Modèles hiérarchiques de Dirichlet à temps continu

Hafedh Faires

To cite this version:

Hafedh Faires. Modèles hiérarchiques de Dirichlet à temps continu. Mathématiques [math]. Université d'Orléans, 2008. Français. NNT : . tel-00466503

HAL Id: tel-00466503
 https://theses.hal.science/tel-00466503

Submitted on 24 Mar 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Centre Val de Loire

ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES
 LABORATOIRE DE MATHÉMATIQUES ET APPLICATIONS, PHYSIQUE MATHÉMATIQUES D'ORLÉANS

THĖSE ${ }_{\text {presentee par }}$:

Hafedh Faires

Soutenue le : 3 Octobre 2008
pour obtenir le grade de Docteur de l'univérsité d'Orléans
Discipline: Mathématiques

Modèles hiérarchiques de Dirichlet à temps continu

THÈSE dirigée par :
Mr. Richard EMILION Professeur, Université d'Orléans.

RAPPORTEURS :

M. Fabrice GAMBOA

Professeur, IMT Université Paul Sabatier.
M. Lancelot JAMES

Professeur, Hong Kong university.

JURY:
M. Paul DEHEUVELS

Mme. Anne ESTRADE
M. Richard EMILION
M. Fabrice GAMBOA
M. Abdelhamid HASSAIRI
M. Dominique LEPINGLE

Professeur, Université Paris 6.
Professeur, Université de Paris 5.
Professeur, Université d'Orléans.
Professeur, IMT Université Paul Sabatier.
Professeur, Université de Sfax, Tunisie.
Professeur, Université d'Orléans.

Résumé

Nous étudions les processus de Dirichlet dont le paramètre est une mesure proportionnelle à la loi d'un processus temporel, par exemple un mouvement Brownien ou un processus de saut Markovien. Nous les utilisons pour proposer des modèles hiérarchiques bayésiens basés sur des équations différentielles stochastiques en milieu aléatoire. Nous proposons une méthode pour estimer les paramètres de tels modèles et nous l'illustrons sur l'équation de Black-Scholes en milieu aléatoire.

Abstract

We consider Dirichlet processes whose parameter is a measure proportional to the distribution of a continuous time process, such as a Brownian motion or a Markov jump process. We use them to propose some Bayesian hierarchical models based on stochastic differential equations in random environment. We propose a method for estimating the parameters of such models and illustrate it on the Black-Scholes equation in random environment.

Remerciements

Tout d'abord, je tiens à exprimer mon profond respect et ma grande reconnaissance au professeur Richard EMILION, mon directeur de thèse, qui m'a proposé un sujet de recherche très intéressant, m'a initié à la recherche et a encadré mes travaux. Je le remercie pour les nombreuses connaissances qu'il m'a transmises mais aussi pour sa patience et sa bonne humeur.
Mes remerciements s'adressent également aux Professeurs Fabrice GAMBOA et Paul Deheuvels, les rapporteurs de ce manuscrit de thèse.

Je souhaite aussi remercier le jury Fabrice Gamboa, Anne Estrade, Abdelhamid Hassairi Lancelot James et Dominique Lepingle.

Des remerciements particuliers pour les professeurs Dominique LEPINGLE, Romain ABRAHAM, Gilles ROYER, Pierre ANDREOLETTI qui m'ont apporté des réponses pertinentes à certaines questions.

Mes remerciements vont à l'égard du Directeur, le professeur Jean-Philippe ANKER, et des membres du laboratoire MAPMO de l'Université d'Orléans pour leur acceuil sympathique, les conditions de travail, et pour toutes les discussions pendant ces années de thèse.

Ce travail passionnant a été effectué au côté de camarades de bureau dynamiques que je remercie amicalement: El Safadi Mohammad, Lina Aballah, Pierre Clare, Bassirou Diagne et d'autres avec lesquels j'ai eu l'honneur de partager ces années riches d'expériences et de projets.

Un merci particulier à mon ancien enseignant Kamel MOKNI, pour sa motivation et ses encouragements à mon attention.

Finalement, je voudrais saluer le soutien constant de mes parents et leur confiance dans les choix et les décisions que j'ai prises et je voudrais chaleureusement remercier toute ma famille qui m'a apporté un climat serein indispensable pour un travail de thèse.

Contents

1 Introduction 9
I. Preliminary 22
2 Dirichlet distribution 23
2.1 Random probability vectors 23
2.2 Polya urn (Blackwell and MacQueen) [3] 24
2.2.1 Markov chain 25
2.2.2 Gamma, Beta and Dirichlet densities 29
2.3 Dirichlet distribution 31
2.4 Posterior distribution and Bayesian estimation 32
2.5 Definition and proprieties on Poisson-Dirichlet distribution 35
2.5.1 Gamma process and Dirichlet distribution 35
2.5.2 The limiting order statistic 37
3 Introduction on Dirichlet Processes 41
3.1 Dirichlet processes 42
3.1.1 Definition and proprieties of the Dirichlet process 43
3.1.2 Mixtures of Dirichlet processes (MDP) 47
3.1.3 Dirichlet processes Mixtures 48
3.2 Some properties and computions for DPMs 50
3.2.1 Dependent Dirichlet Process 51
3.2.2 Nested Dirichelt process 54
3.3 Some recent advances in Dirichlet models 54
4 Mixtures of continuous time Dirichlet processes 57
4.1 Continuous time Dirichlet processes 57
4.2 Brownian-Dirichlet process 60
4.2.1 Ito's formula 60
4.2.2 Local time 63
4.2.3 Diffusions 64
4.2.4 Mixtures of continuous time Dirichlet processes 65
4.2.5 Posterior distributions 66
4.2.6 A Lemma of Antoniak 68
4.3 Explicit posteriors 69
4.3.1 Example 1: α Wiener measure and H Bernoulli 69
4.3.2 Example 2: α Wiener measure and H Gaussian 72
4.4 Parameter estimation problems 74
III. Continuous time Dirichlet hierarchical models 76
5 Continuous time Dirichlet hierarchical models 77
5.1 Dirichlet hierarchical models 78
5.2 Brownian motion in Dirichlet random environment 78
5.2.1 Random walks in random Dirichlet environment 78
5.2.2 Simulation algorithm 80
5.2.3 Estimation 81
5.3 Description of the model 81
5.4 Estimation of the Volatility using Haar wavelets basis 83
5.5 SDE in Dirichlet random environment 83
5.5.1 Estimation and empirical results 84
5.5.2 Option pricing in a regime switching market 85
5.6 Classification of trajectories 85
5.6.1 Hierarchical Dirichlet Model for vector data 86
5.6.2 Posterior computations 87
5.6.3 Classes of volatility 91
5.7 Conclusion 92
6 Markov regime switching with Dirichlet Prior. Application to Modelling Stock Prices 93
6.1 Markov regime switching with Dirichlet prior 94
6.2 Estimation 96
6.2.1 Modifying the observed data set 97
6.2.2 The Gibbs sampling procedure 98
6.3 Implementation 102
6.3.1 Simulated data 102
6.3.2 Real data 103
7 Conclusion and Perspectives 107

Chapter 1

Introduction

L'objectif de ce travail est de proposer un nouveau modèle hiérarchique comprenant un processus de Dirichlet comme loi a priori, on dira brièvement modèle hiérarchique de Dirichlet, qui soit adapté à l'analyse de trajectoires temporelles, notamment celles qui sont régies par des EDS (équations differentielles stochastiques) en milieu aléatoire.

Le processus de Dirichlet est une loi aléatoire, c'est-à-dire une variable aléatoire à valeurs dans l'ensemble $\mathcal{P}(V)$ des mesures de probabilités sur un ensemble V d'observations. Nous utiliserons l'abréviation anglaise RD (Random Distribution).
Les RDs sont très intéréssants aussi bien du point de vue théorique que du point de vue appliqué.

Nous utiliserons dans ce travail quatre points, considéres comme importants dans l'histoire de ce processus.

- En 1969, dans un article fondamental très célèbre, Thomas S. Ferguson construit le processus de Dirichlet, généralisation des lois de Dirichlet, devenu depuis un outil remarquable et classique en Statistique bayésienne non paramétrique.
- En 1973, J.F.C. Kingman définit des RDs, dits de Poisson-Dirichlet, aux
propriétés intéressantes et liées à la représentation des processus de Dirichlet utilisant le processus Gamma.
- En 1974, motivé par les applications, C.A. Antoniak introduit et étudie les mélanges de processus de Dirichlet.
- En 1994, une méthode constructive des processus de Dirichlet, dite stickbreaking, utilisée lors de mises en oeuvre informatique, est élaborée par Jayaram Sethuraman [34].

Les applications concernent pratiquement tous les domaines: biologie, écologie, génétique, informatique, etc...
Récemment ce champ d'application a été étendu en utilisant avec succès des modèles hiérarchiques de Dirichlet en classification par estimation de mélanges de lois à partir de données non temporelles, voir par exemple : Ishwaran et Zarepour (2000), Ishwaran et James (2002) and (2003), Brunner et Lo (2002), Emilion (2001, 2003, 2004), Bigelow and Dunson, (2007), Kacperczyk et al., (2003). Dans ces articles le paramètre du processus de Dirichlet est une mesure proportionnelle à une loi classique sur \mathbb{R}^{n}.

Le présent travail consiste à étudier l'extension de ces modèles hiérarchiques au cas de données temporelles, en utillisant notamment le processus de Dirichlet sur des espaces de trajectoires, le paramètre étant une mesure proportionnelle à une loi de processus temporel (Emilion, 2005).
A partir de l'observation d'une seule trajectoire, il nous est possible de détecter des régimes de durée aléatoire, lorsque le processus temporel suit une EDS en milieu aléatoire. Le milieu est représenté par une chaîne de Markov à temps continu dont les états, qui modélisent les régimes, jouent le rôle que jouent les classes en classification.

Le modèle hiérarchique bayésien que nous introduisons place notamment un processus de Dirichlet comme a priori sur l'espace des trajectoires de cette chaîne. L'estimation des paramètres est bâtie à partir d'un échantillonneur
de Gibbs.
Nous traiterons à titre d'exemple l'EDS de Black-Scholes en finance, le drift et la volatilité étant stochastiques. Le modèle hiérarchique utilisé dans ce cas ne suppose donc plus le processus gaussien puisque ses marginales sont des mélanges compliqués de gaussiennes.

La thèse est organisée de la façon suivante :
Les Chapitres 1, 2 traitent des lois de Dirichlet, des lois de Poisson-Dirichlet et des processus de Dirichlet et leurs mélanges. La fin du chapitre 2 est consacré à certain nouveau modéle introduit dans des articles trés resent

Au Chapitre 3, nous commencons également la partie originale du travail en considérant un processus de Dirichlet ayant pour paramètre une mesure proportionnelle à la mesure de Wiener W. Ce processus, nommé processus Brownien-Dirichlet, admet une représentation :

$$
X_{t}(\omega)=\sum_{i=1}^{\infty} p_{i}(\omega) \delta_{B_{t}^{i}(\omega)}
$$

où les B^{i} sont des mouvements Browniens i.i.d. de loi W et $p=\left(p_{i}\right)$ suit une loi de Poisson-Dirichlet de paramètre $c>0$ indépendant de $\left(B_{t}^{i}\right)_{i \in \mathbb{N}^{*}}$. Il sera noté $\mathcal{D}(c W)$.

Nous montrons notamment que l'on a une formule de type Ito et la décomposition classique de Doob-Meyer :

$$
<X_{t}(\omega)-X_{0}(\omega), f>=\sum_{i=1}^{\infty} p_{i}(\omega)\left(f\left(B_{t}^{i}\right)-f\left(B_{0}^{i}\right)\right)=M_{t}+V_{t}
$$

où $\left(M_{t}\right)$ est une martingale, $\left(V_{t}\right)$ est un processus à variation bornée et f une fonction deux fois dérivable vèrifiant $\left\|f^{\prime}\right\|_{[0, T]<+\infty}$.
On montre aussi l'existence d'un temps local et d'une intégrale stochastique par rapport à ce processus.
Dans la dernière partie de ce Chapitre, on effectue des calculs de lois a posteriori pour des mélanges de processus de Brownien-Dirichlet lorsque

- La mesure mélangeante est une loi de Bernoulli $H=p \delta_{0}+(1-p) \delta_{1}$: Si P est un mélange de processus de Brownian-Dirichlet

$$
P \sim \int \mathcal{D}\left(c W_{u}\right) d H(u)
$$

et si $f_{1}, f_{2}, \ldots, f_{n}$ est une échantillon de taille n de P alors la distribution a posteriori

$$
\left.P\right|_{f_{1}, f_{2}, \ldots, f_{n}} \sim p H_{1} \mathcal{D}\left(c W_{1}+\sum_{i=1}^{n} \delta_{f_{i}}\right)+(1-p) F_{1} \mathcal{D}\left(c W_{0}+\sum_{i=1}^{n} \delta_{f_{i}}\right)
$$

où F_{1} et H_{1} sont deux constantes qui dépendent de W^{\prime}, la derivée de RadonNikodym de W par rapport à une mesure μ définie dans le lemme d'Antoniak (Section 3.2.6), et òu W_{0} et W_{1} sont deux mesures de Wiener de moyenne repectivement 0 et 1 .

- La mesure mélangeante est une gaussienne $H=\mathcal{N}\left(m, \sigma^{2}\right)$:

Si P est un mélange de processus de Brownien-Dirichlet

$$
P \sim \int \mathcal{D}\left(c W_{u}\right) d H(u)
$$

$\operatorname{avec}\left(W_{u}\right)_{u \in \mathbb{R}}$ une famille de mesure de Wiener de moyen u. et si $\theta_{1}^{t}, \theta_{2}^{t}$ est une échantillon de taille 2 de $P_{t}, t \in \mathbb{R}_{+}$, alors la distribution conditionnelle de P_{t} sachant $\theta_{1}^{t}, \theta_{2}^{t}$ est un mélange de processus de Dirichlet tel que

$$
P_{t} \mid \theta_{1}^{t}, \theta_{2}^{t} \sim \int \mathcal{D}\left(c \mathcal{N}_{u}+\sum_{i=1}^{2} \delta_{\theta_{i}^{t}}\right) d \hat{H}_{t}(u)
$$

où $\hat{H}_{t}(u)=H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right) \sim \mathcal{N}\left(\mu_{1}^{t}, \sigma_{1, t}^{2}\right)$.
Le Chapitre 5 est divisé en trois parties.

- Le mouvement Brownien en milieu aléatoire de Dirichlet

Nous l'introduisons comme limite en loi d'une marche aléatoire

$$
\frac{1}{n^{1 / 2}}\left(U_{1}+U_{2}+\ldots+U_{[n t]}\right)
$$

construite de manière hiérarchique à partir du processus de Dirichlet :

$$
\left\{\begin{array}{l}
U_{i} \mid \mathcal{V}=\sigma^{2} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right) \\
\mathcal{V}^{-1} \mid P \sim P \\
P \mid c \sim \mathcal{D}\left(c \Gamma\left(\nu_{1}, \nu_{2}\right)\right) \\
c \sim \Gamma\left(\eta_{1}, \eta_{2}\right)
\end{array}\right.
$$

Nous simulons et estimons les paramètres d'un tel processus.
Comme à l'habitude, le système précèdent se lit de bas en haut:
c suit une loi $\Gamma\left(\eta_{1}, \eta_{2}\right)$, conditionellement à c, P suit une loi $\mathcal{D}\left(c \Gamma\left(\nu_{1}, \nu_{2}\right)\right)$, contionellement à P suit une loi P et conditionellement à \mathcal{V} les U_{i} sont des gaussiennes i.i.d.

- EDS en milieu aléatoire de Dirichlet.

Nous considérons, pour fixer les idées, l'EDS de type Black-Scholes, avec variance et drift aléatoirement fixés pendant chaque régime, toujours suivant un modèle hiérarchique de Dirichlet

$$
d X_{t}=\sum_{j=1}^{L} \mu_{R_{j}} 1_{\left[T_{j-1}, T_{j}\right)}(t) d t+\sum_{j=1}^{L} \sigma_{R_{j}} 1_{\left[T_{j-1}, T_{j}\right)}(t) d B_{t}
$$

où les R_{j} sont des entiers choisis aléatoirement dans $\{1, \ldots, N\}$ et constant sur les intervalles aléatoires de temps $\left[T_{j-1}, T_{j}\right)$, avec

$$
0=T_{0}<T_{1}<T_{2}<\ldots<T_{L}=T
$$

Pour estimer les paramètres de ce modèle où le temps est discrétisé, nous utilisons une version de l'échantillonneur de Gibbs utilisant un shéma stickbreaking fini (blocked Gibbs sampling) Ishwaran - Zarepour (2000) et Ishwaran - James (2002) [44]) shéma présenté au chapitre 2.

- Classification bayésienne de trajectoires d'actions selon leur volatilité.

La volatilité est supposée dépendre du temps :

$$
d X_{t}=b\left(t, X_{t}\right) d t+\theta(t) h\left(X_{t}\right) d B_{t}
$$

où $X_{t}=\log \left(S_{t}\right),\left(S_{t}\right)$ étant le processus du prix de l'action. Sous certaines conditions l'EDS peut se simplifier en :

$$
d X_{t}=b_{t}\left(t, X_{t}\right) d t+\theta(t) d B_{t}
$$

On développe alors la volatilité $\theta(t)$ dans une base d'ondelettes $\left(V_{i}\right)$ et on classifie les trajectoires en classifiant les vecteurs des premiers coefficients par estimation d'un modèle hiérarchique de Dirichlet de mélange de lois normales. Ce travail a nécessité l'extension au cas vectoriel des calculs de lois a posteriori d'Ishwaran-Zarepour (2000) et Ishwaran-James (2002) [44].

Le Chapitre 5 contient une partie essentielle de notre travail.
On se place dans le cas de l'observation (à des instants discrétisés) d'une trajectoire d'une EDS, par exemple de type Black-Scholes, en milieu aléatoire : drift et volatilité évoluent selon les états (qui modélisent les régimes) d'une chaîne de Markov à temps continu, de loi H à grande variance. Dans la littérature ce principe apparaît en mathématique financière dans les travaux sur les Regime switching markets.
Dans notre approche les régimes jouent le rôle que jouent les classes en classification : toute observation temporelle appartient à un régime.
La nouveauté ici est que nous plaçons un processus de Dirichlet de paramètre αH comme loi a priori sur l'espace des trajectoires de cette chaîne. Le nombre α exprime un degré de confiance en la loi H.
Des lois a priori sont mis sur les divers paramètres. L'algorithme consiste à dabord simuler un grand nombre de trajectoires qui sont très différentes à cause de la variance, ce qui permet d'envisager plusieurs scénarios.

On choisit ensuite à chaque itération une des trajectoires selon des poids donnés distribués a priori par un schéma stick-breaking. On calcule des lois a posteriori, puis selon la vraissemblance de la trajectoire observée, on met à jour poids et paramètres et on utilise un échantillonneur de Gibbs.
L'algorithme a été implémenté en langage C et testé sur des données simulées
puis sur des données réelles.
Le dernier Chapitre 6 concerne la Conclusion et les Perspectives, notamment le calcul d'option en utilisant le modèle introduit au Chapitre 5 .

Introduction

The aim of this work is to propose a new hierarchical model with a Dirichlet process as a prior distribution, shortly a Dirichlet hierarchical model, which is adapted to the analysis of temporal trajectories analysis, particularly those which are governed by an SDE (stochastic differential equation) in random environment.

The Dirichlet process is a random distribution (RD), i.e. a random variable taking its values in the set $\mathcal{P}(V)$ of all probability measures defined on a set V of observations.

The RDs are very interesting both for their theoretical aspects and their applied ones.
In our work, we will use four points, considered as very important in the history of this process.

- In 1969, in a fundamental and celebrated paper, Thomas S. Ferguson built the Dirichlet process as a generalization of a Dirichlet distribution. From this time the Dirichlet process is a remarkable and classical tool in nonparametric Bayesian statistics.
- In 1973, J.F.C. Kingman introduced a new RD, called Poisson-Dirichlet distribution, having some interesting properties and related to the representation of a Dirichlet process through the Gamma process.
- In 1974, motivated by applications, C.A. Antoniak introduced and studied mixtures of Dirichlet processes.
- In 1994, J. Sethuraman introduced a constructive method of a Dirichlet process, which is crucial for implementations.

The applications of Dirichlet processes deal with quite all fields: biology, ecology, computer science and so on.
This field was extended by using successfully Dirichlet hierarchical models in classification, more precisely in estimating mixtures of distributions from non temporal data, see e.g. Ishwaran and Zarepour (2000), Ishwaran and

James (2002), Kacperczyk et al., (2003), Bigelow and Dunson, (2007). Recently, Rodregez et al. introduce finite mixture versions of the nPD which is inspired from the work of Ishwaran and James (2002).

In all these papers, the Dirichlet process parameter is a measure proportional to a standard probability distribution in \mathbb{R}^{n}.
The present work consists in studying the extension of these hierarchical models to the case of temporal data, more precisely in introducing the Dirichlet process on a path space, the parameter being a measure proportional to the distribution of a continuous time process (Emilion 2005).
By observing just one path, we are able to detect some regimes of random durations, when the stochastic process is generated by an SDE in random environment. The random environment is represented by a continuous time Markov chain whose states modellize the regimes (for example the states of the financial market). These ones play the same role as the clusters in classification.
The Bayesian hierarchical model that we introduce, places a Dirichlet process as a prior on the path space of this chain. We show that the parameters can be estimated by using Gibbs sampling.
As an illustration of our work, we will consider a Black-Scholes SDE in finance, in random environment, the drift and the volatility being stochastic. This hierarchical model does not assume that the process is Gaussian since its finite marginal distributions are complicated mixtures Gaussian.
The thesis is organized as follows:
Chapters 1, 2 deal with Dirichlet distributions, Poisson-Dirichlet distribution, Dirichlet processes and their mixtures. The end of Chapter 2 is devoted to new models introduced in some very recent papers.
After that, from Chapter 3 we start the original part of this work, firstly considering a Dirichlet process with parameter proportional to a Wiener measure W, shortly a Brownian-Dirichlet process, which has the following represen-
tation:

$$
X_{t}(\omega)=\sum_{i=1}^{\infty} p_{i}(\omega) \delta_{B_{t}^{i}(\omega)}
$$

where the B^{i} 's are i.i.d. Brownian motions having for distribution W, and $p=\left(p_{i}\right)$ is Poisson-Dirichlet with parameter $c>0$ and is independent of $\left(B_{i}\right)_{i=1,2, \ldots}$. This processes will be denoted $\mathcal{D}(c W)$
We show an Ito type formula and a classical Doob-Meyer decomposition

$$
<X_{t}-X_{0}, f>=M_{t}+V_{t}
$$

where M_{t} is a martingale and V_{t} is a process with bounded variation.
We also observe the existence of a local time and a stochastic integral with respect to a Brownian-Dirichlet process.

In the last part of Chapter 3 we calculate the posterior distribution for mixtures of Brownian-Dirichlet when

- The mixing measure is a Bernoulli distribution $H=p \delta_{0}+(1-p) \delta_{1}$:

If P is a mixture of Brownian-Dirichlet processes

$$
P \sim \int \mathcal{D}\left(c W_{u}\right) d H(u)
$$

and if $f_{1}, f_{2}, \ldots, f_{n}$ is a sample of size n of P, then the posterior distribution satisfies the following formula

$$
\left.P\right|_{f_{1}, f_{2}, \ldots, f_{n}} \sim p H_{1} \mathcal{D}\left(c W_{1}+\sum_{i=1}^{n} \delta_{f_{i}}\right)+(1-p) F_{1} \mathcal{D}\left(c W_{0}+\sum_{i=1}^{n} \delta_{f_{i}}\right)
$$

where F_{1} and H_{1} are two constants depending of W^{\prime}, the Radon-Nikodym derivative of W w.r.t. a probability measure μ which will be defined later in Antoniak lemma (section 3.2.6) and where W_{0} and W_{1} are two Wiener measures with mean 0 and 1 , respectively.

- The mixing measure is Gaussian distribution $H=\mathcal{N}\left(m, \sigma^{2}\right)$:

If P is a continuous time Dirichlet process

$$
P \sim \int \mathcal{D}\left(c W_{u}\right) d H(u)
$$

and if $\theta_{1}^{t}, \theta_{2}^{t}$ is a sample of size 2 of $P_{t}, t \in \mathbb{R}_{+}$, then the conditional distribution of P_{t} given $\theta_{1}^{t}, \theta_{2}^{t}$ is a mixture of Dirichlet processes such that

$$
P_{t} \mid \theta_{1}^{t}, \theta_{2}^{t} \sim \int \mathcal{D}\left(c \mathcal{N}_{u}+\sum_{i=1}^{2} \delta_{\theta_{i}^{t}}\right) d \hat{H}_{t}(u)
$$

where $\hat{H}_{t}(u)=H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right) \sim \mathcal{N}\left(\mu_{1}^{t}, \sigma_{1, t}^{2}\right)$.
The Chapter 4 is divided in three parts.

- The Brownian motion in Dirichlet random environment. We introduced as the limit in distribution of a random walk

$$
\frac{1}{n^{1 / 2}}\left(U_{1}+U_{2}+\ldots+U_{[n t]}\right)
$$

based on the following a hierarchical Dirichlet model:

$$
\left\{\begin{array}{l}
U_{i} \mid \mathcal{V}=\sigma \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right) \\
\mathcal{V}^{-1} \mid P \sim P \\
P \mid c \sim \mathcal{D}\left(c \Gamma\left(\nu_{1}, \nu_{2}\right)\right) \\
c \sim \Gamma\left(\eta_{1}, \eta_{2}\right)
\end{array}\right.
$$

We proceed to the simulation and the estimation of the parameters of such a motion.

As usual, the above system has to be read from bottom to top: c has a $\Gamma\left(\eta_{1}, \eta_{2}\right)$ distribution, given c, P has $\mathcal{D}\left(c \Gamma\left(\nu_{1}, \nu_{2}\right)\right)$ distribution, given P, \mathcal{V}^{-1} has for distribution P and given \mathcal{V} the U_{i} 's are i.i.d. Gaussians.

- SDE in Dirichlet random environment.

As an illustration, we consider Black-Scholes SDE type, with variance and drift randomly fixed during each regime and derived from a Dirichlet hierarchical model

$$
d X_{t}=\sum_{j=1}^{L} \mu_{R_{j}} 1_{\left[T_{j-1}, T_{j}\right)}(t) d t+\sum_{j=1}^{L} \sigma_{R_{j}} 1_{\left[T_{j-1}, T_{j}\right)}(t) d B_{t}
$$

where the R_{j} are integers randomly chosen in $\{1, \ldots, N\}$ and constant on the random time intervals $\left[T_{j-1}, T_{j}\right.$), where

$$
0=T_{0}<T_{1}<T_{2}<\ldots<T_{L}=T .
$$

To estimate the parameters of this model, where time is discretized, we use a blocked Gibbs sampling method (Ishwaran - Zarepour (2000)et Ishwaran James (2002) [24]) which hinges on stick-breaking scheme.

- Bayesian classification of shares according to their volatility

The volatility is assumed to be depending on time and varies according to the share:

$$
d X_{t}=b\left(t, X_{t}\right) d t+\theta(t) h\left(X_{t}\right) d B_{t}
$$

where $X_{t}=\log \left(S_{t}\right)$ and $\left(S_{t}\right)$ is the process describing the share. Under some conditions this SDE reduces to:

$$
d X_{t}=b_{t}\left(t, X_{t}\right) d t+\theta(t) d B_{t} .
$$

Expanding the volatility $\theta(t)$ in a (wavelet) basis $\left(V_{i}\right)$ we classify the paths by classifying the vectors of the first coefficients, estimating a hierarchical Dirichlet model of Normal distributions mixture: to this end, it is necessary to extend the calculus of posterior distributions (Ishwaran - Zarepour (2000), Ishwaran - James (2002)) to the vector case.

Chapter 5 contains an essential part of our work.
We observe an SDE path at discrete times, for example the Black-Scholes SDE in random environment: drift and volatility evolve according to the state regime of the market which is modellized by a continuous time Markov chain, having a distribution H with large variance. This appears in mathematical finance literature as regime switching markets.
In our approach, regimes play the role that play clusters in classification: each temporal observation belong to a regime.
The novelty here is that we place a prior, a Dirichlet process with parameter αH, on the path space of the Markov chain. The number α is a confidence degree on H, the distribution of the Markov chain.

We also place a prior distribution on each parameter.
The algorithm consists in first simulating a large number of paths which are very different, due to the variance. This gives us a large variety of scenarios. Next, in each iteration we choose a path according to random weights, initially given by a stick-breaking scheme. A calculation of posterior distributions is performed. Then according to the likelyhood w.r.t. the observed path, we perform a Gibbs sampling procedure, by first updating the weights and the parameters.

The program is implemented in C language and tested on a set of simulated data and real data.

The last Chapter 6 concerns Conclusion and Perspectives, in particular, the calculation of option prices when using the model introduced in chapter 5.

Chapter 2

Dirichlet distribution

The Dirichlet distribution is intensively used in various fields: biology EMILION, R. (2005), astronomy ISHWARAN, H. and JAMES, L.F. (2002), text mining DAHL, D. B. (2003), ...
It can be seen as a random distribution on a finite set. Dirichlet distribution is a very popular prior in Bayesian statistics because the posterior distribution is also a Dirichlet distribution. In this chapter we give a complete presentation of this interesting law: representation by Gamma's distribution, limit distribution in a contamination model. (The Polya urn scheme),

2.1 Random probability vectors

Consider a partition of a nonvoid finite set E with cardinality $\sharp E=n \in \mathbb{N}^{*}$ into d nonvoid disjoint subsets. To such a partition corresponds a partition of the integer n, say c_{1}, \ldots, c_{d}, that is a finite family of positive integers, such that $c_{1}+\ldots+c_{d}=n$. Thus, if $p_{j}=\frac{c_{j}}{n}$, we have $p_{1}+\ldots+p_{d}=1$. In biology for example, p_{j} can represent the percentage of the $j^{\text {th }}$ specy in a population.

So we are lead to introduce the following d-dimentional simplex:

$$
\triangle_{d-1}=\left\{\left(p_{1}, \ldots, p_{d}\right): p_{j} \geq 0, \sum_{j=1}^{d} p_{j}=1\right\}
$$

When n tends to infinity, this yields to the following notion:

Definition 2.1.1 One calls mass-partition any infinite numerical sequence

$$
p=\left(p_{1}, p_{2}, \ldots\right)
$$

such that $p_{1} \geq p_{2} \geq \ldots$ and $\sum_{1}^{\infty} p_{j}=1$.
The space of mass-partitions is denoted by

$$
\nabla_{\infty}=\left\{\left(p_{1}, p_{2}, \ldots\right): p_{1} \geq p_{2} \geq \ldots ; p_{j} \geq 0, j \geq 1, \sum_{j=1}^{\infty} p_{j}=1\right\}
$$

Lemma 2.1.1 (Bertoin [28] page 63) Let x_{1}, \ldots, x_{d-1} be $d-1$ i.i.d. random variables uniformly distributed on $[0,1]$ and let $x_{(1)}<\ldots<x_{(d-1)}$ denote its order statistic, then the random vector

$$
\left(x_{(1)}, \ldots, x_{(d-1)}-x_{(d-2)}, 1-x_{(d-1)}\right)
$$

is uniformly distributed on \triangle_{d-1}.

2.2 Polya urn (Blackwell and MacQueen) [3]

We consider an urn that contains d colored balls numbered from 1 to d. Initially, there is only one ball of each color in the urn. We draw a ball, we observe its color and we put it back in the urn with another ball having the same color. Thus at the instant n we have $n+d$ balls in the urn and we have added $n=N_{1}+\ldots+N_{d}$ balls with N_{j} balls of color j.
We are going to show that the distribution of $\left(\frac{N_{1}}{n}, \frac{N_{2}}{n}, \ldots, \frac{N_{d}}{n}\right)$ converges to a limit distribution.

2.2.1 Markov chain

Proposition 2.2.1

$$
\lim _{n \longrightarrow \infty}\left(\frac{N_{1}}{n}, \ldots, \frac{N_{d}}{n}\right) \stackrel{d}{=}\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)
$$

where $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ have a uniform distribution on the simplex \triangle_{d-1}.

Proof

Denote the projection operation

$$
\begin{gathered}
\pi_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R} \\
x=\left(x_{1}, \ldots, x_{d}\right) \mapsto x_{i}
\end{gathered}
$$

and

$$
\theta_{i}(x)=\left(x_{1}, \ldots, x_{i-1}, x_{i}+1, x_{i+1}, \ldots, x_{d}\right)
$$

Let

$$
S(x)=\sum_{i=1}^{d} x_{i}
$$

and

$$
f_{i}(x)=\frac{\pi_{i}(x)+1}{S(x)+d} .
$$

Define a transition kernel as follows

$$
\begin{gathered}
P\left(x, \theta_{i}(x)\right)=\frac{\pi_{i}(x)+1}{S(x)+d} \\
P(x, y)=0, \quad \text { if } \quad y \notin\left\{\theta_{1}(x), \ldots, \theta_{d}(x)\right\} .
\end{gathered}
$$

Recall that for any non-negative (resp. bounded) measurable function g defined on \mathbb{R}^{d}, the function $P g$ is defined as

$$
P g(x)=\int_{\mathbb{R}^{d}} g(y) P(x, d y)
$$

Here we see that

$$
P g(x)=\sum_{i=1}^{d} g\left(\theta_{j}(x)\right) \frac{\pi_{i}(x)+1}{S(x)+d}
$$

First step :

Consider $Y_{n}=\left(Y_{n}^{1}, \ldots, Y_{n}^{d}\right)$ where $\left(Y_{n}^{i}\right)_{0 \leq i \leq d}$ is the number of balls of color i added to the urn at $n^{\text {th }}$ step. We clearly see that $\left(Y_{n+1}\right)$ only depends on the $n^{\text {th }}$ step so that $\left(Y_{n}\right)_{n}$ is Markov chain with transition kernel

$$
P\left(Y_{n}, \theta_{i}\left(Y_{n}\right)\right)=\frac{\pi_{i}\left(Y_{n}\right)+1}{S\left(Y_{n}\right)+d}
$$

and

$$
Y_{0}=(0, \ldots, 0)
$$

On the other hand,

$$
P f_{i}\left(Y_{n}\right)=\sum_{j=1}^{d} \frac{\pi_{i}\left(Y_{n}\right)+1}{S\left(Y_{n}\right)+d} \frac{\pi_{i}\left(\theta_{j}\left(Y_{n}\right)\right)+1}{S\left(\theta_{j}\left(Y_{n}\right)\right)+d}
$$

since

$$
\left\{\begin{array}{l}
\pi_{i}\left(\theta_{j}\left(Y_{n}\right)\right)=\pi_{i}\left(Y_{n}\right) \quad \text { if } \quad i \neq j, \tag{2.1}\\
\pi_{i}\left(\theta_{i}\left(Y_{n}\right)\right)=\pi_{i}\left(Y_{n}\right)+1 \quad \text { if } \quad i=j \\
S\left(\theta_{i}\left(Y_{n}\right)\right)=S\left(Y_{n}\right)+1
\end{array}\right.
$$

Then

$$
\begin{aligned}
P f_{i}\left(Y_{n}\right) & =\sum_{i \neq j} \frac{\pi_{i}\left(Y_{n}\right)+1}{S\left(Y_{n}\right)+d} \frac{\pi_{j}\left(Y_{n}\right)+1}{S\left(Y_{n}\right)+d+1}+\frac{\pi_{i}\left(Y_{n}\right)+1}{S\left(Y_{n}\right)+d} \frac{\pi_{i}\left(Y_{n}\right)+2}{S\left(Y_{n}\right)+d+1} \\
& =\frac{\pi_{i}\left(Y_{n}\right)+1}{\left(S\left(Y_{n}\right)+d\right)\left(S\left(Y_{n}\right)+d+1\right)}\left[\pi_{i}\left(Y_{n}\right)+2+\sum_{i \neq j} \pi_{j}\left(Y_{n}\right)+1\right] \\
& =\frac{\pi_{i}\left(Y_{n}\right)+1}{\left(S\left(Y_{n}\right)+d\right)\left(S\left(Y_{n}\right)+d+1\right)}\left[\pi_{i}\left(Y_{n}\right)+2+\left(S\left(Y_{n}\right)+d-1-\pi_{i}\left(Y_{n}\right)\right)\right] \\
& =f_{i}\left(Y_{n}\right) .
\end{aligned}
$$

implies that $f_{i}\left(Y_{n}\right)$ is a positive martingale which converges almost sure towards a random variable Z_{i}. Since $f_{i}\left(Y_{n}\right)$ is bounded by 1 , it is also convergent
in the L^{p} spaces, according to the bounded convergence theorem. We then see that:

$$
\frac{\pi_{i}\left(Y_{n}\right)}{n}=\frac{n+d}{n} f_{i}\left(Y_{n}\right)-\frac{1}{n}
$$

converges to the same limit Z_{i} almost surely and in L^{p}.
By the martingale properties we have moreover that

$$
\mathbb{E}\left(f_{i}\left(Y_{n}\right)\right)=\mathbb{E}\left(f_{i}\left(Y_{0}\right)\right)
$$

Consequently

$$
\begin{aligned}
\mathbb{E}\left(\lim _{n \rightarrow \infty} f\left(Y_{n}\right)\right) & =\lim _{n \rightarrow \infty} \mathbb{E}\left(f\left(Y_{n}\right)\right) \\
& =\mathbb{E}\left(f\left(Y_{0}\right)\right)
\end{aligned}
$$

so

$$
\mathbb{E}\left(Z_{i}\right)=\mathbb{E}\left(f_{i}\left(Y_{0}\right)\right)=\frac{1}{d}
$$

Second step:

Let

$$
\wedge_{d-1}=\left\{\left(p_{1}, \ldots, p_{d-1}\right): p_{i} \geq 0 \sum_{i=1}^{d-1} p_{i} \leq 1\right\}
$$

and

$$
h_{u}\left(Y_{n}\right)=\frac{\left(S\left(Y_{n}\right)+d-1\right)!}{\prod_{i=1}^{d} \pi_{i}\left(Y_{n}\right)!} u_{1}^{\pi_{1}\left(Y_{n}\right)} \ldots u_{d}^{\pi_{d}\left(Y_{n}\right)}
$$

The uniform measure λ_{d} on \triangle_{d-1} is defined as follows: for any borelian bounded function $F\left(u_{1}, \ldots, u_{d}\right)$ we have:
$\int_{\triangle_{d-1}} F(u) \lambda_{d}(d u)=\int_{\wedge_{d-1}} F\left(u_{1}, \ldots, u_{d-1}, 1-u_{1}-u_{2}-\ldots-u_{d-1}\right) d u_{1} \ldots . d u_{d-1}$
Now, let us compare the moments of $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ with the ones of λ_{d}.
Using formula (1.1)

$$
h_{u}\left(\theta_{i}\left(Y_{n}\right)\right)=\frac{S\left(Y_{n}\right)+d}{\pi_{i}\left(Y_{n}\right)+1} u_{i} h_{u}\left(Y_{n}\right) .
$$

hence

$$
P h_{u}\left(Y_{n}\right)=h_{u}\left(Y_{n}\right)\left(\sum_{i}^{d} u_{i}\right)=h_{u}\left(Y_{n}\right)
$$

implies that $\left(h_{u}\left(Y_{n}\right)\right)$ is a martingale and similarly

$$
g_{k}\left(Y_{n}\right)=\int_{\triangle_{d-1}} h_{u}\left(Y_{n}\right) u_{1}^{k_{1}} \ldots u_{d}^{k_{d}} \lambda_{d}(d u)
$$

is a martingale because

$$
\begin{aligned}
P g_{k}\left(Y_{n}\right) & =\sum_{i}^{d} P\left(Y_{n}, \theta_{i}\left(Y_{n}\right)\right) \int_{\triangle_{d-1}} h_{u}\left(Y_{n}\right) u_{1}^{k_{1}} \ldots u_{d}^{k_{d}} \lambda_{d}(d u) \\
& =\int_{\triangle_{d-1}} P h_{u}\left(Y_{n}\right) u_{1}^{k_{1}} \ldots u_{d}^{k_{d}} \lambda_{d}(d u) \\
& =g_{k}\left(Y_{n}\right) .
\end{aligned}
$$

This gives

$$
\mathbb{E}\left(g_{k}\left(Y_{n}\right)\right)=\mathbb{E}\left(g_{k}\left(Y_{0}\right)\right)
$$

On the other hand

$$
\begin{aligned}
g_{k}\left(Y_{n}\right) & =\frac{\prod_{i=1}^{i=d}\left[\pi_{i}\left(Y_{n}\right)+1\right] \ldots\left[\pi_{i}\left(Y_{n}\right)+k_{i}\right]}{(n+d) \ldots(n+s(k)+d-1)} \\
& =\frac{\prod_{i=1}^{i=d} \frac{\left[\pi_{i}\left(Y_{n}\right)+1\right]}{n} \ldots \frac{\left[\pi_{i}\left(Y_{n}\right)+k_{i}\right]}{n}}{\frac{(n+d)}{n} \ldots \frac{(n+s(k)+d-1)}{n}}
\end{aligned}
$$

so that

$$
0 \leq g_{k}\left(Y_{n}\right) \leq \prod_{i=1}^{d} 2^{k_{i}}=2^{S(k)}
$$

Therefore by the bounded convergence theorem

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{E}\left(g_{k}\left(Y_{n}\right)\right) & =\mathbb{E}\left(\lim _{n \rightarrow \infty} g_{k}\left(Y_{n}\right)\right) \\
& =\mathbb{E}\left(Z_{1}^{k_{1}} \ldots Z_{d}^{k_{d}}\right) \\
& =\frac{(d-1)!\prod_{i=1}^{d} k_{i}!}{(S(k)+d-1)!} \\
& =c_{d} \int_{\triangle_{d-1}} u_{1}^{k_{1}} \ldots u_{d}^{k_{d}} \lambda_{d}(d u)
\end{aligned}
$$

where $c_{d}=(d-1)$!
Indeed if

$$
m_{k}=\int_{\triangle_{d-1}} u_{1}^{k_{1}} \ldots u_{d}^{k_{d}} c_{d} \lambda_{d}(d u)
$$

integrations and recurrences yield,

$$
m_{k}=\frac{\prod_{i=1}^{d} k_{i}!}{(S(k)+d-1)!} .
$$

Taken $\left(k_{1}, \ldots, k_{d}\right)=(0, \ldots, 0)$, we see that $c_{d}=(d-1)$!.
Further, if μ is the distribution of $\left(Z_{1}, \ldots, Z_{d}\right)$, then $c_{d} \lambda_{d}$ and μ have the same moments and since \triangle_{d-1} is compact, the theorem of monotone class yields, $\mu=c_{d} \lambda_{d}$.

2.2.2 Gamma, Beta and Dirichlet densities

Let $\alpha>0$, the gamma distribution with parameter α, denoted $\Gamma(\alpha, 1)$, is defined by the probability density function:

$$
f(y)=y^{\alpha-1} \frac{e^{-y}}{\Gamma(\alpha)} \mathbb{1}_{\{y>0\}} .
$$

Let Z_{1}, \ldots, Z_{d} be d independent real random variables with gamma distributions $\Gamma\left(\alpha_{1}, 1\right), \ldots, \Gamma\left(\alpha_{d}, 1\right)$, respectively, then it is well-known that $Z=Z_{1}+\ldots+Z_{d}$ has distribution $\Gamma\left(\alpha_{1}+\ldots+\alpha_{d}, 1\right)$.

Let $a, b>0$, a beta distribution with parameter (a, b), denoted $\beta(a, b)$, is defined by the probability density function:

$$
\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1} \mathbb{1}_{\{0<x<1\}}
$$

From these densities it is easily seen that the following function is a density function:

Definition 2.2.1 For any $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ where $\alpha_{i}>0$ for any $i=$ $1, \ldots, d$, the density function $d\left(y_{1}, y_{2}, \ldots, y_{d-1} \mid \underline{\alpha}\right)$ defined as

$$
\begin{equation*}
\frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{k}\right)} y_{1}^{\alpha_{1}-1} \ldots y_{d-1}^{\alpha_{d-1}-1}\left(1-\sum_{h=1}^{d-1} y_{h}\right)^{\alpha_{d}-1} \mathbb{1}_{\wedge_{d-1}}(y) \tag{2.2}
\end{equation*}
$$

is called the Dirichlet density with parameter $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$.
Proposition 2.2.2 Let $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ be uniformly distributed on \triangle_{d-1}. Then the random vector $\left(Z_{1}, Z_{2}, \ldots, Z_{d-1}\right)$ has the the Dirichlet density (1.2) with parameters ($1,1, \ldots, 1$).

Proof
Let $\lambda_{i} \in \mathbb{N}$ for any $i \in\{1, \ldots, d\}$.
Let $\left(Y_{1}, Y_{2}, \ldots, Y_{d-1}\right)$ be a random vector with Dirichlet density defined in (1.2).

Let $Y_{d}=1-\sum_{i=1}^{d-1} y_{i}$. Then

$$
\begin{aligned}
\mathbb{E}\left(Y_{1}^{\lambda_{1}} \ldots Y_{d}^{\lambda_{d}}\right)= & \mathbb{E}\left(Y_{1}^{\lambda_{1}} \ldots Y_{d}^{\lambda_{d-1}}\left[1-\sum_{i=1}^{d-1} Y_{i}\right]^{\lambda_{d}}\right) \\
= & \frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{k}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{d}\right)} \int_{\wedge_{d-1}} y_{1}^{\alpha_{1}+\lambda_{1}-1} \ldots y_{d-1}^{\alpha_{d-1}+\lambda_{d-1}-1} \\
& {\left[1-\sum_{i=1}^{d-1} y_{i}\right]^{\alpha_{d}+\lambda_{d}-1} d y_{1} \ldots d y_{d-1} } \\
= & \frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{d}\right) \Gamma\left(\alpha_{1}+\lambda_{1}\right) \ldots \Gamma\left(\alpha_{d}+\lambda_{d}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{d}\right) \Gamma\left(\left(\alpha_{1}+\ldots+\alpha_{d}\right)+\sum_{i=1}^{d} \lambda_{i}\right)} .
\end{aligned}
$$

Consequently, if $\lambda_{i}, i \in\{1, \ldots, d\}$ are non-negative integers and $\alpha_{1}=\ldots=$ $\alpha_{d}=1$, then

$$
\mathbb{E}\left(Y_{1}^{\lambda_{1}} \ldots Y_{d}^{\lambda_{d}}\right)=\frac{(d-1)!\prod_{i=1}^{d} \lambda_{i}!}{((d-1)+S(\lambda))!}
$$

Now the proof of the preceding proposition 1.2 .1 shows that $\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)$ and $\left(Y_{1}, \ldots, Y_{d}\right)$ have the same moments, and thus the same distribution. Consequently $\left(Z_{1}, Z_{2}, \ldots, Z_{d-1}\right)$ has the same distribution as $\left(Y_{1}, \ldots, Y_{d-1}\right)$ which is by construction $d\left(y_{1}, y_{2}, \ldots, y_{d-1} \mid \underline{\alpha}\right)$.

2.3 Dirichlet distribution

The Dirichlet density is not easy to be handled and the following theorem gives an interesting construction where appears this density.

Theorem 2.3.1 Let Z_{1}, \ldots, Z_{d} be d independent real random variables with gamma distributions $\Gamma\left(\alpha_{1}, 1\right), \ldots, \Gamma\left(\alpha_{d}, 1\right)$ respectively and let $Z=Z_{1}+$ $\ldots+Z_{d}$. Then the random vector $\left(\frac{Z_{1}}{Z}, \ldots, \frac{Z_{d-1}}{Z}\right)$ has a Dirichlet density with parameters $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$.

Proof

The mapping

$$
\left(y_{1}, \ldots, y_{d}\right) \mapsto\left(\frac{y_{1}}{y_{1}+\ldots+y_{d}}, \ldots, \frac{y_{d-1}}{y_{1}+\ldots+y_{d}}, y_{1}+\ldots+y_{d}\right)
$$

is a diffeomorphism from $[0, \infty)^{d}$, to $\left.\left.\wedge_{d-1} \times\right] 0, \infty\right)$ with Jacobian y_{d}^{d-1} and reciprocal function:

$$
\left(y_{1}, \ldots, y_{d}\right) \mapsto\left(y_{1} y_{d}, \ldots, y_{d-1} y_{d}, y_{d}\left[1-\sum_{i=1}^{d-1} y_{i}\right]\right)
$$

The density of $\left(Z_{1}, \ldots, Z_{d-1}, Z\right)$ at point $\left(y_{1}, \ldots, y_{d}\right)$ is therefore equal to:

$$
e^{-y_{d}} y_{1}^{\alpha_{1}-1} \ldots y_{d-1}^{\alpha_{d-1}-1}\left(1-\sum_{i=1}^{d-1} y_{i}\right)^{\alpha_{d}-1} \frac{y_{d}^{\alpha_{1}+\ldots+\alpha_{d}-d}}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{d}\right)} y_{d}^{d-1}
$$

Integrating w.r.t. y_{d} and using the equality $\int_{0}^{\infty} e^{-y_{d}} y_{d}^{\alpha-1} d y_{d}=\Gamma\left(\alpha_{1}+\ldots+\right.$ $\left.\alpha_{d}\right)$, we see that the density of $\left(\frac{Z_{1}}{Z}, \ldots, \frac{Z_{d-1}}{Z}\right)$ is a Dirichlet density with parameters $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$.

Definition 2.3.1 Let Z_{1}, \ldots, Z_{d} be d independent real random variables with gamma distributions $\Gamma\left(\alpha_{1}, 1\right), \ldots, \Gamma\left(\alpha_{d}, 1\right)$, respectively, and let $Z=$ $Z_{1}+\ldots+Z_{d}$. The Dirichlet distribution with parameters $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ is the distribution of the random vector $\left(\frac{Z_{1}}{Z}, \ldots, \frac{Z_{d}}{Z}\right)$.

Not that the Dirichlet distribution is singular w.r.t Lebesgue measure in \mathbb{R}^{d} since it is supported by Δ_{d-1} which has Lebesgue measure 0 . The following proposition can be easily proved

Proposition 2.3.1 With the same notation as in Theorem 1.3.1 let $Y_{i}=$ $\frac{Z_{i}}{Z}, i=1, \ldots, d$ then Y_{i} has a beta distribution $\beta\left(\alpha_{i}, \alpha_{1}+\ldots+\alpha_{i-1}+\alpha_{i+1}+\right.$ $\left.\ldots+\alpha_{d}\right)$ and

$$
\mathbb{E}\left(y_{i}\right)=\frac{\alpha_{i}}{\alpha_{1}+\ldots+\alpha_{d}}, \mathbb{E}\left(y_{i} y_{j}\right)=\frac{\alpha_{i} \alpha j}{\left(\alpha_{1}+\ldots+\alpha_{k}\right)\left(\alpha_{1}+\ldots+\alpha_{d}+1\right)}
$$

Lemma 2.3.1 Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right)$ and $\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{k}\right)$ be k-dimensional vectors. Let U, V be independent k-dimensional random vectors with Dirichlet distributions $\mathcal{D}(\gamma)$ and $\mathcal{D}(\rho)$, respectively. Let W be independent of (U, V) and have a Beta distribution $\beta\left(\sum_{i=1}^{k} \gamma_{i}, \sum_{i=1}^{k} \rho_{i}\right)$. Then the distribution of

$$
W U+(1-W) V
$$

is the Dirichlet distribution $\mathcal{D}(\gamma+\rho)$.
Lemma 2.3.2 Let e_{j} denote the k-dimensional vector consisting of 0 's, except of the $j^{\text {th }}$ co-ordinate, with equal to 1. Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right)$ and let $\beta_{j}=\frac{\gamma_{j}}{\sum_{i=1}^{k} \gamma_{i}}, j=1,2, \ldots, k$.
Then

$$
\sum \beta_{j} \mathcal{D}\left(\gamma+e_{j}\right)=\mathcal{D}(\gamma)
$$

This conclusion can also be written as $\mathbb{E}(\mathcal{D}(\rho+\gamma)=\mathcal{D}(\gamma)$.
The proofs of these two Lemma are found in Wilks ((1962), section 7),

2.4 Posterior distribution and Bayesian estimation

Consider the Dirichlet distribution $\mathcal{D}\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ as a prior on $p=\left(p_{1}, p_{2}, \ldots, p_{d}\right) \in$ Δ_{d-1}.

Let X be a random variable assuming values in $\{1, \ldots, d\}$, such that $P(X=$ $i \mid p)=p_{i}$. Then the posterior distribution $p \mid X=i$ is Dirichlet $\mathcal{D}\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}+\right.$ $\left.1, \ldots, \alpha_{d}\right)$.
Indeed let $N_{i}=\sum_{j=1}^{n} \mathbb{1}_{X_{j}=i}, 1 \leq i \leq d$. The likelihood of the sample is

$$
\prod_{i=1}^{d-1} p^{N_{i}}\left(1-\sum_{i=1}^{d-1} p_{i}\right)^{N_{d}}
$$

If the prior distribution of p is $\mathcal{D}\left(\alpha_{1}, \ldots, \alpha_{d}\right)$, the posterior density will be proportional to

$$
\prod_{i=1}^{d-1} p_{i}^{\alpha_{i}+N_{i}}\left(1-\sum_{i=1}^{d-1} p_{i}\right)^{N_{d}+\alpha_{d}} .
$$

Thus the posterior distribution of p is $\mathcal{D}\left(\alpha_{1}+N_{1}, \alpha_{2}+N_{2}, \ldots, \alpha_{k}+N_{d}\right)$.
If $\left(X_{1}, \ldots, X_{n}\right)$ is a sample of law $p=\left(p_{1}, \ldots, p_{d}\right)$ on $\{1, \ldots, d\}$ then the average Bayesian estimation of p is:

$$
p^{\prime}=\left(\frac{\alpha_{1}+N_{1}}{\sum_{i=1}^{d} \alpha_{i}+1}, \frac{\alpha_{2}+N_{2}}{\sum_{i=1}^{d} \alpha_{i}+1}, \ldots, \frac{\alpha_{k}+N_{d}}{\sum_{i=1}^{d} \alpha_{i}+1}\right) .
$$

Proposition 2.4.1 ([19]) Let r_{1}, \ldots, r_{l} be l integers such that $0<r_{1}<$ $\ldots<r_{l}=d$.

1. If $\left(Y_{1}, \ldots, Y_{d}\right) \sim \mathcal{D}\left(\alpha_{1}, \ldots, \alpha_{d}\right)$, then

$$
\left(\sum_{1}^{r_{1}} Y_{i}, \sum_{r_{1}+1}^{r_{2}} Y_{i}, \ldots, \sum_{r_{l-1}}^{r_{l}} Y_{i}\right) \sim \mathcal{D}\left(\sum_{1}^{r_{1}} \alpha_{i}, \sum_{r_{1}+1}^{r_{2}} \alpha_{i}, \ldots, \sum_{r_{l-1}}^{r_{l}} \alpha_{i}\right)
$$

2. If the prior distribution of $\left(Y_{1}, \ldots, Y_{d}\right)$ is $\mathcal{D}\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ and if

$$
P\left(X=j \mid Y_{1}, \ldots, Y_{d}\right)=Y_{j}
$$

a.s for $j=1, \ldots, d$, then the posterior distribution of $\left(Y_{1}, \ldots, Y_{d}\right)$ given $X=j$ is $\mathcal{D}\left(\alpha_{1}^{(j)}, \ldots, \alpha_{k}^{(j)}\right)$ where

$$
\alpha_{i}^{(j)}=\left\{\begin{aligned}
\alpha_{i} & \text { if } i \neq j \\
\alpha_{j}+1 & \text { if } i=j
\end{aligned}\right.
$$

3. Let $D\left(y_{1}, \ldots, y_{d} \mid \alpha_{1}, \ldots, \alpha_{d}\right)$ denote the distribution function of the Dirichlet distribution $\mathcal{D}\left(\alpha_{1}, \ldots, \alpha_{d}\right)$, that is

$$
D\left(y_{1}, \ldots, y_{d} \mid \alpha_{1}, \ldots, \alpha_{d}\right)=P\left(Y_{1} \leq y_{1}, \ldots, Y_{d} \leq y_{d}\right)
$$

Then,

$$
\int_{0}^{z_{1}} \ldots \int_{0}^{z_{d}} y_{j} d D\left(y_{1}, \ldots, y_{d} \mid \alpha_{1}, \ldots, \alpha_{d}\right)=\frac{\alpha_{j}}{\alpha} D\left(z_{1}, \ldots, z_{d} \mid \alpha_{1}^{(j)}, \ldots, \alpha_{d}^{(j)}\right)
$$

Proof

1. Recall that: if $Z_{1} \sim \Gamma\left(\alpha_{1}\right), Z_{2} \sim \Gamma\left(\alpha_{2}\right)$, and if Z_{1} and Z_{2} are independent then $Z_{1}+Z_{2} \sim \Gamma\left(\alpha_{1}+\alpha_{2}\right)$. Hence 1 may be obtained by recurrence.
2. Is obtained then by induction.
3. Using 2

$$
\begin{aligned}
P\left(X=j, Y_{1} \leq z_{1}, \ldots, Y_{d} \leq z_{d}\right) & =P(X=j) P\left(Y_{1} \leq z_{1}, \ldots, Y_{d} \leq z_{d} \mid X=j\right) \\
& =\mathbb{E}\left(\mathbb{E}\left(\mathbb{1}_{X=j} \mid Y_{1}, \ldots, Y_{d}\right)\right) \\
& \times D\left(z_{1}, \ldots, z_{d} \mid \alpha_{1}^{(j)}, \ldots, \alpha_{(d)}^{j}\right) \\
& =\mathbb{E}\left(Y_{j}\right) D\left(z_{1}, \ldots, z_{d} \mid \alpha_{1}^{(j)}, \ldots, \alpha_{d}^{(j)}\right) \\
& =\frac{\alpha_{j}}{\alpha} D\left(z_{1}, \ldots, z_{d} \mid \alpha_{1}^{(j)}, \ldots, \alpha_{d}^{(j)}\right)
\end{aligned}
$$

2.5 Definition and proprieties on Poisson-Dirichlet distribution 35

On the other hand

$$
\begin{aligned}
P\left(X=j, Y_{1} \leq z_{1}, \ldots, Y_{d} \leq z_{d}\right) & =\mathbb{E}\left(\mathbb{1}_{\left\{X=j, Y_{1} \leq z_{1}, \ldots, Y_{d} \leq z_{d}\right\}}\right) \\
& =\mathbb{E}\left(\mathbb{E}\left(\mathbb{1}_{\left\{X=j, Y_{1} \leq z_{1}, \ldots, Y_{d} \leq z_{d}\right\}} \mid Y_{1}, \ldots, Y_{K}\right)\right. \\
& =E\left(\mathbb{1}_{\left\{Y_{1} \leq z_{1}, \ldots, Y_{d} \leq z_{d}\right\}} E\left(\mathbb{1}_{\{X=j\}} \mid Y_{1}, \ldots, Y_{d}\right)\right) \\
& \left.=\mathbb{E}\left(\mathbb{1}_{\left\{Y_{1} \leq Z_{1}, \ldots, Y_{d} \leq z_{d}\right\}} Y_{j}\right)\right) \\
& =\int_{0}^{z_{1}} \ldots \int_{0}^{z_{d}} Y_{j} d D\left(Y_{1}, \ldots, Y_{d} \mid \alpha_{(1)}, \ldots, \alpha_{(d)}\right) .
\end{aligned}
$$

2.5 Definition and proprieties on Poisson-Dirichlet distribution

The Poisson-Dirichlet distribution is a probability measure introduced by J.F.C Kingman [31] on the set

$$
\nabla_{\infty}=\left\{\left(p_{1}, p_{2}, \ldots\right) ; p_{1} \geq p_{2} \geq \ldots, p_{i} \geq 0, \sum_{j=1}^{\infty} p_{j}=1\right\} .
$$

It can be considered as a limit of some specific Dirichlet distributions and is also, as shown below, the distribution of the sequence of the jumps of a Gamma process arranged by decreasing order and normalized .
We will also see how Poisson-Dirichlet distribution is related to Poisson processes.

2.5.1 Gamma process and Dirichlet distribution

Definition 2.5.1 We say that $X=\left(X_{t}\right)_{t \in \mathbb{R}^{+}}$is a Levy process if for every $s, t \geq 0$, the increment $X_{t+s}-X_{t}$ is independent of the process $\left(X_{v}, 0 \leq v \leq\right.$ $t)$ and has the same law as X_{s}, in particular, $\mathcal{P}\left(X_{0}=0\right)=1$.

Definition 2.5.2 A subordinator is a Levy process taking values in $[0, \infty)$, which implies that its sample paths are increasing.

Definition 2.5.3 The law of a random variable X is infinitely divisible, if for all $n \in \mathbb{N}$ there exist i.i.d. random variables $X_{1}^{(1 / n)}, \ldots, X_{n}^{(1 / n)}$ such that

$$
X \stackrel{d}{=} X_{1}^{1}+\ldots+X_{n}^{1}
$$

Equivalently, the law of X is infinitely divisible, if for all $n \in \mathbb{N}$ there exists a random variable $X^{(1 / n)}$, such that the characteristic function of X,

$$
\varphi_{X}(u)=\left(\varphi_{X^{(1 / n)}}(u)\right)^{n}
$$

Definition 2.5.4 The law of a random variable X is infinitely divisible if and only if there exists a triplet (b, c, ν), with $b \in \mathbb{R}, c \in \mathbb{R}_{+}$and a measure satisfying $\nu(\{0\})=0$ and $\int_{\mathbb{R}}\left(1 \Lambda|x|^{2}\right) \nu(d x)<\infty$, such that

$$
\begin{equation*}
\mathbb{E}[\exp (u X)]=\exp \left[i b u-\frac{u^{2} c}{2}+\int_{\mathbb{R}}\left(e^{i u x}-1-i u x \mathbb{1}_{\{|x|<1\}}\right) \nu(d x)\right] . \tag{2.3}
\end{equation*}
$$

The triplet (b, c, ν) is called the Lévy triplet and the exponent in (1.3)

$$
\psi(u)=i b u-\frac{u^{2} c}{2}+\int_{\mathbb{R}}\left(e^{i u x}-1-i u x \mathbb{1}_{\{|x|<1\}}\right) \nu(d x)
$$

is called the Lévy exponent. Moreover, $b \in \mathbb{R}$ is called the drift term, $c \in \mathbb{R}_{+}$ the Gaussian coefficient and ν the Lévy measure.

Definition 2.5.5 A Gamma process is a subordinator such that its Lévy measure is $\gamma(d x)=x^{-1} e^{-x} d x$.

Remark 2.5.1 Let ξ be a gamma process. Let $\alpha_{1}, \ldots, \alpha_{n}>0, t_{0}=0$, $t_{j}=\alpha_{1}+\ldots+\alpha_{j}$, for $1 \leq j \leq n$ and $Y_{j}=\xi\left(t_{j}\right)-\xi\left(t_{j-1}\right)$ then

$$
Y_{j} \sim \Gamma\left(\alpha_{j}\right)
$$

Moreover, $Y_{1}, Y_{1} \ldots, Y_{n}$ are independent.
Let $Y=Y_{1}+\ldots+Y_{n}=\xi\left(t_{n}\right)$ and $p=\left(p_{1}, \ldots, p_{n}\right)$ with $p_{j}=\frac{Y_{j}}{Y}$ then p is a random vector on \wedge_{n-1} having $\mathcal{D}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ distribution. Therefore we get a random vector having Dirichlet distribution.

2.5.2 The limiting order statistic

Let $\mathcal{D}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be a Dirichlet distribution defined as in chapter 1 and let:

$$
\begin{equation*}
f_{\alpha_{1}, \ldots, \alpha_{d}}\left(p_{1}, p_{2}, \ldots, p_{d}\right)=\frac{\Gamma\left(\alpha_{1}+\ldots+\alpha_{d}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{d}\right)} p_{1}^{\alpha_{1}-1} \ldots p_{d}^{\alpha_{d}-1} \mathbb{1}_{\triangle_{d-1}} . \tag{2.4}
\end{equation*}
$$

Assume that the α_{i} are equal, then $f_{\alpha_{1}, \ldots, \alpha_{d}}\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ reduces to

$$
\begin{equation*}
d\left(p_{1}, p_{2}, \ldots, p_{d} \mid \underline{\alpha}\right)=\frac{\Gamma(N \alpha)}{\Gamma(\alpha)^{d}}\left(p_{1} \ldots p_{d}\right)^{\alpha-1} \tag{2.5}
\end{equation*}
$$

In this section we prove the following theorem which exhibits the limiting joint distribution of the order statistics $p_{(1)} \geq p_{(2)} \geq \ldots$ an element of the subset ∇_{∞} of the set

$$
\triangle_{\infty}=\left\{\left(p_{1}, p_{2}, \ldots\right) ; p_{i} \geq 0, \sum_{j=1}^{\infty} p_{j}=1\right\}
$$

Consider the following mapping

$$
\begin{aligned}
& \psi: \triangle_{\infty} \longrightarrow \nabla_{\infty} \\
& \left(p_{1}, p_{2}, \ldots\right) \longmapsto\left(p_{(1)}, p_{(2)}, \ldots\right) .
\end{aligned}
$$

If P is any probability measure on ∇_{∞}, and n is any positive integer, then the random n-vector $\left(p_{(1)}, p_{(2)}, \ldots, p_{(n)}\right)$ has a distribution depending on P, which might be called the $n^{\text {th }}$ marginal distribution of P. The measure P is uniquely determined by its marginal distributions.

Theorem 2.5.1 (Kingman) (1974) For each $\lambda \in] 0, \infty[$, there exists a probability measure P_{λ} on ∇_{∞} with the following property. If for each N the random vector p is distributed over \triangle_{N} according to the distribution (2.1) with $\alpha=\alpha_{N}$, and if $N \alpha_{N} \rightarrow \lambda$ as $N \rightarrow \infty$, then for any n the distribution of the random vector $p=\left(p_{(1)}, p_{(2)}, \ldots, p_{(n)}\right)$ converges to the $n^{\text {th }}$ marginal distribution of P_{λ} as $N \rightarrow \infty$.

Proof

Let $y_{1}, y_{2}, \ldots, y_{N}$ be independent random variables, each having a gamma distribution $\Gamma(\lambda, 1)$. We know that if $S=y_{1}+y_{2}+\ldots+y_{N}$, then $\left(y_{1} / S, y_{2} / S, \ldots, y_{N} / S\right)$ has a Dirichlet distribution $\mathcal{D}(\lambda, \ldots, \lambda)$.

To exploit this fact, consider as above a gamma process ξ, that is a stationary random process $(\xi(t), t \geq 0)$ with $\xi(0)=0$. The process ξ increases only in jumps. The positions of these jump forms a random countable dense subset $J(\xi)$ of $(0, \infty)$, with

$$
\begin{equation*}
P\{t \in J(\xi)\}=0 \tag{2.6}
\end{equation*}
$$

for all $t>0$. For each value of N, write

$$
\begin{equation*}
q_{j}(N)=\frac{\xi\left(j \alpha_{N}\right)-\xi\left((j-1) \alpha_{N}\right)}{\xi\left(N \alpha_{N}\right)} \tag{2.7}
\end{equation*}
$$

by the result cited above, the vector $q=\left(q_{(1)}, q_{(2)}, \ldots, q_{(N)}\right)$ has the same distribution as p and it therefore suffices to prove the theorem with p replaced by q. We shall in fact prove that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} q_{(j)}(N)=\delta \xi_{(j)} / \xi(\lambda) \tag{2.8}
\end{equation*}
$$

where the $\left(\delta \xi_{(j)}\right)_{j \in \mathbb{N}}$'s are the magnitudes of the jumps in $(0, \lambda)$ arranged in descending order. This will suffice to prove the theorem, with P_{λ} the distribution of the sequence

$$
\begin{equation*}
\left(\delta \xi_{(j)} / \xi(\lambda) ; j=1,2 \ldots\right) \tag{2.9}
\end{equation*}
$$

since this sequence lies in ∇_{∞} as a consequence of the equality

$$
\begin{equation*}
\xi(\lambda)=\sum_{j=1}^{\infty} \delta \xi_{(j)} \tag{2.10}
\end{equation*}
$$

For any integer n, choose N_{0} so large that, for any $N \geq N_{0}$, the discontinuities of height $\delta \xi_{(j)}(j=1,2, \ldots, n)$ are contained in distinct intervals
$\left((i-1) \alpha_{N}, i \alpha_{N}\right)$. Then

$$
\xi\left(N \alpha_{N}\right) q_{(j)} \geq \delta \xi_{(j)} \quad\left(1 \leq j \leq n, \quad N \geq N_{0}\right)
$$

so that

$$
\begin{equation*}
\underline{\lim } q_{(j)} \geq \delta \xi_{(j)} / \xi(\lambda) \tag{2.11}
\end{equation*}
$$

For $j=1,2, \ldots, n$. Since n is arbitrary, (2.8) holds for all j, and moreover, Fatou's lemma and (2.7) give
$\varlimsup q_{(j)}=\varlimsup$ im $\left\{1-\sum_{i \neq j} q_{(i)}\right\} \leq 1-\sum_{i \neq j} \underline{\lim } q_{(j)} \leq 1-\sum_{i \neq j}\left\{\delta \xi_{(i)} / \xi(\lambda)\right\}=\delta \xi_{(j)} / \xi(\lambda)$.
Hence,

$$
\delta \xi_{(j)} / \xi(\lambda) \leq \underline{\lim } q_{(j)} \leq \varlimsup q_{(j)} \leq \delta \xi_{(j)} / \xi(\lambda) .
$$

Thus,

$$
\lim q_{(j)}=\delta \xi_{(j)} / \xi(\lambda)
$$

By definition of $\delta \xi_{(j)} / \xi(\lambda)$, we have

$$
\delta \xi_{(1)} / \xi(\lambda) \geq \delta \xi_{(2)} / \xi(\lambda) \geq \ldots,
$$

and

$$
\sum_{k=0}^{\infty} \delta \xi_{(k)} / \xi(\lambda)=1
$$

We will write

$$
\left(\delta \xi_{(1)} / \xi(\lambda), \delta \xi_{(2)} / \xi(\lambda), \ldots\right) \sim \mathcal{P} \mathcal{D}(0, \lambda)
$$

where $\mathcal{P} \mathcal{D}(0, \lambda)$ is the Poisson-Dirichlet distribution define as follows:
Definition 2.5.6 Let $0<\lambda<\infty$. Let $(\xi(t), t \in[0, \lambda])$ be a gamma subordinator and let $J_{1} \geq J_{2} \geq \ldots \geq 0$ be the ordered sequence of its jumps. The distribution on \wedge_{∞} of the random variable $\left(\frac{J_{1}}{\xi(\lambda)}, \frac{J_{2}}{\xi(\lambda)}, \ldots\right)$ is called the PoissonDirichlet distribution with parameter λ and is denoted by $\mathcal{P D}(0, \lambda)$.

Theorem 2.1.1 shows that if

$$
\left(p_{1}, \ldots, p_{N}\right) \sim \mathcal{D}\left(\alpha_{N}, \ldots, \alpha_{N}\right)
$$

then the distribution of $\left(p_{(1)}, \ldots, p_{(N)}\right)$ approximates $\mathcal{P} \mathcal{D}(0, \lambda)$, if N is fairly large, the α_{N} being uniformly small and $N \alpha_{N}$ closed to λ.

Chapter 3

Introduction on Dirichlet Processes

Nonparametric methods try to avoid assumptions about the probability distributions in order to generate methods that can be used in settings where regular parametric assumptions do not work. Although applicable in more general circumstances, nonparametric models can lead to very complex mathematics in all but the simplest models. Also, there is an implicit tradeoff between the generality of nonparametric tests and the power to detect differences between populations. From a frequentist perspective, a parametric t-test has a higher power if the normality assumption is indeed true, but might badly under perform the sign test if it is false, given the same type I error. From a Bayesian perspective, posterior distributions obtained from nonparametric models tend to have larger variances than their parametric counterparts. Nonparametric methods have a long history in modern frequentist statistics, starting with Fisher's exact test (Fisher, 1922). In Bayesian statistics, nonparametric models are constructed through priors on rich families of distributions. Therefore, the term Bayesian nonparametrics is really a misnomer. Bayesian nonparametric models are not parameter free,
but have an infinite number of parameters. Raiffa and Schlaifer (1961) and Ferguson (1973) in their seminal work on Bayesian nonparametrics mention some characteristics that should be kept in mind when constructing priors on spaces of distributions:

1. The class should be analytically tractable. Therefore, the posterior distribution should be easily computed, either analytically or through simulation.
2. The class should be rich, in the sense of having a large enough support.
3. The hyperparameters defining the prior should be easily interpreted.

The Dirichlet process can also be regarded as a type of stick-breaking prior (Sethuraman, 1994; Pitman, 1996; Ishwaran and James, 2001; Ongaro and Cattaneo, 2004).
This chapter makes a quick review of Bayesian nonparametric models and defintions, making special emphasis on the Dirichlet process.

3.1 Dirichlet processes

In a celebrated paper [19], Thomas S. Ferguson introduced a random distribution, called a Dirichlet process DP, such that its marginal w.r.t. any finite partition has a Dirichlet Distribution as defined in Chapter 1. A Dirichlet process is a random discrete distribution which is a very useful tool in nonparametric Bayesian statistics. The work of (Ferguson, 1973, 1974; Blackwell and MacQueen, 1973; Sethuraman, 1994) is the base for the most widely used nonparametric models for random distributions in Bayesian statistics, mainly due to the availability of efficient computational techniques. Some recent applications of the Dirichlet Process include finance (Kacperczyk et al., 2003), econometrics (Chib and Hamilton, 2002; Hirano, 2002), epidemiology (Dunson, 2005), genetics (Medvedovic and Sivaganesan, 2002; Dunson
et al., 2007a), astronomic (Ishwaran et James (2002)) and auditing (Laws and OH́agan, 2002).

3.1.1 Definition and proprieties of the Dirichlet process

Let \mathcal{H} be a set and let \mathcal{A} be a $\sigma-$ field on \mathcal{H}. We define below a random probability, on $(\mathcal{H}, \mathcal{A})$ by defining the joint distribution of the random variables $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$ for every m and every finite sequence of measurable sets $\left(A_{i} \in \mathcal{A}\right.$ for all i). We then verify the Kolmogorov consistency conditions to show there exists a probability, \mathcal{P}, on $\left([0,1]^{\mathcal{A}}, B \mathcal{F}^{\mathcal{A}}\right)$ yielding these distributions. Here $[0,1]^{\mathcal{A}}$ represents the space of all functions from \mathcal{A} into $[0,1]$, and $B \mathcal{F A}^{\mathcal{A}}$ represents the σ-field generated by the field of cylinder sets

It is more convenient to define the random probability P, by defining the joint distribution of $\left(P\left(B_{1}\right), \ldots, P\left(B_{m}\right)\right)$ for all k and all finite measurable partitions $\left(B_{1}, \ldots, B_{m}\right)$ of \mathcal{H}.
If $B_{i} \in \mathcal{A}$ for all $i, \quad B_{i} \cap B_{j}=\emptyset$ for $i \neq j$, and $\cup_{j=1}^{k} B_{j}=\mathcal{H}$. From these distributions, the joint distribution of $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$ for arbitrary measurable sets A_{1}, \ldots, A_{m} may be defined as follows.

Given arbitrary measurable sets A_{1}, \ldots, A_{m}, we define $B_{x_{1}, \ldots, x_{m}}$ where $x_{j}=$ 0 or 1 , as

$$
B_{x_{1}, \ldots, x_{m}}=\cap_{j=1}^{m} A_{j}^{x_{j}}
$$

where $A_{j}^{1}=A_{j}$, and $A_{j}^{0}=A_{j}^{c}$. Thus $\left\{B_{x_{1}, \ldots, x_{m}}\right\}$ form a partition of \mathcal{H}. If we are given the joint distribution of

$$
\begin{equation*}
\left\{P\left(B_{x_{1}, \ldots, x_{m}}\right) ; x_{j}=0, \quad \text { or } 1 \quad j=1, \ldots, m\right\} \tag{3.1}
\end{equation*}
$$

then we may compute the joint distribution of $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$ by

$$
\begin{equation*}
P\left(A_{i}\right)=\sum_{\left\{\left(x_{1}, \ldots, x_{m}\right) ; x_{i}=1\right\}} P\left(B_{x_{1}, \ldots, x_{i}=1, \ldots, x_{m}}\right) . \tag{3.2}
\end{equation*}
$$

We note that if A_{1}, \ldots, A_{m} is a measurable partition to start with, then this does not lead to contradictory definitions provided $P(\emptyset)$ is degenerate at 0 . If we are given a system of distribution of $\left(P\left(B_{1}\right), \ldots, P\left(B_{k}\right)\right)$ for all k and all measurable partitions B_{1}, \ldots, B_{k}, is one consistency criterion that is needed; namely,

CONDITION C:

If $\left(B_{1}^{\prime}, \ldots, B_{k}^{\prime}\right)$, and $\left(B_{1}, \ldots, B_{k}\right)$ are measurable partitions, and if $\left(B_{1}^{\prime}, \ldots, B_{k}^{\prime}\right)$ is a refinement of $\left(B_{1}, \ldots, B_{k}\right)$ with

$$
B_{1}=\cup_{1}^{r_{1}} B_{i}^{\prime}, \quad B_{2}=\cup_{r_{1}+1}^{r_{2}} B_{i}^{\prime}, \ldots, B_{k}=\cup_{r_{k-1}+1}^{k^{\prime}} B_{i}^{\prime},
$$

then the distribution of

$$
\left(\sum_{1}^{r_{1}} P\left(B_{i}^{\prime}\right), \sum_{r_{1}+1}^{r_{2}} P\left(B_{i}^{\prime}\right), \ldots, \sum_{r_{k-1}}^{k^{\prime}} P\left(B_{i}^{\prime}\right)\right),
$$

as determined from the joint distribution of $\left(P\left(B_{1}^{\prime}\right), \ldots, P\left(B_{k^{\prime}}^{\prime}\right)\right)$, is identical to the distribution of $\left(P\left(B_{1}\right), \ldots, P\left(B_{m}\right)\right)$

Lemma 3.1.1 If a system of joint distributions of $\left(P\left(B_{1}\right), \ldots, P\left(B_{m}\right)\right)$ for all k and measurable partition $\left(B_{1}, \ldots, B_{k}\right)$ satisfies condition C, and if for arbitrary measurable sets A_{1}, \ldots, A_{m}, the distribution of $\left(P\left(A_{1}\right), \ldots, P\left(A_{m}\right)\right)$ is defined using (3.2), then there exists a probability \mathcal{P} on, $\left([0,1]^{\mathcal{A}}, B \mathcal{F}^{\mathcal{A}}\right)$ yielding these distribution.

Proof

See [21] page 214.
Definition 3.1.1 Let α be a non-null finite measure on $(\mathcal{H}, \mathcal{A})$.
We say P is a Dirichlet process on $(\mathcal{H}, \mathcal{A})$ with parameter α if for every $k=1,2, \ldots$, and measurable partition $\left(B_{1}, \ldots, B_{k}\right)$ of \mathcal{H}, the distribution of $\left(P\left(B_{1}\right), \ldots, P\left(B_{k}\right)\right)$ is Dirichlet $\mathcal{D}\left(\alpha\left(B_{1}\right), \ldots, \alpha\left(B_{k}\right)\right)$.

The measure α can be represented by $c H$, where $c=\alpha(\mathcal{H})$, the parameter of precision and $H()=.\frac{(.)}{\alpha(\mathcal{H})}$.

Proposition 3.1.1 Let P be a Dirichlet process on $(\mathcal{H}, \mathcal{A})$ with parameter α and let $A \in \mathcal{A}$. If $\alpha(A)=0$, then $P(A)=0$ with probability one. If $\alpha(A)>$ 0 , then $P(A)>0$ with probability one. Furthermore, $\mathbb{E}(P(A))=\frac{\alpha(A)}{\alpha(\mathcal{H})}$.

Proof

By considering the partition $\left(A, A^{c}\right)$, it is seen that $P(A)$ has a beta distribution, $\beta\left(\alpha(A), \alpha\left(A^{c}\right)\right)$. Therefore

$$
\mathbb{E}(P(A))=\frac{\alpha(A)}{\alpha(\mathcal{H})}
$$

The Dirichlet process can be alternatively characterized in terms of its predictive rule (Blackwell and MacQueen, 1973). If $\left(\theta_{1}, \ldots, \theta_{n}\right)$ is an iid sample from $P \sim \mathcal{D}(c H)$, we can integrate out the unknown P and obtain the conditional predictive distribution of a new observation,

$$
\theta_{n} \mid \theta_{n}, \ldots, \theta_{1} \sim \frac{c}{c+n-1} H+\sum_{l=1}^{n-1} \frac{1}{c+n-1} \delta_{\theta_{l}}
$$

where $\delta_{\theta_{l}}$ is the Dirac probability measure concentrated at θ_{l}. Exchangeability of the draws ensures that the full conditional distribution of any θ_{l} has this same form. This result, which relates the Dirichlet process to a Pólya urn, is the basis for the usual computational tools used to fit models based on the Dirichlet process.
The Dirichlet process can also be regarded as a type of stick-breaking prior (Sethuraman, 1994; Pitman, 1996; Ishwaran and James, 2001; Ongaro and Cattaneo, 2004). A stick-breaking prior has the form

$$
\begin{gathered}
P^{N}(.)=\sum_{i=1}^{N} p_{k} \delta_{\theta_{k}}(.) \quad \theta_{k} \sim H \\
p_{k}=v_{k} \prod_{i=1}^{k-1}\left(1-v_{k}\right) \quad v_{k} \sim \beta\left(a_{k}, b_{k}\right) k=1, \ldots, N \quad \text { and } \quad v_{N}=1
\end{gathered}
$$

where the number of atoms N can be finite (either known or unknown) or infinite. For example, taking $N=1, a_{k}=1-a$ and $b_{k}=b+k a$ for $0 \leq a<1$
and $b>-a$ yields the two-parameter Poisson-Dirichlet Process, also known as Pitman- Yor Process (Pitman, 1996), with the choice $a=0$ and $b=c$ resulting in the Dirichlet Process (Sethuraman, 1994).

The stick-breaking representation is probably the most versatile definition of the Dirichlet Process. It has been exploited to generate efficient alternative MCMC algorithms and as the starting point for the definition of many generalizations that allow dependence across a collection of distributions, including the DDP (MacEachern, 2000), the π DDP (Griffin and Steel, 2006b) and the GSDP (Duan et al., 2007).
Finally, the Dirichlet Process can be obtained as the asymptotic limit of certain finite mixture models (Green and Richardson, 2001; Ishwaran and Zarepour, 2002). In particular consider the finite-dimensional DirichletMultinomial prior

$$
P^{N}(.)=\sum_{i=1}^{N} p_{k} \delta_{\theta_{k}}(.) \quad p \sim \mathcal{D}\left(\frac{c}{N}, \ldots, \frac{c}{N}\right) \quad \theta_{k} \sim H
$$

which differs from a truncated stick-breaking representation of the Dirichlet Process in the way the weights have been defined. Ishwaran and Zarepour (2002) prove that for each measurable function g which is integrable with respect to H,

$$
\int g(\theta) P^{N}(d \theta) \xrightarrow{P} \int g(\theta) P(d \theta)
$$

where $P \sim \mathcal{D}(c H)$, i.e., the finite-dimensional Dirichlet-Multinomial prior converges in distribution to the Dirichlet process. This result not only provides another useful approximation, but also justifies frequently used finite mixture models as approximating a Dirichlet Process.

Conjugacy is another appealing property of the Dirichlet process. If $\theta_{1}, \ldots, \theta_{n} \sim$ P and $P \sim \mathcal{D}(c H)$, then

$$
P \mid \theta_{1}, \ldots, \theta_{n} \sim \mathcal{D}\left(c H+\sum_{i=1}^{n} \delta_{i}\right)
$$

Therefore, the optimal estimator under squared error loss for P is

$$
\hat{P}(.)=\frac{c}{c+n} H(.)+\frac{1}{c+n} \sum_{i=1}^{n} \delta_{\theta_{i}}(.)
$$

which converges to the empirical distribution as $n \rightarrow \infty$.
Antoniak (1974) studies the properties of draws from a distribution that follow a Dirichlet process. In particular, he proves that, if H is nonatomic, the probability of k distinct values on a sample $\theta_{1}, \ldots, \theta_{n}$ of size n is

$$
\mathbb{P}(k)=c_{n}(k) n!c^{k} \frac{\Gamma(c)}{c+n}
$$

for $k=1, \ldots, n$, where $c_{n}(k)$ is a constant that can be obtained using recurrence formulas for Stirling numbers. The expected number of distinct values can be calculated as

$$
\mathbb{E}(k \mid c, n)=\sum_{i=1}^{n} \frac{c}{c+n-1} \approx c \log \left(\frac{c+n}{c}\right)
$$

These results will be used later to construct computational algorithms that treat α as an unknown parameter and to elicit prior distributions for this parameter.

3.1.2 Mixtures of Dirichlet processes (MDP)

The following definitions are due to C. Antoniak [1].
Let (U, \mathcal{B}, H) be a probability space called the index space. Let (Θ, \mathcal{A}) be a measurable space of parameters.

Definition 3.1.2 A transition measure on $U \times \mathcal{A}$ is a mapping α from $U \times \mathcal{A}$ into $[0, \infty)$ such that

1. for any $u \in U, \alpha(u,$.$) is a finite, nonnegative non-null measure on$ (Θ, \mathcal{A})
2. for every $A \in \mathcal{A}, \alpha(., A)$ is measurable on (U, \mathcal{B}).

Note that this differs from the definition of a transition probability in that $\alpha(u, \Theta)$ need not be identically one as we want $\alpha(u,$.$) to be a parameter for$ a Dirichlet process.

Definition 3.1.3 A random distribution P is a mixture of Dirichlet processes on (Θ, \mathcal{A}) with mixing distribution H and transition measure α, if for all $k=1,2, \ldots$ and any measurable partition $A_{1}, A_{2}, \ldots, A_{k}$ of Θ we have
$\mathcal{P}\left\{P\left(A_{1}\right) \leq y_{1}, \ldots, P\left(A_{k}\right) \leq y_{k}\right\}=\int_{U} D\left(y_{1}, \ldots, y_{k} \mid \alpha\left(u, A_{1}\right), \ldots, \alpha\left(u, A_{k}\right)\right) d H(u)$,
where $\mathcal{D}\left(y_{1}, \ldots, y_{k} \mid \alpha_{1}, \ldots, \alpha_{k}\right)$ denotes the distribution function of Dirichlet distribution with parameters $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$.
In concise symbols we will use the heuristic notation:

$$
P \sim \int_{U} \mathcal{D}(\alpha(u, .)) d H(u)
$$

Roughly, we may consider the index u as a random variable with distribution H and given u, P is a Dirichlet process with parameter $\alpha(u,$.$) . In fact U$ can be defined as the identity mapping random variable and we will use the notation $\left.\right|_{u}$ for $" U=u$ ". In alternative notation

$$
\left\{\begin{array}{l}
u \sim H \tag{3.3}\\
\left.P\right|_{u} \sim \mathcal{D}\left(\alpha_{u}\right)
\end{array}\right.
$$

where $\alpha_{u}=\alpha(u,$.$) .$

3.1.3 Dirichlet processes Mixtures

Since the DP and MDP models put probability one on the space of discrete measures, they are typically not good choices for modelling continuous data. Instead, they are more naturally employed as priors on the random mixing
distribution over the parameters of a continuous distribution K with density k,

$$
\begin{equation*}
z \sim g(.) \quad g(.)=\int k(. \mid \theta) H(d \theta) \quad H \sim \mathcal{D}\left(c H_{0}\right) \tag{3.4}
\end{equation*}
$$

resulting in a DP mixture (DPM) model (Lo, 1984; Escobar, 1994; Escobar and West, 1995). The DPM induces a prior on g indirectly through a prior on the mixing distribution H. A popular choice is the DPM of Gaussian distributions, where $\theta=(\mu, \Sigma)$ and $k(. \mid \theta)=\phi_{p}(. \mid \mu, \Sigma)$ is a p-variate normal kernel with mean μ and covariance matrix Σ.

Given an i.i.d sample $z_{n}=\left(z_{1}, \ldots, z_{n}\right)$, the posterior of the mixing distribution, $H_{n}\left(z^{n}\right)$, is distributed as a mixture of Dirichlet processes (MDP), i.e,

$$
H_{n}\left(. \mid z_{n}\right) \sim \int \mathcal{D}\left(c H+\sum_{i=1}^{n} \delta_{\theta_{i}}\right) p\left(d \theta_{1}, \ldots, d \theta_{n} \mid z^{n}\right)
$$

and the optimal density estimator under squared error loss, $g^{n}(z)$, is the posterior predictive distribution

$$
\begin{aligned}
g^{n}(z)=\mathbb{E}\left[k(z \mid \theta) H^{n}\left(d \theta \mid z^{n}\right)\right] & =\int k(z \mid \theta) \mathbb{E}\left[H^{n}\left(d \theta \mid z^{n}\right)\right] \\
& =\int k(z \mid \theta) \frac{c H_{0}(n)+\sum_{i=1}^{n} \delta_{\theta_{i}(\eta)}}{c+n} p\left(d \theta_{1}, \ldots, \theta_{n} \mid z^{n}\right)
\end{aligned}
$$

Density estimates arising from location-and-scale DP mixtures can be interpreted as Bayesian kernel density estimates with adaptive bandwidth selection. This interpretation is extremely appealing because it provides a direct link with well-known frequentist techniques and demonstrates the versatility of the model. Due to the discrete nature of the DP prior, the DPM model divides the observations into independent groups, each one of them assumed to follow a distribution implied by the kernel k. Therefore, DPM models can be used for clustering as well as for density estimation. In this setting, the model automatically allows for an unknown number of clusters.

3.2 Some properties and computions for DPMs

Computation for DPM models is typically carried out using one of the three different approaches: Pólya urn schemes that marginalize out the unknown distribution H (MacEachern, 1994; Escobar and West, 1995; MacEachern and Méuller, 1998; Neal, 2000, Ishwaran, H. and James, L. F. (2003)), truncation methods that use finite mixture models to approximate the DP (Ishwaran and James, 2001; Green and Richardson, 2001), and Reversible Jump algorithms (Green and Richardson, 2001; Jain and Neal, 2000; Dahl, 2003).
For computational purposes, it is convenient to rewrite model 1.2 using latent variables $\theta_{1}, \ldots, \theta_{n}$ corresponding to observations z_{1}, \ldots, z_{n}. In turn, these latent variables can be rewritten in terms of a set of $k \leq n$ unique values $\theta_{1}^{*}, \ldots, \theta_{k}^{*}$ and a set of indicators $\zeta_{1}, \ldots, \zeta_{n}$, such that $\theta_{i}=\theta_{\zeta_{i}}^{*}$.
Pólya urn samplers, also called marginal samplers, are popular in practice because they are relatively easy to implement and produce exact samples from the posterior distribution of θ. However, they are more useful when the baseline measure H_{0} is conjugate to the kernel k. Escobar and West (1995) original algorithm uses the Pólya urn directly to simultaneously sample group indicators and group parameters. They note that

$$
p\left(\theta_{i} \mid \theta_{-i}, z\right)=q_{i 0} p\left(\theta_{i} \mid z_{i}, H_{0}\right)+\sum_{l=1, l \neq i}^{n} q_{i, l} \delta_{\theta_{l}}\left(\theta_{i}\right)
$$

where $q_{i 0}=c \int k\left(z_{i} \mid \theta\right) H_{0}(d \theta), q_{i l}=k\left(z_{i} \mid \theta_{l}\right)$ for $l \geq 1$ and $p\left(\theta_{i} \mid z_{i}, H_{0}\right)$ is the posterior distribution for θ_{i} based on the prior H_{0} and a single observation z_{i}. MacEachern (1994) points out that mixing can be slow in this setting, and proposes to add an additional step to the Gibbs sampler that resamples the group parameters conditional on the indicators. Taking this idea one step forward, Bush and MacEachern (1996) note that, in the conjugate case, the group parameters can be easily integrated out, yielding a more efficient sampler. Finally, MacEachern and Méuller (1998) propose an algorithm that
can be used in the nonconjugate case. Neal (2000) provides an excellent review of marginal methods.
Blocked samplers are a more recent idea and are based on approximations to the Dirichlet process by finite mixture models. They are straightforward to code, tend to have better mixing properties than marginal samplers and, unlike them, directly produce (approximate) draws from the posterior distribution $H^{n}\left(d \theta \mid Z^{n}\right)$. Their main drawback is that the samples only approximately follow the desired distribution. As an example, consider the truncation sampler of Ishwaran and James (2001), which starts with the finite stick breaking prior

$$
\begin{gathered}
P^{N}=\sum_{k=1}^{K} p_{k} \delta_{\theta_{k}}(.) \quad \theta_{k} \sim H \\
p_{k}=v_{k} \prod_{i=1}^{k-1}\left(1-v_{k}\right), \quad v_{k} \sim \beta\left(a_{k}, b_{k}\right), \quad k=1, \ldots, N-1 \quad \text { and } \quad V_{N}=1
\end{gathered}
$$

After proving that P^{N} converges in distribution to a Dirichlet process when $N \longrightarrow \infty$, the authors are able to construct a simple Gibbs sampler that exploits conjugacy between the generalized Dirichlet distribution and the multinomial distribution. A related approach is the retrospective sampler (Roberts and Papaspiliopoulos, 2007), who also use the stick breaking representation of the Dirichlet process to generate a sampler that avoids truncations but shares some of the advantages of the blocked sampler.

3.2.1 Dependent Dirichlet Process

The dependent Dirichlet process (DDP) (MacEachern, 1999, 2000) induces dependence in a collection of distributions by replacing the elements of the stick-breaking representation (Sethuraman, 1994) with stochastic processes. It has been employed by DeIorio et al. (2004) to create ANOVA-like models for densities, and by Gelfand et al. (2005) to generate spatial processes that
allow for non-normality and nonstationarity. This last class of models is extended in Duan et al. (2007) to create generalized spatial Dirichlet processes (GSDP) that allow different surface selection at different locations, among others.
Along similar lines, the hierarchical Dirichlet process (HDP) (Teh et al., 2006) is another approach to introduce dependence. In this setting, multiple group-specific distributions are assumed to be drawn from a common Dirichlet Process whose base- 12 line measure is in turn a draw from another Dirichlet process. This allows the different distributions to share the same set of atoms but have distinct sets of weights. More recently, Griffin and Steel (2006b) proposed an order-dependent Dirichlet Process (π DDP), where the correspondence between atoms and weights is allowed to vary with the covariates. Also, Dunson and Park (2007) propose a kernel stick breaking that allows covariate dependent weights and fixed atoms.
An alternative approach to the DDP is to introduce dependence through linear combinations of realizations of independent Dirichlet processes. For example, Méuller et al. (2004), motivated by a similar problem to Teh et al. (2006), define the distribution of each group as the mixture of two independent samples from a DP process: one component that is shared by all groups and one that is idiosyncratic. Dunson (2006) extended this idea to a time setting, and Dunson et al. (2007b) propose a model for density regression using a kernel-weighted mixture of Dirichlet Processes defined at each value of the covariate.

Definition 3.2.1 (MacEachern [2000]) Let I be an index set, let $\{\theta(t)$: $t \in I\}$ and $\{v(t): t \in I\}$ be stochastic processes over I such that $z(t) \sim$ $\beta(1, \alpha(t))$ for any $t \in I$ and define

$$
\begin{equation*}
H_{t}=\sum_{i=1}^{\infty} p_{i}^{*}(t) \delta_{\theta_{i}^{*}(t)}(.), \tag{3.5}
\end{equation*}
$$

where $\left\{\theta_{i}^{*}(t)\right\}_{i=1}^{\infty}$ are mutually independent collections of independent real-
izations of the stochastic processes $\{\theta(t): t \in I\}$ and $\{v(t): t \in I\}$, and $p_{i}^{*}(t)=v_{i}^{*}(t) \prod_{s=1}^{i-1}\left(1-v_{s}^{*}(t)\right)$. The colloction of the probability measures $\mathcal{H}_{I}=\left\{H_{t}: t \in I\right\}$ is to follow a dependent Dirichlet process (DDP).

DDP models are dense on a large class of distributions. Indeed, under mild conditions, the DDP assigns positive probability to every ϵ-ball centered on a finite collection of distributions that are absolutely continuous to the baseline measures corresponding to the same locations of the index space D (MacEachern, 2000). One of the most popular variates of the DDP is the "single-p" model, where the weights are assumed to be constant over I while the atoms are allowed to vary. Models of this form can be rewritten as regular DP models with atoms arising from a stochastic process. Therefore, standard Gibbs sampling algorithms can be used to perform inferences for the "single-p" DDP models. The main drawback of this approach is its inability to produce a collection of independent distributions. The hierarchical Dirichlet process (HDP) (Teh et al., 2006) can also be recast as a DDP model. The HDP places a prior on a collection of exchangeable distributions $\left\{G_{1}, \ldots, G_{J}\right\}$. Conditional on a probability measure G_{0}, the distributions in the collection are assumed to be iid samples from a regular Dirichlet process centered around G_{0}. In order to induce dependence, G_{0} is in turn given another Dirichlet process prior. In summary,

$$
\begin{aligned}
G_{i} \mid G_{0} & \sim \mathcal{D}\left(c G_{0}\right) \\
G_{0} & \sim \mathcal{D}(\beta H)
\end{aligned}
$$

Since G_{0} is, by construction, almost surely discrete, the distributions G_{i} share the same set of random atoms (corresponding to those of G_{0}), but assign strictly different (although dependent) weights to each one of them. As is to be expected, H corresponds to the common expected value for each of the distributions in the collection, and β and c control the variance around
H and the dependence between distributions. Computation for the HDP is performed using a generalized Pólya urn scheme.

3.2.2 Nested Dirichelt process

Motivated by the multicenter studies, Abel Rodriguez et.al (2006) introduce nested Dirichlet process. In fact, subjects in different centers have different outcome distributions. The problem of nonparametric modeling of these distributions, borrowing information across centers while also allowing centers to be clustered. Starting with a stick-breaking representation of the Dirichlet process (DP), he replaces the random atoms with random probability measures drawn from a DP. This results in a nested Dirichlet process (nDP) prior, which can be placed on the collection of distributions for the different centers, with centers drawn from the same DP component automatically clustered together.

3.3 Some recent advances in Dirichlet models

Popular approaches for nonparametric functional estimation can be broadly divided in three main groups. One simple yet powerful alternative is kernel regression methods. These methods represent the unknown function as a linear combination of the observed values of the outcome variables, using covariate-based weights (Altman, 1992; Chu and Marron, 1991; Fan et al., 1995). Another class of methods assumes that the functions of interest can be represented as a linear combination of basis functions. The problem of estimating the function reduces to estimation of the basis coefficients. Splines, wavelets and reproducing kernel methods fall in this broad category (Vidakovic, 1999; Truong et al., 2005). A third alternative is to assume that the functions in question are realizations of stochastic processes, with the Gaus-
sian process (GP) being a common choice (Rasmussen and Williams, 2006). Different approaches have been used to extend these methodologies to collections of functions. For example, when the function of interest is modelled as a linear combination of basis functions, hierarchical models on the basis coefficients can be used to accommodate different types of dependence. This approach has been successfully exploited by authors such as Rice and Silverman (1991); Wang (1998); Guo (2002); Wu and Zhang (2002) and Morris and Carroll (2006) to construct ANOVA and random effect models for curves. Along similar lines, Bigelow and Dunson (2007) and Ray and Mallick (2006) have used Dirichlet process priors as part of the hierarchical specification of the model in order to induce clustering across curves. Behseta et al. (2005) develop a hierarchical Gaussian process (GP) model, which treats individual curves as realizations of a GP centered on a GP mean function.

Recently, Abel Rodregez et al. propose a hierarchical model that allows us to simultaneously estimate multiple curves nonparametrically by using dependent Dirichlet Process mixtures of Gaussians to characterize the joint distribution of predictors and outcomes. About stick-breaking, recently, YeeWhye Teh et al.(2007) introduce The Indian buffet process (IBP) is a Bayesian nonparametric distribution where by objects are modelled using an unbounded number of latent features. He derives a stick-breaking representation for the IBP. Based on this new representation, he develops slice samplers for the IBP.

Chapter 4

Mixtures of continuous time Dirichlet processes

In this chapter, we first define, in section 1, continuous time Dirichlet processes. In section 2 we examine the case of the Brownian-Dirichlet process (BDP) whose parameter is proportional to a standard Wiener measure.

Next we show that some stochastic calculus formulas (Ito's formula, local time occupation formula) hold for BDP's.

Next, in section 3, we define mixtures of continuous time Dirichlet processes and we extend some, rather nontrivial computations of Antoniak (1974) [2].

4.1 Continuous time Dirichlet processes

From now, we take for \mathcal{H} any standard Polish space of real functions defined on an interval $I \subset[0, \infty$), for example the space $\mathcal{C}(I)$ (resp. $\mathcal{D}(I))$ of continuous (resp. cadlag) functions. For any $t \in I$, let $\pi_{t}: x \longrightarrow x(t)$ denote the usual projection at time t from the space \mathcal{H} to \mathbb{R}. Recall that π_{t} maps any measure μ on \mathcal{H} into a measure $\pi_{t} \mu$ on \mathbb{R} defined by $\pi_{t} \mu(A)=\mu\left(\pi_{t}^{-1}(A)\right)$ for any Borel subset A of \mathbb{R}.

The following proposition defines a continuous time process $\left(X_{t}\right)$ such
that for any $t \in \mathbb{R} X_{t}$ is a Ferguson-Dirichlet random distribution.

Proposition 4.1.1 (Emilion, 2005) Let α be any finite measure on \mathcal{H}, let X be a Ferguson-Dirichlet random distribution $\mathcal{D}(\alpha)$ on \mathcal{H} and let $X_{t}=\pi_{t} X$. Then the time continuous process $\left(X_{t}\right)_{t \in I}$ is such that for each $t \in I, X_{t}$ is a Ferguson-Dirichlet random distribution on $\mathbb{R} \mathcal{D}\left(\alpha_{t}\right)$ where $\alpha_{t}=\pi_{t} \alpha$. Moreover if $V^{(i)}$ is any iid sequence on \mathcal{H} such that $V^{(i)} \sim \frac{\alpha}{\alpha(\mathcal{H})}$ and

$$
X(\omega) \stackrel{d}{=} \sum_{i=1}^{\infty} p_{i}(\omega) \delta_{V^{(i)}(\omega)}
$$

where the sequence $\left(p_{i}\right)$ is independent of the $V^{(i)}$'s and has a PoissonDirichlet distribution $\mathcal{P D}(\alpha(\mathcal{H}))$, then

$$
X_{t}(\omega) \stackrel{d}{=} \sum_{i=1}^{\infty} p_{i}(\omega) \delta_{V^{(i)}(\omega)(t)} .
$$

For sake of simplicity we deal with just one parameter α, but it can be noticed that two-parameter $X_{t, \alpha, \beta}$ continuous time Dirichlet process can be defined similarly by using two-parameter Poisson-Dirichlet distributions introduced in Pitman Yor (1997) [44].

Proof

Let $k \in\{1,2,3, \ldots\}$ and A_{1}, \ldots, A_{k} a measurable partition of \mathbb{R}.
Then for any $t \in \mathbb{R}, \pi_{t}^{-1}\left(A_{1}\right), \ldots, \pi_{t}^{-1}\left(A_{k}\right)$ is a measurable partition of \mathcal{H} so that, by definition of X, the joint distribution of the random vector

$$
\left(X\left(\pi_{t}^{-1}\left(A_{1}\right)\right), \ldots, X\left(\pi_{t}^{-1}\left(A_{k}\right)\right)\right)
$$

is Dirichlet with parameters $\left(\alpha\left(\pi_{t}^{-1}\left(A_{1}\right)\right), \ldots, \alpha\left(\pi_{t}^{-1}\left(A_{k}\right)\right)\right.$. In other words $\left.\left(X_{t}\left(A_{1}\right)\right), \ldots, X_{t}\left(A_{k}\right)\right)$ is Dirichlet with parameters $\left(\alpha_{t}\left(A_{1}\right), \ldots, \alpha_{t}\left(A_{k}\right)\right)$ and $X_{t} \sim \mathcal{D}\left(\alpha_{t}\right)$.

A consequence of the definition of π_{t} is that

$$
\pi_{t}\left(\sum_{i=1}^{\infty} \mu_{i}\right)=\sum_{i=1}^{\infty} \pi_{t} \mu_{i}
$$

for any sequence of positive measures on \mathcal{H} and $\pi_{t}(\lambda \mu)=\lambda \pi_{t}(\mu)$ for any positive real number λ. Hence if $V^{(i)}$ is any i.i.d. sequence on \mathcal{H} such that $V^{(i)} \sim \frac{\alpha}{\alpha(\mathcal{H})}$ and

$$
X(\omega) \stackrel{d}{=} \sum_{i=1}^{\infty} p_{i}(\omega) \delta_{V^{(i)}(\omega)}
$$

where $\left(p_{i}\right)$ has a Poisson-Dirichlet distribution $\mathcal{P} \mathcal{D}(\alpha(\mathcal{H}))$, then

$$
X_{t}(\omega)=\pi_{t}(X(\omega)) \stackrel{d}{=} \sum_{i=1}^{\infty} p_{i}(\omega) \pi_{t}\left(\delta_{V^{(i)}(\omega)}\right)=\sum_{i=1}^{\infty} p_{i}(\omega) \delta_{V^{(i)}(\omega)(t)}
$$

the last equality being due to the fact that $\pi_{t}\left(\delta_{f}\right)=\delta_{f(t)}$ for any $f \in \mathcal{H}$, as it can be easily seen. In addition the $V^{(i)}(t)$'s are iid with $V^{(i)}(t) \sim$ $\pi_{t}\left(\frac{\alpha}{\alpha(\mathcal{H})}\right)=\frac{1}{\alpha(\mathcal{H})} \pi_{t}(\alpha)=\frac{1}{\alpha_{t}(R)} \alpha_{t}$. Moreover $\left(p_{i}\right)$ has a Poisson-Dirichlet distribution $\mathcal{P} \mathcal{D}(\alpha(\mathcal{H}))=\mathcal{P} \mathcal{D}\left(\alpha_{t}(R)\right)$ so that the preceding expression of $X_{t}(\omega)$ is exactly the expression of a Ferguson-Dirichlet random distribution $\mathcal{D}\left(\alpha_{t}\right)$ as a random mixture of random Dirac masses.

As a corollary of the above proof and of Sethuraman stick-breaking construction (1994), we have the following result which is of interest for simulating continuous time Dirichlet processes. It shows that such processes of random distributions can be used to generate stochastic paths and to classify random curves.

Corollary 4.1.1 (Continuous time stick-breaking construction) Let α be any finite measure on \mathcal{H} and $\alpha_{t}=\pi_{t} \alpha$. Let $c=\alpha(\mathcal{H})$ and $H=\alpha / c$. For any integer N, let V_{1}, \cdots, V_{N-1} be iid $\operatorname{Beta}(1, c)$ and $V_{N}=1$. Let $p_{1}=$ $V_{1}, p_{k}=\left(1-V_{1}\right) \ldots\left(1-V_{k-1}\right) V_{k}, k=2, \cdots, N$. Let Z_{k} be iid H. Then, $P_{N, t}=\sum_{k=1}^{N} p_{k} \delta_{Z_{k, t}}$ converges a.e. to a continuous time Dirichlet process $\mathcal{D}\left(\alpha_{t}\right)$.

Corollary 4.1.2 Let X_{t} be as in the preceding proposition, then for any Borel subset A of $\mathbb{R},\left(X_{t}(A)\right)_{t \geq 0}$ is a Beta process, ie for any $t \geq 0$

$$
X_{t}(A) \sim \operatorname{Beta}\left(\alpha_{t}(A), \alpha_{t}\left(A^{c}\right)\right)
$$

4.2 Brownian-Dirichlet process

We suppose here that the parameter α is proportional to a standard Wiener measure W so that the $V^{(i)}$'s above are i.i.d. standard Brownian motions that we denote by B^{i}. The sequence $\left(p_{i}\right)$ is assumed to be Poisson-Dirichlet (c) independent of $\left(B^{i}\right)_{i=0,1, \ldots}$

Definition 4.2.1 Let X be a Dirichlet process such that $X \sim \mathcal{D}(c W)$, then the continous-time process $\left(X_{t}\right)$ defined by $X_{t}=\pi_{t} X$, for any $t>0$, is called a Brownian-Dirichlet process (BDP).

As observed in the previous proposition, X_{t} is a random probability measure such that $X_{t} \sim \mathcal{D}(c \mathcal{N}(0, t))$ and if we have a representation

$$
X(\omega)=\sum_{i=1}^{\infty} p_{i}(\omega) \delta_{B^{i}(\omega)}
$$

then we also have

$$
X_{t}(\omega)=\sum_{i=1}^{\infty} p_{i}(\omega) \delta_{B_{t}^{i}(\omega)} .
$$

We show that stochastic calculus can be extended to such processes $\left(X_{t}\right)$. Consider the filtration defined by

$$
\mathcal{F}_{0}=\sigma\left(p_{i}, i \in \mathbb{N}^{*}\right),
$$

and for any $s>0$,

$$
\mathcal{F}_{s}=\mathcal{F}_{0} \cup\left(\cup_{i} \sigma\left(B_{u}^{i}, u<s\right)\right)
$$

4.2.1 Ito's formula

Proposition 4.2.1 Let $f \in C^{2}$ be such that there exist a constant $c \in \mathbb{R}$ such that $\int_{0}^{s}\left(f^{\prime}\left(B_{u}^{i}\right)^{2} d u<c\right.$ for any i and any $s>0$. Then,

1. $M_{t}=\sum_{i=1}^{\infty} p_{i}(\omega) \int_{0}^{t} f^{\prime}\left(B_{u}^{i}\right) d B_{u}^{i}$ is a well-defined $\left(\mathcal{F}_{s}\right)-$ martingale,
2. $V_{t}=\frac{1}{2} \sum_{i=1}^{+\infty} p_{i}(\omega) \int_{0}^{t} f^{\prime \prime}\left(B_{u}^{i}\right) d u$ is a well-defined process with bounded variation, and
3. $<X_{t}-X_{0}, f>=M_{t}+V_{t}$.

Proof. Let

$$
M_{t}^{n}(\omega)=\sum_{i=1}^{n} p_{i}(\omega) \int_{0}^{t} f^{\prime}\left(B_{u}^{i}\right) d B_{u}^{i}
$$

and let $s<t$. Let $0=t_{1}^{(k)}<t_{2}^{(k)}<\ldots<t_{r_{k}}^{(k)}=t$ be a sequence of subdivisions of $[0, t]$ such that

$$
\int_{0}^{t} f^{\prime}\left(B_{u}^{i}\right) d B_{u}^{i}=\lim _{k \longrightarrow+\infty} \sum_{l=1}^{r_{k}} f^{\prime}\left(B_{t_{l}^{(k)}}^{i}\right)\left(B_{t_{l+1}^{(k)}}^{i}-B_{t_{l}^{(k)}}^{i}\right)
$$

the limit being taken in L_{2}-norm. We now show that M_{t}^{n} is a martingale. Note that we don't use below the fact that the sequence p_{i} has a PoissonDirichlet distribution. For sake of simplicity, in what follows, we omit the superscript (k) in $t_{l}^{(k)}$. We have

$$
\begin{aligned}
\mathbb{E}\left(M_{t}^{n} \mid \mathcal{F}_{s}\right) & =\sum_{i=1}^{n} \mathbb{E}\left(p_{i} \int_{0}^{t} f^{\prime}\left(B_{i}^{i}\right) d B_{u}^{i} \mid \mathcal{F}_{s}\right) \\
& =\lim _{k \rightarrow \infty}\left\{\sum_{i=1}^{n} \mathbb{E}\left(p_{i} \sum_{\left\{l: t_{l}<s\right\}} f^{\prime}\left(B_{t_{l}}^{i}\right)\left(B_{t_{l+1}}^{i}-B_{t_{l}}^{i}\right) \mid \mathcal{F}_{s}\right)\right. \\
& \left.+\sum_{i=1}^{n} \mathbb{E}\left(p_{i} \sum_{\left\{l: t_{l}>s\right\}} f^{\prime}\left(B_{t_{l}}^{i}\right)\left(B_{t_{l+1}}^{i}-B_{t_{l}}^{i}\right) \mid \mathcal{F}_{s}\right)\right\} .
\end{aligned}
$$

In the case $t_{l}<s$, if we have in addition $t_{l+1}<s$ then

$$
\mathbb{E}\left(f^{\prime}\left(B_{t_{l}}^{i}\right)\left(B_{t_{l+1}}^{i}-B_{t_{l}}^{i}\right) \mid \mathcal{F}_{s}\right)=f^{\prime}\left(B_{t_{l}}^{i}\right)\left(B_{t_{l+1}}^{i}-B_{t_{l}}^{i}\right)
$$

while if $t_{l+1}>s$, writing $B_{t_{l+1}}^{i}-B_{t_{l}}^{i}=B_{t_{l+1}}^{i}-B_{s}^{i}+B_{s}^{i}-B_{t_{l}}^{i}$, we see that

$$
\mathbb{E}\left(f^{\prime}\left(B_{t_{l}}^{i}\right)\left(B_{t_{l+1}}^{i}-B_{t_{l}}^{i}\right) \mid \mathcal{F}_{s}\right)=f^{\prime}\left(B_{t_{l}}^{i}\right)\left(B_{s}^{i}-B_{t_{l}}^{i}\right)
$$

On the other hand in the case $t_{l}>s$ we have

$$
\begin{aligned}
\mathbb{E}\left(f^{\prime}\left(B_{t_{l}}^{i}\right)\left(B_{t_{l+1}}^{i}-B_{t_{l}}^{i}\right) \mid \mathcal{F}_{s}\right) & =\mathbb{E}\left(E\left(f^{\prime}\left(B_{t_{l}}^{i}\right)\left(B_{t_{l+1}}^{i}-B_{t_{l}}^{i}\right) \mid \mathcal{F}_{t_{l}}\right) \mid \mathcal{F}_{s}\right) \\
& =\mathbb{E}\left(f^{\prime}\left(B_{t_{l}}^{i}\right) \mathbb{E}\left(B_{t_{l+1}}^{i}-B_{t_{l}}^{i} \mid \mathcal{F}_{t_{l}}\right) \mid \mathcal{F}_{s}\right) \\
& =\mathbb{E}\left(f^{\prime}\left(B_{t_{l}}^{i}\right) \mathbb{E}\left(B_{t_{l+1}}^{i}-B_{t_{l}}^{i}\right) \mid \mathcal{F}_{s}\right)=0
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathbb{E}\left(M_{t}^{n} \mid \mathcal{F}_{s}\right) & =\sum_{i=1}^{n} p_{i} \lim _{k \rightarrow \infty}\left(\sum_{\left\{l: t_{l+1}<s\right\}} f^{\prime}\left(B_{t_{l}}^{i}\right)\left(B_{t_{l+1}}^{i}-B_{t_{l}}^{i}\right)\right) \\
& +f^{\prime}\left(B_{t_{s}}^{i}\right)\left(B_{s}^{i}-B_{t_{s}}^{i}\right)
\end{aligned}
$$

where t_{s} denotes the unique $t_{l}^{(k)}$ such that $t_{l}^{(k)}<s$ and $t_{l+1}^{(k)}>s$. Therefore

$$
\mathbb{E}\left(M_{t}^{n} \mid \mathcal{F}_{s}\right)=\sum_{i=1}^{n} p_{i}(\omega) \int_{0}^{s} f^{\prime}\left(B_{u}^{i}\right) d B_{u}^{i}=M_{s}^{n}
$$

proving that M_{t}^{n} is a martingale. Moreover, since

$$
\begin{aligned}
\mathbb{E}\left(\left(M_{s}^{(n)}\right)^{2}\right) & =2 \sum_{\{1 \leq i<j \leq n\}} \mathbb{E}\left(p_{i} p_{j} \int_{0}^{s} f^{\prime}\left(B_{u}^{i}\right) d B_{u}^{i} \int_{0}^{s} f^{\prime}\left(B_{u}^{j}\right) d B_{u}^{j}\right) \\
& +\sum_{i=1}^{n} \mathbb{E}\left[p_{i}^{2}\left(\int_{0}^{s} f^{\prime}\left(B_{u}^{i}\right) d B_{u}^{i}\right)^{2}\right] \\
& \left.=\sum_{i=1}^{n} \mathbb{E}\left(p_{i}^{2}\right) \mathbb{E}\left(\int_{0}^{s} f^{\prime}\left(B_{u}^{i}\right) d B_{u}^{i}\right)^{2}\right) \\
& =\sum_{i=1}^{n} \mathbb{E}\left(p_{i}^{2}\right) \mathbb{E}\left(\int_{0}^{s}\left(f^{\prime}\left(B_{u}^{i}\right)\right)^{2} d u\right) \leq c \sum_{i=1}^{\infty} \mathbb{E}\left(p_{i}\right)=c
\end{aligned}
$$

the martingale convergence theorem implies that M_{t}^{n} converges to a martingale

$$
M_{t}=\sum_{i=1}^{\infty} p_{i}(\omega) \int_{0}^{t} f^{\prime}\left(B_{u}^{i}\right) d B_{u}^{i}
$$

Finally, applying Ito's formula to each B^{i}, we get

$$
\begin{aligned}
<X_{t}(\omega)-X_{0}(\omega), f> & =\sum_{i=1}^{\infty} p_{i}(\omega)\left(f\left(B_{t}^{i}\right)-f\left(B_{0}^{i}\right)\right) \\
& =\sum_{i=1}^{\infty} p_{i}(\omega) \int_{0}^{t} f^{\prime}\left(B_{u}^{i}\right) d B_{u}^{i} \\
& +\frac{1}{2} \sum_{i=1}^{\infty} p_{i}(\omega) \int_{0}^{t} f^{\prime \prime}\left(B_{u}^{i}\right) d u \\
& =M_{t}+V_{t}
\end{aligned}
$$

where V_{t} is obviously a bounded variation process.

Corollary 4.2.1 (Stochastic integral) Let X_{t} be a BDP given by

$$
X_{t}(\omega)=\sum_{i=1}^{\infty} p_{i}(\omega) \delta_{B_{t}^{i}(\omega)}
$$

Let $\left(Y_{t}\right)$ be a real valued stochastic process and ϕ a bounded function defined on \mathbb{R}. Then the stochastic integral $\int \phi\left(Y_{t}\right) d X_{t}$ is defined as the measure such that
$<\int \phi\left(Y_{t}\right) d X_{t}, f>=\sum_{i=1}^{\infty} \int \phi\left(Y_{t}\right) p_{i}(\omega) f^{\prime}\left(B_{t}^{i}\right) d B_{t}^{i}+\frac{1}{2} \sum_{i=1}^{\infty} \int \phi\left(Y_{t}\right) p_{i}(\omega) f^{\prime \prime}\left(B_{t}^{i}\right) d t$,
for any function f verifying the conditions of the preceding proposition.

4.2.2 Local time

The following result exhibits the local time of a Brownian-Dirichlet process as a density of occupation time.

Proposition 4.2.2 Let $\left(X_{t}\right)$ be a $B D P$

$$
X_{t}(\omega)=\sum_{i=1}^{\infty} p_{i}(\omega) \delta_{B_{t}^{i}(\omega)}
$$

Then for each $(T, x) \in \mathbb{R}_{+} \times \mathbb{R}$, there exist a random distribution $L(T, x)$ such that

$$
\int_{\mathbb{R}} L(T, x) f(x) d x=\int_{0}^{T}<X_{s}, f>d s
$$

for any f Borel measurable and locally integrable on \mathbb{R}.

Proof. Let $L_{i}(T, x)$ be the local time w.r.t. to $B^{(i)}$ so that for any $i \in \mathbb{N}$ we have

$$
\int_{\mathbb{R}} L_{i}(T, x) f(x) d x=\int_{0}^{T} f\left(B_{s}^{i}\right) d s
$$

and

$$
\int_{\mathbb{R}} \sum_{i=1}^{n} p_{i} L_{i}(T, x) f(x) d x=\int_{0}^{T} \sum_{i=1}^{n} p_{i} f\left(B_{s}^{i}\right) d s
$$

Then, if $f \in L_{\infty}^{+}$, set of positif bounded functions, the monotone convergence theorem yields

$$
\int_{\mathbb{R}} \sum_{i=1}^{\infty} p_{i} L_{i}(T, x) f(x) d x=\int_{0}^{T} \sum_{i=1}^{\infty} p_{i} f\left(B_{s}^{i}\right) d s
$$

and the same holds if $f \in L_{\infty}$ by using $f=f_{+}-f_{-}$. Letting $L(T, x)=$ $\sum_{i=1}^{\infty} p_{i} L_{i}(T, x)$ we get the desired result.

4.2.3 Diffusions

Definition 4.2.2 A stochastic process $\left(\psi_{t}\right)$ is called a diffusion w.r.t. to the $B D P\left(X_{t}\right)$ if it has a.s. continuous paths and can be represented as

$$
\psi_{t}=\psi_{0}+\int_{0}^{t} a(s) d s+\sum_{i=0}^{\infty} p_{i}(\omega) \int_{0}^{t} b_{i, s} d B_{s}^{i}
$$

where $a \in L_{1}\left(\mathbb{R}_{+}\right)$and $b_{i} \in L_{2}\left(\mathbb{R}_{+}\right)$for any integer i.

The following result can be proved using the Banach fixed point theorem, similar to the classical case of a single Brownian motion.

Proposition 4.2.3 Suppose that f and $g_{i}, i=0,1, \ldots$ are Lipshcitz functions from \mathbb{R} to \mathbb{R}. Let u_{0} be an \mathcal{F}_{0}-measurable square integrable r.v. Then there exist a diffusion $\left(\psi_{t}\right)$ w.r.t. to the $B D P\left(X_{t}\right)$ such that

$$
\begin{align*}
& d \psi_{t}=f\left(\psi_{t}\right) d t+\sum_{i=0}^{\infty} p_{i} g_{i}\left(\psi_{t}\right) d B_{t}^{i} \tag{4.1}\\
& \psi_{0}=u_{0}
\end{align*}
$$

4.2.4 Mixtures of continuous time Dirichlet processes

We now consider the case where α_{u} is a finite measure on a function space like $\mathcal{C}(I)$ and $\mathcal{D}(I)$ (spaces defined in section 1).
The following proposition defines a continuous time process $\left(P_{t}\right)_{t}$ such that each P_{t} is a mixture of Dirichlet processes.

Proposition 4.2.4 Let P be a mixture of Dirichlet distributions

$$
P \sim \int_{U} \mathcal{D}\left(\alpha_{u}\right) d H(u)
$$

Let $P_{t}=\pi_{t} P$. Then, for each $t \geq 0, P_{t}$ is a mixture of Dirichlet processes:

$$
P_{t} \sim \int_{U} \mathcal{D}\left(\alpha_{u, t}\right) d H(u)
$$

where $\alpha_{u, t}=\alpha_{u}\left(\pi_{t}^{-1}().\right)$.

Proof

Let $A_{1}, A_{2}, \ldots, A_{k}$ be a partition of \mathbb{R}.

$$
\begin{aligned}
\mathcal{P}\left[P_{t}\left(A_{1}\right) \leq y_{1}, \ldots, P_{t}\left(A_{k}\right) \leq y_{k}\right] & =\mathcal{P}\left[P \pi_{t}^{-1}\left(A_{1}\right) \leq y_{1}, \ldots, P \pi_{t}^{-1}\left(A_{k}\right) \leq y_{k}\right] \\
& =\int_{U} D\left(y_{1}, y_{2}, \ldots, y_{k} \mid\left(\alpha_{u}\left(\pi_{t}^{-1} A_{i}\right)\right)_{1 \leq i \leq k}\right) d H(u)
\end{aligned}
$$

since $\pi_{t}^{-1}\left(A_{1}\right), \pi_{t}^{-1}\left(A_{2}\right), \ldots, \pi_{t}^{-1}\left(A_{k}\right)$ is a partition of Θ.
Therefore

$$
P_{t} \sim \int_{U} \mathcal{D}\left(\alpha_{u, t}\right) d H(u)
$$

4.2.5 Posterior distributions

We suppose now that the sample space of observations is $\mathcal{X}=\mathcal{C}\left(\mathbb{R}^{+}\right)$, where $\mathcal{C}\left(\mathbb{R}^{+}\right)$denote the space of continuous functions from \mathbb{R}^{+}to \mathbb{R}.
Let F be a transition probability from $\Theta \times \zeta$ into $[0,1]$.
Let θ_{t} be a sample from P_{t}, i.e. $\left.\theta_{t}\right|_{P_{t}, u} \sim P_{t}$ and $\left.X(t)\right|_{P_{t}, \theta_{t}, u} \sim F\left(\theta_{t},.\right)$.
Let H_{x} denote the conditional distribution of $\left(\theta_{t}, u\right)$ given $X(t)=x$.
Let $H_{\theta_{t}}$ denote the conditional distribution of u given θ_{t}.
The following proposition shows that if $\left(P_{t}\right)$ is a mixture of Dirichlet processes then for each $t \in \mathbb{R}^{+}$the posterior probability of P_{t} is also a mixture of Dirichlet processes.

Proposition 4.2.5 If for any $t \in \mathbb{R}^{+}$

$$
\left\{\begin{array}{l}
\left.P_{t}\right|_{u} \sim \mathcal{D}\left(\alpha_{u, t}\right) \tag{4.2}\\
u \sim H \\
P_{t} \sim \int_{U} \mathcal{D}\left(\alpha_{u, t}\right) d H(u) \\
\left.\theta_{t}\right|_{P_{t}, u} \sim P_{t} \\
\left.X(t)\right|_{P_{t}, \theta_{t}, u} \sim F\left(\theta_{t}, .\right)
\end{array}\right.
$$

then

$$
\left.P_{t}\right|_{X(t)=x} \sim \int_{\Theta \times U} \mathcal{D}\left(\alpha_{u, t}+\delta_{\theta_{t}}\right) d H_{x}\left(\theta_{t}, u\right) .
$$

Proof

Let $A_{1}, A_{2}, \ldots, A_{k}$ be a partition of \mathbb{R}

$$
\begin{aligned}
\mathcal{P}\left[P_{t}\left(A_{i}\right) \leq y_{i}, 1 \leq i \leq\left. k\right|_{X(t)=x}\right] & =E\left[\left.\mathcal{P}\left[P_{t}\left(A_{i}\right) \leq y_{i}, i=1, \ldots,\left.k\right|_{X(t)=x, \theta_{t}, u}\right]\right|_{X(t)=x}\right] \\
& =E\left[\left.D\left(y_{1}, y_{2}, \ldots,\left.y_{k}\right|_{\beta_{u, t}\left(A_{1}\right), \ldots, \beta_{u, t}\left(A_{k}\right)}\right)\right|_{X(t)=x}\right] \\
& =\int_{U \times \Theta} D\left(y_{1}, \ldots,\left.y_{k}\right|_{\beta_{u, t}\left(A_{1}\right), \ldots, \beta_{u, t}\left(A_{k}\right)}\right) d H_{x}(u, \theta) .
\end{aligned}
$$

where $\beta_{u, t}\left(A_{i}\right)=\alpha_{t, u}\left(A_{i}\right)+\delta_{\theta_{t}}\left(A_{i}\right)$, for any $i=1, \ldots, k$.
Therefore

$$
\left.P_{t}\right|_{X(t)=x} \sim \int_{U} \mathcal{D}\left(\alpha_{u, t}+\delta_{\theta_{t}}\right) d H_{x}\left(\theta_{t}, u\right) .
$$

As a corollary, let us show that the same result holds, if $\left(P_{t}\right)$ is simply a continuous time Dirichlet process: the posterior distribution of P_{t} given $X(t)=x$ is still a mixture of continuous time Dirichlet processes.

Corollary 4.2.2 If

$$
\left\{\begin{array}{l}
P_{t} \sim \mathcal{D}\left(\alpha_{t}\right) \tag{4.3}\\
\theta_{t} \sim P_{t} \\
\left.X(t)\right|_{P_{t}, \theta_{t}} \sim F\left(\theta_{t}, .\right)
\end{array}\right.
$$

then

$$
\left.P_{t}\right|_{X(t)=x} \sim \int_{U} \mathcal{D}\left(\alpha_{u, t}+\delta_{\theta_{t}}\right) d H_{x}\left(\theta_{t}\right) .
$$

Proof

Let $A_{1}, A_{2}, \ldots, A_{k}$ be a partition of \mathbb{R}

$$
\begin{aligned}
\mathcal{P}\left[P_{t}\left(A_{i}\right) \leq y_{i}, 1 \leq i \leq\left. k\right|_{X(t)=x}\right] & =E\left[\left.\mathcal{P}\left[P_{t}\left(A_{i}\right) \leq y_{i}, 1 \leq i \leq\left. k\right|_{X(t)=x, \theta_{t}, u}\right]\right|_{X(t)=x}\right] \\
& =E\left[\left.D\left(y_{1}, y_{2}, \ldots,\left.y_{k}\right|_{\beta_{A_{1}, t}, \beta_{A_{2}, t}, \ldots, \beta_{A_{k}}, t}\right)\right|_{X(t)=x}\right] \\
& =\int_{\Theta} D\left(y_{1}, y_{2}, \ldots,\left.y_{k}\right|_{\beta_{A_{1}, t}, \beta_{A_{2}, t}, \ldots, \beta_{A_{k}, t}}\right) d H_{x}\left(\theta_{t}\right)
\end{aligned}
$$

where $\beta_{A_{i}, t}=\alpha_{t, u}\left(A_{i}\right)+\delta_{\theta_{t}}\left(A_{i}\right), i \in\{1,2, \ldots, k\}$. Therefore

$$
\left.P_{t}\right|_{X(t)=x} \sim \int_{\Theta} \mathcal{D}\left(\alpha_{t}+\delta_{\theta_{t}}\right) d H_{x}\left(\theta_{t}\right) .
$$

Corollary 4.2.3 If for any $t \in \mathbb{R}^{+}$

$$
P_{t} \sim \int_{U} \mathcal{D}\left(\alpha_{u, t}\right) d H(u)
$$

and

$$
\theta_{t} \sim P_{t}
$$

then for any $t \in \mathbb{R}^{+}$

$$
\left.P_{t}\right|_{\theta_{t}} \sim \int_{U} \mathcal{D}\left(\alpha_{u, t}+\delta_{\theta_{t}}\right) d H_{\theta_{t}}(u) .
$$

Proof

Let $A_{1}, A_{2}, \ldots, A_{k}$ be a partition of \mathbb{R}

$$
\begin{aligned}
\mathcal{P}\left[P_{t}\left(A_{i}\right) \leq y_{i}, i=1, \ldots,\left.k\right|_{\theta_{t}}\right] & =E\left[\left.\mathcal{P}\left[P_{t}\left(A_{i}\right) \leq y_{i}, i=1, \ldots,\left.k\right|_{\theta_{t}, u}\right]\right|_{\theta_{t}}\right] \\
& =E\left[D\left(y_{1}, y_{2}, \ldots, y_{k} \mid \beta_{u, t}\left(A_{1}\right), \ldots, \beta_{u, t}\left(A_{k}\right)\right) \mid \theta_{t}\right] \\
& =\int_{U} D\left(y_{1}, y_{2}, \ldots, y_{k} \mid \beta_{u, t}\left(A_{1}\right), \ldots, \beta_{u, t}\left(A_{k}\right)\right) d H_{\theta_{t}}(u) .
\end{aligned}
$$

Therefore

$$
\left.P_{t}\right|_{\theta_{t}} \sim \int_{U} \mathcal{D}\left(\alpha_{u, t}+\delta_{\theta_{t}}\right) d H_{\theta_{t}}(u) .
$$

4.2.6 A Lemma of Antoniak

The following result will yield explicit expressions of conditional distributions. It is just an application of a Lemma of C. Antoniak to each P_{t} but we prefer to give its proof for completeness.
Consider the following notations and hypothesis.
Let $P \sim \int_{U} \mathcal{D}\left(\alpha_{u}\right) d H(u)$ as in theorem 3.
Let $\theta^{\star}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ be a sample of size n from P.
Suppose that there exists a σ-finite, σ - additive measure μ on (Θ, \mathcal{A}) such that for each $u \in U$:
i) α_{u} is σ-additive and absolutely continuous with respect to μ
$i i)$ the measure μ has mass one at each atom of α_{u}.
Let α_{u}^{\prime} (.) denote the Radon-Nikodym derivative of α_{u} (.) with respect to μ. Let θ_{i}^{\prime} denote the $i^{t h}$-distinct value of θ_{t} in θ^{\star}.
Let $n\left(\theta_{i}^{\prime}\right)$ denote the number of times the value θ_{i}^{\prime} occurs in θ^{\star}.
Let $M_{u}=\alpha_{u}(\Theta)$ and let $m_{u}(\theta)=\alpha_{u}^{\prime}\left(\theta_{i}^{\prime}\right)$ if θ_{i}^{\prime} is an atom of α_{u}, zero otherwise.
Last, let $x^{(n)}=x(x+1)(x+2) \ldots(x+n-1), n \in \mathbb{N}-\{0\}$.

Lemma 4.2.1 Under the preceding hypotheses and notations, the condi-
tional distribution $u \mid \theta^{*}$

$$
d H_{\theta^{\star}}(u)=\frac{\frac{1}{M_{u}^{(n)}} \prod_{i=1}^{r} \alpha_{u}^{\prime}\left(\theta_{i}^{\prime}\right)\left(\alpha_{u}^{\prime}\left(\theta_{i}^{\prime}\right)+1\right)^{\left(n\left(\theta_{i}^{\prime}\right)-1\right)} d H(u)}{\int_{U} \frac{1}{M_{u}^{(n)}} \alpha_{u}^{\prime}\left(\theta_{i}^{\prime}\right)\left(\alpha_{u}\left(\theta_{i}^{\prime}\right)+1\right)^{\left(n\left(\theta_{i}^{\prime}\right)-1\right)} d H(u)}
$$

Proof

Referring to the proof of Proposition 3 in [1], we see that the likelihood of θ_{k+1}^{t}, given $u, \theta_{1}, \theta_{2}, \ldots, \theta_{k}$ is equal to $\frac{\alpha_{u}^{\prime}\left(\theta_{k+1}\right) d \mu}{M_{u}+k}$ for a value of θ_{k+1} which has not occurred previously in $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$, and is equal to $\left[\frac{\alpha_{u}\left(\theta_{k+1}\right)+j d \mu}{\left.\alpha_{u}(\theta)+k\right)}\right]$ for a value of θ_{k+1} which has occurred previously j times in $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$. Hence the likelihood of $\left(u, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ is

$$
\begin{aligned}
L\left(u, \theta_{1}, \theta_{2}, \ldots, \theta_{n}\right) & =L\left(\left.\theta_{i}\right|_{u, \theta_{1}, \theta_{2}, \ldots, \theta_{n-1}}\right) L\left(u, \theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right) \\
& =\prod_{i=1}^{k} L\left(\left.\theta_{i}\right|_{u, \theta_{1}, \theta_{2}, \ldots, \theta_{i-1}}\right) \\
& =\frac{1}{M_{u}^{(n)}} \prod_{i=1}^{r} \alpha_{u}^{\prime}\left(\theta_{i}^{\prime}\right)\left(\alpha_{u}^{\prime}\left(\theta_{i}^{\prime}\right)+1\right)^{\left(n\left(\theta_{i}^{\prime}\right)-1\right)} d H(u) .
\end{aligned}
$$

Therefore,

$$
L\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)=\int_{U} \frac{1}{M_{u}^{(n)}} \prod_{i=1}^{r} \alpha_{u}^{\prime}\left(\theta_{i}^{\prime}\right)\left(\alpha_{u}^{\prime}\left(\theta_{i}^{\prime}\right)+1\right)^{\left(n\left(\theta_{i}^{\prime}\right)-1\right)} d H(u)
$$

where r is the number of distinct components of the random vector $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$. We obtain $d H_{\theta^{\star}}$ by multiplying the above by $d H(u)$ and dividing by the unconditional distribution of θ_{t}^{\star}. So,

$$
d H_{\theta_{t}^{*}}(u)=\frac{\frac{1}{M_{u}^{(n)}} \prod_{i=1}^{r} \alpha_{u}^{\prime}\left(\theta_{i}^{\prime}\right)\left(\alpha_{u}^{\prime}\left(\theta_{i}^{\prime}\right)+1\right)^{\left(n\left(\theta_{i}^{\prime}\right)-1\right)} d H(u)}{\int_{U} \frac{1}{M_{u}^{(n)}} \alpha_{u}^{\prime}\left(\theta_{i}^{\prime}\right)\left(\alpha_{u}\left(\theta_{i}^{\prime}\right)+1\right)^{\left(n\left(\theta_{i}^{\prime}\right)-1\right)} d H(u)} .
$$

4.3 Explicit posteriors

4.3.1 Example 1 : α Wiener measure and H Bernoulli

Let W denote the standard Wiener measure on $\Theta=\mathcal{C}\left(\mathbb{R}_{+}\right)$, where $\mathcal{C}\left(\mathbb{R}_{+}\right)$ denote the space of continuous functions from \mathbb{R}_{+}to \mathbb{R}. Let the space $U=$ $\{0,1\}$

Theorem 4.3.1 Let P be a finite mixture of Dirichlet processes on \mathbb{R} with transition measure $\alpha_{u}=c W_{u}$, where W_{u} is a Wiener measure, and mixing distribution $H \sim \operatorname{Bernoulli}(p)$ with parameter $p \in] 0$, $1\left[\right.$ and let $f_{1}, f_{2}, \ldots, f_{n}$ be a sample of size n of P. Then

$$
\left.\left.P\right|_{f_{1}, f_{2}, \ldots, f_{n} \sim p H_{1} \mathcal{D}\left(c W_{1}+\sum_{i=1}^{n} \delta_{f_{i}}\right)+(1-p) F_{1} \mathcal{D}\left(c W_{0}+\sum_{i=1}^{n} \delta_{f_{i}}\right), ~(1)}\right)
$$

where F_{1} and H_{1} are two constants depending on W_{0}^{\prime} and W_{1}^{\prime}, the RadonNikodym derivative of W_{0} and W_{1}, respectively, w.r.t. $\mu=W_{0}+W_{1}+$ $\sum_{i=1}^{n} \delta_{f_{i}}$.

Proof

According to Lemma 4.3.1

$$
\begin{aligned}
d H\left(\left.u\right|_{f_{1}}\right) & =\frac{d W_{f_{1} \mid u}^{\prime} d H(u)}{\int_{\{0,1\}} d W_{f_{1} \mid u}^{\prime} d H(u)} \\
& =\frac{W_{u}^{\prime}\left(f_{1}\right) d H(u)}{p W_{1}^{\prime}\left(f_{1}\right)+(1-p) W_{0}^{\prime}\left(f_{1}\right)} .
\end{aligned}
$$

Therefore the conditional distribution of $P \mid f_{1}$ is a mixture of Dirichlet processes given by :
$\frac{p W_{1}^{\prime}\left(f_{1}\right)}{p W_{1}^{\prime}\left(f_{1}\right)+(1-p) W_{1}^{\prime}\left(f_{1}\right)} \mathcal{D}\left(c W_{1}+\delta_{f_{1}}\right)+(1-p) \frac{c W_{0}^{\prime}\left(f_{1}\right)}{p c W_{1}^{\prime}\left(f_{1}\right)+(1-p) W_{0}^{\prime}\left(f_{1}\right)} \mathcal{D}\left(c W_{0}+\delta_{f_{1}}\right)$.
Let us first examine the case of a sample of size 2. Again by Lemma 3.2.6, we have

$$
\begin{aligned}
& d H\left(\left.u\right|_{f_{1}, f_{2}}\right)=\frac{\frac{c W_{u}^{\prime}\left(f_{1}\right) W_{u}^{\prime}\left(f_{2}\right) d H(u)}{\left(c W_{u}(\theta)+1\right) W_{u}(\theta)}}{\int_{\{0,1\}} \frac{c W_{u} u}{\left.\left(c f_{u}\right) W_{u}\left(f_{2}\right) H(u)+1\right)}}
\end{aligned}
$$

Therefore

$$
\left.P\right|_{f_{1}, f_{2} \sim p H \mathcal{D}\left(c W_{1}+\sum_{i=1}^{2} \delta_{f_{i}}\right)+(1-p) F \mathcal{D}\left(c W_{0}+\sum_{i=1}^{2} \delta_{f_{i}}\right), ~(1) ~}
$$

where $H=H(0)$ and $F=H(1)$ are such that

$$
H=\frac{\frac{c W_{1}^{\prime}\left(f_{1}\right) W_{1}^{\prime}\left(f_{2}\right) d H(u)}{\left(c W_{1}(\Theta)+1\right) W_{1}(\Theta)}}{p \frac{c W_{1}^{\prime}\left(f_{1}\right) W_{1}^{\prime}\left(f_{2}\right)}{\left(c W_{1}(\Theta)+1\right) W_{1}(\Theta)}+(1-p) \frac{c W_{0}^{\prime}\left(f_{1}\right) W_{0}^{\prime}\left(f_{2}\right)}{\left(c W_{0}(\Theta)+1\right) W_{0}(\Theta)}}
$$

and

$$
F=\frac{\frac{c W_{0}^{\prime}\left(f_{1}\right) W_{0}^{\prime}\left(f_{2}\right)}{\left(c W_{0}(\Theta)+1\right) W_{0}(\Theta)}}{p \frac{c W_{1}^{\prime}\left(f_{1}\right) W_{1}^{\prime}\left(f_{2}\right)}{\left(c W_{1}(\Theta)+1\right) W_{1}(\Theta)}+(1-p) \frac{c W_{0}^{\prime}\left(f_{1}\right) W_{0}^{\prime}\left(f_{2}\right)}{\left(c W_{0}(\Theta)+1\right) W_{0}(\Theta)}}
$$

In the general case of a sample of size n, Lemma 1 yields

$$
d H\left(\left.u\right|_{f_{1}, f_{2}, \ldots, f_{n}}\right)=\frac{\frac{1}{M^{(n)}} \prod_{i=1}^{r} \frac{c W_{u}^{\prime}\left(f_{i}\right)\left(c W_{u}^{\prime}\left(f_{i}\right)+1\right)\left(n\left(f_{i}\right)-1\right) d H(u)}{\left(c W_{u}(())\left(f^{n}\right)\right.}}{\int_{\{0,1\}} \frac{1}{M^{(n)}} \frac{\prod_{i=1}^{r} c W_{u}^{\prime}\left(f_{i}\right)\left(c W_{u}^{u}\left(f_{i}\right)+1\right)\left(n\left(f_{i}\right)-1\right) d H(u)}{\left.\left(c W_{u}(\theta)\right)^{n}\right)}}
$$

and

$$
\left.P\right|_{f_{1}, f_{2}, \ldots, f_{n}} \sim(1-p) H_{1} \mathcal{D}\left(c W_{0}+\sum_{i=1}^{n} \delta_{f_{i}}\right)+p F_{1} \mathcal{D}\left(c W_{1}+\sum_{i=1}^{n} \delta_{f_{i}}\right)
$$

where
$H_{1}=\frac{\frac{1}{M^{(n)}} \prod_{i=1}^{r} \frac{c W_{0}^{\prime}\left(f_{i}\right)\left(c W_{(}^{\prime}\left(f_{i}\right)+1\right)^{\left(n\left(f_{i}\right)-1\right)} d H(u)}{\left(c W_{0}(\Theta)\right)^{(n)}}}{(p-1) \frac{1}{M^{(n)}} \prod_{i=1}^{r} \frac{c W_{0}^{\prime}\left(f_{i}\right)\left(c W_{0}^{\prime}\left(f_{i}\right)+1\right)^{\left(n\left(f_{i}\right)-1\right)}}{\left(c W_{0}(\Theta)\right)^{(n)}}+p \frac{1}{M^{(n)}} \prod_{i=1}^{r} \frac{c W_{1}^{\prime}\left(f_{i}\right)\left(c W_{1}^{\prime}\left(f_{i}\right)+1\right)^{\left(n\left(f_{i}\right)-1\right)}}{\left(c W_{1}(\Theta)\right)^{(n)}}}$,
$F_{1}=\frac{\frac{1}{M^{(n)}} \prod_{i=1}^{r} \frac{c W_{1}^{\prime}\left(f_{i}\right)\left(c W_{1}^{\prime}\left(f_{i}\right)+1\right)^{\left(n\left(f_{i}\right)-1\right)} d H(u)}{\left(c W_{1}(\Theta)\right)^{(n)}}}{(p-1) \frac{1}{M^{(n)}} \prod_{i=1}^{r} \frac{c W_{0}^{\prime}\left(f_{i}\right)\left(c W_{0}^{\prime}\left(f_{i}\right)+1\right)^{\left(n\left(f_{i}\right)-1\right)}}{\left(c W_{0}(\Theta)\right)^{(n)}}+p \frac{1}{M^{(n)}} \prod_{i=1}^{r} \frac{c W_{1}^{\prime}\left(f_{i}\right)\left(c W_{1}^{\prime} \Pi_{\left.\left(f_{i}\right)+1\right)^{\left(n\left(f_{i}\right)-1\right)}}^{\left(c W_{1}(\Theta)\right)^{(n)}}\right.}{} .}$
and where r is the number of distinct components of the random vector $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$.

Remark 4.3.1 We can generalize this theorem to the case of a finite mixture where H is distributed on $\{1,2, \ldots, k\}$.

4.3.2 Example 2 : α Wiener measure and H Gaussian

Let W denote the standard Wiener measure on $\mathcal{C}\left(\mathbb{R}_{+}\right)$. For any $u \in \mathbb{R}_{+}$let W_{u} denote a Wiener measure with marginal distributions $\mathcal{N}\left(u, t \sigma^{2}\right), t \in \mathbb{R}_{+}$.

Theorem 4.3.2 Let P be a mixture of continuous time Dirichlet processes,

$$
P \sim \int \mathcal{D}\left(c W_{u}\right) d H(u)
$$

with $u \sim H=\mathcal{N}\left(0, \rho^{2}\right)$, then for any $t \in \mathbb{R}$

$$
P_{t} \sim \int \mathcal{D}\left(c \mathcal{N}\left(u, t \sigma^{2}\right)\right) d H(u)
$$

Let $\theta_{1}^{t}, \theta_{2}^{t}$ be a sample of size 2 from P_{t}. Then the conditional distribution of P_{t} given $\theta_{1}^{t}, \theta_{2}^{t}$ is a mixture of continuous time Dirichlet processes such that

$$
P_{t} \mid \theta_{1}^{t}, \theta_{2}^{t} \sim \int \mathcal{D}\left(c \mathcal{N}_{u}+\sum_{i=1}^{2} \delta_{\theta_{i}^{t}}\right) d \hat{H}_{t}(u)
$$

where $\hat{H}_{t}(u)=H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right) \sim \mathcal{N}\left(\mu_{1}^{t}, \sigma_{1, t}^{2}\right)$ is given in the proof below

Proof

According to corollary 4.3.2, the conditional distribution of a mixture of Dirichlet distributions $P_{t} \mid \theta_{1}^{t}, \theta_{2}^{t}$, is also a mixture of Dirichlet distributions, with parameter $c \mathcal{N}\left(u(t), t \sigma^{2}\right)+\sum_{i=1}^{2} \delta_{\theta_{i}^{t}}$.

According to Lemma 4.3 .1 the mixing distribution $\hat{H}(u)$ of u given $\theta_{1}^{t}, \theta_{2}^{t}$ can be computed as follows.
Case $\theta_{1}^{t} \neq \theta_{2}^{t}$:

$$
\begin{aligned}
d H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right) & =\frac{\frac{1}{\left(\alpha_{u, t}(\Theta)\right)^{(2)}} \alpha_{u, t}^{\prime}\left(\theta_{1}^{t}\right) \alpha_{u, t}^{\prime}\left(\theta_{2}^{t}\right) d H(u)}{\int_{-\infty}^{+\infty} \frac{1}{\left(\alpha_{u, t}(\theta)\right)^{2}} \alpha_{u, t}^{\prime}\left(\theta_{1}^{t}\right) \alpha_{u, t}^{\prime}\left(\theta_{2}^{t}\right) d H(u)} \\
& =\frac{\frac{M}{\sqrt{t 2 \pi} \sigma} e^{\frac{-1}{2 t \sigma^{2}}\left(\theta_{1}^{t}-u\right)^{2}} \frac{M}{\sqrt{2 \pi \pi} \sigma^{\frac{-1}{2 t \sigma^{2}}\left(\theta_{2}^{t}-u\right)^{2}} \frac{1}{t 2 \pi} e^{\frac{-1}{2 t \rho^{2}} u^{2}} d u}}{\int_{-\infty}^{+\infty} \frac{M}{\sqrt{2 t \pi} e^{\frac{-1}{2 t \sigma^{2}}\left(\theta_{1}^{t}-u\right)^{2}} \frac{M}{\sqrt{2 t \pi} \sigma} e^{\frac{-1}{2 t \sigma^{2}}\left(\theta_{2}^{t}-u\right)^{2}} \frac{1}{\sqrt{t 2 \pi} \rho} e^{\frac{-1}{2 t \rho^{2}} u^{2}} d u} .} .
\end{aligned}
$$

After simplification we get,

$$
\begin{aligned}
d H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right) & =\frac{\frac{1}{t \rho^{2} \sigma^{2}(2 \pi)^{3 / 2}} e^{\frac{-1}{2}\left(u^{2}\left(\frac{2}{t \sigma^{2}}+\frac{1}{t \rho^{2}}\right)-\frac{4\left(\theta_{1}^{t}+\theta_{2}^{t}\right) u}{t \sigma^{2}}\right.} e^{\frac{-1}{2}\left(\frac{\left(\theta_{1}^{t}\right)^{2}+\left(\theta_{2}^{t}\right)^{2}}{t \sigma^{2}}\right)} d u}{\int_{\mathbb{R}} \frac{1}{t \rho^{2} \sigma^{2}(2 \pi)^{3 / 2}} e^{\frac{-1}{2}\left(u^{2}\left(\frac{2}{t \sigma^{2}}+\frac{1}{t \rho^{2}}\right)-\frac{4\left(\theta_{1}^{t}+\theta_{2}^{t}\right) u}{t \sigma^{2}}\right.} e^{\frac{-1}{2}\left(\frac{\left(\theta_{1}^{t}\right)^{2}+\left(\theta_{2}^{t}\right)^{2}}{t \sigma^{2}}\right)} d u} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{\sqrt{2 t \rho^{2}+t \sigma^{2}}}{t \sigma \rho} e^{\frac{-1}{2} \frac{2 t \rho^{2}+t \sigma^{2}}{t \sigma^{2} t \rho^{2}}\left(u-\frac{2\left(\theta_{\left.\theta^{t}+\theta_{\theta}^{t}\right)}^{2 t \rho^{2}+t \sigma^{2}}\right)^{2}}{} .\right.}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right)=\mathcal{N}\left(\mu_{1}^{t}, \sigma_{1, t}^{2}\right) \tag{4.4}
\end{equation*}
$$

where $\mu_{1}^{t}=\frac{\left(\theta_{1}^{t}+\theta_{2}^{t}\right) \rho^{2}}{2 \rho^{2}+\sigma^{2}}$, and $\sigma_{1, t}^{2}=t \frac{\sigma^{2} \rho^{2}}{2 \rho^{2}+\sigma^{2}}$.
Case $\theta_{1}^{t}=\theta_{2}^{t}$:

$$
\begin{aligned}
& d H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right)=\frac{\frac{1}{\left(\alpha_{u}(\theta)\right)^{(2)}} \alpha_{u, t}^{\prime}\left(\theta_{1}^{t}\right) \alpha_{u, t}^{\prime}\left(\theta_{2}^{t}\right) d H(u)}{\int_{-\infty}^{+\infty} \frac{1}{\left(\alpha_{u}(\theta)\right)^{(2)}} \alpha_{u}^{\prime}\left(\theta_{1}^{t}\right) \alpha_{u}^{\prime}\left(\theta_{2}^{t}\right) d H(u)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{1}{2 t \pi \sigma \rho} e^{\frac{-1}{2}\left(u^{2}\left(\frac{1}{t \sigma^{2}}+\frac{1}{t \rho^{2}}\right)-\frac{\left(\theta_{1}\right)}{t \sigma^{2}}+\frac{\left(\theta_{\theta}^{t}\right) u}{t \sigma^{2}}\right.} d u}{\int_{-\infty}^{+\infty} \frac{1}{2 \pi \sigma \rho^{2}} e^{\frac{-1}{2}\left(u^{2}\left(\frac{1}{t \sigma^{2}}+\frac{1}{t \rho^{2}}\right)-\frac{\left(\theta_{1}^{t}\right) u}{t \sigma^{2}}+\frac{\left(\theta_{1}^{t}\right) u}{t \sigma^{2}}\right)} d u} .
\end{aligned}
$$

As above, we get

$$
\begin{aligned}
& d H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right)=\frac{\frac{1}{\sqrt{2 \pi}} \frac{\sqrt{t \rho^{2}+t \sigma^{2}}}{t \sigma \rho} e^{\frac{-1}{2} \frac{t \rho^{2}+t \sigma^{2}}{t \sigma^{2} t \rho^{2}}(u-t} \frac{\left.\frac{2 \theta^{t} \rho^{2}}{t \rho^{2}+t \sigma^{2}}\right)^{2} d u}{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} \frac{\sqrt{t \rho^{2}+t \sigma^{2}}}{t \sigma \rho}} e^{\frac{-1}{2} \frac{t \rho^{2}+t \sigma^{2}}{t \sigma^{2} t \rho^{2}}\left(u-\frac{t 2 \rho_{1}^{t} \rho^{2}}{t \rho^{2}+t \sigma^{2}}\right)^{2} d u}}{} \\
&=\frac{1}{\sqrt{2 \pi}} \frac{\sqrt{t \rho^{2}+t \sigma^{2}}}{t \sigma \rho} e^{\frac{-1}{2} \frac{t \rho^{2}+t \sigma^{2}}{t \sigma^{2} t \rho^{2}}\left(u-\frac{\theta_{1}^{t}+\rho^{2}}{t \rho^{2}+t \sigma^{2}}\right)^{2} d u} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right) \sim \mathcal{N}\left(\mu_{1}^{t}, \sigma_{1, t}^{2}\right) \tag{4.5}
\end{equation*}
$$

where $\mu_{1}^{t}=\frac{\rho^{2} \theta_{1}^{t}}{\rho^{2}+\sigma^{2}}$, and $\sigma_{1, t}^{2}=t \frac{\sigma^{2} \rho^{2}}{\rho^{2}+\sigma^{2}}$.
Remark 4.3.2 Note that the mixing distribution H is gaussian depending on the parameter t.

4.4 Parameter estimation problems

In this section we incorporate the time parameter in a sampling model of C.Antoniak ([1] page 1165) which leads to estimates different from standard Bayesian analysis.

Let

$$
\begin{aligned}
& G: \Omega \longrightarrow \mathbf{P}\left(\mathcal{C}\left(\mathbb{R}_{+}\right)\right) \\
& G \sim \int \mathcal{D}\left(\alpha_{u}\right) d H(u)
\end{aligned}
$$

Let $\theta_{1}, \theta_{2}, \ldots, \theta_{n} \in \mathbf{P}(\mathcal{C}(\mathbb{R}))$ be a sample from G and $\theta_{i}^{t}=\pi_{t}\left(\theta_{i}\right)$.
Let

$$
G_{t}: \Omega \longrightarrow \mathbf{P}(\mathbb{R})
$$

where $G_{t}()=.G\left(\pi_{t}().\right)$

$$
G_{t} \sim \int \mathcal{D}\left(\alpha_{u, t}\right) d H(u)
$$

If α_{u} is the Wiener W_{u} measure then

$$
\alpha_{u, t}=\mathcal{N}\left(u, t \sigma^{2}\right)
$$

Hence $\left.\left.G_{m, t}=G_{t}\right]-\infty, m\right]$ is a distribution function from a mixture of Beta distributions with parameter $\alpha_{u, t}$ and mixture distribution H.
Let $g_{1, m}^{t}, g_{2, m}^{t}, \ldots, g_{n, m}^{t}$ be a sample of size n from $G_{m, t}$ and let $X_{i 1}^{t}, \ldots, X_{i m_{i}}^{t}$ be a sample of size m_{i} from $F_{\theta_{i, m}^{t}}(x)$.
As in [1], consider the two following problems
(a) Estimating the index of the parameter
(b) Estimating the mixing distribution function.

In problem (a), if we wish to estimate u with square error loss, then the Bayes estimate is simply

$$
U_{t}^{\prime}=E\left(\left.u\right|_{\theta_{1}^{t}, \ldots, \theta_{n}^{t}}\right)
$$

if the θ_{i}^{t} are observed directly, and

$$
U_{t}^{\prime}=E\left(\left.u\right|_{X_{i 1}^{t}, \ldots, X_{n m n}^{t}}\right)
$$

if we only observe $X_{i j}^{t}$.
In problem (b) $\hat{G}_{t}=E\left(\left.G_{t}\right|_{\theta_{1}^{t}, \theta_{2}^{t}, \ldots, \theta_{n}^{t}}\right)$ is the Bayes estimate when the θ_{i}, are observed and $\hat{G}_{t}=E\left(\left.G_{t}\right|_{X_{i 1}^{t}, \ldots, X_{n m_{n}}^{t}}\right)$ when only the $X_{i j}^{t}$ are observed.
Using ([1] page 1166) we get

$$
\left.G_{t}\right|_{\theta_{1}^{t}, \theta_{2}^{t}} \sim \int_{-\infty}^{+\infty} \mathcal{D}\left(\alpha_{u, t}+\delta_{\theta_{1}^{t}}+\delta_{\theta_{2}^{t}}\right) d H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right),
$$

where $H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right)=\mathcal{N}\left(\mu_{1}^{t}, \sigma_{1, t}^{2}\right)$ (see theorem 2). Further

$$
\left.G\right|_{X_{1}^{t}} \sim \int_{-\infty}^{+\infty} \mathcal{D}\left(\alpha_{u}+\delta_{\theta_{1}^{t}}\right) d H_{X_{1}}\left(\theta_{2}^{t}, u\right)
$$

where $H_{X_{1}}$ is a bivariate Normal with parameters

$$
\left\{\begin{array}{l}
\mu_{1, t}=X_{1}^{t}\left(t \rho^{2}+t \sigma^{2}+t \tau^{2}\right)^{-1}\left(t \rho^{2}+t \sigma^{2}\right) \tag{4.6}\\
\mu_{2, t}=t X_{1}^{t}\left(t \rho^{2}+t \sigma^{2}+t \tau^{2}\right)^{-1} \rho^{2} \\
\sigma_{1, t}^{2}=\alpha^{t} t \tau\left(t \rho^{2}+t \sigma^{2}\right) \\
\sigma_{2, t}^{2}=\left(t \rho^{2}+t \sigma^{2}+t \tau^{2}\right)^{-1} t \rho^{2}\left(t \rho^{2}+t \sigma^{2}\right) \\
\sigma_{21, t}=t \alpha^{t} \tau^{2} \rho^{2}
\end{array}\right.
$$

For (a) we get $U_{\theta^{t}}^{\prime}=\frac{2\left(\theta_{1}^{t}+\theta_{2}^{t}\right) \rho^{2}}{2 \rho^{2}+\sigma^{2}}$ when $\theta_{1}^{t} \neq \theta_{2}^{t}$ and $U_{\theta^{t}}^{\prime}=\frac{2\left(\theta_{1}^{t}+\theta_{2}^{t}\right) \rho^{2}}{\rho^{2}+\sigma^{2}}$ when $\theta_{1}^{t}=\theta_{2}^{t}$. Since we do note observe whether $\theta_{1}^{t}=\theta_{2}^{t}$ or not, we must weight these two estimates according to the posterior probability, given X_{1}^{t} and X_{2}^{t} and we get an estimate

$$
U_{t}^{\prime \prime}=p_{d, t} U_{t}^{\prime}+p_{s, t} U_{t}^{\prime *}
$$

where $p_{s, t}=P\left(\theta_{1}^{t}=\theta_{2}^{t} \mid X_{1}^{t}, X_{2}^{t}\right)$, and $p_{d, t}=1-p_{s, t}$.
Concerning problem (b), the computation of $E\left(G_{\theta, t} \mid u, \theta_{1}^{t}, \theta_{2}^{t}\right)$ is slightly different from those in ([1] page 1167) because the time parameter also appears in H :

$$
E\left(\left.G_{\theta, t}\right|_{u, \theta_{1}^{t}, \theta_{2}^{t}}\right)=\frac{\left.\left.\left.\left.\left.\left.\alpha_{u, t}(]-\infty, \theta\right]\right)+\delta_{\theta_{1}^{t}}(]-\infty, \theta\right]\right)+\delta_{\theta_{2}^{t}}(]-\infty, \theta\right]\right)}{\alpha_{u, t}(\mathbb{R})+\delta_{\theta_{1}^{t}}(\mathbb{R})+\delta_{\theta_{2}^{t}}(\mathbb{R})}
$$

hence for $\theta_{1}^{t} \neq \theta_{2}^{t}$ we have

$$
\begin{aligned}
& E\left(\left.G_{\theta, t}\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right)=\int_{-\infty}^{+\infty} E\left(\left.G_{\theta, t}\right|_{u, \theta_{1}^{t}, \theta_{2}^{t}}\right) d H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right) \\
& =\int_{-\infty}^{+\infty} \frac{\left.\left.\alpha_{u, t}(]-\infty, \theta\right]\right)+\delta_{\left.\left.\left.\left.\theta_{1}^{t}(]-\infty, \theta\right]\right)+\delta_{\theta_{2}^{t}}(]-\infty, \theta\right]\right)}^{\alpha_{u}(\mathbb{R})+\delta_{\theta_{1}}(\mathbb{R})+\delta_{\theta_{2}}(\mathbb{R})} d H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right)}{} \\
& \left.\left.\left.\left.=\int_{-\infty}^{+\infty} \frac{M}{M+2} \mathcal{N}\left(u, t \sigma^{2}\right)(]-\infty, \theta\right]\right) d H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right)+\frac{2}{M+2} F_{2}(]-\infty, \theta\right]\right) \\
& \left.\left.\hat{G}_{t}(\theta)=E\left(G_{t}(]-\infty, \theta\right]\right)\left.\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right) \\
& = \\
& \left.\left.=\frac{M}{M+2} \int_{\mathbb{R}} \Phi\left(\frac{\theta-u}{\sigma}\right) d H\left(\left.u\right|_{\theta_{1}^{t}, \theta_{2}^{t}}\right)+\frac{2}{M+2} F_{2}(]-\infty, \theta\right]\right) \\
& = \\
& M+2 \\
& \left.\left.\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi t} \sigma \sqrt{2 \pi t} \sigma_{1}}\left(\int_{-\infty}^{\theta} e^{\frac{-1}{2} \frac{(x-u)^{2}}{t \sigma^{2}}} d x\right) e^{\frac{-1}{2} \frac{\left(u-\mu_{1, t}\right)^{2}}{t \sigma_{1}^{2}}} d u+\frac{2}{M+2} F_{2}(]-\infty, \theta\right]\right) .
\end{aligned}
$$

Using Fubini formula, we get

$$
\begin{aligned}
\hat{G}_{t}(\theta) & \left.\left.=\frac{M}{M+2} \int_{-\infty}^{\theta}\left(\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi t} \sigma \sqrt{2 \pi t} \sigma_{1}} e^{\frac{-1}{2} \frac{(x-u)^{2}}{t \sigma^{2}}} e^{\frac{-1}{2} \frac{\left(u-\mu_{1, t}\right)^{2}}{t \sigma_{1}^{2}}} d u\right) d x+\frac{2}{M+2} F_{2}(]-\infty, \theta\right]\right) \\
& =\frac{M}{M+2} \int_{-\infty}^{\theta} \frac{\sqrt{t \sigma_{1}^{2}+t \sigma^{2}}}{\sqrt{2 \pi}} e^{\frac{-1}{2} \frac{1}{t \sigma_{1}^{2}+t \sigma^{2}} \frac{\left(x-\mu_{1}\right)^{2}}{t \sigma^{2}}} d x \\
& \left.\left.\left.\left.=\mathcal{N}\left(\mu_{1, t}, t \sigma_{1}^{2}+t \sigma^{2}\right)(]-\infty, \theta\right]\right)+\frac{2}{M+2} F_{2}(]-\infty, \theta\right]\right)
\end{aligned}
$$

Therefore for $\theta_{1}^{t} \neq \theta_{2}^{t}$ we get

$$
\begin{aligned}
\hat{G}_{t} & =\frac{M}{M+2} \mathcal{N}\left(\mu_{1, t}, t \sigma_{1}^{2}+t \sigma^{2}\right)+\frac{\delta_{\theta_{1}}+\delta_{\theta_{2}}}{M+2} \\
& =\frac{M}{M+2} \mathcal{N}\left(\mu_{1, t}, \frac{t^{2}\left(\sigma_{1}\right)^{2}+3 t \rho^{2} t \sigma^{2}}{2 t \rho^{2}+t \sigma^{2}}\right)+\frac{\delta_{\theta_{1}^{2}}+\delta_{\theta_{2}^{2}}}{M+2} .
\end{aligned}
$$

If $\theta_{1}^{t}=\theta_{2}^{t}$, then for reasons given above, we get

$$
\hat{G}_{t}=\frac{M}{M+2} \mathcal{N}\left(\frac{\rho^{2} \theta_{1}^{t}}{\rho^{2}+\sigma^{2}}, \frac{\left(t \sigma_{1}\right)^{2}+2 t \rho^{2} t \sigma^{2}}{t \rho^{2}+t \sigma^{2}}\right)+\frac{2 \delta_{\theta_{1}^{t}}}{M+2} .
$$

Chapter 5

Continuous time Dirichlet hierarchical models

In some recent and interesting papers, hierarchical models with a Dirichlet prior, shortly Dirichlet hierarchical models, were used in probabilistic classification applied to various fields such as biology ANTONIAK, C.E. (1974)., astronomy ISHWARAN, H. and JAMES, L.F. (2002). or text mining BLEI, D. and JORDAN., I. J. (2005). Actually, these models can be seen as complex mixtures of real Gaussian distributions fitted to non-temporal data. The aim of this chapter is to extend these models and estimate their parameters in order to deal with temporal data following a stochastic differential equation (SDE).
The chapter is organized as follows. In section 2 we briefly recall Dirichlet hierarchical models. In section 3 we consider the case of a Brownian motion with a Dirichlet prior on its variance which is shown to be a limit of a random walk in Dirichlet random environment. As an application, we estimate, in section 4 , regime switching models with stochastic drift and volatility. In section 5, we consider the case of functional data such as signals or solutions of SDE's. Computing some posterior distributions in the multivariate
case, the preceding method is extended in order to classify such functional data.

5.1 Dirichlet hierarchical models

Let $P \sim \mathcal{D}(c H)$ denote a Dirichlet process with precision parameter $c>0$ and mean parameter H, where H is a probability measure on a Polish space \mathcal{X}. It is well-Known that P can be approximated by

$$
P=\sum_{k=1}^{N} p_{k} \delta_{X_{k}(.)}
$$

where

$$
\left\{\begin{array}{l}
X_{i} \stackrel{i i d}{\sim} H \tag{5.1}\\
\left(p_{i}\right) \sim S B(c, N) \\
\left(p_{i}\right) \perp\left(X_{i}\right)
\end{array}\right.
$$

$S B(c, N)$ denoting the stick-breaking scheme of Sethuraman. We will say that $\left(X_{i}\right)_{1,2, \ldots}$, follows a Dirichet hierarchical model if

$$
\left\{\begin{array}{l}
X_{i} \mid P \stackrel{i i d}{\sim} P \tag{5.2}\\
P \sim \mathcal{D}(c, H)
\end{array}\right.
$$

5.2 Brownian motion in Dirichlet random environment

5.2.1 Random walks in random Dirichlet environment

Let $\mathcal{D}(c \alpha)$ denote a Dirichlet process with parameters $c>0$ and α, a finite measure on a polish space \mathcal{X}.

Consider a random variable \mathcal{H} and a sequence $\left(U_{i}\right)$ of random variables defined by the following hierarchical model

$$
\left\{\begin{array}{l}
U_{i} \mid \mathcal{V}=\sigma \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right) \tag{5.3}\\
\mathcal{V}^{-1} \mid P \sim P \\
P \mid c \sim \mathcal{D}\left(c \Gamma\left(\nu_{1}, \nu_{2}\right)\right) \\
c \sim \Gamma\left(\eta_{1}, \eta_{2}\right) .
\end{array}\right.
$$

Since \mathcal{V} is sampled from a Dirichlet process, we have $\sigma<\infty$ a.e. because

$$
\mathcal{P}(\mathcal{V}<\infty)=\mathbb{E}(\mathbb{E}(\mathcal{V} \in \mathbb{R} \mid P, P(\mathbb{R})))=\mathbb{E}(P(\mathbb{R}))=1
$$

Hence, we are allowed to consider the following random walk $\left(S_{n}\right)_{n \in \mathbb{N}}$ in Dirichlet random environment, starting from 0 :

$$
S_{n}=U_{1}+U_{2}+\ldots+U_{n}
$$

For any real number $t \geq 0$ let

$$
\begin{equation*}
S_{t}^{n}=\frac{1}{n^{1 / 2}} S_{[n t]} \tag{5.4}
\end{equation*}
$$

where $[x]$ denotes the integer part of x.
Let $B^{\sigma}=\sigma B$ denote a zero mean Brownian motion with variance σ^{2}, B denoting a standard Brownian motion independent from \mathcal{V}.

Proposition 5.2.1

$$
\left(S_{t}^{n}\right)_{t \geq 0} \xrightarrow{d} \mathcal{V} B .
$$

Proof

Let $E=\mathcal{C}\left(\mathbb{R}_{+}\right)$be the space of real-valued continuous functions defined on \mathbb{R}_{+}. For any bounded continuous function f defined on E we have

$$
\int f\left(\left(S_{t}^{n}\right)\right) d \mathcal{P}=\int_{\mathbb{R}}\left(\int_{E} f(x) d \mathcal{P}_{S_{t}^{n} \mid \sigma^{\prime}=\sigma}\right) d \mathcal{P}(\sigma)
$$

But, a standard result on the convergence of Gaussian random walks is that

$$
\int_{E} f(x) d \mathcal{P}_{S_{t}^{n} \mid \mathcal{V}=\sigma} \longrightarrow \int_{E} f(x) d \mathcal{P}_{B^{\sigma}}
$$

and this integral is dominated by $\|f\|$.
Hence by the dominated convergence theorem we have

$$
\begin{aligned}
\int\left(f\left(S_{t}^{n}\right)_{t \geq 0}\right) d \mathcal{P} & \longrightarrow \int_{\mathbb{R}}\left(\int_{E} f(x) d \mathcal{P}_{B^{\sigma}}(x)\right) d \mathcal{P}_{\sigma}(\sigma) \\
& =\int_{\mathbb{R}}\left(\int_{E} f(\sigma x) d \mathcal{P}_{B}\right) d \mathcal{P}_{\sigma}(\sigma) \\
& =\int f(\sigma B) d \mathcal{P}
\end{aligned}
$$

the last equality being due to the fact that B and σ^{\prime} are independent.
Definition 5.2.1 A Brownian motion in Dirichlet random environment (BMDE) is a process Z such that

$$
\left\{\begin{array}{l}
Z \mid \mathcal{V}=\sigma=\mathcal{L}\left(B^{\sigma}\right) \\
\mathcal{V}^{-1} \mid P \sim P \\
P \mid c \sim \mathcal{D}\left(c \Gamma\left(\nu_{1}, \nu_{2}\right)\right) \\
c \sim \Gamma\left(\eta_{1}, \eta_{2}\right)
\end{array}\right.
$$

So, the above random walks in Dirichlet environment converge to a BMDE.

5.2.2 Simulation algorithm

An order to simulate a M paths Z^{1}, \ldots, Z^{M} of $B M D E$, proceed as follows: A path of a BMDE process $\left(Z_{0}=0, Z_{t_{1}}, \ldots, Z_{t_{n}}\right)$ can be simulated as follows: Let $d t=t_{i+1}-t_{i}>0$ be small enough and let K be the stick-breaking precision.

Draw c from $\Gamma\left(\eta_{1}, \eta_{2}\right)$ and draw $q=\left(q_{1}, q_{2}, \ldots, q_{K}\right)$ from $S B(c, N)$.
Draw $x=\left(x_{1}, x_{2}, \ldots, x_{K}\right)$ with x_{i} 's $\stackrel{i i d}{\sim} \Gamma\left(\nu_{1}, \nu_{2}\right)$.
Repeat M times:
Draw σ^{-1} from $\sum_{i=1}^{K} q_{i} \delta_{x_{i}}$, draw $Z_{0}=0$ and n points $Z_{t_{i}}$ such that $Z_{t_{i+1}}-$ $Z_{t_{i}} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2} d t\right)$.

Simulations

Figure 5.1: M Paths of BMDE and non Gaussian density of $\left(Z_{t_{i}}^{1}, \ldots, Z_{t_{i}}^{M}\right)$.

5.2.3 Estimation

Due to proposition 1, given an observed path $\left(z_{t_{i}}\right.$ of a BMDE, an estimation of its parameters can be obtained by performing Ishwaran and James blocked Gibbs algorithm with 0 means and equal variances on the data $z_{t_{i+1}}-z_{t_{i}}$ (see Ishwaran - James paper, Section 3).

5.3 Description of the model

let $\left(\omega, \mathcal{F}, \mathcal{F}_{t}, P\right)$ be a stochastic basis and $\left(W_{t}\right)$ a one dimensional Wiener process adapted to $\left(\omega, \mathcal{F}, \mathcal{F}_{t}, P\right)$. We consider a stochastic process satisfying the following SDE:

$$
d X_{t}=b\left(t, X_{t}\right) d t+\theta(t) h\left(X_{t}\right) d W_{t}
$$

where the function $h($.$) is assumed to be unknown, the volatility coefficient$ $\theta($.$) is a known function of time and has to be correctly estimated, the drift$ coefficient $b(t, x)$ may be unknown. We observe one sampling path of the process $\left(X_{t}, t \in[0, T]\right)$ at the discrete times $t_{i}=i \triangle$ for $i=1, \ldots, N$. The sampling interval \triangle is small in comparison of T. Let assume that $N:=T \triangle^{-1}$
is an integer.
We will use the following assumptions:

- (A0): $\theta(t)$ is adapted to the filtration $\mathcal{F}_{t}, b(t,$.$) is non-anticipative map,$ $b \in C^{-1}\left(\mathbb{R}^{+}, \mathbb{R}\right)$ and the exist $L_{T}>0$ such that $\forall L_{T}>0$ such that $\forall t \in$ $[0, T], \mathbb{E}\left(\theta^{4}\right) \leq L_{T}$ and $\mathbb{E}\left(\theta^{8}\right) \leq L_{T}$.
- (A1): $\theta()=.\sum_{\rho=0}^{f} \theta_{\rho} \mathbb{1}_{\left[t_{\rho}, t_{\rho+1}\right)}($.$) where t_{\rho}$ is the volatility jump times.
- (A2): $\exists>0$ such that $\theta^{2}($.$) is almost surely Hölder continuous of order m$ with a constant $K(\omega)$ and $\mathbb{E}\left(K(\omega)^{2}\right)<+\infty$.
If we assume that the volatility jump times correspond to the sampling times $t_{i}=i \triangle$, we have
- ($\left.\mathrm{A1}^{\prime}\right): \theta()=.\sum_{i=0}^{N} \theta_{i} \mathbb{1}_{\left[t_{i}, t_{i+1}\right)}($.$) we denote \delta \theta^{2}=\theta_{i+1}^{2}-\theta_{i}^{2}$.
and if moreover there is at most one change time in each window we get (A3).
- (A3): (A1) and (A1') are satisfied and $\inf _{\rho=0, \ldots, f}\left|t_{\rho+1}-t_{\rho}\right| \geq A \triangle$.

Remark 5.3.1 If $\theta(t)$ satisfies a S.D.E. then (A2) is fulfilled, see e.g [A. Revuz and M.Yor, (1991)].
We need to control $\int_{t_{i}}^{t_{i+1}} b^{4}\left(s, X_{s}\right) d s$, so we will use:
(B1) $\exists K_{T}>0, \quad \forall t \in[0, T], \quad \mathbb{E}\left(b\left(t, X_{t}\right)^{4}\right) \leq K_{T}$ In all the sequel we work on the simplified model:

$$
d X_{t}=b_{t}\left(t, X_{t}\right) d t+\theta(t) d W_{t}
$$

Under some natural assumptions, the model (2) becomes (3) after the following change of variable:

Proposition 5.3.1 (Pierre Bertrand) Assume that there exists a domain $D \subseteq \mathbb{R}$ such that $h \in \mathcal{C}\left(D, \mathbb{R}_{+}-\{0\}\right)$ the space of continuous function from D to $\mathbb{R}_{+}-\{0\}$, $h^{-1} \in L_{\text {loc }}^{1}(D)$ and for $\left(X_{t}\right)$ solution of (2) satisfying $\mathbb{P}\left(X_{t} \in D, \forall t \in[0, T]\right)=1$.

Let $H(x)=\in h^{-1}(\xi) d \xi$. Then $Y_{t}=H\left(X_{t}\right)$ satisfies the S.D.E (3) with $b_{1}(t, x)=h^{-1}(x) a(t, x)-\frac{1}{2} h^{\prime}(x) \theta^{2}(t)$.

5.4 Estimation of the Volatility using Haar wavelets basis

Since the size of the window appears in numerical applications as a free parameter to be arbitrarily chosen, we give a description of the Estimator introduced by Pierre Bertrand

$$
\begin{equation*}
H_{A, \Delta}(t)=\sum_{k=1}^{N / A-1}\left\{A^{-1} \sum_{k=1}^{A-1}\left(X_{t_{k A+i+1}}-X_{t_{k A+i}}\right)^{2}\right\} \mathbb{1}_{\left[t_{k A} ; t_{(k+1) A}\right)}(t) \tag{5.5}
\end{equation*}
$$

5.5 SDE in Dirichlet random environment

More generally, consider the following model. During the observation time interval $[0, T]$ the process X_{t}, evolves according to various regimes. Regime R_{j} holds during a random time interval $\left[T_{j-1}, T_{j}\right)$ where

$$
0=T_{0}<T_{1}<T_{2}<\ldots<T_{L}=T .
$$

The drift and the variance are randomly chosen in each regime but they do not change during this regime, so

$$
d X_{t}=\sum_{j=1}^{L} \mu_{R_{j}} 1_{\left[T_{j-1}, T_{j}\right)}(t) d t+\sum_{j=1}^{L} \sigma_{R_{j}} 1_{\left[T_{j-1}, T_{j}\right)}(t) d B_{t}
$$

where the R_{j} 's $\in\{1, \ldots, N\}$ are random positive integers such that

$$
\left\{\begin{array}{l}
R_{j} \mid{ }_{p} \stackrel{i i d}{\sim} \sum_{k=1}^{N} p_{k} \delta_{k}(.) \\
\left(\mu_{k}, \sigma_{k}\right) \mid \theta \sim \mathcal{N}\left(\theta, \sigma_{\mu}\right) \otimes \Gamma\left(\eta_{1}, \eta_{2}\right), \quad k=1, \ldots, L \\
p \mid \alpha \sim S B(\alpha, N) \\
\alpha \sim \Gamma\left(\nu_{1}, \nu_{2}\right) \\
\theta \sim \mathcal{N}(0, A)
\end{array}\right.
$$

5.5.1 Estimation and empirical results

The above process $\left(X_{t}\right)$ is observed at discrete times, say $i d t, i=0,1,2, \ldots, n$. It is also assumed that the regime changes occur at these times. The estimation of the above parameters can be done through Ishwaran and James Blocked Gibbs algorithm where their class label variable K is our regime R.

$$
\left\{\begin{array}{l}
\left.\Delta X_{i}\right|_{R, \mu, \sigma} \stackrel{i n d}{\sim} \mathcal{N}\left(\mu_{R_{i}}, \sigma_{R_{i}}\right) \\
\left.R_{i}\right|_{p}{ }^{i i d} \sim \sum_{k=1}^{N} p_{k} \delta_{k}(.) \\
\left.\mu_{i}\right|_{\theta} \sim \mathcal{N}\left(\theta, \sigma_{\mu}\right) \\
\sigma_{i} \sim \Gamma\left(\eta_{1}, \eta_{2}\right) \\
\left.p\right|_{\alpha} \sim S B(\alpha, N) \\
\alpha \sim \Gamma\left(\nu_{1}, \nu_{2}\right) \\
\theta \sim \mathcal{N}(0, A) .
\end{array}\right.
$$

Our method was tested on the index of the Indian stock exchange market (www.nseindia.com), where the number of data is $\mathrm{n}=300$. We have found 3 regimes:

	Regime 1	Regime 2	Regime 3
μ	4635.765	4924.502	5348.373
σ^{2}	59579	12879.15	19773.46
Probability	0.38	0.44	0.17

The analysis based on 25000 iterations following an initial 2000 iteration burn-in.

5.5.2 Option pricing in a regime switching market

The above setting can be used in the option pricing problem with $X_{t}=$ $\log \left(S_{t}\right)$ where $\left(S_{t}\right)_{t \geq 0}$ is the stock price process governed by a geometric Brownian motion, and $\sigma_{R_{i}}$ is a stochastic volatility during regime R_{i}. Observe that the estimations are done here without using any sliding windows technique and without assuming that $T_{j}-T_{j-1}$ is exponentially distributed, as it is done with Markov chains in regime switching markets.

Definition 5.5.1 Suppose X is an $n \times p$ matrix, each row of which is independently drawn from p-variate normal distribution with zero mean:

$$
X_{(i)}=\left(x_{i}^{1}, \ldots, x_{i}^{p}\right)^{T} \sim \mathcal{N}_{p}(0, V)
$$

Then the Wishart distribution is the probability distribution of the $p \times p$ random matrix

$$
W=X X^{T}=\sum_{i=1}^{n} X_{(i)} X_{(i)}^{T}
$$

One indicates that W has that probability distribution by writing

$$
W \sim \mathcal{W}(n, V)
$$

The positive integer n is the number of degrees of freedom.

5.6 Classification of trajectories

We consider the problem of classifying a set of n functions representing signals, stock prices and so on. Each function is known through a finite dimensional vector of observed points. In order to classify these functions, we now extend the blocked Gibbs algorithm to vector data. First let us precise our model.

5.6.1 Hierarchical Dirichlet Model for vector data

In the finite d-dimensional normal mixture problem, we observe data $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, where f_{i} are iid random curves with finite Wiener mixture density, the curves f_{i} can be represented and approximated by the vector $\tilde{f}_{i}=\left(\triangle_{1} f_{i}, \triangle_{2} f_{i}, \ldots, \triangle_{L} f_{i}\right)$

$$
\begin{equation*}
\psi_{P}(f)=\int_{\mathbb{R} \times \mathbb{R}^{+}} \phi\left(\left.f\right|_{\sigma(y)}\right) d P(y)=\Sigma_{k=1}^{d} p_{k, 0} \phi\left(\left.f\right|_{\sigma_{k}}\right) \tag{5.6}
\end{equation*}
$$

where $\phi\left(\left.f\right|_{\sigma}\right)$ represents a d-dimensional normal distribution with mean 0 and variance matrix σ.
Based on the data, we would like to estimate the unknown mixture distribution P. We can devise a Gibbs sampling scheme for exploring the posterior $\mathcal{P}_{N} \mid f$.
Notice that the model derived from (5) also contains hidden variables $K=\left\{K_{1}, \ldots, K_{m}\right\}$ since it can also be expressed as

$$
\left\{\begin{array}{l}
\tilde{f}_{i} \mid K, W, \mu \stackrel{i i d}{\sim} \mathcal{N}_{L}\left(\mu_{K_{i}}, \Delta t_{i} W_{K_{i}}\right) \tag{5.7}\\
K_{i} \mid p \sim \sum_{k=1}^{N} p_{k} \delta_{k}(.) \\
\mu_{k} \mid \theta \sim \mathcal{N}_{L}\left(\theta, \sigma_{\mu}\right) \\
W_{k} \sim \mathcal{W}(s, V) \\
\theta \sim \mathcal{N}_{k}(0, A)
\end{array}\right.
$$

where $\mathcal{W}(s, V)$ and $\mathcal{N}_{L}(\mu, \sigma)$ denote a Wishart and a multivariate Gaussian distribution respectively, and $p \sim S B(c, N)$.
Note that a similar model for vector data appear in Caron F. et al. (2006) but in our case the parameters of the Whishart prior are updated at each iteration. In addition, we have a problem of clustering which justifies the use of the hidden variables K_{i} 's. In particular we will need to compute the posterior distribution of the class variable K and of the weight variable p. To implement the blocked Gibbs sampler we iteratively draw values from the following conditional distributions:

$$
\begin{gathered}
\mu \mid K, W, \theta, f \\
W \mid K, \mu, K, f \\
K \mid p, \sigma, Z, f \\
p \mid K, \alpha \\
\alpha \mid p \\
\theta \mid \mu
\end{gathered}
$$

5.6.2 Posterior computations

Blocked Gibbs Algorithm for vector data .
Let $\left\{K_{1}^{\star}, \ldots, K_{m}^{\star}\right\}$ denote the current m unique values of K. In each iteration of the Gibbs sampler we simulate:
(a) Conditional for μ : For each $j \in\left\{K_{1}^{\star}, \ldots, K_{m}^{\star}\right\}$, draw

$$
\mu_{j} \mid W, K, \theta, f \stackrel{i n d}{\sim} \mathcal{N}_{l}\left(\mu_{j}^{\star}, W_{j}^{\star}\right)
$$

where $\mu_{j}^{\star}=\sum_{\left\{i: K_{i}=j\right\}} \tilde{f}_{i}+\theta$ and $W_{j}^{\star}=\sigma_{\mu}$, also for each $j \in K-K^{\star}$, independently simulate $\mu_{j} \sim \mathcal{N}_{l}\left(\theta, \sigma_{\mu}\right)$.
(b) Conditional for W : For each $j \in\left\{K_{1}^{\star}, \ldots, K_{m}^{\star}\right\}$, draw

$$
W_{j} \mid \mu, K, f \stackrel{i n d}{\sim} \mathcal{W}\left(s, \sum_{\left\{i: K_{i}=j\right\}}\left(\tilde{f}_{i}-\mu_{j}\right)\left(\tilde{f}_{i}-\mu_{j}\right)^{T}+V\right)
$$

where $\mathcal{W}(V, p)$ denote the Wishart distribution with parameters V and p.
(c) Conditional for K :

$$
K_{i} \mid p, \mu, W, f \stackrel{i i d}{\sim} \sum_{h=1}^{N} p_{h, i} \delta_{h}(.), \quad i=1, \ldots, l
$$

where for each $h=1,2, \ldots, N$
$p_{h, i} \propto p_{h}\left(\frac{1}{(2 \pi)^{l / 2}\left(\operatorname{det}\left(W_{h}\right)\right)^{1 / 2}}\right)^{n_{h}} \exp \left\langle\sum_{\left\{d, K_{d}^{\star}=h\right\}}\left(\tilde{f}_{d}-\mu_{h}\right)\left(\tilde{f}_{d}-\mu_{h}\right)^{T}, W_{h}\right\rangle$,
and $<A, B>$ is the trace of $A B$.
(d) Conditional for p :

For any integer N, let V_{1}, \ldots, V_{N-1} be iid $\beta(1, c)$ and $V_{N}=1$. Let $p_{1}=$ $V_{1}^{\star}, p_{k}=\left(1-V_{1}^{\star}\right) \ldots\left(1-V_{k-1}^{\star}\right) V_{k}^{\star}, k=2, \ldots, N$
where

$$
V_{k}^{\star}=\beta\left(1+r_{k}, \alpha+\sum_{l=k+1}^{N} r_{l}\right), \quad \text { for } \quad k=1, \ldots, N-1
$$

and (as before) r_{k} records the number of K_{i} values which equal k.
(e) Conditional for α :

$$
\alpha \mid p \sim \Gamma\left(N+\eta_{1}-1, \eta_{2}-\sum_{k=1}^{N-1} \log \left(1-V_{k}^{\star}\right)\right)
$$

for the same values of V_{k}^{\star} used in the simulation for p.
(f) Conditional for θ :

$$
\theta \mid \mu \sim \mathcal{N}_{L}\left(\theta^{\star}, \sigma^{\star}\right)
$$

where

$$
\theta^{\star}=\sum_{k=1}^{N} \mu_{k} \quad \text { and } \quad \sigma^{\star}=A .
$$

Proof

Let ϕ denote the distribution function, for every $j \in\left\{K_{1}^{\star}, \ldots, K_{m}^{\star}\right\}$
(a) Conditional for μ :

$$
\begin{aligned}
\phi_{\mu_{j} \mid W, K, \theta, f}(y) & =\phi_{f \mid \mu_{j}=y, W, K, \theta}(y) \phi_{\mu_{j} \mid W, K, \theta}(y) \phi_{W, K, \theta} \\
& =\prod_{\left\{d, K_{d}^{\star}=j\right\}} \phi_{\tilde{f}_{d} \mid \mu_{j}=y, W, K, \theta}(y) \phi_{\mu_{j} \mid W, K, \theta}(y) \phi_{W, K, \theta} \\
& =\left(\prod_{\left\{d, K_{d}^{\star}=j\right\}} e^{i y^{T} \tilde{f}_{d}} e^{-\frac{1}{2} \tilde{f}_{d}^{T} W_{j} \tilde{f}_{d}}\right) e^{i y^{T} \theta-\frac{1}{2} y^{T} \sigma_{\mu} y} \\
& =e^{i y^{T} \sum_{\left\{d, K_{d}^{\star}=j\right\}} \tilde{f}_{d}} e^{-\frac{1}{2} \sum_{\left\{d, K_{d}^{\star}=s\right\}}\left(\tilde{f}_{d}^{T} W_{j} \tilde{f}_{d}\right)} e^{i y^{T} \theta-\frac{1}{2} y^{T} \sigma_{\mu} y} \\
& =\left(e^{-\frac{1}{2} \sum_{\left\{d, K_{d}^{\star}=s\right\}}\left(\tilde{f}_{d}^{T} W_{j} \tilde{f}_{d}\right)}\right) e^{i y^{T}\left(\theta+\sum_{\left\{d, K_{d}^{\star}=j\right\}} \tilde{f}_{d}\right)-\frac{1}{2} y^{T} \sigma_{\mu} y}
\end{aligned}
$$

hence

$$
\mu_{j} \mid W, K, \theta, f \stackrel{i n d}{\propto} \mathcal{N}_{l}\left(\theta+\sum_{\left\{d, K_{d}^{\star}=j\right\}} \tilde{f}_{d}, \sigma_{\mu}\right)
$$

(b) Conditional for W : For each $j \in\left\{K_{1}^{\star}, \ldots, K_{m}^{\star}\right\}$

$$
\begin{aligned}
& \phi_{W_{j}^{-1} \mid \mu, K, f}(M)=\phi_{X \mid W_{j}=M, K}(M) \phi_{W_{j}^{-1} \mid K, \mu}(M) \phi_{\mu, K}(z, t) \\
& =\left(\prod_{\left\{d, K_{d}^{\star}=j\right\}} e^{-\frac{1}{2}\left(\tilde{f}_{d}-\mu_{j}\right)^{T} M\left(\tilde{f}_{d}-\mu_{j}\right)}\right) \\
& \times \frac{\operatorname{det}\left(M \frac{n-l-1}{2}\right)^{\frac{n-l-1}{2}}}{2^{\frac{n 1}{2}} \operatorname{det}(V)^{\frac{n}{2}} \Gamma_{p}\left(\frac{n}{2}\right)} e^{-\frac{1}{2} \operatorname{Tr}\left(V^{-1} M\right)} \phi_{\mu, K}(z, t) \\
& =e^{-\frac{1}{2} T r\left(\sum_{\left\{d, K_{d}^{\star}=j\right\}}\left(\tilde{f}_{d}-\mu_{j}\right)\left(\tilde{f}_{d}-\mu_{j}\right)^{T} M\right)} \\
& \times \frac{\operatorname{det}\left(M \frac{n-l-1}{2}\right)^{\frac{n-l-1}{2}}}{2^{\frac{n l}{2}} \operatorname{det}(V)^{\frac{n}{2}} \Gamma_{p}\left(\frac{n}{2}\right)} e^{-\frac{1}{2} \operatorname{Tr}\left(V^{-1} M\right)} \phi_{\mu, K}(z, t) \\
& =\frac{\operatorname{det}\left(M^{\frac{n-l-1}{2}}\right) \frac{n-l-1}{2}}{2^{\frac{n n}{2}} \operatorname{det}(V)^{\frac{n}{2}} \Gamma_{p}\left(\frac{n}{2}\right)} e^{-\frac{1}{2} T r\left(\left(\sum_{\left\{d, K_{d}^{\star}=j\right\}}\left(\tilde{f}_{d}-\mu_{j}\right)\left(\tilde{f}_{d}-\mu_{j}\right)^{T}+V^{-1}\right) M\right)} \\
& \times \quad \phi_{\mu, K}(z, t)
\end{aligned}
$$

therefore,

$$
W_{j} \mid \mu, K, f \stackrel{\text { ind }}{\propto} W\left(n,\left(\sum_{\left\{i: K_{i}=j\right\}}\left(\tilde{f}_{i}-\mu_{j}\right)\left(\tilde{f}_{i}-\mu_{j}\right)^{T}+V\right)^{-1}\right) .
$$

(c) Conditional for K :

$$
\begin{aligned}
P\left\{K_{i}=j \mid p, \mu, W, f\right\} & =P\left\{f \mid p, W, K_{i}=j, \mu\right\} P\left\{K_{i}=s \mid W, \mu\right\} P\{\mu\} P\{W\} \\
& \propto P\left\{f \mid p, W, K_{i}=j, \mu\right\} P\left\{K_{i}=s \mid W, \mu\right\} \\
& =\left(\prod_{\left\{d, K_{d}^{\star}=s\right\}} \frac{p_{s}}{(2 \pi)^{l / 2}\left(\operatorname{det}\left(W_{s}\right)\right)^{1 / 2}} e^{-\frac{1}{2}\left(\tilde{\left.f_{d}-\mu_{s}\right)^{T} W_{s}\left(\tilde{f_{d}}-\mu_{s}\right)}\right) .} .\right.
\end{aligned}
$$

Hence,

$$
p_{s, i} \propto p_{s}\left(\frac{1}{(2 \pi)^{l / 2}\left(\operatorname{det}\left(W_{s}\right)\right)^{1 / 2}}\right)^{n_{s}} \exp \left\langle\sum_{\left\{d, K_{d}^{\star}=s\right\}}\left(\tilde{f}_{d}-\mu_{s}\right)\left(\tilde{f}_{d}-\mu_{s}\right)^{T}, W_{s}\right\rangle
$$

where n_{s} is the number of time K_{s}^{\star} occurs in K.
(d) Conditional for θ :

$$
\begin{aligned}
\phi_{\theta \mid \mu=\mu^{\prime}}(\theta) & \propto \phi_{\mu \mid \theta}\left(\mu^{\prime}\right) \phi_{\theta}(\theta) \\
& =\prod_{j=1}^{N} \phi_{\mu \mid \theta}\left(\mu_{j}^{\prime}\right) \phi_{\theta}(\theta) \\
& =\left(\prod_{j=1}^{N} e^{i \theta^{T} \mu_{j}^{\prime}} e^{-\frac{1}{2} \mu_{j}^{\prime} \sigma_{\mu} \mu_{j}^{\prime}}\right) e-\frac{1}{2} \theta^{T} A \theta \\
& =\left(e^{i \sum_{j=1}^{N} \theta^{T} \mu_{j}^{\prime}} e^{-\frac{1}{2} \theta^{T} A \theta}\right) e^{\sum_{j=1}^{N}-\frac{1}{2} \mu_{j}^{\prime T} \sigma_{\mu} \mu_{j}^{\prime}}
\end{aligned}
$$

Hence the distribution of $\theta \mid \mu \propto \mathcal{N}_{L}\left(\sum_{j=1}^{N} \mu_{j}, A\right)$.

5.6.3 Classes of volatility

Let $\left(S_{t}\right)$ be the stock price process and suppose that $X_{t}=\log \left(S_{t}\right)$, satisfies:

$$
\begin{equation*}
d X_{t}=b\left(t, X_{t}\right) d t+\theta(t) h\left(X_{t}\right) d B_{t} \tag{5.8}
\end{equation*}
$$

where the function $h($.$) is assumed to be known, the volatility coefficient$ $\theta($.$) is a random function of time and has to be estimated and the drift$ coefficient $b(t, x)$ is unknown. We observe a path of the process $\left(X_{t}, t \in\right.$ $[0, T])$ sampled at discrete times $t_{i}=i \triangle$, for $i=1, \ldots, N$.
Under some conditions and after a change of variable (see e.g. [5]), equation (5.8) reduces to

$$
d X_{t}=b_{t}\left(t, X_{t}\right) d t+\theta(t) d B_{t}
$$

A refined method to estimate $\theta(t)$ consists in using wavelets. Consider $\left(V_{j}, j \in \mathbb{Z}\right)$ an r-regular Multi Resolution Analysis of $L^{2}(\mathbb{R})$ such that the associated scale function Φ and the wavelet function ψ are compactly supported. For all j, the family $\left\{\Phi_{j, k}(t)=2^{j / 2} \Phi\left(2^{j} t-k\right), k \in \mathbb{Z}\right\}$ is an orthogonal basis of V_{j}. Time being sampled with $\triangle=2^{-n}, S_{t}$, the estimator is then:

$$
\begin{equation*}
\theta^{2}(t)=\sum_{k} \mu_{j(n), k} \Phi_{j(n), k}(t) \tag{5.9}
\end{equation*}
$$

for $j(n)<n$, where

$$
\begin{equation*}
\mu_{j(n), k}=\sum_{i=1}^{N-1} \Phi_{j(n), k}\left(t_{i}\right)\left(X_{t_{i+1}}-X_{t_{i}}\right)^{2} \tag{5.10}
\end{equation*}
$$

Suppose that we have observed n trajectories $X_{1}, \ldots, X_{l}, \ldots, X_{n}$ sampled as above, and that we want to classify them according to their volatility component, that is, we want to classify the θ_{l} 's estimated by (5.9).

We then see that we have just to apply the preceding algorithm to the vectors $\mu_{j(n), k}^{l}$ which are finite dimensional representations of the θ_{l} 's.

5.7 Conclusion

We have extended Dirichlet hierarchical models in order to deal with temporal data such as solutions of SDE with stochastic drift and volatility. It can be thought that the process on which are based these parameters belongs to a certain well-known class of processes, such as continuous time Markov chains. Then, we think that a Dirichlet prior can be put on the path space, that is a functional space. The estimation procedure in such a context is the topic the next chapter.

Chapter 6

Markov regime switching with Dirichlet Prior. Application to Modelling Stock Prices

We have seen in Chapter 3, some examples of continuous time Dirichlet processes with parameters proportional to the distribution of continuous time processes, such as the Wiener measure one.
In the present Chapter, motivated by some mathematical models in finance dealing with 'Regime switching markets', we consider the case where the continuous time process is a continuous time Markov chain whose state at time t modellizes the state of the market at time t.
Indeed, while in preceding Chapter 5, volatility was constant during some time interval of random length without any hypothesis on the switching process, here the switching depends on a Markov chain which states represent the different regimes. Also, the various values of the trend and the volatility depend on the state of this chain which 'chooses' these values among some i.i.d. ones. Clearly, we deal with stochastic volatility

In our approach, the regimes play the same role as the classes play in classi-

Markov regime switching with Dirichlet Prior. Application to
fication: each temporal observation therefore belongs to a class that is to a regime.

Our contribution consists in placing a Dirichlet process prior on the path space of the Markov chain, which is a cadlag function space. This idea is new as it has never been used in the literature.

In the first Section, we present our model. Section 2 deals with the estimation procedure, the computations of the posteriors follow from those done in Chapter 5. In the last Section 3, we give some indications on the implementation of the algorithm in C language and some numerical results are presented.

6.1 Markov regime switching with Dirichlet prior

In this section, we take $\bar{\alpha}=H$, the distribution of a continuous time Markov chain on a finite set of states and we propose a new hierarchical model that is specified, as an example, in the setting of mathematical finance. Of course, this can be similarly used in many other cases. We consider the Black-Scholes SDE in random environment with a Dirichlet prior on the path space of the chain, the states of the chain representing the environment due to the market. We model the stock price using a geometric Brownian motion with drift and variance depending on the state of the market. The state of the market is modeled as a continuous time Markov chain with a Dirichlet prior. In what follows, the notation σ will be used to denote the variance rather than the standard deviations.

The following notations will be adopted:

1. n will denote the number of observed data and also the length of an observed path.
2. M will denote the number of states of the Markov chain.
3. The state space of the chain will be denoted by $S=\{i: 1 \leq i \leq M\}$.
4. N will denote the number of simulated paths.
5. m will denote the number of distinct states of a path.

- The stock price follows the following SDE:

$$
\frac{d S_{t}}{S_{t}}=\beta\left(X_{t}\right) d t+\sqrt{\sigma\left(X_{t}\right)} d B_{t}, \quad t \geq 0
$$

where B_{t} is a standard Brownian motion. By the Ito's formula, the process $Z_{t}=\log \left(S_{t}\right)$ satisfies the SDE ,

$$
d Z_{t}=\mu\left(X_{t}\right) d t+\sqrt{\sigma\left(X_{t}\right)} d B_{t}, \quad t \geq 0
$$

where $\mu\left(X_{t}\right)=\beta\left(X_{t}\right)-\frac{1}{2} \sigma\left(X_{t}\right)$. The observed data is of the form $Z_{0}, Z_{1}, \ldots, Z_{n}$.

- The process $\left(X_{t}\right)$ is assumed to be a continuous time Markov process taking values in the set $S=\{i: 1 \leq i \leq M\}$. The transition probabilities of this chain are denoted by $p_{i j}, i, j \in S$ and the transition rate matrix is $Q_{0}=\left(q_{i j}\right)_{i, j \in S}$ with
$\lambda_{i}>0, \quad q_{i j}=\lambda_{i} p_{i j} \quad$ if $\quad i \neq j, \quad$ and $\quad q_{i i}=-\sum_{j \neq i} q_{i j}, \quad i, j \in S$.
Define the log-returns, $Y_{t}=Z_{t}-Z_{t-1}=\log \left(S_{t} / S_{t-1}\right), t=1,2, \ldots, n$. Suppose we know the path $X=\left\{X_{s}, 0 \leq s \leq n\right\}$. Let $T_{j}(t)$ be the time spent by the path X in state j in the time interval $[t-1, t]$. Define

$$
\begin{equation*}
\mu(t):=\sum_{j=1}^{M} \mu(j) T_{j}(t) ; \quad \sigma(t):=\sum_{j=1}^{M} \sigma(j) T_{j}(t) \tag{6.1}
\end{equation*}
$$

Then, conditional on the path X, Y_{t} are i.i.d. $\mathcal{N}\left(\mu_{t}, \sigma_{t}\right), t=1,2, \ldots, n$.

- For each $i=1,2, \ldots, M$, the priors on $\mu_{i}=\mu(i)$ and $\sigma_{i}=\sigma(i)$ are specified by

$$
\begin{align*}
& \mu_{i} \stackrel{\text { ind }}{\sim} \mathcal{N}\left(\theta, \tau^{\mu}\right), \quad \text { with } \quad \theta \sim \mathcal{N}(0, A), \quad A>0, \tag{6.2}\\
& \sigma_{i} \stackrel{\text { ind }}{\sim} \Gamma\left(\nu_{1}, \nu_{2}\right) . \tag{6.3}
\end{align*}
$$

- The Markov chain $\left\{X_{t}, t \geq 0\right\}$ has prior $\mathcal{D}(\alpha H)$, where H is a probability measure on the path space of cadlag functions $D([0, \infty), S)$. The initial distribution according to H is the uniform distribution $\pi_{0}=(1 / M, \ldots, 1 / M)$, and the transition rate matrix is Q with $p_{i j}=$ $1 /(M-1)$ and $\lambda_{i}=\lambda>0$. Thus the Markov chain under Q will spend an exponential time with mean $1 / \lambda$ in any state i and then jump to state $j \neq i$ with probability $1 /(M-1)$.

A realization of the Markov chain from the above prior is generated as follows: Generate a large number of paths $X_{i}=\left\{x_{s}^{i}: 0 \leq s \leq n\right\}$, $i=1,2, \ldots, N$, from H. Generate the vector of probabilities $\left(p_{i}, i=\right.$ $1, \ldots, N)$ from a Poisson Dirichlet distribution with parameter α, using stick breaking. Then draw a realization of the Markov chain from

$$
\begin{equation*}
p=\sum_{i=1}^{N} p_{i} \delta_{X_{i}} \tag{6.4}
\end{equation*}
$$

which is a probability measure on the path space $D([0, n), S)$. The parameter λ is chosen to be small so that the variance is large and hence we obtain a large variety of paths to sample from at a later stage. The prior for α is given by,

$$
\begin{equation*}
\alpha \sim \Gamma\left(\eta_{1}, \eta_{2}\right) \tag{6.5}
\end{equation*}
$$

6.2 Estimation

Estimation is done using the simulation of a large number of paths of the Markov chain which will be selected according to a probability vector (gener-
ated by stick-breaking) and then using the blocked Gibbs sampling technique. This technique uses the posterior distribution of the various parameters.

We denote by μ, and σ, the current values of the vectors $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$, $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, respectively. Let Y be the vector of observed data $\left(Y_{1}, \ldots, Y_{n}\right)$. Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the vector of current values of the states of the Markov chain at times $t=1,2, \ldots, n$, respectively. Let $X^{*}=\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$ be the distinct values in X.

6.2.1 Modifying the observed data set

In order to obtain the conditional distribution of the parameters, we first need to extract the change in the log-returns between the jump times of the Markov chain. Let $0=t_{0}<t_{1}<t_{2}<\ldots t_{J}$ be the times at which the path X changes state. Define the log-returns between the jump times, $W_{k}=\log \left(S_{t_{k}} / S_{t_{k-1}}\right), k=1,2, \ldots, J$. To obtain realizations of the W_{k} from the observed Y process, we need to simulate Gaussian random variables conditioned on their sums.

Consider any $t \in\{0,1, \ldots, n\}$ for which the chain changes state atleast once in the time interval $[t-1, t]$. Let $t_{k-1}<t-1 \leq t_{k}<\ldots<t_{k+p}<$ $t<t_{k+p+1}$, be the jump times that lie in $[t-1, t]$, for some $p \geq 1$. Let $V_{t}^{1}=\log \left(S_{t_{k}} / S_{t-1}\right)$ and $V_{t}^{2}=\log \left(S_{t} / S_{t_{k+p}}\right)$. Then,

$$
\begin{equation*}
Y_{t}=V_{t}^{1}+\sum_{i=1}^{p} W_{k+i}+V_{t}^{2} \tag{6.6}
\end{equation*}
$$

Suppose for some the chain X is in state j_{i} in the time interval $\left[t_{k+i-1}, t_{k+i}\right)$, $i=0,1, \ldots, p+1$. Set $s_{0}=t_{k}-t-1, s_{i}=t_{k+i}-t_{k+i-1}, i=1,2, \ldots, p$, and $s_{p+1}=t-t_{k+p}$. Let $m_{j}=\mu\left(j_{i}\right) s_{i}$ and $v_{j}=\sigma\left(j_{i}\right) s_{i}, i=0,1, \ldots, p+1$. Recall that $Y_{t} \sim \mathcal{N}\left(\mu_{t}, \sigma_{t}\right)$, where $\mu(t), \sigma(t)$ are as defined in (6.1). It is easy to see
that the joint conditional density of $\left(V_{t}^{1}, W_{k+1}, \ldots, W_{k+p}\right)$ given $Y_{t}=y$
$f\left(u_{0}, u_{1}, \ldots, u_{p}\right)=C \prod_{i=0}^{p} \exp \left(-\frac{1}{2} \frac{v_{i}+v_{p+1}}{v_{i} v_{p+1}}\left(u_{i}-\frac{v_{p+1} m_{i}+v_{i}\left(y-m_{p+1}\right)}{v_{i}+v_{p+1}}\right)^{2}\right)$,
where C is a constant that depends on y and the parameters. Thus, one can simulate the variables $V_{t}^{1}, W_{k}, W_{k+1}, \ldots, W_{k+p}$ from independent Gaussians and then obtain V_{t}^{2} using (6.6).

Using the above procedure, we can obtain a realization for all W_{k} for which $\left[t_{k-1}, t_{k}\right] \subseteq[t-1, t]$, for some $t \in\{0,1, \ldots, n\}$. Now for any k for which there is a $q \geq 0$, such that $t-1 \leq t_{k-1}<t<t+1<\ldots<t+q \leq t_{k}<t+q+1$, we can obtain W_{k} using the relation

$$
\begin{equation*}
W_{k}=V_{t}^{2}+\sum_{i=1}^{q} Y_{t+i}+V_{t+q+1}^{1} \tag{6.8}
\end{equation*}
$$

Note that the W values depend on the path X and need to be computed in each iteration.

6.2.2 The Gibbs sampling procedure

We are now ready to estimate the posterior distributions of the parameters using Gibbs sampling. Each iteration produces one realization of the parameters from their approximate posterior distribution. Each iteration consists of a large number of samples obtained recursively for each parameter conditioned on the current values of the other parameters and the data.

- Conditional for μ. For each $j \in X^{*}$ draw

$$
\begin{equation*}
\left(\mu_{j} \mid \theta, \tau^{\mu}, \sigma, X, W\right) \stackrel{i n d}{\sim} \mathcal{N}\left(\mu_{j}^{*}, \sigma_{j}^{*}\right) \tag{6.9}
\end{equation*}
$$

where

$$
\mu_{j}^{*}=\sigma_{j}^{*}\left(\sum_{k: X_{t_{k-1}}=j} \frac{W_{k}}{\sigma_{j}\left(t_{k}-t_{k-1}\right)}+\frac{\theta}{\tau^{\mu}}\right)
$$

$$
\sigma_{j}^{*}=\left(\frac{n_{j}}{\sigma_{j}}+\frac{1}{\tau^{\mu}}\right)^{-1}
$$

and n_{j} being the number of times j occurs in X. For each $j \in X \backslash X^{*}$, independently simulate $\mu_{j} \sim \mathcal{N}\left(\theta, \tau^{\mu}\right)$.

- Conditional for σ. For each $j \in X^{*}$ draw

$$
\begin{equation*}
\left(\sigma_{j} \mid \mu, \nu, X, W\right) \stackrel{i n d}{\sim} \Gamma\left(\nu_{1}+\frac{n_{j}}{2}, \nu_{2, j}^{*}\right), \tag{6.10}
\end{equation*}
$$

where

$$
\nu_{2, j}^{*}=\nu_{2, j}+\sum_{k: X_{t_{k-1}}=j} \frac{\left(W_{k}-\mu_{j}\left(t_{k}-t_{k-1}\right)\right)^{2}}{2\left(t_{k}-t_{k-1}\right)} .
$$

Also for each $j \in X \backslash X^{*}$, independently simulate $\sigma_{j} \sim \Gamma\left(\nu_{1}, \nu_{2}\right)$.

- Conditional for X.

$$
\begin{equation*}
(X \mid p) \sim \sum_{i=1}^{N} p_{i}^{*} \delta_{X_{i}} \tag{6.11}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{i}^{*} \propto \prod_{j=1}^{m}\left(\prod_{\substack{\left\{k: x_{t_{k-1}^{i, *}}^{t_{k-1}}\right.}} \frac{1}{\left(2 \pi \sigma_{j}\left(t_{k}-t_{k-1}\right)\right)^{1 / 2}} e^{-\frac{1}{2 \sigma_{j}}\left(W_{k}^{i}-\mu_{j}\left(t_{k}-t_{k-1}\right)\right)^{2}}\right) p_{i} \tag{6.12}
\end{equation*}
$$

where $\left(x_{1}^{i, *}, \ldots, x_{m}^{i, *}\right)$ denote the current $m=m(i)$ unique values of the states and t_{k}^{i}, W_{k}^{i} are as defined in subsection 6.2 .1 for the path X_{i}, $i=1, \ldots, N$.

- Conditional for p.

$$
\begin{equation*}
p_{1}=V_{1}^{*}, \text { and } p_{k}=\left(1-V_{1}^{*}\right) \cdots\left(1-V_{k-1}^{*}\right) V_{k}^{*}, \quad k=2,3, \ldots, N-1, \tag{6.13}
\end{equation*}
$$

where

$$
V_{k}^{*} \stackrel{\text { ind }}{\sim} \beta\left(1+r_{k}, \alpha\right),
$$

r_{k} equal 1 if $i=k$ and 0 else.

- Conditional for α.

$$
(\alpha \mid p) \sim \Gamma\left(N+\eta_{1}-1, \eta_{2}-\sum_{i=1}^{N-1} \log \left(1-V_{i}^{*}\right)\right)
$$

where the V^{*} values are those obtained in the simulation of p in the above step.

- Conditional for θ.

$$
\begin{equation*}
(\theta \mid \mu) \sim \mathcal{N}\left(\theta^{*}, \tau^{*}\right) \tag{6.14}
\end{equation*}
$$

where

$$
\theta^{*}=\frac{\tau^{*}}{\tau^{\mu}} \sum_{j=1}^{M} \mu_{j}
$$

and

$$
\tau^{*}=\left(\frac{M}{\tau^{\mu}}+\frac{1}{A}\right)^{-1}
$$

Proof.

(a) The computation of the posterior distributions for μ, σ and θ follow in the same manner as in Ishwaran and James (2002) and Ishwaran and Zarepour (2000). Here, $X_{t}=s$ means that the class variable is equal to s.
(b) Conditional for X :

$$
\begin{aligned}
& P\left\{X=X_{i} \mid p, \mu, \sigma, W\right\}=P\left\{W \mid p, \sigma, X=X_{i}, \mu\right\} P\left\{X=X_{i} \mid \sigma, \mu, p\right\} P\{\mu, \sigma\} \\
& \quad \propto \prod_{j=1}^{m}\left(\prod_{\left\{k: x_{t_{k-1}^{i, *}}^{t_{k-1}}=j\right\}} \frac{1}{\left(2 \pi \sigma_{j}\left(t_{k}-t_{k-1}\right)\right)^{1 / 2}} e^{-\frac{1}{2 \sigma_{j}}\left(W_{k}^{i}-\mu_{j}\left(t_{k}-t_{k-1}\right)\right)^{2}}\right) p_{i}
\end{aligned}
$$

where $X_{i}=\left(x_{1}^{i}, \ldots, x_{n}^{i}\right)$ and $\left(x_{1}^{i, *}, \ldots, x_{m}^{i, *}\right)$ denote the current m unique values in the path X_{i}.
(c) Conditional for p : The Sethuraman stick-breaking scheme can be extended to the two-parameter Beta distributions, see Ishwaran James (2001) and Walker Muliere $(1997,1998)$:

Let $V_{k} \stackrel{\text { ind }}{\sim} \beta\left(a_{k}, b_{k}\right)$, for each $k=1, \ldots, N$. Let

$$
p_{1}=V_{1}, \text { and } p_{k}=\left(1-V_{1}\right) \cdots\left(1-V_{k-1}\right) V_{k}, \quad k=2,3, \ldots, N-1 .
$$

We will write the above random vector, in short as

$$
p \sim S B\left(a_{1}, b_{2}, \ldots, a_{N-1}, b_{N-1}\right)
$$

By Connor and Mosimann (1969), the density of p is

$$
\begin{aligned}
& \quad\left(\prod_{k=1}^{N-1} \frac{\Gamma\left(a_{k}-b_{k}\right)}{\Gamma\left(a_{k}\right) \Gamma\left(b_{k}\right)}\right) p_{1}^{a_{1}-1} \ldots p_{N-1}^{a_{N-1}-1} p_{N}^{b_{N-1}-1} \times \\
& \times\left(1-P_{1}\right)^{b_{1}-\left(a_{2}-b_{2}\right)} \ldots\left(1-P_{N-2}\right)^{b_{N-2}-\left(a_{N-1}-b_{N-1}\right)},
\end{aligned}
$$

where $P_{k}=p_{1}+\ldots+p_{k}$.
From this, it easily follows that the distribution is conjugate for multinomial sampling, and consequently the posterior distribution of p given X, when $a_{k}=1$ and $b_{k}=\alpha$ for each k, is

$$
S B\left(a_{1}^{*}, b_{2}^{*}, \ldots, a_{N-1}^{*}, b_{N-1}^{*}\right),
$$

where

$$
\begin{aligned}
& b_{k}^{*}=\alpha \\
& a_{k}^{*}=1+r_{k},
\end{aligned}
$$

and r_{k} equal 1 if $i=k$ and 0 else, $\mathrm{k}=1, \ldots, \mathrm{~N}-1$.

Markov regime switching with Dirichlet Prior. Application to 102 Modelling Stock Prices

6.3 Implementation

The algorithm presented in the previous section was implemented in C language. The implementation includes:

- functions that simulate standard probability distributions: Uniform, Normal, Gamma, Beta, Exponential.
- a function that returns an index $\in\{1, \ldots, n\}$ according to a vector of probability p_{1}, \ldots, p_{n}.
- a function that simulates a probability vector according to stick-breaking scheme.
- a function that simulates n paths of a Markov chain.
- a function that records the number of times a state appears in a path.
- a function that chooses one of the paths according to a vector of probability.
- a function that modifies the parameters of prior distributions according to the formulas of the posteriori distributions.

After having simulated a number of paths, we perform the iterations. At each iteration a path is randomly selected and the parameters are updated according to posteriori formulas. At the end of each iteration of the Gibbs sampling, we obtain a path X of the Markov chain. From this, the parameters π and Q_{0} can be re-estimated. From Q_{0} the parameters λ_{i} and $p_{i j}$ can be derived.

6.3.1 Simulated data

We fit the model, using the algorithm developed above, to a simulated series of lenght $n=480$, with a number of states (regimes) $M=4$, mean and
variance in each state being chosen as follows:

$$
\begin{aligned}
\left(\mu_{1}, \sigma_{1}\right) & =(-1.15,0.450) \\
\left(\mu_{2}, \sigma_{2}\right) & =(-0.93,0.450) \\
\left(\mu_{3}, \sigma_{3}\right) & =(-0.60,0.440) \\
\left(\mu_{4}, \sigma_{4}\right) & =(1.40,0.500)
\end{aligned}
$$

We have performed our algorithm on that series with number of states $M=$ 10 , number of paths $N=100$ and number of iterations $=25,000$. Then, we have observed that the algorithm is able to put most of the mass (in terms of the stationary distribution of the MC) on 4 regimes, which are close to the ones chosen above. At the end of the iterations we compute a confidence interval for the mean and for the variance w.r.t. each regime. We can conclude that the algorithm is able to identify the parameters of the simulated data set.

The confidence intervals for the mean and the variance are given below. Regime 1:

$$
I_{m}=[-1.208,-1.12423] \quad \text { and } \quad I_{v}=[0.431,0.4738] .
$$

Regime 2:

$$
I_{m}=[-0.9351,-0.9296] \quad \text { and } \quad I_{v}=[0.442,0.4538] .
$$

Regime 3:

$$
I_{m}=[-0.63446,-0.5140] \quad \text { and } \quad I_{v}=[0.4319,0.4491] .
$$

Regime 4:

$$
I_{m}=[1.30114,1.43446] \quad \text { and } \quad I_{v}=[0.4949,0.5081] .
$$

6.3.2 Real data

We have also applied our algorithm to the Bsemidcap index data of the Indian National Stock Exchange (NSE) from 21/12/2006 to 15/11/2007 (www.nseindia.com).

Markov regime switching with Dirichlet Prior. Application to 104 Modelling Stock Prices

For this dataset we have, $n=250, \Delta t=1$, and we deal with $N=100$ of paths while $\operatorname{Gamma}(2,4)$ is the prior for α.
With the above choice, we obtain 6 regimes for which the estimates for the mean, variance and stationary probabilities are as follows:

	R 1	R 2	R 3	R 4	R 5	R 6
μ	0.001124	-0.009479	0.000629	-0.004579	0.000829	0.001109
σ	$2.9132 \mathrm{e}-05$	$7.2166 \mathrm{e}-05$	$2.3023 \mathrm{e}-05$	$7.3800 \mathrm{e}-05$	$1.186 \mathrm{e}-05$	$3.3372 \mathrm{e}-05$
π	20%	3%	29%	5%	10%	33%

The most frequent Markov chain path, its parameters $\lambda_{i} \mathrm{~S}$ and the matrix of transition probability $\left(p_{i, j}\right)_{1 \leq i \neq j \leq 6}$ are respectively equal to:

353636361651363533665636114161336663133 36333456666461116666613331613356331654136 46335636236133616655115353361656166316311 62366633266613366313661661161535135341335 31366613565336361356665163311666361363666 663636646361164613436.

λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}
0.8	1	0.7	1	0.95	0.75

$$
\left(\begin{array}{cccccc}
& 0 & 0.48 & 0.03 & 0.06 & 0.42 \\
0 & & 0.66 & 0 & 0 & 0.33 \\
0.16 & 0.02 & & 0.062 & 0.2 & 0.54 \\
0.375 & 0 & 0 & & 0.125 & 0.5 \\
0.157 & 0 & 0.42 & 0.052 & & 0.36 \\
0.36 & 0.038 & 0.384 & 0.077 & 0.134 &
\end{array}\right)
$$

It is interesting to note that in the high volatility states, the index has a negative drift as is usually observed in analysis of empirical data. A by-product of our algorithm is the distribution of the current state of the volatility, which is required to compute the price of an option (see [?] and references therein).

6.4 Validation.

Consider the stock price data for duration $1 \leq t \leq T_{1}$. Estimate the model based on this data. The carry out a 1-step forecast on the time interval $T_{1} \leq t \leq T_{2}$ using the estimated model. Compare the MSE with other models like GBM with fixed variance, GARCH (Rene Carmona), simple Markov switched model etc.

6.5 Option Pricing

The model we follow is as in Ghosh and Deshpande (G-D), except that we now have a prior on the variables. So, essentially we have to take take several realizations of our parameters and for each of them compute the option price and then average over these values.

Suppose we have stock price for time $0 \leq t \leq T_{1}$, then use formula (4.1) in G-D to compute the option price with $s=S_{T_{1}}$ which is the current price and take $t=T$, to be say 15 (the day the option matures). This will give us the values $\left(\phi\left(T, S_{T_{1}},(k, i), k=1, \ldots N, i=1, \ldots, M\right)\right.$.

Note that the vector ϕ is written as
$(\phi(t, s,(1,1)), \phi(t, s,(1,2)), \ldots, \phi(t, s,(1, M)), \phi(t, s,(2,1)), \ldots, \phi(t, s,(N, M)))$
and the transition matrix and the other matrices accordingly. For example, the matrix Σ in (4.1) will be a block diagonal matrix with N blocks each of which is $\left(\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{M}\right)\right.$. Thus Σ will be a $N M \times N M$ matrix.

Once we solve (4.1), then, given the history of the price upto time T_{1}, we have to estimate the probability that the Markov chain is in state (k, i). Then we have to average the option price over these probabilities.

This option price should be compared with the usual Black-Scholes formula for GBM with fixed σ.

In this numerical work, we can keep the interest rate fixed. See some literature on option pricing for choice of the interest rate.

Chapter 7

Conclusion and Perspectives

Our main subject of interest was to investigate Dirichlet processes when the parameter is proportional to the distribution of a stochastic process (Brownian motion, jump processes, ...) and to propose continuous time hierarchical models involving continous-time Dirichlet processes.

Although this area requires some rather nontrivial techniques, we have shown that such a setting can be of interest in modelling SDEs in random environment and that the proposed estimation procedure works.

Let us finally mention some perspectives.
It is clear that it would be interesting to extend the method to other SDEs and to other kind of processes, we think of replacing, in the last chapter, the markov chain by a diffusion, a spatio-temporal process or a multivariate process.
It would be also of interest to use the estimated model for prediction and to compare this prediction with other models.
Concerning the algorithm in the last chapter it can be observed that for each iteration, an option price w.r.t. the selected path can be computed by using for example the formula in Ghosh and Deshpande. After performing all the iterations, we will have a distribution of option prices that can be used for decision-making on the final option price. This should be compared to other
decision procedures.

Bibliography

[1] Altman, N. (1992).An introduction to kernel and nearest-neighbor nonparametric regression. American Statistician 46, 175-185.
[2] Antoniak, C.E. (1974). Mixtures of Dirichlet processes. Ann. Statist. 2, 6, 1152-1174.
[3] Behseta, S., Kass, R. E., and Wallstrom, G. L. (2005). Hierarchical models for assessing variability among functions. Biometrika 92, 419-434.
[4] Bertoin, J (2006). Random fragmantation and coagulation processes.
[5] Bigelow, J. L. and Dunson, D. B. (1992). Posterior simulation across nonparametric models for functional clustering. AJournal of the Royal Statistical Society, Series B., under revision.
[6] Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Polya urn schemes. Ann. Statist. 2, 1, 353-355.
[7] Blei, D. and Jordan., I. J. (2005). Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1 121-144.
[8] Blei, D., Ng, A. and Jordan, M. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3: 993-1022.
[9] Bertrand, P (1996). Estimation of the Stochastic Volatility of a Diffussion Process I. Comparison of Haar basis Estimator and Kernel Estimators. INRIA.
[10] Brunner, L.J. and Lo, A. Y. (2002). Bayesian classification To appear.
[11] , C. A. and MacEachern, S. N. (1996). A semiparametric Bayesian model for randomised block designs. Biometrika 83 275-285.
[12] Chib, S. and Hamilton, B. H. (2002). Semiparametric Bayes analysis of longitudinal data treatment models. Journal of Econometrics 110, 6789.
[13] Chu, C.-K. and Marron, J. S. (1991). Choosing a kernel regression estimator. Statistical Science, Statistical Science 6, 404-419.
[14] Cifarelli, D. M. and Melilli, E. (2000). Some new results for Dirichlet priors, Journal of the American Statistical Association. Ann. Statist. 28 1390-1413.
[15] Cifarelli, D. and Regazzini, E. (1978). Problemi Statistici Non Parametrici in Condizioni di Scambiabilit‘ a Parziale e Impiego di Medie Associative. Tech. rep., Quaderni Istituto Matematica Finanziaria dellUniversitàdi Torino.
[16] Cifarelli, D. M. and Regazzini, E. (1990). Distribution functions of means of a Dirichlet process. Ann. Statist. 18 429-442.
[17] Dahl, D. B. (2003). Modeling differential gene expression using a Dirichlet Process mixture model. in Proceedings of the American Statistical Association, Bayesian Statistical Sciences Section. American Statistical Association, Alexandria, VA.
[18] Deshpande, A. and Ghosh, M. K. (2007). Risk Minimizing Option Pricing in a Regime Switching Market. Stochastic Analysis and Applications. Vol. 28, 2008. To appear.
[19] DeIorio, M., Méuller, P., Rosner, G. L., and MacEachern, S. N. (2004). An anova model for dependent random measures. Journal of the American Statistical Asso- ciation 99 205-215.
[20] DONNET, S., and SAMSON, A. (2005). Parametric Estimation for Diffusion Processes from Discrete-time and Noisy Observations. Journal of the American Statistical Association, 92, 894-902.
[21] Doss, H. and Sellke, T (1982). The tails of probabilities chosen from a Dirichlet prior. Ann. Statist. 10 1302-1305.
[22] Duan, J. A. (2006).Bayesian dynamic modeling of latent trait distributions. Bio- statistics 7 551-568.
[23] Duan, J. A., Guindani, M., and Gelfand, A. E. (2007). Generalized spatial Dirichlet process models. Biometrika in press.
[24] Dunson, D. B., Herring, A. H., and Mulheri-Engel, S. A. (2007a). Bayesian selection and clustering of polymorphisms in functionally-related genes. Journal of the Royal Statistical Society, in press.
[25] Dunson, D. B. and Park, J.-H. (2007). Kernel stick-breaking processes. Tech. rep., Institute of Statistics and Decision Sciences - Duke University.
[26] Dunson, D. B., Pillai, N., and Park, J.-H. (2007). Bayesian density regression. Journal of the Royal Statistical Society Series B. 69 163183.
[27] Emilion, R. (2001). Classification and mixtures of processes. SFC 2001 and C.R. Acad. Sci. Paris, série I 335, 189-193.
[28] Emilion, R. and Pasquignon, D. (2005). Random distributions in image analysis. Preprint.
[29] Emilion, R. (2005). Process of random distributions. Afrika Stat, vol 1, 1, pp. 27-46, http://www.ufrsat.org/jas (contenus).
[30] Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association 89 268-277.
[31] Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 90 577-588.
[32] Fan, J. Q., Hickman, N. E., and Wand, M. P. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. Journal of the American Statistical Association 99 141-150.
[33] Ferguson, T.S (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230.
[34] Ferguson, T.S. (1974). Prior distributions on spaces of probability measures. Ann. Statist. 2 615-629.
[35] Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. Recent Advances in Statistics (H. Rizvi and J. Rustagi, eds.), New York: Academic Press.
[36] Fisher, R. (1974). On the interpretation of χ_{2} from contingency tables, and the calculation of p. Journal of the Royal Statistical Society 85 87-94.
[37] Gelfand, A. E., Kottas, A., and MacEachern, S. N. (2005). Bayesian nonparametric spatial modeling with Dirichlet process mixing. Journal of the American Statistical Association 100 1021-1035.
[38] Griffin, J. E. and Steel, M. F. J. (2006b). Order-based dependent Dirichlet processes. Journal of the American Statistical Association 101 179-194.
[39] Green, P and Richardson, S.. Modelling heterogeneity with and without the Dirichlet process Scandinavian Journal of Statistics 28 355375.
[40] Hal Daume III and Daniel Marcu (2005). A Bayesian Model for Supervised Clustering with the Dirichlet Process Prior. Journal of Machine Learning Research 6 1, 1551-1577.
[41] Huillet, T and Christian Paroissin (2005). A Bayesian Model for Supervised Clustering with the Dirichlet Process Prior. preprint.
[42] In Dey, D., Muller, P. and Sinha, D. eds. (1969). Computational methods for mixture of Dirichlet process models. Practical Nonparametric and Semiparametric Bayesian Statistics, 23-44. Springer.
[43] Ishwaran, H. and James, L.F. (2002). Approximate Dirichlet processes computing in finite normal mixtures: smoothing and prior information. J. Comp. Graph. Stat. 11 209-230.
[44] Ishwaran H., James, L.F and Sun, J. (2000). Bayesian Model Selection in Finite Mixtures by Marginal Density Decompositions. conditionally accepted by Journal of the American Statistical Association.
[45] Ishwaran, H. and Zarepour, M. (2000). Markov Chain Monte Carlo in Approximate Dirichlet and Beta Two-Parameter Process Hierarchical Models,. EJP 1, 1-28.
[46] Ishwaran, H. and James, L.F. (2003). Generalized weighted Chinese restaurant processes for species sampling mixture models. Statistica Sinica, 13 1211-1235.
[47] Jason A. DUAN, Michele GUINDANI, and Alan E. GELFAND (2007). Generalized spatial Dirichlet process models. Biometrika, 94, 4, pp. 809-825.
[48] Jain, S. and Neal, R. M. (2000). A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. University of Toronto.
[49] Kacperczyk, M., Damien, P., and Walker, S. G.(2003). A new class of Bayesian semiparametric models with applications to option pricing. Tech. rep., University of Michigan Bussiness School.
[50] Kingmann, J. F. C. (1974). Approximate Dirichlet processes computing in finite normal. Royal statistical society section B
[51] Kingmann, J. F. C. and James, L.F. (2002). Random discrete Distributions.
[52] Kingmann, J. F. C. (1993). Poisson Processes. Clarendon, Oxford University Press. Royal statistical society section B
[53] Kottas, T. and Gelfand, A. E. (2002). A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models. Journal of Computational and Graphical Statistics .
[54] Kottas, T., A. Duan, J. and Gelfand, A. E. (2007). Modeling Disease Incidence Data with Spatial and Spatio-Temporal Dirichlet Process Mixtures. Biometrical Journal, 5, 1-14 DOI: 10.1002/bimj. 200610375.
[55] Laws, D. J. and O'Hagan, A. (1975). A hierarchical Bayes model for multilocation auditing. Journal of the Royal Statistical Society, Series D 37, 431-450.
[56] Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: I. density estimates. Annals of Statistics 12 351-357.
[57] Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica 4 639-650.
[58] Sethuraman, J. and West, M. (1994). Bayesian Density Estimation and Inference Using Mixtures. Journal of the American Statistical Association, 90, pp, 577-588.
[59] Sethuraman, J. and Tiwari, R. C. (1982). Convergence of Dirichlet Measures and the Interpretation of Their Parameters. Statistical Decision Theory and Related Topics III, 2, 305-315.
[60] Soule, A., Salamatian, K. and Emilion, R. (2004). Classification of histograms. Sigmetrics 2004, New York. http://wwwrp.lip6.fr/site_npa/site_rp/publications.php.
[61] Soule, A., Salamatian, K., Taft, N., Emilion, R. and Papagiannaki, K. (2004). Classification of Internet flows. Sigmetrics'04, New-York.
[62] Soule, A., Salamatian, K., Taft, N., Emilion, R. and Papagiannaki, K. (2004). Classification of Internet flows. Sigmetrics'04, New-York.
[63] MacEachern, S. N. (1994). Estimating normal means with a conjugate style Dirichlet process prior. Commnunications in Statistics, Part B - Simulation and Com- putation 23 727-741.
[64] MacEachern, S. N. (1999). Dependent nonparametric processes. In ASA Proceed- ings of the Section on Bayesian Statistical Science, 50-55.
[65] MacEachern, S. N. (1999). Dependent Dirichlet processes. Tech. rep., Ohio State University, Department of Statistics.
[66] MaCloskey, J.W. (1965). Model for the Distribution of Individuals by Species in an Environment. Unpublished Ph.D. thesis, Michigan State University.
[67] Meuller, P., Quintana, F., and Rosner, G. (1998). Hierarchical meta-analysis over related non-parametric Bayesian models. Journal of Royal Statistical Society, Se- ries B 66, 735-749.
[68] Medvedovic, M. and Sivaganesan, S. (2002). Bayesian infinite mixture model-based clustering of gene expression profiles. Bioinformatics 18, 1194-1206.
[69] Morris, J. S. and Carroll, R. J. (2002). Wavelet-based functional mixed models. Journal of the Royal Statistical Society, Series B 68, 179199.
[70] N. Johnson and S. Kotz. (1978). Urn Models and Their Applications: an approach to Modern Discrete Probability Theory. Technometrics, Vol. 20, No. 4, Part 1 (Nov., 1978), p. 501.
[71] Radford M. NEAL (1996). Density Modeling and Clustering Using Dirichlet Diffusion Trees. BAYESIAN STATISTICS 7, pp. 619-629.
[72] Roeder, K. and Wasserman, L. (1997). Practical Bayesian Density Estimation Using Mixtures of Normals. Journal of the American Statistical Association , 92, 894-902.
[73] P. Damien, J. C. Wakefield, and S. G.Walker. (1999). S. G.Walker. Gibbs sampling for Bayesian nonconjugate and hierarchical models using auxiliary variables. Journal of the Royal Statistical Society Series B, 61: 331-344.
[74] Pitman, J. and Yor, M. (1996). Random discrete distributions derived from self-similar random sets. EJP 1, 1-28.
[75] Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from stable subordiantors. Ann. Proba 25, 2, 855-900.
[76] Pitman, J. (2003). Poisson-Kingman partitions. In: Science and Statistics: A Festschrift for Terry Speed. D. R. Goldstein editor. Lecture Notes - Monograph Series 30 1-34. Institute of Mathematical Statistics Hayward, California. 2 Lecture Notes - Monograph Series 30 1-34.
[77] Wu, H. and Zhang, J. T. (2002). Local polynomial mixed-effects models for longitudinal data. Tech. rep., Duke University - Institute of Statistics and Decision Sciences.
[78] West, M., Aguilar, O., and Lourdes, V. (2003).Va hospital quality monitors: 1988- 1997. Tech. rep., Duke University - Institute of Statistics and Decision Sciences.
[79] YeeWhye Teh, Dilan Gorur and Zoubin Ghahramani (2007).
Stick-breaking Construction for the Indian Buffet Process.

Hafedh Faires

Modèles hiérarchiques de Dirichlet à temps continu

Résumé :

Nous étudions les processus de Dirichlet dont le paramètre est une mesure proportionnelle à la loi d'un processus temporel, par exemple un mouvement Brownien ou un processus de saut Markovien. Nous les utilisons pour proposer des modèles hiérarchiques bayésiens basés sur des équations différentielles stochastiques en milieu aléatoire. Nous proposons une méthode pour estimer les paramètres de tels modèles et nous l'illustrons sur l'équation de Black-Scholes en milieu aléatoire.

Mots-clés : Statistiques Bayesien, Mouvement Brownien, Échantillonneur de Gibbs, Chaîne de Markov, Mélanges, Milieu aléatoire, Regime-switching, Calculs stochastiques, Équations différentielle stochastiques, volatilités stochastiques, mesure de Wiener.

CONTINUOUS TIME DIRICHLET HIERARCHICAL MODELS

Abstract

: We consider Dirichlet processes whose parameter is a measure proportional to the distribution of a continuous time process, such as a Brownian motion or a Markov jump process. We use them to propose some Bayesian hierarchical models based on stochastic differential equations in random environment. We propose a method for estimating the parameters of such models and illustrate it on the Black-Scholes equation in random environment.

Key words : Bayesian statistics, Brownian motion, Classification, Dirichlet process, Gibbs sampling, Markov chain, Mixtures, Random environment, Regime-switching, Stochastic calculus, Stochastic differential equations, stochastic volatility, Wiener measure.

