 2)d+ 1)!
− ((2a− 2)d+ a)!(d− 3)

((2a− 2)d+ 3)!
· (a− 1)(a− 2) +O(da−3)

]

− 7(2ad− 2)!

12(2ad− d+ a− 1)!(d− 1)!

[
((2a− 2)d+ a)!

((2a− 2)d)!
− ((2a− 2)d+ a)!(d− 1)

((2a− 2)d+ 2)!
· a(a− 1) +O(da−2)

]

+
3(2ad− 5)!

(2ad− d+ a− 2)!(d− 2)!

[
((2a− 2)d+ a)!

((2a− 2)d− 1)!
− ((2a− 2)d+ a)!(d− 2)

((2a− 2)d+ 1)!
· (a+ 1)a+O(da−1)

]

+
7(2ad− 5)!

12(2ad− d+ a− 1)!(d− 1)!

[
((2a− 2)d+ a)!

((2a− 2)d− 3)!
− ((2a− 2)d+ a)!(d− 1)

((2a− 2)d− 1)!
· (a+ 3)(a+ 2) +O(da+1)

]
,

and

Pδ0
(a, d) =

8(2ad− 5)!

3(2ad− d+ a− 3)!(d− 3)!

⌊ a−1

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i+ 1)!
· (d− 3)!

(d− 3 − i)!
· (a− 1)!

(a− 1 − 2i)!
· 1

i!

− (2ad− 2)!

12(2ad− d+ a− 1)!(d− 1)!

⌊ a

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i)!
· (d− 1)!

(d− 1 − i)!
· a!

(a− 2i)!
· 1

i!

+
(2ad− 5)!

(2ad− d+ a− 2)!(d− 2)!

⌊ a+1

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i− 1)!
· (d− 2)!

(d− 2 − i)!
· (a+ 1)!

(a+ 1 − 2i)!
· 1

i!

+
(2ad− 5)!

12(2ad− d+ a− 1)!(d− 1)!

⌊ a+3

2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i− 3)!
· (d− 1)!

(d− 1 − i)!
· (a+ 3)!

(a+ 3 − 2i)!
· 1

i!

=
8(2ad− 5)!

3(2ad− d+ a− 3)!(d− 3)!

[
((2a− 2)d+ a)!

((2a− 2)d+ 1)!
− ((2a− 2)d+ a)!(d− 3)

((2a− 2)d+ 3)!
· (a− 1)(a− 2) +O(da−3)

]

− (2ad− 2)!

12(2ad− d+ a− 1)!(d− 1)!

[
((2a− 2)d+ a)!

((2a− 2)d)!
− ((2a− 2)d+ a)!(d− 1)

((2a− 2)d+ 2)!
· a(a− 1) +O(da−2)

]

+
(2ad− 5)!

(2ad− d+ a− 2)!(d− 2)!

[
((2a− 2)d+ a)!

((2a− 2)d− 1)!
− ((2a− 2)d+ a)!(d− 2)

((2a− 2)d+ 1)!
· (a+ 1)a+O(da−1)

]

+
(2ad− 5)!

12(2ad− d+ a− 1)!(d− 1)!

[
((2a− 2)d+ a)!

((2a− 2)d− 3)!
− ((2a− 2)d+ a)!(d− 1)

((2a− 2)d− 1)!
· (a+ 3)(a+ 2) +O(da+1)

]
.
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On the other hand, when r = 1, Khosla’s formulas (5.2) imply that

η∗α = −N(2d− 1)(a+ 1)[(2a2 − 2a)d2 + (a2 + a− 8)d+ (4a+ 2)]

(2ad− 1)(ad− 1)
λ

+
N(2d− 1)(a+ 1)[(2a2 − 2a)d2 + (a2 − 4)d+ (2a+ 1)]

6(2ad− 1)(ad− 1)
δ0,

η∗β =
6N(2d− 1)(a+ 1)

2ad− 1
λ− N(2d− 1)(a+ 1)

2(2ad− 1)
δ0, and

η∗c = −N(2d− 1)[(2a3 − 2a)d3 + (a3 + 6a2 − a− 8)d2 + (3a2 + 2a− 4)d+ a]

(2d+ a)(2ad− 1)(ad− 1)
λ

+
N(2d− 1)d[(2a3 − 2a)d2 + (a3 + 4a2 − a− 4)d+ (2a2 − 2)]

6(2d+ a)(2ad− 1)(ad− 1)
δ0.

(5.12)

Using our hypergeometric formulas for tautological coefficients in tandem with the push-

forward formulas (5.12) and (5.4), we may write down the “virtual slopes” bλ
b0

of secant-plane

divisors with r = 1 for any particular value of a. In the following table, we record the virtual

slopes corresponding to 2 ≤ a ≤ 5.

a bλ
b0

2 2(96d4+80d3−110d2−62d+5)
32d4+8d3−30d2−8d+1

3 3(9216d6+15552d5+5240d4−6372d3−5218d2−1067d+69)
4608d6+6048d5+772d4−2780d3−1609d2−205d+21

4 2(25920d7+45360d6+24387d5−6006d4−12143d3−5213d2−790d+38)
8640d7+12744d6+4853d5−2585d4−3032d3−1041d2−105d+8

5 2(9830400d8+18595840d7+12571776d6+958200d5−3620196d4−2433066d3−734307d2−89401d+3285)
3276800d8+5488640d7+3012992d6−174328d5−1038520d4−575170d3−145032d2−12207d+720

Likewise, our formulas readily yield asymptotics in d for the virtual slopes of secant-

plane divisors with r = 1. Namely, we find that when r = 1, any secant-plane divisor on

Mg = M2ad has virtual slope equal to

bλ
b0

=
6S1d+ S2 +O(d−1)

S1d+ S3 +O(d−1)
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where

S1 = 256a10 − 1024a9 + 1280a8 − 1280a6 + 1024a5 − 256a4,

S2 = 384a10 + 384a9 − 13824a7 + 768a8 + 26496a6 − 18048a5 + 3072a4 + 768a3, and

S3 = 64a10 − 192a9 − 2944a7 + 1024a8 + 3136a6 − 448a5 − 1152a4 + 512a3.

In particular, the difference between the secant-plane divisor (virtual) slope and that of the

Brill-Noether divisor on M2ad is equal to

bλ
b0

− 6 − 12

2ad+ 1
=

3

ad(a+ 1)
+O(d−2) =

6

(a+ 1)g
+O(g−2).

6 Boundary coefficients of secant-plane divisors on Mg

Much as in the preceding section, write the class of Sec as an expansion in terms of standard

divisor classes on Mg:

Sec = aλ− b0δ0 −
⌊ g

2
⌋∑

i=1

biδi.

In this section, we will determine b1 and b2.

6.1 Determination of b1

Consider the curve Y ≈ P1 →֒ Mg given by attaching a general pencil of plane cubics to

a general genus-g flag curve Y at a general point of Y . By the same argument used to

prove Theorem 1, we see that Y avoids every secant-plane divisor. On the other hand, it is

well-known (see, e.g., [HM]) that

Y · λ = 1, Y · δ0 = 12, Y · δ1 = −1, and Y · δi = 0 for all i ≥ 2.

It follows that

bλ − 12b0 + b1 = 0.
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6.2 Determination of b2

Given any integer α ≥ 2, let

jα : Mα,1 → Mg

denote the map defined by attaching a fixed flag curve C of genus (g−α) at a fixed general

point of C to any genus-α curve Y with a marked point. Much as in [FP, proof of Thm

1.1], whose argument we follow, we have the following result.

Theorem 6. If α = 2, then j∗αSec is supported on the Weierstrass locus.

Recall that the Weierstrass locus comprises curves marked along Weierstrass points, and

has class

W = −λ+
g(g + 1)

2
δ0 −

g−1∑

i=1

(
g − i+ 1

2

)
δi

according to [Cu].

Proof. Assume, for the sake of argument, that j∗αSec is not supported on the Weierstrass

locus; this means exactly that some curve C ∪p Y , where p is not a Weierstrass point of Y ,

carries a pair of limit linear series (gs
m, g

s−d+r
m ) satisfying (1.1). Moreover, by additivity of

the generalized Brill–Noether number, we have

ρ(2, s,m; r(Y, p)) + ρ(g − 2, s,m; r(C, p)) = ρ(g, s,m) = 0 (6.1)

where r(Y, p) and r(C, p) denote the total ramification of the gs−d+r
m along Y and C, re-

spectively. Since (C, p) is Brill–Noether general by assumption, and (Y, p) is Brill–Noether

general whenever p is not a Weierstrass point of Y , (6.1) forces

ρ(2, s,m; r(Y, p)) = ρ(g − 2, s,m; r(C, p)) = 0. (6.2)
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Because p is not a Weierstrass point of Y , we now deduce that the vanishing sequence at p

of the aspect of the gs
m along Y is either

a(VY , p) = (m− s− 2,m− s− 1, . . . ,m− 3,m), or

a(VY , p) = (m− s− 2,m− s− 1, . . . ,m− 4,m− 2,m− 1).

Now assume that a base points of the included series gs−d+r
m lie along Y . Thus, (d−a) base

points lie along C, which in turn forces (d − a)(s− d + r) shifts of vanishing order indices

of the gs−d+r
m along C, as in Lemmas 1 and 2 of Section 2. By the basic additivity relation

LS1, it follows that the total ramification of the gs−d+r
m−a along Y obtained by removing the

a base points from our gs−d+r
m is at least

r = (s− d+ r + 1)(m− s− 2) + (s− d+ r)(d− a).

But an easy calculation yields

ρ(2, s− d+ r,m− a) − r = 2 + (r − d− 1) − (a− d+ r), since µ(d, s, r) = −1

= 1 − a.

Because (Y, p) is Brill–Noether general, it follows that a ≤ 1. Clearly, the case a = 0 is

impossible, since this would imply that every base point of the gs−d+r
m lies along C, and,

therefore, that C admits a d-secant (d − r − 1)-plane. On the other hand, the case a = 1

is also precluded, because in that situation LS1 forces the top two vanishing orders at p of

the gs−d+r
m along Y to be maximal. This is clearly impossible when

a(VY , p) = (m− s− 2,m− s− 1, . . . ,m− 3,m);

for, if there is a base point along Y , then the order to which the gs−d+r
m along Y vanishes

at p must be less than m. Similarly, if

a(VY , p) = (m− s− 2,m− s− 1, . . . ,m− 4,m− 2,m− 1),
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then subtracting the base point from the gs−d+r
m along Y yields a gs−d+r

m−1 containing a

subpencil Γ of sections vanishing to orders (m− 2) and (m− 1), respectively. Subtracting

(m− 2) base points from Γ yields a g1
1 along the genus-2 curve Y , which is absurd.

As explained in [HM, Thm. 6.65], Theorem 6 implies that

b2 =
5

2
b1 −

bλ
2
.

It is natural to ask whether a suitable modification of the argument used to prove

Theorem 6 may be used to determine any of the remaining boundary divisor coefficients

bi, i ≥ 3. The basic question to ask is whether there exist reducible curves C ∪p Y of genus

g, with (C, p) a general pointed flag curve of genus (g− i) and (Y, p) a Brill–Noether general

pointed curve of genus i, that admit exceptional secant planes. In other words, we’d like to

see how the pullbacks j∗i Sec relate to the Brill–Noether divisors on Mi,1 studied in [EH4].

Question: For which values of i ≥ 3 and (d, r) is it the case that the pullback of Sec along

ji is supported along a union of Brill–Noether divisors on Mi,1?

As noted in [FP], if j∗i Sec is supported along a union of Brill–Noether divisors on Mi,1

for every i ≤ j, then every boundary divisor coefficient bi, i ≤ j, because, as is shown in

[EH4], the class of every Brill–Noether divisor on Mi,1 is a linear combination of W and

the pullback of the Brill–Noether divisor on Mi.

82



7 Planes incident to linear series on a general curve when

ρ = 1

In this section, we use the results of the preceding one to deduce a new formula for the

number N ′,d−r−1
d of linear series with exceptional secant planes on a general curve of genus

g, which is applicable whenever ρ = 1 and µ = −1. (By Theorem 3, that number is always

finite.) Namely, we have the following result.

Theorem 7. Let ρ = 1, µ = −1. The number N ′,d−r−1
d of linear series gs

m with d-secant

(d− r − 1)-planes on a general curve of genus g is given by

N ′,d−r−1
d =

(g − 1)!1! · · · s!
(g −m+ s)! · · · (g −m+ 2s− 1)!(g −m+ 2s+ 1)!

[(−gm+ 2gs+m2 − 3ms+ 2s2 −m+ s+ g)A+ (gd+ g −md−m+ 2sd+ 2s+ d+ 1)A′].

where A and A′ are as defined in Section 3.1.

Proof. We use the basic set-up of Section 3.1, as well as the relations among the tautological

coefficients Pα, Pβ, and Pδ0 obtained there, to prove Theorem 7. Namely, let C denote a

general curve of genus g such that ρ(g, s,m) = 1, and consider the test family π : X → B

with total space X = W s
m(C) × C and base B = W s

m(C). Let L denote the pullback of

any degree-m Poincaré bundle L̃ → Picm(C) × C by the inclusion i × 1C : W s
m(C) × C →

Picm(C) × C. Let θ and η denote the integral cohomology classes of the pullbacks to

Picm(C)×C of the theta divisor on Picm(C) and a point on C, respectively. As explained

in [ACGH, Ch. 8], we then have

c1(L) = (mη + γ) · ν∗ws
m

= ∆(g −m+ s, . . . , g −m+ s)︸ ︷︷ ︸
(s+1) times

·(mη + γ) · ν∗θg−1
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where ν : Picm(C) × C → Picm(C) is the natural projection, and where ∆(a1, . . . , an)

denotes the determinant of the n × n matrix with (i, j)th entry 1
(ai+j−i)! (in our case,

n = s+ 1).

It follows immediately that

α = ∆(g −m+ s, . . . , g −m+ s) · (mη + γ)2 · ν∗θg−1

= ∆(g −m+ s, . . . , g −m+ s) · (−2ηθ) · ν∗θg−1

= −2g!∆(g −m+ s, . . . , g −m+ s)

and, likewise, that

β = γ = δ = 0,

since ω = π∗2KC = π∗2(2g − 2){ptC} in this case.

Finally, let Γ denote any section of Picd(C) × C → Picd(C) associated to a divisor of

large degree on C. Note that V is the kernel bundle for the evaluation map

E := ν∗(L̃(Γ))
ev→ ν∗(L̃(Γ)/L̃) =: F

of vector bundles over Picd(C), restricted to the locus along which ev has a kernel of rank

(s+1). On the other hand, the vector bundle F has trivial Chern classes. Accordingly, the

kernel number formula of [HT] yields

c = −∆g−m+s+1,g−m+s,...,g−m+s(ct(−E))

= −g!∆(g −m+ s+ 1, g −m+ s, . . . , g −m+ s).

Here ∆(a1, . . . , an)(F) denotes the determinant of the n × n matrix with (i, j)th entry

cai+j−i(F), for any vector bundle F .

On the other hand, from the results of Section 3.1, we see that

Pα =
(m− s)A− (d+ 1)A′

2g
and Pc = −A.
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It follows immediately that

N ′,d−r−1
d = −2g!∆(g −m+ s, . . . , g −m+ s)

(m− s)A− (d+ 1)A′

2g

+ g!∆(g −m+ s+ 1, g −m+ s, . . . , g −m+ s)A.

To simplify the latter expression, we use the well-known fact (see, e.g., [ACGH, p.320]) that

∆(a1, . . . , an) =

∏
j>i(ai − aj − i+ j)∏n
i=1(ai − i+ n− 1)!

.

We deduce that

∆(g −m+ s, . . . , g −m+ s) =
s! · · · 1!

(g −m+ 2s)! · · · (g −m+ s)!
and

∆(g −m+ s+ 1, g −m+ s, . . . , g −m+ s)

=
(s+ 1)!(s− 1)! · · · 1!

(g −m+ 2s+ 1)!(g −m+ 2s− 1)! · · · (g −m+ s)!
.

It follows that

N ′,d−r−1
d =

(g − 1)!1! · · · s!
(g −m+ s)! · · · (g −m+ 2s− 1)!(g −m+ 2s+ 1)!

[
−2g(g −m+ 2s+ 1)

(
(m− s)A

2g
− (d+ 1)A′

2g

)
+ g(s+ 1)A

]

=
(g − 1)!1! · · · s!

(g −m+ s)! · · · (g −m+ 2s− 1)!(g −m+ 2s+ 1)!

[(−gm+ 2gs+m2 − 3ms+ 2s2 −m+ s+ g)A+ (gd+ g −md−m+ 2sd+ 2s+ d+ 1)A′].

7.1 The case r = 1

Following our usual practice, we now specialize to the case r = 1, so that N ′,d−r−1
d counts

series with d-secant (d−2)-planes. Here we obtain stronger results by applying Theorem 5,

which characterizes the tautological secant-plane coefficients P = P (d, g,m) in terms of
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hypergeometric series. (Note, as above, that β = γ = δ0 = 0, and that the expressions for

Pα and Pc are not merely conjectural.) Because ρ = 1, we have

g = 2ad+ 1, and m = (a+ 1)(2d− 1) + 1

for suitably chosen positive integers a and d (here, as usual, d denotes incidence, and

s = 2d− 1).

Accordingly, we have

N ′,d−2
d =

g!1! · · · s!
(g −m+ s)! · · · (g −m+ 2s− 1)!(g −m+ 2s+ 1)!

[−(s+ 1)Pc − 2(g −m+ 2s+ 1)Pα]

=
(2ad+ 1)!1! · · · (2d− 1)!

a! · · · (a+ 2d− 2)!(a+ 2d)!
[−2dPc(a, d) − 2(2d+ a)Pα(a, d)]

=
(2ad+ 1)!1! · · · (2d− 1)!

a! · · · (a+ 2d− 2)!(a+ 2d)!
[−2dPc(a, d) − 2(2d+ a)(−1

2
Pc(a, d) + Pα,2(a, d))]

=
(2ad+ 1)!1! · · · (2d− 1)!

a! · · · (a+ 2d− 2)!(a+ 2d)!
[aPc(a, d) − (4d+ 2a)Pα,2(a, d)]

(7.1)

where

Pc(a, d) = − (2ad+ 1)!

(2ad− d+ a)!d!

⌊a−1
2

⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i+ 1)!
· d!

(d− i)!
· (a− 1)!

(a− 1 − 2i)!
· 1

i!
, and

Pα,2(a, d) = − (2ad)!

2(2ad− d+ a)!d!

⌊a
2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i)!
· d!

(d− i)!
· a!

(a− 2i)!
· 1

i!
.

(7.2)

We have the following result.

Theorem 8. The number of series with exceptional secant planes N ′,d−2
d is zero when either

a = 1 or d = 1, and is positive whenever a > 1 and d > 1.

Proof. First assume that a = 1. Note that (7.2) implies that

Pc(1, d) = −(2d+ 1)!(d+ 1)

((d+ 1)!)2
, and Pα,2(1, d) = −(2d)!(d+ 1)

2((d+ 1)!)2
.
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It follows that

Pc(1, d) − (4d+ 2)Pα,2(1, d) = 0;

and whence, by (7.1), that N ′,d−2
d = 0.

Similarly, (7.2) implies that

Pc(a, 1) = −(a+ 2), and Pα,2(a, 1) = −a
2
,

so that

Pc(a, 1) − (4d+ 2)Pα,2(a, 1) = 0,

and, therefore, N ′,d−2
d = 0.

Now assume that a > 1, and d > 1. In view of (7.1), we need only show that (4d +

2a)Pα,2(a, d) < aPc(a, d) whenever a > 1 and d > 1, i.e., that

⌊a−1
2

⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i+ 1)!
· d!

(d− i)!
· (a− 1)!

(a− 1 − 2i)!
· 2ad+ 1

i!

<

⌊a
2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i)!
· d!

(d− i)!
· a!

(a− 2i)!
· 2d+ a

i!
.

To this end, write

⌊a
2
⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i)!
· d!

(d− i)!
· a!

(a− 2i)!
· 2d+ a

i!
=

⌊a
2
⌋∑

i=0

(−1)iP
(i)
1 , and

⌊a−1
2

⌋∑

i=0

(−1)i ((2a− 2)d+ a)!

((2a− 2)d+ 2i+ 1)!
· d!

(d− i)!
· (a− 1)!

(a− 1 − 2i)!
· 2ad+ 1

i!
=

⌊a−1
2

⌋∑

i=0

(−1)iP
(i)
2 .

Here

P
(i)
1

P
(i)
2

=
(2d+ a)((2a− 2)d+ 2i+ 1)

(a− 2i)(2ad+ 1)

for all i ≤ ⌊a
2⌋. So unless a = 4k for some k ≥ 1 (a case we will handle separately below),

we need only show that the quantity

T :=

⌊a−1
2

⌋∑

i=0

(−1)i

[
(2d+ a)((2a− 2)d+ 2i+ 1)

(a− 2i)(2ad+ 1)
− 1

]
P

(i)
2
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is positive. (When a = 4k, and only in that case, we have

⌊a
2
⌋∑

i=0

(−1)iP
(i)
1 −

⌊a−1
2

⌋∑

i=0

(−1)iP
(i)
2 < T.)

To this end, it suffices, in turn, to show that Ti
Ti+1

> 1, where

Ti =

[
(2d+ a)((2a− 2)d+ 2i+ 1)

(a− 2i)(2ad+ 1)
− 1

]
P

(i)
2 .

Using the computer, we find that

Ti

Ti+1
=

2[(2a− 2)d2 + (2ai+ 2i− a+ 1)d+ (a+ 1)i][(a− 1)d+ i+ 1][(2a− 2)d+ 2i+ 3](i+ 1)

[(2a− 2)d2 + (2ai+ 2i+ a+ 3)d+ (a+ 1)(i+ 1)](a− 1 − 2i)(a− 2i)(d− i)
.

Here

(2a− 2)d2 + (2ai+ 2i− a+ 1)d+ (a+ 1)i

(2a− 2)d2 + (2ai+ 2i+ a+ 3)d+ (a+ 1)(i+ 1)

= 1 − (2a− 2)d+ (a+ 1)

(2a− 2)d2 + (2ai+ 2i+ a+ 3)d+ (a+ 1)(i+ 1)
> 1 − 1

d
,

while

((2a− 2)d+ 2i+ 3

a− 1 − 2i
> 2, and

(a− 1)d+ i+ 1

(a− 2i)(d− i)
> 1 − 1

a
.

We conclude that Ti
Ti+1

> 1 whenever a > 1 and d > 1.

It remains to treat the case where a = 4k for some k ≥ 1. To conclude the proof of our

theorem, it will suffice to show that

P
(i)
1 − P

(i+1)
1 − P

(i)
2 > 0 (7.3)

for i = a
2 − 2. With the aid of the computer, we calculate

P
(i)
1 − P

(i+1)
1 − P

(i)
2 =

((2a− 2)d+ a)!d!a!

(a− 2i)!(d− i)!(i+ 1)!((2a− 2)d+ 2i+ 2)!
Q̃(a, d, i)
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where

Q̃(a, d, i) = (8a2i− 16ai+ 8a2 − 16a+ 8i+ 8)d3

+ (−12 + 8a2i2 + 4a2i+ 32ai+ 8ai2 + 18a− 32i− 6a2 − 24i2)d2

+ (−4a+ 4 + 8ai3 − a3 + 10a2i− 4ai+ 4a2i2 + 12i+ a2 + 20i2 + 16i3)d

+ (4i+ a3i− 4a2i2 + 4ai+ 10ai2 + 8ai3 − a2i+ 8i2 + 4i3).

Taking i = a
2 − 2, we find that

Q̃

(
a, d,

a

2
− 2

)
= (4a3 − 16a2 + 20a− 8)d3 + (2a4 − 12a3 + 12a2 + 18a− 44)d2

+ (2a4 − 14a3 + 24a2 + 2a− 68)d+

(
1

2
a4 − 7

2
a3 + 12a2 − 22a− 8

)
,

which is positive whenever a ≥ 4 and d ≥ 2.

Finally, we calculate the asymptotic behavior of N ′,d−2
d , using (7.1). To this end, note

that (7.1) implies that when r = 1,

Pc(a, d) = − (2ad+ 1)!

(2ad− d+ a)!d!

[
((2a− 2)d+ a)!

((2a− 2)d+ 1)!
+O(da−2)

]
, and

Pα,2(a, d) = − (2ad)!

2(2ad− d+ a)!d!

[
((2a− 2)d+ a)!

((2a− 2)d)!
+O(da−1)

]
.

It follows that

N ′,d−2
d =

(2ad+ 1)!1! · · · (2d− 1)!

a! · · · (a+ 2d− 2)!(a+ 2d)!
[aPc(a, d) − (4d+ 2a)Pα,2(a, d)]

=
(2ad+ 1)!1! · · · (2d− 1)!

a! · · · (a+ 2d− 2)!(a+ 2d)!
· (2ad)!

(2ad− d+ a)!d!

[
2d((2a− 2)d+ a)!

((2a− 2)d)!

−
(

(2ad+ 1)a((2a− 2)d+ a)!

((2a− 2)d+ 1)!
+
a((2a− 2)d+ a)!

((2a− 2)d)!

)
+O(da−1)

]

=
(2ad+ 1)!1! · · · (2d− 1)!

a! · · · (a+ 2d− 2)!(a+ 2d)!
· (2ad)!

(2ad− d+ a)!d!
· ((2a− 2)d+ a)!

((2a− 2)d+ 1)!

[(4a− 4)d2 + (−4a2 + 2a+ 2)d+O(1)].

NB: Theorem 8 establishes that no series with a = 1 and ρ = 1 on a general curve C

of genus g admits d-secant (d − 2)-planes. This is easy to explain on geometric grounds.
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Namely, provided d is sufficiently large, every such series arises as the image of a canonical

curve C̃ ⊂ P2d from a point along a curve. Moreover, d-secant (d− 2)-planes of our original

series are in bijection with (d + 1)-secant (d − 1)-planes to C̃. On the other hand, any

(d+ 1)-secant (d− 1)-plane to C̃ defines an inclusion of linear series

gd
3d−1 + p1 + · · · + pd+1 →֒ g2d

4d (7.4)

along C. But in fact ρ(2d + 1, d, 3d − 1) < 0; whence, by the Brill–Noether theorem, no

inclusions (7.4) exist.

Similarly, when d = 1, N ′,d−2
d counts one-dimensional series with base points. Theorem 8

establishes that no such series exist on a general curve of genus g, which also confirms the

Brill–Noether theorem in a special case.
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