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Résumé

Nous étudions les processus de Dirichlet dont le parametre est une mesure
proportionnelle a la loi d'un processus temporel, par exemple un mouve-
ment Brownien ou un processus de saut Markovien. Nous les utilisons
pour proposer des modeles hiérarchiques bayésiens basés sur des équations
différentielles stochastiques en milieu aléatoire. Nous proposons une méthode

. . . .. )l .
pour estimer les parametres de tels modeles et nous l'illustrons sur I’équation

de Black-Scholes en milieu aléatoire.

Abstract

We consider Dirichlet processes whose parameter is a measure propor-
tional to the distribution of a continuous time process, such as a Brownian
motion or a Markov jump process. We use them to propose some Bayesian
hierarchical models based on stochastic differential equations in random envi-
ronment. We propose a method for estimating the parameters of such models

and illustrate it on the Black-Scholes equation in random environment.
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Chapter 1
Introduction

L’objectif de ce travail est de proposer un nouveau modele hiérarchique com-
prenant un processus de Dirichlet comme loi a priori, on dira brievement
modele hiérarchique de Dirichlet, qui soit adapté a ’analyse de trajectoires
temporelles, notamment celles qui sont régies par des EDS (équations differ-

entielles stochastiques) en milieu aléatoire.

Le processus de Dirichlet est une loi aléatoire, ¢’est-a-dire une variable aléatoire
a valeurs dans ’ensemble P (V') des mesures de probabilités sur un ensemble
V' d’observations. Nous utiliserons 'abréviation anglaise RD (Random Dis-
tribution).

Les RDs sont tres intéréssants aussi bien du point de vue théorique que du

point de vue appliqué.

Nous utiliserons dans ce travail quatre points, considéres comme importants
dans 'histoire de ce processus.

e En 1969, dans un article fondamental tres célebre, Thomas S. Ferguson
construit le processus de Dirichlet, généralisation des lois de Dirichlet, de-
venu depuis un outil remarquable et classique en Statistique bayésienne non
paramétrique.

e En 1973, J.F.C. Kingman définit des RDs, dits de Poisson-Dirichlet, aux
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propriétés intéressantes et liées a la représentation des processus de Dirichlet
utilisant le processus Gamma.

e Fin 1974, motivé par les applications, C.A. Antoniak introduit et étudie les
mélanges de processus de Dirichlet.

e En 1994, une méthode constructive des processus de Dirichlet, dite stick-
breaking, utilisée lors de mises en oeuvre informatique, est élaborée par Ja-

yaram Sethuraman [34].

Les applications concernent pratiquement tous les domaines : biologie, écologie,
génétique , informatique, etc...

Récemment ce champ d’application a été étendu en utilisant avec succes
des modeles hiérarchiques de Dirichlet en classification par estimation de
mélanges de lois a partir de données non temporelles, voir par exemple : Ish-
waran et Zarepour (2000), Ishwaran et James (2002) and (2003), Brunner et
Lo (2002), Emilion (2001, 2003, 2004), Bigelow and Dunson, (2007), Kacper-
czyk et al., (2003). Dans ces articles le parametre du processus de Dirichlet

est une mesure proportionnelle a une loi classique sur R".

Le présent travail consiste a étudier I'extension de ces modeles hiérarchiques
au cas de données temporelles, en utillisant notamment le processus de
Dirichlet sur des espaces de trajectoires, le parametre étant une mesure pro-
portionnelle & une loi de processus temporel (Emilion, 2005).

A partir de l'observation d’une seule trajectoire, il nous est possible de
détecter des régimes de durée aléatoire, lorsque le processus temporel suit
une EDS en milieu aléatoire. Le milieu est représenté par une chaine de
Markov a temps continu dont les états, qui modélisent les régimes, jouent le
role que jouent les classes en classification.

Le modele hiérarchique bayésien que nous introduisons place notamment un
processus de Dirichlet comme a priori sur l'espace des trajectoires de cette

chaine. L’estimation des parametres est batie a partir d’'un échantillonneur
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de Gibbs.

Nous traiterons a titre d’exemple 'EDS de Black-Scholes en finance, le drift
et la volatilité étant stochastiques. Le modele hiérarchique utilisé dans ce
cas ne suppose donc plus le processus gaussien puisque ses marginales sont

des mélanges compliqués de gaussiennes.

La these est organisée de la fagon suivante :
Les Chapitres 1, 2 traitent des lois de Dirichlet, des lois de Poisson-Dirichlet
et des processus de Dirichlet et leurs mélanges. La fin du chapitre 2 est

consacré & certain nouveau modéle introduit dans des articles trés resent

Au Chapitre 3, nous commencons également la partie originale du travail
en considérant un processus de Dirichlet ayant pour parametre une mesure
proportionnelle a la mesure de Wiener W. Ce processus, nommé processus

Brownien-Dirichlet, admet une représentation :

Xi(w) =) pilw)dpi)
=1

olt les B sont des mouvements Browniens i.i.d. de loi W et p = (p;) suit une

loi de Poisson-Dirichlet de parametre ¢ > 0 indépendant de (B} );en-. 1l sera
noté D(cW).

Nous montrons notamment que I’on a une formule de type Ito et la décomposition

classique de Doob-Meyer :
< Xi(w) = Xo(w), f>=) piw)(f(B) = f(B)) = My +V,
i=1

ou (M) est une martingale, (V;) est un processus a variation bornée et f une
fonction deux fois dérivable verifiant || f'||jo, 7)<+occ-

On montre aussi 'existence d’un temps local et d’une intégrale stochastique
par rapport a ce processus.

Dans la derniere partie de ce Chapitre, on effectue des calculs de lois a pos-

teriort pour des mélanges de processus de Brownien-Dirichlet lorsque
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e La mesure mélangeante est une loi de Bernoulli H = pdy + (1 — p)d; :

Si P est un mélange de processus de Brownian-Dirichlet

P~ /D(ch)dH(u)

et si f1, fa,..., fn est une échantillon de taille n de P alors la distribution a
posteriort
P, pys fu~ pHL D <CW1 + Z(Sfi) +(1-p D (CWO + Z(Sﬁ)
i=1 i=1

ou F; et Hy sont deux constantes qui dépendent de W', la derivée de Radon-
Nikodym de W par rapport a une mesure y définie dans le lemme d’Antoniak
(Section 3.2.6), et ou Wy et Wi sont deux mesures de Wiener de moyenne
repectivement 0 et 1.

e La mesure mélangeante est une gaussienne H = N'(m, o?) :

Si P est un mélange de processus de Brownien-Dirichlet
P~ /D(ch)dH(u)

avec (W, )uer une famille de mesure de Wiener de moyen u. et si 6%, 6% est
une échantillon de taille 2 de P;, t € R, alors la distribution conditionnelle

de P, sachant 6%, 6% est un mélange de processus de Dirichlet tel que
2
POt 6t~ / DN, + 3 G )y ()
i=1

ott Hy(u) = H(u |g o) ~ N (1, 0%,).

Le Chapitre 5 est divisé en trois parties.
e e mouvement Brownien en milieu aléatoire de Dirichlet

Nous l'introduisons comme limite en loi d’une marche aléatoire

1
— U1+ Us+ ...+ U[nﬂ)

nl/2
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construite de maniere hiérarchique a partir du processus de Dirichlet :

(U |V =02 N0, 0?)
Vi1i|P~P
P |c~D(cI(vy, 1r))

. cn~ F(nla 772)

Nous simulons et estimons les parametres d’un tel processus.

Comme a I'habitude, le systeme précedent se lit de bas en haut :

¢ suit une loi I'(ny, n2), conditionellement a ¢, P suit une loi D(cl'(vy, 1)),
contionellement & P suit une loi P et conditionellement & V les U; sont des
gaussiennes i.i.d.

e EDS en milieu aléatoire de Dirichlet.

Nous considérons, pour fixer les idées, 'EDS de type Black-Scholes, avec
variance et drift aléatoirement fixés pendant chaque régime, toujours suivant

un modele hiérarchique de Dirichlet

L L
dX, = Z pry iz, 1 ()dt + Z R, (1,1, 1) () d By
j=1

j=1
ou les R; sont des entiers choisis aléatoirement dans {1, ..., N} et constant

sur les intervalles aléatoires de temps [T;_1, T}), avec

O0=Ty<Ti<y<...<T,=T.

Pour estimer les parametres de ce modele ou le temps est discrétisé, nous
utilisons une version de ’échantillonneur de Gibbs utilisant un shéma stick-
breaking fini (blocked Gibbs sampling) Ishwaran - Zarepour (2000) et Ishwaran
- James (2002) [44]) shéma présenté au chapitre 2.

e (Classification bayésienne de trajectoires d’actions selon leur volatilité.

La volatilité est supposée dépendre du temps :
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ou X; = log(S:), (S:) étant le processus du prix de I’action.

Sous certaines conditions ’'EDS peut se simplifier en :

On développe alors la volatilité 6(¢) dans une base d’ondelettes (V;) et on
classifie les trajectoires en classifiant les vecteurs des premiers coefficients
par estimation d’un modele hiérarchique de Dirichlet de mélange de lois nor-
males. Ce travail a nécessité 'extension au cas vectoriel des calculs de lois a

posteriori d’Ishwaran-Zarepour (2000) et Ishwaran-James (2002) [44].

Le Chapitre 5 contient une partie essentielle de notre travail.

On se place dans le cas de I'observation (a des instants discrétisés) d’une tra-
jectoire d'une EDS, par exemple de type Black-Scholes, en milieu aléatoire :
drift et volatilité évoluent selon les états (qui modélisent les régimes) d'une
chaine de Markov a temps continu, de loi H a grande variance. Dans la
littérature ce principe apparait en mathématique financiere dans les travaux
sur les Regime switching markets.

Dans notre approche les régimes jouent le role que jouent les classes en clas-
sification : toute observation temporelle appartient a un régime.

La nouveauté ici est que nous plagons un processus de Dirichlet de parametre
aH comme loi a priori sur I’espace des trajectoires de cette chaine. Le nom-
bre o exprime un degré de confiance en la loi H.

Des lois a priori sont mis sur les divers parametres. L’algorithme consiste a
dabord simuler un grand nombre de trajectoires qui sont tres différentes a
cause de la variance, ce qui permet d’envisager plusieurs scénarios.

On choisit ensuite a chaque itération une des trajectoires selon des poids
donnés distribués a prior: par un schéma stick-breaking. On calcule des lois
a posteriort, puis selon la vraissemblance de la trajectoire observée, on met
a jour poids et parametres et on utilise un échantillonneur de Gibbs.

L’algorithme a été implémenté en langage C et testé sur des données simulées
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puis sur des données réelles.

Le dernier Chapitre 6 concerne la Conclusion et les Perspectives, notamment

le calcul d’option en utilisant le modele introduit au Chapitre 5.
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Introduction

The aim of this work is to propose a new hierarchical model with a Dirich-
let process as a prior distribution, shortly a Dirichlet hierarchical model,
which is adapted to the analysis of temporal trajectories analysis, particu-
larly those which are governed by an SDE (stochastic differential equation)
in random environment.

The Dirichlet process is a random distribution (RD), i.e. a random variable
taking its values in the set P(V') of all probability measures defined on a set
V' of observations.

The RDs are very interesting both for their theoretical aspects and their ap-
plied ones.

In our work, we will use four points, considered as very important in the
history of this process.

e In 1969, in a fundamental and celebrated paper, Thomas S. Ferguson built
the Dirichlet process as a generalization of a Dirichlet distribution. From this
time the Dirichlet process is a remarkable and classical tool in nonparametric
Bayesian statistics.

e In 1973, J.F.C. Kingman introduced a new RD, called Poisson-Dirichlet
distribution, having some interesting properties and related to the represen-
tation of a Dirichlet process through the Gamma process.

e In 1974, motivated by applications, C.A. Antoniak introduced and studied
mixtures of Dirichlet processes.

e In 1994, J. Sethuraman introduced a constructive method of a Dirichlet
process, which is crucial for implementations.

The applications of Dirichlet processes deal with quite all fields: biology,
ecology, computer science and so on.

This field was extended by using successfully Dirichlet hierarchical models
in classification, more precisely in estimating mixtures of distributions from

non temporal data, see e.g. Ishwaran and Zarepour (2000), Ishwaran and
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James (2002), Kacperczyk et al., (2003), Bigelow and Dunson, (2007). Re-
cently, Rodregez et al. introduce finite mixture versions of the nPD which is
inspired from the work of Ishwaran and James (2002).

In all these papers, the Dirichlet process parameter is a measure proportional
to a standard probability distribution in R".

The present work consists in studying the extension of these hierarchical mod-
els to the case of temporal data, more precisely in introducing the Dirichlet
process on a path space, the parameter being a measure proportional to the
distribution of a continuous time process (Emilion 2005).

By observing just one path, we are able to detect some regimes of random
durations, when the stochastic process is generated by an SDE in random
environment. The random environment is represented by a continuous time
Markov chain whose states modellize the regimes (for example the states of
the financial market). These ones play the same role as the clusters in clas-
sification.

The Bayesian hierarchical model that we introduce, places a Dirichlet process
as a prior on the path space of this chain. We show that the parameters can
be estimated by using Gibbs sampling.

As an illustration of our work, we will consider a Black-Scholes SDE in fi-
nance, in random environment, the drift and the volatility being stochastic.
This hierarchical model does not assume that the process is Gaussian since
its finite marginal distributions are complicated mixtures Gaussian.

The thesis is organized as follows:

Chapters 1, 2 deal with Dirichlet distributions, Poisson-Dirichlet distribu-
tion, Dirichlet processes and their mixtures. The end of Chapter 2 is devoted
to new models introduced in some very recent papers.

After that, from Chapter 3 we start the original part of this work, firstly con-
sidering a Dirichlet process with parameter proportional to a Wiener measure

W, shortly a Brownian-Dirichlet process, which has the following represen-
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tation:

Xi(w) = Zpi(w)éBg(w)
=1

where the B'’s are i.i.d. Brownian motions having for distribution W, and
p = (p;) is Poisson-Dirichlet with parameter ¢ > 0 and is independent of
(Bi)i=1,2.... This processes will be denoted D(cWV)

We show an Ito type formula and a classical Doob-Meyer decomposition
<Xy —Xo, f>=M;+V,

where M, is a martingale and V; is a process with bounded variation.

We also observe the existence of a local time and a stochastic integral with
respect to a Brownian-Dirichlet process.

In the last part of Chapter 3 we calculate the posterior distribution for
mixtures of Brownian-Dirichlet when

e The mixing measure is a Bernoulli distribution H = pdy + (1 — p)dy:

If P is a mixture of Brownian-Dirichlet processes
P / D(W,)dH ()

and if fi, fo,..., f. is a sample of size n of P, then the posterior distribution

satisfies the following formula

P ‘fl,f?,---,an le'D (CWl + Z(sz> + (1 —p) F1D (CWO + 25f1>
i=1 i=1

where F} and H; are two constants depending of W', the Radon-Nikodym
derivative of W w.r.t. a probability measure p which will be defined later
in Antoniak lemma (section 3.2.6) and where Wy and W; are two Wiener
measures with mean 0 and 1, respectively.

e The mixing measure is Gaussian distribution H = N (m, o?):

If P is a continuous time Dirichlet process

P~ /D(ch)dH(u)



19

and if 6%, 6% is a sample of size 2 of P, t € R, then the conditional distri-

bution of P, given 6%, 6% is a mixture of Dirichlet processes such that

2
AN / DN, + 3 Gy )dHy(u)
i=1
where f[t(u) = H(u |gt 1) ~ N (pf, ot ).

The Chapter 4 is divided in three parts.
e The Brownian motion in Dirichlet random environment. We introduced as

the limit in distribution of a random walk

1

based on the following a hierarchical Dirichlet model:
(U, | V=0 N, 0?)
Vi pP~P

P |c~D(c'(v, 1n))

L~ T (1, m2)-
We proceed to the simulation and the estimation of the parameters of such
a motion.
As usual, the above system has to be read from bottom to top: ¢ has a
(1, o) distribution, given ¢, P has D(cI'(vq, 1»)) distribution, given P,
V=1 has for distribution P and given V the U;’s are i.i.d. Gaussians.
e SDE in Dirichlet random environment.
As an illustration, we consider Black-Scholes SDE type, with variance and
drift randomly fixed during each regime and derived from a Dirichlet hierar-
chical model
L L
dX; =Y pp L) (Odt+ > or 1y, 7, (t)dB,

j=1 j=1

where the R; are integers randomly chosen in {1,..., N} and constant on

the random time intervals [T;_;, 7;), where

O0=Ty<i<y<...<T,=T.
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To estimate the parameters of this model, where time is discretized, we use
a blocked Gibbs sampling method (Ishwaran - Zarepour (2000)et Ishwaran -
James (2002) [24]) which hinges on stick-breaking scheme.

e Bayesian classification of shares according to their volatility

The volatility is assumed to be depending on time and varies according to

the share:

where X, = log(S;) and (S;) is the process describing the share.

Under some conditions this SDE reduces to:

Expanding the volatility 6(¢) in a (wavelet) basis (V;) we classify the paths
by classifying the vectors of the first coefficients, estimating a hierarchical
Dirichlet model of Normal distributions mixture: to this end, it is necessary
to extend the calculus of posterior distributions (Ishwaran - Zarepour (2000),

Ishwaran - James (2002)) to the vector case.

Chapter 5 contains an essential part of our work.

We observe an SDE path at discrete times, for example the Black-Scholes
SDE in random environment: drift and volatility evolve according to the
state regime of the market which is modellized by a continuous time Markov
chain, having a distribution H with large variance. This appears in mathe-
matical finance literature as regime switching markets.

In our approach, regimes play the role that play clusters in classification:
each temporal observation belong to a regime.

The novelty here is that we place a prior, a Dirichlet process with parameter
aH | on the path space of the Markov chain. The number « is a confidence

degree on H, the distribution of the Markov chain.
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We also place a prior distribution on each parameter.

The algorithm consists in first simulating a large number of paths which are
very different, due to the variance. This gives us a large variety of scenarios.
Next, in each iteration we choose a path according to random weights, ini-
tially given by a stick-breaking scheme. A calculation of posterior distribu-
tions is performed. Then according to the likelyhood w.r.t. the observed
path, we perform a Gibbs sampling procedure, by first updating the weights
and the parameters.

The program is implemented in C language and tested on a set of simulated

data and real data.

The last Chapter 6 concerns Conclusion and Perspectives, in particular, the

calculation of option prices when using the model introduced in chapter 5.
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Introduction




Chapter 2

Dirichlet distribution

The Dirichlet distribution is intensively used in various fields: biology EMIL-
ION, R. (2005), astronomy ISHWARAN, H. and JAMES, L.F. (2002), text
mining DAHL, D. B. (2003), ...

It can be seen as a random distribution on a finite set. Dirichlet distribution
is a very popular prior in Bayesian statistics because the posterior distri-
bution is also a Dirichlet distribution. In this chapter we give a complete
presentation of this interesting law: representation by Gamma’s distribu-

tion, limit distribution in a contamination model. (The Polya urn scheme),

2.1 Random probability vectors

Consider a partition of a nonvoid finite set E with cardinality §£ = n € N*
into d nonvoid disjoint subsets. To such a partition corresponds a partition
of the integer n, say ci,..., cq, that is a finite family of positive integers,
such that ¢; + ...+ cg =n. Thus, if p; = 2, we have p; +... +pg = 1.

In biology for example, p; can represent the percentage of the j specy in a

population.
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So we are lead to introduce the following d-dimentional simplex:

d
Ago1={(p1,..., pa) 1 p; 20, ij =1}
j=1
When n tends to infinity, this yields to the following notion:

Definition 2.1.1 One calls mass-partition any infinite numerical sequence

b= (P1,P2> )

such that p; > pa > ... and Y " p; = 1.

The space of mass-partitions is denoted by
o0
j=1

Lemma 2.1.1 (Bertoin [28] page 63) Let 1, ..., x4_1 be d—1 i.i.d. random
variables uniformly distributed on [0, 1] and let vy < ... < x(4-1) denote its

order statistic, then the random vector

(@), -y Ta—1) — T(d—2), 1 — T(a-1))

s uniformly distributed on Ng_1.

2.2 Polya urn (Blackwell and MacQueen ) [3]

We consider an urn that contains d colored balls numbered from 1 to d.
Initially, there is only one ball of each color in the urn. We draw a ball, we
observe its color and we put it back in the urn with another ball having the
same color. Thus at the instant n we have n+d balls in the urn and we have

added n = Ny + ...+ Ny balls with N; balls of color j.
N N Ng

n' n' ) n

We are going to show that the distribution of ( ) converges to

a limit distribution.
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2.2.1 Markov chain

Proposition 2.2.1

A Ny, d
1 — ., — )= (L, Loy, Z
ninoo( n ; ) n ) ( 1y 42, ) d)
where (21, Za, ..., Zq) have a uniform distribution on the simplex 4.

Proof

Denote the projection operation

VIV Rd — R
= (21, ..., xq) — T4
and
Oi(x) = (z1,..., Timr, & + 1, Ty, o, 24).
Let
d
S(x) = Z T
i=1
and
- omi(r) +1
fi@) = g
Define a transition kernel as follows
P(z. 0, =
(@, 0i(x)) S(x)+d

P(‘I? y):()? if yg{gl(‘I)?a ed(‘I)}

Recall that for any non-negative (resp. bounded) measurable function g

defined on R?, the function Pg is defined as

Po(e) = [ aw)P(o. i)
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Here we see that

d
mi(z) +1
Po(zx) =S g6
o) = 3 ol0,)
First step :
Consider Y,, = (Y,},..., Y/%) where (Y;)g<i<q is the number of balls of color

i added to the urn at n'* step. We clearly see that (Y,,;) only depends on

the n'" step so that (Y,,), is Markov chain with transition kernel

PO = A
and
Yo = (0,...,0).

On the other hand,

L nd (V) m(0;(Ya)) 41
PA(Yn) = 2o 5wyt 560,00+

m(0; (V) = m(Va) i i A,
mi(0;(Yn)) =m(Yn) +1 if i=j, (2.1)
S(0:;(Y,)) =S(Y,) + 1.

Then

_ mi(Ya)+l mi(Ya)+l | m(Ya)+l mi(Ya)+2
Pfi(Yn) - Zi;éj S(Y,)+d S(%/n)+d+1 + S(Yn)+d S(Yn)+d+1

= GBS (V) rdrD) [mi(Yo) +2+ >, m(Ya) +1]

Ty Yn
= (S(Yn)+d()(52;:)+d+1) [mi(Yn) + 24 (S(Yn) +d = 1 = mi(Yn))]

= Z(Yn)
implies that f;(Y,) is a positive martingale which converges almost sure to-

wards a random variable Z;. Since f;(Y},) is bounded by 1, it is also convergent
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in the LP spaces, according to the bounded convergence theorem. We then

see that :
mi(Yy n+d 1

n n n

converges to the same limit Z; almost surely and in L”.

By the martingale properties we have moreover that

E(fi(Yn)) = E(fi(Yo))-

Consequently
E(lim,—oo f(Yn)) = lim, .o E(f(Y2))
= E(f(Yo)),
SO
1

E(Z;) = E(fi(Yo)) = a

Second step:
Let

d—1
Na—1={(p1, .-, Pa—1) * i > OZPi <1},
=1

and

S(Y,)+d—-1)! . x

) = T v

The uniform measure \; on Ay i is defined as follows: for any borelian
bounded function F(us,...,uy) we have:

/ F(u))\d(du) = / F(ul, ey Ug—1, 1—u1—u2—. . .—ud,l)dul ..... dud,l
Ng_q

Nd—1

Now, let us compare the moments of (Z;, Zs, ..., Z4) with the ones of A\;.

Using formula (1.1)

ha(0:(Yy)) = Z((};/Z))iiuihu(yn)'
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hence
Phy(Yn) = hu(Ya) (3] ) = hu(Y).

implies that (h,(Y,)) is a martingale and similarly
ge(Yy) = / ho (Yo )ubt . ubd X (du)
Dg—1

is a martingale because

Pgi(Ya) = S P(Ya,6:(Y2) [,  hu(Yo)ui' .. ufNa(du)
= fAd ) u]fl . .ugd/\d(du)

= g(Yn).
This gives
E(gr(Y2)) = E(gx(Y0))-
On the other hand
[T m(Ye) + 1] [mi(Yn) + kil

Y,) =
9(Yn) (n+d)...(n+s(k)+d—1)
[ il ik

(n+d) o (n+s(k)+d—1)

n

so that
0< gu(Y,) < H oki — 93(k),

Therefore by the bounded convergence theorem
= E(ZF ... 25

(d=D!TE, k!
(S(k)+d—1)!

= cafn, Ut ufAa(du),
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where ¢g = (d —1)!
Indeed if

my = / ult . ubtegha(du)
Ag1
integrations and recurrences yield,

H?:1 ki!
(S(k)+d—1)1"

mp =

Taken (ki,..., kq) = (0,...,0), we see that ¢ = (d — 1)
Further, if p is the distribution of (Z1,..., Z4), then ¢4A; and p have the
same moments and since Ay_; is compact, the theorem of monotone class

yields, p = cg\q.

2.2.2 Gamma, Beta and Dirichlet densities

Let o« > 0, the gamma distribution with parameter «, denoted I'(«, 1), is

defined by the probability density function:

fly) = yalﬁﬂ{yw}-

Let Zy,..., Z4 be d independent real random variables with gamma dis-
tributions I'(aq, 1),..., I'(ag, 1), respectively, then it is well-known that
Z =71+ ...+ Zy has distribution I'(a;; + ... + ag, 1).

Let a, b > 0, a beta distribution with parameter (a, b), denoted ((a, b), is
defined by the probability density function:

mail(l - x>b71]1{0<a:<1}‘

From these densities it is easily seen that the following function is a density

function:



30 Dirichlet distribution

Definition 2.2.1 For any o = («aq,..., aq) where oy > 0 for any i =

, d, the density function d(y1, ya, - .., Ya—1 | @) defined as

F(Oé1+...+()ék) o 71 g _1 -1 -1
' (- a=ly 2.2
Mo g U vl 0= 2w ) (22)

is called the Dirichlet density with parameter (aq, ..., aqg).

Proposition 2.2.2 Let (Zy, Zs, ..., Zg) be uniformly distributed on Ng_1.
Then the random vector (Zy, Zs, ..., Zq_1) has the the Dirichlet density (1.2)
with parameters (1,1,...,1).

Proof

Let A\; € N for any i € {1,..., d}.

Let (Y7, Ya,..., Y3 1) be a random vector with Dirichlet density defined in
(1.2).

Let Y;=1— Zf;ll y;. Then

E(V .Y = B LY L= L Y

a1+ +ozk f a1+)\1 1 yad 1+Ag—1—1
Nd— 1 d-1

[1— S yileatratdy, . dyg

Lo+ Fag)l(a1+M1)...['(ag+Aq)
(). T(aa)D((e1+.+ag)+3 0y Xi)

Consequently, if \;, i € {1,..., d} are non-negative integers and oy = ... =

ag = 1, then

A1 4\ (d_l)'nle)\l'
By "'YA)_((d—l)JrS()\))!'

Now the proof of the preceding proposition 1.2.1 shows that (71, Zs, ..., Z)
and (Y7,..., Yy) have the same moments, and thus the same distribution.
Consequently (Z1, Zs, ..., Zs_1) has the same distribution as (Y3,..., Y3_1)
which is by construction d(yi, y2, ..., Ya_1 | @).
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2.3 Dirichlet distribution

The Dirichlet density is not easy to be handled and the following theorem

gives an interesting construction where appears this density.

Theorem 2.3.1 Let Z1, ..., Zy be d independent real random variables with

gamma distributions T'(aq, 1),..., T'(ag, 1) respectively and let Z = Z; +

...+ Z4. Then the random vector (%, o ZdZ*l) has a Dirichlet density with
parameters (aq, ..., aq).
Proof

The mapping

Y1 Yd—1
—_— .., 1t ... Tt Yg
Y1+ ...+ vya Y1+ ...+ Ya )

(yla"'7yd) = (
is a diffeomorphism from [0, 00)?, to A4_;%]0,00) with Jacobian y3 ' and
reciprocal function:

d—1

Y155 Ya) = (V1Ya, - - - Ya-1Ya, Ya[l — Zyz])
i=1

The density of (Z1,..., Z4—1, Z) at point (yi, ..., yq) is therefore equal to:

d—1 —d
e_ydyal—l yad_l—l(l . y.)ad_l ygl‘f' +aq yd_l
' -1 Zi:l Y T(o) .. D(ag)

Integrating w.r.t. y4 and using the equality fooo e_ydyg"ldyd =T(ag +...+

aq), we see that the density of (Z,..., Z‘iZ*) is a Dirichlet density with
parameters (ayq, ..., ag). O
Definition 2.3.1 Let Zi,..., Z; be d independent real random wvariables

with gamma distributions T'(aq, 1), ..., I'(aq, 1), respectively, and let Z =

Zy+ ...+ Zq. The Dirichlet distribution with parameters (o, ..., ag) is the
Z1 Zd)'

distribution of the random vector (%, ..., 7
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Not that the Dirichlet distribution is singular w.r.t Lebesgue measure in
R? since it is supported by Ay_; which has Lebesgue measure 0.
The following proposition can be easily proved
Proposition 2.3.1 With the same notation as in Theorem 1.3.1 let Y; =
%, i=1,...,d then Y; has a beta distribution B(a;, a1+ ...+ a1+ a1 +
..t ay) and
Q;

;o
ar+ ... +a)(a+.. +ag+ 1)

E(yi) = E(yiy;) = (

Lemma 2.3.1 Lety = (71, Y2,.--,7) and p = (p1, p2, - - ., px) be k-dimensional

vectors. Let U, V be independent k-dimensional random vectors with Dirich-

let distributions D(vy) and D(p), respectively. Let W be independent of (U, V)

and have a Beta distribution ﬂ(Zle Vi Zle pi). Then the distribution of
WU+ (1-W)V

is the Dirichlet distribution D(y + p).

Lemma 2.3.2 Let e; denote the k-dimensional vector consisting of 0’s, ex-

cept of the j co-ordinate, with equal to 1. Let v = (71, Yo, ..., V) and let

. = 7"{‘7 ) —
Bj Zi-;l%’] 1,2,..., k.
Then

> BD(v+¢;) = D(Y).
This conclusion can also be written as E(D(p 4+ v) = D(y).

The proofs of these two Lemma are found in Wilks ((1962), section 7),

2.4  Posterior distribution and Bayesian es-

timation

Consider the Dirichlet distribution D(ay, ..., ag) asaprioronp = (p1, p2, ..., Pa) €
Ag_q.
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Let X be a random variable assuming values in {1, ..., d}, such that P(X =

i | p) = pi- Then the posterior distribution p | X = i is Dirichlet D(ay, ..., a;_1, o+
L..., aqg).

Indeed let N; = Z;;l Ix,— , 1 <i<d. The likelihood of the sample is

d—1 d—1

HpNi(l - Zpi)Nd-

i=1 i=1
If the prior distribution of p is D(ay, ..., a4), the posterior density will be

proportional to

d—1 d—1
Hp?iJrNi(l o Z pi)Nd+ad.
i=1 i=1

Thus the posterior distribution of p is D(a; + Ny, as + No, ..., ag + Ny).

If (Xy,..., X,) is a sample of law p = (p1,..., ps) on {1,..., d} then the

average Bayesian estimation of p is:

p/_ a; + Ny g + Ny oy, + Ny
Zleoéﬂrl’ Zleai—i—l’.”’ Z?:lai""l '

Proposition 2.4.1 ([19]) Let ry,..., 1 be | integers such that 0 < r <
< rp=d.

1. If V1,..., Yq) ~D(ay,..., ag), then

Tl

(Zly ZQY ZZY> ND(ZlaiaZa)
1 1

r1+1 TI—1 r1+1 ri—1
2. If the prior distribution of (Y1, ..., Yy) is D(cy,. .., ag) and if
P(X=jY,....,Y) =Y,

a.s forj =1,..., d, then the posterior distribution of (Y1, ..., Yy) given
X =jis D(a%j), e a,(j)) where

aj+1 ifi=j
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3. Let D(y1,..., 94 | oa,..., aq) denote the distribution function of the
Dirichlet distribution D(ay, ..., aq), that is

‘D(ylu"'7yd|a17"'7Oéd):P(}/ISyh“‘7Yd§yd)‘

Then,

Qj

Z1 Zd . .
/ / ydi(yl,...,yd]al,...,ad):ED(zl,...,zd\a§]),...,ag)).
0 0

Proof

1. Recall that: if Z; ~ (), Z3 ~ I'(aw), and if Z; and Z5 are indepen-
dent then Z;+7Z5 ~ I'(a1+az). Hence 1 may be obtained by recurrence.

2. Is obtained then by induction.
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On the other hand

PX=7Y1<z,...,Y3<2) = E(lix—jvics,.vi<z})
= E(E(Lix=jvi<z,.vi<za} | Y10-- 0, Yi)

- E(H{YéZl YdSZd}E(]l{X:j} | Yy,..., YY)

= E(H{Y1§Z1 ----- ngzd}}/j))

— fOZI . .fozd )/]dD()/la RN Yd ‘ Oé(l), ce Oé(d)).

2.5 Definition and proprieties on Poisson-Dirichlet

distribution

The Poisson-Dirichlet distribution is a probability measure introduced by

J.F.C Kingman [31] on the set
Voo ={(01: p2r- i Zp2 > pi 20, ) py =1}
j=1

It can be considered as a limit of some specific Dirichlet distributions and
is also, as shown below, the distribution of the sequence of the jumps of a
Gamma process arranged by decreasing order and normalized .

We will also see how Poisson-Dirichlet distribution is related to Poisson pro-

cesses.

2.5.1 Gamma process and Dirichlet distribution

Definition 2.5.1 We say that X = (X;)wer+ is a Levy process if for every
s, t >0, the increment X,s — X; is independent of the process (X,, 0 < v <
t) and has the same law as X, in particular, P(Xy =0) = 1.
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Definition 2.5.2 A subordinator is a Levy process taking values in [0, c0),

which implies that its sample paths are increasing.

Definition 2.5.3 The law of a random variable X s infinitely divisible, if
for alln € N there exist i.1.d. random variables Xl(l/n), e Xﬁl/n) such that

3

X=X +...+ X}

Equivalently, the law of X is infinitely divisible, if for all n € N there exists

a random variable X/™) | such that the characteristic function of X,

px(u) = (exam(u)".
Definition 2.5.4 The law of a random wvariable X is infinitely divisible if

and only if there exists a triplet (b,c,v), with b € R, ¢ € Ry and a measure

satisfying v({0}) = 0 and [, (1A|z]*)v(dx) < co, such that
2
Elexp(uX)] = exp[ibu — % + /(ei“““" — 1 —duxllyyy)v(de)].  (2.3)
R

The triplet (b, ¢, v) is called the Lévy triplet and the exponent in (1.3)

UQC

Y(u) = ibu — 5 + /(eiw — 1 —duxllyy<1y)v(dz)
R
15 called the Lévy exponent. Moreover, b € R 1is called the drift term, c € Ry
the Gaussian coefficient and v the Lévy measure.
Definition 2.5.5 A Gamma process is a subordinator such that its Lévy
measure is y(dx) = v e *dx.
Remark 2.5.1 Let & be a gamma process. Let aq,..., a, > 0, tg = 0,
ti=ar+...+a;, for1 <j<nandY; =£(t;) — £(tj—1) then
Y ~T(ay).

Moreover, Y1, Yy ..., Y, are independent.
LetY =Y+ ... +Y,=¢((t,) andp = (p1,..., pn) with p; = % then p is a
random vector on N,—1 having D(ay, . .., o) distribution. Therefore we get

a random vector having Dirichlet distribution.
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2.5.2 The limiting order statistic

Let D(ay, ..., ay,) be a Dirichlet distribution defined as in chapter 1 and let:
F(Oél + ...+ Oéd) 1 ag—1

oo s D2y = P N 2.4

f 1yeeey d(pl P2 pd) F(al)...F(ad) Py pd Ng_q ( )
Assume that the o, are equal, then f,,  o,(p1, P2, ..., pa) reduces to

['(Na) .
d . = o pa)d T 2.5
(ph D2, y Pd ‘ Q) F(Oé)d (pl pd) ( )

In this section we prove the following theorem which exhibits the limiting
joint distribution of the order statistics p1y > pp) > ... an element of the

subset v/, of the set
Do ={(p1; p2,.- )i pi 20, io:pj =1}
j=1
Consider the following mapping
P Do — Voo

(p1, P2y ) — (p(1)7 P, - - -

If P is any probability measure on /., and n is any positive integer, then
the random n-vector (pay, pe2),- .-, Pn)) has a distribution depending on
P,which might be called the n'* marginal distribution of P. The measure P

is uniquely determined by its marginal distributions.

Theorem 2.5.1 (Kingman) (1974) For each A €]0, ool, there exists a prob-
ability measure Py on /o with the following property. If for each N the
random vector p is distributed over Ay according to the distribution (2.1)
with a = ay, and if Nay — X as N — 00, then for any n the distribution
of the random vector p = (pay, D2),-- -, Pm)) converges to the nt" marginal

distribution of Py as N — oc.
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Proof

Let y1, y2, ..., yn be independent random variables, each having a gamma

distribution I'(A, 1). We know that if S = y1+y2+. . .+yn, then (y1/S, y2/S, . ..

has a Dirichlet distribution D(A, ..., \).

To exploit this fact, consider as above a gamma process £, that is a stationary
random process (£(t), t > 0) with £(0) = 0. The process ¢ increases only in
jumps. The positions of these jump forms a random countable dense subset

J(&) of (0, 00), with

P{te J(¢)} =0 (2.6)
for all £ > 0. For each value of N, write

§Gan) = €((G - Da)

by the result cited above, the vector ¢ = (¢a), q2),---, quv)) has the same

distribution as p and it therefore suffices to prove the theorem with p replaced

by q. We shall in fact prove that

Jim g (N) = 66(;)/€(A) (2.8)

where the (0§(;))jen’s are the magnitudes of the jumps in (0, A) arranged
in descending order. This will suffice to prove the theorem, with P, the

distribution of the sequence
(06 /EN); 7 =1,2...) (2.9)
since this sequence lies in Y/, as a consequence of the equality

¢ = Z (). (2.10)

For any integer n, choose Ny so large that, for any N > Ny, the discon-

tinuities of height 6¢;) (j = 1, 2,..., n) are contained in distinct intervals

>yN/S)
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((1 — D)ay, iay). Then
§(Nan)qy) > 66y (1<j<n, N =N,

so that
lim g(j) > 6§(5)/§(A). (2.11)

For j =1, 2,..., n. Since n is arbitrary, (2.8) holds for all j, and moreover,

Fatou’s lemma and (2.7) give
T gy =Tm{1-) g} < 1-) limgy) < 1= {5€0/E(N)} = 560 /6 (V).
i#] i#] i#]
Hence,
08 /E(N) < lim gy < Tim gy < 66 /E(N).
Thus,
lim g5y = 0€(5)/€(A)-
U
By definition of 6¢(;y/£(A), we have

88y /EN) = 08y JEN) > ..,

and

> 6Ea/EN) = 1.

We will write

(06 /€(A), 062 /E(A), - ) ~ PD(0, A)

where PD(0, A) is the Poisson-Dirichlet distribution define as follows:

Definition 2.5.6 Let 0 < A < co. Let (&(t), t € [0, A]) be a gamma subordi-

nator and let J; > Jo > ... > 0 be the ordered sequence of its jumps. The dis-

S 2
EN) g

Dirichlet distribution with parameter A and is denoted by PD(0, \).

tribution on A of the random variable ( .) is called the Poisson-
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Theorem 2.1.1 shows that if

(p1, ..., pn) ~ D(an, ..., ay)

then the distribution of (pn), ..., p(v)) approximates PD(0, A), if N is fairly

large, the ay being uniformly small and Nay closed to .



Chapter 3

Introduction on Dirichlet

Processes

Nonparametric methods try to avoid assumptions about the probability dis-
tributions in order to generate methods that can be used in settings where
regular parametric assumptions do not work. Although applicable in more
general circumstances, nonparametric models can lead to very complex math-
ematics in all but the simplest models. Also, there is an implicit tradeoff
between the generality of nonparametric tests and the power to detect dif-
ferences between populations. From a frequentist perspective, a parametric
t-test has a higher power if the normality assumption is indeed true, but
might badly under perform the sign test if it is false, given the same type I
error. From a Bayesian perspective, posterior distributions obtained from
nonparametric models tend to have larger variances than their paramet-
ric counterparts. Nonparametric methods have a long history in modern
frequentist statistics, starting with Fisher’s exact test (Fisher, 1922). In
Bayesian statistics, nonparametric models are constructed through priors on
rich families of distributions. Therefore, the term Bayesian nonparametrics

is really a misnomer. Bayesian nonparametric models are not parameter free,
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but have an infinite number of parameters. Raiffa and Schlaifer (1961) and
Ferguson (1973) in their seminal work on Bayesian nonparametrics mention
some characteristics that should be kept in mind when constructing priors

on spaces of distributions:

1. The class should be analytically tractable. Therefore, the posterior
distribution should be easily computed, either analytically or through

simulation.
2. The class should be rich, in the sense of having a large enough support.

3. The hyperparameters defining the prior should be easily interpreted.

The Dirichlet process can also be regarded as a type of stick-breaking prior
(Sethuraman, 1994; Pitman, 1996; Ishwaran and James, 2001; Ongaro and
Cattaneo, 2004).

This chapter makes a quick review of Bayesian nonparametric models and

defintions, making special emphasis on the Dirichlet process.

3.1 Dirichlet processes

In a celebrated paper [19], Thomas S. Ferguson introduced a random distri-
bution, called a Dirichlet process DP, such that its marginal w.r.t. any finite
partition has a Dirichlet Distribution as defined in Chapter 1. A Dirich-
let process is a random discrete distribution which is a very useful tool in
nonparametric Bayesian statistics. The work of (Ferguson, 1973, 1974; Black-
well and MacQueen, 1973; Sethuraman, 1994) is the base for the most widely
used nonparametric models for random distributions in Bayesian statistics,
mainly due to the availability of efficient computational techniques. Some
recent applications of the Dirichlet Process include finance (Kacperczyk et
al., 2003), econometrics (Chib and Hamilton, 2002; Hirano, 2002), epidemi-
ology (Dunson, 2005), genetics (Medvedovic and Sivaganesan, 2002; Dunson
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et al., 2007a), astronomic ( Ishwaran et James (2002)) and auditing (Laws
and OHagan, 2002).

3.1.1 Definition and proprieties of the Dirichlet pro-

cess

Let H be a set and let A be a 0—field on H. We define below a random prob-
ability, on (H, A) by defining the joint distribution of the random variables
(P(Ay), ..., P(A,,)) for every m and every finite sequence of measurable
sets (A; € A for all i). We then verify the Kolmogorov consistency condi-
tions to show there exists a probability, P, on ([0, 1], BF*) yielding these
distributions. Here [0, 1]* represents the space of all functions from A into

[0, 1], and BFA represents the o-field generated by the field of cylinder sets

It is more convenient to define the random probability P, by defining the
joint distribution of (P(By), ..., P(By,)) for all k and all finite measurable
partitions (By, ..., By,) of H.

If B € Aforalli, BinB; = 0 fori # j, and Uf_ B; = H. From
these distributions, the joint distribution of (P(A,), ..., P(4,,)) for arbi-
trary measurable sets Ay, ..., A,, may be defined as follows.

Given arbitrary measurable sets Ay, ..., A,,, we define B, where z; =

ceay

Oorl, as

_~m Tj
Bxl,---,xm - mj:lAj

where A} = A;, and A} = AS. Thus {B,,, .4, } form a partition of H . If

ceey

we are given the joint distribution of
{P(By, .2,);x;j=0, orl j=1,...,m} (3.1)
then we may compute the joint distribution of (P(A;), ..., P(A4,)) by

P(AZ) = Z P(Bxl,...,wizl,...,wm)‘ (32)

{($1’ ---,«Tm); (177;:1}
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We note that if Ay, ..., A,, is a measurable partition to start with, then this
does not lead to contradictory definitions provided P(0) is degenerate at 0.

If we are given a system of distribution of (P(B;), ..., P(By)) for all k and all
measurable partitions By, ..., By, is one consistency criterion that is needed;
namely,

CONDITION C:

If(Bi,..., By),and (By, ..., By) are measurable partitions, and if (B, ..., By)

is a refinement of (By, ..., By) with

_ 1 R/ _ T2 / — K’ !
Bl = Ul B’L’ 32 = U’l"lJrlBi’ ey Bk — UT‘k,lJrlBl"

then the distribution of

(D_P(B), Y P(B),.... Y P(B)),

r1+1 Tk—1
as determined from the joint distribution of (P(BY), ..., P(B).)), is identical
to the distribution of (P(By), ..., P(Bn))

Lemma 3.1.1 If a system of joint distributions of (P(By), ..., P(By,)) for
all k and measurable partition (By, ..., Bg) satisfies condition C, and if for
arbitrary measurable sets Ay, ..., Ay, the distribution of (P(A1), ..., P(An))
is defined using (3.2), then there exists a probability P on, ([0,1]4, BF4)
yielding these distribution.

Proof
See [21] page 214.

Definition 3.1.1 Let o be a non-null finite measure on (H, A) .

We say P is a Dirichlet process on (H, A) with parameter « if for every
k=1,2,..., and measurable partition (B, ..., By) of H, the distribution of
(P(By),..., P(B)) ts Dirichlet D(a(By), ..., a(Byg)).

The measure « can be represented by ¢H, where ¢ = a(H), the parameter

of precision and H(.) = %
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Proposition 3.1.1 Let P be a Dirichlet process on (H, A) with parameter
aandlet A€ A. Ifa(A) =0, then P(A) = 0 with probability one. If a(A) >

0, then P(A) > 0 with probability one. Furthermore, E(P(A)) = %.

Proof
By considering the partition (A, A°), it is seen that P(A) has a beta distri-
bution, f(a(A), a(A)). Therefore

The Dirichlet process can be alternatively characterized in terms of its pre-
dictive rule (Blackwell and MacQueen, 1973). If (61, ...,6,) is an iid sample
from P ~ D(cH), we can integrate out the unknown P and obtain the con-
ditional predictive distribution of a new observation,

n—1

c 1
0,0n,...,00 ~ ———H + — )
| Y -1 lz:;cjtn—lgl

wheredy, is the Dirac probability measure concentrated at ;. Exchangeability
of the draws ensures that the full conditional distribution of any 6; has this
same form. This result, which relates the Dirichlet process to a Polya urn, is
the basis for the usual computational tools used to fit models based on the
Dirichlet process.

The Dirichlet process can also be regarded as a type of stick-breaking prior
(Sethuraman, 1994; Pitman, 1996; Ishwaran and James, 2001; Ongaro and
Cattaneo, 2004). A stick-breaking prior has the form

k—1
pk:ka(l—vk) v ~ Blag,bp)k=1,...,N and vy =1
i=1

where the number of atoms N can be finite (either known or unknown) or

infinite. For example, taking N =1,a;, = 1—a and by = b+kafor0 <a <1
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and b > —a yields the two-parameter Poisson-Dirichlet Process, also known
as Pitman- Yor Process (Pitman, 1996), with the choice a = 0 and b = ¢
resulting in the Dirichlet Process (Sethuraman, 1994).

The stick-breaking representation is probably the most versatile definition
of the Dirichlet Process. It has been exploited to generate efficient alterna-
tive MCMC algorithms and as the starting point for the definition of many
generalizations that allow dependence across a collection of distributions, in-
cluding the DDP (MacEachern, 2000), the # DDP (Griffin and Steel, 2006b)
and the GSDP (Duan et al., 2007).

Finally, the Dirichlet Process can be obtained as the asymptotic limit of
certain finite mixture models (Green and Richardson, 2001; Ishwaran and
Zarepour, 2002). In particular consider the finite-dimensional Dirichlet-
Multinomial prior

Cc C
_,---7

PY() = Zpk50k(~) p~ Dl N) Op ~ H

which differs from a truncated stick-breaking representation of the Dirichlet
Process in the way the weights have been defined. Ishwaran and Zarepour
(2002) prove that for each measurable function g which is integrable with

respect to H,
/ 9(0) P (do) - / 4(0)P(d6)

where P ~ D(cH), i.e., the finite-dimensional Dirichlet-Multinomial prior
converges in distribution to the Dirichlet process. This result not only pro-
vides another useful approximation, but also justifies frequently used finite
mixture models as approximating a Dirichlet Process.

Conjugacy is another appealing property of the Dirichlet process. If 6y, ...,0, ~
P and P ~ D(cH), then

Ploy,....0, ND(CH—i-zn:&)

=1
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Therefore, the optimal estimator under squared error loss for P is

PO = —HO)+——Y b0 ()

c+n c—i—n.:

which converges to the empirical distribution as n — co.
Antoniak (1974) studies the properties of draws from a distribution that

follow a Dirichlet process. In particular, he proves that, if H is nonatomic,

the probability of £ distinct values on a sample 61, ..., 0, of size n is
['(c)
P(k) = cu(k)nlc®
() = ealymict -2
for k=1,...,n, where ¢, (k) is a constant that can be obtained using recur-

rence formulas for Stirling numbers. The expected number of distinct values

can be calculated as

n

C
E(k|c,n) :Zm %Clog( -
i=1

c+n

)

These results will be used later to construct computational algorithms that
treat a as an unknown parameter and to elicit prior distributions for this

parameter.

3.1.2 Mixtures of Dirichlet processes (MDP)

The following definitions are due to C. Antoniak [1].
Let (U, B, H) be a probability space called the index space. Let (0, A) be a

measurable space of parameters.

Definition 3.1.2 A transition measure on U X A is a mapping o from U x A

into [0, 00) such that

1. for any u € U, a(u,.) is a finite, nonnegative non-null measure on

(0, A)

2. for every A € A, af(., A) is measurable on (U, B).
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Note that this differs from the definition of a transition probability in that
a(u, ©) need not be identically one as we want a(u, .) to be a parameter for

a Dirichlet process.

Definition 3.1.3 A random distribution P is a mixture of Dirichlet pro-
cesses on (O, A) with mizing distribution H and transition measure «, if for

all k =1, 2, ... and any measurable partition Ay, As, ..., Ax of © we have

P{P(A1) <wy1,..., P(Ax) <y} = /UD(yl, oo Ykla(u, Ay, alu, Ag))dH (u),

where D(yy, ..., Yelaa, ..., o) denotes the distribution function of Dirichlet
distribution with parameters (aq, ..., o).

In concise symbols we will use the heuristic notation:

PN/UD(a(u, V) ().

Roughly, we may consider the index u as a random variable with distribution
H and given u, P is a Dirichlet process with parameter a(u, .). In fact U
can be defined as the identity mapping random variable and we will use the

notation |, for U = u”. In alternative notation

un~H

3.3

where a,, = a(u,.).

3.1.3 Dirichlet processes Mixtures

Since the DP and MDP models put probability one on the space of discrete
measures, they are typically not good choices for modelling continuous data.

Instead, they are more naturally employed as priors on the random mixing
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distribution over the parameters of a continuous distribution K with density

k,
cmgl) a() = / K(0)H(d0)  H ~ D(cHy): (3.4)

resulting in a DP mixture (DPM) model (Lo, 1984; Escobar, 1994; Escobar
and West, 1995). The DPM induces a prior on g indirectly through a prior
on the mixing distribution H. A popular choice is the DPM of Gaussian
distributions, where 6 = (i, ¥) and k(.|0) = ¢,(.|u, ) is a p-variate normal
kernel with mean p and covariance matrix X..

Given an i.i.d sample z, = (z1,..., 2,), the posterior of the mixing distri-
bution, H,(z"), is distributed as a mixture of Dirichlet processes (MDP),

i.e,
Hy(|20) ~ /D(cH v i%i)p(del, AR
=1

and the optimal density estimator under squared error loss, ¢"(z), is the

posterior predictive distribution

g"(z) = E|k(10)H"(0]")| = [ k(z|0)E[H" (d0)]=")

cHo(n i—100.(n n
= [ k(z]0) T D (g, 6,7,

Density estimates arising from location-and-scale DP mixtures can be inter-
preted as Bayesian kernel density estimates with adaptive bandwidth selec-
tion. This interpretation is extremely appealing because it provides a direct
link with well-known frequentist techniques and demonstrates the versatility
of the model. Due to the discrete nature of the DP prior, the DPM model
divides the observations into independent groups, each one of them assumed
to follow a distribution implied by the kernel k. Therefore, DPM models can
be used for clustering as well as for density estimation. In this setting, the

model automatically allows for an unknown number of clusters.



50 Introduction on Dirichlet Processes

3.2 Some properties and computions for DPMs

Computation for DPM models is typically carried out using one of the three
different approaches: Pdlya urn schemes that marginalize out the unknown
distribution H (MacEachern, 1994; Escobar and West, 1995; MacEachern and
Méuller, 1998; Neal, 2000, Ishwaran, H. and James, L. F. (2003)), truncation
methods that use finite mixture models to approximate the DP (Ishwaran and
James, 2001; Green and Richardson, 2001), and Reversible Jump algorithms
(Green and Richardson, 2001; Jain and Neal, 2000; Dahl, 2003).

For computational purposes, it is convenient to rewrite model 1.2 using latent
variables 601, ..., 0, corresponding to observations zi,..., z,. In turn, these
latent variables can be rewritten in terms of a set of £ < n unique values
07,...,0; and a set of indicators (i, ..., Cn, such that 0; = 07

Polya urn samplers, also called marginal samplers, are popular in practice
because they are relatively easy to implement and produce exact samples
from the posterior distribution of 8. However, they are more useful when the
baseline measure Hj is conjugate to the kernel k. Escobar and West (1995)
original algorithm uses the Pélya urn directly to simultaneously sample group

indicators and group parameters. They note that

p(0:10-i, 2) = qiop(0;|zi, Ho) + Z G100, (0
I=1,1#i
where ;o = ¢ [ k(2]0)Ho(d0), qq = k(z]6,) for I > 1 and p(6;]z;, Hp) is the
posterior distribution for ; based on the prior Hy and a single observation
z;. MacEachern (1994) points out that mixing can be slow in this setting,
and proposes to add an additional step to the Gibbs sampler that resamples
the group parameters conditional on the indicators. Taking this idea one
step forward, Bush and MacEachern (1996) note that, in the conjugate case,
the group parameters can be easily integrated out, yielding a more efficient

sampler. Finally, MacEachern and Méuller (1998) propose an algorithm that
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can be used in the nonconjugate case. Neal (2000) provides an excellent re-
view of marginal methods.

Blocked samplers are a more recent idea and are based on approximations
to the Dirichlet process by finite mixture models. They are straightforward
to code, tend to have better mixing properties than marginal samplers and,
unlike them, directly produce (approximate) draws from the posterior distri-
bution H™(df|Z"). Their main drawback is that the samples only approxi-
mately follow the desired distribution. As an example, consider the trunca-
tion sampler of Ishwaran and James (2001), which starts with the finite stick

breaking prior
K
k=1

k—1

pk:UkH(l_Uk)7 UkNﬁ(ak,bk), kzl,...,N—l and VN:1

i=1
After proving that PV converges in distribution to a Dirichlet process when
N — o0, the authors are able to construct a simple Gibbs sampler that
exploits conjugacy between the generalized Dirichlet distribution and the
multinomial distribution. A related approach is the retrospective sampler
(Roberts and Papaspiliopoulos, 2007), who also use the stick breaking rep-
resentation of the Dirichlet process to generate a sampler that avoids trun-

cations but shares some of the advantages of the blocked sampler.

3.2.1 Dependent Dirichlet Process

The dependent Dirichlet process (DDP) (MacEachern, 1999, 2000) induces
dependence in a collection of distributions by replacing the elements of the
stick-breaking representation (Sethuraman, 1994) with stochastic processes.
It has been employed by Delorio et al. (2004) to create ANOVA-like models
for densities, and by Gelfand et al. (2005) to generate spatial processes that
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allow for non-normality and nonstationarity. This last class of models is ex-
tended in Duan et al. (2007) to create generalized spatial Dirichlet processes
(GSDP) that allow different surface selection at different locations, among
others.

Along similar lines, the hierarchical Dirichlet process (HDP) (Teh et al.,
2006) is another approach to introduce dependence. In this setting, mul-
tiple group-specific distributions are assumed to be drawn from a common
Dirichlet Process whose base- 12 line measure is in turn a draw from another
Dirichlet process. This allows the different distributions to share the same set
of atoms but have distinct sets of weights. More recently, Griffin and Steel
(2006b) proposed an order-dependent Dirichlet Process (rDDP), where the
correspondence between atoms and weights is allowed to vary with the co-
variates. Also, Dunson and Park (2007) propose a kernel stick breaking that
allows covariate dependent weights and fixed atoms.

An alternative approach to the DDP is to introduce dependence through
linear combinations of realizations of independent Dirichlet processes. For
example, Méuller et al. (2004), motivated by a similar problem to Teh et al.
(2006), define the distribution of each group as the mixture of two indepen-
dent samples from a DP process: one component that is shared by all groups
and one that is idiosyncratic. Dunson (2006) extended this idea to a time
setting, and Dunson et al. (2007b) propose a model for density regression
using a kernel-weighted mixture of Dirichlet Processes defined at each value

of the covariate.

Definition 3.2.1 (MacFEachern [2000]) Let I be an index set, let {0(t) :
t € I} and {v(t) : t € I} be stochastic processes over I such that z(t) ~
B(1,a(t)) for any t € I and define

H, = Zp:(t)%i*(t)(')’ (3.5)

where {0F(t)}2, are mutually independent collections of independent real-
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izations of the stochastic processes {0(t) : t € I} and {v(t) : t € I}, and
pi(t) = i) T2 — vi(t)). The colloction of the probability measures

7

Hr ={H;:t eI} isto follow a dependent Dirichlet process (DDP).

DDP models are dense on a large class of distributions. Indeed, under mild
conditions, the DDP assigns positive probability to every e-ball centered
on a finite collection of distributions that are absolutely continuous to the
baseline measures corresponding to the same locations of the index space
D (MacEachern, 2000). One of the most popular variates of the DDP is
the "single-p” model, where the weights are assumed to be constant over [
while the atoms are allowed to vary. Models of this form can be rewritten
as regular DP models with atoms arising from a stochastic process. There-
fore, standard Gibbs sampling algorithms can be used to perform inferences
for the ”single-p” DDP models. The main drawback of this approach is its
inability to produce a collection of independent distributions. The hierarchi-
cal Dirichlet process (HDP) (Teh et al., 2006) can also be recast as a DDP
model. The HDP places a prior on a collection of exchangeable distributions
{G1,..., G;}. Conditional on a probability measure Gy, the distributions
in the collection are assumed to be iid samples from a regular Dirichlet pro-
cess centered around Gy. In order to induce dependence, G is in turn given

another Dirichlet process prior. In summary,
GZ‘GO ~ D(CG())

Go ~ D(BH)

Since Gq is, by construction, almost surely discrete, the distributions G;
share the same set of random atoms (corresponding to those of Gy), but
assign strictly different (although dependent) weights to each one of them.
As is to be expected, H corresponds to the common expected value for each

of the distributions in the collection, and  and ¢ control the variance around
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H and the dependence between distributions. Computation for the HDP is

performed using a generalized Pélya urn scheme.

3.2.2 Nested Dirichelt process

Motivated by the multicenter studies, Abel Rodriguez et.al (2006) introduce
nested Dirichlet process. In fact, subjects in different centers have different
outcome distributions. The problem of nonparametric modeling of these dis-
tributions, borrowing information across centers while also allowing centers
to be clustered. Starting with a stick-breaking representation of the Dirich-
let process (DP), he replaces the random atoms with random probability
measures drawn from a DP. This results in a nested Dirichlet process (nDP)
prior, which can be placed on the collection of distributions for the differ-
ent centers, with centers drawn from the same DP component automatically

clustered together.

3.3 Some recent advances in Dirichlet models

Popular approaches for nonparametric functional estimation can be broadly
divided in three main groups. One simple yet powerful alternative is ker-
nel regression methods. These methods represent the unknown function as
a linear combination of the observed values of the outcome variables, using
covariate-based weights (Altman, 1992; Chu and Marron, 1991; Fan et al.,
1995). Another class of methods assumes that the functions of interest can
be represented as a linear combination of basis functions. The problem of es-
timating the function reduces to estimation of the basis coefficients. Splines,
wavelets and reproducing kernel methods fall in this broad category (Vi-
dakovic, 1999; Truong et al., 2005). A third alternative is to assume that the

functions in question are realizations of stochastic processes, with the Gaus-
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sian process (GP) being a common choice (Rasmussen and Williams, 2006).
Different approaches have been used to extend these methodologies to col-
lections of functions. For example, when the function of interest is modelled
as a linear combination of basis functions, hierarchical models on the basis
coefficients can be used to accommodate different types of dependence. This
approach has been successfully exploited by authors such as Rice and Silver-
man (1991); Wang (1998); Guo (2002); Wu and Zhang (2002) and Morris
and Carroll (2006) to construct ANOVA and random effect models for curves.
Along similar lines, Bigelow and Dunson (2007) and Ray and Mallick (2006)
have used Dirichlet process priors as part of the hierarchical specification of
the model in order to induce clustering across curves. Behseta et al. (2005)
develop a hierarchical Gaussian process (GP) model, which treats individual

curves as realizations of a GP centered on a GP mean function.

Recently, Abel Rodregez et al. propose a hierarchical model that allows
us to simultaneously estimate multiple curves nonparametrically by using
dependent Dirichlet Process mixtures of Gaussians to characterize the joint
distribution of predictors and outcomes. About stick-breaking, recently,
YeeWhye Teh et al.(2007) introduce The Indian buffet process (IBP) is a
Bayesian nonparametric distribution where by objects are modelled using
an unbounded number of latent features. He derives a stick-breaking rep-
resentation for the IBP. Based on this new representation, he develops slice

samplers for the IBP.
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Chapter 4

Mixtures of continuous time

Dirichlet processes

In this chapter, we first define, in section 1, continuous time Dirichlet pro-
cesses. In section 2 we examine the case of the Brownian-Dirichlet process
(BDP) whose parameter is proportional to a standard Wiener measure.
Next we show that some stochastic calculus formulas (Ito’s formula, local
time occupation formula) hold for BDP’s.

Next, in section 3, we define mixtures of continuous time Dirichlet processes

and we extend some, rather nontrivial computations of Antoniak (1974) [2].

4.1 Continuous time Dirichlet processes

From now, we take for H any standard Polish space of real functions defined
on an interval I C [0, 00), for example the space C(I) (resp. D(I)) of contin-
uous (resp. cadlag) functions. For any t € I, let m; : ¥ — x(t) denote the
usual projection at time ¢ from the space H to R. Recall that m; maps any
measure ;4 on H into a measure m;u on R defined by mu(A) = p(m; ' (A)) for
any Borel subset A of R.

The following proposition defines a continuous time process (X;) such
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that for any t € R X; is a Ferguson-Dirichlet random distribution.

Proposition 4.1.1 (Emilion, 2005) Let a be any finite measure on H, let
X be a Ferguson-Dirichlet random distribution D(«) on H and let Xy = m, X.
Then the time continuous process (Xi)ier is such that for each t € I, X,
is a Ferguson-Dirichlet random distribution on R D(ay) where ay = mpav.

Moreover if V@ is any iid sequence on H such that V) ~ ﬁ and

Z Pi(w)dy ) ()

where the sequence (p;) is independent of the V@’s and has a Poisson-

Dirichlet distribution PD(a(H)), then

< > piw)dye
=1

For sake of simplicity we deal with just one parameter «, but it can be noticed
that two-parameter X, , g continuous time Dirichlet process can be defined
similarly by using two-parameter Poisson-Dirichlet distributions introduced
in Pitman Yor (1997) [44].

Proof

Let k € {1, 2, 3,...} and Ay, ..., A; a measurable partition of R.

Then for any t € R, 7, '(A}), ..., 7 *(Ag) is a measurable partition of H so
that, by definition of X, the joint distribution of the random vector

(X(ﬂ-t I(Al))v ey X(ﬂ-t_l(Ak)))

is Dirichlet with parameters (a(m;, '(A})), ..., a(m; '(Ag)). In other words
(Xi(A1)), ..., Xi(Ag)) is Dirichlet with parameters (oy(A1), ..., au(Ax)) and
Xt ~ D(Oét)

A consequence of the definition of 7, is that

Wt(z pi) = Z Tt i
=1 =1
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for any sequence of positive measures on H and m(Au) = Am(p) for any
positive real number . Hence if V¥ is any i.i.d. sequence on H such that

V(Z ~ W and

sz )0y ) (w)

where (p;) has a Poisson-Dirichlet d1str1but10n PD(a(H)), then

Xt(W) sz 7Tt 5V( Nw Zpl 5V( D (w)(t)

the last equality being due to the fact that m(d;) = 65 for any f € H,
as it can be easily seen. In addition the V@ (t)’s are iid with V®(¢) ~
ﬂt(ﬁ) = ﬁwt(a) = mat. Moreover (p;) has a Poisson-Dirichlet distri-
bution PD(a(H)) = PD(aw(R)) so that the preceding expression of X;(w)
is exactly the expression of a Ferguson-Dirichlet random distribution D(ay)
as a random mixture of random Dirac masses. [J

As a corollary of the above proof and of Sethuraman stick-breaking construc-
tion (1994), we have the following result which is of interest for simulating
continuous time Dirichlet processes. It shows that such processes of random
distributions can be used to generate stochastic paths and to classify random

curves.

Corollary 4.1.1 (Continuous time stick-breaking construction) Let o be any
finite measure on H and oy = ma. Let ¢ = «(H) and H = a/c. For
any integer N, let Vi, -+, V_q be iid Beta(1, ¢) and Viy = 1. Let p; =
Vi,pe=0-V)...(0 =Vj_)Vi, k=2,---, N. Let Zy be tid H. Then,
Py: = Zivzl Prlz,, converges a.e. to a continuous time Dirichlet process

D(cy).

Corollary 4.1.2 Let X; be as in the preceding proposition, then for any
Borel subset A of R, (X;(A))i>0 is a Beta process, ie for any t > 0

Xi(A) ~ Beta(ay(A), au(A9)).
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4.2 Brownian-Dirichlet process

We suppose here that the parameter « is proportional to a standard Wiener
measure W so that the V(®’s above are i.i.d. standard Brownian motions that
we denote by B’. The sequence (p;) is assumed to be Poisson-Dirichlet(c)
independent of (B%);—g1,..

Definition 4.2.1 Let X be a Dirichlet process such that X ~ D(cW), then
the continous-time process (X;) defined by Xy = m X, for anyt > 0, is called
a Brownian-Dirichlet process (BDP).

As observed in the previous proposition, X; is a random probability measure

such that X; ~ D(cN(0,t)) and if we have a representation

X(w) = Z Di (w)gBi(w)7
=1

then we also have
sz LT

We show that stochastic calculus can be extended to such processes (X;).

Consider the filtration defined by
Fo=o(p;, i € N¥),
and for any s > 0,

Fs=FoU (Uz‘U(Bf“ u < s)).

4.2.1 Ito’s formula

Proposition 4.2.1 Let f € C? be such that there exist a constant ¢ € R
such that fo V2du < ¢ for any i and any s > 0. Then,

1. My =57 pi(w fo (B.)dB! is a well-defined (Fs) — martingale,
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Vi = 13 pi(w) f(f 7 (B:)du is a well-defined process with bounded

variation, and

3. <Xt_XOaf>:Mt+‘/t

Proof. Let

Zpl /f (BY)dB:,

and let s <t. Let 0 = tgk) < tgk) <...< t,(ni) = t be a sequence of subdivisions
of [0, t] such that

t
/f/(B;)dBfL lim Zf t(k) t(k>1—B;<k))>
0

k—s+o00

the limit being taken in Lo-norm. We now show that M is a martingale.
Note that we don’t use below the fact that the sequence p; has a Poisson-
Dirichlet distribution For sake of simplicity, in what follows, we omit the

superscript (k) in tl We have

E(MP | F) = i E(pfy £(B)B; | F)
— 11mk—>oo{zzl11 E<p'5 Z{lltl<s} f,(BtZl)( tZlJrl - Btzl) | ‘7:5)

+ S E (5 S g SBIB,, — Bi) | Fo)}
In the case t; < s, if we have in addition ¢, < s then
E(/(B})(B,,, - Bi) | F.) = /'(B)(Bi,, - B})

while if t;,; > s, writing Ble — Bgl Bi

ti41

— Bi+ B. — B;, we see that

E(f(BL)(B),, ~ Bi) | F) = ['(B})(B: - B).
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On the other hand in the case t; > s we have

E(7/(B) (B, - B) | %) = E(EGB)BL, - B)| F) | )

— E(['(B})E(B],, - B, | F) | F.)
~ E(f(B)E(B;,, - B)) | %) =

Hence,

E(Mtn | FS) - Z?:l pi hmk_@o (Z{l:tl+1<s} f/(Btil)(szH le)>

+ f(BL)(B = Bi)

where ¢, denotes the unique tl(k) such that tl(k) < s and tl(_]i)l > 5. Therefore
B | 7) =Y nte) [ B = o
i=1
proving that M" is a martingale. Moreover, since
E((MM?) = 25 (ciesen E(pirs J; F(BLABL 3 J'(Bl)dB])
+ YL E[R( (BB’
= > E(pd) fo f/(B!)dB:)?)

= L EEE( J(F(BL)du) < e, E(p) =

the martingale convergence theorem implies that M;* converges to a martin-

gale

M= 3on() [ rBaBy
=1
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Finally, applying Ito’s formula to each B, we get

< Xi(w) = Xo(w), f> = 23211)2(‘”)(10(32) - f(B(Z)))
= Y* pilw) [y f1(Bi)dB:,
+ 3T piw) fy f(BL)du

= M +V,

where V; is obviously a bounded variation process.

Corollary 4.2.1 (Stochastic integral) Let X; be a BDP given by

o0

Xi(w) = Zpi(w)fng(w)-

i=1

Let (Yy) be a real valued stochastic process and ¢ a bounded function defined
on R. Then the stochastic integral [ ¢(Y;)d X, is defined as the measure such
that

< [otvax, s >= 3 [otonrr gy [otm) s B

for any function f verifying the conditions of the preceding proposition.

4.2.2 Local time

The following result exhibits the local time of a Brownian-Dirichlet process

as a density of occupation time.

Proposition 4.2.2 Let (X;) be a BDP

Xi(w) = Z pi(w)(SBg(w)‘
=1
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Then for each (T,z) € Ry x R, there exist a random distribution L(T, x)
such that

T
/L(T, x)f(x)dx:/ < Xs, [ >ds,
R 0

for any f Borel measurable and locally integrable on R.

Proof. Let L;(T,z) be the local time w.r.t. to B® so that for any i € N

we have
T
[ o= [ s
R 0
and

AgpiLi(T,x)f(x)dx:/OTgpif(Bg)ds.

Then, if f € L}, set of positif bounded functions, the monotone convergence

theorem yields

AgpiLi(T, f)f(I)dQT:/OTg;pif(Bé)ds

and the same holds if f € Ly, by using f = f. — f_. Letting L(T, z) =
Yoy piLi(T, x) we get the desired result. O

4.2.3 Diffusions

Definition 4.2.2 A stochastic process (1) is called a diffusion w.r.t. to the

BDP (X,) if it has a.s. continuous paths and can be represented as
t 0 t )
P = o +/ a(s)ds + Zpi(w)/ b ydB!
where a € L1(Ry) and b; € La(Ry) for any integer i.

The following result can be proved using the Banach fixed point theorem,

similar to the classical case of a single Brownian motion.
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Proposition 4.2.3 Suppose that f and g;, i =0, 1,... are Lipshcitz func-
tions from R to R. Let ug be an Fy-measurable square integrable r.v. Then

there exist a diffusion () w.r.t. to the BDP (X;) such that

dipy = f(e)dt + D52 pigi(We)d By,

4.1
Yo = uo. ( )

4.2.4 Mixtures of continuous time Dirichlet processes

We now consider the case where «,, is a finite measure on a function space
like C(I) and D([) (spaces defined in section 1).
The following proposition defines a continuous time process (P;); such that

each P, is a mixture of Dirichlet processes.
Proposition 4.2.4 Let P be a mixture of Dirichlet distributions
PN/D@MHM.
U
Let P, = m P. Then, for each t > 0, P, is a mizture of Dirichlet processes:
aw/m%ﬂwm
U
where au,,; = o (7,1 ()).

Proof
Let Ay, As, ..., Ai be a partition of R.

PlP(A) < i, P(A) <] = PIPm (A <wn,ooo, Py (A < il

= [y D, var - yk | (ot Ai) )1<ici)dH (w),

since 7, H(Ay), 7, 1(Ag), ..., w7 Y (Ay) is a partition of ©.
Therefore

awém%ﬁwm.
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4.2.5 Posterior distributions

We suppose now that the sample space of observations is X = C(R™), where
C(R™) denote the space of continuous functions from R* to R.

Let F' be a transition probability from © x ¢ into [0, 1].

Let 6; be a sample from P, i.e. 0; |p, w~ P, and X (t) |p, g, u~ F(0, .).

Let H, denote the conditional distribution of (6;, u) given X (t) =

Let Hy, denote the conditional distribution of u given 6.

The following proposition shows that if ( P;) is a mixture of Dirichlet processes
then for each ¢t € RT the posterior probability of P, is also a mixture of

Dirichlet processes.
Proposition 4.2.5 If for anyt € R*

-Pt |uN D(au,t)

un~H
‘gt |Pt,uN -Pt
L X(t> ‘Pt,et,uN F(eb )
then
Pt ’X(t):a:N D(Oéu,t + 69,5)de(9157 U)
oxU
Proof

Let Ay, Ay, ..., A be a partition of R

PIP(A) <yi, 1 <0<k |xpy=] = EPB(A) <yt =100 F [x=2,0,u) [x()=2]

= EDW1, ¥2, - Yk 18u. (A1), B (AR)) | X (0)=2]

Jorvo DWis s Uk [Bu (A1) Bur(Ap)) AH o (1, 6).

where 5, +(A;) = ar o(A;) + g, (4;), for any i = 1,..., k.
Therefore

Py Lxteem / Dt + 80, )AH (6, ).
U
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O
As a corollary, let us show that the same result holds, if () is simply
a continuous time Dirichlet process: the posterior distribution of P, given

X(t) = x is still a mixture of continuous time Dirichlet processes.

Corollary 4.2.2 If

P, ~D(oy)
0, ~ P, (4.3)
X () |p.o,~ F(6, .)
then
Py |x(t)=2~ /UD(Oéu,t + 6g, )dH ().
Proof

Let Ay, As, ..., A; be a partition of R
PlP(A) i, 1 <i <k |x@=) = E[P[P(A) <wi, 1 <0 <K |x()=c,00,4) |x(0)=2]

= E[D(yb Y255 Yk ‘ﬁAl,t,ﬁA2,t ----- ﬁAk,t) |X(t)=x]

= f@ D(yb Y2, -5 Yk |ﬂA1,t,ﬁA2,t ~~~~~ IBAk,t)dHiU(et)?
where (a4, + = ar o(A;) + 09, (A;), i € {1, 2,..., k}. Therefore

Py |x(t)=2~ / D(av + g, )dH(0;).
©
Corollary 4.2.3 If for any t € R
P~ / Dl o) dH (1)
U

and
0, ~ P,

then for any t € Rt

Pt |9tN/D(Oéu7t+69t)ngt(u).
U
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Proof
Let Ay, Ay, ..., A be a partition of R

PlP(A) <y, i=1,..., ko] = E[PP(A) <wi,i=1,....k o, u o]
== E[D(yb Y2, .00y Yk | ﬂu,t(Al)a RN ﬁu,t(Ak)) | et]

= JuDWi voro s Yk | Bue(Ar)s -, Buoe(Ax))dHo, (w).

Therefore

Py o~ / Dt + 80, )dHy, (1),
U

4.2.6 A Lemma of Antoniak

The following result will yield explicit expressions of conditional distribu-
tions. It is just an application of a Lemma of C. Antoniak to each P, but we
prefer to give its proof for completeness.

Consider the following notations and hypothesis.

Let P ~ [, D(ay,)dH (u) as in theorem 3.

Let 0* = (01, 65, ..., 0,) be a sample of size n from P.

Suppose that there exists a o — finite, o — additive measure p on (O, A)
such that for each u € U :

i) ay, is 0 — additive and absolutely continuous with respect to p

i1) the measure p has mass one at each atom of a,.

Let o, (.) denote the Radon-Nikodym derivative of «, (.) with respect to p.
Let 6. denote the i*"-distinct value of §; in 6*.

Let n(¢;) denote the number of times the value 6, occurs in 6*.

Let M, = ,(0) and let m,(0) = o, (0}) if 6. is an atom of «,, zero otherwise.

Last, let 2™ = z(z + 1)(z + 2)...(x + n — 1), n € N — {0}.

Lemma 4.2.1 Under the preceding hypotheses and notations, the condi-
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tional distribution u|6*

o Ly (6 (a,(6) + 1) /)‘”dH(U)
Jor 3 (09 (e (87) + 1)~V dH (u)

dHg-(u) =

Proof

Referring to the proof of Proposition 3 in [1], we see that the likelihood of

ay, (Og41)dp

v for a value of 011 which has

0,11, given u, 61, 0, ..., O is equal to
not occurred previously in 61, 6s,..., 05, and is equal to [%] for a
value of 0,1 which has occurred previously j times in 6y, 65, ..., ;. Hence

the likelihood of (u, 6y, 6s,. .., Ox) is
L(“a 617 027"'7 Qn) - L(QZ |u,91,92 ..... 9n71>L(u7017027"'7 Qn—l)
= [Ty L0; |u61,60,.0)
=TT () (0} (8) + DOV (),

Therefore,

L(0y,0,,....,0 /Mgn Ha (0)) (o, (82) + 1))~V g H (u).

where r is the number of distinct components of the random vector (6, 6, .. ., ;).
We obtain dHg- by multiplying the above by dH (u) and dividing by the un-

conditional distribution of ;. So,

1 Ty oL (8)(04(6) + 1)V dH (u)

dHo; (u) = Jo st O (@) + DO dH (u)

4.3 Explicit posteriors

4.3.1 Example 1 : a Wiener measure and H Bernoulli

Let W denote the standard Wiener measure on © = C(Ry), where C(R})

denote the space of continuous functions from R, to R. Let the space U =

{0, 1}
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Theorem 4.3.1 Let P be a finite mixture of Dirichlet processes on R with
transition measure o, = cW,,, where W, is a Wiener measure, and mizring
distribution H ~ Bernoulli(p) with parameter p €]0, 1] and let fi, fo,..., fn
be a sample of size n of P. Then

P |f1,f2,---,an le D <CW1 +Z(5fl) + (1 —p) F1 D <CWO + Z(sz>

i=1 i=1
where Fy and Hy are two constants depending on W§ and WY, the Radon-

Nikodym derivative of Wy and Wy, respectively, w.r.t. p = Wy + Wi +
Z?:l 6fi'

Proof
According to Lemma 4.3.1

AW’ | dH(u)
— f1lu
CZH(U ‘fl) - f{oyl}dll/l/}l‘udH(u)

W, (f1)dH (u)
pWi(f1)+(1=p)W5(f1)

Therefore the conditional distribution of P | f; is a mixture of Dirichlet
processes given by :

pWi(f) Wo(f)
pWi(fi) + 1 =p)Wi(f) peWi(f1) + (1 = p)W5(fr)

Let us first examine the case of a sample of size 2. Again by Lemma 3.2.6,

D (cWy +dp,)+(1—p)

we have
Wy, (J1) Wy (f2)dH ()
— (cWy (©)+1) Wy (©)
dH (u ‘flny) - T Wl (FW(f2)dH (w)
{0,1}  (cWu(©)+1)Wy (O)
Wy, (F1) Wy (f2)dH ()
_ (cWu (©)+1)Wu(O)
- cW!(f1)W!(f2) W (f1)WY (f2)
1 1 0] 0]
p(cW1(@)+l)W1(@)+(1_p)(CWu(e)+1)W0(e)
Therefore

2 2

P s, o~ pHD(cWi+ ) 65) + (1= p)FD(cWo+ Y 6y

i=1 i=1

D(CW0+5fl).
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where H = H(0) and F' = H(1) are such that

W] (f1)WH (f2)dH (u)
- (cW1(©)+1)W1(O)
_WIGOWI) gy WaUIWE(R)
p(cwl(@)+1)wl (©) (cWo(©)+1)Wo(©)
and
_We(f)Wy(f2)
e (cWo(©)+1)Wo(0)

cW{(f1)W](f2) Wi (f1)Wi(f2)
p(cW&@)lJrl)%/Vl?(@) +(1-p) (cWoc()®)1+1)(i)/V()2(®)

In the general case of a sample of size n, Lemma 1 yields

W () (W (£)+1) D =D d (u)

1 (s
Vi) L

_ (cWu(©)(™)
H(U |f1,f27---,fn) - I 1 T WL G (WL )+ D) (n(f;)— DdH (u)
{0,1} pr(n) (cWy (©))(™)
and
n n
P lpy. oo~ (1= p)HiD(cWo + Y 65) + pPAD(cWr + ) 6y)
=1 =1
where
1 HT W) (W (fi)+1) " UD "D dH (u)
H — M) Lli=1 (cW0(®))<)
e WG (Wg(f) DT W (fi) (W] (f)+1)"FD D
( )M(”) i=1 (cWo(©)™ M(n) Hz 1 (cW1(©))(™)
WL (F) (Wi (f:)+1) DD dH (u)
Fo— M(n) Hz 1 (cW1(©))(™)
! W (f) (€W (fi)+1) )~ 1) Wi () (ew () +1)-D -
( )M(n) i=1 (cWo( )) () M(n) Hz 1 (W1 (©))(™)

and where r is the number of distinct components of the random vector

(fis for-ooy fn). O

Remark 4.3.1 We can generalize this theorem to the case of a finite mizture

where H is distributed on {1, 2,..., k}.
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4.3.2 Example 2 : o« Wiener measure and H Gaussian

Let W denote the standard Wiener measure on C(R,). For any u € R, let

W,, denote a Wiener measure with marginal distributions N (u, to?), t € R,.
Theorem 4.3.2 Let P be a mixture of continuous time Dirichlet processes,
P~ / D(W,)dH ()

with u ~ H = N(0, p?), then for any t € R
P~ / D(eN (u, t02))dH (u).

Let 0%, 0% be a sample of size 2 from P,. Then the conditional distribution of

Py, given 6%, 0% is a mizture of continuous time Dirichlet processes such that
2
P Lot 0t~ /D(c/\/'u A
i=1

where Hy(u) = H(u lot,01) ~ N (i, 07 ) is given in the proof below

Proof
According to corollary 4.3.2, the conditional distribution of a mixture of
Dirichlet distributions P; | 6%, 6%, is also a mixture of Dirichlet distributions,
with parameter e (u(t), to®) + 37, Jgt

According to Lemma 4.3.1 the mixing distribution H(u) of u given !, 6,

can be computed as follows.
Case 601 # 0% :
%a;’t(ﬂf)a;’t(aé)dH(u)

(ay,+(0)?)
dH(u gt 95) = v
= (o, ()2

o, 1 (01)e,, +(05)dH (u)

— — -1 2
ot _u)2 1ot _ )2 =1,
DYy A0 SRS V SNy AU R RS W Tre A
_ 270 Vit2mo Vi2mp
- —1 .t 2 —1 ot 2 =1 .2
ot — ot — u
+oo M thU_Q'( [—w) M 552 (05 —u) 1 6275%’2 du

—oo 2tmo 2tmo t2m
vV P
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After simplification we get,

_A0T+05)e _y (04)2+(05)?
572¢ to2 ' tp to2 e 2 o2
2
AH(u |y g) = —2
( |9 792) Lu2(2 -1 )74(9t]+6t2)“ —_1((95)2“'(93)2
2 to? 2 to? 2 102 du

)du

Jr ! 2¢
tp20'2(27r)3/

_ 21152 2(0¢ +0%)
2 2 —12tp*+to _ 17Y2) 2
_ 1V 2tp+io 02 toltp? (u 2tp2+w2) )

V2 top

Hence,
H(u g o) = N (3,07 1) (4.4)

(654-6%)p?
2p2+02

Case 0, = 6} :

2 2 2

where pf} = ,and o7, = t2p o7

o, 1 (01)ad, (03)dH (u)
o, (67)r,, (03)dH (u)

1
(e (e))<2)

dH(u lgt ) = 5%
—® (o <e>><2>

—1 (pt 2 -1 .2
M > (07 —u) 1 > U
— 22 e2to e2to du
270 Vit2mp
—1 gt 2 1 w2
oo Mo 0l-w?
22 e2to L e2t52 du
—oo t2mo Vit2w ol
=121 o 1 (0pu (6))u
1 e 2 (u (to'2+tp2) to2 to2 du

2tmop

—1u2( 1 4 1y
+oo 1 7 WGt TR )
—oo 2mop

As above, we get
2 2 20t 52
—1 tp“+to 1P 2
1 Vip2+to2 T f(,ztpz (“_ttp2+ta2) du
AH(u gy ) = —LE
01,0 - 1 tp24to? 120102
oo 1 \tp24to2 _Q__LQ_” 02 (VT e

—oo /21 top

2 2 6 t
/02 2 —1tp”+ta o? 24
- _1 ﬂ e ? to2tp? (u tp2+t02 )

Vor top
Therefore

H(u \et 9i) ~ N(M'i, Uit) (4.5)

p2 gt - o2 p2

t
where pj = el and o , = pEwel

Remark 4.3.2 Note that the mixing distribution H is gaussian depending

on the parameter t.
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4.4 Parameter estimation problems

In this section we incorporate the time parameter in a sampling model of
C.Antoniak ([1] page 1165) which leads to estimates different from standard
Bayesian analysis.
Let

G:Q— P(CRy))

G ~ /D(au)dH(u)
Let 64, 6a, ..., 0, € P(C(R)) be a sample from G and 0! = m,(6;).
Let
Gt Q) — P(R)

where Gy(.) = G(m(.))

Gy ~ / Dy, )dH (u).

If o, is the Wiener W, measure then
s = N (u, to?).

Hence G, ; = G| — 00, m] is a distribution function from a mixture of Beta
distributions with parameter «, ; and mixture distribution H.
Let g1 s 95, ms > 9h.m D€ a sample of size n from Gy, and let X7, ..., X7
be a sample of size m; from Fp: (x).
As in [1], consider the two following problems
(a) Estimating the index of the parameter
(b) Estimating the mixing distribution function.
In problem (a), if we wish to estimate u with square error loss, then the
Bayes estimate is simply
U = E(u \65 ..... o)
if the 6! are observed directly, and

U, = E(u |X§1
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if we only observe Xj;.
In problem (b) G, = E(GY |ot,os.....0:) 18 the Bayes estimate when the 0;, are
observed and G, = E(G, | Xt,,... x4, ) when only the X, are observed.
Using ([1] page 1166) we get
+oo
Gy ot gy~ D(ov,t + gt + O )dH (u [ge g1),

where H(u |gt g1) = N'(pf, 07 ;) (see theorem 2). Further

+0o0
G |x~ D(cvy + gy )dH x, (03, w),

—00

where Hx,is a bivariate Normal with parameters

pae = XE(tp* +to? + %)~ (tp? + to?)

po = tX1(tp? + to? +tr%) " 1p?

o}, =a'tr(tp® + to?) (4.6)
05, = (tp* + to® +t72) " 'tp*(tp® + to?)

O91,¢ = Lol T?p?.

\

t ty 2 t t) 2
For (a) we get Uj, = Q(ggjifi)f when 0] # 6% and Uy, = Q(ig%igp when
0t = 6. Since we do note observe whether 67 = 6% or not, we must weight
these two estimates according to the posterior probability, given X! and X

and we get an estimate
Ut// = pd,tUt/ +ps,tUtI*

where ps; = P(6} =04 | X!, X%), and pgr =1 — ps.e.

Concerning problem (b), the computation of E(Gy | u, 0%, 65) is slightly dif-

ferent from those in ([1] page 1167) because the time parameter also appears

in H:

Ay, 1(] = 00, 0]) + 8 (] — 00, 0]) + gy (] — 00, 0])
vy, ¢ (R) + dgt (R) + dgt (R) ’

E(Go,t |u,0t,01) =
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hence for 6% # 6, we have
E(Go,i lot,01) = [T E(Ge, w0t 05 )AH (u gt o)

oo @u,t(1=00,0) 48t (1-00,60))+0y (1—00, 6])
= f_oo o (R)+65, (R)+3, (R)

dH (u |0§,95)

= JIZ N (s t0*)( = o0, O))AH (u ly gy) + 5 Fal] = 00, 6]).

—o0 M+2

Gi(0) = E(Gi(] =00, b]) lo;.01)

= 313 Ja QU5 AH (u gy o) + 575 F2(] — 00, 0])

(o—u)? —1 (u—py p)?

M [too 1 . o2 2
— D) fioo \/ﬁa@gl (fioo e 2 to? dx)e 2 toy du + M—+2F2(]

Using Fubini formula, we get

2 -1 (u—u1_yt)2

|
-

z—u)

— 00, 0]).

S 0 oo 5 to
C0) = 35 oS a2 ef 7t du)de+ 75 (] — oo, 0])

—1_ 1 (@=u)?
_ M fG \/ththa2 e 2 w%_‘_mz 102 dx
M+2 J—oc0 V2

= N(p,, tof +to®)(] — 00, 0]) + 575 Fa(] — o0, 6]).

Therefore for 6% # 0% we get

A 5o, +9
G, = MLHN(/LM, to? + to?) + %
_ M t2(01)%+3tp’to? 0921042
- mN(Ml,t7 Qltp2+t0'2 ) 1144_22 .
If 61 = 6%, then for reasons given above, we get
A M 20t (toy)? + 2tp?to? 20t

Gy

T M2 (p2+02’ tp? + to? M+2



Chapter 5

Continuous time Dirichlet

hierarchical models

In some recent and interesting papers, hierarchical models with a Dirichlet
prior, shortly Dirichlet hierarchical models, were used in probabilistic classi-
fication applied to various fields such as biology ANTONIAK, C.E. (1974).,
astronomy ISHWARAN, H. and JAMES, L.F. (2002). or text mining BLEI,
D. and JORDAN., I. J. (2005). Actually, these models can be seen as com-
plex mixtures of real Gaussian distributions fitted to non-temporal data.
The aim of this chapter is to extend these models and estimate their param-
eters in order to deal with temporal data following a stochastic differential
equation (SDE).

The chapter is organized as follows. In section 2 we briefly recall Dirichlet
hierarchical models. In section 3 we consider the case of a Brownian motion
with a Dirichlet prior on its variance which is shown to be a limit of a random
walk in Dirichlet random environment. As an application, we estimate, in
section 4, regime switching models with stochastic drift and volatility.

In section 5, we consider the case of functional data such as signals or solu-

tions of SDE’s. Computing some posterior distributions in the multivariate
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case, the preceding method is extended in order to classify such functional

data.

5.1 Dirichlet hierarchical models

Let P ~ D(cH) denote a Dirichlet process with precision parameter ¢ > 0
and mean parameter H, where H is a probability measure on a Polish space

X. It is well-Known that P can be approximated by

N
P = pidx,()
=1

where

X, X H

(pi) ~ SB(e, N) (5.1)

(i) L (X3),
SB(c, N) denoting the stick-breaking scheme of Sethuraman. We will say
that (X;)1 2., follows a Dirichet hierarchical model if

7777

iid
X;|P~P
| (5.2)

P ~ D(c, H).
5.2 Brownian motion in Dirichlet random en-

vironment

5.2.1 Random walks in random Dirichlet environment

Let D(ca) denote a Dirichlet process with parameters ¢ > 0 and «, a finite

measure on a polish space X.
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Consider a random variable H and a sequence (U;) of random variables de-
fined by the following hierarchical model
U |V =0 N0,
Vi P~P

5.3)
P | c~D(cl(v, 1)) (

. cn~ F(nla 772)
Since V is sampled from a Dirichlet process, we have o < oo a.e. because

PV < o) =E(E(V € R | P, P(R))) = E(P(R)) = 1

Hence, we are allowed to consider the following random walk (S,)nen in

Dirichlet random environment, starting from 0:

For any real number ¢ > 0 let

1

where [x] denotes the integer part of .
Let B° = 0B denote a zero mean Brownian motion with variance o2, B

denoting a standard Brownian motion independent from V.

Proposition 5.2.1
(S!)iz0 = VB.

Proof
Let £ = C(R4) be the space of real-valued continuous functions defined on

R, . For any bounded continuous function f defined on £ we have

[ rsnap = [ ([ r@aPgi-)ap)

But, a standard result on the convergence of Gaussian random walks is that

/E f(@)dPspy=g — /E f(z)dPge
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and this integral is dominated by || f ||

Hence by the dominated convergence theorem we have

JUSDz)dP — o ([ f@)dPse (@) ) dPo(0)
= Jo (Jy Flon)aPp)dP, (o)

= [ f(oB)dP
the last equality being due to the fact that B and ¢’ are independent.

Definition 5.2.1 A Brownian motion in Dirichlet random environment (BMDE)
18 a process Z such that
( Z|V=0=1r(B

V'|P~P

P |c~D(c(v1, 1))

\ ¢~ F(,r]:[? 772)'

So, the above random walks in Dirichlet environment converge to a BMDE.

5.2.2 Simulation algorithm

An order to simulate a M paths Z',..., ZM of BMDE, proceed as follows:
A path of a BMDE process (Zy = 0, Zy,, .. ., Z;, ) can be simulated as follows:
Let dt =t;,11 —t; > 0 be small enough and let K be the stick-breaking pre-
cision.

Draw ¢ from T'(n,72) and draw ¢ = (q1, ¢o, - - -, qx ) from SB(c, N).
Draw x = (21, 3, ..., zrx) with z;’s ud (v, va).

Repeat M times:

Draw o~! from Zfil ¢i0z,, draw Zy = 0 and n points Z;, such that Z;
Zy, N0, o2dt).

i+l

Simulations
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0
-2.5e-005 ~2.0e-005 -1.5e-005 -1.0e-005 -5.0e-006 0.0e+000 5.0e-006

Figure 5.1: M Paths of BMDE and non Gaussian density of (Z}, ..., th\f)

5.2.3 Estimation

Due to proposition 1, given an observed path (z;, of a BMDE, an estimation
of its parameters can be obtained by performing Ishwaran and James blocked
Gibbs algorithm with 0 means and equal variances on the data 2, , — 2, (see

Ishwaran - James paper, Section 3).

5.3 Description of the model

let (w, F, Fi, P) be a stochastic basis and (W;) a one dimensional Wiener
process adapted to (w, F, F;, P). We consider a stochastic process satisfying

the following SDE:

where the function h(.) is assumed to be unknown, the volatility coefficient
6(.) is a known function of time and has to be correctly estimated, the drift
coefficient b(t, x) may be unknown. We observe one sampling path of the
process (X, t € [0, T) at the discrete times t; = iA for i = 1,..., N. The

sampling interval A is small in comparison of T'. Let assume that N := TA~!
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is an integer.

We will use the following assumptions:

e (A0): 6(t) is adapted to the filtration F;, b(t,.) is non-anticipative map,
b € CHR', R) and the exist Ly > 0 such that YLy > 0 such that Vt €
0, T], E(6*) < Ly and E(6®) < Ly.

e (Al): () = Zzzo 0,11,.1,,,)(.) where t, is the volatility jump times.

e (A2): 3> 0 such that 62(.) is almost surely Hélder continuous of order m
with a constant K (w) and E(K (w)?) < +oo0.

If we assume that the volatility jump times correspond to the sampling times
t; = 1/\, we have

o (A1): 0(.) = o8 0illys, 1., () we denote 562 = 62, — 62.

and if moreover there is at most one change time in each window we get
(A3).

e (A3): (Al) and (A1’) are satisfied and inf,—o__ f|t,4+1 —t,| > AA.

.....

Remark 5.3.1 If 6(t) satisfies a S.D.E. then (A2) is fulfilled, see e.g [A.
Revuz and M.Yor, (1991)].

We need to control ftt;“ bi(s, X,)ds, so we will use:

(B1) 3K7 >0, Vtel[0,T], E((t, X;)*") < Kz In all the sequel we work
on the simplified model:

dX, = by(t, X,)dt + 0(t)dW,.

Under some natural assumptions, the model (2) becomes (3) after the follow-

ing change of variable:

Proposition 5.3.1 (Pierre Bertrand) Assume that there exists a domain
D C R such that h € C(D, R, — {0}) the space of continuous function
from D to R, — {0}, h™' € L, .(D) and for (X;) solution of (2) satisfying
P(X, e D,Vtel0,T]) =1.
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Let H(z) =€ h™'(&)dE. Then Y, = H(X,) satisfies the S.D.E (3) with
bi(t, ©) = = (z)a(t, x) — 1B (2)62(2).

5.4 Estimation of the Volatility using Haar

wavelets basis

Since the size of the window appears in numerical applications as a free
parameter to be arbitrarily chosen, we give a description of the Estimator

introduced by Pierre Bertrand

N/A-1 A-1
HA,A(t) = Z {A_l Z(thA+i+1 - thA+i)2}]]'[tkA§t(k+1)A)(t)' (55)

k=1 k=1

5.5 SDE in Dirichlet random environment

More generally, consider the following model. During the observation time
interval [0, T'] the process X, evolves according to various regimes. Regime

R; holds during a random time interval [T;_;, T}) where
O0=Ty<Ti<y<...<T,=T.

The drift and the variance are randomly chosen in each regime but they do

not change during this regime, so

I L
dX, = Z pr, g,y 1y ()dt + Z oz, 1) ()dBe

J=1 J=1

where the R;’s € {1,..., N} are random positive integers such that
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[ Ry [, S pedi()
(i, o) |0 ~ N (0, 0,) @T (1, m2), k=1,..., L
pla~SB(a, N)
a~ (v, 1)

| 6~ N(0, 4).

5.5.1 Estimation and empirical results

The above process (X;) is observed at discrete times, say idt, i = 0,1,2,...,n.
It is also assumed that the regime changes occur at these times. The esti-
mation of the above parameters can be done through Ishwaran and James

Blocked Gibbs algorithm where their class label variable K is our regime R.

AX; |rguo ™ N (ir,, or,)
R, |p%i ij:l POk (.)

i o~ N(0,0,,)

o ~ I'(m,n2)

P la~ SB(a, N)

a~ (v, 1)

| 6~ N(0.4)

Our method was tested on the index of the Indian stock exchange market
(www.nseindia.com), where the number of data is n=300. We have found 3

regimes:

Regime 1 | Regime 2 | Regime 3

4635.765 | 4924.502 | 5348.373
o? 59579 12879.15 | 19773.46

Probability 0.38 0.44 0.17
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The analysis based on 25000 iterations following an initial 2000 iteration

burn-in.

5.5.2 Option pricing in a regime switching market

The above setting can be used in the option pricing problem with X; =
log(Sy) where (.S;);>0 is the stock price process governed by a geometric Brow-
nian motion, and o, is a stochastic volatility during regime R;. Observe that
the estimations are done here without using any sliding windows technique
and without assuming that 7; — T;_; is exponentially distributed, as it is

done with Markov chains in regime switching markets.

Definition 5.5.1 Suppose X is an n X p matriz, each row of which is inde-

pendently drawn from p-variate normal distribution with zero mean:

X = (z,..., a:p)T ~ N,(0, V).

1

Then the Wishart distribution is the probability distribution of the p X p

random matriz

W=XX"=) XuX[.
i=1
One indicates that W has that probability distribution by writing
W ~W(n, V).

The positive integer n is the number of degrees of freedom.

5.6 Classification of trajectories

We consider the problem of classifying a set of n functions representing sig-
nals, stock prices and so on. Each function is known through a finite dimen-
sional vector of observed points. In order to classify these functions, we now
extend the blocked Gibbs algorithm to vector data. First let us precise our

model.
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5.6.1 Hierarchical Dirichlet Model for vector data

In the finite d-dimensional normal mixture problem, we observe data
f=(f1, fay..., fn), where f; are iid random curves with finite Wiener mix-

ture density, the curves f; can be represented and approximated by the vector

fi= (Oofiy Dafiro ooy ALE)
bp(f) = / O o)) AP W) = S0 pi 06 (F 1) (5.6)
RxR+

where ¢(f |,) represents a d-dimensional normal distribution with mean 0
and variance matrix o.

Based on the data , we would like to estimate the unknown mixture distribu-
tion P. We can devise a Gibbs sampling scheme for exploring the posterior
Pn|f

Notice that the model derived from (5) also contains hidden variables

K ={Kj,..., K,,} since it can also be expressed as

(

Fi | K, W, 1™ Ny (i, AtW,)

Ki | p~ Y sy pde(-)

g k|0~ N, 0,) (5.7)
Wi ~ W(s, V)

| 6~ N0, )

where W(s, V) and Ny (i, o) denote a Wishart and a multivariate Gaussian
distribution respectively, and p ~ SB(e, N).

Note that a similar model for vector data appear in Caron F. et al. (2006)
but in our case the parameters of the Whishart prior are updated at each
iteration. In addition, we have a problem of clustering which justifies the
use of the hidden variables K;’s. In particular we will need to compute the
posterior distribution of the class variable K and of the weight variable p.
To implement the blocked Gibbs sampler we iteratively draw values from the

following conditional distributions:
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wl| K, W, 0, f

WIK, p K, f

K|p o Z f
p| K, «
alp

0| p.

5.6.2 Posterior computations

Blocked Gibbs Algorithm for vector data .
Let {K7,..., K}, } denote the current m unique values of K. In each itera-
tion of the Gibbs sampler we simulate:

(a) Conditional for pu: For each j € {K7T,..., K}, draw

ind * *
Hj | W, K, 0, f~ M(:Uj? W])
where p} = Z{i:Ki:j} fi + 6 and Wr = o,, also for each j € K — K*,
independently simulate u; ~ N (0, 0,,).
(b) Conditional for W: For each j € {K7,..., K}, }, draw
ind 7 7
Wi lw K, fXW(s Y (Fo= ) (i =) + V)

where W(V, p) denote the Wishart distribution with parameters V' and p.

(c) Conditional for K:

N
Kz|p7 M?Wf%lzph,zéh()7 Zzlual

h=1
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where for each h=1,2,..., N

, 1 o X fo_ fo_ T
Ph,i OCPh((QW)m <d@t(Wh)>l/2> e p<{d,;:h}(fd pon)(fa — pn)" Wh>>

and < A, B > is the trace of AB.

(d) Conditional for p:
For any integer N, let Vi,..., Vy_1 be iid (1, ¢) and Vy = 1. Let p; =
Vi, pe=0-=Vy)...(1=Vx )VF k=2,...,N

where

N
Vk*:5<1+7“k,04+ Z rl>, for k=1,..., N—1

I=k+1

and (as before) ry records the number of K; values which equal k.

(e) Conditional for a:
N-1

04|pNF<N+771—1,772—2509(1_‘/1:))7
k=1

for the same values of V¥ used in the simulation for p.

(f) Conditional for 6:

where

Proof
Let ¢ denote the distribution function, for every j € {K%,..., KX}
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(a) Conditional for pu:

¢uj\W,K,0,f(y) = ¢f\uj:y,W,K,G(y)¢uj|W,K,G(y)¢W,K,0
= H{d, K*=j} éf)fd\uj:y, w, K,e(y)%j\w, K,e(y)¢w, K,0
- < H{d, Kies) einfde—%deijd> eiv"0—3y oy

iy Y, K%=5} fde*% 244, K;:s}(deijd)eineféyTUuy

= e

~ T ~ . ~
<€*% Z{d, K;:s}(fd ijd)) elyT(eJrZ{d, K%=j} fd)*%yTUuy

hence

wi | W K0, F NG+ S fu o)

{d, Kj=5}
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(b) Conditional for W: For each j € {K7,..., K} }

¢Wj*1|u7K7f(M) = ¢X\Wj=M,K(M)¢ij1\K,M(M)¢u,K(Z> t)

- <H{d K3=3j} efé(fd’“j)TM(fd*W)
9 d_

n—Il—1 n—-I1—1
det(M ™ 2 2 —Irrv-1pm
X é @) € 2 r( )¢u,K(Z> t)
22 det(V)2Tp(%)

eféTr <Z{d,K(;:j}(fd*#j)(fd*#j)TM>

n—I1—1

det(M ™ 2
nl n
2% det(V)ETp(2)

n—I[l—1
) 2

6—%Tr(V*1M)¢M’K(Z7 t)

det(M "5 )" e_%TT <(Z{d, K;l:j}(fd—uj)(fd—ﬂj)T+V_1)M)
2% det(V) 3T, (2)

X QS%K(Z’ t)

therefore,

Wj ‘ s K7 f Zg(d W<n> ( Z (fl - :uj)(ﬁ - ,UJ')T + V)il)‘
{i:K;=j5}

(c) Conditional for K:

o< P{f|p W, Ki=j, ny P{K; =s | W, pu}

. _
= ( g wimsy be iz 6_§(fd_”S)TW5(fd_“s)> .
(2m)i/2 <det(Ws))
Hence,
]_ Ns ~ ~
ps,iocps< 1/2) eXp< Z (fd_,us)(fd_,us)Ta Ws>

(2m)1/2 (det(Ws)) (0, Koes}
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where n, is the number of time K} occurs in K.

(d) Conditional for 6:
¢9|u:u’(‘9) X d)u\a(ﬂ/)ﬁbﬁ(e)

= vazl ¢N|9(M;)¢9(9)

N T 1T
= <Hj:1 e e 2k U““?)G—%HTAH

- N T N 1 /T
_ <ezzj:19 u}ef%GTAG)e L —suoun

Hence the distribution of 6 | u o ./\/'L(Z:j.\[:1 wj, A).

5.6.3 Classes of volatility

Let (S;) be the stock price process and suppose that X; = log(S;), satisfies:

where the function A(.) is assumed to be known, the volatility coefficient
6(.) is a random function of time and has to be estimated and the drift
coefficient b(t, x) is unknown. We observe a path of the process (X;, t €
[0, T']) sampled at discrete times t; = iA, fori=1,..., N.
Under some conditions and after a change of variable (see e.g. [5]), equation
(5.8) reduces to
dX; = b(t, Xy)dt + 0(t)dB;.

A refined method to estimate 6(t) consists in using wavelets. Consider
(V;, j € Z) an r-regular Multi Resolution Analysis of L?(R) such that the
associated scale function ® and the wavelet function ¢ are compactly sup-
ported. For all j, the family {®; (t) = 2//2®(2/t—k), k € Z} is an orthogonal
basis of V. Time being sampled with A = 27", .5,, the estimator is then:

0°(t) = > tim), k®5m), (1) (5.9)
k
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for j(n) < n, where

=z

—1
[in) b = D () (X, — Xi) (5.10)

i=1

Suppose that we have observed n trajectories Xy, ..., X;,..., X,, sampled
as above, and that we want to classify them according to their volatility
component, that is, we want to classify the 6,’s estimated by (5.9).

We then see that we have just to apply the preceding algorithm to the vectors

,ué.(n)’  Which are finite dimensional representations of the 6;’s.

5.7 Conclusion

We have extended Dirichlet hierarchical models in order to deal with tempo-
ral data such as solutions of SDE with stochastic drift and volatility. It can
be thought that the process on which are based these parameters belongs
to a certain well-known class of processes, such as continuous time Markov
chains. Then, we think that a Dirichlet prior can be put on the path space,
that is a functional space. The estimation procedure in such a context is the

topic the next chapter.



Chapter 6

Markov regime switching with
Dirichlet Prior. Application to
Modelling Stock Prices

We have seen in Chapter 3, some examples of continuous time Dirichlet pro-
cesses with parameters proportional to the distribution of continuous time
processes, such as the Wiener measure one.

In the present Chapter, motivated by some mathematical models in finance
dealing with 'Regime switching markets’, we consider the case where the con-
tinuous time process is a continuous time Markov chain whose state at time
t modellizes the state of the market at time t.

Indeed, while in preceding Chapter 5, volatility was constant during some
time interval of random length without any hypothesis on the switching pro-
cess, here the switching depends on a Markov chain which states represent
the different regimes. Also, the various values of the trend and the volatility
depend on the state of this chain which ’chooses’ these values among some
i.i.d. ones. Clearly, we deal with stochastic volatility

In our approach, the regimes play the same role as the classes play in classi-
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fication: each temporal observation therefore belongs to a class that is to a
regime.

Our contribution consists in placing a Dirichlet process prior on the path
space of the Markov chain, which is a cadlag function space. This idea is
new as it has never been used in the literature.

In the first Section, we present our model. Section 2 deals with the estima-
tion procedure, the computations of the posteriors follow from those done
in Chapter 5. In the last Section 3, we give some indications on the imple-
mentation of the algorithm in C language and some numerical results are

presented.

6.1 Markov regime switching with Dirichlet
prior

In this section , we take & = H, the distribution of a continuous time Markov
chain on a finite set of states and we propose a new hierarchical model that is
specified, as an example, in the setting of mathematical finance. Of course,
this can be similarly used in many other cases. We consider the Black-Scholes
SDE in random environment with a Dirichlet prior on the path space of the
chain, the states of the chain representing the environment due to the market.
We model the stock price using a geometric Brownian motion with drift and
variance depending on the state of the market. The state of the market is
modeled as a continuous time Markov chain with a Dirichlet prior. In what
follows, the notation o will be used to denote the variance rather than the
standard deviations.

The following notations will be adopted:

1. n will denote the number of observed data and also the length of an

observed path.
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2. M will denote the number of states of the Markov chain.
3. The state space of the chain will be denoted by S = {i:1<i < M}.
4. N will denote the number of simulated paths.

5. m will denote the number of distinct states of a path.

e The stock price follows the following SDE:

ds;

t

where B, is a standard Brownian motion. By the Ito’s formula, the

process Z; = log(S;) satisfies the SDE,

dZt = ,U(Xt)dt + \V O'(Xt)dBt, t 2 O,

where p(X;) = B(X;) — 30(X;). The observed data is of the form
Zor Zas o T

e The process (X;) is assumed to be a continuous time Markov process
taking values in the set S = {i : 1 <i < M}. The transition probabil-
ities of this chain are denoted by p;;, ¢, 7 € S and the transition rate
matrix is Qo = (¢;;)ijes With
A >0, gij = \ipi; if 1 F# 7, and Gii = — Zqij, 1,5 € 8.

J#
Define the log-returns, Y; = Z; — Z;_1 = log(S;/Si—1), t = 1,2,...,n.
Suppose we know the path X = {X;, 0 < s < n}. Let T;(¢) be the time
spent by the path X in state j in the time interval [t — 1,¢]. Define

plt) = ST o)=Y o). (6)

Then, conditional on the path X, Y; are i.i.d. N(u, 0¢),t=1,2,..., n.
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e For each ¢ = 1, 2,..., M, the priors on p; = (i) and o; = o(i) are
specified by

w NG, ™),  with  0~N(0,A), A>0, (6.2)
ag; i’QJd F(l/l,ljg). (63)

e The Markov chain {X;, ¢ > 0} has prior D(«a H), where H is a prob-
ability measure on the path space of cadlag functions D([0, o), S).
The initial distribution according to H is the uniform distribution
mo = (1/M, ..., 1/M), and the transition rate matrix is Q) with p;; =
1/(M —1) and \; = A > 0. Thus the Markov chain under @) will spend
an exponential time with mean 1/) in any state ¢ and then jump to
state j # i with probability 1/(M — 1).

A realization of the Markov chain from the above prior is generated
as follows: Generate a large number of paths X; = {z! : 0 < s < n},
i=1,2,..., N, from H. Generate the vector of probabilities (p;,i =
1,...,N) from a Poisson Dirichlet distribution with parameter «, using

stick breaking. Then draw a realization of the Markov chain from

N
p= szf;xi, (6.4)
i—1

which is a probability measure on the path space D([0, n), S). The
parameter A is chosen to be small so that the variance is large and
hence we obtain a large variety of paths to sample from at a later

stage. The prior for « is given by,

o~ T(n, m2). (6.5)

6.2 Estimation

Estimation is done using the simulation of a large number of paths of the

Markov chain which will be selected according to a probability vector (gener-
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ated by stick-breaking) and then using the blocked Gibbs sampling technique.
This technique uses the posterior distribution of the various parameters.

We denote by u, and o, the current values of the vectors (p1, 2, - - -, fin),
(01, 09,..., 0,), respectively. Let Y be the vector of observed data (Y3,..., Y,).

Let X = (x1, @9, ..., x,) be the vector of current values of the states of the
Markov chain at times t = 1, 2,..., n, respectively. Let X* = (aF,..., z))

be the distinct values in X.

6.2.1 Modifying the observed data set

In order to obtain the conditional distribution of the parameters, we first
need to extract the change in the log-returns between the jump times of
the Markov chain. Let 0 = ¢35 < t; < ty < ...t; be the times at which
the path X changes state. Define the log-returns between the jump times,
Wy = log(St, /S, _,), k = 1,2,...,J. To obtain realizations of the W} from
the observed Y process, we need to simulate Gaussian random variables

conditioned on their sums.

Consider any ¢t € {0,1,...,n} for which the chain changes state atleast
once in the time interval [t — 1,¢]. Let tp_1 <t —1 <t} < ... < tjpp <
t < tkipt1, be the jump times that lie in [t — 1,¢], for some p > 1. Let
V' =log(Sy, /Si-1) and V> = log(S/Sy, ). Then,

p
Y, =V + Z Wi + Vi (6.6)

=1

Suppose for some the chain X is in state j; in the time interval [tg i1, tx1s),
1=0,1,...,p+1.Set so=tpy —t—1,8 =tpr; —tpri1,2=1,2,...,p, and
Spy1 =t — tpip. Let m; = p(ji)s; and v; = o(j;)s;, i =0,1,...,p+ 1. Recall
that Y; ~ N (p, 0y), where pu(t),o(t) are as defined in (6.1). It is easy to see
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that the joint conditional density of (V;', Wiy1,..., Wiy,) given V; =y

2
f(ug, uq, - .. CHexp < Lo + BT Uptl (u _ Up1T + iy — mp-l—l)) )

2 Vi Upt1 Vi + Upt1
(6.7)

where C' is a constant that depends on y and the parameters. Thus, one can

simulate the variables V;', Wy, Wy 1, ..., Wiy, from independent Gaussians
and then obtain V;? using (6.6).

Using the above procedure, we can obtain a realization for all W}, for which
[te—1,tx] C [t—1,¢], for some t € {0,1,...,n}. Now for any k for which there
isag>0,suchthat t — 1 <t 1 <t<t+1<...<t+q<tpy<t+q+1,

we can obtain W}, using the relation
q
Wi V2 S Vo + Vi (63)
i=1
Note that the W values depend on the path X and need to be computed in

each iteration.

6.2.2 The Gibbs sampling procedure

We are now ready to estimate the posterior distributions of the parameters
using Gibbs sampling. Each iteration produces one realization of the param-
eters from their approximate posterior distribution. Each iteration consists
of a large number of samples obtained recursively for each parameter condi-

tioned on the current values of the other parameters and the data.
e Conditional for p. For each 7 € X* draw
’LTLd * *
(,LLJ“H,T g, X W) N(:uju Uj)? (69)

where
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()
O—j: _+_ 5
o TH

and n; being the number of times j occurs in X. For each j € X \ X*,

independently simulate p; ~ N (6, 7).
e Conditional for o. For each j € X* draw

ind &

(ojlp, v, X, W) ~ T'(1n + 5 Vs i), (6.10)

where

. Wi — pj(ts — t_1))?
V27j:V2,j+ Z ( i Iuj(k k1>)

k:Xp, = 2tk = te1)

Also for each j € X \ X*, independently simulate o; ~ I'(vq, 13).

e Conditional for X.

N
(XIp) ~ Y pidx,, (6.11)
=1

* 1 _Fl.(wji_ﬂj(tk_tk—l)P)
e U < 11 - (2moy(tk — o) b

k-1
(6.12)
where (2}, ..., z*) denote the current m = m(i) unique values of the
states and ti, W} are as defined in subsection 6.2.1 for the path X,

i=1,..., N.
e Conditional for p.

p=V 5 andp,=1-V")--- 1=V )V, k=2,3,..., N—1,
(6.13)

where

Vi (g <1+7“k, &)7

re equal 1 if ¢ = k and 0 else.



Markov regime switching with Dirichlet Prior. Application to
100 Modelling Stock Prices

e Conditional for «.
N-1
(alp) ~T (N +m—1,m— > log(l— Vf)) ,
i=1

where the V* values are those obtained in the simulation of p in the

above step.

e Conditional for 6.

(O|p) ~ N(07, T7), (6.14)
where
T* M
0" = T—MZMJ,
j=1
and
f— % + i o
T ™= A
Proof.

(a) The computation of the posterior distributions for p, o and 6 follow in
the same manner as in Ishwaran and James (2002) and Ishwaran and
Zarepour (2000). Here, X; = s means that the class variable is equal

to s.
(b) Conditional for X:

P{X=X;|p, p,o Wt=P{W |p, o, X =X, u}P{X =X, |0, u, ptP{p, o}

e 1 —%(Wg—ujm—tk_w)
e VLG | G e §

J=1 {k:xi’i* =j}
k—1

where X; = (z%,..., 2) and (27", ..., z"*) denote the current m unique

values in the path X;.
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(c) Conditional for p : The Sethuraman stick-breaking scheme can be ex-
tended to the two-parameter Beta distributions, see Ishwaran James

(2001) and Walker Muliere (1997, 1998):

Let Vj, n B(ag, by), foreach k =1,..., N. Let
p=V,andpr=(1-V)--- 1=V )V, £=2,3,..., N—1.
We will write the above random vector, in short as
p~ SB(ay, by, ...,an_1, by_1).
By Connor and Mosimann (1969), the density of p is

N-1
F(ak - bk) )palfl any—1—1 _by_1-1

< F(ak)F(bk) 1 "'prl pN X

X(l _ Pl)b1—(a2—b2) o (1 _ PN_Q)bN—2_(aN—1_bN—1)’

where P, =p1 + ... + pk.

From this, it easily follows that the distribution is conjugate for multi-
nomial sampling, and consequently the posterior distribution of p given

X, when a, = 1 and b, = « for each k, is

* * * >k
where
by = «
ap, = 1+,

and 7, equal 1if ¢ = k and 0 else, k=1,..., N-1. O
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6.3 Implementation

The algorithm presented in the previous section was implemented in C lan-
guage. The implementation includes:

- functions that simulate standard probability distributions: Uniform, Nor-
mal, Gamma, Beta, Exponential.

- a function that returns an index € {1,..., n} according to a vector of prob-
ability p1, ..., pn.

- a function that simulates a probability vector according to stick-breaking
scheme.

- a function that simulates n paths of a Markov chain.

- a function that records the number of times a state appears in a path.

- a function that chooses one of the paths according to a vector of probability.
- a function that modifies the parameters of prior distributions according to

the formulas of the posteriori distributions.

After having simulated a number of paths, we perform the iterations. At
each iteration a path is randomly selected and the parameters are updated
according to posteriori formulas. At the end of each iteration of the Gibbs
sampling, we obtain a path X of the Markov chain. From this, the parameters
m and @y can be re-estimated. From )y the parameters )\; and p;; can be

derived.

6.3.1 Simulated data

We fit the model, using the algorithm developed above, to a simulated series

of lenght n = 480, with a number of states (regimes) M = 4, mean and
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variance in each state being chosen as follows:

(,ul,al) = (—115, 0450)
(2, 02) = (—0.93,0.450)
(,LL3, 0'3) = (—060, 0440)
(

ta, 04) = (1.40, 0.500).

We have performed our algorithm on that series with number of states M =
10, number of paths N = 100 and number of iterations = 25,000. Then,
we have observed that the algorithm is able to put most of the mass (in
terms of the stationary distribution of the MC) on 4 regimes, which are
close to the ones chosen above. At the end of the iterations we compute
a confidence interval for the mean and for the variance w.r.t. each regime.
We can conclude that the algorithm is able to identify the parameters of the
simulated data set.

The confidence intervals for the mean and the variance are given below.

Regime 1:

I, = [-1.208, —1.12423] and I, =[0.431, 0.4738].
Regime 2:

I, = [-0.9351, —0.9296] and [, = [0.442, 0.4538].
Regime 3:

I, = [-0.63446, —0.5140] and I, = [0.4319, 0.4491].
Regime 4:

I, = [1.30114, 1.43446] and I, = [0.4949, 0.5081].

6.3.2 Real data

We have also applied our algorithm to the Bsemidcap index data of the Indian
National Stock Exchange (NSE) from 21/12/2006 to 15/11 /2007 (www.nseindia.com).
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For this dataset we have, n =

paths while Gamma(2, 4) is the prior for a.

250, At = 1, and we deal with N = 100 of

With the above choice, we obtain 6 regimes for which the estimates for the

mean, variance and stationary probabilities are as follows:

R1 R 2 R 3 R 4 R 5 R 6
0.001124 -0.009479 0.000629 -0.004579 | 0.000829 0.001109
o | 2.9132 e-05 | 7.2166 e-05 | 2.3023 e-05 | 7.3800 e-05 | 1.186 e-05 | 3.3372 e-05
m 20 % 3 % 29% 5 % 10 % 33 %

The most frequent Markov chain path, its parameters \;s and the matrix

of transition probability (p;;)i1<izj<e are respectively equal to:

353636361651363533665636114161336663133
36333456666461116666613331613356331654136
46335636236133616655115353361656166316311
62366633266613366313661661161535135341335
31366613565336361356665163311666361363666
663636646361164613436.

)\1 )\2 )\3 )\4 )\5 )\6

0811 1]07|11]095|0.75
0 048 0.03 0.06 0.42
0 0.66 0 0 033
0.16  0.02 0.062 0.2 0.54
0375 0 0 0.125 0.5
0.157 0 0.42 0.052 0.36

0.36 0.038 0.384 0.077 0.134
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It is interesting to note that in the high volatility states, the index has a neg-
ative drift as is usually observed in analysis of empirical data. A by-product
of our algorithm is the distribution of the current state of the volatility, which

is required to compute the price of an option ( see [?] and references therein).

6.4 Validation.

Consider the stock price data for duration 1 < ¢ < Tj. Estimate the model
based on this data. The carry out a 1l-step forecast on the time interval
Ty <t < T, using the estimated model. Compare the MSE with other models
like GBM with fixed variance, GARCH (Rene Carmona), simple Markov

switched model etc.

6.5 Option Pricing

The model we follow is as in Ghosh and Deshpande (G-D), except that we
now have a prior on the variables. So, essentially we have to take take several
realizations of our parameters and for each of them compute the option price
and then average over these values.

Suppose we have stock price for time 0 < ¢ < Tj, then use formula (4.1)
in G-D to compute the option price with s = Sy, which is the current price
and take t = T, to be say 15 (the day the option matures). This will give us
the values (¢(7, Sz, (k,i),k=1,...N,i=1,..., M).

Note that the vector ¢ is written as

(¢(t7 87 (1’ 1))7 ¢(t’ 8’ (17 2))’ R ¢(t’ 8’ (17 M))? ¢(t’ 8’ (27 1))’ ety ¢(t7 S? (N’ M)))

and the transition matrix and the other matrices accordingly. For example,
the matrix 3 in (4.1) will be a block diagonal matrix with N blocks each of
which is (diag(oy,...,on). Thus ¥ will be a NM x NM matrix.
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Once we solve (4.1), then, given the history of the price upto time 77,
we have to estimate the probability that the Markov chain is in state (k,1).
Then we have to average the option price over these probabilities.

This option price should be compared with the usual Black-Scholes for-
mula for GBM with fixed o.

In this numerical work, we can keep the interest rate fixed. See some

literature on option pricing for choice of the interest rate.



Chapter 7
Conclusion and Perspectives

Our main subject of interest was to investigate Dirichlet processes when the
parameter is proportional to the distribution of a stochastic process (Brown-
ian motion, jump processes, ...) and to propose continuous time hierarchical
models involving continous-time Dirichlet processes.

Although this area requires some rather nontrivial techniques, we have shown
that such a setting can be of interest in modelling SDEs in random environ-
ment and that the proposed estimation procedure works.

Let us finally mention some perspectives.

It is clear that it would be interesting to extend the method to other SDEs
and to other kind of processes, we think of replacing, in the last chapter,
the markov chain by a diffusion, a spatio-temporal process or a multivariate
process.

It would be also of interest to use the estimated model for prediction and to
compare this prediction with other models.

Concerning the algorithm in the last chapter it can be observed that for each
iteration, an option price w.r.t. the selected path can be computed by using
for example the formula in Ghosh and Deshpande. After performing all the
iterations, we will have a distribution of option prices that can be used for

decision-making on the final option price. This should be compared to other
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decision procedures.
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Modeéles hiérarchiques de
Dirichlet & temps continu

Résumé :

Nous étudions les processus de Dirichlet dont le paramétre est une mesure proportionnelle
a la loi d’un processus temporel, par exemple un mouvement Brownien ou un processus
de saut Markovien. Nous les utilisons pour proposer des modéles hiérarchiques bayésiens
basés sur des équations différentielles stochastiques en milieu aléatoire. Nous proposons
une méthode pour estimer les paramétres de tels modéles et nous l'illustrons sur ’équation
de Black-Scholes en milieu aléatoire.

Mots-clés : Statistiques Bayesien, Mouvement Brownien, Echantillonneur de Gibbs,
Chaine de Markov, Mélanges, Milieu aléatoire, Regime-switching, Calculs stochastiques,
Equations différentielle stochastiques, volatilités stochastiques, mesure de Wiener.

CONTINUOUS TIME DIRICHLET HIERARCHICAL
MODELS

Abstract :

We consider Dirichlet processes whose parameter is a measure proportional to the distri-
bution of a continuous time process, such as a Brownian motion or a Markov jump process.
We use them to propose some Bayesian hierarchical models based on stochastic differential
equations in random environment. We propose a method for estimating the parameters of
such models and illustrate it on the Black-Scholes equation in random environment.

Key words : Bayesian statistics, Brownian motion, Classification, Dirichlet process, Gibbs
sampling, Markov chain, Mixtures, Random environment, Regime-switching, Stochastic
calculus, Stochastic differential equations, stochastic volatility, Wiener measure.
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