Soutenance de Thèse de Doctorat 14 Février 2004

Identification des lois de comportement élastoplastiques par essais inhomogènes et simulations numériques

Ali KHALFALLAH

Directeur de Thèse: A.Dogui Co-Encadrement : H. Bel Hadj Salah Laboratoire de Génie Mécanique

École Nationale d'Ingénieurs de Monastir Faculté des Sciences de Tunis

Plan de l'exposé

- Objectif
- Position du problème

Modèles de comportement considérés

- **Modèle isotrope transverse**
- Modèle quadratique orthotrope de Hill
- Modèle non quadratique de Barlat

Algorithme d'identification des modèles

- Méthode numérique de calcul direct (MEF)
- Procédure d'optimisation
- Base de données expérimentales

Stratégies d'identification des modèles

(Résultats numériques)

Analyse de sensibilité

- Méthode de calcul
- Indicateur de sensibilité

Conclusions & perspectives

- Établir une stratégie d'identification des paramètres des lois de comportement élastoplastiques de tôles destinées à l'emboutissage à partir :
 - <u>d'essais expérimentaux (non homogènes)</u>
 - <u>a méthode numérique d'identification (Expérience-Calcul).</u>
- Une analyse de sensibilité permettant :
 - <u>d'étudier l'influence de la fluctuation des paramètres</u>
 <u>sur la réponse simulée</u>
 - <u>de choisir l'essai dont la réponse est la plus sensible</u>
 <u>par rapport aux paramètres identifiés.</u>

Position du problème

Identification des paramètres de lois comportement élastoplastiques à partir des essais expérimentaux réalisés au laboratoire.

Traction Plane est un essai inhomogène [Gaaloul,93; Genevois,92]

Les contours d'isovaleurs du champs de contraintes(b) et déformations(a) (*Nos simulations*)

Modèles de comportement

Modèles de comportement considérés

Lois de comportement élastoplastiques en HPP

 $\mathcal{E} = \mathcal{E}^{P}$ Décomposition de la déformation $f(\sigma, \alpha) = \overline{\sigma}(\sigma) - \sigma_s(\alpha) \le 0$ Fonction de charge (seuil) $\overline{\sigma}(\sigma)$ Contrain $\overline{\sigma}(\sigma)$ équivalente $\overline{\sigma}(\alpha)$ Fonctiond'écrouissage

 $\sigma = A(\mathcal{E} - \mathcal{E}^p)$

Loi élastique

 $\dot{\varepsilon}_{=}^{p} = \dot{\alpha} \frac{\partial g(\sigma, \alpha)}{\partial \sigma}$

$$\dot{\alpha} \ge 0, \quad \dot{\alpha}f = 0, \quad \dot{\alpha}\dot{f} = 0$$

Loi d'évolution plastique g : fonction potentiel plastique

Variable interne d'écrouissage

(État de contraintes planes)

Modèle isotrope transverse de Hill Critère de Plasticité

$$\overline{\sigma}^{2} = \frac{r}{1+r} (\sigma_{11} - \sigma_{22})^{2} + \frac{1}{1+r} (\sigma_{11}^{2} + \sigma_{22}^{2}) + 2\frac{1+2r}{1+r} \sigma_{12}^{2} \quad \text{et} \quad r = \frac{\dot{\mathcal{E}}_{22}^{p}}{\dot{\mathcal{E}}_{33}^{p}}$$

Modèle quadratique orthotrope de Hill

Q Critère de Plasticité

$$\overline{\sigma}^2 = (G+H)\sigma_{11}^2 - 2H\sigma_{11}\sigma_{22} + (F+H)\sigma_{22}^2 + 2N\sigma_{12}^2$$

Modèle non quadratique de Barlat Yld96

Critère de Plasticité

$$2\overline{\sigma}^{m} = \alpha_{1}|s_{2}-s_{3}|^{m} + \alpha_{2}|s_{3}-s_{1}|^{m} + \alpha_{3}|s_{1}-s_{2}|^{m}$$

s : tenseur de contraintes modifié par l'opérateur linéaire [L] pour **un état de contraintes planes**

Les coefficients d'anisotropie sont: $\alpha_i(i=1..3)$ $c_1, c_2, c_3 \text{ et } c_6$ m : coefficient de forme du critère

$$\begin{array}{c} \alpha_i = 1 \\ c_1 = c_2, c_3 \text{ et } c_6 \end{array}$$

Algorithme d'identification

Méthode de calcul direct(MEF) (H. BEL HADJ SALAH)

div
$$\sigma = 0$$
 sur Ω
 $\sigma.\vec{n} = 0$ sur Γ_f
 $\vec{u} = \vec{U}^d$ sur Γ_u
 $\vec{U}^d(t) = \vec{U}(t).\vec{d}$
 $\varepsilon = \frac{1}{2}(\nabla \vec{u} + \nabla \vec{u}^T)$

$$f(\sigma,\alpha) \leq 0$$
$$\dot{\varepsilon}_{=}^{p} = \dot{\alpha} \frac{\partial f(\sigma,\alpha)}{\partial \sigma}$$

Loi de

comportement

Solution du problème (H. BEL HADJ SALAH)

$$\vec{u}(x,t) = \vec{U}\vec{\chi}(x) + \vec{w}(x,t)$$
 | s et

 $\boldsymbol{\sigma} = Us(x) + \boldsymbol{\sigma}_r(x,t)$

Champs de contraintes
et déplacements:
$$\vec{\chi}$$
 Solution du
problème élastique
 $\overline{U} = 1, \varepsilon^p = 0$

 $\sigma_r(x,t); \ \vec{w}(x,t); \ Champs de contraintes$ et déplacement:Solutiondu problème élastique $<math>\overline{U}=0; \mathcal{E}^p$ donnée

Discrétisation par MEFFormulation appropriée

$$d\sigma^{a} = dU\sigma^{e} + \sum_{b} S^{ab} d\varepsilon^{pb}$$

 S^{ab} : dépend seulement de la géométrie de la structure

et de ses propriétés élastiques

La réponse calculée : Courbe (force, déplacement)

PPV
$$\Longrightarrow$$
 $F = \frac{1}{\overline{U}} \int_{\Omega} \boldsymbol{\sigma} : \dot{\boldsymbol{\varepsilon}} \, d\Omega$

F : module de la réaction suivant la direction \vec{d} correspondant au déplacement imposé U^d

Procédure d'optimisation (Méthode du simplexe)

Propriétés principales

- Méthode d'optimisation directe (pas de gradient à calculer).
- Convergence vers le minimum global.
- Le simplexe est bien adapté pour l'optimisation des structures où le nombre de paramètres n'est pas élevé.
- Méthode relativement lente

Base de données expérimentales

Trois tôles anisotropes

Tôle 1 : D280 acier à haute limite élastique Tôle 2 : IF acier sans interstitiels Tôle 3 : ES acier extra doux

Des essais de traction Hors-axes :

$$\sigma_{arphi}(\mathcal{E}_{arphi})$$

Les coefficients de Lankford

$$r_{\psi} = \frac{\dot{\mathcal{E}}_{22}(\psi)}{\dot{\mathcal{E}}_{33}(\psi)}$$

Essais de traction plane : Courbe (effort de traction, Δe)

Eprouvette de traction plane

Stratégies d'identification

Stratégies d'identification des modèles de comportement

On dispose des essais expérimentaux

TS $\mapsto (\sigma_{\psi}, \varepsilon_{\psi})$ et r_{ψ} TP $\mapsto (F, \Delta e)$

Identification à partir des coefficients d'anisotropie expérimentaux
 Identification à partir des courbes d'écrouissage (F,u)

- Identification de la fonction d'écrouissage $\sigma_s(\alpha)$
- Identification des coefficients du critère de plasticité
- Identification des coefficients de la fonction potentiel plastique

Fonction d'écrouissage $\sigma_s(\alpha) = K(\varepsilon_0 + \alpha)^n$

	Coef. de Swift			
Tôle	<i>K</i> [MPa]	\mathcal{E}_0	п	
Tôle 1	643	0,01	0,19	
Tôle 2	580	0,004	0,26	
Tôle 3	557	0,007	0,23	

Identification des coefficients de la fonction d 'écrouissage de Swift Identification des courbes d'écrouissage pour les tôles 1,2 & 3

G Modèle isotrope transverse de Hill (plasticité associée)

- Identification d'une fonction d'écrouissage: $\sigma_{s}(\alpha)$

- Identification du coefficient d'anisotropie: r

Identification homogène

$$\sigma_c = \frac{\sqrt{(1+2r)}}{1+r} \sigma_{TP}$$

Essai de traction plane homogène

$$\varepsilon_c = \frac{1+r}{\sqrt{(1+2r)}} \varepsilon_{TP}$$

Identification inhomogène

= Minimiser l'erreur entre la courbe de <u>TP simulée (MEF)</u>

et la <u>courbe expérimentale (F/S0,∆e/e0)</u>

$$E(p) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{F_i^{cal}(p) - F_i^{exp}}{F_i^{exp}} \right)^2}$$

G Modèle isotrope transverse de Hill (plasticité non associée)

- Identification d'une fonction d'écrouissage: $\sigma_{s}(\alpha)$
- Identification du coefficient d'anisotropie r du critère plastique
- Identification du coefficient d'anisotropie r' du potentiel plastique $r' = r_{exp}$

• Identification homogène

Essai de traction plane homogène

$$\sigma_c = \frac{\sqrt{(1+2r)}}{1+r} \sigma_{TP}$$
$$\varepsilon_c = \frac{1+r'}{\sqrt{(1+2r')}} \varepsilon_{TP}$$

- Identification inhomogène
 - Essai de traction plane inhomogène
- = Minimiser l'erreur entre la courbe de <u>TP simulée (MEF)</u>
 - et la <u>courbe expérimentale (F/S0,∆e/e0)</u>

Modèle isotrope transverse de Hill (plasticité non associée)

Résultats obtenus

Tôles	r_inhomog	r'	r_homog	r'
Tôle 1	1.21	1.09	0.93	1.09
Tôle 2	1.71	2.15	1.25	2.15
Tôle 3	1.19	1.81	1.05	1.81

Identification inhomogène

Identification homogène

Ce modèle permet de décrire l'anisotropie de la loi d'évolution plastique et l'anisotropie du critère de plasticité

Validation du modèle isotrope transverse non associé par l'essai EB

La validation du modèle ITNA ne donne pas de bons résultats

G Identification du modèle quadratique ortho. de Hill (plasticité associée)

- Identification d'une fonction d'écrouissage: $\sigma_s(\alpha)$
- Identification des coefficients d'anisotropie (F,G,H et N)

(Comment ?)

Stratégies d'identification du modèle de Hill associé

 $r(\psi) = \frac{1 - 2a_3 - 2a_1\sin^2(2\psi)}{1 + 2a_3 + 4a_2\sin^2(\psi)}$

Essais de traction Hors axes

$$\sigma_{\psi} = \frac{\sigma_s}{a(\psi)}$$
$$\varepsilon_{\psi} = \alpha . a(\psi)$$

$$a(\psi)=\sqrt{1+2a_2\sin^2(\psi)-a_1\sin^2(2\psi)}$$

• Identifier

a1,a2, a3 à partir des coefficients de Lankford expérimentaux

- Identifier
- * a₁,a₂ à partir des courbes d'écrouissage en traction Hors-axes
- * a₃ à partir des coefficients de Lankford expérimentaux

• Identifier

* a₁,a₂ à partir des courbes d'écrouissage en traction Hors-axes

* a₃ d'un autre essai (courbe d'écrouissage en TP)

Identification homogène

$$E(a_{1}, a_{2}) = \sum_{\psi} \sqrt{\frac{1}{N} \sum_{i}^{N} \left(\frac{\sigma_{i\psi}^{cal}(a_{1}, a_{2}) - \sigma_{i\psi}^{exp}}{\sigma_{i\psi}^{exp}}\right)^{2}} \qquad a_{1} \text{ et } a_{2}$$
$$\sigma_{c} = \sqrt{1 - \frac{(1 - 2a_{3})^{2}}{4(1 + 2a_{2})}} \sigma_{TP}$$
$$\varepsilon_{c} = \frac{1}{\sqrt{1 - \frac{(1 - 2a_{3})^{2}}{4(1 + 2a_{2})}}} \varepsilon_{TP}$$

• Identification inhomogène

$$E(a_3) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{F_i^{cal}(a_3) - F_i^{exp}}{F_i^{exp}}\right)^2}$$

Résultats Obtenus

Tôles	$Er_{Homogne}$	$Er_{Inverse}$		
Tôle 1	0.16	0.11		
Tôle 2	0.38	0.24		
Tôle 3	0.40	0.27		

L'identification inhomogène prévoit mieux les coefficients d'anisotropie

Identification du modèle quadratique orthotrope de Hill non associé

- Identification d'une fonction d'écrouissage: $\sigma_{s}(\alpha)$
- Identification des coefficients d'anisotropie du critère (a₁,a₂ & a₃)
- Identifier des coefficients d'anisotropie du potentiel plastique (a'₁, a'₂ & a'₃)

Comment ?

- Stratégies d'identification du modèle de Hill non associé
- Identification des coefficients d'anisotropie du critère
- * a₁,a₂ à partir des courbes d 'écrouissage en traction Hors-axes
 * a₃ d 'un autre essai (courbe d 'écrouissage en TP)

- Identification des coefficients d'anisotropie du potentiel
- * a'₁,a'₂ a'₃ à partir des coefficients d'anisotropie expérimentaux r'(ψ)

 3
 2.5

 2
 0

 2
 0

 1
 0.5

 0
 15

 30
 45 ψ(deg) 60

Evolution des coefficients expérimentaux et ceux identifiés de Lankford en fonction de l'angle Ψ

Une fonction « potentiel plastique » de **forme quadratique** est suffisante pour d'écrire l'évolution des déformations plastiques pour les 3 tôles

• Identification homogène

$$\sigma_{\psi} = \frac{1}{a(\psi)} K \left(\varepsilon_{0} + \frac{\varepsilon_{\psi}}{a'(\psi)} \right)^{n}$$

$$\sigma_{c} = \sqrt{1 - \frac{(1 - 2a_{3})^{2}}{4(1 + 2a_{2})}} \sigma_{TP}$$

$$\varepsilon_{c} = \frac{1}{\sqrt{1 - \frac{(1 - 2a'_{3})^{2}}{4(1 + 2a'_{2})}}} \varepsilon_{TP}$$
a
• Identification inhomogène

$$E(a_{3}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{F_{i}^{cal}(a_{3}) - F_{i}^{exp}}{F_{i}^{exp}} \right)^{2}}$$

Résultats Obtenus

Modèle non quadratique de Barlat Yld'96 (Etat de contraintes planes)

- Identification d'une fonction d'écrouissage: $\sigma_s(\alpha) \leftarrow TS_{00}$
- Identification des coefficients C_1, C_2, C_3, C_6 et m

A partir des courbes d'écrouissage en traction plane

Tôles	c ₁	c ₂	c ₃	c ₆	m	r	r _{exp}
Tôle 2	0.798	0.798	1.189	1.058	8	2.14	2.15
Tôle 3	0.837	0.837	1.153	1.048	8	1.85	1.81

Résultats obtenus

Ce modèle tient compte de l'anisotropie la loi d'évolution des déformations plastiques.

Analyse de sensibilité

Analyse de sensibilité

O Analyse de sensibilité paramétrique

Analyser la sensibilité de la réponse du modèle par rapport aux paramètres :

Calcul de la variation de F par rapport aux paramètres

$$\frac{\partial F}{\partial r} = \frac{1}{\vec{U}} \int_{\Omega} \left(\frac{\partial \sigma}{\partial r} : \dot{\varepsilon} + \sigma : \frac{\partial \dot{\varepsilon}^{p}}{\partial r} \right) d\Omega$$

$$\int_{\Omega} \left(\frac{\partial \sigma}{\partial r} : \dot{\varepsilon} + \sigma : \frac{\partial \dot{\varepsilon}^{p}}{\partial r} \right) d\Omega$$

$$\int_{\Omega} \left(\frac{\partial \sigma}{\partial r} : \dot{\varepsilon} - \frac{\partial \dot{\varepsilon}^{p}}{\partial r} \right)$$

Méthode de Calcul

$$d\sigma^{a} = d\overline{U}\sigma^{e} + \sum_{b} S^{ab} d\mathcal{E}^{pb} \implies \left| \frac{\partial(d\sigma)}{\partial r} \right| = \sum_{b} S^{ab} : \frac{\partial(d\mathcal{E}^{pb})}{\partial r}$$
$$d\mathcal{E}^{p} = d\alpha \frac{\partial f}{\partial \sigma} \implies \left| \frac{\partial(d\mathcal{E}^{p})}{\partial r} \right| = \frac{\partial}{\partial r} (d\alpha) \frac{\partial f}{\partial \sigma} + d\alpha \frac{\partial}{\partial r} \left(\frac{\partial f}{\partial \sigma} \right)$$

$$\frac{\partial}{\partial r}(d\alpha) = \left[A:\left(\frac{\partial\sigma}{\partial r} + \frac{\partial(d\sigma)}{\partial r}\right)b - \frac{\partial\alpha}{\partial r}\right]$$

Système d'équations linéaires à résoudre:

$$\sum_{b} M_{ab} \frac{\partial}{\partial r} (d\sigma^{a}) = N_{a}$$
$$\left(\frac{\partial\sigma}{\partial r}\right)_{1} = \left(\frac{\partial\sigma}{\partial r}\right)_{0} + \frac{\partial(d\sigma)}{\partial r} \quad \text{Calcul incrémental}$$

Sensibilité de la réponse en TP (Homo& Inhomo.) / « r »

Sensibilité de la réponse en TP (Homo.& Inhomo) « r\vee »

2 Analyse de sensibilité des essais/paramètres

Indicateur de Sensibilité

Pour exprimer la capacité d'un essai pour mieux identifier les coefficients d'anisotropie d'un matériau par rapport à un autre essai

$$\mathbf{S} = \sum \left(\frac{dF}{dr}\right)^2 / \sum \left(\frac{F}{r}\right)^2 \quad \text{Indicateur de sensibilité}$$

Traction planeExpansion EquibiaxialeCisaillement Simple

Sensibilité des essais (TP,EB,CS) / au coef. d'anisotropie « r »

Conclusions & perspectives

- Définition et mise en œuvre des stratégies d'identification des lois de comportement des tôles anisotropes à partir d'essais inhomogènes.
 - Une meilleure prédiction des coefficients d'anisotropie
 - Une utilisation des essais expérimentaux sans hypothèses supplémentaires
- Une méthode quasi-analytique de calcul de sensibilité est présentée:
 analyse de sensibilité paramétrique des différents essais aux différents paramètres de la loi de comportement
- Développer ces stratégies d'identification pour des modèles de Comportement formulés en grandes transformations
- Rendre plus systématique la stratégie d'identification et l'étendre à l'optimisation des procédés de mise en forme.

