Elaboration de multimatériaux multifonctionnels par métallurgie des poudres

Mécanismes de frittage de bimatériaux

Aurélie THOMAZIC

➔ Pour associer des propriétés complémentaires

Pourquoi par métallurgie des poudres ?

→ Pour réduire le cycle de production
→ Pour limiter l'usinage

Contexte

Premier couple de propriétés : ténacité/dureté

Monomatériaux

Bimatériau acier X120Mn12/carbure
→ Résistance à l'impact (ténacité)
→ Résistance au perçage, sciage (dureté)
Exemple : pastille anti-effraction (Cetim)

Conclusion

Bimatériau modèle base Fe/base WC → Etude des aspects fondamentaux des multimatériaux Contexte

Second couple de propriétés : Résistance mécanique/résistance à la corrosion et à l'usure

Acier Superalliage Bimatériau acier/stellite 6

- ➔ Résistance mécanique
- ➔ Résistance à la corrosion et à l'usure -Exemple : soupape, engrenage, vis d'extrusion

Contexte

Conclusion

Définition des compositions

Caractérisation des poudres

Avant frittage

- Elaboration des mélanges
- Etude de la compressibilité
- Etude du déliantage

Frittage d'un monomatériau Frittage d'un bimatériau Changement de phases : ATD Pertes de masse : ATG Variations dimensionnelles : dilatométrie Microstructure: MEB, DRX, microsonde

Conclusion

Sommaire

• Contexte

Frittage d'un monomatériau Stellite 6

Frittage d'un bimatériau
 Matériau modèle base Fe/base WC

Conclusions et perspectives

Mélange Stellite 6

Poudre préalliée sans carbone atomisée à l'eau

Monomatériaux

■Stellite 6 sans C : Co – 29 % Cr – 5 % W

- > +1,2 % carbone graphite (D₅₀=6 µm)
- +0,8% Kenolube (Acrawax et stéarate de zinc)

Bimatériaux

Déliantage : élimination du liant organique avant frittage

Kenolube : 20-25 %m. stéarate de zinc + 75-80%m. Acrawax + additifs

Craquage stéarate de zinc 🗲 Résidus à longues chaînes carbonées

➔ Nécessité d'utiliser un four dédié au déliantage

Etude du frittage du monomatériau stellite 6

Littérature : - Le frittage supersolidus dépend de la température

- Fraction volumique de liquide = 30 à 40 %

Variations dimensionnelles au cours du frittage
 Dilatométrie

Températures d'apparition de premier liquide et de liquidus
ATD

Bimatériaux

Conclusion

Variations dimensionnelles lors du frittage du monomatériau stellite 6

 Gonflement lié à la dilatation thermique, aux changements de phases et la dissolution du graphite
 Début du frittage en phase γ (1130°C)

③: Accélération du frittage à partir de 1255°C

Températures caractéristiques du monomatériau stellite 6

Premier liquide : **1255°C** / Liquidus : 1365°C

Accélération du frittage correspond à l'apparition du liquide

Essais préliminaires sur le monomatériau stellite 6

Rimatéria

Frittage à réaliser au-delà de 0% liq. (1255°C)

Conclusion

Etude entre 15% liq. (1265°C) et 40% liq. (1275°C)

Four tubulaire : décalage de température de 30°C
 1295 à 1305°C

Evolution de la microstructure du Stellite 6 en fonction de la température de frittage

1300°C/1h

1305°C/1h

Conclusion

→ Grossissement des grains de matrice (gris clair)

Monomatériaux

➔ Modification des carbures (gris foncé)

$$M_7C_3 / M_{23}C_6$$
?
Distribution ?

Evolution de la microstructure du Stellite 6 en fonction de la température de frittage

1295°C

1300°C

1305°C

Conclusion

Carbures intra- et intergranulaires

Monomatériaux

Carbures intergranulaires de forme eutectique

Changement de la distribution des carbures

Evolution de la microstructure du Stellite 6 en fonction de la température de frittage

Frittage avant le point A ($\gamma + M_7C_3$) > Formation de fins carbures M_7C_3 > Frittage en phase solide

Conclusion

Après refroidissement

Répartition homogène des carbures
 Porosité

Evolution de la microstructure du Stellite 6 en fonction de la température de frittage

Frittage entre A et B (L + γ + M₇C₃)

Conclusion

- Frittage en phase liquide
 Dissolution des carbures M₇C₃ et de la matrice dans le liquide
- ➤Grossisement des grains

Après refroidissement
➢ Moins de porosité
➢ Carbures intragranulaires fins
➢ Précipitation de carbures intergranulaires grossiers

Bimatériaux

Evolution de la microstructure du Stellite 6 en fonction de la température de frittage

Frittage entre B et C (L + γ)

Frittage en phase liquide
 Dissolution complète des M₇C₃

Conclusion

➢Grossissement des grains

Après refroidissement

 Carbures intergranulaires grossiers de forme eutectique
 Zone claire riche en tungstène au bord des grains

>Solidification des grains γ

→ Enrichissement du liquide en carbone, chrome et tungstène

Solidification d'un eutectique carbures/matrice

- → Rejet du tungstène dans le liquide
- Solidification du dernier liquide riche en tungstène

Monomatériaux Conclusion Des monomatériaux au bimatériau **Stellite 6** Acier Élevée Densité à cru Élevée Vitesse de chauffe → Compromis : 1300°C/1h ≤1300°C Température ≥1350°C Atmosphère He+4 %vol. H₂ Débit de gaz Compromis Temps de palier ≥60 min ≤60 min Stellite 6 Acier **→** Bimatériau : Interactions à l'interface 1 mm 22

•Contexte

Frittage d'un monomatériau
Stellite 6

• Frittage d'un bimatériau

□ Matériau modèle base Fe/base WC

Conclusions et perspectives

Mélanges base Fe/base WC

Compression des monomatériaux

→ P=400 MPa : même densité à cru

→P=600 MPa : compromis entre amélioration densité à cru de matériau base Fe et différence de densité entre les couches

Les monomatériaux au cours du frittage

Monomatériaux

Bimatériaux

Variations dimensionnelles différentes en température, vitesse, amplitude et direction...

Les monomatériaux après frittage

Monomatériaux

Cycle 1300°C/1h	Base Fe	Base WC
Densité à cru (P=600 MPa)	75 %	69 %
Début de retrait	950°C	1100°C
Vitesse de retrait maximale	0,13 %/min à 1165°C	1,35 %/min à 1245°C
Retrait final	8,8 %	10,3 %
Densité finale	97 %	94 %
Phases en présence	αFe, Fe ₃ C , liseré riche en tungstène	WC, αFe, M ₆ C (traces)
Microstructure	<u>20 μm</u>	2 <u>0 μm</u>

La réalité bimatériau

Monomatériaux

Bimatériaux

→ Changement de comportement à partir de 1280°C

Aspect microscopique du bicouche fritté

Monomatériaux

Bimatériaux

Sonne densification

Formation d'une marche, d'une autre phase et de fissures à l'interface

Identification de la nouvelle phase à l'interface : M₆C ? Attaque sélective des carbures M₆C au réactif de Murakami

Monomatériaux

Bimatériaux

Vers un plan d'expériences

Deroblèmes mis en évidence par l'essai préliminaire

Différence de retrait radial élevée (marche)

Monomatériaux

- Fissure à l'interface
- \succ Nouveau carbure, de type M₆C, à l'interface (150 µm)

Deux objectifs principaux :

Donner un cycle de référence pour les simulations numériques du frittage f

Comprendre et contrôler la formation carbure de type M₆C

Conclusion

➔ Plan d'expériences

Plan d'expériences : cinq paramètres

Température 7: 1280-1300°C

■ Phase M₆C, densification,...

Vitesse de chauffe r : 3-5°C/min

Accommodation, interdiffusion, densification...

Monomatériaux

Temps de palier t: 10-60 min

Interdiffusion, densification,...

Pression de compaction P : 400-600 MPa

Différence de retrait radial, densification,...

Teneur en carbone de la couche base Fe C: 0,62-0,82 %m.
 Phase M₆C, liquide dans le matériau base Fe,...

Plan d'expériences : treize réponses

Températures

Retraits

- Début de frittage du bimatériau
 Vitesse de retrait maximale
 ...
- Retrait axial
- Retraits radiaux de chaque couche
- Indice d'anisotropie

Monomatériaux

Masses volumiques de chaque couche

Epaisseur affectée par la phase M₆C

Masse volumique de la couche base WC

Bimatériaux

C: teneur en carbone de la couche base Fe

Monomatériaux

C=0,62 %m., **T**=1280°C, ρ_{wc} <u>augmente quand</u> **t** augmente

T=1300°C, ρ_{wc} diminue quand t augmente !

C=0,82 %m., ∀ T, ρ_{wc} diminue quand t augmente !

Surprenant ! → La teneur en carbone de la couche base Fe C a un effet sur la masse volumique de la couche base WC

Masse volumique de la couche base WC C=0,62 %m / t=60 min

Monomatériaux

T=1280°C

Conclusion

- Couche base WC enrichie en liant Fe-C

Bimatériaux

- Pas de porosité

→ Migration liquide de la couche base Fe → base WC
 → Modification de la composition de la base WC
 → Diminution de la masse volumique

 $T = 1280^{\circ}C$: Pas de phase M₆C

T=1300°C : L'épaisseur de la phase M₆C croît de façon exponentielle avec C&t

 \succ L'épaisseur de phase M₆C peut atteindre 180 µm !

→ A 7=1300°C, si C=0,82 %m. ou t=60 min, formation de la phase M₆C à l'interface des deux matériaux Proposition d'un mécanisme de formation de la phase M₆C

Bimatériaux

Etape 1 : prémices à la formation de la phase M₆C

Monomatériaux

- Diffusion de C vers la couche base Fe
- Enrichissement local en C de la couche base Fe
- Formation locale de liquide près de l'interface

Proposition d'un mécanisme de formation de la phase M₆C

<u>Etape 2</u> : amorçage de la formation de la phase M_6C

Infiltration de liquide pauvre en C et W vers la couche base WC

Dissolution de WC dans ce liquide

Proposition d'un mécanisme de formation de la phase M₆C

Bimatériaux

Etape 3 : croissance de la phase M₆C

- Diffusion rapide de C / W
- Enrichissement local en W du liquide à l'interface

Monomatériaux

➢ Formation de M₆C suivant une réaction du type :

3 Fe + 3 WC \leftrightarrow 3 Fe₃W₃C + 2 C

Réaction auto-entretenue

Résultats sur le bimatériau modèle

Bimatériau = 2 monomatériaux + interactions/interface

Monomatériaux

> Interface : phénomènes de diffusion/infiltration \rightarrow Phase M₆C

Etude suivant 5 paramètres à l'aide d'un plan d'expériences

> Mécanisme de formation de M_6C

Conseils pour les cycles de référence

•Contexte

Frittage d'un monomatériau
Stellite 6

•Frittage d'un bimatériau Matériau modèle base Fe/base WC

Conclusions et perspectives

Conclusion

Conclusions et perspectives

Etude des monomatériaux nécessaire mais insuffisante pour réaliser le frittage de bimatériaux

Méthodologie commune pour l'étude du frittage de bimatériaux :

 Choix des compositions, poudres et mélanges
 Etude de la compression, du déliantage et du frittage de chaque monomatériau
 Etude du frittage des bimatériaux

Acier/Superalliage

 Compromis déterminé par l'étude des monomatériaux
 Interface cohésive avec diffusion sur 2-3 mm

Base Fe/Base WC

 Changement de comportement au passage au bimatériau
 Mécanisme de formation de la phase M₆C

Conclusion

Conclusions et perspectives

Physico-chimie

MC

Mise en forme

Modélisation

Conférence EuroPM2009 :

Essais mécaniques sur prototypes de pièces
 Mise au point du procédé en projet

Merci de votre attention !

Je remercie les laboratoires SIMaP et CMTC, les partenaires du projet Multimat et Eurotungstène poudres pour m'avoir aidé à accomplir ce projet.

Et enfin, un grand merci à tous ceux qui m'ont côtoyée au quotidien lors de cette thèse.

