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Résumé

Nous étudions les processus de Dirichlet dont le paramètre est une mesure

proportionnelle à la loi d’un processus temporel, par exemple un mouve-

ment Brownien ou un processus de saut Markovien. Nous les utilisons

pour proposer des modèles hiérarchiques bayésiens basés sur des équations

différentielles stochastiques en milieu aléatoire. Nous proposons une méthode

pour estimer les paramètres de tels modèles et nous l’illustrons sur l’équation

de Black-Scholes en milieu aléatoire.

Abstract

We consider Dirichlet processes whose parameter is a measure propor-

tional to the distribution of a continuous time process, such as a Brownian

motion or a Markov jump process. We use them to propose some Bayesian

hierarchical models based on stochastic differential equations in random envi-

ronment. We propose a method for estimating the parameters of such models

and illustrate it on the Black-Scholes equation in random environment.
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Mes remerciements vont à l’égard du Directeur, le professeur Jean-Philippe

ANKER, et des membres du laboratoire MAPMO de l’Université d’Orléans
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Chapter 1

Introduction

L’objectif de ce travail est de proposer un nouveau modèle hiérarchique com-

prenant un processus de Dirichlet comme loi a priori, on dira brièvement

modèle hiérarchique de Dirichlet, qui soit adapté à l’analyse de trajectoires

temporelles, notamment celles qui sont régies par des EDS (équations differ-

entielles stochastiques) en milieu aléatoire.

Le processus de Dirichlet est une loi aléatoire, c’est-à-dire une variable aléatoire

à valeurs dans l’ensemble P(V ) des mesures de probabilités sur un ensemble

V d’observations. Nous utiliserons l’abréviation anglaise RD (Random Dis-

tribution).

Les RDs sont très intéréssants aussi bien du point de vue théorique que du

point de vue appliqué.

Nous utiliserons dans ce travail quatre points, considéres comme importants

dans l’histoire de ce processus.

• En 1969, dans un article fondamental très célèbre, Thomas S. Ferguson

construit le processus de Dirichlet, généralisation des lois de Dirichlet, de-

venu depuis un outil remarquable et classique en Statistique bayésienne non

paramétrique.

• En 1973, J.F.C. Kingman définit des RDs, dits de Poisson-Dirichlet, aux
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propriétés intéressantes et liées à la représentation des processus de Dirichlet

utilisant le processus Gamma.

• En 1974, motivé par les applications, C.A. Antoniak introduit et étudie les

mélanges de processus de Dirichlet.

• En 1994, une méthode constructive des processus de Dirichlet, dite stick-

breaking, utilisée lors de mises en oeuvre informatique, est élaborée par Ja-

yaram Sethuraman [34].

Les applications concernent pratiquement tous les domaines : biologie, écologie,

génétique , informatique, etc...

Récemment ce champ d’application a été étendu en utilisant avec succès

des modèles hiérarchiques de Dirichlet en classification par estimation de

mélanges de lois à partir de données non temporelles, voir par exemple : Ish-

waran et Zarepour (2000), Ishwaran et James (2002) and (2003), Brunner et

Lo (2002), Emilion (2001, 2003, 2004), Bigelow and Dunson, (2007), Kacper-

czyk et al., (2003). Dans ces articles le paramètre du processus de Dirichlet

est une mesure proportionnelle à une loi classique sur R
n.

Le présent travail consiste à étudier l’extension de ces modèles hiérarchiques

au cas de données temporelles, en utillisant notamment le processus de

Dirichlet sur des espaces de trajectoires, le paramètre étant une mesure pro-

portionnelle à une loi de processus temporel (Emilion, 2005).

A partir de l’observation d’une seule trajectoire, il nous est possible de

détecter des régimes de durée aléatoire, lorsque le processus temporel suit

une EDS en milieu aléatoire. Le milieu est représenté par une châıne de

Markov à temps continu dont les états, qui modélisent les régimes, jouent le

rôle que jouent les classes en classification.

Le modèle hiérarchique bayésien que nous introduisons place notamment un

processus de Dirichlet comme a priori sur l’espace des trajectoires de cette

châıne. L’estimation des paramètres est bâtie à partir d’un échantillonneur
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de Gibbs.

Nous traiterons à titre d’exemple l’EDS de Black-Scholes en finance, le drift

et la volatilité étant stochastiques. Le modèle hiérarchique utilisé dans ce

cas ne suppose donc plus le processus gaussien puisque ses marginales sont

des mélanges compliqués de gaussiennes.

La thèse est organisée de la façon suivante :

Les Chapitres 1, 2 traitent des lois de Dirichlet, des lois de Poisson-Dirichlet

et des processus de Dirichlet et leurs mélanges. La fin du chapitre 2 est

consacré à certain nouveau modéle introduit dans des articles trés resent

Au Chapitre 3, nous commencons également la partie originale du travail

en considérant un processus de Dirichlet ayant pour paramètre une mesure

proportionnelle à la mesure de Wiener W . Ce processus, nommé processus

Brownien-Dirichlet, admet une représentation :

Xt(ω) =

∞
∑

i=1

pi(ω)δBi
t(ω)

où les Bi sont des mouvements Browniens i.i.d. de loi W et p = (pi) suit une

loi de Poisson-Dirichlet de paramètre c > 0 indépendant de (Bi
t)i∈N∗ . Il sera

noté D(cW ).

Nous montrons notamment que l’on a une formule de type Ito et la décomposition

classique de Doob-Meyer :

< Xt(ω) −X0(ω), f >=
∞
∑

i=1

pi(ω)(f(Bi
t) − f(Bi

0)) = Mt + Vt

où (Mt) est une martingale, (Vt) est un processus à variation bornée et f une

fonction deux fois dérivable vèrifiant ‖f ′‖[0, T ]<+∞.

On montre aussi l’existence d’un temps local et d’une intégrale stochastique

par rapport à ce processus.

Dans la dernière partie de ce Chapitre, on effectue des calculs de lois a pos-

teriori pour des mélanges de processus de Brownien-Dirichlet lorsque
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• La mesure mélangeante est une loi de Bernoulli H = pδ0 + (1 − p)δ1 :

Si P est un mélange de processus de Brownian-Dirichlet

P ∼
∫

D(cWu)dH(u)

et si f1, f2, . . . , fn est une échantillon de taille n de P alors la distribution a

posteriori

P |f1, f2, ..., fn∼ pH1 D
(

cW1 +

n
∑

i=1

δfi

)

+ (1 − p)F1 D
(

cW0 +

n
∑

i=1

δfi

)

où F1 et H1 sont deux constantes qui dépendent de W ′, la derivée de Radon-

Nikodym de W par rapport à une mesure µ définie dans le lemme d’Antoniak

(Section 3.2.6), et òu W0 et W1 sont deux mesures de Wiener de moyenne

repectivement 0 et 1.

• La mesure mélangeante est une gaussienne H = N (m, σ2) :

Si P est un mélange de processus de Brownien-Dirichlet

P ∼
∫

D(cWu)dH(u)

avec (Wu)u∈R une famille de mesure de Wiener de moyen u. et si θt
1, θ

t
2 est

une échantillon de taille 2 de Pt, t ∈ R+, alors la distribution conditionnelle

de Pt sachant θt
1, θ

t
2 est un mélange de processus de Dirichlet tel que

Pt | θt
1, θ

t
2 ∼

∫

D(cNu +

2
∑

i=1

δθt
i
)dĤt(u)

où Ĥt(u) = H(u |θt
1, θt

2
) ∼ N (µt

1, σ
2
1, t).

Le Chapitre 5 est divisé en trois parties.

• Le mouvement Brownien en milieu aléatoire de Dirichlet

Nous l’introduisons comme limite en loi d’une marche aléatoire

1

n1/2
(U1 + U2 + . . .+ U[nt])
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construite de manière hiérarchique à partir du processus de Dirichlet :



























Ui | V = σ2 iid∼ N (0, σ2)

V−1 | P ∼ P

P | c ∼ D(cΓ(ν1, ν2))

c ∼ Γ(η1, η2).

Nous simulons et estimons les paramètres d’un tel processus.

Comme à l’habitude, le système précèdent se lit de bas en haut :

c suit une loi Γ(η1, η2), conditionellement à c, P suit une loi D(cΓ(ν1, ν2)),

contionellement à P suit une loi P et conditionellement à V les Ui sont des

gaussiennes i.i.d.

• EDS en milieu aléatoire de Dirichlet.

Nous considérons, pour fixer les idées, l’EDS de type Black-Scholes, avec

variance et drift aléatoirement fixés pendant chaque régime, toujours suivant

un modèle hiérarchique de Dirichlet

dXt =

L
∑

j=1

µRj
1[Tj−1, Tj)(t)dt+

L
∑

j=1

σRj
1[Tj−1, Tj)(t)dBt

où les Rj sont des entiers choisis aléatoirement dans {1, . . . , N} et constant

sur les intervalles aléatoires de temps [Tj−1, Tj), avec

0 = T0 < T1 < T2 < . . . < TL = T.

Pour estimer les paramètres de ce modèle où le temps est discrétisé, nous

utilisons une version de l’échantillonneur de Gibbs utilisant un shéma stick-

breaking fini (blocked Gibbs sampling) Ishwaran - Zarepour (2000) et Ishwaran

- James (2002) [44]) shéma présenté au chapitre 2.

• Classification bayésienne de trajectoires d’actions selon leur volatilité.

La volatilité est supposée dépendre du temps :

dXt = b(t, Xt)dt+ θ(t)h(Xt)dBt
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où Xt = log(St), (St) étant le processus du prix de l’action.

Sous certaines conditions l’EDS peut se simplifier en :

dXt = bt(t, Xt)dt+ θ(t)dBt.

On développe alors la volatilité θ(t) dans une base d’ondelettes (Vi) et on

classifie les trajectoires en classifiant les vecteurs des premiers coefficients

par estimation d’un modèle hiérarchique de Dirichlet de mélange de lois nor-

males. Ce travail a nécessité l’extension au cas vectoriel des calculs de lois a

posteriori d’Ishwaran-Zarepour (2000) et Ishwaran-James (2002) [44].

Le Chapitre 5 contient une partie essentielle de notre travail.

On se place dans le cas de l’observation (à des instants discrétisés) d’une tra-

jectoire d’une EDS, par exemple de type Black-Scholes, en milieu aléatoire :

drift et volatilité évoluent selon les états (qui modélisent les régimes) d’une

châıne de Markov à temps continu, de loi H à grande variance. Dans la

littérature ce principe apparâıt en mathématique financière dans les travaux

sur les Regime switching markets.

Dans notre approche les régimes jouent le rôle que jouent les classes en clas-

sification : toute observation temporelle appartient à un régime.

La nouveauté ici est que nous plaçons un processus de Dirichlet de paramètre

αH comme loi a priori sur l’espace des trajectoires de cette châıne. Le nom-

bre α exprime un degré de confiance en la loi H .

Des lois a priori sont mis sur les divers paramètres. L’algorithme consiste à

dabord simuler un grand nombre de trajectoires qui sont très différentes à

cause de la variance, ce qui permet d’envisager plusieurs scénarios.

On choisit ensuite à chaque itération une des trajectoires selon des poids

donnés distribués a priori par un schéma stick-breaking. On calcule des lois

a posteriori, puis selon la vraissemblance de la trajectoire observée, on met

à jour poids et paramètres et on utilise un échantillonneur de Gibbs.

L’algorithme a été implémenté en langage C et testé sur des données simulées
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puis sur des données réelles.

Le dernier Chapitre 6 concerne la Conclusion et les Perspectives, notamment

le calcul d’option en utilisant le modèle introduit au Chapitre 5.
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Introduction

The aim of this work is to propose a new hierarchical model with a Dirich-

let process as a prior distribution, shortly a Dirichlet hierarchical model,

which is adapted to the analysis of temporal trajectories analysis, particu-

larly those which are governed by an SDE (stochastic differential equation)

in random environment.

The Dirichlet process is a random distribution (RD), i.e. a random variable

taking its values in the set P(V ) of all probability measures defined on a set

V of observations.

The RDs are very interesting both for their theoretical aspects and their ap-

plied ones.

In our work, we will use four points, considered as very important in the

history of this process.

• In 1969, in a fundamental and celebrated paper, Thomas S. Ferguson built

the Dirichlet process as a generalization of a Dirichlet distribution. From this

time the Dirichlet process is a remarkable and classical tool in nonparametric

Bayesian statistics.

• In 1973, J.F.C. Kingman introduced a new RD, called Poisson-Dirichlet

distribution, having some interesting properties and related to the represen-

tation of a Dirichlet process through the Gamma process.

• In 1974, motivated by applications, C.A. Antoniak introduced and studied

mixtures of Dirichlet processes.

• In 1994, J. Sethuraman introduced a constructive method of a Dirichlet

process, which is crucial for implementations.

The applications of Dirichlet processes deal with quite all fields: biology,

ecology, computer science and so on.

This field was extended by using successfully Dirichlet hierarchical models

in classification, more precisely in estimating mixtures of distributions from

non temporal data, see e.g. Ishwaran and Zarepour (2000), Ishwaran and
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James (2002), Kacperczyk et al., (2003), Bigelow and Dunson, (2007). Re-

cently, Rodregez et al. introduce finite mixture versions of the nPD which is

inspired from the work of Ishwaran and James (2002).

In all these papers, the Dirichlet process parameter is a measure proportional

to a standard probability distribution in R
n.

The present work consists in studying the extension of these hierarchical mod-

els to the case of temporal data, more precisely in introducing the Dirichlet

process on a path space, the parameter being a measure proportional to the

distribution of a continuous time process (Emilion 2005).

By observing just one path, we are able to detect some regimes of random

durations, when the stochastic process is generated by an SDE in random

environment. The random environment is represented by a continuous time

Markov chain whose states modellize the regimes (for example the states of

the financial market). These ones play the same role as the clusters in clas-

sification.

The Bayesian hierarchical model that we introduce, places a Dirichlet process

as a prior on the path space of this chain. We show that the parameters can

be estimated by using Gibbs sampling.

As an illustration of our work, we will consider a Black-Scholes SDE in fi-

nance, in random environment, the drift and the volatility being stochastic.

This hierarchical model does not assume that the process is Gaussian since

its finite marginal distributions are complicated mixtures Gaussian.

The thesis is organized as follows:

Chapters 1, 2 deal with Dirichlet distributions, Poisson-Dirichlet distribu-

tion, Dirichlet processes and their mixtures. The end of Chapter 2 is devoted

to new models introduced in some very recent papers.

After that, from Chapter 3 we start the original part of this work, firstly con-

sidering a Dirichlet process with parameter proportional to a Wiener measure

W , shortly a Brownian-Dirichlet process, which has the following represen-
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tation:

Xt(ω) =
∞
∑

i=1

pi(ω)δBi
t(ω)

where the Bi’s are i.i.d. Brownian motions having for distribution W , and

p = (pi) is Poisson-Dirichlet with parameter c > 0 and is independent of

(Bi)i=1, 2,.... This processes will be denoted D(cW )

We show an Ito type formula and a classical Doob-Meyer decomposition

< Xt −X0, f >= Mt + Vt

where Mt is a martingale and Vt is a process with bounded variation.

We also observe the existence of a local time and a stochastic integral with

respect to a Brownian-Dirichlet process.

In the last part of Chapter 3 we calculate the posterior distribution for

mixtures of Brownian-Dirichlet when

• The mixing measure is a Bernoulli distribution H = pδ0 + (1 − p)δ1:

If P is a mixture of Brownian-Dirichlet processes

P ∼
∫

D(cWu)dH(u)

and if f1, f2, . . . , fn is a sample of size n of P , then the posterior distribution

satisfies the following formula

P |f1, f2,..., fn∼ pH1D
(

cW1 +

n
∑

i=1

δfi

)

+ (1 − p)F1D
(

cW0 +

n
∑

i=1

δfi

)

where F1 and H1 are two constants depending of W ′, the Radon-Nikodym

derivative of W w.r.t. a probability measure µ which will be defined later

in Antoniak lemma (section 3.2.6) and where W0 and W1 are two Wiener

measures with mean 0 and 1, respectively.

• The mixing measure is Gaussian distribution H = N (m, σ2):

If P is a continuous time Dirichlet process

P ∼
∫

D(cWu)dH(u)
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and if θt
1, θ

t
2 is a sample of size 2 of Pt, t ∈ R+, then the conditional distri-

bution of Pt given θt
1, θ

t
2 is a mixture of Dirichlet processes such that

Pt | θt
1, θ

t
2 ∼

∫

D(cNu +

2
∑

i=1

δθt
i
)dĤt(u)

where Ĥt(u) = H(u |θt
1, θt

2
) ∼ N (µt

1, σ
2
1, t).

The Chapter 4 is divided in three parts.

• The Brownian motion in Dirichlet random environment. We introduced as

the limit in distribution of a random walk

1

n1/2
(U1 + U2 + . . .+ U[nt])

based on the following a hierarchical Dirichlet model:


























Ui | V = σ
iid∼ N (0, σ2)

V−1 | P ∼ P

P | c ∼ D(cΓ(ν1, ν2))

c ∼ Γ(η1, η2).

We proceed to the simulation and the estimation of the parameters of such

a motion.

As usual, the above system has to be read from bottom to top: c has a

Γ(η1, η2) distribution, given c, P has D(cΓ(ν1, ν2)) distribution, given P ,

V−1 has for distribution P and given V the Ui’s are i.i.d. Gaussians.

• SDE in Dirichlet random environment.

As an illustration, we consider Black-Scholes SDE type, with variance and

drift randomly fixed during each regime and derived from a Dirichlet hierar-

chical model

dXt =

L
∑

j=1

µRj
1[Tj−1, Tj)(t)dt+

L
∑

j=1

σRj
1[Tj−1, Tj)(t)dBt

where the Rj are integers randomly chosen in {1, . . . , N} and constant on

the random time intervals [Tj−1, Tj), where

0 = T0 < T1 < T2 < . . . < TL = T.
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To estimate the parameters of this model, where time is discretized, we use

a blocked Gibbs sampling method (Ishwaran - Zarepour (2000)et Ishwaran -

James (2002) [24]) which hinges on stick-breaking scheme.

• Bayesian classification of shares according to their volatility

The volatility is assumed to be depending on time and varies according to

the share:

dXt = b(t, Xt)dt+ θ(t)h(Xt)dBt

where Xt = log(St) and (St) is the process describing the share.

Under some conditions this SDE reduces to:

dXt = bt(t, Xt)dt+ θ(t)dBt.

Expanding the volatility θ(t) in a (wavelet) basis (Vi) we classify the paths

by classifying the vectors of the first coefficients, estimating a hierarchical

Dirichlet model of Normal distributions mixture: to this end, it is necessary

to extend the calculus of posterior distributions (Ishwaran - Zarepour (2000),

Ishwaran - James (2002)) to the vector case.

Chapter 5 contains an essential part of our work.

We observe an SDE path at discrete times, for example the Black-Scholes

SDE in random environment: drift and volatility evolve according to the

state regime of the market which is modellized by a continuous time Markov

chain, having a distribution H with large variance. This appears in mathe-

matical finance literature as regime switching markets.

In our approach, regimes play the role that play clusters in classification:

each temporal observation belong to a regime.

The novelty here is that we place a prior, a Dirichlet process with parameter

αH , on the path space of the Markov chain. The number α is a confidence

degree on H , the distribution of the Markov chain.
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We also place a prior distribution on each parameter.

The algorithm consists in first simulating a large number of paths which are

very different, due to the variance. This gives us a large variety of scenarios.

Next, in each iteration we choose a path according to random weights, ini-

tially given by a stick-breaking scheme. A calculation of posterior distribu-

tions is performed. Then according to the likelyhood w.r.t. the observed

path, we perform a Gibbs sampling procedure, by first updating the weights

and the parameters.

The program is implemented in C language and tested on a set of simulated

data and real data.

The last Chapter 6 concerns Conclusion and Perspectives, in particular, the

calculation of option prices when using the model introduced in chapter 5.
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Chapter 2

Dirichlet distribution

The Dirichlet distribution is intensively used in various fields: biology EMIL-

ION, R. (2005), astronomy ISHWARAN, H. and JAMES, L.F. (2002), text

mining DAHL, D. B. (2003), ...

It can be seen as a random distribution on a finite set. Dirichlet distribution

is a very popular prior in Bayesian statistics because the posterior distri-

bution is also a Dirichlet distribution. In this chapter we give a complete

presentation of this interesting law: representation by Gamma’s distribu-

tion, limit distribution in a contamination model. (The Polya urn scheme),

...

2.1 Random probability vectors

Consider a partition of a nonvoid finite set E with cardinality ♯E = n ∈ N
∗

into d nonvoid disjoint subsets. To such a partition corresponds a partition

of the integer n, say c1, . . . , cd, that is a finite family of positive integers,

such that c1 + . . .+ cd = n. Thus, if pj =
cj

n
, we have p1 + . . .+ pd = 1.

In biology for example, pj can represent the percentage of the jth specy in a

population.
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So we are lead to introduce the following d-dimentional simplex:

△d−1 = {(p1, . . . , pd) : pj ≥ 0,

d
∑

j=1

pj = 1}.

When n tends to infinity, this yields to the following notion:

Definition 2.1.1 One calls mass-partition any infinite numerical sequence

p = (p1, p2, . . .)

such that p1 ≥ p2 ≥ . . . and
∑∞

1 pj = 1.

The space of mass-partitions is denoted by

∇∞ = {(p1, p2, . . .) : p1 ≥ p2 ≥ . . . ; pj ≥ 0, j ≥ 1,
∞
∑

j=1

pj = 1}.

Lemma 2.1.1 (Bertoin [28] page 63) Let x1, . . . , xd−1 be d−1 i.i.d. random

variables uniformly distributed on [0, 1] and let x(1) < . . . < x(d−1) denote its

order statistic, then the random vector

(x(1), . . . , x(d−1) − x(d−2), 1 − x(d−1))

is uniformly distributed on △d−1.

2.2 Polya urn (Blackwell and MacQueen ) [3]

We consider an urn that contains d colored balls numbered from 1 to d.

Initially, there is only one ball of each color in the urn. We draw a ball, we

observe its color and we put it back in the urn with another ball having the

same color. Thus at the instant n we have n+d balls in the urn and we have

added n = N1 + . . .+Nd balls with Nj balls of color j.

We are going to show that the distribution of (N1

n
, N2

n
, . . . , Nd

n
) converges to

a limit distribution.
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2.2.1 Markov chain

Proposition 2.2.1

lim
n−→∞

(
N1

n
, . . . ,

Nd

n
)

d
= (Z1, Z2, . . . , Zd)

where (Z1, Z2, . . . , Zd) have a uniform distribution on the simplex △d−1.

Proof

Denote the projection operation

πi : R
d → R

x = (x1, . . . , xd) 7→ xi

and

θi(x) = (x1 , . . . , xi−1, xi + 1, xi+1, . . . , xd).

Let

S(x) =
d
∑

i=1

xi

and

fi(x) =
πi(x) + 1

S(x) + d
.

Define a transition kernel as follows

P (x, θi(x)) =
πi(x) + 1

S(x) + d

P (x, y) = 0, if y 6∈ {θ1(x), . . . , θd(x)}.

Recall that for any non-negative (resp. bounded) measurable function g

defined on R
d, the function Pg is defined as

Pg(x) =

∫

Rd

g(y)P (x, dy).
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Here we see that

Pg(x) =
d
∑

i=1

g(θj(x))
πi(x) + 1

S(x) + d
.

First step :

Consider Yn = (Y 1
n , . . . , Y

d
n ) where (Y i

n)0≤i≤d is the number of balls of color

i added to the urn at nth step. We clearly see that (Yn+1) only depends on

the nth step so that (Yn)n is Markov chain with transition kernel

P (Yn, θi(Yn)) =
πi(Yn) + 1

S(Yn) + d

and

Y0 = (0, . . . , 0).

On the other hand,

Pfi(Yn) =
∑d

j=1
πi(Yn)+1
S(Yn)+d

πi(θj(Yn))+1

S(θj(Yn))+d

since















πi(θj(Yn)) = πi(Yn) if i 6= j,

πi(θi(Yn)) = πi(Yn) + 1 if i = j,

S(θi(Yn)) = S(Yn) + 1.

(2.1)

Then

Pfi(Yn) =
∑

i6=j
πi(Yn)+1
S(Yn)+d

πj(Yn)+1

S(Yn)+d+1
+ πi(Yn)+1

S(Yn)+d
πi(Yn)+2

S(Yn)+d+1

= πi(Yn)+1
(S(Yn)+d)(S(Yn)+d+1)

[πi(Yn) + 2 +
∑

i6=j πj(Yn) + 1]

= πi(Yn)+1
(S(Yn)+d)(S(Yn)+d+1)

[πi(Yn) + 2 + (S(Yn) + d− 1 − πi(Yn))]

= fi(Yn).

implies that fi(Yn) is a positive martingale which converges almost sure to-

wards a random variable Zi. Since fi(Yn) is bounded by 1, it is also convergent
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in the Lp spaces, according to the bounded convergence theorem. We then

see that :
πi(Yn)

n
=
n+ d

n
fi(Yn) −

1

n

converges to the same limit Zi almost surely and in Lp.

By the martingale properties we have moreover that

E(fi(Yn)) = E(fi(Y0)).

Consequently

E(limn→∞ f(Yn)) = limn→∞ E(f(Yn))

= E(f(Y0)),

so

E(Zi) = E(fi(Y0)) =
1

d
.

Second step:

Let

∧d−1 = {(p1, . . . , pd−1) : pi ≥ 0

d−1
∑

i=1

pi ≤ 1},

and

hu(Yn) =
(S(Yn) + d− 1)!
∏d

i=1 πi(Yn)!
u

π1(Yn)
1 . . . u

πd(Yn)
d

The uniform measure λd on △d−1 is defined as follows: for any borelian

bounded function F (u1, . . . , ud) we have:

∫

△d−1

F (u)λd(du) =

∫

∧d−1

F (u1, . . . , ud−1, 1−u1−u2−. . .−ud−1)du1. . . . .dud−1

Now, let us compare the moments of (Z1, Z2, . . . , Zd) with the ones of λd.

Using formula (1.1)

hu(θi(Yn)) = S(Yn)+d
πi(Yn)+1

uihu(Yn).
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hence

Phu(Yn) = hu(Yn)(
∑d

i ui) = hu(Yn).

implies that (hu(Yn)) is a martingale and similarly

gk(Yn) =

∫

△d−1

hu(Yn)u
k1
1 . . . ukd

d λd(du)

is a martingale because

Pgk(Yn) =
∑d

i P (Yn, θi(Yn))
∫

△d−1
hu(Yn)uk1

1 . . . ukd
d λd(du)

=
∫

△d−1
Phu(Yn)u

k1
1 . . . ukd

d λd(du)

= gk(Yn).

This gives

E(gk(Yn)) = E(gk(Y0)).

On the other hand

gk(Yn) =

∏i=d
i=1[πi(Yn) + 1] . . . [πi(Yn) + ki]

(n+ d) . . . (n + s(k) + d− 1)

=

∏i=d
i=1

[πi(Yn)+1]
n

. . . [πi(Yn)+ki]
n

(n+d)
n

. . . (n+s(k)+d−1)
n

so that

0 ≤ gk(Yn) ≤
d
∏

i=1

2ki = 2S(k).

Therefore by the bounded convergence theorem

limn→∞ E(gk(Yn)) = E(limn→∞ gk(Yn))

= E(Zk1
1 . . . Zkd

d )

=
(d−1)!

Qd
i=1 ki!

(S(k)+d−1)!

= cd
∫

△d−1
uk1

1 . . . ukd
d λd(du),
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where cd = (d− 1)!

Indeed if

mk =

∫

△d−1

uk1
1 . . . ukd

d cdλd(du)

integrations and recurrences yield,

mk =

∏d
i=1 ki!

(S(k) + d− 1)!
.

Taken (k1, . . . , kd) = (0, . . . , 0), we see that cd = (d− 1)!.

Further, if µ is the distribution of (Z1, . . . , Zd), then cdλd and µ have the

same moments and since △d−1 is compact, the theorem of monotone class

yields, µ = cdλd.

2.2.2 Gamma, Beta and Dirichlet densities

Let α > 0, the gamma distribution with parameter α, denoted Γ(α, 1), is

defined by the probability density function:

f(y) = yα−1 e
−y

Γ(α)
11{y>0}.

Let Z1, . . . , Zd be d independent real random variables with gamma dis-

tributions Γ(α1, 1), . . . , Γ(αd, 1), respectively, then it is well-known that

Z = Z1 + . . .+ Zd has distribution Γ(α1 + . . .+ αd, 1).

Let a, b > 0, a beta distribution with parameter (a, b), denoted β(a, b), is

defined by the probability density function:

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1 − x)b−111{0<x<1}.

From these densities it is easily seen that the following function is a density

function:
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Definition 2.2.1 For any α = (α1, . . . , αd) where αi > 0 for any i =

1, . . . , d, the density function d(y1, y2, . . . , yd−1 | α) defined as

Γ(α1 + . . .+ αk)

Γ(α1) . . .Γ(αk)
yα1−1

1 . . . y
αd−1−1
d−1 (1 −

d−1
∑

h=1

yh)
αd−111∧d−1

(y) (2.2)

is called the Dirichlet density with parameter (α1, . . . , αd).

Proposition 2.2.2 Let (Z1, Z2, . . . , Zd) be uniformly distributed on △d−1.

Then the random vector (Z1, Z2, . . . , Zd−1) has the the Dirichlet density (1.2)

with parameters (1, 1,. . . ,1).

Proof

Let λi ∈ N for any i ∈ {1, . . . , d}.
Let (Y1, Y2, . . . , Yd−1) be a random vector with Dirichlet density defined in

(1.2).

Let Yd = 1 −∑d−1
i=1 yi. Then

E(Y λ1
1 . . . Y λd

d ) = E(Y λ1
1 . . . Y

λd−1

d [1 −∑d−1
i=1 Yi]

λd)

= Γ(α1+...+αk)
Γ(α1)...Γ(αd)

∫

∧d−1
yα1+λ1−1

1 . . . y
αd−1+λd−1−1
d−1

[1 −∑d−1
i=1 yi]

αd+λd−1dy1 . . . dyd−1

= Γ(α1+...+αd)Γ(α1+λ1)...Γ(αd+λd)

Γ(α1)...Γ(αd)Γ((α1+...+αd)+
Pd

i=1 λi)
.

Consequently, if λi, i ∈ {1, . . . , d} are non-negative integers and α1 = . . . =

αd = 1, then

E(Y λ1
1 . . . Y λd

d ) =
(d− 1)!

∏d
i=1 λi!

((d− 1) + S(λ))!
.

Now the proof of the preceding proposition 1.2.1 shows that (Z1, Z2, . . . , Zd)

and (Y1, . . . , Yd) have the same moments, and thus the same distribution.

Consequently (Z1, Z2, . . . , Zd−1) has the same distribution as (Y1, . . . , Yd−1)

which is by construction d(y1, y2, . . . , yd−1 | α).
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2.3 Dirichlet distribution

The Dirichlet density is not easy to be handled and the following theorem

gives an interesting construction where appears this density.

Theorem 2.3.1 Let Z1, . . . , Zd be d independent real random variables with

gamma distributions Γ(α1, 1), . . . , Γ(αd, 1) respectively and let Z = Z1 +

. . .+Zd. Then the random vector (Z1

Z
, . . . , Zd−1

Z
) has a Dirichlet density with

parameters (α1, . . . , αd).

Proof

The mapping

(y1, . . . , yd) 7→ (
y1

y1 + . . .+ yd

, . . . ,
yd−1

y1 + . . .+ yd

, y1 + . . .+ yd)

is a diffeomorphism from [0, ∞)d, to ∧d−1×]0,∞) with Jacobian yd−1
d and

reciprocal function:

(y1, . . . , yd) 7→ (y1yd, . . . , yd−1yd, yd[1 −
d−1
∑

i=1

yi]).

The density of (Z1, . . . , Zd−1, Z) at point (y1, . . . , yd) is therefore equal to:

e−ydyα1−1
1 . . . y

αd−1−1
d−1 (1 −

d−1
∑

i=1

yi)
αd−1 yα1+...+αd−d

d

Γ(α1) . . .Γ(αd)
yd−1

d .

Integrating w.r.t. yd and using the equality
∫∞
0
e−ydyα−1

d dyd = Γ(α1 + . . . +

αd), we see that the density of (Z1

Z
, . . . ,

Zd−1

Z
) is a Dirichlet density with

parameters (α1, . . . , αd).�

Definition 2.3.1 Let Z1, . . . , Zd be d independent real random variables

with gamma distributions Γ(α1, 1), . . . , Γ(αd, 1), respectively, and let Z =

Z1 + . . .+Zd. The Dirichlet distribution with parameters (α1, . . . , αd) is the

distribution of the random vector (Z1

Z
, . . . , Zd

Z
).
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Not that the Dirichlet distribution is singular w.r.t Lebesgue measure in

R
d since it is supported by ∆d−1 which has Lebesgue measure 0.

The following proposition can be easily proved

Proposition 2.3.1 With the same notation as in Theorem 1.3.1 let Yi =

Zi

Z
, i = 1, . . . , d then Yi has a beta distribution β(αi, α1 + . . .+αi−1 +αi+1 +

. . .+ αd) and

E(yi) =
αi

α1 + . . .+ αd
, E(yiyj) =

αiαj

(α1 + . . .+ αk)(α1 + . . .+ αd + 1)
.

Lemma 2.3.1 Let γ = (γ1, γ2, . . . , γk) and ρ = (ρ1, ρ2, . . . , ρk) be k-dimensional

vectors. Let U , V be independent k-dimensional random vectors with Dirich-

let distributions D(γ) and D(ρ), respectively. Let W be independent of (U, V )

and have a Beta distribution β(
∑k

i=1 γi,
∑k

i=1 ρi). Then the distribution of

WU + (1 −W )V

is the Dirichlet distribution D(γ + ρ).

Lemma 2.3.2 Let ej denote the k-dimensional vector consisting of 0’s, ex-

cept of the jth co-ordinate, with equal to 1. Let γ = (γ1, γ2, . . . , γk) and let

βj =
γj

Pk
i=1 γi

, j = 1, 2, . . . , k.

Then
∑

βjD(γ + ej) = D(γ).

This conclusion can also be written as E(D(ρ+ γ) = D(γ).

The proofs of these two Lemma are found in Wilks ((1962), section 7),

2.4 Posterior distribution and Bayesian es-

timation

Consider the Dirichlet distribution D(α1, . . . , αd) as a prior on p = (p1, p2, . . . , pd) ∈
∆d−1.
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Let X be a random variable assuming values in {1, . . . , d}, such that P (X =

i | p) = pi. Then the posterior distribution p | X = i is Dirichlet D(α1, . . . , αi−1, αi+

1, . . . , αd).

Indeed let Ni =
∑n

j=1 11Xj=i , 1 ≤ i ≤ d. The likelihood of the sample is

d−1
∏

i=1

pNi(1 −
d−1
∑

i=1

pi)
Nd.

If the prior distribution of p is D(α1, . . . , αd), the posterior density will be

proportional to
d−1
∏

i=1

pαi+Ni
i (1 −

d−1
∑

i=1

pi)
Nd+αd .

Thus the posterior distribution of p is D(α1 +N1, α2 +N2, . . . , αk +Nd).

If (X1, . . . , Xn) is a sample of law p = (p1, . . . , pd) on {1, . . . , d} then the

average Bayesian estimation of p is:

p′ = (
α1 +N1

∑d
i=1 αi + 1

,
α2 +N2

∑d
i=1 αi + 1

, . . . ,
αk +Nd
∑d

i=1 αi + 1
).

Proposition 2.4.1 ([19]) Let r1, . . . , rl be l integers such that 0 < r1 <

. . . < rl = d.

1. If (Y1, . . . , Yd) ∼ D(α1, . . . , αd), then

(

r1
∑

1

Yi,

r2
∑

r1+1

Yi, . . . ,

rl
∑

rl−1

Yi

)

∼ D
(

r1
∑

1

αi,

r2
∑

r1+1

αi, . . . ,

rl
∑

rl−1

αi

)

.

2. If the prior distribution of (Y1, . . . , Yd) is D(α1, . . . , αd) and if

P (X = j | Y1, . . . , Yd) = Yj

a.s for j = 1, . . . , d, then the posterior distribution of (Y1, . . . , Yd) given

X = j is D(α
(j)
1 , . . . , α

(j)
k ) where

α
(j)
i =







αi if i 6= j

αj + 1 if i = j
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3. Let D(y1, . . . , yd | α1, . . . , αd) denote the distribution function of the

Dirichlet distribution D(α1, . . . , αd), that is

D(y1, . . . , yd | α1, . . . , αd) = P (Y1 ≤ y1, . . . , Yd ≤ yd).

Then,

∫ z1

0

. . .

∫ zd

0

yjdD(y1, . . . , yd | α1, . . . , αd) =
αj

α
D(z1, . . . , zd | α(j)

1 , . . . , α
(j)
d ).

Proof

1. Recall that: if Z1 ∼ Γ(α1), Z2 ∼ Γ(α2), and if Z1 and Z2 are indepen-

dent then Z1+Z2 ∼ Γ(α1+α2). Hence 1 may be obtained by recurrence.

2. Is obtained then by induction.

3. Using 2

P (X = j, Y1 ≤ z1, . . . , Yd ≤ zd) = P (X = j)P (Y1 ≤ z1, . . . , Yd ≤ zd | X = j)

= E(E(11X=j | Y1, . . . , Yd))

× D(z1, . . . , zd | α(j)
1 , . . . , αj

(d))

= E(Yj)D(z1, . . . , zd | α(j)
1 , . . . , α

(j)
d )

=
αj

α
D(z1, . . . , zd | α(j)

1 , . . . , α
(j)
d ).
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On the other hand

P (X = j, Y1 ≤ z1, . . . , Yd ≤ zd) = E(11{X=j, Y1≤z1,..., Yd≤zd})

= E(E(11{X=j, Y1≤z1,..., Yd≤zd} | Y1, . . . , YK)

= E(11{Y1≤z1,..., Yd≤zd}E(11{X=j} | Y1, . . . , Yd))

= E(11{Y1≤Z1,..., Yd≤zd}Yj))

=
∫ z1

0
. . .
∫ zd

0
YjdD(Y1, . . . , Yd | α(1), . . . , α(d)).

2.5 Definition and proprieties on Poisson-Dirichlet

distribution

The Poisson-Dirichlet distribution is a probability measure introduced by

J.F.C Kingman [31] on the set

▽∞ = {(p1, p2, . . .); p1 ≥ p2 ≥ . . . , pi ≥ 0,
∞
∑

j=1

pj = 1}.

It can be considered as a limit of some specific Dirichlet distributions and

is also, as shown below, the distribution of the sequence of the jumps of a

Gamma process arranged by decreasing order and normalized .

We will also see how Poisson-Dirichlet distribution is related to Poisson pro-

cesses.

2.5.1 Gamma process and Dirichlet distribution

Definition 2.5.1 We say that X = (Xt)t∈R+ is a Levy process if for every

s, t ≥ 0, the increment Xt+s −Xt is independent of the process (Xv, 0 ≤ v ≤
t) and has the same law as Xs, in particular, P(X0 = 0) = 1.
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Definition 2.5.2 A subordinator is a Levy process taking values in [0, ∞),

which implies that its sample paths are increasing.

Definition 2.5.3 The law of a random variable X is infinitely divisible, if

for all n ∈ N there exist i.i.d. random variables X
(1/n)
1 , . . . , X

(1/n)
n such that

X
d
= X1

1 + . . .+X1
n

Equivalently, the law of X is infinitely divisible, if for all n ∈ N there exists

a random variable X(1/n), such that the characteristic function of X,

ϕX(u) = (ϕX(1/n)(u))n.

Definition 2.5.4 The law of a random variable X is infinitely divisible if

and only if there exists a triplet (b, c, ν), with b ∈ R, c ∈ R+ and a measure

satisfying ν({0}) = 0 and
∫

R
(1Λ|x|2)ν(dx) <∞, such that

E[exp(uX)] = exp[ibu − u2c

2
+

∫

R

(eiux − 1 − iux11{|x|<1})ν(dx)]. (2.3)

The triplet (b, c, ν) is called the Lévy triplet and the exponent in (1.3)

ψ(u) = ibu− u2c

2
+

∫

R

(eiux − 1 − iux11{|x|<1})ν(dx)

is called the Lévy exponent. Moreover, b ∈ R is called the drift term, c ∈ R+

the Gaussian coefficient and ν the Lévy measure.

Definition 2.5.5 A Gamma process is a subordinator such that its Lévy

measure is γ(dx) = x−1e−xdx.

Remark 2.5.1 Let ξ be a gamma process. Let α1, . . . , αn > 0, t0 = 0,

tj = α1 + . . .+ αj, for 1 ≤ j ≤ n and Yj = ξ(tj) − ξ(tj−1) then

Yj ∼ Γ(αj).

Moreover, Y1, Y1 . . . , Yn are independent.

Let Y = Y1 + . . .+ Yn = ξ(tn) and p = (p1, . . . , pn) with pj =
Yj

Y
then p is a

random vector on ∧n−1 having D(α1, . . . , αn) distribution. Therefore we get

a random vector having Dirichlet distribution.
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2.5.2 The limiting order statistic

Let D(α1, . . . , αn) be a Dirichlet distribution defined as in chapter 1 and let:

fα1, ..., αd
(p1, p2, . . . , pd) =

Γ(α1 + . . .+ αd)

Γ(α1) . . .Γ(αd)
pα1−1

1 . . . pαd−1
d 11△d−1

. (2.4)

Assume that the αi are equal, then fα1, ..., αd
(p1, p2, . . . , pd) reduces to

d(p1, p2, . . . , pd | α) =
Γ(Nα)

Γ(α)d
(p1 . . . pd)

α−1. (2.5)

In this section we prove the following theorem which exhibits the limiting

joint distribution of the order statistics p(1) ≥ p(2) ≥ . . . an element of the

subset ▽∞ of the set

△∞ = {(p1, p2, . . .); pi ≥ 0,

∞
∑

j=1

pj = 1}.

Consider the following mapping

ψ : △∞ −→ ▽∞

(p1, p2, . . .) 7−→ (p(1), p(2), . . .).

If P is any probability measure on ▽∞, and n is any positive integer, then

the random n-vector (p(1), p(2), . . . , p(n)) has a distribution depending on

P ,which might be called the nth marginal distribution of P . The measure P

is uniquely determined by its marginal distributions.

Theorem 2.5.1 (Kingman) (1974) For each λ ∈]0, ∞[, there exists a prob-

ability measure Pλ on ▽∞ with the following property. If for each N the

random vector p is distributed over △N according to the distribution (2.1)

with α = αN , and if NαN → λ as N → ∞, then for any n the distribution

of the random vector p = (p(1), p(2), . . . , p(n)) converges to the nth marginal

distribution of Pλ as N → ∞.
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Proof

Let y1, y2, . . . , yN be independent random variables, each having a gamma

distribution Γ(λ, 1). We know that if S = y1+y2+. . .+yN , then (y1/S, y2/S, . . . , yN/S)

has a Dirichlet distribution D(λ, . . . , λ).

To exploit this fact, consider as above a gamma process ξ, that is a stationary

random process (ξ(t), t ≥ 0) with ξ(0) = 0. The process ξ increases only in

jumps. The positions of these jump forms a random countable dense subset

J(ξ) of (0, ∞), with

P{t ∈ J(ξ)} = 0 (2.6)

for all t > 0. For each value of N , write

qj(N) =
ξ(jαN) − ξ

(

(j − 1)αN

)

ξ(NαN)
(2.7)

by the result cited above, the vector q = (q(1), q(2), . . . , q(N)) has the same

distribution as p and it therefore suffices to prove the theorem with p replaced

by q. We shall in fact prove that

lim
N→∞

q(j)(N) = δξ(j)/ξ(λ) (2.8)

where the (δξ(j))j∈N’s are the magnitudes of the jumps in (0, λ) arranged

in descending order. This will suffice to prove the theorem, with Pλ the

distribution of the sequence

(δξ(j)/ξ(λ); j = 1, 2 . . .) (2.9)

since this sequence lies in ▽∞ as a consequence of the equality

ξ(λ) =

∞
∑

j=1

δξ(j). (2.10)

For any integer n, choose N0 so large that, for any N ≥ N0, the discon-

tinuities of height δξ(j) (j = 1, 2, . . . , n) are contained in distinct intervals
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((i− 1)αN , iαN ). Then

ξ(NαN)q(j) ≥ δξ(j) (1 ≤ j ≤ n, N ≥ N0),

so that

lim q(j) ≥ δξ(j)/ξ(λ). (2.11)

For j = 1, 2, . . . , n. Since n is arbitrary, (2.8) holds for all j, and moreover,

Fatou’s lemma and (2.7) give

lim q(j) = lim{1−
∑

i6=j

q(i)} ≤ 1−
∑

i6=j

lim q(j) ≤ 1−
∑

i6=j

{δξ(i)/ξ(λ)} = δξ(j)/ξ(λ).

Hence,

δξ(j)/ξ(λ) ≤ lim q(j) ≤ lim q(j) ≤ δξ(j)/ξ(λ).

Thus,

lim q(j) = δξ(j)/ξ(λ).

�

By definition of δξ(j)/ξ(λ), we have

δξ(1)/ξ(λ) ≥ δξ(2)/ξ(λ) ≥ . . . ,

and ∞
∑

k=0

δξ(k)/ξ(λ) = 1.

We will write

(δξ(1)/ξ(λ), δξ(2)/ξ(λ), . . .) ∼ PD(0, λ)

where PD(0, λ) is the Poisson-Dirichlet distribution define as follows:

Definition 2.5.6 Let 0 < λ <∞. Let (ξ(t), t ∈ [0, λ]) be a gamma subordi-

nator and let J1 ≥ J2 ≥ . . . ≥ 0 be the ordered sequence of its jumps. The dis-

tribution on ∧∞ of the random variable ( J1

ξ(λ)
, J2

ξ(λ)
, . . .) is called the Poisson-

Dirichlet distribution with parameter λ and is denoted by PD(0, λ).
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Theorem 2.1.1 shows that if

(p1, . . . , pN) ∼ D(αN , . . . , αN)

then the distribution of (p(1), . . . , p(N)) approximates PD(0, λ), if N is fairly

large, the αN being uniformly small and NαN closed to λ.



Chapter 3

Introduction on Dirichlet

Processes

Nonparametric methods try to avoid assumptions about the probability dis-

tributions in order to generate methods that can be used in settings where

regular parametric assumptions do not work. Although applicable in more

general circumstances, nonparametric models can lead to very complex math-

ematics in all but the simplest models. Also, there is an implicit tradeoff

between the generality of nonparametric tests and the power to detect dif-

ferences between populations. From a frequentist perspective, a parametric

t-test has a higher power if the normality assumption is indeed true, but

might badly under perform the sign test if it is false, given the same type I

error. From a Bayesian perspective, posterior distributions obtained from

nonparametric models tend to have larger variances than their paramet-

ric counterparts. Nonparametric methods have a long history in modern

frequentist statistics, starting with Fisher’s exact test (Fisher, 1922). In

Bayesian statistics, nonparametric models are constructed through priors on

rich families of distributions. Therefore, the term Bayesian nonparametrics

is really a misnomer. Bayesian nonparametric models are not parameter free,
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but have an infinite number of parameters. Raiffa and Schlaifer (1961) and

Ferguson (1973) in their seminal work on Bayesian nonparametrics mention

some characteristics that should be kept in mind when constructing priors

on spaces of distributions:

1. The class should be analytically tractable. Therefore, the posterior

distribution should be easily computed, either analytically or through

simulation.

2. The class should be rich, in the sense of having a large enough support.

3. The hyperparameters defining the prior should be easily interpreted.

The Dirichlet process can also be regarded as a type of stick-breaking prior

(Sethuraman, 1994; Pitman, 1996; Ishwaran and James, 2001; Ongaro and

Cattaneo, 2004).

This chapter makes a quick review of Bayesian nonparametric models and

defintions, making special emphasis on the Dirichlet process.

3.1 Dirichlet processes

In a celebrated paper [19], Thomas S. Ferguson introduced a random distri-

bution, called a Dirichlet process DP, such that its marginal w.r.t. any finite

partition has a Dirichlet Distribution as defined in Chapter 1. A Dirich-

let process is a random discrete distribution which is a very useful tool in

nonparametric Bayesian statistics. The work of (Ferguson, 1973, 1974; Black-

well and MacQueen, 1973; Sethuraman, 1994) is the base for the most widely

used nonparametric models for random distributions in Bayesian statistics,

mainly due to the availability of efficient computational techniques. Some

recent applications of the Dirichlet Process include finance (Kacperczyk et

al., 2003), econometrics (Chib and Hamilton, 2002; Hirano, 2002), epidemi-

ology (Dunson, 2005), genetics (Medvedovic and Sivaganesan, 2002; Dunson
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et al., 2007a), astronomic ( Ishwaran et James (2002)) and auditing (Laws

and OH́agan, 2002).

3.1.1 Definition and proprieties of the Dirichlet pro-

cess

Let H be a set and let A be a σ−field on H. We define below a random prob-

ability, on (H, A) by defining the joint distribution of the random variables

(P (A1), . . . , P (Am)) for every m and every finite sequence of measurable

sets (Ai ∈ A for all i). We then verify the Kolmogorov consistency condi-

tions to show there exists a probability, P, on ([0, 1]A, BFA) yielding these

distributions. Here [0, 1]A represents the space of all functions from A into

[0, 1], and BFA represents the σ-field generated by the field of cylinder sets

.

It is more convenient to define the random probability P , by defining the

joint distribution of (P (B1), . . . , P (Bm)) for all k and all finite measurable

partitions (B1, . . . , Bm) of H.

If Bi ∈ A for all i, Bi ∩ Bj = ∅ for i 6= j, and ∪k
j=1Bj = H. From

these distributions, the joint distribution of (P (A1), . . . , P (Am)) for arbi-

trary measurable sets A1, . . . , Am may be defined as follows.

Given arbitrary measurable sets A1, . . . , Am, we define Bx1, ..., xm where xj =

0 or 1, as

Bx1, ..., xm = ∩m
j=1A

xj

j

where A1
j = Aj, and A0

j = Ac
j . Thus {Bx1, ..., xm} form a partition of H . If

we are given the joint distribution of

{P (Bx1, ..., xm); xj = 0, or 1 j = 1, . . . , m} (3.1)

then we may compute the joint distribution of (P (A1), . . . , P (Am)) by

P (Ai) =
∑

{(x1, ..., xm); xi=1}
P (Bx1, ..., xi=1, ..., xm). (3.2)
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We note that if A1, . . . , Am is a measurable partition to start with, then this

does not lead to contradictory definitions provided P (∅) is degenerate at 0.

If we are given a system of distribution of (P (B1), . . . , P (Bk)) for all k and all

measurable partitions B1, . . . , Bk, is one consistency criterion that is needed;

namely,

CONDITION C :

If (B′
1, . . . , B

′
k), and (B1, . . . , Bk) are measurable partitions, and if (B′

1, . . . , B
′
k)

is a refinement of (B1, . . . , Bk) with

B1 = ∪r1
1 B

′
i, B2 = ∪r2

r1+1B
′
i, . . . , Bk = ∪k′

rk−1+1B
′
i,

then the distribution of

(

r1
∑

1

P (B′
i),

r2
∑

r1+1

P (B′
i), . . . ,

k′
∑

rk−1

P (B′
i)),

as determined from the joint distribution of (P (B′
1), . . . , P (B′

k′)), is identical

to the distribution of (P (B1), . . . , P (Bm))

Lemma 3.1.1 If a system of joint distributions of (P (B1), . . . , P (Bm)) for

all k and measurable partition (B1, . . . , Bk) satisfies condition C, and if for

arbitrary measurable sets A1, . . . , Am, the distribution of (P (A1), . . . , P (Am))

is defined using (3.2), then there exists a probability P on, ([0, 1]A, BFA)

yielding these distribution.

Proof

See [21] page 214.

Definition 3.1.1 Let α be a non-null finite measure on (H, A) .

We say P is a Dirichlet process on (H, A) with parameter α if for every

k = 1, 2, . . . , and measurable partition (B1, . . . , Bk) of H, the distribution of

(P (B1), . . . , P (Bk)) is Dirichlet D(α(B1), . . . , α(Bk)).

The measure α can be represented by cH , where c = α(H), the parameter

of precision and H(.) = (.)
α(H)

.
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Proposition 3.1.1 Let P be a Dirichlet process on (H, A) with parameter

α and let A ∈ A. If α(A) = 0, then P (A) = 0 with probability one. If α(A) >

0, then P (A) > 0 with probability one. Furthermore, E(P (A)) = α(A)
α(H)

.

Proof

By considering the partition (A, Ac), it is seen that P (A) has a beta distri-

bution, β(α(A), α(Ac)). Therefore

E(P (A)) =
α(A)

α(H)
.

The Dirichlet process can be alternatively characterized in terms of its pre-

dictive rule (Blackwell and MacQueen, 1973). If (θ1, . . . , θn) is an iid sample

from P ∼ D(cH), we can integrate out the unknown P and obtain the con-

ditional predictive distribution of a new observation,

θn|θn, . . . , θ1 ∼
c

c+ n− 1
H +

n−1
∑

l=1

1

c+ n− 1
δθl

whereδθl
is the Dirac probability measure concentrated at θl. Exchangeability

of the draws ensures that the full conditional distribution of any θl has this

same form. This result, which relates the Dirichlet process to a Pólya urn, is

the basis for the usual computational tools used to fit models based on the

Dirichlet process.

The Dirichlet process can also be regarded as a type of stick-breaking prior

(Sethuraman, 1994; Pitman, 1996; Ishwaran and James, 2001; Ongaro and

Cattaneo, 2004). A stick-breaking prior has the form

PN(.) =
N
∑

i=1

pkδθk
(.) θk ∼ H

pk = vk

k−1
∏

i=1

(1 − vk) vk ∼ β(ak, bk)k = 1, . . . , N and vN = 1

where the number of atoms N can be finite (either known or unknown) or

infinite. For example, taking N = 1, ak = 1−a and bk = b+ka for 0 ≤ a < 1
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and b > −a yields the two-parameter Poisson-Dirichlet Process, also known

as Pitman- Yor Process (Pitman, 1996), with the choice a = 0 and b = c

resulting in the Dirichlet Process (Sethuraman, 1994).

The stick-breaking representation is probably the most versatile definition

of the Dirichlet Process. It has been exploited to generate efficient alterna-

tive MCMC algorithms and as the starting point for the definition of many

generalizations that allow dependence across a collection of distributions, in-

cluding the DDP (MacEachern, 2000), the π DDP (Griffin and Steel, 2006b)

and the GSDP (Duan et al., 2007).

Finally, the Dirichlet Process can be obtained as the asymptotic limit of

certain finite mixture models (Green and Richardson, 2001; Ishwaran and

Zarepour, 2002). In particular consider the finite-dimensional Dirichlet-

Multinomial prior

PN(.) =
N
∑

i=1

pkδθk
(.) p ∼ D(

c

N
, . . . ,

c

N
) θk ∼ H

which differs from a truncated stick-breaking representation of the Dirichlet

Process in the way the weights have been defined. Ishwaran and Zarepour

(2002) prove that for each measurable function g which is integrable with

respect to H ,
∫

g(θ)PN(dθ)
P−→
∫

g(θ)P (dθ)

where P ∼ D(cH), i.e., the finite-dimensional Dirichlet-Multinomial prior

converges in distribution to the Dirichlet process. This result not only pro-

vides another useful approximation, but also justifies frequently used finite

mixture models as approximating a Dirichlet Process.

Conjugacy is another appealing property of the Dirichlet process. If θ1, . . . , θn ∼
P and P ∼ D(cH), then

P |θ1, . . . , θn ∼ D
(

cH +
n
∑

i=1

δi

)
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Therefore, the optimal estimator under squared error loss for P is

P̂ (.) =
c

c+ n
H(.) +

1

c+ n

n
∑

i=1

δθi
(.)

which converges to the empirical distribution as n→ ∞.

Antoniak (1974) studies the properties of draws from a distribution that

follow a Dirichlet process. In particular, he proves that, if H is nonatomic,

the probability of k distinct values on a sample θ1, . . . , θn of size n is

P(k) = cn(k)n!ck
Γ(c)

c+ n

for k = 1, . . . , n, where cn(k) is a constant that can be obtained using recur-

rence formulas for Stirling numbers. The expected number of distinct values

can be calculated as

E(k|c, n) =

n
∑

i=1

c

c+ n− 1
≈ c log(

c+ n

c
)

These results will be used later to construct computational algorithms that

treat α as an unknown parameter and to elicit prior distributions for this

parameter.

3.1.2 Mixtures of Dirichlet processes (MDP)

The following definitions are due to C. Antoniak [1].

Let (U,B, H) be a probability space called the index space. Let (Θ, A) be a

measurable space of parameters.

Definition 3.1.2 A transition measure on U×A is a mapping α from U×A
into [0, ∞) such that

1. for any u ∈ U, α(u, .) is a finite, nonnegative non-null measure on

(Θ, A)

2. for every A ∈ A, α(., A) is measurable on (U,B).
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Note that this differs from the definition of a transition probability in that

α(u, Θ) need not be identically one as we want α(u, .) to be a parameter for

a Dirichlet process.

Definition 3.1.3 A random distribution P is a mixture of Dirichlet pro-

cesses on (Θ,A) with mixing distribution H and transition measure α, if for

all k = 1, 2, ... and any measurable partition A1, A2, . . . , Ak of Θ we have

P{P (A1) ≤ y1, . . . , P (Ak) ≤ yk} =

∫

U

D(y1, . . . , yk|α(u, A1), . . . , α(u, Ak))dH(u),

where D(y1, . . . , yk|α1, . . . , αk) denotes the distribution function of Dirichlet

distribution with parameters (α1, . . . , αk).

In concise symbols we will use the heuristic notation:

P ∼
∫

U

D(α(u, .))dH(u).

Roughly, we may consider the index u as a random variable with distribution

H and given u, P is a Dirichlet process with parameter α(u, .). In fact U

can be defined as the identity mapping random variable and we will use the

notation |u for ”U = u”. In alternative notation







u ∼ H

P |u∼ D(αu)
(3.3)

where αu = α(u, .).

3.1.3 Dirichlet processes Mixtures

Since the DP and MDP models put probability one on the space of discrete

measures, they are typically not good choices for modelling continuous data.

Instead, they are more naturally employed as priors on the random mixing
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distribution over the parameters of a continuous distribution K with density

k,

z ∼ g(.) g(.) =

∫

k(.|θ)H(dθ) H ∼ D(cH0); (3.4)

resulting in a DP mixture (DPM) model (Lo, 1984; Escobar, 1994; Escobar

and West, 1995). The DPM induces a prior on g indirectly through a prior

on the mixing distribution H . A popular choice is the DPM of Gaussian

distributions, where θ = (µ,Σ) and k(.|θ) = φp(.|µ,Σ) is a p-variate normal

kernel with mean µ and covariance matrix Σ.

Given an i.i.d sample zn = (z1, . . . , zn), the posterior of the mixing distri-

bution, Hn(zn), is distributed as a mixture of Dirichlet processes (MDP),

i.e,

Hn(.|zn) ∼
∫

D
(

cH +
n
∑

i=1

δθi

)

p(dθ1, . . . , dθn|zn)

and the optimal density estimator under squared error loss, gn(z), is the

posterior predictive distribution

gn(z) = E

[

k(z|θ)Hn(dθ|zn)
]

=
∫

k(z|θ)E[Hn(dθ|zn)]

=
∫

k(z|θ) cH0(n)+
Pn

i=1 δθi(η)

c+n
p(dθ1, . . . , θn|zn).

Density estimates arising from location-and-scale DP mixtures can be inter-

preted as Bayesian kernel density estimates with adaptive bandwidth selec-

tion. This interpretation is extremely appealing because it provides a direct

link with well-known frequentist techniques and demonstrates the versatility

of the model. Due to the discrete nature of the DP prior, the DPM model

divides the observations into independent groups, each one of them assumed

to follow a distribution implied by the kernel k. Therefore, DPM models can

be used for clustering as well as for density estimation. In this setting, the

model automatically allows for an unknown number of clusters.
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3.2 Some properties and computions for DPMs

Computation for DPM models is typically carried out using one of the three

different approaches: Pólya urn schemes that marginalize out the unknown

distribution H (MacEachern, 1994; Escobar and West, 1995; MacEachern and

Méuller, 1998; Neal, 2000, Ishwaran, H. and James, L. F. (2003)), truncation

methods that use finite mixture models to approximate the DP (Ishwaran and

James, 2001; Green and Richardson, 2001), and Reversible Jump algorithms

(Green and Richardson, 2001; Jain and Neal, 2000; Dahl, 2003).

For computational purposes, it is convenient to rewrite model 1.2 using latent

variables θ1, . . . , θn corresponding to observations z1, . . . , zn. In turn, these

latent variables can be rewritten in terms of a set of k ≤ n unique values

θ∗1, . . . , θ
∗
k and a set of indicators ζ1, . . . , ζn, such that θi = θ∗ζi

.

Pólya urn samplers, also called marginal samplers, are popular in practice

because they are relatively easy to implement and produce exact samples

from the posterior distribution of θ. However, they are more useful when the

baseline measure H0 is conjugate to the kernel k. Escobar and West (1995)

original algorithm uses the Pólya urn directly to simultaneously sample group

indicators and group parameters. They note that

p(θi|θ−i, z) = qi0p(θi|zi, H0) +

n
∑

l=1, l 6=i

qi,lδθl
(θi)

where qi0 = c
∫

k(zi|θ)H0(dθ), qil = k(zi|θl) for l ≥ 1 and p(θi|zi, H0) is the

posterior distribution for θi based on the prior H0 and a single observation

zi. MacEachern (1994) points out that mixing can be slow in this setting,

and proposes to add an additional step to the Gibbs sampler that resamples

the group parameters conditional on the indicators. Taking this idea one

step forward, Bush and MacEachern (1996) note that, in the conjugate case,

the group parameters can be easily integrated out, yielding a more efficient

sampler. Finally, MacEachern and Méuller (1998) propose an algorithm that
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can be used in the nonconjugate case. Neal (2000) provides an excellent re-

view of marginal methods.

Blocked samplers are a more recent idea and are based on approximations

to the Dirichlet process by finite mixture models. They are straightforward

to code, tend to have better mixing properties than marginal samplers and,

unlike them, directly produce (approximate) draws from the posterior distri-

bution Hn(dθ|Zn). Their main drawback is that the samples only approxi-

mately follow the desired distribution. As an example, consider the trunca-

tion sampler of Ishwaran and James (2001), which starts with the finite stick

breaking prior

PN =
K
∑

k=1

pkδθk
(.) θk ∼ H

pk = vk

k−1
∏

i=1

(1 − vk), vk ∼ β(ak, bk), k = 1, . . . , N − 1 and VN = 1

After proving that PN converges in distribution to a Dirichlet process when

N −→ ∞, the authors are able to construct a simple Gibbs sampler that

exploits conjugacy between the generalized Dirichlet distribution and the

multinomial distribution. A related approach is the retrospective sampler

(Roberts and Papaspiliopoulos, 2007), who also use the stick breaking rep-

resentation of the Dirichlet process to generate a sampler that avoids trun-

cations but shares some of the advantages of the blocked sampler.

3.2.1 Dependent Dirichlet Process

The dependent Dirichlet process (DDP) (MacEachern, 1999, 2000) induces

dependence in a collection of distributions by replacing the elements of the

stick-breaking representation (Sethuraman, 1994) with stochastic processes.

It has been employed by DeIorio et al. (2004) to create ANOVA-like models

for densities, and by Gelfand et al. (2005) to generate spatial processes that
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allow for non-normality and nonstationarity. This last class of models is ex-

tended in Duan et al. (2007) to create generalized spatial Dirichlet processes

(GSDP) that allow different surface selection at different locations, among

others.

Along similar lines, the hierarchical Dirichlet process (HDP) (Teh et al.,

2006) is another approach to introduce dependence. In this setting, mul-

tiple group-specific distributions are assumed to be drawn from a common

Dirichlet Process whose base- 12 line measure is in turn a draw from another

Dirichlet process. This allows the different distributions to share the same set

of atoms but have distinct sets of weights. More recently, Griffin and Steel

(2006b) proposed an order-dependent Dirichlet Process (πDDP), where the

correspondence between atoms and weights is allowed to vary with the co-

variates. Also, Dunson and Park (2007) propose a kernel stick breaking that

allows covariate dependent weights and fixed atoms.

An alternative approach to the DDP is to introduce dependence through

linear combinations of realizations of independent Dirichlet processes. For

example, Méuller et al. (2004), motivated by a similar problem to Teh et al.

(2006), define the distribution of each group as the mixture of two indepen-

dent samples from a DP process: one component that is shared by all groups

and one that is idiosyncratic. Dunson (2006) extended this idea to a time

setting, and Dunson et al. (2007b) propose a model for density regression

using a kernel-weighted mixture of Dirichlet Processes defined at each value

of the covariate.

Definition 3.2.1 (MacEachern [2000]) Let I be an index set, let {θ(t) :

t ∈ I} and {v(t) : t ∈ I} be stochastic processes over I such that z(t) ∼
β(1, α(t)) for any t ∈ I and define

Ht =
∞
∑

i=1

p∗i (t)δθ∗i (t)(.), (3.5)

where {θ∗i (t)}∞i=1 are mutually independent collections of independent real-



3.2 Some properties and computions for DPMs 53

izations of the stochastic processes {θ(t) : t ∈ I} and {v(t) : t ∈ I}, and

p∗i (t) = v∗i (t)
∏i−1

s=1(1 − v∗s(t)). The colloction of the probability measures

HI = {Ht : t ∈ I} is to follow a dependent Dirichlet process (DDP).

DDP models are dense on a large class of distributions. Indeed, under mild

conditions, the DDP assigns positive probability to every ǫ-ball centered

on a finite collection of distributions that are absolutely continuous to the

baseline measures corresponding to the same locations of the index space

D (MacEachern, 2000). One of the most popular variates of the DDP is

the ”single-p” model, where the weights are assumed to be constant over I

while the atoms are allowed to vary. Models of this form can be rewritten

as regular DP models with atoms arising from a stochastic process. There-

fore, standard Gibbs sampling algorithms can be used to perform inferences

for the ”single-p” DDP models. The main drawback of this approach is its

inability to produce a collection of independent distributions. The hierarchi-

cal Dirichlet process (HDP) (Teh et al., 2006) can also be recast as a DDP

model. The HDP places a prior on a collection of exchangeable distributions

{G1, . . . , GJ}. Conditional on a probability measure G0, the distributions

in the collection are assumed to be iid samples from a regular Dirichlet pro-

cess centered around G0. In order to induce dependence, G0 is in turn given

another Dirichlet process prior. In summary,

Gi|G0 ∼ D(cG0)

G0 ∼ D(βH)

Since G0 is, by construction, almost surely discrete, the distributions Gi

share the same set of random atoms (corresponding to those of G0), but

assign strictly different (although dependent) weights to each one of them.

As is to be expected, H corresponds to the common expected value for each

of the distributions in the collection, and β and c control the variance around
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H and the dependence between distributions. Computation for the HDP is

performed using a generalized Pólya urn scheme.

3.2.2 Nested Dirichelt process

Motivated by the multicenter studies, Abel Rodriguez et.al (2006) introduce

nested Dirichlet process. In fact, subjects in different centers have different

outcome distributions. The problem of nonparametric modeling of these dis-

tributions, borrowing information across centers while also allowing centers

to be clustered. Starting with a stick-breaking representation of the Dirich-

let process (DP), he replaces the random atoms with random probability

measures drawn from a DP. This results in a nested Dirichlet process (nDP)

prior, which can be placed on the collection of distributions for the differ-

ent centers, with centers drawn from the same DP component automatically

clustered together.

3.3 Some recent advances in Dirichlet models

Popular approaches for nonparametric functional estimation can be broadly

divided in three main groups. One simple yet powerful alternative is ker-

nel regression methods. These methods represent the unknown function as

a linear combination of the observed values of the outcome variables, using

covariate-based weights (Altman, 1992; Chu and Marron, 1991; Fan et al.,

1995). Another class of methods assumes that the functions of interest can

be represented as a linear combination of basis functions. The problem of es-

timating the function reduces to estimation of the basis coefficients. Splines,

wavelets and reproducing kernel methods fall in this broad category (Vi-

dakovic, 1999; Truong et al., 2005). A third alternative is to assume that the

functions in question are realizations of stochastic processes, with the Gaus-
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sian process (GP) being a common choice (Rasmussen and Williams, 2006).

Different approaches have been used to extend these methodologies to col-

lections of functions. For example, when the function of interest is modelled

as a linear combination of basis functions, hierarchical models on the basis

coefficients can be used to accommodate different types of dependence. This

approach has been successfully exploited by authors such as Rice and Silver-

man (1991); Wang (1998); Guo (2002); Wu and Zhang (2002) and Morris

and Carroll (2006) to construct ANOVA and random effect models for curves.

Along similar lines, Bigelow and Dunson (2007) and Ray and Mallick (2006)

have used Dirichlet process priors as part of the hierarchical specification of

the model in order to induce clustering across curves. Behseta et al. (2005)

develop a hierarchical Gaussian process (GP) model, which treats individual

curves as realizations of a GP centered on a GP mean function.

Recently, Abel Rodregez et al. propose a hierarchical model that allows

us to simultaneously estimate multiple curves nonparametrically by using

dependent Dirichlet Process mixtures of Gaussians to characterize the joint

distribution of predictors and outcomes. About stick-breaking, recently,

YeeWhye Teh et al.(2007) introduce The Indian buffet process (IBP) is a

Bayesian nonparametric distribution where by objects are modelled using

an unbounded number of latent features. He derives a stick-breaking rep-

resentation for the IBP. Based on this new representation, he develops slice

samplers for the IBP.
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Chapter 4

Mixtures of continuous time

Dirichlet processes

In this chapter, we first define, in section 1, continuous time Dirichlet pro-

cesses. In section 2 we examine the case of the Brownian-Dirichlet process

(BDP) whose parameter is proportional to a standard Wiener measure.

Next we show that some stochastic calculus formulas (Ito’s formula, local

time occupation formula) hold for BDP’s.

Next, in section 3, we define mixtures of continuous time Dirichlet processes

and we extend some, rather nontrivial computations of Antoniak (1974) [2].

4.1 Continuous time Dirichlet processes

From now, we take for H any standard Polish space of real functions defined

on an interval I ⊂ [0, ∞), for example the space C(I) (resp. D(I)) of contin-

uous (resp. cadlag) functions. For any t ∈ I, let πt : x −→ x(t) denote the

usual projection at time t from the space H to R. Recall that πt maps any

measure µ on H into a measure πtµ on R defined by πtµ(A) = µ(π−1
t (A)) for

any Borel subset A of R.

The following proposition defines a continuous time process (Xt) such
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that for any t ∈ R Xt is a Ferguson-Dirichlet random distribution.

Proposition 4.1.1 (Emilion, 2005) Let α be any finite measure on H, let

X be a Ferguson-Dirichlet random distribution D(α) on H and let Xt = πtX.

Then the time continuous process (Xt)t∈I is such that for each t ∈ I, Xt

is a Ferguson-Dirichlet random distribution on R D(αt) where αt = πtα.

Moreover if V (i) is any iid sequence on H such that V (i) ∼ α
α(H)

and

X(ω)
d
=

∞
∑

i=1

pi(ω)δV (i)(ω)

where the sequence (pi) is independent of the V (i)’s and has a Poisson-

Dirichlet distribution PD(α(H)), then

Xt(ω)
d
=

∞
∑

i=1

pi(ω)δV (i)(ω)(t).

For sake of simplicity we deal with just one parameter α, but it can be noticed

that two-parameter Xt, α, β continuous time Dirichlet process can be defined

similarly by using two-parameter Poisson-Dirichlet distributions introduced

in Pitman Yor (1997) [44].

Proof

Let k ∈ {1, 2, 3, ...} and A1, ..., Ak a measurable partition of R.

Then for any t ∈ R, π−1
t (A1), ..., π

−1
t (Ak) is a measurable partition of H so

that, by definition of X, the joint distribution of the random vector

(X(π−1
t (A1)), ..., X(π−1

t (Ak)))

is Dirichlet with parameters (α(π−1
t (A1)), ..., α(π−1

t (Ak)). In other words

(Xt(A1)), ..., Xt(Ak)) is Dirichlet with parameters (αt(A1), ..., αt(Ak)) and

Xt ∼ D(αt).

A consequence of the definition of πt is that

πt(
∞
∑

i=1

µi) =
∞
∑

i=1

πtµi
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for any sequence of positive measures on H and πt(λµ) = λπt(µ) for any

positive real number λ. Hence if V (i) is any i.i.d. sequence on H such that

V (i) ∼ α
α(H)

and

X(ω)
d
=

∞
∑

i=1

pi(ω)δV (i)(ω)

where (pi) has a Poisson-Dirichlet distribution PD(α(H)), then

Xt(ω) = πt(X(ω))
d
=

∞
∑

i=1

pi(ω)πt(δV (i)(ω)) =
∞
∑

i=1

pi(ω)δV (i)(ω)(t)

the last equality being due to the fact that πt(δf ) = δf(t) for any f ∈ H,

as it can be easily seen. In addition the V (i)(t)’s are iid with V (i)(t) ∼
πt(

α
α(H)

) = 1
α(H)

πt(α) = 1
αt(R)

αt. Moreover (pi) has a Poisson-Dirichlet distri-

bution PD(α(H)) = PD(αt(R)) so that the preceding expression of Xt(ω)

is exactly the expression of a Ferguson-Dirichlet random distribution D(αt)

as a random mixture of random Dirac masses. �

As a corollary of the above proof and of Sethuraman stick-breaking construc-

tion (1994), we have the following result which is of interest for simulating

continuous time Dirichlet processes. It shows that such processes of random

distributions can be used to generate stochastic paths and to classify random

curves.

Corollary 4.1.1 (Continuous time stick-breaking construction) Let α be any

finite measure on H and αt = πtα. Let c = α(H) and H = α/c. For

any integer N , let V1, · · · , VN−1 be iid Beta(1, c) and VN = 1. Let p1 =

V1, pk = (1 − V1) . . . (1 − Vk−1)Vk, k = 2, · · · , N . Let Zk be iid H. Then,

PN,t =
∑N

k=1 pkδZk,t
converges a.e. to a continuous time Dirichlet process

D(αt).

Corollary 4.1.2 Let Xt be as in the preceding proposition, then for any

Borel subset A of R, (Xt(A))t≥0 is a Beta process, ie for any t ≥ 0

Xt(A) ∼ Beta(αt(A), αt(A
c)).



60 Mixtures of continuous time Dirichlet processes

4.2 Brownian-Dirichlet process

We suppose here that the parameter α is proportional to a standard Wiener

measureW so that the V (i)’s above are i.i.d. standard Brownian motions that

we denote by Bi. The sequence (pi) is assumed to be Poisson-Dirichlet(c)

independent of (Bi)i=0,1,...

Definition 4.2.1 Let X be a Dirichlet process such that X ∼ D(cW ), then

the continous-time process (Xt) defined by Xt = πtX, for any t > 0, is called

a Brownian-Dirichlet process (BDP).

As observed in the previous proposition, Xt is a random probability measure

such that Xt ∼ D(cN (0, t)) and if we have a representation

X(ω) =
∞
∑

i=1

pi(ω)δBi(ω),

then we also have

Xt(ω) =

∞
∑

i=1

pi(ω)δBi
t(ω).

We show that stochastic calculus can be extended to such processes (Xt).

Consider the filtration defined by

F0 = σ(pi, i ∈ N
∗),

and for any s > 0,

Fs = F0 ∪ (∪iσ(Bi
u, u < s)).

4.2.1 Ito’s formula

Proposition 4.2.1 Let f ∈ C2 be such that there exist a constant c ∈ R

such that
∫ s

0
(f ′(Bi

u)
2du < c for any i and any s > 0. Then,

1. Mt =
∑∞

i=1 pi(ω)
∫ t

0
f ′(Bi

u)dB
i
u is a well-defined (Fs) −martingale,
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2. Vt = 1
2

∑+∞
i=1 pi(ω)

∫ t

0
f”(Bi

u)du is a well-defined process with bounded

variation, and

3. < Xt −X0, f >= Mt + Vt.

Proof. Let

Mn
t (ω) =

n
∑

i=1

pi(ω)

∫ t

0

f ′(Bi
u)dB

i
u,

and let s < t. Let 0 = t
(k)
1 < t

(k)
2 < . . . < t

(k)
rk = t be a sequence of subdivisions

of [0, t] such that

∫ t

0

f ′(Bi
u)dB

i
u = lim

k−→+∞

rk
∑

l=1

f ′(Bi

t
(k)
l

)(Bi

t
(k)
l+1

− Bi

t
(k)
l

),

the limit being taken in L2-norm. We now show that Mn
t is a martingale.

Note that we don’t use below the fact that the sequence pi has a Poisson-

Dirichlet distribution. For sake of simplicity, in what follows, we omit the

superscript (k) in t
(k)
l . We have

E(Mn
t | Fs) =

∑n
i=1 E

(

pi

∫ t

0
f ′(Bi

i)dB
i
u | Fs

)

= limk→∞{∑n
i=1 E

(

pi

∑

{l : tl<s} f
′(Bi

tl
)(Bi

tl+1
−Bi

tl
) | Fs

)

+
∑n

i=1 E

(

pi

∑

{l:tl>s} f
′(Bi

tl
)(Bi

tl+1
− Bi

tl
) | Fs

)

}.

In the case tl < s, if we have in addition tl+1 < s then

E

(

f ′(Bi
tl
)(Bi

tl+1
− Bi

tl
) | Fs

)

= f ′(Bi
tl
)(Bi

tl+1
−Bi

tl
)

while if tl+1 > s, writing Bi
tl+1

− Bi
tl

= Bi
tl+1

− Bi
s +Bi

s − Bi
tl
, we see that

E

(

f ′(Bi
tl
)(Bi

tl+1
−Bi

tl
) | Fs

)

= f ′(Bi
tl
)(Bi

s − Bi
tl
).
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On the other hand in the case tl > s we have

E

(

f ′(Bi
tl
)(Bi

tl+1
− Bi

tl
) | Fs

)

= E

(

E(f ′(Bi
tl
)(Bi

tl+1
− Bi

tl
) | Ftl) | Fs

)

= E

(

f ′(Bi
tl
)E(Bi

tl+1
−Bi

tl
| Ftl) | Fs

)

= E

(

f ′(Bi
tl
)E(Bi

tl+1
−Bi

tl
) | Fs

)

= 0.

Hence,

E(Mn
t | Fs) =

∑n
i=1 pi limk−→∞

(

∑

{l:tl+1<s} f
′(Bi

tl
)(Bi

tl+1
−Bi

tl
)
)

+ f ′(Bi
ts)(B

i
s −Bi

ts)

where ts denotes the unique t
(k)
l such that t

(k)
l < s and t

(k)
l+1 > s. Therefore

E(Mn
t | Fs) =

n
∑

i=1

pi(ω)

∫ s

0

f ′(Bi
u)dB

i
u = Mn

s

proving that Mn
t is a martingale. Moreover, since

E

(

(M
(n)
s )2

)

= 2
∑

{1≤i<j≤n} E

(

pipj

∫ s

0
f ′(Bi

u)dB
i
u

∫ s

0
f ′(Bj

u)dB
j
u

)

+
∑n

i=1 E

[

p2
i (
∫ s

0
f ′(Bi

u)dB
i
u)

2
]

=
∑n

i=1 E(p2
i )E(

∫ s

0
f ′(Bi

u)dB
i
u)

2)

=
∑n

i=1 E(p2
i )E
(

∫ s

0
(f ′(Bi

u))
2du
)

≤ c
∑∞

i=1 E(pi) = c

the martingale convergence theorem implies that Mn
t converges to a martin-

gale

Mt =
∞
∑

i=1

pi(ω)

∫ t

0

f ′(Bi
u)dB

i
u.



4.2 Brownian-Dirichlet process 63

Finally, applying Ito’s formula to each Bi, we get

< Xt(ω) −X0(ω), f > =
∑∞

i=1 pi(ω)(f(Bi
t) − f(Bi

0))

=
∑∞

i=1 pi(ω)
∫ t

0
f ′(Bi

u)dB
i
u

+ 1
2

∑∞
i=1 pi(ω)

∫ t

0
f ′′(Bi

u)du

= Mt + Vt

where Vt is obviously a bounded variation process.

Corollary 4.2.1 (Stochastic integral) Let Xt be a BDP given by

Xt(ω) =
∞
∑

i=1

pi(ω)δBi
t(ω).

Let (Yt) be a real valued stochastic process and φ a bounded function defined

on R. Then the stochastic integral
∫

φ(Yt)dXt is defined as the measure such

that

<

∫

φ(Yt)dXt, f >=

∞
∑

i=1

∫

φ(Yt)pi(ω)f ′(Bi
t)dB

i
t+

1

2

∞
∑

i=1

∫

φ(Yt)pi(ω)f ′′(Bi
t)dt,

for any function f verifying the conditions of the preceding proposition.

4.2.2 Local time

The following result exhibits the local time of a Brownian-Dirichlet process

as a density of occupation time.

Proposition 4.2.2 Let (Xt) be a BDP

Xt(ω) =
∞
∑

i=1

pi(ω)δBi
t(ω).
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Then for each (T, x) ∈ R+ × R, there exist a random distribution L(T, x)

such that
∫

R

L(T, x)f(x)dx =

∫ T

0

< Xs, f > ds,

for any f Borel measurable and locally integrable on R.

Proof. Let Li(T, x) be the local time w.r.t. to B(i) so that for any i ∈ N

we have
∫

R

Li(T, x)f(x)dx =

∫ T

0

f(Bi
s)ds

and
∫

R

n
∑

i=1

piLi(T, x)f(x)dx =

∫ T

0

n
∑

i=1

pif(Bi
s)ds.

Then, if f ∈ L+
∞, set of positif bounded functions, the monotone convergence

theorem yields

∫

R

∞
∑

i=1

piLi(T, x)f(x)dx =

∫ T

0

∞
∑

i=1

pif(Bi
s)ds

and the same holds if f ∈ L∞ by using f = f+ − f−. Letting L(T, x) =
∑∞

i=1 piLi(T, x) we get the desired result. �

4.2.3 Diffusions

Definition 4.2.2 A stochastic process (ψt) is called a diffusion w.r.t. to the

BDP (Xt) if it has a.s. continuous paths and can be represented as

ψt = ψ0 +

∫ t

0

a(s)ds+

∞
∑

i=0

pi(ω)

∫ t

0

bi, sdB
i
s

where a ∈ L1(R+) and bi ∈ L2(R+) for any integer i.

The following result can be proved using the Banach fixed point theorem,

similar to the classical case of a single Brownian motion.
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Proposition 4.2.3 Suppose that f and gi, i = 0, 1, . . . are Lipshcitz func-

tions from R to R. Let u0 be an F0-measurable square integrable r.v. Then

there exist a diffusion (ψt) w.r.t. to the BDP (Xt) such that

dψt = f(ψt)dt+
∑∞

i=0 pigi(ψt)dB
i
t,

ψ0 = u0.
(4.1)

4.2.4 Mixtures of continuous time Dirichlet processes

We now consider the case where αu is a finite measure on a function space

like C(I) and D(I) (spaces defined in section 1).

The following proposition defines a continuous time process (Pt)t such that

each Pt is a mixture of Dirichlet processes.

Proposition 4.2.4 Let P be a mixture of Dirichlet distributions

P ∼
∫

U

D(αu)dH(u).

Let Pt = πtP . Then, for each t ≥ 0, Pt is a mixture of Dirichlet processes:

Pt ∼
∫

U

D(αu, t)dH(u)

where αu, t = αu(π
−1
t (.)).

Proof

Let A1, A2, . . . , Ak be a partition of R.

P[Pt(A1) ≤ y1, . . . , Pt(Ak) ≤ yk] = P[Pπ−1
t (A1) ≤ y1, . . . , Pπ

−1
t (Ak) ≤ yk]

=
∫

U
D(y1, y2, . . . , yk | (αu(π

−1
t Ai))1≤i≤k)dH(u),

since π−1
t (A1), π

−1
t (A2), . . . , π

−1
t (Ak) is a partition of Θ.

Therefore

Pt ∼
∫

U

D(αu, t)dH(u).

�
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4.2.5 Posterior distributions

We suppose now that the sample space of observations is X = C(R+), where

C(R+) denote the space of continuous functions from R
+ to R.

Let F be a transition probability from Θ × ζ into [0, 1].

Let θt be a sample from Pt, i.e. θt |Pt, u∼ Pt and X(t) |Pt, θt, u∼ F (θt, .).

Let Hx denote the conditional distribution of (θt, u) given X(t) = x.

Let Hθt denote the conditional distribution of u given θt.

The following proposition shows that if (Pt) is a mixture of Dirichlet processes

then for each t ∈ R
+ the posterior probability of Pt is also a mixture of

Dirichlet processes.

Proposition 4.2.5 If for any t ∈ R
+







































Pt |u∼ D(αu, t)

u ∼ H

Pt ∼
∫

U
D(αu, t)dH(u)

θt |Pt, u∼ Pt

X(t) |Pt, θt, u∼ F (θt, .)

(4.2)

then

Pt |X(t)=x∼
∫

Θ×U

D(αu, t + δθt)dHx(θt, u).

Proof

Let A1, A2, . . . , Ak be a partition of R

P[Pt(Ai) ≤ yi, 1 ≤ i ≤ k |X(t)=x] = E[P[Pt(Ai) ≤ yi, i = 1, . . . , k |X(t)=x, θt, u] |X(t)=x]

= E[D(y1, y2, . . . , yk |βu, t(A1),..., βu, t(Ak)) |X(t)=x]

=
∫

U×Θ
D(y1, . . . , yk |βu, t(A1),..., βu, t(Ak))dHx(u, θ).

where βu, t(Ai) = αt, u(Ai) + δθt(Ai), for any i = 1, . . . , k.

Therefore

Pt |X(t)=x∼
∫

U

D(αu, t + δθt)dHx(θt, u).
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�

As a corollary, let us show that the same result holds, if (Pt) is simply

a continuous time Dirichlet process: the posterior distribution of Pt given

X(t) = x is still a mixture of continuous time Dirichlet processes.

Corollary 4.2.2 If














Pt ∼ D(αt)

θt ∼ Pt

X(t) |Pt, θt∼ F (θt, .)

(4.3)

then

Pt |X(t)=x∼
∫

U

D(αu, t + δθt)dHx(θt).

Proof

Let A1, A2, . . . , Ak be a partition of R

P[Pt(Ai) ≤ yi, 1 ≤ i ≤ k |X(t)=x] = E[P[Pt(Ai) ≤ yi, 1 ≤ i ≤ k |X(t)=x, θt, u] |X(t)=x]

= E[D(y1, y2, . . . , yk |βA1, t, βA2, t,..., βAk, t
) |X(t)=x]

=
∫

Θ
D(y1, y2, . . . , yk |βA1, t,βA2, t,..., βAk, t

)dHx(θt),

where βAi, t = αt, u(Ai) + δθt(Ai), i ∈ {1, 2, . . . , k}. Therefore

Pt |X(t)=x∼
∫

Θ

D(αt + δθt)dHx(θt).

Corollary 4.2.3 If for any t ∈ R
+

Pt ∼
∫

U

D(αu, t)dH(u)

and

θt ∼ Pt

then for any t ∈ R
+

Pt |θt∼
∫

U

D(αu, t + δθt)dHθt(u).
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Proof

Let A1, A2, . . . , Ak be a partition of R

P[Pt(Ai) ≤ yi, i = 1, . . . , k |θt] = E[P[Pt(Ai) ≤ yi, i = 1, . . . , k |θt, u] |θt ]

= E[D(y1, y2, . . . , yk | βu, t(A1), . . . , βu, t(Ak)) | θt]

=
∫

U
D(y1, y2, . . . , yk | βu, t(A1), . . . , βu, t(Ak))dHθt(u).

Therefore

Pt |θt∼
∫

U

D(αu, t + δθt)dHθt(u).

4.2.6 A Lemma of Antoniak

The following result will yield explicit expressions of conditional distribu-

tions. It is just an application of a Lemma of C. Antoniak to each Pt but we

prefer to give its proof for completeness.

Consider the following notations and hypothesis.

Let P ∼
∫

U
D(αu)dH(u) as in theorem 3.

Let θ⋆ = (θ1, θ2, ..., θn) be a sample of size n from P .

Suppose that there exists a σ − finite, σ − additive measure µ on (Θ, A)

such that for each u ∈ U :

i) αu is σ − additive and absolutely continuous with respect to µ

ii) the measure µ has mass one at each atom of αu.

Let α′
u (.) denote the Radon-Nikodym derivative of αu (.) with respect to µ.

Let θ′i denote the ith-distinct value of θt in θ⋆.

Let n(θ′i) denote the number of times the value θ′i occurs in θ⋆.

Let Mu = αu(Θ) and let mu(θ) = α′
u(θ

′
i) if θ′i is an atom of αu, zero otherwise.

Last, let x(n) = x(x+ 1)(x+ 2)...(x+ n− 1), n ∈ N − {0}.

Lemma 4.2.1 Under the preceding hypotheses and notations, the condi-
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tional distribution u|θ∗

dHθ⋆(u) =

1

M
(n)
u

∏r
i=1 α

′
u(θ

′
i)(α

′
u(θ

′
i) + 1)(n(θ′i)−1)dH(u)

∫

U
1

M
(n)
u

α′
u(θ

′
i)(αu(θ′i) + 1)(n(θ′i)−1)dH(u)

Proof

Referring to the proof of Proposition 3 in [1], we see that the likelihood of

θt
k+1, given u, θ1, θ2, . . . , θk is equal to α′

u(θk+1)dµ

Mu+k
for a value of θk+1 which has

not occurred previously in θ1, θ2, . . . , θk, and is equal to [αu(θk+1)+jdµ
αu(Θ)+k)

] for a

value of θk+1 which has occurred previously j times in θ1, θ2, . . . , θk. Hence

the likelihood of (u, θ1, θ2, . . . , θk) is

L(u, θ1, θ2, . . . , θn) = L(θi |u, θ1, θ2,..., θn−1)L(u, θ1, θ2, . . . , θn−1)

=
∏k

i=1L(θi |u, θ1, θ2,..., θi−1
)

= 1

M
(n)
u

∏r
i=1 α

′
u(θ

′
i)(α

′
u(θ

′
i) + 1)(n(θ′i)−1)dH(u).

Therefore,

L(θ1, θ2, . . . , θn) =

∫

U

1

M
(n)
u

r
∏

i=1

α′
u(θ

′
i)(α

′
u(θ

′
i) + 1)(n(θ′i)−1)dH(u).

where r is the number of distinct components of the random vector (θ1, θ2, . . . , θk).

We obtain dHθ⋆ by multiplying the above by dH(u) and dividing by the un-

conditional distribution of θ⋆
t . So,

dHθ⋆
t
(u) =

1

M
(n)
u

∏r
i=1 α

′
u(θ

′
i)(α

′
u(θ

′
i) + 1)(n(θ′i)−1)dH(u)

∫

U
1

M
(n)
u

α′
u(θ

′
i)(αu(θ′i) + 1)(n(θ′i)−1)dH(u)

. �

4.3 Explicit posteriors

4.3.1 Example 1 : α Wiener measure and H Bernoulli

Let W denote the standard Wiener measure on Θ = C(R+), where C(R+)

denote the space of continuous functions from R+ to R. Let the space U =

{0, 1}
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Theorem 4.3.1 Let P be a finite mixture of Dirichlet processes on R with

transition measure αu = cWu, where Wu is a Wiener measure, and mixing

distribution H ∼ Bernoulli(p) with parameter p ∈]0, 1[ and let f1, f2, . . . , fn

be a sample of size n of P. Then

P |f1, f2,..., fn∼ pH1 D
(

cW1 +

n
∑

i=1

δfi

)

+ (1 − p)F1 D
(

cW0 +

n
∑

i=1

δfi

)

where F1 and H1 are two constants depending on W ′
0 and W ′

1, the Radon-

Nikodym derivative of W0 and W1, respectively, w.r.t. µ = W0 + W1 +
∑n

i=1 δfi
.

Proof

According to Lemma 4.3.1

dH(u |f1) =
dW ′

f1|u
dH(u)

R

{0,1} dW ′
f1|u

dH(u)

= W ′
u(f1)dH(u)

pW ′
1(f1)+(1−p)W ′

0(f1)
.

Therefore the conditional distribution of P | f1 is a mixture of Dirichlet

processes given by :

pW ′
1(f1)

pW ′
1(f1) + (1 − p)W ′

1(f1)
D (cW1 + δf1)+(1−p) cW ′

0(f1)

pcW ′
1(f1) + (1 − p)W ′

0(f1)
D(cW0+δf1).

Let us first examine the case of a sample of size 2. Again by Lemma 3.2.6,

we have

dH (u |f1,f2) =
cW ′

u(f1)W ′
u(f2)dH(u)

(cWu(Θ)+1)Wu(Θ)
R

{0, 1}
cW ′

u(f1)W ′
u(f2)dH(u)

(cWu(Θ)+1)Wu(Θ)

=
cW ′

u(f1)W ′
u(f2)dH(u)

(cWu(Θ)+1)Wu(Θ)

p
cW ′

1
(f1)W ′

1
(f2)

(cW1(Θ)+1)W1(Θ)
+(1−p)

cW ′
0
(f1)W ′

0
(f2)

(cWu(Θ)+1)W0(Θ)

.

Therefore

P |f1, f2∼ pHD(cW1 +
2
∑

i=1

δfi
) + (1 − p)FD(cW0 +

2
∑

i=1

δfi
)
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where H = H(0) and F = H(1) are such that

H =

cW ′
1(f1)W ′

1(f2)dH(u)

(cW1(Θ)+1)W1(Θ)

p
cW ′

1(f1)W ′
1(f2)

(cW1(Θ)+1)W1(Θ)
+ (1 − p)

cW ′
0(f1)W ′

0(f2)

(cW0(Θ)+1)W0(Θ)

and

F =

cW ′
0(f1)W ′

0(f2)

(cW0(Θ)+1)W0(Θ)

p
cW ′

1(f1)W ′
1(f2)

(cW1(Θ)+1)W1(Θ)
+ (1 − p)

cW ′
0(f1)W ′

0(f2)

(cW0(Θ)+1)W0(Θ)

In the general case of a sample of size n, Lemma 1 yields

dH(u |f1, f2,..., fn) =
1

M(n)

Qr
i=1

cW ′
u(fi)(cW ′

u(fi)+1)(n(fi)−1)dH(u)

(cWu(Θ))(n)

R

{0, 1}
1

M(n)

Qr
i=1

cW ′
u(fi)(cW ′

u(fi)+1)(n(fi)−1)dH(u)

(cWu(Θ))(n)

and

P |f1, f2,..., fn∼ (1 − p)H1D(cW0 +
n
∑

i=1

δfi
) + pF1D(cW1 +

n
∑

i=1

δfi
)

where

H1 =

1
M (n)

∏r
i=1

cW ′
0(fi)(cW ′

0(fi)+1)(n(fi)−1)dH(u)

(cW0(Θ))(n)

(p− 1) 1
M (n)

∏r
i=1

cW ′
0(fi)(cW ′

0(fi)+1)(n(fi)−1)

(cW0(Θ))(n) + p 1
M (n)

∏r
i=1

cW ′
1(fi)(cW ′

1(fi)+1)(n(fi)−1)

(cW1(Θ))(n)

,

F1 =

1
M (n)

∏r
i=1

cW ′
1(fi)(cW ′

1(fi)+1)(n(fi)−1)dH(u)

(cW1(Θ))(n)

(p− 1) 1
M (n)

∏r
i=1

cW ′
0(fi)(cW ′

0(fi)+1)(n(fi)−1)

(cW0(Θ))(n) + p 1
M (n)

∏r
i=1

cW ′
1(fi)(cW

′
Q

1 (fi)+1)(n(fi)−1)

(cW1(Θ))(n)

.

and where r is the number of distinct components of the random vector

(f1, f2, . . . , fn). �

Remark 4.3.1 We can generalize this theorem to the case of a finite mixture

where H is distributed on {1, 2, . . . , k}.
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4.3.2 Example 2 : α Wiener measure and H Gaussian

Let W denote the standard Wiener measure on C(R+). For any u ∈ R+ let

Wu denote a Wiener measure with marginal distributions N (u, tσ2), t ∈ R+.

Theorem 4.3.2 Let P be a mixture of continuous time Dirichlet processes,

P ∼
∫

D(cWu)dH(u)

with u ∼ H = N (0, ρ2), then for any t ∈ R

Pt ∼
∫

D(cN (u, tσ2))dH(u).

Let θt
1, θ

t
2 be a sample of size 2 from Pt. Then the conditional distribution of

Pt given θt
1, θ

t
2 is a mixture of continuous time Dirichlet processes such that

Pt | θt
1, θ

t
2 ∼

∫

D(cNu +
2
∑

i=1

δθt
i
)dĤt(u)

where Ĥt(u) = H(u |θt
1, θt

2
) ∼ N (µt

1, σ
2
1, t) is given in the proof below

Proof

According to corollary 4.3.2, the conditional distribution of a mixture of

Dirichlet distributions Pt | θt
1, θ

t
2, is also a mixture of Dirichlet distributions,

with parameter cN (u(t), tσ2) +
∑2

i=1 δθt
i
.

According to Lemma 4.3.1 the mixing distribution Ĥ(u) of u given θt
1, θ

t
2

can be computed as follows.

Case θt
1 6= θt

2 :

dH(u |θt
1, θt

2
) =

1

(αu, t(Θ))(2)
α′

u, t(θ
t
1)α′

u,t(θ
t
2)dH(u)

R +∞
−∞

1

(αu, t(Θ))(2)
α′

u, t(θ
t
1)α′

u, t(θ
t
2)dH(u)

=
M√
t2πσ

e
−1

2tσ2 (θt
1−u)2 M√

t2πσ
e

−1
2tσ2 (θt

2−u)2 1√
t2πρ

e
−1

2tρ2 u2

du

R +∞
−∞

M√
2tπσ

e
−1

2tσ2 (θt
1−u)2 M√

2tπσ
e

−1
2tσ2 (θt

2−u)2 1√
t2πρ

e
−1

2tρ2 u2

du

.
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After simplification we get,

dH(u |θt
1,θt

2
) =

1

tρ2σ2(2π)3/2
e
−1
2 (u2( 2

tσ2 + 1
tρ2 )−4(θt

1+θt
2)u

tσ2 e
−1
2 (

(θt
1)2+(θt

2)2

tσ2 )
du

R

R

1

tρ2σ2(2π)3/2
e
−1
2 (u2( 2

tσ2 + 1
tρ2 )−

4(θt
1
+θt

2
)u

tσ2 e
−1
2 (

(θt
1)2+(θt

2)2

tσ2 )
du

= 1√
2π

√
2tρ2+tσ2

tσρ
e

−1
2

2tρ2+tσ2

tσ2tρ2 (u− 2(θt
1+θt

2)

2tρ2+tσ2 )2
.

Hence,

H(u |θt
1, θt

2
) = N (µt

1, σ
2
1, t) (4.4)

where µt
1 =

(θt
1+θt

2)ρ
2

2ρ2+σ2 , and σ2
1, t = t σ2ρ2

2ρ2+σ2 .

Case θt
1 = θt

2 :

dH(u |θt
1, θt

2
) =

1

(αu(Θ))(2)
α′

u,t(θ
t
1)α′

u, t(θ
t
2)dH(u)

R +∞
−∞

1

(αu(Θ))(2)
α′

u(θt
1)α′

u(θt
2)dH(u)

=
M√
t2πσ

e
−1

2tσ2 (θt
1−u)2 1√

t2πρ
e

−1
2tσ2 u2

du

R +∞
−∞

M√
t2πσ

e
−1

2tσ2 (θt
1
−u)2 1√

t2πρ
e

−1
2tσ2 u2

du

=
1

2tπσρ
e
−1
2 (u2( 1

tσ2 + 1
tρ2 )− (θt

1)u

tσ2 +
(θt

1)u

tσ2 du

R +∞
−∞

1
2πσρ

e
−1
2 (u2( 1

tσ2 + 1
tρ2 )−

(θt
1
)u

tσ2 +
(θt

1
)u

tσ2 )
du

.

As above, we get

dH(u |θt
1, θt

2
) =

1√
2π

√
tρ2+tσ2

tσρ
e
−1
2

tρ2+tσ2

tσ2tρ2 (u−t
2θt

1ρ2

tρ2+tσ2 )2du

R +∞
−∞

1√
2π

√
tρ2+tσ2

tσρ
e
−1
2

tρ2+tσ2

tσ2tρ2 (u−
t2θt

1ρ2

tρ2+tσ2 )2du

= 1√
2π

√
tρ2+tσ2

tσρ
e

−1
2

tρ2+tσ2

tσ2tρ2 (u− θt
1tρ2

tρ2+tσ2 )2du
.

Therefore

H(u |θt
1, θt

2
) ∼ N (µt

1, σ
2
1, t) (4.5)

where µt
1 =

ρ2θt
1

ρ2+σ2 , and σ2
1, t = t σ2ρ2

ρ2+σ2 .

Remark 4.3.2 Note that the mixing distribution H is gaussian depending

on the parameter t.
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4.4 Parameter estimation problems

In this section we incorporate the time parameter in a sampling model of

C.Antoniak ([1] page 1165) which leads to estimates different from standard

Bayesian analysis.

Let

G : Ω −→ P(C(R+))

G ∼
∫

D(αu)dH(u)

Let θ1, θ2, ..., θn ∈ P(C(R)) be a sample from G and θt
i = πt(θi).

Let

Gt : Ω −→ P(R)

where Gt(.) = G(πt(.))

Gt ∼
∫

D(αu, t)dH(u).

If αu is the Wiener Wu measure then

αu,t = N (u, tσ2).

Hence Gm, t = Gt]−∞, m] is a distribution function from a mixture of Beta

distributions with parameter αu, t and mixture distribution H.

Let gt
1, m, g

t
2, m, ..., g

t
n, m be a sample of size n from Gm, t and let X t

i1, ..., X
t
imi

be a sample of size mi from Fθt
i, m

(x).

As in [1], consider the two following problems

(a) Estimating the index of the parameter

(b) Estimating the mixing distribution function.

In problem (a), if we wish to estimate u with square error loss, then the

Bayes estimate is simply

U ′
t = E(u |θt

1,..., θt
n
)

if the θt
i are observed directly, and

U ′
t = E(u |Xt

i1,..., Xt
nmn

)
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if we only observe X t
ij.

In problem (b) Ĝt = E(Gt |θt
1, θt

2,..., θt
n
) is the Bayes estimate when the θi, are

observed and Ĝt = E(Gt |Xt
i1,..., Xt

nmn
) when only the X t

ij are observed.

Using ([1] page 1166) we get

Gt |θt
1,θt

2
∼
∫ +∞

−∞
D(αu, t + δθt

1
+ δθt

2
)dH(u |θt

1,θt
2
),

where H(u |θt
1,θt

2
) = N (µt

1, σ
2
1, t) (see theorem 2). Further

G |Xt
1
∼
∫ +∞

−∞
D(αu + δθt

1
)dHX1(θ

t
2, u),

where HX1is a bivariate Normal with parameters







































µ1, t = X t
1(tρ

2 + tσ2 + tτ 2)−1(tρ2 + tσ2)

µ2, t = tX t
1(tρ

2 + tσ2 + tτ 2)−1ρ2

σ2
1, t = αttτ(tρ2 + tσ2)

σ2
2, t = (tρ2 + tσ2 + tτ 2)−1tρ2(tρ2 + tσ2)

σ21, t = tαtτ 2ρ2.

(4.6)

For (a) we get U ′
θt =

2(θt
1+θt

2)ρ
2

2ρ2+σ2 when θt
1 6= θt

2 and U ′
θt =

2(θt
1+θt

2)ρ
2

ρ2+σ2 when

θt
1 = θt

2. Since we do note observe whether θt
1 = θt

2 or not, we must weight

these two estimates according to the posterior probability, given X t
1 and X t

2

and we get an estimate

U ′
t
′ = pd, tU

′
t + ps, tU

′
t
∗

where ps,t = P (θt
1 = θt

2 | X t
1, X

t
2), and pd, t = 1 − ps, t.

Concerning problem (b), the computation of E(Gθ, t | u, θt
1, θ

t
2) is slightly dif-

ferent from those in ([1] page 1167) because the time parameter also appears

in H :

E(Gθ, t |u, θt
1, θt

2
) =

αu, t(] −∞, θ]) + δθt
1
(] −∞, θ]) + δθt

2
(] −∞, θ])

αu, t(R) + δθt
1
(R) + δθt

2
(R)

,
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hence for θt
1 6= θt

2 we have

E(Gθ, t |θt
1, θt

2
) =

∫ +∞
−∞ E(Gθ, t |u,θt

1, θt
2
)dH(u |θt

1, θt
2
)

=
∫ +∞
−∞

αu, t(]−∞, θ])+δ
θt
1
(]−∞,θ])+δ

θt
2
(]−∞, θ])

αu(R)+δθ1
(R)+δθ2

(R)
dH(u |θt

1,θt
2
)

=
∫ +∞
−∞

M
M+2

N (u, tσ2)(] −∞, θ])dH(u |θt
1,θt

2
) + 2

M+2
F2(] −∞, θ]).

Ĝt(θ) = E(Gt(] −∞, θ]) |θt
1,θt

2
)

= M
M+2

∫

R
Φ( θ−u

σ
)dH(u |θt

1,θt
2
) + 2

M+2
F2(] −∞, θ])

= M
M+2

∫ +∞
−∞

1√
2πtσ

√
2πtσ1

(
∫ θ

−∞ e
−1
2

(x−u)2

tσ2 dx)e
−1
2

(u−µ1,t)
2

tσ2
1 du+ 2

M+2
F2(] −∞, θ]).

Using Fubini formula, we get

Ĝt(θ) = M
M+2

∫ θ

−∞(
∫ +∞
−∞

1√
2πtσ

√
2πtσ1

e
−1
2

(x−u)2

tσ2 e
−1
2

(u−µ1, t)
2

tσ2
1 du)dx+ 2

M+2
F2(] −∞, θ])

= M
M+2

∫ θ

−∞

√
tσ2

1+tσ2

√
2π

e
−1
2

1

tσ2
1+tσ2

(x−µ1)2

tσ2
dx

= N (µ1, t, tσ
2
1 + tσ2)(] −∞, θ]) + 2

M+2
F2(] −∞, θ]).

Therefore for θt
1 6= θt

2 we get

Ĝt = M
M+2

N (µ1,t, tσ
2
1 + tσ2) +

δθ1
+δθ2

M+2

= M
M+2

N (µ1, t,
t2(σ1)2+3tρ2tσ2

2tρ2+tσ2 ) +
δ
θ2
1
+δ

θ2
2

M+2
.

If θt
1 = θt

2, then for reasons given above, we get

Ĝt =
M

M + 2
N (

ρ2θt
1

ρ2 + σ2
,

(tσ1)
2 + 2tρ2tσ2

tρ2 + tσ2
) +

2δθt
1

M + 2
.



Chapter 5

Continuous time Dirichlet

hierarchical models

In some recent and interesting papers, hierarchical models with a Dirichlet

prior, shortly Dirichlet hierarchical models, were used in probabilistic classi-

fication applied to various fields such as biology ANTONIAK, C.E. (1974).,

astronomy ISHWARAN, H. and JAMES, L.F. (2002). or text mining BLEI,

D. and JORDAN., I. J. (2005). Actually, these models can be seen as com-

plex mixtures of real Gaussian distributions fitted to non-temporal data.

The aim of this chapter is to extend these models and estimate their param-

eters in order to deal with temporal data following a stochastic differential

equation (SDE).

The chapter is organized as follows. In section 2 we briefly recall Dirichlet

hierarchical models. In section 3 we consider the case of a Brownian motion

with a Dirichlet prior on its variance which is shown to be a limit of a random

walk in Dirichlet random environment. As an application, we estimate, in

section 4, regime switching models with stochastic drift and volatility.

In section 5, we consider the case of functional data such as signals or solu-

tions of SDE’s. Computing some posterior distributions in the multivariate
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case, the preceding method is extended in order to classify such functional

data.

5.1 Dirichlet hierarchical models

Let P ∼ D(cH) denote a Dirichlet process with precision parameter c > 0

and mean parameter H , where H is a probability measure on a Polish space

X . It is well-Known that P can be approximated by

P =
N
∑

k=1

pkδXk(.)

where














Xi
iid∼ H

(pi) ∼ SB(c, N)

(pi) ⊥ (Xi),

(5.1)

SB(c, N) denoting the stick-breaking scheme of Sethuraman. We will say

that (Xi)1, 2,..., follows a Dirichet hierarchical model if







Xi | P iid∼ P

P ∼ D(c, H).
(5.2)

5.2 Brownian motion in Dirichlet random en-

vironment

5.2.1 Random walks in random Dirichlet environment

Let D(cα) denote a Dirichlet process with parameters c > 0 and α, a finite

measure on a polish space X .
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Consider a random variable H and a sequence (Ui) of random variables de-

fined by the following hierarchical model


























Ui | V = σ
iid∼ N (0, σ2)

V−1 | P ∼ P

P | c ∼ D(cΓ(ν1, ν2))

c ∼ Γ(η1, η2).

(5.3)

Since V is sampled from a Dirichlet process, we have σ <∞ a.e. because

P(V <∞) = E(E(V ∈ R | P, P (R))) = E(P (R)) = 1

Hence, we are allowed to consider the following random walk (Sn)n∈N in

Dirichlet random environment, starting from 0:

Sn = U1 + U2 + . . .+ Un.

For any real number t ≥ 0 let

Sn
t =

1

n1/2
S[nt] (5.4)

where [x] denotes the integer part of x.

Let Bσ = σB denote a zero mean Brownian motion with variance σ2, B

denoting a standard Brownian motion independent from V.

Proposition 5.2.1

(Sn
t )t≥0

d−→ VB.

Proof

Let E = C(R+) be the space of real-valued continuous functions defined on

R+. For any bounded continuous function f defined on E we have
∫

f((Sn
t ))dP =

∫

R

(

∫

E

f(x)dPSn
t |σ′=σ)dP(σ).

But, a standard result on the convergence of Gaussian random walks is that
∫

E

f(x)dPSn
t |V=σ −→

∫

E

f(x)dPBσ
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and this integral is dominated by ‖ f ‖.
Hence by the dominated convergence theorem we have

∫

(f(Sn
t )t≥0)dP −→

∫

R

(

∫

E
f(x)dPBσ(x)

)

dPσ(σ)

=
∫

R

(

∫

E
f(σx)dPB

)

dPσ(σ)

=
∫

f(σB)dP
the last equality being due to the fact that B and σ′ are independent.

Definition 5.2.1 A Brownian motion in Dirichlet random environment (BMDE)

is a process Z such that


























Z | V = σ = L(Bσ)

V−1 | P ∼ P

P | c ∼ D(cΓ(ν1, ν2))

c ∼ Γ(η1, η2).

So, the above random walks in Dirichlet environment converge to a BMDE.

5.2.2 Simulation algorithm

An order to simulate a M paths Z1, . . . , ZM of BMDE, proceed as follows:

A path of a BMDE process (Z0 = 0, Zt1, . . . , Ztn) can be simulated as follows:

Let dt = ti+1 − ti > 0 be small enough and let K be the stick-breaking pre-

cision.

Draw c from Γ(η1, η2) and draw q = (q1, q2, . . . , qK) from SB(c, N).

Draw x = (x1, x2, . . . , xK) with xi’s
iid∼ Γ(ν1, ν2).

Repeat M times:

Draw σ−1 from
∑K

i=1 qiδxi
, draw Z0 = 0 and n points Zti such that Zti+1

−
Zti

iid∼ N (0, σ2dt).

Simulations
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Figure 5.1: M Paths of BMDE and non Gaussian density of (Z1
ti
, . . . , ZM

ti
).

5.2.3 Estimation

Due to proposition 1, given an observed path (zti of a BMDE, an estimation

of its parameters can be obtained by performing Ishwaran and James blocked

Gibbs algorithm with 0 means and equal variances on the data zti+1
−zti (see

Ishwaran - James paper, Section 3).

5.3 Description of the model

let (ω, F , Ft, P ) be a stochastic basis and (Wt) a one dimensional Wiener

process adapted to (ω, F , Ft, P ). We consider a stochastic process satisfying

the following SDE:

dXt = b(t, Xt)dt+ θ(t)h(Xt)dWt

where the function h(.) is assumed to be unknown, the volatility coefficient

θ(.) is a known function of time and has to be correctly estimated, the drift

coefficient b(t, x) may be unknown. We observe one sampling path of the

process (Xt, t ∈ [0, T ]) at the discrete times ti = i△ for i = 1, . . . , N . The

sampling interval △ is small in comparison of T . Let assume thatN := T△−1
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is an integer.

We will use the following assumptions:

• (A0): θ(t) is adapted to the filtration Ft, b(t, .) is non-anticipative map,

b ∈ C−1(R+, R) and the exist LT > 0 such that ∀LT > 0 such that ∀t ∈
[0, T ], E(θ4) ≤ LT and E(θ8) ≤ LT .

• (A1): θ(.) =
∑f

ρ=0 θρ11[tρ, tρ+1)(.) where tρ is the volatility jump times.

• (A2): ∃ > 0 such that θ2(.) is almost surely Hölder continuous of order m

with a constant K(ω) and E(K(ω)2) < +∞.

If we assume that the volatility jump times correspond to the sampling times

ti = i△, we have

• (A1’): θ(.) =
∑N

i=0 θi11[ti, ti+1)(.) we denote δθ2 = θ2
i+1 − θ2

i .

and if moreover there is at most one change time in each window we get

(A3).

• (A3): (A1) and (A1’) are satisfied and infρ=0,..., f |tρ+1 − tρ| ≥ A△.

Remark 5.3.1 If θ(t) satisfies a S.D.E. then (A2) is fulfilled, see e.g [A.

Revuz and M.Yor, (1991)].

We need to control
∫ ti+1

ti
b4(s, Xs)ds, so we will use:

(B1) ∃KT > 0, ∀t ∈ [0, T ], E(b(t, Xt)
4) ≤ KT In all the sequel we work

on the simplified model:

dXt = bt(t, Xt)dt+ θ(t)dWt.

Under some natural assumptions, the model (2) becomes (3) after the follow-

ing change of variable:

Proposition 5.3.1 (Pierre Bertrand) Assume that there exists a domain

D ⊆ R such that h ∈ C(D, R+ − {0}) the space of continuous function

from D to R+ − {0}, h−1 ∈ L1
loc(D) and for (Xt) solution of (2) satisfying

P(Xt ∈ D, ∀ t ∈ [0, T ]) = 1.
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Let H(x) =∈ h−1(ξ)dξ. Then Yt = H(Xt) satisfies the S.D.E (3) with

b1(t, x) = h−1(x)a(t, x) − 1
2
h

′
(x)θ2(t).

5.4 Estimation of the Volatility using Haar

wavelets basis

Since the size of the window appears in numerical applications as a free

parameter to be arbitrarily chosen, we give a description of the Estimator

introduced by Pierre Bertrand

HA,△(t) =

N/A−1
∑

k=1

{

A−1
A−1
∑

k=1

(XtkA+i+1
−XtkA+i

)2

}

11[tkA;t(k+1)A)(t). (5.5)

5.5 SDE in Dirichlet random environment

More generally, consider the following model. During the observation time

interval [0, T ] the process Xt, evolves according to various regimes. Regime

Rj holds during a random time interval [Tj−1, Tj) where

0 = T0 < T1 < T2 < . . . < TL = T.

The drift and the variance are randomly chosen in each regime but they do

not change during this regime, so

dXt =

L
∑

j=1

µRj
1[Tj−1, Tj)(t)dt+

L
∑

j=1

σRj
1[Tj−1, Tj)(t)dBt

where the Rj ’s ∈ {1, . . . , N} are random positive integers such that
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Rj |piid∼∑N
k=1 pkδk(.)

(µk, σk) | θ ∼ N (θ, σµ) ⊗ Γ(η1, η2), k = 1, . . . , L

p | α ∼ SB(α, N)

α ∼ Γ(ν1, ν2)

θ ∼ N (0, A).

5.5.1 Estimation and empirical results

The above process (Xt) is observed at discrete times, say idt, i = 0, 1, 2, . . . , n.

It is also assumed that the regime changes occur at these times. The esti-

mation of the above parameters can be done through Ishwaran and James

Blocked Gibbs algorithm where their class label variable K is our regime R.































































∆Xi |R,µ,σ
ind∼ N (µRi

, σRi
)

Ri |piid∼∑N
k=1 pkδk(.)

µi |θ∼ N (θ, σµ)

σi ∼ Γ(η1, η2)

p |α∼ SB(α,N)

α ∼ Γ(ν1, ν2)

θ ∼ N (0, A).

Our method was tested on the index of the Indian stock exchange market

(www.nseindia.com), where the number of data is n=300. We have found 3

regimes:

Regime 1 Regime 2 Regime 3

µ 4635.765 4924.502 5348.373

σ2 59579 12879.15 19773.46

Probability 0.38 0.44 0.17
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The analysis based on 25000 iterations following an initial 2000 iteration

burn-in.

5.5.2 Option pricing in a regime switching market

The above setting can be used in the option pricing problem with Xt =

log(St) where (St)t≥0 is the stock price process governed by a geometric Brow-

nian motion, and σRi
is a stochastic volatility during regime Ri. Observe that

the estimations are done here without using any sliding windows technique

and without assuming that Tj − Tj−1 is exponentially distributed, as it is

done with Markov chains in regime switching markets.

Definition 5.5.1 Suppose X is an n× p matrix, each row of which is inde-

pendently drawn from p-variate normal distribution with zero mean:

X(i) = (x1
i , . . . , x

p
i )

T ∼ Np(0, V ).

Then the Wishart distribution is the probability distribution of the p × p

random matrix

W = XXT =

n
∑

i=1

X(i)X
T
(i).

One indicates that W has that probability distribution by writing

W ∼ W(n, V ).

The positive integer n is the number of degrees of freedom.

5.6 Classification of trajectories

We consider the problem of classifying a set of n functions representing sig-

nals, stock prices and so on. Each function is known through a finite dimen-

sional vector of observed points. In order to classify these functions, we now

extend the blocked Gibbs algorithm to vector data. First let us precise our

model.
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5.6.1 Hierarchical Dirichlet Model for vector data

In the finite d-dimensional normal mixture problem, we observe data

f = (f1, f2, . . . , fn), where fi are iid random curves with finite Wiener mix-

ture density, the curves fi can be represented and approximated by the vector

f̃i = (△1fi, △2fi, . . . , △Lfi)

ψP (f) =

∫

R×R+

φ(f |σ(y))dP (y) = Σd
k=1pk, 0φ(f |σk

) (5.6)

where φ(f |σ) represents a d-dimensional normal distribution with mean 0

and variance matrix σ.

Based on the data , we would like to estimate the unknown mixture distribu-

tion P . We can devise a Gibbs sampling scheme for exploring the posterior

PN | f.
Notice that the model derived from (5) also contains hidden variables

K = {K1, . . . , Km} since it can also be expressed as







































f̃i | K, W, µ iid∼ NL(µKi
, △tiWKi

)

Ki | p ∼
∑N

k=1 pkδk(.)

µk | θ ∼ NL(θ, σµ)

Wk ∼ W(s, V )

θ ∼ Nk(0, A)

(5.7)

where W(s, V ) and NL(µ, σ) denote a Wishart and a multivariate Gaussian

distribution respectively, and p ∼ SB(c, N).

Note that a similar model for vector data appear in Caron F. et al. (2006)

but in our case the parameters of the Whishart prior are updated at each

iteration. In addition, we have a problem of clustering which justifies the

use of the hidden variables Ki’s. In particular we will need to compute the

posterior distribution of the class variable K and of the weight variable p.

To implement the blocked Gibbs sampler we iteratively draw values from the

following conditional distributions:
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µ | K, W, θ, f

W | K, µ, K, f

K | p, σ, Z, f

p | K, α

α | p

θ | µ.

5.6.2 Posterior computations

Blocked Gibbs Algorithm for vector data .

Let {K⋆
1 , . . . , K

⋆
m} denote the current m unique values of K. In each itera-

tion of the Gibbs sampler we simulate:

(a) Conditional for µ: For each j ∈ {K⋆
1 , . . . , K

⋆
m}, draw

µj |W, K, θ, f ind∼ Nl(µ
⋆
j , W

⋆
j )

where µ⋆
j =

∑

{i:Ki=j} f̃i + θ and W ⋆
j = σµ, also for each j ∈ K − K⋆,

independently simulate µj ∼ Nl(θ, σµ).

(b) Conditional for W : For each j ∈ {K⋆
1 , . . . , K

⋆
m}, draw

Wj | µ, K, f ind∼ W(s,
∑

{i:Ki=j}
(f̃i − µj)(f̃i − µj)

T + V )

where W(V, p) denote the Wishart distribution with parameters V and p.

(c) Conditional for K:

Ki | p, µ, W, f iid∼
N
∑

h=1

ph, iδh(.), i = 1, . . . , l
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where for each h = 1, 2, . . . , N

ph, i ∝ ph

( 1

(2π)l/2
(

det(Wh)
)1/2

)nh

exp
〈

∑

{d, K⋆
d=h}

(f̃d − µh)(f̃d − µh)
T , Wh

〉

,

and < A, B > is the trace of AB.

(d) Conditional for p:

For any integer N , let V1, . . . , VN−1 be iid β(1, c) and VN = 1. Let p1 =

V ⋆
1 , pk = (1 − V ⋆

1 ) . . . (1 − V ⋆
k−1)V

⋆
k , k = 2, . . . , N

where

V ⋆
k = β

(

1 + rk, α +

N
∑

l=k+1

rl

)

, for k = 1, . . . , N − 1

and (as before) rk records the number of Ki values which equal k.

(e) Conditional for α:

α | p ∼ Γ
(

N + η1 − 1, η2 −
N−1
∑

k=1

log(1 − V ⋆
k )
)

,

for the same values of V ⋆
k used in the simulation for p.

(f) Conditional for θ:

θ | µ ∼ NL(θ⋆, σ⋆),

where

θ⋆ =
N
∑

k=1

µk and σ⋆ = A.

Proof

Let φ denote the distribution function, for every j ∈ {K⋆
1 , . . . , K

⋆
m}
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(a) Conditional for µ:

φµj |W,K, θ, f (y) = φf |µj=y, W,K,θ(y)φµj |W, K,θ(y)φW,K,θ

=
∏

{d, K⋆
d=j} φf̃d|µj=y, W, K, θ(y)φµj|W, K, θ(y)φW,K, θ

=
(

∏

{d, K⋆
d=j} e

iyT f̃de−
1
2
f̃d

T
Wj f̃d

)

eiyT θ− 1
2
yT σµy

= e
iyT

P

{d, K⋆
d
=j} f̃de

− 1
2

P

{d, K⋆
d
=s}(f̃d

T
Wj f̃d)

eiyT θ− 1
2
yT σµy

=
(

e
− 1

2

P

{d, K⋆
d
=s}(f̃d

T
Wj f̃d)

)

e
iyT (θ+

P

{d, K⋆
d
=j} f̃d)− 1

2
yT σµy

hence

µj |W, K, θ, f
ind∝ Nl(θ +

∑

{d, K⋆
d=j}

f̃d, σµ)
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(b) Conditional for W : For each j ∈ {K⋆
1 , . . . , K

⋆
m}

φW−1
j |µ, K, f(M) = φX|Wj=M, K(M)φW−1

j |K,µ(M)φµ, K(z, t)

=
(

∏

{d, K⋆
d=j} e

− 1
2
(f̃d−µj)

T M(f̃d−µj)
)

× det(M
n−l−1

2 )
n−l−1

2

2
nl
2 det(V )

n
2 Γp(n

2
)
e−

1
2
Tr(V −1M)φµ, K(z, t)

= e
− 1

2
Tr

(

P

{d,K⋆
d
=j}(f̃d−µj)(f̃d−µj)T M

)

× det(M
n−l−1

2 )
n−l−1

2

2
nl
2 det(V )

n
2 Γp(n

2
)
e−

1
2
Tr(V −1M)φµ,K(z, t)

= det(M
n−l−1

2 )
n−l−1

2

2
nl
2 det(V )

n
2 Γp(n

2
)
e
− 1

2
Tr

(

(
P

{d, K⋆
d
=j}(f̃d−µj)(f̃d−µj)

T +V −1)M

)

× φµ, K(z, t)

therefore,

Wj | µ, K, f
ind∝ W

(

n, (
∑

{i:Ki=j}
(f̃i − µj)(f̃i − µj)

T + V )−1
)

.

(c) Conditional for K:

P{Ki = j | p, µ, W, f} = P{f | p, W, Ki = j, µ}P{Ki = s |W, µ}P{µ}P{W}

∝ P{f | p, W, Ki = j, µ}P{Ki = s |W, µ}

=
(

∏

{d, K⋆
d=s}

ps

(2π)l/2

(

det(Ws)

)1/2 e
− 1

2
(f̃d−µs)T Ws(f̃d−µs)

)

.

Hence,

ps, i ∝ ps

( 1

(2π)l/2
(

det(Ws)
)1/2

)ns

exp
〈

∑

{d, K⋆
d=s}

(f̃d − µs)(f̃d − µs)
T , Ws

〉
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where ns is the number of time K⋆
s occurs in K.

(d) Conditional for θ:

φθ|µ=µ′(θ) ∝ φµ|θ(µ
′)φθ(θ)

=
∏N

j=1 φµ|θ(µ
′
j)φθ(θ)

=
(

∏N
j=1 e

iθT µ′
je−

1
2
µ′T

j σµµ′
j

)

e− 1
2
θTAθ

=
(

ei
PN

j=1 θT µ′
je−

1
2
θT Aθ

)

e
PN

j=1 − 1
2
µ′T

j σµµ′
j .

Hence the distribution of θ | µ ∝ NL(
∑N

j=1 µj, A).

5.6.3 Classes of volatility

Let (St) be the stock price process and suppose that Xt = log(St), satisfies:

dXt = b(t, Xt)dt+ θ(t)h(Xt)dBt (5.8)

where the function h(.) is assumed to be known, the volatility coefficient

θ(.) is a random function of time and has to be estimated and the drift

coefficient b(t, x) is unknown. We observe a path of the process (Xt, t ∈
[0, T ]) sampled at discrete times ti = i△, for i = 1, . . . , N .

Under some conditions and after a change of variable (see e.g. [5]), equation

(5.8) reduces to

dXt = bt(t, Xt)dt+ θ(t)dBt.

A refined method to estimate θ(t) consists in using wavelets. Consider

(Vj, j ∈ Z) an r-regular Multi Resolution Analysis of L2(R) such that the

associated scale function Φ and the wavelet function ψ are compactly sup-

ported. For all j, the family {Φj, k(t) = 2j/2Φ(2jt−k), k ∈ Z} is an orthogonal

basis of Vj. Time being sampled with △ = 2−n, St, the estimator is then:

θ2(t) =
∑

k

µj(n), kΦj(n), k(t) (5.9)
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for j(n) < n, where

µj(n), k =
N−1
∑

i=1

Φj(n), k(ti)(Xti+1
−Xti)

2. (5.10)

Suppose that we have observed n trajectories X1, . . . , Xl, . . . , Xn sampled

as above, and that we want to classify them according to their volatility

component, that is, we want to classify the θl’s estimated by (5.9).

We then see that we have just to apply the preceding algorithm to the vectors

µl
j(n), k which are finite dimensional representations of the θl’s.

5.7 Conclusion

We have extended Dirichlet hierarchical models in order to deal with tempo-

ral data such as solutions of SDE with stochastic drift and volatility. It can

be thought that the process on which are based these parameters belongs

to a certain well-known class of processes, such as continuous time Markov

chains. Then, we think that a Dirichlet prior can be put on the path space,

that is a functional space. The estimation procedure in such a context is the

topic the next chapter.



Chapter 6

Markov regime switching with

Dirichlet Prior. Application to

Modelling Stock Prices

We have seen in Chapter 3, some examples of continuous time Dirichlet pro-

cesses with parameters proportional to the distribution of continuous time

processes, such as the Wiener measure one.

In the present Chapter, motivated by some mathematical models in finance

dealing with ’Regime switching markets’, we consider the case where the con-

tinuous time process is a continuous time Markov chain whose state at time

t modellizes the state of the market at time t.

Indeed, while in preceding Chapter 5, volatility was constant during some

time interval of random length without any hypothesis on the switching pro-

cess, here the switching depends on a Markov chain which states represent

the different regimes. Also, the various values of the trend and the volatility

depend on the state of this chain which ’chooses’ these values among some

i.i.d. ones. Clearly, we deal with stochastic volatility

In our approach, the regimes play the same role as the classes play in classi-
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fication: each temporal observation therefore belongs to a class that is to a

regime.

Our contribution consists in placing a Dirichlet process prior on the path

space of the Markov chain, which is a cadlag function space. This idea is

new as it has never been used in the literature.

In the first Section, we present our model. Section 2 deals with the estima-

tion procedure, the computations of the posteriors follow from those done

in Chapter 5. In the last Section 3, we give some indications on the imple-

mentation of the algorithm in C language and some numerical results are

presented.

6.1 Markov regime switching with Dirichlet

prior

In this section , we take ᾱ = H , the distribution of a continuous time Markov

chain on a finite set of states and we propose a new hierarchical model that is

specified, as an example, in the setting of mathematical finance. Of course,

this can be similarly used in many other cases. We consider the Black-Scholes

SDE in random environment with a Dirichlet prior on the path space of the

chain, the states of the chain representing the environment due to the market.

We model the stock price using a geometric Brownian motion with drift and

variance depending on the state of the market. The state of the market is

modeled as a continuous time Markov chain with a Dirichlet prior. In what

follows, the notation σ will be used to denote the variance rather than the

standard deviations.

The following notations will be adopted:

1. n will denote the number of observed data and also the length of an

observed path.
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2. M will denote the number of states of the Markov chain.

3. The state space of the chain will be denoted by S = {i : 1 ≤ i ≤M}.

4. N will denote the number of simulated paths.

5. m will denote the number of distinct states of a path.

• The stock price follows the following SDE:

dSt

St
= β(Xt)dt+

√

σ(Xt)dBt, t ≥ 0,

where Bt is a standard Brownian motion. By the Ito’s formula, the

process Zt = log(St) satisfies the SDE,

dZt = µ(Xt)dt+
√

σ(Xt)dBt, t ≥ 0,

where µ(Xt) = β(Xt) − 1
2
σ(Xt). The observed data is of the form

Z0, Z1, . . . , Zn.

• The process (Xt) is assumed to be a continuous time Markov process

taking values in the set S = {i : 1 ≤ i ≤ M}. The transition probabil-

ities of this chain are denoted by pij , i, j ∈ S and the transition rate

matrix is Q0 = (qij)i,j∈S with

λi > 0, qij = λipij if i 6= j, and qii = −
∑

j 6=i

qij , i, j ∈ S.

Define the log-returns, Yt = Zt − Zt−1 = log(St/St−1), t = 1, 2, . . . , n.

Suppose we know the path X = {Xs, 0 ≤ s ≤ n}. Let Tj(t) be the time

spent by the path X in state j in the time interval [t− 1, t]. Define

µ(t) :=
M
∑

j=1

µ(j)Tj(t); σ(t) :=
M
∑

j=1

σ(j)Tj(t). (6.1)

Then, conditional on the pathX, Yt are i.i.d. N (µt, σt), t = 1, 2, . . . , n.
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• For each i = 1, 2, . . . , M, the priors on µi = µ(i) and σi = σ(i) are

specified by

µi
ind∼ N (θ, τµ), with θ ∼ N (0, A), A > 0, (6.2)

σi
ind∼ Γ(ν1, ν2). (6.3)

• The Markov chain {Xt, t ≥ 0} has prior D(α H), where H is a prob-

ability measure on the path space of cadlag functions D([0, ∞), S).

The initial distribution according to H is the uniform distribution

π0 = (1/M, . . . , 1/M), and the transition rate matrix is Q with pij =

1/(M −1) and λi = λ > 0. Thus the Markov chain under Q will spend

an exponential time with mean 1/λ in any state i and then jump to

state j 6= i with probability 1/(M − 1).

A realization of the Markov chain from the above prior is generated

as follows: Generate a large number of paths Xi = {xi
s : 0 ≤ s ≤ n},

i = 1, 2, . . . , N, from H. Generate the vector of probabilities (pi, i =

1, . . . , N) from a Poisson Dirichlet distribution with parameter α, using

stick breaking. Then draw a realization of the Markov chain from

p =
N
∑

i=1

piδXi
, (6.4)

which is a probability measure on the path space D([0, n), S). The

parameter λ is chosen to be small so that the variance is large and

hence we obtain a large variety of paths to sample from at a later

stage. The prior for α is given by,

α ∼ Γ(η1, η2). (6.5)

6.2 Estimation

Estimation is done using the simulation of a large number of paths of the

Markov chain which will be selected according to a probability vector (gener-
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ated by stick-breaking) and then using the blocked Gibbs sampling technique.

This technique uses the posterior distribution of the various parameters.

We denote by µ, and σ, the current values of the vectors (µ1, µ2, . . . , µn),

(σ1, σ2, . . . , σn), respectively. Let Y be the vector of observed data (Y1, . . . , Yn).

Let X = (x1, x2, . . . , xn) be the vector of current values of the states of the

Markov chain at times t = 1, 2, . . . , n, respectively. Let X∗ = (x∗1, . . . , x
∗
m)

be the distinct values in X.

6.2.1 Modifying the observed data set

In order to obtain the conditional distribution of the parameters, we first

need to extract the change in the log-returns between the jump times of

the Markov chain. Let 0 = t0 < t1 < t2 < . . . tJ be the times at which

the path X changes state. Define the log-returns between the jump times,

Wk = log(Stk/Stk−1
), k = 1, 2, . . . , J. To obtain realizations of the Wk from

the observed Y process, we need to simulate Gaussian random variables

conditioned on their sums.

Consider any t ∈ {0, 1, . . . , n} for which the chain changes state atleast

once in the time interval [t − 1, t]. Let tk−1 < t − 1 ≤ tk < . . . < tk+p <

t < tk+p+1, be the jump times that lie in [t − 1, t], for some p ≥ 1. Let

V 1
t = log(Stk/St−1) and V 2

t = log(St/Stk+p
). Then,

Yt = V 1
t +

p
∑

i=1

Wk+i + V 2
t . (6.6)

Suppose for some the chain X is in state ji in the time interval [tk+i−1, tk+i),

i = 0, 1, . . . , p+ 1. Set s0 = tk − t− 1, si = tk+i − tk+i−1, i = 1, 2, . . . , p, and

sp+1 = t− tk+p. Let mj = µ(ji)si and vj = σ(ji)si, i = 0, 1, . . . , p+ 1. Recall

that Yt ∼ N (µt, σt), where µ(t), σ(t) are as defined in (6.1). It is easy to see
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that the joint conditional density of (V 1
t ,Wk+1, . . . ,Wk+p) given Yt = y

f(u0, u1, . . . , up) = C

p
∏

i=0

exp

(

−1

2

vi + vp+1

vi vp+1

(

ui −
vp+1mi + vi(y −mp+1)

vi + vp+1

)2
)

,

(6.7)

where C is a constant that depends on y and the parameters. Thus, one can

simulate the variables V 1
t ,Wk,Wk+1, . . . ,Wk+p from independent Gaussians

and then obtain V 2
t using (6.6).

Using the above procedure, we can obtain a realization for allWk for which

[tk−1, tk] ⊆ [t−1, t], for some t ∈ {0, 1, . . . , n}. Now for any k for which there

is a q ≥ 0, such that t− 1 ≤ tk−1 < t < t+ 1 < . . . < t+ q ≤ tk < t+ q + 1,

we can obtain Wk using the relation

Wk = V 2
t +

q
∑

i=1

Yt+i + V 1
t+q+1. (6.8)

Note that the W values depend on the path X and need to be computed in

each iteration.

6.2.2 The Gibbs sampling procedure

We are now ready to estimate the posterior distributions of the parameters

using Gibbs sampling. Each iteration produces one realization of the param-

eters from their approximate posterior distribution. Each iteration consists

of a large number of samples obtained recursively for each parameter condi-

tioned on the current values of the other parameters and the data.

• Conditional for µ. For each j ∈ X∗ draw

(µj|θ, τµ, σ, X, W )
ind∼ N (µ∗

j , σ
∗
j ), (6.9)

where

µ∗
j = σ∗

j





∑

k:Xtk−1
=j

Wk

σj(tk − tk−1)
+

θ

τµ



 ,
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σ∗
j =

(

nj

σj
+

1

τµ

)−1

,

and nj being the number of times j occurs in X. For each j ∈ X \X∗,

independently simulate µj ∼ N (θ, τµ).

• Conditional for σ. For each j ∈ X∗ draw

(σj |µ, ν, X, W )
ind∼ Γ(ν1 +

nj

2
, ν∗2, j), (6.10)

where

ν∗2, j = ν2, j +
∑

k:Xtk−1
=j

(Wk − µj(tk − tk−1))
2

2(tk − tk−1)
.

Also for each j ∈ X \X∗, independently simulate σj ∼ Γ(ν1, ν2).

• Conditional for X.

(X|p) ∼
N
∑

i=1

p∗i δXi
, (6.11)

where

p∗i ∝
m
∏

j=1

(

∏

{k:xi,∗
ti
k−1

=j}

1

(2πσj(tk − tk−1))1/2
e
− 1

2σj
(W i

k−µj(tk−tk−1))2
)

pi,

(6.12)

where (xi,∗
1 , . . . , x

i,∗
m ) denote the current m = m(i) unique values of the

states and tik, W
i
k are as defined in subsection 6.2.1 for the path Xi,

i = 1, . . . , N.

• Conditional for p.

p1 = V ∗
1 , and pk = (1 − V ∗

1 ) · · · (1 − V ∗
k−1)V

∗
k , k = 2, 3, . . . , N − 1,

(6.13)

where

V ∗
k

ind∼ β
(

1 + rk, α
)

,

rk equal 1 if i = k and 0 else.
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• Conditional for α.

(α|p) ∼ Γ

(

N + η1 − 1, η2 −
N−1
∑

i=1

log(1 − V ∗
i )

)

,

where the V ∗ values are those obtained in the simulation of p in the

above step.

• Conditional for θ.

(θ|µ) ∼ N (θ∗, τ ∗), (6.14)

where

θ∗ =
τ ∗

τµ

M
∑

j=1

µj ,

and

τ ∗ =

(

M

τµ
+

1

A

)−1

.

Proof.

(a) The computation of the posterior distributions for µ, σ and θ follow in

the same manner as in Ishwaran and James (2002) and Ishwaran and

Zarepour (2000). Here, Xt = s means that the class variable is equal

to s.

(b) Conditional for X:

P{X = Xi | p, µ, σ, W} = P{W | p, σ, X = Xi, µ}P{X = Xi | σ, µ, p}P{µ, σ}

∝
m
∏

j=1

(

∏

{k:xi,∗
ti
k−1

= j}

1

(2πσj(tk − tk−1))1/2
e
− 1

2σj
(W i

k−µj(tk−tk−1))2
)

pi

whereXi = (xi
1, . . . , x

i
n) and (xi,∗

1 , . . . , x
i,∗
m ) denote the currentm unique

values in the path Xi.
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(c) Conditional for p : The Sethuraman stick-breaking scheme can be ex-

tended to the two-parameter Beta distributions, see Ishwaran James

(2001) and Walker Muliere (1997, 1998):

Let Vk
ind∼ β(ak, bk), for each k = 1, . . . , N . Let

p1 = V1, and pk = (1 − V1) · · · (1 − Vk−1)Vk, k = 2, 3, . . . , N − 1.

We will write the above random vector, in short as

p ∼ SB(a1, b2, . . . , aN−1, bN−1).

By Connor and Mosimann (1969), the density of p is

(

N−1
∏

k=1

Γ(ak − bk)

Γ(ak)Γ(bk)

)

pa1−1
1 . . . p

aN−1−1
N−1 p

bN−1−1
N ×

×(1 − P1)
b1−(a2−b2) . . . (1 − PN−2)

bN−2−(aN−1−bN−1),

where Pk = p1 + . . .+ pk.

From this, it easily follows that the distribution is conjugate for multi-

nomial sampling, and consequently the posterior distribution of p given

X, when ak = 1 and bk = α for each k, is

SB(a∗1, b
∗
2, . . . , a

∗
N−1, b

∗
N−1),

where

b∗k = α

a∗k = 1 + rk,

and rk equal 1 if i = k and 0 else, k=1,. . . , N-1. �
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6.3 Implementation

The algorithm presented in the previous section was implemented in C lan-

guage. The implementation includes:

- functions that simulate standard probability distributions: Uniform, Nor-

mal, Gamma, Beta, Exponential.

- a function that returns an index ∈ {1, . . . , n} according to a vector of prob-

ability p1, . . . , pn.

- a function that simulates a probability vector according to stick-breaking

scheme.

- a function that simulates n paths of a Markov chain.

- a function that records the number of times a state appears in a path.

- a function that chooses one of the paths according to a vector of probability.

- a function that modifies the parameters of prior distributions according to

the formulas of the posteriori distributions.

After having simulated a number of paths, we perform the iterations. At

each iteration a path is randomly selected and the parameters are updated

according to posteriori formulas. At the end of each iteration of the Gibbs

sampling, we obtain a pathX of the Markov chain. From this, the parameters

π and Q0 can be re-estimated. From Q0 the parameters λi and pij can be

derived.

6.3.1 Simulated data

We fit the model, using the algorithm developed above, to a simulated series

of lenght n = 480, with a number of states (regimes) M = 4, mean and
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variance in each state being chosen as follows:

(µ1, σ1) = (−1.15, 0.450)

(µ2, σ2) = (−0.93, 0.450)

(µ3, σ3) = (−0.60, 0.440)

(µ4, σ4) = (1.40, 0.500).

We have performed our algorithm on that series with number of states M =

10, number of paths N = 100 and number of iterations = 25,000. Then,

we have observed that the algorithm is able to put most of the mass (in

terms of the stationary distribution of the MC) on 4 regimes, which are

close to the ones chosen above. At the end of the iterations we compute

a confidence interval for the mean and for the variance w.r.t. each regime.

We can conclude that the algorithm is able to identify the parameters of the

simulated data set.

The confidence intervals for the mean and the variance are given below.

Regime 1:

Im = [−1.208, −1.12423] and Iv = [0.431, 0.4738].

Regime 2:

Im = [−0.9351, −0.9296] and Iv = [0.442, 0.4538].

Regime 3:

Im = [−0.63446, −0.5140] and Iv = [0.4319, 0.4491].

Regime 4:

Im = [1.30114, 1.43446] and Iv = [0.4949, 0.5081].

6.3.2 Real data

We have also applied our algorithm to the Bsemidcap index data of the Indian

National Stock Exchange (NSE) from 21/12/2006 to 15/11/2007 (www.nseindia.com).
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For this dataset we have, n = 250, ∆t = 1, and we deal with N = 100 of

paths while Gamma(2, 4) is the prior for α.

With the above choice, we obtain 6 regimes for which the estimates for the

mean, variance and stationary probabilities are as follows:

R 1 R 2 R 3 R 4 R 5 R 6

µ 0.001124 -0.009479 0.000629 -0.004579 0.000829 0.001109

σ 2.9132 e-05 7.2166 e-05 2.3023 e-05 7.3800 e-05 1.186 e-05 3.3372 e-05

π 20 % 3 % 29% 5 % 10 % 33 %

The most frequent Markov chain path, its parameters λis and the matrix

of transition probability (pi,j)1≤i6=j≤6 are respectively equal to:

3 5 3 6 3 6 3 6 1 6 5 1 3 6 3 5 3 3 6 6 5 6 3 6 1 1 4 1 6 1 3 3 6 6 6 3 1 3 3

3 6 3 3 3 4 5 6 6 6 6 4 6 1 1 1 6 6 6 6 6 1 3 3 3 1 6 1 3 3 5 6 3 3 1 6 5 4 1 3 6

4 6 3 3 5 6 3 6 2 3 6 1 3 3 6 1 6 6 5 5 1 1 5 3 5 3 3 6 1 6 5 6 1 6 6 3 1 6 3 1 1

6 2 3 6 6 6 3 3 2 6 6 6 1 3 3 6 6 3 1 3 6 6 1 6 6 1 1 6 1 5 3 5 1 3 5 3 4 1 3 3 5

3 1 3 6 6 6 1 3 5 6 5 3 3 6 3 6 1 3 5 6 6 6 5 1 6 3 3 1 1 6 6 6 3 6 1 3 6 3 6 6 6

6 6 3 6 3 6 6 4 6 3 6 1 1 6 4 6 1 3 4 3 6.

λ1 λ2 λ3 λ4 λ5 λ6

0.8 1 0.7 1 0.95 0.75



























0 0.48 0.03 0.06 0.42

0 0.66 0 0 0.33

0.16 0.02 0.062 0.2 0.54

0.375 0 0 0.125 0.5

0.157 0 0.42 0.052 0.36

0.36 0.038 0.384 0.077 0.134
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It is interesting to note that in the high volatility states, the index has a neg-

ative drift as is usually observed in analysis of empirical data. A by-product

of our algorithm is the distribution of the current state of the volatility, which

is required to compute the price of an option ( see [?] and references therein).

6.4 Validation.

Consider the stock price data for duration 1 ≤ t ≤ T1. Estimate the model

based on this data. The carry out a 1-step forecast on the time interval

T1 ≤ t ≤ T2 using the estimated model. Compare the MSE with other models

like GBM with fixed variance, GARCH (Rene Carmona), simple Markov

switched model etc.

6.5 Option Pricing

The model we follow is as in Ghosh and Deshpande (G-D), except that we

now have a prior on the variables. So, essentially we have to take take several

realizations of our parameters and for each of them compute the option price

and then average over these values.

Suppose we have stock price for time 0 ≤ t ≤ T1, then use formula (4.1)

in G-D to compute the option price with s = ST1 which is the current price

and take t = T, to be say 15 (the day the option matures). This will give us

the values (φ(T, ST1, (k, i), k = 1, . . .N, i = 1, . . . ,M).

Note that the vector φ is written as

(φ(t, s, (1, 1)), φ(t, s, (1, 2)), . . . , φ(t, s, (1,M)), φ(t, s, (2, 1)), . . . , φ(t, s, (N,M)))

and the transition matrix and the other matrices accordingly. For example,

the matrix Σ in (4.1) will be a block diagonal matrix with N blocks each of

which is (diag(σ1, . . . , σM). Thus Σ will be a NM ×NM matrix.
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Once we solve (4.1), then, given the history of the price upto time T1,

we have to estimate the probability that the Markov chain is in state (k, i).

Then we have to average the option price over these probabilities.

This option price should be compared with the usual Black-Scholes for-

mula for GBM with fixed σ.

In this numerical work, we can keep the interest rate fixed. See some

literature on option pricing for choice of the interest rate.



Chapter 7

Conclusion and Perspectives

Our main subject of interest was to investigate Dirichlet processes when the

parameter is proportional to the distribution of a stochastic process (Brown-

ian motion, jump processes, ...) and to propose continuous time hierarchical

models involving continous-time Dirichlet processes.

Although this area requires some rather nontrivial techniques, we have shown

that such a setting can be of interest in modelling SDEs in random environ-

ment and that the proposed estimation procedure works.

Let us finally mention some perspectives.

It is clear that it would be interesting to extend the method to other SDEs

and to other kind of processes, we think of replacing, in the last chapter,

the markov chain by a diffusion, a spatio-temporal process or a multivariate

process.

It would be also of interest to use the estimated model for prediction and to

compare this prediction with other models.

Concerning the algorithm in the last chapter it can be observed that for each

iteration, an option price w.r.t. the selected path can be computed by using

for example the formula in Ghosh and Deshpande. After performing all the

iterations, we will have a distribution of option prices that can be used for

decision-making on the final option price. This should be compared to other
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decision procedures.
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Hafedh Faires
Modèles hiérarchiques de
Dirichlet à temps continu

Résumé :

Nous étudions les processus de Dirichlet dont le paramètre est une mesure proportionnelle
à la loi d’un processus temporel, par exemple un mouvement Brownien ou un processus
de saut Markovien. Nous les utilisons pour proposer des modèles hiérarchiques bayésiens
basés sur des équations différentielles stochastiques en milieu aléatoire. Nous proposons
une méthode pour estimer les paramètres de tels modèles et nous l’illustrons sur l’équation
de Black-Scholes en milieu aléatoire.

Mots-clés : Statistiques Bayesien, Mouvement Brownien, Échantillonneur de Gibbs,
Chaîne de Markov, Mélanges, Milieu aléatoire, Regime-switching, Calculs stochastiques,
Équations différentielle stochastiques, volatilités stochastiques, mesure de Wiener.

CONTINUOUS TIME DIRICHLET HIERARCHICAL
MODELS

Abstract :

We consider Dirichlet processes whose parameter is a measure proportional to the distri-
bution of a continuous time process, such as a Brownian motion or a Markov jump process.
We use them to propose some Bayesian hierarchical models based on stochastic differential
equations in random environment. We propose a method for estimating the parameters of
such models and illustrate it on the Black-Scholes equation in random environment.

Key words : Bayesian statistics, Brownian motion, Classification, Dirichlet process, Gibbs
sampling, Markov chain, Mixtures, Random environment, Regime-switching, Stochastic
calculus, Stochastic differential equations, stochastic volatility, Wiener measure.
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