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Abstract

To model the functioning of a system, to describe a situation or to represent
ideas, we begin to intuitively draw bubbles and connect them by arrows as
labeled graphs. Modal logics offer a formal, expressive and scalable framework
to define these graphs as “models”, and to express certain properties of these
graphs as “formulas”. They allow then to reason on these graphs and properties:
wether a model satisfies a certain formula or not (model-checking), or wether
there is a model satisfying a given formula or not (satisfiability / validity). For
formulas and models of large sizes, these tasks become complicated, and thus,
we need a tool to achieve these reasoning tasks automatically. LoTREC is
an example of such tools. It allows the user to create his own proof method,
through a simple and high level language without any need to a specific expertise
in programming.

During my Ph.D., I revisited the work that has been already done in LoTREC
and I have brought new extensions that were needed to offer the users new im-
plementation techniques. This allowed to handle new logics (such as K.alt1, the
universal modality, Hybrid Logic HL(@), Intuitionistic logic, Public Announce-
ment Logic, ...). This achievement required the development and the expansion
of the software core of LoTREC, its language and its user interface. With the
new version we can experiment in a step-by-step mode or use other options
to debug our method, while visualizing and analyzing the models (and / or
counter-models) generated and displayed in an pretty-print layout. When we
define a semi-automatic procedure, we can also start with partial models and
intervene during the execution.

On the other hand, I gave myself the goal to examine the origins of LoTREC
in the world of graph rewriting and to specify the semantics of its rewriting
engine. This work has lead to a clear presentation of the event-driven mechanism
that manages the pattern matching process in LoTREC in an optimized way.
My work has also helped in clarifying the semantics of this mechanism and in
showing its advantage in comparison with other existing techniques.

In addition, this work has established the link between the rewriting system
of LoTREC and one of the well established theoretical approaches known in the
community of graph rewriting. This helps in clarifying how we can inherit in our
proof methods defined in LoTREC some of the already established theoretical
results and properties known in the field of graph rewriting.
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Résumé

Pour modéliser le fonctionnement d’un système, décrire une situation ou représen-
ter des idées, on se met intuitivement à dessiner des bulles et les lier par des
flèches sous forme de graphes étiquetés. Les logiques modales constituent un
cadre formel expressif, extensible et toujours d’actualité qui permet de définir
ces graphes sous forme de “modèles”, et d’exprimer certaines propriétés de ces
graphes sous forme de “formules” afin de pouvoir raisonner là-dessus: vérifier si
un modèle satisfait une certaine formule ou non (model checking), ou bien s’il
existe un modèle satisfaisant une formule donnée ou non (satisfiabilité / valid-
ité). Pour des formules et modèles de tailles importantes, ces tâches deviennent
compliquées. De ce fait, un outil permettant de les réaliser automatiquement
s’avère nécessaire. LoTREC en est un exemple. Il permet à son utilisateur de
créer sa propre méthode de preuve, grâce à un langage simple et de haut niveau,
sans avoir besoin d’aucune expertise spécifique en programmation.

Durant ma thèse, j’ai revu le travail qui était déjà accompli dans LoTREC
et j’ai apporté de nouvelles extensions qui s’avéraient nécessaires pour pouvoir
traiter de nouvelles logiques (K.alt1, universal modality, Hybrid Logic HL(@),
Intuitionistic logic, Public Announcement Logic, ...) et offrir à l’utilisateur cer-
taines nouvelles techniques. Cela a exigé le développement et l’extension du
noyau logiciel de LoTREC, ainsi que du langage et de l’interface qu’il offre à
ses utilisateurs. Avec la nouvelle version on peut expérimenter avec ses for-
mules afin de déboguer sa méthode en l’exécutant pas-à-pas, tout en visualisant
et analysant les modèles (et/ou contre-modèles) générés d’une façon ludique.
Quand on définit une procédure semi-automatique, on peut aussi démarrer avec
des modèles partiels et intervenir durant l’exécution.

D’autre part, je me suis donné l’objectif d’examiner les origines de LoTREC
dans le monde de réécriture de graphes et de spécifier la sémantique de son
moteur de réécriture. Ce travail a permis de bien présenter le mécanisme événe-
mentiel qui gère le processus de “pattern matching” d’une façon optimisée. Mon
travail a permis de clarifier la sémantique de ce mécanisme, et de montrer son
avantage par rapport aux techniques existantes par des résultats empiriques.
En plus, ce travail a permis d’établir un lien entre le système de réécriture de
LoTREC et l’une des approches théoriques bien fondées et connues chez la com-
munauté de réécriture de graphes. Cela a permis d’éclaircir comment l’on peut
hériter dans nos méthodes de preuve des résultats et des propriétés théoriques
déjà bien établies dans le domaine de la réécriture de graphes.
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Introduction

This thesis is divided in two parts: the first part is about automated model
construction in logic and the second one is about graph rewriting. I invite the
reader to follow the parts and chapters in their given order, even though the two
parts are relatively independent. In any case, the preface of each part should be
read first, before getting into the details of each chapter. Here we give a brief
introduction to both parts.

The first part of this thesis has a pedagogical style and rhythm. It takes
the reader on a long journey in modal logics via their decision procedures. I
hope that this part can attract every student and researcher in logic and philos-
ophy. This is also useful for the sake of “LoTREC” itself, since this part is the
most comprehensive tutorial and documentary that have ever existed to guide
LoTREC’ users.

In chapter 1, we show how to model real life situations by graphs. In chapter
2 we introduce the formal language to reason about these situations, and the
main reasoning problems which we are interested in solving automatically in
LoTREC. Starting from chapter 3, we present our model construction method
which is used to solve the satisfiability problem. It answers the question about
the satisfiability of formulas, and at the same time it gives an explanation for
the answer. Throughout the chapters 4 to 7, we show how to adapt or redefine
model construction methods for various logics. Chapter 6, is the only exception
in this list, it addresses the model checking problem and presents our method
to solve it.

In the last chapter of this part, I change the pedagogical style, the reader
gets into a more advanced level. I investigate by a special model construction
method a family of logics called Layered Modal Logics (LML). We use the model
construction method to study the complexity class of these logics, instead of
giving a tractable decision procedure for them.

In the second part of this thesis, I start a different topic: graph rewriting.
This part starts with a brief, but complete, overview of graph rewriting systems
and their theoretical foundations as seen by the community of researchers on
this subject. This allows me, in the second chapter of this part, to define and
introduce the graph rewriting system of LoTREC.

In chapter 11,we give more implementation details on the event-driven pat-
tern matching process used in LoTREC. The first result presented in this chapter
is the formalization of this mechanism. We show its importance and impact in
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enhancing the performance of the rewriting engine of LoTREC, letting the time-
cost of running a model construction method be related to the sole complexity
of the underlying logic. However, this optimization does not alter the usual
semantics of graph rewriting used in naive systems. Proving this postulate is
the second result presented in this last chapter.

To conclude my work, I present some of the existing similar tools that were
developed for academic purposes. I also show some empirical results comparing
LoTREC to two other satisfiability provers. I close with a discussion of the main
achievements and perspectives of my work.

Contributions of this thesis

The contributions of my thesis are in the domains of automated reasoning in
logic on one hand and graph rewriting on the other hand. In both cases they
are theoretical and practical.

My first contribution is a “gentle” introduction to modal logics, presented in
the first part of this thesis, via the model construction method. This work shall
be completed and published in the near future as a courseware book for students
in computer science logic and philosophy, in a joint work with O. Gasquet, A.
Herzig, and F. Schwarzentruber. We believe that this approach enables readers
that do not have knowledge of modal logics to learn what these logics are about,
and allows them to implement and play with existing or new modal logics. Most
importantly, they should be able to do so without any knowledge or skills in
programming.

In automated reasoning

In automated reasoning, my main aim was to complete the work on our generic
platform LoTREC which has been established since 1999. The bases go back to
the paper [CFnDCGH98], where graph rewriting rules were first introduced in
order to check satisfiability in modal and description logics. LoTREC’s graph
rewriting engine was built in the software’s first version, implemented by D. Fau-
thoux during his Master thesis [dCFG+01]. Simple logics, such as classical logic
and modal logic K were successfully implemented. The second era for LoTREC
was during the Ph.D. thesis of M. Saade [GHS06a]. In this era, a rudimentary
graphical user interface was developed, and methods for the basic modal logics
were implemented (KT, KB, KD, K4, S5,. . . . In addition, there was an attempt
to implement a star-free PDL, a new extension of the language (with a special
createOneSuccessor action) allowed to tackle linear time temporal logics such
as LTL, and a special tweak in the rule definitions1 allowed to implement the
K+Confluence logic.

During my Ph.D. thesis, I completed this workflow while keeping an eye
on abstract and reduced extensions in LoTREC’s language. For example, the

1Setting a Boolean to true to declare a given rule as commutative, so that the rule considers
commutative graph patterns as equivalent.
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ad-hoc tweak needed for K+Confluence did not succeed in tackling hybrid logics
such as HL(@). However, I found that the original problem which prevents us
from implementing both methods, and many others, is the same2.

This problem can be solved for LoTREC users by using a special strategy
keyword applyOnce. However, its implementation was a bit complicated, since
its implementation in LoTREC conflicts with its event-based mechanism. Once
solved, the new solution allowed us to easily implement linear logics, such as
K.alt1 and LTL, without the need for more keywords in our language. Simi-
larly, the implementation of K+Confluence became possible without an ad-hoc
Boolean attribute in the rules, and HL(@) was successfully implemented.

On the other hand, I developed a model checking method which covers most
of the implemented logics. This allowed the implementation ofPDL with itera-
tion with a simple method that uses a model checking procedure to check the
eventualities. A simpler model checking procedure was also used for LTL.

In a joint work [GS07] with O. Gasquet, we used the model construction
method, introduced as a tableau-like method, to express the frame properties of
a special class of logics, that we call Layered Logics. We also used the method
to investigate the complexity of these logics. In this work, we used a special
filtration technique that we call Dynamic filtration, to keep the size of the de-
veloped premodels within an exponential boundary. In this manuscript, I give
the way to implement this technique in LoTREC.

I also revisited previously implemented methods3. The dozen of predefined
logics needed continuous updates to keep them coherent with the newer ver-
sions of LoTREC. Some of these old methods lacked termination, some others
stopped earlier with node-inclusion test. The strategies of the former methods
were corrected, and in the latter methods I replaced the node-inclusion test
by the convenient node-equality check, which is stricter and more appropriate
termination criterion.

In graph rewriting

LoTREC has a nice rewriting engine written from scratch. It has a special event-
driven optimisation based on the Java event model [Ham97]. When I decided to
present this feature to people working on graph rewriting [SG08], I discovered
that I needed to learn more about their terminology and tools.

This is why I made my own survey on the theoretical foundations of graph
rewriting and on existing implemented tools and techniques.

Besides learning about this domain, my aim was to trace back the roots of
LoTREC in graph rewriting, which had not been done before. On one hand,
this work helps people working on graph rewriting to understand what is hap-
pening inside LoTREC’s engine. On the other hand, it gives people interested
in developing similar rewriting tools a fair amount of what they need to build
their tools on solid theoretical basis.

2We cannot apply a rule on only one occurrence of all successful patterns in our graphs.
3http://www.irit.fr/ACTIVITES/LILaC/Lotrec/LotrecOld/librairy
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In the end, I succeeded in introducing to both audiences the event-driven
optimisation of LoTREC using a common basic mathematical formalism. In a
joint work with O. Gasquet and F. Schwarzentruber, we gave the semantics of
LoTREC’s rewriting system using a term notation. We also proved the sound-
ness of this optimisation w.r.t. a naive graph rewriting system.

In order to evaluate this optimisation, I made some experiments and overviewed
the state of the art on the related works tackling the pattern matching problem.

In implementation

At the mid-time of my Ph.D. thesis, I wrote on my webpage:

“I started my thesis as a student in logic with a background in soft-
ware development, but I am ending up as a software engineer with a
background in logics.”

This was after more than one year of programming new parts and re-coding
many existing parts in LoTREC, in order to make it more coherent, performant
and ergonomic. However, when the piece of software became almost4 clean in
front of me, I got back to my theoretical research in logic and graph rewriting
and all the things in-between.

I discovered later that most of this technical work cannot be valuable when
presented as a Ph.D. thesis work in a domain different from software engineer-
ing, such as artificial intelligence and logic. And thus I figured out the reason
behind the rarity of educative and user-friendly tools in our domain. However, I
dedicated the last part of the current section to mention some of these technical
details.

I invested my effort in the renovation of the software architecture and graph-
ical user interface. The rewriting engine is now under the control of the user:
it offers a debugging panel for users definitions by allowing a step-by-step com-
mented execution. Many of the old on-a-hurry extensions had affected the cor-
rect behavior of the system, and were not commented in the code. Such leaks
were repaired and sometimes entirely replaced.

I find that the major utility of my work on software development was to offer
an ergonomic and simple graphical user interface, with a pretty-print display of
the graphs and an automatic layouting. My main aim in this was to make this
whole rich-component interface accessible via the web. In this way, LoTREC
becomes easily reachable by a wide public of students and researchers, and this is
the key measure of how long LoTREC will survive in our academic community.

Today, I am at the end-time of my Ph.D. thesis. So I can reformulate the
sentence on my webpage differently:

I started by playing around a piece of software, with background in
logic, but I end up with more curiosity and passion for three beautiful
and interrelated sciences: logic, mathematics and computer science.

4because implementation never ends!



Introduction

Cette thèse est divisée en deux parties : la première partie concerne la con-
struction automatique de modèles dans la logique modale, alors que la seconde
partie concerne la réécriture de graphes. J’invite le lecteur à suivre les parties
et les chapitres dans l’ordre donné, même si les deux parties sont relativement
indépendantes. Je propose aussi que la préface de chaque partie soit lue en pre-
mier avant d’entrer dans les détails de chaque chapitre. Je donne ici une brève
introduction aux deux parties.

La première partie de cette thèse a un style et un objectif pédagogiques.
Elle prend le lecteur dans un long voyage dans des logiques modales via leurs
procédures de décision. J’espère que cette partie puisse intéresser les étudiants
et les chercheurs en logique et en philosophie. Elle est aussi utile pour le bien
de “LoTREC” lui-même, puisque cette partie est le tutorial et la documentation
les plus complets qui ont jamais existé pour guider les utilisateurs de LoTREC.

Dans le chapitre 1, nous montrons comment modéliser des situations réelles
et comment les représenter ensuite par des graphes. Dans le chapitre 2, nous
introduisons un langage formel, celui des logiques modales, pour pouvoir raison-
ner sur ces situations. Nous introduisons également les principaux problèmes de
raisonnement auxquels nous nous intéressons à résoudre automatiquement dans
LoTREC. A partir de Chapitre 3, nous présentons notre méthode de construc-
tion du modèle qui est utilisée pour résoudre le problème satisfiabilité. Il répond
à la question sur la satisfiabilité des formules, et en même temps, il donne une
explication de la réponse. Tout au long des chapitres 4 à 7, nous montrons
comment adapter ou redéfinir les méthodes de construction de modèles pour
différentes logiques. Le chapitre 6 est la seule exception dans cette liste : il
aborde le problème de “model-checking” et présente notre méthode qui le résout
automatiquement sous LoTREC.

Dans le dernier chapitre de cette partie, je change le style pédagogique,
et le lecteur entre dans un niveau plus avancé. Je mène, par une méthode
spéciale de construction de modèles, une enquête d’investigation sur une famille
de logiques appelées “Layered Modal Logics” (LML). Nous utilisons la méthode
de construction de modèles pour étudier la classe de complexité de ces logiques,
au lieu de lui donner tout simplement une procédure de décision.

Dans la seconde partie de cette thèse, je commence un sujet différent: la
réécriture des graphes (“graph rewriting”). Cette partie commence par une
brève, mais complète, vue d’ensemble des systèmes de réécriture de graphes et de
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leurs fondements théoriques, tel que c’est vu par la communauté des chercheurs
dans ce domaine. Cela me permet, dans le second chapitre de cette partie, de
définir et d’introduire le système de réécriture de graphe LoTREC.

Dans le chapitre 11, je donne plus de détails sur la mise en oeuvre du modèle
événementiel (“event-driven pattern matching”) utilisé dans LoTREC. Le pre-
mier résultat présenté dans ce chapitre est la formalisation de ce mécanisme.
Je montre ensuite l’importance et l’impact de ce mécanisme dans l’amélioration
de la performance du moteur de réécriture de LoTREC. En effet, cette opti-
misation réduit les coûts en temps et en gestion de mémoire d’une méthode
de construction de modèles définie pour une logique donnée, et elle laisse les
coûts uniquement dépendant de la complexité de la logique en question. Toute-
fois, cette optimisation ne modifie pas la sémantique habituelle de réécriture de
graphes telle qu’elle est définie dans un système näıf et non-optimisé. Prouver
ce postulat est le deuxième résultat présenté dans ce dernier chapitre.

Pour conclure mon travail, je présente, parmi les outils de preuves qui exis-
tent actuellement, quelques outils similaires à LoTREC et qui ont été développés
pour des fins académiques. Je montre également quelques résultats empiriques
comparant LoTREC à deux autres provers puissant, mais qui n’étaient pas
conçus pour des buts pédagogiques. Je termine par une discussion sur les prin-
cipales réalisations et perspectives de mon travail.

Les contributions de cette thèse

Les contributions de ma thèse se situent dans le domaine du raisonnement au-
tomatique dans la logique modale, d’une part, et dans le domaine de réécriture
de graphes, d’une autre part. Dans ces deux domaines, mes travaux portent sur
des aspects théoriques ainsi que sur des applications pratiques.

Ma première contribution est une introduction ludique et pédagogique à
la logique modale. Cette introduction présentée dans la première partie de
cette thèse, via la méthode de construction de modèles. Ce travail est en train
d’être finalisé et sera publié dans un futur proche sous forme d’un livre qui
accompagnera les cours de logique donnés aux étudiants en informatique ou en
philosophie. Ce livre est préparer en collaboration avec O. Gasquet, A. Herzig,
et F. Schwarzentruber.

Nous croyons que cette approche permettra à nos lecteurs d’apprendre ce que
sont les logiques modales, sans aucune connaissance requise au préalable sur la
logique. De plus, cette approche permettra aux lecteurs de définir sur papier
des méthodes de preuves pour ces logiques. Ensuite, en utilisant notre logiciel
LoTREC, les lecteurs seront capables d’implémenter ces méthodes et de les exé-
cuter automatiquement, avant tout, sans aucune connaissance ou compétence
requises en programmation.
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Dans le domaine de raisonnement automatique

Concernant le raisonnement automatique, mon objectif principal était d’accomplir
les travaux qui ont été mis en place depuis 1999 sur notre plate-forme générique
LoTREC. Les bases de LoTREC remontent jusqu’au papier [CFnDCGH98], où
les règles de réécriture de graphes ont été introduites afin de vérifier la satisfia-
bilité des formules en logiques modales de base et les logiques de description. Le
moteur de réécriture de graphes de LoTREC a été ainsi construit dans la pre-
mière version du logiciel, mis en oeuvre par D. Fauthoux au cours de son stage
de master [dCFG+01]. Des méthodes pour deux logiques simples, la logique
classique et la logique modale de base K, ont été implémentées avec succès. La
deuxième période de développement de LoTREC était pendant le doctorat de
M. Saadé [GHS06a]. À cette époque, une interface utilisateur graphique rudi-
mentaire a été élaborée, et les méthodes de quelques logiques modales de base
ont été mises en oeuvre (KT, KB, KD, K4, S5, . . . ). En outre, une tentative
de mettre en oeuvre une méthode pour star-free PDL a eu lieu, une nouvelle
extension du langage (avec une action spéciale createOneSuccessor) a permis de
traiter la logique temporelle linéaire LTL et une astuce spéciale introduite dans
la définition des règles5 a permis d’implémenter la logique K + Confluence.

Au cours de ma thèse de doctorat, j’ai complété ce flux de travail tout en
gardant le langage de LoTREC simple et minimal, et avec des extensions le plus
génériques possible. Par exemple, la solution ad-hoc nécessaire pour la logique
K + Confluence n’a pas réussi à traiter les logiques hybrides, telle que HL(@).
Cependant, j’ai constaté que le problème initial qui nous empêche de mettre
en oeuvre une méthode pour l’une de ces deux logiques, et bien d’autres, est le
même6.

J’ai résolu ce problème par l’implémentation d’une nouvelle routine de stratégie,
applyOnce, qui peut être appelée juste avant le nom d’une certaine règle pour
permettre de l’appliquer sur une seule occurrence de graphe. Toutefois, la mise
en oeuvre de cette nouvelle stratégie était compliquée, vu qu’elle a des inter-
férences et des conflits avec le mécanisme événementiel de LoTREC. Une fois ces
difficultés ont été dépassées, la nouvelle solution a résolu le problème de commu-
tativité de motifs et bien d’autres problèmes, et nous a permis d’implémenter
facilement des logiques linéaires, tels que K.alt1 et LTL, sans avoir besoin d’autres
mots clés dans notre langage. De même, elle nous a permis d’implémenter une
méthode pour la logique K + Confluence sans utiliser des solutions ad-hoc, ainsi
qu’une méthode pour la logique hybride HL(@).

D’un autre côté, j’ai développé une méthode de model-checking qui couvre
la plupart des logiques modales. Cela a permis l’implémentation de PDL avec
itération avec une méthode simple qui utilise une procédure de vérification de
modèles pour vérifier la satisfaisabilité des éventualités. Une simple procédure

5La déclaration d’une variable booléenne pour déclarer une règle donnée comme commu-
tative, i.e. pour demander que la règle ne soit pas appliquée sur deux motifs de graphes
considérés comme commutativement équivalents.
6nos règles sont appliquées en parallèles, et une règle ne peut pas être appliquée sur un

seul motif graphe à la fois.
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de vérification de modèles a été utilisé également pour LTL.

Dans un travail en collaboration avec O. Gasquet [GS07], nous avons util-
isé la méthode de construction de modèles, présentée comme une méthode de
tableau, pour exprimer les propriétés du cadre d’une classe spéciale de logiques,
que nous appelons “Layered Modal Logics” (LML). Nous avons également util-
isé cette méthode pour étudier la complexité de ces logiques. Dans ce travail,
nous avons utilisé une technique de filtration spéciale, que nous appelons filtra-
tion dynamique (Dynamic Filtration), pour maintenir la taille des prémodèles
développés dans une borne exponentielle. De plus, je donne, dans ce manuscrit,
la façon d’implémenter cette technique de filtration sous LoTREC.

J’ai aussi revu les méthodes qui étaient développées7 avce les versions an-
térieures de LoTREC. La douzaine de logiques prédéfinies nécessitaient des
mises à jour régulières pour conserver leur cohérence avec les nouvelles ver-
sions de LoTREC que j’avais développées. Certaines de ces anciennes méthodes
avaient des problèmes de terminaison, d’autres s’arrêtaient trop tôt avec un test
d’inclusion de noeuds, alors qu’il leur fallait continuer le calcul afin de donner de
bonnes réponses. Les stratégies de certaines de ces méthodes ont été corrigées,
et dans d’autres j’ai remplacé le test d’inclusion par un test d’égalité, qui s’est
avéré un critère plus approprié pour garantir la terminaison de ces méthodes.

Dans le domaine de réécriture de graphes

LoTREC a un moteur de réécriture de graphes performant et entièrement “fait
maison”. Ce moteur dispose d’une optimisation spéciale basée sur le modèle
événementiel de Java [Ham97]. Quand j’ai voulu présenter ce mécanisme aux
personnes qui travaillent sur la réécriture de graphes [SG08], j’ai découvert que
j’avais besoin d’apprendre davantage sur leur terminologie et sur leurs outils
pour mieux m’adresser à leur communauté.

Pour cela, j’ai fait ma propre enquête sur les fondements théoriques de réécri-
ture de graphes et sur les outils et techniques déjà existant.

Outre qu’apprendre plus sur ce domaine, mon objectif était de retracer les
racines de LoTREC vers ce domaine en tant qu’un système de réécriture de
graphes, ce qui n’a pas été fait auparavant. D’une part, ce travail aide les per-
sonnes travaillant sur la réécriture de graphes à comprendre ce qui se passe à
l’intérieur du noyau de LoTREC. D’autre part, ce travail donne aux person-
nes intéressés par le développement d’outils de réécrire similaires les moyens
nécessaires pour construire leurs outils sur une base théorique solide.

Enfin, j’ai réussi à introduire à ces deux publics l’optimisation“event-driven”
de LoTREC, en utilisant un formalisme mathématique commun et de base. Dans
un travail collaboratif avec O. Gasquet et F. Schwarzentruber [GSS09], nous
avons donné la sémantique du système de réécriture de LoTREC en utilisant une
notation de termes. Nous avons également montré dans ce travail l’adéquation
de cette optimisation vis-à-vis de la sémantique traditionnelle d’un système de
réécriture näıf.

7http://www.irit.fr/ACTIVITES/LILaC/Lotrec/LotrecOld/librairy
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Afin d’évaluer cette optimisation, J’ai bien situé notre travail par rapport
aux fameux travaux et techniques utilisés pour traiter le problème du “Pattern
Matching”, et j’ai comparé LoTREC à d’autres outils de réécriture et de preuve
automatique afin de donner des résultats empiriques plus rigoureux.

En implémentation

À mi-chemin, durant ma thèse de doctorat, j’ai écrit sur ma page Web:

“J’ai commencé ma thèse en tant qu’un étudiant en logique avec
une certaine base en développement logiciel, mais je me retrouve au-
jourd’hui un ingénieur de développement logiciel avec une certaine
base en logique.”

C’était après plus d’un an de programmation de nouvelles partie et après
le re-codage de nombreuses parties existantes sous LoTREC, afin de rendre ce
logiciel plus cohérent, performant et ergonomique. Ce n’est qu’après que le
logiciel est devenu presque propre8 en face de moi, que je suis revenu à mes
recherches théoriques en logique et réécriture de graphes et sur tout ce qui est
entre ces deux domaines.

J’ai découvert plus tard que la plupart de ce travail technique ne peut pas
être présenté comme un travail de thèse de doctorat dans un domaine, autre
que celui de la génie logiciel, comme l’intelligence artificielle et la logique. Et
c’est ainsi que j’ai compris la raison derrière la rareté des outils pédagogiques
et conviviaux dans notre domaine. Mais vu le temps passé là-dessus, j’ai décidé
de consacrer la dernière partie de la section courante pour mentionner certains
de ces détails techniques.

J’ai investi une bonne partie de mon effort dans la rénovation de l’architecture
logicielle et de l’interface graphique de l’utilisateur. Une partie concerne le mo-
teur de réécriture. Maintenant, ce moteur est sous le contrôle de l’utilisateur:
il offre un panel de débogage pour les définitions des utilisateurs en permettant
une exécution pas-à-pas clairement commentée. Plusieurs des anciennes exten-
sions “vite-faites” ont affecté le bon comportement du système, et n’ont pas
été commentées dans le code. Ces parties du code ont été corrigées et parfois
entièrement remplacées.

Je trouve que l’utilité majeure de mon travail sur le développement logiciel
de LoTREC c’était de lui offrir une interface graphique ergonomique et simple
d’utilisation, avec un joli affichage et une représentation claire des graphiques et
avec un “layouting” rapide et automatique. Mon objectif principal était ensuite
de rendre cet ensemble de composants d’interface graphique riches entièrement
accessibles via le web. De cette façon, LoTREC devient facilement accessible
par un large public d’étudiants et de chercheurs. Et, à mon avis, cette simplicité
d’accès est une mesure clé à prendre pour pousser le plus loin possible la durée
de vie de LoTREC dans notre communauté académique et universitaire.

Aujourd’hui, je suis à la fin de ma thèse. Je peux donc reformuler la phrase
sur ma page Web différemment:

8parce que le développement d’un logiciel ne se termine jamais!
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“J’ai commencé ma thèse en jouant autour d’une pièce de logiciel
avec une certaine base en logique, mais je me retrouve enfin avec plus
de curiosité et plus de passion pour trois belles sciences intimement
liées: la logique, les mathématiques et l’informatique.”
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Model Construction for
Normal Modal Logics
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Preface to Part I

This part of the thesis aims at introducing the most important modal logics with
multiple modalities, from the perspective of the associated reasoning tasks, such
as model checking, satisfiability and validity. To that end we present a tableau-
like method, that we call model construction, for each of the introduced logics.

The central idea of this method is to try to build a Kripke model for a given
input formula by breaking it down connector by connector. While usual tableaux
systems build proofs that take the form of trees, our model construction method
works on graphs in order to be closer to the Kripke models.

Another difference with usual tableaux calculi is that tableaux are tradition-
ally viewed as constructing a proof (by refutation) of the validity of a formula.
In contrast, we focus on the construction of a model for the input formula,
whence the name of our procedure.

The developed methods can be implemented in our generic platform LoTREC,
thus they can be automated. LoTREC provides a simple and generic language
to do so, while existing systems are difficult to adapt and require diving into
“geek” programming code.

At the end of this part, we use this method to investigate the frame properties
and the complexity of a family of logics, that we call Layered logics. To bound
the size of the built models, we use a special filtration technique, that we call
dynamic filtration. We also give the implementation details of resulting method.

In chapter 1 we give a brief overview on modelling real life situations with
graphs. In chapter 2 we introduce the language of modal logics as a language
to talk about properties of these graphs, then we define the reasoning problems
that are tackled in the next chapters.

The model construction method is introduced in chapter 3. It is given for
the basic cases of modal logics K and Kn. Throughout the chapters 4, 5 and 7,
many variants are given for various logics (such as KT, S5, K.alt1, HL(@), LTL
and PDL). The difficulty level of these methods is proportional to their order
of appearance in their corresponding chapters. Model checking is tackled in
chapter 6. Finally, layered modal logics are investigated in chapter 8.
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Préface à la Partie I

Cette partie de la thèse est une introduction à la logique modale via le raison-
nement automatique. Elle introduit une grande variété de logiques modales
classiques, ainsi que les tâches de raisonnement qui leur sont associées, tels que
le model-checking, le test de satisfiabilité et le test de validité. À cette fin,
nous présentons, pour chacune de ces logiques, une procédure semblable à la
fameuse méthode de tableaux, que nous appelons ici la méthode de construction
de modèles.

L’idée centrale de cette méthode consiste à essayer de construire un modèle
de Kripke pour une formule donnée en la décomposant connecteur par con-
necteur. Tandis que la méthode de tableaux classique construit d’habitude les
preuves sous forme d’arbres, notre méthode de construction de modèles construit
des graphes qui sont plus proches des modèles de Kripke.

Une autre différence avec la méthode de tableau est que les tableaux sont
traditionnellement considérés comme la construction d’une preuve (par réfuta-
tion) de la validité d’une formule. En revanche, nous nous concentrons sur la
construction d’un modèle pour la formule d’entrée, d’où le nom de notre procé-
dure.

Les méthodes développées dans les différents chapitres de cette partie peu-
vent être implémentées à l’aide de notre plate-forme générique LoTREC et donc
automatisées. LoTREC offre un langage simple, générique et adapté pour le faire
alors que les autres systèmes existants sont plus techniques et nécessitent de se
plonger dans du code et de programmer pour les étendre afin de pouvoir traiter
de nouvelles logiques.

À la fin de cette partie, nous utilisons la méthode de construction de modèles
pour étudier les propriétés des cadres (frames) et la complexité d’une famille de
logiques, que nous appelons Layered Modal Logics (LML). Pour limiter la taille
des modèles construits pour une logique de cette famille, nous utilisons une
technique de filtration spéciale, que nous appelons filtration dynamique (Dy-
namic Filtration). Nous donnons aussi dans ce chapitre les détails techniques
nécessaires à la mise en oeuvre de cette opération de filtration sous LoTREC.

Dans le chapitre 1, nous donnons un bref aperçu sur la modélisation des
situations réelles avec des graphes. Dans le chapitre 2, nous introduisons le
langage de la logique modale comme un langage pour parler des propriétés de
ces graphes. Ensuite, nous définissons les problèmes de raisonnement (model-
checking, satisfiabilité, validité et construction de modèles) qui sont abordés
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dans les chapitres suivants.
La méthode de construction de modèles est introduite dans le chapitre 3.

Elle est donnée pour le cas de la logique modale K, puis étendue à la logique
multi-modale Kn. Au long des chapitres 4, 5 et 7, on traite une grande variété de
logiques modales (telles que KT, S5, K.alt1, HL(@), LTL et PDL). Ces logiques
sont présentées par degré de difficulté croissant. La procédure de model-checking
est abordée au chapitre 6. Enfin, les logiques modales LML sont étudiées au
chapitre 8.



Chapter 1

Modelling with graphs

Introduction

Graphs and different ways of constructing them are central in this thesis. In
this chapter, we introduce graphs, focussing on their construction. We start
by explaining how to model some real life situations with graphs. To model a
situation means to analyse it in more and more details until we obtain a rigorous
representation and a better understanding of it.

We model the functioning of a light according to what actions are performed
on the toggle switch commanding it. We model mental states of players dur-
ing a simple card game, and we show how to represent their beliefs and their
knowledge. We also model the functioning of a traffic light by representing the
change of its light color in time.

After that, we show how to construct in our tool LoTREC the graphs that
are used in this chapter. This introduces one part of the simple declarative
language of LoTREC which describes and construct labelled graph structures.
At the end we give a formal mathematical definition of graphs.

1.1 Toggle the light

Let us start with a simple example: modeling the functioning of a system con-
sisting of a light bulb and its switch (see Figure 1.1).

Figure 1.1: A light and a switch

The idea that first comes to our minds is: (1) “when the light is off, then

33



34 CHAPTER 1. MODELLING WITH GRAPHS

toggling the switch turns the light on”. And it is true! This would well describe
this lightening system.

A moment later, we start to think about other situations of this system, such
as: (2) “when the light is on, then toggling the switch turns the light off”. And
this also describes our system.

After a while, we realize what is generally happening and we say that: “...ac-
tually, the state of the light is altered by the action of toggling the switch”.

If we try to restrict our view of the world to this system, and if we want
to represent it rigorously, then we would draw on a piece of paper the two
possible states of the light: “Light On” and “Light Off”. And we will express
the alternation from the state “Light On” to “Light Off” with an edge linking
the former to the latter state and labelled by the name of the action “Toggle”
that makes the alternation possible. We do the same to express the alternation
from “Light Off” to “Light On” (see Figure 1.2).

Figure 1.2: The two possible states of the light

Note that we model a system this way because we want to communicate sen-
tences (1) and (2) to someone who reads our graph of Figure 1.2. Nevertheless,
the reader may infer some other ideas about our system such as: the light can
be either on or off, “Toggle” is the only action we can make, and so on . . . . And
this is not a problem as long as these inferred properties are true in our system.

A model is said to be rigorous as much as it communicates well the main
and correct properties of our system and as much as it does not express other
false properties about our system.

Before we start to talk widely about properties of systems (as we will do
later in chapter 2), we model some other examples. Then we show how to build
the graph structures of these models using LoTREC. And we end by giving the
formal definition of these graphs.

1.1.1 A light with two switches

Let us try to model the lightening system of Figure 1.3.

Figure 1.3: Two switches in series
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As done in the first example, we should describe first the functioning of this
system. Then we should try to extract a graph model that fits to represent this
system as rigourously as possible.

At first sight, we notice that this system consists of a light and two switches
in sequence. In this way, the light goes on if both switches S1 and S2 are toggled
downward. Otherwise, if one of switches is toggled upward, the light goes off.

Since this system has two possible outputs, “Light On” or “Light Off”, we
draw two nodes with these labels to represent its possible states.

As for the actions that alter the system state, they consist in toggling up
or down each of the switches S1 and S2. Thus, on the one hand, we link
“Light Off” to “Light On” by an edge labeled “S1 Down and S2 Down”. On
the other hand, we link “Light On” to “Light Off” by three edges labeled by
“S1 Up and S2 Down”, “S1 Down and S2 Up” and “S1 Up and S2 Up”.

The resulting graph is illustrated in Figure 1.4.

Figure 1.4: a model for a light and two switches in series

This was one possible way of modeling this system. However, in the above
model, a label of an arc designates a configuration of the switches positions (S1
is Up and S2 is Down, or etc.) but it does not capture the action made on S1 or
S2 in order to obtain the configuration. For example, according to this model,
we can go from the state “Light On” to “Light Off” by “S1 Down and S2 Up”.
Than we can go back again to “Light On” by “S1 Down and S2 Down”. The
action “Toggle S2” executed during this last transition is not captured by its
label. Moreover, if we go again from the state “Light On” to “Light Off” by
the transition “S1 Up and S2 Up”, the executed actions “Toggle S1” and “Tog-
gle S2” are not revealed in the transition label. In addition, it is not clear if
executing these two actions simultaneously is permitted or not.

Thus if we are interested in expressing more details of the system, we model
it differently. For example, suppose that only atomic actions can be executed,
i.e. that we can not toggle both switches simultaneously. In this case, the
corresponding model should be completely different.

First, the states should be changed. They should encode, in addition to the
state of the light (On or Off), the state of each switch (Up or Down). The set
of possible states would consist of four states labeled as follows:

1. “Light On”, “S1 Down” and “S2 Down”;

2. “Light Off”, “S1 Up” and “S2 Down”;
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3. “Light Off”, “S1 Down” and “S2 Up”;

4. and “Light Off”, “S1 Up” and “S2 UP”.

Second, a transition between two of these states should be labeled by the
atomic action that is applied on S1 or on S2 in order to change the first state
into the second one. For example, if the system is in the state 1, then toggling
the switch S1 alters the system state to 2. The resulting model is shown in
Figure 1.5.

Figure 1.5: another model for a light and two switches in series

1.2 Ann is guessing the card’s color

Let us consider a simple card game. Ann and Bob have two cards: one is red
and the other is black. Ann puts the cards face down on the table then closes
her eyes. Bob then picks up a card and looks at it. Let us say it is red. Later,
Ann has to guess the color of the card.

Suppose that we are interested in answering the following questions: what
will be the answer of Ann? will she be sure of it? is Bob able to say if it is the
right answer?

But to answer these questions we have to figure out first “what does Ann
know about the card” and “what does Bob know about it”. Other interesting
questions are “does Ann know what Bob knows” and “does Bob know what Ann
knows”. In other words, we are interested in modeling the knowledge of Ann
and Bob, i.e. their mental states.

Actually, Bob knows that the selected card is red. Whereas Ann does not
know that. But she knows that it is either black or red. And she knows that
Bob knows what it really is. Moreover, being as intelligent as us, Bob knows all
that we have already said above. And Ann knows it too.
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Now in order to give a graphical representation of these statements, we
proceed as in Section 1.1: we try to figure out what are the possible states of
this situation and what are the relations between these states.

Concerning the color of the selected card, our situation here has two possible
states: “Red” where the color of the card is red, and “Black” where it is black.
Thus we draw two nodes with these labels. We add the label “Actual World” to
the state “Red” to denote that it is the actual state.

It remains to add to our graph the information representing the knowledge
of Ann and Bob about these states. We can use the edges to this end, as we
have done in Section 1.1 to represent the actions that allow to go from a state
of the system to another. Whereas in this section, we need to represent which
state is envisioned or known by Ann and/or by Bob.

For instance, if Ann thinks that the situation is “Red”, she still considers
that “Black” is a possible situation. Thus we link “Red” to “Black”with an edge
labeled by her name “Ann”. We also link “Black” to “Red”with an edge labeled
“Ann” since “Red” is a possible situation even if she thinks that it is actually
“Black”.

As for Bob, this does not hold, since he knows the right color. So if he thinks
that it is red then the state “Black”, where the color is supposed to be black, is
not possible for him, and vice-versa.

Coming back to Ann, when she thinks that the actual situation is “Red”
(resp. “Black”), she is considering “Red” (resp. “Black”) as a possible situation
too. Thus we link each state to itself with an edge labeled “Ann”. The same
reasoning holds for Bob. That is why we also link each state to itself with an
edge labeled “Bob”.

This way of modeling the mental states of Ann and Bob in this game situation
gives the graph in Figure 1.6.

Figure 1.6: Ann guessing the color of Bob’s card

1.2.1 What if Ann is cheating?

Suppose that Ann and Bob play again, but change the game rules so Ann might
keep her eyes open. Bob does not know that there is a mirror behind him,
so Ann can now see the card he selects. And suppose that he picked up the
same red card again. How the model of Figure 1.6 would look like in this new
situation? Let us try to figure it out together.
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In fact, as for Bob, the situation has not changed at all: he still thinks that
Ann does not know the color of the selected card, that she hesitates whether it
is red or black and that he is the only one who knows that is red or black. As
for Ann, she now knows what is the actual world: she is sure that the card color
is red and she knows that Bob thinks that she does not know what the actual
world is.

To describe this situation graphically, we should reconsider the graph model
of Figure 1.6. We use this entire graph to represent the mental state of Bob.
Except that we do not consider the “Red” state in it as the actual world. Hence
we omit the “Actual World” label from this state.

On the other hand, in order to represent the mental state of Ann, we draw
a state labeled by “Red” and “Actual World”, and we link this state to itself by
an arrow labeled “Ann”, since it is the only possible state for Ann. Finally, in
order to represent that she knows what Bob is thinking, we link this state to
the “Red” state of the graph part copied from Figure 1.6.

The resulting model should look like the graph of Figure 1.7.

Figure 1.7: Ann is cheating

1.3 Talking about time

Let us consider a simple and common traffic lights system consisting of three
colored lights: red, yellow and green. This system works endlessly over time in
the same way. It illuminates in a precise sequence: the red light, then the green
one, then the yellow, then red again, then green and so on. . . .

The states of the system and the relation between them are easy to be
extracted from the above quick description. Obviously a graph representing a
traffic light system would have three states: “Red”, “Yellow” and “Green”. And
the relation between these states is talking about the order between these states
more than anything else. The notion of time appears clearly in the periodic
succession of these states.

That is why we choose to link the state “Red” to “Green”, and we choose to
label the edge linking them by“Then”to express the order between the moments
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of their appearances. Similarly, we link “Green” to “Yellow” and “Yellow” to
“Red”, also by edges labeled “Then”. The resulting graph is illustrated in Figure
1.8.

Figure 1.8: Traffic lights model

We settle for these three examples on modeling with graphs. Next, we show
how to build such graphs in our tool LoTREC.

1.4 Build a graph using LoTREC

LoTREC offers a declarative language that allows to talk about graphs. One
part of it is to describe graph structures by defining a set of conditions, and is
introduced later in chapter 2. The second part is to build graphs by defining a
set of actions of the form:

1. createNewNode n

2. link n n’ Label

3. add n Label

The first action creates a new node in the graph and calls it n. The second
action supposes the existence of two nodes n and n’. It creates an arc going
from n to n’ and labeled with Label. The third action supposes the existence of
a node called n and adds to it the label Label.

Remark 1 (identifiers and values). In the above list of actions, Label is a
value1, whereas n and n’ are node identifiers. The concrete values of identi-
fiers are managed automatically by LoTREC. For example, when the action
“createNewNode n” is executed, LoTREC creates a concrete node-object in the
memory and assigns it to the identifier n. Suppose that the action“add n Label”
is executed next, LoTREC then adds Label to the node-object assigned to n as
expected.

Example 1. The graph of Figure 1.2 is constructed in LoTREC using the
following set of actions:

1It is a constant value since it starts with a capital letter.
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createNewNode state1

createNewNode state2

add state1 Light_On

add state2 Light_Off

link state1 state2 Toggle

link state2 state1 Toggle

The built graphs can be displayed and manipulated in LoTREC. The reader
can refer to annexe B.1 to learn how to practically execute these actions under
LoTREC, and to discover some other technical details.

1.5 Labeled Directed Graphs

A directed graph is a set of nodes and a set of directed edges, where each edge
is linking a given source node to a given target node. A labeled directed graph
is a graph where the nodes and edges are labeled by elements of a given set L.

A node can have several labels. In contrast, an edge can have just one label,
that is, an edge is identified by its source node, its target node and the label
of the link connecting the source to the target. In addition, two edges with the
same source and target nodes should have different labels.

Definition 1. Given a set of labels L, a labeled graph M is a tuple (W, R, V) where:

• W is a non-empty set;

• R: L −→ 2W×W;

• V: W −→ 2L.

W is the set of nodes, also called states. R denotes a set of labeled edges, also
called transitions, over elements of W. V is a labeling function which associates
to each node in W a set of labels .

Conclusion

In this chapter, we modeled some real life situations with labeled graphs. We
showed how to build such graphs in our tool LoTREC. Then we gave a formal
definition of these graphs.

The advantage of modeling a situation or a system with a graph is not only
a matter of graphical representation. As we shall see in the next chapter, we
can talk about properties of these systems and facts in these situations using a
special formal language.

Hence, the main use of modeling is to be able to rigourously check and verify
these properties and facts on those models.



Chapter 2

Talking about models

Introduction

In the previous chapter, we saw that situations (such as knowledge about the
color of cards), scenarios (such as traffic lights), machines (such as a switch-
bulb system), etc. can be represented by graphs. We can also imagine how to
similarly model various other systems such as a coffee machine, an automatic
control system of the doors of a subway train, etc.

In this chapter we shall see how we can talk about such things without
directly referring to the nodes and the edges of these graphs. To this end, we
use a concise formal language that allows for some kind of quantification over
edges and nodes. Our language allows the expression of properties such as “The
light is on and after toggling the switch it turns out off”, “Ann knows that Bob
does not know the light is on”, “The next state after Red is Green”, “After having
opened the door, the door is opened and I know that the sun is shining”.

We start by introducing modal languages (section 2.1). Then we show how
we can define such languages in LoTREC (section 2.2). After that, we for-
mally state the meaning for “a formula is true at a node of a graph” (section
2.3.1). Finally, we define several reasoning problems consisting in verifying and
evaluating the truth of formulas (section 2.4).

2.1 A formal language to talk about graphs

2.1.1 Motivation

In chapter 1, we used natural language to describe graphs. For instance, we
wrote sentences in English like “The light is on and I am happy” or “Ann knows
that the card is red”. One may imagine that we can talk with the computer
directly in english . Nevertheless, there are many drawbacks. First, english
vocabulary is enormous so it is fastidious to create a computer being able to
treat all english sentences. Secondly, english is ambiguous and this is tricky,
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especially for computers1! Indeed there are syntactic issues like in “They are
flying planes”[Cho02] or semantic issues like in“Most politicians are preoccupied
by many problems”.

Fortunately, we just want to express some precise sentences and we will be
able to create suitable artificial formal languages in order to do so.

2.1.2 Boolean connectors

First we want to be able to describe physical situation. For instance, simple
sentences, such as “the light is on”, “the card is red” and “there is a fault”,
will be directly represented by keywords like Light on, Card red and Fault.
Those sentences can not be divided in smaller parts: we say that they are
atomic. Those keywords are called atomic propositions. You can think of atomic
propositions as the smallest sentences you can write in our formal language and
in a given situation. Such a proposition is either true or false.

Now, we also want to describe more complicated situations like “the card is
red and the light is on” or “if there is a fault then the card is red”. So we need
some boolean connectors to combine atomic propositions together. We need
boolean connectors like ∧ (and), → (implies2), ∨ (or), ¬ (not). We write:

• Card red ∧ Light on for “the card is red and the light is on”;

• Fault → Card red for “if there is a fault then the card is red”;

• ¬Card red for “the card is not red.”.

Our boolean connectors can also combine non atomic sentences together:

• Referee sleeping∨ (Fault → Card red) for “either the referee is sleeping
or a fault leads to a red card”;

• ¬(Fault → Card red) for “it is false that if there is a fault then the card
is red.”;

• ¬Fault → Card red for “if there is no fault then the card is red”.

With atomic propositions and boolean connectors, we are able to talk about
one state of a system or a situation. Nevertheless, we also want to describe other
states. For instance, we may want to talk about the current state of the light
and its possible states after toggling the switch. We may also want to express
the possible states that agents may imagine in a given game in addition to the
current state of the game that they know, etc. That is why we introduce modal
connectors.

1We want the computer to be able to understand our language, since we want it to auto-
matically check our formulas.
2Logical implication can be misunderstood. We think that reading (P → Q) as (P implies

Q) may infer a cause/effect relation between P and Q. Hence we prefer to read (P → Q) as (if
P then Q). In this reading the focus is more on the fact that P and ¬Q can not hold altogether.
A good practice is to exercise these two readings with (Earth is flat → Santa Claus exists).
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2.1.3 Modal connectors

We want to represent time, actions and believes of agents. We want to be able
to express with our formal language sentences like “The door is closed but after
having opened the door, it will be opened”, and like “Ann knows that the light
is on”. That is why we need to introduce modal connectors like [open] (“after
having opened the door”), KAnn (“Ann knows that”) and X. For instance, we
may write:

• [Open]Door opened for“after having opened the door, the door is opened”;

• KAnnCard red for “Ann knows the card is red”;

• X Red for “next time, the light will be red”.

We can mix boolean connectors and modal connectors in one sentence of our
artificial language. For instance:

• Door closed∧ [Open]Door opened stands for “The door is closed and after
having opened the door, it will be opened”;

• “KAnn(Referee sleeping∨(Fault → Card red))∧¬KAnnKrefereeFault”
stands for “Ann knows that either the referee is sleeping or a fault leads
to a red card but she does not know that the referee knows that there is
a fault”;

• X (Red ∨Green) stands for “next, the light will be either red or green”.

So far, we have defined an artificial language in which we are able to express
simple sentences, boolean composed ones and those representing time, knowl-
edge of agents and actions. A sentence in our artificial language is called a
formula. Before giving a formal definition of formulas, we discuss how they can
be more clear and concise than sentences formulated in natural language.

2.1.4 Infix versus prefix notation

The formula KAnn(Referee sleeping ∨ Fault) can be read just in one way:
“Ann knows that: either the referee is sleeping or there is a fault”. Whereas
KAnnReferee sleeping ∨Fault, in which we omit the parentheses, can be read
in two different ways: as the above reading or as “Either : Ann knows that
the referee is sleeping, Or there is a fault”. The problem is that KAnn is the
main connector according to the first reading, whereas ∨ is the main connector
according to the second one.

However, in the first section of this chapter we insist on the fact that we want
to create this whole formal language in order to avoid the possible syntactical
and/or semantical ambiguities that may rise in informal natural languages.

That is why we should disambiguate the reading of a formula. This can be
done if we know the main connector in the formula. And this can be done in
three possible ways:
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• adding all the necessary parentheses,

• using a prefix form for defining formulas,

• or defining a set of grammar rules, as done in general to define compilers
and parsers [LMB92].

The first solution is to use parentheses to change the reading of a formula
when it may rise ambiguities.

The second solution consists in writing the parts of the formula in the same
order in which we read them. To do so, we start by writing the main connector
of the formula. Then we write, also in prefix form, each subformula succes-
sively. For example, the formula KAnnReferee sleeping ∨ Fault is written
∨KAnnReferee sleeping Fault according to the reading “Either : Ann knows
that the referee is sleeping, Or there is a fault”.

The third solution consists in defining a set of rules which specify how to read
the formulas. The main information coded in these rules is a predefined order of
priority between the connectors. It allows to designate only one main connector
for a formula, when it is defined in an infix style with missing parentheses. For
example, if we set an order in which the priority of the connector K is higher
than the priority of ∨, then the formula KAnnReferee sleeping ∨ Fault, in
which the parentheses are missing, can be read just in one way: “Either : Ann
knows that the referee is sleeping, Or there is a fault”.

Nevertheless, the priority is not the whole story, especially when the rules
are to be interpreted by the machine which have to recognize the formulas
automatically.

2.1.5 Formal definition

We give the formal definition of the set of all formulas as follows:

Definition 2 (formula). Let P be a set of atomic propositions. Let I be a set
of labels. The set For is defined as the smallest set such that:

• P ⊆ For;

• if A,B ∈ For, then (A ∧B) ∈ For;

• if A,B ∈ For, then (A ∨B) ∈ For;

• if A,B ∈ For, then (A → B) ∈ For;

• if A ∈ For, then ¬A ∈ For;

• if A ∈ For and I ∈ I, then [I]A ∈ For.

Remark 2. Note that the parentheses are usually omitted when there is no
ambiguity in the reading of a given formula.
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The first point P ⊆ For means that each proposition is a formula. For
instance, Fault, Light on and Card red are formulas. The second point means
that if we connect a formula with another formula with the connector ∧, we
obtain a formula. For instance, since Light on and Card red are formulas,
Light on∧Card red is a formula too. The last point means that if A is a formula
and I is a label, then [I]A is a formula. For instance Light on ∧ Card red is a
formula, Open is an label, thus [Open](Light on ∧ Card red) is a formula.

As we have seen, modal connectives may have various interpretations. A
generic reading of the formula [I]A is: “A is necessarily true w.r.t. the parameter
I”.

Extending the language

In the next chapters we extend this language to take into account other connec-
tors, so that other formulas become a part of the language. For example, we
may wish to add to our language formulas of the form KIA or XA, for I ∈ I
and A ∈ For.

In the following subsections, we discuss more notations and more details
about the syntactical definition of formulas.

2.1.6 Arity of connectors

The formula Card red∧Light on is composed from its two subformulas by the
mean of the ∧ connector. Also, the formula ¬Fault is obtained from applying
the negation boolean connector ¬ on the formula Fault. In fact, the num-
ber of formulas that can be combined by a given connector is an appropriate
characteristic of this connector that is called arity.

For example3, arity(∧) = 2 means that the arity of ∧ is 2, and arity(¬) = 1
means that the arity of ¬ is 1. A connector of arity 1 is called unary and a
connector of arity 2 is called binary.

2.1.7 Analyzing a formula

Propositions of the set P, such as Card red, Light on, Referee sleeping and
Fault, are atomic in the sense that they can not be decomposed. In con-
trast, sentences like Card red ∧ Light on is not atomic. It can be decom-
posed in Card red and Light on. Since these two formulas are smaller than
Card red ∧ Light on, we say that Card red and Light on are strict subformu-
las of Card red ∧ Light on.

The formula KAnn(Referee sleeping ∨ Fault) consists of the connector
KAnn surrounding the strict subformula Referee sleeping ∨Fault. This latter
has two other strict subformulas: Referee sleeping and Fault, combined by
the connector ∨. Hence, all of these smaller formulas are strict subformulas
of KAnn(Referee sleeping ∨ Fault). In addition, KAnn(Referee sleeping ∨

3The notion of arity in logic is the same as in arithmetic. Each arithmetic operator is
applied a fixed number of arguments, e.g. the arity of + is two, and the arity of

√
is 1.
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Fault) is also a subformula of itself, but it is not a strict subformula since it is
not strictly smaller than itself.

To compute all the subformulas of a given formula, we notice that we need
a recursive procedure, as we state in the following definition:

Definition 3 (subformulas). Given a formula A, the set of subformulas of A

denoted by Sub(A), is recursively defined as:

• Sub(P ) = {P};

• Sub(¬B) = {¬B} ∪ Sub(B);

• Sub(B ∧ C) = {B ∧ C} ∪ Sub(B) ∪ Sub(C);

• Sub(B ∨ C) = {B ∨ C} ∪ Sub(B) ∪ Sub(C);

• Sub([I]B) = {[I]B} ∪ Sub(B).

This definition can be extended to take into account other connectors.

2.2 Syntax declaration in LoTREC

In this subsection, we show how to define a language in LoTREC, so that we
can use the formulas of this language as labels for the graphs.

We give in LoTREC an equivalent definition to enable it to recognize the
formulas of this language, and only these formulas.

Recall that the definition of a language consists in defining the basic sets of
symbols P and I, a set of connectors (∧, ∨, . . . , [.], . . . ) and a set of syntactical
rules to make precise which formulas are acceptable in the language.

2.2.1 Defining basic symbols

In LoTREC, we fix a predefined set of constant symbols to denote the propo-
sitional symbols in P and labels in I. It is the same set for all the languages.
It consists of “words starting with capital letters”, such as Red, P, Ann, I,. . . to
represent respectively Red, P , Ann, I,. . . .

To define the formulas, we let the users define their own connectors in a
uniform way, then we use a unique syntactical rule to construct the formulas
over the constant symbols and the connectors.

To define a given connector, we ask the user to specify:

• a name (and, not, . . . ) to represent the special symbol (∧, ¬ . . . ) of the
connector; it can be any word starting with a small letter;

• a positive integer value to designate its arity value;
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Example 2. We give in the following table the typical definition of some con-
nectors in LoTREC:

logical definition in LoTREC
connector name arity

¬ not 1
∨ or 2
∧ and 2
[.] nec_i 2
K. knows 2

2.2.2 Defining formulas

The formulas of the language are inductively defined in LoTREC according to
the following generic rules:

• every constant symbol from P is a formula,

• given a connector c of arity n and formulas A1, . . . , An, c A1 . . . An is a
formula4;

• there are no other formulas in this language.

Example 3. According to the connectors defined in Example 2, the formula
KAnn(Referee sleeping∨Fault) is written in LoTREC as knows Ann or Ref-
eree_sleeping Fault.

We can also define the following formulas:

formula on paper definition in LoTREC
[I]P ∧ ¬P nec_i I and P not P

Q ∨ ¬(P ∧ ¬P ) or Q not and P not P

2.2.3 Prefix notation

In LoTREC, we require to use prefixed notation to define and write the formulas,
i.e. to write and P not P instead of P and not P. This may burden the users
at first, especially new users, so one may wonder: why not using the alternative
styles with parentheses or with an infix notation? (shown in Section 2.1.4).

As for the appealing infix parentheses-free notation, it is complicated to be
defined by the users. First, they have to learn how to define grammar rules.
Second, they have to define a precedence order between the rules, which corre-
sponds to the connectors priorities. Then they have to define many tweaks to
disambiguate the rules themselves, such as right- and left-associativity, how to
proceed in case of “Shift/Reduce” conflicts, . . . (the whole chapter 8 of [LMB92]

4Since there is no ambiguity in the prefix notation, we omit the parentheses from the usual
c(A1, . . . , An) notation.
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is dedicated to discuss this subject). Thus, this task is very though, even for
computer-scientists.

Forcing the use of parentheses allows to avoid the need to define some of these
tweaks. However, the use of parentheses all the time is not less cumbersome than
the prefix notation. In addition, it is less safe, since when some parentheses are
missing, misunderstandings between the machine and the user rise again.

Thus we believe that we have good reasons to settle for the unambiguous
prefix notation with easy-to-define rules, especially that LoTREC’s users are
mainly students and researchers in logic and philosophy, and they are not nec-
essarily computer-scientists.

2.2.4 Customized display

In LoTREC, we allow the user to choose for the prefix-defined formulas a dif-
ferent output display, such as the familiar infix notation. This makes ease the
reading of the formulas, especially when they are big and numerous on the
screen.

A special output display for a given connector is a string of arbitrary charac-
ters with exactly n underscores “_”, where n is the arity value of the connector,
to specify how the n parameters of the connector are to be displayed.

Example 4. In LoTREC, the typical output displays of the ¬, ∧, ∨, [.] and K.

connectors (defined in Example 2) are ∼ _, (_ v _), (_ & _), [_]_ and K(_)_
respectively.

According to these displays, the formula knows Ann or Referee_sleeping
Fault is displayed as K(Ann)Referee_sleeping v Fault. The other formulas
of Example 3 are displayed as follows:

definition in LoTREC display in LoTREC
nec_i I and P not P [I](P & P)

or Q not and P not P (Q v ∼ (P & ∼P))

2.3 A formal way to evaluate formulas

In this section, we put the definition of graphs (Chapter 1) together with the
definition of a property with a rigourous language to answer some interesting
questions, such as: “Given a graph, given a specific state in the graph, does a
given property hold at this state of this graph?”.

Answering this question is one of the reasoning problems in logic, which
will be introduced in the sequel. First, we give a mathematical definition of
the model which formally describes a graph. Then we show how to evaluate
formulas w.r.t. models.

2.3.1 Models

In chapter 1, we modelled various systems with labelled graphs. In this section,
we give alternative and more mathematical definition of such structures. These
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mathematical structures are named after Saul Kripke: Kripke models.
In a Kripke model we specify:

• the different states, also called possible worlds;

• the transitions between these states, also called the accessibility relation;

• and the valuation of these states.

In such a model, the transitions are labeled by elements of the set of labels I,
and the valuation specifies, for each possible world, which atomic propositions
of P hold at that world.

Definition 4 (Kripke model). Given a set of atomic propositions P and a set
of indexes I, a Kripke model M is a tuple (W,R, V ) where:

• W is a non-empty set;

• R : I −→ 2W×W ;

• V : W −→ 2P .

Remark 3. In the sequel, we may abbreviate R(I) in RI and we may use wRIu

to denote that (w, u) ∈ RI .

The definition given above is generic, in the sense that it describes arbitrary
models. One may add some constraints and restrictions on the accessibility
relation, the valuation function or on the basic sets of symbols P and I of
the underlying language. For example, we may require that the accessibility
relation is reflexive, symmetric or transitive. We may require that some special
propositions hold at a unique possible world. Such constraints define some
special families of models, which we call classes of models. Throughout the
chapters 4 to 7, we shall meet many of these special classes.

2.3.2 Truth conditions

Given a model M , a state w in M and a formula A, we want to define what it
means that a formula A is true at the world w of the model M . For instance,
if M represents a coffee machine, w represents the state “Your coin has been
inserted”, how can we define that the formula [select coffee]Coffee (“after
having selected a coffee, I will have a coffee”) is true?

Formally, We write M,w � A for “the formula A is true at the world w of
the model M”, and we define it as follows:

Definition 5 (truth conditions). We define M,w � A by induction:

• M,w � P iff P ∈ V (w);

• M,w � ¬A iff M,w (� A;

• M,w � A ∧B iff M,w � A and M,w � B;
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• M,w � A ∨B iff M,w � A or M,w � B;

• M,w � A → B iff M,w � A implies M,w � B;

• M,w � [I]A iff for every world u, wRIu implies M,u � A

According to this definition, a proposition P is true at a world w of a model
M if, and only if the the valuation of w contains P . A formula of the type ¬A
is true at a world w of a model M iff the formula A is false in the world w of a
model M . A formula A∧B is true at a world w of a model M iff both formulas
A and B are true at w. The last item says that formula [I]A is true at a world
w of a model M iff A is true at all the possible worlds u of that are accessible
from w by the relation RI in the model M .

2.3.3 Dual modal operators

According to our official reading, M,w � [I]A means that A is necessarily true
at w w.r.t. the parameter I. If ¬[I]¬A is true at a world w then, according
to the above truth conditions, there exists a world u, accessible form w by the
relation RI , such that M,u � A. We say in this case that A is possibly true at
w w.r.t. I, and the reason is that ¬A is not necessarily true at w. Hence, the
notion of possibility and the notion of necessity are dual.

However, to lighten the notation of possibility, we use a special modal con-
nector, which is usually denoted by 〈I〉A. We define its corresponding truth
condition as follows:

M,w � 〈I〉A iff there exists a world u, such that wRIu and M,u � A

When the language is enriched with new connectors, we define their truth
conditions to correctly specify their semantics, as we did here for the 〈〉 connec-
tor. For the moment, we settle for the above truth conditions, and we postpone
the definition of the many other connectors, such as K and X, to the chapters
where they are introduced.

Next we define the various reasoning problems in which we are interested in
general, and which we intend to solve automatically using our tool LoTREC.

2.4 Reasoning problems

Many questions seem to be challenging to be answered about formulas and their
truth values w.r.t. models. For example, does the truth value of a formula in a
specific world of a model change when it is considered in another world of the
model? can we find a formula that is true in every world of a given model? does
the answer to this question change when a specific kind of models is considered?
Are we able to define the formulas which are true in every model, or in every
model of a certain kind? what happens if we change the truth conditions or add
new ones? etc.

In this section, we reformulate some of these questions in form of a set of
problems that we usually call reasoning problems.
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2.4.1 Model checking

Given a model M and a world w, we want to check automatically whether a for-
mula is true or not at w. For instance, given a model describing a coffee machine
mechanism, we want to be able to check using the computer that the formula
[select coffee]Coffee is true at the world “Your coin has been inserted”. This
procedure is called model checking. Formally, the model checking problem has
the following input and output:

• Input: a model M , a world w of the model, a formula A;

• Output: do we have M,w � A?

2.4.2 Satisfiability

With different inputs and outputs, we obtain different problems, such as the
problem with:

• Input: a formula A;

• Output: is there a model M and a world w of M , such that M,w � A?

This problem is rather a quest for a model which makes the formula true,
i.e. which satisfies the formula. Hence the name: satisfiability problem.

This general definition makes the search space very large: we look for an
arbitrary model M , which satisfies the formula A. Typically, we add some
constraints on the accessibility relation or the valuation function of the sought
models (see Section 2.3.1). These constraints restrict the search space to some
special classes of models. In such cases, the satisfiability problem is denoted as
C-satisfiability problem, where C is some special class of models.

2.4.3 Validity

Some formulas, such as P ∨ ¬P , seem to be true at any world of any model.
Dually, it seems that its negation ¬P ∧ P is not satisfiable, i.e. we cannot find
a model which satisfies this formula. We say that the formula P ∨ ¬P is valid.
While this single formula can be seen to be valid, we are still curious about
checking the validity of any formula A. Hence the following problem:

• Input: a formula A;

• Output: is M,w � A for every possible world w of every model M?

This is the validity problem. Note that the satisfiability and validity problems
are dual. In fact, when the satisfiability problem is solved for the formula
¬A, if the answer is “No, there is no model M such that for a world w of M ,
M,w � ¬A”, then the validity problem for the formula A is solved, too; the
answer is: “Yes, A is valid”. Conversely, when the answer is “Yes, there are a
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model M and a world w such that M,w � ¬ A”, the answer for the validity
problem is “No, A is not valid”.

Just as the satisfiability problem, the validity problem can be also studied
w.r.t. a special class of models C. In this case, we call it the C-validity problem,
and we will be interested in knowing the C-valid formulas.

2.4.4 Model construction

Solving the satisfiability problem for a given formula A is to answer by “Yes” or
“No”. However, we may be rather interested in an explanation of these answers:
why “Yes”? and why “No”?.

Especially when students are learning a new logic, or when researchers are
studying a special class of models or prototyping a new one, they need to debug
these answers, to understand the searched models and worlds and to visualize
and analyze them. They need these explanations to better understand the
behavior of special formulas, or simply because they are the authors of the
decision procedure that was used to check the satisfiability and they may be
misdefining a bit of code in their procedure.

For all these reasons, we are rather interested in the following problem:

• Input: a formula A;

• Output: a model M and a world w such that M,w � A.

This is the model construction problem, which consists in computing a model
for the input formula. During the model construction process, a model, which
does not satisfy the input formula A, is a counter-model for this formula and
explains why “Yes, ¬A is satisfiable” (i.e. why “No, A is not valid”). Whereas a
model which satisfies A is an explanation of the answer “Yes, A is satisfiable”
(i.e. “No, ¬A is not valid”).

Note that when the model construction method delivers only counter-models
for the formula A (resp. ¬A), it answers “Yes” the question about the validity
of the formula ¬A (resp. A), and gives in addition all the possible explanations
of this answer.

Similarly to the formerly defined C-satisfiability and C-validity problems, the
model construction method may be restricted to compute only models which
belong to some special class of models C.

Conclusion

In this chapter, we defined a formal language to express formulas rigourously,
and we showed how to define a formal language in our tool LoTREC. Then
we gave a formal framework to evaluate formulas. We also presented some
challenging problems related to the evaluation of formulas. However, we did not
talk about possible solutions to these problems, especially automated approaches
to solve them. This is what we are going to do, starting from the next chapter.
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We address the model checking problem later in Chapter 6. Among the three
other problems, we choose to handle the model construction problem. We do so,
since model construction subsumes the satisfiability and the validity problems,
and in addition it has some interesting educative features.

Model construction methods for various logics and their implementations in
our tool LoTREC are explained throughout the next chapters.
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Chapter 3

The model construction
method

Introduction

Usual tableaux systems are quite close to Gentzen sequent systems. The latter
build proofs that take the form of trees, breaking down a given input formula
connector by connector.

Such sequent systems can be defined quite straightforwardly for many basic
modal logics, whose models can more or less be identified with trees. However,
Kripke models are not limited to trees, and both sequent and tableaux systems
for the corresponding logics are more difficult to design: somewhat contrarily to
the spirit of Gentzen systems, they typically require cumbersome meta-linguistic
side conditions. Contrasting with almost all existing tableaux systems that are
tree-based, LoTREC works on graphs in order to get around that difficulty, and
is therefore much closer to the Kripke models.

Another difference with usual tableaux calculi is that —just as sequent
systems—, the latter are traditionally viewed as constructing a proof (by refu-
tation) of the validity of a formula. In contrast, we focus on the construction
of a model for the input formula. Thus for us, a tableaux calculus is rather a
model construction procedure.

In this chapter, we show how to define such a procedure to solve problems
of the form:

• Input: a formula A;

• Output: a model M and a world w such that M,w � A.

We explain first how to define such a method on paper (section 3.1). Then
we explain the used terminology (section 3.2). After that, we show how to
declare an equivalent automated method in our tool LoTREC (section 3.3), and
we give its full set of rules (section 3.4). We then extend this method to deal

55
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with two other logics: multimodal logic Kn (section 3.5), and Kn with a simple
interaction between multiple modalities (section 3.5.1). Finally, we discuss how
to certify the methods defined in LoTREC: i.e. how to make sure that they stick
to their theoretical design on paper (section 3.6).

3.1 Model construction by hand

To introduce the model construction method, we consider the most simple case:
the monomodal logic K. Its language is defined according to Definition 2 with
a singleton set of indexes I. Thus instead of having multiple relations RI and
many multimodal connectors [I], we only have one relation, say R, and one
modal connector, usually denoted by  . The truth conditions defined in Sec-
tion 2.3.2 hold also in K, with the only difference that the truth conditions
corresponding to the [.] and 〈.〉 connectors become:

M,w �  A iff for every world u, wRu implies M,u � A;

M,w � �A iff there exists a world u, such that wRu and M,u � A.

Note that in K, a model is an arbitrary model. Thus there are no constraints
on the accessibility relation nor on the valuation function.

Let us consider the formula A =  P ∧ (�Q∧�(R ∨¬P )), and let us try to
develop a model for it. First of all, we need a convenient data structure that can
embed a potential model. To this end, we use a labeled graph M =(W, R, V) (as
defined in chapter 1). To the possible world w0 s.t. M,w0 � A we will associate
the node w0 in M s.t. A ∈ V(w0).

During the development of M, we keep on the equivalence between the notion
of “the formula A should be true at the world w” (i.e. M,w � A) and the notion
of “the formula A should belong to the node w” (i.e. A ∈ V(w)).

For example, assuming that in a model M there is a world w s.t. the formula
A∧B is true at w (formally M,w � A∧B) imposes that both A and B should
be true at w, according to the truth conditions. Thus, during the construction
of the corresponding labeled graph M where w is the node associated to w, we
make sure that A ∧ B belongs to w (i.e. A ∧ B ∈ V(w)). Then we extend V to
have A and B belonging to w (i.e. A,B ∈ V(w)). We say also that “we add A

and B to w”.

Note that our assumption could be false and that no model exists at all.
For instance, if we assume that P ∧ ¬P is true at a world w of a model M ,
then it is required that we add both P and ¬P to the associated node w of the
corresponding labeled graph M. However, no model can be made up from M.

That is why, during the model construction, we call the used labeled graph a
premodel (i.e. a quasi-model or a pseudo-model). After finishing the construction
of a premodel, we check whether it can be extended to a model or not (see section
3.1.6).

In addition, we use “world” to denote a “node” from the premodel. And we
state that: given a world w of a premodel M, the sentence “A has been added to
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w” (i.e. A ∈ V(w)) becomes interpreted as “A is true at w” when, and only when,
M is extended to a model.

Returning to our example formula A =  P ∧ (�Q∧�(R∨¬P )), we give in
the sequel the detailed steps of its premodel construction.

3.1.1 Initialisation

Since we assume the existence of a model M s.t. the pointed model M,w0 � A,
we start with an initial premodel M =(W, R, V) where W = {w0}, R = ∅ and
V(w0) = { P ∧ (�Q ∧�(R ∨ ¬P ))}, i.e. a single world w0 containing the input
formula A, as shown in Figure 3.1.

Figure 3.1: premodel: initial world and input formula

3.1.2 Classical saturation (∧)

Due to the truth conditions of an ∧-formula (section 2.3.2), assuming that there
is a model M s.t. M,w0 � A, i.e. assuming M,w0 �  P ∧ (�Q ∧�(R ∨ ¬P )),
imposes both constraints:

• M,w0 �  P and

• M,w0 � �Q ∧�(R ∨ ¬P ).

Practically, we simply add all the consequences that should be drawn from
A to the world w0. That is why we extend the labelling function of M so that it
becomes: V(w0) = { P ∧ (�Q ∧�(R ∨ ¬P )),  P, �Q ∧�(R ∨ ¬P )}.

By the same reasoning, concerning the new assumption M,w0 � �Q∧�(R∨
¬P ), we will have a new premodel M with the labelling function V(w0) = { P ∧
(�Q ∧�(R ∨ ¬P )),  P, �Q ∧�(R ∨ ¬P ), �Q, �(R ∨ ¬P )}.

These two steps are illustrated in Figure 3.2.

Figure 3.2: And rule applied successively twice on premodel
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3.1.3 Successors creation (�)

According to the truth conditions, assuming that a formula �A is true at a
world w imposes having a possible world u accessible from w (i.e. (w, u) ∈ R)
and such that A is true in u.

So considering the formula �Q in the node w0 we should have a successor
node, let it be u, accessible from w0 (i.e. (w0, u) ∈ R), and such that Q ∈ V(u).
Considering �(R ∨ ¬P ) on the other hand, we should have a successor node v
accessible from w0 s.t. R∨¬P ∈ V(v). Figure 3.3 sketches the premodel obtained
at this computation step.

Figure 3.3: Pos rule applied on premodel

One may ask: why to create two different possible worlds u and v for each
of the above �-formulas? The answer is simple: since we are interested in
maximizing the chance of finding a model, we would look toward avoiding clashes
as long as possible. Thus we chose to create a new different possible world for
each �-formula so that their subformulas will be separated in two different
valuation sets.

3.1.4 Propagation ( )

Now we consider the other new assumption: M,w0 �  P . Referring to the
corresponding truth conditions,  P is true at w0 iff P holds at every successor
of w0. That is why we extend the last premodel to the one where V(u) = {Q,P}
and V(v) = {R ∨ ¬P,P}. This is illustrated in figure 3.4.

3.1.5 Disjunction (∨)

A disjunction is satisfied if either one of its subformulas is. For instance, the
formula R ∨ ¬P appearing in V(v) imposes that one of the formulas R or ¬P
belongs to the labelling function of v.

That is why we duplicate our premodel M in two other premodels: M1 and M2
that are very similar to the previous premodel, except that in the first one we
add R to v, whereas in the second we add ¬P to v.
M1 and M2 are represented by premodel.1 and premodel.2 in figure 3.5.
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Figure 3.4: Nec rule applied on premodel

premodel.1 premodel.2

Figure 3.5: Or rule applied on premodel: creates premodel.1 and premodel.2

3.1.6 Extracting a model

At this step, the satisfiability of the input formula A amounts to the satisfiability
of the smaller subformulas appearing in V(u) and V(v): the atomic propositions
and their negations (P,Q,R and ¬P ).

In other words, all the consequences of the truth conditions have been drawn,
and no further decomposition is needed in the obtained premodels. However,
these premodels are not both extensible to a model M for A.

In fact, v in M2 (premodel.2) holds both an atom and its negation, P and
¬P . This raises a contradiction at the world corresponding to v, and M2 cannot
be transformed to a model. Hence, it can not be extended to a model for A

(Figure 3.6).

On the other hand, the premodel M1 (premodel.1) can be extended to the
model M = (W,R, V ) (Figure 3.7) such that:

• W = {w0, u, v};

• R = {(w0, u), (w0, v)}

• V (w0) = ∅, V (u) = {Q,P} and V (v) = {P,R}.
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Figure 3.6: There is a clash in node v of premodel.2 since it contains both P

and ¬P .

Figure 3.7: The model M extracted from M1.

To sum it up, we constructed in this section a semantical proof of the satis-
fiability of a formula A by trying to construct a model M and a world w such
that A is true at w.

3.2 Terminology

In the introduction of this chapter, we discussed some of the contrasts between
our model construction method and usual tableau methods. The first main dif-
ference we talked about, is that our model construction method uses graphs,
which we call premodels, instead of trees. Thus first we define this graph struc-
ture.

3.2.1 What is a premodel?

To embed the constructed premodels in a convenient graph structure, we chose
labelled graphs (see Definition 1). The nodes and edges are labelled by elements
of the labels set L = I ∪ For. However, we restrict our premodel definition to
allow a node to be labeled with a subset of For, and an edge to be labeled with
just one element of I.

Definition 6 (premodel). A premodel is a labeled graph M = (W, R, V) where:

• W is a finite set of nodes;
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• R: I → 2W×W is a family of binary relations over W and indexed by I;

• V: W → 2For is a function which maps each element of W to some set of
formulas.

3.2.2 What is a rule?

Back to the contrasts with tableaux, another main difference is that our method
is not a sequent-like tree construction (e.g. [Gor99] and [Mas00]). It is rather a
stepwise“pseudo-model”construction (e.g. [Bal00]). This step-by-step construc-
tion may bee seen as rewriting a graph starting from an initial node containing
the input formula. At a given step, a premodel is called partial. In order to
reach the premodel of the next step, we use an appropriate set of graph rewrit-
ing rules (or simply rules) which only add elements (nodes, edges and formulas)
to the structure of the current premodel.

A graph rewriting rule is usually defined as a pair of left-hand side graph and
right-hand side graph. When the left graph is found in the host graph where
the rule is applied, it is replaced by the right hand side graph.

In our model construction method, the rules are monotonic, in the sense
that when the left graph is found, only new graph elements (nodes, edges and
formulas) are added to the host premodel. Hence, we define our rules by two
sets:

• a set of conditions which describe the left-hand side graph (this is explained
later in section 3.3);

• a set of actions which specify the set of elements (nodes, edges, formulas)
to be added to the current premodel in order to obtain the next premodel.

3.2.3 Other notations

A common criteria of tableau and model construction is the notion of saturation
of rules application, which leads, in case that the method is terminating, to a
complete tableau in the classical approach, which we actually call a complete
premodel in our approach.

Definition 7 (complete premodel). A complete premodel is a partial premodel
on which no rule applies, more precisely a complete premodel is the least fixed
point of a sequence of partial ones.

In classical tableau, we may have different tableau branches, due to the
non-deterministic choices in disjunctions or other special kind of rules. In our
approach, we duplicate the current premodel in what we call premodel copies
in order to consider each choice aside. A given premodel and its copy share
the same structure that was developed before the fork. In addition, our rules
continue in constructing all the premodels copies, exactly as tableau rules keep
on exploring all tableau branches.
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According to these last two similarities, saturation and branching, we define
the notions of closed and open (complete) premodel as they are usually defined
in the tableau method to distinguish between open and closed tableau branches.

3.3 Automated model construction

In section 3.1, we created a model for the formula A =  P ∧ (�Q∧�(R∨¬P ))
by hand. In this section, we are going to see how it is possible to do this model
construction using the software LoTREC.

3.3.1 Language of rules

Let us recall the example given in section 3.1.

Classical rules (∧)

In that example, we first considered the connector ∧. Given �P ∧ ( Q∧ (R∨
¬P )) in a world w, we had to add �P and ( Q ∧ (R ∨ ¬P )) in w. Secondly
given ( Q ∧ (R ∨ ¬P )) in a world w, we added  Q and  (R ∨ ¬P )) in w.

These two steps are very similar in the sense that they are concerning a
formula of the form A ∧ B. In the first step, we had A = �P and B =
( Q ∧ (R ∨ ¬P )). In the second step, A =  Q and B =  (R ∨ ¬P )). That
is why symbols A and B are called variables.

To treat the connector ∧, we proceed as follows: if there is a formula of the
form A∧B in a given node w, we have to add the formula A and the formula B

to w. This is can be achieved by defining a rule in LoTREC.
As shown in Section 3.2, a rule consists of two parts: conditions and actions.

Here, we have the following:

• condition: there is a formula A ∧B in a given node w;

• actions:

– add formula A to node w;

– and add formula B to node w.

In LoTREC, in order to test if there is a formula in a node, we use the
primitive hasElement. For instance to test if a node w contains a formula of the
form A ∧B, we write: hasElement w and variable A variable B.

We also remark that we use here the same prefix notation introduced in
section 2.2. You can also remark that we have used the keyword variable.
When you write variable A, A is then stated as a variable. Otherwise, LoTREC
will interpret A as a constant. Note that there is no constant symbols to denote
fixed nodes, and that a node identifier w always denotes a variable. Hence, we
shortly write in the rule w, as a node identifier, instead of variable w.

To add a formula to a given node, we simply use the primitive add de-
fined in Chapter 1. For instance in order to add formula A to w we write
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add w variable A. Note that it is the instance formula assigned to variable A
that is added to the instance node assigned to w.

Here is the whole definition of the rule dealing with the connector ∧ in
LoTREC:

Rule And

hasElement w and variable A variable B

add w variable A

add w variable B

End

Remark 4. Note that this And rule is not applicable anymore on the current
premodel. Although we do not remove the formula �P ∧ ( Q ∧  (R ∨ ¬P ))
which is matched to the formula A∧B, the And rule is not applicable once again
on the same formula. As if LoTREC is considering treated formulas as old
elements, while inviting the rules to be applied only on new elements recently
added to the premodel graph. The mechanism which guarantees this finite
rules application, and hence guarantees the termination of the whole premodel
construction process, is explained later in Chapter 11.

Successor creation ( )

In the same way, the successor creation can be defined as a rule with:

• a condition: a world w containing a formula of the form  A;

• actions:

– add a new node we can call u;

– link node w to u by a relation R;

– add formula A to the node u.

In LoTREC, we write:

Rule Pos

hasElement w pos variable A

createNewNode u

link w node1 R

add u variable A

End

For further explanation on these action keywords, you may refer to Section
1.4 or to Appendix B.1.

Propagation (�)

In the same way, the propagation can be defined as a rule. Just recall the truth
condition of the � operator: M,w |= �A iff for all u ∈ W , such that wRu we
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have M,u |= A. Basically, if a node w contains �A, we need to add A in all
successors of w. This can be expressed not only with one condition but with two
conditions in order to be able to capture the successors of w. More precisely, if
we want to add A to a successor u of w we need not only a world w containing a
formula of the form �A but also a link from w to u. Here is the description of
the rule:

• conditions:

– a node w containing a formula of the form �A;

– but also have a node u such that w is linked to u;

• action: add A to node u.

In LoTREC, we test if a node is linked to another one using the primitive
isLinked. To test if w is linked to u by the relation R, we write isLinked w u R.
The propagation rule is defined as follows:

Rule Nec

hasElement w nec variable A

isLinked w u R

add u variable A

End

Disjunction (∨)

The case of disjunction is a bit special. Here is the description of the rule:

• condition: a node w contains a formula of the form A ∨B;

• actions:

– we duplicate the current premodel;

– in one, we add A to w;

– in the other one, we add B to w.

In LoTREC, the duplication is done with the keyword duplicate. The action
duplicate premodel_copy will duplicate the current premodel where premodel_copy
denotes the copy of the current premodel. Then we can have access to world
w of premodel_copy by writing premodel_copy.w. Accessing w in the current
premodel is still possible by simply writing w as usual. Here we can add A

to w in the current premodel (add w variable A) and add B to w in the copy
(add premodel_copy.w variable B).

Rule Or

hasElement w or variable A variable B

duplicate premodel_copy
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add w variable A

add premodel_copy.w variable B

End

Clash rule (False)

In case of the presence of a formula A and its negation ¬A at the same node w,
a clash should be reported and False is to be add to w. As an option, we can
ask LoTREC to stop further explorations in a clashing premodel, since it will
not be extensible to a model at the end.

To do so, we define the following rule:

• conditions:

– a node w contains a formula A;

– w also contains the formula ¬A;

• actions:

– add the falsum constant “False” to w;

– (optionally) stop developing the current premodel.

The only new keyword needed for this rule is stop, which is however self-
explanatory, and the rule is defined as follows:

Rule Stop

hasElement w variable A

hasElement w not variable A

add w False

stop

End

3.3.2 Saturation with repeat

In the last subsection, we have shown how to define the rewriting rules that are
understood by LoTREC, and which correctly mimic the steps of the by-hand
model construction (given in subsection 3.1) for the formula A = �P ∧ ( Q ∧
 (R ∨ ¬P )). In order to apply these rules automatically in LoTREC, we need
to call them in what we call a strategy.

For the example formula A, a possible working strategy is first to apply rule
And, then rule And again, then rule Pos, then rule Nec, then rule Or, and finally
rule Stop.

In LoTREC, this strategy is written like this:

Strategy Strategy_For_The_Example

And

And
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Pos

Nec

Or

Stop

End

Remark 5 (Parallel rule application). A given rule in LoTREC is applied wher-
ever it is possible at once, when it is called by the strategy. Hence, it is sufficient
to call the rule Nec just once in the strategy, in order to propagate the formula
P of �P at w0 to both successors of w0, u and v (see Figure 3.4).

One may wonder: what if I want to solve the satisfiability problem of another
formula? Let us say P ∧ (Q∧ (R ∧ ¬P )). Does the same strategy fit to solve it?
If we had checked out the last examples, we should have already guessed that
the answer is “no”.

In fact, in order to treat completely the formula P ∧ (Q ∧ (R ∧ ¬P )), you
need to apply the rule And three times. If you look at the formula P ∧ (Q ∧
(R ∧ (S ∧ ¬P ))) you will need to apply the rule And four times. Generally
speaking, to deal with such formulas, you need to apply the rule And as much
as necessarily. We need to repeat the application of the rule And as much as it
is needed. To do this, LoTREC provides the keyword repeat and end.

Here is the strategy to develop a formula with ∧:

Strategy Strategy_For_And

repeat

And

end

End

You can also repeat many rules application by writing name of rules to apply
between the keyword repeat and end. Here is an example:

Strategy Example_Of_Strategy

repeat

And

Or

Pos

Nec

end

End

This strategy works right for our example, as well as many other formulas,
but not for all of them, as we shall see in the next section.

3.4 The full set of rules

The set of rules, defined so far in the previous sections, is not sufficient to treat
some other formulas. For instance, the formulas ¬¬P , ¬(P ∧ Q) and P → R

cannot be handled by the rules introduced in section 3.3 alone. These formulas
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rise up from combination of unary and binary connectors, from successive con-
nectors imbrication or from complex connectors that can be rewritten in simpler
basic ones according to the truth conditions. For example, verifying ¬¬P im-
poses verifying P . The formula ¬(P ∧Q) is true iff ¬P is or ¬Q is. And P → R

holds iff ¬P holds or R holds.
In addition to the rules given in the subsection 3.3, Stop, And, Or, Nec and

Pos, we need to define the following rules :

Rule NotNot

hasElement w not not variable A

add w variable A

End

Rule NotOr

hasElement w not or variable A variable B

add w not variable A

add w not variable B

End

Rule NotImp

hasElement w not imp variable A variable B

add w variable A

add w not variable B

End

Rule NotAnd

hasElement w not and variable a variable b

add w or not variable a not variable b

End

Rule Imp

hasElement w imp variable a variable b

add w or not variable a variable b

End

Rule Equiv

hasElement w equiv variable a variable b

add w or not variable a variable b

add w or not variable b variable a

End

Rule NotEquiv

hasElement w not equiv variable a variable b
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add w or variable a variable b

add w or not variable a not variable b

End

These rules are self-explanatory and we may verify their meanings by check-
ing the corresponding truth conditions.

As for formulas of the form ¬�A and ¬ A, we use the following two rules:

Rule NotPos

hasElement w not pos variable a

add w nec not variable a

End

Rule NotNec

hasElement w not nec variable a

add w pos not variable a

End

These rules reflect the duality of necessity and possibility ¬�¬A ↔  A,
explained in Section 2.3.3.

All the above rules, except Imp and Equiv, are computing in fact the nega-
tion normal form (NNF) of the formulas. However, this is not done in a pre-
processing of the input formula, but achieved all along the model construction
process.

A simple strategy is to call the above rules repeatedly as follows:

Strategy K_Strategy

repeat

Stop

NotNot

And

NotOr

NotAnd

NotImp

NotEquiv

Imp

Equiv

Or

NotNec

NotPos

Pos

Nec

end

End

3.4.1 Cut rules

In addition to the previous rules, we can define some of the so called cut rules,
which avoid unfruitful non deterministic choices when it is possible. For in-
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stance, it is clear that adding ¬P to the node v of the premodel.2 (Figure 3.5),
where we have already added R ∨ ¬P and P , will end up in a contradiction
(Figure 3.6). Hence, it would be better, from a computational point of view1,
to directly add R to v, and to prevent the rule Or from being applied on the
occurrence of R ∨ ¬P .

This can be achieved by defining a new set of cut rules and calling them in
the strategy before calling the Or rule. A cut rule lookups for a ∨-formula that
can be simplified: it adds its consequence subformula and marks this ∨-formula
as Cut. For example:

Rule CutOr_not_B_B

hasElement w or variable A not variable B

hasElement w variable B

add w variable A

markExpressions w or variable A not variable B Cut

End

Figure 3.8: Applying a cut-rule gives only one premodel at the model construc-
tion step of Figure 3.5.

When called on the premodel of Figure 3.5, this rule adds R to the node v
and marks the formula R ∨ ¬P by Cut. The mark of a formula is displayed in
LoTREC between brackets in front of the formula, as shown in Figure 3.8.

Remark 6. Marks are harmless meta-data that can be added by the users to
annotate formulas or nodes, in order to give additional information to some
rules, or to the users themselves.

The Or rule should be changed too. When it finds an occurrence of an ∨-
formula, it should test first for the absence of the mark Cut before being applied
on it. Here is the right version of the Or rule and

Rule Or_With_Cut

hasElement w or variable A variable B

isNotMarkedExpression w or variable A variable B Cut

duplicate premodel_copy

1Since duplicating a premodel in another copy is time and space consuming.
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add w variable A

add premodel_copy.w variable B

End

We notice that Or_With_Cut has only one difference with the original Or: an
additional condition to verify that the A∨B formula, on which the rule is going
to be applied, is not marked by Cut.

We can define some other cut rules as follows:

Rule CutOr_A_A

hasElement w or variable A variable B

hasElement w variable A

markExpressions w or variable A variable B Cut

End

Rule CutOr_B_B

hasElement w or variable A variable B

hasElement w variable B

markExpressions w or variable A variable B Cut

End

Rule CutOr_A_not_A

hasElement w or variable A variable B

hasElement w not variable A

add w variable B

markExpressions w or variable A variable B Cut

End

Rule CutOr_B_not_B

hasElement w or variable A variable B

hasElement w not variable B

add w variable A

markExpressions w or variable A variable B Cut

End

Rule CutOr_not_A_A

hasElement w or not variable A variable B

hasElement w variable A

add w variable B

markExpressions w or not variable A variable B Cut

End
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3.5 From mono to multimodal logic Kn

Defining model construction for the multimodal logic Kn from scratch is not
necessary, and it can be easily achieved in LoTREC if we have already defined
the model construction for the monomodal logic K.

Comparing to the monomodal logic K, the modal operators  and � become,
in the multimodal logic Kn, binary operators of the form 〈I〉 and [I], where
I ∈ I is a given modality index, such as 〈BBC〉It Rains and [Obama]We Can.
Hence, to reuse the method of K for Kn, we have to change the definition of the
modal connectors (as explained in Section 2.2).

As for the rules, we can keep on using the same set of rules defined above
for the monomodal logic K, except the modal rules which have to be slightly
modified. In fact, the rules Pos, Nec, NotPos and NotNec should take into account
the index I of the modalities. For example, the Pos rule should be defined as
follows:

Rule Pos

hasElement w pos variable I variable A

createNewNode u

link w node1 variable I

add u variable A

End

Note that we are considering pos variable I varibale A, instead of con-
sidering pos variable A, where variable I is to be substituted by any given
modality index from I. This modality will be the label of the link created by
the action link w u variable I.

Similarly, the Nec rule should be modified so that the [I]-formulas are only
propagated along the edges labeled by I:

Rule Nec

hasElement w nec variable I variable A

isLinked w u variable I

add u variable A

End

The modal rules NotNec and NotPos should be modified similarly, by replacing
occurrences of R by variable I.

As for the strategy, we can keep on using the same strategy defined for the
monomodal logic K (Section 3.4), since we dispose of the same set of rules and
the same semantics.

3.5.1 Inclusion: a simple interaction between modalities

In multimodal logics, we may have various kinds of interaction between the
different modalities. In this section, we shall meet one simple kind of interaction,
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called inclusion, and we shall explain how to adapt the above model construction
method to take this interaction into account.

To this end, we consider, for simplicity and w.l.o.g., a multimodal logic with
two K modalities, say [I] and [J ], and with the axiom [J ]P → [I]P . This axiom
changes the truth condition of the [J ]-formulas to the following:

M,w � [J ]A iff for every world u, if wRJu or wRIu then M,u � A

Which means that [J ]-formulas are considered as if they were [I]-formulas.
Practically, this means that, during the model construction, for every [J ]A for-
mula at a given world w, the formula A should be propagated along the I-edges
to all the RI -successors of w, exactly as it is propagated along the J-edges to
all the RJ -successors of w.

This equivalently means that, for a given world w, a successor by RI is
also considered as a successor for w by RJ . Indeed, there is no harm in this
understanding, since the [J ]P → [I]P axiom is dually equivalent to 〈I〉P →
〈J〉P .

The intuition behind inclusion can be also clarified in terms of relations, by
considering the relations RI and RJ as being the relations “is a brother of ” and
“is a sibling of ”, respectively. It is clear that if we say that all the siblings of
somebody are elder than her/him, then we implicitly assume that all her/his
brothers are all elder than her/him. More generally, if a property P holds for
all her/his siblings, then it holds also for all her/his brothers too. The reason is
that the relation “is a brother of” is included in the relation “is a sibling of” (we
denote it by RI ⊆ RJ).

This is why we take this axiom as an interaction axiom and we call it the
Inclusion axiom. Hence, the logic we are studying here is usually denoted as
K+ K+ Inclusion, or briefly K2 + Inclusion.

LoTREC rules for K2 + Inclusion

We simply give an adaptation of the model construction method, given in Section
3.5, to conveniently cope with this inclusion semantics. For instance, if we keep
on using the same multimodal rules defined in Section 3.5 to deal with the
unsatisfiable formula 〈I〉P ∧ [J ]¬P , then we would obtain the open premodel of
Figure 3.9.

The needed adaptation is technically simple. We only need to add one rule
which takes the above explained RJ -RI interaction into account, as follows:

Rule Nec_J_To_I_Successors

hasElement w nec J variable A

isLinked w u I

add u variable A

End

Running with the strategy defined in section 3.4 and calling this new rule in
addition, we obtain the closed premodel of Figure 3.10.
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Figure 3.9: An open premodel obtained by an unadapted method for the formula
〈I〉P ∧ [J ]¬P , which is unsatisfiable K2 + Inclusion.

Figure 3.10: A closed premodel for the formula 〈I〉P ∧ [J ]¬P .

Note that we can deal with the inclusion of more than two relations by
defining as many (similar to Nec_J_To_I_Successors) rules as needed (one rule
by inclusion interaction).

3.6 Certifying a model construction method

Let us recall first the terminological definitions given in section 3.2 about rules
and closed, open and saturated premodels. First, we formulate some properties
which we would like to hold:

Definition 8 (termination). A model construction method is terminating if,
and only if, at some step all premodels are either closed or saturated.

Definition 9 (completeness). A model construction method is complete if an
open saturated premodel built with the method for a formula A can be turned
into a model for A.

Definition 10 (soundness). A model construction method is sound if: for every
formula A, if the method builds an open premodel for A then A is satisfiable.

The following criteria are useful in order to guarantee the above properties:

1. We should define a complete set of rules, i.e. a set of rules which reflects
all possible constraints on truth conditions. This is not a hard task for
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the logics we have seen so far, but it becomes a tricky task for more
sophisticated logics as we shall see in further chapters.

2. We have to make sure that this set of rules only reflects the exact needed
constraints, and no other additional ones. Otherwise, it would be unsound.

3. We have to apply indistinctively these rules as long as possible, i.e. as long
as the obtained premodels are neither closed nor saturated; otherwise one
might produce premodels that are open and saturated, but which cannot
be extended to models: the result would not be sound.

4. In case we are using a strategy to apply the rules in a given order, we
have to make sure that every applicable rule will be eventually applied,
otherwise one might produce premodels that are open and saturated, but
which cannot be extended to models: the result would not be sound.

5. In case our strategy is applying the set of rules repeatedly, we have to
make sure that at some step all premodels are either closed or saturated,
and that the process do not run for ever2, otherwise the method would
not be terminating.

The above definitions and properties are to be formulated for each method
as theorems, and have to be proven on a case-by-case basis for each method.

The methods that we defined in this chapter are all sound, complete and
terminating. A formal proof is given later in chapter 8 for a more complex logic.
In the next chapter, we give a general termination criteria (Theorem 1) that
covers the methods that we have defined up to now.

Conclusion

In this chapter we introduced the model construction method. We showed that it
is a tableau-like method. In contrast with usual tableaux methods, our method
uses graphs instead of trees, and it is an attempt to build a Kripke model for
the input formula, not a proof (by refutation) of validity of the formula.

This model construction is done in a step-by-step application of a set of
graph rewriting rules. These rules are called by a strategy in order to saturate
the constructed premodels.

After showing how this method works on paper, we showed how to implement
an automated procedure in our software LoTREC to achieve the same method
using the computer.

We considered first the case of the modal logic K, then its multimodal version
Kn. After that we considered the simple Inclusion interaction between multiple
modalities.

At the end, we discussed some of the theoretical properties of the model
construction methods and how to ensure them, mainly termination, soundness
and completeness.

2i.e. premodels never become closed nor saturated.



Chapter 4

Logics with simple
constraints on models

Introduction

In chapter 1, we described how to model various systems and situations with
graphs, which we call labelled graphs, and we talked informally about the prop-
erties of these systems.

In chapter 2, we showed how to express these properties in a formal language,
in which a property is encoded as a formula and a system or a situation is
represented by a model of this language. At the end of that chapter we gave
the semantics of formulas by giving truth conditions for every connective, and
we defined some of the interesting reasoning problems.

In chapter 3, we addressed the satisfiability problem in logics of arbitrary
models, K and Kn, by defining a model construction procedure: we answer
the question “is there a model that satisfies a given formula?” by trying to
construct such a model. Then we showed how to make this model building
process automatic in LoTREC.

In many applications models satisfy some constraints on their structures. As
we will see, the method presented in chapter 3 is not appropriate any more to
tackle the satisfiability problem in the models of such systems. This shall be
clarified immediately.

Motivation

Let us recall the card game of Section 1.2. In the state “Red” the formula
Red is obviously true, whereas the formula KBob¬Red is false. Checking this
formula in the model of Figure 1.6 gives us this result, identifying KBob¬Red

with [Bob]¬Red. More generally, in ‘appropriate’ models of knowledge it should
never happen that A and KI¬A are true in the same world. In other words,
KIA → A should be valid in ‘reasonable’ models of knowledge. However, the
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formula KBob¬Red∧Red is satisfiable according to the method of chapter 3: it
is so in a model consisting of one node in which Red holds, and KBob¬Red too
since that node has no successors.

How can we guarantee that KIA → A is unsatisfiable? Well, models of
knowledge should have a reflexive1 accessibility relation: if the actual world is
the state “Red”, then this state should also be possible for Bob. This guarantees
that a formula such as KBob¬Red does not hold at the same state in which Red

holds (figure 4.1). However, the method of chapter 3 does not account for this
structural constraint.

Figure 4.1: The correct closed premodel for the formula KBob¬Red ∧Red.

Let us consider another example. Suppose that we are modelling a multi-
tasks system. Suppose that each state represents a task and that a state w

is linked to state u if “the task represented by w can be executed in parallel
while executing the task represented by u”. Obviously, the statement “the task
represented by u can be executed in parallel while executing the task represented
by w” holds, too. Hence, for every such two states, w and u, u should be also
linked to w, which means that the underlying model has to be symmetric.

Methodology

The above examples show that we need to extend our method given in chapter 3
in a way to capture most known structural constraints on the models of various
logics. Since most of these logics are based on the classical propositional modal
logic K, the method of Chapter 3 is reused as the basis of these methods.

In general, the rules dealing with classical connectors do not change in these
methods. We only change the rules dealing with the modal connectors. In the
literature, there are two orthogonal approaches to deal with special constraints
on the accessibility relations and which are due to the validity of certain axioms:

• the accessibility relation is explicitly updated (by adding the necessary
reflexive, symmetric,. . . edges), as the case in labelled tableaux,

• some reduction rules are added to take the corresponding axioms into
account without affecting the accessibility relation.

1A relation is reflexive iff for all w ∈ W and for all I ∈ I we have wRIw.
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We shall see how to implement both approaches throughout this chapter.

Moreover, we keep on using the same strategy defined in Section 3.4, except
when we add new rules and when the order of the rules inside the strategy
becomes important; we then state the new strategy.

What is in this chapter

In this chapter, we consider the model construction method for various logics
with specific constraints on their models. We give the methods of KT (Section
4.1), KB (Section 4.2), K.alt1 (Section 4.3), KD (Section 4.4), K+Confluence (Sec-
tion 4.5) and finally S5 (Section 4.6). In the end, we give a common termination
criteria which covers the methods of all these logics.

4.1 Reflexive models

As shown in the introduction of this chapter, the method of Chapter 3 is not
suitable to achieve the model construction for certain formulas whose models
have to be reflexive.

In order to take into account the effect of the reflexivity of models on the
satisfiability of formulas, we create for every node the necessary reflexive edge.
To this end, we change the Pos rule, defined in Section 3.3, as follows:

Rule Pos

hasElement w pos variable A

createNewNode u

link w u R

add u variable A

link u u R

End

Note that the only one difference is the addition of the last action link u u R.
This action links each newly created node to itself. However, this does not
include pre-created nodes, i.e. the nodes of the input partial premodel. In fact,
if the user is launching the satisfiability check of a formula in a partial premodel
with irreflexive nodes, the above rule does not make these nodes reflexive.

That is why a better solution would be to keep the rule Pos as it, and to add
the following other rule:

Rule Reflexive_Edges

isNewNode w

link w w R

End

and to call this rule once inside the outermost repeat loop of the strategy of
Section 3.4, as follows:
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Strategy K_And_Reflexivity

repeat

Stop

NotNot

..

..

Nec

Pos

Reflexive_Edges

end

End

4.1.1 Simulating reflexivity

Reflexive models are characterized by the axiom T: �A → A, i.e. T is valid in
a given logic iff the underlying models are reflexive. The reflexivity constraint
on the structure of models can be simulated by changing the truth condition of
the �-formulas as follows:

M,w � �A iff M,w � A , and for all u s.t. wRu,M, u � A

So that a �-formula is true in a given world w of a model iff it is true in
every successor u of w, including the world w itself.

Hence, we can deal with reflexivity using the following rule:

Rule Nec_To_Actual_World

hasElement w nec variable A

add w variable A

End

This rule is an alternative to the rule Reflexive_Edges which can be called
in the strategy in order to take the reflexivity into consideration. However, we
still need to call the rule Reflexive_Edges at the end of strategy to complete the
open premodels with reflexive edges in order to transform them into reflexive
models.

Remark 7. We can also handle the bimodal logic K +KT, i.e. the logic with
two modalities: a K-modality [I] and a KT-modality [J ]. We can extend this
method to deal with Kn +KT (see Section 3.5). Moreover, we can extend this
method to deal with the inclusion axiom: [J ]P → [I]P (c.f. Section 3.5.1).

4.2 Satisfiability in symmetric models

An accessibility relation is symmetric iff whenever it links a state w to another
state u then it links u to w too. Some relations are intuitively symmetric such
as the relations linking a state w of a given system to another state u iff “w
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is aside of u”, “w can be executed in parallel with u” or “w is equal to u” etc.
These relations are intuitively symmetric and should link as well u to w.

We can easily check that the method of Chapter 3 is not suitable to deal
with satisfiability in symmetric models, since it does not take into consideration
the structural constraint of symmetry in such models.

For example, suppose that we are modelling the countries neighbourhood.
Suppose that we consider states as countries, and that we define our relation
over the states as: a state C is linked to a state C ′ iff “the country C is a
neighbour of C ′”. It is obvious that for each such linked states C and C ′, C ′

should also be linked to C since “C ′ is a neighbour to C” too. Suppose that
the proposition EU , when found in a state C, means that C is member of the
European Union. Hence the formula ¬EU ∧ �EU in a state C means that the
country C is not member of the European Union and that C has a neighbour,
let us say C ′, whose neighbours are all members of the European Union. The
reader may easily check that this formula should not be satisfiable, whereas it
is satisfiable according to the method of Chapter 3.

Nonetheless, this method becomes suitable to deal with symmetry once the
Pos rule is adjusted as follows:

Rule Pos

hasElement w pos variable A

createNewNode u

link w u R

add u variable A

link u w R

End

This rule links each newly created node to its predecessor. However, as
explained in Section 4.1, this rule does not guarantee that symmetry is respected
in the input premodel. Instead of changing the rule Pos, it would be better to
add the following rule:

Rule Symmetric_Edges

isLinked w u R

link u w R

End

and to call this rule once in the strategy, after calling Pos and before calling
Nec for example.

Remark 8. One may thinks that we need to add the condition isNotLinked u w R
to make sure that such a link does not exist. Nonetheless, in LoTREC two nodes
can not be linked by two edges of the same label.

4.2.1 Simulating symmetry by semantics

Another way of respecting the structural constraint of symmetry, without cre-
ating symmetric arcs, is by propagating the �-formulas from children nodes to
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their parent nodes, as if they were linked to them. The following rule does it:

Rule Nec_To_Parent_Nodes

hasElement w nec variable A

isLinked u w R

add u variable A

End

In Section 4.1 we simulated the reflexivity by respecting the axiom T (�A →
A). However, we can not simulate the symmetry by depicting the underlying
axiom B ( �A → A) nor its dual form (A → � A) with a rewriting rule, i.e.
a rule which adds A to each node that contains  �A, for example!! We let to
the reader to verify that.

4.3 K.alt1 : the relation is a partial function

In this section, we are considering models where the relation is a partial function.
This means that a given node can have at most one successor.

4.3.1 Motivation

In real life, there are some actions where the result is purely deterministic.
After having executed the action, the result is completely determined. So the
transition is a function.

4.3.2 Changing the method of K to get a method for K.alt1

In the logic K, a world can have several successors. For instance the formula
 P ∧  ¬P is satisfiable in the logic K (Figure 4.2). On the contrary, in the
logic K.alt1, a world can only have at most one successor. Hence, the formula
 P ∧ ¬P is no longer satisfiable.

Figure 4.2: Model construction of the formula  P ∧  ¬P , according to the
method of K (Chapter 3).

Indeed, in K.alt1, if a node w contains  P ∧  ¬P , it will contain  P . To
make this formula true, we create a new successor u linked to w and containing
P . The world w also contains  ¬P . So there exists a successor of w containing
¬P . But in a model of the logic K.alt1, as a world has at most one successor,
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and as w has already a successor u, the successor of w containing ¬P will be
also the world u. Thus, u will contain both P and ¬P , as shown in Figure 4.3,
and the formula is then reported as unsatisfiable.

Figure 4.3: The closed premodel that we expect to have for  P ∧ ¬P in K.alt1.

The following rule Pos, defined for dealing with the  operators in K (see
Chapter 3),

Rule Pos

hasElement w pos variable A

createNewNode u

link w u R

add u variable A

End

is no longer suitable for K.alt1. Actually, if a world w contains a formula  A,
we need to add a successor to w only if w has not yet any successors. That is
why we should use an additional condition primitive hasNoSuccessor in the Pos
rule in order to avoid creating more than one successor to any given node. In
K.alt1, the suitable rule should look like:

Rule Pos_One_Successor

hasElement w pos variable A

hasNoSuccessor w R

createNewNode u

link w u R

add u variable A

End

However, this rule does not work appropriately as expected, and delivers the
same premodel seen in Figure 4.2. The problem is that, according to LoTREC’s
philosophy, we apply a given rule at all matching patterns at once (cf. Re-
mark 5). Which means, that in case we have two  -formulas in a given node
with no successors, then each formula will trigger the application of the rule
Pos_One_Successor since the node has no successors at the moment of the test.
Then, the rule will be applied twice, one time by each  -formula, yielding two
successors, exactly as the old Pos rule does. The hasNoSuccessor condition takes
effect only in posterior iterations, when, for example, some other  -formulas are
added later to the same node.



82 CHAPTER 4. LOGICS WITH SIMPLE CONSTRAINTS ON MODELS

Nonetheless, this is not The End. Using the strategy keyword applyOnce
just before the name of the rule Pos_One_Successor is sufficient to demand the
application of the rule on only one matching pattern at a time. Encapsulating
the applyOnce Pos_One_Successor call inside a repeat ... end routine applies
the rule on all the possible occurrences, but after considering them one-by-one,
which means that the condition hasNoSuccessor is taken into account.

Note that, using this rule, only one  -formula will be treated. The reason
is that, once the rule is applied on one of the  -formulas, it creates a successor,
then becomes un-applicable again (due to the presence of this successor) on
whatever other  -formula.

It is clear, that we need two different rules:

• the first one says: if there is a  A formula at a given world w with no
successors then create one, say u, then add A to it,

• while the second one states that: if there is a  A formula at a given world
w having already a successor u, then add A to that world u.

Note that adding the formula A by the first rule is not necessary since it is
achieved in the second rule. Hence the following two rules:

Rule Create_One_Successor

hasElement w pos variable A

hasNoSuccessor w R

createNewNode u

link w u R

End

Rule Pos

hasElement w pos variable A

isLinked w u R

add u variable A

End

In the strategy, we may call these rules as follows:

Strategy Kalt1_Strategy

repeat

..

..

applyOnce Create_One_Successor

Pos

..

..

end

Considering the formula  P ∧ ¬P with this strategy should give the pre-
model of Figure 4.3.
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4.4 Serial models for obligation and norms

Another example we can have a look at is interpreting necessity as norm, or law
and thus reading �A as “According to the law A should be true”, or “it ought
to be the case that A”. This is the deontic interpretation. As an example, think
that A could be “I pays his/her taxes on time”. Note that in this setting, the
obligation is on the fact not on the action, usually one would say that “To pay
taxes on time” is obligatory. But the related discussion is out of the scope of
this thesis, and the interested reader will have to refer to the literature. In this
section, we will make use of O instead of �, the new symbol O standing for
“Ought to be the case that”.

Now let us look at related concepts. When can we say that a fact is forbid-
den? For example, according to the above, we know that it is forbidden that
“I does not pay taxes on time” suggesting that a fact is forbidden whenever its
negation is obligatory. Thus O¬A can be read indistinctively as“A is forbidden”
or “¬A is obligatory”. But what about things that are just not forbidden? They
are simply allowed or permitted, we can denote that “A is permitted” by PA,
and we have just seen that PA is in fact the same as ¬O¬A. It may be asked
why obligation is formalised by a � and permission by a  . The reader may
think of possible worlds of models in terms of legal worlds, i.e. worlds where
law is respected. Now obligation means true in all legal worlds, and permission
means true in at least one legal world. As such, the formula PA ∧ P¬A should
be satisfiable (e.g. it is both permitted to eat bread and to not eat bread).

But this is not the whole story, and we must investigate whether O and P
have additional properties, this is part of modelling task as the reader should
have understood by now. It should be clear that if something is obligatory then
it cannot be forbidden at the same time, hence the conditional OA → PA should
be true in any case, it is called the ideality principle in deontic logic. Let us
have a look at this.

4.4.1 Changing the method of K to make it suitable

As we said above, this amounts to saying that something like �A →  A is
always true at any possible world of any model, or, the other way round, that
its negation ¬(�A →  A) is always false. But if we applies the method of
Chapter 3 directly, assuming that P is pos and that O is nec, we find that the
latter formula is satisfiable, i.e. it can be made true!

In fact, both OA and O¬A can be true in any world which can access no
other world (remember that PA is defined as ¬O¬A). Hence, it is clear, that in
order to make the ideality principle always true, deontic models should ensure
that any possible world with a OA formula can access at least one other world.

This could be ensured by adding a rule that would add a successor to any
node that contains a nec-formula and which has no successor by R, as follows:

Rule Create_Child_For_Leaf_Nodes_With_Nec

hasElement w nec variable A

hasNoSuccessor w R
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createNewNode u

link w u R

End

The condition hasElement w nec variable A succeeds whenever w contains
any nec-formula. The condition hasNoSuccessor w R succeeds only if w has no
successors by R.

Let us try this rule with the simple strategy seen in Section 3.4, by simply
adding it at some place inside the repeat loop:

repeat

Stop

NotNot

..

..

..

Pos

Nec

Create_Child_For_Leaf_Nodes_With_Nec

end

If we run this strategy in a step-by-step mode in LoTREC, then we should
notice that the rule Create_Child_For_Leaf_Nodes_With_Nec creates as many suc-
cessors for a given leaf node as there are �-formulas in it. This is a side effect
of the LoTREC philosophy which insists on saturating the application of the
rules, and which is the reason behind applying the rules as much as possible on
every part of the premodels.

Figure 4.4: The premodel right after the call of the Create_Child_For_Leaf¬
_Nodes_With_Nec rule. Two nodes are created: one by each �-formula.

To avoid this side effect, we may call this rule after the keyword applyOnce.
The strategy should look like:

repeat

Stop

NotNot

..

..

..
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Pos

Nec

applyOnce Create_Child_For_Leaf_Nodes_With_Nec

end

Figure 4.5: Using the appropriate method, norms semantics are respected, so
that �P ∧ ¬ P is not satisfiable for example.

4.4.2 Extracting a model from an open premodel

Thus we have obtained an open saturated premodel for PA ∧ P¬A, but as
explained in the previous chapter, we must be able, from this open saturated
premodel to explicit a model of the formula, and this premodel is only almost
a model since it does not satisfy the requirement of deontic models which is
that all worlds must have at least one successor. Can we slightly transform this
premodel into a model in a harmless way? In fact this is easy, it is sufficient to
add a reflexive edge on those empty worlds, this will not change the truth value
of formulas while making the premodel a real deontic model.

In LoTREC, it is possible to design a rule that does this job of adding a
reflexive edge to empty nodes, BUT this must be done only on an open saturated
premodel. On the one hand, it makes no sense to do it on a closed premodel
since it cannot provide a model, and on the other hand, it would be false to do
it on a non-saturated premodel since an empty node would not be guaranteed
to remain empty in this case.

Let us call, at the end of our strategy, after the repeat loop, the following
self-explanatory rule:

Rule Reflexive_Edges_On_Leaf_Nodes

isNewNode w

hasNoSuccessor w R

link w w R

End

The condition isNewNode w and hasNoSuccessor w R ensure that the rule is ap-
plied on lastly added new nodes which have no successors by R.
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In order to apply it on saturated premodels, we must call this rule at the
end of our strategy. This way, we postpone its execution after that all the other
rules have run to their ends. Thus we obtain the following strategy:

Strategy Strategy_For_Norms

repeat

Stop

NotNot

..

..

..

Pos

Nec

Create_Child_For_Leaf_Nodes_With_Nec

end

Reflexive_Edges_On_Leaf_Nodes

End

If we run our new strategy with the new Reflexive_Edges_On_Leaf_Nodes rule
on the formula �P ∧�Q, we would obtain the the model of Figure 4.6.

Figure 4.6: An open premodel for �P ∧ �Q transformed into a model after
adding a reflexive edge at the leaf node.

4.5 Confluent models

An accessibility relation R is said to be confluent if, and only if: for every worlds
w, u, v such that wRu and wRv, there exists a world x such that uRx and vRx.
The world x is called the confluent world of the tuple (w, u, v). It is well-known
[Che80] that confluent models are characterized by the following axiom.

Confluence :  �P → � P

In the following, we consider the basic modal logic with confluent models:
the modal logic K+Confluence.

The simplest way to deal with formulas in this logic is to reuse the rules
defined for K in Chapter 3, then to add to them the following rule:
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Rule Confluence

isLinked w u R

isLinked w v R

createNewNode x

link u x R

link v x R

End

which completes the built premodels with the necessary confluent worlds.

We can reuse the strategy seen in Section 3.4, after changing its name to
Confluence_Strategy, by adding to it the confluence rule as follows:

Strategy Confluence_Strategy

repeat

Stop

NotNot

..

..

Pos

Nec

Confluence

end

End

Example 5. Let us run the above strategy with the formula  P ∧  Q, in a
step-by-step mode to check the method first.

We can clearly notice from Example 5 that this version of rule for confluence
is applicable on empty u and v nodes. This yields creating empty x nodes, since
no formula will be propagated from an empty u or an empty v to their x child
node. Hence, calling the Confluence rule repeatedly in the strategy does not
terminate.

A remedy to this non-termination problem would be to add one of the condi-
tions hasElement u variable Some_Formula or hasElement v variable Some_Other_Formula
to guarantee that u or v is not empty. Moreover, we can add both conditions
to make sure that both of them are non empty; this will not interfere with the
completeness of the method. The rule becomes:

Rule Confluence

isLinked w u R

isLinked w v R

hasElement u variable A

hasElement v variable B

createNewNode x

link u x R

link v x R

End
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(a) step 1 (b) step 2

(c) step 3

Figure 4.7: The first three steps of running the Confluence_Strategy on the
formula  P ∧ Q.

Running the strategy with this rule of confluence on the formula of Example
5, gives end to its execution and stops at “step 2”of Figure 4.7. The termination
problem is solved with this rule.

However, it seems weird, in Figure 4.7, to have four successors at “step 2”
from just two successors at “step 1”. In order to know what is happening, we
may want to add to each x node created by the confluence rule the names of the
u and v nodes detected by the rule and which have lead to the creation of x. To
do so, we add two actions to the rule as follows:

Rule Confluence

isLinked w u R

isLinked w v R

hasElement u variable A

hasElement v variable B

createNewNode x

link u x R

link v x R

add x nodeVariable u



4.5. CONFLUENT MODELS 89

add x nodeVariable v

End

The action add x nodeVariable u adds to the instance node assigned to x the
hidden name associated (internally by LoTREC) to the instance node assigned
to u. The second added action is similar. Running with this rule on the formula
of Example 5, in a step-by-step mode again, we obtain the premodel of Figure
4.8 at the second step.

Figure 4.8: Debugging the confluence rule, by tracing which u and v nodes yield
to which x confluent node.

In this premodel, the user may verify (by right-click on the nodes) that
node2 is the node on the right of the second row, holding the formula P, and
that node3 is the node on the left of the second row, holding the formula Q. On
the third row, there are four nodes created by the rule of confluence:

1. a node labeled node2 (as the names of u and v),

2. a node labeled node3 (as the names of u and v),

3. a node holding node3 and node2 (as the names of u and v),

4. and a node holding node2 and node3 (as the names of u and v),

The reason behind the creation of the first two nodes of this list is that the
pattern matching morphism, which is used to instantiate the variables appearing
in the condition part of a rule, is not necessarily injective. So, u and v can
be matched to the same node node2, or to the same node node3. This is a
desirable criteria in the case of the confluence rule, since it can handle correctly
the formula  (�P ∧�¬P ).

The other two nodes are obtained by considering (node2, node3) and (node3,
node2) as different possible instances for the couple of variables (u, v). This is the
default way of instantiating multiple variables in LoTREC, which guarantees
that the rule is applied on every possible matching pattern. Whereas in this
example, the creation of only one of these two nodes is sufficient to conform
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to the semantical conditions of confluence. In such cases, we may prefer to be
more optimal and to create only one confluent world by couple of nodes with a
common parent node.

In LoTREC, it is up to the rules to specify whether two patterns should be
considered as equivalent or not. In general, in order to prevent the rule from
being applied on a pattern whose equivalent pattern (modulo a given criteria)
was already detected, we have to:

1. use some additional actions to annotate the nodes with an information
indicating which patterns were taken into account,

2. use some additional (negative application) conditions to prevent the rule
from being applied on patterns which have already been taken into ac-
count,

3. and to call the rule with the applyOnce keyword, to guarantee that the
rule is considering the patterns one by one, and does not treat all of them
at once.

In our example, when a couple of instance nodes (Instance1, Instance2)
instantiates the couple of variables (u, v), the confluence rule should escape the
couple if it, or its equivalent couple (Instance2, Instance1), has been already
taken into account.

Practically, we define a new binary connector, called done, and we add to the
node N0 the information about which couples of nodes were done. The confluent
rule should look like the following:

Rule Confluence

isLinked w u R

isLinked w v R

hasElement u variable A

hasElement v variable B

hasNotElement w done nodeVariable u nodeVariable v

hasNotElement w done nodeVariable v nodeVariable u

createNewNode x

link u x R

link v x R

add w done nodeVariable u nodeVariable v

End

In order to take effect, this version of the confluence rule should be called,
in the strategy seen above, preceded by the applyOnce keyword, as follows:

Strategy Confluence_Strategy

repeat

Stop

NotNot

..

..
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Pos

Nec

applyOnce Confluence

end

End

The result of calling the above strategy on the same formula of Example 5
is shown in Figure 4.9.

Figure 4.9: The result of the last version of the confluence rule.

4.6 Knowledge

In this section, we present the semantics of knowledge formulas, then we show
how this semantics imposes some constraints on models of knowledge.

In the logic of knowledge, also known as S5, we need to write formulas of
the form “I knows A” and “I does not know that A”, where I is usually called
an agent and A is a knowledge formula. The sentence “I does not know that
A” means that ¬A is actually possible for I. In other words, it means that I

can imagine a possible world in which ¬A holds. On the contrary, “I knows A”
means that A holds in all worlds that I can imagine. Here, worlds that I can
imagine as true are in fact all worlds that are undistinguishable from the real
world. The accessibility relation RI is defined as wRIu if, and only if, I can
not distinguish w from u (because I has not enough information about the real
world to distinguish them), i.e. both worlds can be true for I.

As we have seen in Chapter 2, a sentence of the form “I knows A” is syn-
tactically written as KIA. According to the above semantics, the K operator is
semantically equivalent the � modal operator. The dual behavior is captured by
the sentence “I does not know that ¬A”, which is syntactically written as K̂IA

(i.e. a K with a hat, and pronounced k-hat). This K̂ operator is semantically
equivalent to the  modal operator.

Next, we only consider the case of one agent, since the multi-agent case
involves some termination issues which are discussed later in Chapter 5.
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4.6.1 Modelling the knowledge of one agent

In this section, we consider one specific agent, let us say Bob, and we show how
to construct a model for formulas talking about his knowledge.

At the beginning of this chapter, we have seen that the formula KBob¬Red∧
Red is reported as satisfiable by the method of Chapter 3, whereas it is not
suitable (Figure 4.1). Bob cannot know his card is not red if his card actually
is so. Agents only know true assertions. There are also other formulas that
should not be satisfiable. For instance you can also notice that the formula
KBob¬Red∧¬KBobKBob¬Red is satisfiable. This is also not suitable because if
Bob knows his card is not red, he must be conscious that he knows it.

Hence, the relation must necessarily be reflexive. Indeed, if the relation is
reflexive, formulas like KBob¬Red ∧ Red can no longer be satisfied. Moreover,
the relation RBob must verify two other properties: the symmetry and the tran-
sitivity. These three properties can be intuitively viewed as follows:

• Bob can not distinguish a possible world w from itself;

• If Bob can not distinguish a world w from another world u, then obviously
he can not distinguish u from w;

• Suppose that w is the real world. If w and u may both be possible real
worlds for Bob, but v is not possible for him (because he has not enough
information to distinguish w from v), then he can not neither distinguish
u from v (due to the lack of the same information which would help him
to distinguish w from v).

Formally, RBob must verify for every w, u and v:

• wRBobw; (reflexivity)

• wRBobu implies uRBobw; (symmetry)

• wRBobu and not wRBobv implies not uRBobv, or better said wRBobu and
uRBobv implies wRBobv. (transitivity)

In short, RBob is an equivalence relation, also known as being a universal rela-
tion. Notice that you can also read the relation wRBobu as w and u are equal,
roughly speaking, in the eyes of Bob, whereas equality is in fact an equivalence
relation.

4.6.2 Rules for S5 with implicit edges

In this section, we show how to implement in LoTREC an appropriate set of rules
and a strategy that achieve the construction of models for knowledge formulas
with one agent, according to the truth conditions and the semantics discussed
in the previous section.

To do so, we can reuse all the rules that deal with classical operators and
which are defined in the model construction method for the logic K in Chapter
3, since the semantics of these operators does not change in the knowledge logic.
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It remains, however, to define the rules which deal with the knowledge op-
erators K and K̂. Since we are dealing with only one agent, we need only one
accessibility relation, let us say R, and we can deal with K and K̂ as being the
unary connectors nec and pos defined for the monomodal logic K in Chapter 3.
Moreover, since the K and K̂ operators have the same semantics of the modal
operators � and  respectively, as discussed earlier in Section 4.6, we can also
reuse the rules Pos and Nec, as defined in Chapter 3.

However, using only these rules, we do not guarantee that the accessibility
relations, built between the worlds by the mean of the Pos rule, are all equiva-
lence relations. In order to respect this semantical property, we may proceed in
two different ways:

1. either, we connect the nodes with additional edges, representing the re-
flexive, symmetric and transitive arcs, in order to make sure that the
accessibility relation is an equivalence relation,

2. or, we simulate the presence of these additional edges without creating
them, by simply propagating the nec operator and handling the pos op-
erator appropriately, as if the nodes were linked by equivalence relations
and forming classes of equivalence.

The first solution seems to be easier and more straightforward than the
second one. Indeed, adding the reflexive and symmetric arcs, as we have already
shown in Section 4.1 and Section 4.2, is very simple. Adding the transitive arcs
is also quite simple. However, in the presence of these transitive arcs, the model
construction process may not terminate, as we shall see later in Chapter 5.

Thus, we present here the second solution. It consists in linking all the
possible worlds to one specific node, let us say a node marked as “Root”. The
implicit meaning behind linking all the possible worlds to the same node is to
express the fact that they all belong to the same equivalence class, i.e. they are
implicitly all linked, each one to the other and to itself, as if all the reflexive,
symmetric and transitive edges were added and linking these nodes together.

To specify such a root node, we can define a rule which looks like:

isNewNode w

mark w Root

Nevertheless, such rule is not only applicable on the first added node, but
also on every other newly created node. We can solve this problem by adding a
condition which ensures that the node w has no parent nodes. This can be done
by adding the condition hasNoParents w, so the rule would become:

Rule Designate_The_Root

isNewNode w

hasNoParents w

mark w Root

End
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We should call this rule once at the beginning of the strategy. In this way,
the first added node, i.e. the initial node with the input formula, would be
designated as the root node.

Henceforth, we will replace the rules Nec and Pos by other rules.

First, each time we find a  A in this root node we should create a new node
and link it to this root. The following rule does it:

Rule Pos_At_Root

hasElement w pos variable Formula

isMarked w Root

createNewNode u

link w u R

add u variable Formula

End

The newly created node becomes part of the same equivalence class.

Similarly, if a  A is found in a child node (i.e. in a node different than the
root node), then we would also create a new child for the root node, to guarantee
that the newly created possible world will be part of the same equivalence class.
This can be achieved by defining a rule which sends the  -formulas in child
nodes to the root node, so they can be treated later by the rule Pos_At_Root.
This rule is defined as follows:

Rule Pos_At_A_Child

hasElement u pos variable Formula

isLinked w u R

add w pos variable Formula

End

Note that if a node u is linked to a parent node w, then w is necessarily the
root node. This is why we do not need to add the condition isMarked w Root.

As for the �-formulas, they should be propagated to every node. To this
end, we need to use four rules:

• a rule which propagates each formula �A found at a given world w to
itself,

• another rule which propagates each formula �A found at the root node to
all its children,

• one rule which propagates the formulas of the form �A found at a child
node to the root node,

• and one which propagates the formulas of the form �A found at a child
node to all the other child nodes.

The following rules accomplish those three tasks respectively:
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Rule Nec_To_Same_World

hasElement w nec variable Formula

add w variable Formula

End

Rule Nec_At_Root

hasElement w nec variable Formula

isLinked w u R

add u variable Formula

End

Rule Nec_At_Child_To_Root

hasElement u nec variable Formula

isLinked w u R

add w variable Formula

End

Rule Nec_At_Child_To_Other_Child

hasElement u nec variable Formula

isLinked w u R

isLinked w v R

add v variable Formula

End

We have to define similar rules to the dual formulas of the form ¬ A and
¬�A.

As for the strategy, we can reuse the strategy defined in Section 3.4, after
calling the rule Designate_The_Root appropriately, and after replacing the rules
dealing with the  and � operators by the corresponding rules listed above.

Figure 4.10: An open premodel for the formula � P .
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4.7 A general termination theorem

In this section, we give a general termination result for almost all the logics
of this chapter (except S5). It will exploit the fact that the setting we are
concerned with in our model construction methods is a delimited one: our rules
are monotonic, and our strategies are regular expressions.

First note that when repeat does not occur in our strategies (i.e., they only
contain the constructors allRules and firstRule) then termination is trivial
since in the case of allRules only a finite number of rules is applied (and every
applicable rule will be applied at most once), and in the case of firstRule only
one rule will be applied (viz. the first applicable one).

In the general case, the repeat construction may make us loop. However, a
general termination criterion was proved in [GHS06b] that suffices to cover the
methods in the present chapter and that we restate now.

The key observation is that all the rules that we have introduced so far only
add strict subformulas of the original formula. Following Fitting’s terminology
[Fit83] such rules might be called strictly analytic rules.

Let us consider any of the methods of the present chapter. Let R be the set
of rules in this method. Let A be the initial formula on which the method is
applied, and let M0 = (W0, R0, V0) be the initial premodel, such that W0 = {w0}
(the root2), R0 = ∅ and V0 = {(w0, A)}.

To state our termination theorem we introduce a function δ which associates
an integer with each node w of a given premodel M. δ is said to be a ranking
function if, and only if, δ(w) < δ(u) whenever w is an ancestor of u through
the union of all edges

⋃

I∈I RI , i.e. whenever w(
⋃

I∈I RI)
∗u). Typically, for

monomodal logics, δ(w) will be the distance of w from the root node w0.

Theorem 1 ([GHS06b]). Let δ(w) be the length of the shortest path from the
root w0 to the node w, and let R be a set of rules such that for every ρ ∈ R,

• ρ is strictly analytic (only strict subformulas of the original formula are
added to nodes in the action part of ρ);

• if the action part of ρ contains the createNewNode-action creating a node
w then

– the condition part of ρ checks for existence of at least one formula
in any node among w1, . . . , wk, and

– δ(w) > max(δ(w1), . . . , δ(wk)), i.e. new nodes are strictly farther from
the root w0 (ensuring strict decrease of their contents),

where w1, . . . , wk are the nodes referred to in the condition part of ρ.

Let S be any strategy on R. Then the application of S to the input premodel M0
terminates, and S(M0) is a finite graph.

2A node w0 is called a root if w0 can access every other node in the transitive closure of the
union of all accessibility relations.
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Proof. We prove that

• application of S can never lead to graphs with infinite branching factor;

• application of S can never lead to graphs of infinite depth.

The argument is that creation of new nodes is subject to non-emptiness3, but
with our constraints, a branch cannot be of length more than the modal degree
of the input formula: because of the strict sub-formula condition, nodes situated
farther would be empty, and then the criterion for applying the createNewNode-
action would no more be fulfilled.

Theorem 1 covers the case of logics like K, KT, KD, K+Confluence, K.alt1,
and logics with symmetric accessibility relations such as KB, KDB, and KTB.

Conclusion

In this chapter we showed how to extend the basic model construction method
given in Chapter 3 to take into account some constraints on the accessibility
relation of the models of specific logics. We studied the case of reflexive, sym-
metric, linear, serial and confluent models. In addition we considered the case
of the logic S5 whose models have an equivalence accessibility relation.

We gave at the end a general termination theorem which covers all the above
presented methods except for S5 which will be revisited in Chapter 5.

3This refers to the condition hasElement w pos variable A in the rule Pos. One has to
add that condition to the Pos rule of modal logic K in the preceding chapter in order to apply
the present argument. This can be done without harm.
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Chapter 5

Logics with potential cycles

Introduction

In the previous chapter we showed how one can implement tableaux methods
for some simple modal logics such as KT. In this chapter we show more com-
plex implementations of modal logics by introducing a blocking mechanism; in
particular we show how logics with transitive accessibility relations and logics
with constraints on their valuation function can be handled.

In section 5.1, we take the most simple logic with transitive models K4. In
section 5.2, we revisit S5. In section 5.3, we consider the basic hybrid logic
HL(@) which has a specific constraint on its valuation function. Finally, we give
in section 5.4 an extension of the general termination theorem (theorem 1), and
a discussion on completeness of complex model construction methods.

5.1 Model construction in K4

To implement a model construction method in LoTREC for K4, we might think
of reusing the method of K developed at Chapter 3. Nevertheless, Figure 5.1
shows an example of an open premodel obtained by applying the method of
Chapter 3 for the formula ��P ∧ ¬P . However, this formula should not have
any open premodel, since it is not satisfiable in transitive models.

In order to adapt the method of Chapter 3 for K4, we have to use some ad-
ditional rules that take into account the transitivity property of the accessibility
relation.

5.1.1 Adding the transitive edges

A first approach is to add a rule that creates the necessary edges which would
make the accessibility relation transitive, as follows:

Rule Transitive_Edges

isLinked w u R

99
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Figure 5.1: An example of an open premodel generated by method of chapter 3
for the non satisfiable formula ��P ∧ ¬P

isLinked u v R

link w v R

End

To run with this rule, we call it inside the repeat loop of the strategy of
Section 3.4. Figure 5.2 shows a closed premodel for the formula ��P ∧ ¬P .

Figure 5.2: Using the rule Transitive_Edges, the formula ��P ∧  ¬P is no
longer counted as satisfiable.

5.1.2 Simulating the presence of the transitive edges

We may simulate the presence of the transitive edges by propagating the  -
formulas differently, as follows:

Rule Nec_For_Transitivity

hasElement w nec variable Formula

isLinked w u R

add u variable Formula
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add u nec variable Formula

End

Figure 5.3 shows an example of a closed premodel for the formula ��P ∧
 ¬P , running with the above rule instead of the Transitive_Edges rule.

Figure 5.3: Semantics are respected using the Nec_For_Transitivity rule with-
out adding the transitive edges.

5.1.3 Construction of transitive models may not termi-
nate!

Using one of the above rules for transitivity, the model construction of some
formulas does not terminate. Let us look at the conditions of theorem 1 in
chapter 4. The first rule Transitive_Edges is strictly analytic, but it violates
the second condition of the general termination theorem (precisely, due to the
addition of transitive edges every node either is the root, or has distance one to
the root). The second rule Nec_For_Transitivity is not strictly analytic, so
it violates the first condition of the theorem.

In fact, as we shall see in the sequel, we need to add some special tweaks to
these rules and/or to the strategy in order to control the way they are applied.

First, let us consider an example of model construction, using the first pre-
sented method adding edges, for the formula �P ∧ �P .

Figure 5.4 shows the premodel obtained in a step-by-step run with a break-
point on the Pos and NotNec rules, which are the only rules creating new succes-
sors. We should be aware that between two successive steps, all the other rules
are also called, including the And, Nec and Transitive_Edges rules.

At step 1, the initial formula is reduced to its conjuncted subformulas, �P

and  �P . From step 1 to step 2 the rule Pos is applied on the formula �P

which yields to the first successor, linked to the initial node by R and containing
P . At step 2, the rule Nec is applied and sends �P forward to the new child
node, which makes the rule Pos applicable once again and leads to step 3. At



102 CHAPTER 5. LOGICS WITH POTENTIAL CYCLES

step 3, the transitive edge from the first node to the third is added, making the
rule Nec applicable. This causes the propagation of the formula �P once again
to the new child and makes the rule Pos applicable once again, and the cycle
continues like that.

(a) step 1 (b) step 2 (c) step 3

...
(d) step 4

Figure 5.4: A non-terminating model construction for the formula �P ∧ �P .

Practically, the reason of this ad infinitum run is “the development of �-
formulas which have been already treated with no new  -formulas appearing
in between” [HSZ96]. For instance, imagine we have at a given world w a
�-formula, say �A, with the set of  -formulas { A1, . . . , An}1. This leads
to creating a new R-successor node u of w with the following set of formulas
{A,A1, . . . , An, A1, . . . , An}. Suppose that one of the formulas Ai is in fact
the formula �A. This will lead to the creation of a new R-successor node v of
u with exactly the same set of formulas in u.

Hence, a combinatorial argument limits the number of possible nodes that
can be created in an infinite sequence of successors, where we necessarily get
a repeated node, i.e. a cycle or a loop [Gor99]. A terminating method should
detect such loop and stop the construction instead of continuing in an infinite
path. Loosely speaking, we should never treat a set of formulae if we have
already met this set beforehand.

The process of detecting repeated nodes is called“loop-check”. This detection
is only the first stage of the “loop-blocking” process, which consists, in addition
to the loop-check, in blocking the detected looping nodes.

The loop-check process can be sometimes expensive. Thus, a great deal was
accorded to enhancing its efficiency, yielding various techniques used to achieve
this test.

1In the version with explicit transitive edges, this set is the union of all �-formulas cumu-
lated from all the ancestor nodes of w.
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One way to achieve it is to build a premodel with all the super-set of sub-
formulas of the input formula à la Fisher-Ladner [FL77]. In such premodels,
before applying a rule on a given pattern, we check wether we have not ap-
plied it already on that same pattern. However, this test is still expensive and
the pre-processing of the input formula leads to premodels of exponential size,
which is adequate for EXPTIME logics such as PDL, but it does not make sense
in PSPACE logics.

Another way is to keep the usual way of constructing the premodels in an as-
cending minimalist way (such as in LoTREC) then make a test of node-inclusion
or node-equality of new added nodes and their ancestor nodes, in terms of their
sets of formulas. To achieve this test, we compare the whole sets of formulas in
leaf nodes and their ancestors in every path and at each iteration of the model
construction process

An alternative to this test is to simply check if all the couples �A, B in
a given node have been already treated in ancestor nodes, by testing whether
they belong or not to a history of cumulated treated (�A, B)-couples [HSZ96].
In this alternative, we are trying to reduce the amount of information related
to previous achieved computations in a clever way so only minimal relevant
information are stored in memory. However, this does not drastically reduce
the time-cost of the loop-check process.

This is why S. Cerrito and M. Cialdea proposed in [CM97] a third way to
achieve the loop-check. This approach was used by F. Massacci in [Mas00],
where he defines, for each logic, an upper bound on the depth of the premodels
(i.e. on the length of the sequence of successor nodes without loop) that we may
construct for a given formula of that logic, where this bound is polynomial in the
size of the input formula. He stops automatically the construction of a premodel
once this depth is reached. However, this was only defined for few modal logics
(from K to S4) and it is not always applicable if we cannot calculate a bound
on the depth of the models in a certain logic.

Next, we give the implementation in LoTREC of the second solution with
“node-inclusion” test.

Detecting loops by testing for nodes inclusion

The implementation of loop-check in LoTREC via node-inclusion test is very
simple. First, we define the rule:

Rule Mark_Looping_Nodes

isNewNode u

isAncestor w u

contains w u

mark u Loop_Node

End

which is self-explanatory. Then we change the rule Pos as follows:

Rule Pos
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hasElement w pos variable A

isNotMarked w Loop_Node

createNewNode u

link w u R

add u variable A

End

The mark Loop_Node is not predefined keyword at all, and we may use instead
any other word as a tag. The most important is to use the same mark in both
rules Mark_Looping_Nodes and Pos. With the first rule, we effectively achieve the
loop-check process, and we declare which nodes are looping by marking each one
of them as Loop_Node. Then we achieve the loop-blocking process by preventing
the Pos rule from being applied on �-formulas of a node reported as Loop_Node.

Note that we have to call these two rules in an appropriate order: Mark_Looping_Nodes
should be called first, before Pos, otherwise the loop-check does not take effect.

Figure 5.5 is a remake of the example of Figure 5.4, using the Mark_Looping_Nodes
rule with the corresponding new version of the Pos rule.

Figure 5.5: Blocking loops by performing nodes inclusion test.

Remark 9. For more optimality, we may also block rules dealing with other
formulas (especially the Or rule dealing with disjunctions) in order to make sure
that contained nodes are completely blocked, and that formulas inside them are
not treated by the corresponding rules anymore.

Remark 10. Terminating methods for other transitive logics, such as S4 , KB4
and KD4 are combinations of the method developed here for K4 and those
developed so far KT, KB and KD. We can also define a terminating method for
the logic K + K4 + Inclusion by combining their corresponding methods (c.f.
Section 3.5.1, and Remark 7 page 78).
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5.2 Model construction for knowledge may not
terminate!

It is normal since transitivity is embedded in S5. Moreover, in the method
given in Section 4.6, all the �-formulas are sent backward to the same node; the
common father node marked as Root. Since a given formula can be added only
once to the set of formulas of a given node, we guarantee in this method that
each �-formula is treated only once, and we avoid loops caused by repeated
nodes.

Nevertheless, other methods may not terminate, as we show in the next
sections, without using some tweaks in the rules and/or the strategy.

5.2.1 Rules for S5 with explicit edges

The idea of this method is to create all the necessary (reflexive, symmetric
and transitive) edges, in order to make the accessibility relation an equivalence
relation. Rules for creating these edges are presented in Sections 4.1, 4.2 and
5.1, and can be defined as follows:

Rule Reflexive_Edges

isNewNode w

link w w R

End

Rule Symmetric_Edges

isLinked w u R

link u w R

End

Rule Transitive_Edges

isLinked w u R

isLinked u v R

link w v R

End

In addition to the above rules, the simple Nec rule, defined in the method
of modal logic K in Chapter 3, is sufficient to propagate the  -formulas in
accordance with the truth conditions:

Rule Nec

hasElement w nec variable Formula

isLinked w u R

add u variable Formula

End

As for the rule dealing with the �-formulas, if we use the standard version:
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Rule Pos

hasElement w pos variable Formula

createNewNode u

link w u R

add u variable Formula

End

then our method may not terminate. Figure 5.6 shows an example of endless
premodel construction for the formula  �P .

Figure 5.6: A method for S5, which creates reflexive, symmetric and transitive
arcs and which uses a naive rule to deal with �-formulas, does not terminate
with some formulas, such as the formula  �P .

The problem is already explained in Section 5.1 (Figure 5.4), where the same
formula is considered in the logic K4.

To avoid such kind of loops, we have to guarantee that a �A does not yield
to the creation of a new node with A when such a node has been already created.
To this end, we use a special rule which marks such �-formulas as Fulfilled,
as follows:

Rule Mark_Fulfilled_Pos

hasElement w pos variable A

isLinked w u R

hasElement u variable A

markExpressions w pos variable A Fulfilled

End
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then we change the Pos rule, in a way that it does create new successors for
already Fulfilled �-formulas:

Rule Pos

hasElement w pos variable Formula

isNotMarkedExpression w pos variable Formula Fulfilled

createNewNode u

link w u R

add u variable Formula

End

The Mark_Fulfilled_Pos rule should be called in the strategy right before
the Pos rule, to guarantee that �-formulas, which exist in the premodel at a
given iteration, are all marked first as fulfilled, if they really are, before being
treated by the Pos rule.

Running the same formula of Figure 5.6 with the new rules, leads to a
terminating premodel, as shown in Figure 5.7.

Figure 5.7: Fulfilled �-formulas does not lead to create new nodes.

5.2.2 Modelling the knowledge of multiple agents

If we have many agents, we will have an equivalence relation per agent.

Syntax definition in LoTREC

In order to define the syntax of knowledge formulas, we may reuse the definition
of the classical logic operators ¬, ∧, ∨, → and ↔, as shown in Chapter 2. In
addition, we have to define the knowledge operators K and K̂. This can be
done as follows:
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Name Arity Display
knows 2 K(_)_

knowsHat 2 K^(_)_

According to these operator definitions, the formula KBobA → ¬K̂Bob¬A
should be defined in LoTREC as imp knows Bob A not knowsHat Bob not A,
which will be displayed as K(Bob)A -> ~K^(Bob)~A.

5.2.3 Rules for S5 with multiple agents

Since the K and K̂ have the same semantics as the modal operators  and �,
formulas of the form KIA and K̂IA can be treated by rules similar to those
defined for the multimodal logic Kn in Section 3.5.

However, using these only rules, we do not guarantee that the accessibility
relations, built between the worlds by the mean of the Pos rule, are all equivalence
relations. We have discussed this fact earlier in Section 4.6, with the case of
monomodal logic S5, and we have proposed two solutions, which we abord in
the sequel: one consists in building explicit additional edges, and the other
simulates their presence.

5.2.4 Adding the necessary edges

Symmetric and transitive edges can be added by means of the following rules:

Rule Symmetric_Edges

isLinked w u variable AgentI

link u w variable AgentI

End

Rule Transitive_Edges

isLinked w u variable AgentI

isLinked u v variable AgentI

link w v variable AgentI

End

As for reflexive edges, there is no direct way to add them by means of rules.
Suppose that we only have one agent A1 in the modal operators of the input
formula, then we would create the following rule:

Rule Reflexive_Edges_For_A1

isNewNode w

link w w A1

End

If we want to deal with another formula with two agents, A1 and A2, then we
should add to this rule another action: link w w A2. If we have three agents,
then we should add a third action and so on. . .
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What we expect to have to make this construction simpler is to be able to
write just one rule as follows:

Rule Reflexive_Edges

isNewNode w

isAgent variable A

link w w variable A

End

as if all the names of agents can be identified with the condition isAgent variable A.
However, this is not possible without preprocessing the input formula and ex-
tracting every agent name found inside the modal connectors K and K̂. This
would be tough!

Instead, we can use the following rule:

Rule Reflexive_Edges

hasElement w knows variable AgentI variable Formula

link w w variable AgentI

End

which creates the strictly necessary reflexive edges, needed to propagate the
K-formulas appropriately.

Using the above Reflexive_Edges, Symmetric_Edges and Transitive_Edges
rules, all that we need to propagate the K-formulas appropriately is the fol-
lowing rule:

Rule Knows

hasElement w knows variable AgentI variable Formula

isLinked w u variable AgentI

add u variable Formula

End

As for the K̂-formulas, we may lean first toward using the usual rule:

Rule KnowsHat

hasElement w knowsHat variable AgentI variable Formula

createNewNode u

link w u variable AgentI

add u variable Formula

End

Nevertheless, the resulting method may not terminate. For example, when
running with the formula KIK̂IP , as seen in Figure 5.8, the model construc-
tion does not terminate due to the transitivity of the accessibility relation, as
discussed in Section 5.1.

The problem lies in developing new successors with already treated K̂-
formulas, i.e. the ones which have already been made fulfilled. That is why
we add the following rule:
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(a) step 1 (b) step 2 (c) step 3

. . .

Figure 5.8: Non-terminating model construction for multi-S5.

Rule Mark_Fulfilled_KnowsHat

hasElement w knowsHat variable AgentI variable Formula

isLinked w u variable AgentI

hasElement u variable Formula

markExpressions w knowsHat variable AgentI variable Formula Fulfilled

End

which mark the already fulfilled K̂-formulas. Then we change the KnowsHat rule
as follows:

Rule KnowsHat

hasElement w knowsHat variable AgentI variable Formula

isNotMarkedExpression w knowsHat variable AgentI variable Formula Fulfilled

createNewNode u

link w u variable AgentI

add u variable Formula

End

so it escapes already fulfilled K̂-formulas.
Note that Mark_Fulfilled_KnowsHat and KnowsHat should be called in this

order in the strategy, otherwise Mark_Fulfilled_KnowsHat would have no effect.
Running with these new rules on the same formula of Figure 5.8 we should
obtain a terminating construction which leads to the premodel of Figure 5.9.

5.2.5 Simulating the presence of the edges

In this section, we give the alternative of the method shown in the last section.
The method addressed here is similar to the method given in Section 4.6 for
monomodal S5.

It consists in linking created (child) nodes to the same (parent) node to
reflect the fact that they to the same equivalence class w.r.t. a given accessibility
relation. Doing so, there is no need to create explicit reflexive, symmetric an
transitive edges between these nodes to link all of them together, provided that
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Figure 5.9: Terminating model construction for multi-S5.

the method propagates the K-formulas appropriately, as if these edges were
concretely created.

To this end, we define the following self-explanatory rules:

Rule Knows_To_Same_World

hasElement w knows variable AgentI variable Formula

add w variable Formula

End

Rule Knows_I_To_I_Children

hasElement w knows variable AgentI variable Formula

isLinked w u variable AgentI

add u variable Formula

End

Rule Knows_I_To_I_Parent

hasElement w knows variable AgentI variable Formula

isLinked u w variable AgentI

add u variable Formula

End

Rule Knows_I_To_I_Sibling

hasElement w knows variable AgentI variable Formula

isLinked u w variable AgentI

isLinked u v variable AgentI

add v variable Formula

End

The rules dealing with K̂-formulas should create new successors to fulfill
these formulas, and at the same time, they should keep the nodes of the same
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equivalence class linked to the same parent node.
When a K̂-formula is found in the first node, containing the input formula,

it should create new successors without any other considerations:

Rule KnowsHat_With_No_Parents

hasElement w knowsHat variable AgentI variable Formula

hasNoParents w

createNewNode u

link w u variable AgentI

add u variable Formula

End

Suppose now that we have a child node u created and linked to the parent
node w by the relation I. If a formula K̂JA is found in u then we should create
a node v to hold the formula A, i.e. to fulfill the formula K̂JA. Two cases may
take place:

• If J $= I, then v should be linked to u by J ; as if a new equivalence class
by J has just started, including u and v for the moment.

• Otherwise, i.e. J = I, the new node v should belong to the same equiva-
lence class of u and w by the relation I. Hence, according to our design,
it should be linked by I to the same parent node w. Which means that
the formula K̂IA should be treated as if it was found in the parent w.

These two cases are taken into account by the following two rules:

Rule KnowsHat_I_With_J_Parent

hasElement u knowsHat variable AgentI variable Formula

isLinked w u variable Agent_J

areNotEqual variable AgentI variable Agent_J

createNewNode v

link u v variable AgentI

add v variable Formula

End

Rule KnowsHat_I_With_I_Parent

hasElement u knowsHat variable AgentI variable Formula

isLinked w u variable AgentI

add w knowsHat variable AgentI variable Formula

End

These rules can be called in any order inside the strategy.

Remark 11. Methods for logics with axioms 4 or 5 or both, such as KD45, are
definable using the already presented methods for K4 and S5. The Universal
logic can be tackled exactly as monomodal S5. The logic K +Universal is the
logic with two modalities: a K-modality  , and an S5-modality [U], with the
inclusion axiom [U]P →  P . The model construction method for this logic is
also definable by combining the methods for S5 and for Inclusion.
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5.3 Hybrid Logic

Along the previous sections of the last two chapters, we discovered many log-
ics with special properties or constraints on their accessibility relations. Their
model construction methods may vary a lot according to these constraints. In
this section, we discover a new family of logics, called hybrid logics [ABM01],
with a special constraint on their valuation function.

In a hybrid logic, we can use special propositional symbols N,M, . . ., called
nominals, to refer to specific worlds in the Kripke model: the world called N ,
the world called M ,. . . Together with a special operator @, called satisfaction
operator, we can write @NA to say that at the world referred by N , A is true.

To build the language of hybrid logic, we add new symbols to the the basic
language of the modal logic K. In addition to the set of atomic propositions P,
the classical operators ¬,∧,. . . and the modal operators � and  , we add a new
set of propositional letters N , such that N and P are disjoint (N ∩ P = ∅),
together with a unary operator @. A formula in hybrid logic is then defined as
being any modal formula defined over N ∪P , or as a formula of the form @NA,
where N ∈ N and A is another hybrid formula. The logic defined above is the
basic hybrid logic called HL(@).

Models of HL(@) have a special definition, in contrast with basic models
defined in Section 2.3.1:

Definition 11 (HL(@) model). Given a set of atomic propositions P and a set
of nominals N , a HL(@) model M is a tuple (W,R, V ) where:

• W is a non-empty set;

• R ⊆W ×W ;

• V :W → 2N∪P , where for all N ∈ N , there exists a unique w ∈ W such
that N ∈ V (w).

The third item of this definition clarifies what we said at the beginning of
this section about hybrid logics, as being logics with constraints on the valuation
function.

As for the semantics of HL(@), modal operators are interpreted in the same
way as in K. We only define the truth conditions corresponding to nominals and
the @ operator:

M,w � N if, and only if, N ∈ V (w);

M,w � @NA if, and only if, at the unique world u ∈ W such that N ∈ V (u)
we have M,u � A.

The second condition clarifies the semantics of the @ operator. In order to
evaluate a formula @NA at world w, we jump to the unique world u where N

holds, and check that A is true at u.
These logics are very expressive in comparison with modal logics introduced

so far till now. For instance, we can represent with hybrid formulas some frame
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properties which are not definable with formulas of modal logics, such as ir-
reflexivity, asymetry and antisymetry (for proofs see [BdRV01]). For example,
the formula @N¬�N says that the world named N is not reachable from itself
by the accessibility relation. Thus this formula is valid on precisely those frames
which are irreflexive and which are in fact characterized by the axiom schema
@N¬�N .

After this short introduction, we show now how to implement HL(@) in
LoTREC.

5.3.1 Model construction for HL(@)

The main ideas of the method that we propose are:

1. we treat classical and modal connectors as usual by the rules given in
Section 3.4;

2. for each formula of the form @NA, we add A to the world named N , and
if such a world does not exist, then we create it and we add A to it;

3. for every worlds w,u, if there exists a nominal N such that N ∈ V (w) and
N ∈ V (u), then we identify w and u as being the same world.

The details are given in the sequel.

Defining the necessary connectors

We start by defining, in addition to the language of the modal logic K, a new
binary connector at, with a pretty display such as @( , ), where the first
denotes a nominal and the second denotes a formula. In this way, at N P is
displayed as @(N,P) and it is used to denote the formula @NP .

Distinguishing nominals from atomic propositions

Suppose we have constructed in LoTREC a node w containing P and ¬Q, and
a different node u containing P and Q. This is not enough to produce a clash.
In contrast, if these two nodes contain in addition the same nominal N , then
we should detect a clash: since N is a nominal the two nodes must be identical,
i.e. we have Q and ¬Q at the same world, which closes the premodel.

Since in LoTREC we only have one set of constant symbols (words start-
ing with capital letters), these symbols will be shared by the atomic propo-
sitions P and the nominals N . Hence, we should find a special way to dis-
tinguish between atoms and nominals. To do so, we propose to add a spe-
cial unary connector nominal to surround the nominals, such that a formula
of the form N is taken to be an atomic proposition, while nominal N is taken
to be a nominal. Therefore the formula @N¬�N is written in LoTREC as
at nominal N not pos nominal N.2

2Note that there is no ambiguity when the symbol is the first argument of the @ operator:



5.3. HYBRID LOGIC 115

Using a common root

When a formula of the form @NA is added to a given node, we should check
every world to detect whether it contains N , in which case we add the formula
A to it. However in LoTREC, we cannot browse the whole set of nodes in a
given premodel using the simple conditions of LoTREC’s language. We would
rather proceed as in S5 (see Section 4.6): we create a common parent node, let
us call it root, and then we link this root to every node in the premodel by a
special link Root. We also mark this root node by a special mark Root, in order
to find it easily in our rules.

We define the following rules:

Rule Init

isNewNode w

isNotMarked w Root

createNewNode root

link root w Root

mark root Root

End

Rule Link_Root_To_New_Nodes

isNewNode w

isNotMarked w Root

isAncestor root w

isMarked root Root

link root w Root

End

The rule Init is to be called at the beginning of the strategy. It creates a new
node marked by Root and linked to the node containing the input formula. The
rule Link_Root_To_New_Nodes should be called after the rules creating new nodes
(such as the rule Pos). It links the root node to every other node. Running with
these two rules and the formula �P we obtain the premodel of Figure 5.10.

Checking for the existence of nominals

Let us consider now formulas of the form @NA, where N is a nominal and A is
an arbitrary formula of HL(@). As we have said, when a formula of this form
is found to a given node, we should check:

• every world to detect the world named by N in order to add the formula
A to it;

• in case there is no such world, we should create it.

To cover both cases we define three rules. The first one is:

then the first parameter must be be a nominal. We may chose then to not use the connector
nominal to surround the first parameter of @.
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Figure 5.10: Running with Init and Link_Root_To_New_Nodes rules.

Rule Check_For_Existence_Of_Nominals

hasElement w nominal variable N

isLinked root w Root

add root nominal variable N

End

The rule Check_For_Existence_Of_Nominals adds every nominalN to the root
node, when this nominal is already assigned to a given node. Hence, after
applying this rule we can be sure that the node root contains all the nominals
which have been already added to the nodes of the premodel before the rule
At_N_When_N_Is_New is applied.

Rule At_N_When_N_Is_New

hasElement w at nominal variable N variable A

isLinked root w Root

hasNotElement root nominal variable N

createNewNode u

add u nominal variable N

link root u Root

End

This rule creates a new node and assigns a nominal N to it, if such a nominal
N has not been yet assigned to any node (i.e. it does not belong to the node
root). Once the above rules have been applied for all occurrences of nominals we
can apply the following rule, which reflects the truth condition for @-formulas:

Rule At_N_When_N_Exists

hasElement w at nominal variable N variable A

isLinked root w Root

isLinked root u Root

hasElement u nominal variable N

add u variable A

End
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In the strategy, these rules should be called as follows:

Hybrid_Logic_Strategy

...

...

repeat

Check_For_Existence_Of_Nominals

applyOnce At_N_When_N_Is_New

end

At_N_When_N_Exists

...

...

End

Running with the formula N ∧ @NP , this strategy gives the premodel of
Figure 5.11.

(a) input formula (b) Init (c) And

(d) Check_For_Existence_Of_Nominals (e) At_N_When_N_Exists

Figure 5.11: Results of applying the rules dealing with @-formulas on N ∧@NP .

Identifying nodes with the same nominal

Let us consider the formula ¬P ∧N ∧�(P ∧N). Using the set of rules and the
the strategy defined till now, we obtain the open premodel of Figure 5.12.3

However, this formula is not satisfiable! The reason is that our current rules
do not identify the two nodes which have the same nominal N . Once this
is taken into account we shall obtain P and ¬P at the same node; and this

3Note that, since there is a display option in LoTREC which allows to hide nodes marked
by a specific mark, the root node is hidden in Figure 5.12. We did this in order to make the
figures more readable. We use this option throughout the remaining examples.
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Figure 5.12: Without node identification, an open premodel for the unsatisfiable
formula ¬P ∧N ∧�(P ∧N).

leads to a closed premodel, and in consequence the formula will be reported as
unsatisfiable.

According to the rules we have seen up to now, in a given premodel we may
have two or more nodes containing the same nominal N . However, according to
the HL(@) model definition, there is a unique world in which a given nominal
N dwells. Hence, when two or more nodes contain the same nominal N , they
should be considered as equal. We say that these nodes form a N -equivalence
class, where only one node is sufficient to represent this class.

Practically, we proceed as follows:

1. we choose one of these nodes to represent its equivalence class, we call it
the N -node;

2. we link each node in the class to its representative N -node by a special
link, say Equal_To;

3. we identify each of these nodes with the N -node by:

• copying all its formulas to the N -node,

• redirecting all its in-edges to the N -node,

• and redirecting all its out-edges to the N -node.

The first and second items in the above list are ensured by the following two
rules:

Rule Chose_A_Representative

hasElement w nominal variable N

isLinked root w Root

hasNoSuccessor root nominal variable N

link root w nominal variable N

End

Rule Detect_Non_Representative_Nodes

hasElement w nominal variable N

isLinked root w Root
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isLinked root u nominal variable N

areNotIdentical w u

link w u Equal_To

End

The first rule Chose_A_Representative is to be applied only once to chose a
representative node for just one nominal, say N . To designate this N -node, we
link it to the root node by the nominal N . In this way, we can check the next
time we apply this rule whether an N -node is already created for the nominal
N or not.

This link also allows to ease the access to this N -node from the root, as we
notice in the rule Detect_Non_Representative_Nodes. This rule links every node
with a nominal N to the corresponding N -node. This link allows the next rules
to copy the contents and the context of the nodes to their N -nodes, as follows:

Rule Copy_Formulas

hasElement w variable A

isLinked w u Equal_To

add u variable A

End

Rule Copy_In_Edges

isLinked w u Equal_To

isLinked parent w R

link parent u R

End

Rule Copy_Out_Edges

isLinked w u Equal_To

isLinked w child R

link u child R

End

The above rules are to be called in the strategy as follows:

Hybrid_Logic_Strategy

...

...

repeat

applyOnce Chose_A_Representative

Detect_Non_Representative_Nodes

end

repeat

Copy_Formulas

Copy_In_Edges

Copy_Out_Edges

end
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...

...

End

Running these new rules with the modified strategy we obtain a conveniently
closed premodel for the formula ¬P ∧N ∧�(P ∧N), as shown in Figure 5.13.

Figure 5.13: A closed premodel for the formula ¬P ∧N ∧�(P ∧N).

Termination is almost there...

Let us consider now the formula @N�N . Running our last strategy in the step-
by-step mode yields a non-terminating execution, whose first steps are shown
in Figure 5.14.

Nevertheless, it does not require a big effort to terminate. In fact, if we had
merged all the nodes of a N -equivalence class, we should not have this non-
termination problem, since merged nodes would have been physically deleted.

To simulate this deletion, we simply ask our rules to ignore the identified
nodes. To do so, we add to our rules the condition: hasNoSuccessor w Equal_To,
especially the rule Pos.

Optionally, we can also add this condition to the other rules, especially the
the Or rule, to prevent them from being applicable on merged nodes.

We have said that “termination is almost there” since we do not achieve
an explicit loop-check solely for the sake of termination. The work done to
identify the nodes is already needed, and above all, to satisfy the truth conditions
corresponding to the nominals.

Running on the same formula with these new settings, the method terminates
and delivers the open premodel of Figure 5.15.

The order of rules in the strategy matters

As shown in previous methods of this chapter, the order of the rules is important
to ensure termination. The golden rule is to call the rules which check and mark
the nodes to be blocked before calling the rules which should not be applied on
blocked nodes.
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(a) input formula (b) @-rule 1 (c) @-rule 2 (d)  -rule

(e) @-rule 2 (f) identification (g) merge (h)  -rule again..

...

Figure 5.14: An example formula shows that our method is not yet terminating.

A last example should clarify this point. Let us consider the formula @N�(N∧
�P ) ∧@N �(N ∧�P ).

Constructing a premodel for this formula should be terminating, and should
deliver an open premodel as in Figure 5.16. This result is only possible if in the
strategy, the node identification rule Detect_Non_Representative_Nodes is called
before the Pos rule.

The reader may verify in a step-by-step mode that otherwise, the �-formulas
existing in the identified nodes (marked as Merged in the figure) will be treated
first by the Pos rule. Which creates new similar nodes with the same set of
formulas, where the �-formulas are also treated first, and so on. . .

5.4 Completeness vs. termination

While soundness proofs are generally straightforward, completeness proofs are
strictly more complex. The underlying algorithms are usually very procedural,
and in consequence the proofs are not so formal. But there exists a standard
methodology as exposed e.g. in [Fit83]. It is usually based on a fair strategy
giving equal rights to all the rules (which corresponds more or less to our basic
fair algorithm): it is assumed that every applicable rule ρ ∈ R will eventually
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Figure 5.15: An open premodel for the formula @N�N . It is obtained after a
terminating run.

Figure 5.16: An example where �-formulas should be treated after the identifi-
cation of nodes with the same nominal.

be applied. This strategy ensures that a model can be associated to an open
premodel.

Such an algorithm does not always terminate for modal logics beyond the
simple logics; for example the fair application of the standard K4 tableau rules
to the formula  �P ∧�P runs forever (see Section 5.1).

This is because the application of the π-rules (in the Smullyan-Fitting ter-
minology) to formulas of the form �A at a node w creates new nodes with
non-strict subformulas.

Therefore the last part of the standard presentations in the literature ([Fit83,
Gor99, Mas00]) contains an algorithm that combines rule applications in a way
such that termination is guaranteed. Typically:

• The application of ‘many’ rules is blocked if they have already been ap-
plied. This is the case for the α-, β-, and π-rules, but not for the ν-rules4.

4Mainly, ν-rules are �-like rules, π-rules are  -like rules, β-rules are branching rules and
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• The application of the π-rules to node w is blocked if w is included in (or
identical to) some ancestor node.

Then a combinatorial argument limits the number of possible nodes that can
be created in a graph, and the number of possible graphs.

As pointed out in [FdCGHS05], it is important to observe that complete-
ness has to be re-proved for such a terminating algorithm. Usually informal
arguments are employed here. They basically say that the restriction on rule
applicability imposed by the terminating algorithm is harmless in what concerns
completeness.

Clearly, while proving completeness for the fair strategy is already a hard
task, to prove completeness for the terminating strategy is even harder. As
said above, when working with complex modal logics one often would like to
modify the interplay between the modalities. Moreover, even for a given logic
one would often like to fine-tune the strategy in order to improve performance
of the algorithm, shorten proofs, decrease the size of the resulting model, etc.
For all these reasons it seems to be too hard a task to prove both completeness
and termination of the decision procedures for these logics.

We believe that for such complex logics formal termination proofs are more
important in practice than formal completeness proofs, and that it is sufficient
to only conjecture completeness.

To support our claim, suppose we have at our disposal a tableau algorithm
that is both terminating and sound for logic L, together with an algorithm
that allows us to build a model from an open premodel (usually consisting in
closing the accessibility relation under some property). Suppose we want to
know whether a given formula A is L-satisfiable or not.

Let us proceed as follows:

• If the algorithm returns a set of premodels all of which are closed, sound-
ness of the algorithm ensures that A is L-unsatisfiable.

• If the tableau algorithm returns at least one open premodel M then our
completeness conjecture says that it can be turned into an L-model of A.
Now this can be verified in the following way:

1. Apply the model building algorithm to build a model M , with actual
world w0.

2. Check whether M is a L-model.

3. Model check whether M,w0 � A.

4. If M,w0 � A then A is indeed L-satisfiable; else we have discovered
that our conjecture was erroneous, and that the algorithm has to be
modified to “get more complete” w.r.t. L-unsatisfiability.

Thus we propose to postpone the work on completeness until the good logic
has been found together with a satisfactory (terminating) strategy.

α-rules are simple classical and reduction rules.
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5.5 Termination by checking for loops

The second criterion guaranteeing termination of theorem 1 does not apply to
logics with transitive accessibility relations. In these logics we use a loop test to
detect every node that is included in some ancestor5. Such nodes are reported as
loop-nodes and they are to be blocked. We block a loop-node by preventing the
the Pos-rule from being applied on it. The following theorem (that was proved
in [GHS06b]) states the conditions under which this ensures termination.

Theorem 2 ([GHS06b]). Let R be a set of rules such that for every ρ ∈ R,

• ρ is analytic (only subformulas of the original formula are added to nodes
in the action part of ρ);

• The Pos-rule does not apply in a node which is included in some ancestor.

Let S be a strategy that is built from R. Then the model construction termi-
nates, in other words apply S to any formula leads to a finite premodel.

Proof. First, observe that due to the subformula condition:

• every node only contains a finite number of formulas, and

• there can only be a finite number of nodes with differing associated set of
formulas.

We prove that (1) application of S can never lead to premodels of infinite depth,
and (2) application of S can never lead to premodels with infinite branching
factor.

The argument is that creation of new nodes is subject to non-inclusion in
an ancestor node, which due to the condition on S is always tested before
node creation. Therefore a branch of infinite length would contain an infinite
number of nodes having different associated formula sets. This cannot be the
case because our rules are monotonic: no formulas are erased. This even gives
us the classical upper bound: length of branches is bounded by an exponential
in the length of the input formula.

Infinite branching in node w could only be produced by introducing infinitely
many new nodes u for each �A formula in w. But given a node w, the number of
�-formulas being bounded by the (linear) number of sub-formulae of the input
formula, each node may only have a linear number of successors. Thus the
branching factor is bounded. This ends the proof.

This theorem covers the case of logics build over the standard axioms K, T,
B, 4, 5, Confluence. Moreover, it applies to hybrid logic HL(@) as presented in
this chapter.

To sum it up, the above theorem and theorem 1, page 96, give some general
termination criteria for our strategies. Together, these criteria cover all standard

5w is included in w0 if for every formula A appearing in w, A also appears in w0.
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modal logics, including Linear Temporal Logic LTL and Propositional Dynamic
Logic PDL, as we shall see in the next chapter.

For logics that do not fit into the above framework we have to prove termi-
nation on a case-by-case basis.

Conclusion

In this chapter we gave the model construction method for logics with transitive
accessibility relations, such as K4 and S5, and for a hybrid logic HL(@) with a
specific constraint on the valuation function of its models.

In the methods of these logics, it is required to guarantee the termination
by blocking loop-nodes. In the case of K4 and S5 a loop-node is detected by
performing a node inclusion test. In the case of HL(@), a loop-node is avoided
by identifying each pair of nodes named by the same nominal.
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Chapter 6

Model Checking

Introduction

In chapter 2, we defined one of the reasoning problem as:

• Input: a formula A, a model M and a world w in M ;

• Output: does A hold at w?

This chapter presents a procedure to answer this question for formulas of
modal logics. First, we show the main flow of this procedure when it is achieved
on paper. Then we show how to implement a set of rules to automate the run
of this procedure using LoTREC.

6.1 Model checking on paper

Given a formula A, a model M and a specific world w of M , the corresponding
model checking problem can be formulated as “is A true at the world w of the
model M?”, or also “does A hold at the world w of the model M?”.

Answering such a question is what we call a model checking procedure, and
it is usually achieved in three steps:

1. model construction,

2. analysis of the input formula,

3. synthesisation of the answer about its truth.

In the following subsections we detail each step, as it is usually done manually
on paper. Then in the next section, we show how to automatize these steps in
LoTREC.

127
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6.1.1 The model and the formula

Formally, a model is defined as a triple M = (W,R, V ) over a set of labels I
and a set atomic propositions P, as shown in Definition 1, page 40.

Given I = { R } and P = {P,Q}, let us consider the following example
model M = (W,R, V ) where:

• W = {w, u, v, x},

• R : I → 2W×W such that: R( R ) = {(w, u), (w, v), (v, u), (v, x)},

• V : W → 2P such that: V (w) = {P}, V (u) = ∅, V (v) = {P,Q} and
V (x) = {Q}.

Practically, a model is represented as a graph. Figure 6.1 shows a graphical
representation of the above model M , where w is the node at the top of the
graph, u is at the right hand side of the reader, x is at the bottom and v is the
fourth other node.

Figure 6.1: Example of a model.

Let us also consider the formula A = � (P ∨ Q), and let us formulate the
following model checking problem: does M,w � A?

To solve this problem, we add the formula A to the world w, as shown in
Figure 6.2, then we try to answer the question “is A true at w?” according to
the truth conditions of modal logic.

If A is an atomic formula (i.e. an element of P) the we would be able to
answer this question. Otherwise, we should analyse A and its subformulas until
being able to evaluate their truth, as shown in the next subsections.

6.1.2 Top-down formula decomposition

This step consists in decomposing the formula into subformulas, and transform-
ing the question about its truth into smaller questions about the truth of its
subformulas, according to the truth conditions.

For example, according to the truth conditions, the formula � (P ∨ Q) is
true at w if, and only if, its subformula  (P ∨Q) is true at least at one of the
successors of w, i.e. at u or at v. That is why in “step 1” of Figure 6.3, we add
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Figure 6.2: Formulating the problem of model checking.

the formula  (P ∨Q) to both u and v, in order to be tested whether it is true
or not at these worlds.

Now  (P ∨ Q) is true at v if, and only if, for every world w′ linked to v,
P ∨Q is true at w′. That is why we add P ∨Q to all the successors of v, i.e. u
and x, in order to be tested in there, as shown in “step 2” of Figure 6.3.

This new added formula, P ∨Q, is true at u (resp. x) if, and only if, one of
its disjuncts P or Q is true at the same world u (resp. x). This is why we add
these disjuncts to the corresponding worlds u and x in “step 3” of Figure 6.3.

Since these disjuncts are atomic formulas, no further decomposition is needed
anymore, and the answers about the truth values of these analysed formulas can
be synthesised from now on.

We also halt this decomposition procedure when we obtain �-formulas or
 -formulas in leaf nodes (nodes with no successors). For example, the formula
 (P ∨Q) can not be decomposed furthermore at the world u.

6.1.3 Bottom-up satisfiability check

At the end of the above decomposition phase, we start being able to answer the
questions about the truth of the formulas step-by-step.

First, we can answer the questions about the atomic formulas (i.e. elements
of P). For example, Q is true at x but false at u, whereas P is false in both of
them, as shown in “step 1” of Figure 6.4.

Other formulas can be then recursively checked according to the truth con-
ditions and the truth of their subformulas. For example, P ∨Q is true at x since
one of its disjunct, Q, is true at x, but it is not in u since its both disjuncts are
not (“step 2” of Figure 6.4).

Hence,  (P ∨Q) is not true at v, since P ∨Q is not true in all its successors,
namely, it is false at u (“step 3” of Figure 6.4).

At leaf nodes, �-formulas are evaluated to false, since there is no successor
at all, i.e. for a formula �B at a leaf node, it is not possible to have a successor
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(a) step 1

(b) step 2 (c) step 3

Figure 6.3: Top-down formula analysis.

where B holds. Dually,  -formulas are evaluated to true. In our example, the
formula  (P ∨Q) is true at u, as shown in “step 3” of Figure 6.4.

Finally, the question about the truth of the input formula A = � (P ∨Q)
at the world w can be answered by “yes, it is”, since its subformula  (P ∨Q) is
true at, at least, one of w’s successors, namely u (“step 4” of Figure 6.4).

6.2 Model checking in LoTREC

In this section, we show how to implement the above described model checking
procedure in LoTREC. Our aim is to achieve model checking automatically.

6.2.1 Defining the model checking problem

The construction of a model consists in creating a graph, according to Definition
1, page 40. In LoTREC, this can be done, as shown in Appendix B.1, by three
different ways:
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(a) step 1 (b) step 2

(c) step 3 (d) step 4

Figure 6.4: Bottom-up satisfiability check.

1. using a rule,

2. loading a (saved) model file, or

3. adding nodes, edges and formulas using the GUI.

The following rule can take care of building the model of Figure 6.1, if called
once at the beginning of the model checking strategy:

Rule Build_Model

createNewNode w

createNewNode u

createNewNode v

createNewNode x

link w u R

link w v R

link v u R

link v x R

add w P

add v P
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add v Q

add x Q

End

You may refer to Appendix B.1 for more details.
Once the model is built, we can define a problem of model checking of the

form “does M,w � A?” by adding the formula A to the world w. This can be
done inside the rule defining the model, or after loading the model from a file
or drawing it by hand. However, the formula can not be simply added as it, as
we may notice from the following example.

Suppose A is the atomic formula P , and that we want to check its satisfiabil-
ity at the world w of the model M of Figure 6.1. Adding the formula A directly
would be confusing, since we may confound henceforth the added atom P and
the other atom P which has been already figuring in the world w by definition
of M .

In order to distinguish between the added formulas and the atoms preexisting
in the model by definition, we encapsulate the added formulas in a special unary
connector1. This connector is defined as follows:

Name Arity Display
isItTrue 1 isItTrue(_)?

Thus in the above example we would add isItTrue(P)? to w instead of P .
To add the formula � (P ∨ Q) to the model of Figure 6.1 using the rule

Build_Model, we only have to add the action add w isItTrue pos nec or P Q.
We obtain the same result as in Figure 6.2.

6.2.2 Top-down rules

The top-down steps presented in section 6.1.2 can be achieved automatically
by defining an appropriate set of rules, which transform the question about the
truth value of the input formula into smaller questions about the truth values
of its subformulas.

For example, to check the truth of a formula of the form ¬A at a world w,
the truth of A should be checked at w. To check formulas of the form A∧B or
of the form A ∨B, both formulas A and B should be checked. This is done by
the following rules:

Rule Not_Top_Down

hasElement w isItTrue not variable A

add w isItTrue variable A

End

Rule And_Top_Down

hasElement w isItTrue and variable A variable B

1We could have used to the same end some other techniques, such as marking the formulas
with special marks.
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add w isItTrue variable A

add w isItTrue variable B

End

Rule Or_Top_Down

hasElement w isItTrue or variable A variable B

add w isItTrue variable A

add w isItTrue variable B

End

Rules dealing with formulas obtained with other Boolean connectors, such
as → and ↔, can be similarly defined.

As for modal formulas, their check consists in checking their subformulas in
successor nodes, as follows:

Rule Nec_Top_Down

hasElement w isItTrue nec variable A

isLinked w u R

add u isItTrue variable A

End

Rule Pos_Top_Down

hasElement w isItTrue pos variable A

isLinked w u R

add u isItTrue variable A

End

To guarantee that the formulas are recursively decomposed, we shall call the
above rules repeatedly, as in the following strategy, for example:

Strategy Top_Down

repeat

Not_Top_Down

And_Top_Down

Or_Top_Down

Nec_Top_Down

Pos_Top_Down

end

End

6.2.3 Bottom-up rules

After calling the top-down rules, we can start to evaluate the truth of some of
the subformulas. The truth value of a formula A can be given by marking the
formula isItTrue(A)? with Yes to say that it is true, or with No otherwise.

The first answers can be formulated for atoms, as done by the following
self-explanatory rules:
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Rule Atom_True_Bottom_Up

hasElement w isItTrue variable A

isAtomic variable A

hasElement w variable A

markExpressions w isItTrue variable A Yes

End

Rule Atom_Not_True_Bottom_Up

hasElement w isItTrue variable A

isAtomic variable A

hasNotElement w variable A

markExpressions w isItTrue variable A No

End

After that the first answers are formulated, we can synthesis these answer
recursively up toward the input formula, as shown in the bottom-up steps of
section 6.1.3.

For negation formulas, we use the following rule:

Rule Not_True_Bottom_Up

hasElement w isItTrue not variable A

isMarkedExpression w isItTrue variable A No

markExpressions w isItTrue not variable A Yes

End

Rule Not_Not_True_Bottom_Up

hasElement w isItTrue not variable A

isMarkedExpression w isItTrue variable A Yes

markExpressions w isItTrue not variable A No

End

For conjunctive Boolean formulas, we define the following rules:

Rule And_True_Bottom_Up

hasElement w isItTrue and variable A variable B

isMarkedExpression w isItTrue variable A Yes

isMarkedExpression w isItTrue variable B Yes

markExpressions w isItTrue and variable A variable B Yes

End

Rule And_Left_Not_True_Bottom_Up

hasElement w isItTrue and variable A variable B

isMarkedExpression w isItTrue variable A No

markExpressions w isItTrue and variable A variable B No

End
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Rule And_Right_Not_True_Bottom_Up

hasElement w isItTrue and variable A variable B

isMarkedExpression w isItTrue variable B No

markExpressions w isItTrue and variable A variable B No

End

The dual of the above rules is used to treat disjunctive formulas:

Rule Or_Not_True_Bottom_Up

hasElement w isItTrue or variable A variable B

isMarkedExpression w isItTrue variable A No

isMarkedExpression w isItTrue variable B No

markExpressions w isItTrue or variable A variable B No

End

Rule Or_Left_True_Bottom_Up

hasElement w isItTrue or variable A variable B

isMarkedExpression w isItTrue variable A Yes

markExpressions w isItTrue or variable A variable B Yes

End

Rule Or_Right_True_Bottom_Up

hasElement w isItTrue or variable A variable B

isMarkedExpression w isItTrue variable B Yes

markExpressions w isItTrue or variable A variable B Yes

End

As for modal formulas of the form  A and found at a world w, we use
a special condition keyword isMarkedExpressionInAllChildren, to check if the
formula A is marked by Yes in all the successors of w. If it is the case, then
isItTrue( A)? is marked by Yes2. Otherwise, it is sufficient to test if A is
marked by No in one of w’s successors, to mark isItTrue( A)? by No. These
two cases are taken into account by the following rules:

Rule Nec_True_Bottom_Up

hasElement w isItTrue nec variable A

isMarkedExpressionInAllChildren w isItTrue variable A R Yes

markExpressions w isItTrue nec variable A Yes

End

Rule Nec_Not_True_Bottom_Up

hasElement w isItTrue nec variable A

isLinked w u R

2Note that if w has no successors at all, then isMarkedExpressionInAllChildren holds
too, and isItTrue(�A)? is conveniently marked by Yes.
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isMarkedExpression u isItTrue variable A No

markExpressions w isItTrue nec variable A No

End

Dually, �-formulas are handled by the following rules:

Rule Pos_Not_True_Bottom_Up

hasElement w isItTrue pos variable A

isMarkedExpressionInAllChildren w isItTrue variable A R No

markExpressions w isItTrue pos variable A No

End

Rule Pos_True_Bottom_Up

hasElement w isItTrue pos variable A

isLinked w u R

isMarkedExpression u isItTrue variable A Yes

markExpressions w isItTrue pos variable A Yes

End

The set of bottom-up rules can be called in one strategy:

Strategy Bottom_Up

repeat

Atom_True_Bottom_Up

Atom_Not_True_Bottom_Up

Not_True_Bottom_Up

Not_Not_True_Bottom_Up

And_True_Bottom_Up

And_Left_Not_True_Bottom_Up

And_Right_Not_True_Bottom_Up

Or_Not_True_Bottom_Up

Or_Left_True_Bottom_Up

Or_Right_True_Bottom_Up

Nec_True_Bottom_Up

Nec_Not_True_Bottom_Up

Pos_Not_True_Bottom_Up

Pos_True_Bottom_Up

end

End

Putting all together

To apply all the above rules we define a new strategy calling the above smaller
strategies and rules as follows:

Strategy Model_Checking_Strategy

Build_Model

Top_Down
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Bottom_Up

End

Note that if the model is built without using the rule Build_Model, then this
rule can be omitted from the strategy.

6.3 Further discussions

The method given in this chapter is suitable for solving model checking problems
in all the monomodal logics presented in former chapters.

In order to deal with multimodal versions of these logics, our method should
be extended. However, the extension is simple and consists in replacing the
formulas nec variable A, pos variable A and the occurrences of R in the modal
rules by the formulas nec variable R variable A, pos variable R variable A
and by occurrences of variable R respectively, exactly as done in Chapter 3 to
extend the model construction method of K to Kn.

Dealing with formulas from other logics, having other sets of special con-
nectors, or having different semantics, may necessitate more effort to adapt the
above method.

A special case of model checking is when the formula must be checked in an
already constructed premodel resulting from the application of one of the model
construction methods implemented in LoTREC. For example, after building a
premodel for an LTL or PDL formula, some subformulas (namely eventualities)
should be checked in the premodel (see Section 7.1.6).

Recall that a model construction method creates premodels, and that a
premodel has to be extended in order to obtain a model which conforms to
Definition 1. The reason is that during the premodel construction:

• some atoms may not be added at some worlds, without being necessarily
false at these worlds;

• and some (reflexive, symmetric, transitive. . . ) edges may not be created.

Hence, using the model checking method presented in this chapter, the eval-
uation of atomic and modal formulas, including the input formula itself, could
be erroneous.

In most cases, we can still use this method to check formulas in premod-
els after turning them into models (i.e. after generating the lacking edges and
atoms). In some special cases, the method is to be changed and adapted to take
into account the specificities of the constructed premodels.
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Chapter 7

Logics with transitive
closure

Introduction

In chapter 5 we saw how tableaux methods can be implemented for logics such
as K4 and S4. In the last chapter we learned how to define a model checking
procedure. Now we show how to put these techniques altogether to handle logics
whose accessibility relations are transitively closed : LTL and PDL.

7.1 Linear Temporal Logic LTL

In a temporal logic the set of possible worlds correspond to moments in time.
Models of time have a temporal accessibility relation between the worlds. It
defines an order on the moments. A moment u which is accessible from a
moment w is “in the future” of w. The accessibility relation between these
worlds depends on our view of time.

7.1.1 LTL models

In LTL we have a linear discrete time line that is isomorphic to the set of
natural numbers N together with the successor function. It follows that the LTL
accessibility relation is serial, linear and discrete. When wRw′ then w′ is the
next moment after w. (It is often considered that the set of possible worlds is
the set of natural numbers N, but it is not necessary to do so.) Hence, given a
moment w we can write 〈w0, w1, . . .〉 to designate the sequence of moments that
are in the future of w, where w0 is w.

139
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7.1.2 Syntax of LTL

Temporal logics extend classical propositional logic with a set of temporal oper-
ators that navigate between moments using the accessibility relation. The basic
operators are:

• XA: read as “next time A”;

• FA: read as “finally A” or “eventually A”;

• GA: read as “globally A” or “always A”;

• AUB: read as “A until B”.

Sometimes, the alternative notations OA, �A and  A are used for the first
three operators.

7.1.3 Semantics of LTL

The truth conditions for the Boolean connectives are as usual (as in Definition
5). The truth conditions of the temporal operators are given with respect to a
linear time model M = (W,R, V ) as follows, where 〈w0, w1, . . .〉 is the sequence
of moments that are in the future of w, and w0 = w:

M,w � XA iff M,w1 � A;

M,w � FA iff there exist i ∈ N such that M,wi � A;

M,w � GA iff for all i ∈ N we have M,wi � A;

M,w � AUB iff there exists i ∈ N such that M,wi � B and for all
0 ≤ j < i we have M,wj � A.

According to the above truth conditions, we can verify that the following
equivalences are valid in LTL:

1. ¬XA ↔ X¬A

2. ¬GA ↔ F¬A (alternatively, ¬FA ↔ G¬A)

3. GA ↔ A ∧XGA

4. FA ↔ A ∨XFA

5. AUB ↔ B ∨ (A ∧X(AUB))

6. ⊤UA ↔ FA

7. ¬(AUB) ↔ (¬B ∧ ¬A) ∨ (¬B ∧X¬(AUB))

The last axiom is equivalent to (¬BU(¬B ∧ ¬A)) ∨G¬B.
The language of LTL allows us to express a bunch of interesting properties:
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• Safety: “Something bad will not happen”,

e.g. G¬(Metro Door Closing ∧ Pass Sensor On);

• Liveness “Something good will happen”,

e.g. FRich,

G(Start Thesis → F Finish Thesis);

• Fairness “If something is attempted/requested infinitely often, then it will
be successful/allocated infinitely often”,

e.g. GF Ready → GF Run.

In what follows we show how to implement a model construction method for
LTL which takes into consideration the above semantics.

7.1.4 Model construction for LTL in LoTREC

First, LTL connectors should be defined in LoTREC. This can be done as ex-
plained in chapter 2, section 2.2.

Since classical propositional formulas in LTL have the same semantics as
in classical propositional logic, the rules dealing with classical connectors are
exactly the same rules defined in Chapter 3 for modal logic K. In the sequel, we
give the rules dealing with the temporal operators.

Rules for XA and ¬XA formulas

The rule dealing with the X operator is similar to the rule dealing with the  
operator, since: for every formula XA found in a world w, it has to create a new
successor, say world u, and link it to w by the accessibility relation R, then add
the formula A to it.

However, in order to ensure the linearity of the resulting (pre)models, this
rule should make sure that each node has at most one successor node. This can
be achieved as explained in Section 4.3 for the rule dealing with the  operator
in K.alt1. Hence, we define the following two rules:

Rule Create_One_Successor

hasElement w next variable A

hasNoSuccessor w R

createNewNode u

link w u R

End

Rule Next

hasElement w next variable A

isLinked w u R

add u variable A

End
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The rule Create_One_Successor should be called in the strategy after the
applyOnce keyword, as explained in Section 4.3. The rule Next propagates the
subformula A of every XA formula appropriately to the created successor.

Another rule is needed to replace every formula of the form ¬XA by its
equivalent formula X¬A, as follows:

Rule NotNext

hasElement w not next variable A

add w next not variable A

End

This replacement formula is then treated by the X-rules.

Rules for GA and ¬FA formulas

According to the truth conditions, a formula GA is true at a given world w if it
holds at w and at every world in the future of w.

Hence, we define a rule which, for every formula GA found at a world w,
adds both A and XGA to w. This ensures that in the next state (i.e. the next
possible world linked to w) GA will be true, i.e. that A and XGA will be also
true, and so on.

Rule Globally

hasElement w globally variable A

add w variable A

add w next globally variable A

End

A formula ¬FA is true if, and only if, the formula G¬A is. Hence, the
following rule:

Rule NotFinally

hasElement w not finally variable A

add w globally not variable A

End

Using this rule, we rewrite ¬FA formulas by G¬A formulas, which are han-
dled then by the rule Globally.

Rules for FA and ¬GA formulas

A formula FA is true if, and only if, the formula A is or the formula XFA is.
Hence the following rule:

Rule Finally

hasElement w finally variable A

duplicate premodel_copy

add w variable A
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add premodel_copy.w next finally variable A

End

This rule makes a copy of the actual premodel, where a formula FA is found
at a world w, and calls it premodel_copy (See detailed explanation Section 3.3.1).
In the world w of the current premodel, it adds A, which directly fulfills the
formula FA at w. In the world w of premodel_copy, it adds instead XFA. Later,
when the Next rule is applied, the formula FA is added to the next successor of
w in premodel_copy, if there is any. In this way, the fulfillment of FA is postponed
in the premodel_copy to the next step of the model construction process.

The Finally rule also deals with formulas obtained from the following rule,
when it is applied on ¬GA formulas:

Rule NotGlobally

hasElement w not globally variable A

add w finally not variable A

End

Rules for AUB and ¬(AUB) formulas

The U connector is handled with the following rule:

Rule Until

hasElement w until variable A variable B

duplicate premodel_copy

add w variable B

add premodel_copy.w variable A

add premodel_copy.w next until variable A variable B

End

This rule makes a copy of the actual premodel, where a formula AUB is found
at a world w, and calls it premodel_copy (exactly as the rule Finally does). In
the world w of the current premodel, it adds B, which directly fulfills the formula
AUB. In the world w of premodel_copy, it adds instead A and X(AUB). Later,
when the Next rule is applied, the formula AUB is added to the next successor
of w in premodel_copy, if there is any. This way, the fulfillment of the formula
AUB (by having the formula B) is postponed in the world w of premodel_copy
to the next step of the model construction process.

Negated U-formulas are handled by the following rule:

Rule NotUntil

hasElement w not until variable A variable B

duplicate premodel_copy

add w and not variable B not variable A

add premodel_copy and not variable B next not until variable A variable B

End
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For every ¬(AUB) formula found at a world w, the above rule intends to
add either ¬B ∧ ¬A or ¬B ∧X¬(AUB) to w.

7.1.5 Termination: detecting loops by node-inclusion test

Despite the fact that the above rules are non-analytic, the accessibility relation
in LTL models is transitive, as discussed earlier in this chapter. Hence, the
same non-termination problem faced when dealing with K4 would appear when
dealing with LTL. Thus, the above method may not always terminate.

For example, constructing the premodels for the formula GXP , using this
method, does not terminate.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

...

Figure 7.1: Without performing a loop-test, the model construction method for
LTL may not terminate.

As we may notice in Figure 7.1, the formula GXP (a) yields a successor with
P and the same original formula GXP (d), which leads to a new successor with
P and the same initial formula GXP (g), and so on. . .

To avoid such infinite loops, we add to the above method an inclusion-test
rule:
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Rule Mark_Node_Included_In_An_Ancestor_Node

isNewNode u

isAncestor w u

contains w u

mark u Loop_Node

End

and we block every node included in an ancestor node by changing the rule
Create_One_Successor as follows:

Rule Create_One_Successor

hasElement w next variable A

hasNoSuccessor w R

isNotMarked w Loop_Node

createNewNode u

link w u R

End

The rule Create_One_Successor should be called in the strategy right after
the rule Mark_Node_Included_In_An_Ancestor_Node, otherwise, this latter would
not take effect.

Running the obtained method on the same formula GXP terminates, as
shown in Figure 7.2.

Figure 7.2: Loop-blocking by checking for node-inclusion.

Note that we may change similarly any other rule, so it becomes unapplicable
on nodes marked as Loop_Node, since such nodes should be blocked (i.e. not
explored by the rules anymore). Especially, we may change the branching rules
if we are interested in enhancing the performance of our method, such as the
rules Or, Finally, Until and NotUntil. However, these rules should be always
called before the rule Mark_Node_Included_In_An_Ancestor_Node. Otherwise, we
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may never mark equal nodes at the convenient moment before creating new
successors. Here is a sketch of the needed strategy:

Strategy LTL_Strategy

repeat

repeat

CPL_Strategy

NotFinally

NotGlobally

NotNext

Globally

Finally

Until

NotUntil

end

Mark_Node_Included_In_An_Ancestor_Node

applyOnce Create_One_Successor

Next

end

End

This loop-blocking technique is exactly the same used in Section 5.1 to guar-
antee the termination of the model construction method for K4. Although, it
also guarantees the termination in LTL, the resulting model construction method
would be not suitable, as we may see in Section 7.1.7.

In the next section, we deal with another problem which appears once we
use a loop-blocking technique in LTL method. As we shall see, when some
premodels are blocked due to loop-check, they remain open, however, they are
not “extensible” to a model.

7.1.6 Checking the fulfillment of eventualities

There is a specificity for the method of LTL with loop-check in comparison with
K4. In K4, any open premodel is extensible to a model, whether it is loop-free
or not. Whereas in LTL, it is not always the case.

For instance, the formula G¬P ∧ FP is not satisfiable. Which means that
our premodel construction method should only give closed premodels for this
formula. However, Figure 7.3 shows that an open premodel is obtained for this
formula (premodel.2.2).

Note that this open premodel is blocked since a loop is detected after checking
for node-inclusion. Note also that the formula FP is not fulfilled in this open
premodel, since P does not hold at any world of this premodel, and that, instead,
¬P holds at every world. Hence, this premodel is not extensible to a model of the
input formula (and its subformulas). Such a premodel is called an“inextensible”
premodel.

We conclude that, in LTL, we have to check the fulfillment of the eventualities
(i.e. FA and AUB formulas) in open premodels in order to distinguish between
“extensible” and “inextensible” open premodels.
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(a) premodel.1 (b) premodel.2.1 (c) premodel.2.2

Figure 7.3: An example of an open (blocked) premodel for an unsatisfiable
formula.

An FA (resp. AUB) formula is fulfilled at a given world w if, and only if,
the formula A (resp. B) is added to w or to one of the successor nodes of w. If
w is a loop node included in an ancestor node u, then a formula FA (or AUB)
is fulfilled in w if, and only if, it is fulfilled in its loop-ancestor-node u.

To catch the loop ancestor easily, we may change the Mark_Node_Included_In_An_Ancestor_Node
rule as follows:

Rule Mark_Node_Included_In_An_Ancestor_Node

isNewNode u

isAncestor w u

contains w u

mark u Loop_Node

link u w Loop

End

Henceforth, every loop node would be linked to its containing ancestor node
by a special link labeled Loop.

Now we can check the fulfillment of eventualities using a model-checking-
like technique (see Chapter 6). To mark every fulfilled FA eventuality, we call
repeatedly the following rules at the end of the LTL strategy:

Rule Finally_Fulfilled_At_The_Same_World

hasElement w finally variable A

hasElement w variable A

markExpressions w finally variable A Fulfilled

End

Rule Finally_Fulfilled_At_A_Successor

hasElement w finally variable A
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isAncestor w u

hasElement u variable A

markExpressions w finally variable A Fulfilled

End

Rule Finally_Fulfilled_At_Ancestor_Parent_Node

hasElement u finally variable A

isLinked u w Loop

isMarkedExpression w finally variable A Fulfilled

markExpressions u finally variable A Fulfilled

End

Similar rules should be defined (by replacing A by B) to mark fulfilled AUB
eventualities.

After calling these rules, unfulfilled eventuality would be left without being
marked as Fulfilled. Hence, a node containing an eventuality not marked as
fulfilled should be marked as Inextensible_Premodel, as follows:

Rule Unfulfilled_Finally_Means_Inextensible_Premodel

hasElement w finally variable A

isNotMarkedExpression w finally variable A Fulfilled

mark w Inextensible_Premodel

End

Rule Unfulfilled_Until_Means_Inextensible_Premodel

hasElement w until variable A variable B

isNotMarkedExpression w until variable A variable B Fulfilled

mark w Inextensible_Premodel

End

The following two rules propagates the Inextensible_Premodel mark to every
node of a given“inextensible”premodel, including the node containing the input
formula, so the user may notice this information easily:

Rule Propagate_Inextensible_Premodel_Mark_Up

isMarked w Inextensible_Premodel

isLinked u w R

mark u Inextensible_Premodel

End

Rule Propagate_Inextensible_Premodel_Mark_Down

isMarked w Inextensible_Premodel

isLinked w u R

mark u Inextensible_Premodel

End
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Running the obtained method with the same example formula G¬P ∧ FP
gives the same two closed premodels (premodel.1 and premodel.2.1) of Figure
7.3, whereas the third open premodel (premodel.2.2) is reported as Inextensible_Premodel
as shown in Figure 7.4.

Figure 7.4: The only open premodel for the formula G¬P ∧FP is reported as a
Inextensible_Premodel, since the eventuality formula FP is not fulfilled in it.

7.1.7 Termination: detecting loops by node-equality test

There is another specificity for the method of LTL with loop-check in comparison
with K4. Checking for node inclusion is sufficient in the case of K4, as shown in
Section 5.1, while it is not suitable in the case of LTL anymore.

To see this, let us consider, for instance, the formula FP ∧ ¬P ∧X¬P .

(a) premodel.1 (b) premodel.2.1 (c) premodel.2.2

Figure 7.5: Blocking a node included in an ancestor node guarantees the termi-
nation in LTL, but it is not suitable for dealing with some formulas, for instance
FP ∧ ¬P ∧X¬P .

Figure 7.5 shows the result of running our method (with node-inclusion loop
test and eventualities fulfillment check). It yields three premodels: two of them
are closed (premodel.1 and premodel.2.1), and the third one (premodel.2.2) is
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open, but stopped due to node-inclusion and then reported as an inextensible
premodel since the eventuality formula FP is not fulfilled in it.

Figure 7.6: The premodel of the formula FP ∧ ¬P ∧ X¬P , which is missed by
the method with node inclusion test, and which could have been obtained by
developing furthermore the premodel 2.2 of Figure 7.5.

Nevertheless, this formula is satisfiable as shown in Figure 7.6. In this fig-
ure, the premodel could have been obtained by our method if it has continued
developing the premodel.2.2 blocked by node-inclusion just one further step.

Hence, to guarantee the termination of the LTL method, we have to judge
the presence of a loop by check for the node-equality, instead of node-inclusion.
This can be done by the following rule:

Rule Mark_Node_Equal_To_An_Ancestor_Node

isNewNode u

isAncestor w u

contains w u

contains u w

mark u Loop_Node

End

We may also add to this rule the action link u w Loop as explained in Section
7.1.6. This rule is to be called instead of the rule Mark_Node_Included_In_An_Ancestor_Node,
right before the rule Create_One_Successor which has to be changed, as shown
in Section 7.1.5.

Using node-equality loop-blocking, the premodel shown in Figure 7.6 can be
found by our method for the formula FP ∧ ¬P ∧X¬P .

To test furthermore the obtained method, we show the result of running it
on the satisfiable formula GXP (Figure 7.7), and on the unsatisfiable formula
G(FP ∧¬P ) (Figure 7.8). Both runs terminate due to node-equality check. The
open premodel of the former formula is “extensible” to a model. Whereas the
only open premodel of the second formula is not extensible to a model, hence
called “inextensible”.
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Figure 7.7: Model construction for the formula GXP .

7.2 Propositional Dynamic Logic PDL

Propositional Dynamic Logic (PDL) was proposed in theoretical computer sci-
ence as a logic to reason about programs, and has also been used by philosophers
in order to reason about events and actions. Here we chose to use the term ‘pro-
gram’, and not ‘action’.

7.2.1 Syntax of PDL

Suppose given countable sets P of atomic formulas and I of atomic programs.
Complex programs are then built from atomic programs by using connectives
that are familiar from programming languages. We denote complex programs
by X,Y, . . . The intended meaning of such complex programs is given in the
following table:

Operator Reading
X;Y X then Y

X ∪ Y nondeterministic choice between X and Y

A? test of the formula A: if A is true then continue, else fail
X∗ execute X an arbitrary number of times

Note that tests have formulas as arguments. Formally we therefore have to
define the set of programs Prog and the set of formulas For by mutual recursion,
as the smallest set such that:

• I ⊆ Prog

• if X,Y ∈ Prog, then X;Y ∈ Prog;

• if X,Y ∈ Prog, then X ∪ Y ∈ Prog;
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(a) premodel.1 (b) premodel.2.1 (c) premodel.2.2

Figure 7.8: Model construction for the formula G(FP ∧ ¬P ).

• if A ∈ For, then A? ∈ Prog;

• if X ∈ Prog, then X∗ ∈ Prog;

• P ⊆ For;

• if A,B ∈ For, then A ∧B ∈ For;

• if A,B ∈ For, then A ∨B ∈ For;

• if A,B ∈ For, then A → B ∈ For;

• if A ∈ For, then ¬A ∈ For;

• if A ∈ For and X ∈ Prog, then [X]A ∈ For.

The formula [X]A is read “after every possible execution of program X, A
holds”.

There exist extensions of that basic language with more program operators,
such as converse and intersection.

7.2.2 Semantics of PDL

In PDL, programs are interpreted as transitions between worlds.
A PDL model is of the form M = (W,R, V ), whose ingredients have the

same definition as in multimodal logics (cf. Chapter 2). In particular R maps
every program X ∈ Prog to an accessibility relation RX .

The truth conditions for the Boolean connectives are as usual (cf. in Defini-
tion 5). Moreover:

M,w � [X]A iff M,wi � A for every w′ ∈ RX(w).
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However, not every model of the above kind is acceptable. The reason is
that up to now we have no guarantee that complex programs are interpreted as
they should be. A standard model has to satisfy the following constraints:

• RX;Y = RX ◦RY ;

• RX∪Y = RX ∪RY ;

• RA? = {〈w,w〉 | w ∈ W and M,w � A};

• RX∗ = (RX)
∗.

The following equivalences are valid in standard models.

1. ¬[X]A ↔ 〈X〉¬A

2. [X;Y ]A ↔ [X][Y ]A

3. [X ∪ Y ]A ↔ [X]A ∧ [Y ]A

4. [A?]B ↔ ¬A ∨B

5. [X∗]A ↔ A ∧ [X][X∗]A

Dually, we have the following equivalences:

1. ¬〈X〉A ↔ [X]¬A

2. 〈X;Y 〉A ↔ 〈X〉〈Y 〉A

3. 〈X ∪ Y 〉A ↔ 〈X〉A ∨ 〈Y 〉A

4. 〈A?〉B ↔ A ∧B

5. 〈X∗〉A ↔ A ∨ 〈X〉〈X∗〉A

7.2.3 LoTREC rules for PDL

We start with the outline of the method. We are going to have the following
tableaux rules:

• rules dealing with classical formulas are those of Section 3.4;

• rules for formulas of the form 〈X〉A and [X]A where X is a complex, non-
atomic program: they rewrite these formulas according to the equivalences
given in Section 7.2.2,

• rules for formulas of the form 〈I〉A and [I]A formulas, where I is an atomic
program: they create new I-successors and propagate [I]A formulas as
done in the usual  - and �-rules.

We give in the sequel some of the rules of the second and third bullets.
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Rules for sequence

To deal with 〈X;Y 〉- and [X;Y ]-formulas we use the following two rules:

Rule Pos_Seq

hasElement w pos seq variable X variable Y variable A

add w pos variable X pos variable Y variable A

End

Rule Nec_Seq

hasElement w nec seq variable X variable Y variable A

add w nec variable X nec variable Y variable A

End

The first rule reduces every 〈X;Y 〉A formula to the formula 〈X〉〈Y 〉A, whereas
the second reduces every [X;Y ]A to [X][Y ]A.

Rules for choice

According to the equivalences 〈X ∪ Y 〉A ↔ 〈X〉A ∨ 〈Y 〉A and [X ∪ Y ]A ↔
[X]A ∧ [Y ]A, we define the following two rules:

Rule Pos_Union

hasElement w pos union variable X variable Y variable A

add w or pos variable X variable A pos variable Y variable A

End

Rule Nec_Union

hasElement w nec union variable X variable Y variable A

add w and nec variable X variable A nec variable Y variable A

End

They are self-explanatory.

Rules for test

Rules for the test are inspired from the fact that 〈A?〉B ↔ A∧B and [A?]B ↔
¬A ∨B. We define them as follows:

Rule Pos_Test

hasElement w pos test variable A variable B

add w and variable A variable B

End

Rule Nec_Test

hasElement w nec test variable A variable B
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add w or not variable A variable B

End

Rules for transitive closure operators

The 〈∗〉 and [∗] operators are interpreted similarly to the G and F operators of
LTL. A formula 〈X∗〉A is true at a world w if, and only if, either A is true at w
or 〈X〉〈X∗〉A is. In the second case, we are postponing the fulfillment of 〈X∗〉A
to an X-successor of w. Dually, a formula [X∗]A is true at a world w if, and
only if, A and [X][X∗]A are true at w. This guarantees that in any X-successor
of w [X∗]A will be true, i.e. A will be true and [X][X∗]A and so on. . .

In LoTREC, we define the following two rules:

Rule Pos_Star

hasElement w pos star variable X variable A

add w or variable A pos variable X pos star variable X variable A

End

Rule Nec_Star

hasElement w nec star variable X variable A

add w and variable A nec variable X nec star variable X variable A

End

Note that for the negation of the modal operators we use the usual two rules:

Rule Not_Pos

hasElement w not pos variable X variable A

add w nec variable X not variable A

End

Rule Not_Nec

hasElement w not nec variable X variable A

add w pos variable X not variable A

End

Rules for modal operators with atomic programs

When the above rules are called repeatedly, every complex should have been
reduced to either a formula of the form 〈I〉A or [I]A, where I is an atomic
program. At this stage, we call the following two rules:

Rule Pos_Atomic_Program

hasElement w pos variable I variable A

isAtomic variable I

createNewNode u
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link w u variable I

add u variable A

End

Rule Nec_Atomic_Program

hasElement w nec variable I variable A

isLinked w u variable I

add u variable A

End

They are exactly the same usual multimodal  - and �-rules.

7.2.4 Termination

However, the above method does not terminate when dealing with a 〈∗〉-formula.
For instance, let us consider the model construction of the formula 〈I∗〉P , as
shown in Figure 7.9.

(a) step 1

(b) step 2

premodel.1 premodel.2
(c) step 3

premodel.1 premodel.2
(d) step 4

Figure 7.9: Non terminating premodel construction of 〈I∗〉P .

We notice that at step 4, the same initial node with the input formula is
reappearing once again in premodel.2, which means that the first steps will be
repeated again and again.

If we block the nodes after a node-inclusion test, we may fall in the same
problem discussed in Section 7.1.7 in LTL. It is sufficient to check that the
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model construction of the satisfiable formula 〈I∗〉P ∧ ¬P ∧ [I]¬P stops earlier
without giving any open premodel that is extensible to a model, i.e. it only gives
inextensible open premodels (see Figure 7.10).

(a) premodel.1 (b) premodel.2.1 (c) premodel.2.2

Figure 7.10: Loop-blocking using node-inclusion test stops earlier, and does not
give an extensible open premodel for the formula 〈I∗〉P ∧ ¬P ∧ [I]¬P .

Hence, it is clear that we will guarantee the termination by blocking equal
nodes. These nodes are marked first by the rule Mark_Node_Equal_To_An_Ancestor_Node
defined in Section 7.1.7. Then, we avoid developing these nodes by adding to the
rules the (negative) condition isNotMarked w Loop_Node, as done in the following
rule for example:

Rule Pos_Atomic_Program

hasElement w pos variable I variable A

isAtomic variable I

isNotMarked w Loop_Node

createNewNode u

link w u variable I

add u variable A

End

Note that, to guarantee the termination of our method, it is sufficient to
block this rule. Nevertheless, we may also block other rules, especially the rule
Or (since it duplicates the whole premodel when applied).

As for the strategy, we should call as long as possible all the classical rules
and the rules for test, choice, sequence and iteration, then we call the rule
Mark_Node_Equal_To_An_Ancestor_Node before calling the rule Pos_Atomic. A
sketch of such a strategy is:

Strategy PDL_Strategy

repeat

repeat

CPLStrategy

Not_Nec
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Not_Pos

Pos_Test

Nec_Test

Pos_Star

Nec_Star

Pos_Union

Nec_Union

Pos_Seq

Nec_Seq

end

Mark_Node_Equal_To_An_Ancestor_Node

Pos_Atomic_Program

Nec_Atomic_Program

end

End

Running with this loop-free method, we can find an open premodel for the
formula 〈I∗〉P ∧ ¬P ∧ [I]¬P , as shown in Figure 7.11.

Figure 7.11: An extensible open premodel for the formula 〈I∗〉P ∧ ¬P ∧ [I]¬P .

7.2.5 Fulfillment of eventualities

Blocking loop nodes may lead to open premodels with un fulfilled 〈∗〉-formulas.
For instance, the model construction of the formula [I∗]P ∧ 〈I∗〉P yields three
closed premodels and one open premodel, which should be reported as an inex-
tensible premodel (non-extensible to a model) since 〈I∗〉P is not fulfilled in it
(see Figure 7.12).

We may think that we may decide whether an eventuality 〈X∗〉A is fulfilled
at a world w by simply checking for the presence of the formula A in one of
its successors, as it is the case in LTL (or other temporal logics). However,
this is not sufficient. In PDL, we must verify in addition that this successor
is connected to w by X-steps. Nevertheless, X could be a complex program.
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(a) premodel.1 (b) premodel.2.1

(c) premodel.2.2.1 (d) premodel.2.2.2

Figure 7.12: An inextensible open premodel for the formula [I∗]P ∧ 〈I∗〉P .

Hence, verifying that two nodes are linked by a specific program may have the
same complexity as the original problem.

A first solution is to proceed à la Pratt [Pra80], by keeping track, for every
eventuality 〈X∗〉A, of the information about its postponement (i.e. unfulfillment)
along the X-paths built while treating the subformulas of this eventuality.

A second solution is to proceed à la de Giacomo&Massacci [dGM00], who
are inspired from model checking techniques used for µ-calculus, and consists
in renaming each eventuality 〈X∗〉A in a given node w by an auxiliary variable,
let us say E, and then reducing the 〈X∗〉A formula to 〈X〉E. When E is found
later in a successor node u of w then we know that u is connected to w through
X-steps.

However, we propose in LoTREC an alternative simpler solution: to check
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every formula, including the eventualities, in a one-way bottom-up verification.
This solution keeps the premodels clearer by avoiding additional cumbersome
edges or information in the graph structure of the premodels, even if it is in
some cases suboptimal w.r.t. the other two solutions mentioned above.

This model checking process is not exactly the same method presented in
Chapter 6, since the premodels are not fully specified and the analysis of the
input formula was done on a different basis. In addition, we shall see that in our
model checking here, we only mark True formulas. Nevertheless, both methods
share the same marking technique.

Checking literals formulas

When both literals P and ¬P coexist at the same node, the premodel is reported
as closed, then it is discarded due to the rule Stop, and hence, it is not checked
by the rules that we are defining here.

Otherwise, an atomic formula P , or its negation ¬P , is supposed to be true
when it is added by the rules of our method.

Hence, we mark every positive literal P and negative literal ¬P as True:

Rule Mark_Positive_Literal

hasElement w variable P

isAtomic variable P

markExpressions w variable P True

End

Rule Mark_Negative_Literal

hasElement w not variable P

isAtomic variable P

markExpressions w not variable P True

End

Checking classical formulas

As for classical rules, we define a rule to mark double negated formulas (¬¬), a
rule to mark the conjunctions and two rules for the disjunctions, as follows:

Rule Mark_Not_Not

isMarkedExpression w variable A True

hasElement w not not variable A

markExpressions w not not variable A True

End

Rule Mark_And

isMarkedExpression w variable A True

isMarkedExpression w variable B True

hasElement w and variable A variable B
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markExpressions w and variable A variable B True

End

Rule Mark_Or_Left

isMarkedExpression w variable A True

hasElement w or variable A variable B

markExpressions w or variable A variable B True

End

Rule Mark_Or_Right

isMarkedExpression w variable B True

hasElement w or variable A variable B

markExpressions w or variable A variable B True

End

Rules concerning other classical connectors (such as →, . . . ) are treated in
the next set of rules, since they belong to the family of “reduced formulas”.

Checking reduced formulas

PDL  - and �-formulas with complex programs are decomposed according to
the reduction rules defined in Section 7.2.3. For example, the rule Pos_Seq
reduces every 〈X;Y 〉A formula to the formula 〈X〉〈Y 〉A. According to this de-
composition, we mark 〈X;Y 〉A as True in the nodes where the formula 〈X〉〈Y 〉A
is marked as True. Whence the rule:

Rule Mark_Pos_Seq

hasElement w pos seq variable X variable Y variable A

isMarkedExpression w pos variable X pos variable Y variable A True

markExpressions w pos seq variable X variable Y variable A True

End

The rules marking other kinds of reduced formulas, including classical for-
mulas that are reduced to other formulas, are all defined the same way as
Mark_Pos_Seq.

Remark 12. Reduced formulas are checked w.r.t. their decomposition. For ex-
ample, suppose that we want to define the rule Mark_Not_Imp which checks if a
formula ¬(A → B) should be marked True at a given world w. Then this rule
could be defined in two different ways, depending on how the formula ¬(A → B)
was reduced by the rule Not_Imp during the model construction:

• if it was treated by adding the formulas A and ¬B to w, then Mark_Not_Imp
should mark it True whenever both formulas A and ¬B are marked so,

• otherwise, if it was reduced to the formula A∧¬B, then the rule Mark_Not_Imp
should mark the formula ¬(A → B) as True whenever the formula A∧¬B
is marked so.
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The first version of the rules is:

Rule Mark_Not_Imp

hasElement w not imp variable A variable B

isMarkedExpression w variable A True

isMarkedExpression w not variable B True

markExpressions w not imp variable A variable B True

End

Whereas the second version is:

Rule Mark_Not_Imp

hasElement w not imp variable A variable B

isMarkedExpression w and variable A not variable B True

markExpressions w not imp variable A variable B True

End

This is why the user should take into consideration how her/his own re-
duction rules are defined, then he/she defines the corresponding checking rules
accordingly.

Checking 〈I〉A and [I]A formulas

Formulas of the form [I]A are checked exactly as the �-formulas in the standard
model checking method given in Chapter 6, by checking if A is marked True in
all children nodes at once.

Rule Mark_Nec_Atomic_Program

hasElement w nec variable I variable A

isMarkedExpressionInAllChildren w variable A variable I True

markExpressions w nec variable I variable A True

End

Since we are interested in marking true formulas only, 〈I〉A formulas are
easily checked by the following rule:

Rule Mark_Pos_Atomic_Program

hasElement w pos variable I variable A

isMarkedExpression u variable A True

isLinked w u variable I

markExpressions w pos variable I variable A True

End

Inheriting marks from loop-parent nodes

Some formulas, especially 〈X〉- and 〈X∗〉-formulas, will not be marked at a loop
node, since such nodes are blocked and have no further successors. Thus, such
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〈〉-formulas may not be marked True in such nodes, even if they were in their
equal nodes. In order to avoid confusion between what is marked in the parent-
equal node and what is not, we copy the True mark of every formula in a parent
node to its equal loop-node using the following rule:

Rule Mark_Formulas_In_Loop_Nodes

hasElement w variable A

isLinked w u Loop

isMarkedExpression u variable A True

markExpressions w variable A True

End

With this rule, we come to the end of our model checking rules. These rules
should be called repeatedly at the end of the PDL strategy that constructs the
premodels.

Interpreting the results of the model checking process

Once the application of the above rules is finished, we are sure that only unful-
filled formulas are not marked as True in our open premodels. Hence, we can
report inextensible premodels by performing the following simple check:

Rule Not_True_Eventuality_Means_Inextensible_Premodel

hasElement w pos star variable X variable A

isNotMarkedExpression w pos star variable X variable A True

mark w Inextensible_Premodel

End

If we want that this information becomes displayed in every node of Inextensible_Premodel
we may use the rules defined at the end of Section 7.1.6 in order to propagate
this mark to all the nodes of inextensible premodels.

The result of running this method with the formula [I∗]P ∧ 〈I∗〉P changes,
and the open premodel.2.2.2 of Figure 7.12 is reported as an inextensible
premodel as shown in Figure 7.13.

However, it is not the case that every open premodel with a loop is an inex-
tensible one. For example, running our method with the formula [I∗](〈I∗〉P ∧
〈I〉¬P ) ends up with (some closed premodels, inextensible open premodels and)
an open premodel stopped due to the loop-test but it is still a extensible open
premodel as shown in Figure 7.14.

If we remove the complex formulas from this premodel, and we keep only on
the atomic formulas, we find that this premodel is in fact the pretty model of
Figure 7.15.

Conclusion

In this chapter we handled two logics with transitive closure: LTL and PDL.
Their semantics are quite different, but share the same “eventually”-kind of for-
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Figure 7.13: Inextensible open premodels are designated due to model checking.

mulas: FA in LTL and 〈I∗〉A in PDL. Hence, their model construction methods
share the same rule of eventuality “postponement”: if A is eventually true then
A is true at this step, otherwise at the next step we have to check whether A
will be eventually true.

In addition, both methods need a node-equality loop check, otherwise the
method may stop before giving the chance to some eventualities to become
satisfiable. When the method halts, we need to perform a model checking like
procedure in order to check for the fulfillment of all the postponed eventualities.
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Figure 7.14: Open premodel involving loops could be a good premodel.

Figure 7.15: The model of the formula [I∗](〈I∗〉P ∧ 〈I〉¬P ) which is obtained
from the open premodel of Figure 7.14 (Note: the empty world has a ¬P ).
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Chapter 8

Layered Modal Logics

Introduction

Some AI problems, like formalizing interaction of rational agents in the BDI
(Belief-Desire-Intention) framework, or like complex ontologies require modal or
description logics whose models possess complex properties. A typical example
is the property associated with the “no forgetting” axiom ([I][J ]P → [J ][I]P ).
Such properties can not be handled by tree-like structures (as it is the case for
logics such as K, S4, S5, PDL, . . . ) Hence, general results about the decidability
and complexity of such logics are of high interest, as well as theoretical tools
that allow to reason about these logics.

Concerning theoretical tools, standard filtration [LS77] is one of them and
it is powerful enough to prove decidability - and even finite model property
(f.m.p.) - of many standard modal logics (K, K4, K5, . . . ). However, for complex
logics, it often fails to establish decidability and even when it does, it does not
give tight upper bounds on the complexity. Further refinements like selective
filtration [Gab70] permits to state about various logics (e.g. in [Sha04] PSPACE-
completeness of many extensions of K4 is proved), and filtration via bisimulation
was defined and used in [She04] to establish by a complex proof the f.m.p. of
a wide class of multi-modal logics (mainly full and weak products) but without
stating explicit upper bounds to the satisfiability problem.

Tableaux are a good tool so achieve such a task. In [Lad77], tableaux were
used to show that the complexity of S4 is in PSPACE (hardness being proved
by a reduction to QBF). In our work here, tableaux are used as a theoretical
tool for investigating the complexity of a family of modal logics, more than as
a way of designing tractable decision procedures.

Still, there are logics that are not in the scope of the methods mentioned
above. For instance, K+Confluence (corresponding to the axiom  �P → � P ),
for which standard filtration techniques fail. Tableaux may be easy to design
for such logics, but they may be non-terminating and even if not, they may
overestimate the complexity.

167
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In this chapter we investigate a class of what we call Layered Modal Logics
(LML). Roughly speaking, LML are logics characterized by semantical properties
only stating the existence of possible worlds that are in some sense“further”than
the others. They can be seen as non-transitive confluent logics, such as star-
free PDL with confluent programs for example. Typically, they include various
confluence-like properties (mono and multi modal). Such properties are of in-
terest for formalizing the interaction between dynamic and epistemic modalities
for rational agents, as mentioned at the beginning of this introduction.

We also address the complexity of LML by means of the tableau method.
We use however our own notation for tableaux and tableau method, introduced
in Chapter 3 as premodels and model construction.

It is not surprising that these logics are decidable. However, we show that
they are all in NEXPTIME, by marrying model construction with a stepwise
filtration-like technique that we call dynamic filtration. This operation allows
to filtrate the nodes of a premodel one layer at a time, keeping the size of the
constructed premodels within an exponential of the length of the input formula.
This bound is the best possible for the class of layered logics since one of them
is known to be NEXPTIME-complete.

With some adjustments, we show that our method can cope with symmetry
and converse, and with permutation. We believe that this technique may be
extended to cope with other modal logics that are characterized by some class
of frames which are directed acyclic graphs, as we shall discuss at the end of
this chapter.

This work is strongly inspired by what has been done in [GS07], except w.r.t.
the implementation.

In section 8, we give the necessary backgrounds, in section 8.1, we define
layered modal logics, then in section 8.2 we design simple premodels for these
logics that we improve in section 8.3 to dynamically filtrated premodels in order
to prove the NEXPTIME-membership of the satisfaction problem for layered
logics by means of the model construction method. In section 8.4, we give an
insight of the implementation of such method in LoTREC. We conclude with
some discussion about the extension of the range of dynamic filtration.

Preliminaries

The language of the logics that we study here is the usual multi-modal language
defined in Chapter 2, Definition 2. We recall it here in the following definition:

Definition 12 (Language). The language of a multi-modal logic is defined by
the following: let P be a set of atomic propositional symbols, I be a set of in-
dexes, and as usual let ⊥ denotes falsity. The set For of formulas (we will only
consider negative normal form or NNF) is given by the BNF:

A ::= ⊥|P |¬P |(A ∧A)|(A ∨A)|〈I〉A|[I]A (where P ∈ P and I ∈ I)
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and as usual, (A → B) abbreviates (¬A∨B), [I]
0
A is A and [I]

n+1
A is [I][I]

n
A.

Given a formula A, we denote by |A| the length of A.

Definition 13 (Modal degree). The modal degree of a formula A is denoted by
d(A) and is inductively defined as usual by:

• d(P ) = d(¬P ) = d(⊥) = 0 (for any atomic proposition P ),

• d([I]A) = d(〈I〉A) = d(A) + 1,

• d(A ∧B) = d(A ∨B) = max(d(A), d(B)).

The modal degree of a finite set Γ of formulas is denoted by d(Γ) and is
equal to maxA∈Γ(d(A)).

Definition 14 (Relations). Given a relation RI over a set W , we denote by
RI

∗ its reflexive and transitive closure, by RI
+ its transitive closure, by RI

− its
converse (i.e. (w, u) ∈ RI

− iff (u,w) ∈ RI), and by (RI ∪ RI
−) the symmetric

closure of RI . Finally, given a family (i.e. a set) of relations R = {RI : I ∈ I},
we will also denote by R the relation consisting of the union of the relations of
R, i.e. R = (

⋃

I∈I RI).

Remark 13. We will also use the fact that a connected graph without isolated
points (see below) may be represented by the set of its edges, i.e. by a conjunc-
tion of literals of the form RI(w, u).

In the following definition, we recall the definition of frame, model and sat-
isfaction, which have been (partially) defined in Chapter 2:

Definition 15 (Semantics: frames, models and satisfaction).

• (Multi-relational Kripke) frames are graphs1 (W,R), where R is a family
of binary relations indexed by I, and with a root w0, such that: any w ∈ W
is accessible from w0 via (R ∪R−)

∗
,

• (Kripke) models are pairs (F, V ) where F is a frame and V is a valuation
function (V :W −→ 2P), such a model is said to be based on F .

• Pointed models are pairs M,w where M is a model (W,R, V ) and w ∈ W .

• That a formula A is satisfied by some pointed model (in symbolsM,w � A)
is defined recursively as follows (we only give the clauses concerning modal
connectors):

– M,w � 〈I〉A iff there exists u ∈ W such that RI(w, u) and M,u � A;

– M,w � [I]A iff for every u ∈ W , if RI(w, u) then M,u � A;

1More precisely, Rooted Directed Acyclic Graphs (RDAGs).
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Definition 16 (Frame formula). A frame formula Φ(x1, . . . , xn) is a first-order
formula (the xi’s are its free variables) which is a conjunction of literals of the
form RI(x, y) (with I ∈ I), or equivalently a finite set of such literals.

Now we recall the definition of the satisfiability problem (which has been
already defined in Chapter 2):

Definition 17 (Satisfiability Problem). The satisfiability problem w.r.t. a class
C of frames: given a formula A does there exist some pointed model M,w based
on some frame of C and such that M,w � A? This problem is referred to as
C-satisfiability problem and the set of C-satisfiable formulas will be denoted by
Sat(C).

Definition 18 (Vector notation). For the sake of brevity, we introduce here a
vector notation which is as follows: (given the variables x1, . . . , xn, the variable
x, the functions H1, . . . ,Hm and the function H)

• The sequence (x1, . . . , xn) will be abbreviated by −→x , with Card(−→x ) = n;

• H(x1, . . . , xn) will be abbreviated by H(−→x );

• the sequence (H(x1), . . . ,H(xn)) will be abbreviated by H.−→x ; (note the
dot)

• the sequence (H1(x), . . . ,Hm(x)) will be abbreviated by
−→
H.x;

• and the sequence (H1(−→x ), . . . ,Hm(−→x )) will be abbreviated by
−→
H.−→x .

Definition 19 (Subframe/subgraph). Given a frame F = (W,R), a first-order
formula Φ(−→x ) whose free variables are x1, . . . , xn and given an assignment
σ: {x1, . . . , xn} .→ W , we consider that σ(F ) denotes the subframe f = (w, r)
of F where w = {σ(x1), . . . , σ(xn)} and rI = (RI)|w (i.e. the restriction of RI

to w). We say that the subframe f satisfies Φ (in symbols f |= Φ(σ.−→x )) iff
Φ(σ(x1), . . . , σ(xn)) is true in F .

Definition 20 (Depth). Given a frame F = (W,R) with root w0, and repre-
sented by a set of literals RI(w, u), i.e. by a frame formula Φ(−→x ) whose variable
are assigned to elements of W by an assignment σ, given w ∈ W , we define the
depth of w in F (or in Φ), denoted by δF (w) (or δΦ(w)), as the length of the
shortest path from w0 to w. Inductively:

• δF (w0) = 0;

• δF (w) = minRI(u,w)∈R(δF (u) + 1)

8.1 Layered modal logics

In this section, we define the class of logics that we intend to explore.
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8.1.1 Layer formulas

First, we formalize the properties characterizing the class of frames of these
logics in what we call layer formulas.

Definition 21 (layer formula). A layer formula is a first-order formula of the
form:

∀−→x :∃−→y :φ(−→x ) → ψ(−→x ,−→y )

where φ and ψ are frame formulas and with the constraints given below:

(i) φ(−→x ) is a conjunction (that we will identify with a set) of literals RI(xi, xj)
(where xi, xj ∈ −→x and I ∈ I);

(ii) ψ(−→x ,−→y ) is a conjunction of literals RI(xi, yj) or RI(yj , yk) (where xi ∈
−→x , yj , yk ∈ −→y , j < k and I ∈ I);

(iii) ∀yj ∈ −→y :∃xi ∈ −→x :∃I ∈ I: (RI(xi, yj)) is a conjunct of ψ; we exclude
properties stating the existence of isolated nodes;

(iv) δφ∧ψ(yk) > δφ∧ψ(xj) for all yk ∈ −→y and all xj ∈ −→x : the depth of exis-
tential nodes will always be strictly greater than that of their parent nodes,
hence, their modal degree will be strictly smaller.

Notice that such a formula may be seen as a rule which rewrites a graph by
adding nodes and edges to it, φ describing the left-hand side of the rule (the
subgraph to be rewritten) while φ ∧ ψ describes the right-hand side (the result
of the rewriting) (see Example 7).

Examples of layer formulas are:

Example 6. Seriality ∀x:∃yRI(x, y).

Example 7. Bimodal confluence (Figure 8.1):

∀x, y, z:∃u: (RI(x, y) ∧RJ(x, z)) → (RJ(y, u) ∧RI(z, u))

x

zy

RI RJ

x

zy

u

RI RJ

RJ RI

Figure 8.1: Bimodal confluence property viewed as a layer formula, i.e. as a
rewriting rule describing a graph rewriting step.
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8.1.2 Layered frames

In this subsection, we define the layered frames, and hence, the class of frames
characterizing layered logics.

Definition 22 (layered frame). An LF -layered frame F = (W,R) is a finite
frame (of root w0) which verifies a finite set LF of layer formulas. We denote
by CLF the class of all LF -layered frames.

Figure 8.2 shows a graphical representation of a layered frame.

Root w0

Frame F

xi
Subframe f
satisfying φ(−→x )

yj

φ(−→x ) ∧ ψ(−→x ,−→y )

Subframe f ′

satisfying

Figure 8.2: A graphical representation of how a layer formula describes certain
properties of (or, constraints on) a layered frame.

Definition 23 (skolemized layer formula). A skolemized layer formula is the
result of skolemization of a layered formula χ = ∀−→x :∃−→y :φ(−→x ) → ψ(−→x ,−→y ),
denoted as skol(χ), and defined as:

skol(χ) = ∀−→x :φ(−→x ) → ψ(−→x ,
−→
H.−→x )

with
−→
H.−→x = (H1(−→x ), . . . ,Hk(−→x )) (and k = Card(−→y )).

Since ψ is a conjunction, skol(χ) is equivalent to the conjunction of formulas
of the form:

(i) either ∀−→x :φ(−→x ) → RI(xi,Hj(−→x ))

(ii) or ∀−→x :φ(−→x ) → RI(Hi(−→x ),Hj(−→x )).

Henceforth, we consider skolemized formulas as being of one of the forms (i) and
(ii). By extension, the set of skolemized layered formulas of type (i) and type
(ii), and corresponding to a set LF of layered formulas, is denoted by SLF . The
corresponding class of frames is denoted by CSLF .

In the sequel, we shall see that  -formulas are also treated by the introduc-
tion of Skolem functions.
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Example 8. The skolemized layered formula for Seriality is ∀x:RI(x,H(x)).

Example 9. The skolemized layered formulas for Bimodal Confluence are:

• ∀x, y, z:RI(x, y) ∧RJ(x, z) → RJ(y,H(x, y, z)), and

• ∀x, y, z:RI(x, y) ∧RJ(x, z) → RJ(z,H(x, y, z)).

Remark 14. It is well-known that A ∈ Sat(CLF ) if, and only if, A ∈ Sat(CSLF ),
since skolemization preserves the satisfiability.

Definition 24 (layered modal logics). Layered modal logics (LML) are those
characterized by a class CSLF of frames, i.e. by the class of layered frames which
verify a set SLF of skolemized layer formulas of type (i) and (ii).

It is a natural question to ask whether a given logic is a layered logic or not
(note that layered logics are semantically defined). For example, we know that
modal logic K+Confluence is characterized by the class of confluent frames. Since
the first-order formula expressing confluence is a layer formula, K+Confluence is
clearly a layered logic. However, in general, given a set of properties, checking if
they are equivalent with some set of layer formulas is likely to be undecidable,
although we did not formally prove it.

The main result of the next sections is that the CSLF -satisfiability problem
for any SLF -layered logic is in NEXPTIME, whence decidable. More precisely,
it is decidable by a non-deterministic Turing machine in time O(2c.|A|) where c
is a constant.

8.2 Construction of simple premodels for LML

The definition given here is slightly different than Definition 6, page 60.

Definition 25 (partial premodel). A partial premodel is a labeled graph M =
(W, R, V) where:

• W is a finite set of nodes;

• R: I → 2W×W is a family of binary relations over W and indexed by I (hence
(W, R) is a finite frame);

• with a root w0 ∈ W, such that: any w ∈ W is accessible from w0 via (R ∪ R
−)
∗
;

• V: W → 2For is a function which maps each element of W to some set of
formulas.

Henceforth, for a node w ∈ W, we abbreviate d(V(w)) in d(w). We may also
represent a function V: W → 2For by its extension, i.e. by the set {(w, A)|A ∈
V(w)}.
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Definition 26. Given two such functions V1 and V2, we define V1 ∪ V2 by:
V1 ∪ V2(w) =

• V1(w) ∪ V2(w) if w ∈ dom(V1) ∩ dom(V2);

• V1(w) if w ∈ dom(V1) and w /∈ dom(V2);

• V2(w) if w ∈ dom(V2) and w /∈ dom(V1).

Definition 27 (Skolemizing �). Let (W, R, V) be a partial premodel for the input
formula A, and let Sub(A) denote the set of subformulas of A (Definition 3).
For each triple (I, w, B) ∈ I ×W×Sub(A), we associate a Skolem term 〈I〉(B, w)
(intuitively this term will denote one world accessible from w and making B true,
thus making 〈I〉B true at w).

8.2.1 The set of rules

As already stated in Section 3.2, a rule defines how to rewrite a premodel by
specifying which graph elements (nodes, edges and formulas) are to be added
to it. A rule may be seen then as a function ρ applied to a partial premodel M
and computing what new elements are to be added to M.

Definition 28 (Rule application). Let M = (W, R, V) be a partial premodel, and
let ρ be a rule, to denote that M′ is obtained from M by applying rule ρ, we write:

M′ = ρ(M) = M ∪ νρ(M)

where νρ(M) = (w, r,v) denotes respectively the sets of new nodes, new I-edges
(for each I ∈ I) and new pairs node-formula that are to be added to M in order
to obtain M′.

Definition 29 (Set of rules). For each rule ρ, we indicate the result of its
application on a premodel M = (W, R, V) as a triple νρ(M) = (w, r,v). Variables
w and u are implicitly universally quantified over W. Moreover, we use both
notations B ∈ V(w) and (w, B) ∈ V without distinction.

• ν⊥(M) =


∅, ∅, {(w,⊥)}


 for all B,¬B ∈ V(w),

• ν∧(M) =


∅, ∅, {(w, B), (w, C)}


 for all (B ∧ C) ∈ V(w),

• ν∨(M) =


∅, ∅, {(w,Dw,B∨C)}


 for all (B ∨ C) ∈ V(w)

if B,C ,∈ V(w) then Dw,B∨C is non-deterministically chosen among B and
C,
else Dw,B∨C is any of B and C which is already in V(w),

• ν[I](M) =


∅, ∅, {(u, B)}


 for each I ∈ I, for all w, u such that RI(w, u)

and [I]B ∈ V(w),
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• ν〈I〉(M) =


{〈I〉(B, w)}, {(w, 〈I〉(B, w))}, {(〈I〉(B, w), B)}


 for each I ∈ I

and for all 〈I〉B ∈ V(w); Note that: δ(〈I〉(B, w)) > δ(w),

• If the formula χ = ∀−→x :φ(−→x )→ RI(xi,Hj(−→x )) is in SLF ,
and if for some assignment σ of −→x over W we have (W, R) |= φ(σ.−→x ),
then

if ∃xk ∈ −→x : d(V(σ(xk))) > 0 2

then νχ(M) =


{Hj(σ.−→x )}, {(σ(xi),Hj(σ.−→x ))}, ∅




NB: δ(Hj(σ.−→x )) > δ(σ(xk));

else =


∅, {(σ(xl), σ(xm))}, ∅


 for each xl, xm ∈ −→x ;

• If the formula χ = ∀−→x :φ(−→x )→ RI(Hi(−→x ),Hj(−→x )) is in SLF ,
and if for some assignment σ of −→x over W we have (W, R) |= φ(σ.−→x ),
then

if ∃xk ∈ −→x : d(V(σ(xk))) > 0

then νχ(M) =


{Hi(σ.−→x ),Hj(σ.−→x )}, {(Hi(σ.−→x ),Hj(σ.−→x ))}, ∅




NB: δ(Hj(σ.−→x )) > δ(Hi(σ.−→x )) > δ(xk);

else =


∅, {(σ(xl), σ(xm))}, ∅


 for each xl, xm ∈ −→x .

w,{B,¬B} w,{B,¬B,⊥}

(a) ⊥-rule

w, {B ∧ C} w, {B ∧ C,B,C}

(b) ∧-rule

w, {B ∨ C} w, {B ∨ C,B} w, {B ∨ C,C}

(c) ∨-rule

w, {[I]B}

u

RI

w, {[I]B}

u,{B}

RI

(d) [I]-rule

w, {〈I〉B} w, {〈I〉B}

〈I〉(B, w), {B}

RI

(e) 〈I〉-rule

Figure 8.3: Graphical representation of classical and modal rules.

Figures 8.3 and 8.4 present the above rules graphically.

2This condition stops the computation when nodes only contains non modal formulas.
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σ(xk)

σ(x1) σ(xn)

φ(σ.−→x ) σ(xk)

σ(x1) σ(xn)

Hl(σ(−→x ))

RI

(a) rule for type(i) SLF -formulas

σ(xk)

σ(x1) σ(xn)

φ(σ.−→x ) σ(xk)

σ(x1) σ(xn)

Hk(σ(−→x )) Hl(σ(−→x ))

RI

(b) rule for type(ii) SLF -formulas

Figure 8.4: Graphical representation of rules for layered formulas.

Remark 15.

• If A is the input formula, ∀w ∈ W: V(w) ⊆ Sub(A).

• Since the set SLF is finite, so are the sets of added nodes w of each rule.

• In the last two “else” parts, no new nodes are added (w is empty).

8.2.2 Soundness and completeness

A direct examination of the rules above shows that all rules ρ except the 〈I〉-
rule and SLF -rules are terminating on partial (and hence finite) premodels, i.e.
there exists an integer n such that ρn(M) = ρn+1(M) (where ρn+1(M) = ρ(ρn(M))),
and we denote by ρ∗ the iteration of ρ up to the least fixed point in these cases.
Note that we use (ρ ◦ ρ′)(M) to denote ρ(ρ′(M)).

Definition 30 (Meta-rules). Let us define the following meta-rules called Sat ,
� and Slf:

• νSat� = (ν⊥ ∪ ν∧ ∪ ν∨ ∪ (
⋃

I∈I ν[I]))
∗
(classical saturation and [I] propa-

gation: terminates since frames and formulas are of finite size),

• ν = (
⋃

I∈I ν〈I〉) (without star!),
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• νSlf = (
⋃

χ∈SLF νχ).

Definition 31 ((partial) simple premodel). A simple premodel M for an input
formula A is a least fixed point of a sequence M0 = (W0, R0, V0), M1, . . .

3 where4:

• W0 = {w0} (the root), R0 = ∅ and V0 = {(w0, A)};

• Mi+1 = Sat (Slf(�(Mi))), where Sat , Slf and � are the meta-rules given
above.

We have then M = (Sat ◦ Slf ◦�)∗(M0). Any other premodel in this sequence
is a partial simple premodel.

Figure 8.5 gives a screen shot of a one-step construction of a simple premodel.

Root: w0

Mi

�(Mi)

Slf(�(Mi))

Mi+1 = Sat (Slf(�(Mi)))

Figure 8.5: During the construction of simple premodels, new added nodes
belong to layers of higher depth.

Definition 32 (closed and open simple premodel). A simple premodel is closed
if some node in it contains ⊥; it is open otherwise.

Definition 33 (First occurrence). Given a (possibly partial) simple premodel
M = (W, R, V) (Definition 31), and a node w ∈ W, the first occurrence of w in W is
the index of introduction of w in W: fst(w) = minj(w ∈ Wj)). Hence w ∈ Wi iff
i ≥ fst(w).

3We will prove later that this sequence is finite, hence it has a fixed point.
4Due to rule ∨, the are several such sequences



178 CHAPTER 8. LAYERED MODAL LOGICS

Proposition 1. Let A be an input formula (d(A) being its modal degree),
and let M = (W, R, V) be a (possibly partial) simple premodel from a sequence
M0, . . . , Mn, . . . with root w0. Then we have the following:

1. For all j > i ≥ fst(y) we have δMi(y) = δMj (y): once set, the depth of a
node do not change at further iteration, we will then denote it by δ(y);

2. for all j > i ≥ fst(y) we have dMi(y) = dMj (y): idem to 1. but for the
modal degree of nodes;

3. if δ(x) = min
xk∈

−→x (δ(xk)) and y = H(−→x ), or y = 〈I〉(B, x) then d(y) ≤

d(x)− 1: new added nodes are of smaller modal degrees;

4. for all y we have fst(y) ≤ δ(y);

5. for all y we have 0 ≤ d(y) + δ(y) ≤ d(A) and as a consequence fst(y) ≤
d(A): the algorithm stops after at most d(A) iterations.

Proof. 1. Since shortest path cannot shrink due to constraints on rules.

2. Since classical saturation and propagation of boxed formulas are performed
at each iteration, and since nodes introduced later are of strictly greater
depth.

3. Since rules that add formulas to new nodes (� and  rules) strictly de-
crease the modal degree of formulas; thus along a path (w0, y) of length
p, a node y will only receive formulas of degree at most d(A)− p. Hence,
formulas of highest degree in y will come from a shortest path, i.e. from
x.

4. By induction on fst(y): If fst(y) = 0 then y = r and δ(r) = 0; if fst(y) =
p+1 then there exist x1, . . . , xn ∈ Wp and xk ,∈ Wp−1 (otherwise y would be
in Wp) with y = H(−→x ). Then since δ(y) > δ(xk) and δ(xk) ≥ fst(xk) = p

(by IH) hence δ(y) ≥ p + 1. The same holds if we consider y = 〈I〉(B, x)
with x ∈ Wp (and x ,∈ Wp−1).

5. Again by induction on fst(y). If fst(w0) = 0 then y = w0, d(w0) = d(A)
and δ(w0) = 0: done. Suppose fst(y) = p + 1 then we must have either
y = H(−→x ) for some x1, . . . , xn ∈ Wp, or y = 〈I〉(B, x) for some x ∈ Wp. For
the first case, let δ(x) = min

xk∈
−→x (δ(xk)), rules ensure that δ(y) = δ(x)+1

and since d(y) ≤ d(x) − 1 we have d(y) + δ(y) ≤ d(x) + δ(x) ≤ d(A) (by
IH). For the case where y = 〈I〉(B, x) the same proof holds.

Lemma 1 (Completeness and soundness of simple premodels). Let A be a
formula and SLF a set of layered formulas, then A is CSLF -satisfiable if, and
only if, there exists an open simple premodel M (as in Definition 31, with Slf
being the set of rules corresponding to the set SLF ).
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Proof. Completeness is immediate by comparison with naive premodels (those
with purely non-deterministic but fair strategy where all rules are applied only
non-deterministically but eventually at some iteration) which are trivially com-
plete since they reduce to model construction. Now, it can be checked that the
strategy Sat (Slf(�))∗ is fair hence if some simple premodel is open then so is
some naive one and completeness follows from that of naive tableaux.
Soundness is easily proved by induction on iterations and with the help of propo-
sition 1. It remains to prove that frame of an open simple premodel is an
SLF -frame: we have to prove that (W, R) |= SLF .

Let χ = ∀−→x :φ(−→x )→ RI(xi,Hj(−→x )) be in SLF , and suppose that for some
assignment σ over W, we have (W, R) |= φ(σ.−→x ) and letm = max

xk∈
−→x (fst(σ(xk)))

(m is the first iteration at which the all elements of σ.−→x have been introduced
to W). There are two cases:

(a) If ∃xk ∈ −→x :σ(xk) ∈ Wm and d(Vm(σ(xk))) > 0 then (σ(xi),Hj(σ.−→x )) ∈
(RI)m+1 by then-part of rule νχ, hence (σ(xi),Hj(σ.−→x )) ∈ RI ;

(b ) If ∀xk ∈ −→x :σ(xk) ∈ Wm but d(Vm(σ(xk))) = 0
then we are done since (σ(xi), σ(xi)) ∈ RI by else-part of the same rule.

A similar reasoning holds in the case of SLF formulas of type (ii) since:
in case (a) (Hi(σ.−→x ),Hj(σ.−→x )) ∈ RI by then-part,
and in case (b) (σ(xi), σ(xj)) ∈ RI by else-part.

Lemma 2. Layered modal logics are decidable by Proposition 1 and by Lemma
1 of completeness and soundness.

Proof. Since only finitely many nodes are added at each iteration and since there
are at most d(A) iterations.

At least one layered modal logic (e.g. K+confluence, see [Gas06]) is known to
have an NEXPTIME-hard satisfiability problem. Hence the best we can do for
this class of logics is to prove their membership in NEXPTIME. In order to do
so, we develop and apply, in the sequel, a premodel construction method with
dynamic filtration.

8.3 Dynamically filtrated premodels

When applied on a partial premodel M, rules of Definition 29 add new nodes (set
w) and new edges (set r) in order to fulfill the semantics of � connectors and
existential properties stated by SLF formulas.

However, some of these existential properties may lead to an explosion in
the number of nodes added at each iteration, i.e. in the size of the resulting
premodels. For instance, a property such as: ∀x, y, z:∃u:xRI

∗y ∧ xRI
∗z →

yRIu ∧ zRIu may lead to premodels of double exponential in the size of the
input formula. Knowing that the number of different subsets of Sub(A) is bound
by 2|A|, such huge premodels would have multiple copies of the same node (i.e.
of its associated set of formulas).
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Hence, for proving our complexity result, we need to make sure that each
added node is unique. This is why, we identify, at each iteration, every new
node when it is equivalent to (i.e. labeled by the same set of formulas labeling)
another new node. Note that we do not identify new nodes with old ones. This
layer-by-layer node identification justify the name of dynamic filtration.

8.3.1 The dynamic filtration

We define the dynamic filtration as a rule-like operation that we call Df. This
operation is applied at each iteration after the rules �, Slf and Sat to identify
equivalent new nodes. Thus, at first, we define this equivalence relation, then we
define our filtration by defining the effect of its application on a simple premodel.

Definition 34 (dynamic filtration). Let M = (W, R, V) be a partial simple pre-
model, let νSat�◦Slf◦ = (w, r,v), so that Sat (Slf(�(M))) = (W∪w, R∪r, V∪v).
Let M′ = (W′, R′, V′) = Df(Sat (Slf(�(M)))), where Df is the dynamic filtration
operation defined w.r.t. to the following total equivalence relation over W ∪w:

• w ≡ u if, and only if:

– V(w) = V(u) for w, u ∈ w,

– w = u for w ∈ W (just to make ≡ total over W ∪w)

• w̄ denotes the equivalence class of w,

• w̄ = {w̄: w ∈ w}.

Then we define the dynamically filtrated model M′ as:

• W′ = W ∪ w̄;

• R′ = R ∪ (≡ ◦ r ◦ ≡)5, i.e. R ⊆ R′, and for (w, u) ∈ r, (w̄, ū) ∈ R′;

• V′ = V ∪ (v)|w̄.

Definition 35 (filtrated premodel). A filtrated premodel M for an input formula
A is a least fixed point of a sequence M0 = (W0, R0, V0), M1, . . .

6 where7:

• W0 = {w0} (the root), R0 = ∅ and V0 = {(w0, A)};

• Mi+1 = Df(Sat (Slf(�(Mi)))), where Sat , Slf and � are the meta-rules
given above and Df is the dynamic filtration operation.

5Where ◦ denotes composition: RI ◦RJ (w, u) iff there exists v s.t. RI(w, v) and RJ (v, u).
6We will prove later that this sequence is finite, hence it has a fixed point.
7Due to rule ∨, the are several such sequences.
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8.3.2 Soundness and completeness

First of all, we can easily check the following proposition:

Proposition 2. Proposition 1 holds for filtrated premodels.

Proposition 3. As a direct consequence of the definitions above, at each iter-
ation, only an exponential number of nodes is added.

In fact, Card({w: w ∈ Wi and fst(w) = k for some k ≤ i}) ≤ Card(≡i) ≤
2Card(Sub(A)) = 2c.|A| for some constant c, where ≡i is the equivalence relation
defined (as in Definition 34) at iteration i.

Lemma 3. Let M = (W, R, V) be an open filtrated premodel for A then M contains
at most exponentially many nodes each of size bounded by |A|.

Proof. From Proposition 1, ∀w ∈ W: 0 ≤ fst(w) ≤ d(A) ≤ |A|. From Proposition
3, there are at most 2c.|A| nodes for each iteration, hence M contains at most
|A|.2c.|A| nodes which is bounded by 2c

′.|A| for some constant c′. Note that
nodes are of maximal size |A| since V(w) ⊆ Sub(A).

Lemma 4 (Soundness and completeness). The model construction method with
the dynamic filtration is sound and complete for layered modal logics.

Proof. Let M0, . . . , M = (W, R, V) be a sequence of simple premodels, with M as the
fixed point, and let M′0, . . . , M

′ = (W′, R′, V′) be the sequence of filtrated premodels
Df(M0), . . . ,Df(M).

LetM = (W,R, V ) be the Kripke model defined over M, whereW = W, R = R
and V = V|P , and let M ′ = (W ′, R′, V ′) be the model defined similarly over M′.

Let w̄ be the equivalence class of w (as defined in Definition 34) w.r.t. the
equivalence relation ≡fst(w), i.e. the relation defined at the fst(w) iteration.

Let us consider then the function m : W → W ′ defined as m(w) = w̄. It
is straightforward to check that m is a p-morphism (i.e. a pseudo-epimorphism
[Seg68]) from M to M ′: w ∈W and m(w) ∈W ′ satisfy the same set of atomic
propositions, and for w, u ∈ W , (w, u) ∈ R if, and only if, (m(w),m(u)) ∈ R′,
thus, w and m(w) satisfy the same formulas.

Hence the method constructing filtrated premodels is sound and complete
for layered logics, since the method constructing simple premodels is so.

As a direct consequence of lemmas 4 and 3, we have:

Theorem 3. SLF -satisfiability is decidable in non-deterministic exponential
time.

Proof. The following non-deterministic algorithm does the job: guess a premodel
for A and check whether it is open. This can be done in linear time in the size
of the premodel, hence in time bounded by O(2c.|A|).
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8.4 Implementing a model construction method
for LML in LoTREC

In what follows, we show how to implement in LoTREC a model construction
method for an LML logic characterized by a set SLF of layer formulas.

At first, we reuse the rules of the method for multi-modal Kn, which are
defined in Chapter 3. They cover all the classical and modal rules. We still
need to define however two sets of rules: a set that deals with the layer formulas
of SLF , and a set of rules which filtrate the simple premodels.

8.4.1 Rules for layer formulas

Given a layer formula χ = ∀−→x :∃−→y :φ(−→x )→ ψ(−→x ,−→y ), it can be read as “if φ is
true, then ψ should be so”. As said before in Definition 21, χ describes a kind
of graph pattern rewriting. Hence, it should be easily transcripted as a rule in
LoTREC.

Recall that φ (rep. ψ) is a conjunctions of literals of the form RI(xi, xj) (resp.
RI(xi, yj) or RI(yi, yj)). So practically, the rule corresponding to χ would say
that if the structure of interrelated nodes described by φ exists in the current
premodel, then add to it the nodes and structure described by ψ. And this is
easy to define in LoTREC by means of conditions and actions.

Suppose that Chi is the rule defined in LoTREC for χ. Then:

• for each literal in φ of the form RI(xi, xj) we add to Chi the condition
isLinked xi xj R_I,

• for every yi appearing in ψ we add to Chi the action createNewNode yi,

• and for each literal in ψ of the form RI(xi, yj) we add to Chi the action
link xi yj R_I (similarly for RI(yi, yj) literals).

It is clear that we need as many rules as there are frame formulas in SLF .

8.4.2 Rules for dynamic filtration

According to Definition 34, the dynamic filtration operation consists of two
steps: (1) detection of equivalent new nodes and (2) then identification of mul-
tiple equivalent nodes with one of them. This can be achieved in LoTREC by
defining a set of rules for each step of the operation.

First, remember that equivalent new nodes are those added recently (at the
last iteration) and yet having the same labels, i.e. the same set of formulas.
To detect newly added nodes we use the condition isNewNode x, and to test if
two nodes x and y are equivalent, we double check wether contains x y and
contains y x. Hence, to detect couples of equivalent new nodes we can define a
rule of the form:

Rule Detect_Equivalent_Nodes

isNewNode x
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isNewnode y

contains x y

contains y x

link y x Equivalent_To

End

This rule links the detected equivalent nodes by a special link labeled Equivalent_To.
However, we may to chose to mark both of them by Equivalent_To_Another_Node,
or to do whatever else to register this information in the graph.

The next step is to filtrate the premodel by merging equivalent nodes, then
changing the relations and the valuation function accordingly.

Well, since there is no merge node1 node2 action predefined in LoTREC, we
may proceed in two steps as follows:

1. for a given class of equivalent nodes we chose a representative node,

2. all the other nodes of this class will be disabled, i.e. no rule would apply
on them, as if they were merged in the representative node, and since,
they do not exist in the premodel (at least for the rules),

3. all the in- and ou-edges of these nodes should be redirected toward their
representative nodes.

The first step can be achieved by the following rule:

Rule Chose_Representative

isLinked x y Equivalent_To

isNotMarked x Has_Representative

mark x Representative

End

One may ask “How a node could be marked as Has_Representative?” the
answer is in the following rule:

Rule Mark_Nodes_Having_A_Representative

isLinked y x Equivalent_To

isMarked x Representative

mark y Has_Representative

End

In order to mark only one node by class of equivalence, the rule Chose_Representative
should be called after the applyOnce strategy keyword, right before the rule
Mark_Nodes_Having_A_Representative. If called inside a repeat...end, in this
way:

repeat

applyOnce Chose_Representative

Mark_Nodes_Having_A_Representative

end
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we guarantee that all representatives of all equivalence classes will be designated,
and only one representative by class.

The second step consisting on disabling the nodes which have a representa-
tive is much simpler. It consists on adding to every defined rule the condition
isNotMarked x Has_Representative, to prevent the rules form being applied on
such (virtually merged) nodes.

The last step is feasible via two rules. The first is:

Rule Copy_In_Edges

isLinked y x Equivalent_To

isMarked x Representative

isLinked z y variable Some_R

link z x variable Some_R

End

Note that there is no need to test whether y is marked as Has_Representative
since this is subsumed by the fact that x is marked as Representative.

The other rule, we call Copy_Out_Edges, is defined similarly, with z y and z x
being replaced by y z and x z.

8.5 Discussion

Some properties cannot directly be considered as layered ones, we discuss some
of them and show how they can still be handled.

8.5.1 The case of symmetry

In order to treat such a property, the rule 〈I〉 must be modified as follows:

ν〈I〉(M) =


{〈I〉(B, u)}, {(u, 〈I〉(B, u)), (〈I〉(B, u), u))}, {(〈I〉(B, u), B)}




for each I ∈ I and for all 〈I〉B ∈ V(u): i.e. add the symmetric edge at the same
time a new node is introduced (Figure 8.6).

w, {〈I〉B} w, {〈I〉B}

〈I〉(B, w), {B}

RI RI

Figure 8.6: Modified 〈I〉 rule for symmetry.

This respect the strict increase of node depth (condition (iv) of definition
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22)8. The same kind of adjustment can be used for tense forms of layered logics
(i.e. where converse modalities, [I−] and 〈I−〉 for I ∈ I, are allowed).

8.5.2 The case of permutation

The case of one permutation property (Figure 8.7) like e.g.

∀x, y, z:∃u: (RI(x, y) ∧RJ(y, z))→ (RJ(x, u) ∧RI(u, z))

corresponding to the axiom [J ][I]P → [I][J ]P can be handled by the same kind
of adjustment of the 〈J〉 rule.

x

z

yRI

RJ

x

z

y

u

RI

RJRJ

RI

Figure 8.7: Graphical representation of the permutation layer formula.

In fact, without adjustment, the model construction may seem as in Fig-
ure 8.8. Which rises questions about conformity with Proposition 1, espe-
cially whether fst(Hi) ≤ δ(Hi) (hence wether fst(Hi) ≤ d(A)) and whether
δ(Hi) > δ(y), for i ∈ {1, 2}.

x1 x2 x3, {〈J〉B}RI RI

y, {B}

RJ

(a) Mi

x1 x2 x3{〈J〉B}RI RI

y, {B}

RJ

H2

RJ

RI

(b) Mi+1

x1 x2 x3{〈J〉B}RI RI

y, {B}

RJ

H2

RJ

RI

H1

RJ

RI

(c) Mi+2

Figure 8.8: Permutation without modification of the rules.

Instead, we use the rule below (Figure 8.9) which is essentially (we omit the
case of empty nodes):

8Of course, for logic KB on its own, our present method is not interesting since it is known
to have a PSPACE satisfiability problem.
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If (xj , xj+1) ∈ RI for 0 ≤ j < n and 〈J〉B ∈ V(xn) then
νperm(M) = {

{Hj(−→x ): 0 ≤ j < n},
{(xj ,Hj(−→x )): 0 ≤ j ≤ n} ∪ {(Hj(−→x ),Hj+1(−→x )): 0 ≤ j < n},
{(Hn(−→x ), B)} }

with a modified definition of δ such that depth along RJ is “heavier” than along
RI , this ensures that in the rule, all Hj(−→x ) are deeper than xj ’s and is harmless
w.r.t. Proposition 1.

x1 x2 xn−1 xn, {〈J〉B}RI RI

Hn(−→x ), {B}

RJ

(a) usual 〈I〉-rule

x1 x2 xn−1 xn, {〈J〉B}RI RI

Hn(−→x ), {B}Hn−1(−→x )H2(−→x )H1(−→x )

RJRJ

RI

RJRJ

RI

(b) adapted 〈I〉-rule

Figure 8.9: All nodes due to the permutation are created and linked at once.

Formulated in this way, the above rule handled permutation while respecting
the increase of nodes depth which is the main point on which rely our complexity
result.

Conclusion

We have defined a new class of modal logics called layered because their models
can be constructed layer by layer. These logics are specified by properties of
their models which are thus called layered.

We proved they are decidable and that their satisfiability problem lies in
NEXPTIME. This is the best possible lower bound since some of them are known
to be complete for this complexity class.

To achieve this, we designed a sound, complete tableau calculus that per-
mitted us to ensure the small model property of layered logics. With the help
of various possibilities (modification of the � rules, of the depth definition,. . . )
we believe that this technical tool may extend to other logics and even to some
transitive layered logics by introducing loop tests over whole subgraphs. This
is subject of ongoing work.



Part II

Graph Rewriting for Model
Construction in Logic
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Preface to Part II

As shown in Chapter 3, a premodel can be embedded in a graph structure.
Consequently, model construction for a given formula in modal logic can be
done, as shown throughout the Chapters 3 to 7, by applying an appropriate set
of graph rewriting rules on an initial graph, where the initial graph is composed
of a single node labeled by the considered formula. This was first presented in
the work of Castilho et. al. in [CFnDCGH98], which gave birth to our generic
theorem prover LoTREC in 1999 [dCFG+01].

LoTREC is conceived to be a generic platform, in the sense that it can cover
a wide spectrum of various logics having standard Kripke’s semantics. Indeed,
LoTREC allows the user to define a new logic syntax, and then offers a simple
way to define this logic semantics via rewriting rules. These rules can be defined
in a high level textual language that can be easily learned by non computer-
scientists, such as students and researchers in logic and philosophy.

However, LoTREC is a special purpose graph rewriting tool for two reasons.
First, it can only deal with a special structure of graphs which encodes Kripke’s
models: mainly graphs with nodes and edges labeled by formulas. So it does
not allow the definition of other labels or attribute types such as reals, integers
or strings, for example. Second, the definition of rewriting rules in LoTREC
is restricted by some constraints, due to the application domain of LoTREC
in logic, and for matters of efficiency in the rewriting process. One of these
restrictions is that we can only define connected patterns on the left-hand side
of a given rule. Another restriction is that the right-hand side of a rule is always
adding elements (hence, the rules are said to be monotonic).

Due to these restrictions, the graph rewriting kernel of LoTREC is built from
scratch and written in native imperative Java code without using any external
library. On the one hand, this allows LoTREC to have its own way of compiling
the rules, of performing the graph pattern matching and of applying the rules
in an optimal way. This helps in achieving the graph rewriting task in the most
possible efficient way, letting the complexity to be only related to the underlying
logic. On the other hand, this raises some questions about the soundness and the
semantics of graph rewriting in LoTREC, and about its theoretical properties
in contrast to well-established graph rewriting approaches and tools such as
PROGRES [Sch97] and AGG [Tae99].

In fact, in some graph rewriting approaches there are some well known results
showing that such and such theoretical properties are taken for granted or can

189



190 PREFACE TO PART ??

be defined in this or that way (see Section 9.4). Thus by knowing that the
rules defining a model construction procedure in LoTREC are based on one of
those rewriting approaches, many theoretical properties that we wish to have
for that procedure can be proved easily or inherited directly from those already
established results.

Nevertheless, tracing back the links of LoTREC to its theoretical roots in
the literature of graph rewriting has never been done. For all the above reasons,
I decided to trace back these roots during my Ph.D. thesis. Furthermore, my
attempt in this second part is to establish the bridge between model construction
in modal logics and the domain of graph rewriting by studying the special case
of LoTREC.

In the first chapter, I give an overview of graph rewriting. In the second
chapter I establish the link between LoTREC and its roots in graph rewriting. In
the last chapter I present the event-driven optimisation of the pattern matching
process in LoTREC.

I hope that this part makes the semantics of graph rewriting in LoTREC
accessible to everyone who is familiar with the usual graph rewriting notations.
People with background in logic who are not so familiar with graph rewriting
notations but interested in developing similar graph-based computation tools,
can find a fair amount of what they need to fund their tools on solid theoretical
basis. This work should also help in reducing the gap that exists between the
graph rewriting theory and its Java implementation in LoTREC.



Préface à la Partie II

Comme déjà montré au chapitre 3, un prémodèle est un graphe où les noeuds et
les arrêtes sont étiquetés. Par conséquent, la construction de modèles pour une
formule donnée peut être accomplie, comme indiqué dans les chapitres 3 à 7, en
appliquant un ensemble de règles de réécriture de graphes sur un graphe initial
à un seul noeud étiqueté par la formule considérée. Cette approche fut d’abord
présentée dans les travaux de Castilho et. al. [CFnDCGH98], puis elle a donné
naissance à notre démonstrateur générique LoTREC en 1999 [dCFG+01].

LoTREC est conçu pour être une plate-forme générique : il couvre un large
spectre de différentes logiques ayant une sémantique standard de Kripke. En
effet, LoTREC permet à l’utilisateur de définir la syntaxe d’une nouvelle logique,
puis offre un moyen simple pour définir des règles de réécriture adaptées à la
sémantique de cette logique. Ces règles sont définies dans un langage textuel de
haut niveau qui peut être facilement mâıtrisé par des non-informaticiens, comme
par exemple des étudiants et des chercheurs en logique et/ou en philosophie.

Toutefois, LoTREC est un outil de réécriture de graphes à usage spécial
pour deux raisons. Premièrement, il ne peut traiter que des graphes ayant une
structure particulière : celle qui encode un modèle de Kripke. Principalement,
il traite des graphes avec des noeuds et des arcs étiquetés par des formules.
En outre, il ne permet pas la définition d’étiquettes complexes ou d’autres types
d’attributs tels que les réels, les entiers ou les châınes des caractères par exemple.
Deuxièmement, la définition de règles de réécriture sous LoTREC est limitée
par certaines contraintes, à cause de la spécificité du domaine d’application
de LoTREC en logique, et pour des raisons d’efficacité dans le processus de
réécriture. Une de ces restrictions est que nous ne pouvons pas définir des
motifs de graphes déconnectés comme membres gauches d’une règle donnée.
Une autre restriction est que les règles sont monotones : on ne supprime pas
des noeuds, d’arcs ni des formules.

Grâce à ces restrictions, le noyau de réécriture de graphes de LoTREC
est construit à partir de zéro et il est entièrement écrit en code impératif et
natif Java, sans l’utilisation d’aucune librairie externe. En effet, cela permet à
LoTREC d’avoir sa propre façon de compiler les règles, d’effectuer le “pattern
matching” des graphes et d’appliquer les règles d’une manière optimale. Cela
aide à accomplir la tâche de réécriture de graphes de la manière la plus effi-
cace, en laissant la complexité uniquement liée à la logique en question. D’autre
part, cela soulève quelques questions sur la sémantique de réécriture de graphes
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sous LoTREC, et sur ses propriétés théoriques en contraste avec les approches
déjà bien établies et les outils disponibles tels que PROGRES [Sch97] et AGG
[Tae99].

En effet, dans certaines approches de réécriture de graphes on a des résultats
bien connus démontrant que telle ou telle propriété théorique est garantie ou
peut être définie de telle ou telle façon (voir la section 9.4). Ainsi, en sachant
que les règles définissant une certaine procédure de construction de modèles dans
LoTREC sont fondées sur l’une de ces approches de réécriture, de nombreuses
propriétés théoriques que nous souhaitons avoir pour cette procédure peuvent
être montrées facilement ou héritées directement de ces résultats déjà établis.

Néanmoins, remonter les liens de LoTREC jusqu’à ses racines théoriques
dans la littérature de réécriture de graphes n’a jamais été fait. Pour toutes ces
raisons, j’ai décidé de retracer ces racines au cours de ma thèse de doctorat.
En outre, ma tentative dans cette seconde partie du manuscrit est d’établir les
ponts entre la construction de modèles pour les logiques modales et le domaine
de réécriture de graphes, en étudiant le cas particulier de LoTREC.

Dans le premier chapitre, je présente une vue d’ensemble du domaine de
la réécriture de graphes. Dans le deuxième chapitre, j’établis le lien entre
LoTREC et ses racines dans ce domaine. Dans le dernier chapitre, je présente
l’optimisation du processus de “pattern matching” dans LoTREC, qui est basée
sur un modèle événementiel.

J’espère que cette partie rende la sémantique de réécriture de graphes sous
LoTREC accessible à tous ceux qui sont familiers avec les notations habituelles
utilisées dans le monde de réécriture de graphes. Les logiciens, qui ne sont pas
forcément familiers avec ces notations, mais qui sont intéressés par le développe-
ment d’un outil similaire à LoTREC, peuvent trouver dans cette partie des bases
théoriques solides pour créer leurs propres outils. Ce travail devrait également
contribuer à réduire l’écart entre la théorie de réécriture de graphes et sa version
Java implémentée sous LoTREC.



Chapter 9

Graph rewriting overview

Introduction

The main idea of graph rewriting, also known as graph transformation, is the
rule-based modification of graphs. A graph rewriting rule describes how to derive
a graph from another. To this end, a rule describes the changes to be made on
a given graph and the part of the graph where to apply the changes.

Graph rewriting has been influenced by the mathematical tradition to use
axioms and inference rules for reasoning. It is also similar to Chomsky gram-
mars in formal language theory where productions are used to describe and
construct the words. Another closely related theoretical root is term rewriting.
Married together, term rewriting and graph rewriting gave birth to term graph
rewriting [Plu99], the approach that uses the graphs to encode terms and the
graph rewriting techniques to efficiently perform computations on terms.

Research on graph transformation dates back to the 1970s and still has a
growing popularity nowadays. Graphs and graph transformation have been
studied and applied in many fields of computer science: in database design,
software engineering [BH02], image recognition, concurrent and distributed sys-
tems, and fields of other domains such as Origami folding, chemical reactor
simulation and many others (see for example [BFG96, EP06, AIK06, IT09]).
A detailed presentation of various graph transformation approaches and their
application areas is given in [Roz97, EEKR99].

The simple reason behind the popularity of graphs is that often when we
think about a new project, system, map, procedure, etc., we intuitively draw
some bubbles and arcs to write down and organize our ideas in form of a graph.
This makes our descriptions more concise and easily accessible to others. An
immediate consequence is the interest in graph transformation, due to the need
to define the dynamic and computational aspects on the graphs, and then due
to the need to automatize these computations.
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9.1 Graph structures

Graphs are a common and intuitive way to model and represent a project, a
system, a situation or a procedure in a convenient level of abstraction. This
abstraction allows us to work on such concepts more easily. The basic definition
of a graph is the one considering a graph as a relational structure G = (V,E)
where V is a set of vertices (also called nodes), E ⊆ V ×V is a set of edges (also
called arcs) defining a relation between the vertices. According to this definition,
there exists at most one edge between a given pair of vertices. To avoid this
restriction, we suppose E and V as disjoint sets of elements (V ∩E = ∅) and we
define two total mappings source, target : E → V such that each edge e links a
given source node source(e) to a target node target(e).

9.1.1 Labeled graphs

Such a graph structure remains insufficient in practice to reason about some
complex situations. For instance, suppose that we want to represent by a graph
a simple traffic light system in which the Current_State is Red, and will turn
to Green, then Yellow, then Red again and so on. . . , as can be seen in Figure
9.1. The basic graph structure defined above would not be suitable, that is why
we define what we call labeled graphs.

Figure 9.1: A labeled graph

A labeled graph is a graph structure G = (V,E, source, target, ℓV , ℓE) de-
fined over a set of labels L = LV ∪LE using two labeling functions ℓV : V → LV
and ℓE : E → LE . We may use ℓ : V ∪E → L instead of ℓV and ℓE for the sake
of simplicity. Some restrictions can be added to the definition so that the labels
of the vertices have to be different than the labels of the edges (LV ∩ LE = ∅),
or that a pair of nodes cannot be linked by two edges having both the same
label (E ⊆ V × LE × V ).

The number of vertices of a graph G is denoted by |G| and it is called size
of G. For example, the size of the graph of Figure 9.1 is 4.

To avoid confusion when talking about two graphs, we use VG, EG, sourceG,
targetG and ℓG to denote the sets of elements and the functions of the graph G.
If a graph H contains a graph G, i.e. VG ⊆ VH , EG ⊆ EH and ℓG(VG ∪ EG) ⊆
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ℓH(VH∪EH) then G is a subgraph of H, denoted by G ⊆ H. Union, intersection
and complement of graphs are also defined in terms of union, intersection and
complement of their sets of vertices, edges and labels.

In order to talk about resemblance of two graphs G and H and the corre-
spondence between their elements, we define what we call a graph morphism.

Definition 36 (Graph morphism). A total graph morphism m : G→ H between
the graphs G and H is a pair of mapping functions m = (mV : VG → VH ,mE :
EG → EH) that preserve the structure and labeling functions of G and H, i.e.

• sourceH ◦mE = mV ◦ sourceG,

• targetH ◦mE = mV ◦ targetG,

• ℓH ◦mE = ℓG,

• and ℓH ◦mV = ℓG.

A partial morphism from G to H is a total morphism from some subgraph
D ⊆ G to the graph H. The graph morphism is injective if both mV and mE are
injective and surjective if both mV and mE are surjective. A graph morphism
is an isomorphism if both mV and mE are bijections.

9.1.2 Typed attributed graphs

A labeled graph is still not sufficient to represent rich data structures. For
example, if we want to add a label representing a counter, it would be better to
have a label of type integer on which we are able to perform some computations
using the usual arithmetic operators. This cannot be done with labeled graphs,
and typed attributed graphs (TAG) are used instead [EPT04, EEPT06]. In this
thesis, we are interested in attributed graphs since their structure is rich enough
to encode models of modal logics with formulas as attributes, as we will see in
Chapter 10.

The idea of TAGs is simply to add to the graph structure nodes that represent
the attributes, we call them data vertices, and edges to link the graph nodes and
graph edges to those data vertices, we call them data edges. This is done by
defining a special kind of graphs called E-graphs used as a support for attributed
graphs. E-graphs are sketched in Figures 9.2(a), 9.2(b) and are defined as
follows:

Definition 37 (E-graph). An E-graph is defined as G = (V1, V2, E1, E2, E3,
(sourcei, targeti)i∈[1,3]) where

• V1 and V2 are respectively the sets of graph vertices and data vertices,

• E1,E2 and E3 are respectively the sets of graph edges, vertex data edges
and edge data edges,

• source1 : E1 → V1, source2 : E2 → V1 and source3 : E3 → E1,
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Figure 9.2: (a) a schematic representation of attributed graphs, (b) an example
of an attributed graph

• target1 : E1 → V1, target2 : E2 → V2 and target3 : E3 → V2.

An E-graph becomes an attributed graph when adding an algebraic signa-
ture1 for the attributes, as follows:

Definition 38 (attributed graph). Given a signature SIG =(S,OP ), an at-
tributed graph, with attributes of sorts S′ ⊂ S, is a pair (G,D) of an E-graph
G and a SIG-algebra D such that

⋃

s∈S′ Ds = V2.

As in the case of labeled graphs, we can talk about similarities between
attributed graphs by defining morphisms. Attributed graph morphism is neces-
sary to define next “typed attributed graphs”, and is used later in Section 9.3.4
to define their transformations. First, we define morphisms on E-graphs.

Definition 39 (E-graphs morphism). A morphism m : G → G′ between two
attributed graphs G and G′ is defined by a tuple of five mappings m = (mV1 ,mV2 ,
mE1 ,mE2 ,mE3) where

• mVi : Vi → V ′
i for i ∈ [1, 2];

• mEi : Ei → E′
i for i ∈ [1, 3],

and such that m commutes with all the source and target functions.

A morphism between two attributed graphs is then defined in terms of a
pair of morphisms: a graph morphism and an algebra homomorphism2 with a
specific interaction condition.

1Algebraic signatures were broadly introduced in [EM85]. However we sketch a basic
introduction needed to the understanding of the sequel in Appendix A.
2Signature morphisms and algebra homomorphisms are defined in Appendix A.
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Definition 40 (attributed graph morphism). A morphism m : G→ G′ between
two attributed graphs is a pair, m = (mG,mD), of an E-graph morphism mG

and an algebra homomorphism mD such that the following diagram is a pullback
for all s ∈ S′

V2 V ′
2

Ds D′
s

∩ ∩

mD,s

mG,s

This diagram reflects a condition on the interaction between the graph and
data morphisms. This condition practically means that the data attributes in
G′ can only be calculated from computations made on the data attributes of G.

Typed attributed graphs are attributed graphs of a specific type, i.e. at-
tributed graphs dotted with a graph morphism to a type graph. Thus, we need
first to define what is a type graph.

Definition 41 (type graph). A type graph is a distinguished attributed graph
(G0, Z), where Z is the SIG-final algebra3.

Definition 42 (typed attributed graph). A typed attributed graph ((G,D), t)
over a type graph (G0, Z) is defined by the attributed graph (G,D) and the
attributed graph morphism t : G→ G0.

We can finally define morphisms on TAGs as follows:

Definition 43 (typed attributed graphs morphism). A typed attributed graph
morphism m : G → G′, between two attributed graphs typed over the same type
graph (G0, Z), is an attributed graph morphism verifying the following additional
condition

t′ = m ◦ t

Other definitions given in Section 9.1.1 for labeled graphs can be also easily
extended to the case of typed attributed graphs. Moreover, we can show that
labeled graphs are special cases of TAGs (see [EEPT06] Chapter 2).

9.2 Rewriting rules

Regardless from the kind of the graph we are dealing with, a graph transfor-
mation is described by a graph rewriting rule which consists of a pair of graphs
ρ = (L,R), where L denotes the left-hand side graph and R denotes the right-
hand side graph. The application of a given rule ρ on a given graph G yields

another graph, call it H. It is denoted by G
ρ
⇒ H, and is called a derivation,

production or a rewriting step. Roughly speaking, ρ describes the changes that
need to be made on G in order to obtain H, and specifies on what parts of G

3see Appendix A.
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these changes should be performed. To this end, it defines a mapping between
the graph elements (i.e. nodes, edges, labels...) of L and R, often as a graph
morphism. This mapping describes which elements are preserved, deleted or
created when applying the rule ρ. Note that since this description is abstract
and has to be matched with instance graphs, we call L and R pattern graphs.

L R
ρ

(a)

next

(b)

Figure 9.3: (a) the definition of a graph rewriting rule, (b) an example of a rule
called “next”.

Example 10. In Figure 9.3(b), we give a graphical representation of a rule
called next. The nodes are preserved in both its left and right hand side graphs
L and R. The arc labeled Is that links the node labeled Current_State to the
node labeled S1 in L is deleted in R, then another arc with the same label (Is)
is added to R, in order to link the node labelled Current_State to the node
labeled S2.

A derivation G
ρ
⇒ H, denoting the application of a rule ρ = (L,R) on a

graph G, consists of two steps:

1. finding a match of L in G,

2. constructing H from G by replacing the found occurrence of L by R.

These two steps are explained and formalized in the following subsections.

9.2.1 Pattern matching and rule applicability

The first step in a derivation G
ρ
⇒ H consists in checking whether the rule

is applicable on the host graph G. Practically, a match of L in G has to be
identified, using a total morphism m : L → G (in the sense of Definition 36).
It consists in finding a subgraph D ⊆ G such that D matches L w.r.t. m. This
process is known as the pattern matching process, and D is called the match, the
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occurrence of ρ or also the redex. As we discuss in Section 9.4, this step is the
most expensive with respect to time cost in the graph transformation process.

Some rewriting systems have additional default conditions that are verified
during the pattern matching process. For example, in some systems, a rule
called many times is not applied twice on the same matching subgraph. In
other systems, if the effect of applying a rule on a given matching redex (i.e.
the outcome of the rule application on it) is already present in the host graph,
then it is said to be not applicable on that redex, and another match, if any,
has to be considered. Such conditions constitute what is usually called the rule
applicability.

9.2.2 Rule application

The second step of a derivation G
ρ
⇒ H is quite straightforward and consists

in applying the set of changes described by ρ to the graph G, which usually
yields a new graph, call it H. Practically, after finding a match and verifying
that the rule is applicable on it, H is obtained from G by deleting the elements
of G appearing in L and not appearing in R, then adding the elements of R
not appearing in L. Elements shared by L and R are preserved during the
derivation from G to H. Consequently, H is constructed as G\ (L\R)∪ (R\L),
with respect to a morphism ρ′ : G→ H. G is called the host graph and H the
replacement graph.

Example 11. Figure 9.4 gives in (a) a schematic representation of a rule ap-
plication, and in (b) an example of the application of the rule next of Figure
9.3(b) on the graph representing the traffic light system in Figure 9.1.

The main technical problems are how to delete L and how to connect R in
its place in a way where the resulting graph H remains a well-defined graph.
Figure 9.5 shows two examples of problematic rules.

Example 12. The first rule (Figure 9.5(a)) deletes the vertices S1 and S2 and
leaves behind the vertex S3 with a dangling edge, i.e. its application on a given
graph does not yield a well-defined graph. The resolution of such a problem is
to either systematically delete such dangling edges or forbid this kind of rule.

The second rule (Figure 9.5(b)) consists in merging two nodes S1 and S2 by
deleting S2 and preserving S1. If the underlying rewriting approach allows non-
injective morphisms, then its left-hand side graph can be mapped to a graph
with a single node S, by mapping both nodes S1 and S2 to S. Thus, applying the
rule becomes confusing: does it delete S or preserve it? The three possible ways
to proceed in this case are to systematically preserve the node, to systematically
delete it or to forbid this kind of rules.

In the literature, there are several different theoretical approaches to define
graph transformations, which lead to different solutions to the problems dis-
cussed in Example 12. In Section 9.3, we introduce some of the most known
theoretical approaches used to define rewriting rules.
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L R
ρ

m m′

ρ′G H

(a)

next

m m′

next′

(b)

Figure 9.4: Schematic representation of rules application (a), and an example
of the application of the next rule of Figure 9.3(b) on the graph of Figure 9.1.

9.3 Theoretical basis

Funding graph transformations on a theoretical and mathematical basis is essen-
tial to formally describe, better understand and express the properties of graph
rewriting systems. Many approaches were used in the literature. Among them,
we are presenting the algebraic approaches that were established since the 70’s
[Ehr79] and are still evolving [EEPT06, RFS08].

The algebraic approach adopts the category theory as the mathematical
framework and tool to describe graph transformations. For example, accord-
ing to the category theory, sets and functions define a category in which we can
describe the construction of a set from other sets using a gluing construction
i.e. by deleting some elements, adding by union some others, transforming other
elements by applying the functions and so on. . . Such construction is called a
pushout in categorical terms, and it is very similar to what a graph rewriting
rule is performing on graphs during its application. The category theory has
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Figure 9.5: Problematic rules

also a dual construction called pullback that describes the reverse engineering
of a pushout.

All these notions are well known in the literature, and will be presented in
the sequel for the case of graph transformations. We will also see in Section
9.4 that using the categorical approach we can easily express many theoretical
properties of graph rewriting systems.

9.3.1 Single Pushout approach

Graphs defined in Section 9.1 asG = (V,E, source, target) form a special algebra
with two base sets V and E, and two operations source and target. Graph
morphisms m : G → H are special cases of algebra homomorphisms since they
are compatible with the operations source and target as stated in Definition
36. Hence, these graphs and their morphisms constitute a special category in
which the diagram of Figure 9.4(a) is a pushout. The underlying theoretical
approach of this diagram is called the Single Push Out (SPO), in contrast to
the Double Push Out (DPO) which we introduce and compare to the SPO in
the next subsection. This algebraic view of graph transformation is presented
in depth in [EEPT06].

9.3.2 Double Pushout approach

In the DPO approach, a rule is a triplet ρ = (L
l
← K

r
→ R), where L and R are

the left and right hand side graphs and K is the common interface of L and R,
i.e. their intersection, and l and r are graph morphisms as defined in Definition
36. Figure 9.6(a) and 9.6(b) show the schema and an example of a DPO rule
definition.

According to the DPO, applying the rule ρ on a graph G consists of the
following steps:

1. a match m of L in G is to be found, such that m is structure preserving,
i.e. a graph morphism;
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2. all vertices and edges matched by L \K are removed from G, which be-
comes the graph D;

3. the graph D is glued together with R \K to obtain the graph H.

The removed part at step 2. is not a graph, in general, but the remaining
structure D resulting from (G \m(L)) ∪m(K) still has to be a legal graph, i.e.
no edges should be left dangling. This means that m must satisfy a suitable
condition, called the gluing condition, which makes sure the gluing of L\K and
D is equal to G.

Definition 44 (gluing condition). The DPO definition of a rule ρ = (L
l
←

K
r
→ R) satisfies the gluing condition iff the following two conditions hold:

• no edge e ∈ EG \mE(EL) is incident to any of the vertices in mV (VL \
lV (VK)), which is called dangling edge condition;

• there are no a, b ∈ VL ∪ EL such that m(a) = m(b) and a /∈ l(VK ∪ EK),
which is known as the identification condition.

The dangling edge condition requires that if a rule ρ defines the deletion of a
vertex, then it must also define the deletion of all the edges that are incident to
this vertex in order to ensure thatD has no dangling edges, and the identification
condition requires that each element that will be deleted by the application of
ρ has only one pre-image in L.

Under the gluing condition, the match of the overlapping part of R and L in
K is not deleted from G, the graph D exists and is unique4 up to isomorphism.
Also, gluing the graphs D and R \K yields a well-defined graph H. This gluing
construction of graphs can be considered as an algebraic quotient construction
in the algebra of graphs and graph morphisms.

Comparison of DPO and SPO

The main feature of the DPO approach is that a rule must satisfy the gluing
condition. In the SPO approach, this condition is not necessarily satisfied, and
this may result into problematic rules as shown in Example 12. However, this
can be avoided by deleting systematically all the incident edges of a deleted
vertex, and solving vertex deletion/preservation conflicts in favor of deletion,
for example, leading to a well-defined graph H.

Moreover, the SPO is said to be more expressive than DPO, in the sense
that it may model effects and special transformations that cannot be modeled
in the restrictive DPO approach.

Nonetheless, the DPO rules are characterized by the invertibility property
that is a desirable feature when graph rewriting is used for software engineering
and database systems. An invertible rule allows the reconstruction of previous
states by reversing the procedure of deleting and creating the vertices and edges.

4Chapter 3 of [EEPT06], Fact 3.11 page 45.
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Figure 9.6: (a) Double pushout rule definition, (b) an example: the application
of the rule next of Figure 9.3(b) w.r.t. the double pushout approach.
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This is possible in DPO since the rules specify symmetrically added and deleted
elements. Whereas in a SPO rule, it is not possible to specify all the modifi-
cations that has been carried out during the rule application. Thus, an ad-hoc
solution is to save some additional information during the rule application at
run-time.

9.3.3 Pullback approach

The SPO and DPO are the most famous algebraic approaches. Others propose
yet another categorical approach called pullback based on the pullback construc-
tion which is the dual construction of the pushout in the category of graphs and
graph morphisms. It has many advantages discussed in [BJ01], such as the pos-
sibility of defining subgraph replication and copying (i.e. cloning) any arbitrary
graph with a single rule.

9.3.4 Adhesive High-Level Replacement approach

The algebraic approaches mentioned above are mostly used to describe the graph
structural transformations. However, when dealing with complex graph struc-
tures, such as attributed graphs, we need to describe the computations made on
the graph attributes during the transformations, as well as the changes of the
graph structure.

Many approaches have been developed for typed attributed graphs so far in
the literature ([HKT02, BFK00]). However, we adopt the “adhesive HLR cate-
gory”algebraic approach introduced by Ehrig, Prange and Taentzer in [EPT04],
then matured and broadly discussed by the authors in [EEPT06]. We give more
credentials to this approach since it provides as fundamental results the Local
Church-Rosser, Parallelism, Concurrency, Embedding and Extension Theorem
and a Local Confluence Theorem known as Critical Pair Lemma in the litera-
ture.

This approach inspired Rebout, Féraud and Soloviev, the authors of the
“Double Push-out Pullback” (DPoPb) approach, in [RFS08]. This newer ap-
proach preserves all the theoretical results of its elder one mentioned above.
Moreover, it uses a homogeneous theoretical framework to define graphs struc-
tural transformations as well as their attributes computations. It also takes
into account recursive typing (to define meta-meta-models for example), and it
avoids having infinite instances of a given type.

These two approaches are the most suitable to define rewriting rules in our
platform LoTREC, since they capture typed attributed graph transformations.
However, the definitions of the graph rewriting rules in LoTREC (Section 10.2)
follow the adhesive HLR categorical approach to a large extent, rather than the
DPoPb approach due to the way the attributes are defined and used in LoTREC.
The benefit of defining the rules according to the adhesive HLR approach is to
be able to apply all its theoretical properties and results on our system. For
example, we can find out easily under which conditions two rules are applicable
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in parallel or whether or not the Church-Rosser property holds for a given set
of rules (see Section 9.4).

A special class of monomorphisms

It is shown in [EPT04] that typed attributed graphs and a special class of
monomorphisms form an adhesive HLR category. The proof given in the first
paper[EPT04] is a short version of the proof sketched in the book [EEPT06],
where the authors introduce step-by-step, through out the chapters, many cat-
egorical constructions for various families of graphs, until they end up with the
categorical construction for typed attributed graphs.

To capture the main flow of these constructions, we dispose already of all the
necessary ingredients in Section 9.1.2. In fact, it is easy to show that E-graphs
and E-graph morphisms form the category E-Graphs. The categories of signa-
tures and algebras, Sig and Alg(SIG), are defined in Appendix A. The category
A-Graphs is formed by attributed graphs and their morphisms. And finally, the
attributed graphs typed over an attributed type graph ATG = (G0, Z) and their
morphisms form the category A-GraphsATG.

However, to be an adhesive HLR category, and thus inherit all its properties,
the category A-GraphsATG has to restrict its class of morphisms.

Definition 45 (distinguished typed attributed graphs monomorphism). The
class of distinguished monomorphisms M for the category A-GraphsATG is de-
fined by m = (mG,mD) ∈M if mG is injective and mD is an isomorphism.

Theorem 4. The category (A-GraphsATG,M) of typed attributed graphs over
ATG is an adhesive HLR category.

Proof. see [EPT04].

The definition of rewriting rules on typed attributed graphs remains similar
to that in the DPO approach for labeled graphs, as follows:

Definition 46 (TAGs rewriting rule). A typed attributed graph rewriting rule

ρ = (L
l
← K

r
→ R) is defined by three typed attributed graphs L,K and R

attributed over the term algebra TA5 of their data signatures, and two morphisms
l, r ∈M.

The definition and schema of rules application would look exactly like the
DPO rules application definition given in Section 9.3.2 and sketched in Figures
9.6(a) and 9.6(b).

9.3.5 Alternative approaches

Many other approaches were developed on other theoretical basis. The node
label replacement [ER91] allows a single node (in the left hand side graph L)
to be replaced by an arbitrary graph R. The idea is very close to the context

5Terms and term algebras are defined in Appendix A.
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free grammars. A logical approach were also developed in [Cou97], in which
graph transformation and properties of graphs are defined in monadic second-
order logic MSO. Others have developed more powerful but complex approaches,
such as the programmed graph replacement approach of PROGRES [Sch91] that
aims to allow the definition of complex left-hand side patterns and the use of
programs to control the non deterministic choices in rules application. These
approaches and many others were presented in details in [Roz97].

9.4 Properties of graph rewriting systems

Usually, a graph rewriting system consists of a set of graph rewriting rules
R. The transformation of a given graph G by a graph rewriting system is
defined by a finite, or possibly infinite, sequence of derivations of the form

G
ρ1
⇒ G1 . . .

ρi
⇒ Gi

ρi+1
⇒ . . . where ρi ∈ R for all i. However in general, the goal

of a rewriting system is to be able to compute for any given graph G the final
graph Gf that is carried out by applying repeatedly the set of its rules R. If
there is no ρ ∈ R that would apply on Gf furthermore, then Gf is a normal

form of G. The derivation sequence leading to Gf from G is denoted by G
∗
⇒ Gf

when there is no need to explicit the rules applied at each step.

9.4.1 Characterization

Practically, in order to compute the normal form of a graph, a graph rewriting
system has to make two non-deterministic choices at each rewriting step:

1. which rule to apply?

2. if a rule is applicable on many different subgraphs of the host graph, then
on which subgraph this rule should be applied?

The first choice is decided by defining what we call a control structure or a
strategy. It consists in defining an ordering on the set of rules, so that the rules
are sequentially applied according to that ordering. Whereas the second choice
is embedded in the policies of the pattern matching process and the notion of
rule applicability.

Hence, a graph rewriting system is not simply specified by a set of rules, but
it is also specified by the underlying choices concerning:

• the approach used to define the rules,

• the set of (implicit) constraints on rules applicability, i.e. the way the
pattern matching process is achieved,

• the way the rules are applied,

• and the strategy that defines the order according to which the rules are
applied.
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According to these choices, a graph rewriting system is characterized by a
set of theoretical properties, such as the properties defined in the sequel.

9.4.2 Termination

As stated at the beginning of Section 9.4, a rewriting system is usually conceived
to perform finite computations, and that is why we are interested in the ter-
mination property of rewriting systems. The termination is studied in general
w.r.t. to a set of rules, but when a strategy is defined on the rules, then it should
also be taken into account.

Definition 47 (termination). A graph rewriting system with a set of rules R
is terminating iff for every graph G there is no infinite derivation sequence

G
ρ1
⇒ G1 . . .

ρi
⇒ Gi

ρi+1
⇒ . . . where ρi ∈ R for all i.

The question wether or not a rewriting system is terminating can be reduced
to a halting problem of a Turing machine, i.e. does a rewriting system halt for a
particular set of rules. Thus, in general, termination of rewriting is unsolvable.
However, there are many restrictions that can be made on the rules and their
application in order to guarantee the termination.

The most obvious sufficient condition for termination is that each rewrite
rule in R must reduce the size of the initial transformed graph G. Otherwise,
other restrictions should hold. For example, D. Plum showed in [Plu95] that
termination of a graph rewriting system is guaranteed when the application of its
rewriting rules consists of finite minimal derivations in which each step depends
on previous steps, what he called forward closures. One of the constraints
that the author wants is that each of these rules has to remove, during its
application, at least one element of the redex matching its left-hand side graph
L. Otherwise, a single rule would be infinitely applicable. However, this can be
avoided practically by tuning the notion of the applicability of a rule, so that a
rule is not applicable on the same graph twice at the same place.

The authors of [EEdL+05] show that a special family of systems called lay-
ered graph rewriting systems is terminating6. The idea is to stratify the rules
in different layers. Rules at each layer are applied as long as possible before the
rules in the next layers. Moreover, they distinguish between deletion and non-
deletion layers. Rules in deletion layers should delete at least one item. Rules
in non-deletion layers do not delete any item, but they have negative application
conditions to prohibit an infinite number of applications of the same rule.

9.4.3 Completeness

Definition 48 (completeness). A graph rewriting system is complete iff for
every graph G and every rule ρ ∈ R there is a well-defined graph H such that

G
ρ
⇒ H, i.e. the direct derivation by a rule ρ is computable for every graph G.

6Note that layered grammars [EEdL+05] has no relation with the layered modal logics
introduced and studied in Chapter 8.
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This property seems hard to be fulfilled since usually a rule is not applicable
on some graphs for example those not having a redex matching the left-hand
side of the rule. However, this property can be fulfilled if the rule application is
relaxed, so that if a rule ρ is not applicable to a graph G, then we can anyway

achieve the derivation G
ρ
⇒ G. It remains to make sure that the rules are defined

in a way that guarantees their application, i.e. to make sure during the compile-
time that every rule satisfies the gluing condition if it is defined in DPO, or that
the system knows how to proceed in case of problematic rules when they are
defined in SPO.

9.4.4 Locality

The rule-base nature of graph rewriting systems ensures a certain degree of
locality as the application of a rule manipulates locally the occurrence of the
rule in the host graph. The locality leads to low time-cost for rules application.
Nonetheless, the definition of global states or variables, left-hand conditions
looking for an ancestor of a node or describing disconnected subgraph patterns
may weaken this property.

9.4.5 Parallel and sequential independence

Two rules are sequentially independent if they can be interleaved when applied
sequentially leading to the same result. They are parallel independent or con-
current if they can be applied in arbitrary order on the same graph.

Definition 49 (sequential independence). Two rules ρ1 and ρ2 are sequen-

tially independent iff for very derivation G
ρ1
⇒ G1

ρ2
⇒ H there is an equivalent

derivation G
ρ2
⇒ G2

ρ1
⇒ H.

Remark 16. G1
ρ1
⇒ G2

ρ2
⇒ G3 are sequentially independent iff G1

ρ−11⇐ G2
ρ2
⇒ G3

are parallel independent, where ρ−1
1 is the inverse rule of ρ1. Thus specifying

parallel independence is done once specifying the sequential independence is.

Characterizing the parallel or sequential independence amounts to specifying
the conditions under which these properties hold.

Informally, two rules are sequentially independent if the match of the latter
one does not depend on elements generated by the former one, and the latter
one does not delete items that have been accessed by the former one.

To formalize this condition, let us consider two rules ρ1 = (L1
l1←1 K1

r1→ R1)

and ρ2 = (L2
l2←2 K2

r2→ R2), as usually defined in the DPO or the HLR adhesive

categorical approaches (Figure 9.7(a)). The two derivations G
ρ1
⇒ G1

ρ2
⇒ H are

sequentially independent if all nodes and edges in the intersection of the comatch
m′
1 : R1 → G1 and the match m2 : L2 → G1 are gluing items w.r.t. both rules,

i.e.

m′
1(R1) ∩m2(L2) ⊆ m′

1(r1(K1)) ∩m2(l2(K2)).



9.4. PROPERTIES OF GRAPH REWRITING SYSTEMS 209

G G1
D1 D2 H

l′1 r′
1 l′2 r′

2

L1 R1K1 K2 R2
l1 r1 l2 r2
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m1 m′
2k2

m2m′
1

j i
k1

(a) sequential independence

H1 GD1 D2 H2
r′
1 l′1 l′2 r′

2

R1 L1K1 K2 R2
r1 l1 l2 r2

L2

m′
1 m′

1k2
m2m1

j i
k1

(b) parallel independence

Figure 9.7: Parallel and sequential independence.

On the other hand, the derivations G
ρ1
⇒ H1 and G

ρ2
⇒ H2 (Figure 9.7(b)) are

parallel if all nodes in the matches are gluing items with respect to both rules,
i.e.

m1(L1) ∩m2(L2) ⊆ m1(l1(K1)) ∩m2(l2(K2)).

Hence the following characterization (proved in [EEPT06] Fact 3.18):

Definition 50 (characterization of parallel and sequential independence). Two

derivations G
ρ1
⇒ H1 and G

ρ2
⇒ H2 are parallel independent iff there exist mor-

phisms i : L1 → D2 and j : L2 → D1 such that l′2 ◦ i = m1 and l′1 ◦ j = m2 (see
Figure 9.7(a)).

Two derivations G
ρ1
⇒ G1

ρ2
⇒ H are sequentially independent iff there exist

morphisms i : R1 → D2 and j : L2 → D1 such that l′2 ◦ i = m′
1 and r′

1 ◦ j = m2

(see Figure 9.7(b)).

This shows how such properties are easy to be defined in the categorical ap-
proaches and justifies their use as a theoretical basis for defining graph rewriting,
for instance, our graph rewriting system LoTREC.

9.4.6 Confluence and convergence

If two rules ρ1 and ρ2 can be applied in parallel on a given graph G, then the
application of both rules (in any order) results in a unique (up to isomorphism)
graphH. This means that there exists a rule, denoted by ρ1+ρ2, that represents
the composition of ρ1 and ρ2, consisting essentially of their disjoint union and
denoting the parallel application of ρ1 and ρ2 (see Figure 9.8). To formalize

this we use the notation G
ρ,m
⇒ H to explicit the morphism used to compute the

match during the rule application.
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Theorem 5 (Local Church-Rosser). Given two parallel independent derivations

G
ρ1,m1
⇒ H1 and G

ρ2,m2
⇒ H2, there is a graph H together with derivations H1

ρ2,n2
⇒

H and H2
ρ1,n1
⇒ H such that G

ρ1,m1
⇒ H1

ρ2,n2
⇒ H and G

ρ2,m2
⇒ H2

ρ1,n1
⇒ H are

sequentially independent.

Proof. see [EEPT06], Theorem 5.1.

H

H1 H2

Gρ1,m1 ρ2,m2

ρ2, n2 ρ1, n1

ρ1 + ρ2

Figure 9.8: Parallelism and confluence.

In such case, we say that the rewriting system is locally confluent. It is said
to be (globally) confluent if every pair of rules are independent.

Definition 51 (Confluence). A graph rewriting system is confluent iff for every

derivations G
∗
⇒ G1 and G

∗
⇒ G2 there is a graph H such that G1

∗
⇒ H and

G2
∗
⇒ H.

This property dictates that no matter how we diverge from a given graph,
there is always a way of joining derivations at a common result graph. Hence,
a confluent rewrite system delivers a unique normal form for all sequences of
rewrite rules application [DJ90].

However, in practice, the confluence of a system is studied according to a
specific strategy and/or constraints on rules application. Note also that the
problem of determining wether a graph rewriting system is confluent is an un-
decidable problem [DJ90].

Definition 52 (Convergence). A graph rewriting system is convergent iff it is
terminating and confluent.

9.4.7 Complexity

Studying the complexity of a graph rewriting system is reducible to studying
the complexity of the two steps (Sections 9.2.1 and 9.2.2) of a rule derivation in
that system.

Since applying a rule consists in adding, deleting or modifying elements that
are as many as the size of the right-hand side graph of the rule (i.e. at most
|R|), this step is achieved in general in polynomial time.

However, the pattern matching process is known to be NP-complete. In fact,
it consists in matching the |L| elements of the left-hand side graph of the rule
with the |G| elements of the host graph. Thus the time cost is O(|G||L|).

The effect of this time cost is proportional to the number of established
unsuccessful pattern matching processes. Thus misdealing with the additional
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applicability conditions may increase in practice the influence of this time cost
on the overall performance of the underlying rewriting system.

Conclusion

In this chapter we gave an overview of graph rewriting. We showed various graph
structures that differ in their ability to express richer data. We introduced the
categorical approach to define graph rewriting rules. Then we showed how rule
definitions may lead to non well-defined graph and how to avoid this.

In the end we gave some of the theoretical properties that can be inherited
from some graph rewriting approaches, which have already established results
certified by the graph rewriting community.
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Chapter 10

LoTREC: a graph rewriting
tool for model construction
in modal logic

Introduction

In the last chapter we gave a survey on the various approaches used to define
graphs and graph transformations, we establish in this chapter the link between
these approaches and LoTREC.

We do this by discussing some of the specificities of our tool, namely:

1. the kind of graphs it can deal with,

2. the theoretical approach on which rules definition lie,

3. and the way the rules are compiled and applied.

These specificities of LoTREC are successively addressed in sections 10.1,
10.2 and 10.3. First, we specify the structure used to embed the premodels as
attributed graphs. Then we show how the computations performed on the pre-
models are defined as graph rewriting rules, and how these definitions conform
to the HLR approach (Section 9.3.4). We also show some of the restrictions that
we impose on the definition of the rules, and we discuss the underlying reasons
for these constraints.

After that, we present the language of strategies definable and used in
LoTREC, in contrast with the strategy languages of other tools.

Finally, according to these specificities, we discuss in Section 10.4 some of
the properties that are acquired by a model construction method defined in
LoTREC, once seen as a graph rewriting system.

213
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10.1 Graph structure

Graphs are usually defined in the graph rewriting literature as two (disjoint)
sets of elements (or objects). One contains the nodes and the other contains
the edges of the graph. As shown in Section 9.1, we may add some other sets of
elements to this basic graph structure in order to enrich it. For example, we may
annotate the nodes and/or edges with labels to make them more significative
(see Section 9.1.1). We may also annotate them by attributes, so we can perform
some computations on these attributes during the transformation of the graphs
(see Section 9.1.2).

In LoTREC, graphs are meant to represent Kripke’s models (see Definition
4), although the users may have their own interpretations of the graphs as
sequent trees, automaton or other data structures.

Thus in general, nodes represent the possible worlds, and edges represent the
accessibility relations between these worlds. Hence, we should be able to label a
node representing a possible world with a set of formulas that are supposed to
be true in that world. Similarly, we should be able to label an edge representing
an accessibility relation with a formula to express the name of that relation (see
Figure 10.1).

Figure 10.1: A premodel constructed in LoTREC.

Furthermore, we would like to be able to perform some computations on
these formulas during the model construction process. We can see this, for
example, when defining a rule that, given a node labeled with the formula <>A,
creates a new node labeled with the subformula A (see Figure 10.2); or when
defining a rule that, when the formulas A and B are found in a given node, adds
to the same node the formula A & B obtained by applying the operator & to
the formulas A and B. Thus formulas should not be treated as simple labels, but
rather as attributes of type “formula”, on which we can define a set of operations
within the definitions of the rules.

Consequently, it seems that attributed graphs, defined in Section 9.1.2, are
the most suitable structure to define graphs of LoTREC.
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(a) left-hand side (LHS)

Pos rule
⇒

(b) right-hand side (RHS)

Figure 10.2: During the application of the Pos rule, the formula A is calculated
from the formula �A using the subformula operator Sub.

10.1.1 Formulas as attributes

As stated in Chapter 2, formulas of a given logic L can be defined inductively on
its set of atomic propositions (P) and its set of connectors (Conn) (also called
operators). This definition says that:

• any atomic proposition P ∈ P is a formula,

• for any connector c ∈ Conn, given n formulas A1, . . . , An, where n =
arity(c), c(A1, . . . , An) is also a formula,

• and that there are no other formulas in the logic L.

To use the formulas as attributes (such as in [EEPT06]), they should be
defined as terms upon an algebra and an algebraic signature (Signatures and
algebras are introduced in Appendix A). Nevertheless, we can show that when
a set of connectors is defined in LoTREC, an algebraic signature can be auto-
matically generated. Hence, an algebra can be built upon this signature, whose
terms are the formulas of the underlying logic.

We call these terms expressions to give the intuition that they can be used to
represent more general types of attributes, other than formulas. In the sequel,
we use both “formula” and “expression” without making any distinction.

Indeed, defining in LoTREC a set of connectors Conn (as explained in Chap-
ter 2) is equivalent to defining a special signature EXP (which stands for ex-
pressions) with:

• only one sort exp,

• a set of constant symbols K, which is meant to be the set of atomic
propositions P,

• and a set of operation symbols OP , which is effectively the set of user-
defined connectors Conn.
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Definition 53 (expression signature). Given a logic L with the set of atomic
propositions P and the set of connectors Conn, we define the corresponding
expression signature EXP as follows:

EXP =
sorts : exp
operators : e : → exp, for all e ∈ P

op : exp, . . . , exp
︸ ︷︷ ︸

→ exp, for each op ∈ Conn

arity(op) times

Example 13. Suppose that we are defining in LoTREC the logic CPL with
the set of atomic propositions P and the set of (boolean) connectors Conn =
{not, and}, where arity(not) = 1 and arity(and) = 2. The following signature
of expressions becomes the default one in LoTREC:

EXP =
sorts : exp
operators : e : → exp, for all e ∈ P

not : exp→ exp
and : exp, exp→ exp

Beside the auto-generation of a signature given a set of connectors, a default
algebra on these expressions is also automatically generated.

Definition 54 (expression algebra). Let EXP be the expression signature of a
logic L, and let For be the set of formulas of L. The corresponding expression
algebra is defined as follows:

Aexp = For
eA = e ∈ Aexp, for all e ∈ P
opA : Aexp × . . .×Aexp

︸ ︷︷ ︸
→ Aexp, for each op ∈ Conn

arity(op) times
(e1, . . . , en)→ op(e1, . . . , en), where n = arity(op)

The auto-generated algebra does not infer any semantics. In LoTREC, the
semantics are embedded in the rewriting rules defined by the user, and there
is no effective computation associated to the operators by interpreting their
syntactical definitions as data signatures or algebras.

Example 14. If connectors not and and are defined as in Example 13, the
default algebra automatically defined in LoTREC is the following:
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Aexp = For
eA = e ∈ Aexp

notA : Aexp → Aexp

e→ not(e)
andA : Aexp ×Aexp → Aexp

(e1, e2)→ and(e1, e2)

Formulas are then defined as terms upon this algebra, exactly as indicated
in Section A.1 of Appendix A.

Example 15. According to the signature and algebra defined in the above ex-
amples, and for P,Q ∈ K, the expression and(P, not(Q)) becomes a recognizable
term in LoTREC (i.e. the formula P ∧ ¬Q becomes recognizable in LoTREC).

Other types of attributes

In some cases, we need to mark special nodes with additional meta-data, called
marks, during the transformations. This is the case for example if, in a given
rule, we want to annotate a node by a special mark (such as the Loop_Node mark
used to indicate a given node is equal to an ancestor node in Chapter 5 Section
5.1).

We have also the possibility to annotate formulas with marks as well. For
example, we can mark a given formula as True or False (Chapter 6), or as active
or inactive (Chapter 4 Section 4.6).

Consequently, in addition to expressions, we also have to deal with different
types of attributes, for instance the marks presented above. However, since
they only consist of constant values with no operations on them, we consider
them as simple labels not as attributes, and thus we do not include them in our
definitions here.

In future versions of LoTREC, it is possible that we will need to use other
types of attributes in order to define model construction for some logics. Namely,
we need to use the integers to define the cardinalities of the accessibility rela-
tions for some description logics, which have to be considered as integers. Such
extensions can be easily done in the future since:

1. practically, LoTREC can deal with any type of attributes defined as ob-
jects of any Java class (which is already done in the general purpose rewrit-
ing system AGG [Tae99]),

2. and theoretically, after such extensions, the rewriting system of LoTREC
will still be captured by the general attributed graph transformation frame-
work, as long as these new attribute types can be defiend via algebraic
signatures and algebras.

To conclude,recall that defining a new logical language in LoTREC amounts
to the definition of a new syntax of formulas. As such we can say that it is
easy to define a new logical language in LoTREC since this can done by simply
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defining the appropriate set of connectors and their arities. As a consequence
of this definition, formulas, defined as terms upon these connectors, become
the only recognizable attributes in LoTREC, and graphs that are attributed by
these formulas become the only recognizable graphs in LoTREC. Also LoTREC
can always be extended to take into account new types of attributes.

10.1.2 The type graph of LoTREC

In a given rewriting system, a type graph (Definition 41) is usually fixed, thus
every graph instance defined or handled by the system should be dotted with a
graph morphism to this type graph. This ensures that graph instances are well
defined and satisfy the constraints specified in the underlying type graph.

Unlike general purpose rewriting systems which accept various user-defined
type graphs, LoTREC has a fixed type graph which has only one type of nodes,
one type of edges and one type of attributes which is Expression.

Expression

Edge

containsisLabeledBy

Node

1

0..n1

1

0..n

0..n

Figure 10.3: The basic type graph of LoTREC, shown as an E-graph.

The type graph of LoTREC is given in Figure 10.3. According to this type
graph:

• nodes, edges and formulas (i.e. expressions) of an instance graph should
be separated in three disjoint sets;

• a node may have no or many successor and/or parent nodes, and it may
have no or many formulas;

• an edge links exactly one source node to one target node1 and it is labeled
by exactly one formula;

• thus a formula is either labeling exactly one node or exactly one edge;

• two (not necessarily different) nodes can be linked by two or more edges,
provided that the edges are labeled with different formulas;

1This can be considered as a multiplicity constraint on the Edge type.
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• and, there are no additional constraints on the graph structures in LoTREC.

This type graph can be extended to take into account other attribute types.
For instance, we show in Figure 10.4 how to add a new type called Mark to this
type graph, in order to take into account the marks (of nodes and expressions)
and their constraints.

Expression

Edge

containsisLabeledBy

Node

1

0..n1

1

0..n

0..n

Mark

1

0..n

1

0..n

isMarkedBy

isMarkedBy

Figure 10.4: The complete type graph of LoTREC.

According to this complete type graph, an instance graph should also satisfy
two additional conditions, namely, a node or a formula can be marked with one
or more marks, whereas a mark is only associated with exactly one node or
exactly one formula.

10.1.3 Premodels as graph instances

The graph instances in LoTREC are the premodels. They are defined as typed
attributed graphs according to Definition 42. Thus, they are graphs attributed
by formulas (resp. and marks) w.r.t. the specification described by the type
graph of Figure 10.3 (resp. 10.4).

Example 16. Figure 10.5 shows how the premodel of Figure 10.1 is defined as
an attributed graph typed over the type graph of LoTREC.

10.2 LoTREC’s rules as graph rewriting rules

Once the syntax of a given logic is defined via a set of connectors, the rules in
LoTREC are meant to give the semantics of this logic. In fact, the semantics
can be encoded in graph transformation rules as long as the underlying logic
has a standard Kripke semantics (as shown throughout the Chapters 3 to 7).

In this section, we show how these rules are defined in LoTREC, and how
this definition fits into the theoretical framework of the adhesive HLR approach
(Section 9.3.4). Then we give some of the constraints imposed on their defini-
tions and the special way in which they are applied.
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w

〈R2〉Q

v
Q

R2

〈R1〉¬Q

u

¬Q

R1

[R1]P

P

Figure 10.5: The premodel of Figure 10.1 represented as a node- and edge-
attributed graph.

10.2.1 Definition

The definition of rules in LoTREC follows the single-pushout approach (see Sec-
tion 9.3). Thus a rule ρ = (L,R) is represented by a left-hand side (LHS) graph
L, a right-hand side (RHS) graph R, together with a partial graph morphism
ρ : L → R. However, this morphism can be considered as a span of two to-
tal graph morphisms, with the domain of the morphism as the gluing graph,

i.e. L
l
← dom(ρ)

r
→ R, the way DPO rules are denoted (see Section 9.3.2).

Both r and l belong to the special class of monomorphisms M (Definition 45),
thus graph transformations in LoTREC become special constructions from the
adhesive HLR category of typed attributed graphs and their morphisms.

This approach forms a suitable framework for our rules, since it allows us
to define computations on the attributes of nodes and edges , as well as the
transformations to be made on the graph structure.

Example 17. Let us consider the modal logic K. Let the connector pos be
the mono-modal operator �, with arity(pos) = 1. The rule Pos, defined in
Figure 10.6, is applied on any node w attributed by a formula of the form �A
(since variable A is to be instantiated by a variable-free formula during the rule
applicability check).

The application of Pos consists in:

• creating a new node u,

• linking u to w,

• adding to u the formula A assigned to the variable A (computed as a
subformula of �A).

Note that R is a constant value, and that w and u are variables to be instan-
tiated. However, we omit the variable keyword in front of the nodes, since it is
not possible to use constant node symbols in LoTREC’s rules.



10.2. LOTREC’S RULES AS GRAPH REWRITING RULES 221

w

pos variable A

(a) left-hand side (LHS)

Pos rule
⇒ w

pos variable A

u
variable A

R

(b) right-hand side (RHS)

Figure 10.6: The LHS and RHS graphs of the rule in Figure 10.2 represented
as node- and edge-attributed graphs.

Negative application conditions (NACs)

As for the other graph rewriting tools, we can add to the rules in LoTREC
as many Negative Application Conditions (NACs) as needed. These conditions
specify, for a given rule, which graph objects (nodes, edges, . . . ) should not be
present in the host graph in order to apply the rule.

Example 18. We may add to the rule Pos of Example 17 a NAC stating that
the rule is applicable on every node w if it does not have any successor node u
by the relation R (see the gray part of the graph in Figure 10.7).

w

R

u

Figure 10.7: Negative Application Condition (NAC).

Constants and variables

The LHS and NACs of a rule may contain constant or variable attribute values
(such as the w node and variable A in Example 17). NACs are allowed to contain
the LHS only partially. The scope of a variable is its rule, i.e. each variable is
globally known in its rule. For example, the RHS may contain variables declared
in the LHS. Multiple usage of the same variable is allowed and can be used to
express equality of values.

New variables figuring only in the RHS are allowed if they are designating
node identifiers (such as the u node in Example 17). This means that new nodes
have to be created by the rule. Whereas new variable attributes are not allowed
in the RHS. Only attributes with constants can be added to the RHS (such as R
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in Example 17), and only attributes with variables that are already figuring in
the LHS (such as variable A in Example 17), thus instantiated during the rule
applicability check, can be used in the RHS.

Empty LHS and empty RHS

The LHS and RHS could be empty set graphs. A rule with an empty RHS does
not alter the host graph when applied, i.e. it has no effect on the host graph
regardless of the fact that it is applicable on it or not.

A rule with an empty LHS is applicable on any host graph (hence, it is
applicable infinitely often when called repeatedly). Such a rule is usually defined
to be applied just once on the premodels. For example, the rule Build_Premodel
is called at the beginning of the model checking method to build and initialize
the checked models (Chapter 6). (See also the rule Build_Greeting_Graph in
Appendix B.1).

LHS connectedness

In LoTREC, the LHS graph should be connected: two nodes of the LHS graph
are necessarily connected either by being directly linked by an edge, or indirectly
linked to other connected nodes.

Example 19. Figure 10.8 shows an example of an ivalid rule definition where
the LHS graph is disconnected.

w

u

(a) LHS

Invalid_rule
⇒ w

u

(b) RHS

Figure 10.8: An invalid rule definition, since the LHS is disconnected.

This restriction follows from the nature of the application domain of LoTREC
in logic, where the constructed models are usually connected graphs. This
also allows to drastically enhance the performance when achieving the pattern
matching process.

However when needed, we can simulate connectedness between all the nodes
of the graph by creating a universal relation linking them together or linking
them to a common specific node (such as done for S5 in Chapter 4).



10.2. LOTREC’S RULES AS GRAPH REWRITING RULES 223

Non-determinism and multiple RHSs

A rule may have one, two or more RHS graphs. This allows the users to define
different alternative sets of transformations that have to be made on the host
graph where the LHS graph of the rule is matched.

Having alternative transformations is vital to encode non-deterministic choices
in logic (ex. disjunctions). In fact, since in LoTREC semantics are encoded in
the rules, the non-determinism is also embedded in the rules definition.

However, this changes nothing to the formal definition given above. In fact,
if a rule is defined by a left-hand side graph L and a set of graphs on the right-
hand side R1, . . . , Rn, then it can be viewed as a set of transformations L→ R1,
. . . , L → Rn, where each transformation is exactly defined as a rule with only
one RHS, without any further constraints or restrictions.

Example 20. For example, a disjunction A ∨B is true iff one of its disjuncts,
A or B, is true. Suppose that we have a graph node with the formula P ∨ Q.
To implement the semantics of the ∨ operator with a single rule, we define a
rule that has two RHS graphs: in the first one we add A to the node, in the
other one we add B (see Chapter 3, Section 3.1). The result will be two graphs,
which are both explored in the rest of the rewriting process.

10.2.2 A special language of conditions and actions

LoTREC does not have a graphical interface to define the rules by drawing
their LHS, NACs and RHS graphs. Instead, LoTREC offers a high-level textual
language of conditions and actions to describe these graphs. This language is
simple and easily accessible to non-computer scientists, such as students and
researchers in philosophy and logic.

Example 21. The Pos rule of Example 17 (Figures 10.2 and 10.6), is defined
in LoTREC as follows:

Rule Pos

hasElement w pos variable A

createNewNode u

link w u R

add u variable A

End

We notice that we use the keyword variable to indicate that A is a variable
that has to be instantiated, whereas R is a constant symbol. Nodes identifiers,
such as w and u, are always considered as variables.

This definition says that wherever a node w holds a formula of the form
pos variable A (i.e. �A where A is an arbitrary formula), then the rule should
create a new node u, link it to that w by an edge labeled by R and add to it
the subformula A (assigned to variable A). Thus, this definition reflects exactly
what the graphical definitions of the Pos rule (Figures 10.2 and 10.6) are meant
to say.



224CHAPTER 10. LOTREC: REWRITE GRAPHS TO CONSTRUCTMODELS

In LoTREC, conditions are used to represent graph patterns and are meant
to describe the LHS of the rules. For example, hasElement node formula states
the existence of a formula in a given node and isLinked n n’ R states that two
nodes are linked. It is also possible to define NACs in this language, such as
hasNotElement node formula and isNotLinked n n’ R.

Actions are used to describe the RHS graph of rules. However, they define
the RHS only partially, by specifying how it is calculated from the LHS graph.
In example 21, the three given actions define the changes to be made on the
LHS graph of the rule Pos in order to obtain its RHS graph.

Throughout the chapters 3 to 7 we use most of the conditions and actions
that are predefined in LoTREC2.

In the following two sections, we show how these conditions are checked and
verified, and how these actions are then applied.

10.2.3 Applicability

As shown in Section 9.2.1, the check of rule applicability, also known as the
pattern matching process, consists in finding a subgraph of the host graph G
that matches the LHS of the rule, i.e. finding a total morphism m : L→ G.

Matching the structure and the attributes

In LoTREC, the LHS graph is to be instantiated first, then NACs are simply
checked on the found graph instance. Besides matching the graph structure,
the attributes annotating this structure are also matched. The attributes of the
LHS are matched by comparing constant values or by instantiating variables.

Instantiating variables consists in finding a substitution for these variables
that assigns constant values from the instance host graph. When a substitution
fails, another substitution should be considered. Thus, the instantiation of
variables is only a subprocess recursively called in the whole pattern matching
process.

Instantiation of complex attributes

The rewriting engine of LoTREC does not use existing tools and was built from
scratch. The main reason behind this is the integration of the attributes match-
ing within the whole matching process. In fact, in general purpose rewriting
tools, such as AGG [Tae99], the instantiation of the variables appearing in the
attributes is only done for basic data structures, such as integers, reals, strings
and some other Java types. Hence, it is not possible to define or integrate the
instantiation of complex attributes (such as the expressions used in LoTREC to
encode logical formulas) in the whole pattern matching process of these generic
rewriting tools.

2A complete (but out-of-date) list of conditions and actions is available in [Sah04].
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A special notion of applicability

In general, we say that a rule is applicable if we succeed in finding a morphism
m and a subgraph D ⊆ G such that m(L) = D. However, when considered in
the global context of repeated applications, it is often desired not to apply the
same rule on the same subgraph D twice, by considering the same morphism.
Otherwise, it is clear that the rewriting process will not terminate.

To avoid rules infinite reapplication, the users have to exhaustively add an
appropriate set of NACs to the definition of every rule. Nonetheless, we avoid
such inconvenience in LoTREC by taking these NACs into consideration by
default. This is automatically achieved by the event-driven pattern matching
technique, introduced and formalized in the next chapter. In addition, this
technique helps in reducing the time-cost of the whole pattern matching process.

Non-injectivity of matching morphisms

It is possible to consider a non-injective matching morphism m : L → G in
LoTREC, i.e. we may instantiate two variables of the LHS with the same value.
This allows to captures all possible matches of a given pattern.

Example 22. Let us consider a logic with two connectors s and t of arities 1
and 2 respectively, and where for every formulas A, B, if s(A) and s(B), then
we have t(A,B).

To define the semantics of this logic, we use the following rule:

Rule Combinatory

hasElement node s variable A

hasElement node s variable B

add node t variable A variable B

End

(a) host graph (b) result graph

Figure 10.9: The application of the rule Combinatory, using the default non-
injective morphism to match its LHS with the host graph.

Let us consider a graph with a single node containing two formulas, s(P )
and s(Q), where P,Q ∈ P (i.e. are atoms, or constant formulas), as shown in
Figure 10.9(a). The application of the rule Combinatory on this graph results in
the graph of Figure 10.9(b).
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Since matching morphism is non-injective, the variables A and B can be
mapped to the same value P . That is why the rule adds t(P,P ) and t(Q,Q) to
the node of the result graph.

However, we may restrict our mapping to be injective if needed. This can
be done by adding a convenient set of NACs to the rule.

Example 23. To avoid non-injective matching of the variables A and B such as
done in Example 22, we may add to the rule Combinatory the NAC
“areNotEqual variable A variable B”, and we obtain the following rule:

Rule Combinatory_Injective

hasElement node s variable A

hasElement node s variable B

areNotEqual variable A variable B

add node t variable A variable B

End

The application of this rule on the same host graph (Figure 10.9(a)) yields
to the graph of Figure 10.10.

Figure 10.10: The result of the application of Combinatory_Injective on the
host graph of Figure 10.9(a).

Detection of commutative patterns

It is sometimes required to consider two graph patterns as equivalent according
to a certain permutation in the value assignment of some variables appearing in
these patterns.

Example 24. Suppose that for all formulas A, B of the logic defined in Example
22, we have t(A,B) if and only if t(B,A). And suppose that we are interested
in deducing the minimum set of equivalent formulas of the form t(A,B). Then
we have to change the rule of Example 23 to avoid capturing the patterns that
are equivalent modulo commutativity of A and B.

In the previous version of LoTREC, it was possible to declare a rule as
commutative by setting a Boolean flag to true or false. By default, this flag is
set to false. When it is set to true, two graph patterns are judged by the rule
to be equivalent modulo commutativity if there is a permutation in the values
assigned to all their variables. Whereas in some cases, two graph patterns are
judged to be equivalent if only some of their variables values are permutative.



10.2. LOTREC’S RULES AS GRAPH REWRITING RULES 227

Hence, in our current version of LoTREC, we adopt a new solution, consist-
ing in defining in the rule itself wether or not it should consider two patterns
equivalent. We do this by adding NACs that prevent the rule from being applied
twice when an equivalent pattern is found.

Example 25. We give here a variant of the rule of Example 23, which takes
into consideration the equivalence criteria of Example 24:

Rule Combinatory_Injective_Commutative

hasElement node s variable A

hasElement node s variable B

areNotEqual variable A variable B

hasNotElement node t variable A variable B

hasNotElement node t variable B variable A

add node t variable A variable B

End

Nevertheless, applying the rule Combinatory_Injective_Commutative of Ex-
ample 25 on the graph of Figure 10.9(a) would give the graph of Figure 10.10,
i.e. the same result as applying the rule Combinatory_Injective of Example 23.
The reason and the solution of this problem are explained in the next subsection.

Applying a rule on one occurrence

In case the LHS of a given rule can be matched with two or more subgraphs of
the host graphs (also called occurrences), LoTREC applies the rule on all these
occurrences at once and in parallel. To predict this behavior, the user has to
imagine that there is implicitly a kind of universal quantifier on the variables
figuring in the conditions of the defined rules.

However, we may force LoTREC to apply a given rule on only one occurrence
of its LHS by adding the keyword “applyOnce”before the name of the rule where
it is called in the strategy (as shown later in Section 10.3).

Example 26. Applying the rule of Example 25 on the host graph of Figure
10.9(a), by calling it in the strategy after the applyOnce keyword, results in the
graph of Figure 10.11.

Figure 10.11: The graph resulting from the application of the rule of Example 23
on the host graph of Figure 10.9(a), called after the strategy keyword applyOnce.
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10.2.4 Application

After finding a matching subgraph for the LHS of a rule in a host graph, the
rule application consists in taking out this subgraph and replacing it by the
RHS of the rule. In fact, since a match m : L → G is a total morphism, any
graph element e (a node or an edge) in L has a proper image element m(e) in
the host graph G. Now, if e also has an image ρ(e) in the RHS graph R, its
corresponding elementm(e) in the host graph is preserved during the application
of ρ; otherwise it is removed. Elements appearing exclusively in the RHS graph
without an original element in the LHS graph are newly created during the rule
application. Finally, the elements of the host graph which are not covered by
the match are not affected by the rule application at all; they form the context
in which the graph transformation is done.

In addition to manipulating the nodes and edges of a graph, a rule may also
perform attributes computations. During the rule application, expressions are
evaluated with respect to the instantiation of variables induced by the current
match.

On the DPO gluing condition

All the DPO conditions (Definition 44), discussed in Section 9.3.2, are respected
in LoTREC. In fact, there are no dangling edges since nodes cannot be removed
and edges are only created between already existing nodes. This guarantees
that the result of the application of any rule will still be a well-defined graph.

However, in future versions, we should always keep an eye on preserving
these conditions when extending the language of conditions and actions. For
example, if a new remove-node action is to be implemented, than all dangling
edges should be automatically deleted. Similarly, if we implement a new action
merge n1 n2 which merges two nodes, than LoTREC should implicitly avoid the
eventual side effects of such procedure: it has to make sure that the matching
m : L→ G is injective, i.e. n "= n’, and it should make sure that all the incident
edges are systematically and appropriately deleted and/or redirected.

Deletion actions and monotonic rules

If the RHS of a rule in LoTREC consists only in adding nodes, edges, expressions
and marks, then we call it monotonic. Rules in LoTREC are often monotonic.
This is due to the application domain of LoTREC in logic. In fact, we never
needed to remove a node, an edge or an expression in the rules of all our pre-
defined logics. Thus, there are no such actions available in the language of
LoTREC. Moreover, we do not need to define such actions, since we may use
our marking technique to annotate a given element as deleted, so the rules just
ignore it, as if it were physically deleted.

However, there are only two non-monotonic actions, corresponding to the
unmark and unmarkExpressions keywords, which can be used to remove a mark
of a node or a mark of an expression. Nonetheless, these actions were only used
in a special model checking algorithm, where some expressions are marked as
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True at a given step of the rewriting process, then they become marked as False
at later steps.

Summary

To summarize, the effect of a rule application in LoTREC is

• complete: any change specified in the rule is actually performed during its
application;

• minimal: nothing more is done that what is specified in the rule;

• local: only the subgraph of the host graph that was matched to the LHS
of the rule is affected.

By respecting the gluing condition and using distinguished attributed graph
monomorphisms in the definitions of the rules, LoTREC graph transformations
correspond strongly to the typed attributed graph transformations defined in
Section 9.3.4.

10.3 Strategies

Graph rewriting systems use what is called control structures in the rewriting
literature, or strategies in LoTREC, to create an imperative ordering between
a set of rules. This ordering is used to control and choose between the possible
sequences of their successive applications on a given host graph.

In some systems, strategies are defined with simple structures. For example,
in AGG[Tae99], defining a strategy amounts to stratifying a set of rules in an
ordered set of different subsets called layers. The rules of a given layer are
applied as much as possible, before starting the application of the rules of the
next layer, and without being able to re-apply the rules of a previous layer. In
AGG, we cannot define sub-layers, neither repeat the application of some layers.

In some other systems, such as PROGRES [Sch97], strategies are more ex-
pressive, but get more and more complex. In [ZS92], the authors of PROGRES
define a powerful but complicated language of what they call control structures.
In this language, we can repeat the application of a set of rules, we can define
If-Then-Else structures and we can even backtrack on the choices of already ap-
plied rules, by defining a notion of successful choice according to some criteria.

In LoTREC we have our own strategy language as shown in what follows.

10.3.1 Aimed semantics

Since non-determinism is taken into account in the rules by defining multiple
RHSs, we do not need to have complex strategies in LoTREC, such as those of
PROGRES. However, they should be slightly more elaborated than the simple
layering strategies of AGG.

In fact, we would like to be able to:
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1. apply a rule by default on all possible occurrences of its LHS in the host
graph,

2. apply a rule on only one occurrence when needed,

3. stratify the rules in different ordered sets, in order to be able to:

(a) apply the first applicable rule in the set, then escape the rest,

(b) apply all the rules of the set according to their order,

(c) or apply the rules as much as possible (which is known as the satu-
ration of rules application).

4. call a set in another and imbricate these calls as much as needed.

10.3.2 Strategy instructions

That is why, we adopt in LoTREC a simple, but sufficiently expressive, language
of strategies. This language is inspired from regular expressions languages, and
it has many common semantics with the tactic language ANGEL [MGW96],
which is the strategy language used by the TWB theorem prover [AG03].

Practically, defining a strategy consists in associating, to a strategy name, a
set of instructions. An instruction, is defined inductively as follows:

1. a rule name is an instruction,

2. a rule name preceded by the keyword applyOnce is an instruction,

3. a set of instructions surrounded by one of the following pairs of keywords

(a) firstRule and end,

(b) allRules and end,

(c) repeat and end,

is also an instruction,

4. another strategy name is an instruction,

5. and there are no other ways to define instructions.

Each instruction in this enumerated list ensures the functionality of the
corresponding item in the list given in section 10.3.1.

The semantics of LoTREC’s strategies will be formalized in the next chapter.



10.4. PROPERTIES OF LOTREC REWRITING SYSTEM 231

10.4 Properties of LoTREC rewriting system

In Section 9.4 of Chapter 9, we show some of the theoretical properties that a
given rewriting system acquires according to its characterization.

In the previous sections of this chapter, we have presented the specificities of
LoTREC which characterize its rewriting system. Mainly, we explained how the
rules and strategies are defined in it, i.e. how the choice of the rule to be applied
is made and how the choice of the graph pattern where it is to be applied is
made.

In this section, we give some of the main theoretical properties of the rewrit-
ing system of LoTREC.

10.4.1 Termination

In Section 9.4.2 of Chapter 9, we define termination of graph rewriting systems,
we recall the undecidability of proving this property in general and we give two
criteria under which a rewriting system is proved to be terminating. The first
criterion, given by D. Plump in [Plu95], consists in having only, what the author
calls, forward closure rules. Thus a rule should remove, during its application,
at least one element of the subgraph that matches its LHS, i.e. the redex which
makes the rule applicable. It is clear that non-forward closure rules would be
infinitely applicable.

However, this can never happen in LoTREC, in fact, due to the tuned notion
of rule applicability (see Section 10.2.3), a rule in LoTREC is, by default, never
applicable twice on the same pattern.

The second criterion of termination, known as layered graph grammars and
presented in [EEdL+05], consists in stratifying the rules in different ordered
layers such that the rules of a given layer are applied as much as possible, but
never applied once it is the next layer’s turn. This avoids inter-layers cycles.
However, an analysis of the rules of each layer is still necessary to prevent intra-
layers cycles.

In LoTREC, it is often the case that all the rules constitute only one layer,
since all the rules have to be called as much as possible (saturation principle) to
complete the models construction for a given formula of some logic. So the lay-
ered graph grammars approach would not guarantee in general the termination
of the decision procedures defined in LoTREC.

In fact, a rule may generate a new pattern that would trigger the application
of the same rule once again, ending up by having a non-terminating system. In
such case, we may prove termination on the basis of the general termination
theorem given in [GHS06a] for the rules used in the model construction methods
of various modal logics. A rule of this kind would only rewrite an expression
into (often smaller) expressions and generate new finite graph structures. For
such kind of rules, the termination is guaranteed in two cases:

• when the rules generate on the RHS strict subexpressions of the expres-
sions appearing in the LHS,
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• when the rules generate on the RHS (non-strict) subexpressions of the
expressions appearing in the LHS, with, in addition, a check for node-
inclusion or node-equality loops, to be called at the right moment in the
strategy.

Note that in the last case, the strategy becomes complicated which makes
harder the completeness proofs of the underlying methods.

We may also have to deal with other kinds of rules for which termination is
not guaranteed. In such cases we should adopt other solutions to guarantee the
termination. Generally, a working solution consists in adding NACs to the rules
to prevent them from being applicable, and thus avoid their application.

To summarize this section we recall that:

• deciding on the termination of a set of rewriting rules and a strategy in
LoTREC is case-dependant,

• some results from the graph rewriting community and other general results
on termination in LoTREC can be used to ease the task of proving the
termination of user-defined rules and strategies,

• the most general and golden trick that helps in ensuring the termination
in practice is: “the use of NACs”.

10.4.2 Completeness, locality and invertibility

Every rule defined in LoTREC is compiled before its application and its def-
inition is never accepted if it may lead to confusions at the run-time. The
compilation takes into account the DPO conditions and avoid problematic rules
such as those defined in Example 12, page 199. Hence, according to Definition
48 and its discussion in Section 9.4.3, we assume that the rewriting system of
LoTREC is complete.

Locality of rewriting in LoTREC is based on the locality of each rule appli-
cation, as already shown in Section 10.2.4.

When the rules are defined according to the SPO approach, such as in
LoTREC, their invertibility is not straightforward (see Section 9.3.2). In or-
der to define the inverse of such rules, we should save more information on how
the rules are applied at run-time . However, un-applying a rule in LoTREC
amounts to un-applying each elementary action, since the RHS of a rule con-
sists of a set of elementary actions. Hence, the information to be saved can be
easily defined for each action, making any rule invertible.

For example, the actions unmark and unmarkExpressions are already defined
in LoTREC and used in the model checking method as the inverse actions of mark
and markExpressions actions. These are the only two invertible actions defined
so far in LoTREC, since invertible rules are not essential in our application
domain in logic.
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10.4.3 Parallelism, confluence and convergence

The definitions of sequential and parallel independence, addressed in Section
9.4.5, are the same in LoTREC, since the rules definition is based on the same
algebraic approach used for those definitions. The Church-Rosser theorem (The-
orem 5) holds too.

On the other hand, the confluence of a set of rules cannot be defined without
taking into consideration the strategy calling them. In fact, given an input
graph, a unique normal form is derived in LoTREC only according to a specific
strategy.

According to this definition of confluence, and to the termination criteria
given above, a set of rules and a strategy are convergent in LoTREC if and only
if they define a terminating and confluent rewriting system. Furthermore, a
formal proof which states the equivalence of rewriting in LoTREC and rewriting
in the usual classical sense, is given for Theorem 6 in the next chapter.

Complexity As shown in Section 9.4.7, the main source of time consumption
in the whole rewriting process is the pattern matching process. This is why we
postpone the discussion about the complexity of rewriting in LoTREC to the
next chapter, where we talk about its matching process in depth.

Conclusion

In this chapter, we gave an overview of the graph rewriting system of LoTREC
and its relation to the theory of graph transformation.

We specified the similarities between models and graphs, between premodel
construction and graph transformation and between LoTREC rules and graph
rewriting rules. This should help the reader to better understand the background
of the model construction methods given throughout the chapters 3 to 7.

We also gave the specificities of the rewriting system of LoTREC in contrast
to existing and traditional rewriting systems. This allows us to discuss some of
the theoretical properties of our tool. This also shows that we may reuse some
existing results, that are well-established in the domain of graph rewriting, to
characterize our model construction methods in logic.

The language used, in this chapter and the previous one, is the one talked by
the community of graph transformation. This allows us to introduce to them an
original graph rewriting system, even if this system was developed for specific
purposes in a different domain. Written from scratch, our tool has a competent
and performant rewriting engine, as we shall see in the next chapter, which
makes its techniques worth being studied and adopted by developers of graph
transformation tools.
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Chapter 11

Semantics of event-based
graph rewriting system of
LoTREC

Introduction

The large variety of graph transformation tools have mainly the same one-step
rule application mechanism and usually differ by the techniques used for the
graph pattern matching step, which is considered to be the most crucial in the
overall performance of a graph transformation process. This process consists in
mapping the elements of the left-hand side graph L of a rewriting rule to the
elements of the host graph G. Hence, a naive implementation, which computes
every possible mapping and which browses the whole host graph structure at
each iteration to look up for matches, leads to O(|G||L|) time complexity in gen-
eral. Furthermore, when dealing with model construction for modal logics, this
search becomes more expensive, since these structures are often of exponential
size w.r.t. the input formula, .

The classical approach, used in [Rud00] for AGG [Tae99], is to solve the pat-
tern matching problem as a constraint satisfaction problem. Other systems, such
as PROGRES [Z9̈6] and FUJABA [FNTZ00], use local search techniques con-
sisting of matching a single node by some heuristics and extending the matching
step-by-step by neighboring nodes and edges. G. Varró and D. Varró introduce
recently in [VV04] the incremental update technique which aims to keep track
of all possible matchings identified by the rules in database tables, and update
these tables incrementally to exploit the fact that rules typically perform only
local modifications to graphs.

In the graph rewriting system of our theorem prover LoTREC, we implement
an original technique that lies between these three approaches. Before running
the rewriting process, we analyse the left-hand side conditions of every rule in

235
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order to specify the possible ways (i.e. search plans) a matching process could
be established and achieved. During the rewriting process, we keep track of
the local changes made by the rules at each step, using a special data structure
called events. This is achieved in JAVA by using the event dispatching paradigm
[Ham97]. When it is called by the strategy, a rule uses these events to establish a
local pattern matching process, with respect to its different search plans. Finally,
the established match is completed using, as usual, a CSP-like procedure which
instantiates the rest of the pattern variables.

On one hand, this technique reduces the time-cost to O(|Gi \ Gi−1|
|L|) at

each step i of the rewriting process, where Gi \ Gi−1 is the set of elements
(nodes, edges, attributes. . . ) that are added at the previous step i − 1. Thus,
this technique does not change the complexity of the matching process itself.
However, in some application domains, such as in model construction for logics,
the rewriting rules are only applicable on k subgraphs at each step, where k

is a constant factor or a linear factor of the input problem. In such cases, the
average performance is increased by reducing the time-cost to O(|k||L|) using
our event-based technique.

On the other hand, an important aspect of programming model construc-
tion methods concerns the “distance” between their theoretical formulations on
paper and their implementations involving programming tricks and various op-
timizations that are not in the initial formulation. This may raise some doubts
on completeness and correctness proofs that usually are given using the theo-
retical formulation. We claim that LoTREC allows to keep the implementation
of these methods closer to their theoretical formulation due to its declarative
language. It may seem that the use of events makes this “distance” greater, but
we show in fact that rewriting with events preserves completeness, soundness
and termination.

In this chapter, we formally define the semantics of the language of our
generic prover LoTREC, and we formalize its event-driven pattern detection, as
it has been presented in [GSS09, SG08]. Then we prove that running with or
without this optimisation is equivalent in terms of possible computations.

In the first section we introduce the term notation used to easy the definitions
and the proofs given in the sequel. We show how to define a premodel and a
rule in this formalism. Then, we define the notions of rules applicability and
application both in a naive system (Section 11.1.4) and in LoTREC (Section
11.1.6) and we prove their equivalence. Next, we extend those notions and
equivalence to strategies. Finally we compare our technique to those of existing
graph rewriting tools, and we give some experimental results.

11.1 Modelling graph rewriting with terms

In this section, we give a representation of the graph rewriting based on terms.
The benefit is to have a simple and uniform notation for all the graph elements.
Nodes, edges and attributes are all represented as terms in the graphs and in
the rewriting rules.
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I should insist on the fact that the term formalism is used to easy the defi-
nitions, without loss of generality. However, it is not implemented in LoTREC
as it is defined here, since the access to typed objects (nodes, edges, formu-
las...) is clearly less expensive than browsing a whole set of un-typed terms.
It should also be clear for the reader that term rewriting problems are usually
transformed to graph rewriting problems (term graph rewriting in [Plu99]), and
not the inverse, in order to be solved efficiently1.

First, we recall some basic notions about terms. You can also refer to [BN98].

11.1.1 Recalling terms

Definition 55 (set of terms). Let L be a set of symbols. We define the set of
terms T (L) over L as the smallest set such that:

• L ⊆ T (L);

• for all n ∈ N, for all t1, . . . , tn ∈ T (L), (t1, . . . , tn) ∈ T (L).

C denotes the infinitely countable set of constant symbols and V the infinitely
countable set of variable symbols. We define GT = T (C) the set of ground terms
and VT = T (C ∪ V) the set of variable terms.

Given a variable term u ∈ VT , V ar(u) denotes the set of variables occurring
in u. Given a set of variable terms U , V ar(U) =

⋃

u∈U V ar(u).

Definition 56 (substitution). A (ground) substitution σ is a mapping from V
to GT which extends as usual to elements of VT . We denote by Σ the set of all
possible substitutions.

Example 27. Let w, A ∈ V, and let {containsformula, w,�, P,Q} ⊆ C. If
σ(w) = w and σ(A) = (P∨Q), then we have σ(containsformula(w ((�A)∧A))) =
(containsformula(w ((�(P ∨Q)) ∧ (P ∨Q))).

11.1.2 Encoding a premodel with terms

In chapter 2, we showed how to represent models with graphs w.r.t. Kripke
semantics. In the last chapter, Section 10.1, we showed how premodels can be
also represented as graphs. For the sake of simplicity, we abstractly represent
such graphs by a set of ground terms, but we keep on calling them premodels.
We introduce a set of constant symbols C containing:

• symbols to compose terms encoding the formulas, mainly:

– the set of connectors, Conn = {�, ,∧,∨, . . .} ⊆ C;

– and the set of atomic propositions P = {P,Q, . . .} ⊆ C;

• and symbols to create terms which encode a graph, such as:

1Term graph rewriting has many interesting properties vis-à-vis term rewriting, such as
subgraph sharing and confluence.
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– {w, u, v . . .} ⊆ C to denote nodes;

– {R,RI , RJ . . .} ⊆ C to denote edge labels

– and {world, link, containsformula, . . .} ⊆ C to define a graph struc-
ture.

Definition 57 (premodel). A premodel T is a finite set of ground terms. The
set of all premodels is noted PM.

Example 28. {((world w), (world u), (containsformula w ( P )), (link w u RI)}

encodes the premodel •
{�P}
w

RI→ •∅u.
Another example is given below:

T = {
(world w),
(containsformula w ( P )),
(containsformula w (��Q)),
(world u),
(link w u R),
(containsformula u �Q)
(containsformula u P ),
}

For the sake of brevity, we settle for these two examples and we omit the
details of how we can represent any premodel by a set of terms.

11.1.3 Coding rules as term rewriting rules

As shown in the previous chapter, Section 10.2.2, a model construction rule
consists of conditions (describing a graph pattern) and actions (describing new
graph objects to be added2). If the graph pattern is found in the premodel, then
actions are performed. Conditions are modeled by two sets of variable terms:
positive conditions (PC) and negative conditions (NC). PC is a set of variable
terms to be unified with a subset of the premodel. NC is a set of variable terms
which have to be not unifiable.

We may model actions by a set of variable terms (A) denoting new ground
terms to be added to the premodel when the rule is applied. Instead we use
A = {A1, . . . , An} since our rules can be non deterministic, i.e. the system
makes a choice between different sets of terms to be added (see Section 10.2.4,
and see Examples 29, 30 below). When the rule is deterministic Card(A) = 1.
Formally:

Definition 58 (rule). A rule r is a triple (PC,NC,A) where:

• ∅  PC ⊆ VT ;

2Since we only use monotonic rules.
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• NC ⊆ VT ;

• V ar(NC) ⊆ V ar(PC);

• a non empty finite set A ⊆ 2VT such that for all A ∈ A, V ar(A) ⊆
V ar(PC).

We write it r = PC,NC
A . Given a rule r, PCr, NCr and Ar denote respectively

positive conditions set, negative conditions set and actions set of r.

A rule with an empty set of conditions is always applicable on any premodel
(Section 10.2.1, page 222), and it is not checked during the pattern matching
process. Thus, such kind of rules is irrelevant here in this work. This is why we
assume that PC "= ∅ w.l.o.g., and we only consider rules which are applicable
on non empty patterns.

As our rules only add elements (Section 10.2.4, page 228), only positive
conditions are used to instantiate variables, and negative conditions are only
verified on these instances. This is why we have the third condition V ar(NC) ⊆
V ar(PC).

We also impose V ar(A) ⊆ V ar(PC), supposing that new added objects are
denoted by Skolem terms whose arguments are terms of PC (see examples 31
and 32).

In order to make the variable symbols used in the sequel self-explanatory,
we use w, u, v, . . . to denote variables that are unifiable with constant nodes
w, u, v, . . ., and we use A, B, C, . . . to denote variables that are unifiable with
formulas. Note that in the equivalent definitions given in LoTREC’s language,
we use variable A, variable B, variable C, . . . instead.

In the following examples, the actions are given in green, and each set of
action is surrounded by {blue braces}.

Example 29.

r∨ =
{(containsformula w (B∨C))} , ∅

{{(containsformula w B)},{(containsformula w C)}} is the rule

dealing with the “or” operator.

Example 30.

r3 =
{(world w),(world u)}

{{(link w u)}, {(link u w)}} is the rule corresponding to the con-

nectedness property (for instance in the modal logic S4.3).

The following example gives an incorrect encoding of the �-rule:

Example 31.

r� =
{(world w),(containsformula w (� B))} , ∅

{{(world u),(link w u),(containsformula u B)}} is not a correct

rule since V ar(A) ! V ar(PC).

Instead of dealing with a new node u, we name it with the skolem term
(r w (�B)) encoding the fact that the node has been created by the rule r 
applied on the node w with the formula �B.
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Example 32. A correct encoding of the �-rule shall be:

r� =
{(world w),(containsformula w (� B))} , ∅

{{(world (r w (�B))),(link w (r w (�B))),(containsformula (r w (�B)) B)}}

11.1.4 Rewriting rule application

Applying a rule r on a premodel T consists in:

1. finding a substitution σ unifying positive conditions of r with a subset of
T ;

2. verifying that negative conditions are respected;

3. and finally performing the actions when 1. and 2. succeed.

When a given substitution σ succeeds on 1. and 2., we usually say that r is
applicable on T and the application of r on T will result in a new T ′ = σ(A)∪T .
If r is applied on T ′ by considering the same substitution σ, then T ′ will remain
unchanged. While practically, we are rather interested in applying r using a
different substitution σ′, if there are any. This can be achieved by keeping a
history of found substitutions. Nevertheless, we guarantee it by testing that the
skolem terms added by the application of r and σ on T have not been already
added: for all A ∈ A, σ(A) "⊆ T . That’s why we tune the usual definitions of
rule applicability and rule application to ensure that a new different substitution
is considered when the same rule is applied sequentially twice.

Definition 59 (rule applicability with the substitution σ). Let T ⊆ GT , r =
PC,NC
A and σ ∈ Σ. We say that r is applicable on T with the substitution σ,

denoted by r ↓σ T iff

• σ(PC) ⊆ T ;

• σ(NC) "⊆ T ;

• and for all A ∈ A, σ(A) "⊆ T .

Definition 60 (rule applicability). We say that r is applicable on T , denoted
by r ↓ T iff there exists σ ∈ Σ such that r ↓σ T .

Definition 61 (rule application). Let T, T ′ ⊆ GT and r = PC,NC
A . We write

T
r
−→ T ′ iff there exists σ ∈ Σ, A ∈ A such that r ↓σ T and T ′ = T ∪ σ(A).

Example 33. Let us consider r from Example 32 and the following premodels
(see Figure 11.1):

T = { (world w), (containsformula w (�(�P )))} ;

T2 = { (world w), (containsformula w (�(�P ))),
(world u), (link w u R), (containsformula u (�P ))};

T3 = { (world w), (containsformula w (�(�P ))),
(world u), (link w u R), (containsformula u (�P )),
(world v), (link u v R), (containsformula v P )};

where u = (r w (�(�P ))) and v = (r u (�P )).

We have T
r�
−→ T2

r�
−→ T3. But we do not have T

r�
−→ T2

r�
−→ T2.
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r�
−→

r�
−→

T T2 T3

Figure 11.1: Graphical representation of Example 33.

The following proposition recalls that our rules are monotonic and it shall
be used later in the proof of theorem 6.

Proposition 4. Let T, T ′ ⊆ GT and a rule r: T
r
−→ T ′ implies T ⊆ T ′.

11.1.5 Discussion about pattern matching process

Let us consider Example 33. A naive rewriting system will achieve T
r�
−→ T2

by using a substitution σ such that σ(w) = w and σ(B) = (�P ). Then, at the

rewriting step T2
r�
−→ T3, the system will consider again the same substitution

σ, before it realizes that it will not succeed. This is because a naive system
would browse the whole premodel T2 looking up for a possible match.

Due to the high time-cost of the matching process, we would rather want
to reduce the number of established substitutions. Moreover, a rule can be
infinitely applicable using the same substitution. Except if we store the whole
information about all the already achieved substitutions. Which is another
source of time and space consumption.

In LoTREC, we do not need to store such information, since it is coded in
the graphs themselves. In fact, new successful patterns at a given step may
only rise from new objects added at the previous step. Hence, we keep track of
these objects, during only one step transition, to guide the following matching
processes.

In fact, unifications are established only on new objects. For instance, at

the step T
r�
−→ T2, (world u), (link w u R) and (containsformula u (�P ) are

reported as new objects. Whereas (world w), (containsformula w (�(�P ))

are not. So at step T2
r�
−→ T3, the substitution σ is no more considered.

Keeping track of these new objects can be done “by hands” by the program-
mer of the model construction method. For instance, for the logic K, rules can
be defined in such a way that they are only applied on one active world (the
current world). However, in a more complex logic (e.g. K plus universal modal-
ity etc.) the notion of active world is hard to define. Thus in LoTREC, we aim
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to make the notion of active worlds implicit for the programmer, so he or she
has to give only high-level declaration of rules.

In the next subsection, we describe the event-driven pattern detection which
implements this automatic management of new objects in LoTREC. Next we
prove that using this automatic management our rewriting system is still sound
w.r.t a naive rewriting system.

11.1.6 LoTREC rewriting system

In LoTREC, new objects, called events, are managed with the paradigm of
event-based programming [Ham97]. When a new object is added to the pre-
model, it is dispatched to all the rules in form of a new occurring event.

Thus, a state of the machine in LoTREC is the current premodel and a
structure defining the launched events, whereas , in a naive rewriting system,
the state of the machine is only the current premodel.

In these different settings, the notions of rule applicability and rule appli-
cation become slightly different. And that is why, we shall give the precise
semantics for the LoTREC rewriting system.

In the sequel, R denotes a non empty finite set of rules.

Definition 62 (state of the LoTREC machine). A state of the LoTREC ma-
chine is a couple (T,E) where T ∈ PM and E : R −→⊆ GT .

T is the current premodel and E(r) (also denoted by Er) is the set of
launched events received by the rule r. Notice that an event is simply a ground
term.

At the beginning of the tableau method, we start the process with an ini-
tial state (T,ET ) where T is the initial premodel3 and ET contains all terms
appearing in T (as if all objects of T are declared as new events). Formally:

Definition 63 (initial events). Given T ⊆ GT and a set of rules R, we define
the map of initial events of a premodel T by the map ET : R −→⊆ GT as for
all ρ ∈ R, ET (ρ) = T .

Remark 17. We use ρ when we quantify over a set of rules. We use r instead to
denote a specific rule, for example r .

Now, we define the notion of rule applicability and application on a given
state of the LoTREC machine.

Definition 64 (rule applicability in LoTREC by e, σ). Let (T,E) be a state of
LoTREC machine, r = PC,NC

A ∈ R and σ ∈ Σ, e ∈ GT . We say that r has
been awakened by the event e and is applicable in LoTREC on (T,E) with the
substitution σ, denoted by r ↓ LoTREC

e,σ (T,E), iff

• e ∈ Er;

• e ∈ σ(PC);

3Usually a single world with the input formula.
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• and r ↓σ T .

Practically, the application of the rule r is driven by the event e. In fact,
the event e can be viewed as a pin that guides our quest of finding a fruitful
substitution σ, making the rule r applicable on T , by establishing the matching
process locally around the new added object e (since e ∈ σ(PC)).

Definition 65 (rule applicability in LoTREC). We say that r is applicable in
LoTREC on (T,E), denoted by r ↓ LoTREC T iff there exists e ∈ Er, σ ∈ Σ such
that r ↓ LoTREC

e,σ T .

Definition 66 (transition of the LoTREC machine). Let (T,E) and (T ′, E′)

be two states of the LoTREC machine and r ∈ R. We write (T,E)
r
։ (T ′, E′)

iff there exists e ∈ Er, σ ∈ Σ, A ∈ Ar such that:

• r ↓ LoTREC

e,σ T and T ′ = T ∪ σ(A);

• and for all ρ ∈ R, E′ρ = Eρ ∪ σ(A).

Intuitively, we write (T,E)
r
։ (T ′, E′) if and only if we can find a substitution

σ holding one of the events stored in E(r). In this case, we apply r on T by
performing the add actions and we obtain the new premodel T ′. Finally we
send the new created objects to every rule and we obtain E′.

In order to avoid trying to apply r on the same pattern twice, we delete
already exploited events. We describe this simplification process in the following:

Definition 67 (simplification transition of the LoTREC machine). Let (T,E)
and (T,E′) be two states (with the same premodel). We write (T,E) (T,E′)
iff for all ρ ∈ R,

E′ρ = Eρ \ {e ∈ Eρ such that for all σ ∈ Σ, e ∈ σ(PCρ) implies ρ "↓σ T }.

where ρ "↓σ T means that we have not ρ ↓σ T .

Example 34. We will give a remake of example 33. The process is:

(T,ET )
r�
։ (T2, E

′
2) (T2, E2)

r�
։ (T3, E

′
3) (T3, E3)

where:

• T , T2, T3 are as defined in Example 33;

• ET is such that ET r� = T ;

• E′2 is such that E
′
2r�

= ET r�∪{(world u), (link w u R), (containsformula u (�P ))};

• E2 is such that E2r� = E′2r�\{(world w), (containsformula u (�(�P )))},
i.e. E2r� = {(world u), (link w u R), (containsformula u (�P ))};

• E′3 is such that E
′
3r�

= E2r�∪{(world v), (link u v R), (containsformula v P )};
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(world w)
(containsformula w (�(�P )))

...
(a) ET r�

r�
։

(world w)
(containsformula w (�(�P )))

(world u)
(link w u R)

(containsformula u (�P ))

...
(b) E′

2r�

 

(world u)
(link w u R)

(containsformula u (�P ))

...
(c) E2r�

r�
։

(world u)
(link w u R)

(containsformula u (�P ))
(world v)

(link u v R)
(containsformula v P )

...
(d) E′

3r�

 

(world v)
(link u v R)

(containsformula v P )

...
(e) E3r�

Figure 11.2: The changes of the event queue of the rule r during the transfor-
mations shown in Example 34. Blue terms indicate newly added events. Black
ones are exploited ones. They are deleted during simplification ( ) steps.

• E3 is such that E3r� = E′3r�\{(world u), (link w u R), (containsformula u (�P ))},
i.e. E3r� = {(world v), (link u v R), (containsformula v P )}.

These changes are illustrated in Figure 11.2.

Definition 68. We write (T,E)
r
։ (T ′, E′) iff there exists E′′ such that

(T,E)
r
։ (T ′, E′′)  (T ′, E′). We write (T,E)

r1...rn
։ (T ′, E′) iff there exists

((Ti, Ei))i∈{2...n−1} such that (T,E)
r1
։ (T2, E2)

r2
։ . . .

rn
։ (T ′, E′).

11.1.7 Equivalence between usual rewriting system and
LoTREC in terms of rules

We defined in subsection 11.1.4 the classical notion of rule application T
r
−→ T ′.

We also gave the semantics of rule application in our rewriting system LoTREC
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in subsection 11.1.6. In the following, we prove the equivalence of these two
notions.

One direction is trivial: what is achieved in LoTREC can be achieved exactly
in a classical naive rewriting system.

Proposition 5. Let (T,E) and (T ′, E′) be two states of the LoTREC machine

and r ∈ R. (T,E)
r
։ (T ′, E′) implies T

r
−→ T ′.

However proving the other direction is not that obvious since we are loosing
some events during the simplification steps  . In what follows, we prove that
those simplifications will not ban the applicable rules from being applied.

Theorem 6. Let R be a set of rules. Let r1 . . . rn a sequence of rules of R. For
all T1, . . . , Tn ∈ PM, we have equivalence between:

• the classical rewriting

T1
r1−→ T2

r2−→ . . .
rn−1
−→ Tn;

• and, that under LoTREC, there exists (Ei)i∈{2,...,n} such that:

(T1, ET1)
r1
։ (T2, E2)

r2
։ . . .

rn−1
։ (Tn, En).

Proof. ⇑ Straightforward with proposition 5.

⇓ We prove this direction by induction on n. For n = 1, it is trivial.

Suppose it for one n ≥ 1. Let us prove it for n+ 1.

Suppose T1
r1−→ T2

r2−→ . . .
rn−1
−→ Tn

rn−→ Tn+1. By induction there exists
(Ei)i∈{2,...,n} and (E′i)i∈{2,...,n} such that

(T1, ET1)
r1
։ (T2, E

′
2) (T2, E2)

r2
։ (T3, E

′
3) . . .

rn−1
։ (Tn, E

′
n) (Tn, En).

We have to prove there exists En+1 and E′n+1 such that:

(Tn, En)
rn
։ (Tn+1, E

′
n+1) (Tn+1, En+1). (∗)

As Tn
rn−→ Tn+1, there exists σ ∈ Σ such that rn ↓σ Tn.

From now on, we will note r = rn, PC = PCrn ,NC = NCrn . Here we just
need to prove that we can find e ∈ GT such that r ↓ LoTREC

e,σ Tn. First we will
define e ∈ σ(PC) and secondly we will prove that e ∈ En(r).

As r ↓σ Tn, we have σ(PC) ⊆ Tn. Consider the set I = {i ≥ 1 | σ(PC) ⊆ Ti}.
It is a non empty (because n ∈ I) set of positive integers. So we can consider
the minimum i0 = min(I).

First let us define e ∈ σ(PC):

• if i0 = 1, as σ(PC) "= ∅ by definition 58, we simply take e ∈ σ(PC);

• if i0 > 1, as Ti0−1  σ(PC) by definition of i0, let e ∈ σ(PC) \ Ti0−1.



246 CHAPTER 11. SEMANTICS OF EVENT-BASED REWRITING

Secondly our aim is to prove e ∈ En(r). We prove it by proving that for all
k ∈ {i0, . . . , n}, e ∈ Ek(r) by induction on k.

• Initial case: we have e ∈ Ei0(r). Indeed, if i0 = 1, E1 = ET1 so e ∈
σ(PC) ⊆ T1 = E1(r). If i0 > 1, we have: there exists σi0−1 ∈ Σ such
that ri0−1 ↓σi0−1 Ti0−1. There exists A ∈ Ari0−1

such that Ti0 = Ti0−1 ∪
σi0−1(A). As e ∈ σ(PC) \ Ti0−1, we have e ∈ σi0−1(A). By definition of
ri0−1
։ , we have E′

i0
(r) = Ei0−1(r) ∪ σi0−1(A). So, e ∈ E′

i0
(r). Then we

have e ∈ σ(PC) and r ↓σ Ti0 . Indeed:

– σ(PC) ⊆ Ti0 ;

– σ(NC) #⊆ Ti0 ; (because σ(NC) #⊆ Tn and Ti0 ⊆ Tn)

– for all A ∈ A such that σ(A) #⊆ Ti0 . (because for all A ∈ A such that
σ(A) #⊆ Tn and Ti0 ⊆ Tn)

So e ∈ Ei0(r).

• Now, let us prove the induction case: for all k ∈ {i0, n− 1}, e ∈ Ek(r)
implies e ∈ Ek+1(r). If e ∈ Ek(r), as Ek(r) ⊆ E′

k+1(r) we have e ∈
E′
k+1(r). Then for the same reason as in the initial case we have e ∈ σ(PC)

and r ↓σ Tk+1. Hence e ∈ Ek+1(r).

Finally, we have e ∈ En(r) and e ∈ σ(PC) and r ↓σ Tn: hence r ↓
LoTREC

(Tn, En) ! So (*) holds and this concludes the proof of theorem 6.

The following definition allows us to state propositions 6 and 7 as direct
reformulation of theorem 6 that we use in the sequel:

Definition 69 (E is rich for T ). Let (T,E) be a state of the LoTREC machine.
We say that E is rich for T iff there exists a sequence u of rules in R, T0 such

that (T0, ET0)
u
։ (T,E). (if the sequence u = ǫ it is equivalent to the condition

E = ET )

“E is rich for T” means that E contains enough events to preserve rules
applicability on T .

Proposition 6. Let (T,E) a state of the LoTREC machine. If E is rich for T
then r ↓ T iff r ↓ LoTREC (T,E).

Proposition 7. Let (T,E) a state of LoTREC machine and T ′ ∈ PM. If E

is rich for T , we have T
r
−→ T ′ iff there exists E′ such that (T,E)

r
։ (T ′, E′)

(and of course E′ is rich for T ′)
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11.2 Strategies

Defining strategies over rules is the traditional way to declare complex scenarios
of rule applications: sequences and repetitive applications of rules. This is
done in LoTREC by a simple and high-level declarative language, which was
introduced in Section 10.3, page 229.

In this section, we define a formal syntax definition of this language. Then
we give two semantics of strategies:

• We extend the notions of applicability and applications in a naive rewriting
system (definitions 60 and 61);

• We extend the notions of applicability and applications in LoTREC (def-
inition 65 and 66).

Finally, we extend the result of theorem 6, i.e. we show that the two seman-
tics are equivalent.

11.2.1 Syntax

The syntax is basically inspired from the theory of regular expressions.

Definition 70 (strategy). Let R be a set of rules. The set of all strategies S
over R is defined as the smallest set such that:

• R ⊆ S;

• if s1, s2 ∈ S, then s1 : s2 ∈ S;

• if s1, s2 ∈ S, then s1 |
or
else s2 ∈ S;

• if s ∈ S, s☼ ∈ S.

Example 35. If r� and r∧ are two rules, (r� : r∧)
☼ |orelse r∧ is a strategy.

In order to avoid semantical ambiguity, we have introduced the new operators :

and ☼ instead of using the classical ; and ∗ operators of regular expressions.

11.2.2 Standard semantics

A strategy consisting of one single rule r has the same definition of applicability
and application. The sequence operator : is used to create an order between
the application of two strategies: s1 : s2 means that we try to apply s1 first
and then we try to apply s2. The strategy s1 |

or
else s2 means that we try to apply

s1 and if it is not possible then we try to apply s2
4. The strategy s☼ means

that we apply s as long as it is possible. These semantics reflects the semantics
given in Section 10.3, and they are detailed in the following definitions.

4Note that this strategy is not fair.
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Definition 71 (strategy applicability). We define s ↓str T by induction:

• if r ∈ R, r ↓str T iff r ↓ T ;

• if s1, s2 ∈ S, s1 : s2 ↓str T iff s1 |
or
else s2 ↓str T iff s1 ↓str T or s2 ↓str T ;

• if s ∈ S, s☼ ↓str T iff s ↓str T .

Notice that : and |orelse have the same notion of applicability but not the
semantics.

Definition 72 (rewriting transition with strategy). Given T, T ′ ∈ PM, s ∈ S

we define T
s
−→ T ′ (the premodel T can be rewritten in T ′ by applying the the

strategy s) by induction:

1. If r ∈ R, T
r
−→ T ′ iff T

r
−→ T ′;

2. If s1, s2 ∈ S, T
s1 : s2−→ T ′ iff:

(a) there exists T ′′ such that T
s1−→ T ′′ and T ′′ s2−→ T ′;

(b) or else T
s1−→ T ′ and s2 #↓str T

′;

(c) or else s1 #↓str T and T
s2−→ T ′.

3. If s1, s2 ∈ S, T
s1|orelses2−→ T ′ iff:

(a) we have T
s1−→ T ′;

(b) or s1 #↓str T and T
s2−→ T ′.

4. If s ∈ S, T
s☼
−→ T ′ iff there exists n ∈ N, T1, T2, . . . Tn ∈ PM, such that

T
s
−→ T1

s
−→ T2

s
−→ . . .

s
−→ Tn

s
−→ T ′ and s #↓str T

′.

A straightforward induction shows that the following holds:

Proposition 8. Let T ∈ PM. If there exists T ′ ∈ PM such that T
s
−→ T ′

then it implies s ↓str T .

Be careful: the other direction is false. We can have at the same time s ↓str T

and no T ′ ∈ PM such that T
s
−→ T ′. This is the case when a strategy does not

terminate. Thus with our settings, proving that a strategy terminates amounts
to proving that there exists such a T ′.

Example 36. Consider the rule rser =
{(world w)} , ∅

{{(world (rser w)),(link w (rser w))}}
cor-

responding to the seriality property of a Kripke frame, and let T = {(world w)}.

We have rser
☼ ↓str T because rser ↓str T . But there is no T ′ such that

T
rser☼−→ T ′ because the execution will always continue to add a new succes-

sor to the last created world.
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Our strategy language is similar to TWB language inspired by Angel [MGW96].
The only difference is that skip and fail tactics of Angel are embedded in
LoTREC rules. In order to clarify the semantics of our strategy language we
would compare it with programs of the logic PDL with sequence, iteration and
test [HKT00]. In fact, we can express a strategy into the PDL program language
by the following translation tr:

• tr(r) = r (rules are atomic programs);

• tr(s1 : s2) = (tr(s1); (?[tr(s2)]⊥ | tr(s2)) | (?([tr(s1)]⊥); tr(s2));

• tr(s1 |
or
else s2) = tr(s1) | (?([tr(s1)]⊥); tr(s2));

• tr(s☼) = tr(s)∗; ?[tr(s)]⊥.

The reader can verify that (s1 |
or
else s2)

☼ and (s☼1 : s2)
☼ have the same

semantics.

11.2.3 Semantics of rewriting with strategies in LoTREC

In this subsection, we give the semantics in LoTREC of the above defined strate-
gies.

Definition 73 (strategy applicability in LoTREC). We define s ↓ LoTREC

str (T,E)
by induction:

• if r ∈ R, r ↓ LoTREC

str (T,E) iff r ↓ LoTREC (T,E);

• if s1, s2 ∈ S, s1 : s2 ↓ LoTREC

str (T,E) iff s1 |orelse s2 ↓ LoTREC

str (T,E) iff
s1 ↓

LoTREC

str (T,E) or s2 ↓
LoTREC

str (T,E);

• if s ∈ R, s☼ ↓ LoTREC

str T iff s ↓ LoTREC

str (T,E).

Definition 74 (LoTREC rewriting transition with strategy). Given (T,E),

(T ′, E′) ∈ PM, s ∈ S, we define (T,E)
s
։ (T ′, E′) (the state (T,E) can be

rewritten in (T ′, E′) by applying the strategy s) by induction:

1. If r ∈ R, (T,E)
r
։ (T ′, E′) iff (T,E)

r
։ (T ′, E′);

2. If s1, s2 ∈ S, (T,E)
s1 : s2
։ (T ′, E′) iff:

(a) there exists (T ′′, E′′) such that (T,E)
s1
։ (T ′′, E′′) and (T ′′, E′′)

s2
։ (T ′, E′);

(b) or else (T,E)
s1
։ (T ′, E′) (and s2 #↓

LoTREC

str (T ′, E′));

(c) or s1 #↓
LoTREC

str (T,E) and (T,E)
s2
։ (T ′, E′).

3. If s1, s2 ∈ S, (T,E)
s1|orelses2
։ (T ′, E′) iff:



250 CHAPTER 11. SEMANTICS OF EVENT-BASED REWRITING

(a) we have (T,E)
s1−→ (T ′, E′);

(b) or s1 #↓
LoTREC

str (T,E) and (T,E)
s2−→ (T ′, E′).

4. If s ∈ S, (T,E)
s☼

։ (T ′, E′) iff there exists n ∈ N, (T1, E1), (T2, E2), . . . (Tn, En),

such that (T,E)
s
։ (T1, E1)

s
։ (T2, E2)

s
։ . . .

s
։ (Tn, En)

s
։ (T ′, E′)

and s #↓ LoTREC

str (T ′, E′).

11.2.4 Equivalence between usual rewriting system and
LoTREC in terms of strategies

Proposition 9. If T ∈ PM and E rich for T then s ↓str T iff s ↓ LoTREC

str (T,E).

Proof. We extend proposition 6 by induction on s.

The following theorem is exactly what is stated in theorem 6 and proposition
7 extended to the strategies case.

Theorem 7 (Equivalence Theorem). Let (T,E) and (T ′, E′) be two states of

the LoTREC machine such that E is rich for T . T
s
−→ T ′ iff there exists E′

such that (T,E)
s
։ (T ′, E′).

Proof. We show by induction on s the two following properties:

1. If E is rich for T , T
s
−→ T ′ iff there exists E′ such that E′ is rich for T ′

and (T,E)
s
։ (T ′, E′);

2. there exists E′ such that (T,E)
s
։ (T ′, E′) implies T

s
−→ T ′.

This proof is tedious and we give just an extract of it. We give the most difficult
points.

1. in case of a rule r: If T
r
−→ T ′, by definition 72 we have T

r
−→ T ′.

Proposition 7 gives that there exists E′ rich for T ′ such that (T,E)
r
։ (T ′, E′).

By definition 74, (T,E)
r
։ (T ′, E′).

1. in case of a sequence:

Suppose T
s1 : s2−→ T ′. We have either (2a), (2b) or (2c) of Definition 72.

Let us consider (2a): there exists T ′′ such that T
s1−→ T ′′ and T ′′ s2−→ T ′. By

induction applied on T
s1−→ T ′′, we can say that: there exists (T ′′, E′′) such that

(T,E)
s1
։ (T ′′, E′′) and E′′ is rich for T ′′. We can use induction on T ′′ s2−→ T ′

and that there exists E′ such that (T ′′, E′′)
s2
։ (T ′, E′) and E′ is rich for T ′.

Thus we obtain: (T,E)
s1 : s2
։ (T ′, E′). Cases (2b) and (2c) are left to the reader.
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This result allows to reason on strategies without being involved in optimi-
sation details. A strategy for LoTREC is complete (resp. sound, resp. termi-
nating) if and only if it is complete (resp. sound, resp. terminating) w.r.t. naive
rewriting.

11.3 Related works

In PROGRES [Sch97], a rule r is compiled first. To instantiate the variables
appearing in the left-hand side graph Lr of the rule r, a (most optimal) plan
is chosen among the |Lr|! different possible ways. A usual CSP-like pattern
matching process follows this step. In LoTREC, we consider a fixed number of
|Lr| different search plans during the rule compilation. However, we achieve the
pattern matching cleverly, due to our event mechanism. In fact, most of these
plans are just ignored, since a plan is escaped as soon as the test of one of its
conditions fails; and it is so often the case that it is the first condition of the
plan which fails in matching any of the events received by the rule r.

In addition, although PROGRES supports an incremental technique called
attributes update, this technique detects only the invalid variable assignments,
i.e. unfruitful substitutions (what we call learning from failure). Thus it does
not exploit the whole information embedded in the changes made on the graphs.
In LoTREC we use these information to detect only new valid assignments (we
can call it seeking success).

The incremental update [VV04] is the most similar to our technique, in
the sense that both avoid restarting already-done pattern matching processes.
However, our technique is less space and time-consuming. In fact, in our system,
a rule keeps only the events occurred since its last application, and releases them
all after being applied once again. Whereas the incremental update technique
needs to keep successful matches in tables during the whole run-time.

Furthermore, these tables need a considerable amount of preprocessing at
initialization time and they are maintained by continuous updates, while the
events stored temporary in our rules need neither initialization nor update, and
thus have no additional time-cost.

11.4 Experimental results

In this section, we would like to evaluate LoTREC’s rewriting optimization in
comparison with existing rewriting tools. However, it is not easy to setup the
necessary experiments for many technical reasons: some tools are not main-
tained anymore, some others are hard to be installed, and even the easy to use
ones are not customizable to be called automatically in a large set of bench-
marks.

The only tool that is easy to install (as for me) and to run on the fly is
AGG [Tae99] (written in Java and cross-platforms). However, AGG does not
seem to be a good choice for the evaluation. When run with only one rule, the
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confluence rule5, it takes more than 6 secondes to achieve ten steps in depth.
Whereas this is achieved in less than 0.5 seconds in LoTREC.

Without getting so far in these benchmarks, I realized that such evaluations
are not fair anyway, mainly because in LoTREC we perform, in addition to the
graph pattern matching, a complex process of formulas matching which cannot
be easily integrated in the core of AGG or of other rewriting tools.

So I decided to settle for a simple evaluation: we run LoTREC in the hardest
formulas of some logics, with and without the optimization, then we compare
the number of tentatives of pattern matching processes established in each case.
This would necessarily reflect the average time-cost reduction due to our event-
based approach.

11.4.1 The LWB benchmark suite

LWB authors presented in [BHS00] a benchmark for the logics K, KT and S4. For
each logic they give about twenty classes of formulas characterized by different
types of difficulty (non-deterministic choices, branching factor etc.). There are
21 numbered formulas in each class. The highest number corresponds to the
most complex formula in a class. The authors propose to compare theorem
provers by running them on the same machine over these sets of formulas. By
fixing 100 seconds as a ceil for the run time, provers handling formulas with
higher numbers are the better in terms of performance.

11.4.2 Evaluation of the event-based technique

To evaluate our event-based optimization, we run LoTREC with and without the
optimisation on the benchmark suite of LWB presented above and by considering
the hardest formulas that LoTREC can treat within 100 seconds. Then we
count for each test the number of tentatives of pattern matching established in
LoTREC.

When LoTREC runs using the event-driven mechanism, this number is equal
to the sum of the number of relevant events treated by the rules during all the
iterations. Whereas when running without events, this number is equal to the
sum of the objects (mainly nodes and formulas) found in the premodels at each
iteration.

The results of these experiments are illustrated in Figure 11.3. In the first

chart, treating the hardest formula of the class “S4 grz n” (the 10th formula)
leads to about 116 000 tentatives of pattern matching in optimised LoTREC,
and to about 7 445 000 tentatives in the naive version of LoTREC, that is to
say 64 times more of unfruitful and time consuming matching processes. We
notice that generally the difference is more important when the formula that
LoTREC can handle is harder.

5for every two nodes linked to a common one, the rule creates a common successor - see
Section 4.5.
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(a) Results for S4 formulas

(b) Results for KT formulas (c) Results for K formulas

Figure 11.3: LoTREC running with and without optimisation on the hardest
formulas of the LWB benchmark suite.

Conclusion

LoTREC is a graph rewriting system adapted to theorem proving by tableau-
like model construction methods for modal logics. The theoretical semantics
of rewriting is purely functional and not optimised which made it suitable for
proving properties like termination, soundness and completeness of the logical
methods. However, a direct implementation of these semantics is not efficient,
especially that the pattern matching process is known to be NP-complete.

In LoTREC, we propose a local and event-driven mechanism for limiting
the effect of the graph pattern matching problem. At a given rewriting step, we
establish the match process only on the local subgraphs changed by the rules
during the previous step. It is clear that this technique has no advantage in
specific applications where the redexes matched at each step are as numerous
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as size of the whole host graph G. However, in the applications where the rules
are applied alternatively in k redexes at each step, where k is likely to be far
less than |G|, our technique reduces the |G| factor of O(|G||L|) time complexity
of this problem to k.

Nevertheless, such optimizations may raise some questions about the sound-
ness of the rewriting process w.r.t. the theoretical semantics. Another main aim
in this chapter was to fill the gap between this semantics and its implementation
in LoTREC.

We have presented the rewriting system of LoTREC as a term rewriting
system. We gave a semantics for model construction rules and their application
that we may have in a naive rewriting system. We also gave a semantics for
rules application in LoTREC rewriting system which has a global and automatic
optimization based on events. Then we proved that this optimisation is sound
and complete. Finally we gave a semantics to strategies both in naive system
and in LoTREC and we proved their equivalence which in turn ensures that
general properties of naive strategies propagates to optimised ones.

To conclude the chapter, we presented some of the related works and an
evaluation of the even-based optimization.



Conclusion

In the first part of this thesis, we gave a “gentle” introduction to modal logics
from an application point of view (chapters 1 and 2), and via a tableaux-like
model construction procedure. We showed how to write such decision procedures
for a wide variety of logics that we investigated throughout the chapters 3 to 7.

We also showed how to implement these methods in our generic model builder
LoTREC, how to run and debug them with critical examples. Using this ped-
agogical style, we are planning to complete this (pedagogically speaking) pre-
liminary work in the near future in form of a courseware book in logic, in joint
work with O. Gasquet, A. Herzig and F. Schwarzentruber.

A special model construction method was used to investigate the frame prop-
erties and the complexity of a particular family of logics called layered logics
(chapter 8). To keep the size of the models constructed in our method within
a size exponential in that of the input formula we used a special filtration tech-
nique that we call dynamic filtration. The resulting method proved the class of
these logics to be NEXPTIME-complete. I also gave the way to implement such
filtration techniques in LoTREC.

In the second part of this thesis, I started with an overview of graph rewriting
(chapter 9). It introduces various graph definitions, and the standard way to
define graph rewriting rules with a solid theoretical basis. I briefly discussed
some interesting theoretical properties that one would like to have in a graph
rewriting system.

In chapter 10, I showed how LoTREC is to be defined as a graph rewriting
system. This makes precise which kind of graphs it deals with, how the rules and
strategies are defined, and what the main constraints and restrictions are that
we had to impose on these definitions in LoTREC. This leads to a discussion of
some of the properties of LoTREC viewed as a graph rewriting system.

In the last chapter, I presented the event-driven pattern matching mecha-
nism of LoTREC (chapter 11). Using a term notation, the semantics of rewrit-
ing using this mechanism are formalized, then proved to be sound w.r.t. usual
rewriting semantics. At the end of this chapter, I compare LoTREC’s technique
with existing related ones, and I give some experimental results that show the
effect of our technique in enhancing the average performance of the rewriting
process.

Beyond that, some other goals I had stated at the beginning of this thesis
were reached: first, LoTREC’s platform was maintained and enhanced through-
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out the duration of my thesis; second, the tool was made more user-friendly
and more accessible to the intended public; and third, several new logics were
implemented, while keeping the language as small as possible.

LoTREC and the other theorem provers

In this section we give some comparisons and contrasts for LoTREC with exist-
ing tools according to their characteristics and purposes.

Educative and playful tools

OOPS6 [GvVV09] shares many characteristics with LoTREC: it is open source,
cross-platform, and aimed at education in modal logics. It has its own integrated
general purpose scripting language (Lua), it allows tableaux to be visualized and
it can generate counter models for formulas that are not provable.

However, the main difference with LoTREC is that OOPS is not generic: it
is a tableau prover only for S5n.

Molle7 (Modal Logic Loony Evaluator) or Mollicino is another nice tool.
It is similar to LoTREC in being an educative, open-source and cross-platform
(written in Java) prover. Like LoTREC, Molle implements a tableaux algorithm
to prove the validity of modal formulas, and generates example and counterex-
ample models.

However, Molle only implements the basic modal logic K and allows to choose
basic constraints on the accessibility relations, such as reflexivity. Molle has a
special “cool” display of models and counter models with the Earth, Mars and
other planets to represent possible worlds.

Special purpose tools

We should recall that LoTREC is a generic framework which does not aim at
implementing a specific method for only one logic.

It is clear that for a specific logic, any direct implementation would be sim-
pler and more efficient than LoTREC. For example, we find many provers for the
simple hybrid logic HL(@) (many of them are listed and compared in [Var09]).
Some focus on performance. Some others have a simple implementation, thus
they stick better to the theory , and they have more elegant proofs for termina-
tion and completeness.

However, these very specific provers may not be able to deal with K+Confluence
or LTL or other logics as LoTREC does. They may not have an easy high-
level language accessible to non-programmers. They may not be cross-platform
web-executable softwares with graphical user interface and pretty print visu-
alizations. Hence, they may not be the right candidates for prototyping and
learning in logic and philosophy as, we hope LoTREC is.

6http://wiki.github.com/gertvv/oops
7http://molle.sourceforge.net/
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Performant and painful tools

Due to its pedagogical aims, LoTREC was not designed to compete with other
provers in terms of performance.

On one hand, we want to keep it as generic as possible, so it can handle
new logics with various semantics. This entails that no special heuristics are
implemented in LoTREC at all.

On the other hand, we want it to be a model builder: it should keep track of
all premodels and should allow the user to analyse these premodels at the end of
the satisfiability check. This imposes duplicating the premodel data structures
at each non-deterministic choice, instead of dealing with it by backtracking on
only one premodel. It follows that LoTREC loses time when managing this
supplementary memory.

Nevertheless, we wanted to compare LoTREC against other well established
theorem provers. We should note that it was not easy to setup the necessary
experiments, since most of the existing tools are not maintained anymore or hard
to be installed. On the other hand, installable provers were not customisable in
order to be called automatically on a set of significant formulas. This is why we
settle for the following basic results.

The authors of TWB published in [Aba07] the results of the comparison of
TWB and LWB on the basis of the LWB benchmark (section 11.4.1). By using
the same benchmark in the same conditions (used amount of memory. . . ) we
give in the column (a) of Figure 11.4 the results of the comparison of LoTREC
to LWB and TWB theorem provers.

The charts should be read as follows: in the first chart of column (a) above

the class name “S4 branch n”, we notice that LWB can treat the 15th formula

within 100 seconds, TWB can handle the 14th whereas LoTREC can maximally

deal with the 3rd. In the same chart, but considering the class “S4 S5 p”,

LoTREC and LWB can treat the hardest formula, the 21th, whereas TWB can

treat at max the 16th.

These results show that LoTREC is generally less efficient than other the-
orem provers even if it does better in some classes of formulas. It seems
that LoTREC has some advantages on formulas where there are less non-
deterministic choices, even if they have a high branching factor.

Similar results are shown for formulas of K and KT in Figure 11.4.

Some implementations get complicated

The implementation of some logics requires some special techniques, as we have
seen in the first chapters of this thesis. Some of these techniques are complicated.

The first example is the need for a common root node linked to every node,
such as in S5 (section 4.6) or HL(@) (section 5.3). In such cases, the prob-
lem is that we are dealing with universal modalities or formulas whose truth
value should be globally shared between all the (or many) nodes in the pre-
model. This would have simply been replaced by a single condition of the form
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(a) S4 benchmark

(b) KT benchmark (c) K benchmark

Figure 11.4: Experimental results of benchmark with other provers.

thereIsANode n (such that, some other conditions hold in it).

The second example is the list of complex manipulations given in page 118
for HL(@). These manipulations would have been easier if we had in LoTREC
a simple action to replace them all, such as merge node1 node2.

However, we always prefer not to extend LoTREC’s language when a new
logic with new semantic conditions is treated, as long as it can be treated by the
same set of predefined conditions and actions. This simple language/complex
method dilemma is best quoted by Larry Wall from Programming Perl [SC97]:

Minimalism: The belief that “small is beautiful”. Paradoxically,
if you say something in a small language, it turns out big, and
if you say it in a big language, it turns out small. Go figure.

Our choice is to keep on our philosophy of small language, even if what we



CONCLUSION 259

aim to say will turn out big.

LoTREC in action

LoTREC website is often visited and run via the web pages of several courses
in logics, such as:

• automated reasoning, Prof. C. Pecheur8, at Université catholique de Lou-
vain, Belgium;

• FGI 3 - Logik9, Dr. C. Eschenbach, University of Hamburg, Germany;

• Logique, informatique et sciences cognitives10, Prof. R. Villemaire, Uni-
versity of Quebec At Montreal, Canada.

Last year, LoTREC was the subject of a tutorial course given at Tableaux
2009 11. This spring, LoTREC is accompanying a tutorial course that will be
held at the 3rd World Congress and School on Universal Logic12.

This summer, we shall be giving an introductory course on modal logics at
ESSLLI 2010 13. LoTREC will be used by the students to achieve the various
exercises.

LoTREC is used for prototyping purposes by the members of our research
team LILaC. It was also used by others [BGMS08] to implement a tableaux
method for a logic of time sub-intervals.

The tool is executable directly from a web browser by visiting LoTREC’s
home page:

http://www.irit.fr/Lotrec

Ongoing work

The work on a generic platform such as LoTREC must always be a“work in
progress”. New logics with different semantics emerge while research in logic
and philosophy goes on. Hence, new decision procedures are to be designed
for these logics, and thus new implementation techniques have to be settled for
these procedures.

Currently I am revisiting the logics with the converse modalities, especially
transitive logics, in both monomodal and multimodal cases, in order to better
understand the behavior of transitive logics with converse and with iteration,
such as PDL with converse.

8http://www.info.ucl.ac.be/~pecheur
9http://www.informatik.uni-hamburg.de/WSV/teaching/vorlesungen/Logik_WiSe09.¬

shtml
10http://www.info2.uqam.ca/~villemaire_r/9305.html
11http://heim.ifi.uio.no/martingi/Tableaux09/pmwiki.php/Tableaux2009/Tutorials
12http://www.uni-log.org/t3-kripkeworld.html
13http://www.irit.fr/ACTIVITES/LILaC/Pers/Herzig/CTableaux/Esslli10.html
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I will be also working on the implementation of other logics that seem more
exotic than usual modal logics but implementable in our framework, , such as
multi-valued logics, since their semantics can be represented in terms of Kripke
models.

On the practical side, we would like to have a backtracking mechanism in
order to avoid model duplication if demanded by the user, as if LoTREC is
asked to run in a satisfiability-checker mode. I believe that this is possible but
not easy. In fact, since there is no automatic backtrack mechanism in Java, we
have to implement our own backtrack mechanism. This may be easily done if we
did not have to deal with the event-driven mechanism, which is very sensitive
to any code modification. This is why this task would be tough.

The philosophy of LoTREC seems to be successful: we can implement a wide
variety of logics with a simple language and as few tweaks as possible. However,
it seems that simple extensions may make some methods simpler and easier as
discussed above.

A promising solution is to offer the user a query-like language which allows
nesting of queries. This would allow to nest different quantifiers, which makes
the definition of some rules with complex conditions easier, such as in the case
of CTL. Triggers and transactions can be used in a query language to roll-back
on incoherent updates in databases. This seems appealing since it simulates
backtracking on failure choices. On the other hand, we are not yet sure if such a
language will be easy-to-learn by non-computer scientists, as is the case for the
currently used language. Moreover, we are not sure how to proceed in order to
keep on the nice properties of our pattern matching process in such a database
environment.



Conclusion

Dans la première partie de cette thèse, j’ai donné une introduction ludique et
pedagogique à la logique modale. Cette introduction est donné dans une ap-
proche applicative (Chapitre 1 et Chapitre 2), et via la méthode de construction
de modèles qui ressemble à la méthode de tableaux.

Tout au long des chapitres 3, 4, 5 et 7, j’ai présenté des procédures de décision
pour une grande variété de logiques modales. Également, j’ai montré comment
implémenter ces procédures, comment les exécuter et comment les déboguer
dans notre plateforme générique LoTREC.

Ce travail, ayant un style pédagogique, sera complété dans le future proche
sous la forme d’un livre, à accomplir en collaboration avec O. Gasquet, A.
Herzig et F. Schwarzentruber, et qui servira comme introduction ludique et
sympathique à la logique modale.

Une méthode particulière de construction de modèles a été utilisée pour
étudier les propriétés des “frames” et la complexité d’une famille particulière
de logiques, qu’on appelle Layered Modal Logics ou LML (chapitre 8). Pour
conserver une taille exponentielle des modèles construits, nous avons utilisé une
technique de filtration spéciale que nous appelons filtration dynamique. La méth-
ode résultante prouve que la classe de ces logiques est NEXPTIME-complet. En
plus, je montre dans ce chapitre comment implémenter pratiquement de telles
techniques de filtration dans notre outil LoTREC.

Dans la seconde partie de cette thèse, j’ai commencé par une introduction
générale à la réécriture de graphes (chapitre 9). Elle introduit les différents
modèles mathématiques utilisés pour définir les graphes et les règles de réécriture
de graphes avec une base théorique solide. A la fin de ce chapitre, j’ai discuté
brièvement certaines des propriétés théoriques intéressantes et que l’on aimerait
bien avoir dans un système de réécriture de graphes.

Au chapitre 10, j’ai présenté le système de réécriture de graphes de LoTREC.
Cela consiste à préciser le type de graphes traités par LoTREC, la manière
dont les règles et les stratégies sont définies, et les principales contraintes et
restrictions que nous imposons sur ces définitions. Ce chapitre aboutit à sa fin
à une discussion sur certaines des propriétés théoriques de LoTREC, considéré
comme un système de réécriture de graphes.

Au dernier chapitre de cette partie, j’ai présenté le mécanisme “event-driven
pattern matching” de LoTREC (chapitre 11). En utilisant une notation de ter-
mes, la sémantique de la réécriture de graphes qui utilise ce mécanisme événe-
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mentiel est formalisée. Ensuite, elle est montré adéquate et correcte par rapport
à la sémantique habituelle de réécriture. À la fin de ce chapitre, je compare cette
technique événementielle avec d’autres techniques utilisées par la communauté
de réécriture de graphes, et je donne certains résultats expérimentaux qui mon-
trent l’effet de notre technique dans l’amélioration de la performance moyenne
du processus de réécriture.

Au-delà de ça, les autres objectifs que j’avais évoqués au début de ce manuscrit
ont été atteints avec succès. Ils ont été abordés au fur et à mesure et à différentes
reprises dans ce manuscrit. Pour en faire un petit bilan, je rappelle que: d’abord,
la plate-forme LoTREC a été maintenue et renforcée pendant toute la durée de
ma thèse; deuxièmement, l’outil a été rendue plus conviviale et plus accessible
au public ciblé; et troisièmement, plusieurs nouvelles logiques ont été implémen-
tée avec succès, tout en gardant le langage de définition des règles la plus simple
possible.



Appendix A

Signatures, algebras and
terms

A signature consists of a syntactical description of an algebra as a set of types
called sorts and a set operations to define computations on these sorts. An
algebra can be then defined over a signature to give it a semantics. Thus many
algebras can be defined over the same signature. You may consider a signature
and a corresponding algebra exactly as an interface and one of its implementa-
tions in Object Oriented Programming. For a deeper introduction to algebraic
signatures, see [EM85].

Definition 75 (algebraic signature). An algebraic signature SIG =(S,OP ), or
signature for short, consists of a set S of sorts and a family OP of operation
symbols. OP is the union of two disjoint sets

• (Ks)s∈S the set of constant symbols of the sort s ∈ S;

• (OPw,s)(w,s)∈S+×S the set of operations that take in arguments of sorts
s1, . . . , sn = w ∈ S+ and has a return value belonging to the sort s ∈ S.

Remark 18. For an operation symbol op ∈ OPw,s, we write op : w → s or
op : s1, . . . , sn → s, where w = s1, . . . , sn.

Definition 76 (SIG-algebra). For a given signature SIG = (S,OP ), a SIG-
algebra A = ((As)s∈S , (opA)op∈OP ) is defined by

• for each sort s ∈ S, a set As, called the carrier set;

• for a constant symbol k ∈ Ks of a sort s ∈ S, a constant kA ∈ As;

• for each operation symbol op : s1, . . . , sn → s ∈ OP , a mapping function
opA : As1 , . . . , Asn → As.

Now we really need some examples to better understand what a signature
and an algebra are.

263



264 APPENDIX A. SIGNATURES, ALGEBRAS AND TERMS

Example 37. The following signature describes the natural numbers interface.
It has only one sort nat, a constant symbol “zero”, and three operation symbols
for a successor, an addition and a multiplication operations.

NAT =
sorts : nat

operators : zero : → nat

succ : nat→ nat

add : nat, nat→ nat

mult : nat, nat→ nat

The standard implementation of the NAT signature is the following algebra:

Anat = N
zeroA = 0 ∈ Anat

succA : Anat → Anat

x→ x+ 1
addA : Anat ×Anat → Anat

(x, y)→ x+ y

multA : Anat ×Anat → Anat

(x, y)→ x.y

Some other examples can be found in [EEPT06], Appendix B.

In order to be able to define a category on signatures, we define signature
morphism as following:

Definition 77 (signature morphism). Given signatures SIG =(S,OP ) and
SIG′ =(S′, OP ′), a signature morphism m : SIG→ SIG′ is a pair of mappings
m = (mS : S → S′,mOP : OP → OP ′) such thatmOP (op) : mS(s1), . . . ,mS(sn)→
mS(s) ∈ OP ′, for all op : s1, . . . , sn → s ∈ OP .

Definition 78 (category Sig). Algebraic signatures together with signatures
morphisms define the category Sig of signatures.

Since many algebras may implement the same signature corresponding to
different semantics, we define homomorphisms on algebras to analyze relations
and similarities between algebras.

Definition 79 (algebra homomorphism). Given a signature SIG =(S,OP ) and
two SIG-algebras A and B, an algebra homomorphism m : A → B is a family
m = (ms)s∈S of mappings ms : As → Bs such that

• for each constant symbol k ∈ Ks, we have ms(kA) = kB;

• for each operation op : s1, . . . , sn → s ∈ OP , it holds thatms(opA(x1, . . . , xn)) =
opB(ms1(x1), . . . ,msn(xn)) for all xi ∈ Asi .

Note that:
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Definition 80 (category Alg(SIG)). Given a signature SIG, SIG-algebras and
algebra homomorphisms define the category Alg(SIG) of SIG-algebras.

In the following, we define the final algebra of a signature SIG, which can
be considered as the terminal object of the category Alg(SIG).

Definition 81 (final algebra). The final SIG-algebra of a signature SIG =
(S,OP ), denoted by Z, is defined by

Zs = s, for all s ∈ S.

A.1 Terms and term algebras

Terms with and without variables can be constructed over a signature SIG and
evaluated in each SIG-algebra.

Definition 82 (variables and terms). Let SIG =(S,OP ) be a signature. Let
X = (Xs)s∈S be a family of sets, where Xs is the set of variables of sort s, for
each sort s ∈ S. We assume that these Xs are pairwise disjoint and are disjoint
with OP . The set of terms with variables of sort s, denoted as Ts, is inductively
defined as follows:

• Xs ∪Ks ⊂ Ts,

• op(t1, . . . , tn) ∈ Ts for every operation symbol op : s1, . . . , sn → s ∈ OP

and all terms ti ∈ Tsi for i = 1, . . . , n,

• no other terms in Ts.

The set of ground terms of sort s, denoted as GTs, is defined similarly to Ts but
with an empty set of variables, i.e. as if Xs = ∅.

We denote by T = (Ts)s∈S the family of terms with variables of SIG, and
by GT = (GTs)s∈S the family of terms without variables (i.e. ground terms) of
SIG.

Definition 83 (term algebra). The term algebra over a signature SIG =(S,OP )
and a family of variables X is defined as TA = ((Ts)s∈S , (opTA)op∈OP ), where
the carriers sets consist of terms with variables, and the operations are defined
by

• kTA = k ∈ TA for all constants k ∈ OP ,

• opTA : Ts1 × . . .× Tsn → Ts such that opTA(t1, . . . , tn) = op(t1, . . . , tn) for
all op : s1, . . . , sn → s ∈ OP .
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Appendix B

Technical details

B.1 Graph construction in LoTREC

LoTREC provides three different ways to build a graph:

• drawing a graph by mouse clicks: this is intuitively done using the graph-
ical user interface;

• loading a graph from an file (if it has been first created with LoTREC);

• or using a rule.

Here we show how to use a rule to create a simple greeting graph (Figure B.1):

Rule Build_Greeting_Graph

createNewNode n

createNewNode n’

add n Welcome

link n n’ To

add n’ KripkesWorld

End

Figure B.1: simple greeting graph
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Figure B.2: rule definition window

In the graphical user interface of LoTREC, we only need to fill the program
part of the rule “Build_Greeting_Graph”, as shown in figure B.2.

Remark 19. We do not need to fill the conditions part appearing in the rule
definition window of figure B.2. The utility of conditions is introduced later in
chapter 3.

To apply this rule definition effectively in LoTREC, we need to call it in a
sort of program that we call strategy. The simplest way is to put the name of
the rule in the body of a strategy code (as shown in figure B.3). We may call
this strategy Greeting_Graph_Builder.

Strategy Greeting_Graph_Builder

Build_Greeting_Graph

End

Remark 20. Starting form chapters 3, we introduce more elaborated strategies.

Remark 21. By default, LoTREC draws the graphs using a Hierarchic layout.
When needed, the user may choose the Circular layout.

B.2 Layout and display

Graphs in LoTREC are displayed in a pretty-print graphical interface. They are
plotted by default with an hierarchical layout. However, the user may choose
other layout algorithms, such as the circular layout, if this would make the
graphs more readable. The layout algorithms of LoTREC are based on yFiles
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Figure B.3: strategy definition window

[WEK01]: one of the most efficient graph layout Java library, but an expen-
sive commercial one. However, yFiles algorithms are shipped as free plugins in
Cytoscape1, and this is how we integrated them freely in LoTREC.

We should clarify that the position of a node or an edge, calculated according
to these layouts, does not infer any syntactic or semantic information. Thus,
two different displays of the same graph are equivalent. Exactly as they are two
different files of the same program: written on one line or in a logical structure
with colored keywords, the program remains the same for the compiler.

For the sake of readability, we adopt in LoTREC the following options in
graphs display:

1. an attribute, such as a formula or a mark, has an internal name, type and
value. However, only the value is displayed,

2. an edge is represented as an arc. It has exactly one attribute: a formula
that is displayed on the middle of the arc,

3. an edge is often referenced by its source and target nodes and its label
formula. Thus, edges names are never displayed,

4. nodes names are hidden by default, although the user may get the name
of a given node by a simple right-click on it,

5. a node is displayed as a rectangle, and all its attributes are displayed inside
this rectangle:

1http://www.cytoscape.org/
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(a) marks of the node, if there are any, are displayed on the first line at
the top of the rectangle within two brackets,

(b) then its formulas are displayed one by line. A formula is followed by
its marks between two brackets, if it has any.
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incremental updates. Electronic Notes in Theoretical Computer
Science, 109:71 – 83, 2004. Proceedings of the Workshop on
Graph Transformation and Visual Modelling Techniques (GT-
VMT 2004).

[WEK01] Roland Wiese, Markus Eiglsperger, and Michael Kaufmann.
yfiles: Visualization and automatic layout of graphs. In Graph
Drawing, pages 453–454, 2001.

[Z9̈6] Albert Zündorf. Graph pattern matching in progres. In Se-
lected papers from the 5th International Workshop on Graph
Gramars and Their Application to Computer Science, pages
454–468, London, UK, 1996. Springer-Verlag.



278 BIBLIOGRAPHY

[ZS92] Albert Zündorf and Andy Schürr. Nondeterministic control
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