
HAL Id: tel-00466961
https://theses.hal.science/tel-00466961

Submitted on 25 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Traitement du signal et images LC/MS pour la
recherche de biomarqueurs

Sébastien Li-Thiao-Té

To cite this version:
Sébastien Li-Thiao-Té. Traitement du signal et images LC/MS pour la recherche de biomarqueurs.
Mathématiques [math]. École normale supérieure de Cachan - ENS Cachan, 2009. Français. �NNT :
�. �tel-00466961�

https://theses.hal.science/tel-00466961
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT
DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Présentée par

Monsieur Li-Thiao-Té Sébastien

pour obtenir le grade de

DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Domaine :
MATHÉMATIQUES APPLIQUÉES

Sujet de la thèse :

Traitement du signal et images LC/MS pour la recherche de biomarqueurs.

Signal processing of LC/MS images for biomarker discovery.

Thèse présentée et soutenue à Cachan le 26 juin 2009 devant le jury composé de :

Jean-Michel MOREL Professeur des universités - ENS Cachan Président du jury
Pierre GRANGEAT Directeur de recherche - CEA Rapporteur
Christine GRAFFIGNE Professeur des universités - U. Paris V Rapporteur
Bernard CHALMOND Professeur des universités - U. Cergy-Pontoise Directeur de thèse
Benno SCHWIKOWSKI Directeur de recherche - Institut Pasteur Directeur de thèse

Centre de Mathématiques et de Leurs Applications
(ENS CACHAN / CNRS / UMR 8536)

61, avenue du Président Wilson, 94235 CACHAN CEDEX (France)

Unité de Biologie Systémique
(Institut Pasteur / CNRS / URA 2171)

Bâtiment Laveran, 28, rue du Docteur Roux, 75024 PARIS CEDEX (France)





À Fanny
de tout mon coeur





Introduction

Présentation générale

Cette thèse de mathématiques appliquées est le résultat d’une rencontre entre un laboratoire
de biologie (Unité de Biologie Systémique, Institut Pasteur) avec des problèmes de traitement du
signal et un laboratoire de mathématiques (Centre de Mathématiques et de Leurs Applications,
ENS Cachan) intéressé par les applications en biologie. À cette interface réside le spectromètre de
masse, un instrument finalement d’une grande simplicité, qui a trouvé depuis son invention à la
fin du 19e siècle des applications dans presque tous les domaines scientifiques et industriels.

L’Institut Pasteur dispose d’une plateforme de spectrométrie de masse qui réalise des analyses
d’échantillons pour l’ensemble des laboratoires de l’Institut. Il s’agit principalement de caracté-
riser la composition d’un échantillon biologique, c’est-à-dire d’identifier toutes les protéines de
l’échantillon dans un premier temps et éventuellement de mesurer les concentrations de chaque
espèce protéique. Les laboratoires demandent de telles analyses afin d’identifier des molécules
qu’ils ont purifiées ou bien pour comparer les protéines produites par différents organismes, sous
différentes conditions, etc.

L’Unité de Biologie Systémique de l’Institut Pasteur s’intéresse à l’étude du réseau formé par les
interactions entre protéines d’un organisme vivant. L’approche “systémique” consiste à étudier
les propriétés globales de ce réseau, sans se focaliser sur un élément particulier. Les méthodes de
spectrométrie de masse fournissent de nombreuses données pour ce type d’analyses.

La mise en oeuvre d’approches systémiques en biologie moléculaire nécessite de bien com-
prendre le processus d’acquisition des données et les différents traitements logiciels qui sont ap-
pliqués au signal. Au travers de la collaboration entre le CMLA et l’Unité de Biologie Systémique,
j’ai abordé de nombreux domaines des sciences du vivant en plus des mathématiques. Ce chapitre
a pour vocation de présenter au néophyte (mathématicien ou autre) le contexte scientifique dans
lequel sont effectuées les expériences de spectrométrie de masse pour la protéomique.

Un peu de biologie (systémique)

La biologie systémique étudie les propriétés d’un graphe construit à partir d’une liste exhaus-
tive d’objets biologiques, et de la liste de leurs relations ou interactions. Différents types d’objets
peuvent ainsi être étudiés :

– les séquences d’ADN (gènes)
– les protéines
– les cellules
– les individus

L’idéal de la biologie systémique est de décrire les relations entre les éléments étudiés, mais aussi
les relations entre les différents ensembles. Pour cela, elle se base sur des technologies récentes
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qui permettent de recenser les objets biologiques présents dans un échantillon et d’élucider leurs
interactions (séquençage ADN, microarrays, spectrométrie de masse, . . . ).

Dans le cadre de cette thèse, nous avons étudié une technologie prometteuse — la spectro-
métrie de masse — pour l’analyse de l’ensemble des protéines d’un échantillon, aussi appelée le
protéome. Nous présentons ici quelques éléments permettant de situer l’importance des protéines
en biologie moléculaire.

ADN et Génétique

FIG. 1 – La molécule d’ADN
porte le code génétique.

L’ADN (acide désoxyribonucléique) est une molécule qui porte
l’information génétique de l’être vivant. Il s’agit des plans de
construction de toutes les molécules utilisées par la cellule pour
vivre. Cette information est codée par une séquence combinant
quatre lettres (A, C, T et G). Dans cette séquence, on distingue
un certain nombre de sous-séquences appelées gènes à partir des-
quelles la cellule construit des protéines.

Grâce aux nouvelles technologies de séquençage, on a déter-
miné le nombre de gènes présents dans le code génétique de di-
vers êtres vivants. La principale conclusion de ces études est que
la complexité des êtres vivants n’est que partiellement expliquée
par la complexité de leur génome, et en particulier leur nombre
de gènes. Ainsi l’être humain dispose d’environ 27000 gènes, pas
plus que d’autres espèces animales (souris, 29000 gènes, oursin
23300 gènes) ou végétales (riz, 50000 gènes) [BWB03].

A l’heure actuelle, on explique la complexité additionnelle par :
– certains mécanismes de traduction du code génétique tel

que l’épissage alternatif [MCS05],
– d’autres formes de code génétique comme l’ARN mitochon-

drial (37 gènes chez l’homme, dont 13 protéines [DMW04]),
– mais surtout les interactions et régulations dans l’expression

du code génétique.
Les êtres vivants sont des systèmes dynamiques complexes, et l’on
peut difficilement comprendre leur fonctionnement à partir des
seuls plans statiques fournis par le code génétique.

Les technologies actuelles ne permettent pas d’aborder l’aspect dynamique en détail, mais les
approches de biologie systémique étudient certains types d’interaction entre les gènes. Elles né-
cessitent des méthodes exhaustives pour construire l’ensemble des gènes ou génome. On utilise
aujourd’hui des méthodes de séquençage à haut débit associées à l’identification des gènes par
méthodes bioinformatiques. Elles nécessitent également d’identifier les interactions entre gènes,
ce qui est réalisé à l’aide de microarrays.

Un objectif futur de la biologie systémique consiste à tenir compte des interactions entre les
gènes et leurs produits (ARN et protéines). En effet, la cellule produit les protéines indiquées
par le code génétique. Cependant, la vitesse de production, la quantité et le type de protéines
produites dépend de l’état de la cellule et de son environnement. En particulier, la présence de
certaines protéines permet de réguler l’activité des gènes.
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Protéomique

FIG. 2 – Une protéine humai-
ne : l’hémoglobine.

Plutôt que d’étudier la biologie d’un être vivant à partir du code
génétique, il est parfois plus judicieux d’étudier le protéome. En
effet, ce sont les protéines qui réalisent la majorité des fonctions
cellulaires : métabolisme des nutriments, conversion de l’énergie,
etc. En s’intéressant aux protéines, on espère une relation plus di-
recte entre le stimulus et ses conséquences.

Les protéines sont des molécules chimiques plus difficiles à
manipuler que l’ADN. Elles ont des propriétés chimiques et des
structures plus diversifiées. D’autre part, elles sont moins stables,
et sont actives chimiquement ; la plupart ont une activité enzyma-
tique.

Les protéines sont des chaînes d’acides aminés pris parmi 20. Elles ont au départ une structure
linéaire. Elles sont ensuite assemblées selon plusieurs étapes de maturation qui peuvent modifier
leur séquence, leur donner une structure tridimensionnelle, les regrouper en complexes. Ainsi,
la molécule d’hémoglobine présentée sur la figure 2 est un complexe de quatre protéines, deux
unités α et deux unités β. Les groupement hème indiqués en vert sont des modifications des
protéines qui ajoutent un atome de fer et permettent le transport de l’oxygène.

La structure tridimensionnelle est un élément essentiel de la fonction de la protéine. Ainsi, la
cellule peut réguler l’activité de ses protéines en modifiant leur structure, par exemple en leur
greffant certains groupes chimiques qui perturbent le repliage. D’autre part, certaines maladies
sont directement le résultat de dysfonctionnement dans la structure des protéines (hémoglobine
falciforme, prion, . . . ).

La spectrométrie de masse permet d’étudier le protéome dans son ensemble et à grande échelle.
Cette technique permet à la fois d’identifier la majorité des protéines présentes dans un échan-
tillon et de mesurer leur concentration. Certaines modifications du protocole expérimental per-
mettent d’étudier le repliement des protéines, la formation des complexes protéiques, leurs inter-
actions, etc.

Biomarqueurs

Dans cette thèse, nous nous intéressons au protéome du point de vue de la recherche de biomar-
queurs. En permettant d’identifier et de quantifier les protéines d’un échantillon, la spectrométrie
de masse permet de reconnaître les différences entre individus. Un biomarqueur est alors une
protéine dont la présence ou l’absence permet de caractériser l’état de l’individu. Les procédures
décrites dans cette thèse sont utilisées dans certains centres hospitaliers (à titre expérimental) pour
le diagnostic et le suivi clinique du cancer.

La spectrométrie de masse permet de tels diagnostics lorsque les biomarqueurs sont connus.
Dans le cas contraire, la spectrométrie de masse permet aussi d’identifier des biomarqueurs po-
tentiels, et de suggérer des candidats pour de plus amples validations.

La recherche de biomarqueurs se base sur l’hypothèse suivante. Puisque les protéines effec-
tuent l’essentiel des fonctions cellulaires, les dérèglements associés à une maladie se manifestent
probablement par des modifications du protéome : défaut dans le repliement des protéines, accu-
mulation ou absence de certaines protéines.
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Pour la recherche de biomarqueurs, la spectrométrie de masse présente deux grands avantages.
D’une part, il s’agit d’une technologie sensible, capable de reconnaître des biomarqueurs dans
des échantillons complexes. En particulier, on cherche souvent les biomarqueurs dans le sérum
humain, car son prélèvement est à la fois aisé et sans risque pour le patient, et que l’on sait qu’il
contient des traces de l’activité de l’organisme.

D’autre part, les analyses de spectrométrie de masse permettent d’identifier un grand nombre
de molécules en parallèle. On peut donc soit combiner les informations de plusieurs biomar-
queurs pour améliorer la fiabilité du diagnostic, soit tester plusieurs biomarqueurs dans la même
expérience.

Chaîne d’analyse et traitement du signal

Les meilleurs spectromètres de masse ne sont pas assez performants pour analyser un échan-
tillon de sérum humain sans un certain nombre d’étapes de préparation. Les analyses actuelles
combinent des innovations techniques développées ces vingt dernières années qui ont permis de
passer de l’analyse de petites molécules purifiées à l’analyse de mélanges complexes de protéines.

Les innovations techniques réalisées nécessitent des algorithmes de traitement du signal spéci-
fiques, adaptés à la fois au problème expérimental et au type de données rencontrées. Le volume
de données généré sur une plateforme de spectrométrie de masse, et en particulier pour les ana-
lyses à grande échelle, requiert des algorithmes performants et efficaces. Pour la recherche de
biomarqueurs, il est important de se placer en limite de bruit, et d’exploiter au maximum les
possibilités de l’instrument.

Dans cette thèse, nous avons abordé les procédures de traitement du signal consécutives au cou-
plage de la spectrométrie de masse (MS) à une séparation chromatographique en phase liquide
(LC). La figure 3 présente les différentes étapes d’une analyse LC/MS typique et nous suivrons
cet ordre dans le manuscrit.

Nous présenterons tout d’abord la plateforme d’acquisition des mesures. La préparation des
expériences et la séparation chromatographique appliquent des transformations chimiques aux
échantillons et seront présentées ensembles dans le chapitre 2. Le spectromètre de masse utilise
des principes de physique des particules pour la mesure de leur masse et de leur concentration.
Nous en présenterons les principes et leurs conséquences pour le traitement du signal dans le
chapitre 3.

Avant de présenter nos travaux sur le traitement du signal, nous présenterons l’état de l’art
pour les applications de la LC/MS en protéomique. Les opérations de base consistent à identifier
et à quantifier les protéines d’un échantillon et sont décrites dans le chapitre 4. On combine ces
opérations pour la recherche de biomarqueurs dans le chapitre 5. Cette présentation est nécessaire
pour apprécier l’impact des approches de traitement du signal développées par la suite.

Dans le chapitre 6, nous décrivons les données obtenues sur une plateforme LC/MS, et les
algorithmes de calibration utilisés pour leur mise en forme. Nous nous sommes particulièrement
intéressés à la calibration de la séparation chromatographique et à la calibration des intensités
mesurées.

Les chapitres 7 et 8 s’intéressent au bruit dans les données. Dans le chapitre 7, nous modélisons
le processus de bruit et nous décrivons une méthode d’estimation des paramètres du modèle et
ses propriétés statistiques. Le modèle proposé répond aux deux principaux problèmes de cali-
bration des intensités soulevés dans le chapitre 6. Dans le chapitre 8, on se base sur un modèle
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FIG. 3 – Chaîne d’analyse en LC/MS. Dans cette thèse, nous avons abordé les éléments indiqués
en vert. Les chapitres de la thèse sont représentés par des numéros.

de bruit simplifié pour la détection des signaux protéiques dans les données. L’objectif est de
contrôler le taux de faux positifs pour l’identification des protéines.

Les recherches présentées dans cette thèse ont fait l’objet des articles suivants :
• M. Vandenbogaert, S. Li-Thiao-Té, H. M. Kaltenbach, R. Zhang, T. Aittokallio, and B. Schwi-

kowski. Alignment of LC-MS images, with applications to biomarker discovery and protein
identification. Proteomics, 8 :650–672, Feb 2008.

• S. Li-Thiao-Té. Semiparametric estimation of the gain parameter with quantization errors.
En préparation.

• S. Li-Thiao-Té. Feature detection with the m-n rule in liquid chromatography-mass spectro-
metry images. Soumis.

Le premier article a été scindé en trois parties reprises dans les sections 6.4, 4.4 et 5.2. Il aborde
en effet une approche transversale restreinte de la chaîne d’analyse. Les deux autres articles sont
repris aux chapitres 7 et 8.
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Chapter 1

Introduction

1.1 Presentation

This thesis results from the interactions between a computational biology lab with signal pro-
cessing problems (the Systems Biology Unit at Institut Pasteur) and an applied mathematics lab
(the Centre de Mathématiques et de Leurs Applications, ENS Cachan) with keen interest in real-
world applications. At the interface between these two scientific domains resides a simple instru-
ment, the mass spectrometer, with widespread usage in all branches of science and industry.

The mass spectrometry platform of the Pasteur Institute is set up to analyze the various bio-
logical samples generated in the labs of the Institute. It conducts analyses with exhaustive iden-
tification of the molecules in the sample as the main objective. The platform may also conduct
quantitative analyses that measure the concentration of the identified molecules in the sample.
The results inform researchers on the proteins that are present in the submitted sample, differ-
ences between samples acquired in different conditions, in different living organisms, etc.

The Systems Biology Unit at Institut Pasteur is interested in the network of interactions between
the proteins of a living organism. The “systems” approach consists in studying global properties
of this network, without a priori focus on specific sub-networks. The data used in many “systems”
approaches is generated using a mass spectrometer.

Extensive knowledge of the acquisition process of the data is necessary to fully understand and
implement systems biology approaches. In particular, several preprocessing steps — both exper-
imental and computational — may bias downstream interpretation of the results. Thanks to the
collaboration between the Systems Biology Unit and the CMLA, I have been introduced to many
aspects of the life sciences and of applied mathematics. The present chapter is an introduction
to the context in which proteomics analyses with mass spectrometry are conducted for systems
biology.

1.2 Some “systems” biology

In systems biology, the object of study is a graph that is constructed from an exhaustive list
of biological objects, and from relations (interactions) between them. Several types of biological
objects are currently investigated:

• DNA sequences (genes)
• proteins
• cells and organs
• individuals

15
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The goal of systems biology is to explain biological phenomena based on the relationships be-
tween objects of the same type, but also relationships between objects of different types. To that
end, it uses extensive data collection procedures which are enabled by recent technological ad-
vances like high-throughput gene sequencing, microarrays, 2D-gel/MS analyses, etc.

In the course of this PhD thesis, we have studied a promising technology — mass spectrometry
— for proteomic applications, that is to say the exhaustive characterization of the protein content
in a sample. We hereby provide some elements to outline the biological relevance of proteins in
molecular biology.

1.2.1 Genetics

Figure 1.1: Desoxyribonucl-
eic Acid.

DNA (desoxyribonucleic acid) is the bearer of genetic informa-
tion in living organisms. It provides construction plans for all the
molecules involved in biological processes. Genetic information
is coded with a sequence of four letters (A, C, T and G). Genes
are sequences in the DNA code from which the cell assembles the
proteins.

Thanks to the recent advances in DNA sequencing, the number
of genes is known for a few species. The main conclusion is that
the complexity of life is poorly explained by the complexity of
genetic information, as expressed in terms of the number of genes
in the DNA sequence. For example, the human genome contains
roughly 27,000 genes, which is no more than other animal species
(mouse, 29,000 genes, sea urchin 23,300 genes) or plant species
(rice, 50,000 genes) [BWB03].

Additional complexity is currently explained by

• mechanisms in gene translation like alternative splicing which
produce several different proteins from the same DNA se-
quence [MCS05],

• other forms of genetic code like mitochondrial RNA (37 genes
in human cells, among which 13 are proteins [DMW04]),

• and in particular interactions and regulations in the expression
of the genetic code.

Living organisms are complex dynamical systems, and can hardly
be understood from the static plans provided by the DNA se-
quence.

Current technology cannot tackle the dynamics of biological systems in details. However, sys-
tems biology approaches can probe some aspects of the interactions between genes. They make
use of high throughput sequencing technology to obtain the set of genes. Microarrays, yeast-two-
hybrid and other methods can subsequently be used to determine interactions between genomic
sequences and consequently genomic interactions.

A future objective of systems biology is to take into account interactions between genes and
their products (RNA and proteins). For example, cells produce proteins based on the DNA se-
quence in varying rates and quantities, depending on its needs and the environmental conditions
in its surroundings. In particular, some proteins are signals to increase or lower the activity of
genes.
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1.2.2 Proteomics

Figure 1.2: Hemoglobin, a
human protein.

The biological processes of a living organism can be studied
based on its proteins rather than based on its genetic information.
Most of the cellular functions are carried out by proteins: energy
metabolism, nutrient intake and conversion, signalling, transport,
etc. Proteins are thus generally better related to a given stimulus
than the immutable genetic information in the genome.

As chemical compounds, proteins are more difficult to handle
than DNA molecules. Proteins have more diverse chemical prop-
erties and structure. They are less stable and are usually chemi-
cally active; most have an enzymatic activity.

Proteins are chains of amino-acids chosen among 20 variants. When translated from genetic
information by the ribosome, they have a linear structure. They subsequently undergo maturation
phases where their sequence may be altered, they adopt a three-dimensional conformation or may
be linked to other proteins to make complexes. For instance, the hemoglobin molecule depicted in
Figure 1.2 is a protein complex made of four proteins: two α units and two β units. Modifications
to the amino-acid chain indicated in green are called heme groups; these control the fixation and
release of oxygen.

The three-dimensional structure of a protein is essential to its function. Indeed, one of the pro-
cesses by which cells regulate the activity of proteins consists in modifying their structure, by
attaching chemical groups that affect the stability of protein folding. Some diseases are caused by
mis-folding of proteins. In the case of amyloidoses (prion diseases, Alzheimer’s disease, Parkin-
son’s disease), excessive quantities of mis-folded proteins accumulate in the cells. Some types of
cancer may be caused by mis-folded p53 proteins, which lose the ability to repair DNA damage.

Mass spectrometry is a high-throughput technology to analyze the proteome. The methodology
presented in this thesis can be used to identify large sets of proteins in a given biological sample
as well as measure their concentration. Modifications to the protocol can be used to study protein
folding, the formation and dynamics of protein complexes, protein interactions, etc.

1.3 Biomarkers

Large-scale identification and quantification of the protein content of a biological sample is
of particular importance to biomarker discovery. Biomarkers are proteins which can be used to
characterize the biological state of an individual, diagnose diseases or monitor their progress.
Some clinical studies are already using mass spectrometry for early diagnosis of cancer, and also
to determine the cancer subtype.

Mass spectrometry can be used to detect known biomarkers in biological samples. In this thesis,
we are rather interested in finding new and potential biomarkers based on mass spectrometry
data. After validation, these potential biomarkers can be used to detect diseases but can also
indicate potential drug targets for the pharmaceutical industry.

As proteins are deeply involved in all cellular processes, diseases are reflected in the proteome
by mis-folding of proteins, accumulations of proteins, or absence of some proteins. Biomarkers
are typically sought for in human serum, a highly complex blood extract. Serum is easy to collect
and the procedure incurs no risk for the patient, unlike invasive procedures like biopsy. It is also
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Figure 1.3: Typical LC/MS analysis pipeline. Our work tackles the areas highlighted in light
green. Circled numbers indicate the chapters in which the topic is discussed.

believed to contain trace amount of the proteins produced by the cells throughout the body, and
thus reflect the state of all organs.

For biomarker discovery, mass spectrometry has two main advantages. It can detect very low
amounts of proteins and it can provide information on a large set of proteins in a single experi-
ment. Consequently, biomarkers can be detected in parallel. It is also possible to combine weak
information provided by several biomarkers to increase the confidence in the diagnostic.

1.4 Analysis pipeline and signal processing

Several preparation steps are required before mass spectrometry analysis of a complex sample
like human serum. Mass spectrometry analyses have previously been focused on small molecules,
but recent technological developments now enable the study of larger molecules like proteins.

Specific signal processing algorithms have been developed to cope with the new instrumen-
tation and protocols and the results of their application to complex protein mixtures rather than
purified proteins. Mass spectrometry platforms generate vast amounts of data, especially during
large-scale experiments. This creates the need for quick and efficient algorithms. For biomarker
discovery, sensitive algorithms are needed to detect the potential biomarkers as these are antici-
pated to correspond to low intensity signals.

In this thesis, we have studied signal processing for data generated on mass spectrometry plat-
forms (MS) that are coupled to liquid-phase chromatographic separations (LC). Figure 1.3 pro-
vides an overview of the different steps from sample preparation to biomarker discovery.
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We start with the LC/MS platform. Chemical preparation of the sample is carried out during
sample preparation and liquid chromatography separation. Both will be presented in Chapter 2.
Mass spectrometry analysis uses particle physics to separate proteins. The different instruments
and their principles of operation are presented in Chapter 3. In both chapters, we elaborate in
particular on the elements that are relevant for identification, quantification and biomarker dis-
covery.

To motivate our signal processing methods, we present the state of the art for proteomics appli-
cations of LC/MS instrumentation. The basic tasks are to identify all the proteins in a sample and
to measure their concentration. This is explained in Chapter 4. Identification and quantification
results are combined and compared between experiments for biomarker discovery as presented
in Chapter 5.

In Chapter 6, we present the data acquired on an LC/MS platform, and the preprocessing steps
for data clean up. Preprocessing is of particular importance, and strongly affects the subsequent
analyses. We have studied in more detail the calibration of the chromatographic separation and
of recorded intensity values.

Chapters 7 and 8 deal with background noise in the data. In Chapter 7, we propose a model for
the background noise and its statistical properties. The model provides a new method to calibrate
intensity values. In Chapter 8, we study statistical signal detection in the data. The objective is to
control the false positive rate for identification of the protein signals in the data.

Research presented in this thesis has lead to the following manuscripts:

• M. Vandenbogaert, S. Li-Thiao-Té, H. M. Kaltenbach, R. Zhang, T. Aittokallio, B. Schwikowski.
Alignment of LC-MS images, with applications to biomarker discovery and protein identifica-
tion. Proteomics, 8:650–672, Feb 2008.

• S. Li-Thiao-Té. Semiparametric estimation of the gain parameter with quantization errors. In
preparation.

• S. Li-Thiao-Té. Feature detection with the m-n rule in liquid chromatography-mass spectrom-
etry images. Submitted.

To facilitate the organization of the document, the first manuscript has been split and is repro-
duced in Sections 6.4, 4.4 and 5.2 because it tackles restricted aspects of the analysis pipeline. The
two other manuscripts make most of Chapters 7 and 8.
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Notations and symbols

Notations
LC Liquid Chromatography
MS Mass Spectrometry
Da Dalton, mass unit synonymous to the Atomic Mass Unit (a.m.u). It is defined

as a twelfth of the mass of a 12C carbon atom in its ground state. The mass of
a proton and a neutron are roughly equal to 1 Da.

m, m/z mass-to-charge ratio of an ion. z is the absolute value of the charge.
t, rt retention time
I intensity measured by the mass spectrometer
S peptide signal intensity
N background noise intensity
A area under the curve
Γ Gaussian function
σ standard deviation of a Gaussian function

Glossary

retention time instant at which a protein emerges from the chromatography column.
It is related to the protein’s chemical properties.

fraction simplified sample obtained by purification, extraction, etc.
isotope same molecule with a different number of neutrons
peptide small protein with less than one hundred amino-acid residues
identification determination of the sequence of a protein
quantification measure of the concentration of a protein
biomarker protein with explanatory power in terms of disease classification

21
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Chapter 2

Liquid chromatography

Figure 2.1: Gradient liquid chromatography apparatus.

Biological samples considered in proteomics studies are often too complex for analysis based on
a single mass spectrum. Consequently, current methods use liquid chromatography to fractionate
the sample, and mass spectrometry is applied to each of the fractions.

In the current chapter, we present the sample preparation steps that precede mass spectrometry
itself. We deal successively with chemical sample preparation of the biological sample, enzymatic
digestion of the proteins with trypsin, and chromatography separation. In particular, we explain
some of the compromises that are made during sample preparation and how these affect the
signal measured in the mass spectrometer. For additional information, we refer the reader to
[Lan05, McM07, SKG97].

2.1 Sample preparation

2.1.1 Inactivation of the proteins

Proteins found in living organisms often have an enzymatic activity and can increase the speed
of chemical reactions1. In particular, the cellular function of some proteins is to degrade other
proteins. The action of those proteins must be prevented for storage of the biological sample, or
simply to prevent its transformation during the course of the experiment.

1Some proteins do not have an enzymatic activity. Some are used for their structural properties, e.g. keratin which
is the main component of nails and hair or collagen that gives structure to most tissues in mammals. Other proteins are
used as molecular signals or hormones.

23
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Sample integrity has to be preserved in the short term because experimental analysis of a sam-
ple may take days or weeks for some protocols. This is the case for analyses which use extensive
fractionation of the biological sample, or simply when the analysis is repeated on a sample to
evaluate the reproducibility of the measures. Some samples are kept in the long term, for exam-
ple during clinical trials. This allows the comparison of samples taken at different time points,
with randomization of the experiments.

Sample preparation in LC/MS is the result of several contradictory objectives:

• inactivate the proteins to preserve the state of the biological sample,
• ensure compatibility with liquid chromatography separation techniques,
• ensure compatibility with protein ionization for mass spectrometry analysis.

Figure 2.2: Denaturation alters the folding structure of a protein.

Proteins are inactivated by introducing denaturing chemical compounds in the sample. The
first stage is usually to undo the three-dimensional structure of the proteins, and make them
adopt an unfolded linear structure. As some proteins fold naturally, alkylating compounds are in-
troduced to prevent the formation of secondary structure and chemical bonds between the amino
acids.

In the long term, biological samples are stored frozen as cold reduces protein activity, and
dessicated by vacuum centrifugation for example. The sample is re-solubilized before liquid
chromatography separation, but not necessarily in water. Depending on the actual protocol, the
proteins can be better analyzed in organic solvents like methanol or formic acid.

Chemical compounds added in sample preparation are undesired contaminants. They are
sometimes visible the data set and they interact with the mass spectrometry measurements. Al-
though most of these are small molecules, they can aggregate and form large complexes with size
comparable with the proteins.

The compounds can also saturate the mass spectrometer and hide the protein signal. Con-
sequently, sample preparation protocols are often optimized for some known proteins that are
expected in the results, at the risk of missing others.
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Finally, some chemical compounds can change the elution order of the proteins in the sep-
aration. This prevents the correction of retention time differences between LC/MS images as
described in Section 6.2.

Conclusion Protein denaturation is a required step in the preparation of biological samples for
LC/MS. Unfortunately this modifies the properties of the solvent and of the sample, which makes
it difficult to compare the data collected from different labs.

2.1.2 Protein extraction / depletion

There are several reasons to extract part of the protein population in a sample:

1. Proteins like albumin and immuno-globulins make the majority of proteins in human serum.
These highly abundant proteins are usually filtered out (depletion) to enhance signals from
other proteins.

2. When dealing with cells, the membranes have to be broken, and protein extracted from the
biological matrix.

3. Proteins have a wide range of chemical properties. In particular, membrane proteins are diffi-
cult to dissolve in aqueous solvents. Membrane proteins and cytosomal proteins can be ana-
lyzed separately using adequate protocols.

4. Protein extraction can focus on a restricted population of proteins. For example, centrifuga-
tion can be used to extract only the proteins that correspond to a specific organelle in the cell
(ribosomal proteins, etc.)

The desired proteins are extracted by separating the components of the biological sample. Here
are some examples of the techniques involved:

• Precipitation. Depending on temperature, pH or solvent composition (addition of ammonium
sulfate for example), some proteins precipitate, i.e. form solid compounds that can be separated
from the liquid phase.

• Immunoprecipitation / affinity capture. Some antibodies bind specifically to proteins. They
can be bought from manufacturers and immobilized on metal beads or glass plates. After
the proteins are bound to the antibodies, they can be pulled from the biological sample, and
separated from the solid support.

• Centrifugation can be used to separate blood into serum, red cells and platelets. It can also be
applied to separate molecules based on their size.

• Chromatography is described in Section 2.3.

2.2 Enzymatic digestion

After denaturation, proteins are no longer chemically active. However, they still have a wide
range of chemical properties, and it is difficult to analyze all of them in one experiment.

Peptides are small proteins — only up to a hundred or so amino acids — that have more ho-
mogeneous chemical properties. Current LC/MS analyses operate on peptides because a single
protocol is sufficient and that protocol can be automated. Moreover the mass spectrometer can
focus on a smaller mass range so that the obtained mass spectra are more detailed and the acqui-
sition time is reduced.

Proteins in a biological sample are transformed into peptides by an enzyme which cuts proteins
into pieces. Trypsin is the most commonly used protease in LC/MS-based proteomics. It selec-
tively cleaves the protein sequence after lysine (K) and arginine (R) residues. Tryptic digestion is
set up so that the peptide fragments obtained from the proteins are minimal and cannot be cut
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Figure 2.3: Cutting a protein into peptides by enzymatic digestion.

further. It has the disadvantage that the sample contains many more molecular species; some
proteins can be broken into dozens of fragments.

Example: Tryptic digest of insulin
One form of insulin has the following amino acid sequence:
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFY\

TPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

After tryptic digestion, the following peptides are obtained:
MALWMR

LLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGER

GFFYTPK

TR

R

EAEDLQVGQVELGGGPGAGSLQPLALEGSLQK

R

GIVEQCCTSICSLYQLENYCN

After identification of the peptides in the sample by mass spectrometry, the results are assem-
bled to identify proteins. Each peptide is associated to its corresponding protein; a protein is
considered as identified in the sample depending on the number of identified peptides, and three
present peptides are usually considered conclusive evidence.

A given peptide can be uniquely attributed to a protein as soon as it is long enough. With 6 or 7
amino acid residues, the number of combinations of the 20 possible amino acids is around 64 mil-
lion, and greatly outnumbers the number of human genes (25,000) or human proteins (100,000).

From a peptide sequence, the corresponding protein can be found in a protein database. Ex-
haustive protein libraries can be constructed based on genomic information, and large-scale se-
quencing technologies are available today. Proteins are usually long enough so that several of
its peptides can be used for identification. The main difficulty is to integrate the measurements
obtained from several peptides into a coherent measure for the protein.



2.3. LIQUID CHROMATOGRAPHY SEPARATION 27

Remark Trypsin needs to be inactivated after digestion. Otherwise, even though it is specific
to lysine and arginine residues, it can cut at other sites and produce unexpected non-tryptic pep-
tides. In past versions, trypsin could cut itself and produce trypsin autolysis fragments in the
list of identified peptides. Current commercial versions are modified to prevent autolysis. Addi-
tionally, if the chemical reaction is incomplete, there may be miscleaved peptides in the resulting
peptide mixture, for instance GFFYTPKTR in the previous example.

Conclusion Nearly all LC/MS analyses for proteomics are carried out after tryptic digestion of
the biological sample. This increases the range of proteins that can be analyzed with a single ex-
periment on the LC/MS platform. However, proteins need to be reconstructed from their peptide
fragments.

In this thesis, we will make no difference between proteins and peptides, and we will use both
terms interchangeably. We assume that peptides can be uniquely attributed to their correspond-
ing protein. Protein identification is performed on the basis of identification of peptides. Likewise
protein quantification is deduced directly from the quantification of peptides. How to properly
combine the measurements from several peptides of the same protein is still an open question.

2.3 Liquid chromatography separation

Figure 2.4: Liquid chromatography with a column. As time passes, proteins represented by col-
ored bands progress down the chromatography column. The instant at which a peptide leaves
the column is called its retention time.

Liquid chromatography is a technique to fractionate a mixture of proteins. It is widely used in
conjunction with mass spectrometry because it is easy to interface with mass spectrometry and
acquire mass spectra for each fraction.

Liquid chromatography improves mass spectrometry analyses because each fraction is ana-
lyzed independently. Fractions introduced in the mass spectrometer are simpler and each protein
has a higher relative concentration.

2.3.1 Separation principle

A liquid chromatography column is packed with porous material. When the sample is intro-
duced in the column, the proteins interact with the packing material and their progression is
slowed down depending on their chemical properties. The retention time of a protein corresponds
to the instant it leaves the chromatography column.
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Figure 2.5: A Total Ion Chromatogram (TIC) represents the total amount of proteins as a func-
tion of retention time. The proteins are properly separated when there are peaks throughout the
retention time range.

Proteins can be separated according to three types of chemical properties:

• ion-exchange columns separate molecules based on their charge,
• size exclusion columns separate based on the size of the molecules,
• affinity columns bind to the proteins based on other chemical properties like hydrophobicity,

or affinity with the packing material.

The separation power of a liquid chromatography column is improved when the packing material
is smaller. This has lead to the development of nano-LC separations which improve the sensitivity
of the platform as well as its separation power. Nano-LC methods also require lower amounts
of biological material. Several fractionation steps can be combined (e.g. the MudPIT approach
[LAYI01]) but often at the cost of increased time of analysis and manual interventions on the
instrument.

In reverse phase chromatography (RPLC), proteins are first loaded on the chromatography
column. Then they are eluted (released) when solvent is flowed through the column. By manipu-
lating the solvent composition during the course of the experiment, experimentalists obtain some
level of control on the elution time and separation power of liquid chromatography.

Figure 2.1 shows a common experimental setup where the solvent composition is modified
by mixing two solvents before injection in the column. This procedure, called gradient elution,
improves the separation power by focusing each protein to a small number of fractions. Figure
2.6 displays solvent composition as a function of time when using a linear gradient. Other types
of gradient have been reported, such as exponential gradients or step gradients.

2.3.2 Reproducibility problems in liquid chromatography

As the different separation techniques are based on different chemical principles, they produce
different results, and in particular, the elution order of proteins is not always comparable. How-
ever, even repeated analyses of the same platform with the same experimental protocol can show
large differences.

Liquid chromatography is difficult to reproduce faithfully because it is very sensitive to envi-
ronmental conditions: room temperature, pressure, etc. The liquid chromatography column also
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Figure 2.6: Evolution of the solvent composition in gradient RPLC.

has a limited lifespan of only 1,000 injections. Its separation performance evolves during its life-
time with the deterioration of the packing material and accumulation of chemicals that sustain
extensive washing.

The sample preparation procedures presented in the previous sections also have an impact on
liquid chromatography. They can modify the properties of the solvent and change the retention
time of proteins. They bind to the packing material and may clog under certain conditions.

Experimental variations of the chromatography separation affect the retention times of the pro-
teins. These are mostly global shifts of the retention times, and the relative order of elution is
preserved. Local inversions of peptides are possible but rare. This property is the basis of the
chromatography correction algorithms presented in Chapter 6. More details and references can
be found in [VLTTK+08] (also reproduced in Chapter 6 on page 90).

Summary

In this chapter, we have presented the chemical modifications of the biological sample that
precede its analysis by mass spectrometry. To process complex mixtures of proteins the following
steps need to be applied:

1. inactivation of the proteins to ensure sample integrity,
2. enzymatic digestion of the proteins into peptides to increase coverage,
3. separation with liquid chromatography to improve the detection of low-abundance peptides.

These sample preparation steps create aberrations that can be corrected with signal preprocess-
ing algorithms. Contaminants create chemical noise, which is the main component of noise in
the data. Tryptic digestion implies that protein data has to be reconstructed from several mea-
surements. Liquid chromatography is useful for peptide identification as discussed in Chapter 4,
but its non-reproducibility is a major issue. Chapter 6 presents methods to correct the observed
retention times.

Sample preparation as described in this chapter is applied in the context of large-scale proteome
analyses with exhaustivity as the main objective. As there are no a priori on the types of protein
of interest, this approach is well suited to the untargeted discovery of potential biomarkers.
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When focusing on known proteins, some or all of the previous steps can be skipped. For exam-
ple, when studying protein complexes, denaturation will destroy the bonds between the proteins.
Tryptic digestion is not necessary and whole proteins can be analyzed on some mass spectrom-
eters, depending on their size. Complexes are often extracted from the biological samples and
liquid chromatography may not be needed to separate them.



Chapter 3

The mass spectrometer

Figure 3.1: A mass spectrometer.

3.1 Overview of mass spectrometry

A mass spectrometer separates a flux of ions according to their mass-to-charge ratio, then mea-
sures the intensity of the ion beam by counting the number of ions that impact a detector.

Figure 3.2: Schematic representation of a mass spectrometer

This principle of operation was discovered by Thomson at the end of the 19th century, with
the observation that ion beams are bent by magnetic fields. Mass spectrometry is a technique of

31
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choice because it is very sensitive, quantitative, and because the detected ions can be identified
based on their mass-to-charge ratio.

In the present chapter, we describe the elements of a mass spectrometer:

• the ionizer, which creates ions from the proteins in the sample,
• the mass analyzer, which separates the ions based on their mass-to-charge ratio,
• the ion detector, which measures the intensity of the ion beam.

We present the technical choices for each component, and their consequence on the type of data
acquired by the mass spectrometer. Although we have focused on TOF instruments in the course
of this thesis, the other instruments are widespread and our research applies to most of them in
spite of the technical differences. Additional information can be found in [McM07, Lan05, DA06].

3.2 Ionization

In LC/MS analyses, the proteins are dissolved in the liquid phase when they arrive at the mass
spectrometer. However, mass analysis operates on gas phase ions in vacuum. The ion source has
two tasks. The first one is to transfer the peptides from liquid phase to gas phase. The second
task is to provide peptides with positive or negative charges.

Figure 3.3: The ion source transfer the sample peptides from liquid phase (in blue) to gas phase
(in white). The created ions are then transferred into the vacuum of the mass analysis chamber.

In this section, we describe the two main ionization techniques in LC/MS: electrospray ion-
ization and MALDI ionization. The ionization technique determines what types of signals are
observed in the data, and background noise is different in the two methods.

3.2.1 Consequences of ionization on the data

The ideal case is when the intensity of the ion flux produced in the ion source is proportional
to the concentration of the protein in the sample. Intensity corresponding to different proteins
add to the total intensity. This linear mode of operation is limited by the following experimental
phenomena.

Ionization problems There are many ionization techniques besides electrospray and MALDI.
These two are the main techniques in LC/MS because they are soft ionization techniques. As they
operate at low energy levels, the proteins are preserved during ionization and remain intact 1.

1The parameters are usually set such that the proteins remain intact. It is possible to induce fragmentation in the ion
source, which may be useful to replace MS/MS mode, see Section 4.2
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Ionization efficiency Each ionization technique has its preferred substrates. For instance, in
electrospray ionization, hydrophobic proteins are more easy to ionize than hydrophilic proteins.
Ionization efficiency, i.e. the number of ions divided by the number of proteins, is very different
depending on the chemical properties of the molecule (polarity, affinity, hydrophobicity, etc.) but
also depends on the experimental conditions (temperature, pressure, etc.). A major issue is ion-
ization suppression, when some of the molecules in the sample suppress the ionization of other
molecules [TPS04].

Saturation The ion source has a limited capacity. When the sample protein concentration is
high, only the most abundant are ionized, and low-abundance proteins are suppressed in the sig-
nal. There is no longer a linear relationship between sample concentration and measured signal.

Chemical noise The ion source creates chemical noise, but the process is not well understood.
The ion source is thought to:

• let some of the ions reach the detector without separation in the mass analyzer
• create molecular complexes that randomly fragment into ions during the various stages of mass

analysis.

3.2.2 Electrospray ionization (ESI)

Principle summary In electrospray ionization, the liquid sample is introduced in capillary tub-
ing. A high voltage difference (1 to 6 kV) is applied between the tip of the capillary and the
entrance of the mass analyzer chamber. Charges accumulate at the tip and form droplets that
carry the molecules to the mass analyzer.
More detailed information can be found in [Gas97, CE01]

Figure 3.4: Electrospray ionization. The voltage difference applied between the capillary and
the mass analysis chamber creates an accumulation of charges at the tip of the capillary and the
formation of charged droplets.

Details When a positive voltage is applied to the capillary, proteins with a positive charge ac-
cumulate at the tip. This modifies the surface properties of the liquid phase because the voltage
creates a force with compensates surface tension. Under the right experimental conditions, a
stable Taylor cone is formed at the tip.

At the extremity of the Taylor cone, the accumulation of charges increases electrostatic repul-
sive forces between the ions in solution. When the forces exceed the surface tension of the liq-
uid (Rayleigh limit), small droplets (around 10 µm in diameter) of sample are liberated. These
droplets are charged and they are attracted to the entrance of the mass spectrometer.

Charged droplets contain both solvent molecules and proteins in liquid phase. Before entering
the mass analyzer, the droplets are fragmented further. Droplet fragmentation is the result of two
phenomena:

• during the flight of the droplet, the solvent evaporates, especially if heated. Because of in-
creasing electrostatic forces in the shrinking droplet, the droplets fragment and proteins are
separated.
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Figure 3.5: As droplets are further fragmented, they liberate the peptides and transmit their
charges. The created peptides are focused on the entrance of the mass analysis chamber.

• an equivalent of the Taylor cone is formed at the rear end of the droplet. Smaller droplet are
liberated in a trail.

Droplets are fragmented until the solvent molecules are separated from the proteins and each
protein is by itself, i.e. in gas phase. Charges on the droplet are transmitted to the proteins it
contains.

In electrospray ionization, the ionization process takes place at atmospheric pressure, in contact
with the atmosphere. The capillary is outside the mass spectrometer. The entrance of the mass
spectrometer is thus open to the lab atmosphere, so volatile molecules (perfume, wall paint) can
enter the mass analyzer and contaminate the results.

The capillary used for electrospray ionization is directly connected with the liquid chromatog-
raphy column. As chromatography cannot be interrupted, there is a constant flow of analyte
molecules in electrospray. If these analytes are not analyzed somehow, they are definitively lost.

Type of signal Electrospray ionization typically creates peptide ions with two to three charges;
singly charged peptides and higher charge states are less represented in the results. Proteins with
hydrophobic properties are easier to ionize because they naturally accumulate at the surface of
the solvent.

Positive ion mode is well compatible with tryptic peptides because lysine and arginine resi-
dues are negatively charged and attract positive charges easily. Negative ion mode can be per-
formed under different pH conditions.

3.2.3 Matrix-Assisted Laser Desorption Ionization (MALDI)

Principle summary The sample is deposited on a metallic plate coated with matrix, and placed
inside the mass spectrometer. A laser pulse excites and vaporises a thin layer of the matrix mole-
cules and the proteins. This results in a cloud of gas phase ions above the MALDI plate.
More details can be found in [HPK07].

Details Sample is deposited on a metallic plate that has been coated with a polymer forming a
matrix. Solvent from the sample is then dried, and the proteins are crystallized in the matrix. As
the matrix molecules are largely in excess of the proteins, the proteins are isolated in the matrix.
Matrix and proteins form a solid material on the metallic plate.

When hit by a laser pulse, a thin layer of the matrix + protein compound is vaporised, and
forms a cloud of ions above the plate inside the vacuum of the mass spectrometer. This clouds
contains gas phase proteins as well as clusters of matrix molecules. The matrix polymer assists the
ionization of proteins by providing charges. However, complexes of matrix molecules contribute
greatly to chemical noise in MALDI mass spectra.
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Figure 3.6: MALDI ionization. When hit by a laser pulse, a thin layer of matrix and sample are
vaporised. Ions are formed in the plume abome the MALDI plate.

As the sample proteins are immobilized inside the matrix, the sample can be preserved for fu-
ture analyses. With each laser pulse, only a thin outer layer is destroyed, and enough proteins
remain. One of the problems in MALDI ionization is that the proteins are not uniformly dis-
tributed in the matrix. Consequently, mass analysis is conducted by accumulating several laser
shots from different locations.

Type of signals Maldi ionization usually creates ions with a single positive charge.

Conclusion

Two main ionization technologies are used in LC/MS analyses for proteomics, electrospray
ionization and MALDI ionization. Both can be used for large molecules like proteins, and the
ionized molecules are kept intact.

Electrospray and MALDI do not produce the same signals in the mass spectrometer. One reason
is that electrospray generates ions with more charges. Additionally, the ionization efficiency of
proteins is different in the two technologies.

Both technologies are widely used in proteomics facilities. One advantage of MALDI ionization
is that the sample can be stored for further analysis. However, electrospray is easier to interface
with liquid chromatography: it is possible to consider a higher number of fractions. Another
difference is that MALDI methods are usually used in high-throughput analyses, whereas elec-
trospray methods have a better sensitivity to low concentration proteins.

3.3 Mass analysis

The mass analyzer is the central part of the mass spectrometer. The quality of the results ob-
tained on a mass spectrometry platform is largely determined by the capacity of the mass analyzer
to separate ions based on their mass-to-charge (m/z) ratio. The cost of the platform as well; a mass
spectrometer can cost a million euros.

Principle Charged particles move inside electromagnetic fields according to Maxwell’s equa-
tions. Mass spectrometry consists in designing the electromagnetic field so as to separate the
peptide ions based on their mass-to-charge ratio. Mass analysis operates in vacuum because the
presence of air molecules would slow down the movement of the peptide ions and prevent its
observation.
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We can distinguish two main types of mass analyzers:

• scanning mass analyzers act as a mass-to-charge ratio filter. Only the molecules with a specific
m/z ratio have a stable trajectory in these analyzers (Magnetic sector, quadrupole, TOF).

• ion traps are devices where the electromagnetic field is used to confine the ions inside a trap.
For detection, ions can be selectively ejected from the trap (Ion trap, FT-ICR).

In this section, we present the characteristics of a mass analyzer that are relevant to signal
processing of data in LC/MS. For each type of mass analyzer, we describe its implementation,
and the performance attained in practice. We will use the terms “mass” and “mass-to-charge”
interchangeably.

3.3.1 Characteristics of a mass analyzer

A mass analyzer can be described by the following characteristics:

• mass accuracy and precision
• mass range
• dynamic range
• sampling rate
• scanning speed

The most important characteristics of a mass analyzer are its accuracy and precision, which de-
fine quality of the m/z measurements. Accuracy defines whether repeated measures correspond
to the theoretical value (Law of Large Numbers). In statistics, this corresponds to the bias of an
estimator. Precision defines whether repeated measures are close to each other (Central Limit
Theorem). It corresponds to the standard deviation of an estimator.

Mass accuracy In mass spectrometry, accuracy can be defined as the difference between the
mass of the centroid of a peak in the mass spectrum, and the theoretical mass of the corresponding
ion, as computed from its chemical formula2. Mass accuracy is usually measured in ppm (parts
per million), and given for a molecule of mass around 1,000 Da. For example, a mass difference
of 0.1 Da corresponds to 100ppm accuracy3.

Figure 3.7: Accuracy of a mass analyzer.

Mass precision The precision or resolving power of a mass spectrometer corresponds to the
capacity of distinguishing ions of close mass-to-charge ratios. The resolution can be computed
according to two different methods illustrated in Figure 3.8. Resolution has no unit.

2See the appendix for details on this computation.
3One Dalton corresponds to the mass of a hydrogen atom or to the mass of a proton.
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Figure 3.8: Resolution of a mass analyzer.

Mass range Mass analyzers can separate ions of low molecular weight and up to a certain limit.
TOF instruments in particular can analyze very large molecules like intact proteins. All current
mass spectrometers can analyze the peptide fragments obtained by tryptic digestion during sam-
ple preparation (see Section 2.2).

Dynamic range expresses the relative intensity of ions that can be analyzed without saturation
of the instrument. Some mass analyzers, in particular the ion traps, have a limited dynamic range.

Sampling rate According to the type of mass analyzer, the sampling rate of the m/z axis is
different. In particular, the sampling rate is not uniform for TOF instruments.

Scanning speed The scanning speed is the time required to acquire a mass spectrum. Of course
high scanning speeds are preferable. They require less analysis time, and can be used in conjunc-
tion with quicker LC separations, or to provide more detailed data. The scanning speed of an
instrument can be adjusted but speed is usually traded with instrument sensitivity.

3.3.2 Magnetic sector mass analyzers

Magnetic sector mass analyzers were the first available mass spectrometry systems. They are
not normally used in LC/MS platforms because of the slow scanning speed. We present these
instruments as an introduction to the more complicated setups.
More details can be found in [BH96].

Principle Magnetic sector analyzers use the same physical principle as cyclotrons. Ions travel-
ling in a constant, orthogonal magnetic field adopt a circular trajectory at constant velocity. The
radius of that trajectory is dependent on the m/z ratio of the particle.

Details Let m denote the molecular mass of an ion of charge z. After ionization, the ion is
accelerated in an electric field up to an energy E = zV where V denotes the potential difference.

The particle moves in a straight line at speed v such that E =
mv2

2
.
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Figure 3.9: Magnetic sector mass analyzer.

The ion is then introduced in the magnetic sector. In that portion of the mass spectrometer, the
ion trajectory is bent by the presence of a high intensity constant orthogonal magnetic field. The
radius of the ion circular trajectory is r such that:

zvB =
mv2

r

where B is the intensity of the magnetic field.

One way to scan the m/z range is to modify the intensity B of the magnetic field. This allows
to use a constant radius r and to limit the size of the instrument. The mass analyzer selects the
ions with mass-to-charge ratio equal to

m

z
=

B2r2

2V

Magnetic sector mass analyzers are relatively slow because of the inertia of the magnetic field. In
recent implementations, an array of detectors is used at the exit of the magnetic sector.

Advantages

• high reproducibility
• excellent quantitative performance
• high resolution
• high sensitivity

Limitations

• not compatible with MALDI ionization
• larger instrument size, higher cost
• slow scanning speed

3.3.3 Quadrupole mass analyzers

Principle Quadrupole mass analyzers consist of four precisely parallel metallic rods that are
equally spaced around a central axis. Opposing rods are applied an oscillating radio-frequency
voltage component and a direct-current component. One set is applied the positive part, and the
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other set the negative voltage. There is no magnetic component in a quadrupole mass analyzer.
Depending on the voltage frequency and direct current components, only ions with a selected
m/z ratio have a stable trajectory and reach the exit of the mass analyzer.

Figure 3.10: Quadrupole mass analyzer. Only ions with the selected m/z ratio traverse the space
between the metallic rods.

Details The positively charged rods act as a high mass filter. Only the ions with a m/z ratio
higher than a critical value are transmitted through the center of the quadrupole. Similarly, the
negatively charged rods form a low mass filter. By combining the four rods, ions of a specific m/z
ratio can be selected.

Quadrupole rods can have other functions besides their use as a mass filter. When using only
the radio frequency component, the quadrupole acts as an ion guide. When using only the direct-
current component, the quadrupole can be used as a focusing element is some designs (e.g. a
linear ion trap).

A derivation of the working equations for a quadrupole mass analyzer is beyond the scope of
this discussion, but it is based upon a second-order differential equation known as the Mathieu
equation. A good description of the theory behind both quadrupole mass filters can be found in
[MH89].

Advantages

• good reproducibility
• small instrument size, low cost
• efficient transfer of ions when used as an ion guide

Limitations

• limited resolution
• peak resolution is dependent on the mass of the molecule and must be tuned
• low compatibility with MALDI ionization

3.3.4 Time-Of-Flight mass analyzers (TOF)

Principle In a Time-Of-Flight mass analyzer, the mass spectrometer measures the time neces-
sary for the ions to traverse a tube of predefined length and reach the detector.
More details can be found in [CLT01].

Details In a TOF mass analyzer, the peptide ions are accelerated to the same energy E = zV
where z is the charge of the ion and V is the potential difference used for acceleration. They
acquire straight line motion at the speed

v =

√

2E

m
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Figure 3.11: Time-Of-Flight analyzer with a reflectron.

where m is the molecular mass of the peptide.

Let L denote the length of the flight tube. Then m/z ratio of the peptide is a function of the
time t needed to reach the detector.

m

z
=

2V t2

L2

High ion velocities are reached in TOF instruments. On some instruments, special detectors with
high sampling frequency are employed as described in Section 3.4.

Reflectron Higher resolution is achieved when the peptide ions are focused in the same location,
in spite of their repulsive charges. This ensures that the same energy is provided to all ions. To
further improve the resolution, TOF analyzers use mirrors that reflect the incident ions. Ions with
higher energy penetrate further in the reflectron, fly a slightly longer path, and their time-of-flight
is corrected.

Advantages

• fastest scanning speed
• well suited for pulsed ionization in MALDI
• high sensitivity
• highest practical mass range

Limitations

• requires pulsed ion acceleration
• high sampling frequency detectors have a limited dynamic range

3.3.5 Ion trap mass analyzers

Principle Ion trap mass analyzers focus the peptide ions in a confined space. Ions with a specific
m/z ratio can then be selectively excited and detected.

A quadrupole ion trap is composed of a circular ring electrode and two end caps. Its principle
of operation is similar to quadrupole mass analyzers, and the ion motion correspond to the same
equations (see [Mar97] for more details). The peptide ions are first confined in the space between
the electrodes, then ejected by adjusting the voltage applied to the end caps.

The ion trap has a limited capacity because of repulsive interactions between the peptide ions.
Consequently, such mass analyzers have a limited dynamic range. To improve the focus, the
movement of the ions can be dampened by introducing a neutral gas inside the trap .
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Figure 3.12: Ion trap mass analyzer. Ions are focused in the middle of the ring electrode.

To avoid saturation of the trap, a quick preliminary scan can be used to measure the ion beam
intensity. The number of ions transmitted into the trap is then adjusted automatically.

Advantages

• High sensitivity
• robust, low cost instruments

Limitations

• limited dynamic range
• space charge effects inside the traps, and potential interactions between ions

3.3.6 Fourier Transform Ion Cyclotron Resonance mass analyzers (FT-ICR)

Principle The FT-ICR mass analyzer is an ion trap analyzer. However, instead of detecting ions
that are ejected from the trap, the peptide ions are forced into a circular motion in the trap (“ion
cyclotron”). As the ions turn around, they induce sinusoidal variations in the electrical potential
of the detector electrodes. Fourier Transform is used to measure the rotational frequency of the
ion cyclotron motion.
More details can be found in [MH02].

Details The FT-ICR ion trap is usually composed of six metallic plates forming a (cubic) cell
inside a strong magnetic field. The three pairs of plates are used respectively for trapping the
ions, exciting the ions and detecting the ion motion.

Trapping Ions are focused in the trap by the joint effect of the magnetic field and the trapping
electrodes. As in the magnetic sector analyzer, ion motion in the magnetic field is circular in the
plane orthogonal to the magnetic field direction. This constrains the ions in two dimensions. Trap-
ping in the third dimension is obtained by applying electrical potentials to the trapping plates. As
in the ion trap mass analyzer, focusing is improved by dampening the ion motions with a neutral
gas inside the trap.



42 CHAPTER 3. THE MASS SPECTROMETER

Figure 3.13: Three stages in FT-ICR mass analysis.

Excitation Without excitation, the radius of the cyclotron motion of ions inside the trap is too
small to be detected. A rotating electrical field of strength E0 and frequency ω0 can excite the
peptide ions with m/z ratio such that

ω0 =
zB

m

where B is the intensity of the magnetic field. These ions are said to resonate with the electrical
field.

The rotating field excites the ions which match is rotational frequency. When using a rotating
field with multiple frequencies, the corresponding ions are all excited. A range of m/z ratios can
be excited by using a “sweep” containing all the frequencies in the range. The excitation function
is designed in frequency space, and Fourier transform is used to compute the actual form of the
rotating electrical field. Consequently the FT-ICR is not used as a scanning device, although a
scanning mode of operation is possible.

During excitation, ions with the same m/z ratio retain coherence, and move around in the trap
in a tight packet. As the motion is coherent, the phase of the ions is the same and the motion is
detectable. After excitation, the ion packet has a circular motion with radius:

r =
E0T

2B

where T is the duration of excitation.

Detection The movement of the coherent packet of ions induces a detectable sinusoidal signal
on the detector plates Crzn sin(ωt + φ) where n is the number of ions, φ is the phase and C is a

constant. Fourier transform is applied to measure ω =
zB

m
for mass measurement.

Thanks to the superposition principle in electromagnetic theory, the sinusoidal signals induced
by ion packets of different m/z ratios are additive on the detector electrodes. However, the ca-
pacity of the ion trap is limited, and, as with ion trap mass analyzers, preliminary scans are used
to optimally fill the trap.
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Influence of the magnet strength FT-ICR instruments are costly because of the superconducting
magnets used to generate the constant magnetic field. A high intensity magnetic field benefits

• resolution, which is proportional to the number of rotations of the ion packet inside the cell
• better confinement and stability of the ions, so better trap capacity
• increased mass range

Advantages

• highest mass accuracy and resolution
• non destructive analysis, ions can be cooled then re-excited

Limitations

• limited dynamic range
• subject to space charge effects and ion interactions
• slow acquisition rate

3.4 Ion detection

This section deals with how the mass spectrometer measures the intensity of the ion beam. Ex-
cept FT-ICR instruments, mass analyzers are scanning devices, i.e. ions corresponding to different
mass-to-charge ratio are detected at different time points. We present here the different methods
for ion detection used with scanning mass analyzers. Ion detection in FT-ICR instruments is de-
scribed along with the FT-ICR analyzer.

3.4.1 Principle

The ion detector measures electrical currents corresponding to charge annihilation when pep-
tide ions hit the detector plate. This is the principle of the simplest ion detector device called a
Faraday cup. To improve the sensitivity of ion detectors the signal must be amplified.
More details on ion detection can be found in [Smi04, Wiz79].

3.4.2 Amplification

Mass spectrometers deal with relatively small numbers of peptide ions. For example, the ca-
pacity of an ion trap is on the order of thousands of ions. In mass spectrometry, the ion detector
can detect single ion events thanks to amplification devices.

Amplification is based on secondary electrons produced by the impact of an ion on the detector.
As indicated in Figure 3.14, the secondary electrons then produce additional electrons upon im-
pact on the detector wall. As many as 100,000 secondary electrons can be produced by the impact
of one ion.

Figure 3.14: An electron multiplier.



44 CHAPTER 3. THE MASS SPECTROMETER

In electron multiplication, the intensity of the measured signal is mainly dependent on the
kinetic energy of the incident ion. This is why many of the acceleration methods in mass spec-
trometry provide ions with the same amounts of energy. In particular, triply charged ions do not
produce three times more signal than singly charged ions, although the signal intensity is usually
higher.

To increase the size of the detector, many electron multiplier devices can be coupled on a multi-
channel plate as represented in Figure 3.15.
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Figure 3.15: Multi-channel plates use an array of electron multipliers.

3.4.3 Saturation

An ion detector has a limited dynamic range, and there is saturation when the ion intensity is
too high. The detectors commonly employed in LC/MS systems have a dynamic range around
104, that is to say it can measure intensities on a scale from 1 to 10,000.

To improve the dynamic range as well as the reproducibility of the measures, the mass spec-
trometer uses repeated measurements. A mass spectrum is the sum of a number of micro-scans,
and that number can be adjusted in the parameters of the instrument.

3.4.4 Time-to-digital detectors

TOF instruments have a specific requirement as far as ion detectors are concerned. The typical
flight time of an ion is around 90 ns in a 2m flight path. Consequently the ion detector mush have
a high sampling rate in the time domain.

Time-to-digital converters trade dynamic range with a high frequency sampling rate. They
provide a binary signal, either zero or one, that indicates whether an ion signal is present or not
at a specific time point. These detectors cannot distinguish one ion event from several ion events.
However, their sampling rate is very high, on the order of 100 GHz, so events separated by 10
picoseconds can be distinguished.

To obtain a mass spectrum, a large number of micro-scans are added in a TOF mass spectrom-
eter, around 500. This does not compromise the scanning speed because each micro-scans only
requires microseconds. The dynamic range of the detector is still limited to values between 0 and
500.
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The dynamic range of the time-to-digital detectors is further limited by “dead time” effects.
After a detected ion event, the detector is unable to react to other ion events for some time called
dead time. Based on Poisson counting statistics, dead time correction procedures have been pro-
posed (see for example [SZB94]):

Î = −N ln

(

1 − I
N

)

where Î is the corrected intensity, I is the measured intensity and N is the number of micro-scans.

Conclusion

Mass spectrometers can count individual peptide ions, and so are very sensitive instruments.
That sensitivity is limited by the transmission efficiency of the ion source and of the mass analyzer,
but also by the intrinsic dynamic range of the ion detector.

To count the number of peptide ions, the signal created by the incident ions is amplified with
electron multiplication devices. This amplification factor can be integrated in the ionization effi-
ciency of the peptide.

3.5 Instrumentation

A mass spectrometer is assembled from an ion source that provides charges to peptides and
brings them into gas phase, a mass analyzer that separates ions based on their mass-to-charge
ratio, and an ion detector that counts the number of ions produced.

These elements are usually interchangeable, and there are many combinations available for
purchase. Mass spectrometers are designated with an acronym of the form ESI/FT-ICR/MS or
nanoLC/MALDI-TOF/MS which indicates the type of each element. Ion sources, mass analyzers
and ion detectors can be bought separately and assembled, but the manufacturers provide all-in-
one solutions, driver software as well as maintenance contracts.

Each element has an impact on the acquired signals. The ionization efficiency is different ac-
cording to the ion source, and peptides may or may not be detectable in some setups. The mass
analyzer determines the resolution and accuracy of mass spectra, which is the main ingredient
for identification of the proteins.

To conclude, we present a list of common mass spectrometers employed for LC/MS-based
proteomics analyses, as well as LC/MS images acquired on these instruments. Most of these in-
struments actually combine two mass analyzers; the second one is used for peptide identification,
as will be discussed in Chapter 4.
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Q-Q-TOF TOF-TOF Q-Q-Q Ion trap FT-ICR
Mass accuracy good good medium low excellent
Resolving power good high low low very high
Sensitivity high high good medium
Dynamic range medium medium high low medium
Throughput ++ +++ ++ +++ ++
Electrospray yes yes yes yes
MALDI optional yes optional
Identification ++ ++ + ++ +++
Quantification +++ ++ +++ + ++

Table 3.1: Performance of common mass spectrometers for LC/MS analyses. Adapted from
[DA06].

Figure 3.16: LC/MS image from a LTQ instrument (Linear Ion Trap mass analyzer). Figure 3.16,
Figure 3.17 and Figure 3.18 were generated from the data set in [KEH+08] where a mix of 18
proteins are run on several instrumental platforms.
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Figure 3.17: LC/MS image obtained from a Q-TOF instrument (TOF mass analyzer).

Figure 3.18: LC/MS image obtained on a LTQ-FT instrument (FT-ICR mass analyzer).
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Chapter 4

Protein identification and
quantification

400 600 800 1000 1200 1400

0
10

20
30

40
50

60
70

m/z

In
te

ns
ity

Figure 4.1: A mass spectrum.

Proteomics is an area of analytical chemistry which analyses protein samples. The primary
objective is to identify all the proteins in the sample, and to measure their concentration. Mass
spectrometry coupled with liquid chromatography has distinct advantages for proteomics appli-
cations:

• sensitivity, proteins with very low concentration can be detected and quantified.
• very low requirements on the minimum quantity of biological material. Single cells can be

analyzed [DHM+06].
• large-scale and high-throughput analyses can provide information (identification and quantifi-

cation) on a large portion of the proteome.

A complex sample in proteomics contains more than a thousand proteins or peptides. For ex-
ample, a lysate of yeast cells may contain up to 6,500 different protein species. These proteins are
in a wide range of concentrations. Some estimates report a factor of 1010 between the concentra-
tion of abundant proteins and that of low abundance proteins [DA06]. Some cells may contain
only a few copies of a given protein.

49
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The current capabilities of LC/MS technology is about 1,000 proteins identified in a biological
sample from a single experiment. When using extensive pre-fractionation procedures, this figure
can be improved up to 10,000 proteins, at the cost of weeks of instrument time and sample ma-
nipulation. Quantitative measurements of the concentration up to four orders of magnitude have
been reported.

In this chapter, we present the methods used to interpret LC/MS data, i.e. find the sequences of
the proteins in the sample and their concentration. Protein identification methods are described
in Sections 4.1 to 4.4, and protein quantification is described in Section 4.5.

These methods use technological developments that are specific to LC/MS and that take ad-
vantage of the biochemical properties of proteins. Basic notions in protein chemistry are presented
in the Appendix, and we refer the reader to [Str88] for more in depth coverage.

4.1 Protein identification in MS spectra

Identification of proteins in mass spectrometry is based on the comparison between the ob-
served mass-to-charge ratio of a molecule and the theoretical mass-to-charge ratio of the protein.
The theoretical m/z ratio can be computed with very high precision based on the chemical for-
mula of the molecule. In this section, we present identification of proteins based on isolated mass
spectra. In particular, we show their limitations for large-scale analyses and motivate the use of
methods based on molecular fragments.

4.1.1 Identification of proteins based on their m/z ratio

In a mass spectrum, the only available information for identification is the m/z ratio of a protein
signal. Very high accuracy measurements of the m/z ratio have been used successfully for the
identification of molecules of low molecular weight. Small molecules can be distinguished based
on m/z alone because of the limited possible combinations of atoms. Structure determination is
even possible because chemical bonds between atoms modify the molecular weight.

In proteomics analyses with tryptic digestion, the molecules considered have a molecular mass
between 400 and 6,000 Da 1. These peptides are much too heavy for identification based only
on the molecular weight; this would require much more accuracy and resolving power than is
available in current instrumentation. Moreover, the m/z ratio does not indicate the amino-acid
sequence of the protein, as permutations in the sequence lead to the same molecular weight.

A careful study in [NMA+05] provides a numerical assessment of the required mass accuracy
for m/z based protein identification. For example, in the [400Da − 6, 000Da] interval consid-
ered, there are 400,000 possible tryptic peptides in yeast cells, and 1.7 million in human cells.
[NMA+05] estimate that the required accuracy is on the order of 0.1 ppm whereas the best instru-
ments have an accuracy of 5 ppm.

Complementary information is necessary to supplement the m/z ratio of a protein. The Peptide
Mass Fingerprinting method (PMF) presented in 4.1.2 uses the m/z values of peptides obtained
by enzymatic digestion.

1TOF mass analyzers can measure m/z ratios up to 500,000 Da.
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4.1.2 Peptide Mass Fingerprinting (PMF)

Peptide mass fingerprinting consists in identifying proteins based on the m/z ratio of the pep-
tides obtained by enzymatic digestion. Trypsin is used to cut the protein into peptides, as in
sample preparation (cf Chapter 2). The mass spectrum contains peaks at the m/z ratio of each
peptide.

Example : Insulin B is a small protein with amino acid sequence

FVNQHLCGSHLVEALYLVCGERGFFYTPKT

After tryptic digestion, the following three peptides are obtained:

FVNQHLCGSHLVEALYLVCGER

FFYTPK

T

As indicated on Figure 4.2, the theoretical mass spectrum corresponding to Insulin B contains a
peak for each of the fragments.

0 500 1000 1500 2000 2500 3000
Spectre de masse
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G F F Y T P K

Figure 4.2: Theoretical mass spectrum obtained in PMF of Insulin B.

The observed mass spectrum is compared to the entries of a protein database. From the mass
spectrum, a list of peaks and their m/z ratio is computed. For each protein sequence in the
database, tryptic digestion is performed in silico, and the theoretical mass of the peptides is com-
puted. A protein is identified if a sufficient number of peptides are found in the mass spectrum.

Limitations

• PMF is not applicable in conjunction with liquid chromatography because the tryptic peptides
from the same protein are separated into different fractions and retention times. The method
must be extended for application to LC/MS images.

• PMF is used to identify purified protein samples with no more than two or three concurrent
proteins. Otherwise, there are too many peaks in the mass spectrum, many possible interpreta-
tions and a high possibility of a false positive identification.

• Identification of proteins is dependent on the database. Proteins that are absent from the
database cannot be identified, but exhaustive databases can be constructed based on the geno-
me sequence (see Appendix).
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Peptide Mass Fingerprinting was developed for analysis of proteins separated on a gel. The
proteins in each spot are identified by mass spectrometry. Gel-based proteomics is still in use
because the gels have a higher separation power than liquid chromatography. However, gels are
more difficult to interface with mass spectrometry. For instance, proteins need to be excised from
the gel; the method has low throughput because each gel spot is analyzed separately.

Figure 4.3: Identification of human serum albumin with PMF. The top panel displays the mass
spectrum acquired on a MALDI-TOF platform. The bottom panel represents the amino acid se-
quence of albumin. The letters highlighted in red and the gray bars indicate the peptides that are
found in the mass spectrum.

Summary

Identification of molecules based on their molecular weight is only possible for small molecules
and with very high accuracy instruments. This method is not applicable for proteomics analyses.

Proteins need to be identified based on several m/z measures. Peptide Mass Fingerprinting
is an identification method based on the molecular weight of tryptic peptide fragments of the
protein. It is widely used in proteomics in conjunction with gel-based separation of the proteins.

LC/MS-based protein identification methods use supplemental information. Tandem MS me-
thods require an additional fragmentation experiment inside the mass spectrometer and are de-
scribed in Section 4.2. The methods presented in Sections 4.3 and 4.4 use the retention time of
proteins provided by the liquid chromatography separation.
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4.2 Protein identification in MS/MS spectra

Tandem MS or MS/MS identification is based on peptide ion fragments generated inside the
mass spectrometer. Most mass spectrometers used for LC/MS analyses have a tandem MS mode
of operation. This identification method requires adequate instrumentation, but provides the
most reliable results at the moment. A very detailed discussion of software and methods for
MS/MS interpretation can be found in [HMA06, JDTP05].

In MS/MS mode, two MS spectra are successively acquired. The first mass spectrum (the MS
spectrum) is a standard analysis the contents of the sample as a function of the m/z ratio. It is
used to select m/z values of interest. Once a m/z value is chosen, the corresponding molecules
are fragmented in the mass spectrometer, and the second mass spectrum (the MS/MS spectrum) is
acquired. If necessary, some instruments (in particular trapping instruments) can perform several
stages of fragmentation and MS analysis.

A mass spectrometer cannot usually acquire MS spectra and MS/MS spectra in parallel. The
instrument alternates between the two modes, so MS/MS identification requires instrument time.
While performing MS/MS, proteins continue to elute in the liquid chromatography column,
and the obtained droplets are diverted from the mass spectrometer. Consequently, performing
MS/MS fragmentation reduces the available data for quantification (lower sampling rate of the
LC/MS image) and is limited in the number of identifiable peptides (co-eluting peptides are lost).

Identification is composed of the following steps:

• selection of the parent ion for identification
• fragmentation of the parent ion
• acquisition of the MS/MS spectrum
• interpretation of the MS/MS spectrum.

Figure 4.4: Analysis pipeline in MS/MS based peptide identification. Each step is discussed in
the sections indicated with the circled numbers.
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4.2.1 Selection of the parent ion

Parent ion selection consists in extracting a homogeneous set of ions corresponding to a single
peptide species. This corresponds to selecting ions at specific retention time and m/z ratio in the
LC/MS image.

Selecting a specific retention time is easy. In electrospray ionization, only one droplet is avail-
able for MS analysis at any given time, so parent ion selection is specific to that droplet. In
MALDI ionization, the retention time is selected by focusing the laser beam on a specific spot
of the MALDI plate.

Selection of the ions with a specific m/z ratio is performed by the mass analyzer. Scanning
mass analyzers are easy to use as m/z ratio filters. It suffices to set the filter to the desired m/z
ratio, and all other ions are removed. In ion trap mass analyzers and FT-ICR mass analyzers,
unwanted ions are selectively ejected from the trap.

The time-of-flight analyzer is more tricky to operate as a mass filter because all ions follow the
same path, and m/z separation is based on their time of arrival. A special type of electromagnetic
gate (“Bradbury-Nielson gate” or “Time Ion Selector” [ZBR+95]) is open briefly and only the ions
of interest are allowed through. The Time Ion Selector must be operated at very high speed.

In trapping mass analyzers, peptide ions with the selected m/z ratio are kept inside the trap.
In scanning mass analyzers, only the selected peptide ions reach the exit of the mass analyzers.

4.2.2 Criteria for choosing a parent ion

During large-scale analyses, the objective is to identify as many proteins as possible and all
proteins are potentially interesting. Consequently, there is no a priori or preferred m/z value to
be selected for MS/MS identification. The natural strategy is to consider the most abundant m/z
values for fragmentation.

Parent ion selection is implemented in the driver software provided by the instrument manu-
facturer. Currently, only the natural strategy is available for selecting the parent ions. It imple-
ments the following rule:

MS/MS spectra are acquired for each MS spectrum, and the n most intense
ions are selected, with n a user-defined parameter, usually from three to five.

In LC/MS analyses, most peptides are present in several adjacent fractions. When one peptide
has a high intensity in a given mass spectrum, it is likely to have a high intensity in the following
MS spectra as well. To refrain from selecting the same peptide over and over, mass spectrometer
software implement exclusion lists. These correspond to the following rule:

After selection for fragmentation, a m/z ratio enters the exclusion list for t
seconds. During that time, the m/z ratio cannot be selected for fragmenta-
tion. t is usually on the order of one minute.

There are also inclusion lists which work in a similar way.

The rationale for choosing abundant ions is that MS/MS spectra require a sufficient signal
intensity for interpretation. The drawback is that high intensity ions correspond to proteins that
are usually well-known, whereas potential biomarkers are excepted in low-intensity signals.
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Only a limited number of ions can be selected for MS/MS fragmentation. In electrospray ion-
ization, there is a tradeoff between the number of MS/MS spectra and the number of MS spectra.
During the acquisition of MS/MS spectra, other eluting peptides are lost. This is not a problem
in MALDI ionization because MS/MS spectra can be acquired off-line. However, the separation
power in MALDI is typically lower because less fractions are used.

4.2.3 Fragmentation

There are many fragmentation methods. We will only present Collision Induced Dissociation
(CID) which is the most widespread. In depth coverage of fragmentation methods can be found
in [SV04].

Collision induced dissociation fragments peptide ions by first accelerating them, then colliding
the ions with a neutral gas. Dissociation of the amino acid sequence occurs between the amino
acids. The parameters are set such that from each peptide ion, there is only one fragmentation
event. Consequently, only prefixes and suffixes of the protein sequence are formed.

Figure 4.5: De novo interpretation of an MS/MS spectrum of HGLFGR. Among the observed
peaks, b-ions correspond to prefixes of the peptide sequence, and y-ions correspond to its suffixes.

Example Consider the tryptic peptide HGLFGR. After fragmentation, we expect the following
fragments as in Figure 4.5:

H GLFGR

HG LFGR

HGL FGR

HGLF GR

HGLFG R

The charge of the parent ion is transmitted to its fragments at random. When the parent ion
is singly charged, only one of the fragments receives the charge, and the neutral fragment is not
detected. When the parent ion holds more than one charge, all charge configurations are possible
for its fragments.

In scanning mass analyzers, ions are accelerated for mass analysis, and it suffices to introduce
the collision gas at the exit of the mass analyzer. In trapping mass analyzers, the ions are excited
and undergo a high velocity cyclotron motion. The collision gas is introduced in the trap, and the
fragments are collected inside the trap.

Alternative fragmentation methods like Electron Transfer Dissociation (ETD) are significantly
different from CID because not exactly the same fragments are produced. ETD has a lot of poten-
tial to replace CID because it is better suited to large molecules and because it produces a greater
variety of fragment ions, which benefits the interpretation of the MS/MS spectrum.
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4.2.4 Acquisition of MS/MS spectra

MS/MS spectra are obtained much like MS spectra. In scanning mass analyzers, the analyzer
is used for parent ion selection and only the selected ions exit the mass analyzer. Parent ions are
fragmented at the exit, and a second mass analyzer is used to acquire the MS/MS spectrum. This
is why two mass analyzers are implemented in current instrumentation as shown in Table 3.1 (see
Section 3.5, page 46).

With trapping mass analyzers, only the selected parent ions are kept in the trap. After frag-
mentation, the fragment ions remain in the trap, and the same mass analyzer can be re-used for
acquisition of MS/MS spectra.

Special cases

• Triple quadrupole instruments (Q-Q-Q) have three mass analyzers, but only two are used for
m/z separation. The second quadrupole is used as a collision chamber and operated as a linear
ion trap or ion guide. MS/MS acquisition is performed by the third quadrupole.

• FT-ICR mass analyzers are relatively slow and are not usually used for MS/MS in LC/MS
analyses. Instruments like the LTQ-FT, actually combine two mass spectrometers: a linear ion
trap (LTQ) and the FT-ICR instrument. In MS/MS operation mode, everything is carried out by
the LTQ, from parent ion selection to MS/MS acquisition. The FT-ICR mass analyzers acquires
a high resolution MS spectrum in parallel.

4.2.5 Interpretation of MS/MS spectra based on a protein database

MS/MS spectra are usually interpreted by comparison with a protein database. Although the
fragments are different, the conceptual ideas are very similar to Peptide Mass Fingerprinting. For
every entry in the protein database, the interpretation software predicts the ions fragments and
their m/z ratio based on the chemical formula. Theoretical spectra are compared to the observed
mass spectrum and the best match is reported.

Limitations

• As in PMF identification, only the proteins in the database can be identified, but exhaustive
protein databases can be constructed from the sequencing of the genome.

• Only a limited number of MS/MS spectra are of good enough quality to be interpreted. This
number varies between 20% to 70%.

• Only a limited number of parent ions are selected for MS/MS identification, and many low-
intensity signals are not identified.

• MS/MS identification requires a lot of computational time because of the database search.

Assignment of the correct identity depends strongly on the scoring function used to match
the experimental and theoretical spectra. In these comparisons, the intensity of the peaks in the
MS/MS spectrum is not used, as it cannot be predicted from the protein sequence. The first scor-
ing methods relied on cross-correlation (Sequest [EMY94], Mascot [PPCC99]). Newer methods
cast the score into a probabilistic framework, and report an estimate of the p-value (i.e. the prob-
ability that a given score occurs by chance), for example ProteinProphet [NKKA03]. A review of
these methods can be found in [SCYI04].

Only the peptides in the database that match the molecular mass of the parent ion are consid-
ered. As a consequence, a higher mass accuracy speeds up database searches, and improves the
confidence in the identification results.
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To further speed up database searches, MS/MS spectra are preprocessed, and low-quality spec-
tra can be left out. Other strategies define sequence tags which are sets of peaks that can be at-
tributed to a small sequence of amino acids. Only the peptides in the database that contain the
sequence tag are compared to the MS/MS spectrum.

4.2.6 De novo interpretation of MS/MS spectra

De novo interpretation of MS/MS spectra infers the sequence of the parent peptide without a
protein database. This requires higher quality MS/MS spectra because the search space is much
larger; it contains all possible combinations of the 20 amino acids.

One approach for de novo interpretation is to create a pseudo protein database containing all
possible sequences with matching parent ion mass. Each possible sequence is then scored against
the observed MS/MS spectrum. This approach suffers from combinatorial complexity and is
seldom used.

Current approaches look for matching pairs of peaks in the MS/MS spectrum that differ by the
mass of one amino acid. These pairs are attributed to pairs of fragments, one small and one with
the added amino acid. The amino acid sequence of the peptide is reconstructed step by step.

When the sequence information is incomplete, identification can be achieved by searching a
protein database with the sequence elements found by de novo interpretation.

Limitations

• Even when all the fragment ions are observed, some parts of the peptide sequence can remain
unknown. This is because amino acids like leucin and isoleucin have the same molecular mass.
Some pairs of amino acids also have matching mass, see Table 2 in [JDTP05] for a list of such
problems.

• De novo interpretation requires more computational time and higher quality MS/MS spectra
than database interpretation. De novo is usually less powerful.

4.3 Identification of proteins in LC/MS images (introduction)

4.3.1 Context

MS/MS identification has two main disadvantages. It can only identify a small subset of the
signals in a LC/MS image because of the limited number of MS/MS spectra, and retention time
information provided by the LC separation is ignored.

Protein identification based on aligned LC/MS images trades the instrument time devoted to
MS/MS analyses for higher sensitivity in MS spectra and higher sampling rate. The methods
reviewed in Section 4.4 are applied after correction of retention time differences between different
data sets.

The contents of Section 4.4 have been extracted from my work in [VLTTK+08]. To introduce
the subject, we present in detail the Accurate Mass Tag approach (AMT) described in [ZMQS06]
which is representative of other approaches in the field.
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4.3.2 The Accurate Mass Tag approach for identification

The AMT approach combines the high mass accuracy of an FT-ICR mass spectrometer with a
reproducible nano-LC separation. In that case, protein signals can be identified simply based on
their m/z ratio and their retention time.

Identification based on the position of the signal in the (retention time, m/z ratio) plane puts
strong requirements on the LC/MS platform. According to [NMA+05], even if the retention times
vary by no more than 1% and the m/z accuracy is better than 1 ppm, half of the tryptic peptides
in the human proteome cannot be uniquely identified.

When the complexity of the proteome is lower, as in the case of yeast samples for example, the
requirements for identification are also relaxed. The AMT approach implicitly uses the fact that
not all of the potential peptides can effectively be detected by the mass spectrometer. This leads
to the reduction of the practical proteome in consideration, and has been successful for microbial
and mammalian systems.

The AMT approach consists in two stages:

• First, a series of controlled experiments are used to build a database of Potential Mass and Time
(PMT) tags. MS/MS identification is used to determine the sequence of the peptide signals in
each experiment, and for each signal, its m/z ratio and retention time are corrected with m/z
calibration and retention time alignment as described in Chapter 6. The PMT tag database
contains a list of peptides, with their typical m/z ratio and retention time and their standard
deviation.

• Second, the biological sample of interest is analyzed without MS/MS identification. The pep-
tide signals detected in the LC/MS image are matched to the PMT tag database after m/z
calibration and retention time alignment.

As in the AMT approach, the methods reviewed in Section 4.4 build on the assumption that
peptide signals in LC/MS images can be matched based on their position in the image. To enable
this, it is assumed that retention times have been corrected.

4.4 Peptide Identification in aligned LC-MS images

In this section, we discuss peptide identification in aligned LC-MS images, a major application
area for LC-MS image alignment. This approach is complementary to the classical, direct, protein
identification by LC-MS, where peptides and proteins are identified from fragmentation spectra
generated in the same experiment.

In the classical approach, spectra are identified by searching each spectrum against a protein
or DNA database, by de novo interpretation of the spectrum without a database, or by compari-
son with previously recorded MS/MS spectra [YWH+05]. When applied to complex samples, a
significant limitation of this approach is that only a small fraction of all peptides can be selected
for fragmentation by the mass spectrometer, as the number of possible MS/MS scans in a single
experiment is limited. Typically, only the most intense MS peaks are selected for fragmentation,
leaving less abundant peptides and proteins unidentified [LYK+05]. This limitation can be coun-
tered by multiple LC-MS analyses on the same sample or additional fractionation steps [EF07],
but only at the cost of a major decrease in throughput.

Advances in elution time alignment, as surveyed in Section 6.4, have enabled the alternative
approach, discussed here, called “propagation of peptide identity” [JML+06]. In aligned LC-
MS images, a feature with an associated identification may have similar coordinates as another,
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Figure 4.6: Example of peptide identity propagation. The figures show a small window of the
data presented in Fig. 6.8. After alignment of the two images, the MS/MS identification in the
upper image (cross-hair) can be propagated to corresponding MS features in the other image. A
white rectangle denotes the valid range of putative corresponding MS features.

unidentified features in another image. This proximity in m/z and elution time coordinates may
be interpreted as evidence that the previously unidentified feature was generated by the same
peptide underlying the previously identified feature. As the availability of highly accurate mass
spectrometers and data readily increases, the opportunities to apply this principle multiply, and
many methods have recently been published that exploit it.

In a theoretical study, Norbeck et al. [NMA+05] explore the power of peptide identity propa-
gation in different experimental scenarios. They find that complex protein mixtures give rise to
peptides with very similar m/z values and (predicted) elution times. For robust identification,
a combination of high m/z accuracy and highly accurate normalized peptide elution time (accu-
rate to below 1%) appears to be essential for peptide identity propagation, particularly in complex
mammalian mixtures.

While we discussed the technical aspects of LC-MS image alignment in Section 6.4, we survey in
this Section their applications to peptide identity propagation. Section 4.4.1 covers those approa-
ches for image-based peptide identity propagation, which operate directly on chromatographic
information after image-based alignment, as discussed in Section 6.4.1.1. Section 4.4.2 covers
feature-based approaches – those approaches in which LC-MS image features have already been
detected and aligned, using the methods discussed in Section 6.4.1.2. Section 4.4.3 discusses vali-
dation approaches, a particularly important aspect for a new experimental large-scale approach.

4.4.1 Image-Based Peptide Identity Propagation

Image-based peptide identity propagation is based on the proximity of pixel features across
aligned images. Radulovic et al. [RJR+04] detect rich features by grouping adjacent neighboring
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image pixels with high intensity into a single peak, described by a specific m/z and elution time
range (which they call pamphlet). Larger pamphlets (with more pixels) are processed before
smaller ones. If new pamphlets overlap with more than one defined group, this group is split and
reorganized, such that only a single group is retained from the successive addition of peaks.

Each high-confidence peptide identification, derived by searching MS/MS spectra against
protein-sequence databases with SEQUEST [EMY94] or STATQUEST [KRR+03], is mapped to
a data pamphlet. As a measure of the reliability of peak detection, the mapping is tested for
sufficient peak-to-peptide overlaps. The alignment approach is based on a measure of similarity
between two data sets to calculate the percentage feature (pixel) overlap. It exhaustively searches
for a global optimum using a large set of pamphlets.

Wang et al. [WTF+07] model the contribution of one unit of abundance of a single peptide to
an LC-MS image. This contribution is characterized by the monoisotopic mass and elution time
range, and the collection of all possible such contributions is represented in a peptide element
library. This library is used to obtain an alignment by matching the peak features in each profile
to this common library: peak features from different profiles matched to the same peptide element
are features representing the same peptide and should be aligned.

Given a library, a robust regression scheme is used to find the peptides that are present in
each scan, together with their quantity. As a full peptide element library is usually not available,
a subset is constructed that minimizes a loss function. This subset consists of a set of peptides
deemed present in all input experiments.

The performance of the alignment is assessed both in terms of efficiency of recognizing fea-
tures corresponding to the same peptide across samples, and the rate of false feature alignments
(incorrectly aligned features corresponding to different peptides). The correlation between the
intensities of aligned features between two replicate profiles is used as a measure of alignment
quality: the more falsely aligned pairs, the less correlated the intensities of aligned features tend
to be.

4.4.2 Feature-Based Peptide Identity Propagation

The methods described in this Section are based on preprocessed data, in which image data has
been converted into discrete features. In the AMT-approach by Smith et al. [SAL+02], an early
representative of identity propagation, preprocessed LC-MS/MS data are stored into a database
of trusted features which further serves as the basis for the identification of the features contained
in newly acquired LC-MS images.

The first stage of the AMT approach is based on a number of LC-MS/MS experiments that
focuses on obtaining high-confidence peptide identifications with associated elution times. A
normalization method is used to cluster and normalize run-to-run variations in absolute peptide
elution times. The peptide identifications together with the normalized elution times are stored
as MT tags in an accurate mass and time tag (AMT) database. The second stage of the AMT
approach focuses on exploiting this database for identifying peptides from high-resolution LC-
MS experiments.

A set of software tools (called VIPER [MTJ+07]) has been implemented to discover, align and
match LC-MS image features to the AMT database. The features in a newly obtained LC-MS
image are sorted by mass and broken down into mass bins. Each identified feature in an LCMS
image is assigned a median mass, a NET and an abundance estimate. The elution times of all
LC-MS image features are calibrated using either a linear alignment function or the LCMSWARP
algorithm [JMP+06]. Features are matched to the closest AMT tag, by matching the monoisotopic
mass and calibrated elution times of the features to those peptides in the database, and assigned
its sequence. Ambiguous identifications, the normalized mass and elution time values of which
are beyond the threshold value determined by the scoring scheme, are discarded in the process.

While this approach allows very efficient peptide identification without the need for routine
MS/MS, highly reproducible separations and accurate MS measurements are prerequisites for
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this method. Smith et al. [SAL+02] employ ultrahigh pressure capillary LC combined with FT-
ICR MS. A notable restriction of the method is that only peptides with previous identification in
the training set can be identified in subsequent experiments.

Other approaches more generally combine trusted MS/ MS information in multiple LC-MS
experiments, which enables the exploitation of newly obtained CID-information that can serve to
identify peptides in new, as well as in previous experiments. A common basis for most methods
is a group of LC-MS image features that approximately match in m/z and elution time. If one
or more peptides have previously been identified (by MS/MS identification, a match to the AMT
database, or predicted elution time), their identity may be propagated to the remaining peptides.
Statistical models can be used to assess the significance of the propagation step: the likelihood
to observe a significant difference in m/z or elution time value [JMP+06], or similarly, a feature
overlap- score [RJR+04, MRS+07] or an m/z p-value [JML+06] can be computed.

The PEPPeR system by Jaffe et al. [JML+06] is another sophisticated platform for feature-based
analysis. In a first stage, features in MS spectra are calibrated by mapping confidently identified
peptides to features identified by the Mapquant software [LSJ+06], using relaxed m/z ( ± 25 ppm)
and elution time (0.3 min) tolerances. A least-squares quadratic fit recalibration of m/z values is
based on the identified features and leads to more stringent tolerances for the residual m/z errors
(typically, ± 5 ppm). These tolerances are then used to remap identified peptides to features.

The features with an assigned identity (termed landmarks) serve as the basis for the second
stage, in which new landmarks are sequentially identified by propagation of identities across ex-
periments, before any alignment takes place. To identify a feature in a given spectrum by identity
propagation, a reference mass spectrum is selected in which a landmark peak within the above
stringent tolerance is present. The heuristic rules that allow selecting a best possible reference
spectrum include maximization of overlap of previously established landmarks between the two
spectra. To decide whether the peptide identity is being propagated, a score is computed and
compared against a global threshold, which is chosen against a null model to control the number
of randomly occurring identity propagations.

In the third stage, a coarse elution time alignment is computed by a quadratic fit based on
landmark peptides across all experiments. To deal with experimental outliers, robust statistics
are employed.

In the fourth stage, the m/z axis is partitioned into strips such that each strip represents the
spectrum features belonging to one or more peptides. This speeds up the remaining compu-
tations, and makes the final stage parallelizable. Independently for each strip and each charge
state, the corresponding features are clustered, using a Gaussian mixture model, which assumes
that m/z and elution time vary around their fixed means. The number of clusters (hypothesized
peaks) is determined by the Bayesian information criterion. After post-hoc merging of clusters
that are too close by in terms of the previously determined m/z and elution time tolerances, a
final peptide-identity propagation step is performed among the features within each final cluster.

After a feature-recognition step, Jaitly et al. [JMP+06] divide an LC-MS experiment into N
segments, and a reference experiment into 3N segments. For alignment, a similarity score is
computed between each segment of any LC-MS image, and each segment of the reference experi-
ment. The scoring method is based on the variability of mass and elution time that quantifies the
similarity between parts of the LC-MS images and LC-MS/MS datasets. The similarity score is
computed by dynamic programming to minimize the distance between possible common features
(weighted using a Gaussian model).

Individual features are paired explicitly afterwards, by first transforming the elution time of
each feature into a normalized elution time corresponding to the reference experiment. Next, for
each feature f, the closest feature g in the reference set is found using the lowest Mahalanobis
distance.
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The match score between the set of feature matches f and g corresponds to the log-likelihood of
observing the mass and NET differences given a corresponding bivariate normal distribution (for
mass and elution time errors, which are assumed to be independent, for each individual feature).
Variability in measured elution time is modeled by a Gaussian distribution with small variance,
and allows nonlinear warping on a larger scale.

A tool for high-resolution LC-MS based protein profiling – SuperHirn – has been developed by
Mueller et al. [MRS+07]. MS/MS peptide identifications from a database search (using SEQUEST
[EMY94], and PeptideProphet [KNKA02]) are associated with detected LC-MS image features,
based on correspondence between elution time, charge state, and the theoretical mass of the pep-
tide sequence. In cases where more than one peptide can be assigned to a feature, the peptide
identification with smallest m/z and elution time difference is selected.

An iterative strategy (sketched in Section 6.4.1.2) uses identified features for global alignment.
Common features of two LC-MS images are identified and associated within wide m/z and elu-
tion time tolerances (0.05 Da/ 5 min). These associations are used to compute a feature overlap
score (which depends on the number of common features in two LC-MS images), to assess the
overall similarity of two LC-MS images. The similarity analysis is used to construct a tree that
determines the order in which the pairwise alignment between LC-MS images is successively ex-
tended to a multiple LC-MS alignment. Aligned features from all LC-MS images are stored in
a repository map called “MasterMap”, together with their corresponding MS/MS identifications
and intensity profiles. This map includes all detected precursor ions, both known and unknown,
and their normalized intensities across the range of biological samples.

SuperHirn searches for common features in another image within defined m/z and elution-
time tolerance windows (0.01 Da and 0.5 min). MS/MS identifications are propagated from one
aligned feature to another if the latter has not been already identified by a high-quality peptide
assignment. Subsequently, protein profiles are computed by

1. the construction of LC-MS image feature profiles,
2. the detection of naturally occurring profile trends by K-means clustering and
3. the evaluation of constructed peptide and protein profiles by comparing them to theoretical

abundance profiles.

Specifically, features with identical molecular mass, but different charge states, are grouped to
form a peptide profile that consists of one quantity for each LC-MS experiment. MS/MS identifi-
cations are used to propagate identity to previously unidentified features. Peptides that belong to
the same protein are expected to lead to correlated profiles. To evaluate the correlation of a pep-
tide profile to a target profile, profile scores are calculated to build a distribution of scores. This
distribution is modeled by a bivariate Gaussian mixture model, which is then used to compute a
probability of a true correlation.

Rinner et al. [RMH+07] report an interesting use of SuperHirn for the identification of proteins
in complexes containing the transcription factor FoxO3A in human cells. Experimental data are
generated from co-immunoprecipitation dilution series experiments, which are designed to in-
duce a defined peptide profile specifically for the peptides belonging to the proteins of interest.
By identifying specifically those peptide profiles that follow the expected peptide profile, LC-MS
image features can be selected for targeted MS/MS, leading to the high-confidence identification
of FoxO3A complex members.

4.4.3 Evaluation of Protein/Peptide Identification

Due to the irreproducibility of the LC column, identification of peptides by searching in databa-
ses or by comparing with previously identified features does almost never produce exact matches:
peptide identifications are not certain. Commonly, database search algorithms are used for sin-
gle experiments to calculate the probability of obtaining random fragmentation (e.g. Mascot
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[PPCC99]) or use heuristics (e.g. SEQUEST [EMY94]), which are then converted into probabil-
ities for accurate peptide identification [KNKA02].

The sensitivity and specificity of peptide sequence identifications from MS/MS data can be
significantly improved by performing the same search procedures on data recorded from mul-
tiple technical replicates [LYK+05]. Replicates are obtained by using different instrumentation
and/or technical procedures, and more than one search algorithm can be used [CM05, EHFG05].
However, as thousands of measurements are taken from multiple experiments, the major chal-
lenge concerns to find an effective compromise between sensitivity of detection and rates of false
positive error.

Statistical methods have been developed for evaluation of identification results, such as Pep-
tideProphet [KNKA02] and STATQUEST [KRR+03]. These algorithms use score functions to de-
termine the probability of each putative peptide match by making use of a collection of variables
that are obtained from search engines, such as SEQUEST [EMY94]. By fitting the parameters to a
certain distribution function, correct and incorrect matches can be distinguished.

With rapid advances in large-scale proteomics technology, the need became apparent for me-
thods that improve sensitivity and control of false protein identifications by integrating the results
of multiple experiments. These repeat experiments allow the detection of consistently expressed
peptide features in different experiments. The use of a series of different samples containing pro-
tein mixes with known concentration ratio, and optionally dilution series, are commonly used
[JML+06, WZL+03]. It is to note that database search methods frequently use different assump-
tions and can result in markedly different sets of protein identifications [SOB+06]. The major
problem is that many protein identifications have low reproducibility, and only abundant pro-
teins are reliably identified [CM05].

Peptide MS/MS spectra interpretation can be problematic when low-intensity non-peptide
species are selected for fragmentation, the peptides being examined are not present in the queried
sequence database, or the MS/MS spectra are not of sufficient quality for definitive interpretation.
For these reasons, some degree of ambiguity is usually associated with each peptide identifica-
tion, and previously required either manual inspection or the application of scoring filters based
on how the filters performed on an often smaller and unrelated training dataset. The target-decoy
search strategy provides a way to alleviate manual inspection and improve the search results
both in throughput and accuracy, and is the best available option for analyzing largescale studies
[EG07]. This decoy database is usually created by reversing [PET+03, Han03], or randomizing
[PET+03, WAM+05] the protein sequences of the real protein database.

In the analysis of related samples, a significant difference between the different samples is re-
flected by an increase in the CV, characteristic for an increase in the SD to a normalized m/z or
elution time parameter of the detected features. This, in turn, reflects significance from the point
of view of biological species-content. This stresses the necessity for analytical methods that can in-
tegrate data from multiple experiments, which will likely increase, as common standard datasets
emerge that facilitate the exchange of proteomic datasets from diverse sources [KEH+08].

4.5 Quantification

In mass spectrometry, quantitative measurements are deduced from the intensity of the ion
beam as recorded by the ion detector in two operations. First, an intensity value is computed from
the data using signal processing techniques 2. Then this quantitative measurement is converted
into a concentration based on the gain of the instrumental platform.

2Also called chemometrics approaches.
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In the following, we first describe methods to compute an intensity value from the LC/MS
image in Section 4.5.1. The algorithms presented there are based on the linearity between the con-
centration of a peptide and its computed intensity-value. Elaborate methods have been proposed
to also take into account the multiple signals generated from the same peptide, and improve the
quantification of low-intensity signals.

For converting the intensity value back to a concentration, the main difficulty is that the ioniza-
tion efficiency in the ion source is intricately dependent on the chemical properties of each pep-
tide. At the moment, the conversion factor must be estimated for each peptide, as is described
in absolute quantification (Section 4.5.2). However, in relative quantification (Section 4.5.3), only
the relative concentration of proteins in two (or more) samples are measured. Less experimental
variation are observed in the latter case.

4.5.1 Computing an intensity value

A given protein generates a signal that is distributed over many pixels in the LC/MS image:

• The protein is digested into peptides as indicated in Chapter 2, so many peptide signals at
different retention times and with different masses should be attributed to the protein.

• A given peptide with mass m is ionized to different charge states, which appear with m/z ratios
m/z where z is an integer, usually between 1 and 4.

• A given ion is present in several isotopic forms with m/z differences corresponding to the
additional neutrons.

• Finally, the signal of a homogeneous set of molecules, hereafter called a peak, is distributed over
many pixels in the image because of the limited resolution of the chromatographic column and
the mass analyzer.

Figure 4.7: The simplest quantification method is to compute the integral of a single peak in a
window around the signal.

The crudest method to obtain an intensity value for a peptide is to compute the area under
the curve of a peak (see Figure 4.8); this corresponds to the integral of the intensity function.
Although very simple, this method is widely used because experimental errors — as opposed to
signal processing errors — are usually the limiting factor in proteomics experiments.

Indirect quantification methods have been proposed based on feature detection by template
matching. After optimizing the template parameters, the area under the curve is deduced from
the template shape rather than the sum of the ion intensities [LGR+06, NF07, GMG+99, JPBF+04].
For example, there are five degrees of liberty to optimize the match between a Gaussian template
and the LC/MS image: area under the curve, retention time, m/z and standard deviations in the
two dimensions.
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Figure 4.8: Area under the curve quantification in LC/MS. A corresponds to the intensity of the
peptide signal. B corresponds to the contribution of background noise as estimated in Chapter 6.

In the previous methods, only one peak per peptide is used for quantification. To leverage
additional information contained in the other peaks, several groups have proposed to combine
the templates for each individual peak into a one-dimensional profile similar to a mass spectrum
[WTF+07, STHG+07]. To construct such a profile, we need to know the relative positions of the
peaks and their relative intensity.

Theoretical profiles can be constructed for isotopic motifs. Isotopic peaks are located at the
same retention time 3 and at m/z ratios m0/z + i/z where m0 is the mono-isotopic mass, z is the
charge and i is the number of additional neutrons. The relative intensities in an isotopic profile
can be computed from the chemical formula using a tool such as IPC (Isotope Pattern Calculator
http://isotopatcalc.sourceforge.net/).
In proteomics studies, the relative intensities can be approximated based on the composition of
a theoretical amino acid called averagine [SBM95], or other similar models [BHWW00, VJB08].
Theoretical profiles are the basis for deisotoping and charge-state deconvolution methods (see
[LNRE05] for a review).

Unlike the distribution of signals among isotopic peaks, the distribution of ions among the
possible charge states is difficult to predict. Although the different peptides from a given protein
are present in the same concentration after digestion, they do not produce signals with the same
intensity; this is due to different ionization efficiencies for each peptide. Consequently, theoretical
models do not go beyond isotopic patterns.

Empirical two-dimensional profiles can be estimated from calibration experiments, by using
methods from factorial analysis such as PCA [EGW87], N-PLS [Bro96] or PARAFAC [Bro97].
For more information on these methods and their statistical foundation, we refer the reader to
[LMP00, KHO04]. The intensity measure is obtained after matching the profile to the image.

3because isotopes have nearly identical chemical properties

http://isotopatcalc.sourceforge.net/
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In his PhD thesis [Str08], Gregory Strubel presents a procedure for computing the intensity
value based on two-dimensional profiles. The profile of a protein is a sum of Gaussian peaks.
For each protein, calibration experiments are used to compute the parameters of the profile, i.e.
the retention time and m/z position of the peaks, as well as the relative distribution of intensity
among the different peaks.

To match the computed profiles to the LC/MS image, Gregory Strubel considers a Bayesian
procedure, and selects prior distributions for the protein concentrations, the conversion factor
for each protein, variations of the retention time and additive noise. A Gibbs sampler is used to
simulate the distributions a posteriori and compute the mean value.

This refined algorithm is applied in the context of directed analyses, where the list of proteins
of interest is known, and careful calibration experiments are available to compute the profiles. In
the context of our thesis, the analysis is not directed, and we attempt to identify and quantify all
the components of the biological sample.

4.5.2 Absolute quantification

Absolute quantification is only possible with an estimate of the conversion factor between the
recorded intensity and the concentration of the protein. This factor is dependent on the sample
preparation protocol, but may also depend on the concentration of other proteins in the sam-
ple (competitive ionization). For this reason, precisely calibrated absolute quantification is not a
large-scale method, and is only available in targeted analyses.

4.5.2.1 Calibration curves

To build calibration curves, the intensity of the protein signal is measured in controlled exper-
iments, with known concentration of the protein. The conversion factor is measured as the slope
of the linear relationship between concentration and intensity. After some optimization of the
experimental protocol, it seems relatively easy to obtain linear calibration curves.

This approach is not high-throughput because the calibration curves are peptide specific, and
also depend on the sample preparation protocol. Moreover, it is necessary to produce the peptides
of interest in known concentration to measure the calibration curves. Finally, calibration curves
obtained for purified proteins may not be applicable when the protein is in a complex biological
sample.

4.5.2.2 Internal standards

To remove some of the experimental variations, proteins may be quantified relative to the
known concentration of an internal standard. Internal standards are molecules introduced in
the sample in controlled concentration, and which have the same chemical properties — reten-
tion time and ionization efficiency — as a protein of interest4. However, the molecular weight of
the internal standard must be different from that of the measured protein. Only isotopes match
these requirements. In the case of tryptic digests, [BDA+07] proposed to synthesize isotopes of
the whole protein instead of its individual peptides.

4As ionization efficiency depends on chemical properties, a given internal standard is only adequate for quantification
of one protein.
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Methods based on internal standards are low throughput methods like those based on calibra-
tion curves. Although internal standards can be used on different experimental contexts, they
still need to be synthesized and are limited to the quantification of one protein. Additionally,
only a few internal standards can be introduced in a biological sample without altering its prop-
erties. For instance, standards are likely to hide other small intensity signals from low-abundance
proteins.

4.5.2.3 SRM and MRM quantification

Instead of measuring the intensity of a protein as the area under the curve in mass spectra,
single reaction monitoring (SRM) and multiple reaction monitoring (MRM) methods consider
the intensity of fragment ions measured in MS/MS spectra. Quantification performance is im-
proved because this two-stage filtering approach focuses on the peptide of interest and removes
a large part of chemical noise found in MS spectra. For more details, we refer the reader to
[YC09, YBV08].

4.5.3 Relative quantification

Relative quantification is more precise because a lot of sources of experimental variation are
removed by mixing the experimental samples, and applying sample preparation only once. In
most methods, only two samples can be mixed, which limits the range of applications in biology.
As the protein signal intensity may originate from one sample or the other, the biological samples
are modified to introduce detectable differences in the LC/MS data.

Modification of the samples is usually done with isotope labels; one sample is tagged with a
light label, and the other one is tagged with the heavy label. All proteins tagged with the heavy
label have a fixed additional molecular weight δm with respect to their light counterpart. In
LC/MS images, labelled proteins appear as pairs of signals with the same retention time5 but a
δm/z shift on the m/z axis. δm must be large enough so that isotopic patterns of the two protein
species do not overlap; δm = 4 is usually sufficient.

Methods in relative quantification can be classified depending on the stage of the sample prepa-
ration where the samples are mixed for comparison:

• metabolic labelling modifies the cells or tissues. The harvested samples are first labelled, mixed,
then prepared according to the procedure described in Chapter 2.

• chemical labelling modifies the proteins or digested peptides after denaturation.
• label-free methods do not mix or modify the samples.

4.5.3.1 Metabolic labeling

The earliest point at which stable isotope signatures can be introduced in a sample is during
cell growth or division. This involves changing the culture medium, for example by replacing
light nitrogen atoms 14N with the heavier 15N atoms6. It is more practical to use stable isotope
labeling by amino acids in cell culture (SILAC approach) where only a few amino acids are re-
placed instead of all molecules. Current methods use 13C-arginine and 13C-lysine, which ensures
that all tryptic peptides carry at least one labeled amino acid.

5Isotopes have nearly identical chemical properties.
6In the nZ notation, n corresponds to the number of neutrons in the atom nucleus. The standard form of nitrogen is

14N , the standard form of carbon is 12C, and that of oxygen is 16O. Additional neutrons weigh roughly 1 Da.
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Figure 4.9: Simulated mass spectrum showing relative quantification with isotopic labeling. The
mass spectrum contains two isotopic distributions corresponding to the light (+0 Da) and heavy
(+8 Da) versions of insulin. In this example, the ions are doubly-charged, and the m/z difference
is 4Da.

As the incorporation of the labels and the mixing of the samples precede sample preparation,
metabolic labeling ensures that all sources of quantification errors in the sample preparation are
excluded. Although metabolic labeling of higher organisms such as worms (C. elegans), flies
(Drosophila melanogaster), rats or plants have been reported, this is not a routine procedure for
anything other than cells.

4.5.3.2 Chemical labeling

Chemical labeling of proteins and tryptic peptides is carried out in vitro. Several types of iso-
topic labels can be introduced.

18O labeling incorporates heavy oxygen at the COOH terminus of the peptides during digestion
by trypsin (see Section 2.2). Digestion naturally involves replacing the oxygen atoms from the
COOH function with oxygen from the water molecules in the solvent, and it suffices to perform
the digestion in heavy-oxygen water.

Isotope-coded affinity tag (ICAT) labeling adds a label to the cysteine amino acids in the pep-
tide sequence. The first versions of the tags used either zero or eight deuterium atoms for a 8 Da
mass difference, but lead to retention time differences between the light and heavy proteins. This
has been corrected in newer versions. A major drawback of ICAT labeling is that cysteine is a rare
amino acid, and only a fraction of the peptide mixture can be labeled.

ITRAQ labels are special because the different tags have the same molecular mass. Distinction
between the samples is achieved in fragmentation spectra because fragmentation occurs at differ-
ent sites. Isobaric tags like ITRAQ do not increase the number of signals in LC/MS images, and
can be used to compare several samples, up to eight in the current implementation.
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4.5.3.3 Label-free methods

Although isotopic labels provide the best quantification performance today, they have several
shortcomings. One is that the biological samples are modified, with sometimes limited incorpo-
ration of the isotopic labels; this requires more elaborate algorithms. Another problem is that
the samples need to be available at the same time for mixing. Label-free methods alleviate these
problems, but in turn need reproducible sample preparation and software preprocessing.

Currently, two label-free quantification strategies can be distinguished:

• measuring and comparing the intensity in LC/MS images of different samples
• counting and comparing the number of MS/MS spectra in LC/MS/MS analyses.

Comparing the intensity values between LC/MS images is easy to interpret. However, its im-
plementation in practice is dependent on many signal processing steps that deal with the repro-
ducibility of

• sample preparation (normalization problems discussed in Section 6.8),
• chromatographic separation (retention time reproducibility discussed in Section 6.2),
• the linearity between protein concentration and measured intensity (influenced by the baseline,

cf Section 6.7, and competitive ionization effects, cf Section 3.2).

Reproducibility can be improved by introducing internal standards as presented in Section 4.5.2.

The spectral counting approach [LSYr04] is based on the observation that abundant proteins are
more likely to be selected for MS/MS fragmentation and identification. Relative quantification of
large changes have been demonstrated with spectral counting, but subtle changes require many
MS/MS spectra from the same protein species. Spectral counting benefits from extensive MS/MS
acquisition protocols, both for protein identification and for quantification, whereas the standard
method trades MS/MS-based protein identification with the sampling rate of the peptide signals.

Summary

The main ingredient for quantification is the intensity and in particular the area under the curve
of the peptide signal. Limiting factors are not in the computation of this integral, but rather in the
low reproducibility of the analytical procedures.

When comparing two biological samples, technical variations can be overcome by labeling the
samples with stable isotopes, mixing them, and performing LC/MS analysis of the mixture. As
this is quite restrictive for biological applications, label-free methods are important, although
they provide poorer quantification results. A very detailed review of quantification procedures
in LC/MS can be found in [BSS+07] and in particular Table 4.1 as reproduced below.

Application Accuracy Proteome coverage Dynamic range

Metabolic protein labeling Cell cultures only +++ ++ 1–2 logs
Chemical peptide labeling (MS) ++ ++ 2 logs
Chemical peptide labeling (MS/MS) Comparison up to 8 states ++ ++ 2 logs
Enzymatic labeling (MS) ++ ++ 1–2 logs
Spiked peptides ++ + 2 logs
Label free (ion intensity) Targeted analysis of few proteins + +++ 2–3 logs
Label free (spectrum counting) MS/MS analyses + +++ 2–3 logs

Table 4.1: Quantification methods for LC/MS analyses (adapted from [BSS+07]).
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4.6 Conclusion

In LC/MS data, the position of a signal (its retention time but especially its m/z ratio) is used
for identification, and the signal intensity is used for quantification.

Current instrumentation is neither accurate nor precise enough to identify peptides or proteins
based solely on their m/z ratio. This information is supplemented by the m/z value of (a) tryptic
peptides in Peptide Mass Fingerprinting, (b) fragment ions in MS/MS identification or (c) the
retention time in aligned LC/MS images. The preferred method is MS/MS identification, but it
can only identify a fraction of the signals in the LC/MS image.

For quantification, the label-free comparison of the area under the curve of the peptide signals is
not a precise method because of technical variations in the sample preparation protocol. By mix-
ing the samples to be compared, and after stable isotope labeling, accurate relative quantification
results can be obtained at the cost of additional sample handling procedures and reduced cover-
age of the proteome. Some of the technical sources of variations can be corrected, as presented in
Chapter 6.

Although MS/MS-based methods for identification and quantification (MRM) provide the best
results, these methods are limited in terms of throughput. Fragmentation takes a lot of instrument
time and there is a demand for methods without it. MRM quantification is necessarily focused on
a (known) subset of peptide signals.



Chapter 5

Biomarker discovery

Figure 5.1: Three-dimensional representation of PSA (Prostate Specific Antigen).

5.1 Protein biomarkers

5.1.1 The biomarker concept

Originally, a biomarker is a substance found in the blood, urine, or the tissues of a living organ-
ism that is detected in elevated amounts in patients with a certain disease [LFP03]. This notion of
what a biomarker is has since been extended to biomarkers that are in lower-than-normal abun-
dance and for other applications like disease classification, and monitoring the disease progres-
sion. In statistics, a biomarker corresponds to an explanatory variable.

Several types of molecules can be used as biomarkers. Genetic biomarkers have lead to sim-
ple and efficient tests for genetic diseases. Microarray technology can be used to detect RNA
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biomarkers. However, there is little correlation between the abundance of RNA and the quantity
of the corresponding proteins. As proteins are responsible for most cellular functions, it is be-
lieved that the protein concentration can better indicate the state of the biological system under
consideration.

5.1.2 Biomarker detection for clinical applications

The notion of biomarkers is used mostly in a clinical setting. Biomarkers are particularly use-
ful when they can be detected in samples that can be collected using non-invasive procedures,
without hazard to the patient’s health. Such samples comprise blood, serum and urine and other
body fluids. Tissue samples obtained in biopsy are rather used for diagnostic confirmation be-
cause biopsy requires surgical procedures.

Blood, serum and urine are complex mixtures. Biomarkers are not expected to be prominent in
those samples; LC/MS technologies are promising for detecting biomarkers due to their sensitiv-
ity, i.e. their ability to detect, identify and measure the concentration of low-abundance proteins
in spite of the sample complexity. Even if the disease does not target serum, this fluid permeates
all the tissues in the human body, and traces of the activity of all cells are released in serum. These
are the potential biomarkers.

Because of large natural variations in the biology of individuals (differences in diet, genetic
background, lifestyle and so on), potential biomarkers need to be validated on large numbers of
samples. Consequently, a suitable technology should also be affordable, quick (high throughput)
and reproducible.

5.1.3 Biomarker discovery with LC/MS

Biomarker discovery is the task of finding new molecules (proteins) with predictive power for
disease diagnostic, classification or monitoring. LC/MS addresses the requirements for biomar-
ker discovery in a clinical setting:

• complete proteomes can be analyzed (exhaustive search space),
• sensitivity, the technology can detect and quantify low-abundance proteins,
• high-throughput because LC/MS experiments take on the order of an hour depending on the

LC separation1, and identifies and quantifies thousands of proteins,
• multiple molecular signals can be combined for increased sensitivity and discriminative power.

Single biomarkers are proteins that indicate by themselves the presence of a disease. For cancer
diagnostics, some single biomarkers for cancer are known such as Prostate Specific Antigen (PSA,
marker for prostate cancer) and alpha-fetoprotein (AFP, testicular cancer and ovarian cancer).
However, measurements of tumor marker concentrations are not sufficient for diagnosis for the
following reasons:

• marker levels can be elevated under benign conditions,
• marker level may not be elevated in early stages of the disease,
• many markers are not specific to a particular type of cancer,
• some tumor lead to elevated levels of most proteins, which can be misinterpreted as a normal-

ization problem (cf Chapter 6).

Currently, the main application of tumor markers is for assessing the response to treatment and
to monitor recurrence (e.g. CA19-9 for monitoring pancreatic cancer).

1This does not include the sample preparation phase which may take a few hours. Most of this time corresponds to
tryptic digestion.
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Figure 5.2: Classification of biomarker discovery methods based on the type of input data. Profile-
based methods can be proposed as extensions of the other methods.

Biomarker discovery in LC/MS experiments combines identification of proteins and quantifi-
cation. The basic approach is to find proteins with different concentration levels in the patients
and the controls. When supplied with the list of proteins in the sample and their concentration,
the whole range of machine learning methods are available. Most of the research in the field has
focused on supervised classification algorithms as reviewed in [SM06], including discriminant
analysis, decision trees, neural networks, support vector machines etc.

Current approaches can be classified into three types:

1. Variable selection methods find the proteins that best classify the samples based on protein
intensity. These methods are not specific to LC/MS data, use the results of identification and
quantification but do not account for the mechanism of acquisition of LC/MS images. A review
of these methods can be found in [SM06, HB06].

2. Profile-based methods, first proposed in [PAH+02], try to detect biomarkers as proteomic pro-
files or patterns. These can combine several biomarkers for classification. A nice review of
these methods can be found in [PI06].

3. Alignment-based methods (peak-based or image-based) compare signal intensity between ex-
periments after correcting the retention times in LC/MS images. We have reviewed these
methods in [VLTTK+08], and reproduce the text in Section 5.2.

5.2 Discovery of potential biomarkers from aligned sets of LC-
MS experiments

Recent developments in algorithms for processing LC-MS images have expanded the applica-
tion of LC-MS to many fundamental biological questions, such as the discovery of differences in
protein profiles between two or several classes of biologically distinct samples; e.g. healthy and
disease groups. In particular, alignment algorithms, as reviewed in Section 6.4, are making it pos-
sible to supplant complex labeling approaches with a simpler, label-free, approach that relies on
the direct comparison of aligned images between multiple LC-MS runs.

In this Section, we focus on the labelfree approach and its potential to speed up the discovery
of both molecular markers for dissecting disease processes and novel targets for pharmaceutical
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and/or diagnostics developments for complex human diseases. Since relative protein concen-
trations can be treated as unique and informative indicators of individual phenotypic state, pro-
teomic biomarkers enable the classification of different disease subtypes, progression stages, and
even individual responses to different treatment strategies, thereby allowing the development of
systematic approaches to early disease prevention and treatment [Han03].

Despite its tremendous potential, several pressing challenges remain both in the development
of the technological platforms for quantitative and comparative profiling of complex biological
samples, such as tissues or body fluids [BMEC05], as well as in the development of statistical
and computational methods for effective study design, data analysis and validation of the results
[LE05, HCMB05, MAB+07].

In particular, some authors have questioned the biological relevance and reproducibility of the
first cancer biomarker discoveries, based on SELDI-TOF or MALDI-TOF protein-profiling tech-
nologies from serum samples [Dia04a, Dia04b, BCM05, BMEC05]. It has been observed that the
near-perfect classification results could largely be attributed to the presence of experimental ar-
tifacts that may severely corrupt the LC-MS images, which could be avoided if careful attention
was paid to potential sources of experimental bias before the experiments are run [HCMB05].
Although LC-MS provides an additional dimension of separation, as compared with SELDI or
MALDI techniques, similar considerations on study design and preprocessing methods are simi-
larly critical when applying LC-MS-based protein-profiling approaches to differential analysis (as
will be discussed in Section 5.2.3).

Two types of study objectives are commonly encountered in differential analysis of LC/MS
experiments [SRDM03]:

1. class comparison aims to determine whether the protein profiles are different between the
given classes of samples, (e.g. different stages of breast cancer), and if so, to identify the most
discriminative LC-MS image features. This study objective can be addressed using a standard
statistical hypothesis testing framework, while carefully controlling for the multitude of com-
parisons made [LE05].

2. In class prediction studies, the emphasis is on developing LC-MS image-based multivariate
discrimination functions (or classifiers) that can accurately predict the true class membership
of a new sample according to a set of key features such as detected peaks or image patterns
(here referred to as potential biomarkers). For this type of problem, several machine learning-
based classification techniques or their combinations have been applied to MS data [LE05,
HB06, BAVL06, WZP+06].

In many cases, comparative LC-MS studies deal with both class comparison and prediction prob-
lems, both requiring that class labels of the biological samples are predefined beforehand, while
the differences originate mainly from the type of measured features that are considered as poten-
tial biomarkers.

Although all data points in the aligned LC-MS images represent potential biomarkers, it is im-
portant to identify those key features that are discriminative and robust against both technical
and biological variation present in the data. Such task, called feature selection is typically per-
formed as a preprocessing step to limit the number of features, either using class comparison
(filter approach) or prediction (wrapper approach). These “supervised” approaches are built on
“class labels” that indicate the class for a certain set of samples.

Class comparison and class prediction do not necessarily lead to the same set of features, even
when performed on a single dataset [PPH06]. An alternative approach is to use unsupervised
techniques (clustering), which do not require any class labels, but use the multidimensional dis-
tribution of the dataset to assign the labels. Several data mining-based clustering techniques can
be used both for sample discrimination [HB06], as well as for feature selection and summarization
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[LE05, ACvG+06]. Depending on whether feature selection is performed on pre-processed inten-
sity data or on the detected signal peaks, strategies to identify differences between two classes of
samples can be divided into imagebased and peak-based approaches.

5.2.1 Peak-based approaches

In the conventional analysis workflow for LC-MS data, peak detection is a critical step. The
subsequent analysis steps, including image alignment and biomarker discovery, are based on
comparisons of the resulting experiment-specific lists of detected peaks, in terms of their numeric
attributes like m/z location, elution time and peak height. Through peak detection, it is possible
to reduce the amount of data from millions of image intensities to some hundreds or thousands
of peak-specific features. This was considered crucial when computational power was not as
available as today.

Another advantage of using peaks as basis for biomarker discovery is that a peak detection
step can filter partially both technical measurement noise and confounding biological variation
by focusing on clearly detectable peaks, which are more likely to represent defined proteins, pro-
tein fragments or peptides. Detecting entire isotope patterns instead of individual peaks may
further improve the reproducibility of the results by reducing the number of detected false pos-
itive noise peaks [KO07]. Due to the challenges in peak detection, especially in low-resolution
data, there have recently been a growing number of studies performing direct comparison of the
pre-processed image intensities (reviewed in Section 5.2.2).

An essential prerequisite for systematic biomarker discovery using the label-free LC-MS-based
approach is an accurate and reproducible quantification of differential expression through com-
parison of peak-features between aligned LC-MS runs. Utilizing an IT LC-MS instrument and a
dynamic time-warping algorithm in their MASSVIEW software, Wang et al. [WZL+03] demon-
strated a nearly linear relationship between the LC-MS peak area and the peptide ion concen-
tration for a variety of compounds introduced into human serum, and a modest coefficient of
variation across integrated peak intensities from independently processed samples.

Recently, Wang et al. [WWZ+06] showed that highly reproducible data can be obtained be-
tween replicate LC-MS runs, in terms of nearly ideal Pearson’s correlation for both peak areas and
elution times of identified peptides, when an IT or Fourier transform mass spectrometer is used.
To demonstrate the applicability of their analysis software, QUOIL, for identification in differen-
tial experiments, they also showed that observed average ratios of peak areas relative to those in
a reference sample correlated well with the known abundance ratios.

While the above studies did not contain any feature selection step, Silva et al. [SDD+05] carried
out a detailed peakbased differential expression analysis that relies on detecting relative changes
in experiment-specific lists of features called accurate mass-retention time (AMRT) components.
Their software, Expression Informatics, first performs ion detection in m/z space by a maximum
likelihood-based algorithm that performs de-isotoping, charge-state reduction, and peak quan-
tification. It then detects the AMRT components at the elution time of maximal intensity, if their
intensities exceed a minimum detection threshold. The threshold is defined manually by the user
or automatically by the software.

Utilizing the relatively high mass precision of a Q-TOF instrument, and clustering-based mat-
ching of the AMRT component lists among multiple runs, Silva et al. [SDD+05] were able to
determine differences in relative abundance of a small subset of proteins spiked into a complex
protein background (human serum).

Finally, the software performs multiple pair wise comparisons among the matched AMRT
components between different sample classes and assesses the statistical significance of the ob-
served intensity ratios with the Student’s t-test. However, neither multiple comparison adjust-
ments for the significance levels nor a predictive discrimination between physiologically distinct
phenotypes were performed.
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In another study using high-precision instrumentation, America et al. [ACvG+06] applied a
peak-based differential analysis to identify discriminative protein patterns between tomatoes at
two distinct stages of fruit ripening. Highly complex samples were analyzed by nano-LC coupled
to a Q-TOF MS instrument, using three technical replicates to assess its reproducibility.

Their specific software tool, MetAlign, first performs data denoising (filtering) and reduction
(binning), followed by peak detection and alignment, and then compares peak intensity values of
the replicate LC-MS images between the two classes of samples using a pairwise t-test.

To reduce the dimensionality of the feature space, originally composed of the intensity values
of all significant peaks, the normalized peak lists are further analyzed with a principal compo-
nent analysis (PCA). PCA projection using the first two principal components could already re-
veal a clear separation between the two classes of tomato samples, while the triplicate runs were
mapped close to each other. Although these results are very promising, they do not demonstrate
whether the method can additionally predict the class of an unknown sample.

Radulovic et al. [RJR+04] developed a comprehensive software suite of algorithms and data
mining methods to support large-scale LC-MS-based profiling and biomarker discovery in com-
plex protein mixtures using common experimental procedures and MS instrumentation. For data
preprocessing, it contains signal filtering and amplitude normalization as well as peak detection,
quantification, binning, and alignment steps.

However, no machine learning or data mining algorithms were used in the final biomarker
discovery step, but the discrimination power gained from these advanced image-processing al-
gorithms was evaluated by simply visualizing the peak overlaps between aligned pairs of LC-MS
images. Moreover, the limited number of liver samples extracted from two physiologically dis-
tinct classes of inbred mice that were used in the evaluation (two samples per class for training
and only one for testing its predictions) hinders any concrete conclusions on the predictive power
and hence applicability of these algorithms to practical biomarker discovery studies. Another
potential limitation may originate from binning of the detected peaks according to their nominal
masses, which may result in discretization artifacts and significant loss of relevant information.

5.2.2 Image-based approaches

An inherent disadvantage of the peak-based methods is that detection of peaks in the LC-MS
images is prone to errors, which can complicate the image alignment process and lead to spurious
biomarkers. Accordingly, many groups have proposed an image-based differential analysis ap-
proach that eliminates peak detection and performs the comparisons directly on the pre-processed
LC-MS image intensities.

When the image comparison is based on the original intensity values, numerous additional
features such as peak shape or elution range – which are lost in simple peak detection – are
available for correcting technical distortions in the image alignment phase and for revealing dis-
criminative features in the biomarker discovery phase.

With the image-based approach, however, potentially strong correlation between the image
features as well as technical noise blurring m/z values, and the fact that peptides do not elute
instantaneously should be carefully considered [LE05]. Such a direct approach is also compu-
tationally rather demanding as the intention is to shift complexity from the peak detection to
the image comparison phase, and it was not until recently when computational power became
available enough to allow direct image-based differential analysis methods.

Based on their alignment algorithm, CHAMS, Prakash et al. [PMW+06] carry out the com-
parison of LC-MS images across multiple experiments directly on the image level without data
reduction steps such as peak detection. The alignment results can be conveniently visualized in
terms of the scoring function that quantifies the proportion of similar pairs of m/z and intensity
values between the runs.
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Then, a feature detection algorithm is used on the aligned images to identify those image
patterns that are discriminative or common across the different experiments. As features, Prakash
et al. [PMW+06] consider the measured intensity values, provided that they are large enough and
contained other large intensity values in the nearby spectra and within their isotopic range.

Common features are first searched from the aligned replicate runs under the same condition,
and discriminative features are then identified from the aligned images originating from the dif-
ferent conditions. The intuition behind this approach is that biomarker discovery on the basis
of multiple experiments will be more sensitive and specific than by identifying features first and
then comparing these across multiple experiments.

Preliminary evidence supporting the benefits of the algorithm in biomarker discovery is de-
monstrated on data from several instruments, ranging from LCQ to Q-TOF and LTQ. However,
Prakash et al. do not perform comparative evaluations in terms of either class comparison or
class prediction performance. Moreover, the proposed algorithm was evaluated only visually in a
rather simple experimental setting, in which one spiked-in peptide was added into a background
mixture consisting of only four proteins.

Wiener et al. [WSDY04] introduced an automated differential mass spectrometry method (dMS)
for detecting significant differences between multiple images obtained using a labelfree LC-MS
approach. The method directly compares intensities at each elution time and m/z ratio, and out-
puts a ranked list of differences between samples under two conditions. No actual alignment was
originally used but the measurements from different runs were made comparable by binning the
intensities into a grid using equally sampled points for both m/z ratio and elution time.

Multiple LC-MS runs were used for accounting the variability in the measured intensities, thus
enabling detection of subtle but consistent differences also in low-abundance peptides, while ig-
noring large but irreproducible differences in peptides present at large concentrations. Statistical
significance of the difference in total intensity at each bin between the two given conditions was
assessed with a t-test. Technical variation that may confound the true differences was reduced by
considering those intensity changes only whose statistical significance persists in time intervals
longer than a given time limit.

Good sensitivity and specificity of the dMS method was originally demonstrated in a con-
trolled experiment involving several spike-in mixtures with known peptide differences analyzed
with an IT instrument [WSDY04], and recently a modified version was re-evaluated on similar
experiment using a Fourier transform instrument [MWS+07].

SpecArray, by Li et al. [LYK+05], is a software suite that takes a set of LC-MS data as input
and generates a peptide versus sample array, storing the relative abundance of peptide features
matched in all samples. A peptide extraction algorithm defines peptide features by considering
the peptide’s monoisotopic mass, charge and elution time and uses MS signals to determine the
abundance and the S/N of the feature. Peptide features occurring in repeat LC-MS analyses are
combined to yield unique peptides, possibly comprising different charge states.

A pattern-matching algorithm is applied to align peptide features between different samples
(based on their charge, mass and calibrated elution time), by evaluating an elution-time calibra-
tion curve between any two samples, in order to correct any elution time shifts between two
LCMS analyses. Information on discriminatory peptides is collected, only after which targeted
MS/MS is used to identify corresponding proteins.

Identification of discriminatory peptide features between samples of different characters is
done by subjecting the peptide array to unsupervised clustering analysis (hierarchical or k-means)
or to discriminant analysis (Student’s t-test or linear discriminant function), and by consequently
evaluating the p-value of the discriminatory peptide features for relative abundance in the pep-
tide array.

In an experiment aimed to profile serum proteins of five male and five female mice, peptide
features were discovered that distinguished male mice from female mice, the difference in pro-
teins of which appear to be insignificant from a statistical point of view.
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Listgarten et al. recently conducted a very comprehensive LC-MS-based computational bio-
marker discovery study [LNR+07]. Their HMM-based alignment approach uses a continuous
profile model that performs the elution time alignment and amplitude normalization simultane-
ously.

After the preprocessing phase, a 2-D Hamming filter is applied separately to each of the
binned intensity matrices to correct for small local distortions in the aligned image intensities,
originating, e.g. from binning artifacts. Similar to Wiener et al. [WSDY04] they evaluate the
intensity differences at each image bin between two classes of samples using a t-test. However,
instead of using a defined minimum threshold on the time intervals, Listgarten et al. [LNR+07]
apply once again a 2-D Hamming filter but this time on the matrix consisting of the bin wise
t-statistic values to leverage the differences across both dimensions.

The method is tested on a controlled human serum spike-in experiment analyzed with an IT
MS, showing that at the t-statistic level corresponding to recall of 50% and 50% precision could be
obtained when using seven replicates. While the class comparison accuracy is relatively far from
the optimal of 100%, they show that a perfect class prediction result, in terms of cross-validation,
can be achieved using a regularized logistic regression classifier with features extracted from a
14-D PCA projection of the image intensities [LNR+07]. The utilization of all the intensity bins,
however, limits the usefulness of the classifier as a practical diagnostic tool, which typically has
to rely on one or a few biomolecules.

5.2.3 Challenges in computational biomarker discovery and validation

The above-mentioned initial investigations support the potential of the label-free LC-MS-based
approach to protein biomarker discovery. Due to the small sample sizes, however, most of these
studies could not thoroughly evaluate the predictive power of the algorithms but mostly demon-
strated the reproducibility and discriminative power of the techniques using statistics like Pear-
son’s correlation or Student’s t-test.

While such evaluations are useful as initial proof-of-concept and, later, for reducing the num-
ber of potential biomarkers, the generalizability, and hence the true benefits for practical biomar-
ker discovery studies, can be assessed only by re-evaluating the computational predictions on
independent data sets [MAB+07, LW05].

In the absence of enough samples to allow dividing them into two distinct training and test
groups, cross-validation can be used to limit the risk of over-fitting [SRDM03]. Even if LC-MS
profiling is used merely as exploratory tool, it may still be useful to first assess the generalizability
of the potential biomarkers computationally.

After the reproducibility of the measurements has been verified, confirming the reproducibi-
lity of the prediction accuracy on independent test samples should be considered as a minimal
necessary condition for the validity of the classifier, and of the features, it is built on. If the repro-
ducibility of these candidate biomarkers is preserved on independent samples as well, one may
consider proceeding to the next phases of biomarker development, involving clinical immunoas-
says and longitudinal studies [LW05].

Assessing the generalizability of the discovered features using blinded and heterogeneous sam-
ples is especially important when using large numbers of LC-MS image-based features extracted
from the observed intensity distributions.

While such morphological characteristics can facilitate the image alignment and biomarker
discovery tasks, this extra information can sometimes be strongly misleading and irreproducible
due to many sources of technical measurement variability, e.g. accidental co-elution of features or
spurious features that present noise or background ions. Such artifacts can be easily overlooked
when relying on automated feature finding methods [CBFC06]. However, proper validation of
the results (e.g. by cross-validation) has the potential to eliminate such spurious image features.

In addition to the technical variability, there also exist many sources of biological variabil-
ity, for which treatment is beyond the capacity of standard preprocessing techniques and cross-
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validation studies if they are only performed on a set of similar samples. Even in the case of a
single LC-MS dataset, the cross-validation prediction accuracies can be very similar, even though
the discovered set of key features overlap only modestly, depending on the subset of individuals
used for feature selection. This is because the global MS experiments do not only express the phe-
notypic differences of interest but also many other confounding factors attributed to differences
within or between individuals that are related to other aspects of the physiological state than the
actual phenotype of interest [HMF+05].

In many respects, the computational challenges in the MS-based biomarker discovery strate-
gies are very similar to those already encountered when using gene expression profiling with
high-throughput microarray [SRDM03]. In particular, most of the statistical issues suggested in
the above-mentioned LC-MS-based differential analyses are standard in microarray data analysis
[ACPS06]. These include, e.g. the observation that a simple fold change criterion is not as effec-
tive as the t-test statistic, that a non-parametric test may in some cases be preferable [MCK+05], or
that outliers can seriously bias the statistical values, and that the effect of multiple testing should
be corrected [WWZ+06].

Additional issues that also could prove to be useful in the analysis of global LC-MS data in-
clude: (i) the utilization of variance shrinkage in class comparison to improve the variance esti-
mates when sample sizes are small (modified t-tests), (ii) estimation of false discovery rate (FDR)
rather than controlling for family wise error rate (FWER), and (iii) the merits of different types of
resampling techniques (e.g. bootstrap or permutation) in non-parametric tests or in test statistic
selection [ACPS06, EFLA07].

Perhaps the most critical step that affects all the downstream analyses is the experimental
design, including the decision of the plausible sample size and the type of replicates used. First,
standardized experiments can make it possible to combine data sets from different laboratories
and thereby increase the statistical power. Secondly, while technical replicates allow estimation
of the measurement reproducibility, biological replicates are essential when the aim is to make
general inferences about populations through sample data, as is the case in biomarker discovery.

Since label-free LC-MS-based profiling is an active area of research and development, the rela-
tive strengths and weaknesses of this approach to protein biomarker discovery have not yet been
fully elucidated, and it is likely that new and improved methods will be introduced in the near
future. While there is a fundamental lack of any systematic comparative studies, the image-based
approach appears attractive because it operates on the complete intensity data and therefore does
not lose any information valuable for image alignment and biomarker discovery. Accordingly,
warping and matching images directly, rather than developing yet more elaborate peak detection
techniques might be a promising direction.

While most current methods assume that the image features are directly comparable after
the elution-time alignment step, compensating for variation in both dimensions could further
facilitate the matching between the corresponding peptide signals, similarly to the alignment of
2-D gels [DDY03, ASNN05].

Well-designed LC-MS experiments and comparative studies will be needed to fully elucidate
the real benefits of the different methods, relative to those from more traditional protein biomar-
ker discovery approaches based on 2-D gels, isotope labeling, or MALDI technology [WAF+03].
Traditionally, different researchers have applied varying validation methods to non-standardized
and rather small data sets to evaluate their customized algorithms and software solutions. Freely
available reference datasets covering multiple instrumentation platforms, that are becoming avai-
lable [KEH+08], allow direct comparisons of relative merits of different approaches that are likely
to be closely linked to the precision of the MS instrument being used [LNR+07]. For comparing
biomarker discovery approaches, however, public datasets with a sufficient number of biological
replicates are critically needed.
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After candidate features have been detected and validated, they can be analyzed at the MS/MS
level or using identification approaches reviewed in Section 4.4. Identification of the potential
biomarkers is critical for understanding the mechanisms underlying disease processes and if the
panel of key biomarkers is to form the basis of a simplified and widely adopted diagnostic test.

Due to the limitations of the present technology to detect the subtle changes in the abundance
of many important biomarkers from complex samples, like bodily fluids, it has been argued that
differential analyses should be performed on a selected set of disease-related candidate proteins
only [AAC+05]. The potential limitation of such targeted approach is the possibility of biased
selection and limited usability when dealing with less-studied pathological conditions. The re-
quirement of using only peptides with reliable identification in a particular experiment can also
be problematic since the MS/MS experiments are relatively time-consuming and incomplete for
complex mixtures, which increases the risk of missing several protein features of interest and
therefore makes global comparisons extremely limited.

Image-based approaches can avoid these problems by first identifying all discriminative and
reproducible image features from the multiple LC-MS runs, without relying on any prior infor-
mation on the proteins of interest or selected peak model. In a second step, only those image
regions could then be subjected to targeted MS/MS analyses for revealing protein evidence. This
data-driven approach to biomarker discovery may not only save computation time but has also
the potential of providing more sensitive results than traditional proteomic approaches.

5.3 Summary

LC/MS is a technology with a lot of potential for biomarker discovery because it combines sen-
sitive detection with large-scale coverage of the proteome, identification of the interesting proteins
and quantitative information. It also only requires little amount of biological material.

Biomarker discovery corresponds to finding explanatory variables, often in a supervised classi-
fication context. From the point of view of machine learning and statistics, this is a daunting task
because individuals are few and there are thousands of observed variables. A related problem is
to find differentially expressed genes from microarray data.

Standard machine learning approaches can be applied to the list of proteins and their quan-
tification information. However, these methods ignore the processes involved in identifying and
quantifying the signals and fail to detect some of the biases. One current research area uses the
intensity measurements directly, sometimes without identifying the signals, as reviewed in Sec-
tion 5.2. Another is to find groups of biomarkers or proteomic profiles that combine information
from many protein indicators for increased sensitivity and specificity.
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LC/MS images and preprocessing

Figure 6.1: An LC/MS image

A LC/MS platform is an instrument of great precision, but it is also very sensitive to experimen-
tal conditions. Consequently, measurements acquired on a LC/MS platform are subject to many
distortions that need to be corrected before subsequent analyses. In this chapter, we present the
types of data contained in LC/MS images and the associated preprocessing methods: retention
time alignment, m/z calibration and intensity calibration.

Preprocessing algorithms affect all the later analyses carried out on the data. The following ta-
ble summarizes the effects of preprocessing on protein identification, quantification and biomar-
ker discovery. For example, intensity calibration affects quantification and biomarker discovery
but not identification.
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Retention time Mass-to-charge Intensity
Identification + +
Quantification + +
Biomarker discovery + (+) +

In LC/MS-based proteomics, identification of the proteins in the sample is based on the reten-
tion time and m/z ratio of each signal, but hardly on its intensity. All identification methods use
the m/z value as the primary information, and require accurate calibration of the m/z values. In
image-based identification as described in Section 4.4, the retention time of a signal supplements
its m/z value on low m/z accuracy instruments or in the case of complex proteomes.

Quantification of proteins is based on the intensity of the signal. Intensity calibration is used to
remove the contribution of background noise to the signal intensity, and remove systematic vari-
ations in the sample preparation protocol. Retention time calibration is required for comparing
pixel intensities in different LC/MS images for label-free quantification approaches (see Section
4.5).

Preprocessing affects biomarker discovery through the combination of identification and quan-
tification. Methods based on the comparison of unidentified, raw image intensities as described
in Section 5.2 depend directly on accurate retention time alignment and intensity calibration. Me-
thods based on the comparison of lists of proteins rely on the results of identification and quan-
tification algorithms and are affected indirectly.

In this chapter, we describe the LC/MS images to be analyzed and the preprocessing algo-
rithms. We first give an overview of the type of data used to make LC/MS images as well as
numerical details on typical and ideal experiments in Section 6.1. This gives an indication of
the potential and of the limits of signal processing for LC/MS images. We then proceed to the
calibration of each type of measurement acquired on LC/MS platforms:

• retention time correction is presented in Sections 6.2, 6.3, 6.4 and 6.5,
• m/z calibration is presented in Section 6.6,
• intensity calibration is presented via baseline removal in Section 6.7 and intensity normalization

in Section 6.8.

6.1 LC/MS images

This section presents data acquired on a LC/MS platform. We describe the data type but also
the content of LC/MS images in terms of signals, noise and contaminants. The examples provided
insist on the fact that LC/MS images are quite different from natural images and that they require
specific processing algorithms.

If not otherwise noted, the LC/MS images in this chapter were generated from the data set in
[KEH+08]. This data set corresponds to the analysis of a standard protein mix of 18 proteins on
different LC/MS platforms, and is publicly available for download at
http://regis-web.systemsbiology.net/PublicDatasets/

6.1.1 Type of data

Detection The ion detector in the mass spectrometer measures the intensity of the ion beam
after separation in the mass analyzer. Depending on the type of detector, the intensity is reported
as floating-point values or integer values. These are always positive numbers. In particular,
time-to-digital apparatus used in TOF instruments usually report integer numbers which should

http://regis-web.systemsbiology.net/PublicDatasets/
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correspond to the number of ions reaching the detector. On FT-ICR instruments, the amplitude of
the Fourier transform of the measured signal is reported as a positive number.

Mass spectra Mass spectra are histograms, i.e. they report the intensity of the ion beam as mea-
sured by the ion detector as a function of m/z value. Although scanning of the m/z range takes
time, this is negligible compared to LC separation, and a single retention time is attributed to all
the data points that belong to the same mass spectrum. Each mass spectrum is presented as a
vertical column in the LC/MS image.

Figure 6.2: Coupling between LC separation and mass spectrometry. A mass spectrum is acquired
for each droplet (fraction) eluting from the LC column.

LC/MS images When mass spectrometry is coupled to LC separation, the mass spectrometer
records one mass spectrum for each fraction. In electrospray ionization, the retention time cor-
responds to the time point at which the sample droplet is transferred from the tip of the column
to the mass analyzer. In MALDI ionization, the coupling is done off-line: the droplet is first de-
posited on a metal plate and mass analysis can be performed at later times.

Mass spectra are naturally ordered on a retention time axis. Following on this idea, mass spec-
tra are usually assembled into LC/MS images such that each mass spectrum corresponds to a
column in the image. In most setups, signal from a peptide species is distributed over several
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consecutive fractions, and thus consecutive mass spectra. This elution profile is the basis for the
feature detection method presented in Chapter 8. In the figures, the horizontal axis is not reten-
tion time but mass spectrum index in the data set because MS spectra are not acquired at evenly
spaced time points.

MS/MS spectra Fragmentation spectra are ordinary mass spectra of a particular sample as de-
scribed in Chapter 4. They share the same characteristics as their MS counterpart. On the order
of three to five MS/MS spectra are interleaved between each MS spectrum in standard protocols.
Few protocols acquire more than a dozen MS/MS spectra for each MS spectrum because liquid
chromatography cannot be interrupted and sample is lost while fragmentation takes place.

Conclusion Data acquired on a LC/MS platform are triplets (retention time, m/z ratio, inten-
sity) that are usually represented as images to enhance the continuity in the LC separation. In the
following, we will represent the data as a function I(t, m) on the two-dimensional plane (reten-
tion time, m/z value).

6.1.2 File format and software tools

LC/MS proteomic analysis is a newborn field, and there are still many incompatible file for-
mats. Each mass spectrometer generates data in a proprietary file format according to the vendor
specifications, e.g. .raw, .wiff, .t2d, etc. Using the native file formats is subject to licensing
fees and proprietary libraries that only run under the Windows platform.

To improve sharing of the data files as well as analysis with alternative software, the scientific
community has proposed open file formats:

• mzXML, as described in [PEH+04]
• mzData from HUPO (Human Proteome Organization1)

These two file formats are converging into mzML 2, for which the specification has been published
in June 2008, and is still being updated.

Most proprietary software do not support the open formats. While there are converters avail-
able, the conversion process is still sketchy and requires both experience and access to the com-
puters on which the mass spectrometer drivers are installed.

In this thesis, we use the mzXML file format. Most of the analyses were carried out using R, but
we also developed tools in OCaml and C to solve some technical problems: segmentation faults,
memory and speed requirements, etc. These include an mzXML parser for file input as well as
tools for the visualization of LC/MS images.

6.1.3 Information in the data

Data complexity According to [NMA+05], bacteria like D. radiodurans have around 3,000 pro-
teins, which are split into 125,000 peptides by tryptic digestion in the sample preparation phase.
In the case of yeast whole cell lysates, 6,300 proteins and 416,000 peptides can be expected. There
are 41,000 human proteins and 1.7 million associated peptides. These peptides are present in the
LC/MS images generated from serum samples for biomarker discovery. Fortunately or not, most
signals are not visible in the data because they are below noise level. Indeed, proteins exist in a
wide range of concentrations. It is estimated that there is a factor of 106 or maybe 1010 between
the concentration of common and low abundance proteins [DA06].

1http://www.psidev.info/index.php?q=node/80#mzdata
2http://www.psidev.info/index.php?q=node/257

http://www.psidev.info/index.php?q=node/80#mzdata
http://www.psidev.info/index.php?q=node/257
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Figure 6.3: Peptide signals.

Signals With extensive numbers of pre-fractionation
steps, current LC/MS analyses are able to identify up
to 10,000 proteins in a biological sample. In a single
LC/MS image, identification of 1,000 to 2,000 proteins
is possible.

Molecular species corresponding to the same protein
or peptide are naturally present in the LC/MS image at
a different m/z ratios. Each peptide may have several
charge states, and a varying number of additional neu-
trons. Isotopic ions with the same charge z form isotopic
patterns: horizontal segments spaced by 1/z Da.

To obtain the number of signals in the LC/MS im-
ages, the number of proteins in the sample needs to be
multiplied by the number of peptides (dozens per pro-
tein), the number of charge states of the peptide ions (around three), and the number of isotopes
(around three).

Peptide signals have roughly the shape of a bivariate Gaussian distribution. However, depar-
ture from this ideal shape is common; there is often asymmetry in the elution profile, and a heavy
tail of the distribution. A complete model of peptide signals is presented in Chapter 8 where it
is used to study the set of peptide signals that can be detected by the proposed feature detection
method.

Many peptides are not observable in LC/MS images, or with low-intensity. This is related to the
ionization efficiency as explained in Chapter 2, and to spontaneous fragmentation during mass
analysis. These low-intensity signals are of particular relevance for biomarker discovery, as it is
expected that biomarkers belong to the low-intensity range.

Figure 6.4: Background noise.

Background noise Background noise in LC/MS im-
ages is composed of electronic noise and chemical noise.
Electronic noise is created in the ion detector by stochas-
tic variations of the current or other imperfections in the
electrical appliances like the power supply [SMKM07].

Chemical noise is the major source of background
noise in LC/MS images. It is the limiting factor in the
sensitivity of the mass spectrometer rather than the in-
trinsic capabilities of the instrument[SMKM07]. Chem-
ical noise arises from ion fragments generated during
ionization and mass analysis. As these are ordinary pro-
teins, the behavior of background noise is similar to reg-
ular peptide signals [ARC+03]. For instance, both dis-
play a 1Da pseudo period that corresponds to isotope
patterns.

In this thesis, background noise is studied in more detail in two different contexts. First, back-
ground noise adds a positive contribution to the recorded intensity. In Section 6.7, Section 6.8 and
Chapter 7, we study background noise to improve the quantitative measurements acquired on
an LC/MS platform. Second, background noise hides real peptide signals from feature detection
and creates false positive identifications. We address this issue in Chapter 8.
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Figure 6.5: Contaminants.

Contaminants During the sample preparation proce-
dure, some types of molecules are introduced unwill-
ingly in the sample. These include keratins from skin
and hair, plastic residues from the instrument tubing
and other chemical compounds that are present in the
lab atmosphere. Some contaminants form groups of
small molecules that aggregate into larger complexes
and fall into the mass range of the mass analyzer.
[KSYW08] provide an extensive list of known contam-
inants in LC/MS images.

Some of the contaminants are separated by liquid
chromatography, and appear as regular molecular sig-
nals in the LC/MS image. Theoretically, it is possible
to distinguish those from peptide signals based on the
isotopic patterns because the distribution of intensity
among the various isotopic forms reflects the chemical composition of the molecule. In prac-
tice, current mass analyzers do not have the necessary accuracy and resolution to perform that
analysis on peptides. It would also be difficult to distinguish between an exotic isotopic pattern
and overlapping peptide signals.

Other contaminants are easy to detect because they are not separated by liquid chromatography
and are present in all mass spectra (at the same m/z ratio) as displayed in Figure 6.5

In this thesis, contaminants are not modelled explicitly. If they are separated by LC, then they
are considered as standard molecular signals are reported in the feature detection results. If they
appear as horizontal lines, they are included in the components of the noise model as chemical
noise.

6.1.4 Measurement capacity of the LC/MS platform

LC separation For proteomics applications, most experimental protocols use a liquid chromato-
graphy column and a separation that lasts on the order of thirty minutes. Mass spectrometers
acquire a mass spectrum roughly every second, which totals about 1,000 mass spectra in a LC/MS
image in electrospray ionization (MS/MS spectra excluded). In MALDI ionization, the sample is
traditionally deposited on plates with roughly a hundred spots. More fractions can be obtained
by continuous deposition on the MALDI plate, see [WBF+02, ZNM04] for further details.

M/z separation Peptides obtained after tryptic digestion in sample preparation usually weigh
less than 2,000 Da. On the other hand, a peptide fragment needs to be of sufficient length for
identification of its parent protein. Five or six amino acid residues are enough, which corresponds
to molecular weight higher than 400Da. Consequently, the mass spectrometer records intensity
values for the signals in the m/z range [400; 2, 000]. However, as mass analysis deals with m/z
ratio instead of molecular weight, that range includes molecules up to 8,000 Da when considering
ions with four charges.

Depending on the type of mass analyzer, the sampling rate on the m/z axis is variable; the
number of sampling points in a mass spectrum ranges from 20,000 to one million intensity val-
ues. Sampling locations are reproducible between consecutive scans before calibration of the m/z
values.
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Mass analyzers have different sampling patterns. Ion traps and quadrupoles use uniformly
spaced sampling. TOF instruments sample uniformly in the time domain, but after conversion
to m/z values, the sampling rate is higher for lower m/z ratios. Fourier transform instruments
sample uniformly in the time domain, and after transformation to the frequency domain, the
sampling rate is uniform on the m/z axis.

Intensity measures As previously indicated, intensity values are positive real numbers. In
mzXML files, these are encoded with 32bit precision floats, but underlying analog-to-digital con-
verters only provide on the order of 16 to 20 bits of precision.

The observed range of intensity values is lower and spans approximately three orders of mag-
nitude. There is a factor 103 between the maximum intensity and noise level. When computing
the area under the curve, the mass spectrometer can report intensity values on approximately
four orders of magnitude.

The detector is linear in a large range 3. However, the molecules in the sample may compete in
the ion source. Abundant molecules such as contaminants are known to mask the signals from
low-concentration molecules, and lead to non-linear and saturation effects.

Conclusion A LC/MS image is a very large image. The data sets considered in the course of
this thesis contain images with 80 million to one billion pixels, with several gigabytes in file size.
LC/MS images contain large numbers of signals, as well as low-intensity signals that are relevant
for biomarker discovery. In that context, data storage is a major issue; some labs can generate 10
GB every day. Computational time is also an issue, and we have consequently focused on efficient
algorithms.

6.1.5 Compression and centroiding

There are few initiatives to compress LC/MS data, even for the open XML file formats that are
not very efficient. Most of the community lacks computer skills and dedicated personnel, which
would slow down the adoption of software dealing with compressed file formats like [MKW+06].
Standard algorithms (LZW, Bzip2, LZMA) can compress mzXML files reasonably well due to the
nature of XML file formats. However, they do not take advantage of the specific structure of
LC/MS data.

Centroiding is a major compression method for mass spectra. It essentially detects neighboring
intensity values corresponding to the same peak, and aggregates them together. Only one inten-
sity value per detected peak is recorded in the data file. However, centroiding is a default option
and implemented in proprietary software, and the method implementations are not described in
detail. Moreover, it disturbs the statistics of background noise and creates artifacts in the LC/MS
image as shown on Figure 6.6.

[STL+06] actually uses the data voids created by centroiding to detect features in LC/MS im-
ages. In doing so, however, they entrust the complexity of detecting signals to the manufacturer
software.

3except time-to-digital detectors as described in Section 3.4.
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Figure 6.6: Comparison betwen LC/MS images from a TOF instrument (top) and an FT-ICR in-
strument with centroiding (bottom). Centroiding creates voids in the background noise around
high intensity signals. It also changes the location of signals.
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Figure 6.7: Multiple-to-one alignment of two series of mass spectra.

6.2 Retention time alignment (summary)

Liquid chromatography is notoriously known for its poor reproducibility, and the fact that re-
tention times of peptide signals do not correspond in different LC/MS images as shown in Figure
6.8. Even so, Section 6.3 motivates the attempts to match retention times, and applications of
these methods are described in Section 4.4 for protein identification and Section 5.2 for biomarker
discovery.

Retention times can be matched across different experiments because the elution order of pep-
tides is preserved. Using this hypothesis, many methods for image alignment have been imported
from other scientific domains like signal and audio processing [SC78], image registration [ZF03]
and 2D gels [VDY01]. Section 6.4 provides a discussion of experimental reasons and hypotheses
for retention time alignment, and also provides a review of the current methods.

Sections 6.3 and 6.4 were extracted from my work published in [VLTTK+08]. Nevertheless,
reading this paper is a daunting task for the uninitiated, and we introduce it with a detailed
presentation of a typical alignment procedure in the remainder of this section.

6.2.1 Detailed example (ChAMS)

ChAMS (CHromatography Aligner using Mass Spectra) is a retention time alignment tool for
LC/MS images developed by Amol Prakash under the supervision of Benno Schwikowski. I have
had the pleasure to discuss at length with the author about the implementation in [PMW+06] and
its application for quality control of experiments in [PPW+07].

When operating on LC/MS images, several types of information can be used for alignment:
MS/MS identifications, MS signals, etc. ChAMS operates on the level of MS scans, and tries to
find the correspondences between scans in two different images (binary alignment). By using the
intensity measurements in the scans, ChAMS takes advantage of low intensity signals that are not
processed: not detected as features, not selected for MS/MS identification, etc.

ChAMS produces a multiple-to-one alignment (see Figure 6.7), i.e. several MS spectra in a
LC/MS image may correspond to the same spectrum in the other image. Other algorithms pro-
duce one-to-one alignments, allow mismatches or gaps. Some methods compute a transformation
of the retention times without computing correspondences.

In order to find pairs of corresponding spectra, ChAMS computes a similarity score d between
all possible pairs of mass spectra. This score is based on the Pearson correlation coefficient be-
tween the intensity values in the mass spectra. To address m/z calibration problems, correlation
is computed with a tolerance ε in the m/z value.



90 CHAPTER 6. LC/MS IMAGES AND PREPROCESSING

More precisely, let f(m) and g(m) denote the intensity as a function of m/z ratio in two mass
spectra. [PMW+06] defines the intermediate score

d(f, g) =
∑

|m1−m2|<ε

f(m1)g(m2)

From this score, the following normalized score is computed

s(f, g) =
d(f, g) − E[d(f, g)]
√

d(f, f) d(g, g)

where E[d(f, g)] is the expectation of d(f, g) under random permutation of the intensity values
inside the mass spectrum.

The similarity scores for all pairs of mass spectra are assembled in an alignment matrix as
shown on Figure 6.11 on page 104. In that matrix, high similarity scores indicate pairs of spec-
tra that belong together. Retention time alignment consists in finding a path in the matrix that
goes through the matrix cells containing the highest scores. This optimization can be computed
efficiently using dynamic programming algorithms.

As detailed in Section 6.4, most methods for retention time alignment follow a similar pattern.
They are characterized by the type of input data used for alignment (MS spectra for ChAMS), the
choice of possible alignment transformations (multiple-to-one alignment), the scoring function
used (s), and an optimization procedure to find the best transformation (dynamic programming).

6.3 Retention time alignment (Introduction)

LC-MS-based proteomics is an analytical approach for the analysis of complex peptide or pro-
tein mixtures [PG01]. Compared to gel-based proteomic approaches, LC-MS allows online sepa-
ration, high sampling rates, and easy automation, together with a high level of sensitivity [BS05].

A typical LC-MS-based proteomics experiment involves the following series of steps. First,
proteins are digested into smaller peptide fragments using an enzymatic reaction. Secondly, the
resulting peptides are separated using liquid chromatography; separation is usually obtained by
hydrophobicity (reverse-phase, RV), but other characteristics like charge (strong cation exchange,
SCX) are used also. HPLC columns are particularly effective devices for this task; they allow
separation of thousands of peptides. Each resulting fraction corresponds to a mixture of peptides
having similar separation characteristics. According to these characteristics, fractions elute from
the column at different time points.

In the third step, the eluting sample is injected into a mass spectrometer, where the constituent
molecular masses are recorded. Typical separation times range around 60-100 min, and recording
a mass spectrum approximately every few seconds yields a sequence of several thousands of mass
spectra.

The resulting data can be represented as a 2-D image (Fig. 6.8), where the horizontal axis
represents the elution time (retention time; the time at which an HPLC fraction was acquired by
MS), the vertical axis represents the m/z in the corresponding spectrum, and color represents
intensity in the mass spectrum. For a comprehensive review of these and other aspects of MS-
based proteomics, we refer the reader to the overview by Aebersold and Mann [AM03] and two
books [SKG97, McM07].

The analysis of an LC-MS image requires a number of preprocessing steps, such as calibra-
tion and quantization of m/z values, filtering, noise reduction and background subtraction, am-
plitude normalization, peak detection and peak quantification. Preprocessing has been studied
extensively, and we refer the reader to two reviews [LE05, RJR+04].
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Figure 6.8: Alignment of two LC-MS images using MS/MS identifications. Images were acquired
for two similar experiments on an LTQ-FT mass spectrometer by Guina et al. [GRB+07]. High
confidence MS/MS identifications with protein p-value 0.01, peptide score > 20 and rank 1 were
obtained using Mascot. Identifications apparent in both images are marked with cross-hairs.
Aligning these identifications exposes a significant retention time shift of the lower image com-
pared to the upper image; example peptide matchings are shown by the two arrows.

After preprocessing, the image is subjected to peptide and protein identification algorithms,
which use protein sequence databases or previously acquired identifications to compute a list of
proteins contained in the sample [AM03]. Depending on the experimental question, quantifica-
tion algorithms for estimating the abundance of identified proteins can additionally be applied
[OM05, MCK+05].

While the above preprocessing steps only deal with one LC-MS image at a time, many ques-
tions in biological and biomedical research involve the comparison of proteomes of different sam-
ples, and thus, multiple LC-MS images. For example, in biomarker discovery, one is interested
in finding specific peptides that allow distinguishing between healthy and disease states. Com-
paring multiple LC-MS images is difficult; even identifying a consistent set of peptides in repeat
experiments on the same sample is challenging [CM05]. In particular, comparing LC-MS images
solely on the basis of lists of identified peptides provides only a qualitative and coarse basis for
comparing the underlying biological states and is thus insufficient for most applications.

Alternatively, one can attempt to compare the data-rich LC-MS images directly. A major techni-
cal difficulty in the direct comparison is the notorious irreproducibility of the LC separation step
[SKG97, McM07]. Even in technical repeats of the same experiment, any given peptide typically
does not elute in the same fraction(s) [VY04] (Fig. 6.9). This irreproducibility shows up in LC-MS
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Figure 6.9: Example of peptide identity propagation. The figures show a small window of the
data presented in Fig. 6.8. After alignment of the two images, the MS/MS identification in the
upper image (cross-hair) can be propagated to corresponding MS features in the other image. A
white rectangle denotes the valid range of putative corresponding MS features.

images as distortions of the elution time axis, and necessitates alignment, a corrective transfor-
mation of the elution time axis between two or more images. Only after this transformation can
individual features in different experiments be compared directly.

Several biochemical differential labeling approaches have been developed to circumvent the
problem of LC irreproducibility and to allow comparison of different samples in one single LC-
MS experiment [GRG+99, Man06, OBK+02, JR04, JR05, LSG03]. The main idea is to tag peptides
or proteins of different samples by chemically attaching labeled molecules. For each sample, a
label with a distinct mass is used, each resulting in a known modification of any given peptide’s
molecular mass. After mixing the samples and recording a single LC-MS image of the mixture,
corresponding peptides from two samples can be identified as peak pairs in the mass spectrum
with a distinct mass difference. Since only one LC-MS image now contains the information for all
samples, no alignment between experiments is necessary.

However, differential labeling has several limitations. First, the requirement that all samples
need to be available in the same location at the same time restricts the applicability of this ap-
proach. Moreover, due to the restricted number of possible labeling reagents, only a limited
number of comparisons are possible; furthermore, reagents may also constitute a significant cost
factor. Finally, sensitivity is typically reduced by the required biochemical preprocessing steps
and the limited peak capacity of the mass spectrometer.
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The growing number of publicly available LC-MS datasets increases the interest in comparing
datasets generated in different laboratories. Label-free LC-MS analysis provides an alternative to
differential labeling that avoids many of the abovementioned issues [OMAAW+05]. Here, each
sample is subjected independently to LC-MS measurement; the multiple LC-MS images are com-
pared to each other and analyzed for their similarities and differences. In particular, label-free
analysis does not require a mixing of samples and thus enables comparison of data sets generated
in different laboratories or at different times. Recent progress in the accuracy of mass measure-
ments enabled the development of accurate and efficient alignment methods to correct for the
differences in elution times. These methods are a key technique for labelfree analysis of multiple
LC-MS images.

The ability to make label-free comparisons gives rise to several new applications. By combining
the information of several LC-MS experiments, the coverage of identified and quantified peptides
and proteins in a given sample can be increased. Although most peptides and proteins in com-
plex mixtures remain unidentified in single LC-MS/MS experiments [LYK+05], their identity can
frequently be inferred by associating an already identified feature in one image to a correspond-
ing unidentified feature in another image (Fig. 6.9). Biomarker discovery is another important
application area of comparative LC-MS-based proteomics. After preprocessing and detection of
features, such as chromatogram peaks or other image patterns, biomarker candidates are identi-
fied as those features that can reliably discriminate between the two sets of experiments. Clearly,
alignment of LC-MS images is a key component in this process. Usually, alignment also provides
a measure of similarity of LC-MS images; this measure can be used to establish a quality con-
trol for LC-MS procedures and allows the characterization of technical and biological variation in
LC-MS images across experiments.

Since variations in the LC separation step have proved to be hard to avoid in practice and due
to the increased interest in label-free methods, research on alignment approaches is an active area
in computational MS. This review aims at providing an overview on methods for elution time
alignment and their main applications. The manuscript is organized as follows: we motivate and
define the problem of elution time alignment, survey and classify the main approaches. Addition-
ally, we give some guidelines to facilitate the practical choice of an alignment method, and give
some pointers to freely accessible LC-MS image comparison software (Section 6.4). We then dis-
cuss alignment approaches in two major application contexts: protein identification (Section 4.4)
and biomarker discovery (Section 5.2). We would like to point out that we tried to keep Section
6.4, Section 4.4 and Section 5.2 as mutually independent as possible and thus, minor repetitions
in discussing methods seemed unavoidable. Finally, we offer our personal view of the key future
trends and developments in the field (Section 6.5).

6.4 Computational Approaches to Elution Time Alignment

In this section, we review technical approaches to elution time alignment. Elution time align-
ment approaches have been the topic of two previous reviews by Tomasi et al. [TvdBA04] and
van Nederkassel et al. [vNXL+06]. Since their publication, a large number of new approaches
have been published in the literature; this section is a significant extension and an update of these
reviews. It is organized as follows: we start by discussing the causes of experimental elution time
variations in LC columns that motivate the need for computational alignment techniques. We
then compare LC-MS alignment to related computational problems, namely image registration
and 2-D gel analysis. In Section 6.4.1, we review and categorize alignment approaches based on
their type of input. For a deeper technical understanding, alignment approaches are character-
ized by five different characteristics that characterize strengths and limitations of each approach.
Section 6.4.2 discusses these characteristics individually, as they can be interchanged between ap-
proaches to create new combinations and to extend existing approaches. Section 6.4.3 discusses
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how elution time alignment approaches have been compared and validated, a difficult and im-
portant issue for most large-scale experimental platforms. In Section 6.4.4, we summarize our
advice on the problem of choosing an alignment method in current applications.

Elution Time Variation

A considerable amount of variation in the LC separation originates from the HPLC column it-
self. Major causes include aging, packing, and contamination of the column [McM07, TvdBA04,
vNXL+06, Eil04, PKF+03, WW05]. It is worth noting that these problems are column-specific
and occur even in highly controlled experimental conditions. As an example, a biomarker study
that involves ten controls and ten cases with three replicates uses 10% of the typical column
life span (60 runs out of a few hundred). Additional variability is expected due to other ex-
perimental factors that are difficult to control, such as temperature, gradient shape, and mix-
ing physics [vNXL+06, WW05, JMP+06, NMA+05, PMW+06]. The chromatography may also
change when a column is replaced. Finally, instrument malfunction is another source of prob-
lems; specific examples include improper pump function [ACvG+06], dead volumes, flow rate
[NMA+05, PMW+06], leaks, and drift [WW05].

Reproducibility of other chromatography setups, such as gas chromatography (GC), suffers
from similar problems; among them are oven temperature control, the GC column, etc. [KTZ+06].
Some of the algorithms described here for LC-MS data were originally developed for aligning
GC-MS data [TvdBA04, vNXL+06, KTZ+06, Eil03], but are applicable to LC-MS data without
modification.

Elution Time Alignment

As elution time variation is hard to eliminate, the measured elution time cannot be used directly
to compare different experiments. Rather, elution time axes have to be mapped onto each other
first, a procedure commonly referred to as alignment.

We use the term “alignment” in this more relaxed sense compared to, for example, classical se-
quence analysis. Mathematically, an alignment in the strict sense is a mapping of two sequences
that preserves the order of elements in both sequences. As an example, alignment algorithms
for DNA sequences only allow sequence insertions, deletions and matches/mismatches between
sequence elements, but no sequence inversions, which can also be observed in DNA sequences.
Inversions do not preserve the order of the sequence, and therefore require a more relaxed for-
malism.

Similarly, although the exact shape of a required corrective transformation of the elution time
axes in LC-MS experiments is generally unknown and experiment-specific, it appears likely that
the peptide elution order is preserved for the same type of column [KTZ+06]. Nevertheless, local
inversions of elution order are observed, but seem to occur rarely [KSS+07]. Additional peptide-
specific elution time corrections are therefore sometimes applied after a global transformation of
the elution time axis, and considered part of the alignment. Corresponding to the more relaxed
use in the literature, we use alignment in this review for a general map between different (m/z,
elution time) windows.

It is worth noting that, although elution time alignment is distinct from m/z calibration, the
computational approaches for both problems are somewhat similar, and many papers on m/z
calibration actually use the term alignment [THNC02, Jef05, RY06]. Mass measurement quality
is largely defined by the physical capabilities of the mass spectrometer, although sample prepa-
ration and in particular flow rate (sample concentration in the eluent flux) do affect subsequent
analysis, because of competitive sample ionization and space-charge effects in Ion Trap (IT) and
FTICR mass analyzers. With the advent of high-accuracy mass spectrometers, mass accuracy
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and calibration have become less of a problem and we will neglect these issues throughout the
manuscript.

Relation to Image Registration and 2-D Gel Analysis.

As LC-MS experiments are naturally displayed and modeled as 2-D images, approaches for
their alignment can be compared to image registration and 2-D gel alignment. In all cases, an
alignment algorithm seeks for a transformation that “best” maps one image onto the other. Dif-
ferent assumptions about the causes for the differences between the images can be described by
different sets of transformations, wich in turn lead to different alignment algorithms.

In image registration, images are assumed to contain identical objects that have been recorded
from different camera perspectives; mathematically, they reside in different coordinate systems.
Two such coordinate systems can be transformed into each other using a linear transformation
in three dimensions; however, this (unknown) transformation may result in corresponding non-
linear transformations between the 2-D images, due to projection on the focal plane of the camera.
To compute these transformations, the images are typically separated into the relevant foreground
objects, and the background. Boundaries are estimated by segmentation of the image into large
areas of constant color, light intensity, or identical texture, and foreground objects are identified
from these boundaries. Once the foreground objects are found, an optimal mapping between cor-
responding objects in the two images is computed. Image registration has important applications
in medicine, cartography, and computer vision, among others [ZF03].

Although any image registration tool can also be used for elution time alignment, it is likely to
perform poorly, mainly because a clear separation into fore- and background is hard to achieve
for LC-MS images. In particular, LC-MS images are composed of spots on a noisy background.
Segmenting an image by finding object boundaries would result in localized and dense clouds of
points. Classical image registration methods would interpret these clouds as background or noise
artifacts.

In 2-D gel analysis, images are obtained from experiments using 2-D PAGE. Features are usually
larger clouds of dense pixels, typically corresponding to stained (complexes of) proteins. A 2-D
gel alignment method aims to map corresponding features between images [VDY01, DDY03].
Differences are explained by elastic deformations of the medium that occur in both directions
[ASNN05]; they can be modeled with strong regularity constraints on the feasible transforma-
tions. Image registration methods are much more suitable for 2-D gel alignment than for LC-MS
alignment, as prominent features are more easily identified as foreground due to their size. Ro-
bust image registration is thus an essential prerequisite for subsequent quantification procedures
[VDY01].

6.4.1 Alignment Approaches

All alignment approaches fall into one of two very broad categories: They are based either on
profile data, where the LC-MS images are taken as recorded, or on feature data, where the data
have been processed to identify important signals and distinguish these signals from noise.

Profile-based approaches use the full, unprocessed data obtained in the LC-MS experiment,
and usually attempt to find an alignment, such that the overall difference between intensities of
two LC-MS images after alignment is minimized. While small, unavoidable, differences due to
random intensity variation between experiments are expected, large differences are assumed to
result from misalignments of unrelated parts of the experiment.



96 CHAPTER 6. LC/MS IMAGES AND PREPROCESSING

Feature-based approaches, on the other hand, explicitly try to distinguish between relevant
signals (features) from peptides and irrelevant noise parts in the data in an initial feature de-
tection step, and rely only on these features for the subsequent alignment. Feature detection
typically excludes a large amount of noise and thereby reduces the data considerably. Clearly,
the performance of the overall alignment process strongly depends on the performance of the
feature detection step and we refer the reader to [LGR+06, KO05] for references in feature detec-
tion methodologies. In contrast to profile-based approaches, feature-based alignment methods
typically take mass differences of aligned features into account; only few of them also use signal
intensity.

While profile-based alignment methods are able to perform well on data with low m/z res-
olution (e.g. LTQ data), feature-based methods usually require accurate mass measurement for
successful feature detection.

6.4.1.1 Profile-based Methods

The most basic profile-based methods compare only the difference in the TIC (total ion chro-
matograms), and thus make no or little use of the full LC-MS image. We first describe these
methods, which are thus only suited for low-complexity data, before the methods that exploit the
higher resolution of LC-MS images.

Aligning TIC

Technically, a TIC profile is a sequence that represents the total ion count in each fraction of
the LC separation. Most methods for aligning TIC profiles are inspired by the original work of
Sakoe and Chiba [SC78] for speech processing and the ensuing developments; these methods are
technically similar to biological sequence alignment [Gus97, SK83]. The two sequences of ion
counts (TIC profiles) (mi) and (nj) of two LCMS images are matched using a pairwise distance
function d(., .). This distance function assigns a score to each possible pair (mi, nj) of ion counts
using their intensity difference, e.g. d(mi, nj) = (mi − nj)

2.
An alignment corresponds to an order-preserving path, a sequence of pairs (mi, nj) where

each mi and nj occurs in the same order as in the TICs (mi) and (nj). The score s of an align-
ment is computed from the pairwise distances by summation over constituent pairs (mi, nj):
s =

∑
d(mi, nj). The choice of a suitable distance function depends on the application con-

text, and represents a major difficulty in all dynamic programming-based approaches. Once the
distance function is chosen, an optimal alignment can be found efficiently (in time quadratic in
the length of the TIC) using the dynamic programming technique, the corresponding alignment
approaches for time series is called dynamic time warping (DTW).

The alignment score function can also be designed to introduce additional assumptions. As
in sequence alignment, for total ion chromatograms, one can use a weighted sum of distances,
penalize gaps, or restrict path jumps. An additional way to constrain the alignment path, called
correlation optimized warping (COW), is proposed by Nielsen et al. [NAH+02]. Instead of evalu-
ating all possible pairs (mi, nj), the authors first divide the chromatograms into non-overlapping
segments. The segment boundaries are then adjusted by maximizing Pearson’s correlation coeffi-
cient between pairs of segments. When segments of different length are matched in the alignment,
one of the two chromatograms is interpolated to adjust the elution time axes before computing
the correlation coefficient.

Bylund et al. [BDMM02] propose several modifications to the COW approach. They allow
user-guided segmentation of the elution time axis, which allows the use of key features in the
data to guide the alignment. They also include flexible matching of start and end points, and use
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covariance instead of correlation as matching criterion in order to put more emphasis on large
peaks.

Eilers et al. [Eil04] propose parametric time warping (PTW), an approach based on a parame-
tric model of the alignment transformation. This model consists of polynomials of order less than
some constant k; in their study on GC-MS data, quadratic polynomials (k = 2) were sufficient.
The model coefficients can be efficiently computed by solving a least squares problem, which
permits speed improvements over DTW.

Van Nederkassel et al. [vNXL+06] propose an extension of PTW called semi-parametric time
warping (STW). Here, Bsplines of varying number and extent are used instead of polynomials of
order k. The optimal coefficients are again computed by linear algebra.

Listgarten et al. [LNRE05] propose a generative model of a TIC based on continuous hidden
Markov models (HMM). HMMs use an implicit reference model (a latent trace) that can be inter-
preted as a consensus TIC profile. The a priori likelihoods of specific distortions of this consensus
TIC profile are explicit model parameters.

Higher-resolution profile alignment

In contrast to TIC-based methods, several recent approaches exploit the information available
in full mass spectra to deal with mixtures that are more complex by separating the m/z axis into
several mass bins.

In an extension of their previous HMM work [LNRE05], Listgarten et al. [LNR+07] use four
mass bins for alignment. Wang et al. [WZL+03] use 200 m/z locations in each scan to compute
the similarity between mi and nj in their DTW algorithm.

Block matching algorithms are tools from image analysis of video sequences used to estimate
the motion between successive images. In [PBG+07], Paulus et al. propose to apply the fast block
matching algorithm in [Gha90] to align LC/MS images.

Pursuing the idea to leverage as much information as possible, Prakash et al. [PMW+06] use
spectra acquired without any prior data reduction in a DTW approach. Pairwise distance between
MS scans is computed by multiplying the intensities of sufficiently close peaks in the two images
and summing over the products. They then employ a compensation term for random matches
and normalize the score.

To make the method more robust, neighboring scans are also considered in the score func-
tion. Prince and Marcotte [PM06] also use unprocessed spectra in a DTW approach to compute
an initial alignment. This alignment is then analyzed to extract bijective anchors, which are inter-
polated into a bijective, smooth warp using a method outlined in Fritsch et al. [FC80]. The anchor
selection favors areas of greater similarity between experiments. In their application study, four
similarity score functions are compared: Euclidean distance, dot product, covariance, and cor-
relation; the correlation yields the best results. The authors argue that, since bijective pairwise
alignment is symmetric, it is favorable as a basis for multiple alignments.

6.4.1.2 Feature-based Methods

In data analysis, a feature is commonly a subset of the data with specific characteristics; in MS,
features are usually peak models that summarize the distinctive characteristics of peaks, such as
height, S/N, or shape in the LC-MS image. In this Section, we discuss approaches to align lists of
features that have been extracted from the LC-MS images in a preceding feature detection step.

A single peptide typically generates several peaks that correspond to its isotopes [WTF+07]
or different charge states. Since a peptide elutes over a certain time interval, its peaks typically
appear in several successive scans. Certain feature detection methods will group all of these
peaks into only one feature [LYK+05, JML+06]; feature overlap or p-values are used to assess
the confidence in each grouping. We proceed to describe feature-based alignment methods by
increasing level of resolution at which the experimental data is exploited for alignment.
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Aligning chromatogram peaks

The profile-based methods, discussed in Section 6.4.1.1, treat each section of chromatogram
equally, or biased according to weights that are attributed to individual sections. In the latter
case, the alignment of certain more informative regions may therefore be obvious, whereas the
alignment of peak-free regions may be uncertain.

Krebs et al. [KTZ+06] define “landmarks” to be LC peaks above a threshold on the TIC profile,
and match those landmarks between two experiments if the correlation score of the correspond-
ing mass spectra exceeds 0.99. The alignment is then computed by interpolating gaps between
landmark peaks using cubic splines.

Walczak et al. [WW05] focus on finding correspondences between the LC-peaks in two experi-
ments. Similarity between the peaks is computed using a Gaussian error model and summarized
into a correspondence matrix. Fuzzy matching of peaks is performed by alternating between
estimation of the correspondence matrix and shifting the peaks to improve matching. After con-
vergence, the alignment is finalized with piecewise linear interpolation.

Aligning image features

Katajamaa et al. [KO05] build a “master peak list” of detected features in the LC-MS images.
Each feature is either aligned to an existing entry in the master peak list if it is close enough to an
existing entry, or appended to this master peak list. The distance between features is determined
as a weighted sum of absolute deviations in m/z and elution time.

Radulovic et al. [RJR+04] note that assigning a single elution time value to a feature is difficult,
since peptides generally elute over several fractions. Consequently, they assign both an m/z and
an elution time interval to each peptide elution profile; each profile thus corresponds to a rect-
angle in the LC-MS image, called a “pamphlet”. Accelerated Random Search [KRR+03] is used
to compute a piecewise linear warping that optimizes rectangle overlap of pamphlets between
experiments. Finally, a local relaxation is applied to improve the alignment.

Jaitly et al. [JMP+06] model variability in measured elution time by a Gaussian distribution
with small variance, and allow a nonlinear warping (or trend) on a larger scale. Their alignment
algorithm is a DTW approach with a distance function based on matches between peak lists. After
(m/z, elution time) features are picked, the dataset is divided into N segments and dynamic pro-
gramming is used to find matches between these segments by minimizing the distance between
possible common features (weighted using the Gaussian model). Afterwards, individual features
are grouped.

Kirchner et al. [KSS+07] use robust point matching [CR03] to find matches between peak lists.
Matches are estimated using a fuzzy correspondence matrix similar to Walczak et al. [WW05], and
outliers are treated explicitly. Given the correspondence matrix, the optimal warping function is
found by smooth monotone regression using the Newton-Raphson algorithm. A deterministic
annealing scheme is introduced to give more flexibility to the choice of the weights.

Wang et al. [WTF+07] use “peptide elements” that represent the expected signals generated by
a single peptide. Each peptide element consists of a theoretical distribution of one unit of intensity
over a certain (m/z, elution time) rectangle. A peptide element library (a set of possible peptide
elements) is built from the given set of LC-MS images before alignment. Given this library, a
robust regression scheme is used to find the peptides present in each scan, together with their
quantity. For alignment, a group of common peptides is identified as a subset of the library that
minimizes a statistical “loss function”.

Silva et al. [SDD+05] and Mueller et al. [MRS+07] initially group features from two LC-MS
images if they fall within a tolerance window of wide m/z (0.05 Da) and elution time (5 min).
The assumed trend in elution time shifts between grouped features is estimated using LOWESS
[Cle79] and related peptide features are merged. During the following iterations of this step,
elution time tolerance is gradually reduced to 30 s. To align multiple LC-MS images with this
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technique, Mueller et al. propose to build a consensus “MasterMap” using hierarchical cluster-
ing. LC-MS images are merged hierarchically, based on their overlap (Spearman correlation) and
reproducibility of feature intensity.

Lange et al. [LGST+07] align images using affine linear transformations on the whole LC-MS
image, thus including alignment of the m/z axis. As this class of transformations is defined by
only two parameters, these can be found by tabulating likely parameter combinations from small
subsets of data; parameters that occur most frequently are assumed to be correct. In a second
stage, features known to correspond to each other (e.g. pairs of MS/MS identifications) are used
to refine the parameters. Similar to Mueller et al. [MRS+07], the method is extended to allow
alignment of multiple images by progressively aligning images to a reference.

Note that for some applications, like biomarker discovery, it is usually sufficient to only com-
pute a coarse elution time correction to enable correct clustering of related features [KO05, JML+06].
However, in many other applications, like identification transfer or comparative protein profile
studies, accurately correcting the images is crucial [JMP+06, KSS+07, SDD+05, MRS+07].

Aligning significant features

Some feature-based methods place an emphasis on “significant” features in LC-MS images,
which are features that are more likely to correspond to actual peptides than other features, or
even have additional information associated with them. Significant features are expected to be
more reliable for aligning; examples are high-intensity peaks, peaks that are better resolved, or
peaks with a corresponding MS/MS identification.

Zhang et al. [ZAA+05] define significant features as local maxima in a (m/z, elution time)
window that are consistently present in all data sets. From multiple LC-MS images, a reference is
chosen as the image that is closest to a consensus of the significant peaks in median elution time.
Robust linear regression on the significant peaks is used to find a straight-line alignment, which
is subsequently improved by small-scale deviations.

In a protein profiling study, America et al. [ACvG+06] use a commercial tool called MetAlign.
This software estimates the baseline and noise characteristics in mass bins before detecting peaks.
The algorithm starts from landmark peaks defined as features with a high S/N present in all
datasets, and iteratively includes other features in the order of decreasing intensity to optimize a
non-linear alignment path.

In SpecArray, Li et al. [LYK+05] compute a retention-time calibration curve (RTCC) between
two LC-MS images based on pairing features previously detected by the included PEPLIST pro-
gram. Detected features are loosely matched, and the RTCC is iteratively refined by minimizing
the root mean square distance between paired features and removing aberrant pairs based on
a Gaussian model. Features are successively removed from a super-set, whereas, in most other
iterative approaches of this type, features are iteratively added to a consensus set.

The PEPPeR system by Jaffe et al. [JML+06] performs peak clustering and peptide identi-
fication after a coarse correction of elution time. High-confidence MS/MS identifications are
matched to MS/MS identifications from a reference run, and the elution times are corrected with
a quadratic polynomial. Aberrant corrections due to incorrect MS/MS identifications necessitate
an additional outlier rejection scheme.

Fischer et al. [FGR+06] use all MS/MS identifications to compute a high-confidence initial
alignment using ridge regression. This robust regression technique yields an optimal polynomial
elution-time transformation by solving a reweighted least-squares problem. This polynomial is
then iteratively refined using features that correlate best with the current alignment.

Instead of using all MS/MS identifications, Petritis et al. [PKF+03] initially use only six pep-
tides identified by MS/MS across all experiments. Using a genetic algorithm, they find linear
transformations that concurrently minimize the variance of the normalized elution times (NET)
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across all experiments. Petritis et al. apply their method to align 687 LC-MS images from different
bacterial species.

6.4.2 Five characteristics of Alignment Methods

Any alignment approach can be analyzed in terms of five different characteristics that largely
determine its principal strengths and limitations. Together with the classification into profile- and
feature-based alignment, these characteristics are as follows:

1. Type of input data used
2. Feasible transformations of the elution time axis
3. Scoring of alignments
4. Algorithms for computing the optimal alignment,
5. Choice of a reference experiment (in progressive multiple alignment).

Each characteristic is largely independent of the other, and interchangeable within each class.
They may thus be combined to better suit the needs of a particular application scenario. In par-
ticular, the type of input data used makes a clear difference for many applications. Certain pub-
lications explicitly discuss available choices with regard to specific characteristics [PM06]. We
proceed to discuss each characteristic in turn.

6.4.2.1 Type of input data

As outlined in Section 6.4.1, three types of data can be used for alignment:

• general profiles and TIC,
• LC-MS image features,
• and MS/MS identifications.

TIC provides the coarsest type of information; it is usually sufficient in GC-MS and LC-MS of
low-complexity samples. On more complex samples, TIC information is less easily interpreted be-
cause peaks can overlap, and unrelated peaks can elute at a similar elution time [KTZ+06]. Multi-
ple TIC approaches and full-profile-based approaches can exploit more detail and are particularly
robust, but these approaches also need to deal with a higher level of noise, as low-intensity peaks
in LC-MS images are often not recognized as features, or selected for MS/MS measurement.

The use of LC-MS image features to compute the alignment can be viewed as a compromise
between TIC and MS/ MS-based alignment. On one hand, LC-MS image features are much more
numerous than MS/MS identifications, but, on the other hand, they provide more precise infor-
mation than the TIC. For a reliable and robust alignment, however, accurate mass measurement
and high-resolution LC separation seem crucial for this approach.

MS/MS identifications provide a reliable way to assign corresponding peaks. However, they
are not always available in the data, and, often, only a fraction of all MS/MS spectra will lead to
high-confidence identifications. Mueller et al. [MRS+07] also report that 95% of MS/MS iden-
tifications belong to an LC-MS image feature, but that only 10% of such features are analyzed
using MS/MS. Moreover, usually only a subset of MS/MS identifications is common between
two experiments, and can be used for assigning feature correspondences.

However, the uses of LC-MS image features and MS/MS identifications for alignment are not
mutually exclusive: Fischer et al. [FGR+06] show that their alignment can be improved by re-
fining the alignment initially obtained from reliable MS/MS identifications with LC-MS image
features, which provide more data for the alignment process. Lange et al. [LGST+07] take the
opposite approach and prioritize features before refining using MS/MS identifications.
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Figure 6.10: Peptides do not elute at the same time in different experiments. Each circle in the fig-
ure represents a pair of high-confident common peptide identifications in the two experiments.
For a perfectly reproduced LC run, circles would be expected to lie on the indicated dashed line.
However, linear regression (red line) suggests that there is a 6-min-offset between the elution
times, and that elution speed is about 15% higher in the second experiment; elution time vari-
ability is around 2 min. The data also indicates that the elution time distortion is not linear; this
behavior might thus be better captured using non-linear regression techniques.

6.4.2.2 Feasible Transformations of the Elution Time Axis

Another important characteristic that varies significantly between approaches is the set of con-
sidered corrective transformations of the elution time axis. The set of possible transformations
correspond to the anticipated degree of complexity of the distortions in the HPLC separation.

Highly reproducible chromatographic platforms need only corrections for constant or linear
time shifts (cf. Fig. 6.10), corresponding to static differences in acquisition start and flow speed.
However, when comparing different elution gradients, one may expect more complex distortions
[JMP+06]. Polynomial constraints allow more flexible alignments [Eil04, FGR+06], although van
Nederkassel et al. [vNXL+06] suggest that quadratic polynomials are limited in flexibility, and
not sufficient to model complex distortions.

It is generally desirable to keep the set of feasible transformations as small as possible to
avoid overfitting the alignment to artifacts in the data [TvdBA04, PM06]. Van Nederkassel et
al. [vNXL+06] report that the number of B-splines in the STW warp path has to be lowered to
remove artifacts in the alignment. Similarly, Tomasi et al. [TvdBA04] note that COW gives better
alignment results than DTW because of stricter constraints, and results become comparable only
with the use of very rigid constraints in DTW.
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When using landmarks or significant features, the space of possible transformations corre-
sponds to the possible matchings between the high-confidence feature lists. To reduce the rate of
false assignments, distance constraints between matches are usually applied [JMP+06, ACvG+06,
KO05, MRS+07]. The resulting transformation is then computed using, for example, linear [RJR+04,
WW05, BDMM02], or cubic spline interpolation [KTZ+06].

Many constraints reflect the assumption that the elution speed is roughly comparable between
experiments. The constraints are implemented using gap penalties in dynamic programming
alignments, constraints on dilatation/compression [TvdBA04, JMP+06], slope [PM06], local con-
tinuity [TvdBA04], or introduction of slack parameters [NAH+02]. Instead of local constraints,
Kirchner et al. [KSS+07] bound the overall acceleration implied by the transformation.

6.4.2.3 Score functions for evaluation of possible alignments

Clearly, the available input data will determine the general type of score function that can be
used. With TIC information, most approaches use a variant of Pearson’s correlation coefficient.
For more general profile data, Prince and Marcotte [PM06] present a systematic comparison be-
tween different distances between pairs. On the other hand, feature-based methods typically use
a sum of distances between paired features to evaluate an alignment. When MS/MS identifica-
tions are available, they can be incorporated into the score function to penalize alignment paths
that deviate too far from corresponding peptide features.

To increase the robustness of an alignment method, it is often necessary to allow and deal with
mismatches [WW05, KSS+07, FGR+06]. This is particularly important in biomarker discovery,
where one explicitly looks for regions of non-similar signals that might distinguish between dif-
ferent samples. For general profile alignment, Prince and Marcotte [PM06] note that gap penalties
allow ignoring noise through big gaps given enough evidence, and even linear gap penalties yield
better alignment performance; non-linear penalties did not appear to improve the alignment. Less
robust approaches that do not take care of mismatches may still be able to yield good results, as,
in most samples, persistent signals from expressed housekeeping genes provide sufficient infor-
mation for computing the alignment [PMW+06, LNRE05, PM06].

6.4.2.4 Optimization Algorithms

Most alignment algorithms optimize the alignment with regard to their score function. If the
elution time axis is discrete, most methods introduce the assumption that elution order of pep-
tides is conserved throughout experiments. This allows the use of dynamic programming ap-
proaches, which are guaranteed to efficiently compute the global optimum. If, on the other hand,
the time axis is continuous, the search space becomes infinite and one may only find a reasonable
approximation to the optimum. Gradient descent methods can then be used as a general opti-
mization strategy. However, they are sensitive to local minima and may thus become inefficient.

More specific optimization strategies are based on additional model assumptions. For example,
the generative model of Listgarten et al. [LNRE05] is optimized using the Baum-Welch algorithm,
which is a specific version of the EM algorithm [BPSW70] for HMM models.

Petritis et al. [PKF+03] use a genetic algorithm to explore the search space for aligning multiple
images. Such a procedure does not guarantee to find the optimal solution, and only a small part
of the search space is actually explored. However, algorithms that guarantee to find a global
optimum are often infeasible for complex search spaces.
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6.4.2.5 Choice of a Reference

In contrast to pairwise LC-MS image alignment, aligning multiple images becomes infeasible
even for small numbers of images, since the computational demand grows exponentially. Simi-
lar to multiple sequence alignment, most multiple alignment approaches work by establishing a
reference image. Here, a reference means either a selected experiment, or a model against which
remaining experiments are progressively aligned. To our knowledge, only a few methods propose
multiple alignments without using a reference image [PKF+03].

Some approaches establish a static reference model image to which all single images are aligned
[JMP+06, NMA+05, LNRE05, WTF+07, LGST+07, ZAA+05]. Such a model image can be built
from the current set of LC-MS images [LNRE05, WTF+07] by using robust methods, such as
the median [ZAA+05]. It can also be built from previous experimental data such as accurate
mass time tag (AMT) databases [JMP+06, NMA+05]. If the model is kept static throughout the
alignment process, all images are aligned relative to this model.

Other approaches do not explicitly build a model, but use an image from the used dataset in-
stead as a reference image [RJR+04, Eil04, PMW+06, KTZ+06, KSS+07, KO05, PM06, FGR+06].
Possible choices for a reference experiment include the first [Eil04, ACvG+06], the cleanest [ZAA+05],
the most complete [TvdBA04, LGST+07], or the most representative [KTZ+06, BDMM02] experi-
ment in the dataset. Obviously, any of these choices can lead to potential biases.

Yet other approaches do not keep a static reference image, but rather recompute the reference
with each pairwise alignment. Listgarten et al. [LNRE05] describe a multiple alignment that is
obtained by pairwise alignments using a probabilistic hidden Markov model. Likewise, Mueller
et al. [MRS+07] create the reference image by hierarchical clustering of the data.

Even in a few pairwise alignment methods, a reference needs to be chosen, and the result of
the alignment depends on that choice. Pairwise alignment methods typically treat both datasets
equally, but some papers also propose asymmetric alignments. Fischer et al. [FGR+06] perform
an evaluation of the consistency of such alignment methods.

6.4.3 Inspection and Validation of Elution Time Alignments

In large-scale experiments, direct validation of elution time alignment approaches is difficult,
as independent “ground truth” information is frequently not available. Nevertheless, an indirect
validation is often possible by either evaluating the alignment efficiency in a larger application
context using visual inspection, by comparing an approach to other methods, or by using avail-
able small-scale ground truth data.

6.4.3.1 Visual Evaluation

The quality of an alignment can often be estimated using visual evaluation, where one usually
compares the two LCMS images by plotting them side by side (Fig. 6.8) or by overlaying the
TIC profiles or LC-MS images [RJR+04, PMW+06]. Displacement graphs [ACvG+06, KTZ+06,
BDMM02] plot elution time shifts against the elution time (see Fig. 6.10 for a variant). Silva et
al. [SDD+05] use this graph to actually compute the alignment itself. In dynamic programming
approaches, heat maps of the alignment matrix are used to assess the quality of the optimal align-
ment compared to other possible paths (cf. Fig. 6.11).
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Figure 6.11: Heat map of an alignment matrix as computed by CHAMS [PMW+06]. Red colors
represent regions of high alignment score, whereas regions of low score are given in blue and
green. The optimal alignment path falls into the bright red regions, of maximal score. Larger
regions of similar color indicate image parts of low signal; an alignment path has less confidence
in those regions. As noted in Fig. 6.10, the bright red regions suggest a non-linear elution time
distortion. Heat maps are a tool to visually assess alignment quality (cf. Section 6.4.3).

6.4.3.2 Validation using Ground Truth

In GC-MS, TIC landmarks tend to be easier to identify than in LC-MS, since elution ranges are
typically smaller. It is thus possible to generate a benchmark dataset. For example, van Nederkas-
sel et al. [vNXL+06] identify ten peaks manually and monitor their chromatographic coordinates
in different temperature conditions, before and after alignment.

In many cases, pairs of features that should be aligned with each other are known beforehand
[KSS+07]. Assessing the quality of an alignment with regard to these features is also easy, for
example by using a distance between corresponding features [PM06]. Wang et al. [WTF+07]
count the number of expected and identified peptides in an experiment that includes a spiked
peptide.

Kirchner et al. [KSS+07] and Bylund et al. [BDMM02] validate their approaches establishing a
ground truth by applying a known LC elution time distortion to the data. Although this allows
evaluating the accuracy of alignments, it does not test their robustness. Accuracy of an alignment
can also be measured using the percentage of matched peaks and the standard deviation of the
elution times across the aligned LC-MS images before and after warping, given a set of known
reference peaks. This method is also well suited for parameter optimization of some algorithms.
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6.4.3.3 Validation in the Absence of Ground Truth

In the absence of available ground truth, most approaches have to rely on first establishing
a reasonable substitute. Several papers use correlation to assess the quality of the alignment,
for example TIC correlation [vNXL+06, WW05, KTZ+06], or the correlation of matched peptide
profiles [WTF+07]. One substitute uses pairs of previously acquired MS/MS identifications.

Prakash et al. [PMW+06] compare alignment-based protein identification to MS/MS identifica-
tions of the same features and quantify the overlap. Prince and Marcotte [PM06] also use MS/ MS
identifications as assumed ground truth. They discard peptides that are sequenced and identified
more than twice as these tend to correspond to broad, imprecise LC peaks. Alignment accuracy is
then defined as the distance between aligned MS/MS. It should be noted, however, that MS/MS
identifications could be problematic as the only basis for alignment. Peptides are not consistently
selected for fragmentation, due to the low sampling rates of the LC-MS process, and they may be
selected at different times during the elution of the peptide (see Fig. 6.8).

LC-MS image features, as opposed to MS/MS spectra, are typically not characteristic enough
to reliably identify a peptide. Nevertheless, using an AMT-like identification approach [JMP+06,
PMW+06], such features can substitute ground truth.

Finally, one may use downstream analyses to afterwards estimate the accuracy of an alignment.
As an example, changes in predictive power for biomarker discovery [NMA+05, ACvG+06,
LNRE05] before and after alignment can be measured using principal component analysis [BDMM02].
Radulovic et al. [RJR+04] evaluate the performance of the whole platform in different proteomics
application scenarios.

6.4.4 How to choose an alignment method

As LC-MS images can represent significant amounts of data, their handling and analysis is a
nontrivial, but essential step with an important impact on the quality of the downstream analysis
results. The status of the field – in particular, regarding validation – is not advanced enough to
allow the compilation of general guidelines for the choice of an alignment algorithm. However,
two general observations may narrow the choice in a given application scenario.

First, finding linear transformations is much faster and more robust than finding a nonlinear
transformation. Therefore, we recommend performing an initial assessment of non-linear behav-
ior in the data, using fully general software that allows nonlinear transformations. In a second
step, a method that matches the observed complexity (“no transformation necessary”, “linear
transform” or “non-linear transform”) can be chosen accordingly.

The second consideration is that the reviewed methods are not always applicable, depending
on whether the data have been acquired or not.

1. For instance, some methods require prior MS/MS identifications, and are thus not applicable
to LC-MS data without MS/MS identifications.

2. Methods that are designed for use with profile data should be applied with caution on data
recorded in data reduction mode with the manufacturer’s software. Centroiding and noise
reduction are likely to affect the alignment results. At a minimum, it should be ensured that
the same parameters for data acquisition are used for all experiments.

3. Certain methods – in particular, profile-based alignment – may require significant computa-
tional resources in terms of compute cycles and/or memory, especially for multiple align-
ments.
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4. On the other hand, feature-based methods require a data extraction step that may be error-
prone, particularly for low-resolution data.

5. As of the writing of this review, software availability is also an issue. Some programs are not
available for all platforms (Windows, Linux, etc.) or require a specific programming environ-
ment (e.g. Python, R, Matlab). Only few methods are publicly accessible on web servers, and
many provide only sparse documentation.

In addition to the collections of software given in Katajamaa et al. [KO07], Palagi et al. [PHWA06]
and Codrea et al. [CJHM07], Section 6.1 gives an overview of available software that are specifi-
cally targeted to align multiple LC-MS images.

Software Description Type URL Language

OpenMS Library for the analysis, reduction
and visualization of LC-MS (/MS)
data

Platform and
pipeline

http://open-ms.sourceforge.net/ C++

TOPP OpenMS protein identification /
quantitation pipeline

Platform and
pipeline

http://open-ms.sourceforge.net/TOPP C++

TPP Institute for Systems Biology
“Trans-Proteomic Pipeline”

Platform and
pipeline

http://tools.proteomecenter.org/software.php C++, perl

XCMS Software package for metabolite pro-
filing from LC-MS data

Platform and
pipeline

http://metlin.scripps.edu/download/ R

CPM Alignment of time-series data (as in
LC-MS[/MS]) using Continuous Pro-
file Models

Calibration /
alignment

http://www.cs.toronto.edu/jenn/CPM/ MATLAB

OBI-Warp Aligns multiple LC-MS (/MS)
datasets in elution time by Dynamic
time warping

Calibration /
alignment

http://obi-warp.sourceforge.net/ C++

Recalibrate_
using_MSMS

Recalibrate LC-FTICR MS (/MS)
datasets using peptides identified
by MS/MS

Calibration /
alignment

http:
//ms-utils.org/recalibrate_using_MSMS.html

C

SpecArray Aligns multiple LC-MS datasets and
much more

Calibration /
alignment

http:
//tools.proteomecenter.org/SpecArray.php

C++

ChAMS Match all signals from two LC-MS
experiments by alignment. Alignment
is done as to maximize the overall
pair wise similarity between matched
MS spectra.

Alignment http://www.pasteur.fr/recherche/unites/
Biolsys/chams/index.htm

C

LCMSWARP Elution time alignment and feature
clustering

Alignment http://ncrr.pnl.gov/software C++

PETAL Peptide Element Alignment for LC-
MS data

Alignment http://peiwang.fhcrc.org/researchproject.html R

SuperHirn Peak detection, alignment and nor-
malization.

Alignment http://tools.proteomecenter.org/wiki/index.
php?title=Software:SuperHirn

C++

Table 6.1: Software packages for aligning LC-MS images.

6.5 Retention Time Alignment (Conclusion)

Global LC-MS-based profiling technology is increasingly employed to elucidate complex cellu-
lar processes and their correlated phenotypes. Because of unavoidable experimental variation, the
high dimensionality of experimental data, and finite resolution and accuracy of the instruments,
computational tools are necessary to transform these datasets into reliable and interpretable in-
formation on proteins. Scientifically validated data preprocessing tools, among them, the LC-MS
image alignment algorithms surveyed here, are critical for any application, such as biomarker
discovery and protein identification from multiple LC-MS experiments.

http://open-ms.sourceforge.net/
http://open-ms.sourceforge.net/TOPP
http://tools.proteomecenter.org/software.php
http://metlin.scripps.edu/download/
http://www.cs.toronto.edu/jenn/CPM/
http://obi-warp.sourceforge.net/
http://ms-utils.org/recalibrate_using_MSMS.html
http://ms-utils.org/recalibrate_using_MSMS.html
http://tools.proteomecenter.org/SpecArray.php
http://tools.proteomecenter.org/SpecArray.php
http://www.pasteur.fr/recherche/unites/Biolsys/chams/index.htm
http://www.pasteur.fr/recherche/unites/Biolsys/chams/index.htm
http://ncrr.pnl.gov/software
http://peiwang.fhcrc.org/researchproject.html
http://tools.proteomecenter.org/wiki/index.php?title=Software:SuperHirn
http://tools.proteomecenter.org/wiki/index.php?title=Software:SuperHirn
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Entirely satisfactory comparison and validation of the currently available alignment methods
remain an important but elusive goal, mainly because of the absence of a ground truth in large-
scale LC-MS analyses. The assessment of alignment quality is challenging too, because the infor-
mation contained in MS/MS spectra in many cases still appears to be significantly richer, but less
dense, than even highly accurate information on mass and elution time.

Image alignment is a major new approach to circumvent the limitations of MS/MS-based ana-
lysis, and to exploit the full potential of MS data, moving towards higher proteomic coverage.
Even though the propagation of peptide identity remains difficult, even with highly reproducible
chromatography, an appropriate alignment and identification strategy tuned to the available ex-
perimental data can confidently identify many peptides and proteins, and enable new experi-
mental strategies. The avoidance of feature detection before LC-MS image alignment significantly
improves the sensitivity of the approach.

The existing and emerging computational algorithms, along with their systematic evaluation,
will eventually help to underpin the full biological potential of the technology. Its success is
likely to be driven by parallel and complementary improvements of the experimental LC-MS
platform itself; in particular, concerning improvements of its effective dynamic range. Future
developments in computing and statistics in LC-MS data preprocessing can be expected to take
full advantage of the lessons learned from the analysis of large-scale gene expression microarray
data. In particular, small sample sizes are likely to result in spurious biomarker discoveries.

With a growing number of publicly accessible LC-MS data repositories, alignment remains a
key tool to increase the statistical power of experimental observations, and to leverage data and
information already available from different experiments and laboratories. Such integrative ana-
lysis procedures will critically rely upon effective data preprocessing that can deal with numerous
sources of both experimental and biological variability, across a variety of biological samples, and
across different experimental conditions, and if possible, laboratories. Although careful control of
the experimental protocol, including flow rate control, nano-LC, air conditioning, better columns
and automated robots, can effectively remove some of the unwanted variation, there is still a great
need for complementary future improvements in the computational pre- and post-processing al-
gorithms for LC-MS images.

As alignment methodology matures, new applications of alignment are being explored, such
as the systematic quality assessment of large sets of experiments [PPW+07]. The strong increase
in proteomic coverage possible in the case of many LC-MS experiments is starting to enable in-
teresting new applications in systems biology [FRS+07]. We expect that, as modern approaches
to biology can start to rely more and more on large sets of experiments, alignment will take an
increasingly important role in the data analysis machinery of systems biology.

We gratefully acknowledge Tina Guina and David R. Goodlett for making available to us the
data underlying Figs. 6.8, 6.9, 6.10 and 6.11 [GRB+07], Amol Prakash for providing us with the
ChAMS [PMW+06] source code, and the anonymous referees for their careful reading and con-
structive feedback on this manuscript.

6.6 M/z calibration

A mass spectrometer is a very accurate instrument, and like all accurate instruments, it needs
careful calibration procedures to unleash its potential. When coupling a mass spectrometer to
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Figure 6.12: A mass spectrometer can lose its m/z calibration over time during the course of
LC/MS analysis. The figure was generated from data acquired on a LTQ instrument (linear ion
trap).

liquid chromatography, this is a stronger issue because the mass spectrometer may lose its cali-
bration over time. In this section, we only briefly present m/z calibration. For more details we
refer the reader to [ZM07, Mat07].

6.6.1 Experimental reasons for calibration

Over the course of the experiment, subtle changes in the setup can alter the accuracy of the
mass spectrometer. Figure 6.12 shows m/z drift in the later stages of the LC/MS experiment.
Here are several examples of experimental reasons for calibration problems.

1. TOF analyzers are sensitive to temperature changes because the power supply output and
the length of the flight tube are functions of the temperature[CLT01]. Although calibrated
analyzers may have an accuracy up to 10 ppm, the power supply can induce variations of 25
ppm per degree Celsius, and stainless steel has a coefficient of expansion of about 18 ppm per
degree Celsius.

2. Maldi-TOF instruments have additional calibration issues because calibration is dependent on
the sample position on the MALDI plate [MCP+03].

3. In FT-ICR instruments, ions do not have exactly circular trajectories. In that case, the Fourier
transform does not yield accurate measure of the rotational frequency and of the m/z ratio
[SRS03].

6.6.2 Technical solutions for calibration

External calibration To calibrate a mass spectrometer, the standard procedure is to introduce
a calibration compound in the mass analyzer and compare the recorded m/z values with the
theoretical values. This calibration reference can be introduced at regular intervals during the
LC/MS analysis for measuring calibration scans. [Cha03] gives a technical solution to inject the
calibration compound between the LC column and electrospray ionization, without modification
of the mass spectrometer.
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Internal calibration When using internal calibration, the reference compound is usually mixed
with protein sample. This ensures that the lock mass for calibration is available in all mass spectra
and that it is not separated by liquid chromatography. However, the lock mass signal may hide
other low-intensity signals in the biological sample because of competitive ionization (see Section
2.3. Known contaminants can be used as internal calibration standards.

MS/MS calibration After identification of MS/MS spectra, we can compute the theoretical m/z
value of the parent ion, and compare it with the measured m/z value.

6.6.3 Computational approaches for calibration

M/z calibration is a similar problem to retention time alignment, but easier. It usually suffices
to find an affine transformation of the m/z axis, and only two mass measures are required for
this. For example, in TOF instruments, calibration consists in finding the coefficients A and B
such that

t = A
√

m/z + B

Some computational approaches have been proposed for mass calibration without using a ref-
erence compound. In [WLJR05] more non-linear calibration functions are used to improve m/z
ratios throughout the m/z range. [BM08] addresses the problem of peptides in the sample having
nearly the same m/z ratio as the reference compound, and provides a robust method.

Conclusion

In general, current calibration procedures are based on a reference standard and yield adequate
results. Global calibration with affine transforms are sufficient in most cases.

6.7 Intensity baseline

Preprocessing methods that correct the intensity values in LC/MS images address the following
problems:

• baseline correction removes the contribution of chemical noise to area under the curve quan-
tification,

• denoising smooths the intensity function,
• normalization corrects global and artificial differences in protein signal intensity.

Baseline correction is presented in this section, and normalization in Section 6.8. The noise
model presented in Chapter 7 can also be used for baseline removal and normalization.
Denoising of mass spectra is not presented in details in this manuscript, because the methods
employed are not specific to LC/MS images. Standard signal processing tools are applied to
the data such as smoothing, wavelet filters, or morphological filters. For more information on
denoising for LC/MS images, we refer the reader to [LNRE05, Mat07, SDM+04, YHY09]

6.7.1 Decomposition of noise into baseline and residuals

The intensity function I(t, m) measured on the LC/MS platform is decomposed into two inde-
pendent components:

• peptide signal S(t, m) is a deterministic function of the retention time and m/z ratio,
• background noise N (t, m) is the realization of a non-stationary random process.

Peptide signal is modeled in more detail in Chapter 8. In this section and the next, we study the
background noise component.
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Figure 6.13: Area under the curve quantification. The baseline (red curve) is estimated as indi-
cated in Section 6.8. A corresponds to the area under the curve attributed to the peptide signal. B
is the contribution of the baseline.

The background noise process is itself decomposed into a deterministic component B(t, m)
called baseline and residuals ε(t, m) such that:

B(t, m) = E[N (t, m)]

ε(t, m) = N (t, m) − B(t, m)

From the point of view of time series, B(t, m) contains both the trend and the seasonal variations.
In some papers, only the residuals ε(t, m) are designated as “noise”.

The decomposition of intensity into baseline and residuals was first presented for the analysis
of isolated mass spectra. The nomenclature has been extended to LC/MS images, even though it
would be more accurate to say “base surface” in two dimensional separations.

Baseline is especially important in MALDI ionization because of the formation of matrix clus-
ters [SDM+04, MPP+07]. These create patterns similar to contaminants, see Figure 6.5 on 86.

6.7.2 Consequences for quantification

As explained in Section 4.5, quantitative information in LC/MS images is measured by the area
under the curve. As indicated on Figure 6.13, the area under curve of a peptide signal can be
decomposed into:

∫

I(t, m) =

∫

S(t, m)

︸ ︷︷ ︸

A

+

∫

B(t, m)

︸ ︷︷ ︸

B

+

∫

ε(t, m)

︸ ︷︷ ︸

≃0

The contribution of the baseline for quantification of low intensity peptides is significant. In
Figure 6.13 it represents more than 20% of the area under the curve. The contribution of the
residuals to the area under the curve is a random variable with null expectation.
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For relative quantification and biomarker discovery, the baseline contribution affects the com-
putation of intensity ratios I1/I2 for peptides in different LC/MS images because the baseline is
not the same (see Figure 6.14 on page 113 for an example) :

I1

I2
=

∫
S1(t, m) +

∫
B1(t, m)

∫
S2(t, m) +

∫
B2(t, m)

6=
∫
S1(t, m)

∫
S2(t, m)

Remark Baseline has a marginal effect on peptide identification. In MS/MS identification, par-
ent ions are selected for fragmentation based on their intensity in the parent MS scan. However,
the selected parent ions are very intense in general, and the baseline contribution is low. For MS
identification, the main difficulty is in feature detection as presented in Chapter 8.

6.7.3 Baseline removal

Preprocessing methods deal with baseline by first estimating the baseline function B(t, m) then
subtracting it from the intensity function I(t, m). Further analyses are carried out on I − B with
the underlying hypothesis that baseline removal is perfect and that noise is centered (null expec-
tation).

Baseline removal is usually performed in each mass spectrum separately, from a single obser-
vation of the noise process N (t, m). To estimate the mean intensity of the noise B(t, m), baseline
estimation relies on the hypothesis that the function m 7→ B(t, m) is sufficiently smooth. Con-
versely, the peptide signal is considered as a series of pulses, in contrast to slow variations of the
baseline level.

Most baseline estimation approaches fall into two categories:

1. Start from local minima of the intensity, then build a smooth baseline by linear interpolation
[CTM+05, MPP+07, YPT+03, BCF+06, LGL+05, KHS+07], moving average [DSPA07], finding
the convex hull [LKP+03], etc.

2. Use robust estimates of the noise location like local linear regression [WNP03], polynomial
regression [WCD+05], LOESS regression [LGL+05, WNP03], wavelet filters [DKL06, LGR+06,
SS04], . . .

In MALDI spectra, the baseline function has been modeled as a decreasing exponential [WNP03].

We are not aware of baseline estimation procedures that deal with baseline estimation in two
dimensions. One such approach is presented in Section 6.8 as a side effect of normalization and
another in Chapter 7 as a consequence of the noise model. They have not been sufficiently vali-
dated for practical application to LC/MS data. Neighboring mass spectra provide repeated ob-
servations of the noise process, which should in principle facilitate the estimation of the mean
noise intensity. However, peptide signals are not impulsional in the chromatography dimension,
so much so that the smoothness hypothesis in the m/z axis is still required.

The smoothness hypothesis used for baseline estimation ignores an important aspect of the
background noise: its pseudo-period. In all the LC/MS images generated in the course of this
PhD thesis (see Figure 6.14 on page 113 for example), we have observed that chemical noise is
variable in the m/z direction, and that is has a 1 Da period. The baseline should have a cor-
responding pseudo-period of 1 Da. More generally, we expect the baseline function to contain
features of low frequency in the sense of Fourier analysis or large scale in the sense of scale space
theory, but up to 2 Hz, i.e. two oscillations per Da. At this scale, peptide signals are not impul-
sional because the mass analyzer does not have enough resolution. At 10,000 resolution, the peak
width of peptide signals is roughly 0.1 Da for ions of 1,000 Da.
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Remark In the feature detection method proposed in Chapter 8, baseline estimation and re-
moval are not necessary. Consequently, we suggest not to use it to preserve the statistics of the
background noise intensity.

6.8 Intensity normalization

Intensity normalization or standardization corrects systematically high or systematically low
intensity values related to variations in the sample preparation. Most of the observations and
statements presented in this section is original work, and has not been previously reported in the
literature to our knowledge.

As normalization changes the intensity values in the LC/MS image, it has a corrective effect
on quantification, and in turn, biomarker discovery. In absolute quantification (described in Sec-
tion 4.5.2), unnormalized intensity values indicate the real protein concentration in the analyzed
sample, but not the intended concentration, which is obtained after division by the normaliza-
tion factor. In relative quantification (described in Section 4.5.3), isotope labeling methods are not
affected by normalization problems, but label-free methods are.

6.8.1 Experimental reasons for normalization

Normalization corrects for variations in the sample concentration:

• dilution steps divide the concentrations of all proteins,
• if a biological is kept as dessicated powder, it needs to be dissolved and diluted prior to analysis

on a LC/MS platform,
• when analyzing cell lysates, the number of selected cells may be variable.

These experimental variations account for a global multiplicative factor, called the normalization
factor, that is applied to the concentration of all proteins in the sample, and hence to all the inten-
sity values of signals. When comparing the LC/MS images of repeated experiments, the global
normalization factor can be observed as systematic intensity differences between the two images
as in Figure 6.14.

Other sources of experimental variation account for normalization factors for individual mass
spectra in the LC/MS image:

• saturation in the LC column may reduce the effective flow rate. Consequently, a given mass
spectrum may correspond to decreasing amounts of material.

• if there is saturation in the ion source, the peptides in the sample compete for the available
charges. We may obtain the same distribution of intensity as a function of m/z ratio, but the
intensity values will be downscaled.

• even without saturation, competitive ionization can lead to the reduction of all signals other
than the most intense ion.

• “automatic gain control” is used to optimally fill ion traps and FT-ICR traps. It is unclear
whether other types of instruments implement some level of “automatic gain control”.

• in electrospray ionization, the Taylor cone may be unstable. As the peptide ions enter the mass
analyzer through a tiny hole, fluctuations of the Taylor cone may lead to sample loss.

These reasons call for spectrum-specific normalization factors. The gain factor can change abrupt-
ly from one scan to the next, thus producing visible changes in the overall intensity of a mass
spectrum. These problems can be observed in a LC/MS image as vertical stripes, as shown on
Figure 6.15. Most of the datasets that we have encountered suffer from these vertical stripes,
regardless of instrument type.
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Figure 6.14: LC/MS images of repeated experiments show systematic differences in the signal
intensity related to global normalization problems.

Spectrum normalization affects quantification in the measured intensities of each peptide sig-
nal. It also has an indirect effect on the correction of retention times. Intensity-based methods
such as ChAMS (Section 6.2) and others reviewed in Section 6.4 match mass spectra of similar
intensity and are likely to align the vertical stripes. This is a feature if the normalization factors
are reproducible and can be compared between experiments, it is a source of error otherwise.

The need for a global normalization factor related to dilution is well established, but not the
need for spectrum specific normalization factors. To our knowledge, this has been reported only
in [LNRE05] with a Hidden Markov Model containing spectrum-specific gain parameters. That
algorithm was originally designed for processing of speech signals where the volume may be
time dependent, and the gain parameters have not been motivated in the LC/MS context.

Normalization problems affect both peptide signal intensities and (chemical) background noise
as shown in the examples in Figure 6.14 and 6.15. The approaches described in the rest of the
chapter try to match the peptide signal levels, the background noise levels, or both.

6.8.2 A classification of normalization problems

Let I(t, m) denote the intensity values in the LC/MS image as a function of retention time t
and m/z ratio m. In spectrum normalization, t and m have different roles. We write It(m) to
emphasize the fact that the intensity values are organized in MS spectra and that normalization
is spectrum specific. We denote NFt the normalization factor, as a function of the retention time
or scan index t.
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Figure 6.15: LC/MS images obtained on a Q-TOF instrument exhibit spectrum normalization
problems. These are recognized as vertical stripes in the image.

Depending on the hypotheses on I and NF, normalization problems fall into the following
categories.

Problem 1 (normalization with a reference): Intensity is modeled as:

I = NF (N + S)

where N and S represent background noise and peptide signal intensity and are independent
identically distributed random variables. The distribution of N or S are known from the reference
image. I is not dependent on retention time or m/z ratio; this model can be applied to global
normalization or spectrum normalization.

Problem 2 (multiple normalization): Intensity is modeled as:

It = NFt (N + S)

In this model t can denote retention time for spectrum normalization, or LC/MS image index
for global normalization. Without a reference image, the absolute intensity level cannot be deter-
mined for absolute quantification.

Problem 3 (normalization with a spatial dimension): In mass spectra, the noise level is depen-
dent on the m/z ratio, and cannot be considered as identically distributed:

It(m) = NFt (N (m) + S(m))
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where m is the m/z ratio. This problem takes heteroskedasticity4 into account. When performing
normalization based on lists of peptides, m can be interpreted as the peptide index.

Problem 4 (normalization of spatial processes): After calibration, the sampling grid may be
different in mass spectra and may require interpolation:

It(m) = NFt (N (m) + S(m))

When using interpolation or other resampling methods, this problem reverts to Problem 3.

Problem 5 (real data): Spectrum specific normalization in real data combines the previous prob-
lems, with the additional difficulty that the noise distribution is spectrum specific (mostly due to
the baseline component):

It(m) = NFt (N (t, m) + S(t, m))

This is an ill-posed problem: when intensity is higher, is it because of normalization, baseline, or
cancer5 ?

Problem 6 (multimodal normalization): Normalization is used in label-free quantification me-
thods to compare the intensities of several different experiments. This corresponds to:

Ik
t (m) = NFk

t

(
N k(t, m) + Sk(t, m)

)

where k represents different image modalities (disease and control experiments, time points,
species, etc.)

Related problems Normalization is an instance of image registration where no spatial trans-
formation is necessary but only standardization of the image intensity. In image registration,
most approaches focus on finding the adequate spatial transformation. In contrast, normaliza-
tion focuses on the intensity (gray level) and tries to preserve quantitative information. Spatial
transformations are performed by retention time alignment and m/z calibration.

In the analysis of gene expression profiles with microarrays, normalization corrects for system-
atic differences of detector gain (variations of hybridization efficiency). Some methods deal with
spatial variations of the normalization factor across the array. Other methods deal with overlap-
ping contributions from the different dyes. Additional details can be found in [YDL+02]

6.8.3 State of the art in intensity normalization

Applying a global normalization factor consists in multiplying all the intensity values in one
experiment to match to another experiment. In most approaches, the total protein content of the
LC/MS image, as represented by the total intensity (total ion count), is made to agree between
LC/MS images [BMW03, WNP03]. Variations on the total ion count include the mean peak inten-
sity [SS04].

[THN+04] use the quantiles of the intensity distribution to standardize the intensity values in
a mass spectrum. They use an affine transformation to map the 10th and 90th percentiles to 0 and
1 respectively.

4Non uniform variance.
5Some tumors lead to elevated levels of most proteins, as discussed in Chapter 5
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As normalization builds on the hypothesis that the concentration of “housekeeping” proteins
is the same, some methods try to ensure that the intensities of a list of peptides are comparable.
These methods measure the center of mass of the intensity distribution like median peak intensity
[WZL+03], or use the median ratio in pairs of peaks [ARL+04].

As only the most abundant proteins may have reproducible concentrations, [WTZ+06] consider
only the L most intense signals and their median intensity, whereas [RJR+04] find the normaliza-
tion factor such that only 100 signals have intensity over 10,000.

6.8.4 Normalization based on the background noise.

In Sections 6.8.5 and 6.8.6, we evaluate several indicators of the normalization factor based on
analyzing the background noise and considering peptide signals as outliers. This is based on the
hypothesis that normalization affects chemical noise in LC/MS images.

Using the background noise for normalization is against the current trends in the literature.
Current methods rely on the hypothesis that the peptide content is the same across samples. Nor-
malization is improved by removing the noise contribution to intensity values (baseline removal
and denoising) and considering only the intensity from peptide signals.

Methods based on peptide signals fail to take advantage of the full information in LC/MS
images. In particular, they use only the contributions of high-intensity signals. Performing nor-
malization based on chemical noise has a few advantages. It uses the bulk of the dataset because
although peptide signals are in large numbers, they are still isolated in LC/MS images. Moreover,
we expect chemical noise to be useful in multimodal normalization (Problem 6), where the protein
content varies in different LC/MS images. Finally, normalization of the noise intensity facilitates
statistical analysis because the noise process may be considered as stationary. This assumption is
used to estimate the noise level in Chapter 8 for the detection of peptide signals.

Validation Due to the lack of a suitable validation data set, we decided to evaluate the proposed
spectrum normalization methods based on two criteria:

• The background noise distribution is the same in each mass spectrum. This is evaluated based
on the stability of the quantiles of the intensity distribution in each mass spectrum, and the
lower quantiles in particular.

• Some contaminants are not separated by liquid chromatography. They appear in each mass
spectrum, and are expected to have a constant intensity throughout the LC separation.

The LC/MS images used in Section 6.8.5 and Section 6.8.6 were generated from the 4-5 protein
mix described in [PMW+06]. The data file corresponds to a LC/MS analysis on a ESI-TOF mass
spectrometer of a tryptic digest of 5 proteins (alodlase, catalase, a-lactalbumin, transferrin, b-
lactoglobulin).

6.8.5 Spectrum normalization in isolated mass spectra

Problem statement For each mass spectrum with index t in the image (vertical column of pix-
els), we compute a normalization factor NFt. After dividing the intensities of each mass spectrum
with the normalization factor, the background noise distribution should be the same. This corre-
sponds to Problem 1 in the proposed classification.
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Figure 6.16: LC/MS image before normalization.
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Figure 6.17: Quantiles of the intensity distribution and intensity of two contaminants before nor-
malization.
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In Figure 6.16, we show the LC/MS image before alignment, and the background noise distri-
bution as a function of t, as indicated by a few quantiles in Figure 6.17. The curve corresponding
to the quantile level 0.95 is expected to contain real peptide signals, and less emphasis is put on
that level. We also check the elution profiles of two contaminants at m/z ratio 577 Da and 595 Da.
After normalization, all the curves in Figure 6.17 are expected to be constants.

To compute the spectrum-specific normalization factors, we use the following measures of the
location of the intensity distribution:

• total ion count in a mass spectrum (TIC, i.e. L1 norm)
• mean intensity
• euclidean norm (i.e. L2 norm)
• Huber m-estimator of location with the scale estimated with the median absolute deviation

(MAD) [HWI81, VR02]
• median
• weighted mean of quantiles, we used NF =

1

3
(q0.3 + q0.5 + q0.7)

• contaminant intensity, we used NFt =
1

4
(It(577) + It(578) + It(595) + It(596))

Huber m-estimator Let (x1, . . . , xn) denote a data set of real numbers. A m-estimator of location
µ̂ is a solution to the following minimization problem:

µ̂ = arg min
µ

n∑

i=1

ρ(xi − µ)

When ρ(x) = x2, then µ̂ corresponds to the mean of (x1, . . . , xn). The Huber m-estimator corre-
sponds to :

ρ(x) =

{

x2 if |x| ≤ k

2k|x| − k2 if |x| > k

The parameter k is adjusted by the user for a compromise between robustness (low values of k)
and efficiency (large values of k). The standard choice is k = 1.5s where s = 1.4826 MAD is an
estimate of the standard deviation based on the median absolute deviation.

Results Figures 6.18 to 6.24 show the LC/MS images obtained after normalization. Due to the
non-uniform background noise in the chosen LC/MS image, it is not easy to evaluate the results,
but the quantile plots are easier to interpret. These lead to the following remarks.

Before normalization, the intensity of the contaminants is more or less stable, as are the quantile
functions. This supports the hypotheses for spectrum normalization.

Normalization with the total ion count is surprisingly good, as shown by the stability of the
quantiles. However, this method fails in the presence of peptide signals around scan 500, and the
contaminant intensities are disturbed.

Normalization with the mean is nearly identical to TIC normalization, although the number of
sampling points may be different in successive mass spectra. Normalization problems seem less
pronounced than in TIC normalization.

Normalization with the euclidean norm fails to provide stable noise background and contami-
nant intensity.
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The Huber m-estimator is a robust version of the trimmed mean, and is less affected by the
high intensity signals.

Normalization with the median is not convincing. In fact, in this data set, the median is useless
because it is nearly always equal to 3, and normalization has no effect. Note that quantile regres-
sion [YLS03] cannot be applied in this context because we do not expect the normalization factor
to be a smooth function.

Normalization with the weighted mean of three quantiles performs best, both in terms of the
stability of the quantiles and of the contaminant intensity. It is not affected by the presence of
high-intensity signals around scan index 500. In some places, normalization is off target because
some of the considered quantiles are equal to 0.

For comparison, we normalize the LC/MS with the intensity of the contaminants, and ensure
that the contaminant intensity is stable. It is not exactly constant because we used different con-
taminants in normalization and validation. Figure 6.24 shows the lack of agreement between
contaminant intensity and background noise distribution. This raises doubts about the validation
criteria.

In conclusion, normalization based on the quantiles is a promising method, but not completely
satisfactory. Inconsistencies between the background noise quantiles and contaminant intensity
prevent the validation of this approach (see the discussion in Section 6.8.7).
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Figure 6.18: After TIC normalization.
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Figure 6.19: After normalization with the mean.
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Figure 6.20: After normalization with the euclidean norm.
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Figure 6.21: After normalization with the Huber m-estimator.
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Figure 6.22: After normalization with the median.
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Figure 6.23: After normalization with the weighted mean of the quantiles.
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Figure 6.24: After normalization with the weighted mean of contaminant intensity.
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6.8.6 Spectrum normalization based on rank one matrices

Problem statement For each mass spectrum with index t, we compute a normalization factor
NFt. We are also interested in estimating the baseline as a function of the m/z ratio m. This
corresponds to Problem 3 in the classification.

It(m) = NFt (N (m) + S(m))

As in normalization based on isolated mass spectra (Section 6.8.5), we consider that the peptide
signals are outliers in the background noise distribution. The model becomes:

It(m) = NFt N (m)

and its mean intensity is simply a separable function of retention time and m/z ratio:

E [It(m)] = NFt B(m)

By estimating the mean noise intensity, we obtain estimates of both the normalization factors and
the baseline function.

Due to separability, it is natural to estimate the surface (t, m) 7→ NFt B(m) with a rank one
matrix. Let A = (aij) ∈ Cp×q denote a complex valued matrix with p rows and q columns.
The Froebenius norm of A is ‖A‖F =

√∑
i, j|aij |2. The Singular Value Decomposition (SVD)

is a natural tool for finding low rank approximations to the matrix A because of the following
theorem (see [GVL96, FT06] and references therein).

Theorem 6.8.1 (Eckart-Young [EY36]). LetCp×q
k be the set of complex valued matrices of rank lower than

k. Let Ak =
∑k

i=1 si ui v∗i where si, ui and vi are the singular values, left-singular and right-singular
vectors in the SVD decomposition of A. The matrices Ak verify

min
X∈C

p×q
k

‖A − X‖F = ‖A − Ak‖F

In particular, A1 is a rank one approximation of A. It can be computed in polynomial time.

To our knowledge, the theory of rank one approximation of matrices has been focused on spe-
cial types of matrices such as symmetric Toeplitz matrices and Hankel matrices [CFP03]. Singular
Value Decomposition seems to be the only method for approximation of arbitrary matrices with
an explicit algorithm for practical computation, as opposed to optimization. Optimization me-
thods were not considered in this study because of the large size of LC/MS images.

Update Methods based on Non-negative Matrix Factorization (NMF, [HVD08]) look promising
but were not considered in the course of this thesis.

Results Figure 6.25 shows the LC/MS image along with the estimated rank one model A1. The
model appears to faithfully represent the background noise intensity, and also takes into account
both changes in normalization and baseline intensity.

The rank one model has several shortcomings:

• The SVD decomposition is an adjustment based on the Froebenius norm and is sensitive to the
presence of outliers, i.e. to the presence of peptide signals.

• Outside iterative optimization, we are not aware of a method to compute a solution to the
minimization problem in Theorem 6.8.1 with a different norm or distance than the Froebenius
norm.
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Figure 6.25: Estimation of the normalization factors and the baseline with the Singular Value
Decomposition (SVD). The left panel shows the data, and the right panel shows the base surface
estimated with the rank one SVD model.

• The rank one model distributes the contribution of peptide signals over the baseline and the
normalization factors. There is no way to particularize the baseline coefficients or the normal-
ization factors.

• We expect the SVD model to fit too closely to the LC/MS image, i.e. we anticipate an overfitting
problem.

6.8.7 Validation of normalization methods

6.8.7.1 Ideal situation

In the ideal situation, we would have a data set where the normalization factors are known for
each mass spectrum. This is not realistic in practice and we discuss the validation criteria used in
Section 6.8.5 and the technical difficulties to generate an ideal data set.

Remark In Chapter 7, we build a synthetic data set with known normalization factors to pre-
cisely evaluate the performance of the compatible values estimator and compare with quantile nor-
malization and TIC normalization (proposed in 6.8.5).

6.8.7.2 Contaminants

The observed contaminants in the chosen data set were identified by our colleagues at the mass
spectrometry platform of the Pasteur Institute as molecules liberated by the plastic tubing. The
likely culprit is a polymer of dimethylsiloxane (DMS, mass 74 Da) which appears at m/z ratios of
the form 1 + 74k like 519 Da and 593 Da. This is coherent with molecules of the form (DMS)kH+.
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In section 6.8.5, we used 595 Da, which corresponds to the +2 isotope but appeared more intense
in the LC/MS image, and 577 Da which corresponds to a neutral loss of water (-18 Da).

For validation in practice, contaminant traces are reasonable candidates as indicators of the
true normalization factor. As the contaminant is thought to be liberated by the plastic tubing or
the chromatography column, we made the hypothesis that it is not separated by chromatography
and thus liberated at the same rate over time. The figures in Section 6.8.5, and in particular Figure
6.24, are coherent with this hypothesis, but not to the point that it is usable for proper validation.

Instead of relying upon contaminants that are naturally in the LC/MS image, is it possible to
induce contamination ?
There are technical difficulties to properly introduce a contaminant in the analysis platform. If
it is introduced with the sample before LC/MS, we cannot guarantee that its signal intensity is
constant in time because it may interact with the LC column. The contaminant must be introduced
before ionization because it must be an indicator of what is going on in the sample.
The only method that we came up with is to perform a post-column infusion of a contaminant. In
that case, the contaminant is mixed with the eluent from the liquid chromatography just before
electrospray ionization. This mixing step is a challenge in microfluidics 6 because of the small size
of the tubes involved. We did not get such a data set.

6.8.7.3 Stationary background distribution

We compared our normalization methods based on the hypothesis that the background noise
distribution is the same in each mass spectrum. This is verified to some extent before normaliza-
tion as can be seen in Figure 6.17. We hoped to improve the situation with our methods, even if
Figure 6.16 shows that the background noise patterns may be very different in successive mass
spectra.

The data set in [KEH+08] that is used in Chapter 8 is much better behaved, and the stationary
hypothesis is more reasonable in that case. However, it does not contain visible contaminants, so
validation with both the quantiles and the contaminants was not possible.

The promising results obtained with the rank one / SVD model proposed in Section 6.8.6 also
suggest that the background noise distribution is independent of retention time, and that the
variations observed are only related to the normalization factors. Consequently, after normaliza-
tion, we may assume that background noise is identically distributed in a horizontal line. This
hypothesis will be used in Chapter 8 for detecting protein signals.

6.8.8 Summary

We propose spectrum normalization in addition to global normalization as a means to remove
experimental variations in the multiplicative factor between protein concentration and measured
intensity. Several experimental reasons motivate the use of spectrum-specific normalization fac-
tors such as competitive ionization and automatic gain control. These variations can be observed
in LC/MS images as vertical stripes.

As only global normalization is considered in the literature, we provide a classification of the
problems in spectrum normalization. We have studied in particular Problem 1 where normaliza-
tion is performed in ideal conditions (independence and stationarity), and Problem 3 where the
background noise is not uniform in a mass spectrum.

6Microfluidics deals with the behavior, precise control and manipulation of fluids that are geometrically constrained
to a small, typically sub-millimeter, scale.
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Two families of methods are considered. In Section 6.8.5, we describe methods that only con-
sider isolated mass spectra and try to match the background noise distribution to a pre-specified
level. In Section 6.8.6, we describe methods based on rank one approximation of matrices that
try to model the base surface and provide the spectrum specific normalization factors and the
baseline at the same time.

Even though the results look promising, we have been unable to properly validate the pro-
posed methods due to the lack of a suitable validation data set as discussed in Section 6.8.7. As
a consequence, we have sought for a noise model with explicit normalization factors. The results
of this model-based approach are described in Chapter 7.

6.9 Conclusion

An LC/MS image represents ion intensity as a function of retention time and m/z ratio. These
are very large images, on the order of a gigabyte each, which require many steps of preprocessing
before identification and quantification of the peptide signals within.

All the components of LC/MS images suffer from systematic sources of variation related to
technical difficulties. Retention times are difficult to reproduce because they are sensitive to ex-
perimental conditions. M/z values need careful calibration procedures to improve accuracy. In-
tensity values measured on LC/MS platforms are contaminated with chemical noise and other
sources of variation that affect protein quantification.

In this chapter, we presented the types of data recorded on LC/MS platforms, and the types
of signals, noise and contaminant signals to expect in LC/MS images. We have presented algo-
rithms to correct retention time, m/z ratio and intensity. In particular, Section 6.4 is extracted
from our work published in [VLTTK+08], and Section 6.8 contains unpublished original work. In
particular, variations in the gain parameter and the ionization efficiency corrected in Section 6.8
can remove biases for alignments methods based on profile data (described in Section 6.4.1.1).

The experiments in Section 6.8 suggest two types of developments. First, for spectrum nor-
malization, the proposed methods are not able to estimate the normalization factor and the mean
intensity of the background noise separately, but only their product. The model-based approach
presented in Chapter 7 was developed to address this problem.

Second, after normalization, the background noise process becomes stationary in the retention
time direction. Therefore, it is easy to evaluate the errors in feature detection based on this hy-
pothesis. This is the basis for the feature detection methods proposed in Chapter 8.
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A noise model for LC/MS data
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Figure 7.1: Comparison of a few compatible lattices and the dataset.

Models for the background noise in LC/MS data are scarce. Preliminary studies have shown
that random noise behaves like Poisson shot noise [ARL+04]. While there are initiatives to model
the noise behavior as a function of mass-to-charge ratio [HNR02, MCA+05], these are mainly
models for the baseline component. [SKBM04, SMKM07] propose to model the background noise
with ARMA processes and estimate the power spectral density. To our knowledge, no model
has been proposed from first principles, i.e. based on the knowledge of the physical processes
underlying the experiment.

In this chapter, we present a semi-parametric noise model for data acquired on a TOF mass
spectrometer. In particular, the normalization factors studied in Section 6.8 are explicitly modeled
and we propose several methods to estimate them.

The proposed model is a first attempt at defining a model from first principles and still needs
to be extended and validated further. The contents of the chapter are extracted from a manuscript
in preparation [LTT08].
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7.1 Introduction

7.1.1 Ion Detectors

We consider detectors similar to microchannel plate detectors that are used in most mass spec-
trometers [Wiz79] (see Chapter 3 for details on ion detection). When an ion hits the detector plate,
it produces an analog signal that is amplified, quantized, then reported to the computer. The
level of quantization is quite high as there may be only 211 = 2048 levels1 in some instruments
[SWB03], and small signals as well as chemical noise are strongly affected by quantization effects.

Specific difficulties have appeared with high-throughput analyses of biological material. In
particular, biological samples may contain trace amounts of molecules of interest. These are diffi-
cult to distinguish from chemical noise which produces patterns similar to real signals [ARC+03,
KC02, WPP96]. In 2004, [ARL+04] suggested Poisson-like behavior for the ion intensity based on
a linear relationship between the mean and variance of the noise. This linear relationship suggests
that the amplification factor of the detector may be unaccounted for in the data set.

Photomultipliers Photon multipliers are devices for counting photons instead of ions. When a
photon hits the scintillator, the plate liberates an electron, that electron hits a dynode and liber-
ates additional electrons. Several stages allow for large amplification of the light signal. Photon
multipliers are not usually employed in mass spectrometers. More information on these devices
can be found in technical reports 2 as well as in [Tan82, MKG03, Ind89].

7.1.2 Summary of the mathematical results

We start from a general model for the intensity I(t, m) at retention time t and m/z ratio m:

I(t, m) = τ(t, m) (N(t, m) + PEP(t, m))

where τ(t, m) is the gain of the ion detector, N(t, m) is the random number of incident ions and
PEP(t, m) is the peptide signal.

In Section 7.2, we simplify the previous model into X = ⌊τN⌋ where X is a model for the
intensity in a mass spectrum and ⌊⌋ denotes the floor function. In the following, we will consider
each mass spectrum in the LC/MS image independently from the others, and estimate τ and the
distribution of N inside a mass spectrum.

In Section 7.3, we discuss the different mathematical situations that arise in the proposed model.
We explain why estimation is trivial with negligible quantization error, and why it is impossible
with τ ≤ 1. The rest of the chapter focuses on the distinguishable case, i.e. τ > 1.

In the distinguishable case, we first study upper bounds for τ in Section 7.4. We then define the
notion of compatible values, and propose an optimal estimator for τ in Section 7.5.

The performance of the compatible values estimator is compared to three other estimators in
Section 7.6. These estimators provide poor results compared to the optimal estimator, but provide
insight on the practical issues and the mathematical problem.

Section 7.7 proposes additional mathematical results, and an application of the compatible val-
ues estimator to spectrum normalization.

1Single precision floating point numbers have 2
24

∼ 16.106 levels of precision plus sign and exponent.
2 http://www.electrontubes.com/technical-information/

http://www.electrontubes.com/technical-information/
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7.2 Modelisation

7.2.1 Practical difficulties

TOF instruments measure the signal intensity on an integer scale, as described in Chapter 6.
Moreover, the integer values are often left-censored, i.e. values below 3 are filtered out of the
data set. These characteristics have unexpected consequences on signal processing and statistical
procedures:
• The mean intensity of the noise is tricky to estimate because of the peptide signals (outliers)

and the removal of low-intensity values.
• Quantization errors are expected to have a major contribution to any estimator, e.g. quantiles

are necessarily integers.
• The median intensity of most mass spectra is zero, probably because of the truncation of low-

intensity values.
• The distribution of chemical noise and that of signal intensity have a significant overlap because

of low-intensity peptide signals.
We do not expect a very accurate noise model in this context.

In spite of all these difficulties, we have studied the possibility to estimate the gain parameter of
the ion detector and the noise distribution. The results presented in this chapter are uncommon,
and fall at the interface between parametric estimation in statistics and discrete mathematics.

As explained in Section 7.2.2, the parameters of the model are estimated inside a mass spectrum,
and independently from the other mass spectra. This is because the model is intended to study
the variations in the normalization factor and the background noise distribution over time. As
such, it may be used to validate the hypotheses in Section 6.8.

7.2.2 Mathematical model

We propose a semi-parametric model for the intensity I(t, m) as a function of retention time t
and m/z ratio m in LC/MS images. Let τ(t, m) denote the normalization factor, N(t, m) denote
the background noise and PEP(t, m) denote the peptide signal. The recorded intensity is thus
equal to

I(t, m) = τ(t, m) (N(t, m) + PEP(t, m))

Considering the peptide signals as outliers in the noise distribution, we neglect them 3 and obtain:

I(t, m) = τ(t, m)N(t, m)

In order to study the variations of τ and N at different retention times, we will estimate them
with a fixed t, that is to say inside a mass spectrum. We make the assumption that τ does not
depend on m because it models the global normalization factor in a mass spectrum. In addition,
we make the simplifying assumption that N is independent of the m/z ratio m. In conclusion,
we are in the hypotheses of normalization problem 2 (see Section 6.8.2 page 113).

I = τN

Considering the practical difficulties in Section 7.2.1, we introduce a quantization error term 4

with the floor function ⌊⌋. As the ion detector is capable of counting single ion events, we model
N as an integer-valued random variable. We obtain the following observation model:

X = ⌊τN⌋
3Peptide signals are not completely neglected. They are simply not modeled. We will use robust methods to deal with

the deviations from the proposed model caused by peptide signals.
4 Similar results can be obtained with other quantization operators such as rounding (not shown here).
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Recall that ⌊x⌋ is defined as the unique integer in Z such that ⌊x⌋ ≤ x < ⌊x⌋ + 1. Equivalently,
⌊x⌋ is the largest integer that is lower or equal to x.

The observation model is associated with the statistical structure (N,B,Pθ), with θ = (τ,N)
where τ is a positive real number and N is a probability distribution on N. The statistical problem
is to estimate the real-valued parameter τ and the distribution of N , so it is a mixture of parametric
estimation and non-parametric estimation. The statistical model is not regular, therefore many
tools from classical statistics are not applicable such as Fisher information (see [Mil01] for details).

7.2.3 A priori distribution of N

The results in Section 7.5 show that the estimation of τ and N can be decoupled completely.
The only required assumption on N is that it is integer-valued. In that situation, N can be any
type of process, independent or not, stationary or not, and can include the peptide signals. The
estimation procedure is also robust to left-censored data.

In this section, we briefly discuss our a priori expectations on the distribution of N for several
reasons:

• to help the reader understand the components of the model,
• to justify the usage of a Poisson distribution in the simulations,
• to show the relationship with the overdispersion problem and the double Poisson family,
• and also to suggest possible estimation procedures for N , which is not tackled in this thesis.

We believe a priori that N is Poisson distributed as suggested in [ARL+04] because it models
rare events (ion counts). A simple estimator for τ and the Poisson parameter λ is







τ̂ =
Var(X)

E[X]

λ̂ =
E[X]

τ̂

This estimator deduces the estimated parameters (τ̂ , λ̂) from the moments of X . This estimator
is not very precise. In practice it is not usable because of the peptide signals, which affect the
estimation of Var(X).

The normalization factor τ can be interpreted as an overdispersion parameter affecting Pois-
son distributed observations. This has been studied extensively in the framework of general-
ized linear models [MN89, NW72] and common methods include negative binomial regression
[Hil07, Law87] and exponential dispersion models [Efr86, Fit97, GD90].

In the model under consideration, a generalized Poisson approach seems better suited than
negative binomial regression because the variance of X depends on the mean via V (X) = τE[X].
In Section 7.6.2, we apply double exponential families as presented by [Efr86]; these were used
by [ABF99] for regression in a similar dataset with the model X ′

i = τNi where Ni is Poisson dis-
tributed with varying parameter µi. However, quantization effects are not taken into account in
generalized linear models, and poor parameter estimates are obtained by this approach. More-
over, we wish to confirm the Poisson hypothesis by using non parametric estimation.
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7.3 Mathematical situation and types of problems

7.3.1 Trivial case

With negligible quantization error, the observation model becomes X = τN . Estimation of τ
is trivial; all that is required is to observe the event {N = 1} i.e. {X = τ × 1}, or the two events
{x1 = τi} and {x2 = τ(i + 1)} and compute the difference x2 − x1. To recover N , it then suffices
to consider X/τ . The quantization error may be neglected when τ ≫ 1 in the observation model
X = ⌊τ N⌋ and the previous estimates provide τ with a precision on the order of the quantization
error.

7.3.2 Distinguishibility

In the general case, we can recover the samples of N from the samples of X when the mapping
x 7→ ⌊τ x⌋ is injective. The inverse mapping is y 7→ ⌊y/τ⌋+1. We call this situation the distinguish-
able case. It occurs if and only if τ ≥ 1 (see proof in the Appendix, Prop 7.9.1). In this situation,
the semi-parametric approach can be separated into parametric estimation of the gain parameter
τ followed by non parametric estimation of the distribution of N .

Example 7.3.1.

> data = floor(1.32 * n)

% Distinguishible case

> n

[1] 1 2 3 4 5 6 7 8 9 10

> data

[1] 1 2 3 5 6 7 9 10 11 13

When τ is smaller than 1, the truncation error merges adjacent values of N . In the following
example, the events {N = 3} and {N = 4} cannot be distinguished in the data set. This is because
the corresponding observation is {X = 2} in both cases.

Example 7.3.2.

> data = floor(0.68 * n)

% Non distinguishible case

> n

[1] 1 2 3 4 5 6 7 8 9 10

> data

[1] 0 1 2 2 3 4 4 5 6 6

In the distinguishable case, it is natural to sort and index the observed values in order to de-
termine the mapping x 7→ ⌊τ x⌋. This is not sufficient in practice because of missing values or
outliers which can modify the indexes (See Section 7.6.4).

7.3.3 Consequences

The gain parameter and the law of N have separate effects on X . In the distinguishable case,
the distribution function of X is a transformation of the distribution function of N by the map-
ping x 7→ ⌊τ x⌋. The gain parameter and the truncation error only distort the position of each
peak, whereas the relative frequencies are unchanged. Consequently, the support S of the empir-
ical distribution is sufficient information for estimating τ whereas the empirical frequencies are
sufficient information for the distribution of N .



136 CHAPTER 7. A NOISE MODEL FOR LC/MS DATA

In the non distinguishable case, the set of observed integers is always N for large samples (see
Section 7.5). As a consequence, τ cannot be estimated based on that set alone. A semi-parametric
approach is not feasible either. For instance, we cannot estimate the mean E[N ] but only E[X] =
τE[N ]. To separate τ and N , we have to provide prior assumptions on the distribution of N like
a Poisson parametric family.

In the following, we study properties of the set S of observed integers. This set can be con-
structed from the dataset in O(n log(n)) time using sorting for example. The algorithmic com-
plexity of the following algorithms is governed by the size of S, and in particular, the maximum
integer in S.

We focus on the distinguishable case, and perform parametric estimation of the gain parameter
from a random set of integers. As the support of the empirical distribution is a sufficient statistic
for τ , we use the statistical structure

(
Ω = 2N,T,Pτ , τ ∈ ]1,+∞[

)
where Ω is the power set of N

and T is the exhaustive σ-algebra on Ω.
(Pτ , τ ∈ ]1,+∞[ ) is a parametric family of distributions on Ω that is implicitly generated in the
following way. For a fixed integer n and fixed but unknown integer-valued random variable
N , Pτ is the distribution of the random variable S which is the set of observed integers in an
independent identically distributed sample (X1, . . . , Xn) of X = ⌊τN⌋.

7.4 Upper Bounds for τ

The results in this section are based on the following idea. Two points in S are separated by at
least ⌊τ⌋. Consequently, when τ is large, then S is a sparse set, whereas S is dense when τ is near
1. For instance, there are consecutive points in S if and only if τ ≤ 2 (see Proposition 7.9.2 in the
Appendix).

A better estimate can be obtained by combining more than 2 consecutive points. Let Jx, yK de-

note the set of integers between x and y. If Jx, yK is a subset of S, then τ < 1+
1

y − x
. Consequently,

τ can be estimated by 1 +
1

y − x
with a precision on the order of the inverse of the length of the

interval
1

y − x
. However, this estimator is strongly affected by missing values in S.

Instead of considering all the segments in S, we propose to use the overall density of the set,
which is easier to compute algorithmically. Let x̂ = ⌊τ n̂⌋ denote the largest integer in S. Then

τ <
x̂ + 1

n̂
. When n̂ is unknown (because of potential missing values), let n denote the number of

non zero observed integers i.e. the number of elements in S. Then

τ <
x̂ + 1

n̂
≤ x̂ + 1

n
.

Consequently,
x̂ + 1

n
is an estimate of τ with precision on the order of 1/n (without missing

values). As it uses the whole data, it is usually more precise than the previous bound. We will
use this in the rest of the paper to restrict the search space for τ .

Let us compare the previous bounds on an example. Suppose that τ = 1.32 and that we observe
S = {1, 2, 3, 5, 6, 7, 9, 10, 11, 13}.
As there are consecutive integers in S we obtain τ < 2 .
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Using the interval J5, 7K, we obtain τ < 1 + 1/2.
Using the interval J9, 11K, we obtain τ < 1 + 1/2 as well.
The density upper bound is τ < 14/10.

Remark We only provided upper bounds in this section because lower bounds can only be
deduced from the integers that cannot be generated in the model. These are difficult to distinguish
from missing values, which are integers that can be generated in the model, but do not appear in
the set S of observed integers.

7.5 Compatible Values

The upper bounds that we proposed in the previous section are easy to compute but rather
poor because they only take into account the proportion of observed integers. In this section, we
describe an algorithm with higher computational load but which can leverage the information in
the location of each observed integer in the data set.

7.5.1 Lattices of Integers

In the observation model X = ⌊τN⌋ where N is integer valued, only specific integers can be
generated. Given a strictly positive real number t, let us define the set of possible values for x as
the lattice associated to t, i.e. the infinite set of integers St = {x = ⌊t k⌋, k ∈ N}. The set of observed
integers S is also called the empirical lattice.

With infinitely many observations, the parameter τ is completely characterized by the empir-
ical lattice as the following proposition shows. This justifies that S is sufficient information for
estimating τ .

Proposition 7.5.1 (Equivalence between lattices and numbers). In the distinguishable case, let t1 and
t2 denote two real numbers such that t1 ≥ 1 and t2 ≥ 1. Then St1 = St2 if and only if t1 = t2.

Proof. Obviously, if t1 = t2 then St1 = St2 . Let us prove the converse, i.e. St1 = St2 implies t1 = t2
or equivalently if t1 6= t2 then St1 6= St2 . Suppose that t1 < t2. There exists n ∈ N such that
⌊t1n⌋ < ⌊t2n⌋. Either ⌊t2n⌋ /∈ St1 , in which case St1 6= St2 , or ⌊t2n⌋ = ⌊t1n1⌋ with n1 > n. In
the latter case, distinguishability implies that there are strictly more elements in St1 ∩ A than in
St2 ∩ A where A denotes the set of integers A = J0, ⌊t2n⌋K = J0, ⌊t1n1⌋K.

7.5.2 The Set of Compatible Values

Proposition 7.5.1 is not sufficient for estimating τ because in practice we only observe a finite set
S  Sτ . Consequently we define the notion of compatible lattices and equivalently compatible
values. For positive real numbers t1 and t2, we say that t1 is compatible with t2 if St2 ⊂ St1 .
Likewise, a positive real number t is compatible with the data if S ⊂ St. Being compatible with
the data set is a necessary condition for a valid estimator of τ .

The set of values that are compatible with the infinite lattice Sτ is adequate for estimating τ
because of the following proposition.

Proposition 7.5.2. τ is the largest real number that is compatible with Sτ .

Proof. τ is a compatible value, we only have to show that it is the largest.
Let u denote a real number greater than τ , and let α denote a positive real number such that
τ < τ + α < u. We will prove that u is not compatible with τ by constructing an element in Sτ

that cannot be in Su.
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Let a denote a positive integer such that a > 1
α and n = ⌊τa⌋.

Suppose that Sτ ⊂ Su then n belongs to Su and there exists a positive integer a′ such that n =
⌊ua′⌋.
a′ ≥ a because in the distinguishable case, a and a′ correspond to their indices in the sets Sτ and
Su and Sτ ⊂ Su.
Moreover, as τ ≤ u we have ⌊τa⌋ ≤ ⌊ua⌋ ≤ ⌊ua′⌋. For all three terms to be equal to n in the
distinguishable case requires that a = a′.
Consequently, both τ and u lie in the interval [n

a , n+1
a [. As a result, |τ − u| ≤ 1

a which contradicts
the hypothesis a > 1

α .

The set of real numbers that are compatible with Sτ has an intricate structure. It contains the
positive real numbers smaller than 1 and the harmonics

{
τ
k , k ∈ N∗}, but these are not the only

values. For example, 4/3 is compatible with 2 because every even integer can be written as ⌊k ×
4/3⌋, k ∈ N. Indeed, let k be an even integer. Either k is a multiple of 4, in which case k = 4i =
⌊ 4

3 × 3i⌋, or k = 4i + 2 = ⌊ 4
3 × (3i + 2)⌋.

7.5.3 Estimation with a Finite Lattice

In practice, the empirical lattice is finite and can contain missing values and outliers. We say
that an integer is missing from S when it is in the theoretical lattice Sτ , smaller than x̂ = maxS,
but not in S. The set of compatible values with S is a finite union of intervals and compatible
values are never isolated. As the data contains less information, the true parameter τ is not the
largest compatible value, but it is still maximal in the following sense.

Proposition 7.5.3. The set of compatible values C(S) contains exactly ]0, 1] and intervals of length at least
1/x̂2 where x̂ = maxS. In particular, if there are no outliers or missing values in S then τ belongs to the
interval [a, b[ such that b = sup C(S).

The proof is based on the following two lemmas.

Lemma 7.5.1. The set of compatible values contains exactly ]0, 1] and a finite number of intervals of the
form [a, b[ of length at least 1/x̂2 where x̂ = maxS.

Proof. Let t > 1 denote a compatible value. For each observed value x ∈ S, there exists an
integer n such than x = ⌊tn⌋. Consequently, t verifies t ∈ [ x

n , x+1
n [. The intersection of the

constraints t ∈ [ x
n , x+1

n [ for all x ∈ S is an interval t ∈ [ x1

n1
, x2

n2
[. All values t ∈ [ x1

n1
, x2

n2
[ verify

all of the constraints and are thus compatible. The length of this interval is x2

n2
− x1

n1
which is at

least 1/(n1n2). In the distinguishable case, n1 < maxS and n2 < maxS, which implies that the
length is at least 1/(maxS)2.

Lemma 7.5.2. Let t be a positive real number that is compatible with the empirical lattice. Then t <
x̂ + 1

n
.

Proof. This follows directly from the density upper bound in Section 7.4. See Proposition 7.9.4 in
the Appendix.

Proposition 7.5.3. To complete the proof, it suffices to show that τ belongs to the interval with
largest values. There are only finitely many intervals of length at least 1/x̂2 in [0, x̂+1

nmax
], so there

exists such an interval [a, b[.
Let N denote the set N = {n|⌊nτ⌋ ∈ S}, i.e. the set of values for the noise process N that generates
S. τ belongs to a certain interval [a′, b′[ which is the intersection of the constraints τ ∈ [ x

n , x+1
n [, for

all x = ⌊nτ⌋ in S. We show that b′ = b, i.e. no positive real is both greater than b′ and compatible.
Let t such that b′ < t. For all n ∈ N , ⌊nτ⌋ ≤ ⌊nt⌋. As t /∈ [a′, b′[, t breaks at least one of the
constraints, that is to say, there is an integer x in S such that x = ⌊nτ⌋ < ⌊nt⌋. x is skipped in St

and thus t is not compatible.
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The previous proposition suggests that it suffices to find the largest compatible interval to esti-
mate τ , and this is our proposed estimator τ̃ . More precisely, the set C(S) = ∪J

j=1[aj , bj [ is a union
of J intervals, with (aj) and (bj) increasing sequences, then

τ̃ =
aJ + bJ

2
.

We use the following algorithm to compute τ̃ . This also computes the mapping x = ⌊τn⌋ 7→ n
and the precision.

• compute the set of observed values by sorting the data set and removing multiple occurrences

• compute the upper bound τ < B =
x̂ + 1

cardS
• find an approximation of the largest compatible value t by testing the compatibility of the real

numbers tk = B − k

x̂2

• deduce the indexes from t, that is to say for all x ∈ S, find i such that x = ⌊ti⌋
• compute the interval [a, b[ as the intersection of the constraints t ∈

[
x

i
,
x + 1

i

[

, for all x in S

• return
a + b

2
as an estimator for τ

7.5.4 Properties of the Estimator

According to the previous results, the estimator performs well when there are no missing values
or outliers. Its precision is (b−a)/2 and can be computed inside the algorithm. The precision is at
least 1/n̂ where n̂ is defined by x̂ = ⌊τ n̂⌋, but depending on the value of τ it can reach a precision
on the order of 1/n̂2 . In all cases, the precision is better than the density bound, and there is a
lower bound.

If there are missing values or outliers, the algorithm may find an interval of compatible values
that does not contain τ . For example, if the dataset is {0, 2, 4, 6, 8}, a reasonable estimator would
answer 2 and not τ = 4/3 with missing values 1 and 5. In practice, such cases are rare, and are
related to arithmetic properties of the set S. However, the largest compatible value is never an
erroneous answer to the problem. It is a parsimonious answer in the sense that it is the smallest
lattice which may explain the dataset.

The estimator is optimal in the sense that the algorithm finds an interval of positive real num-
bers that are all equally plausible. Given a dataset (x1 = ⌊τ i1⌋, . . . , xn = ⌊τ in⌋) of size n,
there is an interval of compatible values that can generate (x1, . . . , xn) from the same realization
(i1, . . . , in) of N . Let [aJ , bJ [ with bJ = sup C(S), the following proposition holds.

Proposition 7.5.4. Given a realization (i1, . . . , in) of N , all values in [aJ , bJ [ generate the same data set
(x1, . . . , xn), i.e.

∀t ∈ [aJ , bJ [, ∀j ∈ J1, nK, xj = ⌊aJ ij⌋ = ⌊t ij⌋

Proof. As in the proof of Proposition 7.5.3, [aJ , bJ [ is the intersection of the constraints xj = ⌊t ij⌋.

The data set does not contain enough information to distinguish the values in [aJ , bJ [. In par-
ticular, even if the realization (i1, . . . , in) is given, then the values are not distinguishable. Note
that if x0 is known not to be in Sτ , then for all integers i, τ ≥ x0+1

i or τ < x0

i . These inequalities
are not informative because they are already contained in x = ⌊ti⌋,∀x ∈ S.
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The program is quite fast. First because is relies only on the set S which is much smaller than
the dataset when τ is near 1 and N is independent identically distributed, because repeats of N
are discarded. As the following proposition shows, with few missing values, the density bound
is precise and the algorithm is quicker.

Proposition 7.5.5. Let x̂ = maxS = ⌊τ n̂⌋. If there are no missing values, the largest compatible value is

found after at most
x̂2

n̂
≃ τ x̂ steps. With a small number of missing values k ≪ n̂, the number of steps is

on the order of τ2x̂

(

k +
1

τ

)

where k = n̂ − cardS is the number of missing values.

Proof. The procedure begins at B = x̂+1
n , ends before x̂

n̂ because τ ≥ a ≥ x̂
n̂ , and proceeds in steps

of length 1/x̂2. Consequently, there are at most C = x̂2( x̂+1
n − x̂

n̂ ) steps. Let k = n̂ − cardS denote
the number of missing values. We make the following three approximations: k ≪ n̂, 1 ≪ x̂ and

τ ≃ x̂
n̂ . Then C = x̂2(x̂+1)

(
k

n̂cardS + 1
n̂(x̂+1)

)

which can be approximated by C ≃ τ2x̂(k + 1
τ ).

Testing for the compatibility of a real t is linear in the size of S, so the whole procedure is at
most quadratic. The full set of compatible values can be obtained in cubic time.

7.6 Results and Discussion

7.6.1 Compatible Values Estimator

Figure 7.2 illustrates the compatible values estimator on a simulated dataset. The dataset
{6, 6, 11, 5, 3, 5, 2, 6, 5, 13, 2, 7, 7, 7, 6} is obtained from the observation model X = ⌊1.32∗N⌋ where
N is distributed according to a Poisson random variable with mean 5.5. It is first reduced to the
lattice S = {2, 3, 5, 6, 7, 11, 13} and is shown at the bottom.

The vertical axis represents values of τ . The set of compatible values is composed of several
intervals and represented on the left. For each interval, we select one compatible value t and
represent the lattice St. All reals in the same interval generate the same lattice, up to max(S).
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Figure 7.2: Comparison of a few compatible lattices and the dataset.

For comparison, Figure 7.3 displays St for several values that are not compatible with the data.
For example, 5 and 11 are in the dataset but not in S1.2.
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Figure 7.3: Comparison of the dataset and a few lattices that are not compatible.

Two sources of variation affect the estimate τ̃ . First, the estimator is not perfect because the
dataset is finite. Second, the data set S is random. Figure 7.4 shows the performance of the esti-
mator with a fixed dataset (N ∈ J1, 10K) for several values of τ . The intervals shown correspond
to the intervals of compatible values that contain the largest compatible value.
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Figure 7.4: Length of the maximal interval for several values of τ with N ∈ J1, 10K.

We can see that the precision of the estimator varies with τ . Only the range [1, 2] is shown
because the precision only depends on the rest τ − ⌊τ⌋ modulo 1. Consequently, the absolute
precision is roughly constant, whereas the relative precision is O (1/τ). With small quantization
error (τ ≫ 1) the estimation problem is easier.

Figure 7.5 shows the distribution of τ̃ when the dataset S is the result of 15 samples of X = ⌊τN⌋
where τ = 1.32 and N is distributed according to a Poisson random variable with mean 5.5. The
distribution of the estimator value is obtained from the 200 repeats shown in the bottom of the
plot thanks to a kernel estimate, even if the distribution is a sum of Dirac point masses. The drawn
interval shows the interval obtained with the (complete) dataset {⌊1.32 ∗ n⌋, n ∈ J1, 13K}.
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Figure 7.5: Kernel density estimate of the distribution of the compatible values estimator on a
random dataset.

7.6.2 The Double Poisson Family

According to the following simulation study, maximum likelihood estimation in the framework
of double exponential families does not lead to an estimate of the overdispersion parameter τ
with sufficient precision. Let us first briefly recall the results from [Efr86]. Let gµ(y) = e−µµy/y!
denote the distribution function of a Poisson random variable with mean µ. The double Poisson
distribution with parameters θ, µ is defined as:

fθ,µ(y) = c(θ, µ)θ1/2 {gµ(y)}θ {gy(y)}1−θ

= c(θ, µ)
(

θ1/2e−θµ
)(e−yyy

y!

)(
eµ

y

)θy

where c is a normalization constant.

Maximum Likelihood Estimation leads to the following estimators. Let (Y1, . . . , Yn) be inde-
pendent identically distributed random variables with distribution fθ,µ, then

µ̂ =
1

n

n∑

i=1

Yi

θ̂ =
n

2
∑n

i=1 I(Yj , µ)

where I(µ1, µ2) = µ1(log(µ1) − log(µ2)) − (µ1 − µ2).

Let Yθ,µ be a random variable with distribution function fθ,µ. According to [Efr86], Yθ,µ has
approximately the same distribution as X/θ where X is Poisson distributed with mean µθ. With
Poisson distribution for the ion counts, our observation model becomes Y = ⌊τN⌋ where N is
Poisson distributed with mean λ. Consequently, estimates for τ and λ can be deduced from θ̂ and
µ̂ with the following relations:

τ̂ =
1

θ̂

λ̂ = µ̂θ̂

The double Poisson distribution is a correct approximation of the distribution of X/θ for large
µ, and in that case, τ̂ and λ̂ are unbiased estimates of τ and λ. The standard deviation of τ̂ is
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τ
√

2√
n

. Figure 7.6 shows the distribution of τ̂ with flooring noise, i.e. in the model Y = ⌊τN⌋ (solid
line) and without flooring noise in the model Y = τN (dotted line). The plot was generated with
2000 repeats with data sets of size 500. We observe a large standard deviation compared with the
compatible values estimator, even on a much larger data set. With large values of µ, truncation
has limited effect on the estimate.
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Figure 7.6: Kernel density estimate of the distribution of the double Poisson estimate of τ with
flooring noise (solid line) and without (dotted line).

For modeling rare ion count events, we need to study the estimators with small values of λ and
τ . In that case, τ̂ is strongly biased for both models as shown on Figure 7.7. This implies that
the approximation is not suited to this range of parameters, and that the flooring noise makes a
significant difference there. Figure 7.7 was generated using 2000 repeats with data sets of size
500. For comparison, we show the optimal interval obtained by the compatible values estimator
on the data set {⌊1.32 ∗ n⌋, n ∈ J1, 13K}.
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Figure 7.7: Kernel density estimate of the distribution of the double Poisson estimate of τ with
flooring noise (solid line) and without (dotted line).

7.6.3 Fourier Estimator

The parametric estimation problem can be solved using Fourier transform thanks to the follow-
ing remark. From the set τN we construct the signal f : t 7→∑

k∈N
δ(x − τk) where δ denotes the

Dirac function, that is to say a periodic series of pulses. Likewise, we define the estimator 1/τF as
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the maximum of the Fourier transform of the quasi-periodic signal f : t 7→
∑

⌊τk⌋∈S
δ (x − ⌊τk⌋).

As τ can be seen as a quasi-period, our estimation problem is closely linked to the “harmonic
retrieval problem”. Many approaches have been proposed in that domain and the main focus is
on the estimation of the Power Spectral Density [Hay96]. However, the signal is usually perturbed
by additive noise whereas in this paper we consider a distortion of the time axis.

We use the following algorithm:

• sample the signal f at the points xi = i for the integers i in J0,max(S)K
• compute the Discrete Fourier Transform

• compute an upper bound using Proposition 7.9.4 : τ < B =
x̂ + 1

n
• find the frequency with highest absolute Fourier coefficient
• return the corresponding period (inverse of the frequency)

This estimator has a precision that corresponds to the sampling rate in time space around the
true value. In the Fourier space, the sampling rate is uniform with steps of length 1/ max(S)
which is equivalent to 1/(τ × x̂). In the time space, as P = 1/f , then ∆P = −∆f/f2 and the
sampling rate is non uniform. For f = 1/τ we obtain the precision of the Fourier estimator as
τ/x̂. This suggests that the precision decreases with τ . However, the signal frequency 1/τ is near
x̂/max(S) which is one of the sampling points. As a result, in practice, the absolute precision is
on the order of 1/x̂ and independent of τ .

Figure 7.8 shows in the frequency and period space the Fourier transform of the quasi-periodic
signal obtained from the dataset N ∈ J1, 10K. The vertical line corresponds to the upper bound
from Proposition 7.9.4.
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Figure 7.8: Fourier transform of the quasi-periodic signal, in Fourier space (left) and period space
(right). The vertical line shows the upper bound from Proposition 7.9.4.

Remark When oversampling by a factor k, i.e. sampling at the points xi =
i

k
for the integers i

in J0,max(S)×kK, the harmonics of 1 Hz increase in magnitude. Therefore it is necessary to weed
out the frequencies above 1 Hz in the distinguishable case. Moreover, oversampling increases
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the maximum frequency that can be represented in the Fourier space and does not improve the
precision of the estimator.

On a random dataset, the Fourier estimator suffers greatly from missing values. Figure 7.9
shows the distribution of τF with 200 simulations and a dataset of size 15 where N is distributed
according to a Poisson random variable with mean 5.5. The precision of the estimator is much
worse than the compatible values estimator (see the plotted interval). The Fourier estimate τF is
compatible with the dataset in only about 1% of the simulations.
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Figure 7.9: Kernel density estimate of the distribution of the Fourier estimator.

7.6.4 Linear Regression Estimator

As we noted in the introduction, it is natural to sort and index the observations in S. An
estimator for the overdispersion parameter τ can be deduced from the indexes by re-writing the
observation model X = ⌊τN⌋ into X = τN + ε where ε is an error term. Even if ε is not Gaussian,
linear regression can yield a reasonable estimate of the regression coefficient τ as Figure 7.10
shows.

We use the following algorithm:

• compute the empirical lattice {xi} by sorting and removing duplicates in the dataset
• compute the indexes {ni} according to the sorting index
• fit a regression line of the form xi = ani + 0.5
• return a

Figure 7.10 shows the linear regression estimator on the dataset S = ⌊τJ1, 10K⌋ (no missing
values). For each element in the dataset, if the regression line intersects the length 1 interval then
the estimate is compatible with the data point.

Note that the truncation error is not centered. Consequently, we compute the regression coef-
ficient in the the model X + 0.5 = τN + ε. For the same reason, the regressors are below the
regression line.

The main difficulty in the linear regression is that the values of the regressor variable N are
unknown. In the distinguishable case, it is possible to reconstruct them when there are no missing
values, i.e. Sτ ∩ J0, nK = S where n = maxS. Otherwise, the regressors will be shifted and that
affects strongly the estimate. Figure 7.11 shows such a case. The regressors inferred in the linear
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Figure 7.10: The linear regression estimator on a dataset without missing values.

regression estimator and the regression line are shown in solid line. For comparison, the true
regressors are displayed in dotted line. The compatible values estimator finds the true regressors
and its regression line is shown in dotted line.
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Figure 7.11: The linear regression estimator in the case of missing values. The compatible values
estimator is shown in dotted line.

7.6.5 Discussion

In this section, we have compared the compatible values estimator with other estimators that
correspond to different point of views on the problem. As we have shown in Proposition 7.5.4
that the compatible values estimator is optimal and that it extracts all the available information
from the data set, we did not expect the alternative methods to outperform the CVE.

We checked that although the conditions in Proposition 7.5.4 are rather strict because they re-
quire a complete data set, in practice the estimator behaves well even in the presence of missing
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values.

The alternative estimators are much worse and emphasize the difficulties related to not taking
into account the discrete nature of the model. The worst option is to neglect missing values as is
the case for the linear regression estimator. This estimator is very good on a complete data set,
but is completely dumbfounded in the case of missing values.

The double Poisson family introduces additional knowledge in the form of a Poisson hypothe-
sis on the Noise distribution. We showed that it is not suitable in the case of rare events, or when
the quantization errors are significant. This is because the model is not adequate.

The Fourier estimator is very interesting because it shows that we can recover τ as a pseudo-
period. A major difficulty is that 1 is an acceptable period, which is why 1.5 and 2 are observed
in the estimator density in Figure 7.9. But the simulations show that τ can be recovered.

7.7 Extensions

In this section, we present extensions of the results that were not considered for publication in
the manuscript reproduced in this chapter. Section 7.7.1 contains other mathematical results on
the proposed model. Section 7.7.2 presents the application of the noise model with synthetic data.

7.7.1 Other mathematical results

7.7.1.1 Using holes in the data set

The results presented earlier only take into account positive information, i.e. the presence of
integers in the data set. As a consequence, they only provide upper bounds on the gain parameter.
The results in this section derive lower bounds on the gain parameter by considering negative
information, i.e. the absence of some integers from the data set.

Recall Example 7.3.1 from Section 7:

> data = floor(1.32 * n)

% Distinguishible case

> n

[1] 1 2 3 4 5 6 7 8 9 10

> data

[1] 1 2 3 5 6 7 9 10 11 13

In this example, the integer 4 cannot be observed in a data set corresponding to τ = 1.32. How-
ever, it is difficult in practice to distinguish integer values that do not belong to the true lattice
(non-observed values) and integer values that are missing from the empirical lattice (missing values).
This section provides some results based on non-observed values.

Definition 7.7.1. In the model X = ⌊τ N⌋, the set of observed values is the subset of the integers
D = {x ∈ N|∃k and x = ⌊τ k⌋}. The set of non observed values is the set N − D. A missing value is
an integer in D that is missing from the data set or empirical lattice.

Observed values provide upper bounds for τ . Conversely, lower bounds for τ can be deduced
from non-observed values.

Proposition 7.7.2. The set of observed values is N if and only if τ ≤ 1. Conversely, τ > 1 if and only if
there exists a non-observed value.
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Proof. • If τ ≤ 1. Let k ∈ N denote an integer, there exists j ∈ N such that k ≤ jτ < k + 1.
Consequently, k = ⌊jτ⌋ and k is in the set of observed values.

• If τ > 1. Let j ∈ N such that τ − 1 >
1

j
. Then τj = j + (τ − 1)j > j + 1. In the interval J0, j + 1K,

there are j + 2 integers, but at most j + 1 observed values.

More precisely, consecutive non-observed values can only appear when τ is large:

Proposition 7.7.3. Let i, j ∈ N. If all the integers in Ji, jK are non-observed values, then τ > j − i + 1.

Proof. If the integers in Ji, jK are non-observed values, then the lattice skips over the interval, i.e.
there exists j ∈ N such that τj < i < j + 1 ≤ τ(j + 1).

When τ is small, near 1, then we can combine observed values and non-observed values into
the following proposition.

Proposition 7.7.1 (Maximal observed intervals). Suppose that Jx, yK is a subset of S, and additionally
that x − 1 and y + 1 are non-observed values, that is to say Jx, yK is maximal. Then we have the lower

bound τ > 1 +
1

y − x + 2
.

Proof. • an interval of consecutive integers is observed, so according to 7.9.2, τ < 2. Conse-
quently, x − 2 and y + 2 must be observed values.

• let x = ⌊τnx⌋ and let y = ⌊τny⌋
• x − 2 = ⌊τ(nx − 1)⌋ and consequently τ(nx − 1) < x − 1
• y + 2 = ⌊τ(ny + 1)⌋ and consequently τ(ny + 1) ≥ y + 2
• by subtracting we obtain y − x + 2 + 1 < τ(ny − nx + 2)
• this leads to τ > 1 + 1

y−x+2 because y − x = ny − nx in the distinguishable case

7.7.1.2 Robustness

The compatible values estimator is very robust to missing values, and performs well on small
data sets. With enough missing values, it may favor a value of τ that is too high. For example,
when observing S = {2, 4, 6}, the CVE returns 2 instead of 4/3. The probability of such an event
seems low, but is difficult to estimate in general.

The compatible values estimator is quite sensitive to outliers, i.e. to observations in the data set
which belong to the set of non-observed values for a given τ . This can be alleviated by considering
values that are compatible with the data set S with at most α errors.

The α-compatible values estimator is thus defined as the largest real number that is α-compati-
ble with the data set S. It can be found with the following algorithm, which is a slight modification
of the algorithm for the compatible values estimator:
• compute the set of observed values by sorting the data set and removing multiple occurrences

• compute the upper bound τ < B =
x̂ + 1

cardS − α
• find an approximation of the largest compatible value t by testing the α-compatibility of the

real numbers tk = B − k

x̂2

• deduce the indexes from t, that is to say for all x ∈ S, find i such that x = ⌊ti⌋
• compute the interval [a, b[ as the intersection of the constraints t ∈

[
x

i
,
x + 1

i

[

, for all x in S

• return
a + b

2
as an estimator for τ
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The algorithm is correct because of the following analogues to the results in Proposition 7.9.4
and Proposition 7.5.3:

Proposition 7.7.2 (Density Upper Bound). Let τ denote an α-compatible value. Let x̂ = ⌊τ n̂⌋ denote

the largest integer in S. Then τ <
x̂ + 1

n̂ − α
. When n̂ is unknown (because of potential missing values), let n

denote the number of non zero observed integers. Then τ <
x̂ + 1

n̂ − α
≤ x̂ + 1

n − α
.

Proposition 7.7.3. The set of α-compatible values C(S) contains exactly ]0, 1] and intervals of length at
least 1/x̂2 where x̂ = maxS.

Proof. Same proof as Lemma 7.5.1.

7.7.2 Application to normalization

In this section we use the proposed noise model for spectrum normalization (see Section 6.8),
and the estimation of the baseline. We use a synthetic LC/MS image in order to compare the
estimated normalization factors (NFs) to the ground truth.

Synthetic LC/MS image The LC/MS image displayed in Figure 7.12 was generated based on a
real mass spectrum in the following way:

• select one mass spectrum I0(m) from a real LC/MS image (4-5 protein mix in [PMW+06]),
• create a LC/MS image by cloning the mass spectrum 500 times,
• add random Poisson noise P(1) with intensity 1 to every pixel,
• add a Gaussian signal PEP with retention time 320, m/z ratio 560 Da, standard deviation 7 and

area under the curve 8000, as well as two isotopes,
• generate a vector NFt of length 500 containing the true normalization factors (displayed in

Figure 7.12),
• apply the normalization factors to each column of the LC/MS image.

We obtain the following LC/MS image:

I(t, m) = ⌊NFt (I0(m) + P(1) + PEP)⌋

Compatible Values Estimator (CVE) We use the Compatible Values Estimator defined in Sec-
tion 7.5.3 to estimate the normalization factor in each mass spectrum N̂Ft. Figure 7.13 shows the
results of normalization with the CVE, as well as a comparison with the true values. The CVE is
very precise (optimal as demonstrated in 7.5.4) and the standard deviation of the relative differ-
ence N̂Ft/ NFt is 2.59 × 10−3. The CVE is not influenced by the signal introduced in the image.

Total Ion Count estimator (TIC) We use the Total Ion Count estimator defined in Section 6.8.5.
Figure 7.14 shows the results of normalization with the TIC. In particular, in the obtained LC/MS
image, there is a vertical stripe at rt 320; this indicates that the TIC normalization factor was over-
estimated, as is shown in the lower panel. The TIC has a relative standard deviation of 13.6×10−3,
but is very sensitive to the peptide signal5.

Quantile estimator We use the quantile estimator defined in Section 6.8.5. The quantile esti-
mator is more robust than the TIC, but also less precise as shown in Figure 7.15; it has a relative
standard deviation of 38.1 × 10−3.

Figure 7.16 summarizes the performance of the three proposed normalization methods.

5This estimate was obtained after filtering the retention times corresponding to the peptide signal between 300 and
340. Without filtering, the relative standard deviation is 44.8 × 10

−3.
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Remarks

1. The TIC and the quantile estimator cannot perform normalization without a reference. This
reference is provided by applying each estimator to I0(m) + 1.

2. To remove bias from the quantization errors, we apply the TIC and the quantile estimator to
I(t, m) + 0.5.

3. The LC/MS image size was 500 scans times 400 pixels. The TIC estimator is nearly instanta-
neous. The quantile estimator takes on the order of several seconds. The CVE takes on the
order of a minute, so it is not very computer intensive.
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Figure 7.12: Synthetic data set. One mass spectrum was cloned to obtain the LC/MS image. We
then added some noise and a Gaussian isotopic pattern at (rt=320,m/z=560). The lower panel
shows the true normalization factors.
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Figure 7.13: Normalization of the synthetic image in 7.12 with the Compatible Values Estimator.
The lower panel shows the true normalization factors and the estimated normalization factors.
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Figure 7.14: Normalization of the synthetic image in 7.12 with the Total Ion Count. The lower
panel shows the true normalization factors and the estimated normalization factors. The TIC
estimate is strongly influenced by the peptide signal at (rt = 320), and creates a vertical stripe in
the LC/MS image.
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Figure 7.15: Normalization of the synthetic image in 7.12 with the quantiles estimator in 6.8.5.
The lower panel shows the true normalization factors and the estimated normalization factors.
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Figure 7.16: Comparison of the normalization factors obtained from the Compatible Values Es-
timator (CVE), the Total Ion Count (TIC), and the quantiles estimator. The CVE is an order of
magnitude more precise than the others. The TIC is sensitive to the peptide signal at rt=320.
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7.8 Related problems

Periodic signals As suggested by the Fourier estimator (Section 7.6.3), the problem of estimat-
ing τ is related to estimating the period of a signal (“harmonic retrieval problem”). The model
presented in this chapter focuses on signals that are composed of periodic impulses, but with a
high quantization error on the time of observation.

In this chapter, we suppose that the phase of the signal is equal to zero. When the origin of time
is unknown, the model may be extended into the following:

X = ⌊τN + φ⌋

where φ is the phase of the signal.

We expect that bounds for τ in the extended model can be obtained with minor adjustments.
However, the estimation procedure seems difficult to generalize.

Regular models From a statistical point of view, the proposed model is intriguing. First, it is
not a regular model in the sense of [Mil01], but it is also not trivial due to the quantization error.
It becomes a regular model — for a discrete variable — when considering an additional stochastic
error term ε:

X = ⌊τN + ε⌋

For the regular model, it would be interesting to use ε to model the dispersion of the kinetic
energy of the ions in the mass spectrometer, and maximum likelihood estimation is a natural
choice for regular models.

7.9 Conclusion

In the observation model X = ⌊τN⌋, estimation of the overdispersion parameter τ and of the
distribution of N can be decoupled. We have proposed an estimator for τ which allows the full
recovery of the statistics of N prior to modeling. The structure of N may then be studied at length
afterwards.

The estimator based on compatible values is optimal and quick. It is resistant to missing values
in practice, and in the worst case returns an acceptable (parsimonious) answer without hypothe-
ses on the law of N .

The compatible values estimator outperforms the other three estimators at the cost of a rea-
sonable increase in computational load. For instance, the Double Poisson Family is not a suit-
able model in our range of parameters, but it may be preferable in large datasets and stronger
Poisson-distributed Noise. Likewise, given a priori knowledge on the distribution of N , quan-
tile regression could replace the linear regression estimator and improve the computation of the
indexes.

The Fourier estimator suggests a strong relationship with the harmonic retrieval problem, de-
spite the signal not being periodic. Although the truncation error considered in this paper is very
different from Gaussian errors usually considered in harmonic retrieval, some algorithms from
that field may make a better compromise between speed and precision for the current problem.
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In Section 7.7, we propose extensions to the compatible values estimator that increase its robust-
ness and apply the procedure to a synthetic data set to normalize the intensity. Unfortunately, the
compatible values estimator only takes into account truncation noise, and yields poor results on
real data. In Section 7.8 we propose to introduce an error term to better model real data and to
introduce a phase parameter in the model to apply to a periodic signal context.

The noise distribution is not estimated in this chapter. Rather, we have proposed a normaliza-
tion procedure that is independent of the noise distribution. In the next chapter, we continue on
the same line and try to perform feature detection with as little hypotheses on the noise distri-
bution as possible. We will only require that after normalization (by our method or another), the
noise distribution is stationary in the retention time dimension, as observed in Chapter 6.

Appendix

Proposition 7.9.1. The mapping x 7→ ⌊τ x⌋ is injective if and only if τ ≥ 1.

Proof. If τ = 1, the mapping is the identity function. Suppose τ > 1 and let n1 and n2 denote two
(positive) integers such that n1 < n2. Then τn2 − τn1 > τ > 1 and ⌊τn2⌋ > ⌊τn1⌋. When τ < 1,
the mapping is not injective because ⌊τ × 1⌋ = ⌊τ × 0⌋ = 0.

Upper Bounds on τ

Proposition 7.9.2 (Any two observations). Let x and y be two distinct elements of the set S of observed
values. Then τ < 1 + |x − y|.

Proof. Let i and j be the values of N corresponding to x and y i.e. x = ⌊τi⌋ and y = ⌊τj⌋. Then
we have the inequalities: x ≤ τi < x + 1, y ≤ τj < y + 1, and thus τ(j − i) < y − x + 1. Assuming
x < y, we obtain τ < y−x+1

j−i < y − x + 1.

Proposition 7.9.3 (Observed intervals). Let Jx, yK denote the set of integers between x and y. If Jx, yK

is a subset of S, then τ < 1 +
1

y − x
.

Proof. Using the same notations as in the proof of Proposition 7.9.2, τ < y−x+1
j−i < y−x

j−i + 1
j−i < 1+

1
j−i because in the distinguishable case the number of elements in Jx, yK is y−x+1 = j− i+1.

Proposition 7.9.4 (Density Upper Bound). Let x̂ = ⌊τ n̂⌋ denote the largest integer in S. Then τ <
x̂ + 1

n̂
. When n̂ is unknown (because of potential missing values), let n denote the number of non zero

observed integers. Then τ <
x̂ + 1

n̂
≤ x̂ + 1

n
.
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Chapter 8

Detection of protein signals in
LC/MS images with the M-N rule

Figure 8.1: Feature detection in LC/MS images with the M-N rule.

8.1 Introduction

8.1.1 Context

As presented in Section 4.3, peptides in LC/MS images can be identified based on their m/z
ratio and retention time. Before identification however, peptide signals must be detected in the
image, and their m/z ratio and retention time must be computed. This chapter deals with the
detection of peptides in a LC/MS image, and the content is extracted from [LTTS09].

159
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Feature detection in LC/MS images corresponds to building a list of locations in the image where
the measured signal intensity is attributed to the presence of a peptide.

We distinguish two separate steps. First, candidate selection determines regions of interest. Cur-
rent approaches for candidate selection are mostly based on local maxima, either in the mea-
sured intensity [YPT+03, THN+04, NF07, KPRH05, MPP+07, WZP+06, YWL+06, KO05] or in the
wavelet transform of the signal [RY06, LGR+06, BCF+06, TBN08, MCK+05, NF07]. In both cases,
local maxima contain high numbers of false positives, and the list of candidates is filtered based on
Signal-to-Noise ratio [MCK+05, NF07, MPP+07, WZP+06], peak width [YWL+06, KO05] or based
on the reproducible presence of the peak in adjacent MS spectra [KPRH05, MPP+07, WZP+06].
The approach presented by [RJR+04], which we will here call the Median M-N rule, does not re-
quire the candidate to be a local maximum, but focuses on high intensity peaks that appear in
several consecutive MS scans.

Candidate selection does not provide precise values for the signal characteristics. The second
step, called peak picking is used for:

• determining the centroid of the signal, its retention time and m/z ratio
• computing the area under the curve, or other quantitative indicators
• the charge state of the ion
• the signal width in elution time and m/z
• the expected standard deviation of the centroid, etc.

The primary concern in peak picking is to accurately determine the m/z value of the peptide
signal. To that end, most method match a template to the observed intensity values in the vicinity
of the location obtained by candidate selection. This template matching usually requires more
computationally-intensive procedures because of the optimization step (see [YHY09] for a survey
of available methods and software).

There are several available models for individual peaks, including double Gaussian functions
[KSBR04, SRS03, LSJ+06], asymmetric Lorentzian or sech functions [LGR+06] and exponentially-
modified Gaussian functions [NH88, JXZ+08, Li02]. However, the template approach is best used
to match the patterns of peaks created by isotopes [NF07, GMG+99, JPBF+04].

8.1.2 Why control the false positive rate ?

In the context of large-scale proteomics analyses, it is tempting to lower the requirements on
the false positive rate of detection in order to increase the sensitivity 1. As indicated in [DKL06],
the performance of feature detection directly affects the subsequent processes, such as retention
time alignment [Jef05], protein identification [RCA+04] and biomarker identification [LOW+05].
Only detected signals are identified and quantified.

A high false positive rate of detection is dangerous because the list of detected features is trans-
mitted to the subsequent algorithms as ground truth and never again challenged. It leads to
wrongly identified peptides, and in turn proteins. Due to the complexity of the signals and multi-
ple sources of noise in MS spectra, high false positive peak identification rate is a major problem,
especially in detecting peaks with low amplitudes [HKPM06].

1It statistics, this corresponds to increasing the test power at the expense of the false positive rate.
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Feature detection algorithms are developed for LC/MS images rather than fragmentation spec-
tra. In the latter, most of the chemical noise background is filtered by the selection of the parent
ion m/z ratio. MS/MS spectra are much cleaner than their MS counterpart, and feature detec-
tion is considered an easy task. However, in LC/MS images, the challenge is on detecting low-
intensity signals that correspond to low-abundance biomarkers, without too many false positive
detections.

8.1.3 Summary

In this chapter, we study the candidate selection step because it drives the performance of
feature detection in terms of sensitivity and selectivity. Our primary goal is to impose a statistical
bound on the number of falsely detected signals in the LC/MS image. On the other hand, peak
picking determines the precision of the later stages of the analysis (protein identification and
quantification).

Among the various possibilities, we selected the Median M-N rule [RJR+04]. This algorithm
is computationally efficient and also amenable to statistical analysis. We show that the original
formulation allows a limited level of control of the false positive rate. Therefore, we present an
extended M-N rule in Section 8.2 and compute its statistical properties.

The extended M-N rule is placed in the framework of a contrario detection and statistical test-
ing. The null hypothesis and the alternative are described based on models for the background
noise and peptide signal in Section 8.3. The corresponding test statistic is presented in Section 8.4,
and we compute the false positive rate in Section 8.4.1 and a lower bound for the false negative
rate in Section 8.4.2. This bound is interpreted in terms of the limit of detection of the algorithm
and in terms of a Signal-to-Noise ratio.

The theoretical results indicate how to set the detector parameters for optimal sensitivity, but
the detector is adapted to only certain types of elution profiles. These claims are evaluated on a
real data set in Section 8.5.

Section 8.6 discusses the validation of detection results. This is difficult in three aspects:

• real images contain low-intensity signals, which may be mistaken for false positives,
• standard evaluation methods do not take into account the variability of elution profiles,
• the notion of true and false positives is not clear because of the width of the elution profiles.

Two extensions to our work are presented in Section 8.7. We first study resampling of the
LC/MS image, and show that an optimal pixel height can be chosen. Then we standardize elution
profiles based on a relationship between their retention time and their width.

Finally, Section 8.8 puts the M-N rule in a wider context, and discusses related approaches in
linear filtering, non-linear filtering and mathematical morphology.

The method presented in this chapter does not explicitly use the noise model presented in
Chapter 7. Nevertheless, it is based on the hypothesis that the background noise distribution is
independent of retention time after normalization as suggested in Section 6.8. Chapter 7 proposes
such a normalization method, but other methods may be applied instead. On top of that, the noise
model presented in Chapter 7 operates inside a mass spectrum (vertical line) whereas our feature
detection method operates in the chromatography direction (horizontal line).
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8.2 Feature detection

8.2.1 Feature detection with the M-N rule

In [RJR+04], the authors define the following feature detection algorithm. A peptide signal
is detected by the Median M-N rule if the intensity in N consecutive MS spectra exceeds the
threshold M ×C where C is 30% of the trimmed mean or the median. The authors claim that the
parameters (M = 3, N = 3) can be used in many different contexts with low false positive rate.

When applying the Median M-N rule, we have observed that the false positive rate may be
dependent on the m/z value, as is the case in Figure 8.2. This suggests that the false positive rate
in the Median M-N rule is not well controlled. Consequently, the algorithm may provide an un-
specified number of undesirable entries in the peak list, which may result in false identifications
and wrong biomarkers. We defer the details of the estimation of the false positive rate to Section
8.5.4 because it builds on concepts and hypotheses provided in the rest of this section.
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Figure 8.2: False positive rate in [RJR+04]. The data set and the estimation procedure are de-
scribed in Section 8.5.1 and Section 8.5.4. The right panel is a zoomed portion of the m/z axis.

8.2.2 Extended M-N rule

We propose the following generalization of the M-N rule. A peptide is detected by the extended
M-N rule if the intensity in N consecutive scans exceeds the threshold H . The Median M-N rule
in [RJR+04] corresponds to using the threshold H = M × C. In Section 8.4.1, we will present
an alternative choice for H , which we call the Quantile M-N rule, and show how it improves the
control of the false positive rate.

In [RJR+04], the Median M-N rule adapts to local noise characteristics although the parameters
M and N are fixed for the entire data set. This is because the actual threshold H = M × C is
a function of retention time and m/z through the median noise intensity C(t, m). The extended
formulation allows H to be an arbitrary function H(t, m) of the position in the LC/MS image.

8.3 Generic Model of LC/MS Data

Computing the statistical properties of the detector requires a model of the signal generated on
the LC/MS platform (described in this section) and procedures to estimate the model parameters
(described in Section 8.5.2. We assume that the measured intensity I(t, m) is the sum of a random
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noise component N (t, m) and of an independent and deterministic peptide signal component
S(t, m).

Both the Median M-N rule and the extended M-N rule only take into account intensity in the
same m/z bin, we will drop the variable m and write I(t) = N (t) + S(t). This is equivalent to
analyzing the LC/MS data line by line.

As we analyze each m/z bin independently, a model for the m/z separation is not necessary.
In the following, we describe the standard model for chromatography elution profiles presented
in [SKG97], and the model for the background noise process N (t). To simplify the notations, we
will hereafter write M-N rule instead of extended M-N rule, and study the generic properties of
this feature detection algorithm.

8.3.1 Model for the Elution Profiles

In ideal chromatography experiments, each peptide produces a Gaussian-shaped elution pro-
file ([SKG97]). This model has also been used to generate synthetic LC/MS images [STPG+08].
We assume that in each m/z bin, the signal S(t) is a superposition of Gaussian profiles, with
different mean retention time and standard deviation. More explicitly:

I(t) = N (t) +
∑

k

Γk(t)

where Γk(t) is the Gaussian trace of peptide k in the current m/z bin, and the sum iterates over
the peptides that have a trace in the bin.

Each Gaussian profile Γk(t) is a positive real function of the chromatography time

Γk(t) = Ak
1

√

2πσ2
k

exp

{

− (t − µk)2

2σ2
k

}

where µk is the retention time of peptide k and the parameters σk and Ak represent respectively
the standard deviation of the profile and its area under the curve. In particular, in LC/MS exper-
iments, Ak is proportional to the concentration of peptide k in the sample.

In the standard model, the physical processes in distillation columns lead to the following rela-
tion between retention time and standard deviation:

σk = µk/
√

P (8.1)

where P is the plate number of the column. P measures the separation power of the chromatog-
raphy; the elution profile is tighter (σk smaller) with increased values of P .

The plate number is commonly used to describe other types of columns, including those used
in LC/MS experiments. However, it applies especially to isocratic mode. The use of solvent gra-
dients may invalidate Equation (8.1) by modulating the retention of peptides on the LC column
(µk) or the degree of separation (σk) during the course of the chromatography. Therefore, we do
not use Equation (8.1) and we expect different possible values for σk.
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8.3.2 Model for the Background Noise

Most methods dealing with background noise in LC/MS images attempt to remove it from
the data using with various mathematical tools: wavelets [CTM+05, ZYZ03, QAT+03], Fourier
transform [KGWR03], local noise statistics [SDM+04, WCD+05], time series analysis [ARC+03,
LKP+03, HWC+03, ZWM+03, MCA+05]. However, removing background noise is difficult be-
cause chemical noise produces patterns that are similar to real signals [ARC+03]. For example,
noise patterns have a 1 Da periodicity similar to isotope patterns.

To control the false positive rate in feature detection, we use the a contrario detection approach
introduced in [DMM00, DMM01]. This approach is based on detecting image features as ex-
ceptional configurations in random images. As such, it requires that the noise characteristics be
known a priori or estimated from the image. Several models for the background noise distribu-
tion in LC/MS images have previously been proposed [ARL+04, HNR02, WKG04, SMKM07] but
are difficult to use in a contrario detection.

Instead of detailed modeling of the background noise, we use few hypotheses so that the ap-
proach remains generic. We simply assume that the random noise is an independent process and
that all the pixels in the same horizontal line have the same distribution. Consequently we will
write N instead of N (t). This requires that the LC/MS data is normalized beforehand, but greatly
eases the practical estimation of local noise characteristics.

8.4 Statistical Testing Framework

Let us define a pamphlet of width N as a series of N intensity values (I(t1, m), . . . , I(tN , m))
measured at the same m/z ratio m in consecutive MS spectra obtained at the retention times
(t1, . . . , tN ). In the following, we will use the notation I(ti, m) = Ii for all i ∈ {1, . . . , N}. Accord-
ing to the hypotheses in the previous section, (I1, . . . , IN ) are N independent random variables
with distribution N + S(ti).

The models in Section 8.3 describe two different scenarios for the signal intensity in a given
pamphlet. We say that the intensity follows the hypothesis H0 when there is no peptide signal in
the pamphlet. Conversely, the pamphlet follows the hypothesis H1 when some peptide signals
contribute to the intensity. This translates more precisely into:

H0 : Ii = N for all i ∈ {1, . . . , N}, i.e. S(t) = 0
H1 : Ii = N + S(ti) for all i ∈ {1, . . . , N} where S(t) > 0

The M-N rule is a statistical test that decides whether a given pamphlet is under H0 or H1. It
is iterated over all the possible pamphlets in the LC/MS image. In the following, we compute its
false positive rate, i.e. the probability that the M-N rule detects a signal in a pamphlet under H0,
and then a lower bound on its power, i.e. the probability of not detecting a signal under H1.

Distributions of the test statistic Given the parameter (H,N), the test statistic T is the sum of
N Bernoulli random variables :

T =
N∑

i=1

✶Ii>H

The M-N decision rule corresponds to T ≥ N . Under H0, T is a binomial random variable with
parameters (N,P[N > H]). Under H1, T is the sum of N Bernoulli random variables with param-
eters P[N + S(ti) > H]. In that case, the Bernoulli parameters of the N random variables are not
the same.
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8.4.1 Selectivity of the M-N rule

Given a pamphlet, the false positive rate α is the probability that the noise exceeds the threshold
H in all N consecutive scans. Following the hypothesis that the noise is independent identically
distributed we obtain :

α = P [N (ti) > H for all i ∈ {1, . . . , N}] = P[N > H]N . (8.2)

or equivalently
H = qN ,1−α1/N (8.3)

where qN ,1−α1/N is the quantile in the noise distribution of level 1 − α1/N .

Quantile M-N rule In order to obtain tight control of the false positive rate α, we suggest that
α should be chosen by the user and the local threshold H(t, m) be derived from Equation (8.3).
This choice of H is optimal because higher values are unnecessarily conservative while lower
values increase the false positive rate beyond the user choice α. We call Quantile M-N rule the
instantiation of the extended M-N rule where H = qN ,1−α1/N .

By Equation (8.3), the value for the threshold H in the Quantile M-N rule depends on the
number of consecutive scans N . Increasing the value of N yields a lower threshold H , i.e. we can
relax the threshold condition while maintaining the same false positive rate. This improves the
detection of low abundance signals, but only under certain conditions, as discussed in the next
section.

Multiple tests To detect all the peptide signals in an LC/MS image, the M-N rule is iterated
over all possible pamphlets. This is a multiple testing scenario and we expect a relatively large
number of false detections overall depending on the choice of α. To control the overall false
positive rate, Bonferroni correction selects a very strict value for α such that α is the probability
of obtaining one false positive in the whole image, leading to a very small number of detected
peptides. Instead, we bound the number of false alarms NFA (cf [DMM00]), i.e. the expected
number of false positives in the whole image.

NFA = α × width × height

As the NFA is proportional to α, the user can set either.

8.4.2 Sensitivity of the M-N Rule

The sensitivity (test power) of the M-N rule is the ability to detect a peptide in a given pamphlet,
i.e. it is the probability that T = N under H1. Contrary to the false positive rate which only
depends on the noise characteristics, the sensitivity also depends on the actual shape of the signals
in the pamphlet. A high intensity signal is easier to detect. In the following, we study the limit of
detection as a function of signal shape, i.e. we try to determine the shapes with lowest area that
can be detected reliably.

With most noise processes, any shape is detectable with a non-zero probability if the false-
negative rate of detection is unrestricted (potentially high). Consequently, we focus on shapes
that are detected with probability at least 1 − β, with β > 0 a user set parameter. In the statistical
testing framework, this corresponds to shapes for which the test has power or sensitivity above
1 − β. This corresponds to the IUPAC recommendations, as stated in [Cur99].
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As described in Section 8.3, we model the elution profile of a signal with a Gaussian function
that is characterized by three numbers: the retention time µ, the standard deviation σ and the area
under the curve A. Detectability does not depend on µ because we obtain an equivalent situation
by translation, so we suppose from now on that µ = 0. We suppose that there is only a single
peptide signal in the sliding window. This corresponds to the following intensity :

I(t) = N (t) + A
1√

2πσ2
exp

{

− t2

2σ2

}

With the same notations as in the previous section, we solve

P[Ii > H, ∀i ∈ {1, . . . , N}] > 1 − β

which leads to (details in the appendix)

A
1√

2πσ2
exp

{

−N2/4

2σ2

}

> H − qN ,1−(1−β)1/N (8.4)

or equivalently
A

H − qN ,1−(1−β)1/N

>
√

2πσ2 exp

{
N2/4

2σ2

}

(8.5)

This is a conservative approximation. Peptide signals with area A and standard deviation σ
are guaranteed to be detected with a probability greater than 1 − β if Equation (8.4) is verified.
Peptides with lower area can still be detected, albeit with lower probability.

The right-hand side of Equation (8.5), F =
√

2πσ2 exp
{

N2/4
2σ2

}

is independent of the threshold
H . Consequently, we can optimize the choice of the parameters H and N independently. In
practice, we suggest to choose N according to the typical extent of elution profiles in the LC/MS
image, then compute the optimal choice H = qN ,1−α1/N .

Equation (8.5) leads to the definition of the Signal-to-Noise ratio as A
q
N ,1−α1/N −q

N ,1−(1−β)1/N
. In

comparison with the classical ratio (maximum / standard deviation), this ratio suits better our
intuition. First, the intensity of the signal is the area under the curve which relates better to the
notion of low-concentration peptides than the maximum of the peak. Second, one quantile is
controlled by the sensitivity parameter α and the other is independently controlled by the test
power (1 − β). It is easy to understand how the parameters affect the efficiency of the feature
detection scheme.

F expresses how well the detector is suited to the shape. Detection is easiest when F is minimal,
i.e. when σ = N/2. However, the converse is not true, and given σ, the detector with parameter
N/2 may not be optimal as shown on Figure 8.3.

F does not depend on the noise distribution, but only on the Gaussian shape of the signals.
As a consequence, a given detector is suited to a range of shapes that is roughly independent
of noise distribution. More precisely, the two quantiles of the noise distribution qN ,1−α1/N and
qN ,1−(1−β)1/N affect the lower limit of detection, but not the adequacy between σ and N . In par-
ticular, the simulations presented on Figure 8.3 are expected to accurately reflect the real detection
range in LC/MS images.
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Figure 8.3: Limit of detection of the M-N rule. The shading lines indicate the set of shapes (A, σ)
that a given detector can recall with probability greater than 90%. We show in green the funda-
mental limits of the M-N rule, i.e. the union of all sets for all possible values of the parameters.

In the following simulations, we assume that N is a Poisson noise process with mean 3, which
is coherent with our experimental data set. In Figure 8.3, the left panel shows the set of shape
parameters (A, σ) that the detector (H = 4, N = 7) can recall with probability over 90%. The
right panel, allows the comparison of the detectors (H = 6, N = 3) in red and (H = 4, N = 7) in
blue, and also the union of the sets for all choices of H and N . The green set thus delineates the
fundamental limits of the M-N rule with regard to Gaussian signals.

We observe that no single detector is universal because it is not suited to arbitrarily small values
of σ or large values of σ. This motivates the use of several detectors with varying values of N to
increase coverage. However, combining the sets of detections obtained by different algorithms is
again a multiple testing problem and is outside the scope of the present paper.

Instead of using simulations, it is possible to estimate the background noise distribution in the
LC/MS images and redraw the above diagram. This would be desirable to better adjust the pa-
rameters N and H . However, this is of no practical use because there are several background
noise distributions in the LC/MS image.
Background noise is usually more intense in the middle of the mass range and there is a periodic
component that corresponds to background chemical impurities (proteolytic background, con-
taminants, see [KSYW08] for a review). In particular, each horizontal line has a different noise
distribution, if only because of the variations in the baseline component.

Conclusion The range of detected low-intensity peptide signals varies significantly with the
parameters of the detector. However, there remain shapes that cannot be detected by the M-
N rule regardless of the parameters because these are below noise level. Even when the noise
distribution is not known, Figure 8.3 can provide generic guidelines to select adequate values for
H and N .
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8.4.3 Properties of the M-N rule

The feature detection algorithm presented in this chapter is generic and can be applied in many
contexts. While we use normalized data to facilitate estimation of the noise level and its quantiles,
only the hypothesis that noise intensities are independent is compulsory for the bound on the
false positive rate in Equation (8.4). Likewise, it can be applied to centroided data, although we
expect the centroiding to affect the estimation of the noise quantiles. It guarantees a uniform false
positive rate in the LC/MS image, but also between images.

Independence is a critical assumption, therefore the extended M-N rule is best applied to raw
data, without prior smoothing or baseline removal. The baseline is mostly harmless and it is taken
care of in the estimation of the local noise quantiles. However, smoothing introduces correlation
between adjacent pixel values and may lead to a higher false positive rate than anticipated.

We analyzed the performance of the detector is presented with a Gaussian model for the peak
elution profile. Although this seems restrictive, it is useful and easy to interpret in terms of a
Signal-to-Noise ratio. Moreover, the detected features are not restricted to Gaussian signals and
can address other (e.g. asymmetric) types of signal. The Signal-to-Noise ratio defined in Equa-
tion (8.5) remains valid on condition that the elution profile width at height H matches that of a
Gaussian function.

8.5 Results

8.5.1 Description of the Data Set

We use the data set published in [KEH+08]. A mix of 18 proteins was prepared and run on
several mass spectrometry platforms including different types of instruments and replicates. The
complete list of proteins in the standard sample is available, along with the experimental proce-
dures used on each platform.

To evaluate the M-N rule feature detection algorithm, we focus on data acquired on a Q-TOF
instrument. The illustrations were generated using the file QT20060926_mix4_19.mzXML from
mix4. This instrument has sufficient resolution in order to distinguish isotope patterns, and the
data is acquired in profile mode rather than centroid mode.

Centroiding is a signal processing algorithm that reduces the complexity and size of the data
set. In doing so, it strongly affects MS signals and our binning procedure by shifting the position
of MS data points. Moreover it affects the background noise distribution by aggregating peaks;
in particular, we can observe empty noise regions alongside high intensity peaks in centroided
data. Centroiding is usually selected as a default option in manufacturer software and cannot be
undone.

We expect our algorithm to detect lower intensity peptides on a non-centroided data set because
the noise distribution will be more faithfully estimated. For example, in regions of low noise, low
intensity peptides can be more easily detected. In regions of higher noise, the false positive rate is
better controlled. Because of centroiding, the estimate of the noise distribution may be incorrect.
Centroiding can also lead to unnecessarily conservative choice for the parameter H and thus less
detections than without centroiding.
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8.5.2 Feature detection

Preprocessing The experimental data was loaded from the mzXML data file and subsampled
into pixels of width one scan and height 0.1Da. This is similar to binning each mass spectrum with
bin width 0.1Da. We chose to set the intensity of each pixel to the sum or integral of the intensities
of the peak that belong inside the pixel. The background noise distribution appears uniform only
in subregions of the data set. We chose to crop the data set to a retention time range rather than
apply a normalization tool to avoid potential biases, and consider the cropped LC/MS image as
normalized.

We chose a narrow mass bin width of 0.1Da because at that resolution we can observe a 1Da
periodicity in the noise distribution and take it into account in the estimate of the parameter H .
The periodicity is related to the background noise being chemical noise, i.e. random fragments of
molecules including peptides. At the same time, the QTOF is an instrument with mass precision
on the order of 50 ppm and provides enough measurements in each pixel for accurate estimation
of the noise quantiles.

Noise quantiles For each m/z bin, we compute the threshold H = qN ,1−α1/N from a local esti-
mate of the quantile of the noise distribution. As the data is normalized, we compute the quantile
using the straightforward empirical quantile from all the pixels in the mass bin. This procedure is
quick and provides one threshold per line. For unnormalized data, we advise to use neighboring
pixels in the mass bin to estimate the noise quantile.

The empirical quantile provides an estimate of H that is unbiased when there are no peptide
signals in the m/z bin, and conservative in the presence of peptides. This is because peptide
signals can only increase the quantile qN ,1−α1/N . The false positive rate always complies with the
user set parameter α, regardless of the presence of peptides, and uniformly in the LC/MS image.

Feature detection In this context, a pamphlet is a horizontal series of N pixels that corresponds
to the binned intensity values in consecutive scans. According the results in Section 8.4.1, a pam-
phlet contains a peptide signal if all the pixel intensities are above the threshold H . In the figures,
when a pamphlet is detected, all the pixels belonging to the pamphlet are displayed.

Figure 8.4: Detection results with N = 7 and H = qN ,1−α1/N . The left panel shows the raw image
and the right panel shows only the areas where a peptide is detected.
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Image results In Figure 8.4, we show an example of detection with ǫ = 10−3, N = 7. We observe
that the detector can recall low-abundance signals with low error-rate. As a sanity check, it recalls
isotope patterns without a priori knowledge.
We also verify that the detected signals do not display the 1Da period behavior of the background
noise. This means that the false positive rate is independent of the changes in noise distribution
at different m/z values.

In Figure 8.5, we show that α effectively controls the false positive rate by displaying the detec-
tion results in a relatively empty region of the image for several values for α. The user can set the
false positive rate regardless of the noise level and the detector adapts automatically by adjust-
ing the threshold H . With higher false positive rate, the detector is able to recall lower intensity
signals, which are not significant under stricter constraints.

Figure 8.5: Detection results with varying false positive rate α ∈ {0.1, 0.01, 0.001, 0.0001}. The
number of false alarms per line in the images is respectively 65.7, 6.57, 0.657, and 0.0657. Bonfer-
roni correction at level 5% would require α = 2.54 × 10−7.
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8.5.3 Adjusting Performance to Signal Shape

As emphasized in Section 8.4.2, the detector’s performance is dependent on the signal shape.
In this section, we compare three choices of the detector parameters l ∈ 3, 7, 17. We first display
the theoretical range of the detectors in Figure 8.6.
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Figure 8.6: Theoretical detection range

The selected detectors are suited to different ranges of σ. As a consequence, they do not detect
the same peptide signals in the LC/MS image as shown in Figure 8.7. The (N = 3) detector is able
to recall an isotopic pattern at (rt = 110, m/z = 707Da) which is missed by the (N = 17) detector.
Conversely, the (N = 17) detector is able to recall signals of lower intensity at (rt = 50, m/z =
710Da) and especially the tails of the elution profiles. In this LC/MS image, the (N = 7) detector
seems to be a good compromise.

Figure 8.7: Detection results with length parameter N ∈ {3, 7, 17}

One drawback of the M-N rule is that some peptide may be randomly split. This occurs when a
pixel intensity belonging to a faint peptide signal is lower than the threshold. The peptide can still
be detected, identified and quantified thanks to the adjacent pixels, as can be seen in the close-up
in Figure 8.8.
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Figure 8.8: Detection results with length parameter N ∈ {3, 7, 17}

As indicated in Section 8.4.2, the M-N rule detector with parameters (N, H) is best suited for
detecting Gaussian shapes of standard deviation σ = N/2. For other values of σ, the limit of
detection is higher (increased area under the curve A). A reasonable heuristic for choosing N
in practice thus consists in setting N = 2σ̂ where σ̂ is the mean width of the observed elution
profiles in the LC/MS image. Note that in gradient elution, the liquid chromatography protocol
can be adjusted so that the standard deviations of the elution profiles are roughly the same.

8.5.4 Comparison with the original M-N rule

In [RJR+04], the authors propose to use the Median M-N rule with the parameters (N = 3, H =
3 × C where C is 30% of the trimmed mean or the median. In this section, we discuss the advan-
tages and the drawbacks of our proposed extension.

We compare the following two detection algorithms:

• Quantile M-N rule with N = 3, H = qN ,1−α1/N and α = 10−1, and
• Median M-N rule with N = 3, H = 3 × C where C is the trimmed mean

Both C and qN ,1−α1/N are computed using the pixel intensities in the current m/z bin. We choose
trimming rather than the median because the data file contains integer-valued intensities instead
of floating-point intensities. As the level of trimming is unspecified in [RJR+04], we chose to use
symmetric 10% trimming.

In the original publication, the Median M-N rule is used after smoothing the intensities. This
preprocessing step is not necessary for studying the properties of the M-N rule and is thus left
out in the present paper. Smoothing can be applied before both algorithms with the following
caveat. Smoothing reduces the noise variance, but introduces correlation between adjacent pixel
intensities. As the pixel intensities are no longer independent the false positive rate computation
in Section 8.4.1 is not valid. Consequently, smoothing may introduce artifacts in the detections.

As seen in Section 8.4, the choice H = M ×C in the Median M-N rule is not generic. It provides
a uniform false positive rate when the background noise distribution is Gaussian with mean C
and standard deviation C, in which case 3 × C = qN ,0.977. However, the false positive rate is not
controlled in the presence of baseline variations, which affect the mean background noise inten-
sity but not its standard deviation. Alternatively, if the background noise is modeled as Poisson
shot noise with mean λ, then its standard deviation is

√
λ, so H = M ×C is too conservative with

high noise intensity. In contrast, setting H = qN ,1−α1/N ensures the same false positive rate in all
situations.
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On a real data set, we can illustrate the situation by deriving a theoretical value for the false
positive rate based on the local threshold used by each algorithm. For each algorithm, we com-
pute the threshold H(m) in each mass bin, and use Equation (8.2) to obtain the predicted false
positive rate. In Figure 8.9, we observe that the computed false positive rate for the Median M-N
rule is very high and very variable as a function of m/z. On the other hand, the false positive rate
of the extended M-N rule obeys the selected bound α. The variations of the false positive rate are
due to quantization in TOF data.
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Figure 8.9: False positive rate as a function of m/z for the Median M-N rule and the Quantile
M-N rule with α = 0.1. In the extension, the false positive rate is variable but obeys the upper
bound.

In Figure 8.10, we show the detection results obtained by the two algorithms on the same
LC/MS image. In particular, we observe a periodic pattern with the Median M-N rule that cor-
responds to the periodic behavior of the noise. In both cases, the true signals are adequately
detected.

Figure 8.10: Detection with the Median M-N rule with parameters (N = 3, M = 3) and the
Quantile M-N rule with parameters (N = 3, H = qN ,1−α1/N ) where α = 0.1.
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8.6 Validation of detection results

8.6.1 Visual evaluation on real images

Feature detection algorithms are evaluated based on the following criteria:

• false positives,
• false negatives,
• localization, i.e. the precision of the position in the LC/MS image,
• feature characteristics such as area under the curve, profile width,
• tolerance to noise,
• tolerance to departure from the feature model.

In this chapter, we have focused on the candidate selection step and thus on false positives and
false negatives. Localization and other feature characteristics are left for the pattern matching
step to determine.

The proposed method is tolerant to noise, but requires independence and stationarity, which
are two properties that we expect in LC/MS images. The method is very tolerant to departure
from the elution profile model; it can tackle non-Gaussian signals, with very different shapes.

Evaluation of feature detection based on visual assessment is possible, but is tricky in our con-
text. If we use LC/MS images from large-scale proteomics experiments (which is the target ap-
plication), we expect large numbers of low-intensity signals. Given a detection in this complex
image, it is not possible to distinguish between a false positive and a faint signal. Isotope patterns
only help partially in this respect. They can be used to validate a detection when a full pattern
is observed, but their absence cannot invalidate a detection because the isotopes of light mole-
cules may be undetectable (see Figure A.2 in the Appendix). Even low-complexity mixtures of
proteins like the 4-5 protein mix in [PPW+07] used to generate Figure 6.16 on page 117 contains
large numbers of low-intensity signals.

8.6.2 Visual evaluation on synthetic images

As the ground truth is not available in proteomics data sets, we have generated synthetic
LC/MS images. We generate an independent identically distributed background noise N (t, m)
and Gaussian signals as shown in Figure 8.11. These two components are added to form the
image in Figure 8.12.
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Figure 8.11: Synthetic peptide signals and background noise used to generate a synthetic LC/MS
image. The left panel shows the superposition of Gaussian signals. The right panel shows the
background noise process.
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Figure 8.12: The left LC/MS image is the synthetic image. The right LC/MS image shows a
real LC/MS image for comparison. In particular, we did not model the isotopic profiles in the
synthetic LC/MS image

Figure 8.13: Feature detection results on a synthetic LC/MS image. The left panel shows the real
peak centroids as black crosses, and the detected pamphlets as red rectangles. The right panel is
an alternative representation which makes it possible to view the detection results in their context
and evaluate the problem difficulty in a varying background noise.

The two components of the synthetic image in Figure 8.12 were generated in the following
way. The peptide component is the sum of 200 peptide signals, with retention time and m/z ratio
chosen at random uniformly inside the LC/MS image. The area under the curve A and standard
deviation σ are also drawn uniformly inside the plane represented in Figure 8.15, that is to say
A ∈ [50, 500] and σ ∈ [1, 10]. The background noise component N (t, m) was generated such that
N (t, m) is a Poisson random variable with mean λ(t, m) = A cos(2πm) + B and A and B are
adjusted to match approximately a real LC/MS image as shown in Figure 8.12.

After feature detection, we may evaluate the performance of the feature detection algorithm
“visually” with plots similar to Figure 8.13, where we can count the number of true positives and
false negatives.

8.6.3 Quantitative evaluation of feature detection

Based on Figure 8.13, we can draw a Venn diagram in Figure 8.14 after counting the detections,
false positives, false negatives. This diagram summarizes the results of one experiment, but ad-
ditional analysis is required to distinguish for example which detections were easy, what types of
patterns lead consistently to false positives, etc.
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Figure 8.14: A Venn diagram can be used to represent the detection results as well as the missing
detections.

2 4 6 8 10

10
0

20
0

30
0

40
0

50
0

Peptide sigma

P
ep

tid
e 

in
te

ns
ity

2 4 6 8 10

10
0

20
0

30
0

40
0

50
0

Peptide sigma

P
ep

tid
e 

in
te

ns
ity

Figure 8.15: Detections results of the quantile M-N rule with N = 3 (left) and N = 7 (right). The
green circles indicate true positives and the red circles indicate false negatives. N = 7 is better
suited for the detection of larger values of σ, which is coherent with the theoretical results in
Section 8.4.2.

Receiver operating characteristic (ROC) curves summarize the performance of a detector at dif-
ferent false positive rates (see [Faw04] for details). However, they do not indicate the performance
of a detector as a function of the signal shape. Consequently, we did not compute ROC curves,
but rather the plots in Figure 8.15, which provide two types of information:

• they indicate the shapes (A, σ) that the algorithm favors,
• for a given shape (A, σ), we can evaluate the probability of detection by considering the results

in the neighborhood of (A, σ)

As show in Figure 8.15, the representation can be used to compare the results of two algorithms.
However, fair and meaningful comparisons are obtained only if the false positive rate of the two
algorithms is the same.
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8.6.4 Notion of detection

There is a major issue with using these quantitative evaluation methods: when do we say that
a peak has been detected ? This issue is apparent when looking at the results in Figure 8.13. More
precisely, in this figure, some pamphlets clearly are detections because the peak centroid is in the
middle of the pamphlet. Others are clearly not detections because they are far from any peak. In
between, there are pamphlets for which the corresponding peak is at one end. Should we consider
these as true positives or false positives ?

In other areas of image analysis such as edge detection, visual validation is performed on syn-
thetic images or on standard data sets. Quantitative assessment is possible because the features
are well located in space, and there is no “middle ground” between true and false positives. Sim-
ilarly, in image segmentation, the boundaries between regions of the image are well-defined. MS
peaks on the contrary have a heavy tail, and the boundary between “peptide” and “no peptide”
regions is unclear.

In Figure 8.14 and Figure 8.15, we decided to merge overlapping pamphlets. A resulting region
is considered true positive when it contains a peak centroid. We could have been more lenient,
and allow some distance between the pamphlet and the peak centroid. This is because the tem-
plate matching step applied after candidate selection may still retrieve the true position of the
centroid, even outside of the candidate region.

We did not compare the M-N rule with other methods because we are not aware of other me-
thods in the field of LC/MS image analysis that detect peaks directly in the LC dimension. Most
methods work in the m/z direction (inside a mass spectrum), perform template matching, then
assemble the results from neighboring scans. The comparison would not be relevant because our
method does not perform template matching.

8.7 Extensions

In this section, we consider some extensions of the feature detection algorithm and of the mod-
els for the background noise. In Section 8.7.1, we study the effect of resampling to improve the
limit of detection in the M-N rule. In Section 8.7.2, we propose to transform the retention times to
exploit a relationship between the retention time of a peptide and its standard deviation.

8.7.1 Resampling the LC/MS image

The M-N rule uses subsampled data, obtained after binning the intensity values in fixed-width
bins of size 0.1 Da. This is motivated by:

1. a reduction in computational time and memory requirements for the detection of signals in
LC/MS images,

2. the non-uniform sampling rate inside individual mass spectra as well as m/z calibration; re-
sampling or interpolation is necessary to compare successive scans,

3. improvements to the limit of detection obtained by choosing the appropriate bin width as
presented in this section.

Non uniform sampling of the m/z axis Depending on the technology of the mass spectrometer,
the m/z axis may be uniformly sampled or not (e.g. TOF mass analyzers, see Section 3.3), but in all
cases, m/z calibration can prevent the direct comparison of intensity values in neighboring mass
spectra. Resampling methods such as binning ensure that the data is sampled at reproducible
m/z values. In this section, we ask what are the consequences of resampling, and in particular
m/z binning, for the detection of peptide signals.
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Problem statement Before detection with the M-N rule, the LC/MS image is binned into fixed-
width bins of size u, with u a positive real number. This corresponds to setting the pixel height.
We explore the choice of u for the specificity of the M-N rule (false positives) and its effect on the
limit of detection (false negatives).

Extension of the noise model We expect tall pixels to contain more background noise intensity
than smaller pixels. To quantify this assessment, we model the background noise as a continuous
stochastic process. The physics of the experiment suggest a spatial Poisson process. In the fol-
lowing, we present the spatial Poisson process in the context of LC/MS images with a simplified
formulation. More details can be found in [Rip04, Kut98, MW04].

Spatial Poisson processes Let λ(t, m) be a positive function of retention time t and m/z ratio m
that is integrable with respect to the Lebesgue measure. A spatial Poisson process P with intensity
λ(t, m) is a random set of points xi = (ti, mi) such that:

1. For all disjoint Borel sets A and B,
∫

A
P and

∫

B
P are independent random variables.

2. For a Borel set A,
∫

A
P is a Poisson random variable with mean parameter

∫

A
λ(t, m)dtdm.

where
∫

D
P = #{xi ∈ D} is the number of points inside the domain D.

The spatial Poisson process model justifies some of the assumptions in Section 8.3.2:

• The background noise intensity is the integral
∫

D
P over a pixel domain. Consequently figures

and simulations were generated based on Poisson distributed background noise.
• Pixel domains are disjoint, and thus the pixel intensities are independent random variables.

The intensity function λ(t, m) allow us to derive the background noise intensity as a function
of the pixel size. For background noise in LC/MS images, we suppose that the background noise
intensity is the same in successive mass spectra (normalization hypothesis) and that the resolution
of the mass spectrometer is high enough, so that λ is roughly constant and the Poisson process
is uniform locally. The noise intensity in a pixel of height u and retention time range [t1, t2] is a
Poisson random variable with mean λu(t2 − t1).

We approximate the quantiles of the Poisson distribution with

qN (ξ) = λu(t2 − t1) + q0(ξ)
√

λu(t2 − t1)

where q0(ξ) are the quantiles of a normal distribution. Consequently, the mean intensity of the
noise is a linear function of the pixel height u. In the following, t = (t1 − t2) corresponds to the
width of the pixel, i.e. the time needed to acquire a mass spectrum.

The extended noise model verifies the assumptions in 8.4.1. The false positive rate can be
controlled with Equation 8.3:

H ≥ qN ,1−α1/N

The height u of the pixel has no consequence on the false positive rate of the M-N rule.

Intensity model Let A denote the total area of the peptide signal in the 2D image. Then the
(continuous) peptide signal a separable product of two Gaussian functions:

I(t, m) = AΓ1(t)Γ2(m)
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In a m/z bin of width u, we consider that the peptide signal intensity is

I(t) =

(

A

∫ u/2

−u/2

Γ2(m)dm

)

Γ1(t)

which corresponds to the model presented in (8.3) with area under the curve A
∫ u/2

−u/2
Γ2(m)dm.

The signal-to-noise ratio defined in Equation (8.5) becomes:

A
∫ u/2

−u/2
Γ2(m)dm

qN ,1−α1/N − qN ,1−(1−β)1/N

≥
√

2πσ2 exp

{
N2/4

2σ2

}

which we can write in terms of limit of detection:

A ≥
qN ,1−α1/N − qN ,1−(1−β)1/N

(∫ u/2

−u/2
Γ2(m)dm

)

Γσ(N/2)

Optimum of the pixel height Fix (A, σ) a peptide signal, and Γ2(m) a Gaussian function with
standard deviation 1. Fix the parameters of the M-N rule detector. The limit of detection is a
function of u:

B : u 7→
√

λut
(
q0(1 − ǫ1/N ) − q0(1 − (1 − β)1/N )

)

∫ u/2

−u/2
Γ2(m)dmΓσ(N/2)

In particular, the optimal choice for u is independent of the parameters of the M-N rule detector.

Limits Before optimizing, we study the limits when u is small and u tends to +∞.

Let C =

(
q0(1 − ǫ1/l) − q0(1 − (1 − β)1/N )

)

Γσ(N/2)
.

When u → ∞, B(u) is equivalent to C
√

λut because
∫ u/2

−u/2
Γ2(m)dm → 1. Consequently, the

detection limit tends to infinity, which means that the signal is lost in the noise.

When u → 0, B(u) is equivalent to
C
√

λut

Γ2(0)u
=

C
√

λt

Γ2(0)
√

u
. When u is too small, the signal is also lost

in the noise.

Approximation Let us assume that the 2D peptide shape in the m/z direction is not Gaussian,
but uniform on [−a/2, a/2]. In other words, we replace Γ2(m) by 1

a✶[−a/2,a/2]. Then

B(u) =







√
λt C a√

u
if u ≤ a

√
λut C if u ≥ a

The optimum value for u is u = a. This choice corresponds to u =
√

12 σ2 ∼ 3.46 σ2 where σ2 is
the standard deviation of Γ2. Similarly, more precise estimates can be obtained with higher order
approximations of the Gaussian distribution, but we did not make the computations.

By numerical minimization of B, we obtain the following estimate u = 2.80σ2. This choice is
independent of the other parameters: peptide shape (A, σ), detector parameters (H,N) or signif-
icance levels α, β. Consequently, the pixel height can be chosen a priori, based on the resolution
of the mass spectrometer.
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Figure 8.16: Lower limit of detection as a function of u. The left panel corresponds to an approxi-
mation of Γ2 with a uniform distribution. The right panel uses the exact formula.

In Figure 8.17, we compare the signal intensity of a Gaussian signal (in black) with samples
of a Gaussian noise distribution (in red) with mean λut and standard deviation

√
λut for several

values of u. For u = 8 on the right panel, detection of the Gaussian signal is difficult because the
overall noise intensity is too high. For u = 0.3 in the left panel, the noise level is not very high
as compared to the signal intensity, but the variability of the noise makes detection difficult. The
optimum value u = 2.80 is shown in the middle panel.
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Figure 8.17: Comparison of the intensity of a sampled Gaussian signal (black) and the intensity of
Gaussian noise (red) for several values of the pixel height u. The red line indicates the noise level
(mean noise intensity).

Conclusion Prior to feature detection with the M-N rule, the LC/MS image is resampled into
pixels. The width of the pixels is set to one mass spectrum, but the height of the pixel can be
chosen. We show that detection can be improved by selecting the inverse of the resolution of the
mass spectrometer as the pixel height.

Poisson point processes are probably good models for centroided data (see Figure 6.6 on page
6.6). However, the behavior of centroiding algorithms is unspecified and implemented in man-
ufacturer software or even hardware. It is not clear what type of point process is generated by
centroiding, for example standard point processes or compound processes.
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8.7.2 Compensation for varying peak shape

As described in Section 8.3, there is a relationship between the retention time µk of a peptide
signal and its standard deviation σk :

σk = µk/
√

P

where P is the plate number of the chromatography column. In this section, we investigate a
method to simplify feature detection based on this relationship. Note that this is only valid for
isocratic mode 2 and as such was not used in the submitted manuscript.

Problem statement Given a function σ(t), compute a transformation f of the retention time axis
that preserves area under the curve, and study its effects on feature detection with the M-N rule.

Retention time transformation We look for a function f such that σ(f(t)) = 1, so the natural
choice is σ−1. In fact, this is not a solution to the problem because σ−1 transforms local lengths,
but f should transform the retention time coordinates. Instead, consider that σ(t) is the width of
a Gaussian signal at retention time t:

σ =

∫ σ/2

−σ/2

1dx

Gaussian signals have the same width if

σ =

∫ 1/2

−1/2

f ′(y)dy

where f ′(y) =
1

σ(y)
is an approximate solution to the problem.

To also preserve the area under the curve, we consider the following transformation:

I(t) 7→ I(f(x))

f ′(x)

In the case of σ(t) = t/
√

P , we obtain f : t 7→ log t

This logarithmic transform has been proposed in [THN+04] without justification, and applied
in the m/z direction to correct variations in the peak shape. In the current context, we apply the
transformation in the retention time direction, and the log transform is justified by the relationship
between the retention time of a peptide and its standard deviation.

Figure 8.18 shows the effect of warping the retention time on a signal made of a superposition
of Gaussian peaks with σ = µ and with the same area under the curve. After transformation of
the retention times with f : t 7→ log t, the elution profiles of each signal have the same standard
deviation.

Note that plotting the signal
I(f(x))

f ′(x)
does not perform resampling per se. To do that, we need

to write a function that adds the intensity values while preserving area. The step function in
Figure 8.18 is the result of true resampling.

Noise transformation The proposed warping of the retention times modifies the noise intensity
as a function of retention time. Let λ(t) denote the mean noise intensity, then after transformation,
it becomes σ2(t)λ(t). For σ = t/

√
P , noise intensity increases as shown in Figure 8.19.

2Gradient elution (described in Chapter 2), is a method in RPLC chromatography that modifies the solvent composition
during the course of the experiment. In isocratic mode, the solvent composition is not modified.
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Figure 8.18: Transformation of the retention time axis. A superposition of Gaussian functions
(shown on the left panel) is transformed into a series of identical signals (right panel). The ragged
line is the transformation of the signal after pixellisation. Red dots indicate the new centroids.
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Figure 8.19: Transformation of retention times applied to random noise. The left panel shows
Poisson random variables. The right panel shows the results of resampling the intensity function.
The red line corresponds to the predicted mean intensity of the noise after resampling.

Modification of the threshold As the background noise is not stationary in the m/z bin, we
have to adapt the threshold H used in feature detection with the M-N rule. Figure 8.20 shows the
adapted threshold for feature detection.

Conclusion Based on the relationship between retention time and standard deviation, we pro-
pose a transformation of the retention times to reduce the variability of the signal shapes. We
show that after transformation, the width of the peptide signals are constant. Therefore, we can
select a universal value for the parameter N in the M-N rule. For peak picking, the same template
can be matched to all signals in the LC/MS image.

The logarithmic transform is limited to isocratic mode, because other gradients modify the
retention of the peptides on the RPLC column. It is unknown if a relation between retention time
and standard deviation exists in LC/MS images obtained in gradient elution, or if it can be used
to improve signal detection as proposed in this section.
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Figure 8.20: Transformation of retention times for feature detection. The left panel shows the
relative intensities of noise and signal before transformation. The right panel shows the threshold
and signal after transformation.

8.8 Related problems

The M-N rule consists in applying multiple, local statistical tests to different locations in the
LC/MS image to detect peptide signals. More precisely, it corresponds to testing if the local
minimum of the pixel intensity is above a threshold. Many other local descriptors of the intensity
can be suggested instead of the minimum: local maximum, mean, median, quartile, variance,
along with their robust versions.

Background material on the topics discussed in this section can be found in the introductory
chapters of [dFCJ01]. A list of measures of location (mean) and scale (variance) can be found in
[MMY+06] from the point of view of statistics. In the image analysis literature, the computation
of local characteristics is often called filtering, and a list of classical approaches (linear filters, non-
linear filters, adaptive filters, etc.) can be found in [CPB95].

8.8.1 Rank filters

The M-N rule is naturally viewed as thresholding first, and looking for correlation in neighbor-
ing mass spectra afterwards. Its essence is in the search for groups of contiguous pixels which
indicate local correlation. The detection results can also be computed by scanning the horizontal
line for successions of pixels of at least length N .

In the case of the M-N rule, thresholding and filtering can be reversed to fit in the framework of
rank filters, i.e. we can first compute a rank filter (the local minimum) then apply thresholding.
However, the M-N rule does not really correspond to this context because rank filters are used
for denoising rather than detection and “are mainly useful for removing impulse noise” [CPB95].
Consequently rank filters are usually based on the median rather than the extremes.

The strict decision rule T ≥ N can be replaced with T ≥ N − k which authorizes up to k pixels
under the threshold. In the context of rank filters, this corresponds to using the k-th lowest value
instead of the minimum. More generally, this corresponds to increasing the search space in the
feature detection algorithm.
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Increasing the search space requires a tighter control of the false positive rate per hypothesis.
For example, [DMM08] proposes to find maximal significant intervals in a signal 3, i.e. sets of
contiguous pixels that with probability less than α but that cannot be extended to the left or to the
right. The search space contains w2 pamphlets, that is to say all possible segments of all length in
a horizontal line of w pixels, or equivalently w mass spectra in the LC/MS image. In comparison,
the M-N rule considers only on the order of w different pamphlets.

8.8.2 Mathematical morphology

It is more appropriate to view the M-N rule in the context of mathematical morphology (see
[CS05, Ser82, Ser88]) rather than rank filtering. Indeed, the M-N rule corresponds to an erosion
filter in one dimension. Also, the properties developed in this chapter are similar to morphologi-
cal filters, which select shapes and other features in the image depending on their scale.

Mathematical morphology suggests other possible choices to replace the erosion operator, such
as dilation (local maximum, often used in feature detection), opening and closing. The connec-
tions with mathematical morphology still remain to be fully explored, as well as the connections
with variational approaches (see [CS05] for example).

8.8.3 Linear filters

Instead of rank filters which are non-linear, we could have used the theory of linear filters. This
theory is appealing because we can compute the filter with optimal signal to noise ratio, with the
hypothesis that the signal is known in advance and that the noise is white Gaussian noise. This
filter is a symmetrised version of the input signal (see [CPB95] for the full derivation). The linear
theory has been particularly successful in the case of Gaussian white noise, and many results can
be found e.g. in [VT01].

In the case of LC/MS images, we chose the M-N rule to build upon an existing method, and
also because it is not tied to a specific noise distribution. In LC/MS data, the background noise
is rather Poisson distributed and varies in different locations of the image. Moreover, the linear
filter theory is focused on a known signal shape. Developments similar to those in Section 8.4.2
are necessary to evaluate linear filters for the detection of shapes with varying characteristics.

8.8.4 Replicates

Feature detection with the M-N rule does not take into account the replicates of a protein signal
(isotopes and charge states) for detection. This requires combining several detectors which is an
interesting question in multiple testing.

The combination of several feature detectors is complicated by the fact that the replicates are
not identical. For instance:

• signals from isotopes and other charge states usually have lower intensity than the monoiso-
topic peak,

• the distribution of intensity between isotopic peaks is dependent on the chemical composition
of the molecule.

3For histogram segmentation
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8.9 Conclusion

The M-N rule is a feature detection algorithm that can effectively recall low-intensity peptide
signals in LC/MS images. In this chapter, we extend the original formulation and provide a
precise account of the effect of the new parameters H and N on the detection results. N controls
the standard deviation of the elution profiles that can be detected reliably, while H controls the
selectivity of the algorithm. We provide guidelines for choosing N for a given LC/MS image, and
compute H from the local noise distribution. The resulting Quantile M-N rule is guaranteed to
yield a false positive rate bounded by a user-defined parameter α.

In the context of LC/MS images, we develop the theory of a contrario detection in the new
direction of sensitivity, with a geometric model of the shapes to be detected. In contrast to other
detection problems like edge detection or shape recognition, the set of shapes is parametrized
by only the area under the curve A and the standard deviation σ. Additionally, we have a well-
defined goal, which is to optimize the detection of low-intensity shapes.

Due to the width of the features considered in LC/MS images, it is difficult to locate the peaks
precisely and define what a detection is. Several evaluation procedures are discussed in Section
8.6. We propose to use plots in feature space similar to Figure 8.15 to compare different methods,
but in practice, these are difficult to draw at the same false positive rate.

The proposed extensions provide answers to two additional questions. We first address the
question of the choice of the pixel height for resampling the LC/MS image in case of irregular
sampling. In that case, resampling is necessary but we also show that there is an optimal choice
for the pixel height that optimizes the detection of peptide signals. We then address the formula
8.1. If this relationship between retention time and the standard deviation of elution profile is
known a priori, then it suffices to select different values of N . Instead we show that the LC/MS
image can be resampled to obtain the same standard deviations for all peaks, and use only one set
of parameters. However, it is not clear how this improves detection because the noise intensity in
the resampled image is no longer stationary. In Section 8.8, we put the M-N rule into the wider
context of filtering theory and mathematical morphology. This allows us to sketch options for
extending the M-N rule.

Feature detection with the M-N rule does not provide precise values for the signal retention
time and m/z ratio. It does not tackle the deconvolution of overlapping features, nor does it
take isotope patterns into account. When using the M-N rule, these tasks need to be handled by
another algorithm with greater attention to individual pixel intensities in the pamphlet. However,
the M-N rule can be used as a filtering step prior to accurate peak picking to provide a statistical
control of the false positive rate.

Appendix

Sensitivity of the M-N Rule

In this section, we justify the computation of the sensitivity of the extended M-N rule. In a
horizontal line, the recorded intensity is modelled as:

I(t) = N (t) + A
1√

2πσ2
exp

{

− t2

2σ2

}

where N (t) is the background noise and the signal is Gaussian, with area under the curve A,
standard deviation σ and is centred in the pamphlet.
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Given a false positive rate α and the M-N rule parameters H = qN ,1−α1/N and N , we com-
pute the probability that a Gaussian signal with area under curve A and standard deviation σ is
detected by the M-N rule:

P [Ii > H, ∀i ∈ {1, . . . , N}] =
∏

i∈{1,...,N}
P [Ii > H]

=
∏

i∈{1,...,N}
P

[

N +
A√
2πσ2

exp

{

− t2i
2σ2

}

> H

]

≥
∏

i∈{1,...,N}
P

[

N +
A√
2πσ2

exp

{

−N2/4

2σ2

}

> H

]

=

(

P

[

N +
A√
2πσ2

exp

{

−N2/4

2σ2

}

> H

])N

The lower bound is obtained because the Gaussian function Γ(t) is above the value Γ(N/2) in the
range t ∈ [−N/2;N/2].

Given the false negative rate β, we solve the following inequality:

(

P

[

N +
A√
2πσ2

exp

{

−N2/4

2σ2

}

> H

])N

≥ 1 − β

⇔ P

[

N +
A√
2πσ2

exp

{

−N2/4

2σ2

}

> H

]

≥ (1 − β)
1/N

⇔ P

[

N +
A√
2πσ2

exp

{

−N2/4

2σ2

}

< H

]

≤ 1 − (1 − β)
1/N

⇔ H − A√
2πσ2

exp

{

−N2/4

2σ2

}

≤ qN ,1−(1−β)1/N

In conclusion we obtain:

H − qN ,1−(1−β)1/N ≤ A√
2πσ2

exp

{

−N2/4

2σ2

}

⇒ P [Ii > H, ∀i ∈ {1, . . . , N}] ≥ 1 − β



Chapter 9

Conclusions and Perspectives

9.1 Conclusions

This manuscript studies signal distortions and methods to correct them for LC/MS images ac-
quired with a mass spectrometer coupled to a liquid chromatography separation. On this instru-
ment platform, systematic sources of variation in the sample preparation, the liquid chromatog-
raphy as well as the mass spectrometer can hinder the interpretation of the data for proteomics
applications such as identification of proteins, quantification and biomarker discovery.

In this thesis, we provide a review of the technologies for LC/MS analysis of biological sam-
ples and their related signal distortions. Although we have focused on Q-TOF instruments, most
distortions are in fact common to all LC/MS platforms, albeit with different experimental jus-
tification. We review the methods for correcting the observed retention times in Chapter 6 and
develop original approaches for correcting intensity values and detecting peptide signals based
on the background chemical noise.

Without a clear understanding of the statistical properties of the background noise in the liter-
ature, we have studied empirical approaches for intensity normalization and baseline estimation
in Chapter 6 as well as model-based approaches in Chapter 7. These methods build on the hy-
pothesis that noise in LC/MS images is generated by real molecules, and that it is affected by
the normalization factor. Their potential to improve on current methods lies in the fact that pep-
tide signals are separated and thus isolated in LC/MS images; most of the data set is actually
background noise.

Peptide signals can therefore be detected as significant deviations from the background noise.
In Chapter 8, we study a feature detection algorithm that applies local statistical tests to the pixel
intensities in the LC/MS image. Inside this mathematical framework, we show how to control
the false positive rate of detection and how to optimize the parameters based on a signal-to-noise
ratio adapted to the algorithm.

For the proposed methods, we have tried to provide mathematical results that are relevant for
adoption in the field of LC/MS-based proteomics. For instance, our feature detection scheme
extends an already available method, but studies carefully the artifacts (false positives) and the
limit of detection (false negatives) of the method. The algorithm is quick, easy to implement and
also easy to re-use in different contexts with the same statistical properties.
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9.2 Perspectives

Although a lot of research has been done on signal preprocessing for LC/MS images, some
fundamental challenges remain. First, multimodal comparison is a major issue. Most methods
are designed to erase systematic variations between LC/MS images that are thought of as ide-
ally identical. With biological samples from different contexts (patients and control cases for
instance), signal processing methods may eliminate legitimate differences and prevent the dis-
covery of biomarkers. Such problems include:

• forced alignment of signals from unrelated peptides during the correction of retention times,
• inclusion of low intensity signals in the baseline component,
• normalization of the intensities of samples with different protein concentrations. For instance,

elevated protein concentrations in tumor cells is a feature and not artifact.

From a practical point of view, most of the approaches presented in this document are faced
with very large datasets and steep computer hardware requirements in terms of processor speed
and random access memory. When our thesis began, back in late 2005, we could barely compare
a full resolution LC/MS image before and after signal processing, as two images would not fit
inside the two gigabytes of available RAM. Since then, the price of memory chips has dwindled
and we purchased an additional two gigabytes of RAM. We also decided to subsample the data
as most workstations would not meet the requirements (most still don’t).

The mathematical extensions to the work in this thesis have been largely discussed in the in-
dividual chapters and will not be reproduced here. However, we would like to insist on two
remarks. First, the standard analysis pipeline as indicated in the introduction in Figure 1.3, is not
set in stone. For example, biomarker discovery approaches usually identify peptide signals before
quantification, but some approaches test for differences between LC/MS images even before fea-
ture detection. There is also potential for doing protein identification based on both MS/MS and
retention time. Second, statistical analysis of LC/MS data should take into account the prepro-
cessing steps to avoid propagating biases and errors. For instance, our feature detection scheme is
independent of baseline substraction and normalization, and can be extended to take smoothing
into account.
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Appendix A

Notions of biochemistry

A.1 Molecular species

This section is devoted to some basic notions of chemistry. It aims to provide answers to the
following questions:

• Why are there several types of proteins with the same sequence ?
• What is the mass of a protein ?

The first question is related to the replicates of protein signals in LC/MS data. The second is
related to identification, i.e. how to relate protein sequence to the measured m/z ratio.

Figure A.1: Atomic structure
of the helium atom. The inset
shows protons in pink and neu-
trons in purple.

An atom is made of three types of particles: protons, neu-
trons and electrons. Protons are positively charged, neutrons
are neutral particles, and electrons have a negative charge. Pro-
tons and neutrons form the nucleus of the atom, while the elec-
trons form a cloud surrounding the nucleus.

An atom which has the same number of protons and elec-
trons is electrically neutral, otherwise it is called an ion. Atoms
are categorized depending on their number of protons and neu-
trons. All atoms with the same number of protons belong to
the same chemical element. A chemical element exists in several
forms, depending on the number of neutrons in the nucleus,
and these are called isotopic forms.

Atoms are designated with a formula like 12C where C is
the chemical element and 12 is the number of protons and neu-
trons in the nucleus. Atoms with too few or too many neutrons
are not stable, but there can exists several stable isotopes of a
chemical element. Table A.1 lists common chemical elements
in biochemistry, and their isotopes.

Molecular species, rather than molecules, exist in different isotopic forms, depending on the
isotopes of their atoms. As isotopes of the same molecule have identical1 chemical properties,
isotopes are distributed in molecules at random. The mono-isotopic form of a molecule corresponds
to the isotope with all the atoms in their most abundant stable form. It usually corresponds to the
lightest isotope form.

1Nearly identical. For instance, their molecular weight is different.
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Element Stable isotopes Relative abundance
Hydrogen 1H 99.985%

2H 0.015%
Carbon 12C 98.9%

13C 1.1%
Nitrogen 14N 99.634%

15N 0.366%
Oxygen 16O 99.76%

17O 0.039%
18O 0.201%

Table A.1: Common stable isotopes in protein biochemistry.

The number of additional neutrons is distributed according to a multinomial distribution. It can
be approximated with a binomial distribution corresponding to the carbon isotopes as they are
the most abundant natural isotopes. Proteins are large molecules with large numbers of carbon
atoms, and significant numbers of natural heavy versions. Proteins around 2,000 Da are roughly
equally present in the mono-isotopic form and in the isotopic form with an additional neutron.

Molecular weight is a badly defined notion because molecular species exist in forms of different
molecular mass. Instead, we use mono-isotopic mass which corresponds to the molecular weight
of the mono-isotopic form, and average mass which takes into account the stable isotopes. For
example, the mono-isotopic mass of Glycine (C2H5NO2) is 75 Da, whereas its average mass is
75.03523 Da. A mass spectrometer with 500 ppm accuracy is sufficient to distinguish the two
masses.

A.2 From genes to proteins

As described in Chapter 4, protein identification is best performed by comparing fragmentation
spectra with the entries of a protein database. In this section, we indicate how to build exhaustive
protein databases for MS/MS identification.

The ribosome is the molecular machinery that translates genetic code into proteins. It reads
three-letter codons and associates each codon with a specific amino-acid. The association between
three-letter codons and amino-acids is fixed in a given organism2, and it is known for most. Con-
sequently, we can reproduce the translation of the DNA sequence into amino acid sequences on a
computer.

To build an exhaustive protein database, it suffices to sequence the genome and apply the trans-
lation on a computer. While it may still take months to obtain the complete DNA sequence of
complex genomes, simple organisms can be sequenced in a few days.

Remarks

• The amino acid sequence is cut into proteins because some of the three-letter codons indicate
the beginning and the termination of a protein sequence.

• The origin of translation is not specified. A given strand of DNA can be read starting from 3
different positions. Additionaly, there are two strands of DNA, and both can be used for coding
proteins. However, DNA strands are oriented and can only be read in one way. In total, a DNA
sequence needs to be translated six times.

2There are variations in the genetic code. For example, some organisms use additional amino-acids like selenocysteine.
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Figure A.2: Isotopic distribution of Glycine (top) and Insulin (bottom) at resolution 20,000. Insulin
has two charges, as indicated by the spacing of the peaks.

• There are intermediate steps between the DNA sequence and its translation. Some technologies
sequence the intermediate molecules to focus on the genetic information that the cell actually
uses.

• There are other biological processes that can increase the complexity of the proteome. For
example, splicing corresponds to removing parts of the genetic sequence before translation,
and a given sequence can be spliced in different ways (alternative splicing). During maturation,
proteins are folded, but also cut. Some parts are removed, e.g. methionines that correspond to
the start codon; some proteins are cut into pieces, as is the case for producing hormones.
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Traitement du signal et images LC/MS pour la recherche de biomarqueurs.

Dans cette thèse, nous étudions le traitement de données acquises par un spectromètre de masse
(MS) couplé à une chromatographie en phase liquide (LC). Cette plateforme de mesure permet
d’analyser des mélanges complexes de protéines en séparant les molécules suivant leur masse
moléculaire et leur affinité chromatographique.
Les images LC/MS générées souffrent de distortions liées à l’instrument de mesure. Le manuscrit
détaille d’abord les caractéristiques des spectromètres usuels en insistant sur les artefacts dans le
signal et sur leurs conséquences pour l’identification des protéines, la mesure de leurs concentra-
tions et la recherche de biomarqueurs.

Cette thèse a pour objectif la correction des distortions du signal par des approches mathé-
matiques. Dans un premier temps, nous étudions la non-reproductibilité de la séparation chro-
matographique et proposons une revue des méthodes de la littérature. Celles-ci sont proches du
recalage d’images, avec des contraintes et hypothèses spécifiques aux plateformes LC/MS.
Dans un deuxième temps, nous étudions le bruit de fond dans le signal et comment il affecte
la mesure des concentrations de protéines. Pour standardiser les mesures, nous proposons un
modèle du bruit de fond basé sur les caractéristiques techniques du spectromètre de masse. En
particulier, nous montrons que le gain du détecteur peut être estimé avec une grande précision,
et que l’estimateur proposé est optimal.
Pour l’identification des protéines, nous proposons de détecter les signaux dans l’image LC/MS
comme des déviations significatives par rapport à un modèle du bruit de fond. Nous consid-
érons un problème de test statistique multiple; nous montrons comment contrôler le taux de faux
positifs, le taux de faux négatifs et comment optimiser les paramètres du détecteur.

Signal processing of LC/MS images for biomarker discovery.

This thesis deals with signal processing of images acquired on a mass spectrometer (MS) that
is coupled to a liquid chromatography column (LC). In this experimental setup, the molecules
in a biological sample are separated in two dimensions, and the instrument records the signal
intensity as a function of molecular mass and chromatography position.
LC/MS images are subject to distortions related to the acquisition platform. The manuscript
begins with a detailed description of the instruments, artifacts in their measured signal and the
consequences for identification of proteins in the sample, quantification and biomarker discovery.

The main topic of the thesis is to correct the signal distortions with mathematical approaches.
We first deal with non-reproducibility of the liquid chromatography separation, and propose a
review of the available methods in the literature. These methods are similar to multimodal image
registration, but have been adapted to the specifics of the LC/MS platform.
Systematic distortions of the measured intensities are then considered, in relation with the back-
ground noise in LC/MS images. To standardize the observations, we propose a model for the
background noise based on the physical characteristics of the instrument. We show that the gain
parameter of the instrument can be estimated with high precision, and that the proposed estima-
tor is optimal.
For identification of the proteins, we propose to detect protein signals in the LC/MS image as
significant deviations from the noise model. Feature detection is viewed as a statistical testing
problem, which provides a framework for controlling the number of false positive detections,
and for measuring the performance of feature detection in terms of test power.
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