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1.1 General context

Although glass has been used for thousands of years1 and is nowadays of great industrial

importance, questions associated to what is sometimes referred to naively as a fourth state

of matter, in addition to solid, liquid and gas, are still puzzling scientists despite a large

e�ort in the condensed and soft matter community over the last decades.

The �rst great challenge is to understand the formation of the glass itself, in other words

why when a liquid is cooled below a certain temperature, referred to as glass transition

temperature, at fast rate most substances rather than reaching a crystalline ordered �nal

state remain in a metastable disordered con�guration. Even more puzzling is the fact

that this transition from liquid to glass does not seem to be associated to any simple

structural change of the system. To the bare eye a snapshot of a glass looks exactly

similar to a snapshot of the corresponding liquid. Yet one can somehow arbitrary de�ne

a glass transition temperature Tg as the temperature at which the viscosity of the liquid

has increased by 13 orders of magnitude. Therefore this transition does not seem to be a

structural one (in a �rst approximation as the structure undergoes in reality smooth and

1One of the earliest glass-making sites in ancient Egypt was uncovered in 2005 in the eastern Nile Delta

and it was shown in Science [1] that glass was made there out of raw materials as early as 1250 BC.

1



2 Chapter 1. Introduction

weak changes with temperature) but rather a dynamical transition, referred to as dynamical

arrest. Despite this apparent lack of a growing static structural length scale as temperature

is lowered towards Tg (as would be the case in a `normal phase transition'), evidences

of such clusters or domains have been identi�ed dynamically in several experiments and

numerical simulations over the last decades and have provided a dynamical cooperativity

length scale of a few inter-particle diameter just above Tg, i.e. in the supercooled liquid.

In recent years these observations have lead to the generalization of the term glass not

only to the hard, brittle, transparent silicate glasses used in windows and bottles, but to

an entire class of materials that exhibit this type of dynamical arrest. In fact by glass we

mean a system whose relaxation times diverge when an external parameter such as pressure,

temperature, density or composition is tuned. Taking this de�nition allows to include in the

class of glassy materials, materials as diverse as hard glasses such as silica glass, amorphous

silicon, metallic glasses and polymeric glasses, soft glasses such as pastes, colloids, cells,

foams, di�erent complex �uids such as ketchup, mayonnaise, but also granular materials.

In this thesis it is the generic physical behavior of these glassy material that we are aiming

to describe.

The second great challenge for these glassy materials is to understand their peculiar

physical properties. Here we are not interested in the properties pertaining to each type of

materials due to their micro-structure, it is obvious for example that a polymeric substance

will have speci�cities (reptation, entanglement,...) that are not present for example in

granular materials, similarly grains have speci�cities (friction, inelastic collisions,...) that

are not present in a Lennard-Jones glass. Rather we are interested in the properties that

are associated with the actual physical process of going through or tending toward a glass

transition. In fact such history dependent properties have been recently exempli�ed in

di�erent systems. A clear example was that shown by Falk in [2], where the mechanical

response of a metallic glass well below Tg was shown to depend on the quench history of

the liquid and supercooled liquid. The complex and history dependent state of matter is

inherently associated to the rough energy landscape attached to the glass. In this energy

landscape picture the dynamics of ageing or externally driven glasses is quite intuitive.

The glass described by an energy of ' d×N coordinates (or distances), where d stands for

dimension and N for the number of particles in the sample, is in a metastable state obtained

from a quenching procedure. This state can evolve by activated processes in the case of

thermal glass relaxation at T ' Tg (ageing) or by an external drive in athermal quasi-static

simulations. In both situations local rearrangements have been observed in simulations

[3, 4, 5, 6, 7, 8] or more recently and less commonly in experiments [9, 10, 11, 12, 13, 14, 15].

These rearrangements, that correspond to the realization in coordinate space of an often

irreversible change of local minima in the energy landscape of the glass, have been shown to

be usually very localized involving the cooperative displacement of a few tens or hundreds

of elementary particles or grains, therefore happening on a length scale of only a few

inter-particle diameters. In ageing glasses they were shown to take the form of spring like

cooperative chains [16], in sheared materials they have usually been described in terms of T1



1.2. Rheological and Mechanical properties of complex �uids 3

events (foams), or STZ (metallic glasses) or quadrupolar events (Lennard-Jones glasses).

These localized rearrangements have been recently postulated to be good microscopical

candidates to be the elementary building blocks of the irreversible deformation mechanisms

involved in disordered glassy materials. In fact to make a parallel with crystals these local

events are now thought to be the equivalent in glassy materials of the dislocations present

in lattice structures and one of the medium term aims (including in the present work) is to

characterize the motion and interactions of these elementary units, in the spirit of what was

initiated by Peierls, Nabarro, Friedel in the 50's and now well understood for defects and

dislocations in crystals. Such knowledge could be included in a second stage in computer

codes for a mesoscopic accurate modelization of the deformation mechanisms of amorphous

materials. With this framework in mind we see how a multi-scale approach starting at the

atomic (or grain) level with the use of numerical simulations such as Molecular Dynamics or

Ab Initio techniques can emerge. Through this PhD thesis I will discuss of this topic of the

mechanical response of disordered glassy materials that are well below the glass transition

temperature, leaving aside the study of ageing supercooled liquids at �nite temperatures

near Tg.

1.2 Rheological and Mechanical properties of complex �uids

Fig. 1.1 : Left : Illustration of transient shear stress σ(t) for `liquid-like' and `solid-like' materials.

Illustration of shear-rate dependent,middle : shear stress σ and right : shear viscosity η(γ̇) ≡ σ/γ̇
for prototypical `liquid-like' and `solid-like' materials. [17]

In [17] Larson to characterize all the materials with a rheological behaviour intermediate

between pure solids and pure liquids introduced the term complex �uids. Glassy materials

enter this category and the dual terminology, glassy materials vs complex �uids, illustrates

well the ambiguity to classify glasses as solids or as liquids. According to the classical

de�nitions, a �uid is any substance that deforms continuously under the application of an

arbitrarily small shearing stress, a solid has on the other hand shear rigidity and retains

its shape when external forces are applied to it or rather returns to it when the external
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Fig. 1.2 : Parallel to �gure 1.1 for the model Lennard-Jones glass system studied in this thesis.

Left : Transient shear stress σ(γ) at a shear rate of γ̇ = 10−3 for a sample containing 10000

particles. Illustration of shear-rate dependent, middle : shear stress σ and right : shear viscosity

η(γ̇) ≡ σ/γ̇ for the same Lennard-Jones glass at various shear rates ranging from 0 to 10−2. For

more details see chapters 5 and 6.

forces are removed. The typical mechanical/rheological behavior 2 of solids or liquids is

illustrated in �gure 1.1. While `simple' Newtonian �uids are characterized by their viscosity

and have a negligible elasticity, `simple' Hookean solids do not �ow and are characterized

by their elastic moduli. These two limiting behaviors clearly cannot describe a vast number

of substances that often show a behavior intermediate between the `solid like' and `liquid

like' prototypes of �gure 1.1, and are both viscous and elastic over the time scale at which

they are probed.3 Anticipating on the next sections �gure 1.2 shows such an intermediate

rheological behavior for the two dimensional poly-disperse Lennard-Glass mainly studied in

this thesis and that has been widely used over the last years as a model system for di�erent

physical systems including disordered glassy materials. Here the rheology is considered in

the athermal limit, and the system is shown to exhibit shear thinning, i.e. a �uid where

the viscosity, de�ned as the average stress divided by the shear rate, decreases with shear

rate. Another property of the Lennard-Jones glass shown in �gure 1.2, also observed

experimentally in many soft glassy materials such as pastes, dense colloidal suspensions,

foams and granular systems is the presence of a yield stress and of a plateau stress at low

shear rates where the behavior of the �uids deviates from the simple liquid's Newtonian

law. Indeed like ketchup or mayonnaise these materials require a �nite yield stress before

they begin to �ow. This is just an example of the many rheological characteristics that

complex viscoelastic or viscoplastic �uids can exhibit. Experimentally and numerically

in non-equilibrium molecular dynamics (NEMD) these global responses of the materials

are obtained in various ways. For easily deformable substances (`�uid like') one usually

applies in di�erent possible geometries a shearing �ow driven either by the movement of

the boundaries or by a pressure gradient applied along the direction of the �ow and records

the stress at the boundaries resulting from this �ow. For more rigid materials, (`solid like')

2To describe the response of solids one uses preferentially the term mechanical response, while the

response of �uids is usually described by the term rheology. In what follows we will alternatively use both

terminologies equivalently.
3Note that even the `simple' behavior of Newtonian or Hookean systems is always con�ned to some

frequency range
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forces are usually applied on the systems and the resulting strains recorded. Another type

of rheological experiment consists on applying a small-amplitude oscillatory shear (strain

γ(t) = γ0 sin(ωt)) and record the subsequent stress (σ(t)). These �elds are related by the

formula4

σ(t) = γ0

[
G′(ω) sin(ωt) + G′′(ω) cos(ωt)

]
, (1.1)

where the term proportional to the storage modulus G′(ω) is in phase with strain and the

term proportional to to the loss modulus G′′(ω) is in phase with strain rate γ̇(t). The

storage modulus represents storage of elastic energy, while the loss modulus represents the

viscous dissipation of that energy. The classical global rheology allows therefore to charac-

terize the average �ow properties in stationary or oscillatory regimes of the bulk materials

[18], but does not inform on the structure and dynamics of the material at a local level.

One question that someone might legitimately ask is if the �ow is homogeneous in these

complex systems or if the materials exhibit an heterogeneous response therefore requir-

ing new experimental methods to probe the materials at the local level. This is precisely

the origin of the growing experimental �eld that one can call micro-rheology or micro-

mechanics (note that today in the age of extreme miniaturization one can replace the term

micro by nano). Without detailing the ingenious experimental methods developed over the

last years in this �eld we give in the following section some of the experimental evidences

of heterogeneous �ow or mechanical response of di�erent glassy materials presenting them

in decreasing order of sti�ness.

1.3 Experimental and numerical evidence of heterogeneous

response

At the top of the list of the sti�est glassy materials come (and by far) the metallic glasses.

In fact this type of material �rst obtained at the California Institute of Technology (Cal-

tech) by Duwez in 1960 and continuously perfected since then, even outgrows the hardest

crystalline metals. This surprising result is due to the fact that the strength of even the

latest alloys is far below their theoretical limit (see �gure 1.3), this discrepancy stemming

primarily from the existence in the crystals of defects such as dislocations. In the metallic

glasses due to their inherently disordered nature such strength limiting defects are absent

altogether. Hence, without the premature deformation of slip, elastic strain may regularly

4This equation is a generalisation of the Maxwell model of 1867 who was the �rst to propose a

mathematical description of viscoelastic �uids. His model description combines the purely Hookean

response of `simple solids' to the purely Newtonian response `simple �uids' through the simple con-

stitutive equation γ̇ = σ̇/G + σ/η, where G is the elastic shear modulus, η is the viscosity and one

can de�ne a unique relaxation time τ = η/G. The general solution of this equation can be written

σ(t) = η/τ
R t
−∞ exp [−(t− t′)/τ ] γ̇(t′)dt′. One can easily generalize this model to the case where there is a

distribution of relaxation times to obtain the generalized constitutive equation, σ(t) =
R t
−∞G(t−t′)γ̇(t′)dt′

which precisely yields for a small amplitude oscillatory shear strain equation 1.1



6 Chapter 1. Introduction

Fig. 1.3 : Schematic representation of room temperature yield (metals, composites and polymers)

or �exural strength (ceramics) as a function of modulus. Note the increased strength of amorphous

metals (light red) over conventional crystalline metals (light orange). [19] adapted from Greer[20].

Fig. 1.4 : Sub-surface shear band morphologies resultant to indentation. (a) As simulated by the

calculated local deviatoric strain �eld for a binary metallic glass (red is 0% strain and yellow 40%)

[21] (b) As cast Zr52.5Al10Ti5Cu17.9Ni14.6 using the clamped interface technique [22]
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approach 2%, thereby facilitating strength and hardness values which are far beyond those

of crystalline metals (�gure 1.3). Further to such desirable mechanical properties, metallic

glasses exhibit a full range of toughness values, low mechanical damping, good corrosion

resistance and high magnetic permeability coupled with low coercivity to give superior

soft magnetic properties, making them very promising candidates for future applications.

Yet metallic glasses exhibit little plastic deformation prior to catastrophic failure and are

usually relatively brittle at room temperature5, such behavior severely limiting their func-

tionality. Rather than stemming from an inherent lack of toughness, the brittle nature

of these alloys has been found to arise primarily from a lack of strain hardening and the

subsequent localization of strain into shear bands leading to premature failure. Such in-

homogeneous �ow was evidenced in both numerical simulations as shown in �gure 1.4 (a)

and in indentation experiments as shown in �gure 1.4 (b).

Fig. 1.5 : Nominal stress vs nominal extension of a polycarbonate specimen indicating the

di�erent stages in the deformation. (a) shows the full range and (b) shows an expanded view at

small strain levels [23].

To obtain more tolerance to damage and enable structural use, mechanical properties

need therefore to be enhanced by controlling shear band formation and propagation. A

possible route consists in the design of amorphous/crystalline composites with increased

plasticity. In any case it remains an important challenge to understand at a local level the

nucleation and propagation of these shear bands.

Losing two orders of magnitude of sti�ness with respect to typical metallic glasses

(Young's modulus of about ∼ 1GPa vs > 100GPa for metallic glasses), another class of

materials that are widely used industrially, are the polymer glasses. Here we restrict the

discussion to the polymers in the glassy state i.e. below their glass transition temperature

(Tg ∼ 100◦C for polymethyl methacrylate (PMMA) and Tg ∼ 150◦C for polycarbonate

(PC)) where their elasticity and strength are lost and the polymers become melt-like or, if

5Note that at high temperature, in their supercooled state, some metallic glasses are amenable to

super-plastic deformation of up to 20000%
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Fig. 1.6 : (a) Microscopic vue of the polycarbonate specimen taken during stage II of the de-

formation shown on �gure 1.5(b) [23]. Formation of shear bands at the beginning of necking,

observed for a sample of polycarbonate. The arrows indicate the direction of the applied tensile

stress. Micrograph obtained by Morbitzer [24, 25]; (c) microscopic shear bands located inside the

macroscopic shear bands of (a) [26].

they are cross-linked, turn into a rubber. Deformations of polymeric solids always include,

in addition to the reversible part, an irreversible �ow. Usually, as con�rmed also in recent

molecular dynamics simulation [7], this plastic �ow sets in immediately when a sample

is stretched and becomes very intensi�ed when the yield point is reached. Upon further

drawing this strain softening is often followed by a strain hardening (stage V in �gure 1.5),

which stabilizes the sample again and is associated to the stretching of the polymer chains.

In addition polymers are viscoelastic solids and temperature as well as strain rate in�uence

importantly their stress-strain response. The failure mechanisms in glassy polymers are of

two types: crazing6 and shear yielding; here we are mainly interested in the later. As shown

by Ravi-Chandar et al [23] in their analysis of a shear yielding polymer (polycarbonate),

di�erent stages of the mechanical response correspond to di�erent microscopical behaviors.

Whilst the deformation in stage one (see �gure 1.5) is to a �rst approximation homogeneous

(in fact numerical simulations show that plasticity has already started at nano-metric level,

i.e. outside of the microscopical resolution of [23]), in stage 2 micro shear bands measuring

about 1µm in thickness and 100µm in length are observed distributed throughout the

specimen particularly near surface defects. Remarkably their orientation appears dictated

to some extent by the macroscopic stress state. As the load increases the density of the

micro shear bands increases resulting in a reduction in the overall sti�ness of the specimen,

that eventually leads to a macroscopic localization at the end of stage III (�gure 1.6 (b)).

Once more this example shows that the understanding of the shear banding mechanism can

have important potential applications even in daily life's materials such as poly-carbonates.

In complex �uids shear banding was �rst observed [27] with micelar solutions and has

6Crazing is a phenomenon that frequently precedes fracture in some glassy thermoplastic polymers.

Crazing occurs in regions of high hydrostatic tension, or in regions of very localized yielding, which leads

to the formation of inter-penetrating micro-voids and small �brils. If an applied tensile load is su�cient,

these bridges elongate and break, causing the micro-voids to grow and coalesce; as micro-voids coalesce,

cracks begin to form.
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Fig. 1.7 : (a) Non monotonic constitutive equation assumed for wormlike micelles. The two stable

branches at low and high shear rates are separated by an unstable portion [AB]. In the plateau

region, the micellar solution demixes in bands of shear rate γ̇1 and γ̇2 (b) Velocity, shear rate and

shear stress pro�les calculated under the assumptions of shear banding and of non monotonic �ow

curve. (c) Schematic representation of the shear banding for system undergoing a shear induced

isotropic-to-nematic transition.

since then generated an enormous interest due to numerous industrial applications7 but

also to the fundamental questions that are raised within these systems. As reviewed in

numerous recent reviews [28, 29, 30, 31, 32, 33, 34], proof of the enormous interest in the

�eld, shear localization has been widely observed and studied in worm-like and lamellar sur-

factants, side-chain liquid crystalline polymers, viral suspensions, telechelic polymers, soft

glasses, polymer solutions, and colloidal suspensions. In a sense the prototypical example,

giant micelles, is representative of the evolution of our understanding of shear localization

in complex �uids. Initially macroscopic rheological studies of these surfractant solutions

showed that the �ow curve exhibits a plateau-like (�gure 1.7) behavior under controlled

shear rate experiments. Spatially resolved experiments followed exhibiting that for shear

rates associated to the stress plateau region, the �ow separates in two bands of di�erent

shear rates (�gure 1.7) and associated to two di�erent organizations of the material, an

isotropic region, similar in structure to the original solution, and a strongly birefringent

region, in which the micelles are aligned to a high degree with the �ow direction (�gure

1.7). Theoretical descriptions8 attempted to capture the onset of this transition and the

stability of the coexistence in terms of interfacial dynamics and mechanical instability [36].

This approach has provided some successful prediction concerning this heterogeneous �ow,

one of which is the lever rule to estimate the shear rates in each band. Nevertheless more

detailed investigations of the birefringent phase have recently revealed strong spatial [37]

and temporal [38] variations in the �ow that are not encountered by the simple precedent

theoretical approaches. A striking observation has been that the birefringent phase consists

in fact of numerous transient, narrow zones of very large shear. The term `�uid fracture'

7worm-like micelles have a widespread range of applications in every-day's life. Viscoelastic surfactant

phases are already used in oil �elds as fracturing �uids, in hydrodynamic engineering as drag reducing

agents and in many home and personal care products.
8Here we follow the review made in [35].
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[39] has been proposed to describe these individual events, which have been observed in

di�erent systems with similar rheological properties but di�erent internal structures (con-

nected micro-emulsions, copolymer cubic phase). The understanding of the shear-banding

phenomenology has thus begun to shift from a phase transition picture to a fracture pic-

ture, and the interest is now focusing on the highly localized events (micro shear bands,

quadrupolar events) that initiate the transition, and on their relation to the structural

properties of the material. Another term used to coin this intermittent �uctuations of the

velocity pro�le and of the stress response around the average value, is `rheological chaos' or

simply `rheochaos', and many theoretical and experimental studies are devoted to the char-

acterization of this �owing regime in glassy materials [40]. Of course numerical simulations

are very useful to provide an atomistic insight and indeed some recent results (including

the work presented in this thesis) in model glassy systems have exhibited this `peculiar'

shear banding phenomenon.

Fig. 1.8 : (a) Engineering �ow curve (in the concentrated wormlike micellar system CTAB at

20% wt. in D2O) σ(γ̇) at T = 41◦C under controlled shear rate obtained by averaging the shear

stress over the last 100 s of each step [41].(b) Dimensionless shear stress σ/G0 versus dimensionless

γ̇τ0 (G0 = 500Pa, τ0 = 72ms) for a transient polymer network at 25 g/L at T = 5◦C. The vertical
bars indicate the range of stress �uctuations for a given shear rate. The grey region indicates

where shear banding and �uctuating stresses are found [42, 43].(c) Transient stress measurements

obtained from start-up experiments at various shear rates. (telechelich polymer network analysed

in [39]) (d) Typical transient stress response in the banded regime, at a steady shear rate of γ̇ = 1,
measured at T = 10◦C (τ0 = 36ms). Note that at short time scales (' τ0), at the start-up of

the shear �ow, the stress shows an overshoot, which is not visible here due to the longer sampling

interval of 1s ≈ 30τ0 [42, 43].
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Let us �nally discuss two examples of glassy9 materials that present the speci�city to

have elementary units that are macroscopic, namely foams and granular materials. The

macroscopic nature of their elementary units makes these systems athermal and they are

therefore ideal model systems to study the in�uence of external drive independantly of

thermal e�ects, in addition their macroscopic size (human scale) allows for a direct visual

observation and therefore tends to simplify the experimental procedures.

Fig. 1.9 : (a) Snapshot of a simulated foam with 16 × 48 bubbles. The polydispersity is 6%.

The foam has periodic boundary conditions along the x direction. Films laying at upper and lower

edges are �xed; shearing is obtained by moving the lower edge along the x direction. (b) Example

of a topological change (T1 process) occurring inside the foam upon shearing.(c) Evolutions from

top to bottom of the shear stress, the free energy and the positions of the T1 events within the

gap as a function of the applied strain [11].

Liquid foams are dispersions of gaz bubbles in a liquid matrix. When the gas content

of this emulsion becomes important (typically more than 70% of the total volume) the

mechanical and rheological properties of the foams deviate strongly from those of the

�uids phases (liquid and gas) that compose them, for example they have a higher shear

modulus and only �ow above a certain yield stress, behaving more in a `solid like' manner.

These properties combined with the lightness of their structure makes them widely used

components in many industrial applications. In the agro-alimentary industry they are

used for example to make ice creams and sauces more onctuous, to stop shaving foams

and cleaning products from �owing too quickly. Many other industrial applications are

also based on liquid foams that are �xed chemically once formed, one example is the use

of polymer foams for car seats, not to mention the very wide variety of solid foams. In

foams one observes two types of velocity pro�les signalling shear localization, they can be

continuous or not [44]. The continuous type appears usually in the form of an exponential
9The use of the word glassy to describe foams and grains remains a matter of debate, here we use it in

the sense that these systems are non ergodic
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pro�le [10, 45, 46] and has been attributed to either a drag e�ect [47] due to the con�ning

plates or to stress �uctuations at the rotor that excite internal deformation modes in the

bulk [10]. The second type, with discontinuous velocity pro�les, has been recently observed

for example in two dimensional buble rafts10 [12] or in three dimensional foams. Once more

with the example of foams we see that the same mechanisms appear to be at play in the

heterogeneous response of glassy materials at low deformation rates.

Fig. 1.10 : (a) Container collapse [48]. (b) Lava �owing to the sea in Montserrat island [49].

Fig. 1.11 : Instantaneous velocity pro�les in simulation of dry granular material [49] for two

di�erent inertial numbers, in two dimensions de�ned as I = γ̇
√

m
P , (a) I = 10−3, (b) I = 10−1.

Non-a�ne velocity �uctuations in the quasistatic regime I = 10−3 (c) and in the dynamic regime

I = 10−1 (c).

10A bubble raft consists of a single layer of bubbles �oating on a �uid surface
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At last let us mention the �ows11 of granular materials, again with a special focus

on the question of the shear band formation and propagation. Here also, to understand

the mechanical properties of these materials is of enormous industrial importance, with

applications ranging from the storage (�gure 1.10), transport and processing of grains to

the understanding of natural phenomena such as for example dune migration, land slides

(�gure 1.10) or even earthquakes to name only a few. Detailed rheological studies at

imposed stress or strain rate are reported for example in [49] and exhibit many common

rheological features with micellar systems or foams (hysteresis, yield stress shear �ow,

localization of the deformation). Interestingly grains share many properties with complex

�uids (and even solid glasses) in that they exhibit a �ow threshold, although it is usually

expressed in terms of friction instead of yield stress, but also in the fact that their �ow

is shear rate dependent, these combined properties help to classify them as visco-plastic

materials. On a theoretical level a description of their mechanical response necessitates the

de�nition of constitutive equations. This has been the focus of many theoretical studies

in the last ten years and local constitutive laws in scalar and tensorial forms have been

proposed [50]. Yet the particularly relevant for us quasistatic regime, again here, as we

have already seen in previous examples of glassy materials, appears singular. In this regime

the �uctuations of the velocity pro�le are very large (�gure 1.11) and the �ow appears

intermittent, with localized burst of displacements of the grains (�gure 1.11), and this

mechanical response is not well described in the local viscoplastic framework of Pouliquen.

There are di�erent approaches to capture the correct �owing behavior in the quasi-static

limit. We refer here the reader to the review of Pouliquen [50], let us simply mention, the

Cosserat type approaches where one introduces an internal length scale and a rotational

degree of freedom of the grains, models based on the de�nition of local plastic events, but

also non-local continuum approaches motivated by the long-range �uctuation observed for

example in the �uctuating velocity of slowly sheared grains (�gure 1.11). Note that despite

these e�orts the question of a uni�ed description of all �owing regimes remains open. In

the next section we present some of the models of the rheology of glasses. Note that there

are almost as many models of the rheology of glasses as there are of the glass transition12

and we will only brie�y present the most representative.

1.4 Models of rheology and plasticity of glassy materials

Non-ergodic glassy materials, such as the ones presented in the previous section, present as

we have seen unusual rheological/mechanical properties. Understanding this peculiar �ow

represents a profound challenge to statistical physics. At a microscopical level work based

on mode-coupling theory (MCT) is restricted (so far) to the case of monodisperse glasses

near or above the glass transition temperature. Purely phenomenological models in which
11For a recent review of the �ows of dense cohesionless granular materials see [50]
12In fact very often for each theory of the glass transition there is a derived model of the glass rheology.
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a continuum stress or strain representation of the local state is supplemented by just one or

two variables (e.g. `�uidity') [51, 52, 53] are much simpler but of rather limited predictive

power. Intermediate to these two types of approaches one �nds various mesoscopic models.

We present now some of these models. We introduce �rst the mean-�eld approaches and

then continue with models that allow for a spatially heterogeneous response of the glasses.

1.4.1 Mean �eld approaches

Historical approach : Eyring's model. The simplest model that makes a prediction

for the rate and temperature dependence of shear yielding is the rate-state Eyring model

[54, 55, 17] of stress-biased thermal activation. Structural rearrangement is associated with

a single energy barrier E that is lowered or raised linearly by an applied stress σ. This

de�nes transition rates of the form,

R+− = ν0 exp
[
− E
kBT

]
exp

[
+−

V∗σ
kBT

]
, (1.2)

where ν0 is an attempt frequency and V∗ is a constant called the `activation volume'.

In glasses, the transition rates are negligible at zero stress. Thus, at �nite stress one needs

to consider only the rate R+ of transitions in the direction aided by stress. The plastic

strain rate ε̇pl will be proportional to R+, ε̇pl = cR+. Solving for the stress σ , one obtains

σ =
E
V∗

+
kBT
V∗

ln
[
ε̇pl
cν0

]
. (1.3)

Equation 1.3 contains only a single relaxation time scale and predicts an apparent yield

stress that varies logarithmically with the strain rate and where the logarithm has a pref-

actor that depends linearly on temperature. Despite its simplicity, experimental results are

often �tted to equation 1.3, and the value V∗ is associated with a typical volume required

for a molecular shear rearrangement.

Modern phenomenological approaches pay tribute to the complexity of glassy systems

through several extensions. First, it has been realized that assuming a single energy barrier

for rearrangements is an oversimpli�ed description of glassy materials. One can therefore

introduce a distribution of barriers and add additional time scales. Second, any theory

that attempts to predict a full stress-strain curve must contain some information about

the internal state of the system as a function of time or strain. Extensions therefore consider

dynamical internal state variables. The following models are particular realizations of these

ideas.

Soft glassy rheology model. The SGRmodel is a mean �eld model based on Bouchaud's

trap model [56]. The glassy nature of the material is accounted in Bouchaud's approach

by a distribution of energy minima (density of states) taken to have an exponential tail
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ρ(E) ∼ exp (−E/xg), where E is the depth of the trap and xg a characteristic energy. A

steady state (if it exists), is given by Peq(E) ∼ ρ(E) exp (E/x), where x is the temperature.

These two terms, the density of states ρ(E) and the Boltzmann factor exp (E/x), exactly
cancel at the glass transition temperature and the distribution is no longer normalizable

and no steady state can exist : for x < xg the system ages in time, evolving in deeper and

deeper traps.

The SGR model [57, 58] takes this picture and translates it from a global landscape to

a mesoscopic one : the system is divided conceptually into many mesoscopic elements and

the trap model is used to describe the distribution of the properties of all the elements. As

new ingredients the SGR model incorporates deformation and �ow in the following way :

due to disorder the various mesoscopic elements possess a di�erent strain l, away from their

local equilibrium con�guration. These small volume elements are assumed to yield with

a rate Γ0 exp
[
−(E− kl2/2)/x

]
, where l is the local strain and k an elastic constant. The

role of temperature is replaced by a `noise' temperature x, which is assumed to describe

the e�ect of structural rearrangements in a mean-�eld spirit. After yielding of a volume

element, a new yield energy is drawn from ρ(E) and the local strain l rises again from 0

according to the macroscopic shear rate γ̇. The time evolution of the joint probability of

�nding an element with a yield energy E and a local strain l, P(E, l, t) can be obtained

from the following master equation,

∂P(E, l, t)
∂t

= −γ̇ ∂P(E, l, t)
∂l

− P(E, l, t)
τ(E, l)

+
∫ ∞

0

P(E′, l′, t)ρ(E)
τ(E′, l′)

dE′dl′δ(l) , (1.4)

where we have introduced τ(E, l) =
(
Γ0 exp

[
−(E− kl2/2)/x

])−1 the average time

spend in a trap of energy E. This model is simple enough to allow for the derivation of

an exact constitutive relation linking stress and strain. The model was originally designed

to describe the �ow behavior of foams, dense emulsions, pastes, and slurries but its do-

main of application can reasonably be extended to the deformation and rheology of other

`harder' glassy materials such as metallic glasses. It covers not just linear but also nonlin-

ear response, and is able to predict much of the complex rheological behaviour observed in

experiments on soft materials. The predictions arising from the SGR equations are richer

than the simple Eyring model. The exponential distribution of traps induces a dynamical

glass transition, and the system exhibits ageing for x < 1. Analysis has mainly focused on

the steady state situation under constant shear rate γ̇, which is the generic experiment used

to determine the mechanical properties of soft glassy materials. Salient predictions are: a

Newtonian �uid �ow σ ∝ γ̇ for x > 2 and a power law �uid σ ∝ γ̇τ−1 for 1 < x < 2. In the

glassy phase, x < 1, a scaling of the form −σy ∝ γ̇1−x is predicted. The nature of the noise

temperature x (not the true thermodynamic temperature) and the pre-exponential factor

Γ0 remain largely unspeci�ed. In a recent paper Fielding et al [59] extend the model, to

capture the idea that the noise is largely caused by yield itself. The extended model can

account for the viscosity-bifurcation and shear-banding e�ects reported recently in a wide
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range of soft materials (as discussed in the previous section).

Shear transformation zone model. Falk and Langer, based on microscopic observa-

tions obtained with molecular dynamics simulations, formulated a theory of viscoplasticity

[3] based on the concept of `shear transformation zones (STZ), bistable (mesoscopic) re-

gions that transform under shear between +− states. These ingredients of the STZ theory

are based on earlier defect-�ow theories of Turnbull, Cohen, Argon, Spaepen and others

[60, 61, 62, 63]. Within the STZ model one considers the dynamics of an ensemble of STZ

with number density n on a mean-�eld level, which determines the plastic strain rate

ε̇pl = A0 (R+n+ − R−n−) , (1.5)

where A0 is a constant and were the transition rates R+− from a (+)STZ to a (-)STZ and

reciprocally, in contrast to the Eyring model are assumed to be free-volume (entropically)

activated rather that termally activated. The authors also include a stress dependance in

the following form,

R+− = R0 exp
[
−v0 exp [σ/µ]

vf

]
(1.6)

where v0 is a characteristic free volume required for a STZ �ip and µ a characteristic

stress scale required for a molecular rearrangement. The role of temperature is played by

a `free volume' vf per particle. The authors motivate this with the observation that in a

solid at very low temperature, energy barriers should be very large compared to thermal

energies and thus, as in granular systems, thermal activation over these barriers should be

negligible. The population densities themselves evolve according to the rate equation,

n+− = R+−n+− − Rn + σε̇(Ac −Aan+−), (1.7)

where the last term introduces creation and annihilation processes of STZ's proportional

to the work of plastic deformation σε̇pl. By adding some dynamical rule for the free volume

[64] the resolution of the non-linear system of the three equations so obtained leads to a

yield stress, rheo�uidi�cation, and in some cases stick-slip. In addition to the mean-�eld

approach used in this model the main limitation comes from the fact that the microscopic

identi�cation of the STZ remains elusive.

We now turn to the models that introduce explicitly in their approach the spatial dimen-

sion of the problem and aim at a precise description of the shear banding and heterogeneous

deformation observed in various glassy materials (see 1.3).

1.4.2 Spatially resolved models

Elasto-plastic models. This class of models are inspired from geophysics [66] and from

mechanics and are based on the following ideas [67]:
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Fig. 1.12 : Sketch of plastic deformation in amorphous media. Deformation occurs via elastic

deformation, localized plastic events, and nonlocal redistribution of the elastic stress, potentially

triggering other plastic events [65].

• the macroscopic �ow or deformation results from a collective organization of plastic

rearrangements

• a plastic event is a local relaxation that occurs when a local yield criterion is attained

• a plastic event generates a perturbation of the entire medium through elastic propa-

gation and can therefore generate new plastic events

This type of model allows therefore a mesoscopic approach of the appearance of hetero-

geneities based on elementary bricks, the plastic rearrangements. There are many elasto-

plastic models and the nature of the dynamics of the plastic events is di�erent in each of

these models [67, 68, 69, 70].

In the model of Picard et al [67, 71] (very similar in spirit to the earlier extremal model

of Baret et al [68]) the local variables that are considered by the authors are the shear rate

ε̇(r, t) and the shear stress σ(r, t). The system is controled by the global shear γ̇. The

elastic shear modulus of the medium is noted µ. Under the simplifying assumptions of an

in�nite mdium and of a local plastic deformation with the same symmetry as the global

deformation (here pure shear) one can write the expression of the shear stress �eld σ(r, t)
induced by a plastic deformation εpl(r, t) as,

σ(r, t) = 2µ
∫
dr′G∞(r− r′)εpl(r′, t), (1.8)

where the propagator is given by,

G∞(r, θ) =
1
π

2
r2

cos(4θ). (1.9)
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With these ingredients one can write the following evolution equation for the stress,

∂σ(r, t)
∂t

= µγ̇ + 2µ
∫
dr′G∞(r− r′)εpl(r′, t), (1.10)

where the �rst term corresponds to the global strain γ and the second term to the

plastic shear.

To complete the model one needs to characterize the dynamics of the plastic deformation

ε̇pl. To describe this dynamic a local yield criterion based on the existence of a local yield

stress σc is implemented. In line with the extremal model of Baret et al the dynamics

consists in the elastic deformation of the medium up to the point, where somewhere in the

material the yield stress is attained. At this instant a plastic event is triggered that relaxes

the local stress with the propagator 1.9. To describe this behaviour the authors introduce

a new variable n(r, t) that is equal to 1 if the local region at r is plastic or 0 if it is purely

elastic. The dynamics of the plastic deformation is given by the following equations,

ε̇pl(r′, t) =
1

2µτ
n(r′, t)σ(r′, t) (1.11)

n(r′, t) : 0� 1. (1.12)

The three equations 1.8, 1.10 and 1.11 provide a means of describing and model the

rheology of the glass.

Kinetic theory of plastic �ow. In a very recent paper Bocquet et al [65], develop a

kinetic elasto-plastic model (KEP) based on the same ingredients as the extremal models

of the previous paragraph. The KEP model is an extansion of a previous approach �rst

proposed by Hébraud and Lequeux (HL) [72] that includes explicitly spatial interactions

between plastic events. In the spirit of the SGR they divide, conceptually, the sample in

mesoscopic blocks i to which they associate their own distribution of stress Pi(σ, t). In line

with the elasto-plastic models of Baret [68] or Picard [71] the evolution of each distribution

function Pi(σ, t) is driven by the three following mechanisms: an elastic response under the

externally imposed shear rate γ̇0
i , a stress relaxation due to local plastic events, triggered

at a given yield stress, and the modi�cation of stress due to the plastic events occuring in

other blocks, via the generated long-ranged elastic �eld (see �gure 1.12). These processes

can be condensed in the following master equation for the local stress distribution Pi,

∂tPi(σ, t) = − G0γ̇
0
i ∂σPi(σ, t)−

Θ(|σ| − σc)
τ

Pi(σ, t)

+ Γi(t)δ(σ) + L(P,P), (1.13)

where γ̇0
i is the imposed shear rate, G0 is the elastic modulus, Θ the Heaviside function.

The rate of plastic events, Γi(t), is �xed by

Γi(t) =
∫

Θ(|σ′| − σc
τ

Pi(σ′, t)dσ′. (1.14)
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In equation 1.13, the operator L(P,P) accounts for the stress redistributions due to the

long-ranged elastic propagation. For example a block j can induce a nonlocal stress relax-

ation δσi in block i given by δσi = Πi,jδσj , with Πi,j the elastic stress propagator (see also

1.9). As discussed in [65], L(P,P) writes,

L(P,P) =
∑
j 6=i

σ′
Θ(|σ′| − σc)

τ

×
[
Pj(σ′, t)Pi(σ + δσi, t)− Pj(σ′)Pi(σ)

]
. (1.15)

Having formulated these `microscopic' equations the authors derive in [65] their contin-

uum hydrodynamic limit and deduce a set of constitutive nonlocal �ow rules for the plastic

�ow. Switching to continuous space variables these two equations write,

σ =
1
f
γ̇, (1.16)

∆f − 1
ξ

(f − fb) = 0. (1.17)

In this equation f corresponds to the local �uidity of the material, intimately linked to

the rate of plastic events, fb is the bulk �uidity that satis�es, fb ∝ (σ−σd)2 for σ > σd and

0 otherwise, σd the dynamic yield stress and ξ a �uidity correlation length. Importantly

the scaling of this correlation length is predicted within this model as,

ξ ∝

√
1

|σ − σd|
∝ γ̇−1/4. (1.18)

Also predicted from this model is a Herschel-Bulkley expression for the �ow rule of the

form,

σ = σd + Aγ̇n, (1.19)

with n = 1/2. All these prediction have found recent con�rmations in experimental results

[73] as well as in various simulations [74, 71, 75, 76, 77].

In this introduction we have set the scene of the physical problem that we want to

address in this thesis, namely the mechanical response of glassy materials. More speci�cally

we will identify through the use of numerical simulations the mechanisms at the origin of

the heterogeneous mechanical response observed in glasses leading to the formation of

strain localization and shear bands. In the course of the thesis the following dilemma will

emerge : can the plastic �ow in glasses be attributed to a local origin (with some local order

parameter controlling it) or is it independant on structural details and of purely dynamical

nature ?
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The thesis can be seen as structured around this central question in three parts. The

�rst part is composed of this introduction 1 and of chapter 2. We introduce the subject

and the previous studies (experimental, numerical and theoretical) devoted to the rheology

of glasses and present the numerical method and model system that we have chosen to

represent the generic features of the rheology of glassy materials. The second part contains

chapter 3 and 4. There we introduce a local coarse-grained order parameter, the local

elasticity tensor and more speci�cally the local shear modulus, and relate this parameter

to the plasticity in the model glass. The third part consists of chapter 5 and 6. There we

take the complementary approach and consider, independantly of the underlying structure,

the dynamics of the driven systems. Finally in the conclusion we summarize our results

and propose some perspectives of our work.
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Numerical approach

Contents

2.1 Computer experiments . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Quasistatic protocols - Potential energy minimization . . . . . 27

2.4 Examples of simulated sheared glassy materials . . . . . . . . . 29

2.5 A model system : the Lennard-Jones glass . . . . . . . . . . . . 31

2.6 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Computer experiments

Computer experiments [78, 79, 80] play a very important role in science today. In the

past, physical sciences were characterized by an interplay between experiment and theory.

In experiment, a system is subjected to measurements, and results, expressed in numeric

form, are obtained. In theory, a model of the system is constructed, usually in the form of

a set of mathematical equations. The model is then validated by its ability to describe the

system behavior in a few selected cases, simple enough to allow a solution to be computed

from the equations. In many cases, this implies a considerable amount of simpli�cation in

order to eliminate all the complexities invariably associated with real world problems, and

make the problem solvable. In the past, theoretical models could be easily tested only in a

few simple special circumstances. So, for instance, in condensed matter physics a model for

intermolecular forces in a speci�c material could be veri�ed in a diatomic molecule, or in

a perfect in�nite crystal. Even then, approximations were often required to carry out the

calculation. Unfortunately, many physical problems of extreme interest (both academic

and practical) fall outside the realm of these special circumstances. Among them, one

could mention the physics and chemistry of defects, surfaces, clusters of atoms, organic

molecules, involving a large amount of degrees of freedom; an accurate treatment of tem-

21
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perature e�ects, including anharmonicities and phase transitions; disordered systems in

general, where symmetry is of no help to simplify the treatment; and so on. The advent of

high speed computers which started to be used in the 50s altered the picture by inserting

a new element right in between experiment and theory: the computer experiment. In a

computer experiment, a model is still provided by theorists, but the calculations are carried

out by the machine by following a recipe (the algorithm, implemented in a suitable pro-

gramming language). In this way, complexity can be introduced and more realistic systems

can be investigated, opening a road towards a better understanding of real experiments.

Needless to say, the development of computer experiments altered substantially the tra-

ditional relationship between theory and experiment. On one side, computer simulations

increased the demand for accuracy of the models. For instance, a molecular dynamics

simulation allows to evaluate the melting temperature of a material, modeled by means

of a certain interaction law. This is a di�cult test for the theoretical model to pass and

a test which has not been available in the past. Therefore, simulation brings to life the

models, disclosing critical areas and providing suggestions to improve them. On the other

side, simulation can often come very close to experimental conditions, to the extent that

computer results can sometimes be compared directly with experimental results. When

this happens, simulation becomes an extremely powerful tool not only to understand and

interpret the experiments at the microscopic level, but also to study regions which are

not accessible experimentally, or which would imply very expensive experiments, such as

under extremely high pressure. Last but not least, computer simulations allow in thought

experiments, things which are just impossible to do in reality, but whose outcome greatly

increases our understanding of phenomena to be realized.

From the precedent discussion one can imagine that since the 50s an enormous amount

of research and academic publications have been produced in the �eld of numerical sim-

ulations, but this literature can be separated in various sub-categories associated with

various numerical methods (Ab Initio, Molecular Dynamics, Monte Carlo, Brownian Dy-

namics, Event Driven Dynamics, Lattice gas simulation, Finite Elements, minimization

algorithms...). The choice of the numerical technique used is linked to the phenomena that

one wants to model. Particularly critical for the choice of the numerical method is the time

scale(s) as well as the length scale(s) over which one wants to probe the physical system

of interest (see �gure 2.1). Our aim in this thesis is to understand the microscopical origin

of the dynamical (rheology, di�usion, relaxation times...) and static (mechanical response,

vibrational modes, local structure...) properties of amorphous glassy materials therefore re-

quiring the knowledge of the atomic scale informations concerning the positions, velocities,

forces in the glasses. Moreover the typical size of the phenomena of shear band formation

and strain localization at stake during the mechanical deformation of glasses (shear bands

involve up to or much more than a few hundred of particles) along with the time scales over

which we want to study the rheology/mechanical deformation of the glass (total strains of

the order of ε ∼ 400%) makes methods such as Molecular Dynamics, Monte Carlo simu-
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Fig. 2.1 : Schematic representation of various modeling numerical methods as a function of the

length scales of interest. We will place ourselves in the mesoscopic range adapted to the use of the

Molecular Dynamics technique (H. Meyer Strasbourg).

lations and Minimization algorithms the only atomic scale methods that are realistically

feasible with the current computer capabilities (Ab Initio cannot reach any of these time

or length scales while more mesoscopic methods do not include the atomic level description

that we request). For us the Monte Carlo method is intrinsically limited by its probabilistic

nature that lead to non realistic trajectories in time. As we are interested in the evolu-

tion with time (strain) of all particles we have therefore not used Monte Carlo techniques

and have restricted our studies to Molecular Dynamics and Minimization methods. Within

molecular Dynamics an important branch is constituted by Non-Equilibrium Molecular Dy-

namics (NEMD) that has been a growing �eld of research since the early 70s. This branch

of numerical simulations is all the more important since there is at present no equivalent of

the theoretical framework of equilibrium statistical physics far from equilibrium and that

there is no applicable atomistic theory even for the simplest kind of non-equilibrium prob-

lems. Non-equilibrium computer simulations have therefore three useful roles to play: (1)

providing the basic data through computer experiments, generally providing more details

and greater accuracy than is available in laboratory experiments, (2) helping to identify

and analyze causal mechanisms underlying the observed results of computer experiments

and having analogs in laboratory experiments carried out far from equilibrium, and (3)

suggesting conceptual approaches for developing necessarily approximate theoretical treat-

ments modeling these two of experiments. These three points are representative of the

spirit with which this PhD was undertaken.
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2.2 Molecular Dynamics

The obvious advantage of molecular dynamics is that it o�ers a route to dynamical proper-

ties of the system : transport coe�cients, time-dependent responses to perturbations and

various correlation functions, rheological properties. Moreover it is well adapted to perform

non equilibrium simulations. All simulations presented in this thesis at �nite shear rates

and/or temperatures to describe the rheology of the glasses (see chapter 6) and to produce

the initial glass con�gurations through a �nite temperature quenching procedure were per-

formed with the LAMMPS (Large Scale Atomic/Molecular Massively Parallel Simulator)

code (http://lammps.sandia.gov/) [81]. It is an open source, rich, �exible and fast software

package, that met (modi�ed whenever needed) all the needs of the present work.

The Molecular Dynamics technique is a method that is largely used to study classical

systems with a large number of particles ( 102 − 106). The basic principle of the method

is simple and consists in integrating numerically the equations of motion (EOM) of the

system. This allows to follow the evolution of the system in phase space in time. Here

we present only the numerical methods that we have used in this work and report the

interested reader to the seminal references [79, 80] for in depth technical details.

Consider a system containing N classical particles in a rectangular simulation box of

volume V ≡ L1 × L2 × L3. The EOM for these N interacting classical particles are given

by the Newton law:

Fi = mi
d2Ri

dt2
= −∇Φ(Rj) j 1,...,N (2.1)

where Ri is the position of atom i, mi its mass, Fi the force on atom i and ∇Φ the gradient

of the potential energy in Ri that depends on the N− 1 other atoms j. In our simulations

we will solve these EOM for interparticle potentials and forces that depend only on the

relative positions of the atoms (and not for example on their velocities). In MD, the EOM

are integrated numerically using various expansion of the positions and velocities. There are

various algorithms that perform this integration and that are more or less CPU consuming.

In any case these algorithms must conform to the principle of energy conservation at short

and long times. In what follows we have used a time reversible algorithm named `Velocity-

Verlet' [80, 79] that has the advantage of presenting a small energy drift of the energy at

long times. On the other hand it shows a worse energy conservation at short times relatively

to more sophisticated algorithms. The algorithm follows the following integration rule:

Vi(t) =
Ri(t+ h)−Ri(t− h)

2h
(2.2)

where Ri is the position of particle i at the time t = nh (h is a time step and n an integer).

From this de�nition, one can evaluate the position and velocity of particle i at the time

t+ h:

Ri(t+ h) = Ri(t) + hVi(t) +
h2

2mi
Fi(t) (2.3)
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Vi(t+ h) = Vi(t) + h
h

2mi
[Fi(t+ h) + Fi(t)] (2.4)

This algorithm is very commonly used for its great stability relatively to the discretization

and numerical precision. The schematic loop that the algorithm follows goes in four steps

as:

1. evaluate of the forces Fi(t) from the positions Ri(t)

2. calculate the new positions Ri(t+ h) (equation 2.3)

3. evaluate the forces Fi(t+ h) from the positions Ri(t+ h)

4. calculate the velocities Vi(t+ h) (equation 2.4)

These various steps are repeated during n integration steps, with n taking values up

to 108 (for reasonable CPU time), allowing, for typical MD integration steps of about

τ = 10−15s, to reach physical phenomena on time scales of the order of 10−8s. It is im-

portant to be conscious of the fact that these short time scales are only barely reachable

experimentally, for example with Raman spectroscopy techniques.

The MD conserving energy is statistically equivalent to the microcanonical ensemble

NVE. Note that experimentally, it is often more practical to control the temperature T or

the pressure at �xed volume V. The �exibility of the MD technique allows to extend easily

the NVE formalism towards the NVT or NPT ensembles for example (we will discuss in

greater detail of the various possible ensembles that MD can reproduce in section 3.3.1

of chapter 3.). In our simulations where the volume of the simulation box V and the

number of particles N are kept constant we have used the control parameter T and have

therefore worked within the NVT ensemble. Hence, in our simulations, the temperature

T can be related to the average kinetic energy 〈K〉 of the system via the equipartition

of the energy. And one �nds 〈K〉 = 〈
∑

i 1/2miv
2
i 〉 = NfkBT/2 where Nf stands for

the number of degrees of freedom (DOF) and kB for the Boltzmann constant. Similarly

the instantaneous temperature is de�ned as Tins ≡ 2K/NfkB, and the average of this

instantaneous temperature over the entire sample must be equal to the thermodynamic

temperature. Because the temperature is related to the kinetic energy, in order to control

the temperature, the instantaneous velocities of the particles during the simulation run

must be controlled. The �rst method that we used in two dimensions, consists in a direct

rescaling of the particle velocities with the following ratio:(
vnew
vold

)2

=
T

Tins
(2.5)

where vnew is the rescaled velocity and vold is the velocity before rescaling.

The second method [82] that we used is called Nose-Hoover thermostat (we used it

partly to check the validity of the results obtained from the �rst method). The velocity
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rescaling thermostat is extremely e�cient for relaxing a system to the target temperature,

but once the system has reached equilibrium, it might be more important to probe a correct

canonical ensemble. The extended system method was originally introduced by Nose and

subsequently developed by Hoover [83]. The idea is to consider the heat bath as an integral

part of the system by addition of an arti�cial variable s, associated with a `mass' Q > 0
as well as a velocity s. The magnitude of Q determines the coupling between the reservoir

and the real system and so in�uences the temperature �uctuations. The arti�cial variable

s plays the role of a time-scaling parameter, more precisely, the timescale in the extended

system is stretched by the factor s as d̃t = sdt. The atomic coordinates are identical in

both systems. This leads to the following relations, r̃ = r, ˙̃r = s̃−1ṙ, s̃ = s and ˙̃s = s̃−1ṡ.

The Lagrangian for the extended system is chosen to be,

L =
∑
i

mi

2
s̃2 ˙̃r

2

i −U(r̃) +
1
2

Q˙̃s
2 − gkbT0 ln s̃ . (2.6)

The �rst two terms of the Lagrangian represent the kinetic energy minus the potential

energy of the real system. The additional terms are the kinetic energy of s̃ and the potential,

which is chosen to ensure that the algorithm produces a canonical ensemble where g = Ndf

in real-time sampling (Nose-Hoover formalism) and g = Ndf + 1 (Nose formalism), with

Ndf the total number of degrees of freedom. This leads to the Nose equations of motion,

¨̃ri =
F̃i

mis̃2
− 2˙̃s ˙̃ri

s̃
, (2.7)

¨̃s =
1

Qs̃

(∑
i

mis̃
2 ˙̃r

2

i − gkbT0

)
. (2.8)

These equation sample a microcanonical ensemble in the extended system (r̃, p̃, t̃). How-
ever the energy of the real system is not constant. Accompanying the �uctuations of s̃,

heat transfers occur between the system and a heat bath, which regulate the system tem-

perature. It can be shown, that the equations of motion sample a canonical ensemble in the

real system. The Nose equations of motion are smooth, deterministic and time-reversible.

However, because the time-evolution of the variable s is described by a second-order equa-

tion, heat may �ow in and out of the system in an oscillatory fashion, leading to nearly

periodic temperature �uctuations. In the LAMMPS code an optional drag keyword will

damp these oscillations in an ad-hoc fashion, by altering the Nose/Hoover equations so

that they no longer exactly sample the canonical ensemble. A value of 0.0 (no drag) leaves

the Nose/Hoover formalism unchanged. A non-zero value adds a drag term; the larger the

value speci�ed, the greater the damping e�ect. Performing a short run and monitoring the

temperature is the best way to determine if the drag term is working. Typically a value

between 0.2 to 2.0 is su�cient to damp oscillations after a few periods.

The stretched timescale of the Nose equations is not very intuitive and the sampling of a

trajectory at uneven time intervals is rather inpractical for the investigation of dynamical

properties of a system. However, as shown by Nose and Hoover, the Nose equations
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of motion can be reformulated in terms of real system variables. The transformation is

achieved through, the following formulas, s = s̃, ṡ = s̃ ˙̃s, s̈ = s̃2¨̃s + s̃ ˙̃s
2
, r = r̃, ṙ = s̃ ˙̃r,

r̈ = s̃2¨̃r + s ˙̃r
2
and with substituting γ = ṡ/s the Lagrangian equation of motion can be

rewritten as,

r̈i =
Fi

mi
− γri , (2.9)

γ̇ =
−kbNdf

Q
T(t)

(
g

Ndf

T0

T(t)
− 1
)

. (2.10)

In both algorithms, some care must be taken in the choice of the �ctious mass Q and

extended-system energy Ee . On the one hand, too large values of Q (loose coupling) may

cause a poor temperature control (Nose-Hoover thermostat with Q → ∞ is MD which

generates a microcanonical ensemble). Although any �nite (positive) mass is su�cient

to guarantee in principle the generation of a canonical ensemble, if Q is too large, the

canonical distribution will only be obtained after very long simulation times. On the other

hand, too small values (tight coupling) may cause high-frequency temperature oscillations.

The variable s may oscillate at a very high frequency, it will tend to be o�-resonance with

the characteristic frequencies of the real system, and e�ectively decouple from the physical

degrees of freedom (slow exchange of kinetic energy). As a more intuitive choice for the

coupling strength, the Nose equations of motion can be expressed as,

γ̇ = − 1
τNH

(
g

Ndf

T0

T(t)
− 1
)

(2.11)

with the e�ective relaxation time

τ2
NH =

Q
NdfkbT0

. (2.12)

2.3 Quasistatic protocols - Potential energy minimization

At �rst sight one can wonder how a minimization algorithm can give some insight on the

evolution of a system, after all �nding a minimum consists in �nding a unique state, `a

minimum'. It is true that while time is not easily compatible with the use of minimization

algorithms, these algorithms can if used iteratively provide e�ciently the evolution of a

system with respect to external parameters that are changed progressively. Moreover, it

is well known in the numerical simulation community, that `minimization is much cheaper

than dynamics'. In molecular systems the basic question that minimization algorithms try

to respond to is to �nd a minimum energy as a function of the atomic coordinates. One can

further divide this problem in two categories, namely trying to �nd a global minimum or

a local minimum. Another information that can be essential is to locate saddlepoints and

this is again another minimization problem where information is needed as to the shape

of the energy landscape between neighboring minima. One also di�erentiates between
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constrained and unconstrained optimizations (another term used for minimizations). For

example, if on one hand one is able to de�ne an energy function E(Ri) that depends on

d × N coordinates (in d dimensions) that are free to take any possible values then the

optimization problem is unconstrained, if on the other hand the particle coordinates must

satisfy some relation or equation, for example they must remain within a certain spatial

region then one is faced with a constrained optimization problem. In practice one can

avoid the constraint and include it in the form of the functional energy.

Fig. 2.2 : Evolution of the energy of a Lennard-Jones glass sample containing 100 particles during

energy minimization for various algorithms. From slowest to fastest, steepest descent algorithm

(GSL SD) [84], Fletcher-Reeves conjugate gradient algorithm (GSL FR) [84], Polak-Ribiere con-

jugate gradient algorithm (GSL PR) [84], block truncated newton (BTN) [85], truncated newton

(TN) [86], hessian free truncated method (HFTN) [87], truncated newton package (TNPACK) [88].

In this work we are interested in �nding a local minimum in an unconstrained opti-

mization problem. Indeed the quasistatic protocol that we use can be summarized by the

two following steps that we apply iteratively,

1. move a�nely all the particles positions Ri of the sample under Lees-Edwards bound-

ary conditions or move by a �xed amount the particles of the wall under rigid wall

boundary conditions

2. minimize the energy function E(Ri) and �nd the corresponding state Ri.

This type of simulation technique was �rst introduce by Kobayashi et al [89] as a way to

bypass intrinsic limitations of molecular dynamics simulations to reach long time scales

and therefore low shear rates. There are various algorithms that can perform this type of

minimization such as the descent methods (D), steepest descent methods (SD), simplex

methods (Si), conjugate gradient methods (CG), damped molecular dynamics (DMD) or

Newton-type methods (N) (for a review see [90] and references therein). In practice there is
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not one method that is `the best' and the speed of the minimization depends largely on the

problem at hand, for example for a perfectly quadratic potential energy the N methods will

�nd the minimum in one step while in a complex energy landscape it will perform poorly.

We found that methods that combine di�erent aspects of these various algorithms can be

more e�cient. Also beyond the minimization routine employed in the minimization the

structure of the minimization algorithm code can also be often an important limiting factor

in the speed of the minimization. In �gure 2.2, as a qualitative indication of the e�ciency

of various freely available algorithms to �nd the local minimum in a small glass sample

containing about 100 particles in two dimensions, we have shown the number of steps

required to reach the local minimum. We see in this �gure that the methods that perform

best are of the class of the truncated Newton methods (TN). Truncated Newton methods

were introduced in the early 1980s [91] and have since been gaining popularity. They are

based on the idea that an exact solution of the Newton equation at every step is unnecessary

and can be computationally wasteful in the framework of a basic descent method. Any

descent direction will su�ce when the objective function is not well approximated by a

convex quadratic and, as a solution to the minimization problem is approached, more

e�ort in solution of the Newton equation may be guarranted. Their appeal to scienti�c

applications is their ability to exploit function structure to accelerate convergence.

2.4 Examples of simulated sheared glassy materials

We present here some numerical results obtained in the literature on driven glassy materials

that use one of the two methods presented in the two previous sections. We follow the

same classi�cation as in section 1.3 of the introductory chapter and present the simulated

materials in decreasing sti�ness order1.

Metallic glasses. These non-crystalline materials, referred to as bulk metallic glasses

(BMG) alloys, have only been successfully produced in the last twenty years. In order

to understand the technologically limiting mechanism of shear localization in the form of

nearly atomically thin bands called shear bands, the group of Michael Falk was one of

the �rst to reproduce these failure modes in MD computer simulations [92] of a simple

analog of a metallic glass (see �gure 1.4 in the introductory chapter). Falk in line with

the pioneering simulations of Kobayashi et al [89] and of Deng et al [93] used a binary

Lennard-Jones model. More recent simulation have been performed to model the mechani-

cal response of BMGs with semiempirical tight-binding potentials [94] or e�ective medium

theory potentials [95]. It is worth noting that the strain rates that have been achieved

with the current computer capacities are several orders of magnitude higher than experi-

1We present here succinctly a selection of numerical studies where an important part has been devoted

to the the characterization of the microscopical mechanisms involved in the deformation of the glasses.
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mental ones, a condition common to all the atomistic calculations dealing with mechanical

deformation of solids. It follows that the numerical �ndings obtained are not immediately

comparable to experimental results but rather allow to provide strong hints as to the mech-

anisms involved in the plastic �ow and deformation of BMG. Quasistatic methods, based

on on Lennard-Jones potentials have also been used recently to model BMGs [96].

Mineral glasses. Mineral glasses such as silica glasses (a-Si02) or amorphous silicon

(a-Si) have also been tested extensively in NEMD simulations. Using an empirical poten-

tial developed by Vashishta et al [97], Rountree et al [98] have shown for example that

amorphous silica develops a permanent anisotropic structure after extended shear plastic

�ow. Another example of NEMD on a-SiO2 is that of Léonforte et al [76] where using

the force �eld proposed by van Beest et al [99] (BKS potential) they investigated with

MD simulations the properties of the nona�ne displacement �eld induced by macroscopic

uniaxial deformation. They demonstrated the existence of a length scale characterizing the

correlations of this �eld (corresponding to a volume of about 1000 atoms), and compared

its structure to the one observed in a standard fragile model glass.

Demkowitz and Argon using NEMD and potential energy minimization (PEM) simu-

lations of amorphous silicon (a-Si) [100, 101, 102] with the Stillinger-Weber potential have

characterized the plastic �ow of this material and related the �ow properties to the exis-

tence of two distinct local environments, with speci�c structural properties. More recently

comparing various force �elds for a-Si Talati et al [8] have also studied the mechanical

response of quasistatically sheared samples and showed that on average, the localization of

elementary plastic events and the co-ordination defect sites appear to be correlated. For

the Terso� potential and the SW potential the plastic events centered on defect sites prefer

5-fold defect sites, while for the modi�ed Stillinger-Weber potential such plastic events

choose 3-fold defect sites.

Polymers. In [7] the authors examine the plastic deformation of a model polymeric glass

under tension. They use a Lennard-Jones potential to model the interactions between

monomers of di�erent chains while the bonding energy between successive monomers of

the same chain is taken to follow a quadratic potential. The strain is here applied through

an athermal quasistatic procedure and the authors in their study relate the local elastic

properties of the material to the failure modes in the material.

Soft glassy material. In an important series of papers [103, 104, 105] the authors

reproduce in NEMD simulations many of the rheological properties (existence of a yield

stress, hysteretic e�ects, shear banding...), shared by various soft glassy material such

as complex systems like pastes, dense colloidal suspensions, foams... Again to model the

generic characteristic of this class of materials the authors use a binary mixture of Lennard-

Jones particles. Showing the versatility of the Lennard-Jones potential the authors also
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map their results to the metallic glass physical situation.

Foams. Disordered foams [9] have been extensively studied through the use of numerical

simulation in the last ten to �fteen years. Kawasaki's vertex model [106] was the �rst

to incorporate dissipative dynamics in its description of two-dimensional dry foams. At

low shear rates, the elastic energy of the foam shows intermittent energy drops of the

type shown in �gure 1.9 in the introduction. Weaire and co-workers [107] were the �rst

to develop a model appropriate to a disordered wet foam. The model does not include

dissipation and the e�ect of shear is studied in the quasistatic limit. The �rst model

capable of treating wet, disordered foams at nonzero shear rate was proposed by Durian

[108]. His model pictures the foam as consisting of spherical bubbles that can overlap.

Two pairwise-additive interactions between neighboring bubbles are considered, a harmonic

repulsive force that mimics the e�ect of bubble deformation and a force proportional to

the velocity di�erence between neighboring bubbles that accounts for the viscous drag and

the dissipation. This last model is a very schematic model of a foam and is very close in

its simplicity to a Lennard-Jones glass model, without attractive part in the interaction

potential.

This brief overview of simulations of driven glassy systems shows that a great variety

of materials display common rheological and mechanical characteristics. In a �rst approx-

imation many authors have used simpli�ed models to describe the interaction between

particles, one of this simpli�ed potentials that has been extensively used in the literature

is the Lennard-Jones potential. Of course by choosing to use such a simple potential we

do not intend an exact matching between the properties of our model and a speci�c exper-

imental system, but rather wish to focus on generic aspects of the rheology of these glassy

materials. In the following section we present the Lennard-Jones potential that we choose

and discuss the quenching procedure that we have used to form the model Lennard-Jones

glasses studied in this thesis.

2.5 A model system : the Lennard-Jones glass

The two most commonly LJ models used in the literature are the by now standard 6-12

LJ potential introduced by Lançon (later popularized by Falk) [3] and Kob and Andersen

[109],

Uαβ(r) = 4εαβ

[(σαβ
r

)12
−
(σαβ
r

)6
]
, (2.13)

where the subscripts α and β denote the small (S) and large (L) particles. The two models

di�er only in the values attributed to the zero-energy interatomic distances σαβ and to

the bond strengths εαβ , with in the Lançon (Kob-Andersen) model σSS = 2 sin (π/10)
(σSS = 0.88), σLL = 2 sin (π/5) (σLL = 1), σSL = 1 (σSL = 0.8), εSS = 0.5 (εSS = 0.5),
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εLL = 0.5 (εLL = 1), εSL = 1 (εSL = 1.5), the ratio of the number of large molecules over

the number of small particles being NL/NS = (1 +
√

5)/4 (NL/NS = 0.25). To lower the

computational cost these potentials are truncated ans shifted at a distance σc = 2.5σSL.

The masses are all taken equal to 1. The choice of this bidispersity was originally justi�ed

by the will to make contact with experimental amorphous metallic glasses. Moreover

the highly frustrated nature of these model glasses guaranties that the materials avoid

local crystallization (especially in two dimensional systems) that would otherwise occur

with monodisperse systems. Both systems have also exhibited a glass transition and the

corresponding supercooled liquids around TG have been extensively studied in the recent

literature.

Here partly to make contact with experimental observations made on slightly poly-

disperse colloids [110] (see also numerical simulations [111, 112]) but also to somewhat

smooth out the size distribution of the particles, we have used a shifted LJ potential

[113, 114, 115, 76] for polydisperse particles. Natural LJ units are used, i.e., we set the

energy parameter ε ≡ 1, the particle mass m ≡ 1, and the mean diameter σ = 〈σi〉 ≡ 1.
Note that while the particle mass is strictly monodisperse the particle diameters σi are

homogeneously distributed between 0.8 and 1.2, corresponding to a polydispersity index

δσ/σ ' 0.12 which is su�cient to prevent large scale crystalline order. We did not at-

tempt to make the particles even more polydisperse fearing demixing or systematic radial

variation of particle sizes in the case of disk-shaped aggregates. We have also used a cuto�

distance rc similar to the binary models along with a shifted potential at rc. The density

of the glass ρ = 0.925 was chosen as to obtain an initial minimal pressure [114]. In what

follows all the physical quantities will be expressed in terms of the LJ units. These units

are σ for the length units, ε for the energy units and m for the mass units. From these

three units one can deduce the time unit τ =
√
mσ2/ε and the temperature unit ε/kB.

While we do not claim that our model describes quantitatively any experimental situation

it is nevertheless useful to try and put some orders of magnitude on the di�erent physi-

cal quantities that we model depending on the physical reality that we want to describe.

Simulation results that are obtained in reduced units can always be translated back to real

units [79]. For example translated in real units for metallic glasses one has ε ≈ 4× 10−20J,

σ ≈ 5Å, τ ≈ 2.5× 10−12s [116].

Now that we have de�ned the interatomic potential we can discuss in more details in the

following section the computer experiments that we have performed. First we will describe

the quenching procedure that we have applied to reach the glassy state of the material and

second we will present the various technical issues associated with the shearing procedure

that was applied on the glasses.
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Fig. 2.3 : Left : Temperature evolution during the quench protocol used to produce the Lennard-

Jones glass samples. Time and temperature are expressed in LJ units. Right : Evolution during

quench of the radial distribution function.

Quenching procedure. The quench generally starts with molecular dynamics at some

�xed temperature using a simple velocity rescaling thermostat. Then, for most samples

analysed in this thesis, we progressively cool down the system by a succession of thermal

steps at T 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 and 0.0001 (see �gure 2.3), the temper-

ature remaining constant over a �xed time interval of 100 unit time for each temperature

step. Following the initial MD sequence we quench the systems further down to its ather-

mal limit by iterating the HFTN minimization algorithm described in section 2.3 until

the con�gurations reach their local energy minima. We have also performed quenches at

various quench rates and checked that in all case for quench rates ranging from q̇ = 10−2

to q̇ =∞ the system was indeed forming a glass, we will not present the results associated

with these di�erent glass samples in this thesis and report the discussion on the in�uence of

the quench rate to future publication. In order to proceed to a systematic �nite-size study,

i.e. study the in�uence of the box sizes L, we have generated with this quench protocol 24

con�gurations for square system sizes L 25.9938, 52.9875 and 103.975, 8 con�gurations of

size L 207.95 and one large con�guration of size L 500, all at the same density ρ = 0.925.
Figure 2.3 shows, for a sample of size L 103.975 and containing 10000 particles, the pro-

gressive evolution with temperature of the radial distribution function (RDF) of the LJ

system. The RDF at the lowest temperature shown (here 0.005) is characteristic of a glass

former with the presence of a broad second pic and the absence of crystalline structure

(for a monodisperse LJ glasses in two dimensions the preferred crystalline structure is the

hexatic order).

Boundary conditions. Two types of boundary conditions have been implemented in

this thesis, either with periodic Lees-Edwards boundary conditions (LEBCs) or with two
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Fig. 2.4 : Left : Schematic representation [117] of the quasistatic shearing protocol in two

dimensions and under RWBCs. The bottom and top walls contain here frozen LJ particles, while

the x direction remains periodic. Right : Schematic representation of the LEBCs.

rigid walls extending along the x axis as is depicted in �gure 2.4 (RWBCs). In the case of

the RWBCs we de�ned the two walls of thickness b by freezing two layers of particles at yW

and −yW. For the system of sizes 25.9938, 52.9875, 103.975, 207.95 the values of yW are

respectively 10, 22.5, 49 and 100, with a wall width that can be deduced by the formula

b = (Ly−2yW)/2, and is therefore always larger than 2 which garanties that no particle can

be lost through walls. The two types of boundary conditions have a di�erent in�uence on

the �ow of the glasses as we will see in the next chapters. The RWBCs have a direct impact

in the sense that they con�ne the particles within a restricted vertical area [−yW,+yW],
and particles that come near the rigid walls are made to bounce back inside this vertically

limited space. This limits for example di�usion and other dynamical properties in a way

that makes di�cult any �nite size scaling analysis. The LEBCs on the other hand allow

the particles to di�use over y distances larger than the size of the box. Nevertheless the

�ow of the glass must satisfy the Bravais lattice generated by the LE periodicity. In any

case the periodicity, along y but also along x, a�ects the physical properties that occur in

the glass on length scales comparable to a fraction of the simulation box, for example, as

we will see in chapters 5 and 6, system spaning shear bands will `feel' the presence of the

periodic boundary conditions.

Shear protocol at γ̇ = 0. The technical details associated with this method are reported

in great details in [114, 115, 118, 5, 117]. The quasistatic shear protocol applied to the

quenched glasses is shown in �gure 2.4 for the RWBCs. The protocol under RWBCs

consists in applying a displacement step δux on all particles of the top wall, parallel to

the x axis, while imposing at the particles comprising the bottom wall to remain �xed. A

certain number, say n, of incremental steps is then applied on the system, while between

each such increment the system is left to relax to its nearest local energy minimum by the

HFTN minimization algorithm presented in section 2.3. The displacement step δux for

each system size at yW is chosen to generate an elementary incremental strain of δεe =
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δux/(2yW) = 5.10−5. This incremental strain was shown [5] to be su�ciently small to be

a reasonable approximation of the limit δux → 0 in the sense that the elastic response of

the material at this strain is preserved. The quasistatic protocol was also applied under

LEBCs. The principle is exactly the same as in the RWBCs but this time each incremental

step consists in a�nely shearing the entire material (see �gure 2.4) by the same elementary

stain increment δεe = 5.10−5. This quasi-static procedure so de�ned ensures that after a

local `bond' breaks, new bonds can form instantaneously. At the density considered here

(ρ = 0.925) this makes it very unlikely that the material could fracture, at least under the

volume preserving deformations that we consider here. A total strain εtot of about 200%
was applied on the glass samples of all sizes and for both LEBCs and RWBCs.

Shear protocol at γ̇ 6= 0. As 2in the quasistatic procedure one can enforce a macroscopic

shear motion to the sample either by de�ning rigid walls and imposing a constant velocity

translation say on the top wall or by deforming the simulation box at a given shear rate.

The �rst method corresponds to RWBCs while the second to the LEBCs, both methods

are implemented in LAMMPS [81]. Now turning to the thermostat method one would

assume that the most realistic thermostat is one where the heat exchange occurs from the

sides of the sample as would be the case with a real piece of material. As discussed in

[104, 119] this type of `realistic' heat exchange can be achieved by coupling each wall atom

to its equilibrium lattice position via a harmonic spring. Then as shear is applied to the

material the lattice sites are moved with a constant velocity while the corresponding atoms

are allowed to move (the harmonic forces garanty that the wall atoms will follow on average

the imposed velocity). With this method one can thermostat the walls independently of

the bulk material. This presents the extra advantage to leave unperturbed the dynamics of

the bulk particles. The temperature that establishes in the bulk results in this method from

the heat exchange with the walls, which satis�es on average the equality between the work

done on the system and the dissipated heat, σγ̇ = Q̇. The drawback of thermostatting the

system through the heat exchange with the walls is that, depending on the shear rate and

the sti�ness of the harmonic spring, measured by the spring constant kh, a temperature

pro�le can develop across the system. Note that the smaller the harmonic spring constant,

the better the heat exchange with the walls and thus the more e�cient the system is

thermostatted the imposed shear rate having the opposite e�ect. On the other hand, if kh
is too small, the �uid particles may penetrate the walls. A safe choice of kh corresponds

to the spring constant associated with the curvature of the LJ potential which is of the

order kLJ ≈ 60. A slight modi�cation of the LAMMPS code allowed us to implement such

thermostatting procedure. Various tests performed with this thermostatting protocol have

2In order to study the �nite shear rate dependence of the rheology of the glasses we have implemented

MD simulations. This work has been started after the quasistatic simulations and there has not been

the same amount of systematic analysis of the numerical protocol. We therefore present these �nite γ̇

MD results of this section and of chapter 6 as preliminary results that we will develop further in future

publications.
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con�rmed the existence of thermal pro�les with large temperatures in the center of the

sample.

In order to prevent this uncontrolled temperature increases in the bulk3, we have there-

fore decided to apply direct thermostatting to the inner particles at all shear rates. For this

purpose, we divide the system into parallel layers of thickness Ly/10 and rescale once every

nT integration step the y-component of the particle velocities within the layer, so as to

impose the desired transverse temperature Ty = 0.5〈v2
y〉. Such a local treatment is neces-

sary to keep a homogeneous temperature pro�le when �ow pro�les become heterogeneous.

By doing so we avoid the pathological case where a plastic rearrangement having heated

the material in a local region a global rescaling is lowering the temperature in regions that

have not been heated (far from the event).

In order to implement a dynamical regime where the temperature e�ect is negligible

(athermal limit), one needs to impose a su�ciently low temperature T. An estimate of

this temperature can be given by the following argument con�rmed by visual inspection

of movies of the deforming glasses at various shear rates. Indeed the athermal limit is

reached when the typical relative displacement associated with the external shear applied

at shear rate γ̇ is larger than the typical vibrations of the atoms in their `cage', assumed

for simplicity quadratic with an e�ective curvature kh ≈ 60. This leads to the following

equality de�ning a threshold temperature Tc,√
kBTc

mω2
0

.
2πγ̇σ
ω0

, (2.14)

where we have introduced the characteristic pulsation ω0 =
√
kh/m of the harmonic `cage'.

This argument leads to a temperature Tc . 40γ̇2, namely Tc ≈ 4.10−3 at γ̇ = 10−2 and

Tc ≈ 4.10−7 at γ̇ = 10−4. These values are in good agreement with what is observed

in simulation runs where one can observe that below Tc the global shear of the material

is visible while for T > Tc the thermal agitation is dominating the dynamics and hides

the global shear. Having realized this, the question now is to see how these low tempera-

tures can be achieved4 and in particular how frequently (or with what damping parameter

2.12) one needs to rescale the transverse temperature to achieve the athermal limit. In

order to achieve the fastest possible cooling of the system we have applied a transverse

velocity rescaling at every MD time step. For a time step of τLJ = 0.01 this corresponds

to a thermostatting rate of r = 100. In practice this amounts to impose the transverse

temperature at the desired value (we have chosen an arbitrarily small Ty = 5.10−8 in the

simulations of chapter 6) but does not guaranty that the thermostatting has transfered to

3As we are interested in studying separately the e�ects of temperature and strain on the rheology of

the glasses we turned to other thermostatting protocols that allow to maintain a constant and controlled

temperature in the bulk.
4We have already seen that the shear dominated temperature regime could not be reached by a `realistic'

thermostat from the walls
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the other velocity components (here vx), as this energy transfer occurs within the velocity

autocorrelation time τVACF [105]. Nevertheless this method is su�cient to maintain a zero

transverse temperature.
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In this chapter we will adress two major issues: First, how can one apply everything

one knows about mechanical properties of macroscopic systems at small scales ? Second,

what are the mechanical properties of amorphous glassy materials ?

Indeed for many years the description of materials was only devoted to their macro-

scopic properties. Recently in an era of nanotechnologies and miniaturization there has

been a shift of focus towards small systems. Examples are plentiful : mesoscopic solid state

physics, micro and nano-elasticity and micro�uidics are rapidly developing �elds. In addi-

tion to the theoretical puzzles and the interesting physics exhibited by these `small' systems

the recent advances in the manufacture and control of micro to nanoscale mechanical and

39
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electronic devices renders the need for good theoretical description and models of micro

to nanoscale materials an urgent industrial need. In this chapter we will use a theoretical

framework that helps one to derive expressions of the macroscopic �elds of continuum me-

chanics in terms of microscopic quantities and to extend and test the applicability of the

classical theories to smaller length scales and �ner resolutions.

In parallel to this, using this framework we will study the properties of amorphous systems

at small length scales, where a continuous elastic description breaks down. Indeed this is

apparent when one considers their vibrational and transport properties, or the way forces

propagate in these solids. Little is also known about the microscopic cause of their rigidity.

The inherently disordered nature of the glassy materials we study here makes the use of

the text-book theory of Lattice Dynamics developed by Born and Von Kármán to describe

lattice solids inapplicable to amorphous solids for a description at all scales. The limitation

of this approach comes essentially from the fact that one relies heavily in this procedure

on the periodicity of the lattice as well as on some more subtle assumptions. Within the

coarse-graining framework developed in this chapter we will show that linear continuum

elasticity is not straightforward in small or disordered systems. As expected whilst one

�nds that linear continuum elasticity is valid on su�ciently large scales, we will see that

as the coarse-graining is reduced deviation from the linear behavior sets in.

3.1 Microscopic approaches

3.1.1 A meaningful reference state

Our1 intuitive concept of a solid is macroscopic. A solid has shear rigidity. It retains its

shape when external forces are applied to it or rather returns to it when the external forces

are removed. This can be regarded as a macroscopic de�nition of a solid. At a microscopic

scale this rigidity pertains to the existence of a rigid reference frame/con�guration {R1} =
{R1,R2...,Ri, ...} where the Ri's correspond to the positions of the elementary units of

the system, being atomic position or more mesoscopic structures depending on the type

of solids considered. Interestingly it is the existence of such a well de�ned microscopic

reference state [121] and its rigid stability [122] that di�erentiates between a solid and

a liquid and helps to characterize the initial moments of melting. Indeed, Lindemann

proposed that melting is caused by a vibrational instability in the crystal lattice when the

root-mean-square displacement of the atoms reaches a critical fraction (δL) of the distance

between them. Lindemann [123] originally conceived δL as applying to the interior of the

crystal, but in a later version it was applied to events at the surface, where the amplitude

of atomic vibrations is larger than in the interior. Born, on the other hand, proposed

that a `rigidity catastrophe' occurs - caused by a vanishing elastic shear modulus - that

determines the melting temperature within the bulk crystal. In other words, the crystal
1The following discussion is inspired by the review on amorphous solids from Alexander [120]
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no longer has su�cient rigidity to withstand melting, so this process is often referred to

as `mechanical melting'. These two distinct theories have each accumulated an extensive

literature [124]. It appears that the Lindemann and Born criteria are satis�ed similarly

well for an amorphous material and for a crystalline solid and therefore according to these

criteria one can say that an amorphous glass is just as solid as a crystal.

3.1.2 Two possible microscopic expansions

The Cauchy-Born expansion

From the preceding discussion it appears that there is no obvious obstacle at applying

the Cauchy-Born expansion around disordered reference states. And indeed it comes as

follows. One expands the many-particle energy U({r}) in the components of the single

particle deviations ui = ri −Ri

U({r}) = U({R}) +
N∑
i=1

[
∂U
∂ri

]
{R}

ui +
1
2

∑
i,j

[
∂2U
∂ri∂rj

]
{R}

uiuj + h.o.t., (3.1)

where we use the Einstein summation convention (ui·∇i is a sum over all the particle

positions indexed by i). For an equilibrium con�guration the total force on each particles

is zero (∀i ∇iU = 0) and the linear term in ui's in the expansion cancels. Therefore in the

harmonic approximation one has simply δU = 1
2 [uj ·∇j ]

2 U. It is convenient to express this

expansion in matrix form, by de�ning the set of displacements u1,u2, ... as a N-component

vector |u〉. Then equation 3.1 can be written in the form δU = −〈u|H|u〉, where the

matrix H is known as the dynamical matrix [125]. For a 2-body interaction potential

(in our case it is the Lennard-Jones potential φLJ(rij) = 4ε
[(

σij
rij

)12
−
(
σij
rij

)6
]
) the total

potential energy U is decomposed in a sum of two body terms as U = 1
2

∑
i,j φLJ(rij) and

the dynamical matrix has the following simpli�ed tensorial expression:

Hiα,jβ =
1
2

Tij

rij
(δαβ − nαnβ) +

1
2

Kijnαnβ , for i 6= j,

Hiα,iβ = −
∑
j

Miα,jβ , ∀ i, (3.2)

n being the unit vector of the bond, Tij ≡ ∂U(rij)/∂rij the tension of the bond and

Kij ≡ ∂2U(rij)/∂2rij the sti�ness of the bond between two interacting particles i and j.

Once the components of the dynamical matrix are known one can numerically diago-

nalize it and recover the vibrational eigenstates of the material. Indeed the N eigenvectors

of the dynamical matrix are the normal modes of the particle system, and its eigenvalues

are the squared angular frequencies of these modes. We will come back to this approach

in section 4.3 where we will discuss the importance of the low energy eigenvectors in the

mechanical properties of the glass, the so called `soft modes'.
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Historically the classical work (mostly 19th century) on elasticity relied heavily on

microscopic models in clarifying continuum �eld concepts such as stress and strain. It was

generally assumed that the energy had to be a sum of two-body central force interactions

(the Cauchy model). Thus the energy appeared as a function of the distances between

interacting particles and microscopic expressions for the stress appeared naturally in the

expansion. The expansion in terms of displacements ui's that we have just presented was

only introduced later for the analysis of lattice dynamics by Born and Huang [126]. If the

latter expansion presents the advantage of mathematical simplicity - one expands directly

as a Taylor series around a reference frame - it also lacks of a microscopic intuitive quality.

This drawback is not so apparent for crystals where periodicity and symmetries allow for

simple derivation of the physical quantities of interest even down to the microscopic level.

In the next paragraph we will see that by generalizing the old procedure to write the

mechanical energy as a function of distances we will get some simpler intuitive insight on

the mechanical properties of disordered materials.

The expansion in distances

In the previous paragraph we described the internal energy U of a system consisting of N

particles as a function of their positions U({r}). Elementary geometrical considerations

show that one can always describe the internal con�guration of the solid by specifying nind
independent distances in the system, where nind = N − nrig, nrig = 1

2d(d + 1) counts the

rigid body degrees of freedom of the system as a whole and N is the total number of degrees

of freedom of the N particles in d dimensions. Note that nind is always far smaller than

the total number of distances between particles (pairs) in a solid ntot = 1
2N(N + 1), and

that only nind distances are su�cient to determine all the others if they are independent.

One can therefore reparametrize the internal energy U only as a function of these nind
independent distances U ≡ U({r}ind). The expansion of the energy U around the internal

reference con�guration {R}ind in term of distances rij = ‖rij‖ = ‖ri − rj‖ now reads2

U({r}) = U({R}) +
∑
(i,j)

[
∂U
∂rij

]
{R}

δrij +
1
2

∑
(i,j),(k,l)

[
∂2U

∂rij · ∂rkl

]
{R}

δrijδrkl +h.o.t., (3.3)

2Here we omit the subscript `ind' in the description of the set of distances on which the energy depends.

This emphasizes that the derivation only uses the fact that the energy can be written as a function of a

set of distances and this is not restricted to independent ones. In practice one has to be conscious of the

existence of two di�erent situations. First, nbond > nind, there are redundant surplus bonds in the system

in which case the expansion of the energy U({r}bond) in 3.3 which is a function of all the nbond bonded

distances {r}bond has to be reevaluated into a new expression bU({r}ind) of the same energy but expressed in

terms of the subset nind of geometrically independent distances {r}ind. Secondly, nbond < nind, the bonded

distances act as constraints on the allowed con�gurations of the system but cannot �x unambiguously a

unique geometrical con�guration, such bonded networks are referred to as �oppy. For a general discussion

of rigidity theory in glassy systems see [127].
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where

δrij = rij − Rij . (3.4)

Following [120] one can evaluate δrij in terms of the relative displacements uij ≡ ui−uj ,

δrij = u′′ij +
[
(u⊥ij)

2/2Rij

]
+ h.o.t., (3.5)

where

u′′ij = uij · R̂ij ,

u⊥ij =
√
u2
ij − u′′ij2 (3.6)

are, respectively, the components of the relative deviation, uij , parallel and perpendicular

to the reference vector Rij and, as usual, with the de�nitions, Rij = Ri −Rj and R̂ij =
Rij/Rij .

As stated earlier and discussed in [120] there is a number of advantages of the expansion

3.3 over 3.1. The �rst is that the expansion in terms of distances in the form 3.3 guarantees

the translational rotational invariance symmetry as a whole and also as a local symmetry.

The second is that while the role played by stresses is somehow obscured in 3.1 where

stress terms do not appear explicitly when one expands directly in the ui's because all

linear terms must vanish in equilibrium, it appears explicitly in 3.3 - we will come back to

the role played by local stresses later in this chapter. The third advantage concerns many-

body interactions terms such as 3-body bending and 4-body twist interactions that are

known to play an important role on the shear rigidity of solids and are therefore included

in some potential interaction models in simulations (see for example the case of a−Si [8] or
a− Si02 [76]). Again these terms do not show up explicitly when one writes the harmonic

expansion in terms of the components of the displacements ui. Finally we will see that the

microscopic expansion 3.3 allows for a simple understanding of the microscopical origin

of each term of the continuum limit of the energy. The passage from the microscopic

expansion of the energy to the continuum limit is precisely the topic of the next section.

In most of the numerical simulation that we will present in this thesis we have chosen a Lennard-Jones

interaction potential with a cuto� Rc ∼ 2.5, hence the number of bonds in 2D satis�es approximately

nbond = πR2
cN/2 ∼ 10N > 2N − 3 = nind, and we should pay careful attention to the fact that the

distances in the expansion 3.3 are not independent. In practice it is not simple to chose nind independent

distances in which to expand the energy and we will in the rest of the thesis expand in all nbond distances,

doing this we implicitly assume that the expansion is to be complemented by nbond − nind (independent)

extra constraints on the distances.
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3.2 Continuum mechanics 1 : homogeneous hypothesis

3.2.1 Terms arising from the �rst order expansion of the energy

Linear term and �rst expression of the stress tensor

From 3.3 and 3.5 we see that the �rst order expansion of the energy in distances contributes

to two terms,

∂U
∂rij

δrij = Tiju
′′
ij + Tij

(
u⊥ij

2

2Rij

)
(3.7)

remembering that Tij ≡ ∂U(rij)/∂rij is the tension of the bond i − j. In the Lagrangian

approach all particle coordinates are refered to the reference con�guration and we associate

with the discrete displacements ui the continuous displacement �eld u(R), such that ∀i,
u(Ri) = ui, and,

uij ≡ ui − uj = u(Ri)− u(Rj) , (3.8)

assuming that u(R) is continuous and derivable we get by Taylor expansion,

uα(Ri) = uα(Rj) +
(

Rβ
i − Rβ

j

)[ ∂uα
∂Rβ

j

]
R

+ h.o.t. (3.9)

Often the homogeneous assumption is made and the displacement gradient is assumed to

be constant - equal to the macroscopic a�ne strain - over the entire sample or over the

considered length scale of coarse-graining and one then has in the lowest order in gradient

expansion 3.9,

uijα ' uα(Ri)− uα(Rj) = Rβ
ij · ∂βuα , (3.10)

and the component of uij parallel to Rij is,

u′′ij = uij · R̂ij '
Rα
ijR

β
ij

Rij
· ∂βuα =

Rα
ijR

β
ij

Rij
· 1

2
(∂βuα + ∂αuβ) =

Rα
ijR

β
ij

Rij
· ε(1)
αβ , (3.11)

where ε(1)
αβ is the linear part of the Green-Saint Venant nonlinear strain tensor de�ned as,

εαβ =
1
2

(∂αuβ + ∂βuα + ∂αu · ∂βu) (3.12)

Reporting this microscopic expression in the �rst term on the right hand side of equation

3.3 helps to write a �rst contribution U1 to the total energy U as,

U1 =
∑
i

sαβi · ε
(1)
αβ , (3.13)
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where we have de�ned the symmetric `site stress' tensor de�ned for each particle i by3,

sαβi =
1
2

∑
j

Tij

Rα
ijR

β
ij

Rij
. (3.14)

One can simply see that this microscopically derived term leads in the continuum limit to

a contribution to the elastic energy of the following form:

U1 −→ U1
continuum =

∫
dr · σαβ(r) · ε(1)

αβ(r) , (3.15)

where σαβ(r) and ε(1)
αβ(r) are respectively the stress and linear strain at r in the reference

con�guration {R}. From the preceeding arguments we see that the continuum limit in-

volves a double expansion, �rst in powers of the components of the deviation �eld u(r) -

assume that the displacements are small - and is also a gradient expansion in the derivatives

of this �eld - assume that the �eld is su�ciently smooth. If the �rst hypothesis remains

valid in the study of the mechanical response of disorder glassy materials for su�ciently

small macroscopic sollicitations to the sample, we will discuss in the next section 3.3 the

limit of applicability of the second hypothesis and will propose means of overcoming this

limit.

Let us now pursue with the second term in the linear part of the expansion 3.3, i.e. the

second term on the right hand side of 3.7.

The two e�ects of stresses

Born and Huang in their seminal paper (1954) de�ne an `equilibrium' solid as a solid

with no stresses in its reference state. This de�nition - which means that separately and

simultaneously, all binary potentials are at their minimum ∂U/∂rij = Tij = 04 - applies

reasonably well for most crystalline solids where the e�ects of stresses on the bulk elastic

properties are small either because stresses are inexistant in the reference state or localized

around defects concentrated on small scales and therefore having mainly local e�ects. In

amorphous materials as we will see in the next section 3.3 the `initial stresses' [129] or

`frozen stresses' are present everywhere in the sample and one cannot simply neglect their

contribution to the properties of the material. On the macroscopic scale on the other hand

the importance of initial stresses has long been acknowleged for example in the physics of

the vibrations of stretched springs or drumheads or in problems of elastic stability such

as buckling of loaded columns [130]. In the examples above the initial stresses appear as

3Note that in this expression a coe�cient 1
2
is introduced to avoid double counting of pairs of interacting

particles. Indeed this coe�cient was not present in the �rst order expansion of 3.3 or 3.7 because there the

sum was implicitly taken directly over bonds and not as a double sum running over indices i and j.
4One can easily verify for example that in crystals of inert gases where the binary potentials describe

satisfactory the material one has a distance between nearest neighbours that corresponds within a very

small error to the minimum of the binary (Lennard-Jones) potential [128] and one therefore has a bond

tension that cancels everywhere (Tij = 0).
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a contribution of the following form to the macroscopic expansion of the elastic energy of

the materials,

U2
continuum =

∫
dr · σαβ(r) · ε(2)

αβ(r) , (3.16)

where we have de�ned ε(2)
αβ as the nonlinear part of the Green-Saint Venant strain tensor

3.12. In this paragraph making use of the expansion of the energy in terms of distances 3.3

we will look at the microscopic origin of these stress induced contributions to the elastic

energy, we will isolate two contributions and estimate their macroscopic counterpart in the

continuum limit. For this purpose let us consider the second term on the right hand side

of equation 3.7 and for reasons that will become clear later we propose to rewrite this term

as5,

u⊥ij
2

2Rij
=

(
u2
ij − u′′ij2

)
2Rij

. (3.18)

The continuum limit is now simple to take. Let us �rst take the continuum limit of u2
ij .

Under the assumption of a�nity 3.9 one has,

u2
ij = RijαRijβ∂αuγ∂βuγ , (3.19)

which combined with 3.18 yields in the continuum limit the contribution to the energy

3.16, This is the �rst e�ect of stress - the so called direct e�ect. The second e�ect of stress

is contained in the term u′′ij of 3.18 and because it can be treated in the continuum limit

similarly to the second order terms of the expansion in distances 3.3 we present it in the

following paragraph.

3.2.2 Terms arising from the second order expansion of the energy

In the Born Huang de�nition of a solid - a solid with no stresses in its reference state - the

�rst order terms of 3.3 cancels out and one is left with the second order contribution. To

the order considered - quadratic in displacements - this term can be rewritten under the

assumption that there are no rotations as,[
∂2U

∂rij · ∂rkl

]
{R}

δrijδrkl ≈
[

∂2U
∂rij · ∂rkl

]
{R}

u′′iju
′′
kl . (3.20)

5To see the mathematical equivalence of the two expansions - in terms of distances and in terms of

displacements - let us recover these two terms from the expansion in displacements 3.1. The second term

in this expression can be developped as follows,
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»
∂U

∂rik

–
+

∂U

∂rik
· ∂

∂rjl

„
rik

rik

««
, (3.17)

where one can prove - once contracted with the displacements uiuj of equation 3.1 - that the �rst part of

the sum in 3.17, contains the quadratic term of the expansion 3.3 while the second term contains the two

terms of 3.18
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We see here that this formalism that expands in terms of distances helps to distinguish

simply three cases. For a Cauchy type potential energy U =
∑

Uij(rij) that contains only
two-body interaction contributions, the only derivatives present in 3.20 contain only the two

site indices derivatives ∂2U
∂r2
ij
. For more general potential containing three-body (bending)

and four-body (twist) contributions to the total energy one would have to include also

the three and four site terms, ∂2U
∂rij∂rik

and ∂2U
∂rij∂rkl

, in the following work we will mainly

consider model systems where only two-body interactions are considered. In this case the

Born Huang contribution to the total elastic energy is therefore6,

1
2

∑[
∂2U
∂r2

ij

]
{R}

u′′ij
2 . (3.21)

This term is reminiscent of the second e�ect of the initial stresses discussed in the previous

paragraph - the so called indirect e�ect - that contributes to the total elastic energy as (see

equations 3.7 and 3.18),

−
∑[

∂U
∂rij

]
{R}

u′′ij
2

2Rij
. (3.22)

The continuum limit of these two terms containing the component u′′ij of the relative

displacement parallel to the reference vector can be delt with in the same way. As already

discussed in the �rst paragraph 3.2.1, by substituting the continuum expression for u′′ij 3.11

in 3.21 and 3.22 one gets the summed contribution,

U3 =
∑ 1

2
(Kij − Tij/Rij)

Rα
ij · R

β
ij · R

γ
ij · Rδ

ij

R2
ij

ε
(1)
αβε

(1)
γδ (3.23)

where Kij can be regarded as the spring constant or the sti�ness of the bond i− j and Tij

is the tension of this bond. From equation 3.23 one can easily identify the macroscopic

elastic tensor obtained in the Born approximation and valid for pair interaction potentials

as,

CBorn
αβγδ =

1
N

∑
i

C(i)
αβγδ , (3.24)

where

Ci
αβγδ =

∑
j

(Kij − Tij/Rij)
Rα
ij · R

β
ij · R

γ
ij · Rδ

ij

R2
ij

. (3.25)

The �rst equation 3.24 above is valid only under the homogeneity assumption. In the

continuum limit this gives,

U3 −→ U3
continuum =

∫
dr ·Dαβγδ(r) · ε

(1)
αβ(r) · ε(1)

γδ (r) , (3.26)

where by identi�cation of equations 3.23 and 3.26 one can de�ne a microscopic expression

of the fourth order elastic tensor D under the assumption of homogeneous strain.
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Fig. 3.1 : Lamé coe�cients λ (spheres) and µ (squares) vs system size L. Full symbols correspond

to the direct measurement using Hooke's law; open symbols are obtained supposing a�ne defor-

mations (Born term). The e�ect of system size is weak. The coe�cients relying on a negligible

nona�ne �eld di�er by a factor as large as 2 from the true ones. Clearly, a calculation taking into

account the nona�ne character of the displacement is necessary for disordered systems. Figure

taken from [118].

3.2.3 Limits of the homogeneity assumption

In the previous paragraphs we have derived continuum elasticity from the particle scale in

the long-wavelength limit - we have derived microscopically expressions for the stress and

elasticity tensor and recovered the classical continuum limit of the elastic energy. These

derivations are correct at a local level but their generalization to larger systems relied

heavily on the hypothesis of a�ne (homogeneous) deformation of the material, which is

strickly speaking veri�ed only for perfect lattices - i.e. with one atom per unit cell. There

are therefore numerous cases where the a�nity assumption is not veri�ed. In fact only very

few Bravais lattices with nearest neighbor bonds are rigid - in particular one can easily

see that the shear modulus of a simple square structure has zero shear modulus whilst the

calculations of the previous paragraph would produce a �nite elastic modulus - and the

only two-dimensional Bravais lattice which is rigid with nearest-neighbor interactions is the

triangular lattice. In structural glasses the situation is similar and the inherently disordered

nature of the glasses makes the continuum predictions - concerning the elasticity tensor - of

the previous paragraph largely erroneous. In [118] the macroscopic Lamé coe�cients λ and

µ were calculated by directly applying macroscopic deformation to the glass samples - for

the same two-dimensional, amorphous, Lennard-Jones system that we analyse in this thesis

- using on the one hand the elasticity tensor CBorn
αβγδ expressed in 3.24 and on the other hand

6Let us remind here that the following sum is taken over all independent distances in the reference state.



3.3. Continuum mechanics 2 : general case 49

the values obtained by explicitely applying two independent macroscopic deformations to

the samples exactly as would be done experimentaly to recover the mechanical properties

of a material. In �gure 3.1 we see that the Born approximation in this case tends to lower

the shear modulus µ, and to increase the coe�cient λ. From the preceding discussion we

see that the failure of the Born calculation is associated with the existence of a deviation

from the a�ne response of the material - the so-called non-a�ne displacement - which

stores part of the elastic deformation energy. This �eld is de�ned by substracting from the

actual displacement of the atoms the displacement that would be obtained in the a�ne

hypothesis. In the next section we will see what are the possible methods to deal with this

complication. We will also discuss the second problematic of this chapter concerning the

validity and the ways to extent continuum mechanics at small scales.

3.3 Continuum mechanics 2 : general case

3.3.1 Thermodynamic approach - global constants

This work is mainly concerned with athermal systems or with systems quenched at �nite

temperatures well below the glass transition temperature. Therefore the presentation of

the thermodynamic approach originally applied by Ray [131] to the calculation in simu-

lations of di�erent response functions7 such as the stress or the elastic tensor of di�erent

model materials - crystalline and amorphous - seems here a priori unapplicable. Indeed as

we will see the expression of the response functions that are calculated numerically contain

equilibrium �uctuation terms that in the limit of zero temperature should take an in�nite

time to compute. On the other hand the procedure presented in these �uctuation meth-

ods is very general - does not for example make the simplifying assumption of an a�ne

deformation of the material - and besides its importance in the estimate of the elastic con-

stants at �nite temperature it can if taken in the zero temperature limit give us a better

understanding of the role played by the non-a�ne �eld. Moreover the presentation of the

thermodynamic framework is a necessary step to introduce the notations and de�nitions

of the di�erent quantities - stress, strain, elastic constant - presented in this chapter. In

addition we will see in section 3.3.3 that the clear presentation here of the thermodynamic

�uctuation method will enable us to discuss on a generalisation of the global method to

the estimate of the response functions locally through the introduction of a coarse-graining

technique.

The starting point of the thermodynamic description of elasticity is to acknowledge

the fact that if one thinks usually that the original form of molecular dynamics generates

7Response function are by de�nition function that are associated with derivatives of the basic ther-

modynamic state variables like energy, pressure, entropy and include the thermodynamic state variables

themselves. They have to be distinguished from (non-equilibrium) transport properties, such as the thermal

conductivity, electrical conductivity, and viscosity.
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the microcanonical ensemble EVN in reality most model systems are enclosed in a cell

described not simply by its volume V but more generally by a d × d matrix h formed by

the three independent vectors that constitute the simulation cell. Parrinello and Rahman

were the �rst to allow for changes in both the size and shape of the molecular dynamics

cell and allowed h to become a dynamical variable. Hence the Parrinello-Rahman form of

molecular dynamics generates the HtN ensemble where t is the thermodynamic tension and

H the enthalpy. In this framework the authors presented thereafter the �uctuation formula

for the calculation of elastic constants. Later their calculation were generalized and tested

on model system by Ray and coworkers in di�erent statistical ensembles8. Let us �rst

introduce some de�nitions that will be useful to ultimately derive the elastic constants.

First the cartesian coordinates of any point R in the cell can be expressed as9

Rα = hαβXβ , (3.27)

where X is a rescaled vector whose components lie in [0, 1]. Integrals over R can be

converted into integrals over X by using a scaling factor det(h), which represents the

volume of the cell, V. The metric tensor G is constructed from h as,

G = hT · h , (3.28)

where hT is the transpose of h. G is used in transforming dot products from the original

Cartesian to rescaled coordinates, according to,

RαR′α = XαGαβX′β . (3.29)

Elasticity theory describes the deformation of any con�guration from a reference con-

�guration in terms of a strain tensor. This tensor is constructed by relating the vector

connecting two points in the deformed con�guration to the corresponding displacement

of the same points in the reference con�guration. If the reference con�guration of the

simulation box is denoted by h0, the strain is given by,

ε =
1
2

[(
hT

0

)−1
hTh (h0)−1 − 1

]
=

1
2

[(
hT

0

)−1 ·G · (h0)−1 − 1
]
. (3.30)

Usually the reference con�guration h0 will be de�ned as a state of the system under zero

applied external stress. If one starts with a cubic cell, h0 is the identity matrix and the

relation between ε and G simpli�es. The thermodynamic variable conjugate to this strain

tensor, in the sense that the elementary work done on the system can be written in the

form

δW = V0tαβdεβα , (3.31)

is the thermodynamic tension t, also known as Piola-Kirchho� second stress tensor. V0 =
det(h0) denotes the volume of the system in the reference con�guration. This thermody-

namic tension tensor can be related to the more usual Cauchy stress tensor σ through
8for a single component system one can construct 8 such ensembles, namely the EVN, TVN, HPN,

TPN, SVµ,TVµ, SPµ and TPµ ensembles.
9Here we follow the presentation made by Barrat in [132]



3.3. Continuum mechanics 2 : general case 51

σ = V0h (h0)−1 t
(
hT

0

)−1
hT/V . (3.32)

The tension is the derivative of the free energy with respect to the strain, which is calculated

from the reference con�guration. The Cauchy stress, on the other hand, is the derivative

of the free energy with respect to an incremental strain taken with respect to the actual

con�guration. This Cauchy stress tensor is the one that enters momentum conservation

and whose expression is given by the thermodynamic average of the usual Irving-Kirkwood

formula10 for pairwise additive potentials. While the Cauchy stress has a mechanical

meaning in terms of forces within the sample, the thermodynamic tension is a purely

thermodynamic quantity, and does not in general have a simple mechanical interpretation.

Here we concentrate on the case of small deformation where these di�erences between stress

tensors vanish.

Armed with this formalism, the derivation of the elastic constant can be obtained for

example following [133, 134, 131, 135] in the ThN ensemble - one speaks in that case of

the isothermal elastic contants - with the following expression of the free energy,

exp(−βF) =
∫
dp2NdR2Ne−H/kBT , (3.33)

where H is the hamiltonian of the system. In the ThN ensemble the thermodynamic law

can be written,

dF = −SdT + V0tαβdeβα , (3.34)

and one de�nes respectively the thermodynamic tension t and the isothermal elasticity

tensor C as [136],

tαβ =
1

V0

∂F
∂εαβ

∣∣∣∣
T

, (3.35)

Cαβγδ =
1

V0

∂2F
∂εαβ∂εγδ

∣∣∣∣
T

. (3.36)

From equations 3.33 and 3.35 one easily recovers the expression of the thermodynamic

stress t,

V0tαβ =
〈
∂H
∂εαβ

∣∣∣∣
T

〉
− N

V
kBT

∂V
∂εαβ

∣∣∣∣
T

=
〈
tIKαβ
〉
− N

V
kBT

∂V
∂εαβ

∣∣∣∣
T

, (3.37)

where one can show [133, 134, 131, 135] that the term ∂H
∂εαβ

reduces to the Irving Kirkwood

formula of the stress,

tIKαβ =
∑
i

piαpiβ/m+
1

2V

∑
i,j

Rijαfijβ .(3.38)

A second derivative of the free energy with respect to strain yields, can be obtained in the

limit of zero strain, after a slightly longer derivation (we refer the interested reader for the

10If we neglect the kinetic part, the Irving Kirkwood stress is equal to the site stress given in 3.14
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detailed derivation to the references [134, 135]),

Cαβγδ =
V0

kBT
(
〈tIKαβtIKγδ 〉 − 〈tIKαβ〉〈tIKγδ 〉

)
−1

4
(
〈tIKβγ〉δαδ + 〈tIKαδ〉δβγ + 〈tIKβδ〉δαγ + 〈tIKγ 〉δβγ

)
+CBorn

αβγδ +
N
V
kBT (δαγδβδ + δαδδβγ) . (3.39)

The �rst term is the `�uctuation term', the second arises from the e�ect of stress, the third

term is referred to as the `Born term' and is de�ned here as the canonical average of the

expression given at zero temperature in 3.25 and the last term is sometimes called the

`kinetic term'.

In what follows we want to see how one can deal with the limiting case of an athermal

system, case that we are mainly interested in. A naive approach to the calculation of the

elastic properties in such systems would consist in taking the second derivative of the free

energy - that coincides with the potential energy in the athermal limit - with respect to

strain with the hypothesis that the response is homogeneous in the material. Such an

approach is known to yield elastic constants that correspond to the Born expression 3.25

and therefore as we have already discussed in the previous section proves in fact completely

incorrect for disordered systems, or even for crystals with a complex unit cell. This can be

understood as follows. In the athermal limit the free energy F identi�es with the potential

energy U({Rij}, ε) - that can be expressed in the deformed con�guration as a function

of the set of distances {Rij} and the Green Saint-Venant strain tensor ε - and can be

expanded as,

dF = dU = tαβεαβ + Cαβγδεαβεγδ + h.o.t. . (3.40)

The simplifying assumption of the a�ne deformation made in the previous section corre-

sponds in taking the derivatives of the above potential energy U({Rij}, ε) with respect to

strain at �xed rescaled positions X. In a real deformation the rescaled positions X can also

evolve with the applied strain εαβ and one must derive the potential energy not at �xed

positions X but rather keeping the force f on each atom equal to zero in the deformed con-

�guration in order to remain at equilibrium during the deformation. The general expression

of the elastic constants should then read in the athermal limit11,

Cαβγδ =
∂2U

∂εαβ∂εγδ

∣∣∣∣
f=0

=
∂

∂εαβ

(
∂U
∂εγδ

∣∣∣∣
X

+
∂U
∂Xi

∣∣∣∣
ε

∂Xi

∂εγδ

∣∣∣∣
f=0

)
, (3.42)

11Here we use the following mathematical identities that apply for example given two independent

variables, x and y, and a third which is a function of these two, z(x,y), then we have for any function of x

and y, f(x,y), that

∂f

∂x

˛̨̨̨
z

=
∂f

∂x

˛̨̨̨
y

+
∂f

∂y

˛̨̨̨
x

∂y

∂x

˛̨̨̨
z

. (3.41)

In our problem x would be the strain εαβ , y the rescaled positions X, z the forces f that apply on the

particles and f the potential. energy U.
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and at equilibrium fi = ∂U
∂Xi

∣∣∣∣
ε

= 0 for each particle and one is left with,

Cαβγδ =
∂2U

∂εαβ∂εγδ

∣∣∣∣
X

+
∂2U

∂εαβ∂Xi

∣∣∣∣
ε

∂Xi

∂εγδ

∣∣∣∣
f=0

. (3.43)

Moreover by di�erentiating the equilibrium condition fi = ∂U
∂Xi

∣∣∣∣
ε

= 0 with respect to strain

one obtains,
∂2U

∂εαβ∂Xi

∣∣∣∣
X

+
∂2U

∂Xi∂Xj

∣∣∣∣
ε

∂Xj

∂εαβ

∣∣∣∣
f=0

= 0 , (3.44)

and reinjecting the expression of ∂Xj
∂εαβ

∣∣∣∣
f=0

so derived in 3.44 in 3.43 one gets,

Cαβγδ = CBorn
αβγδ −Ξ ·H−1 ·Ξ , (3.45)

where

Ξ =
∂2U

∂εαβ∂Xi

∣∣∣∣
ε

, (3.46)

and where H is the Hessian matrix de�ned by,

H =
∂2U

∂Xi∂Xj

∣∣∣∣
ε

. (3.47)

Note that expression 3.45 can be recovered by taking the zero temperature limit of ex-

pression 3.39 as was shown �rst in [134]. In practice the evaluation of the second term in

3.45 is numerically di�cult as one has to diagonalize the Hessian matrix, which becomes

very time consuming as the number of particles in the system increases. So generally the

actual procedure to obtain zero temperature elastic constants consists in carrying out ex-

plicit macroscopic deformations on the sample - either by energy potential minimization

(see section 2.3) or by low temperature molecular dynamics (section 2.2) techniques - and

to recover the elastic constants by inverting the macroscopic stress-strain relations. In

[118] the elastic constants of the same Lennard-Jones polydisperse as the one used in this

thesis were derived with this direct method and were compared with the elastic constants

that one gets under the a�ne assumption. As we have already seen in paragraph 3.2.3

the `relaxation-�uctuation' term in 3.39 or 3.45 has a dramatic e�ect on the estimated

macroscopic elastic constants shown in �gure 3.1.

If this approach helps to take into acount the disorder nature of the glassy materials

and the in�uence of the nona�ne �eld it was not originally designed to be applied for small

system (rather the opposite - valid in the thermodynamic limit). In the next chapter we

present a method to calculate microscopically derived expressions of the di�erent continuum

mechanics �elds of interest, and to assess the validity of the continuum mechanics and of

elasticity at small scales.
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3.3.2 Literature review - local constants

It is surprising to see that despite the growing importance of nanostructures the question

of the accurate description of these materials at small scales and �ne resolutions is not

always addressed. So in many recent publications the methods of calculation of the �elds

of continuum mechanics -strain, stress, elasticity tensor...- valid in the thermodynamic

limit are assumed to remain so at nanometric scales without further discussion. As we will

discuss in details later the extension of continuum mechanics at small scales is all the more

important in that a local accurate knowledge of the continuum �elds of mechanics (strain,

stress, elastic constants in mechanical response of material or strain rate, stress, velocity

�elds, viscosity in rheology) is necessary to describe the heterogeneous rheology/mechanical

response of a vast class of complex materials. Indeed these local �elds are the necessary

ingredients in the growing literature concerned with the developement of local constitutive

laws of the dynamics in materials such as granular materials, glassy materials, complex

�uids (see [17]). We present in this paragraph �rst some existing methods to derive the

local strain, stress and elastic moduli and then we discuss in greater details a coarse-grained

method developped by Goldenberg and Goldhirsch [137] and that we used extensively in

our work. We discuss the advantages of the latter method over earlier derivations.

Previous derivations of the local strain

Let us �rst consider local possible estimates of the strain tensor. The �rst and most

commonly used approximation concerning the local strain tensor is to adopt the assumption

of a�nity also refered to as mean �eld or Voigt [138] assumption and to assume therefore

that the local strain tensor can be identi�ed with the global applied strain. This assumption

was for example made in section 3.2 and leads as we have shown to incorrect expressions

of the elastic constants. To make contact with granular materials we can here mention

that this assumption is also at the heart of the so-called e�ective medium theory that gives

an estimate of the e�ective elastic moduli of a random packing of identical elastic hard

spheres [139]. Similarly to what we discussed in section 3.2.3 for a system of polydisperse

soft spheres, it was shown in [140] that if the a�ne assumption seems reasonably veri�ed for

an applied isotropic deformation and predicts reasonably well the bulk modulus it breaks

down and gives wrong estimates of the shear modulus.

To overcome this oversimpli�cation of the problem a necessary step is to acknowledge

for the heterogeneous nature of the strain �eld in the material and to de�ne an expression

of the local strain tensor. There exist many di�erent ideas to interpret the strain tensor

from a microstructural point of view. Most of them belong to one of the two following

approaches [141, 142].

Strains based on an equivalent continuum. In these approaches one extrapolates locally

the discrete displacements to a continuous function of space. Then according to the Gauss-

Ostrogradski theorem the gradient of displacements γαβ(V) can be estimated for a domain
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of volume V and surface S as,

γαβ(V) =
1
V

∫
V

∂uα
∂xj

dV =
1
V

∫
S
uαnβdS (3.48)

Using some sort of compartimentation of the sample the gradient tensor of displacement

is then computed based on the microscopic particle displacements and local geometry of

the sample. As for any numerical integration scheme, there is some arbitrariness on how

to calculate the volume integral 3.48, di�erent approaches di�er for example in the mesh

that they use and in the simpli�cations that they note due to geometrical properties of

the arrangement of particles. One can quote the following references and their speci�cities,

Bagi [141] uses a Delaunay mesh with geometrical simpli�cations in the summation over

the mesh cells that allow for an estimate of the discrete version of 3.48, valid in 2D or

3D. Kruyt and Rothenburg [143] consider for the mesh only cells associated with contact

pairs of particles, their algorithm is only valid in 2D. Kuhn's [144] approach is very similar

to the previous derivations but uses a slightly di�erent summation algorithm, only valid

in 2D. Cambou [145] directly uses the same mesh as Kruyt and Kuhn but gives another

simple estimate of the strain on each cell, this approach is valid in 2D as well as in 3D. Note

that since the boundaries of the equivalent continua displacement of the Kruyt-Rothenburg

strain, of the Kuhn strain and of the Cambou strain are the same, and since the continuous

displacement �eld is de�ned in the same way, the meaning of these approaches is the same

and hence these three strains are equal and only di�er in the algorithm that is used to

e�ectively determine the sum associated with the discrete version of 3.4812.

Best �t strains. In this type of method the strain tensor derivation is based on �nding

the displacement gradient tensor that gives the smallest deviation from the characteristic

displacements of the same system of volume V and surface S discussed above. The charac-

teristic displacement can be the displacements of particle centers, the relative displacements

at the contacts, etc. Depending on the kind of displacements to be approximated by an

average displacement gradient, di�erent versions of best-�t strains are gained. Considering

the best �t to the displacement of the particle centers included in the sample studied,

Cundall and Strack [146] gave the average strain of this assembly of particles as a simple

sum over the boundary particles in 2D and 3D. Similarly Koenders [147] suggested that

the incremental dispacement gradient tensor should be de�ned as a least squares best �t

to the displacement of the boundary particles, but using the Gauss-Ostrogradski theorem

he converts the surface sum into a volume sum. The best �t strain proposed by Liao et

al. [148] is based on a similar line of thought, but instead of the particle displacements, its

fundamental quantity is the contact deformations that can be determined from the particle

displacements and rotations. Here the strain is determined as a best �t to the contact point

displacements and unlike the Cundall or Koenders strain the Liao et al. strain takes into

account the particle rotations. As an improvement to this method Cambou [145] proposed

to consider not only the contacting but also all the neighbouring pairs of particles (in the
12For the explicit expressions of the strains discussed in the following paragraphs we report the interested

reader to the cited references
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Delaunay sense) in the �tting procedure. Finally Gullett et al, in a recent publication,

proposed a derivation where the discrete deformation gradient emerges from a weighted

least squares minimization, hence introducing a tunable length scale.

An important test of the validity of these micromechanical de�nitions of strains is

to compare the global strain tensors according to the above micromechanical de�nitions

with the macroscopic strain tensor determined from the displacement of boundaries of the

assembly [143]. A comparative study of some of the methods described above is made in

[142] for a biaxial shear of an assembly of spheres con�ned in a square domain con�ned in

four straight walls. The results showed that except Liao's and Cundall's �tting procedures

most microscopicaly de�ned strains tend to the global deformation strain if averages are

calculated over the entire sample.

The methods presented above have been used in di�erent studies interested in the

accurate local description of the heterogeneous response of complex materials under ex-

ternal load. Other geometrical quanti�ers of the anisotropy of the material locally have

also been presented for example in the context of foams, where the so-called fabric tensor

was studied. Recently more sophisticated local analyses were performed on di�erent types

of materials by the use of the tensorial Minkowsky functional (described in [149]), that

very interestingly marked an anisotropicity phase transition in disordered sphere packs at

densities corresponding to random close and random loose packing.

Let us conclude by saying that the above approaches su�er from several shortcomings.

As mentionned the underlying assumption of the best �t procedures that the particle dis-

placements are speci�ed by an a�ne deformation �eld (even at a local level) cannot be

exact for disordered con�gurations. Moreover these methods are inconsistent with con-

tinuum mechanics foundations in the sense that the time derivative of the strain tensor

should, to linear order, be equal to the rate of strain tensor i.e., the symmetrized gradient

of the velocity [150]. The best �t strains do not conform to this requirement. Finally

and most importantly the above methods are not constructed to allow for a systematic

coarse-graining of the microscopic strain at di�erent length scales. A possible extension of

the methods would be to coarse-grain the precedent microscopic strain expressions by a

weighting function. We will see that in the coarse-graining procedure used by Goldenberg

and described in details in [137] the coarse-graining is computed directly on the displace-

ments rather than on a local microscopic strain, allowing for the method to be consistent

with the �rst principles of continuum mechanics.

Previous derivations of the local stress

Many authors [151, 152, 153] have proposed an expression for the average stress tensor

in terms of the forces acting at the contacts between particles and of the geometry of

the assembly of particles. The derivation of the expression for the average stress tensor

of an assembly of particles enclosed in a volume V and surface S can proceed as for the
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strain in two steps. In the �rst step the average stress tensor is related to quantities

involving forces exerted on the particles by the boundary that encloses the assembly of

particles. The second step equates, by the use of Gauss's theorem 3.48, these quantities

involving external forces to quantities involving internal forces. The result of the �rst step

is a micromechanical expression for the average stress tensor σxy(V) which for a region of

volume V can be expressed as,

σαβ(V) =
1
V

∫
V
σαβdV =

1
V

∫
S
xασνβnνdS , (3.49)

where the α coordinate of a point on the surface S was simply introduced through σαβ =
∂νxασνβ and the volume intregral was subsequently simpli�ed using Gauss' theorem and

the equlibrium condition ∂βσαβ = 0. The term σνβnν corresponds to the traction force

exerted in point x of the surface by the exterior. The second step of the derivation allows

to reformulate the expression 3.49 of the stress tensor in terms involving internal - rather

than surface - forces. The later formulation of the stress of a region of volume V enclosed

by a surface S corresponds to the Irving-Kirkwood 3.38 expression of the stress tensor in

the limit of zero velocities and were the sum is taken over bonded particles (particles in

contact in the case of granular materials) located both inside the domain. The derivation

for an expression of the stress tensor at �nite temperature was given in 3.3.1 by means of

classical statistical mechanics and will be discussed more in details also in section 3.3.3.

Here one must understand that the expressions of the stress given above, in contrast

with the strain that is a dynamical quantity - as it requires at least two con�gurations for

its calculation -, can be obtained for any given con�guration of particles if the force �eld is

known - note however than in many experiments the force �eld is not known theoretically

and the estimate of the stress and force �elds cannot be simply deduced from the positions

of the particles. In practice though to establish a (local) constitutive law of the material one

needs to calculate not only the instantaneous local stress �eld but rather the incremental

stress �eld. We have seen in section 3.2 how one can simply derive an expression of the

incremental local stress �eld directly from the knowledge of the positions of the particles on

the reference con�guration if one assumes that the strain is homogeneous in the material.

In fact there is some symmetry between strain and stress and one can also in a similar way

as in 3.2 derive a simple expression of the local strain if one assumes homogeneous stress

(we refer the interested reader to the treatment of Kruyt).

Again as for strain derivations we emphasize here some of the drawbacks of these

methods namely, the sensitivity to the discrete nature of the boundary over which are

calculated the discrete deriving from 3.48 and the fact that the stress expressions introduced

above do not conform to one of the milestones of continuum mechanics i.e. conservation

equation of momentum.
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Previous derivations of the local moduli

As we have discussed in section 3.3.1 the estimate of the bulk constants is well established

and has lead to a substancial literature, the generalization to the measure of local elastic

constants is a more recent �eld. In simulations Kluge [154] and Alber [155] carried out

such calculations of the local elastic constants in the neighbourhood of a grain boundary

in model crystal systems. More recently several authors used similar generalizations of

formula 3.39 to calculated the local elastic constants in composites [156, 7], in Lennard-

Jones glasses [157, 158, 159] and in metallic glasses [160]. In these approaches the authors

have used a subdivision of the macroscopic sample in cells (typically cubes) of di�erent sizes

and applied a modi�ed version of 3.39 to these subdomains. Unfortunately a systematic

cell size e�ect was not discussed by the authors. We will come back to this point in section

3.4.2 were we speci�cally quantify the convergence behaviour of the local elastic moduli

to the macroscopic constants. Another study of local elastic constants and stresses in the

highly stressed region beneath a nanoindenter was made recently by VanVliet [161] and

used these local tensor to construct an elasticity based criterion that they used to predict

initiation of dislocations.

Fig. 3.2 : Left : For an elastic two-phase composite, the sti�ness of Voigt and Reuss composites

represent rigorous upper and lower bounds on the Young's modulus for a given volume fraction

of one phase. The sketch illustrates the two limiting cases where the Voigt and Reuss bounds are

attained. Right : Sketch of the coated sphere morphology with the volume �lled with spheres of

di�erent size of one phase. Each sphere has a coating of a given fraction of the sphere radius. In

this morphology the moduli given by the Hashin - Shtrikman formulae are exactly attainable [162].

Having characterized the heterogenous nature of the material in terms of local stress

and strain �elds is a �rst step, but to go even further one would like to deduce from

this a macroscopic constitutive law, i.e. the e�ective elasticity tensor of the material. This

ultimate goal is rather simple only for ideal crystaline structures with one atom per unit cell.

There is a very large literature on this subject. We have already seen in section 3.23 how

one can derive a microscopic expression of the Born elastic moduli, i.e. the elastic moduli
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under the unrealistic assumption of uniform strain in the material. An expression of the

same type can be obtained if one makes the assumption of uniform stress in the material.

A more systematic method consists in establishing bounds on the permitable values of

the elastic constants. These bounds are for an elastic, anisotropic two-phase composite

material, depicted on �gure 3.2, called the Voigt and Reuss bounds and are rigorously

attained in this case, where the modulus for the Voigt composite is Ec = E1V1 + E2V2, in

which Ec, E1 and E2 refer to the Young's modulus of the composite, phase 1 and phase

2, and V1 and V2 refer to the volume fraction of phase 1 and phase 2 with V1 + V2 = 1.
This is an exact analytical form for this morphology (think of the analogy of springs in

parallel). The modulus of the Reuss composite is 1/Ec = V1/E1 + V2/E2 (think of the

analogy of springs in series). Another simple physical model where an e�ective modulus can

be obtained exactly is the isotropic coated-spheres model. For such isotropic composites

the bounds given by Hashin and Shtrikman are exactly attainable, and are tighter than

the Voigt-Reuss bounds. As shown in �gure 3.2 in this composite the full volume is �lled

with spheres of di�erent size of one phase; each sphere has a coating of a given fraction

of the sphere radius, made of material of the second phase. Note that in this model one

can derive only an exact expression of the bulk modulus and not of the shear modulus.

Interestingly, Christensen and Lo [163] showed that a variant of the coated-spheres model,

a `three-phase model', does permit an exact solution of the e�ective shear modulus. Other

exact solutions can be obtained for the e�ective elastic moduli of a matrix of given bulk

and shear modulus containing a small concentration of ellipsoidal inclusions with di�erent

elastic properties. A review of all these approaches is given in [164, 165].

3.3.3 The coarse-grained approach - local constants

In this paragraph we detail the approach developped by Goldhirsch and Goldenberg that

provides precise de�nitions of the �elds of continuum mechanics in terms of microscopic

variables in a systematic way, consistent with conservation equations of continuum me-

chanics, and at di�erent coarse-graining length scales. Most of their work is essentially

a coarse-grained equivalent of the derivations obtained in statistical mechanics ([166], see

also, as an example of a statistical derivation, the expression of the stress tensor obtained

as a thermodynamic average in the ThN ensemble in 3.3.1.). As Irving and Kirkwood in

[166], Goldenberg and Goldhirsch [137] base their description of matter on the three fol-

lowing �elds, mass density ρ, momentum density p and energy density e. The general form

of the equations satis�ed by these �elds can be shown phenomenologically in any textbook

on continuum mechanics to correspond to the three conservation equations for mass, the

equation of continuity, for momentum, the equation of motion, and for energy, the equation

of energy transport (we do not consider conservation of moment of momentum, electrical
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charge and of magnetic �ux in this work)13

∂ρ

∂t
= − ∂

∂xβ
(ρVβ) , (3.50)

∂pα
∂t

= − ∂

∂xβ
(ρVαVβ − σαβ) , (3.51)

∂e

∂t
= − ∂

∂xβ
(Vβe−Vασαβ + cβ) . (3.52)

Irving and Kirkwood in their seminal paper [166] showed how these conservation equa-

tions can be obtained from �rst principles of classical statistical mechanics and by doing

so found respectively the following expressions of mass, momentum, stress tensor and heat

current densities14 in terms of molecular variables,

ρ(r, t) =
∑
i

〈miδ(r− ri(t))〉 , (3.54)

pα(r, t) =
∑
i

〈miviαδ(r− ri)〉 , (3.55)

σαβ(r, t) = −
∑
i

〈mi (viα −Vα) (viβ −Vβ) δ(r− ri(t))〉

+
1
2

∑∑
j 6=k
〈
RjkαRjkβ

Rjk
V′(Rjk){1−

1
2

Rjkν∂xν ...

+
1
n!

(−Rjkν∂xν )n−1 + ...}δ(r− ri(t))〉 , (3.56)

where the �rst term σV
αβ(r, t) is the contribution of intermolecular forces to the stress

tensor (σV · dS represents the force acting across dS due to the interaction of molecules on

opposite sides of dS), and is commonly refered to as `contact stress' or `collisional stress',

while the second term σK
αβ(r, t) is a kinetic contribution usualy called `kinetic' or `streaming

stress' (σV · dS, viewed from a coordinate system moving with the local velocity u, is the

momentum transferred per unit time across the area dS).

These expressions were presented in recent publications [137, 150] for athermal disor-

dered systems such as granular materials or glasses, in a slightly modi�ed version where
13Here we present the conservation equation without the e�ect of body forces and sources or sinks.
14We only present the expression for the heat current as a footnote as we will not look at thermal

properties in much details in this thesis. The formula as derived in [166] is given by,

qα(r, t)
X
i

〈mi2 | v−V|2 (viα −Vα) δ(r− ri(t))〉+ uβ

24σV
αβ −

1

2

XX
j 6=i

〈V(Rij)δαβδ(r− ri(t))〉

35
+

1

2

XX
j 6=i

〈
»
V(Rij)δαβ −

V′(Rij)

Rij
RijαRijβ{1 + ...+

1

n!
(−Rjiν∂xν )n−1 + ...}

–
viβδ(r− ri(t))〉 .(3.53)



3.3. Continuum mechanics 2 : general case 61

they were used directly in real space and were assumed to remain valid for single realisa-

tions (i.e. use of the expressions 3.54, 3.55 and 3.56 without the brackets). Moreover in

their treatment Goldenberg and Goldhirsch by substituting a weighting function φ(R) in

place of the delta function in these expressions allowed for the de�nition of coarse-grained

local �elds coherent with the conservation equations 3.50, 3.51 and 3.52. Their derivation

of the coarse grained local �elds goes as follows. For local mass and momentum density

use the de�nition 3.54 where δ((r − ri(t)) is replaced by φ((r − ri(t)). In the rest of this

thesis we have chosen the weighting function to be a gaussian function. One can then

de�ne respectively the coarse grained mass density, momentum density and velocity �elds

as,

ρ(r, t) =
∑
i

miφ(r− ri(t)) , (3.57)

pα(r, t) =
∑
i

miviαφ(r− ri) , (3.58)

V(r, t) = p(r, t)/ρ(r, t) . (3.59)

Using a slightly di�erent derivation than in [166], Goldenberg showed in [137, 150], that

by reporting 3.58 in 3.51 one can express the coarse grained stress density as15

σαβ(r, t) = −
∑
i

miv
′
iα(r, t)v′iβ(r, t)φ(r− ri)

− 1
2

∑
i,j

fijα(t)Rijβ(t)
∫ 1

0
dsφ(r− ri + srij) , (3.62)

where Goldenberg introduced the �uctuating velocity �eld of particle i,

v′i(r, t) = vi(t)−V(r, t) . (3.63)

Again as in 3.56 we recover the decomposition of the stress tensor in `kinetic stress' and

`contact stress', but in the athermal limit which we are mainly interested in, the kinetic

contribution vanishes. It is this expression of the stress tensor, rather than the earlier

stress expressions derived in 3.3.2, that will be used in section 3.4.1 to characterize the

local elastic properties of the Lennard-Jonesium.

15Similarly by inserting the coarse grained formulation of the energy density,

e(r, t) =
1

2

X
i

miv
2
i φ(r− ri) +

1

2

X
i6=j

V(Rij)φ(r− ri) , (3.60)

into 3.52, one can identify the coarse grained heat �ux,

cβ(r, t) =
1

2

X
i

v′iβ
`
miv

′
i
2 + V(Rij)

´
φ(r− ri) +

1

4

X
ij

fijαrijβ
`
v′iα + v′jα

´ Z 1

0

dsφ(r− ri + srij) . (3.61)
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In a similar manner we derive the coarse grained version of the strain tensor. First by

noting that the (Lagrangian) displacement �eld de�ned by u(R, t) = r(R, t) −R can be

obtained by integration of the coarse grained velocity 3.59,

u(R, t) =
∫ t

0
V(R, t′)dt′ =

∫ t

0

∑
imivi(t′)φ [r(R, t′)− ri(t′)]∑

jmjφ [r(R, t′)− rj(t′)]
dt′ . (3.64)

Goldenberg et al reexpressed the coarse grained displacement in two parts,

u(R, t) =
∑

imiui(t)φ [r− ri(t)]∑
jmjφ [r− rj(t)]

+∫ t

0

1
ρ

∂

∂rβ

∑
i

miv
′
iβ(r, t′)u′iα(r, t′)φ

[
r− ri(t′)

]
dt′ , (3.65)

where the �rst term in the right hand side ulin(r, t) is linear in strain while the second

term is of second order in strain. So in the framework of linear elasticity we can de�ne the

linear strain �eld as,

εlinαβ(r, t) =
1
2

[
∂ulinα (r, t)

∂rβ
+
∂ulinβ (r, t)

∂rα

]
. (3.66)

This expression of the linear strain was numerically computed by Goldenberg [150] in a

simple linear chain of point masses with disorder introduced in both the Young's modulus

of the spring connecting the particles and in the rest lengths of the springs. The linear

strain was then compared with previous de�nitions of strain introduced in section 3.3.2

and to the exact numerical solution. It was found that while the best �t strain provides a

poor approximation to the exact strain, the linear strain remains very close to the exact

solution, making the linear strain a robust estimator local strains. Again it is expression

3.66 that will be used to derive the local elastic properties of our model Lennard-Jones

glass. This will be the object of the next section, but before let us discuss brie�y some

limits of our approach and of some existing di�erent routes to extend the applicability of

continuum mechanics to small scales.

3.3.4 Alternative continuum formulations

In continuum mechanics the choice of the densities of the conserved entities for the de-

scription of matter is associated with the assumption that all information in a many-body

system, except that pertaining to conserved entities, is averaged over in time and space.

This assumption remains valid when there is a good scale separation between the `micro-

scopic' and the `macroscopic' scales in the material considered and therefore breaks down

when small systems or �ne resolutions are considered. Therefore even the validity of the

conservation equations 3.50, 3.51 and 3.52 becomes dubious when applied for small parts

of the system. A trivial example that illustrates this idea is the case of two particles that

interact under Newtonian gravitational law, while the total mechanical energy of the pair
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is constant the mechanical energy of only one particle is not constant in time. In general

when the macroscopic scale or the wavelength at which we analyse a problem is of the

same order as the microscopic (in our case the interatomic distances) scale, the appropri-

ate continuum description exhibits memory e�ects, i.e., it can be non-local in time and/or

in space. Such nonlocal and history dependent descriptions, referred to as nonlocal (or

gradient) continuum �eld theories, are not convenient to use as the behaviour at a material

point is in�uenced by the state and history of all points of the body. Another approach

to deal with such nonlocal continuum mechanics is to introduce new continuum �elds in

the problem. This type of approaches refered to as micropolar or Cosserat type models

have been used for example to model the formation of shear bands of �nite width in gran-

ular media. In the next section we leave aside these kind of approaches and pursue with

the coarse-grained formalism valid in a local framework of continuum mechanics. We will

propose arguments for the validity of this local treatment.

3.4 Local elasticity map in a model Lennard-Jones

3.4.1 Numerical procedure

Now having calculated in the previous section the stress 3.62 and strain 3.66 tensors locally

we are in a position to derive the corresponding components of the local elastic tensor as

in the case of a macroscopic deformation. Our approach presuposes that the de�nitions

given of the global elastic constants remain valid at a local level. Indeed globally the elastic

constants are de�ned as the coe�cients Cαβγδ of the second order expansion of the energy

density as a function of the Green-Saint Venant strain components [167] εαβ ,

F− Fo
V

= Co
αβαβ +

1
2

Cαβγδεαβεγδ + ... , (3.67)

or as the �rst order expansion of the local stress components σαβ as a function of the local

linear strain [168]

σαβ = Co
αβ + C′αβγδε

lin
γδ + ... , (3.68)

with

σαβ =
1
V

∂F
∂εlinαβ

. (3.69)

In case of an unstressed solid, the two de�nitions are strictly equivalent, but in case of a

solid with initial stresses (Co 6= 0 as in our Lennard-Jones glasses), the di�erence between

the two components Cαβγδ and C′αβγδ depends on the quenched stress components, due

to the non-linear dependence of ε as a function of εlin [167]. More precisely one has the

following correspondance between the two tensors,

C′αβγδ = Cαβγδ −
1
2
(
2Co

αβδγδ − Co
αγδβδ − Co

αδδβγ − Co
βδδαγ − Co

βγδαδ
)
. (3.70)
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In order to obtain the local elastic constants we assume that the global formulas 3.67,

3.68, 3.69 and 3.70 remain valid locally. Furthermore in our model glass system, we have

checked that the contribution of the local quenched stresses can be neglected in the local

version of equation 3.70 which simpli�es to C′αβγδ = Cαβγδ. One can therefore apply the

same symmetry arguments as in the macroscopic case to reduce the number of independent

coe�cients of the elasticity tensor C′αβγδ. Since the linear strain is symmetric by de�nition,

and the stress is symmetric in the absence of torques there are at most 9 constants in 2D.

As discussed in [167, 168] the existence of a strain energy function from which the equations

of elasticity can be derived by variational methods implies a further symmetry of the elastic

tensor : Cαβγδ = Cγδαβ, reducing the number of independent thermodynamic constants to 6

in 2D. To extract the 6 independent elastic coe�cients necessitates at least two independent

deformation modes on our sample. Each deformation provides three linear equations for

the moduli. The general stress-strain relation in terms of matrices is written as follows,

using a Voigt type notation. For each coarse-graining scales W, the coarse-grained stress

and strain components are measured on a grid, and are expressed respectively as the 3 ∗ 1
column vectors T̂ and Ê and one has in 2D the relation T̂ = ĈÊ that means: σxx

σyy√
2σxy

 =

 Cxxxx Cxxyy Cxxxy

Cxxyy Cyyyy Cyyxy

Cxxxy Cyyxy Cxyxy


 εxx

εyy√
2εxy

 (3.71)

This expression can be compared with the expression obtained in the framework of homo-

geneous and isotropic linear elasticity:

 σxx

σyy√
2σxy

 =

 λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 2µ


 εxx

εyy√
2εxy

 (3.72)

where µ is the shear modulus and λ the Lamé coe�cient ((λ + µ) is the inverse of the

compressibility modulus in 2D).

The use of 2 such deformations therefore closes the system of unknowns, giving 6

equations for 6 unknowns. Nevertheless, in order to estimate the deviation from linear

elasticity the numerical procedure used here consists in applying three di�erent uniform

deformation modes, two uniaxial deformations parallel to the x and y axis and a simple

shear parallel to the x axis. This procedure provides 9 linear equations for the moduli.

The stress components which are not used in this procedure are then calculated using these

elastic moduli, and their values compared to those computed directly using equation 3.62.

As a measure of the extent to which the system is described by linear elasticity at a given

position and for a given value of the coarse-graining scale W we use the root mean square,

∆, of the relative di�erences between the stress components calculated by employing the

measured moduli and the directly measured exact values (normalized by the norm of the

exact values).

For each con�guration we calculate also the 3 eigenvalues ci and eigenvectors Ei for
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i = 1, 2, 3 of the local tensor Ĉ. The comparison between equations 3.71 and 3.72 would

provide c1 = 2µ, c2 = 2µ and c3 = 2(λ+ µ) in an homogeneous and isotropic system. We

will now discuss the results obtained in our model Lennard-Jones glass, as a function of

the coarse-graining scale W.

To summarize the numerical procedure goes as follows:

1. Apply the HFTN minimization algorithm to generate three macroscopic deforma-

tions, two uniaxial compressions parallel to the x and y axis and one simple shear

parallel to the x axis.

2. Apply the code, with the appropriate boundary conditions for each macroscopic

deformations, that calculates the local coarse grained �elds either on a grid or on the

particle positions.

3. Feed the three local strain and stress tensor �elds corresponding to each macroscopic

deformation to the code that solves the inversion problem 3.71 and provides the local

elastic constants and the deviation from linear elasticity.

We have applied this numerical protocol to di�erent samples of two dimensional model

glasses. All of the samples studied were at the same density and polydispersity, di�erent

boundary conditions were tested, Lees-Edwards and �xed walls, as well as di�erent system

sizes, ranging from 625 particles up to 250000 particles always con�ned in square cells. In

the next paragraph we discuss mainly the results obtained on the quenched glasses under

the cooling protocol described in 2.6 and before any macroscopic strain is applied to the

samples, i.e. in the initial pre-strained state, εmacro = 0%. We postpone the study of other

e�ects on the local elasticity map of these glasses such as the e�ect of cooling rate, shear

rate, total macroscopic strain, density, temperature to subsequent chapters of this thesis

or to future publications.

3.4.2 Analysis of the local �elds

The domain of validity of Hookes's law can now be measured by the W-dependence of the

error function ∆. It is shown in �gure 3.3. This �gure shows that the error ∆ goes progres-

sively to zero, thus validating Hooke's law at large coarse-graining scales W. However, this

convergence obeys a power-law ∆ ∝W−1.32 and therefore doesn't exhibit a characteristic

scale above which Hooke's law would be true. Nevertheless, we can see in �gure 3.3 that

the error ∆ is already less than 1% for W > 5. It means that above W = 5, the error made

in computing the stress components using the elastic modulus is less than a hundredth of

the actual value of the stress, that is far smaller than the contribution of quenched stresses

for example. We can thus consider that the system obeys Hooke's law reasonably well on

scales larger than W = 5. Below that scale, di�erent factors could explain the departure

from Hooke's law: the �rst one is the coarse-graining. Below W = 5 it has been shown in a
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Fig. 3.3 : Deviation ∆ from linear elasticity as a function of the coarse-graining parameter W.

For W > 5 Hooke's law is satis�ed locally with more than 1% accuracy.

previous paper [169] that the contribution of the coarse-graining deformation to the actual

deformation is small. The contribution of the �uctuating �eld can not be neglected, giving

rise to high values of the real strain and therefore a signi�cant decrease of the elastic mod-

uli. In fact, the �uctuating �eld is not di�erentiable, so that it is not possible in this case

to compute quantitatively the linear strain components. It is one of the interests of the use

of a coarse-graining �eld to deal with di�erentiable displacements �elds. The �uctuating

�eld appears thus as a `noise �eld'. An additional strongly �uctuating term should then be

taken into account for W < 5 in an attempt to describe accurately the mechanical behavior

of the material. Another contribution to the departure from Hookes's law at small scale

is due to the coupling to second and third neighbors outside the volume element. This

contribution (not taken into account here since we are restricted to �rst order derivatives

in the displacement �eld) could be introduced by considering the contribution of higher

order derivatives of the deformation in the framework of linear but long-range elasticity

[170]. This section is devoted to the measurement of elastic moduli, thus we will leave these

considerations for further studies, and focus now on the computation of elastic moduli in

the domain of validity, that is for W > 5.

Figure 3.4(a) shows the average value of each of the eigenvalues< ci > of Ĉ as a function

of the coarse-graining scale W. The notation c stands for a spatial averaging over the

sample and angular brackets stand for a statistical averaging over di�erent con�gurations.

The spatial averaging is obtained by computing the elastic moduli on a grid with elements

of width W/2. The number of the di�erent samples used in the statistical averaging -

for each given size L - is the same as indicated in the �gure 3.3. We get �rst the average
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Fig. 3.4 : (a) The three eigenvalues of the elasticity tensor averaged spatially as a function of

the coarse-grain length W. (b) log-log plot of the convergence of the three eigenvalues to the limit

values obtained by a coarse graining on the whole system size. (c) Anisotropy parameter πa as a

function of the coarse-graining scale W.
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Fig. 3.5 : The three eigenvalues of the elasticity tensor for a coarse-graining length W = 10 on a

square sample of size 500× 500 containing 226225 particles, (a) C1, (b) C2, (c) C3.

value of the (L/(W/2))2 values obtained on the grid, for each sample. Then we average the

values obtained on the di�erent samples. The �gure 3.4(a) shows a progressive convergence

for large W to the values obtained in the framework of homogeneous and isotropic linear

elasticity. Indeed, for very large W, < c1 > and < c2 > go to the same value 2µ ≈ 22
obtained also by looking at the macroscopic response of the system to various mechanical

sollicitations, and < c3 > converges to twice the inverse compressibility 2(λ + µ) ≈ 102
measured as well by the global response of the sample [114, 115]. The method used here to

compute the elastic moduli of the system for large W appears thus to be consistent with

measurements of the global response of the system.

The convergence of the average local elastic moduli to their macroscopic value is in-

dependent of the system lateral size L as long as W < 0.5L. For larger W, the boundary

conditions (Lees Edwards or �xed walls) may a�ect the convergence and cause �nite size

e�ects. As shown in �gure 3.4(b), the moduli decay approximately as 1/Wα to their limit

value, with α ≈ 0.87 for c1 and c2, and α ≈ 2 for c3. The inverse compressibility converges

thus far more quickly to its macroscopic value, than the shear moduli. The di�erence

between the macroscopic value and the spatial average of the small scale measurements of

ci (2µ ≈ 22 while < c1(W = 5) >≈ 18 for example) is due to the inhomogeneous strain

�eld. By looking at (< C > −C∞)/C∞ (�gure 3.4(b)), it appears that for W > 5, the
discrepancy to the macroscopic value is already less than 1% for < c3 >, while it becomes

less than 10% only for W > 10, for < c1 > and < c2 >. We conclude that for 5 < W < 10
the moduli are well de�ned, but the measured values are not compatible with homogeneous

elasticity since the di�erent moduli involved at di�erent coarse-graining scales have di�er-

ent scale dependence. We did not �nd any solid explanation for the non-trivial power-law

appearing in this convergence. It appears that the convergence of the inverse compressibil-

ity is inversely proportional to the volume W2, and the convergence of the shear moduli

closer to a surface e�ect ∝W. As a side note we speculate that in 3D samples these power

law convergences should be respectively inversely proportional to ∝ W3 and ∝ W2 - i.e.
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volume and surface e�ects. Note also that one of the shear moduli is smaller than the lim-

iting value, while the other is larger. This di�erence between smooth and hard directions

will now allow us to quantify the anisotropy of the local mechanical response.

The anisotropy measured at small scale can be quanti�ed by the ratio (< c2 > − <

c1 >)/(2µ) that goes to zero for large W. We call it the anisotropy parameter πa. It is

shown in �gure 3.4(c). It can be noticed that c1 and c2 always obey < c1 >6 2µ and

< c2 >> 2µ, so πa > 0. The decay of the anisotropy parameter πa (�gure 3.4(c)) obeys

also a power-law ∝ 1/W0.92, close to 1/W. These power-law decays prevent us to de�ne

properly a characteristic scale above which the homogeneous and isotropic behaviour is

recovered. In �gure 3.4(c), we see that the anisotropy parameter becomes less than 10%
for W > 20 only. It means that, below W = 20, it is possible to �nd locally a well de�ned

direction associated with a very low local shear modulus. At this scale, the anisotropy in

the mechanical response cannot be neglected.

The preferred direction of strain is given locally by the analysis of the eigenvectors E1,

E2 and E3. Each eigenvector contains the 3 distinct elements of a 2D strain tensor whose

eigendirections e1 and e2 (e1 and e2 are orthogonal) are computed. We plot on �gure 3.6

the distribution of the local quantity Si = (tr(Ei))
2 /2tr(E2

i ), that takes the value 0 if the

deformation is pure shear and 1 for pure dilatation. One observes as expected that the two

deformations associated with the two lowest eigenvalues are of pure shear type while the

third deformation is a pure compression.

0 0.2 0.4 0.6 0.8 1
s

0.001

0.01

0.1

1

10

100

P 
( 

s 
) eigenvalue 1 
eigenvalue 2
eigenvalue 3

Fig. 3.6 : Distribution for each eigenvalue Ei of the local elasticity tensor of the quantity Si =
(tr(Ei))

2
/2tr(E2

i ). The distribution is obtained over the entire plastic �ow regime.

In order to explore more deeply the inhomogeneities of the elastic moduli inside the

system, we will now study their distribution as a function of W, and then their spatial
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Fig. 3.7 : The �gures (a), (b) and (c) show, respectively, the distributions of the three lowest

eigenvalues c1, c2 and c3 for di�erent coarse-graining lengths W. The inset of each �gure show the

distributions rescaled by W. Figure (d) shows that the distributions get narrower as W increases

to converge to the macroscopic values of the elastic constants. The variances of the distributions

is plotted as a function of W. The variances normalized by the average values of the distributions

are also plotted. Both curves show a power law evolution with W.
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correlations. The distributions of c1, c2 and c3 are shown in �gure 3.7 for various W
and for N = 216225. First, we can see in these distributions, that zones with negative

moduli can appear if the coarse-graining scale W is su�ciently small, as already observed

in [156]. It is not in contradiction with the mechanical stability of our system, since the

local elastic moduli computed here are only part of the second order derivative of the total

mechanical energy, due to the coarse-graining, as well as to the non trivial dependence of

the non-a�ne local deformation as a function of the applied displacement. The rescaling

of the distributions by W is also shown in the �gures 3.7. It is very good for su�ciently

large values of W (typically W > 10). The variance of the distribution as a function of

W is shown in the inset of �gure 3.7(d). It decays as 1/W and is always smaller than the

corresponding average value. It is thus impossible to identify a characteristic lengthscale

by the comparison of the variance and the average value of the moduli ci.

The decay of the relative �uctuations ∆c/ < c >∝ 1/W for a given W can be interpreted

in the framework of a sum of uncorrelated variables with �nite variance, the distribution

being nearly gaussian. The apparent rescaling of the distribution thus corresponds to a

sum of spatially uncorrelated variables. Note that, while this ratio is very small for c3 for

every value of W (∆c3/c3 < 0.01 for W > 5), it is much larger for c1 (∆c1/c1 > 10%
while W 6 15 for N = 216225). We can thus conclude that the inhomogeneity is far more

pronounced in the shear modulus c1 than in the compressibility c3. The inhomogeneity of

c1-modulus is even far from been negligible while W 6 15.

By comparing this result with the result obtained for the isotropy, we can conclude

that at a scale W > 20 the system becomes reasonably isotropic and homogeneous. Below

this scale, it is homogeneous but not yet isotropic for 15 < W < 20. All these results

are summarized in Table 3.1. Of course, these values must be nuanced by the fact that

the criteria used are a little arbitrary and simply related with a comparison of orders of

magnitude. No characteristic lengthscale can be clearly identi�ed since all the quantities

checked here have a power-law dependence with the scaling length W.

The distribution of the elastic moduli has been checked along the full deformation

process. We can thus compare the distribution of moduli during elastic deformation and

during plastic �ow. We can also compare these distributions before and after a plastic

rearrangement occurred in the system. The plastic rearrangements are identi�ed here as

in [5, 6] by the decrease of the total stress as a function of the applied strain. We see

in �gure 3.8 that the distribution is progressively displaced to smaller values of the shear

modulus, before it reaches a plastic plateau, but remains globally unchanged during all

the plastic �ow. During the plastic �ow, the di�erence between the distributions appears

on extremal values. Before a plastic rearrangement occurs, the smallest value of c1 (open

circle in �gure 3.8) is generally smaller than after the event occurred (full circle). The

distribution of the smallest value of this elastic modulus is shown in the inset of �gure 3.8
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W 0 5 10 15 20

Hooke's law NO YES YES YES YES

Homogeneity

〈c〉−2µ
2µ < 10% NO NO YES YES YES

∆c
〈c〉< 10% NO NO NO YES YES

Isotropy

c2−c1
2µ < 10% NO NO NO NO YES

Table 3.1: Analysis at di�erent coarse-graining length scales W.

Fig. 3.8 : (a) Distributions of the local shear modulus c1 averaged over the elastic regime and

for two con�gurations in the plastic regime, just before and just after a rearrangement. Inset:

Evolution with the macroscopic strain of the instantaneous macroscopic shear modulus de�ned as

∆σxy,macro = µmacro∆εxy,macro. (b) Evolution with the strain of the maximal and minimal values

of c1. Inset: Distribution of the maximal and minimal values of the local elastic modulus c1 over

the entire plastic regime for all con�gurations, and for con�gurations just before the occurence of

a plastic event.
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Fig. 3.9 : Map of the local shear modulus for a coarse-grained length W = 5 in the linear portion

of the stress-strain mechanical response of the glass. (a) εxy = 0.27108% just before a plastic event

and (b) εxy = 0.2761% just after the plastic event.

for the full deformation process. It con�rms that the smallest values are smaller before a

plastic rearrangement than after16. We will come back to this observation in section 4.2.4.

Finally, it can be interesting to analyse in details the spatial correlations of the moduli

in our systems. The spatial correlations of the lowest modulus c1 are shown in �gure 3.10

for various W and N = 216225. The spatial correlations go to zero at large distances. It

shows spatial oscillations with very small amplitude, that are visible while W < 10, but
that disappear for W > 10. The distance between successive maxima is about a few tens

interatomic distances, but seems to be size-dependent. Unfortunately, our data are not

su�ciently precise to allow us to characterize this size-dependence. For r < 3W only, the

spatial correlations are controlled by the W-dependence of the coarse-graining function

(see �gure 3.10(b)). It can be �tted by a gaussian ∝ exp(−(r/W)2/1.7). We can thus

conclude that the spatial correlations are dominated by the W-dependence of the coarse-

graining function at small distances, but displays oscillations at larger scales. The domain

for which these oscillations are visible (W < 10) corresponds to the domain in which the

heterogeneity in the distribution of the moduli is noticeable. All these results show that a

coarse-graining at scales W >> 10 will loose informations (on the heterogeneities, on the

spatial correlations, even on the local anisotropy.). In the rest of this thesis we will thus

use only the value W = 5 for the coarse-graining scale.

16This observation is also con�rmed by a plot of the local elastic constant before and after a plastic event

as shown in �gure 3.9.
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Fig. 3.10 : (a) Spatial correlation function of the local shear modulus c1: 〈(c1(0)−c1)(c1(r)−c1)〉.
(b) Scaling of the function with the coarse-graining length W for small values of r.
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In the previous chapter we presented a method that extends the domain of applicability

of continuum mechanics and linear elasticity down to a length of about �ve interatomic

distances. With this method we introduced microscopically derived expressions of the

various �elds of continuum mechanics and we discussed in detail on a method to calculate

a coarse-grained local elasticity tensor. In this chapter we take the lowest eigenvalue c1

of this local elastic tensor, i.e. an e�ective local shear modulus, as the relevant local

coarse-grained order parameter to relate the structural disorder of the glass to its observed

heterogeneous mechanical response. We will show that in contrast to other local structural

indicators previously analysed the local shear modulus presents an important degree of

correlation with the heterogeneous dynamics in the sheared glasses. Moreover the use of

the coarse-grained technique introduced in the previous chapter will anable us to estimate

the length scale at which this correlation is maximal.

Our approach is reminiscent of similar studies attempting to relate structure and dy-

namics in static supercooled liquids. As illustrated1 in various numerical [172, 16, 173, 174,

175, 176, 177] and experimental studies (for excellent reviews on models and experiments

1Here we refer to the review made by Berthier in the introduction of [171]

75
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we refer the reader to [178]), over (essentially) the last two decades, supercooled liquids near

the glass transition show peculiar dynamical features that have been associated to spatially

heterogeneous dynamical relaxation. Yet, their structure, as measured by two-point cor-

relation functions, appears homogeneous and unspectacular. There are various theoretical

pictures that try to incorporate connections between static and dynamic properties and it is

tempting (and maybe fruitful) to try and test some of the ideas developed in the framework

of supercooled liquids to achieve a better understanding of the structure/dynamics relation

in the related problem of driven glasses. Let us mention some of these approaches. In a

picture based on dynamical facilitation [179, 180] one postulates the existence of mobile

and immobile regions, with the implicit assumption that these regions have a structural

origin. Frustration-based theories [181] infer dynamical behavior by assuming the existence

of domains with a preferred local order. Alternatively, one can attempt to connect static

and dynamical properties through the con�gurational entropy [182, 183] through two-point

density correlations [184], through elastic properties [185, 186], or through the idea of a

rough energy landscape [187, 188].

4.1 Previous attempts. Literature review

It is an almost impossible task to try and summarize the ensemble of references that are

dealing with the question of a structural signature of the dynamics of glassy materials. In

fact what arouses the curiosity is the apparent paradox with glassy materials that can be

formulated as follows, how can a system with the apparent structure of a liquid behave

so di�erently than the liquid ? It is to answer this crucial question that so many papers

have been devoted to try and extract some hidden structural order parameter in glassy

materials. Here we present some (the list is by no means exhaustive) of these local order

parameters that have been considered in glasses. Most of the discussion below concerns

results obtained through the extensive use of numerical simulations, as experimentally it

remains di�cult to measure local quantities and even more to correlate local structural

and local dynamical information.

4.1.1 Geometrical local order parameters

Local volume. One of the simplest ideas originally proposed (see [189] for a review) is

that, for a particle or a cluster of particles to rearrange, a certain amount of free volume

is needed (see �gure 4.1). In liquids or supercooled liquids thermal �uctuations are at

the origin of such a local density decrease. More precisely [189], suppose that the region

of rearranging molecules is approximately spherical and that the radius must increase by

∆r before a �ow event has a fair chance of taking place. Then, by assuming that the

surrounding material behaves (on the time scale of a rearrangement) as an isotropic elastic
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medium, with elastic constants G∞ and K∞, one can calculate the reversible work W nec-

essary to create the required local expansion. The radial displacement of the surrounding

material being of pure shear type the work is independent of the bulk modulus K∞ and

one �nds W ∝ G∞Vc, where the constant of proportionality is a characteristic volume.

This type of reasoning is at the heart of the elastic models and was originally proposed

to explain the non-Arrhenius temperature dependence of viscosity in supercooled liquids,

η = η0

[
∆F(T)
kBT

]
. Nevertheless there is no proof that the rearrangements occurring in glassy

materials necessarily go through a dilated transition state. Moreover the assumption of

compact spherical rearranging topologies is not guaranteed, and more complex shapes (in-

cluding fractal) could be envisaged, for example in supercooled liquids rearrangements have

been shown to occur in the form of cooperative string like structures [16]. Note that as

we will see in �gure 4.18 in the sheared polydisperse Lennard-Jones glass analyzed in this

thesis the local volume before, during and after a plastic rearrangement doesn't display

any change, contrasting with the above arguments.

Fig. 4.1 : A molecular rearrangement with the dark spheres showing molecules before the �ow

event. A �ow event takes place if the region volume brie�y expands su�ciently due to a thermal

�uctuation. According to statistical mechanics the probability of this happening is the reversible

work done on the surrounding �xed structure to bring about the same expansion [189].

First neighbors and Voronoi tessellation. In the previous paragraph we assumed

that the local density was given by the average number of particle centers within a certain

volume. Usually in order to associate a local volume to each particles one makes use of the

Voronoi tessellation. The Voronoi cell associated to an atom i being the set of all points

closer to i than to any other atom j of the sample. In addition to the volume or surface

that can be associated to each particle with this tessellation, one can also count the number

of direct neighbors by counting the number of faces or edges of the individual cells. Within

this formalism it becomes possible to identify defects (less neighbors than average) and to
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try to correlate this local structural information with the dynamics in the studied material.

Recently this formalism was applied to characterize the dynamics of aging or driven model

binary Lennard-Jones glasses [190, 191] and of amorphous silicon [101, 8]. In model binary

glasses the density of such defects allowed Procaccia to extract a growing length scale

at the approach of the glass transition temperature associated with the disappearance of

liquid like defects (de�ned by the authors as the cells where a small particle is surrounded

by seven particles or a large particle by �ve particles). The classi�cation of the di�erent

types of local environments also allowed the authors to derive a `statistical description'

of the thermal properties of the bidisperse glass in terms of these elementary units [192].

Yet no direct link was observed between such structural defects and the location of plastic

rearrangements in the binary Lennard-Jones glass. Figure 4.1 illustrates a similar �nding

by superimposing the plastic irreversible displacement �eld during a single plastic event

in our quasistatically sheared polydisperse glass with a map of the voronoi defects just

prior to the rearrangement. The situation seems di�erent in a model amorphous silicon

glass (in contrast to simple Lennard-Jones glasses a-Si is a directionally bonded material

where the diamond-like tetrahedral structure is favored) where some degree of correlation

between the coordination defects and localization of plastic events has been observed [8].

Interestingly in a-Si a structural signature of plastic rearrangements in the material can be

found also at highest order neighbors.

Fig. 4.2 : (a) The Voronoi polygon construction in the glassy state at T = 0.1 with the following

colorcode. Small particles in pentagons (heptagons) are light green (dark green) and large particles

in pentagons (heptagons) are violet (pink). Note the total absence of liquid-like defects. (b) A

strained con�guration after the linear elastic response is lost, δ = 3 × 103 . Note the reappear-

ance of liquid-like defects with the shear [190].(c) Displacement �eld during a single plastic event

superimposed with voronoi defects. In brown (heptagons) and in blue (pentagons). No apparent

connection between the location of the rearrangement and the voronoi defects

Second neighbors and preferred geometries. The mechanical response of a-Si has

been recently extensively studied and represents similar features as what is observed in

Lennard-Jones systems, namely the occurrence of localized plastic events that through an
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auto-catalytic process form micro shear bands. Yet, in contrast with Lennard-Jones glasses,

the favored tetrahedral nature of the silicon crystal is also present at a local level in a-Si

and to describe the local structure of a-Si it is necessary in addition to nearest-neighbor

distances to also provide additional information such as the nearest neighbor bond angles.

Figure 4.3 shows the two typical silicon atoms arrangement along with the corresponding

radial distribution function (RDF). Demkowicz and Argon [101] argued that transitions

between these two states occur during plastic events and by comparing the RDF of the

atoms in the region where plastic deformation occurs with the bulk RDF they show that

an `instability-producing bond' is created in the transitional state (�gure 4.3 (b)). In their

study they also show that the atoms can be classi�ed, according to their average nearest

neighbor bond angles µ (�gure 4.3 (c)), as liquid-like or solid-like.

Fig. 4.3 : (a) Atomic con�guration changes associated with nearest neighborhoods of bonds that

undergo a transition across the IPB length are shown. Dark atoms correspond to endpoints of

bonds that undergo this transition. On the top, the bond undergoing the transition elongates

beyond the IPB length while on the bottom �gure it contracts below the IPB length. (b) The

radial distribution function (RDF) compiled from interatomic distances among atoms comprising

triggering clusters (thick line) is compared to a typical RDF for bulk a-Si in a state of steady �ow

(thin line). (c) Comparison of the RDF and angle distribution function (ADF) of the two distinct

atomic environments of a-Si with the RDF and ADF of diamond cubic c-Si and molten Si allow

these environments to be identi�ed as `solid-like' and `liquid-like' [101].

In two dimensional monodisperse Lennard-Jones systems the local crystalline preferred

structure is the hexagonal structure where each atom is surrounded by six nearest neigh-

bors. As for a-Si one can try and track locally the preferred structure with the help of

the hexatic order parameter [193] that projects neighbors of each particle on the spherical

harmonics and that takes the value 1 if perfectly crystalline and 0 if perfectly disordered.

Such analysis have been preformed recently on monodisperse, bidisperse and polydisperse

Lennard-Jones systems. In the case of monodisperse glasses [194, 195] this local order

analysis allowed the authors to quantitatively discuss the phenomenon of shear induced

crystallization with the nucleation of crystallites or `solid-like clusters' as depicted on �g-

ure 4.4. The largest cluster size in the sample grows with shear, as shown in �gure 4.4, to

reach a limiting value of about 170 solid like particles, and the dynamics is subsequently
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dominated by the adjustment of these created clusters to the global shear. Hamanaka

and Onuki [196] used the same local order parameter to characterize the heterogeneous

dynamics of binary mixtures for di�erent size dispersities and compositions. As expected

the displacements were shown to concentrate in the grain boundaries of the polycrystal

(�gure 4.4), this behavior is enhanced for low polydispersity and/or low concentration of

large particles, in other words as the system becomes more monodisperse. Finally a similar

analysis was applied by Kawasaki et al. [197] to the case of polydisperse glass formers

in their supercooled state. By time averaging the hexatic local order parameter over the

relaxation time of the glass τα they �nd that one can still observe clusters of high order

that they coin `medium-range crystalline order' (MRC0) (�gure 4.4) and that these or-

dered regions of particles are less mobile than less ordered regions, suggesting that MRCO

may be the origin of dynamic heterogeneity in a supercooled liquid. The two examples

presented above, a-Si and Lennard-Jones glasses, illustrate that depending on the system

under study the favored geometrical topologies vary. Of course these local topologies are

selected on energetic grounds.

Fig. 4.4 : (a) Main: size of the largest cluster versus time in a sheared monodisperse Lennard-

Jones glass. Broken line corresponds to the value 160. The study sample is still the same as for

the previous �gures. Inset: Three largest clusters at the moment indicated by arrow. The sizes

of the clusters are N1 177, N2 130 and N3 126 particles. [195] (b) Disorder variable D

(opposite of hexatic order parameter) at T = 0.2ε/kB and φ = 0.9 for a bidisperse Lennard-Jones

glass. The arrows represent the particle displacement over a time of the order of the relaxation

time of the di�erent glasses τα [196]. (c) Snapshot of a polydisperse colloidal system of φ = 0.631
for polysidpersity ∆ = 9% [197].

4.1.2 Mechanical local order parameters

Global yield stress criteria. To understand when a complex �uid or solid glassy ma-

terial will yield necessitates in theory a detailed understanding of the microstructure of
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Fig. 4.5 : (a) Yield points for biaxial stress states obtained on a model polymer system [198].

The ellipses represent the pressure modi�ed Von-Mises yield surface and the dashed lines show

the pressure modi�ed Tresca yield surface. (b) Yield surface of a model metallic glass. Normal-

ized principle stresses σxx and σyy at yield (σzz = 0) extracted from computational multiaxial

mechanical tests. Data for two di�erent amorphous structures are shown, composed of 2609 and

2781 atoms, respectively. The solid line is the Mohr-Coulomb yield criterion, plotted with the

value of α = 0.123 obtained from the elementary shear transformation zone analysis of �gure (c).

(c) On the top �gure is represented a representation of the elementary three dimensional shear

transformation zone used in [199]. The four upper (darker) atoms move as a unit with respect to

the �ve lower atoms, and a trajectory with constant normal-stress σn is determined in the shear

direction. In the bottom �gure the applied shear stress τ necessary to maintain a given atomic

shear displacement, normalized by the maximum value of τ at σn = 0, τ0. The beginning and end

of the curve correspond to the starting and ending structures seen in the top �gure. The maximum

value of τ necessary to complete the shear displacement of the top �gure increases with an applied

compressive stress.
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a material and of the mechanisms available to the microstructure to deform and absorb

energy. In practice, ignoring the microstructural deformation mechanisms, macroscopic

continuum phenomenological yield criteria have been devised to predict yielding behavior

in materials. Naturally the stress tensor (along with the strain tensor) that appears in

any mechanical experiment (�gure 4.5) is used in the existing yield criteria. Note that the

de�nition of a unique yield criterion does not appear straightforward and many possible

choices are usually considered, departure from linear mechanical response, maximum of the

stress-strain response or stationary plateau value of the macroscopic stress. Experimentally

moreover it appears di�cult to extract `the' yield stress for a given material and di�erent

experimental protocols give often di�erent results. Nevertheless several criteria based on

the stress tensor have produced robust results and over the past three centuries, a number

of yield criteria have been formulated that predict whether a combination of stresses on

a solid will produce irreversible deformation2. The yield criteria are expressed in terms

either of the principal stresses or in terms of the stress (or deviatoric stress) invariants

(for a review see [200]). As the global yield criteria have also been tested at a local level

we present here brie�y their de�nition. The Tresca criterion assumes that yield will occur

when the maximum shear stress τT = 1
2 |σi − σj |max (here σi are the principal stresses)

is equal to some yield stress, while in the Von-Mises de�nition yield is related to the oc-

tahedral or deviatoric stress τVM = 1
3

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]1/2. In these

two criteria the yield is assumed to be pressure independent which is rather well veri�ed

for di�erent metals. In contrast in polymers glasses [198] and metallic glasses [199] pres-

sure modi�ed versions of these criteria also referred to as Mohr-Coulomb criteria are more

suitable. Hence while in the original Von-Mises criterion τyVM = τ0, the pressure modi�ed

version includes a linear pressure dependence in the value of the octahedral shear stress

τyVM = τ0 + αp. Similarly the pressure modi�ed Tresca criterion reads τyT = 3√
2
(τ0 + αp).

This pressure modi�cations are motivated by an analogy to friction, where the shear stress

is linearly related to normal pressure, rather than to an energy argument like that used to

motivate the original Von-Mises criterion.

Looking for local stress criteria. These type of global yield criteria have been extrap-

olated to hold at the local level in di�erent phenomenological theories of the rheology of

glassy materials (see section 1.4.2) but also in di�erent numerical studies [201, 202, 203, 67]

to relate local rearrangements with a local version of the above stress criteria. In [6]3 we

have attempted to address the question of the existence of such local plasticity criterion

in the polydisperse Lennard-Jones system of this thesis. In this work, in order to relate

the position of the center of the plastic rearrangements to local stress criteria, we have

compared the distribution of the stress components obtained for the whole system, and the

value of the same stress component on the particle in the center of the plastic event, one

2The stress based criteria can be re-expressed in terms of the strain tensor with the use of the constitutive

relation of the materials relating the stress and strain tensors.
3Here we reproduce almost exactly the section 5 of this paper.
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Fig. 4.6 : (a) Distribution of the deviatoric stress in a con�guration of 10 000 particles for 2

di�erent strains in the beginning and in the end of the plastic �ow plateau (triangles). Comparison

with the distribution of the deviatoric stress in the center of the future quadrupole just before

the quadrupolar event takes place (squares), computed on the 2500 plastic events of the plastic

�ow regime. The 3 curves are very similar. (b) Same as in (a), but for the incremental deviatoric

stress. In this case, the distribution obtained on the center of the quadrupoles indicates a more

pronounced correspondence with the highest incremental stresses inside the sample.

step before it takes place. The result for the deviatoric stress σdev ≡ σ1 − σ2 is shown in

�gure 4.6(a). The distribution of the deviatoric stress in the whole sample is stationary:

it is the same in the beginning (for example one step before the �rst plastic event) and in

the end (e.g. one step before the last measured plastic event) of the plastic �ow. It is re-

markable to see in this �gure, that the distribution of the deviatoric stress restricted to the

center of the quadrupoles (one step before each plastic event) computed for all the plastic

events is very close to the previously discussed stationary distribution obtained over the

whole sample, and not only in the center of the quadrupoles. The position of the center

of the quadrupoles appears to be unrelated with any threshold value in the local stress

components. The saturation of the macroscopic stress, and the associated well de�ned

yield stress σY in these systems can thus be related only to the alternation of increase and

decrease of stress and to its intermittent behavior, rather than to any identi�ed local stress

threshold. The existence of an apparent macroscopic yield stress is not related to a local

yield stress. Note that criteria based on Tresca or Mohr-Coulomb criterion, involving the

most probable relation between deviatoric stress and pressure have also been tested in our

numerical systems. It shows a general tendency for the pressure to be a�nely related to

the deviatoric stress in the plastic �ow regime. However, this tendency is shared by all the

particles in the system, and not only by the particles at the center of the quadrupoles. It

thus appears, like in the case of the deviatoric stresses, that a global Mohr-Coulomb crite-

rion, or equivalently -for 2D systems- a Tresca criterion, is valid in the plastic �ow regime,

but is does not provide a locally selective criterion for plasticity. Figure 4.6 shows the

same distributions as for the deviatoric stress, but for the incremental deviatoric stresses:

it means σdev(n+ 1)− σdev(n). In this case, quenched stresses are not taken into account,
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and a large incremental stress is generally the signature of a large local deformation. The

distribution of incremental stresses is also stationary. The distribution restricted to the

center of the quadrupoles is displaced to larger increases in the deviatoric stresses. This

point has also been mentioned by Robbins et al. [55] and underlines the role played by

incremental stresses in the dissipative dynamics of the systems, in comparison with total

stresses that are more or less unchanged. It suggests that the incremental stress ∆σ can

be a more important parameter for plastic purposes than the stress σ itself. However, its

distribution is very broad, and a criterion based only on the incremental stresses is not

very selective: it does not even exclude the possibility for the center of the quadrupole to

take place where the increase of the deviatoric stress is not maximum but minimum.

Elastic Criterion. Let us now make connection with the derivation of continuum me-

chanics from microscopic consideration that we have introduced in section 3.1 to introduce

a local elasticity based criterion used recently to predict the nucleation of defects in crys-

talline materials [161, 204]. In their approach Van Vliet et al., assuming as in the entire

section 3.1 homogeneous deformation of a `representative volume element' (RVE), use lo-

cally the free energy expansion in terms of the incremental displacement u(x), combining
the expressions 3.16 and 3.26 to obtain,

∆F =
1
2

∫
V(r)

drDαβγδ(r)uα,β(r)uγ,δ(r) , (4.1)

where Dαβγδ = Cαβγδ + σαβδγδ, with Cαβγδ the local Born elasticity tensor of 3.24 and

σγδ the local Cauchy stress of equations 3.14 and 3.15. Representing the displacement

by a plane wave perturbation, uα(r) = wαe
ik·r allow them to obtain the simple stability

condition for the RVE,

Λ(w,k) ≡ (Cαβγδwαwγ + σβδ)kβδ > 0 . (4.2)

As discussed in [161, 204] the sign of Λ re�ects the concavity of F. If there exists a pair

of w, k such that Λ is negative, then homogeneity of this RVE cannot be maintained and

defect singularities will form internally. In other words, the elastic stability of the RVE

can be determined by minimizing Λ with respect to the polarization vector w and the

wave vector k; the minimum value of Λ, Λmin, therefore provides a measure of the micro-

sti�ness locally, with instability predicted at the position where Λmin vanishes. As already

discussed in section 3.2.3, the main approximation of this approach is in the assumption of

homogeneous elasticity that allows to derive average microscopic expressions of the local

Born elastic and stress tensor used in 4.2. In the case studied here this homogeneity

assumption can be assumed to hold su�ciently far from any already existing defects in the

crystal but would break down for the perfectly disordered glassy material. Nevertheless

this approach gives an intuition of the idea that we followed in the previous chapter where

we derived a local elastic criterion to quantify the softness of the material at a local level.

In the rest of this chapter in the spirit of Van Vliet et al. we will use this local instability

criterion to relate it to the dynamics of the glass and predict plastic activity.
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Fig. 4.7 : (a) MD simulation after several dipole nucleation events illustrating the formation

of a shear band (dashed lines) after the dissociation of dislocation pairs to the free surface and

crystalline interior. (b) Applied displacement load response (blue) of MD simulated bubble raft,

showing correlation of load drops with a sequence of observed homogeneous dislocation dipole

nucleation events. The elastic instability criterion Λmin (red) tends to zero for the �rst several

nucleation events. All nucleation events occur subsurface [161, 204].

4.2 The local shear modulus

4.2.1 Heuristic arguments

Fig. 4.8 : (a) A schematic representation of deformation induced changes of a local minimum in

the potential energy landscape [205]. (b) Schematic illustration of the potential energy landscape

of an individual STZ under applied shear stress. External shear strain or stress tilts the potential

energy landscape and reduces the activation energy E∗A of plastic shear events [206].

A common general idea is that the deformation in glassy systems will take place in

`weak' zones, somehow characterized by abnormally low elastic constants and increased

mobility. This picture of the glass as composed of a patchwork of `rigid' relatively strongly

bonded (but amorphous) domains separated by `soft' regions has long been postulated

[120] and is at the heart of many theoretical models of the glass transition [208]. Moreover

within this framework it appears tempting to relate the dynamical heterogeneities observed

in glassy materials near and below the glass transition temperature to the spatially inho-

mogeneous elastic constant network. Experimental evidence of the heterogeneous glass
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Fig. 4.9 : (a) In log-log scale (as a guide to the eye, the thick black line is
√
γc − γ), 1/µ (circles),

lowest eigenvalue of the Hessian (squares), next several eigenvalues minus their terminal values

(diamonds) [205]. (b) Top, ∆U, and bottom, λ− = ∂2U
∂x2 |x− , for the protein model of [207], as

functions of Fc−F where F is the external force and Fc is the critical force at which the minimum

and barrier collide. (c) Nona�ne elastic displacement at a distance γ − γc from the catastrophe

[205].

structure is shown in [209] and models [210, 211] including �uctuating elastic moduli have

been introduced in the last two decades to describe some acoustical (boson peak [212])

and thermal (speci�c heat anomalies [213, 214, 215]) properties of glasses. Let us give

some heuristic arguments illustrating why the local shear modulus might be a good local

order parameter to describe the mechanical response of glassy materials. In the case of

crystalline materials the great symmetry of the lattices reduces the possible deformation

patterns under mechanical load and for a global shear the simplest reasonable assumption

is that a cooperative shearing will occur in the crystal with one plane of atoms sliding on

top of another. Rather than being cooperative this sliding mechanism occurs progressively

with the propagation of linear defects (dislocations)4. Glassy systems can be seen in a

sense as a polycrystal with grain sizes of the order of the interparticle distance. They are

therefore completely disordered and one needs to create a new paradigm to describe their

plastic deformation. The general picture introduced for crystals that deformation must

occur through successive transitions between energy minima must remain valid even for

glassy materials and is in fact at the origin of the theoretical models introduced in section

1.4 of the introduction, such as the Soft Glassy Rheology model. The di�culty with glasses

is to identify the typical energy barriers and topological rearrangements of particles associ-

ated with these transitions. The most general approach is to consider an energy landscape

picture [216, 206, 217] of the glass in which the energy is a function of the d × N degrees

of freedom plus the external control parameter (e.g. strain or stress). In this picture as

4To propagate a defect necessitates to overcome an energetic barrier (Peierl potential) but this energy

barrier is much lower than the barrier associated to the cooperative slide of a crystal plane. From this

potential energy analysis one can derive the corresponding critical stress σPN (Peierl-Nabarro) required

to achieve the defect propagation. In reality the plastic deformation of crystals is further complicated by

mechanisms such as for example the interaction of dislocation with each other or with grain boundaries in

polycrystals
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the control parameter is varied, any minimum in the landscape will �atten out in some

direction (the soft mode of the glass) as the minimum collides with a �rst order saddle

point (�gure 4.8 (a), [205]). This type of externally induced topological change is known

as fold catastrophe and induce universal scalings of particular features of the potential

energy landscape in the vicinity of the catastrophe. Written in the reaction coordinate x

(i.e. the eigendirection of the soft mode) the potential energy can be simply expressed to

lowest order in a Taylor expansion as U = −x3 − Bxδ, where x is the projection of the

system's coordinates onto the zero curvature direction (the soft mode) and δ is the control

distance of the control parameter from the singularity. A simple functional analysis of the

above function shows the following scalings for respectively the distance between minima

in reaction coordinate, ∆x ∝
√
δ, the local curvatures in both minima, ∂2U

∂x2 |x+/− ∝
√
δ,

and �nally the energy barrier, ∆U ∝ δ3/2. And indeed these scalings were observed in

simulations of Lennard-Jones glasses as shown in �gure 4.9(a) [207] or in a model protein

�gure 4.9(b) [207]. Moreover as illustrated in �gure 4.9(c) [207], in these athermal glassy

Lennard-Jones models the topological change associated with the catastrophe was shown

to be a localized quadrupolar displacement of particles (typically a few tens) also called

shear transformation zones. More recently Mayr [206] on the model glass, Cu-Ti, and

Delogu [218] on a model Ni-Zr showed that soft modes with similar spatial extent were

preferentially activated. The above δ3/2 barrier scaling argument also lead Johnson and

Samwer [219] to predict a T2/3 dependence in the yield stress of metallic glasses. The

existence of this strain (or stress) induced softening mechanism combined with the obser-

vation of the localized nature of the topological rearrangements lead us to calculate the

local elasticity modulus at di�erent coarse-graining length scales as detailed in the previous

chapter. By doing so we reduce the high number of degrees of freedom associated with

each coarse-grained region to its local strain components. This approach is complementary

to the detailed analysis of the soft modes of the glass and we will discuss in section 4.3 on

how the two approaches compare.

4.2.2 Structural relaxation

In chapter 3 we have shown how the system could be decomposed into regions of di�erent

elastic sti�ness. We now discuss how this elastic heterogeneity is related with the `dynamics'

of the system undergoing quasistatic, plastic shear deformation. To this end, we obtained

the local elastic parameter c1 for con�gurations of the sheared system separated by an

incremental strain of ∆ε ' 5.10−5, during a set of intervals each within a total strain of

∼ 10% in protocol one, under rigid boundary conditions and ∼ 6% in protocol two, under

Lees Edwards boundary conditions. The coarse-graining scale W = 5 was chosen in all the

subsequent analysis as the limit of applicability of linear elasticity. We recall that at this

scale, < c1 > (W = 5) ≈ 18.

One can �rst quantify the global relaxation time (strain) associated with the �eld c1 by

calculating the spatially averaged two point correlation function C(∆ε) = 〈c1(r, ε+ ∆ε)c1(r, ε)〉
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Fig. 4.10 : Autocorrelation function C(∆ε) = 〈c1(r, ε+ ∆ε)c1(r, ε)〉 of the order parameter

conditionned by the value of c1(r, ε) at the origin. The curves correspond from bottom to top to

increasing values of c1(r, ε) at the origin taken in the ranges [5-7,5],[7.5,10],[10,12.5],12.5,15],[20-

22.5],[22.5,25],[25,27.5],and [27.5,30] as marked by the circles. The dashed line corresponds to c1.

Inset: the typical relaxation strain εrelax associated with each rigidity c1 ∼ C(0)1/2 de�ned as the

strain for which the rescaled autocorrelation function has decayed by half.

where the notation A stands for a spatial average over the sample and angular brackets

stand for a statistical average over the strain origins ε. In order to relate the relaxation

strain to the local rigidity of the material we also calculate the two-point autocorrelation

function of the shear modulus conditioned by its initial value. For each sampled rigidity c1

we plot the rescaled autocorrelation function C(∆ε)/C(0)1/2. In �gure 4.10 we see that the

functions C(∆ε)/C(0)1/2 tends in the limit of large strains to the limiting value 〈c1〉, inde-
pendently of the initial value of the shear modulus c1. Therefore in the stationary plastic

�ow regime the local shear modulus c1(r, ε+∆ε) becomes uncorrelated for su�ciently large

strains ∆ε from its value at the origin c1(r, ε), showing that in this model glass the local

elasticity map does not phase separate into permanently rigid and soft regions but rather

evolves dynamically under shear. In the inset of �gure 4.10 we associate with each sampled

rigidity c1 a relaxation strain εrelax(c1) de�ned as the strain for which the rescaled auto-

correlation function has decayed by half. We see that εrelax(c1) is a monotonic increasing

function of the local rigidity parameter, that saturates for C(0)1/2 > 〈c1〉. We see also that

softer regions (C(0)1/2 < 〈c1〉) relax more quickly than rigid ones.

To our knowledge this result represents one of the �rst numerical evidence of a clear

relation between a structural order parameter and the dynamics in a glassy system. The

measurement of the local elasticity map presents the advantage to be independent of the
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speci�city of the glass under study, requiring only the measure of a local stress and strain.

This result con�rms the description introduced in section 3.4.2 of the material as a com-

posite material made of `soft' fast relaxing zones (for c1 6 c1) and of `rigid' stable zones

(for c1 > c1). As seen in �gure 4.10 the strain associated with the rigid `sca�olding' of the

material is found to be of the order of εrelax ' 1.5%. This value is similar to the strain

necessary to enter the fully plastic regime εplastic ' 2%. As suggested in �gure 4.11 where

the relative number of soft zones evolves in parallel with the total shear stress and reaches

a maximum percentage (≈ 60%) before a large plastic event, one can also see this typical

strain as the necessary strain required to achieve percolation through the material of soft

zones, i.e. when the material's rigid sca�olding is no longer connected [2].
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Fig. 4.11 : Evolution of the total shear stress (thick line) and the relative number of soft zones

(relative number of points r where c1(r) < c1) as a function of the applied shear strain, in th plastic

�ow regime.

This relaxation strain of the order of 1.5% can be compared with the typical strain

separating two irreversible rearrangements [5] in the sample ∆εevent ∼ 0.1%. An estimate

of the number of plastic rearrangements required to renew the rigid `sca�olding' of the

material can therefore be given as εrelax/∆εevent ' 15, hence typically 15 events for a

sample containing 10000 particles. Figure 4.13 shows the evolution of the rigid sca�olding

over a total strain of ' 0.9%.
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4.2.3 Relation between the local elasticity map, the local mobility and

the long time dynamical heterogeneity

We have characterized the dynamics of the underlying structure in terms of the shear rigid-

ity order parameter. We want now to see how this structure is coupled to the displacement

�eld in the sheared material.

In order to describe the relation between the local elasticity of the material and its dy-

namics, one can try to quantify the connection between the local domains presenting small

local modulus and an increased mobility of the particles in these domains. A vast literature

has grown in the last �ve years on the connection between static structural properties and

dynamical heterogeneities in glass formers. While di�erent approaches have partially failed

to support such a link between local structure (such as local free volume, local inherent

state potential energy, defects, Voronoi tessellation, local stress or strain...) and dynamics,

Harrowell et al. [220] have recently shown that the spatially heterogeneous `local Debye-

Waller (DW) factor' (de�ned as the mean-squared vibration amplitude of a molecule over a

time of approximately 10 periods of oscillation of this molecule) in a two-dimensional glass

forming mixture could be mapped perfectly on the locally measured dynamical propensity

that relates to the long term dynamical heterogeneities in the material. Berthier et al.

[171] pursued this discussion showing how the in�uence of structure on dynamics is much

stronger on large length scales than on shorter ones, and that the choice of the coarse-

graining scale in the structure-dynamics problem is crucial. Here we make connection with

this literature and claim that the local order parameter c1 is a good candidate to establish

a relation between structure and dynamics. One can understand this assertion by the fact

that c1 and the DW factor contain a similar physical information in probing the local sti�-

ness of the material. Of course in a quasistatic deformation one can not simply measure a

local DW factor on short time scales and the order parameter c1 is a good measure of the

sti�ness of a region. Following Cooper and Harrowell in [220] we de�ne a quasistatic ana-

logue of the dynamic propensity as 〈[ri(ε)− ri(0)]2〉 where ri(ε)−ri(0) is the displacement

without the a�ne contribution due the macroscopic strain ε. Unlike the original de�nition

of the dynamical propensity in [220] the average is taken here over all the particles in

a given range of the order parameter c1 and not over an iso-con�gurational ensemble of

N-particle trajectories. Figure 4.12 shows that the order parameter c1 is indeed related to

the long term propensity and that soft regions (c1 6 c1) present an increased non-a�ne

mobility in comparison with more rigid regions of the material (c1 > c1).

The relation between mobility (plasticity) and low shear modulus is illustrated in �gure

4.14 by looking at how the spatial distribution of these two quantities are mapping onto

each other. In this �gure, the cumulative non-a�ne displacement �eld (that is essentially

irreversible) appears to nucleate from the initial reference state near the soft zones of

the material and to grow in a cooperative manner up to the point where the material

fails macroscopically forming a vertical shear band across the sample. In �gure 4.15 we

distinguish between mobile and immobile particles, and between soft and rigid zones. The
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Fig. 4.12 : Mean-square displacement 〈∆y2〉 for di�erent values of the original local shear mod-

ulus c1. From top to bottom the curves correspond to c1 taken in the ranges [0-2.5],[2.5,5],[5-

7.5],[7.5,10],[10,12.5],12.5,15],[20-22.5],[22.5,25],[25,27.5],and [27.5,30]. Inset: 〈∆y2〉 is shown as a

function of c1 for di�erent relaxation strains.
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Fig. 4.13 : Shear modulus divided in rigid (c1 > c1, black) and soft zones (c1 6 c1, white) for

di�erent macroscopic strains. Figures (a) to (f) correspond to a macroscopic strain of (a)2.5%,

(b)2.55%, (c)2.65%,(d)2.7%,(e)3.25% and (f)3.4%.
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Fig. 4.14 : We represent the local map of the shear modulus at the same macroscopic strain values

as in �gure 13. These values correspond to the onset of plastic rearrangement of the material. These

maps are superimposed with the non-a�ne displacement accumulated from �gure (a). Figures (a)

to (f) correspond to a macroscopic strain of (a)2.5%, (b)2.55%, (c)2.65%,(d)2.7%,(e)3.25% and

(f)3.4%. Note that the non-a�ne �eld is multiplied by a factor 300 on �gure (b) to illustrate the

very strong correlation of the elastic non-a�ne �eld with the elasticity map for small incremental

strain intervals (here 0.05%).
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mobile and frozen particles are identi�ed somehow arti�cially by the amplitude of the

transverse nona�ne displacement: ∆y > 0.02 for a total strain of 1% and ∆y 6 0.02
respectively. The soft zones are identi�ed by c1 6 c1 and the rigid zones by c1 > c1. In

�gure 4.15, we plot the distribution of shear modulus associated with each group of particles

(mobile and frozen) and the distribution of nona�ne displacements for the rigid and soft

portion of the sample. Figure 4.15 con�rms the visual impression of �gure 4.14 that most

of the displacement is concentrated in the soft regions of the material and conversely that

mobile particles are located in soft zones.
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Fig. 4.15 : (a) Distribution of the local shear modulus for mobile and immobile particles. (b)

Distribution of the nona�ne �eld during a total strain of 1% for rigid and soft regions.

We showed that most of the displacement occurs in soft zones. As seen in �gure

4.14 the dynamics in the sheared glass is not trivial with regions that concentrate most

of the non-a�ne displacement �eld and others that remain quiescent. The appearance

of bursts of mobility seems therefore strongly dictated by the underlying heterogeneous

elastic structure of the material and one cannot understand cooperative dynamics in the

glass without considering this underlying structure. Anticipating on the next two chapters5

we would like now to address the question of the degree of cooperativity of this mobility

�eld in the material and its relation with the local elasticity map. In the literature the

dynamical heterogeneity of aging [221] or sheared [222, 6, 223] glassy systems is commonly

quanti�ed by a four-point correlation function de�ned as:

χ4(k, ε) =
1
N
[
〈Fs(k, ε)2〉 − 〈Fs(k, ε)〉2

]
(4.3)

where Fs(k, ε) is the self intermediate scattering function de�ned by:

Fs(k, ε) =
∑
i

cos (k.(ri(ε)− ri(0))) . (4.4)

5For the de�nition of the two and four point correlation functions see equations 5.3.2 and 5.3.2 in chapter

5
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It is important to note here that the symmetry of the mechanical deformation introduces an

anisotropy in k-space in the relaxation of the self intermediate scattering function (SISF)

Fs(k, ε). Typically one has at the �rst peak (kP) of the static structure factor a relaxation

strain of Fs(kx = kP, ε) of about 0.2% while for Fs(ky = kP, ε) the relaxation strain

is of about 1%. This di�erence can be attributed to the formation of shear bands in

our model glass, preferentially along the x axis, therefore increasing the mobility along

this axis. These results seem in contradiction with recently reported similar studies in a

model binary supercooled liquid, where an isotropic relaxation is reported for Fs(k, ε). It
would be interesting to clarify, if these discrepancies could be attributed to the thermal

agitation present in [223] and absent in our athermal simulations. Also in �gure 4.16(a)

in order to relate mobility and structure we calculate the SISF for di�erent region of

the material according to their rigidity. One sees in the inset of �gure 4.16(a) that the

relaxation strain associated with each SISF grows linearly with the local shear modulus

below the average shear modulus (c1 6 c1 ≈ 18) and then reaches a plateau at a value

of about εrelax ∼ 0.85%. Again this provides a clear evidence of the connection between

the structural order parameter c1 and the dynamical response of the material. It cuts the

sample into soft (c1 6 c1) and rigid (c1 > c1) zones.

In �gure 4.16(b) we see in χ4(ky = kP, t) that the number of particles evolving in a

cooperative way grows linearly with strain from zero to ∼ 500 particles for LE boundary

conditions and to ∼ 100 for rigid boundary conditions. It is indeed system size dependent

and evolves as N.f(ξ/L), as shown in [224, 225, 226]. We will come back in more details

to this point in chapter 6.

The maximum cooperativity is achieved at a strain of ε ∼ 2% in the LE case as well as in

the rigid walls case. Theoretical predictions concerning the four-point correlation function

are reported in [221] where the authors focus their studies on static supercooled liquids near

the glass transition temperature. Whether or not one can identify the dynamical correlation

length scale to the typical spatial extent of the soft zones of the material remains unclear

from this analysis and requires further studies. We note that the typical strain at which

the cooperativity χ4(ky = kP, t) is maximal (εmax ∼ 2%) does not correspond exactly to

the structural α-relaxation strain εα < 1% de�ned as Fs(ky = kP, εα) = 1/e calculated

for the same wave vector, but the order of magnitude is actually the same for the systems

studied here.

4.2.4 Predicting plastic activity

To understand the dynamics in the soft phase and more generally the rheology (or me-

chanical response) of the material one would like to understand what �rst triggers the

nucleation source points (local plastic events) at some speci�c locations and second how

these local rearrangements interact in a cooperative manner.

In the previous section we have analyzed the coupling between the elasticity map and
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Fig. 4.16 : (a) Intermediate scattering function (SISF) Fs(k, ε) plotted for k= ky = kP (dia-

monds) and for regions of di�erent softness c1 (thin lines, from bottom to top the rigidity c1 is

increased). Inset in (a): the relaxation strain is shown as a function of the softness at the origin.

(b) 4 point correlation function represented for Lees-Edwards boundary conditions (circles). For

small strain increments the linear behavior is highlighted (dotted line).

the nona�ne �eld in the material and claimed that, for su�ciently large strain, the non-

a�ne �eld (for exemple shown in �gure 4.14) is essentially irreversible (plastic). We checked

this assertion by comparing for each particle in the system the total nona�ne displacement

and the purely irreversible displacement. The irreversible displacement �eld is de�ned as

the residual displacement �eld resulting when after each macroscopic elementary strain

increment δε ∼ 5.10−5 the `virtual' reverse shear −δε is applied on the system. For a

purely reversible deformation this �eld should cancel exactly, but here one observes that,

for most incremental deformation steps, a non-vanishing residual irreversible displacement

�eld is present. With this numerical protocol we can extract for each particle i of the

system the purely irreversible displacement ∆ri
irrev from the total nona�ne displacement

∆ri
na. Hence for each particle i the total nona�ne displacement over a macroscopic strain

∆ε =
∑

n δεn can be decomposed into ∆ri
na(∆ε) =

∑
n ∆ri

irrev(δεn) +
∑

n ∆ri
rev(δεn).

The relative error ‖∆ri
na(∆ε) −∆ri

irrev(∆ε)‖/‖∆ri
na(∆ε)‖ averaged over all particle is

obtained and being less than 5% con�rms our assumption that the nona�ne displacement

is dominated by an irreversible plastic contribution. Based on this observation we describe

here the link between plasticity in the material and the local elasticity map. To obtain this

information we study here the dynamics of the local rigidity c1 calculated on each particle

over a strain range of 10%.

Figure 4.17 illustrates the evolution of the coarse-grained modulus c1 on a particle

that experiences plastic activity (i.e. that rearranges over the strain range). We have

superimposed the quantity DBF - BF standing for best �t - de�ned in [3], which evaluates

the degree of local deviation from a�nity. This parameter was found to very accurately

distinguish between plastic like zone (DBF ∼ 1) and normal elastic zones (DBF < 10−4).

Figure 4.18(a) shows the average behavior of the same quantity c1, averaged for all plastic
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εshift.
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Fig. 4.18 : Evolution of di�erent �elds around a plastic event and averaged over all plastic

events. (a) local shear modulus, (b) local shear stress, (c) local density and (d) number of Voronoi
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98 Chapter 4. Link between structure and dynamics

events. The result which is typical of the dynamics of c1 shows that before a plastic event

occurs on the site the modulus c1 decreases over a typical strain interval of about 0.2%
to become zero or even negative at the plastic irreversible event, where the non-a�ne

displacement becomes important (DBF ∼ 1). Then the local structure is relaxed and the

local modulus gets a higher value (c1 ∼ 18 after the event). Note that this value c1 ∼ 18
is smaller than the macroscopic value for 2µ but corresponds to the average value c1 of

the shear modulus at the scale W = 5 of description. Just before a plastic event, the local

shear modulus is very low c1 << c1. The average decrease of c1 before a plastic event is

�tted approximately by an exponential decay to its limit value. We have no explanation

for the moment for this exponential �t. It shows a characteristic strain ∼ 0.2%.

It is interesting to compare in our system this order parameter with other possible

predictors of plasticity introduced in the literature. These parameters are the local stress

[201, 68, 67], the local deformation strain [57, 227], the local free volume [3, 228, 229], coor-

dinance defects [8, 191] as well as other local criteria derived from macroscopic mechanics

such as Tresca local yield criterion or a local Mohr-Coulomb [198, 199]. In �gure 4.18 we

have summarized the evolution of some of these �elds measured locally in our model glass

at the sites that undergo plastic rearrangement before, during and after the relaxation

takes place. The curves are averaged over all plastic events over the strain studied (≈ 1000
events). It shows that the density and the inverse compressibility are not a�ected by the

plastic event. The shear stress is a�ected since it decreases suddenly after the plastic event

occurred; but before the plastic event, the variation of shear stress is very small, and on a

very small strain-range. Thus the conclusion appearing from the above analysis is that the

local shear modulus c1 is the best criterion in our Lennard-Jones glasses, to identify zones

that are about to rearrange.

In order to identify the e�ect of a very low initial local shear modulus c1 << c1 on

the plastic activity over a larger strain span, we have calculated the shifted plastic activity

A(i, εmacro; εshift, εspan) measured at each site i and every step in the macroscopic strain

εmacro and de�ned as the integral over a strain range εspan of typically a few % of the local

quantity DBF starting from a shifted value of the macroscopic strain εmacro + εshift from

the actual macroscopic total strain εmacro where c1 is measured. Note that εshift and εspan
are adjustable parameters.

In �gure 4.17 we illustrate the meaning of this two parameters. εspan is the range

over which the plastic activity is recorded, in the limiting case of εspan → ∞ one should

obtain the average activity of the glass former. εshift allows to subtract a systematic

bias associated with the conditional probability to have an increased plastic activity for

low initial values of c1. In �gure 4.17 we also plot the correlation between the average

activity and c1 for di�erent εspan. The plastic activity is a number that counts the number

of signi�cant plastic events. It is incremented by 1, as soon as DBF > 0.2. It appears

that the probability to encounter a plastic event is larger for originally soft regions (c1 <



4.2. The local shear modulus 99

c1). Moreover, the predictive character of the structural softness of the material on the

subsequent plastic activity of the glass former holds even for relatively large strain εshift ∼
4%.
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4.3 Relation with soft modes

Fig. 4.19 : Analysis of the elasticity map and soft modes of a con�guration at a macroscopic

strain ε = 0.2725% just prior to a localized quadrupolar rearrangement. From top to bottom and

from left to right : Local elasticity map of the shear modulus C1 for a coarse-graining W = 5,
map of the average participation fraction |eω(x)|2 over the 30 lowest eigenmodes, actual non-a�ne

displacement during the plastic rearrangement between ε = 0.2725% and ε = 0.275%, �rst six

eigenmodes with a participation ratio below 0.4 (see �gure 4.23), i.e. the eigenmodes 10, 11, 26,

28, 29 and 34.

Fig. 4.20 : Map of the average participation fraction on the same con�guration as in �gure 4.19

for the 10, 30, 50, 75 and 100 lowest eigenmodes. Comparison with the local elasticity map of

�gure 4.19.
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Fig. 4.21 : Analysis of the elasticity map and soft modes of a con�guration at a macroscopic

strain ε = 5.8625% just prior to a large shear band. From top to bottom and from left to right

: Local elasticity map of the shear modulus C1 for a coarse-graining W = 5, map of the average

participation fraction |eω(x)|2 over the 30 lowest eigenmodes, actual non-a�ne displacement during

the plastic rearrangement between ε = 5.8625% and ε = 5.875%, �rst six eigenmodes with a

participation ratio below 0.4 (see �gure 4.23), i.e. the eigenmodes 9, 10, 11, 12, 15 and 16.

Fig. 4.22 : Map of the average participation fraction on the same con�guration as in �gure 4.21

for the 10, 30, 50, 75 and 100 lowest eigenmodes. Comparison with the local elasticity map of

�gure 4.21.
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From what we have discussed so far in this chapter it appears that while on the one hand

some local criteria at the atomic level, such as voronoi volume, neighbors, defects, energy,

site stress, Born elastic constant, do not contain much information as to the tendency for

increased local motion or plasticity, local criteria on a mesoscopical coarse-grained scale,

such as the local shear modulus, on the other hand seem to correlate rather well with

increased local mobility. This observation was also made by Berthier et al. in [171] where

it was shown that the in�uence of structure on dynamics is much stronger on large length

scales than on shorter ones, and that the choice of the coarse-graining scale in the structure-

dynamics problem is crucial. This can be simply understood by looking at the onset of

a plastic rearrangement in the sheared glass. Indeed if in this critical con�guration one

tries to displace a single particle while keeping all the others �xed then the particle will

appear to be in a stable energy state. This is obviously in contradiction with the fact that

at the critical point the system is in an instable state and is about to rearrange along a

soft direction of cooperative motion of many particles (a soft mode). In theory therefore to

obtain the most accurate correlation between structure and motion one needs to identify

the soft modes of the material by diagonalizing the Hessian matrix of the entire system. Of

course the possibility that a cluster of particles at some mesoscopic length scale dominates

the instability mechanisms at the onset of plasticity is a possibility. In fact, Mayr [206]

showed in simulations of metallic glasses that such a length scale exists in the sense that the

activation energy of such clusters of particles appears to reach a minimum at some speci�c

length scale of about 10 interatomic distances. Along these lines we want here to compare

the local coarse grained shear modulus with the soft modes of the sheared glass and check

that the two quantities contain similar information. The possibility to relate the structure

and the dynamics at some mesoscopic scale is a prerequisite for many mesoscopic models

of the rheology of glassy materials and is therefore an important conceptual question.

Analysis of soft modes have been already performed in the literature of sheared glassy

materials [205, 114] and supercooled liquids [186], exhibiting deviations from the plane

wave eigenmodes - that would be expected in the crystalline materials - in the form of

localized modes. In the previous two pages we present a detailed comparative study of

the local coarse-grained approach with the soft mode analysis of two con�gurations of the

sheared polydisperse glass at the onset of a plastic rearrangement. In �gures 4.19 and 4.20

the con�guration is chosen in the linear portion of the stress-strain mechanical response

and the rearrangement is a localized quadrupole. In �gures 4.21 and 4.22 the con�guration

is in the plastic regime and the plastic event is this time a large shear band that divides

the sample vertically.

In both �gure 4.19 and 4.21 the bottom two last rows show the �rst six localized

eigenvectors of the glass con�gurations. To select the localized eigenvectors one calculates

the participation ratio of each eigenmode [117] de�ned by,

P(ω) =

[
N

N∑
i=1

(
eiω · eiω)2

)]−1

, (4.5)
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where ω stands for the pulsation of the mode and eiω for the displacement of particle i

of eigenmode ω, with the following normalization of the eigenmodes
∑N

i=1

(
eiω · eiω) = 1 .

P(ω) takes simple values in the following cases, for a completely delocalized mode where

all particles move together P(ω) = 1 (see eigenmodes 1 and 2 in �gure 4.23), for a mode

localized on a single particle P(ω) = 1/N and for a plane wave P(ω) = 2/3. In �gure

4.23 we have represented the participation ratios of the lowest 100 modes of the two glass

con�gurations. This plot anabled us to extract the six lowest most localized eigenmodes

(P(ω) < 0.4) and to show them in �gures 4.20 and 4.22.

Fig. 4.23 : Participation ratio of the 100 lowest eigenmodes of (a) the con�guration of �gure

4.19 at ε = 0.2725%, (b) the con�guration of �gure 4.21 at ε = 5.8625%. The dashed lines at

P(ω) = 0.4 are arbitrarily chosen to determine a localization criterion.

These are compared with the actual non-a�ne deformation that occurs in the plastic

event (�rst row third column in �gure 4.19 and 4.21) and illustrate the already observed

fact [205] that plastic rearrangement in sheared glasses are dominated by these soft modes.

More speci�cally one sees that while the total displacement �eld is undi�erentiable from

the softest mode at the onset of plasticity for localized quadrupolar rearrangements [205, 6],

this identi�cation becomes impossible for shear bands. Indeed as discussed by Lemaitre in

the later case the shear band is the results of a cascade mechanism triggered by an initial

localized soft mode whose signature is lost at the end of the irreversible process. Recently

Widmer-Cooper et al. [186] have calculated the normal modes of the local energy minimum

con�guration, the so-called inherent state, of supercooled liquids and have showed in the

spirit of what is observed in sheared glasses that irreversible reorganization originates from

localized soft modes. To quantify this assertion they have compared the displacement

of the 30 lowest frequency modes for each con�guration with the subsequent irreversible

structural reorganization in the supercooled liquid. Here we have reproduced this analysis

for the glass by plotting on a grid the average participation fraction pi =
∣∣eiω∣∣2 over the

�rst 100 eigenmodes and the second images of the �rst row of �gure 4.19 and 4.21 illustrate

the results for the two samples studied. As can be expected the blue zones on these �gures

correspond to an above average participation fraction and are related to the location of the

localized soft modes of �gure 4.23. Quite remarkably one sees that these maps correlate

very well with the local elasticity maps of the local shear modulus C1. This observation can
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be taken as a con�rmation of the existence of a typical length scale over which it `makes

sense' to de�ne mesoscopic local quantities such as the local shear modulus. Another point

that this quantitative study clari�es is the question of the prediction of a plastic event, more

speci�cally can one predict if the system is going to relax by a local rearrangement or is the

relaxation going to trigger an avalanche and form a shear band. Of course between the two

extreme cases of the localized quadrupole or of a shear band that traverses the sample all

avalanche sizes are possible for the plastic rearrangements6 where we will relate the typical

size of a plastic avalanche to external control parameters such as the temperature and shear

rate. Nevertheless by looking at the local elasticity map and the average participation

fraction prior to the formation of the vertical shear band of �gure 4.21 it is tempting to

relate the existence of this large cascade to the fact that the soft regions seem to percolate,

in this case vertically along the shear band, through the sample. Yet more work needs to

be done to make this point quantitative and we leave it here for further studies.

To summarize we can see that, while the soft modes were shown to correlate well

with the dynamics in the supercooled liquid, in this chapter we showed how the local

elasticity map relates also to the dynamics in the sheared glass. By making the connection

between the two structural analysis we therefore expect the local elasticity map analysis

to be relevant for the characterization of the supercooled state. The existence of such a

mesoscopic tunable local order parameter is of great importance in order to understand the

interplay between this underlying structure and the complex dynamics of driven glasses or

of supercooled liquids. We hope that the above analysis of the local softness and rigidity

of glassy disordered materials shed some new light and will open new perspectives in the

understanding of the complex spatiotemporal dynamics of these systems. The study of

this heterogeneous response of glassy materials is the topic of the next chapters.

6We will come back to this point in chapter 6
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When subjected to slow driving many systems exhibit an intermittent response with

the appearance of discrete and impulsive events spanning a broad range of sizes. Such a

scale-invariant behavior is generally observed in driven nonlinear, dynamical systems and

examples of such crackling signals are ubiquitous in nature (for a review see [230]) with

among other examples earthquake magnitudes (quanti�ed by the famous Gutenberg and

Richter law), biological extinctions, �uids invading porous materials and other problems

involving invading fronts, the dynamics of superconductors and super�uids, sound emitted

during martensitic phase transitions or plastic deformation of crystals, �uctuations in the

stock market, the barkhausen noise emitted along the hysterisis loop in ferromagnets or

105
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ferroelectrics, the serrated stress-strain curve (Portevin-Le Chaterlier e�ect) which some

materials exhibit as they undergo plastic deformation...

As illustrated by Bak [231] despite their great variety these out of equilibrium phenom-

ena usually share three common features, namely, power law distributions of the events

sizes, temporal fourier transform spectra proportional to a power α (usually 0 < α < 2)
of the inverse frequency and fractal geometry of the dynamical structures involved in the

events. To explain such universal scaling behaviors Bak et al introduced (in one of the

most ever cited paper [232]) the concept of self-organized criticality. According to this

theory, driven dissipative dynamical systems spontaneously reach a critical state that is

characterized by the three characteristics signaling scale invariance.

Turning now to glassy materials, it was shown that various such systems (granular

media [233, 234], foams [10, 235], emulsions [53, 234], micelles [236], metallic glasses [237]...)

exhibit an intermittent stress-strain mechanical response. The slowly driven (quasistatic)

regime of some of these systems was shown to be compatible with self-organized criticality

displaying all the three aforementioned characteristics, with broad power law distributions

and fractal dynamical structures (see the review for the case of foam simulations in [9]). On

the other hand power law distribution of structural rearrangements size can also result from

simple continuum elasticity considerations. Moreover a detailed analysis of the intermittent

stress-strain curves has shown that the �nite size of the systems, the applied shear rates

and the temperature considered alter the distribution of the rearrangement sizes, energy

drops, stress drops and strain interval between rearrangements.

In this chapter we study the complex spatio-temporal mechanical response by a careful

analysis of the intermittent response and velocity pro�les of the sheared material. We relate

these observations to the spatial structure of the plastic rearrangements. And propose a

simple model of the stress evolution in the glass in terms of uncorrelated local plastic

rearrangements.

5.1 Observations of the heterogeneous response

5.1.1 Intermittent stress-strain curve

Intermittent response of sheared glasses. In order to understand the origin of these

characteristic exponential cuto�s, we present here a detailed analysis of the distributions

of stress drops, energy drops and strain intervals between plastic events during quasistatic

shear - under both Lees-Edwards and rigid walls boundary conditions - of di�erent two

dimensional polydisperse Lennard-Jones glass samples of di�erent sizes. Figure 5.1 illus-

trates the typical responses of the glasses under Lees-Edwards boundary conditions for

three square samples of length 25, 50 and 100 LJU. We show the (averaged) macroscopic

shear stress and energy per particle as a function of the total strain applied to the system.
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Fig. 5.1 : Left : Stress-strain response of three two-dimensional polydisperse Lennard-Jones

glass under Lees-Edwards boundary conditions. Each curve corresponds to a di�erent square cell

of size 25, 50 and 100 particle diameters. Right : Energy-strain mechanical response of the same

samples. Here the total energy is divided by the total number of particles to produce the average

energy per particle.

Both the global shear stress and energy have an intermittent behavior, with an alternance

of small and large jumps, giving rise to negative slopes that are the signature of dissipative

events.

Experimental studies on disordered materials (foams, granulars), far below the glass

transition temperature [12, 14, 238, 239, 9, 240, 13, 10, 11], associate the dissipative events

observed in �gure 5.1 to the existence of a collective behavior of localized rearrangements

leading to a strongly heterogeneous mechanical response as shown in the existence of shear

bands in the macroscopic plasticity of such systems. Along these experimental evidences, in

the last �ve to ten years, extensive numerical simulations of quasistatically sheared model

glassy systems have con�rmed this picture of a cascade mechanism but have also generated

heated debates �rst as to the validity of the potential energy minimization (PEM) method

(see section 2.3) to represent the physical reality of slowly driven systems and second

as to the localized nature of the elementary rearranging plastic events associated to the

macroscopic stress and energy releases of �gure 5.1. In the next chapter we will resolve

the �rst controversy by showing how �nite shear rate simulations in the limit of (very)

low shear rates do indeed converge towards the quasistatic response obtained with the

PEM method. In this section dwelling on our previous �ndings [5] but also on the recent

work of Maloney and Lemaître [205] and of Lerner and Procaccia [241] (this last paper

appeared during the completion of this thesis) we try to resolve the second controversy.

In fact the direct observation of snapshots (or movies) of the displacement �eld inside the

sheared polydispersed glasses provides the striking realization that structural irreversible

rearrangements happen on di�erent length scales. The two extreme occurrences being

the localized quadrupolar event depicted in �gure 5.2 (the so-called T1 event in foams)

and the system spanning shear bands of �gure 5.2. Interestingly these two limiting cases
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help also to intuitively understand the scaling of the average stress drops with system size

[205, 5, 241]. Indeed if one assumes that the amplitudes of the relaxation events are system

size independent and that each elementary strain step of �gure 5.1 is small enough as to

single out an irreducible plastic unit1 then one easily �nds that for a localized quadrupole

the average stress drop of the entire sample scales with the volume V of the samples while

for system spanning shear bands the average stress drop scales with the size L of the

systems.
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Fig. 5.2 : Left : Displacement �eld during a local rearrangement. Right : Displacement �eld

(×20) associated with a more complex spatial structural rearrangement involving many vortices.

A precise analysis of the probability density functions (PDFs) of the stress, energy and

strain increments can therefore inform us on the spatial organization of the plastic events.

One therefore expects the average stress drops 〈∆σ〉 to scale as 〈∆σ〉 ∝ N0.5 for localized

events and 〈∆σ〉 ∝ N1 for linear shear bands while for more complex geometries (fractal)

or for an intermediate case one can expect an intermediate power exponent α verifying

〈∆σ〉 ∝ Nα. Furthermore (following Maloney et al [205]) one can now derive the average

energy drop scaling with system size. Indeed on average the energy released in the sudden

drops in the stress-strain response of 5.1 in the plastic �ow is exactly equal to the work

done to elastically load the glass (in the elastic reversible branches of �gure 5.1) and the

equality reads [241] σY〈∆ε〉V = σY
〈∆σ〉
µ V = 〈∆U〉, where σY is the average stress in the

plastic regime or yield stress. The energy scaling follows immediately from this equality

and one has 〈∆U〉 ∝ Nβ with α−β = 1. The �rst equality of the last equation also allows to
relate the average strain intervals between plastic jumps 〈∆ε〉 to the average stress jumps

〈∆σ〉, their proportionality guarantying that they follow the same scaling with system

size 〈∆ε〉 ∝ Nα. These results were discussed in detail in two-dimensional model glass

1If the elementary strain step is too large one can indeed observe simultaneously two localized events

that would have been separated under a smaller strain step. This would yield a wrong estimate of the

typical elementary stress relaxation and a�ect the distributions of �gure 5.3.
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Fig. 5.3 : The three �gures highlight di�erent portions of the same distributions of stress incre-

ments (or equivalently the e�ective shear modulus) for the three sizes 25, 50 and 100 ULJ and the

boundary conditions of �gure 5.1. Left : Portion of the distribution dominated by the elastic re-

sponse of the material. The position of the peak of the distribution corresponds to the macroscopic

shear modulus of the model glasses.Middle : Log-log representation of the PDFs highlighting the

intermediate values of stress drops. The black lines are guide for the eyes and are the power laws

∝ µ−2 and ∝ µ−0.8. The large dotted lines only visible for 625 and 2500 particles are the PDFs

calculated over all the strain increments while the continuous lines are calculated over only plastic

strain increments (see text). Finally the small dotted lines correspond to the exponential �ts of

the large stress drops. Right : Log-lin representation highlighting the large stress drops values of

the PDFs and rescaled so that all exponential �ts cross at the same point of coordinates (0,1).

systems [205] and [241] but also three-dimensional realistic simulations of metallic glasses

[237]. While Maloney et al found scaling exponents α ∼ 0.5 and β ∼ −0.5 consistent

with lines of slip that extend along the length of the system, Lerner et al (α ∼ 0.37 and

β ∼ −0.63) and Bailey et al (α ∼ 0.7 and β ∼ −0.3) in 3D found intermediate values

that they attribute to a fractal geometry of the avalanches somewhere between localized

and string like in two dimensions and between string like and planar in three dimensions.

Here we reproduce these results on our polydisperse Lennard-Jones system. To do so we

generated 24 square samples of size (Lx,Ly) (25,25), 8 (50,50) and 8 (100,100). We then

proceeded to a 400% quasistatic shear of these samples under both Lees-Edwards and

rigid walls boundary conditions and for an elementary strain step of ∆γe = 10−4. We

checked that this value of the elementary strain step was su�cient to resolve the elastic

peak (�gure 5.3 left) and that the PDFs (�gure 5.3) were una�ected for a strain increment

ten times smaller ∆γe = 10−5. In the calculation of the PDFs of �gure 5.3 and �gure

5.4 we have ignored the plastic events that occur in the transient regime (ε . 2%). The

PDFs of these transient events were calculated separately and were shown to be much

smaller jumps in the noisy plateau region. The average energy loss (that can be obtained

as the average stress jump times the elementary imposed deformation) is thus by at least

one order of magnitude larger in the plateau than in the previous part. This suggests

rather di�erent types of microscopic response in the two di�erent regions. The dynamics

being dominated in the transient regime by small localized quadrupolar rearrangements

(l.h.s. of �gure 5.2) while extended shear bands become more frequent (r.h.s of �gure 5.2)
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in the plastic regime. Figure 5.3 highlights the three di�erent regimes of values of the

stress increments. On the left one sees that the distribution of these incremental stresses

is peaked around the value given by the elastic response with an elastic shear modulus

µ ∼ 11.7 and shows around this value softer, as well as more rigid, steps typically with a

gaussian distribution. If one looks on the softer side the probability of �nding large stress

drops is accentuated and the middle �gure 5.3 illustrates in log-log representation this

intermediate regime corresponding to averagely large stress drops −1000 < ∆σ/2δε < −1.
The crossover between a Gaussian distribution and the exponential cuto� for larger values

gives the impression of an intermediate power law regime (see black segments for power laws

∝ µ−2 and ∝ µ−0.8 as a guide to the eyes. Note that on this �gure we have separated the

contributions from purely plastic strain increments (solid lines) from the total contribution

from all strain intervals (dashed lines). Here a plastic strain increment was de�ned as a

strain increment where the maximum displacement transversely to the direction of shear

was more that 1% of the diameter of a particle. Finaly the �gure on the right 5.3 illustrates

the large stress drop exponential cuto�s. In �gure 5.4 we proceed to the rescaling of the

raw PDFs (insets) of the stress jumps, energy jumps and elastic strain intervals. We �nd in

good agreement with Maloney et al that the curves scale with system size with the scalings

〈∆σ〉 ∝ 1
L ,〈∆E〉 ∝ 1

L and 〈∆γ〉 ∝ 1
L corresponding to the power exponents α = 0.5 and

β = −0.5. This �nding seems to corroborate the picture of the glass rearranging in the

plastic �owing regime predominantly through the formation of slip lines (�gure 5.2 r.h.s.).

Yet this assertion needs to be nuanced as the scaling is valid on the exponential cuto�s of

the PDFs and doesn't work as well for the `power law' intermediate range of values. In

fact we have checked on the samples containing 625 particles that about 25% of the plastic

events (solid lines in �gure 5.3) take values of instantaneous shear modulus µ larger than

1000 (or equivalently stress drop ∆σ larger than 0.1) i.e. in the exponential cuto� regime.

Moreover these plastic events contribute for about 50% of the stress release in the plastic

�ow. Therefore from this analysis and contrary to what is suggested in [241] one cannot

simply rule out a possible contribution of localized events to the dynamics of the glass,

as about 50% of the energy dissipated is not shown to be associated to system spanning

shear bands. In fact this is con�rmed by a simple analysis of the structural rearrangements

during plastic �ow con�rming qualitatively this picture of 25% of large system spanning

events.

Let us at this point discuss also on the dependance of the stress �uctuations on the

length scales at which we observe the systems. In the above arguments we have studied the

average macroscopic stress �uctuations and we would like now to show how these �ndings

are modi�ed if one calculates rather than the PDFs of the macroscopic �elds ∆σ, ∆U the

PDFs of their coarse grained counterparts ∆σW, ∆UW, where W is the length scale over

which the local stress and energy increments are averaged. In contrast to the chapter 3 and

4 here we have calculated these coarse grained stresses by using a simple averaging of the

usual Irving-Kirkwood stress formulation (see 3.38) over cells of diameter d = L/n with n

ranging from 3 to 26. This procedure was repeated for every con�gurations at regular strain
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Fig. 5.4 : Raw PDFs in the insets and rescaled PDF in the main panels. Left : Stress drops.

Middle : Energy drops. Right : Strain increments.

intervals of ∆ε = 5.10−4 of a sheared glass of size 104 × 104 containing 10000 particles

for a total strain 5% < ε < 10%. The PDFs is represented in log-log representation in

�gure 5.5 and illustrates the progressive transition from an approximately even PDF when

calculated at the atomic level (green curve) to the asymmetric macroscopic PDF (black

curve), with the exponential cuto� for large stress increments progressively pushed to lower

and lower values as the coarse graining increases. Also on this �gure the power law regime

only barely visible in the macroscopic PDF (�gure 5.3) is strongly enhanced (extending

over almost three decades) when one calculates the PDF at the atomic level, the dashed

line shows that this power law is roughly ∝ ∆σ−1.7.
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Fig. 5.5 : Log-log representation of the PDF of the stress drops where the stress are calculated

over cells of di�erent diameters ranging from the total sample of size 104 × 104 (macroscopic

stress) to the site stress (stress calculated on a single particle) and going through cells of diameter

d = 104/3, 104/10 and 104/26. The averages are calculated in the plastic �ow for a total strain

5% < ε < 10%. Left : Positive stress jumps. Right : Negative stress jumps. The dashed line

represent a guide to the eyes for a power law ∝ ∆σ−1.7
xy .

5.1.2 Fluctuating velocity pro�les

The intermittent mechanical response observed in the previous paragraph is the macro-

scopic manifestation of strongly heterogeneous underlying deformation processes as illus-



112 Chapter 5. Dynamical heterogeneity of a sheared glass (γ̇ = 0 and T = 0)

Fig. 5.6 : Velocity pro�les. Left : Along the x direction, right : along the y direction.

trated in �gure 5.2. One way to quantify the size of the rearranging regions is to compute

the participation ratio τ for the non-a�ne displacement �eld associated with the event τ

de�ned as,

τ ≡ 1
N
·

(
∑

i un.a.(i)
2)2∑

i un.a.(i)4
, (5.1)

where un.a.(i) is the non-a�ne displacement of the particle i, that is the displacement

after its usual a�ne shear component (corresponding to a uniform shear strain) has been

removed. For rearrrangements involving the entire system τ ∼ 1 while for local quadrupolar
events τ → 0. In order to get a schematic idea of the typical relaxation processes of the

sheared glass it is interesting to study in details the displacement (and stress �elds) induced

by the two limiting rearrangements, namely the local quadrupole and shear band. For

local plastic rearrangements one can identify the center of the plastic rearrangement by

selecting the particle undergoing the largest non-a�ne displacement. This particle is at

the center of a redistribution of shear stresses with an apparent symmetry characteristic

of a quadrupole (or dipole of displacement �eld). As shown in [205, 5, 242] by moving in a

coordinate system (ρ, θ) and projecting the corresponding radial and azimuthal part of the

displacement �eld onto circular harmonics ei.n.θ one gets the well-known (1/r)-dependence

of the radial projection, along with cos(2θ) angular dependance. These events also conform
rather well to the theoretical prediction of Eshelby for the stress redistribution associated

to a plastic inclusion in an elastic homogeneous, linear and isotropic medium [243, 67]

∆σxy ∝ cos(4θ)
r2 . As can be seen in �gure 5.2 the local plastic events are alined with

the directions of compression and extension of the macroscopic strain tensor. Due to its

geometry the e�ect of such a plastic quadrupolar rearrangement is therefore expected to

appear as a slip in the velocity pro�les equivalently along the x and y axis. Under rigid

walls boundary conditions at y = +−H/2, were H is the width of the sample, the extent of

the vertical displacement will be limited, while as shown in �gure 5.2 this is not the case

for periodic Lees-Edwards boundary conditions. System spanning shear bands that are

associated to a slip of one portion of the sample on the other along the x and y directions

are on the other hand more sensitive to the boundary conditions. Indeed for rigid walls
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the possibility of vertical system spanning shear bands is removed and shear bands will

only form along the x axis resulting in an anisotropicity between the two directions. Under

Lees-Edwards boundary conditions the vertical constraint is less stringent but the vertical

shear bands must conform to the Bravais lattice imposed by the periodicity. As can be seen

in �gure 5.2 a vertical shear band has formed that seems to accomodate the Lees-Edwards

boundary conditions by taking a complex not strictly linear form with some sort of kink

near the top part of the sample. As illustrated in �gures 5.6 the total contribution of all

the plastic rearrangements leads to a slow convergence of the velocity pro�les2 towards the

a�ne linear limit with strong �uctuations. Here we have calculated the cumulative non-

a�ne displacement along the x and y direction of a 100× 100 sample under Lee-Edwards

BC and for a macroscopic strain ranging from 2.5% to 25% by strain steps of 0.25%. Each

velocity pro�le is normalized by the total applied strain and represents therefore the average

non-a�ne displacement per unit strain step δε = 0.0025%. It is quite stricking that the

convergence on average to the linear pro�les is not achieved even after 22.5% deformation of

the sample. It is also interesting to note here that �uctuations in velocity pro�les along the

y axis converge faster to the linear pro�le than along the x axis, con�rming the prediction

that horizontal shear bands are favoured with respect to vertical shear bands in the case of

Lees-Edwards BC3. After 22.5% deformation one sees indeed in �gures 5.6 that the typical

�uctuations along the x axis (∆ux ∼ 10−4) are about ten times larger than along the y

axis (∆ux ∼ 10−5). Note that this anisotropy is consistent with the anisotropy observed in

the faster relaxation of the self intermediate scattering function along the x direction and

discussed in 4.2.3.

To make contact with the recent observations of shear banding in various experimental

and numerical works as discussed in the introduction we detail here the spatio-temporal

occurrence of the plastic rearrangements4. As shown in �gure 5.7 for su�ciently large

plastic events it is easy to identify the center line of such an elementary reorganization,

because the displacements of the particles are so high that they lead to an inversion of

the instantaneous `velocity �eld' in the direction of the sollicitation, above and below the

elementary shear bands. Besides the largest displacement inside the sample (located at

the edge of a shear band) can reach more than 100 times the displacement imposed at the

wall, i.e. it is close to one particle size in our case. Here in line with many experimental

observation on foams [244, 245, 246, 238] we see in �gure 5.7 that these elementary shear

bands can take place anywhere in the sample, and not only at the boundaries, as observed

experimentally elsewhere also on foams [10], leading once averaged over a su�ciently long

strain interval to a linear velocity pro�le. We have checked on samples of di�erent sizes

and under Lees-Edwards and rigid BCs that the distribution of the distances between the

centers of successive shear bands (�gure 5.7) is exponential, with a characteristic length

2Here the simulation beeing quasistatic the notion of time is replaced by the macroscopic applied strain.

Similarly by `velocity �eld' we mean the displacement within a given strain interval
3Of course under rigid walls one cannot calculate a velocity pro�le along the y axis
4The following discussion is extracted from the paper [5]
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Fig. 5.7 : Top left : Averaged horizontal displacement associated to a single but large event. The

y-position, where the non-a�ne displacement �eld is equal to zero, allows to determine the center of

the elementary shear band. Distances are expressed in units of the average particle diameter a. Top

right : Position yB of the centers of elementary shear bands (determined as described previously),

here for the 5000 �rst steps. No localization appears, even for very large deformation (170%, not

shown here). Bottom : Distribution of the distances δyB between successive elementary shear

bands for Lx = 104, Ly = 100. The characteristic distance of the exponential �t is ξ ∼ 30a. Inset:
same distribution for the largest system size Ly = 496. The characteristic distance is the same, ξ.
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ξB ∼ 30a, independent on the system size, that corresponds to the size ξ of the rotational

structures that have been identi�ed in the elastic response of the system. The characteris-

tic distance between successive elementary shear bands in our system is thus equal to the

width of the elementary shear band itself. From these results one can tentatively propose

a picture in which the rearranging zones propagate essentially in a random-walk manner

with a step size of approximately 30a, con�ned by the two boundaries. The distribution

of distances covered by the upper wall between successive occurrence of elementary shear

bands (�gure 5.3) is also exponential, with a characteristic length lc, that does not depend

signi�cantly on the system size (lc ∼ 0.13a in our case). We can �nd an explanation for

the order of magnitude of this length lc, by dividing it by the radius ξ/2 of a vortex. If we

assume that the deformation is localized within a `weak' region of thickness ξ/2, and that

the system outside this shear band is essentially unstrained, the characteristic distance

lc covered by the wall between successive occurrence of elementary shear bands corre-

sponds to a deformation of 2lc/ξ ' 1% within the weak region. This order of magnitude

is approximately equal to the elastic threshold εxy for the strain within the elementary

shear band. The elementary shear bands can thus be seen as weak locations where all

the deformation concentrates, giving rise -from a given local strain threshold- to a large

plastic event that relaxes all the accumulated elastic energy. The next shear band event

is spatially strongly correlated, within a distance ξ. Within this picture, we can simply

describe the construction of the plastic �ow `velocity' pro�le as a di�usive process. For a

sample with transverse size Ly, the number of bands that are created by a total strain ε

is εLy/lc = (εLy)/(ε
p
xyξ). If the bands are created in a spatially correlated manner, with

a typical distance ξ, this will result in an e�ective di�usion coe�cient for these plastic

events of the form Deff = ξ2 × (Ly/εxyξ) (here the strain plays the role of time). The

shear will di�use through the sample over a `time' scale Lyεxy/ξ. For a sample of width

Ly ∼ 100a and with ξ ' 30a the corresponding strain is small, and the boundaries will

almost immediately limit shear band di�usion. The shear pro�le then is created by essen-

tially independent rearrangements. An essentially homogeneous pro�le will be obtained

when the rearrangement density becomes of the order of the inverse of the particle size,

i.e. ε ∼ εpxyξ/a. In a larger sample, on the other hand, this picture suggests that the time

(or strain) scale for establishing a homogeneous pro�le may be very large, in fact propor-

tional to system size, which could explain the commonly observed tendency towards shear

localization in such systems. In the next section, we explore the e�ect of the two kinds of

dissipative events described here (quadrupolar events and elementary shear band), on the

local dynamics of the particles.

Let us summarize the results obtained in this section on the one hand from the analysis

of the macroscopical mechanical response of the glasses and on the other hand from the

study of the velocity pro�les of the sheared materials.

• First the scaling of the stress drops of large events with system size has shown that

the relaxation and energy dissipation in quasistatically sheared glasses occurs through



116 Chapter 5. Dynamical heterogeneity of a sheared glass (γ̇ = 0 and T = 0)

nonlocal system spanning and approximately linear avalanches in the system that

contribute to about half the dissipation but also through other more localized plastic

rearrangements that do not verify the scaling with system size and contribute to the

other half of the dissipated energy.

• Second we showed that the successive plastic rearrangements also present some spa-

tial correlation over the typical length scale ξ, but that this cooperative (di�use)

behavior of the plastic rearrangements is somehow limited by �nite size e�ect mak-

ing an analysis in term of spatialy random occurances of plastic events valid beyond

a short characteristic strain scale of about 1%. This is consistant with observation of

linear average velocity pro�les in simulations on small systems while velocity pro�les

obtained experimentaly on large systems often display persistant shear banding.

In the next section we propose to rationalize these observation by proposing as a �rst

approximation a simple description of the sheared glass as composed essentialy of uncorre-

lated localized quadrupolar rearrangements. We confront the results of this simple model

to the simulations allowing to clarify the relative contribution of localized quadrupolar

events vs extended plastic rearranging units (shear bands) to the mechanical response of

quasistatically sheared glasses. We conclude this section by discussing the successes and

limitations of this approach.

5.2 Minimal model : sum of quadrupoles

5.2.1 Numerical results assuming uncorrelated localized quadrupolar

events.

In order to test if the stress drop PDFs presented in the previous section can be reproduced

by a simple model with local uncorrelated quadrupoles we generate Ne = 105 plastic

quadrupolar events, with a stress �eld perturbation ∆σxy(A) = Acos(4θ)
r2 as seen in �gure

5.8, discretized on a square grid of size L. In addition the amplitudes A of the quadrupoles

are drawn from the three following distributions, respectively an exponential PDF PE(A),
a normal PDF PN(A) and a Pareto PDF PP(A) de�ned as,

PE(A) =
1
σA

exp
(
−A
σA

)
, (5.2)

PN(A) =
1√

2πσA
exp

(
−A2

2σ2
A

)
, (5.3)

PP(A) = c
dc

(d+ A)c+1
. (5.4)

We then calculate the distribution of stress increments P(∆σW) averaged over cells of

various lengths W over the entire square sample and for periodic boundary conditions.
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Fig. 5.8 : Typical quadrupole used in the numerical calculations, of amplitude A (here A ∼ 0.25)
diameter of the core d = 4. Left : values of the stress drop along a line crossing the core of the

quadrupole. Right : discretized values of the spatial stress redistribution.

This simple numerical calculation allowed us to directly test the in�uence on the PDFs

of the size of the system, the coarse-graining over which are calculated the local stress

increments ∆σW (see �gure 5.5) and the choice of the distribution of amplitudes A of

the quadrupoles and to compare these predictions with the simulations obtained on the

realistic glass. On the �rst couple of �gures 5.9, which is the analogous of �gure 5.5 for

the numerical model, we see that the features of 5.5 are qualitatively retrieved. First as is

the case in the real glass the local PDF initially symmetric for small values of W becomes

more and more asymmetric as W tends to the size of the sample. The exponential cuto� is

retrieved for large values of the stress drops (or increments) and is maintained for all coarse-

graining scales for negative values of the stresses while shifted to lower and lower values

again in accord with �gure 5.5. Finally and unexpectedly the power law decay of the PDF

in the intermediate regime of stress values (P(∆σ) ∝ ∆σ−1.8
xy represented by the dashed

line) is in good agreement with the value obtained on the real glass (P(∆σ) ∝ ∆σ−1.7
xy ).

The next couple of �gures represent the PDF calculated when the amplitude of the random

events rather than chosen from the exponential PDF PE(A) are drawn from the Pareto

PP(A) and normal PN(A) laws. Interestingly we see that as expected (see next section) it

is indeed this distribution of the amplitude of the nucleus of the quadrupolar event that

dictates the large stress increments cuto�s along with the cuto� in the distribution of the

macroscopic stress drops. With these qualitative observations in mind we now proceed

in the next section to the analytical resolution of this model of uncorrelated local plastic

events.

5.2.2 Analytical calculation of the model.
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Fig. 5.9 : Log-log representation of the PDF of the stress drops where the stress are calculated

over square cells of di�erent sizes L ranging from the total sample of size 104× 104 (macroscopic

stress) to the site stress (stress calculated on a single mesh of the grid) and going through cells of

sizes L = 6, 11, 21 and 31. The averages are calculated for a total number Ne = 105 of simulated

quadrupolar events . Top left : Positive stress jumps for an exponential distribution PE(A) of

the amplitude A of the plastic events. Top right : Negative stress jumps for PE(A). The dashed
line represent a guide to the eyes for a power law ∝ ∆σ−1.8

xy . The dotted lines correspond to an

exponential �t ∝ exp(−∆σxy/0.5).Bottom left : Negative stress jumps for PN(A). The dashed

lines marks the limiting Gaussian behavior of the PDF ∝ exp(−∆σ2
xy/(2 · 0.52). Bottom right :

Negative stress jumps for PP(A). The dashed lines marks the limiting power law behavior of the

PDF ∝ ∆σ−2.5
xy .
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Fig. 5.10 : Left : Distribution of shear stress releases in the center of the quadrupoles, during

a plastic event. The �t is exponential with a characteristic ∆σ = 2.Right : Comparison of the

distribution P(∆σxy,∆n = 1) with the theoretical �t discussed in the text. The parameters of

the �t are indicated in the legend box. Inset: evolution of the distribution with ∆n. The symbols
are the numerical results. The lines are obtained by a simple convolution of the theoretical curve

obtained for ∆n = 1. It assumes no temporal correlation between successive events.

Analytical calculation without the angular dependence. In the following5, we

take the quadrupolar isolated event as the elementary building block to explain the plastic

deformation of the material, and we propose a simple model that describes the plastic de-

formation (as shown in the redistribution of stresses) as a sum of uncorrelated quadrupoles

of random amplitude A.

We �rst identify the distribution P(A) in our system. As shown by Picard et al. [247],

a quadrupolar event involves in 2D a long-range redistribution of stresses, due to a local

pure shear. The corresponding stress change is of the form.

∆σxy(r, θ) ≡

{
A r2

0
r2 , if r0 6 r 6 rmax

A , if 0 6 r 6 r0

}
(5.5)

where r0 and rmax are respectively the typical size of the quadrupole and the size of the

system, A is the amplitude of the quadrupoles, and ∆σxy denotes the incremental shear

stress. We have neglected in this expression the quadrupolar angular dependence of the

stress �eld and only considered its 1
r2 spatial decay 6 The distribution of P(A) is measured

in our data (see �gure 5.10). It corresponds to the incremental stress at the center of

the quadrupole, that is at the place where the displacement is maximum. The best �t is

exponential, with P(A) = 1
2σA
· exp(− |A|σA

) and σA = 2 appears to be the characteristic

amplitude of the quadrupolar event. It is independent of the system size, unlike the

5This part is extracted from our paper [6].
6The angular dependence mainly contributes by a scaling factor, and a�ect the weight of small ∆σ in

a logarithmic way in the �nal result. We derive this result in 5.2.2 and proceed here with the simpler

approach that yields qualitatively correct results.
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distribution of macroscopic stress release that is ∝ 1/L (�gure 5.4), and appears in �gure

5.10 symmetric. In reality we expect this symmetry to arise due to the fact that it is in

practice di�cult to select in a real simulation the core of a quadrupolar event, and if the

particle that has the greatest displacement is slightly on the edge of the nucleus r ' r0 of

the plastic event we expect indeed an apparent symmetrical distribution P(A).

Using the exponential distribution P(A) shown above, we can now reproduce the dis-

tribution P(∆σ = s,∆n = 1) of the incremental shear stress ∆σxy averaged over the

whole system. Neglecting the angular dependence of ∆σxy as in equation 5.5, we show

that, for a given amplitude A, there is a simple bijective relation between the shear stress

∆σxy and the radial coordinate r. We can thus write PA(∆σxy)d∆σxy = P(r)dr, with
P(r)dr = 2πr/Vdr. Using Eq.5.5, we get

PA(∆σxy) =
πAr2

0

V∆σ2
(5.6)

with

|A| r
2
0

r2
max

6 |∆σxy| 6 |A| (5.7)

In the following, we will consider only the case A > 0, the opposite case giving the symmet-

ric distribution corresponding to ∆σxy < 0. Assuming that the successive events contribute

independently to the total distribution Pth(∆σxy) (an assumption justi�ed by the fact that

this distribution is averaged over the time origins), the average probability of having an in-

cremental stress ∆σxy inside the system is thus obtained by summing over all quadrupolar

events

Pth(∆σxy) = c

∫ ∆σxy
r2max
r0

∆σxy

PA(∆σxy)P(A)dA (5.8)

with an additional normalization factor c due to the limited range of allowed amplitudes.

This gives

Pth(∆σxy) = c
πr2

0

2V
1

∆σ2
xy

((σA + ∆σxy)exp(−∆σxy/σA)

−(σA + σxy
r2
max

r2
0

)exp(−∆σxy.r2
max/(σA.r

2
0))) (5.9)

We show here that the upper exponential cut-o� is proportional to exp(−∆σxy/σA) and

that the low ∆σ behavior7 is dominated by �nite size scaling proportional to exp(−∆σxy.r2
max/(σA.r

2
0)).

We have plotted this function in �gure 5.10, and compared it with the result obtained nu-

merically. We �nd a good agreement with the numerical result, for σA = 2, rmax = L = 100
and r0 = 4. The parameter r0 is the unique free parameter of the �t since rmax scales like

the system size and the �tted value for σA corresponds to the value obtained in the mea-

sured distribution of P(A) (see �gure 5.10), thus con�rming our simple model. The small

value obtained for r0 shows that the plastic quadrupolar events are localized.

7with a logarithmic divergence if the angular dependence is taken into account see 5.2.2.



5.2. Minimal model : sum of quadrupoles 121

We can now compare the distribution P(∆σxy,∆n) with the theoretical distribution

obtained by a simple convolution of the expression 5.9. The theoretical distribution for

Pth(∆σxy,∆n) is obtained by the inverse Fourier Transform TF−1(P̃th
∆n

(∆σ̃xy)) of the

Fourier transform of the theoretical distribution Pth obtained for ∆n = 1. This convolution
assumes the absence of temporal correlations between successive evolutions of ∆σxy, as will
be shown in section 5.4.2 is true. We see in �gure 5.10, that both numerical and theoretical

curves are in very good agreement for a large range of ∆n, and that the agreement is even

better for large ∆n where plastic events are the main contribution to the distribution. This

�gure thus supports strongly our model, even for large ∆n.

Analytical calculation with the angular dependance. The angular dependence

mainly contributes by a scaling factor, and a�ects the weight of small ∆σ in a logarithmic

way in the �nal result. Here we derive this result. When considering the angular depen-

dance of the stress perturbation one needs to replace the expression of ∆σxy in equation

5.5 (here we omit the tensorial indexes xy) by ∆σ = ∆σA
max ·c, where ∆σA

max = A
(
r0
r

)2 (as
in 5.5) and c = cos(4θ). Along similar lines of reasoning as what is presented in equation

5.6 one can introduce P2(c) = 1
π

1√
1−c2 and P(A)

1 (∆σmax) = 1
α2−1

A
∆σ2

max
(α = rmax/r0),

which satisfy,

P(A)(∆σ) =
∫ 1

−1
P2(c)P(A)

1

(
∆σ
c

)
dc

c
. (5.10)

For ∆σ > 0 (the derivation is identical for ∆σ < 0) one can now average over P(A) yielding,

P(∆σ) =
∫ 1

0

dc

π

c√
1− c2

1
α2 − 1

1
d

∫ α2 ∆σ
c

∆σ
c

dAA exp
(
−A
σA

)
. (5.11)

This expression can then be rewritten, after some simple algebra, in the following simpli�ed

form,

P(∆σ) =
1
dπ

1
α2 − 1

d

∆σ

[
f

(
∆σ
d

)
− f

(
α2∆σ
d

)]
, (5.12)

where,

x · f(x) =
∫ 1

0

dc√
1− c2

exp
(
−x
c

)[
x+

1
c

]
. (5.13)

After a rather cumbersome algebra one obtains the following expansion of the function

I(x) = x · f(x),

I(x) = 1 +
x2

2
log(x)− (1 + 2 log(2) + 2c)

x2

4
+ o(x3) . (5.14)

Reporting this expression in 5.11 and after simpli�cation gives in the limit ∆σ → 0,

P(∆σ) ∼ −α
2 + 1
dπ

log(
∆σ
d

) . (5.15)

This calculation concludes our approach of the dynamics of the sheared glass in terms of

local quadrupolar uncorrelated events. We have shown that while this simple approxima-

tion seems to reproduce qualitatively rather well the local dynamics it is inherently limited
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in describing nonlocal correlation in space as well as in time. In the following section we

focus on these aspects of the spatio-temporal dynamics and in particular on the notion of

dynamical heterogeneity.

5.3 Statistical tools to analyse the heterogeneous �ow

5.3.1 Static correlation functions

Equilibrium 8probability densities and distribution functions allow for an e�cient descrip-

tion of the microscopic structure of the system and provide a quantitative measure of the

correlations between the positions of di�erent particles. It is also remarkable that these dis-

tribution functions are generally su�cient to allow for the calculation of most equilibrium

properties of the system. The 2-particle distribution function is de�ned as,

g(→r1 ,
→r2) =

P2
N(→r1 ,

→r2)
P1

N(→r1)P1
N(→r2)

= V2P2
N(→r1 ,

→r2) , (5.16)

where PnN(→r1 , ...,
→rn) is the n-body probability density and N is the number of particles.

Note that the second equality is valid in the case of an homogeneous system where spatial

translation invariance is satis�ed, one can then write to simplify g(→r1 ,
→r2) = g(→r2 −→r1).

This distribution function can be simply related to the density �uctuations autocorre-

lation function,

H(→r ,
→
r′ ) =

1
N
〈{ρ(
→
r′ )− < ρ(

→
r′ ) >}{ρ(

→
r′ +→r )− < ρ(

→
r′ +→r ) >}〉 , (5.17)

where particle density at the position →r is ρ(→r ) =
∑N

i=1 δ(
→r −→ri ). For an homogeneous

system we can integrate H(→r ,
→
r′ ) over

→
r′ to obtain a function independent of the origin

→
r′ related to g(→r ) by:

H(→r ) =
1
N

N∑
i

N∑
j 6=i

< δ(→r +→ri −→rj > +δ(→r )− ρ = ρg(→r ) + δ(→r )− ρ . (5.18)

In �gure 5.11 we have shown the radial distribution function g(r) at zero temperature.

This function describes the spatial organization locally around each atom of the simulation

box, considering the atoms as equivalent. This function informs us on the molecular order,

and we therefore see in contrast with a crystal, that there is no apparent long range order

as after a few interatomic distances the particles organize independently. In �gure 5.11 we

can also see that g(r) does not depend signi�cantly on the temperature around the glass

transition temperature where the dynamical properties of the supercooled liquid change

abruptly (divergence of the relaxation times of the autocorrelation functions). Therefore

8This paragraph is based on the book `Theory of simple liquids' by Hansen and McDonald [248]
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Fig. 5.11 : Radial distribution function calculated on a 104 × 104 sample with Lees Edwards

boundary conditions.

the static correlation functions presented here does not allow us to distinguish a liquid from

a glass. To gain additional information into the relation between structure and dynamics

one needs to consider more complex correlation functions where time appears explicitly.

5.3.2 2-point correlation functions.

Two-times correlation functions9. The correlation function of two dynamical vari-

ables [248] A(t) ≡ A[→r N(t),→p N(t)] and B(t) ≡ B[→r N(t),→p N(t)] writes CBA(t, s) =<
B(t+ s)A(s) > where the average <> is de�ned either as an ensemble average as:

< B(t+s)A(s) >=
∫

B[→r N(t+s),→p N(t+s)]A[→r N(s),→p N(s)]fN
0 [→r N(s),→p N(s)]d→r N(s)d→p N(s) ,

(5.19)

where fN
0 [→r N(s),→p N(s)] is the equilibrium density probability (this de�nition of the

averaging is di�cult to implement in practice for the case of glasses where the equilibrium

state is not known), either as a sliding average:

< B(t+ s)A(s) >= lim
τ→∞

1
τ

∫ τ

0
B(t+ s+ t′)A(s+ t′)dt′ . (5.20)

In the time translation invariant case CBA(t, s) is independent of the choice of s, and the

correlation function is called stationary with respect to s. In our simulation the calculation

of CBA at a given time t is obtained by averaging the product B(t + s)A(s) over a great

number of origins s. In this section we have mainly looked at the observables ρ(→r , t) and
ρσ(→r , t) = σxy(→r , t). Also of interest is the spatially average two-times autocorrelation

function of these densities:

C(dt, t) = 〈ρ(→r , t+ dt)ρ(→r , t)〉 = C(dt) , (5.21)
9In our quasistatic simulations time does not appear explicitly and one must replace in everything that

follows time by the number of deformation steps or strain.
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where the last equality assumes time translation invariance and where A represents a spatial

averaging.

In the actual algorithms we have access to the site shear stress σxy,i(t)10(we write in

the following σi(t) to simplify the notation) that applies on each particle i of the system

and the discrete version of equation 5.22 is11:
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Fig. 5.12 : Left : Autocorrelation function of the shear stress computed on each particle and

averaged over the whole sample, as a function of time (applied shear strain). The nature of the �ts is

indicated in the legend box. Inset : Logarithm of the autocorrelation function of the shear stress, in

log-log scale, in order to determine the exponent of the corresponding stretched exponential. Right

: Probability distribution function P(∆y,∆N) or equivalently van Hove function Gs(∆y,∆N) of

the transverse displacement ∆y for ∆N = 1, 2, 4, 8, 16, 32, 64.... The log-lin scale illustrates the

deviation from the Fickian behavior and the exponential tail of the distributions. The dotted line

is a Gaussian �t for large ∆N where the Fickian behavior is recovered.

C(dt) =
1
N
〈

N∑
i=1

N∑
j=1

ρi(0)ρj(t)δ(→ri (0)−→rj (t))〉 , (5.22)

where ρj(t) = 1 when one calculates the particle density autocorrelation function and

ρj(t) = σj(t) for the stress autocorrelation function. In general it is the Fourier transform

F(
→
k , t) = 1

N〈ρ(
→
k , t)ρ(−

→
k , 0)〉 of the autocorrelation function 5.22 that is computed. This

function is called intermediate scattering function and in �gure 5.12 we report it for both

the density and stress autocorrelation functions. More precisely we plot the self part of

this function de�ned here as,

Fs(
→
k , t) =

1
N

∑
i

ρi(0)ρi(t) cos
[→
k · (→ri (t)−→ri (0))

]
(5.23)

We have calculated these autocorrelation function for time origins t in the plastic �owing

regime (i.e. for strains ε > 1%). We have checked that time translational invariance is

veri�ed in this regime and in �gure 5.12 we represent C(dt) normalized to 1 for t = 0
10With the site stress tensor de�ned in 3.14 [120].
11Note that this expression corresponds to the Van Hove function de�ned in 5.25 and taken at →r =

→
0
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both for displacements and stress tensors. These results compare well with what is usually

observed in glassy materials [249]. One can see on both curves a �rst zone (for short

times) where the autocorrelation function decreases slowly 12 and the function decays

exponentially to zero only for much longer times of the order of N = 2000. This plateau

regime is usually referred to as β relaxation. One can understand this regime intuitively in

terms of a caging e�ect for the particles by their surrounding atoms and therefore slowing

down the decay of the correlation function. It is interesting to note that while for long

times one usually observe in aging glassy materials a Kohlrausch-Williams-Watts stretched-

exponential decay of the autocorrelation function C(t) = A exp(−(t/τ)β) with β 6 1, here
the presence an external drive of the system seems to cause a purely exponential relaxation

at long times.

Temporal generalization of the correlation function H(→r ,
→
r′ ). H(→r ,

→
r′ ) can be

generalized by constructing the two-time density correlation function G(→r ,
→
r′ , t) as:

G(→r ,
→
r′ , t) =

1
N
< ρ(
→
r′ +→r , t)ρ(

→
r′ , 0) > . (5.24)

Expanding the density formulations and by integrating over
→
r′ (homogeneity hypoth-

esis) one obtains the time and space pair correlation function called van Hove function

[248]:

G(→r , t) =
1
N
〈

N∑
i=1

N∑
j=1

δ(→r +→ri (0)−→rj (t))〉 =
〈ρ(→r , t)ρ(

→
0 , 0)〉

ρ
. (5.25)

The van Hove function can be separated in two contributions:

G(→r , t) = Gs(→r , t) + Gd(→r , t) (5.26)

where

Gs(→r , t) =
1
N
〈

N∑
i=1

δ(→r +→ri (0)−→ri (t))〉. (5.27)

G(→r , t)d→r corresponds to the probability to �nd the particle i at→r within d→r knowing

that particle j was at the origin →r = 0 at time t = 0. Gs(→r , t)d→r is the probability that

an atom has moved of →r within d→r during a time t [248].

Nevertheless the van Hove function does not inform on the homogeneous or heteroge-

neous character of the dynamic. To get this information one must introduce correlation

functions that characterize the �uctuations of the dynamics between two distant points of

the system. We are going to introduce this type of function in the next section. We will see

that in this framework the van Hove function plays the role of a dynamical order parameter

12In liquids this decrease is much faster and the correlation function does not display a plateau.
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and that the study of the �uctuations of this order parameter quantify the heterogeneity

of the dynamics.

5.3.3 4-point correlation functions.

The old idea that the abrupt slowing down of the dynamics of supercooled liquids is linked

to the growth of a characteristic dynamic cooperativity length scale, has been con�rmed

in the last ten years in experiments, simulations and simple microscopic models [221].

The dynamic appears highly non trivial and while in some regions the movement of the

particles is disordered, in others it appears collaborative. The mobility varies between the

di�erent regions and one speaks of dynamical heterogeneity (remember that the structure is

roughly the same everywhere). In the recent years, the quest for a dynamical cooperativity

length associated with the slowing down of the dynamics of supercooled liquids [221, 250,

251] has led to the development of new statistical tools to characterize such dynamical

heterogeneities. Similarly to these dynamical heterogeneities in aging glassy materials it

emerged in a recent study [5] that the motion of the particules in our system under shear

is highly non-trivial. It shows a background of heterogeneous motion even in the elastic

regime at very low temperature; for larger applied strains, in the plastic regime, it shows

zones of very high mobility located in the vicinity of elementary shear bands and of localized

quadrupolar events, and similarly zones of low mobility far from these irreversible events

(the local displacement �eld can vary by many orders of magnitudes). This type of behavior

in the mechanical response of glasses, even at zero temperature, can be seen as some kind of

dynamical heterogeneity (while the dynamics here is overdamped) and it is of great interest

to quantify a cooperativity degree or a cooperative length scale. To do so, Toninelli et al.

[221] have proposed to look at the so-called χ4 four point correlation function. An other

possible observable is the cooperativity number introduced by Doliwa and Heuer [250],

that estimates the spatial �uctuations of the two-point correlation function introduced

previously. We present here these two (closely related) observables that have appeared in

the last ten years in the literature and that have been shown to be good candidates to

achieve this task.

Cooperativity number. First let us present the cooperativity number Ncoop introduced

in [250] and de�ned by:

Ncoop
X ≡ Var[ΣXi]

ΣVar[Xi]
=
〈{
∑

i Xi − 〈
∑

i Xi〉}2〉∑
i{〈X2

i 〉 − 〈Xi〉2}
, (5.28)

where Xi(t) = (σi(t + t′) − σi(t+ t′))(σi(t) − σi(t)) is a dynamical quantity associated

to each particle. With this de�nition one obtains for a simple uncorrelated movement

(〈XiXj〉 = 0) Ncoop = 1, while on the contrary for a totally correlated movement of the

particles (Xi = Xj) one gets Ncoop = N. Intermediately for L independent groups each
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Fig. 5.13 : Left : Cooperativity number of the local shear stress at the borders, in comparison

with cooperativity number in the center of the sample. Right : Cooperativity number obtained

over di�erent strain intervals. Increasing thickness of the curves re�ects increasing averaging strain

interval.

composed of M identical variables Xi and of zero mean (N = L) the cooperativity number

reads

Ncoop = 1 +

∑
i 6=j〈XiXj〉∑
〈X2

i 〉
= 1 +

1∑
〈X2

i 〉

N∑
i=1

M−1∑
j=1

〈X2
i 〉 = M. (5.29)

The use of the term `4-point' correlation function mentionned in the title of this section

does not seem here adapted to this cooperativity number. In fact we will see in the next

paragraph that Ncoop(t) is closely related to the quantity χ4(t) called 4-point correlation

function that explicitely uses four points in its de�nition [252]. It is important to realize

that Ncoop is a time dependent function (Ncoop(t)), obtained in formula 5.29 as an average

over the time origins t′. In �gure 5.13 we have represented Ncoop(t), for the glass containing
10000 particles under rigid walls boundary conditions, and obtained through averaging

over 32000 time origins (this corresponds to the total plastic �ow regime) and for particles

located at a distance d su�ciently far from the boundaries (d > 20). Indeed, as can

be seen in �gure 5.13, when the particles close to the walls are considered the resulting

cooperativity number is strongly a�ected, and the two bands close to the walls present

a behavior markedly di�erent from the central band. This illustrates the fact that the

system with walls is not completely homogeneous and that the movement of the particles

within a few interatomic distances from the walls are strongly in�uenced by the walls. This

explains the large cooperativity number near the walls (Ncoop ∼ 200) as all the particles

move roughly as a unit in these regions. Far from the boundaries the cooperativity number

is smaller, of the order of 35 to 45, corresponding to groups of 6× 6 or 7× 7 particles that

move in a collaborative manner. The computation of Ncoop is very CPU expensive as one

con�guration of the glass only provides one value of the random variable
∑

i Xi of which

we compute the variance. In �gure 5.13 we show Ncoop for di�erent strain intervals and
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it appears that the stationary regime is not reached even after 160% deformation (32000
steps of δε = 5 · 10−5). Note �nally that the use of the cooperative number does not take

into account any convective aspect of the movement, the positions of the particles do not

appear explicitly in expression 5.40, this contrasts with the observable χ4 that we introduce

now.

The observable χ4(t). The dynamical susceptibility or four-point correlation function

χp4(t) is de�ned as:

χp4(t) =
1
N

∫
d→r1d

→r2d
→r3d
→r4G4(→r1 ,

→r2 ,
→r3 ,
→r4 , t) , (5.30)

where

G4(→r1 ,
→r2 ,
→r3 ,
→r4 , t) = 〈ρ(→r1 , 0)ρ(→r2 , t)δ(→r1 −→r2)ρ(→r3 , 0)ρ(→r4 , t)δ(→r3 −→r4)〉

− 〈ρ(→r1 , 0)ρ(→r2 , t)δ(→r1 −→r2)〉〈ρ(→r3 , 0)ρ(→r4 , t)δ(→r3 −→r4)〉,(5.31)

and where ρ(→r , t) represents (the �uctuations of) the density of a quantity (in our case

the stress density ρ(→r , t) =
∑

i σi(t)δ(
→r −

−−→
ri(t)) or simply the particle density ρ(→r , t) =∑

i δ(
→r −

−−→
ri(t))).

From a theoretical point of view [252] this quantity can be understood as the �uctua-

tions of a time dependant order parameter. Indeed one has,

χp4(t) =
1
N

[〈Q2
p(t)〉 − 〈Qp(t)〉2] , (5.32)

where

Qp(t) =
∫
d→r1d

→r2ρ(→r1 , 0)ρ(→r2 , t)δ(→r1 −→r2) (5.33)

=
N∑
i=1

N∑
j=1

δ(
−−→
ri(0)−

−−→
rj(t)) if ρ(→r , t) is the particle density, (5.34)

=
N∑
i=1

N∑
j=1

σi(0)σj(t)δ(
−−→
ri(0)−

−−→
rj(t)) if ρ(→r , t) is the stress density. (5.35)

Referring to section 5.3.2 we see that this parameter is directly related to the van Hove

function 5.25 with 〈Qp(t)〉 = NG(
→
0 , t). From this we deduce (in the case where ρ(→r , t) is

the particle density) that this order parameter measures the number of particles `that are

overlapping' for two con�gurations separated by a time interval t. The dynamical suscep-

tibility allows therefore to quantify the �uctuations of the order parameter Qp(t). In other

words we see that G4(→r1 ,
→r2 ,
→r3 ,
→r4 , t) plays the same role as a standard two point correla-

tion function for an order parameter such as the magnetization in the case of a ferro-para

phase transition, but that here the order parameter is itself a two-time quantity Q(t′, t′+ t)
(its value is the autocorrelation function of the density 〈ρ(→r1 , 0)ρ(→r1 , t)〉). Intuitively, if
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at point
→
0 an event occurs (typically a quadrupolar event) that leads to the correlation

of the stress or density over a time scale t, the 4-point correlation function measures the

probability that a similar event has occurred at point →r during the same time interval.

Note that this order parameter is numerically ill de�ned (sum of dirac functions) and that

we have modi�ed it in our algorithms by Q(t) that is obtained from Qp(t) where δ(→r1−→r2)
(in equation 5.33) is replaced by Wa(→r1 −→r2) with the following possible choices for the

coarse-graining function Wa:

Wa(→r ) = exp(i
→
k .→r ) (5.36)

= exp(
−‖→r ‖

2a2
) . (5.37)

As was done for the van Hove function (see equation 5.26) we distinguish in Q(t) two
parts Qs(t) et Qd(t) that write (here for stresses):

Qs(t) =
N∑
i

σi(0)σi(t)Wa(
−−→
ri(0)−

−−→
rj(t)) (5.38)

Qd(t) =
N∑
i

N∑
j 6=i

σi(0)σj(t)Wa(
−−→
ri(0)−

−−→
rj(t)) . (5.39)

This leads automatically to three contributions in the 4-points correlation function

χ4(t) = χss(t) + χsd(t) + χdd(t). As was pointed out by Lacevic in supercooled liquids,

the contribution χss(t) 13 dominates when one does the calculation [252]. In most results

presented in this thesis we calculate this self-self part of the four point correlation functions.

Here we can make contact with the cooperativity number Ncoop(t) de�ned in the pre-

vious paragraph as,

Ncoop
X ≡ Var[ΣXi]

ΣVar[Xi]
=
〈{
∑

i Xi − 〈
∑

i Xi〉}2〉∑
i{〈X2

i 〉 − 〈Xi〉2}
, (5.40)

where Xi(t) = (σi(t + t′) − σmoyen(t + t′))(σi(t) − σmoyen(t)) is a dynamical quantity

associated to each particle. We see therefore that this observable Ncoop is very closely

related to χss that measures the �uctuations of the macroscopic dynamical quantity Qs =∑
wi where as seen above wi = σi(0)σi(t)Wa(

−−→
ri(0)−

−−→
ri(t)).

Let us conclude by saying that this section was meant as a theoretical introduction on

the 4-point correlation functions and that most results based on this parameter will be

shown in the next chapter.

13its expression is χss(t) =
P
i

P
j{〈σi(0)σi(t)σj(0)σj(t)Wa(

−−→
ri(0)−

−−→
ri(t))Wa(

−−−→
rj(0)−

−−→
rj(t))〉

− 〈
P
i σi(0)σi(t)Wa(

−−→
ri(0)−

−−→
ri(t))〉〈

P
j σj(0)σj(t)Wa(

−−−→
rj(0)−

−−→
rj(t))〉
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5.4 Local statistical analysis

We are now going to change terminology and speak of stochastic processes [253, 254], of

probability distributions, of increments (independent or not), of random variables, but in

reality we are going to speak of exactly the same thing. Indeed the correlation functions

introduced in the precedent section are directly linked to the PDFs that we are going to

discuss now. For example, the self part of the van Hove function Gs(→r , t) introduced in

equation 5.27 is the probability that a particle of the system (in other words a realization

of the stochastic process considered : for example here the particle displacement in time.)

moves during a time t of →r . In the isotropic case one has exactly Gs(→r , t) = Gs(r, t) =
P(r, t) where P(r, t) is the probability that a particle moves of r during t.

This kind of approach, based on the detailed analysis of the PDFs, will allow us to

characterize the local evolution of particles (or of the stress) with time. It is particularly

interesting to see how the dynamical heterogeneity observed and quanti�ed in the pre-

vious sections is transposed at the local particle level. The use of numerical simulation,

quasistatic simulation or molecular dynamics (see chapter 6), enables this by tracking the

position and �elds (stress, energy...) at an atomic level and for successive time intervals.

In this section we will compute the PDFs of the position and atomic stress increments and

we will see how the analysis of these PDFs informs on the microscopical processes that

occur in the system. Also as we have seen with the theoretical models presented in chapter

1, the resolution of the Fokker-Planck type equations introduced in these models enables

to obtain the PDFs P(σ, t) (or P(σ) in the stationary case) of each model. The analysis

of the PDFs numerically allows for a direct comparison with the theoretical predictions of

these models, such as the yield stress models or the Soft Glassy Rheology model.
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Fig. 5.14 : Left : Trajectory (non-a�ne part) of a single particle for a cumulative shear strain

of 15%. The cell dimension is in this case L = 104 and the mean radius of the particles is a = 1.
Right : Evolution of the shear stress on a given particle in the center of the sample, as a function

of the applied shear strain. For each value the average over the sample has been subtracted.
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5.4.1 Trajectory of an individual particle

In �gure 5.14 14 we show the trajectory of a particle during a total shear deformation

of ε = 25%. Here only the non-a�ne part of the displacement is reproduced (the a�ne

component is subtracted). Our aim here is to characterize this movement [5]. It is a gen-

eral result that a self similar random process with stationary increments (SSSI self similar

stationary increments) is entirely characterized by the distribution of the size of its elemen-

tary increments and by the correlations that exist between each elementary increments. In

addition if the variance of the sizes of the increments is not �nite, the process can be of the

Brownian motion or fractional Brownian motion type. For example in the most famous

example of the Brownian motion one can described the process either in a probabilistic

way using a Fokker-Plack di�erential equation (the di�usion equation):

∂P(x0|x, t)
∂t

= D
∂2P(x0|x, t)

∂x2
, (5.41)

the corresponding Markov process is de�ned in this case by,

P(x1, t1|x2, t2) =
1√

4πD(t2 − t1)
exp(− (x2 − x1)2

4D(t2 − t1)
) , (5.42)

either by an evolution equation. For the Brownian motion the evolution equation is the

Langevin equation;
dx(t)
dt

= f(t) , (5.43)

where f(t) is a Gaussian process (hence completely de�ned by its covariance) of covariance

〈f(t1)f(t2)〉 = Γδ(t1 − t2), and average 〈f〉(t) = 0.

One can show that the two processes so de�ned are identical (as two Gaussian processes

with the same covariance ought to be). One therefore sees with this simple example the

power of the double description Langevin equation/Fokker-Plack equation. For the random

walk motion of a particle in a disordered material, as is the case here, we will see that the

di�usive properties are very di�erent from the Brownian motion.

In �gure 5.15 we show the distributions P(∆y,∆N) and ∆yP(∆y,∆N) where ∆N is the

number of deformation steps (each step correspond to an elementary strain of δε ∼ 0.01%).

P(∆y,∆N) can be seen as a quasi-static equivalent of the van Hove distribution correlation

function, which is a standard tool to characterize di�usion in glasses and supercooled

liquids. As can be seen these distributions di�er from the simple Gaussian propagators of

simple di�usion. Yet for su�ciently large ∆N → ∞ a Gaussian distribution is recovered,

or more precisely we show that the non-Gaussian parameter 〈∆y4〉/3〈∆y2〉2 − 1 goes to

zero when ∆N is increased. This is in agreement with the central limit theorem (indeed

∆y(∆N = 16384) can be seen as a sum of 16384 random variables ∆y(∆N = 1) of �nite

variance and assumed independent). We observe also, not shown in �gure 5.15, that

the distribution is symmetric, of zero average and of �nite variance. The study of the

14This section is based on the section 5 of the article [5]
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Fig. 5.15 : Left : Distribution P(∆y,∆N) of distances ∆y after ∆N steps of incremental strain

imposed a t the top rigid wall. Each step ∆N = 1 corresponds to a elementary strain of δε = 0.005%.

The dashed line correspond to the power law P(∆y) ∝ ∆y−1.4. The dotted line correspond to a

Gaussian �t. Right : Same distributions but multiplied by the distance ∆y itself. These function
correspond to the van Hove functions. The position of the peak appearing at large ∆N evolves in

a di�use manner.

correlations between increments will be done in the next section. In �gure 5.15, where

P(∆y, 1) is plotted in a log-log scale, we see that the PDF, for a given ∆N, starts with a

plateau, followed by a power law decrease ended by an exponential cuto� for large ∆y. In
fact, the beginning and the end of this power law behavior are not self-similar (i.e. they

cannot be rescaled in a form f(∆y/∆Nβ) and for small ∆N, the long-distance contribution

evolves less rapidly with ∆N than the short-distance part. This is also why the amplitude

of the initial plateau, P(0,∆N), shows two di�erent behaviors as a function of ∆N, (see

�gure 5.15: a rapid decrease at small ∆N, followed by a slower decrease for larger ∆N after

the power law decay has disappeared. This behavior is also shown in �gure 5.15 (right)

where the function ∆yP(∆y,∆N) is plotted as a function of ∆y. In this representation,

the values of ∆y that contribute the most to the average displacement appear as peaks.

It is clear that two main peaks are present. The �rst one corresponds to very small

displacements, and its position evolves as ∆N1. The second one, which corresponds to the

actual di�usive process, appears at distances of order σ = 1, and its position increases

as ∆N0.5 . As the deformation is increased, the intensity shifts progressively from the

�rst peak to the second one. This result supports the idea of two di�erent relaxation

mechanisms in amorphous glasses, even at zero temperature [255, 256, 257, 258]. As was

recently pointed out by Lemaître and Caroli in [227] the physical signi�cance of the two

peaks is quite clear. Indeed following [227] if we plot the distribution Pplastic(∆y) only of

the plastic increments ∆y (we consider ∆y to be a plastic increment if there has been a

drop of the macroscopic stress during the corresponding strain interval ∆N), we see that it

accounts for most of the second peak of ∆yP(∆y,∆N), conversely the elastic distribution

Pelastic(∆y) accounts for most of the �rst peak. Note that this distinction between plastic

and elastic events permits also to account for the amplitude of the second peak, that is
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doubling in size when ∆N is doubling as expected for a random occurrence of plastic events

in the material (see discussion in [227]). Also as explained by Lemaître this description

allows to elucidate the collapse of Pelastic on a single master curve when plotted against

∆y/∆. Therefore as reported in [227] the shape of the distribution P(∆y,∆N) can be

decomposed in three parts corresponding to di�erent physical behaviors:

• a nearly Gaussian center resulting from small-scale non-a�ne displacements accu-

mulated along purely elastic segments, during which the particles are essentially

convected,

• quasi-exponential tails for intermediate strain scales when the trajectory of the par-

ticles becomes dominated by the plastic jumps associated to quadrupolar events or

shear bands in the system,

• a Gaussian shape associated to a di�usive regime for very large strains.
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Fig. 5.16 : Left : Total distribution ∆y · P(∆y,∆N) (thick lines) and plastic contribution

∆y · Pplastic(∆y,∆N) (thin lines). Plastic intervals are considered when at least one macro-

scopic relaxation of the total stress has occured during ∆N. Right : Elastic contribution

Pelastic(∆y,∆N) = P(∆y,∆N)−Pplastic(∆y,∆N) of the distribution of transverse displacements vs

∆y/∆N, for ∆N = 1, 2, 4, 8, 16, 32 and 64. The function is normalized vertically at the maximum.

This non-Gaussian behavior at small imposed strain has already been observed in other

amorphous systems like foams [257], or granular materials [258, 259]. In these systems how-

ever, the corresponding exponents, as measured in [259] for example, can be di�erent. The

exponent characterizing the hyper-di�usive motion of the particles dragged by the vortex

motion in the linear regime seems thus to be material dependent, while the non-Gaussian

character of the motion could be a characteristic of the small-strain deformation at zero

temperature, in disordered systems. The study presented of the van Hove functions is

also in line with previous observation of non Fickian trajectories in various glassy mate-

rials (see for a review [260]). The deviation from the Gaussian behavior is related to the

heterogeneity of the dynamics in these glassy materials and re�ects the coexistence in the
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sample of mobile and frozen particles. This picture is coherent with our �ndings of chapter

4 where we ascribed the enhanced mobility to the elastically softer zones of the material,

while particles in more rigid zones were shown to have very low mobility. This type of dy-

namics was recently described through the use of continuous time random walk (CTRW)

[260] descriptions and reproduced the exponential decay of the tails of the distributions

P(∆y,∆N) = Gs(∆y,∆N) shown in �gure 5.12. Finally, we have seen here that, even at

zero temperature, the disorder inherent to amorphous systems is su�cient to create, under

su�ciently large external sollicitations with a marked dissipative behavior (i.e. in the plas-

tic �ow regime), a di�usive motion for the individual particles. Further investigation of this

di�usion process and other non-equilibrium transport processes - e.g. mobility under an

external force - could allow us to explore the idea of e�ective temperature in these systems

[258, 261].

5.4.2 Evolution of the local stress
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Fig. 5.17 : Left : Distribution P(∆σxy,∆n) of the variation of local shear stress ∆σxy for

di�erent strain intervals ∆n. The distribution has been obtained by averaging over the whole

sample, and for di�erent time origins. Right : Scaling of P(∆σxy,∆N) ∝ φ(∆σxy/∆N1/z) with

z = α and α = 0.7. The scaling is very good in the intermediate range of the distribution, and for

small ∆N < 64 where the exponential cut-o� does not play a role. Inset: the same with α = 1 = z.

This exponent corresponds also to the one discussed in the text.

To characterize the evolution of the local shear stress depicted in �gure 5.14 we will

examine now the full histogram of stress changes in the same manner as we did for the

transverse displacements ∆y. The 15 results are shown here for the shear stress component,

but we have checked that all the following results are also valid for other components

(pressure and deviatoric stress). In �gure 5.14 we show the typical evolution of the shear

stress component on a given particle up to a total strain of 25%. Here also the variations

of stresses are larger than expected if they would be Brownian. In order to analyze this

evolution, we have plotted in �gure 5.17 the distribution P(∆σxy,∆N) of the shear stress
15This part is extracted from the section 3 of our paper [6].
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increments

∆σxy(∆N,N) ≡ ( σxy(N + ∆N)− σxy(N + ∆N))

− (σxy(N)− σxy(N)) (5.44)

for various numbers ∆N of incremental shear steps (∆N = 1, 2, 4, 8, 16...), averaged over

the origins N and over the entire system. The distributions P(∆σxy,∆N) are all symmetric,

with zero mean. For ∆n → ∞ one recovers a Gaussian distribution, which is consistent

with the central limit theorem. However, at small imposed strains, these distributions

are not Gaussian as would be the case for a Brownian evolution. A �ner analysis of the

distribution of the elementary increments P(∆σxy,∆N = 1) in �gure 5.17 shows three

zones. At small incremental stress jumps ∆σxy, we can see a plateau of approximately

constant probability, whose width evolves inversely proportional to the volume V of the

sample, followed by an apparent power-law decay, in a zone of approximately three decades

for 100/V 6 ∆σxy 6 10 where P(∆σxy,∆N = 1) ∝ 1/∆σα+1
xy , and concluded by an

exponential cut-o� (characteristic shear stress ∆σxy ≈ 1.4). This upper cut-o� allows for

a �nite variance of the local stress evolution. In the absence of any temporal correlations,

the entire process can thus be described by the central limit theorem, with a scale invariant

distribution on a �nite interval. In this intermediate stress range, the probability density

function P(∆σxy,∆n) is well reproduced by the scale invariant relation

P(∆σxy,∆N) = ∆N−Hf(
|∆σxy|
∆NH

)

or

P(∆σxy,∆ε) = ∆ε−Hf(
|∆σxy|
∆εH

) (5.45)

with

f(u) ∝

{
u0 , for u� 1

u−α−1 , for 1� u� cste.∆n−H

}
(5.46)

In the intermediate stress range, the process can thus be considered as self-similar.

Figure 5.17 illustrates this scaling with a good superposition of the distributions for α =
0.7 and H ' 1

α (only for not too large ∆N since for very large ∆N the upper cut-o�

discussed before contributes signi�cantly to the resulting distribution). The exponent α

describes the algebraic (slow) asymptotic decay of the distribution of the incremental jumps

P(∆σ = s,∆N = 1) ∝ s−α−1 (as shown in �gure 5.17). The exponent H is related to the

evolution of the stress jumps as a function of the applied shear strain ∆N. It characterizes

the ∆N dependence of the crossover between a regime of approximately uniform probability

(for |∆σ| � ∆NH) and the power law regime (for |∆σ| � ∆NH). The coe�cient H also

accounts for possible temporal statistical correlation between jumps. As stated in Taqqu

et al. [253] the only non degenerate α − stable self similar processes with stationary

increments that verify H = 1
α and where 0 < α < 1 are the α − stable Lévy motions. As

described above, the evolution of the shear stress is thus of Lévy �ight type, but only in

the intermediate stress (and applied strain) range. The Lévy �ight evolution implies by
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de�nition, �rst that there is no temporal correlation between local stress jumps during the

shear of the sample, second that the variance of elementary changes is in�nite (as long as

the exponential cut-o� is neglected)16. These results can be compared with the study of

the pdf P(∆y,∆N = 1) of the positional jumps in the transverse direction, that showed

in contrary that these jumps were correlated in time for small imposed deformation [5].

According to the above, a plausible equation that would describe the evolution within a

Lévy �ight process for the stress component σ, averaged over the whole system, is

d(σ(i, ε)− σ(ε))
dε

= η(i, ε) (5.47)

where η(i, ε) is a stochastic process whose spatial average η(ε) is the process that is entirely
characterized above (i.e. by the distribution of the elementary increment and by the absence

of correlation between successive increments), and ε is the external imposed shear strain.

For small imposed shear strain, it can be mentioned that such an equation with a noise

corresponding to a Lévy motion cannot be reinterpreted in terms of the usual Fokker-

Planck equation as the moments of the shear stress σ are non vanishing for all orders.

However, for large strain intervals ∆ε, the stochastic process becomes Gaussian, due to

the existence of the upper cut-o� in the distribution of η. As we have seen in section 5.2

many of the generic features of this distribution of shear stress were accounted for by the

simple model considering uncorrelated quadrupoles.

16In the case of Brownian motion the properties stated above on the pdf and on the process are veri�ed

(self similarity, α− stable process, stationary increments) but with a �nite variance (α > 2) allowing to a

unique value H = 1/2.
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The in�uence of temperature on the growth of a cooperative length scale has been inves-

tigated thoroughly for the past ten years in supercooled liquids near their glass transition

temperature [221]. Similarly the in�uence of packing fraction on cooperativity has been

studied extensively for systems near their jamming transition point [262]. One can safely

say that the same amount of analysis has not been devoted to the analysis of a growing

cooperativity length with lowering shear rate in driven glassy materials. In this chapter we

present some preliminary results where we introduce through the use of molecular dynamics

simulations the in�uence of �nite shear rates.

6.1 Rheology of the glass

Rheological and mechanical characteristics. We do not reproduce here the details

of the simulation procedures that we use in this chapter as they were presented already in

details in chapter 2. Here we present the results obtained on the same two dimensional

polydisperse glasses presented in chapter 5 at �nite shear rates by the use of molecular

dynamics and at temperatures that are well below the glass transition temperature. The

thermostat transverse temperature as discussed in chapter 2 is Ty = 5·10−8. An equivalent

amount of runs were produced under two boundary condition protocols, namely rigid walls

boundary conditions (simpli�ed notation RWBCs) at y = +/−H/2, were H is the height of

137
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Fig. 6.1 : Left : stress strain mechanical response of a glass sample containing 625 particles

sheared under RWBCs at shear rates ranging from γ̇ = 10−2 to γ̇ = 10−5 (thin colored lines

from top to bottom, γ̇ = 10−2 (black), γ̇ = 5 · 10−3 (red), γ̇ = 2.5 · 10−3 (green), γ̇ = 10−3

(dark green), γ̇ = 5 · 10−4 (brown), γ̇ = 2.5 · 10−4 (gray), γ̇ = 10−4 (violet), γ̇ = 5 · 10−5

(cyan), γ̇ = 2.5 · 10−5 (magenta) and γ̇ = 10−5 (orange)). The thick black line corresponds to

the quasistatic shear protocol. Right : Zoom in a portion of the total mechanical response,

illustrating the typical relaxation time associated to a plastic rearrangement in the glass signaled

in the quasistatic protocol by an abrupt stress drop.

the sample, and Lees-Edwards boundary conditions (noted LEBCs). The same quenched

samples as in chapter 2 are analyzed here, namely 24 samples of (625 particles, Lx 25.9938,

Ly 25.9938), 8 (2500,51.9875,51.9875) and 8 (10000,103.975,103.975) all corresponding to

a density ρ of ρ = 0.925. We have sheared at �nite shear rates in this chapter also 1 larger

sample (40000,206.950,206.950) that was not sheared with the quasi-static protocol. For

each simulation, we collect data over four strain units (ε = 4) and store all the positions

of the particles at a regular strain interval of δε = 10−31. For the details of the di�erent

thermostats and various parameters involved in these runs we refer again the reader to

chapter 2. In �gure 6.1 we have reported the mechanical response of the smallest sample

for RWBCs. We observe the characteristic �ow behavior associated with glassy materials

with a convergence of the response to the quasistatic limit as the shear rate is progressively

reduced and a global non linear �ow curve of the Herschel-Bulkley type : τ = τY + c1γ̇
β ,

where τY is the yield stress, and where one can de�ne the viscous stress τV = τ − τY. In

�gure 6.2 we draw these �ow curves for both boundary conditions and for all system sizes.

The stress-strainrate curves of �gure 6.2 are obtained by averaging the macroscopic stress

values of the sheared glass obtained in �gures 6.1 for strains larger than ε = 25%, i.e. deep

in the plastic �owing regime once the stationary �owing regime is established. Indeed we

have checked that a linear velocity pro�le is established in the di�erent samples for typical

strains of the order of ε ∼ 2.5%.

1Signi�cant simulation runs and analysis were also produced in three dimensions but are not reported

here for time considerations and coherence of the presentation and will make the object of future publica-

tion.
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Fig. 6.2 : Flow curves associated with the di�erent system sizes. Small open symbols correspond

to �nite shear rate values ranging from 10−5 to 10−2. The larger solid points on the vertical axis

correspond to the quasistatic protocol γ̇ = 0. Left : Shear under LEBCs with �t parameter to

the Herschel-Bulkley rheological law, τY ' 0.32, c1 = 7.2 and β = 0.38. Right : Shear under

RWBCs, with the dashed line representing a Herschel-Bulkley �t τ = τY + c1γ̇
β , with τY ' 0.36,

c1 = 7.4 and β = 0.4.

Convergence to the quasistatic limit. Importantly the results presented above bridge

the gap between the two types of approaches used in the literature, quasistatic energy

minimization protocols and �nite shear rates molecular dynamics methods and resolve the

controversy relative to the validity of the quasistatic protocols. Indeed as is evident from

the mechanical response shown in �gures 6.1 the quasistatic stress-strain curve appears as

the limiting curve of the �nite shear rates procedures. The superposition of the quasistatic

response with the γ̇ = 10−5 shear rate response is in fact almost perfect in the early parts of

the curves before small di�erences are ampli�ed irremediably. One sees for example on the

right hand side of �gure 6.1 how even very small relaxations at around ε ∼ 3.2−3.4% in the

quasistatic response (black thick line) are also visible in the lowest shear rate curves (yellow

and magenta). Note that these small features of the mechanical response of the glass would

not be visible if the temperature was higher and therefore inducing a noisier stress signal.

The good convergence to the quasistatic protocol is also apparent in �gures 6.2 where one

can indeed observe that the values of the lowest �nite shear rates are in good agreement

with the γ̇ = 0 shear rate method (under both boundary conditions σxy(γ̇ < 10−5) ∼ 0.4),
again con�rming the physical relevance of the quasistatic method.

Decomposing the plastic events in elementary units. In an important series of

papers [4, 205] it was recently shown by Lemaître and Maloney that the relaxation in

mechanically driven glasses occurs through the formation of cascades of quadrupolar ele-

mentary units (see also chapter 5). In the quasistatic protocol to decompose the cascade

in its subunits one needs to study in detail the evolution of the positions of the particles

during the minimization procedure, with the inherent limitation of the minimization al-

gorithms that one can not associate a time scale to the successive elementary rearranging
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Fig. 6.3 : Portion of the mechanical stress-strain response of a Lennard-Jones glass containing

10000 particles and sheared under LEBCs for two shear-rates. Left : γ̇ = 10−5. Right : γ̇ =
10−3.

units. This limitation is automatically overcome in the molecular dynamics simulation

where time appears explicitly in the algorithm and where one can follow the evolution of

the cascade in time. As is apparent at �nite shear rates in �gures 6.1 the plastic relaxation

is not instantaneous during a stress drop and this typical lifetime of the plastic events is

transposed in the stress-strain mechanical response in these downward portions with the

slopes that increase with increasing strain rate. To understand intuitively the mechanisms

involved in the mechanical response of the sheared glasses and the di�erent time scales

that are relevant it is highly instructive to visualize movies of the instantaneous non-a�ne

displacement �eld during the deformation. We attached, in the supplementary informa-

tion part of this thesis, such material, where we have generated two movies at �nite shear

rates γ̇ = 10−3 and γ̇ = 10−5 for a sample containing 10000 particles and at regular time

intervals δt = 1LJU in the plastic �ow regime and during a plastic relaxation event. The

two panels of �gures 6.4 and 6.5 show snapshots of these movies taken at regularly spaced

strain intervals corresponding to the red symbols on �gure 6.3. As can be seen in this

last �gure, for the slowest strain rate γ̇ = 10−5 the strain interval between snapshots is

δε = 2.5×10−3 (red triangles) and for the fastest strain rate γ̇ = 10−3 it is δε = 1.25×10−2

(red circles). When looking at the two panels one must bare in mind that while in the

slowly sheared case the total strain applied between the �rst �gure and the last is less than

1% in the fast case it is more than 5%. Also the non-a�ne displacement �eld represented

on each snapshots correspond to the displacement during a time interval of δt = 1LJU
and therefore the associated strain is δγ = γ̇ × δt is one hundred times larger for the fast

shear than for the slow shear. If one assumes that the density of weak triggering zones of

plasticity is homogeneously distributed through the sample with a shear rate independent

density per unit strain Ω then one expects also to see 100 times more such nuclei of plastic-

ity in the fast case. This explains the visual impression that there exists a higher density

of local plastic displacements (black arrows) on panel 6.5 than on panel 6.4 where only

a few local plastic rearrangements are observed. Another di�erence between the slowly
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Fig. 6.4 : Snapshots of the instantaneous displacement �eld during 1 LJU and corresponding to

the triangular symbols of �gure 6.3. The shear-rate is here γ̇ = 10−5.
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Fig. 6.5 : Snapshots of the instantaneous displacement �eld during 1 LJU and corresponding to

the circular symbols of �gure 6.3. The shear-rate is here γ̇ = 10−3.
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and fast driven regimes is that while in the fast case the nuclei do not seem to merge or

percolate or evolve in a correlated manner in the slowly driven case the local quadrupoles2

show a cooperative and correlated avalanche dynamics. This is particularly visible on the

fourth panel of 6.4 where one can see about 5 such elementary plastic units forming a

L-shape with four events horizontally aligned. Interestingly the typical distance between

quadrupoles on this �gure is about ξ ∼ 20LJU which is reminiscent of the length scale

that emerged for example in the autocorrelation function of the non-a�ne �eld in recent

studies of similar Lennard-Jones glasses [118]. These �ndings are in line with observations

of similar weak zones that grow and trigger the �ip of neighbouring zones as depicted in

�g. 1 of [224] con�rming the validity of the picture of the dynamics of slowly driven glassy

materials as dominated by the accumulation and cascading of plastic events. Beyond this

general mechanism a careful study of the spatio-temporal signal associated to the slow

drive (γ̇ = 10−5) shows di�erent time scales τ associated with an entire zoology of typical

sequences of plastic events. First one observes short lived local quadrupoles, typically vis-

ible only during one snapshot τe < 1LJU, and that do not trigger a cascade. Some local

rearrangements seem to be locked and to survive for longer time intervals of the order of

τe ∼ 10− 100LJU. In general this type of rearrangement triggers in its vicinity (vertically

or horizontally) subsequent similar events. Sometimes as is the case on the forth snapshot

of �gure 6.4 this cascade leads to the formation of a system spanning shear band. Finally

one can associate also a timescale to the global relaxation process of �gure 6.3 which is

here for the slow shear rate τc = γc/γ̇ ∼ 1000 LJU (γc corresponds here to the duration

of the relaxation event, i.e. the total strain associated to each downward slopes in the

stress-strain response) and for the fastest shear rate τc ∼ 100 LJU. Note that these values

of the typical duration of an entire relaxation process are in line with the values that one

can compute from �gure 6.1. In this �gure one also sees that for low enough shear rates

γ̇ < 10−4 there is an intrinsic lifetime associated to a plastic rearrangement process which

is proven by the fact that the slope of the stress curves in proportional to the shear rate.

For shear rates larger than γ̇ ∼ 10−4 the relaxation strain becomes larger than the typical

strain between relaxation events and therefore one can see this value of the shear rate as

a mark of a transition to a di�erent type of rheology also characterized by a important

increase of the average yield stress as can be seen from �gure 6.2. It is very striking that

the avalanche like behavior seems to be somehow screened when the shear-rate is increased.

This result has been reported also elsewhere in atomic scale simulation [224] but also in

mesoscopic yield stress models [71] and [263]. Only rarely studied in driven glassy mate-

rial the growth of a cooperativity length scale near the glass transition is well known in

the supercooled liquids literature (see for example [264]) or in simple lattice gas models

[265] and have been interpreted in the framework of facilitated dynamics (for a review see

[266]). Of course the shear that one applies on glassy systems breaks the symmetry of

2Here we use as in the previous chapter the term quadrupole in reference to the stress redistribution

associated to these local plastic events but here the term dipole is more adapted when one looks at the

displacement �eld of these elementary rearrangements.
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supercooled liquids (this is apparent for example in the existence of preferred orientations

for the local quadrupoles and for the system spanning shear bands along the neutral axis

of the external applied strain. In supercooled liquids the directions of the rearrangements

are isotropic) but nevertheless it appears tempting to �nd, in line with supercooled liquids,

a mapping between the dynamics of the sheared glass and a simpler facilitated model. The

detailed description of the elementary rearranging processes that we propose here should

help to devise reasonable ingredients for these models. A �rst approach in this direction

was proposed by Picard et al [71] (see chapter 1 section 1.4.2 for a brief description of the

ingredients of the model) and we will brie�y compare our results to this model at the end

of this chapter. To conclude with the description of the panels 6.4 and 6.5 let us mention

that these plastic rearrangements independently of the shear rate emit a transverse sound

wave propagating at a typical transverse sound speed characteristic of the Lennard-Jones

glass (cs ∼
√
µ/ρ ∼ 3 − 4 LJU) and appear in general as dark regions on the snapshots

of panel 6.4 and 6.5. This allows to introduce a new timescale τs = L/cs ∼ 10 LJU, i.e.

comparable to the life time τe of the elementary plastic rearrangements for a system of size

L = 50. To quantitatively characterize the spatio-temporal dynamics of the driven glasses

we �rst compute various two-time observables (mean-square displacement, van Hove func-

tion, intermediate scattering function...) which informs on the typical relaxation times

and their link with the external shear rate, we then proceed to a general description of

the dynamical heterogeneity of the driven systems and prove the existence of a diverging

dynamical cooperative length scale as the sheared rate γ̇ tends to zero. We also provide

pictorial evidence of these dynamical structures for di�erent shear rates. Finally we discuss

our results in light of recent advances and compare our observations to a phenomenological

mesoscopic yield stress model.

6.2 Motion of particles

Two time correlation functions. As was already pointed out in chapter 5 the study of

two time correlation function,3 besides its direct importance to quantify the characteristic

relaxation times, allows also to make comparisons with simple models of the rheology

(for example it allowed us to assert the validity of a simple description of the rheology in

terms of local quadrupolar rearrangements). In what follows, to examine the dynamics of

the local density and the associated relaxation times, we compute therefore, on an equal

foot, the self intermediate scattering function Fs(k, t) (already seen in section 5.3.2 of the

previous chapter),

Fs(k, t) =
1
N

∑
i

cos [k · (∆ri(t))] , (6.1)

3In chapter 5 time was replaced by strain.
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and the self correlation function (as in [262] and similarly to equation 5.38 in chapter 6)

Qs(a, t) de�ned by,

Qs(a, t) =
1
N

∑
i

exp(−∆ri(t)2

2a2
) , (6.2)

where ∆ri(t) = ri(t′+ t)−ri(t′) is the displacement vector. In what follows it is the spatial

and time average of these two function that we compute and in general in what follows

we replace the displacement vector ∆ri(t) by its non-a�ne contribution ∆rnai (t) (or even
simply by the transverse displacement) de�ned rigorously by,

∆rnai (t) = ri(t′ + t)− γ̇
∫ t′+t

t
dt′′yi(t′′)ex − ri(t) , (6.3)

for a shear in the x direction. In practice we �nd that within a good degree of accuracy

∆rnai (t) = ri(t′+ t)− γ̇yi(t′)ex− ri(t) and we use this expression. Figure 6.6 represent the

function Qs both in function of time and strain. After a slow decrease at small times/strains

the function Qs exhibits a power law decay as a function of strain ε, Qs(a, ε) ∝ ε−β with

β & 0.5 signaling shear induced structural relaxation. This power law decay is in contrast

with the more `classic' self intermediate scattering function that exhibits (not shown here) a

compressed exponential decay Fs(ky, ε) ∝ exp(−(ε/εc)β), with β & 1.0. Note also that the
Qs(a, ε) ∝ ε−β decay is compatible with a Gaussian distribution function of the transverse

displacements P(∆y, ε) and with a di�usive transverse mean square displacement 〈∆y2〉.
As shown in �gure 6.6 the convergence to the quasistatic curve is veri�ed when Qs is plotted

against strain for values of the shear rate γ̇ . 10−4.
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Fig. 6.6 : Left : 2-point correlation function Qs(a, ε) =
∑
i exp(− (yi(ε)−yi(0))2

2a2 ) against strain ε
for a system with LEBC. Thin lines (color on pdf version) : from top to bottom shear rate values

are 0.01,0.005,0.0025,0.001,0.0005,0.00025,0.0001,0.00005 and 0.000025. Dashed line : Qs(a, ε) vs

ε for quasistatic shear. Doted line corresponds to the value 1/e for which we calculate the 1/e-

relaxation strains and times. Right: Qs(a, t) against time t. In both �gures the parameter a is

chosen equal to 0.1.

In �gure 6.7 we have reported the relaxation times t1/e - the points of intersection of the

dotted line with the colored curves in �gure 6.6 verifying Qs(a, t1/e) = 1/e - for di�erent
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shear rates and di�erent system sizes. Of course the relaxation strains and relaxation times

are related through the simple relation ε1/e = t1/e ∗ γ̇ and we therefore only report the

relaxation times for simplicity. In [267, 14] similar analysis were reported in experiments

respectively on foams and colloids. Looking at the relaxation time dependence on shear

rate in these studies they found scalings of the form t1/e ∝ γ̇−ν with ν ' 0.66 in [267] and

ν ' 0.8 in [14]. Similarly in extensive numerical studies [105, 116] of sheared Lennard-

Jones glassy materials the authors have computed these relaxation times without explicitly

writing to our knowledge the functional form of the dependence of the relaxation time on

shear rate.
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Fig. 6.7 : Left : Relaxation time t1/e vs shear rate γ̇ for the system of �gure 6.6. Dotted line

t1/e ∝ γ̇−1, dashed line t1/e ∝ γ̇−0.63. Right: Rescaled self correlation function Qs(a, t) of �gure
6.6 when time is rescaled by the structural relaxation time t1/e. All curves superimpose rather well

on a master curve fs(a, t/t1/e).

Here as shown in �gure 6.7 we �nd two regimes : for high shear rates, γ̇ & 10−4, the

structural relaxation time of the sheared glass scales with the global shear rate as t1/e ∝ γ̇−ν

with ν ' 0.63, while for lower shear rates,γ̇ . 10−4, the relaxation functions Qs(a, ε) reach
a quasistatic limit strain limit ε1/e ∼ 0.04 and therefore the associated relaxation times

scale as t1/e ∝ γ̇−µ with µ ' 1. The crossover between the quasistatic and shear rate

dominated regimes is size dependent with the transition shear rate γ̇c being lowered as

the size of the system is increased (not shown here). Our data con�rm the theoretically

predicted `time-shear superposition principle' [268, 269] : when time is scaled by t1/e the

relaxation follows a master curve fs(a, t/t1/e) as shown in �gure 6.7. It is tempting to try

and relate as in [105, 267, 14] the scaling exponent ν of the structural relaxation time to the

scaling exponent β that appears in the Herschel-Bulkley type macroscopic rheological �ow

curve of the material where σ − σY ∝ γ̇β (see �gure 6.2). Taking, as is often assumed and

veri�ed numerically [116], the structural relaxation time t1/e as proportional to viscosity

provides an expression of an e�ective stress σeff = µt1/eγ̇, where µ is the macroscopic shear

modulus. Surprisingly reporting the scaling of the relaxation time t1/e in this expression

we see that for high enough shear rates γ̇ & 10−4 the e�ective stress scales with shear rate
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as σeff ∝ γ̇1−ν . This is in good agreement with the global mechanical response of the

material and one �nds a posteriori that the two coe�cients β and ν are compatible with

the hypothesis made above and one has indeed to a good approximation β = 1 − ν for

high shear rates. This relation breaks down for lower shear rates in a regime where shear

banding becomes the dominant relaxation mechanism, as can be seen for example in the

panels 6.4 and 6.5 corresponding respectively to the shear rates γ̇ = 10−5 and γ̇ = 10−3.

Mean square displacement (MSD). Usually to quantify the dynamics at a particle

level one also calculates the MSD. In our two dimensional simulations the di�usion along

the x and y directions are not equivalent. Indeed while the di�usion in the shear direction

(in our case the x axis) is enhanced by the shear, the di�usion in the transverse shear-

gradient direction (y axis) is una�ected. Here we therefore present the MSD 〈∆y(t)2〉 in
the transverse direction. Of course in the presence of rigid boundary conditions the di�usion

along the y axis is limited by the presence of walls and one must be cautious to compute

the average MSD su�ciently far away from the boundaries. Figure 6.8 shows the typical

transverse MSD for a system containing 625 particles under RWBCs and averaged over a

total cumulative strain of 200% for each of 24 glass samples. Moreover in order to avoid

boundary e�ects the average is computed over one third of the sample in the central region.

Larger samples as well as LEBCs yield similar results and we have not reproduced these

here for clarity. From �gures 6.8 we see that the MSD exhibits a transition from ballistic

motion at short times (〈∆y2〉 ∝ t2) to di�usive motion (〈∆y2〉 ∝ t1) for larger times.

For high shear rate values (γ̇ & 10−4 one can rescale the entire MSD curves on a master

curve g(t/tMSD), while for smaller shear rates the scaling doesn't hold for small times. The

times tMSD are de�ned here as the intersection of the MSD curves with a `Lindemann' like

criterion de�ned at 〈∆y2〉 = 0.14 as in [267]. The time tMSD is a nonlinear function of

shear rate and follows the same trend as t1/e de�ned earlier (see �gure 6.6), but with a

slightly di�erent exponent tMSD ∝ γ̇−ν2 , with ν2 ∼ 0.5 (see doted line in the inset of �gure

6.8).

Di�usion coe�cient. The scaling of the MSD curves at di�erent shear rates allows to

identify the dependence of the transverse di�usion coe�cient, de�ned by 〈∆y2〉 = 2Dyt,

with shear rate γ̇, Dy ∝ 1/tMSD ∝ γ̇ν2 . In order to allow comparison with di�usion

in quasistatically sheared glasses we follow Lemaître [270] and compute the quantity

Deff (∆γ) = 〈∆y2〉/2∆γ which is related to the usual transverse di�usion coe�cient

through Deff = Dyγ̇. In �gure 6.9 we plot the e�ective di�usion coe�cient Deff (∆γ)
for the various system sizes and for various �nite shear rates as well as under a quasistatic

protocol. For all system sizes and shear rates we see that Deff (∆γ) increases from a �nite

initial value (that increases with decreasing shear rate) to an asymptotic value for large

strain. The transient strain interval appears not strongly shear rate or size dependent and

is of the order of εtransient = 0.25. The dependence of the asymptotic values of Deff (we

will call this asymptote D from now on) on shear rate is shown in �gure 6.9 and displays
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Fig. 6.8 : Left : Transverse mean square displacement (MSD) 〈∆y2〉 versus time for di�erent

shear rates γ̇ (same color code as in previous �gures). The dashed line marks the arbitrarily chosen

distance criterion a verifying a2 = 0.14 corresponding to a `Lindemann' criterion for the transverse

MSD of the particles. The intersection of this line with the colored curves marks the times tMSD.

The two thick black lines correspond to the power laws t2 and t1, i.e. respectively to the ballistic

and di�usive regime.Right: same �gure where time is rescaled by the times tMSD. These plots are

obtained in con�gurations with RWBCs and the average are computed in a central region of the

samples therefore avoiding direct in�uence of the walls.

for high shear rates (γ̇ & 10−4), as expected from the relation Deff = Dyγ̇, the scaling

D ∝ γ̇ν2 (ν2 ∼ 0.5). For low shear rates (γ̇ . 10−4) on the other hand the e�ective di�u-

sion coe�cient saturates to a shear rate independent value that depends on system size as

shown in �gure 6.9.
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Fig. 6.9 : Left : E�ective di�usion coe�cients de�ned as Deff (∆γ) = 〈∆y2〉/2∆γ for di�erent

shear rates ranging from bottom to top from γ̇ = 10−5 to 10−5 (same color code as previous

�gures) and for the quasistatic shear protocol (black dashed line). Deff is computed here for

samples containing 2500 particles under RWBCs. The spatial averaging is performed su�ciently

far from the rigid walls to avoid boundary e�ects. Right: The asymptotic values Deff are plotted

for various shear rates, system sizes and boundary conditions. The dashed line marks the power

law Deff ∝ γ̇−0.5 as a guide to the eyes.
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Lemaître [224] �nds the following two limiting scaling behaviors of the e�ective di�usion

coe�cient Deff . First in the high shear rate limit one gets uncorrelated localized plastic

events and

Deff ∝ ln(L) (6.4)

whilst at low shear rates Lemaître predicts a linear scaling

Deff ∝ L. (6.5)

This linear scaling was also obtained numerically in [271]. In this article the linear

scaling of Deff is recovered by the authors with a simple argument if one assumes that

the mechanical response of the material is dominated by uncorrelated system spanning

slip lines. One then simply has Deff = 〈∆r2/∆γ2〉 ≈ (∆γ/(a/L)) a2/12, where a is the

slip amplitude, ∆γ is the applied strain increment and a2/12 is the average mean square

displacement associated to an individual slip line and accumulated during a strain of ∼ a/L.
Note that a is assumed to be size independent.

The di�erence between Maloney's and Lemaître's approach is in the fact that while the

latter assumes the elementary constituents of the response to be the avalanches observed

in deformed glassy materials the former believes that one must take into account the

entire system spanning slip lines that are formed by a cluster of avalanches as elementary

constituents of the rheology.

Due to the large �uctuations of the e�ective di�usion our results (�gure 6.9) do not

allow us to resolve clearly these questions. Therefore while we cannot rule out the three

main observations made by Lemaître we cannot either con�rm them. First pertaining to

the system size dependence of D at low shear rates we indeed observe that D grows with

system size but our number of box sizes and the uncertainty for each measure of D stops

us from descriminating between a Deff ∝ ln(L) or a Deff ∝ L scaling. Second, at higher

shear rates, with a simple argument based on the long range elastic propagator of the local

quadrupoles Lemaître predicts Deff ∝ ln(L). This seems in contrast with our �ndings

where Deff at high shear rates seems system size independent (see �gure 6.9 and compare

with �gure 5 in [224]). Finally due to the very long simulation time required to produce

runs for shear rates below4 γ̇ ' 10−5 we cannot extract clearly the system size dependence

of the critical shear rate γ̇c separating the system size dominated regime from the shear rate

dominated regime. In line with previous numerical studies (for example [224, 272, 105])

this change of behavior for the three system sizes presented here is located in the range

10−5 . γ̇ . 10−4. While these results convincingly illustrate the in�uence of shear rate

on the atomic motion in a sheared glass they also call for extended simulation runs. In

the next section we focus on what is thought to be associated with this change of behavior

4As discussed in chapter 2 a run at γ̇ = 10−5 for a system of size L = 100 takes of the order of a few

days for 400% strain.
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namely the existence of a growing dynamical heterogeneity length scale as the shear-rate

is reduced.

6.3 Dynamical heterogeneity

As illustrated in the introductory section of this chapter the dynamical heterogeneity is

quanti�ed in supercooled liquids near the glass transition and more recently in jammed

systems near the jamming point by the so-called four-point correlation function. Here

we propose to extend these approaches to the case of sheared glasses where instead of T,
the temperature, in the case of supercooled liquids or φ, the volume fraction, in granular

materials we consider here γ̇ as the new control parameter. The analytical framework

allowing to quantify the dynamical heterogeneity remains nevertheless identical and we

therefore use these tools in our present analysis, in particular our analysis parallels the

experimental study by Lechenault et al in [262] on the critical scalings and heterogeneous

dynamics near the jamming/rigidity transition of a granular material.

As already discussed in section 5.3.3 of chapter 5 the dynamical cooperativity is quan-

ti�ed as the �uctuations of a two-point correlation function. Here we choose as a two point

correlation function the transverse part self correlation function (as in equation 6.2) that

we express here rather than in function of time in terms of the strain interval ε as,

Qs(a, ε) =
1
N

∑
i

exp(−∆yi(ε)2

2a2
) , (6.6)

where a is a characteristic length scale over which the dynamics is probed. In �gure 6.10

we represent the dependence of the spatial (index i for each particle) and temporal/strain

(index ε) average Q(a, ε) = 〈Qs(a, ε)〉i,ε as a function of both the parameter a and the strain

interval ε, or rather γ = ε/2. The function is here plotted for a shear rate of γ̇ = 10−4 and

for a sample containing 2500 particles under RWBCs. Q(a, ε) takes values in the range

[0,1], with Q ∼ 1 typically when the transverse motion is small relatively to a, ∆y � a,

and Q ∼ 0 in the opposite situation when ∆y � a. Following [262], we superimpose in

�gure 6.10 on the colormap of Q the root of the transverse MSD, δ(γ, γ̇) =
√

∆y2(γ).
Interestingly, as for granular materials around the jamming volume fraction we see that

the MSD follows very well the decay of Q(a, ε) and that here also the function Q(a, ε) can
be rescaled for all shear rates as Q(a, ε) = Q′(δ(ε, γ̇)/a) showing that the MSD de�nes the

only microscopical relevant distance for a given strain and shear rate.

Turning now to the �uctuations of the self correlation function Qs(a, ε) 6.6 we de�ne

the four-point correlation function χ4(a, ε) as (see also chapter 5),

χ4(a, ε) = N
[
〈Qs(a, ε)2〉i,ε − 〈Qs(a, ε)〉2i,ε

]
. (6.7)
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Fig. 6.10 : Dynamical correlation functions computed over the particles of a sample containing

2500 particles and sheared at γ̇ = 10−4 under RWBCs for a total strain εtot = 200%. Left :

Correlation function Qs(a, γ) as a function of the probing length a and the strain γ in a log-log

colormap. Right: Four-point correlation function χ4(a, γ) in a log-log colormap.

Again we remind the reader that χ4(a, ε) gives an estimate of the number of particles

that move cooperatively when the sample is subjected to global strain ε. We produce an

example of this function for a shear rate of γ̇ = 10−4 in �gure 6.10 where we see that at

this shear rate the maximum cooperativity is of the order of 5 particles. Again in line

with [262] we obtain the same scaling with the mean square displacement of the four-

point correlation function χ4(a, ε) that can be rescaled as χ4(a, ε) = h(γ̇, ε)χ′4(δ(ε, γ̇)/a)
where the amplitude h(γ̇, ε) depends both on shear rate and strain interval. From this

�gure we cannot determine if there is a point (log(a),log(ε)) with �nite values in this map

corresponding to an absolute maximum of the function χ4(a, ε) as is observed by Lechenault
et al. [262] or if the maximum is pushed at non-�nite values.

We now turn to the in�uence of the shear rate on the dynamical cooperativity in the

driven glasses. Figure 6.11 shows for di�erent shear rates the build up of cooperativity in a

glass sample containing 2500 particles. The curves start from a low value of χ4(a, ε) at low
strain go through a maximum χmax4 (γ̇) at a corresponding strain εmaxχ4

(γ̇) (tmaxχ4
= εmaxχ4

/γ̇)

and decay to zero for larger strains. Here the log-log representations allows to see that

the growth with strain is of the form χ4(ε) ∝ ε4 for high shear rate values while towards

the quasistatic limit the behavior changes toward a χ4(ε) ∝ ε1 growth. Note that the ε4

behavior is consistent with a ballistic regime while ε1 is consistent with a regime dominated

by collectively rearranging regions (see [221]). The curves of �gure 6.11 allow us to extract

the dependence of the time scale tmaxχ4
with shear rate γ̇ and we display this in the inset

of �gure 6.11. We �nd a scaling of the form tmaxχ4
∝ γ̇−ν3 with ν3 ∼ 0.65, hence very

close to the coe�cient ν1 ∼ 0.63 observed for the relaxation time t1/e associated to the

correlation functions Qs. This time dependence di�ers on the other hand slightly from

the time tMSD extracted from the Lindemann criterion on the transverse mean square

displacement ν2 ∼ 0.5 (see �gure 6.8).
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Fig. 6.11 : Four-point correlation function as a function of strain ε for di�erent shear rates

(same color code as previous �gures) computed on samples containing 2500 particles and sheared

under RWBCs. The averaging is done over 15 samples over a total strain of ε = 200% on each

con�guration. Insert : Shear rate dependence of the time tmaxχ4
associated to the peak of χ4. The

di�erent symbols correspond to di�erent system sizes and boundary conditions, see �gure 6.8 for

the legend. The dashed line corresponds to the power law γ̇−0.5 and is shown as a guide to the

eyes.
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Fig. 6.12 : maximum values χmax4 of the four-point correlation function as a function of shear

rate γ̇ for various system sizes and boundary conditions. The dashed line shows the power law

∝ γ̇−µ, with µ = 0.6.
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Again it is satisfactory to observe, in �gure 6.11, the convergence of the χ4(a, ε) associ-
ated to the �nite shear rate deformation runs towards the quasistatic data as the two sets

of simulations are produced from completely independent codes and procedures. For the

system size analyzed in this �gure (L 50) we see that the number of particles moving in a

cooperative manner is of the order of χmax4 ∼ 18 in the quasistatic regime. In �gure 6.12 we

have collected all the values of χmax4 for the various system sizes, boundary conditions and

shear rates that we have analyzed. The result shows strikingly the growth of cooperative

length scale with decreasing shear rate for all system sizes. This plot illustrates again (as

was the case for the �ow curve or for the di�usion properties) two regimes, namely a high

shear rate regime (above a critical shear rate γ̇ & γ̇c) where χmax4 grows with decreasing

γ̇ and a plateau regime where χmax4 saturates to a system size limited value. While the

data are still quite scattered they allow to extract a typical scaling coe�cient µ for the

dependence of χmax4 on γ̇ as χmax4 ∝ γ̇−µ, with µ ∼ 0.4− 0.6. The dependence of χmax4 on

system size in the quasistatic regime is too noisy to be quanti�ed precisely at the present

stage of our study. It is obvious nevertheless that the dynamical cooperativity χmax4 grows

in the quasistatic regime with system size in a way that indicates �nite size e�ects. We

will come back to the scaling exponent µ in the last section of this chapter and relate our

�ndings with previous observations. But let us try �rst to visualize the spatial structures

associated to this build up of a growing dynamical heterogeneity length scale as γ̇ → 0.

Dynamical heterogeneity - spatio-temporal structures. There are two aspects that

we would like to illustrate here. First how does the dynamical heterogeneity build up

during the strain of a glassy material, in other words when one looks at spatial maps of

Qi
s = exp

(
−∆yi(ε)

2

2a2

)
for increasing values of ε. Second how the dynamical heterogeneity

is a�ected by the value of the imposed shear rate, in other words when one plots spatial

maps of Qi
s at εmaxchi4

but for di�erent shear rates. The next two panels of 6.13 and 6.14

illustrate respectively the spatial �uctuations of exp
(
−∆yi(ε)

2

2a2

)
and exp

(
−∆ri(ε)

2

2a2

)
for

various strain intervals, while the panel 6.15 illustrates the �uctuations of exp
(
−∆yi(ε)

2

2a2

)
at the peak of the four-point correlation function χ4 for di�erent shear rates. Comparing

�gure 6.13 and �gure 6.14 con�rms the already observed fact that the relaxation of the Qi
s

to zero is faster in the x direction that in the y direction. This anisotropy is here enhanced

by the presence of walls but would be visible also under LEBCs. It is striking to see in

�gure 6.15 the growth of a cooperativity length scale as the shear rate is decreased from

10−3 to 10−5. Indeed one sees that the response of the glass to the external shear rates

becomes more and more heterogeneous as the shear rate is lowered and that at γ̇ = 10−5,

for example, the typical size of the clusters of particles that have moved more than a = 0.1
(the white particles) seems to reach an important fraction of system size. Note that in all

these maps the clusters seem to form anisotropic structures elongated along the y axis. We

attribute this anisotropy to the formation of vortices.

Let us �nally conclude this chapter by giving a simple physical argument that helps
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Fig. 6.13 : Top left corner : χ4(ε). The red marks correspond to the strain intervals at which

the �ve spatial maps of the self correlation function Qi
s(ε) = exp

(
∆yi(ε)

2

2a2

)
are computed. From

top to bottom and from left to right, ε = 10−2,ε = 2 · 10−2,ε = 4 · 10−2,ε = 8 · 10−2,ε = 16 · 10−2.

All �gures are obtained on a sample containing 10000 particles under RWBCs and at a shear rate

of γ̇ = 5 · 10−4.
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Fig. 6.14 : Top left corner : χ4(ε). The red marks correspond to the strain intervals at which

the �ve spatial maps of the self correlation function Qi
s(ε) = exp

(
∆ri(ε)

2

2a2

)
are computed. From

top to bottom and from left to right, ε = 2.5 ·10−3,ε = 2.5 ·10−3,ε = 5 ·10−3,ε = 10−2,ε = 2 ·10−2.

All �gures are obtained on a sample containing 10000 particles under RWBCs and at a shear rate

of γ̇ = 5 · 10−4.
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Fig. 6.15 : Top left corner : χ4(ε). The red marks correspond to the strain intervals at which

the �ve spatial maps of the self correlation function Qi
s(ε) = exp

(
∆yi(ε)
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)
are computed. From

top to bottom and from left to right, γ̇ = 10−3,γ̇ = 5 · 10−4,γ̇ = 10−4,γ̇ = 5 · 10−5,γ̇ = 10−5. All

�gures are obtained on a sample containing 10000 particles and for RWBCs.
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to understand the scaling of this cooperative length scale with shear rate. The argument

goes as follows. Assume that the regions that are prone to fail plastically (we call them

the triggering points) under shear are homogeneously distributed in the glass and that the

density per unit strain ρte (te stands for triggering events) of these points is a constant that

is independent of strain rate. Then during a time interval t there are γ̇ × t× ρte triggering
points that are excited and one can de�ne the average distance lte between these points to

be lte = (ρteγ̇t)
−1/d, where d is the dimension. These points by de�nition are triggering

a quadrupolar event that as we have discussed in the previous section can induce further

plastic rearrangements in its vicinity. More speci�cally a plastic rearrangement induces a

quadrupolar redistribution of the stress in its surrounding and one expects an increased

probability of having a new plastic event where the stress is increased, i.e. along the

vertical and horizontal axis. The simplest hypothesis concerning the propagation of the

events is that it occurs through a di�usive process5. One can then de�ne a new length

scale lD =
√

Dt, where D is the di�usion coe�cient. Now to extract a characteristic length

scale we identify these two length scales, lte = lD which yields a characteristic time tc,

tc = ρ
−1

d/2+1 D
−1

1+2/d γ̇
−1

d/2+1 , (6.8)

and a corresponding length scale scaling as,

lc = ρ
−1
d+2 D

1
d+2 γ̇

−1
d+2 . (6.9)

In two dimensions this corresponds to the scalings tc ∝ γ̇−1/2 and lc ∝ γ̇−1/4 while in three

dimensions one expects tc ∝ γ̇−2/5 and lc ∝ γ̇−1/5. These results argue rather well with the

observations made earlier on the relaxation time scale and on the growth of a cooperativity

length scale. We argue that this length should correspond to the maximum extent of

the plastic cascade and therefore to the maximum cooperativity length. Indeed when lD
becomes of the order of the distance between triggering events lte each plastic cascade starts

to `feel' the presence of the neighboring cascades and its progression is perturbed. Finally

we see that the exponent −1/4 is in good agreement with what is observed numerically in

�gure 6.12 and also with the predictions of the KEP model introduced in section 1.4.2 of

the introduction 1.

5One can make the model more quantitative by mapping it to the problem of di�usion on a grid and

try. One can estimate the di�usion coe�cient from atomic considerations as D ∼ ξ2/τ , where ξ is the

optimal distance between successive plastic rearrangements and τ is the duration of plastic event. From

�gure 6.4 one can estimate ξ to be of the order of ξ ∼ 20− 30σ and one can identify τ with the duration

of a plastic event τ ∼ τe ∼ 10− 100. This gives 1 . D . 100



Chapter 7

Conclusions and perspectives

Conclusions. To identify and explain the mechanisms involved in the spatially hetero-

geneous response of glassy materials to an external drive we have presented in this thesis

our results in three parts. In the �rst part, including the introduction 1 and chapter 2, we

presented the existing literature concerning the mechanical response of glasses. As we have

seen this consists of experimental, numerical and theoretical work on various materials

ranging from metallic glasses, mineral glasses, polymeric glasses to complex �uids, foams

and granular media. In fact this class of systems can even be extended to geophysical pro-

cesses such as earthquakes or sea ice rheology and the question of the mechanical response

of glasses can be generalized to the slightly broader question of the response of any com-

plex system to an external drive. In chapter 2 we presented the two numerical techniques,

Molecular Dynamics and quasistatic energy minimization protocol, at the heart of our

work. Following a brief summary of earlier numerical simulations of sheared glassy materi-

als we introduced and justi�ed our choice of a polydisperse Lennard-Jones two-dimensional

model glass. Because of its disordered glassy nature this system was shown to account for

many of the generic properties shared by `real' glasses and can be thought of as a good

prototype model to work on.

The second part of the manuscript contains chapter 3 and 4 and can be seen as an

attempt to �nd a local structural signature of the plastic heterogeneous response of the

Lennard-Jones glass. This part was an extension of a previous work started in the group

`Théorie and Modélisation' at the Laboratoire de Physique de la Matière Condensée et

Nanostructures (LPMCN) in order to test the limit of applicability of continuum mechanics

at distances of the order of a few interparticle sizes. Our input has consisted in applying a

novel method developed by Goldhirsh and Goldenberg to compute microscopically derived

coarse-grained expressions of the local �elds of continuum mechanics and in particular of

the local elasticity tensor. In chapter 3, after reminding the theory of continuum mechanics

and linear elasticity, we introduced the method of Goldhirsh and Goldenberg. Using this

method we computed the local elasticity tensor and quanti�ed the deviation from linear

elasticity (local Hooke's law) at di�erent coarse-graining scales. From the results a clear

159
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picture emerged of an amorphous material with strongly spatially heterogeneous elastic

moduli that simultaneously satis�es Hooke's law at scales larger than a characteristic length

scale of the order of �ve interatomic distances. At this scale, the glass appears as a

composite material composed of a rigid sca�olding and of soft zones. In chapter 4 we used

this local elastic order parameter to relate structure and dynamics in sheared glasses. Only

recently calculated in non-homogeneous materials, the local elastic structure plays a crucial

role in the elastoplastic response of the amorphous material. We showed that for a small

macroscopic shear strain, the structures associated with the non-a�ne displacement �eld

appear directly related to the spatial structure of the elastic moduli. Moreover, for a larger

macroscopic shear strain we showed that zones of low shear modulus concentrate most of

the strain in the form of plastic rearrangements. The spatio-temporal evolution of this local

elasticity map and its connection with long term dynamical heterogeneity as well as with

the plasticity in the material was quanti�ed. The possibility to use this local parameter

as a predictor of subsequent local plastic activity was also discussed. We concluded this

part by comparing this local elasticity maps with a soft modes analysis and showed that

the two approaches contain very similar information.

In the third part, comprising chapter 5 and 6 we turned to the study of the hetero-

geneous response and dynamical heterogeneity that builds up in the sheared glasses. In

chapter 5 we focused on the quasistatic and athermal limit and presented �rst the two main

macroscopic signatures of the heterogeneous response, namely an intermittent stress-strain

response and a �uctuating velocity pro�le. We showed that in the quasistatic athermal

regime the spatially heterogeneous plastic �ow is composed of dynamical building blocks

of various sizes, ranging from local quadrupolar plastic events to system spanning shear

bands. We proposed a simple analytical description of the heterogeneous stress evolution in

the sample as a sum of uncorrelated localized quadrupolar plastic events. We then turned

to the atomistic response of the model glass and to the precise analysis of the motion and

stress evolution of the individual particles. To this aim we introduced various statistical

tools such as the four-point correlation function and the cooperativity number. In chapter

6 we generalized our study of the heterogeneous dynamics to the �nite shear-rate (γ̇ 6= 0)
and temperature case (T 6= 0). In practice we chose an e�ectively athermal limit (T ∼ 0)
and focused on the in�uence of shear rate on the rheology of the glass. In line with pre-

vious works we found that the model Lennard-Jones glass follows the rheological behavior

of a yield stress �uid with a Hershel-Bulkley response of the form, σ = σY + c1γ̇
β . The

global mechanical response obtained through the use of Molecular Dynamics was shown to

converge in the limit γ̇ → 0 to the quasistatic limit obtained with the energy minimization

protocol. The detailed analysis of the plastic deformation at di�erent shear rates showed

that the glass follows di�erent �ow regimes. At su�ciently low shear rates the mechanical

response reaches a shear-rate independent regime that exhibits all the characteristics of the

quasistatic response (�nite size e�ects, cascades of plastic rearrangements, yield stress...).

At intermediate shear rates the rheological properties are determined by the externally

applied shear-rate and the response deviates from the quasistatic limit. Finally at higher



161

shear rates the system reaches a shear-rate independent homogeneous regime. The ex-

istence of these three regimes was also con�rmed by the detailed analysis of the atomic

motion. The computation of the four-point correlation function showed that the transition

from the shear-rate dominated to the quasistatic regime was accompanied by the growth

of a dynamical cooperativity length scale ξ that was shown to diverge with shear rate as

ξ ∝ γ̇−ν , with ν ∼ 0.2 − 0.3. This scaling was compared with the prediction of a simple

model that assumes the di�usive propagation of plastic events (analogous to the `�uidity'

in the KEP model).

Perspectives. We believe that the work achieved in this thesis o�ers some challenging

directions of future research. First the coarse-grained method presented in chapter 3 is

adapted to the computation of elastic moduli (and more generally of any �eld of contin-

uum mechanics) at di�erent length scales and for all sorts of materials. A direct extension

of our work would be to apply this method on some realistic model materials. An in-

teresting question would then be to �nd if this measurement can be related with a more

local and simpler structural property of the samples studied. In the case of model silicon

systems, where local tetrahedral order due to the covalent bound is important, it has been

shown that plastic activity is related with the occurrence of local coordination defects and

unusual atomic environment. It is not the case in Lennard-Jones glasses. It would be very

interesting to see if a criterion based on the lowest local elastic shear modulus would be

also valid in other systems, independent on the local directionality of bounds. The relation

between plastic activity and elastic structure discussed in chapter 4 opens new possibilities

in the theoretical and experimental study of the deformation of glasses. From a theoretical

point of view, the detailed study of the dynamical evolution of local elastic moduli should

allow construction of a model as we have already done for the local stress components,

including a criterion for local plastic rearrangement. From an experimental point of view,

this study shows that the resolution for the measurement of a local elastic modulus should

be less than ten interatomic distances, in order to include a description of the relevant

scales of elastic heterogeneities. New experimental methods have been proposed recently

in order to evaluate the deformation at the nanometer scale. This study should encourage

continuation in this way.

Concerning the rheology of the glasses the results of chapter 5 and 6 call for many

complementary studies. In particular the in�uence of �nite shear rate and temperature

was only introduced in this thesis and a precise study of the in�uence of these two external

parameters on the rheology of the glassy materials is essential. These systems were shown

to develop a diverging cooperativity length scale with lowering shear rate and one can ask

how this dynamical length scale a�ects the �ow of con�ned glassy systems. Preliminary

results concerning the e�ect of temperature have shown surprising e�ects associated with

the presence of a small but �nite temperature and many further simulation runs at various

temperatures and shear rates are needed to apprehend the rheology of the glasses. Similarly

our results on a two dimensional system call for a generalization to the three dimensional
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case. Our results have also con�rmed at the atomic level many of the predictions of the

mesoscopic extremal elasto-plastic models and quantitative comparison would require an

extended amount of simulated material, larger system sizes and lower shear rates. Finally

our work is a �rst step towards a better understanding of the elementary building blocks

needed to construct a mesoscopic description of the rheology of glassy materials along with

innovative constitutive laws. Another possible extension of this work would be to map the

rheology of the structural glasses obtained through the use of atomic scale simulations to

a kinetically constrained model, the collaborative nature of the dynamical building blocks

presented in chapter 5 and 6 seems indeed to validate this type of approach.
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