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Résumé

Les systèmes informatiques deviennent de plus en plus complexes et doivent
offrir un nombre croissant de propriétés non fonctionnelles, comme la fiabi-
lité, la disponibilité, la sécurité, etc.. De telles propriétés sont habituellement
fournies au moyen d’un intergiciel qui se situe entre le matériel (et le sys-
tème d’exploitation) et le niveau applicatif, masquant ainsi les spécificités du
système sous-jacent et permettant à des applications d’être utilisées avec dif-
férentes infrastructures. Cependant, à mesure que les exigences de propriétés
non fonctionnelles augmentent, les architectes système se trouvent confron-
tés au cas où aucun intergiciel disponible ne fournit toutes les propriétés non
fonctionnelles visées. Ils doivent alors développer l’infrastructure intergicielle
nécessaire à partir de rien, voire essayer de réutiliser les multiples infrastruc-
tures intergicielles existantes, où chacune fournit certaines des propriétés
exigées.

Dans cette thèse, nous présentons une méthode pour composer automati-
quement des architectures d’intergiciels, afin d’obtenir une architecture qui
fournit les propriétés non fonctionnelles visées. Pour arriver à l’automatisa-
tion de la composition, nous montrons d’abord comment on peut reformuler
ce problème sous la forme d’un problème de model-checking. Cette reformu-
lation donne une définition formelle au problème de la composition et nous
permet de réutiliser les méthodes et outils qui ont été développés pour le
model-checking. Nous présentons ensuite des améliorations à notre méthode
de base, utilisées pour éviter le problème d’explosion d’états dans le cas de
la composition d’architectures de grande taille. Nous montrons comment il
est possible d’exploiter l’information structurelle, présente dans les architec-
tures d’intergiciels que nous souhaitons composer, afin de réduire l’espace de
recherche analysé. Ceci nous permet d’obtenir une méthode pour composer
les architectures d’intergiciels qui peut être automatisée et donc utilisée en
pratique. Nous proposons ainsi une solution à l’analyse systématique de diffé-
rentes compositions et offrons un outil pour aider la construction de systèmes
de qualité.
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Abstract

Computer systems are becoming more and more complex and need to pro-
vide an ever increasing number of non-functional properties, such as reli-
ability, availability, security, etc.. Such non-functional properties are usually
provided to a system by general mechanisms called middleware. They are thus
called, to illustrate that they are supposed to be used between the hardware
(and operating system) and the application software levels, masking therefore
the differences of the particular underlying system and allowing applications
to be used with different underlying infrastructures. However, as the need for
more non-functional properties increases, system architects are soon faced
with the case where there is no available middleware that will provide all
the required non-functional properties. Then, they either have to develop the
needed middleware infrastructure from scratch or try to reuse multiple exist-
ing middleware infrastructures, where each one provides some of the required
properties.

In this thesis, we present a method for automatically composing middle-
ware architectures, in order to obtain an architecture which provides certain
properties. To arrive at the automation of composition, we first show how one
can reformulate this problem into a model-checking problem. This reformula-
tion gives a formal definition to the composition problem and allows us to reuse
the methods and tools which have been developed for model-checking. Then,
we present subsequent refinements to our basic method, used for avoiding
the state-explosion problem for architectures of a larger size. To avoid state-
explosion, we show how it is possible to retrieve the structural information,
present in the initial middleware architectures we wish to compose, and ex-
ploit it for constraining the search-space we have to investigate. Additional
information present in the initial architectures constrains even further the
search-space, thus allowing us to obtain a method for composing middleware
architectures which can be used in practise. In this way, we facilitate the sys-
tematic study and analysis of the different compositions and provide a method
for constructing quality systems.
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I Introduction

Computer systems currently being built are becoming more and more complex.
Ever since the hardware components have acquired the level of reliability we
are used to expect from them nowadays, the attention of system developers
has shifted from the hardware aspect of the systems to the software one.

However, software has proven to be a lot more difficult than hardware to get
right. Dĳkstra [40, 41] clearly explained the reasons for this difficulty, point-
ing out that software is essentially mathematics. Thus, it lacks properties of
physical objects, such as the fact that if we successfully test some piece of
hardware at two extreme cases then we can safely assume that it will also
work properly in between of these extremes. For a number of reasons, how-
ever, software is still developed as if it was hardware. First, the success of
the hardware community at taming the early problems that caused hardware
failures and arriving at a point where very complex hardware constructions
could be expected to have a high level of reliability, caused many to hope that
by applying the same methodologies to software we could arrive at similar
levels of robustness. Another reason was the fact that, unlike hardware, le-
gal responsibility for problems caused by buggy, i.e., wrong, software is still
very uncommon. In fact, most of the programs currently being sold, are pro-
vided with a limited warranty on an “as is” basis. Finally, another reason for
the current development methodologies is the fact that application of formal
methods in an industrial setting is still in its infancy, either because they can-
not scale to industrial size applications or because they are too difficult to use
and demand highly skilled developers.

However, things are slowly changing towards a more rigid development
methodology. Reasons for this change are numerous as well. First of all, our
experience with the use of formal methods early on in the construction of soft-
ware (and hardware) systems is increasing every day. Tools that allow one to
use formal methods become more robust and as they are starting to be used
in the industry, solutions are found that allow them to scale to larger prob-
lem sizes, leaving the usual small scale examples we were used to see them
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applied to. Users are also starting to expect more robust applications and as
computerised systems become an ever increasing part of our day to day life,
the providers offering such systems start facing legal responsibilities. Safety-
critical applications, like software controlling medical instruments, planes or
automobiles, is certainly one such case and the interest in the safety-critical
community on formal methods is increasing [21]. Nevertheless, the wide ap-
plication of computers makes it so that even software, which one would not
consider to be safety-critical as such, has to be correct. For example, Internet2,
the new generation of Internet currently being developed, tries to implement
various quality of service (QoS) guarantees, such as prevention of data loss or
minimisation of delays. However, a number of applications that will eventually
depend on these quality of service guarantees will be themselves safety-critical
applications, e.g., telemedicine. As a consequence of this, we will eventually
have to guarantee the same standards of reliability and correctness for the
underlying infrastructure, i.e., protocols, network stacks, operating systems,
etc.. Sometimes, even when such responsibilities do not exist, it is paramount
for companies to ensure that their products behave correctly for pure financial
reasons. One such example is the case of Intel, which has invested greatly in
the use of formal methods to ensure correctness of its products, in the hope
that it could avoid bugs that might cause it to reclaim vast quantities of chips
from the market and suffer a marketing disaster, as was the case with the Pen-
tium division bug. Thus, there is an ongoing effort at Intel to formally verify
the mathematical software used to implement floating-point arithmetic, both
in the case where this is implemented directly in hardware or in some software
library [76, 158].

This change in mentalities is also witnessed by the increasing interest
in semi-formal methods such as Uml for describing and analysing software
systems before their construction. Work on software architectures, i.e., the
description of a system’s basic constituents and how these interact [188], has
been carried out in the academic community for the same reason. By concen-
trating on the basic aspects of a system, without having to deal with all the
particularities of a full-blown implementation, one is able to reason about and
analyse huge constructions and effectively apply current formal methods tech-
nology. Relationships and dependencies among components can be identified
and investigated at a higher level of abstraction quite easily, which highly facil-
itates the system developer’s job, if not making it simply possible. The impor-
tance of the architecture of a software system has been greatly acknowledged
by the industry as well and standards concerning it have already been pro-
duced by various organisations, the latest one being IEEE Std 1471 [89], which
aims at standardising conventions on architectural descriptions. Another wit-
ness of the interest of the industry on software architectures is the latest shift
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of the OMG’s focus, from being a particular middleware solution’s, i.e., CORBA,
standardisation organisation, to one that deals with more abstract, or Model
Driven, as they call them, middleware architectures [10, 157, 194]. Their aim,
which greatly reflects what the industry expects from the software architecture
community, is that they could provide developers with the means to describe
the middleware infrastructure they need, without being locked into a partic-
ular middleware technology (CORBA/COM/EJB). Thus, they hope that they
can more easily replace the middleware infrastructure when a new, better one
appears and ease the cooperation of systems using different infrastructures.

Abstraction and use of different perspectives from which to look at a sys-
tem’s architecture also allow us to reason about the various non-functional
properties the system provides, such as transactional semantics, security,
etc.. These different per non-functional property perspectives lead to archi-
tectural descriptions of particular aspects of the system, each one describing
how the system is providing the non-functional property under consideration.
In effect, what they depict is the particular interaction protocols and the un-
derlying mechanisms used, so that the components of the system can attain
the desired property. These protocols, also known as connectors in software
architectures, are obviously more complex than simple ones like Rpc, shared-
memory and pipe connectors.

However, once we have a clear understanding and a design of each different
aspect of the system, we face a problem. We must find a way to compose these
different aspects together, so as to derive the overall system architectural de-
scription and identify the dependencies among the different connectors. Up to
now, this task was borne by the system architects who had their experience as
a sole aid when trying to make an educated guess at what would be the best
way to compose the different aspects, so as to achieve the best compromise
among the various properties needed. However, the possible ways for compos-
ing different aspects is large enough that it is almost certain that a human will
overlook most of them.

In addition, it is often the case that we have not designed the aspects
we need ourselves. For example, when designing a system, we may reach a
point where we need to introduce mechanisms, i.e., complex connectors, for
transactional semantics and secure communications. For both of these non-
functional properties there is a number of different existing solutions. So, it
makes sense to try to evaluate these for applicability to our system, before
trying to develop an in-house solution. Then, however, we have to try all pos-
sible combinations of different transaction and security related solutions to
find which ones better fit our purposes. During this examination, we will most
certainly find that different solutions make different basic assumptions on
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the underlying system. For example, one may assume that communication is
done in a synchronous manner, while another that it is done asynchronously.
Differences will also appear on the exact non-functional property each solu-
tion is offering. So while one solution providing “transactional semantics” may
provide simple transactions, another one may provide nested transactions as
well. The same holds for the case of security, where one solution may be rely-
ing on single key encryption, while another on public/private key encryption.
Finally, for each pair of transaction and security solution, we have to examine
all possible ways to combine them, since in general there exists more than one
viable way. Worse yet, we have to examine as many of them as possible. This
is because, even if two different connectors provide us with exactly the same
non-functional set of properties and make the same underlying assumptions,
it is usually the case that they differ in other aspects. Examples of possible
differences include their throughput, the number of resources (memory/CPU
time) they need, or aspects such as centralised versus distributed design.

It is evident then, that as we are moving to more complex systems, which
require an ever increasing number of different non-functional properties, these
complex connectors become more and more crucial to the construction and
eventual use of the systems. Since there are multiple non-functional proper-
ties and variants of them and many different substrate systems, the existing
complex connectors cover only a small number of all the possible combinations
one may need. Thus, it is often the case, that the exact complex connectors one
needs for a particular software system will not yet be readily available from
some vendor and the system developers will have to construct them them-
selves. Our work aims at helping the system architects to identify the best
compositions of simple connectors which implement such complex connec-
tors. For this, we have developed a method for automatically identifying all
of the possible compositions of the different simple connectors, thus ensur-
ing that architects will cover the whole spectrum of available solutions before
committing to a specific one. The proposed method attacks the inherent in-
tractability of the problem by exploiting the structural information present
in the architectural descriptions of the simpler components, using it as a
guide for their composition. Having such an automatic method for composing
complex connectors, will greatly ease the construction of complex systems,
especially when these are developed following the component-based software
development paradigm.
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I.1 Component-Based Software Engineering

When asked to build a complex connector, a sound engineering decision is
to try to build it by reusing existing mechanisms. This is because reuse allows
system designers to save time by focusing on those components that are par-
ticular to the specific system they are working on, instead of re-implementing
already existing solutions. In addition, reuse helps diminish costs relating to
maintaining and adapting the system later on, since reusable components
tend to have fewer errors than those implemented explicitly for a given sys-
tem, and are easier to change/replace since, for reusability’s sake, they adhere
to standard and well documented ways of communicating with their environ-
ments. Finally, it usually costs less to buy a component than to develop it
in-house, since the producers of such components divide the costs of devel-
opment over the (expected) number of copies sold.

All these are the reasons for the growing interest in component-based soft-
ware engineering (CBSE) and to its subfield known as components off the
shelf (COTS) construction. In the latter, the idea of component-based software
engineering has been driven to the point of advocating construction of sys-
tems by simply assembling existing commodity components, i.e., components
that are being manufactured by others for a general use, see for example
[22, 32, 151]. For the same reasons, there is also a growing interest in mid-
dleware solutions, either object-oriented ones [112, 139, 140, 155, 156, 201]
or message-oriented ones [88], since these are the infrastructure needed to
combine components/sub-systems developed using different technology, e.g.,
operating systems, programming languages, etc.. Currently there already ex-
ists quite a large set of reusable components, often referred to as middleware in
the setting of distributed systems, and an equally large set of architectural/de-
sign patterns, i.e., of architectures that use such reusable components in order
to provide a particular property to an application. For example, there are many
implementations of the CORBA Services [156], as well as of Enterprise Java
Beans (EJB).

Unfortunately, component-based software engineering has not yet been
as successful as expected. Reasons for this can be found in such papers as
[32, 64]. There, we see that most of the problems arise because the designers
of reusable components have made certain assumptions which they have not
documented. In fact, the current practice consists of providing little, if any,
information concerning the architecture of a reusable component, thus forc-
ing its users to forgo a reverse engineering/testing phase in order to assure
themselves that the components can indeed be used within their particular
context. This unfortunate situation is rather caused by a common held belief
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that formal methods (and therefore descriptions) of software artifacts are too
difficult to use and do not bring a big return on investment (which in part
is true given the complete lack of any legal liability on the part of software
providers concerning errors and defects in their products). For example, in
[148], an article given as recommended reading from the IEEE Architecture
Working Group, we can find the following statement:

“. . . most software systems (e.g., multi-threaded distributed com-
puting systems) are too complex to model completely.”

This statement illustrates the common held belief that a model should cover
every single aspect of a system, which is clearly false, since models are by def-
inition abstractions and their very purpose is to remove unneeded complexity
present in a system, so as to be able to reason about its basic properties. Fur-
thermore, it shows the industry’s idea that it is possible to build something,
even if we are unable to give an abstract description of it. It is our opinion, that
being unable to abstract the technical problems of a system, is a clear sign
that we do not understand the system. Therefore, it is illogical to try to de-
velop it and attempts to do so, will lead to systems that only work by chance for
the most simple cases. In addition, systems developed in such a manner are
essentially unmaintainable, since no one has a clear understanding of their
overall structure. In fact, such an attitude is exemplar of technicians, instead
of engineers. No engineer would ever try to build a complex system without
creating models and analysing them before. Trying to construct, for example,
a nuclear plant without designing it first because “it is too complex” would
certainly be unacceptable to all. It is our belief that this current practice of
providing just the interface of the components and (possibly) a small descrip-
tion of its behaviour in a natural language, is the major reason that has not
allowed CBSE to fulfil its promises. An article further discussing the problems
created by such “Black Box” components and advocating for components that
provide more information than just input-output relations is [26].

Of course, there are still open issues concerning component-based soft-
ware engineering, see for example [152]. One of the questions that naturally
arises about it is how is it possible to ease the search among all the available
components for particular ones needed by the system we are trying to build.
For this, research has been done concerning repositories of components, see
for example [79, 184]. In [215], we can also see how one can customise such
components to continue to respect the application requirements even as these
change during the system’s life-cycle. Another issue is how can one facilitate
the construction of new components/connectors that can be used in such a
paradigm. Since no architectural pattern can be expected to provide all the dif-
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ferent kinds of properties a real system requires, the designer will eventually
be obliged to either create a new pattern from scratch or try to reuse existing
ones and to compose them.

Given the costs in developing a completely new pattern and components,
and the benefits of reuse, it is only regrettable that designers have no available
methods and tools for easing their task of composing different architectural
patterns. Currently, one has to investigate different combinations of solutions,
e.g., security_solution i with reliability_solutionj, in order to find the ones that
can best cooperate with each other. In addition, one has to explore the dif-
ferent ways of combining/composing a set of particular designs, since there
is more than a single way to compose architectures, when these are indeed
composable.

To make things worse, even after having found a set of solutions that can
indeed cooperate, one has to continue investigating combinations of other ex-
isting solutions as well, so as to find the set that optimises other requirements,
such as system throughput, cost of obtaining the required components, cost
of training in-house developers at using them, etc..

I.2 Composing Software Architectures

From the above discussion it becomes apparent that the designer is faced
with a large number of different cases to be explored and assessed. The fact
that currently no aid exists forces one to investigate very few of these cases. So,
designers just try to make an educated guess of what a “good enough” solution
would be. However, as is already well known from other areas, such as that
of program optimisation, solutions, that at first seem fast, small or in general
“good” enough, are quite often found to have none of these properties when
put under close scrutiny. For this reason, if one wants to obtain a truly good
solution, the different possible solutions should be thoroughly investigated,
in order to avoid common fallacies that lead to sub-optimal solutions. This
conclusion, of course, does not facilitate the architect’s task at all. Therefore,
we investigate ways with which all these different cases can be easily identified
and assessed with the less possible user intervention, so as to automate as
far as possible the process. In this way the search for candidate solutions to
providing multiple non-functional properties would be sped up and become
far less cumbersome and tedious.

This thesis examines the problem of automatically composing different
software architectures, so as to help designers to identify reusable complex
connectors that can provide a multitude of non-functional properties. In par-
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ticular, it presents a method for automatically constructing all possible com-
positions of two architectures which describe connectors. It also shows how
this method can be refined, so as to avoid the state-space explosion prob-
lem, when the to be composed architectures are of a realistic size. For this,
it exploits the structural information present in the initial architectures as a
guide for identifying how the components implementing the different connec-
tors can be connected together. As an example, let us assume that one of the
connectors is a secure Rpc one, using an encoder and a decoder to encrypt
procedure calls between the client and the server. Then, in whatever com-
bination of it with another connector, it should always be the case that the
encoder is (eventually) sending some data to the decoder and not the other
way round. We also use the information concerning middleware/application
components in a connector, i.e., components realizing the connector versus
components of the application that will be eventually using it, to remove cases
where some middleware component is prematurely trying to send data to an
application component. Using the previous example of the secure Rpc connec-
tor, we should therefore assure that the encoder will never send its output
to an application component directly. This set of constraints can help greatly
diminish the possible compositions of the two connectors into a manageable
number. Finally, we show how these results are assessed in order to choose
the one that best fulfils the overall requirements of the particular system which
is to be constructed.

It should be mentioned that the methods described herein can also be
used by the designer of a new architectural pattern or reusable componen-
t/middleware solution, to search for incompatibilities and insufficiencies, by
trying to compose with other already existing patterns. Thus, problems can
be identified and corrected early on in the design phase. In this manner, the
development of reusable components can be made easier and the components
themselves more robust by using this method as a high-level, software archi-
tecture debugging facility. Since the costs of developing a reusable component
are significant, such an aid is particularly important, because it augments the
possible areas of applicability of the component, thus increasing the chances
of it being used in the future and the costs of its development being eventually
recompensed. Therefore, the developers of reusable components would have
a bigger incentive in investing into the production of more such components.
Additionally, the consumers of such technology would also be more inclined in
buying such products, since they would know that they can use them to solve
a particular problem that arises in many different, and yet similar, situations
without being constrained by compatibility problems, thus amortising their
investment. The problem of architectural mismatch was first identified in [64].
Being able to early debug an architecture for mismatches with already estab-
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lished ones can greatly increase and ease the application of component-based
software engineering. Indeed, such architectural mismatches are the hardest
ones to solve when trying to build a system out of existing parts. The reason
for this is that low level mismatches, such as mismatches in programming lan-
guages or database schemas can usually be easily solved by using proxies or
mediators. For high level mismatches, however, such solutions are very diffi-
cult to produce because one has to fight against the logic and the assumptions
behind the different parts used. So, instead of gaining from reuse, architects
find themselves trying to devise ways to make some parts work, in the way
they need them to. Given the fact that reusable parts usually export very lim-
ited information concerning their internal workings and/or mechanisms to
change these, in order to increase reusability and allow their constructors to
change the internals without having to change the interfaces that their users
have been used to, changing the logic of such a part becomes very difficult
to accomplish and greatly diminishes the expected economic and engineering
benefits of CBSE.

I.3 Document Structure

This section presents the structure of the rest of this document. Chapter II
presents the general concepts of software architectures, as well as, the partic-
ular software architecture representation we use. It introduces the middleware
architectures we are particularly targeting for composition and explains what
we are trying to achieve when composing middleware architectures. Chapter III
presents work related to the problem of composing software architectures. In
Chapter IV we transform the problem of composing two middleware architec-
tures into a model checking problem. In this way, we obtain a more formal
description of the problem and set the view from which we try to solve it in
the following chapters. Chapter V follows with particular methods for quickly
constructing and verifying the possible compositions of middleware architec-
tures, without suffering from the state-explosion problem, which is inherent
in the composition problem. Then, in Chapter VI we present a Uml-based en-
vironment for describing and composing software architectures, which can be
more easily used by practitioners than current ADL-based environments and
which allows to take advantage of the existing, industrial strength tools for
Uml. Finally, Chapter VII concludes this document with a brief summary, the
contribution of this thesis and the future perspectives of this work.
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II Basic Concepts of Software
Architectures

In this chapter, we describe the various basic concepts relating to software
architectures.

In the first two parts, we define the different terms as used in the literature
in general and, more specifically, as used herein. It should be noted that some
of these definitions are not globally accepted, e.g., there are researchers who
consider connectors to be, more or less, a special class of components. This,
however, is not a real problem, because the differences are due to the differ-
ent approaches and pursuits, or sometimes they appear as a consequence of
the particular formalism used. In Darwin [39, 127, 128], for example, connec-
tors are not considered as first class elements because the formalism used
(automata) for describing components and connectors naturally leads to con-
nectors that have exactly the same properties as components do. Another
example where the elements of an architectural description depend on the
kind of analyses and transformations one wants to perform with it can be
found in [216], where the architectural description has been augmented with
additional elements that allow one to assess the reliability of the software at
the architectural level. Readers should note, however, that Software Architec-
ture is quite a young field. Thus, notions and methods are continually being
discovered and clarified [65].

In Section II.3 we present the representation of software architecture used
in this thesis and give the reasons for the particular choices we have made
about the languages used.

II.1 General Notions

Software architectures deal with software intensive systems, that is, sys-
tems where the software components play a crucial rôle for their functionality
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and success.

We start this section by defining some basic terms relating to software
systems, before moving on to Section II.2, which defines notions particular to
software architectures as used in this document.

Examining the notion of a system itself, we can see that it is being used ex-
tensively in many different contexts. Herein we use it with its original meaning,
which can be made clearer if we look at the etymology of the word. System is,
therefore, the English version of the Greek word σύστηµα, a whole compounded
of several parts or members (from [116].) The word σύστηµα is itself a composite
word, from “σύν” (with, along with, together, at the same time) and “ἵστηµι” (to
stand), i.e., its literal meaning is co-standing. As the name implies, a system
is an assembly of collaborating entities, which share a common purpose that
they try to accomplish through their collaboration. The collaboration/interac-
tion aspect of the word stems from the fact that the system constituents are
“standing” instead of just “lying”.

In the literature, we can find some often recurring classes of systems, es-
pecially monolithic systems and legacy systems. A monolithic system is one
where the collaboration among its different components is complicated, usu-
ally due to constraints which are no longer valid, e.g., small size of available
computer memory, need to support slow processors, lack of relative standards,
etc. or just because it was not well designed, and therefore is difficult to main-
tain/extend. Unlike what its name suggests, it is not a system that is made of
one component, because all systems, by definition, are comprised of multiple
components. It is just because of its complexity that we call it monolithic, to
stress the fact that we cannot easily identify the different components com-
prising it. A legacy system, as its name suggests, is a system developed in the
past and which usually is difficult to maintain, reuse or even use, due to rea-
sons such as: monolithic design, use of standards that have been abandoned,
aging/no longer available hardware, unavailability of programmers knowing
the programming language used during its development, etc..

Since, however, even monolithic systems are comprised of components,
then what does CBSE aim at exactly? Its aim is to help design and construct
systems where the boundaries among components are clearly set and their in-
teractions/collaboration are not overly complex. Thus, by using it, we hope to
be able to describe and build systems that are complex, but, at the same time,
less difficult to analyse. We also hope that, by clearly defining and simplify-
ing the boundaries of each component, we can create a market of component
manufacturers, which, by specialisation, will lead to higher component reli-
ability and decreased costs per component. In this way, we hope to increase
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our confidence in the reliability of the systems we are building and using in
our everyday life, while making their development less expensive.

If we now move inside a system and consider its components, we will first
of all have to define their interfaces. An interface, as its name suggests, is the
common boundary across some communicating entities. It consists of a set of
ports, i.e., places at which communication can take place, and their respective
types, i.e., the kinds of messages that can be received at these ports. From
the above definition it follows that an entity may have multiple interfaces,
depending on the entities with which it engages in communication. Of these,
its general interface is of particular importance. The general interface, often
referred to simply as the interface of an entity, is the set of all the ports of
that entity, parts of which can be used when communicating with others to
constitute a particular interface.

Having talked about interfaces and ports, the next basic notion is that of
a binding. A binding, therefore, is a declaration that a set of ports belonging
to (possibly different) components will be used for a particular interaction.
That is, that the datum, which a component is sending at a particular output
port of it, will be received at a particular input port of another component. A
binding can be a one-to-one relation, as in the case where a pipe is connecting
one output of some filter with one input of another one, or it can be a one-to-
many relation, as in the case where some component broadcasts a message
to multiple recipients.

II.2 Notions Specific to Software Architectures

In order to move closer to software architectures, we consider now the gen-
eral notion of architecture. It turns out that this is a rather tricky notion to
define, especially due to the many different ways we are using the word in ev-
eryday discourse. If we look at the definition of the word in a dictionary [126],
we can categorise the definitions given into two major classes. First, an archi-
tecture is used to refer to a real-world artifact, i.e., “formation or construction
as or as if as the result of conscious act / architectural product or work”. Then
again, it is also used to refer to a design/form/style of something built or as
a method of building, i.e., “the art or science of building; specifically: the art or
practice of designing and building structures and especially habitable ones / a
unifying or coherent form or structure / a method or style of building”.

Needless to say, that using the same word for both the design, method of
building an artifact and for the final artifact itself is at least confusing. By
considering, however, the notion of an architect, we can help shed some light
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to this confusion. The word architect comes from the Greek word ἀρχιτέκτων:
chief-artificer, master-builder, director of works (from [116].) It becomes appar-
ent now, that the subject matter of an architect, i.e., the architecture, is the
provision of a method and of directions (a design) to the constructors of an ar-
tifact. An architect, and therefore the architecture, does not directly construct
artifacts, just in the same way that an army general does not fight himself in
a battlefield but directs the soldiers instead. In the subject of software archi-
tectures, it is fairly accepted that the description an architect must provide
for a system, should contain definitions of at least three kinds of entities: the
components of the system, the connectors used in it and the configuration.

A component can be defined either through its purpose, i.e., through a
teleological definition, or its characteristics, i.e., an ontological definition. For
completeness sake, we will provide both definitions. For identifying the pur-
pose of a component, we only need go back to the definition of a system. From
there, it is evident that the purpose of a component is to provide a certain
functionality to a particular system. In other words, we cannot think of a com-
ponent as something existing in isolation, only as something that is a part, as
its name suggests, of a bigger entity.

The characteristics of a component, i.e., its ontological definition, are harder
to describe, since they depend on the different analyses one may wish to per-
form with an architecture. For example, people who wish to perform at an
early stage of the development an analysis for the reliability of the system,
would have to assume that each component has a given mean time before
failure (MTBF) associated with it. On the other hand, if someone wishes to
automatically construct the final system from the architectural description,
he would need to associate some sort of source code with each component.
For our purposes, however, we can constrain ourselves to a minimal set of
characteristics. Therefore, in our work the type of a component is defined by
three attributes. The first of these is its required interface, i.e., the set of ac-
tions that the component itself needs others to perform on its behalf, so that
it can accomplish its purpose. The second attribute is its provided interface,
i.e., a set of all the actions it can perform for other components (which is its
general interface). Finally, we have to attribute to each component a behaviour
model, i.e., a set of rules describing its behaviour in an abstract manner. It
should be noted, that any of the required or provided interfaces may be equal
to the empty set. This is because a component may need nothing from its
environment in order to fulfil its responsibilities, as is the case of a random
number generator for example. It may also provide no particular interface to
the rest of the system, because it is the initiator of the system’s functionality,
as is the case of the client in a client-server system. However, in no case can
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a component have both its required and provided interfaces be equal to the
empty set, since then it would be of no use to the rest of the system.

As we have already mentioned, components of a system engage in various
patterns of interaction so as to fulfil the system’s purpose. We model these
patterns of interaction, or interaction protocols, through the notion of a con-
nector. Just like a component, a connector can be defined either teleologically
or ontologically.

Its teleological definition, as aforementioned, states that the purpose of a
connector is exactly to specify the particular interaction protocol that is used
among a set of collaborating components in a particular system.

Looking at it now from an ontological perspective, we see that it is char-
acterised at least by its rôles, i.e., the set of participants in the interaction
protocol, and its behaviour model that describes the exact interactions the
participants will make. A rôle identifies a participant in the interaction pro-
tocol as far as its intent or responsibility is concerned. It does not, however,
consider its interface. For example, a pipe connector has two rôles, a producer
and a consumer. The assigning of these two rôles to some components does
not depend on the interfaces of the components but rather on their inten-
tions/responsibilities in a particular system. In other words, a rôle describes
the expected local behaviour of each of the interacting parties [6, 7]. That is,
it describes the behaviour which the specific participant assuming that rôle
should abide to, in order for the overall communication protocol described by
the connector to work correctly.

We must emphasise that even though a connector may be implemented
through a collaboration of components/connectors, it has no interface of its
own. Instead, when used in a particular setting to bind together a set of ports,
its rôles inherit the interfaces of the ports of the participants to which they
are bound and use these during the exchanges of messages. This property, in
fact, is what allows us to say that we are connecting two ports of type A with
an Rpc connector and two other ports of type B, where A 6= B, with (the same
kind of) an Rpc connector, without having to introduce an RpcA and an RpcB
connector. In addition, this property allows us to change connectors between
components, without having to change the components themselves. Moving to
a lower level of abstraction, this in essence means that the connectors contain
in them the wrappers that allow the components to interact through their
proper interfaces using the particular communication protocols.

Having discussed components and connectors, we move now to the last
required element for our definition of an architecture; the configuration. The
configuration, is none other but the description of how the various components
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and connectors are bound together to form the particular system described by
the architecture.

In the literature, we can find two kinds of configurations: the static configu-
ration of a system and the dynamic configuration of it. The static configuration
contains the different component and connector types, as well as their require-
provide relationships, i.e., which component provides the interface required by
another one. It is, in effect, a collaboration diagram for the components, in the
sense used in responsibility-driven design (RDD) [213], not, however, in the
sense used in Uml [206]. One can find more about this unfortunate use of the
term collaboration diagram in Uml at [190, 191].

The dynamic configuration, on the other hand, contains the different com-
ponent and connector instances, as well as their interconnections, i.e., the
particular bindings among ports and rôles. It is the equivalent of a collabora-
tion diagram in Uml, i.e., an interaction diagram.

II.2.1 Middleware Architectures

We finish our definition of terms with the notion of a middleware architec-
ture, which is central to our work. We define, therefore, a middleware archi-
tecture as an architectural description of a complex connector, i.e., an archi-
tectural description of a general solution to a non-functional problem, such as
reliability, security, persistency, etc.. These complex connectors/middleware
solutions are developed and used for a number of reasons. First, they are
needed in order to ease interoperability among different computing systems
and development environments. In other words, they form the layer of a sys-
tem that deals with masking differences in hardware and operating systems,
e.g., byte order or byte size, and with masking differences in the programming
languages used for developing the application logic of the particular system.
However, middleware solutions are aiming at solving more intricate problems,
than just masking hardware, operating systems and programming languages
differences. Such problems include providing widely available solutions for
common needed services such as trading services, name servers, persistency,
transactions, etc.. The need for these services is increasing, as systems be-
come more complex. On the other hand, as systems are becoming more and
more distributed in nature, often constructed as a federation of systems be-
longing to different stake-holders, these solutions must be provided at a level
higher than the operating system, to allow for different computing systems to
cooperate. So middleware solutions aim at establishing a semi-standardised
framework for such services, which provides system developers a common
layer at which integration of different infrastructures becomes possible.
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Since middleware solutions were developed from an operating/network
systems development viewpoint, the terminology used is different from the
one used for software architectures. However, the concepts themselves coin-
cide. As we have seen, a connector has a set of components that implement the
protocol interactions it is supposed to support and a set of rôles that identify
the different participants to the protocol. Middleware architectures, as well,
are divided into a set of middleware (or specific) components and application
(or generic) components. The former, are specified in detail and correspond
to the reusable part of the architecture, i.e., to the components that imple-
ment the services the middleware is supposed to offer. The latter are those
that an architect can substitute with components from the eventual system,
which will make use of the middleware architecture and thus inherit its prop-
erties. The latter components, i.e., the generic ones, are left under-specified,
to precisely allow for their substitution in a system with the particular system
components that need to make use of the middleware architecture. Thus, the
application components in a middleware architecture define the different rôles
of the complex connector which the middleware architecture describes.

As we have already mentioned in the introduction, the middleware world
is currently trying to build upon the work done on software architectures.
This is the case with the aforementioned OMG’s change of focus from their
particular middleware technology, i.e., CORBA, to a system’s model similar to
the one advocated by the software architectures community, which they call
Model Driven Architecture [10, 157, 194]. Thus, they are now trying to offer
and use broader technologies (Uml, XMI/XML, etc.) which will allow for a more
abstract description of middleware services, without being tied up with a par-
ticular middleware framework, such as CORBA, DCOM, EJB, etc.. Their aim
is to be able to semi-automatically translate from the technology agnostic de-
scriptions of the middleware solutions to particular middleware frameworks,
by providing specific mappings for each different framework (CORBA, DCOM,
EJB, etc.). The driving force behind this, is their desire to allow for easily sub-
stituting one particular middleware framework with another one, when the
need arises. Additionally, they wish to allow for different middleware frame-
works to cooperate together, to be able to support systems constructed by
different organisations with different middleware technologies.

Our focus on middleware architectures is also at a higher abstraction level,
since we are not interested in particular middleware technologies. We are
rather focusing, from the software architectures point of view, on the different
services a middleware framework might be called to provide. Effectively, we
are trying to ease the development of such new complex services/middleware
architectures, especially through the composition of simpler, existing middle-
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ware architectures. Our interest in composing middleware architectures is
due to the fact that the complex systems of nowadays require more and more
non-functional properties, which can only be provided by composing multi-
ple middleware architectures. The fact that there are many possible ways to
provide each of these non-functional properties means that architects have
many different possibilities to examine. Additionally, as an effect of the great
degree of reusability of middleware components, there are usually many dif-
ferent ways one can compose two (or more) middleware architectures. This
is because middleware components can in general be connected in many dif-
ferent ways and still function correctly. Until now, architects had only their
intuition and experience for choosing among different architectures provid-
ing a particular property and then for constructing a composition of these.
Therefore, providing an automated way to compose middleware architectures
is a valuable aid for being able to construct the highly specialised middleware
architectures needed by the complex systems of today. This work uses the
particularities of middleware architectures to make it possible to automati-
cally construct their compositions, thus allowing architects to easily examine
all different possible compositions, before selecting the one that matches best
the needs of the system they are designing.

II.3 Representation of Software Architectures

This section presents our representation for describing software architec-
tures. We start with a brief examination of the various ADLs described in the
literature in Section II.3.1, mentioning particular choices they have made and
then describe our choices in Section II.3.3.

II.3.1 Overview of Existing ADLs

As briefly aforementioned in the description of the constituents of a soft-
ware architecture in Section II.2, representation of software architectures de-
pends heavily on the particular properties of the system, which the architect
wishes to analyse, as well as the various tasks that are to be completed. For
example, there are ADLs that are used for semi-automatic code creation for the
final system, while others target earlier phases of analysis for various proper-
ties, such as deadlock detection, dependability analysis, etc.. A classification
and comparison framework for ADLs can be found in [136].

This difference in representation has lead to an effort at consolidating the
various forms into a single one. The ADLToolkit project [68] is trying to create
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a basic architecture interchange language for ADLs, called ACME [67], to be
used as a common target for mapping into/from the other ADLs. In this way,
it tries to provide an easy way to utilise all the available tools developed for
the different ADLs by demanding the fewer possible tools for transforming one
ADL into another. In [211] we can see another attempt at creating a common
framework for ADLs, through the definition of an architecture definition meta-
language, called AML.

Another idea that has been building up momentum is the use of a stan-
dard modelling language, and in particular Uml [206], for describing software
architectures [81, 95, 134, 135, 143, 170, 178, 217].

In this section we look at the major points of divergence among the various
ADLs.

II.3.1.1 Connectors as First Class Architectural Elements

One of the most striking differences among the various ADLs is their sup-
port of connectors as first level architectural elements. Some ADLs like Rapide
[123, 124, 175], SADL [145, 183] and Darwin [39, 127, 128], do not offer
connectors as first level architectural elements. Instead, they have chosen to
model them with what they call connection components, i.e., with the compo-
nents that are supposed to implement the connectors in question. This choice
is a perfectly legal one, for two reasons. First, the formalisms they are using to
describe components (and therefore connectors), i.e., partial order sets, first-
order logic and automata, hide the particularities of these types. Second, the
kinds of analyses these ADLs were designed for, do not need the distinction
between the two concepts. On the other hand, other ADLs do differentiate
between components and connectors, providing both as first-class architec-
tural elements, e.g., UniCon [186, 187, 207], Wright [6, 7] and C2 [28, 202].
Of the latter, C2, aiming more towards Message Oriented Middleware (MOM)
such as the one provided by IBM [88], has connectors that are all the same
and whose purpose is to transfer the exchanged messages among the different
components, by creating message channels/busses.

In our work, connectors are indeed considered as first level entities, able
to describe various interaction protocols. The reason for this is the fact that
the middleware architectures we are composing are complex connectors them-
selves. Therefore, we want to be able to describe these in an abstract way when
using them in an architecture, without having to refer to the components that
implement them, but at the same time clearly identifying the different rôles
that these introduce.
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II.3.1.2 Underlying Formalism for an ADL

Another point of departure among the various ADLs which are used to
analyse the system’s behaviour, is the formalism they use for describing the
behaviour. With respect to this attribute, we can classify them into two groups.
In the first one, ADLs use some form of logic for describing behaviour, as is
the case with SADL. SADL also provides facilities to check the consistency
between different hierarchy levels [146, 147, 177]. In the other group they use
a modelling language, e.g., Wright uses Csp [80], Darwin uses finite automata,
while Rapide uses its own modelling language [174], which is based on the
notion of partial ordered sets of events (posets) [125].

Apparently, each formalism has its advantages as well as its disadvan-
tages. Using logic allows one to clearly express what task the architecture
should complete, without having to describe the particular mechanism used
to accomplish the task. This allows for greater flexibility on the developers’
side, since they are more free to choose among possible implementations,
while still adhering to the requirements, as these are expressed in the archi-
tecture. It is also easier to describe and prove properties of families of systems,
as well as properties in infinite domains. For example, using logic it is easy to
describe systems consisting of n replicas of a particular component, without
having to consider a particular value for n, e.g., n = 3. It is also possible to
prove general properties on data structures, e.g., messages, without having to
restrain these to a finite domain, as is the case with model checkers.

Modelling languages, on the other hand, provide a formalism that looks
more natural to developers, due to their resemblance to programming lan-
guages. In addition, by using a model checker it is possible to automatically
validate models described in a modelling language against some property, with
minimum, if any, user intervention [31, 70, 82, 83, 130]. The equivalent tools
used for proving properties of models described in logic, i.e., theorem provers,
demand substantial user intervention and can be quite complex to use, usu-
ally needing a large period of time to get used to and learn how to use them
effectively. For example, in the Web site1 of the PVS theorem prover [173], the
following is stated: “PVS is a large and complex system and it takes a long
while to learn to use it effectively. You should be prepared to invest six months
to become a moderately skilled user (less if you already know other verification
systems, more if you need to learn logic or unlearn Z).”

Another significant advantage of model checkers over theorem provers is
that, when the model is not correct, they can provide the user with a counter-
example that highlights the erroneous behaviour. With theorem provers one

1http://pvs.csl.sri.com/whatispvs.html

http://pvs.csl.sri.com/whatispvs.html
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can never be sure whether a theorem that the tool cannot prove is indeed
incorrect, or the tool and its user are simply not able to prove it for some other
reasons. Indeed, the lack of appropriate clues is one of the aspects that makes
theorem provers difficult to use.

We should mention here that one of the current trends in formal methods is
in integrating various different techniques, such as model checking, abstract
interpretation, static checking and decision procedures, which, presumably,
will allow for a greater applicability on real-world problems [30, 63, 77, 142,
181, 182, 189, 208]. Early examples of such unification are the PVS theorem
prover [173] which has a small model checker embedded, or the Cadence SMV
model checker [130, 193] which contains a small theorem prover. Other work
that may be of interest, as far as the integration of theorem provers and model
checkers is concerned, is [46, 181], while in [36, 179] the authors use data
independent techniques [4, 214] along with Csp and its model checker, FDR,
in order to verify that cryptographic protocols having an infinite number of
resources, such as secret keys, are free of attacks. Another recent paper dis-
cussing the use in concert of model checking and theorem proving for verifying
a real system is [102].

In our work we have chosen to use a model checker, so as to increase as
far as possible the automation of the resulting solution, relying as little as
possible on user intervention.

II.3.2 Model Checkers

Model checkers, see [31, 82], are tools that can deal especially well with
vast search spaces and in contrast to other tools, such as theorem provers,
they can be used without requiring much user intervention/guidance.

Their primary use is to identify errors in a model, i.e., to expose series of
events that can lead the modelled system in an undesired state, such as dead-
lock, message loss, out-of-order message reception, etc.. Indeed, this is their
major advantage over theorem provers, since they can provide a trace of the
system’s behaviour that shows exactly how the erroneous state was reached.
In contrast, when a theorem cannot be proved, theorem provers provide the
user with very few clues as to where exactly the problem lies in. This ability
is crucial to our solution, since it effectively relies in describing the correct
composed architectures as faults we are looking for.

The undesired behaviour/states are, in most cases, described symbolically
by the user with some variant of Temporal Logic, such as a linear-time logic
(Linear Temporal Logic - Ltl) or a branching-time logic (Computational Tree
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Logic - Ctl). Their major difference is that the former considers that at any
moment there exists only one possible future, while the latter considers that
at each moment, time may split into alternate courses representing different
possible futures. Even though it seems at first sight that Ctl should be a
superset of, i.e., more expressive than, Ltl, this is not true. In fact there are
cases that can be expressed with one of them but not with the other. A fuller
comparison of them can be found in [52], where Ctl∗, a superset of both, is
also presented.

Currently, there is a number of different model checking tools available.
Some of them use finite automata as their modelling language, i.e., the STATE-
MATE [74, 87] tool for verifying models expressed using statecharts [73], or the
LTSA (Labelled Transition System Analyser) model checker [43, 44, 69] used
with the Darwin ADL. For our purposes we concentrated on model checking
tools which do not directly use automata as their modelling language but offer
a higher level modelling languages instead, with features such as user-defined
functions and data-types, communication channels, non-deterministic choice
operators, loops, etc., which greatly help in easing the modelling of a sys-
tem. Specifically, we have investigated three particular model checking tools
which do not directly use automata-based descriptions as their modelling lan-
guage: Fdr2 (Failures-Divergence Refinement), Smv (Symbolic Model Verifier)
and Spin. Unlike the other two tools which use modelling languages similar to
the C programming language, Fdr2 [60] is based on the Csp (Communicating
Sequential Processes) algebra [80]. Smv [130, 193] was originally created for
verifying hardware designs, while Spin [82, 83, 197] for verifying communica-
tion protocols.

Smv, as its name suggests, is a symbolic model checker; it will create
a symbolic representation of the state space by using Binary Decision Dia-
grams (BDDs), see [24, 25, 27, 31]. This representation is usually substan-
tially smaller than the explicit representation of the state space. Then, it will
verify the required property against the state space’s BDD representation. In
contrast, Fdr2 and Spin are explicit state model checkers. That is, when trying
to verify some property for a system, they may create the whole state space
for the system. Nevertheless, they use an on-the-fly method for constructing
the state space, verifying the required property in each subset of the state
space they construct. Additionally, they offer various compression strategies,
designed for reducing the size of the state space representation. Thus, they do
not usually suffer from the state space explosion problem, if the property can
be shown false in a subset of the entire state space. In fact, all three of these
model checkers seem to be more or less equivalent, as far as the size of the
models they can verify is concerned.
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During this work we have chosen to use Spin for a number of reasons. First,
Spin is provided free of charge along with its source code. Smv is also provided
free of charge and some versions of it like CMU’s Smv [59] and NuSmv [12, 29]
also make available the source code.

Additionally, Spin has spawned quite an interest, with its own annual con-
ference, which groups the continuing efforts of the Spin community to improve
it. In these conferences one can find articles using Spin to treat subjects, as
variable as, model checking Ctl∗ properties [209], automatic generation of
invariants [208], automatic construction of abstract models [63, 181], model
slicing [142], Real-Time verification [203], model checking Java programs [77],
Uml models [118, 119, 120], or even verifying AI spacecraft control systems
used by NASA [122], see [197] for the on-line proceedings. Another vote of
confidence is the use of Spin for model checking [23] in the next version of
STeP, the Stanford Temporal Prover [19, 176].

The fact that the modelling language used with Spin, called Promela for
PROcess MEta LAnguage2, as well as the one used with Smv, look very much
like the programming language C makes them good candidates for use in a
setting where middleware is concerned, since the designers and the developers
will not feel intimidated by them.

However, the most important reasons for choosing Spin over the other tools,
our previous experience with it notwithstanding, is that it has built-in chan-
nels with which we can more naturally model the bindings among architectural
elements and, above all, that it can provide counterexamples for all existing
errors in a system, instead of just reporting the first one it finds. Being able
to obtain all errors in once, greatly facilitates our task, since if we had to find
each one in turn, then we would have to remove each time from our models the
already found compositions, before starting to search for new ones. Table II.1
summarises some of the features of the three aforementioned model checkers,
which are of particular interest for our method.

II.3.3 An ADL for Composing Middleware Architectures

For composing middleware architectures we only need basic elements,
which can be described by all existing ADLs. That is, we need to be able
to describe: (i) the components implementing the existing middleware archi-
tectures we want to compose, and, (ii) their bindings, i.e., the configurations
of the original architectures. Additionally, we need an ADL which allows the
specification of the behaviour of each component.

2Spin itself stands for Simple Promela Interpreter.
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Table II.1: Features of three model checkers

Model Language looks like Explicit vs. Has Traces for Code
Checker a programming one Symbolic channels all errors available

Spin Yes, Explicit, Yes Yes Yes
similar to C on-the-fly

Smv Yes, Symbolic No No Yes
similar to C

Fdr2 No, Csp is Explicit, Yes Partial† No
an algebra on-the-fly support

† The user can define a maximum number of errors that should be traced, but cannot say
that all errors should be traced.

Having chosen Promela for describing behaviour does not rend our solu-
tion less general, since a Promela model can be directly translated to other
formalisms, such as finite automata3, or the input language of the Smv model-
checker4.

Using the ACME ADL interchange language [67] for describing middleware
architectures, we can describe the structural elements of a software architec-
ture, i.e., its components, connectors and configuration. For each component
and connector, we can also assign to it a number of properties which con-
tain information relevant to particular ADLs. For example, one can assign to
a component a Csp behaviour model, which will be used when transforming
the ACME description to a Wright architectural description. At the same time,
however, one can assign to the same component a Promela behaviour model,
or other properties that are to be used for different kinds of analyses, e.g.,
performance analysis. For our purpose, we attach properties that are used to
produce a complete model of the system’s architecture in Promela.

A Promela model consists of a number of independent processes, i.e., each
one having its own thread of execution, which communicate either through
global variables or through special communication channels by message-
passing, as is done in Csp. Therefore, architectural elements can be modelled
as in the Wright ADL [6, 7], where each component, connector, port and rôle
has its own process which communicates with the rest through channels.
However, this produces a large number of processes and causes an increase
in the resources needed for model-checking. Thus, we have chosen to model

3Translation to finite automata is directly supported by the Spin model-checker.
4See the p2b homepage http://goethe.ira.uka.de/~baldamus/p2b/ .

http://goethe.ira.uka.de/~baldamus/p2b/
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component and connector instances with independent processes but to model
ports with what Promela calls inline procedures. These do not introduce new
processes in the system but simply define functions that can be used by the
various processes. If we need to describe a component whose ports are inde-
pendent processes, then we can describe it as a composite component, i.e., one
that consists of a number of simpler components and connectors. Each one of
these simpler components and connectors will then be modelled as a number
of independent processes. Additionally, in our method, rôles are modelled as
inline procedures as well. However, unlike the Wright ADL, rôles are not used
in the final Promela model. This is because their models would only be used
for checking whether the ports, which are attached to their respective rôles,
do indeed abide by the required communication protocol. We do not perform
such checks, however, for two reasons: first, Spin cannot check that one pro-
cess refines another and, second, if it is indeed the case that the ports are
not compatible with the protocols of the rôles, then a deadlock will eventu-
ally occur, which is easily verifiable with Spin. This also allows us to produce
smaller Promela models, which demand fewer computational resources to be
verified. Finally, for each port in a component, we declare a Promela channel
with that name, which the port will use to communicate with. This channel is
then passed as an argument to the connector whose rôle is attached to that
port.

Figure II.1: An abstract RPC connector as drawn with the ACME graphical
notation

(The big circle depicts the connector and the two small circles depict its client and
server rôles.)

To illustrate the above, we take as an example a RPC connector. Fig-
ure II.1 shows an abstract RPC connector/middleware architecture, while in
Figure II.2 we provide a more detailed architecture of the same connector,
using a message passing style to describe it. Thus, we see that an architec-
tural element, as the RPC connector, can be modelled at different levels of
detail. One would choose a particular level of detail according to the uses one
wishes to make of the architectural description, such as reliability analysis,
performance, (partial) code creation, etc..

The ACME textual descriptions of these two levels of a RPC connector, in-
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Figure II.2: A refined RPC connector, drawn with the ACME notation
(Big circles depict connectors, small circles depict their rôles and rectangles depict

components.)

cluding the behavioural specification in Promela, are presented respectively
in Listing II.1 (page 28) and Listing II.2 (page 29). There we see how the ACME
descriptions of components and connectors are augmented with behaviour
models in Promela. Thus, each component and connector are modelled by a
separate process, e.g., as in line 4 and in line 102 of Listing II.2. Their ports
and rôles, on the other hand, are modelled using the inline Promela con-
struction, e.g., as in line 20 and in line 122, again of Listing II.2. This, as we
have seen, effectively defines them as procedure calls that their respective ar-
chitectural element (component/connector) can use in its model. This choice
allows us to reduce the number of processes that will be created, therefore
allowing the analysis of larger architectures. One will notice a difference in
style between a declaration of a component and that of a connector. That is,
in the definition of the behaviour of a component we declare communication
channels (through the chan construct) that are to be used at its ports. We do
not, however, provide such channels to connectors but rather inform them of
the channels they should use when we start their processes, by passing the
channels as arguments. In this manner, we attach the processes of compo-
nents and connectors together, by instructing the latter to use the channels
of the former for communication. This is a direct consequence of the fact that
we do not map rôles and ports to processes as the Wright ADL does. Finally,
we have seen that when a component is bound to a connector, then its port
should be following the communication protocol described by the respective
rôle. In the descriptions we have provided this is indeed the case, since as
can be easily seen, ports are described with exactly the same models as the
rôles. For example, compare the model of port from_caller of component
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Caller_to_Callee in Listing II.2 line 102 and that of rôle from_caller of
connector RPC_callee_side in line 80. If that is not the case, Spin will dis-
cover the deadlock caused by the incompatibility, as aforementioned.

Listing II.2 also shows how an architectural configuration is mapped into
a Promela model. Specifically, in lines 193–229, we see how the set of port-
rôle attachments/bindings are achieved through the use of Promela chan-
nels, where each one is shared by a pair of port and rôle that have been at-
tached/bound by the architectural configuration. The Promela process which
is responsible for realising the attachments is called init , see line 203. Ac-
cording to the Promela semantics, this is the first process which the Spin model
checker will start executing and through it we can instantiate the rest of the
processes using the run function, e.g., see line 210.

II.3.3.1 A Graphical ADL for Middleware Architectures

Caller RPC_Caller_side CalleeRPC_Callee_side

Caller_to_Callee

Callee_to_Caller

Figure II.3: A refined RPC connector in our ADL

Having seen how it is possible to describe the notions we need for mid-
dleware architectures with a basic ADL like ACME, we now introduce our
own graphical notation. This notation was chosen so as to depict the different
notions in a more clear manner. For example, in Figure II.3 we can see the
concrete RPC middleware architecture, drawn in our notation. As we see in
the figure, we draw middleware components as rectangles, application com-
ponents as ellipses and connectors as circles, which helps to easily identify
them. Bindings among these elements are shown with arrows, so as to be able
to describe the underlying data-flows as well. The message-passing style we
are enforcing on middleware architectures is the most basic one used (along
with shared-memory). We can use it to describe any other style used: RPC
(as is done in this case), remote method invocation, event-based, etc.. Bidirec-
tional interactions are described with two unidirectional ones, so as to be able
to treat each direction separately during the composition. Finally, when the
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connector used is a reliable FIFO one (i.e., it delivers all messages in order),
then we do not draw it so as to keep the description simpler.

Listing II.1: An abstract RPC connector in ACME, with Promela specifications

1 Connector RPC = {
2 Properties {
3 Promela-model : string = "
4 proctype RPC (chan caller, callee)
5 {
6 mtype m ;
7

8 do
9 :: caller ? m → /* Receive request from caller. */

10 callee ! m → /* Send it to the callee. */

11 callee ? m → /* Receive reply from the callee. */

12 caller ! m /* Send it to the caller. */

13 od
14 }
15 ";
16 };
17 Role caller = {
18 Properties {
19 Promela-model : string = "
20 inline caller (caller, m)
21 {
22 caller ! m →
23 caller ? m
24 }
25 ";
26 };
27 };
28 Role callee = {
29 Properties {
30 Promela-model : string = "
31 inline callee (callee, m)
32 {
33 callee ? m →
34 callee ! m
35 }
36 ";
37 };
38 };
39 };
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Listing II.2: A refined RPC connector in ACME, with Promela specifications

1 Connector RPC_caller_side = {
2 Properties {
3 Promela-model : string = "
4 proctype RPC_caller_side ( chan caller, to_callee, from_callee)
5 {
6 mtype m ;
7

8 do
9 :: caller ? m →

10 to_callee ! m →
11 from_callee ? m →
12 caller ! m
13 od
14 }
15 ";
16 };
17 Role caller = {
18 Properties {
19 Promela-model : string = "
20 inline caller (caller, m)
21 {
22 caller ! m →
23 caller ? m
24 }
25 ";
26 };
27 };
28 Role to_callee = {
29 Properties {
30 Promela-model : string = "
31 inline to_callee (to_callee, m)
32 {
33 to_callee ? m
34 }
35 ";
36 };
37 };
38 Role from_callee = {
39 Properties {
40 Promela-model : string = "
41 inline from_callee (from_callee, m)
42 {
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43 from_callee ! m
44 }
45 ";
46 };
47 };
48 };
49

50 Connector RPC_callee_side = {
51 Properties {
52 Promela-model : string = "
53 proctype RPC_callee_side ( chan callee, from_caller, to_caller)
54 {
55 mtype m ;
56

57 do
58 :: from_caller ? m →
59 callee ! m →
60 callee ? m →
61 to_caller ! m
62 od
63 }
64 ";
65 };
66 Role callee = {
67 Properties {
68 Promela-model : string = "
69 inline callee (callee, m)
70 {
71 callee ? m →
72 callee ! m
73 }
74 ";
75 };
76 };
77 Role from_caller = {
78 Properties {
79 Promela-model : string = "
80 inline from_caller (from_caller, m)
81 {
82 from_caller ? m
83 }
84 ";
85 };
86 };
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87 Role to_caller = {
88 Properties {
89 Promela-model : string = "
90 inline to_caller (to_caller, m)
91 {
92 to_caller ! m
93 }
94 ";
95 };
96 };
97 };
98

99 Component Caller_to_Callee = {
100 Properties {
101 Promela-model : string = "
102 proctype Caller_to_Callee ()
103 {
104 chan from_caller, to_callee ;
105 mtype m ;
106

107 C ! from_caller ; /* Inform the initialisation process of your channels. */

108 C ! to_callee ; /* Inform the initialisation process of your channels. */

109

110 do
111 :: Caller_to_Callee_from_caller(from_caller, m) →
112 Caller_to_Callee_to_callee(to_callee, m)
113 od
114 }
115 ";
116 };
117 Port from_caller = {
118 Properties {
119 Promela-model : string = "
120 /* The following line will be created automatically. */

121 /* inline Caller_to_Callee_from_caller */

122 (from_caller, m)
123 {
124 from_caller ? m
125 }
126 ";
127 };
128 };
129 Port to_callee = {
130 Properties {
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131 Promela-model : string = "
132 /* The following line will be created automatically. */

133 /* inline Caller_to_Callee_to_callee */

134 (to_callee, m)
135 {
136 to_callee ! m
137 }
138 ";
139 };
140 };
141 };
142

143 Component Callee_to_Caller = {
144 Properties {
145 Promela-model : string = "
146 proctype Callee_to_Caller ()
147 {
148 chan from_callee, to_caller ;
149 mtype m ;
150

151 C ! from_callee ; /* Inform the initialisation process of your channels. */

152 C ! to_caller ; /* Inform the initialisation process of your channels. */

153

154 do
155 :: Callee_to_Caller_from_callee(from_callee, m) →
156 Callee_to_Caller_to_caller(to_caller, m)
157 od
158 }
159 ";
160 };
161 Port from_callee = {
162 Properties {
163 Promela-model : string = "
164 /* The following line will be created automatically. */

165 /* inline Callee_to_Caller_from_callee */

166 (from_callee, m)
167 {
168 from_callee ? m
169 }
170 ";
171 };
172 };
173 Port to_caller = {
174 Properties {
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175 Promela-model : string = "
176 /* The following line will be created automatically. */

177 /* inline Callee_to_Caller_to_caller */

178 (to_caller, m)
179 {
180 to_caller ! m
181 }
182 ";
183 };
184 };
185 };
186

187 Attachments {
188 Caller_to_Callee.to_callee to RPC_caller_side.to_callee ;
189 Callee_to_Caller.from_callee to RPC_caller_side.from_callee ;
190 Caller_to_Callee.from_caller to RPC_callee_side.from_caller ;
191 Callee_to_Caller.to_caller to RPC_callee_side.to_caller ;
192

193 // The above will be automatically translated to the following Promela code:
194 //
195 // chan C ; /* Used by the initialisation process. */

196 //
197 // /* Procedures defining the ports of the components. */

198 //
199 // /* Code describing the processes of the components. */

200 //
201 // /* Code describing the processes of the connectors. */

202 //
203 // init { /* The initialisation process. */

204 // chan Callee_to_Caller_from_callee_1, Callee_to_Caller_to_caller_1,
205 // Caller_to_Callee_from_caller_1, Caller_to_Callee_to_callee_1 ;
206 //
207 // chan caller, callee ;
208 //
209 // /* Instantiate the component instances. */

210 // run Callee_to_Caller() ;
211 // /* Receive the channels used by this (No. 1) instance of Callee_to_Caller. */

212 // C ? Callee_to_Caller_from_callee_1 ;
213 // C ? Callee_to_Caller_to_caller_1 ;
214 //
215 // run Caller_to_Callee() ;
216 // /* Receive the channels used by this (No. 1) instance of Caller_to_Callee. */

217 // C ? Caller_to_Callee_from_caller_1 ;
218 // C ? Caller_to_Callee_to_callee_1 ;
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219 //
220 // /* Instantiate the connector instances. */

221 // run RPC_caller_side(caller,
222 // Caller_to_Callee_to_callee_1,
223 // Callee_to_Caller_from_callee_1) ;
224 //
225 // run RPC_callee_side(callee,
226 // Caller_to_Callee_from_caller_1,
227 // Callee_to_Caller_to_caller_1) ;
228 //
229 // }
230 };

II.4 Composition of Middleware Architectures

As aforementioned, middleware architectures identify two different kinds
of architectural components: the application components and the middleware
ones. Of these, the former identify the different rôles that the middleware ar-
chitecture makes available. These rôles will be assumed by the components
of the application/system that will make direct use of the middleware ar-
chitecture. These application components are, in effect, the components for
which we want the properties, that the middleware architecture provides, to
hold. The middleware components, identify the architectural elements that
implement the mechanism provided by the middleware pattern; they are the
abstract equivalent of middleware components such as a CORBA COS Trader.

When we require for (parts of) the system multiple non-functional proper-
ties, we have to employ multiple middleware architectures, where each one of
these provides some of the required properties. As the system makes use of the
multiple middleware architectures, by transferring its requests through it, we
have to assure that the requests pass from all the middleware architectures.
There are three different ways one can assure this. First, we could connect the
different middleware architectures in parallel, multicasting, therefore, each
request to the different middleware. However, such a configuration cannot en-
sure that for a given request all middleware architectures would treat it as
required. Let us assume that one middleware architecture is responsible for
compressing requests to speed up communication, while another is responsi-
ble for breaking them into packets, so that it can more economically handle
data losses (see Figure II.4). Hereafter, middleware architectures are drawn
using the ADL we introduced in Section II.3.3.1.



II.4 Composition of Middleware Architectures 35

Decompress Compress

DecompressCompress

Role:
Client

Role:
Server

Messages

packets
to

Packets
to
Messages

Messages

packets
to

Packets
to
Messages

Role:
Client

Role:
Server

Figure II.4: Two middleware architectures
(Boxes represent middleware components, ellipses represent application ones and

arrows represent bindings & data-flows.)

Then for each request sent by the “client” part of the system, at the “server”
part we would receive (and have to choose from) two differently processed re-
quests: one that has been compressed/decompressed and another that has
been split into packets and reconstructed afterwards (see Figure II.5). There-
fore, this kind of parallel composition of the different middleware architectures
would provide a property that is the exclusive or of the properties provided by
the initial architectures.

Another possibility for composing the different middleware architectures
might be to connect them serially (see Figure II.6). Unfortunately, this solu-
tion cannot provide to the system components the multiple properties required,
either. This is because the last step of the first middleware will be to decom-
press the data, before passing them over to the second middleware for breaking
them into packets. So, the system components do not benefit from both mid-
dleware in this case either. Depending on which side the second middleware
starts, i.e., the client side, or the server side, then the property provided to the
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Figure II.6: “Serial” composition of middleware architectures

system components will be that of the second middleware, or that of the first
one, respectively.

However, our aim is to provide all different properties to the system compo-
nents that will make use of the middleware architectures. Therefore, the only
possible way to compose the different middleware is to interpose their com-
ponents in such a way, that data/requests from the system components will
be treated by all the middleware components in an order which ensures the
properties we wish. In other words, we have to find some new configuration of
the middleware components comprising the middleware architectures, which
will provide indeed the needed properties.
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In some cases, where all middleware architectures follow the same archi-
tectural style as the system components, i.e., all use a client-server style, or a
pipe-filter one, we can assume that one middleware architecture will be used
by another one, thus constructing a hierarchy of middleware layers. Never-
theless, there are many cases where the styles used differ. In these cases,
we cannot simply assign to some middleware components of one middleware
architecture the rôles of another architecture in order to construct the afore-
mentioned hierarchy. In fact, this is exactly the case with the example used
so far. In this example, the system components use a RPC style to communi-
cate, while the two middleware architectures, which compress and break into
packets the data exchanged, use a simple message-passing style (see again
Figure II.4).

It is evident that we cannot assign the rôles of one of these two middleware
architectures to some components of the other, because the middleware com-
ponents do not communicate in a RPC style. So, we have to consider configu-
rations where the middleware components of one architecture are interposed
among those of the other(s), as is the case with the composition shown in
Figure II.7.
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Figure II.7: Composition of middleware architectures by interposition

In Figure II.7, one could say that the top “Compress” middleware com-
ponent assumes the “Client” rôle of the second architecture, while the top
“Decompress” component assumes the “Server” rôle. However, in the second
architecture, it was the “Server” which was communicating directly with the
bottom “Messages to Packets” middleware component. In the composition we
are presenting, it is not the top “Decompress” component that communicates
directly with the bottom “Messages to Packets”, even though the former has
assumed the “Server” rôle. Therefore, the different styles used have forced us
to construct a configuration, which is more complicated than a simple assign-
ment of rôles to specific middleware components.

Concerning, now, the property this composition provides to the system
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components, we must remark that it is not the conjunction of the properties
provided by each middleware architecture. To see why, it suffices again to look
at the composition example in Figure II.7. There, we see that the property pro-
vided by the compress-decompress middleware is indeed provided to the sys-
tem components. However, this is not the case for the property provided by the
second middleware which breaks messages into packets. This is because, the
second middleware is not directly applied to messages exchanged by system
components, but to those exchanged by the other middleware architecture.
In most practical applications, however, this comes close enough to what we
would like to obtain, as is probably the case with this artificial example. So,
even though messages sent from a system component are not immediately
broken into packets, they are so processed before being sent over the network,
which is what we are really interested in, at least in most cases. For noting
this difference, we write ArchComposed = Arch1⊕Arch2 to denote composition of
architectures and pComposed = p1⊕ p2, respectively, to talk about the composed
property provided by such a composed architecture. We particularly avoid us-
ing the notations ArchComposed = Arch1 ‖ Arch2, which is sometimes used for
the case where we have pComposed = p1 ∧ p2 and ArchComposed = Arch1 → Arch2,
which is sometimes used for the case where we have pComposed = p1 ∨ p2, as we
have seen with the example used herein.

Having seen what it means for middleware architectures to be composed,
we will now present how composition has been treated by others and how
these different treatments and ideas relate to our work.
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Composition has been studied from the early days of computing science. The
reason for this is that software systems are too complex to develop as a single
object. Therefore, we have to divide them into subsystems/components and
keep doing so, until they are small enough for us to comprehend them. The
computing community has been doing so with procedures and functions in
structured and functional programming, with objects in object oriented pro-
gramming and now with software architectures. However, the main problems
remain always the same. First, how to prove that a given composition provides
the required properties. Second, how to find a composition providing these
properties given the basic subsystems.

In this chapter, we present the work that has been done on composition
and how it relates to our attempt at composing software architectures. We
start by examining how formal specifications are composed, then look at the
treatment of composition in software architectures and finish with composition
of software modules.

III.1 Specifications

We start our presentation of work concerning composition by examining
the way composition is treated when dealing with specifications. Composi-
tional reasoning in specifications has been studied ever since the late seven-
ties. A good introduction to the subject, with further links to the bibliography
on the subject, is [31, Chapter 12].

A major paradigm in compositional reasoning, is the assume-guarantee
one [31, Chapter 12], which is a generalisation of the traditional pre/post-
condition style for sequential programs. It consists of breaking up the proof
of correctness of a large system, by proving first that each of its components
behaves correctly under the assumption that the rest of the components (and
the environment) behave correctly. Thus, the assumption part of the paradigm
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is that all components other than M are behaving correctly, in which case
component M guarantees that it will also behave correctly. Then, according
to the assume-guarantee paradigm, we can conclude that the conjunction of
the guarantees of the different components is provided by the whole system.

However, this kind of reasoning has certain pitfalls, which Abadi and Lam-
port [2] showed with the following example. Assume that we have a system
composed of two components M1 and M2, where the two components have
the following specifications:

• M1 guarantees that it never sets the common global variable x equal to
1, assuming that the common variable y never gets the value 2.

• M2 guarantees that it never sets the common global variable y equal to
2, assuming that the common variable x never gets the value 1.

Then it is easy to see that their composition does indeed guarantee the property
“the system never sets x to 1 or y to 2”, i.e., the conjunction of the guarantees
of the two components. An implementation of them that does indeed guarantee
the aforementioned property is a component m1 that does nothing, unless y
becomes equal to 2, in which case it sets x to 1 and a component m2 that
also does nothing, unless x becomes equal to 1, in which case it sets y to 2.
Their composition will be a system that never does anything, which clearly
guarantees that never x will be equal to 1 and never y will be equal to 2. If,
however, we were to replace the word never with the word eventually in the
specifications of M1 and M2, we would get the following specifications:

• M1 guarantees that it eventually sets the common global variable x equal
to 1, assuming that the common variable y eventually gets the value 2.

• M2 guarantees that it eventually sets the common global variable y equal
to 2, assuming that the common variable x eventually gets the value 1.

Then, we would no longer be able to conclude that their composition guar-
antees the property “eventually x will be equal to 1 and eventually y will be
equal to 2”. This can be easily proved by taking again the two implementations
m1 and m2 which do nothing unless the other variable takes the appropriate
value. Even though each of these implementations satisfy the new specifica-
tions, their composition, which does nothing, does not satisfy the composition
of the specifications. This problem is due to the fact that changing the word
never with eventually changed the assumptions on the environment of each
component and their guarantees from being safety properties, to being live-
ness properties. Informally, a safety property is one stating that something
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bad does not happen, while a liveness property states that something good will
happen in the future. So, when given a particular system, we can always con-
clude whether a safety property does not hold by examining some finite prefix
of a run of the system. However, we cannot conclude so for liveness proper-
ties, since for these we must study the infinite runs of the system to conclude
whether they hold or not. A fuller classification of temporal properties can be
found in [129]. This is the reason why most compositional methods for proving
the correctness of a system only deal with safety properties. In [2, 3], Abadi
and Lamport present a method that allows to prove P ∧ Q by proving first P
while assuming Q and then Q while assuming P , under certain restrictions.
The restrictions are that each property must be a safety property and then that
each different process must modify disjoint subsets of the system variables in
an interleaved manner. Ken McMillan in [131, 132, 133] introduced a tech-
nique that allows for verifying liveness properties as well. He achieves this by
making explicit the induction over time implied in the above approach, thus
assuming property P only up to time t− 1 when proving Q at time t, and vice
versa. Then, he shows how this technique is automated with the Smv model
checker. These techniques, as well as further research on combining model
checking with theorem proving [19, 102, 185, 189] promise further advances
in the automatic application of compositional reasoning techniques and in the
verification of real world systems in general.

However, all the aforementioned techniques try to solve the problem of how
to prove a specific composition correct and not the problem of how to find such
a composition. Therefore, as far as the composition of software architectures
is concerned, these methods are of use only at the latter stage where we have
already a composition of the architectures and we wish to verify its correctness.

III.2 Composition and Software Architectures

The Software Architectures research community has studied the problem
of composing architectures from a number of different perspectives.

In this section, we give a synopsis of this work. We start with Moriconi et
al. (Section III.2.1) who have studied the vertical and horizontal composition
of architectures in the setting of architecture refinement, and with Pamela
Zave and Michael Jackson (Section III.2.2), who have worked on composition
of features in telephone systems.

Then we move on to Kruchten’s work concerning different architectural
views and how one can compose them into a full architecture in Section III.2.3
and then in III.2.3.1 we examine the work that has been done concerning
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inconsistent views and how to consolidate them.

In Section III.2.4 we refer to the work of Melton and Garlan on unifying
different architectures and finish in Section III.2.5 with the work of Spitznagel
and Garlan on constructing transformation operators for connectors.

III.2.1 Vertical/Horizontal Composition

In their work on correct architecture refinement [146, 147], Moriconi et al.
identified two kinds of composition for instances of architectures: vertical and
horizontal. Of these, the former is nothing more than the top-down refinement
of an abstract architecture to a (more) concrete one, i.e., the relationship stat-
ing that the second architecture implements the first. It is used to construct
a hierarchy (sequence) of architectures, in a way that allows us to state that
the architecture at the bottom is the most concrete implementation of the
top-most one. Moriconi et al. demand that a vertical composition should be
a faithful refinement, i.e., that the concrete architecture does not introduce
any new facts about the system. This, however, poses a problem for horizontal
composition, since the latter does not preserve faithfulness in general.

Horizontal composition is used to compose two existing architectures into
larger ones. When the existing architectures share architectural elements,
then their composition is performed by unifying them, i.e., considering these
elements as a single one. When they do not share any elements, Moriconi
et al. propose to introduce a new linking architecture, which should contain
an element from each of the initial architectures. These elements will then
be unified with the same elements in the other initial architectures, thus
producing a composite architecture. Figure III.1 gives a schematic description
of such a case.

As we aforementioned, horizontal composition is problematic with respect
to faithful refinements. That is, the horizontal composition of the concrete
architectures corresponding to the abstract ones, is not always a vertical com-
position, i.e., faithful refinement, of the horizontally composed abstract archi-
tectures. As an example, Moriconi et al. considered one architecture which
contains a data-flow connection from component C1 to component C2 and
another architecture which contains a data-flow connection from C2 to C3.
Then, they assume the case where both flows are correctly implemented by
their respective concrete architectures, but in one c1, i.e., the implementation
of Ci, writes some global variable x and, in the other concrete architecture,
c3 reads the same variable x. Even though both implementations are correct,
their horizontal composition is not, since we can deduce from it a new abstract
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Figure III.1: Horizontal composition of two architectures

data-flow connection from C1 to C3. Thus, the horizontal composition of the
concrete architectures is not necessarily a faithful refinement of the composite
abstract architecture. This fact means that each time we horizontally compose
two architectures, we have to prove that the horizontal composition of their re-
spective refinements is a faithful one. Nevertheless, an architecture may have
a number of different refinements defined, either because each one defines
a different implementation or because each one is more detailed. The num-
ber of proofs one would have to perform each time he horizontally composes
two architectures is usually prohibitive. Therefore, Moriconi et al. propose the
use of simple syntactic criteria instead, which can be easily checked auto-
matically. Specifically, they propose that the horizontal composition should
be accepted as a faithful one, when the two abstract architectures share only
components and their implementations, i.e., refinements, share only images
of them1. Then, according to this syntactic criterion, architectures can be con-
nected to form a composite system which will be correct, as long as the initial
ones were so.

It is rather obvious to note that compositions of this kind are not very help-
ful for composing middleware architectures either. The unification of common
components, effectively leads to the parallel composition we have seen in Fig-

1Under, of course, the interpretation mapping among entities in the abstract and in the
concrete architectures.



44 III Related Work

ure II.5 of Section II.4, which, as we have already seen, does not provide
the properties of the composed middleware. This is because, in most cases,
the only common components will be the application ones. In addition, for
the cases where the middleware architectures have no common components,
Moriconi et al. do not give any way to construct automatically the linking
architecture. However, it is not at all obvious which components from the dif-
ferent architectures we should link together. Additionally, even if we find two
components to link together, now the result will have a similar form with the
serial composition shown in Figure II.6 of Section II.4, which again is far from
what we want to achieve. In fact, the problem is still present when both archi-
tectures have common components. The reason is that Moriconi et al. do not
define when two components are the same. So, if one of the architectures has
two instances of a component, which also exists in the other, we cannot know
which of these should be considered as being the same.

III.2.2 Feature Composition in Telephone Systems

An interesting case of composition is the feature composition in telephone
systems [220]. In these, features represent the various services provided. Ex-
amples of features are call blocking (CB), call forwarding when the line is busy
(CFB), call forwarding when there is no answer (CFNA), spontaneous messag-
ing when the line is busy (SMB), three-way calling (3WC), etc.. These services
are supposed to be independent and transparent to each other when turned
off. Thus, in principle, they are used to form telephone systems by being con-
nected serially in a pipe-and-filter style, where features, when turned on, act
as filters.

However, in practice there are many factors that lead to cases where fea-
tures interact in undesired ways, despite the simple architectural style used to
compose them. The main cause of these undesired feature interactions is the
continual and incremental expansion of the services that happens in the tele-
phone systems. As Zave and Jackson state in [225], one particular reason for
which features interact in undesired ways is due to the gradual transformation
of telephone systems from circuit-switched (voice oriented) to packet-switched
(data oriented) systems. Before, most of them were built into the core network
and accessed by dumb and highly standardised terminals, i.e., telephone sets.
Nowadays, however, more and more of them are supposed to be provided by a
rich variety of intelligent terminals, i.e., computers. This change in technology
has implications on the way features are designed and implemented and in-
troduces a conceptual gap in the way that features are specified, constructed
and used.
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Pamela Zave and Michael Jackson’s proposal of the Distributed Feature
Composition (DFC) virtual architecture [98, 222, 223, 226, 227] and Zave’s
subsequent work on feature engineering [218, 221] is an attempt at easing
the description of the different features and formally reasoning about their
interdependencies when these are connected to form a system.

However, automatic composition of features, in a way that a set of condi-
tions holds, is something that seems unrealistic for a number of reasons, even
though they are used with such a simple architectural style as pipe-and-filter.
First, there are many cases where the interactions of the features are desired
or even intentional. For example, it is not uncommon in the telephone domain
to implement a new exception to some feature by constructing a new feature
that will interact with the old feature to provide support for the new excep-
tional case, through their interaction. Last but not least, it is usually difficult
to obtain full requirement specifications for a telephone system and/or mean-
ingful assertions that should hold for such a system over its lifetime. This is
due to the fact that telephone systems are extremely complex and their com-
plete formal specification is extremely difficult. Additionally, telephone systems
keep evolving, moving from two-way voice transmission to provision of mail or
browsing. This fact makes it impossible to guess the future needs and make a
provision for them in the current set of requirements and assertions. That is
why Zave proposes an iterative method of constructing such systems. Using
this method, engineers will first construct features without considering their
possible interactions. Afterwards, they will identify all the interactions due to
their composition and classify them into desired and undesired ones, itself
a non-obvious task. Finally, she proposes that they should try to rewrite the
specifications of the features, until these interact in only the desirable ways.

To show why classification of interactions into desired and undesired ones
is a non-obvious task, we use an example given by Zave in [219]. There, Zave
presents a number of different scenarios with respect to call-forwarding, which
show how difficult it is to say what is the correct behaviour of a system. One
such scenario is the case where a telephone number t1 is forwarded to another
one t2, and t2 is forwarded to t3. Then the question that arises is, should a call
to t1 be routed to t2 or to t3? Zave sees two cases: in the first one she considers
what she calls a follow me situation, i.e., when the forwarder expects to be in
an unusual place (t2) and wishes his calls to follow him. Then she considers
what she calls a delegate situation, i.e., when the forwarder expects to be
unavailable and wishes to delegate to another person the responsibility of
answering his calls. Then she says that the call should be routed to t2, if it
is a follow me situation, and to t3, if it is a delegate one. She explains this by
noting that in the former case the forwarder will be where t2 is and assumes
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that it was the owner of t3 who has asked for forwarding of calls to t3 to
somewhere else. On the other hand, in the delegate situation, the person who
has been delegated to answer calls (at t2) has himself asked forwarding of calls
to another telephone number (t3), so the call should be routed to that final
number, i.e., t3. Of course, we can easily imagine a follow me situation where
the forwarder first goes to where t2 is and then decides to go to where t3 is,
in which case the call should again be routed to t3. This shows exactly how
difficult it is to describe what the correct behaviour of a real system is.

The particularities of telephone systems are not the only reasons for which
the DFC framework proposed by Zave cannot be used for middleware com-
position. The most important reason that makes it difficult to use is the fact
that problems arising from undesired feature interaction are supposed to be
solved by the architects through rewriting of the specifications. So the diffi-
culty of obtaining multiple candidate compositions, from which we can choose
the most suitable for the system we are developing, remains.

In the case of middleware architectures, however, we can hope to do better
than with telephone systems, because middleware are not as complicated.
This is because telephone systems are effectively connectors for real people
and have to cover all the possible interactions that real people may wish to
engage into. On the other hand, middleware architectures describe connectors
that are used for connecting computer systems. This means that it is a lot
easier to cover all the possible cases of interaction and to classify these into
correct, i.e., desirable, and incorrect, i.e., undesirable, which is impossible to
do automatically for interactions among people.

III.2.3 Architectural Views

When trying to describe the architecture of a system, it soon becomes clear
that there are many users and stake-holders of the system. Each one of them
is interested in different facets of the system and its eventual deployment/use.
This is why the software architecture community has identified the need for
different architectural views [57, 89, 111, 115, 153], each one of which de-
scribes the system from a particular viewpoint that addresses the needs and
interests of a specific group of stake-holders.

A particular example of such views is described in the Reference Model for
Open Distributed Processing (RM-ODP) from ISO/IEC [92, 93, 94]. According
to this model, an architecture consists of five different views: the enterprise,
the information, the computational, the engineering and the technology view. Of
these, the enterprise view deals with the concepts of purpose, scope and poli-
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cies, thus relating to the requirements analysis for the system in question. The
information view captures the semantics of information and information pro-
cessing, while the computational view captures the functional/object-oriented
decomposition of the system. The engineering view describes the infrastruc-
ture required to support distribution in the system and, finally, the technology
view establishes the particular choices of technology made for the implemen-
tation.

Another popular multi-view model of architectures is the “4+1” views
methodology [114], proposed by Kruchten for modelling systems using Uml
[206]. In this methodology, the architecture is divided into four different views
of the system, i.e., the logical, process, physical and development views. Of
these, the logical view describes the object-oriented class-diagrams of the sys-
tem. The process view describes the different processes and how these interact,
thus capturing the concurrency and synchronisation aspects of the system,
while the physical view describes the mapping among the various software and
hardware entities, capturing the distribution aspects of the design. Finally, the
development view deals with the organisation of the software in the develop-
ment environment. Then, these four different views of the same architecture
are linked together with the help of use-case scenarios, which constitute the
“+1” view of the methodology. Figure III.2 shows a copy of Kruchten’s dia-
grammatic description of the “4+1” views methodology. In it, one can also see
the stake-holders who are interested in, and should be involved in, the devel-
opment of each one of the views, as well as particular aspects of the system
that are addressed by each of the views.

The major problem of any multiple architectural views methodology is how
to enforce inter-view consistency. The proposed solution by the “4+1” method-
ology, i.e., the use of use-case scenarios, cannot unfortunately solve this prob-
lem in a satisfactory manner. The informal nature of use-case scenarios, plus
the fact that we can never be certain that we have covered all possible scenar-
ios, makes it difficult to ascertain that views are consistent with each other. As
a matter of fact, even intra-view consistency is not always possible to check,
since views are usually expressed with non-formal notations that do not easily
render themselves to formal reasoning mechanisms. Indeed, Fradet et al. [62]
showed how the lack of formalisation can lead to cases where different people
interpret a particular view in different ways, or where views contain contra-
dictions that can pass unnoticed. One simple example they give to point out
the problem with class diagrams, as these are used in Uml for the logical
view, is shown in Figure III.3. In Figure III.3, nodes (A,B,C,D) are connected
through directed edges, which are typed (α, β, γ, δ). For each of the relations
described by an edge, we associate with it an interval over the natural num-
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bers (called a multiplicity) at each end, where intervals [i, j], [i, i], [i,∞), [0,∞)
are respectively noted as i..j, i, i..∗, ∗. For example, in Figure III.3 the edge
typed α declares that there is a relation among entities of type A and of type
B, where one of the former can be related to zero or more of the latter, while
edge typed δ declares that there is a one-to-one relation among entities of
type C and D. Even though this kind of diagrams seems to be quite formal,
Fradet et al. remind us that they in fact describe a class of graphs, as far as
instances of entities are concerned. Again from [62], they provide two different
instance graphs that are valid instances of the diagram of Figure III.3. These
two instance graphs are shown in Figure III.4.

So we see that even intra-view consistency is difficult to attain in the setting
of Uml, not to mention inter-view consistency. To alleviate this problem, Fradet
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et al. propose a formalisation of the intuitive diagrammatic relations used
in Uml that helps formally reason about them. In the following, we examine
further work that has been done on inconsistent views.

III.2.3.1 Inconsistent Views

The essential problem when having different architectural viewpoints, is
how to keep the different views consistent. Given that some of the concepts
dealt with by some viewpoints may be shared, then it must be the case that
they are described consistently in all the views.

What makes the problem even more difficult, however, is that sometimes
inconsistency of views is advantageous. The work of Kramer, Hunter, Nu-
seibeh, Finkelstein, Easterbrook, et al. [86, 47, 56, 58, 154] studies the case
where the different views are created by many people. In this case, incon-
sistency may sometimes be needed to allow for a more natural development
process. In order to handle inconsistencies, interferences and conflicts that
arise during such a development process, they propose a development frame-
work and system, where people provide logical rules specifying how the system
should behave in the presence of inconsistencies.

A problem that had to be solved first, in order for such systems to work, is
the logical principle that anything follows from contradictory premises, i.e., ex
contradictione quodlibet (ECQ). If |= is a relation of logical consequence then
|= is explosive if, and only if, for every formula A and B, {A,¬A} |= B. Clas-
sical logic, intuitionistic logic, and most other standard logics are explosive.
On the other hand, a logic is said to be paraconsistent [171] if, and only if,
its relation of logical consequence is not explosive. Therefore, the aforemen-
tioned multiple view development framework and system was based on such
a paraconsistent logic, called quasi-classical logic [18, 85]. This logic allows
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developers to provide logical rules which specify how the system should be-
have in the presence of inconsistencies. Thus inconsistencies are tolerated
and are simply used to trigger further user-defined actions. In essence, one
could think of this methodology as a way to construct an expert system about
problematic cases in system design for that system’s particular domain.

Another attempt at easing the use of different views for designs is the work
undertaken in the Systems Level Design Language (SLDL) community [192]
which is designing the Rosetta language. The Rosetta language is used to
investigate how to better model embedded systems. In order to analyse such
systems, one has to use a number of different formalisms. This is because
parts of such a system should be described using a discrete model, while
others need a continuous model to express their properties, e.g., for digital and
analog subsystems respectively. Instead of creating some formalism that tries
to solve all the particularities of the different semantic domains and methods,
they investigate how one can use different formalisms and models. Alexander
[5] suggests that doing so is possible and, indeed, advantageous, since domain
experts can continue using the formalisms they have been used to and obtain
feedback in a formalism that is more natural to them. In order for the analyses
of a system to be complete, he suggests to identify the cases where an event in
one semantic domain interferes with the other domains used to describe the
system. In this way, mappings can be developed from one semantic domain
into another, such as the one presented in [5], for mapping the interactions
between logic and state-based semantics.

A similar approach is taken in [224] where the authors use Z along with
automata and grammars to specify a system. Furthermore, Paige, in [164, 165,
166, 167], studies method integration not only of formal methods such as Z,
LARCH, Csp, etc. but of semi-formal methods, e.g., object-oriented analysis
and design (OOA/D), as well.

Finally, we should mention the work of Issarny et al. [96], who identify
as a promising development process for systems/components the separate
development of different “views”, each one concentrating on a particular non-
functional property of the component/system, i.e., reliability, security, per-
sistency, etc.. Then, they propose different methods one could use to merge
these different views back into a global description of the system/component.
Their work is a precursor to the work described herein; as a matter of fact, the
aforementioned authors themselves have provided valuable help later on with
the formulation of the ideas we are presenting in this document.

Even though composition of views and view inconsistencies may at first
seem useful for our pursuit, there are a number of basic differences. First
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of all, we have seen that views deal with different semantic domains, e.g.,
logical, physical, development, etc.. However, middleware architectures are all
expressed in the same semantic domain; they are simply subparts of that
domain’s view. Additionally, when composing middleware architectures we
have to assume that these are correct. Otherwise, it would be too difficult to
automatically construct correct composite middleware and even more so to
construct multiple candidate middleware architectures. Therefore, the work
on multiple views and inter and intra inconsistency is rather orthogonal and
complementary to the problem of middleware composition. By using multiple
views and possibly multiple notations/methods it would be possible to produce
smaller, and thus easier to understand, specifications of the architectures we
need to compose.

III.2.4 Architectural Unification

Another work that is closely related with architectural views and composi-
tion of these, is architectural unification by Melton and Garlan [137]. There,
the authors examine the quite common production of software designs by
combining and elaborating existing architectural design fragments.

In order to be able to describe such fragments they classify architectural
elements into two types: placeholders i.e., partially-specified elements, and real
or fully-specified elements. Thus, a fragment consists of some real elements
and some placeholders which, once fully specified, will transform the fragment
into a full architectural design.

Then, in order to combine fragments together, they use a process analogous
to unification in first-order predicate logic. When unifying expressions in logic,
one tries to find a substitution of expressions with free variables, which, once
applied to both expressions, produces identical results. To use the example
provided in [137], given “f(x) = g(x)” and “g(3) = 4”, then to show “f(3) = 4” it
suffices to find a substitution that would make “g(x)” and “g(3)” identical, i.e.,
the substitution {x → 3}. Once such a substitution is obtained, it is applied
to both expressions, whereby we obtain the expressions “f(3) = g(3)” and
“g(3) = 4”, which, given the transitivity of equality, leads us to conclude that
“f(3) = 4”.

In order to apply unification to architectural elements, Melton and Garlan
first convert elements to feature structures, i.e., lists of name-value pairs. Then,
they unify two feature structures when the common named features have the
same values, copying at the same time the features that appear in only one of
the two initial feature structures into the unified structure. For features whose
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value is a set, they apply a special rule for unifying them, so that they can unify
sets containing different elements, instead of treating them as constants and
unifying sets only when they are equal. Another rule they apply to sets is that
they ask that the unified set is minimal, as far as the number of elements is
concerned. That is, they try to unify as many pairs of elements from the two
sets as possible. Another case where the unification of features must be done
differently, is when their values differ, but the semantics of the features allows
one to nevertheless unify them. For this case, they identify four possible ways,
such a unification could be done.

Finally, they identify some open issues concerning the use of fragments in
a development process and mention the problem of adhering to design restric-
tions imposed by each fragment when unifying. Such a design restriction, for
example would be that a filter coming from a fragment that uses the pipe-and-
filter style should not have additional ports added to it, except from reader and
writer ports. If this is not the case, then the unified fragments would contain
elements, in this example the unified pipe, that no longer adhere to the design
restrictions imposed by their original styles.

Architectural unification is similar to the horizontal composition of Mori-
coni et al. discussed in Section III.2.1. Like the latter, it leads to results that
resemble the parallel composition of middleware architectures, which we have
seen in Section II.4 and in particular in Figure II.5. Since it is not possible to
verify an architectural fragment, verification of the correctness of the unifica-
tion of the different fragments, can only be done when all placeholders have
been fully specified. This means that we may unify fragments in a wrong way
and only realise this at the end, when we will have finished the specification
of the remaining placeholders. An additional problem with this method is the
fact that Melton and Garlan seem to be interested in obtaining only a single
unification/composition, while we are rather aiming at constructing all possi-
ble compositions. Finally, another problem with unification, is the fact that if
the different middleware architectures contained a common middleware com-
ponent, their unification would contain only a single copy of it. Even though
this may be sufficient sometimes, it is far from certain that this will always be
the case.

III.2.5 Connector Transformations

Finally, we should mention the work of Spitznagel and Garlan [198]. There,
the authors present a compositional approach for constructing connectors.
That is, they introduce a set of operators which transform generic commu-
nication mechanisms, i.e., RPC, to incrementally add new capabilities/non-
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functional properties. In their paper, they give an example of transforming the
Java Remote Invocation mechanism to one that supports Kerberos authenti-
cation.

However, there is a basic problem with this approach, at least with respect
to our goal: the transformations they consider construct a single composite
connector. This means that we do not have the possibility of exploring dif-
ferent candidate compositions to find the one that best matches the current
system being considered by the architect. Unlike Spitznagel and Garlan, we
do not assume that a single transformation can cover all possible uses of such
a composite connector in all systems. Instead, we would like to automatically
and without having to describe possible transformation operators, obtain all
possible compositions. This would not only allow architects to choose a com-
posite connector according to the characteristics of the system they are trying
to describe, but to explore new and unexpected ways of using middleware
components as well.

III.2.5.1 Aspect-Oriented Programming

Finally, we have to mention the work done on Aspect-Oriented program-
ming [9, 17, 33, 50, 51, 72, 103, 117, 149, 150, 159, 163, 200]. Aspect-
Oriented programming has gained momentum as a complementary methodol-
ogy to Object-Oriented programming. Its purpose is to ease the description
of systems, in those cases where Object-Oriented programming is lacking
support, that is, when we would like to localise concerns involving global
constraints and behaviours, such as security, synchronisation, transaction
management, etc.. For example, transaction management is usually scattered
through all different classes and objects which will eventually participate in
the transactions. Aspect-Oriented programming tries to bring these fragments
of code together in a single place, to make their definition easier. Then, de-
velopers use special tools which automatically break up the single definition
and apply appropriate fragments of it to the participants in the transaction,
in a way which is transparent to developers. In some manner, it is similar to
the paradigm of Literate programming [16, 110], introduced by Donald Knuth
with the development of the TEX typesetting system [108, 109]. There again,
the developer is trying to describe the system in a way that is natural to hu-
mans, i.e., write the code as if describing it to some person, and rely on a
special program, called the weaver, which will take the fragments describing
different parts of the system and produce the final code by weaving them to-
gether in the correct order. Our attempt at composing software architectures
can be thought of as an attempt at constructing an aspect which describes
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how to weave together the different architectural elements so as to obtain
the required non-functional properties. Indeed, the work of Spitznagel and
Garlan [198], which we described in Section III.2.5, can be considered as an
attempt at such a construction, since they try to construct a special compo-
sition operator for enhancing a simple connector with additional properties.
Therefore, Aspect-Oriented programming has the same problems with com-
posing architectures as the work of Spitznagel and Garlan. By using it, we can
only define a single composition and cannot investigate all different possibili-
ties. Additionally, like the transformation operator of Spitznagel and Garlan, it
is the architect himself who has to define the aspect which will implement the
composition and we cannot obtain it automatically. Finally, Aspect-Oriented
programming and its related tools usually focus on a rather low level, i.e., on
the implementation, and not at the high, architectural level we wish to ap-
ply the composition. Having said that, we must mention that Aspect-Oriented
programming is an interesting idea which could very well prove helpful at a
later stage in the composition of software architectures. That is, it could be
used at the end, to ease the implementation of the composed architectures.

III.3 Composition of Modules

In the automotive industry, a huge number of modules have already been
developed, for the numerous embedded systems used in automobiles. Develop-
ers are constantly trying to reuse these modules when building new systems,
by composing them together. However, their huge number, makes it extremely
difficult to identify candidate modules for composition. Additionally, when can-
didate modules are finally identified, the big number of them, which is needed
for a complete system, makes it extremely tedious to compose them together.
This leads to many errors, which decrease productivity and slow down the
construction of new automobiles. As a result of this phenomenon, Milam and
Chutinan published the “Model Composition and Analysis Challenge” [141],
where they ask for a method which automatically composes available modules
into a final system. The most important property they are interested in, is that
signals exchanged by the modules should be correctly matched according to
their type.

A first attempt at solving the problem of automatic module composition
can be found in [204]. There, Tripakis considered abstractions of the modules
currently used by the automotive industry. In Tripakis’ abstraction, modules
are simple black boxes with input/output ports. The only additional informa-
tion he uses is a compatibility relation of the input and output ports, which
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allows him to correctly match the various signals exchanged among the black
boxes. Tripakis shows that in the general case, the composition problem is
NP-Complete. If, however, the number of module instances to use is known a
priori, or each module instance has at most one input and at most one out-
put port, then Tripakis shows how to transform the problem to equivalent
problems of polynomial complexity.

This work is the closest to composition of middleware architectures. It
provides a valuable theoretical background and identifies the limits of any
composition method. However, there are two problems. First, Tripakis, follow-
ing the Model Composition and Analysis Challenge, only aims to identify a
single composition. Even though he tries to find the “best” one, by making
use of a user-provided optimisation metric, this is different from our goal of
producing all possible compositions. Indeed, the different possible middleware
compositions we are trying to construct, will differ in many ways, some of
which cannot be described by a simple metric. Such differences include, but
are not limited to, the throughput of the composite middleware architecture,
its memory requirements, its reliability, etc.. Additionally, the compatibility
relation he is using is not general enough for our purposes. Indeed, in Chap-
ter V, we show that such relations can lead to many incorrect solutions. That
is, even though these solutions are correct from a signal matching perspec-
tive, they are, nevertheless, completely erroneous, as far as the behaviour of
the composed middleware components is concerned. As we will show later in
Section IV.1, in middleware architectures signals, i.e., messages exchanged,
are mostly of the same, generic type. This only helps to aggravate in our case
the aforementioned problem of constructing erroneous compositions which
are correct, as far as the compatibility relation is concerned.

III.3.1 Composition of Linear Architectures

Another approach similar to ours is the work of Steffen et al. [199]. There,
the authors propose an automatic synthesis method for linear process models,
i.e., for systems where each component has a single input and a single output
port. To synthesise a system, they ask the user to provide them with a linear
time temporal logic property, which gives an abstract description of the sys-
tem’s structure. For example, such a property could state that a component
A should appear before another component B, that a component C should be
present eventually, etc.. Then, they synthesise all possible compositions of the
available components that match this property. So, unlike Tripakis, who tries
to find the “best” composition, they try to construct all different possibilities,
which is our goal as well. However, unlike Steffen et al., we do not want to con-
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strain the architectures to linear ones but we wish to obtain a method which
can be applied to any kind of architectures. Finally, unlike Steffen et al., we
do not wish that architects describe properties which constrain the order of
components in a composition. Instead, we believe that more abstract proper-
ties should be used, which will allow for finding compositions, which were not
initially expected by the architects. These compositions may well have com-
ponents composed in a counterintuitive manner and yet provide the required
non-functional properties. Therefore, by not forcing architects to describe a
particular order, we are able to investigate a larger set of solutions.



IV Composition as Model
Checking

This chapter presents our method for automatically composing software ar-
chitectures which was first reported in [107]. This method was designed with
a particular interest towards middleware architectures and their automatic
construction based on simpler, more basic middleware architectures. As men-
tioned in the preceding chapters, these middleware architectures are general
connection mechanisms which provide non-functional properties, such as se-
curity, reliability, etc.. By having a method to compose them together, we can
easily obtain more complex middleware architectures that provide multiple
non-functional properties and identify those which provide the best match to
the needs of a particular system under construction. Thus, the different ar-
chitectures obtained by composing different middleware architectures are to
be subsequently evaluated by the architect of a system against a number of
different properties, such as throughput, response time, size of the memory
footprint, number of different elements (hardware or software) needed, etc..

IV.1 Composing Middleware Architectures

As we have already seen in Section II.4, in order to provide multiple non-
functional properties to the application layer, we have to weave the middleware
architectures, providing each one of these properties, in an appropriate man-
ner. To do this, architects first consider one of the initial middleware architec-
tures as the basic one, upon which they will build the composed middleware
architecture. Then, they search for places in it, where they can insert the mid-
dleware components of the other architectures, so that they can provide the
other non-functional properties to the application layer. As Steffen et al. [199]
showed for linear architectures, there are usually more than one possible way
to construct such a composition. Since we do not know a priori which com-
posed middleware architecture is more suitable to the system we are trying to
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construct — indeed, we could probably find different systems that would be
better served by different compositions — we cannot choose one of them as
being the best one, at least at the stage of creating the possible compositions.
This would happen at later stages, when other concerns are studied, such
as the overall number of components one has to use, the throughput or the
maximum response time offered by the middleware architecture, the memory
footprint, etc..

The above discussion makes it clear that the possible compositions can be
quite numerous. In order to get an insight of their number, we can consider
the case where we want to compose the linear middleware architectures A =
α1 · · ·αn and B = β1 · · · βm. This is, for example, the case when we have two
network stacks. Our goal, then, is to construct all possible stacks C = A⊕B =
γ1 · · · γk, where a γl corresponds either to some αi or to some βj. Since the
compositions will be constructed by inserting the middleware components of
B in A, the total number of components of a composed architecture will be
k = n + m − l, where l is the number of application components of B. The
l application components of B do not appear in a composition because their
rôles will be assumed by components of A. Then, the number of different
compositions is given by the number of different possibilities we have when
placing the m−l middleware components of B inside A. Therefore, the number
of possible compositions will be at most

(
n+m−l

n

)
1.

In the general case of non-linear architectures, i.e., architectures whose
configuration is a graph instead of just a linear connection of their elements,
the problem is more difficult. In these, it no longer suffices to find some or-
derings of the different components which provide the required non-functional
properties. Instead, we must find places in one middleware architecture, i.e., in
the graph describing its configuration, where we can insert middleware compo-
nents of the other architectures. To take the example of Spitznagel and Garlan
[198], if we want to provide a secure remote method invocation (RMI) in Java
using Kerberos, then we must find appropriate places in the implementation
of the RMI where we can insert the components implementing the functional-
ity of Kerberos. The fact that we can no longer assume that the architectures
are linear, means that we now may have multiple paths on which we need
to apply such transformations. That is, if a component has a fan-out degree
larger than 1, i.e., multiple output ports, then we may have to add as many
copies of the components of the other architecture, as the fan-out degree. This
means that we may need multiple copies of the components we are inserting
to be able to fulfill the requirements. As Tripakis showed in [204], when there
is no known upper bound on the number of copies we may need, then the

1
(
n+m−l

n

)
= (n+m−l)!

n!∗(m−l)!
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problem of composing is NP-complete. However, when composing middleware
architectures we can calculate such an upper bound by examining the initial
graphs, i.e., configurations. For doing this, we define as the multiplicity of an
architecture Arch, M(Arch), the product of all fan-out degrees greater than 1
(see the definition in Formula (IV.1)).

M(Arch)
def
=

∏
c∈elements(Arch)

max
(
1, fan-out-degree(c)

)
(IV.1)

This gives us an upper bound of the number of component copies we need to
insert. Since more than one of the initial middleware architectures may have
a multiplicity greater than 1, for calculating the upper bound of the number of
copies we have to multiply them all. To see why this is indeed an upper bound
of the number of copies which we may need, it suffices to consider the case
illustrated in Figure IV.1, where after component Ai, of architecture A, we
have placed (copies of) component Bn from architecture B, and followed that
with (copies of) component Aj, again from A. If components Ai and Bn are

Ai

Bn

Bn

Aj

Aj

Aj

Aj

Aj

Aj

Bn

Figure IV.1: Effect of fan-out degrees on copies needed

the only ones in their respective architectures with a fan-out degree greater
than one, then, we will have to provide 3 ∗ 2 = 6 copies of the Aj component
and those following it. It is easy to see that this is the product of the fan-out-
degrees of the components of the two architectures. Therefore, the final upper
bound of the number of copies of the architectural elements we may need,
when composing Arch1 with Arch2, is bounded as shown by Formula (IV.2).

Number-of-copies(Arch1 ⊕ Arch2) ≤M(Arch1) ∗M(Arch2) (IV.2)

This factor increases the complexity of the problem, because we do not know
beforehand how many of these copies we may be needing.
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IV.1.1 Searching for Valid Compositions

To restate our goal, we are given two middleware architectures A1 and A2,
which provide two different properties i.e., A1 |= P1 and A2 |= P2. These prop-
erties can be independent, e.g., A1 provides secure communication and A2

provides reliable communication, in which case, (P1 6⇒ P2) ∧ (P2 6⇒ P1).
However, there are cases where one of the middleware architectures provides
a property which is a specialisation of the property provided by some other
middleware architecture. For example, one may wish to compose a middle-
ware architecture providing fault-tolerant capabilities with one that provides
persistency of objects. Even though the first architecture provides a certain
sort of persistency in the form of checkpoints that are used in case of faults to
re-initialise the system components to a known correct state, the persistency
middleware architecture is still of use. One basic reason is that the latter al-
lows for easier access to the persistent state of a component and is usually
more light-weight than fault-tolerant mechanisms are. Another example of this
sort is the combination of middleware architectures offering transactions, i.e.,
the ACID2 properties, and locking. Architects may wish to use a middleware
architecture that offers locking because those offering transactions, usually
need a longer time in order to lock critical sections, exactly because they have
to do a lot more in order to support transactions.

From the two initial architectures A1 and A2, we wish to construct a more
complex one, Af = A1⊕A2, such that Af provides P1⊕P2, i.e., Af |= P1⊕P2.
We use the symbol compose (⊕) instead of the usual logical and (∧) for the
properties because, P2 will be provided to a subset A of A1 and thus to a
subset of Af . This is a direct consequence of the way middleware composition
is performed, i.e., by introducing components of the second architecture at
appropriate places in the first. Therefore, we have that P1 ⊕ P2 6= P1 ∧ P2.
In practice this is not important, if P2 holds for that subset of Af that is of
importance for the system we want to design. Taking again the example of
Spitznagel and Garlan [198] where we want to secure the communication be-
tween the objects communicating through RMI, we are interested in securing
the communication path connecting their respective processes, since we can
always assume that inside a process, communication is already secure.

We must, therefore, search in the set of different configurations C, where
C is the set of all bĳective functions from the set of output ports, i.e., those
requiring interfaces, to the set of input ports, i.e., those providing interfaces,
for all configurations, c ∈ C, that make the property P1 ⊕ P2 true, or find the

2ACID: Atomic, Consistent, Isolated and Durable; the properties a transaction should have.
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set S:
S = {c ∈ C : c |= P1 ⊕ P2} (IV.3)

However, since each different composition c may provide a slightly different
property to the application layer, Pc, it would be impossible for architects to
describe the property P1 ⊕ P2, since it is the disjunction of all these different
properties, i.e., P1⊕P2 =

∨
c∈C Pc. To overcome this problem, an architect can

instead search for a set S ′, where S ′ ⊇ S, by using a property P , which is
provided by all compositions belonging to S:

S ′ = {c ∈ C : c |= P} (IV.4)

When architects are searching for A1 ⊕ A2, a good candidate they can use for
P is P1 itself. This is because when we are composing A1 with A2, we are in
fact enriching A1 with A2, so P1 should at least hold.

Otherwise, architects can search an even larger set of compositions by
using an even weaker property for P . For example, since one of the primary
uses of middleware architectures is to allow application components to com-
municate, an architect can use as property P the lossless, FIFO delivery of
messages, to ensure that the composed middleware delivers all messages and
in the correct order. For proving that this property holds in a model, we have to
perform an inductive proof over messages. In this proof, one has to prove first
that the ith message, mi, sent by one application component to another one
through the middleware layer, will eventually be received by the application
component which is the recipient. Using temporal logic, whose �, �, U , etc.
operators are defined in Appendix A, we have to show:

∀i > 0.sent(mi) ⇒ �received(mi) (IV.5)

Then, one has to prove that for any two messages, mi and mi+j, where j > 0,
sent to the same recipient, mi will be delivered first, or:

∀i > 0, j > 0.¬ (¬received(mi)U received(mi+j)) (IV.6)

A system, however, where message indices can grow without an upper limit
is effectively an infinite state one, which means that it is difficult to automati-
cally prove facts about it, using a model checker. Nevertheless, architects can
use an abstraction, proposed first by Wolper and then by Aggarwal et al. in
[4, 214], which effectively abstracts the infinite messages into a set of three
different message types. This transforms the model of the system from an infi-
nite state to a finite state one. Thus, messages mi and mi+j are named as red
and blue respectively and all others as white. Given a message source which
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sends a message sequence of the form “white∗ red white∗ blue white∗”3, we can
transform the properties shown in Formula (IV.5) and Formula (IV.6) into the
properties shown in Formula (IV.7) and Formula (IV.8):

�
(
sent_red) ⇒ �received_red)

)
(IV.7)

¬ (¬received_red)U received_blue)) (IV.8)

The Boolean variable sent_red is set to true by the message source, just before
sending the red message, see Listing IV.1. The Boolean variables received_red
and received_blue are set to true by the recipient of the messages, as soon as
it receives the red and blue messages respectively, see Listing IV.2.

Listing IV.1: Message source for testing lossless, FIFO message transmission

1 bit sent_red = 0 ;
2 bit sent_blue = 0 ;
3 bit received_red = 0 ;
4 bit received_blue = 0 ;
5

6 proctype Message_Source ()
7 {
8 chan Output ;
9

10 do
11 /* Non-deterministically choose to send a white message. */

12 :: Output ! white
13 /* Choose to send a red message, if one has not already been sent. */

14 :: (! sent_red) → sent_red = 1 → Output ! red
15 /* Choose to send a blue message, if one has not already been sent

16 and a red message has already been sent. */

17 :: (sent_red ∧ ! sent_blue) → sent_blue = 1 → Output ! blue
18 od
19 }

Listing IV.2: Message sink for testing lossless, FIFO message transmission

1 proctype Message_Sink()
2 {
3 chan Input ;
4

5 /* Now receive the messages. */

6 do

3To be more precise, since the last sequence of white messages is an infinite one, it should
be written as whiteω instead of white∗.
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7 :: Input ? m ;
8 if
9 :: (red == m) → received_red = 1 ; /* Received a red message. */

10 :: (blue == m) → received_blue = 1 ; /* Received a blue message. */

11 :: else → skip /* Received a white message. */

12 fi
13 od
14 }

As Wolper showed in [214], this abstraction implements the induction over
the indices i and j used in the properties of Formula (IV.5) and Formula (IV.6)
by using the first series of white messages, emitted by the message source
before the red message, to cover all possible cases for i. Then, it uses the
second series of white messages, emitted by the message source between the
red and the blue one, to cover all possible cases for j, for each i.

Thus, we have seen how it is possible to overcome the problem of con-
structing the composition of the non-functional properties provided by the
architectures we want to compose, by either using directly the non-functional
property of the basic middleware architecture, or by using an even weaker
property which should be provided in general.

IV.2 Composition of Architectures as a Model Check-
ing Problem

In Section II.3.3 we saw how to map architectural elements into Promela
model elements. Since the architect has also a way to express the property, P ,
that composed architectures should provide, we can try to construct all pos-
sible compositions and check which ones of these indeed provide the required
property. We can automate this if we assume that we have a mechanism, called
the Binder from now on, permitting us to bind, i.e., configure, the available
architectural elements in a non-deterministic way. Non-determinism is used
when choosing the various bindings, so as to let the Binder free to examine all
possible cases. By describing the compositions providing P as errors, we can
use a model checker to search for them automatically. To do so, we can ask
the model checker to verify that there does not exist a configuration, i.e., set of
bindings of component ports to connector rôles, which provides the required
property P . This can be expressed using branching-time temporal logic as in
property Φ, defined by Formula (IV.9).

Φ = ¬E [(¬Binder@bound)U (Binder@bound ∧ AP )] (IV.9)
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If the model checker can find counterexamples to property Φ, then it will effec-
tively report, through these counterexamples, those configurations for which:
there is an execution path (E), where P holds for all sub-paths (A), once the
Binder process reaches the position (@) labelled bound at its process model,
(see Appendix A for a description of the symbols used in Temporal Logic.)

IV.2.1 Composing with the Spin Model Checker

Even though there has been a proposal for allowing Spin to verify full Ctl∗

properties [209], currently Spin can only verify Ltl ones. This means that Φ,
defined by Formula (IV.9), cannot be verified directly with Spin, since it is not
an Ltl formula (it contains path operators). Therefore, we must transform
it from a branching-time property to a linear-time one. If we simply dispense
with all branching-time operators, i.e., E and A, we would then obtain property
ΦLtl, shown in Formula (IV.10).

ΦLtl = ¬(¬Binder@bound U Binder@bound ∧ P ) (IV.10)

The counterexamples produced for property Φ will indeed be produced for
property ΦLtl as well. To see why, let us consider a trace, τ , i.e., a set of
successive states of an execution of the model, belonging to the set of coun-
terexamples produced for property Φ. Then τ will consist of a path in which
(¬Binder@bound)U(Binder@bound ∧ AP ) is true. Assuming that P is an Ltl
property, then AP is equivalent to P itself, see [31], so we can rewrite the
above as: (¬Binder@bound)U Binder@bound ∧ P . This being the negation of
ΦLtl, it is evident that τ will belong to the counterexamples of ΦLtl as well.
The difference between the two is the following. In branching-time properties,
the temporal operators quantify over the paths that are possible from a given
state. In linear-time properties, however, the operators describe events along
a single computation path. Therefore, Φ allows us to describe the states at
which a configuration of the composed architectures providing the required
property P has been found. On the other hand, ΦLtl describes the particular
computation paths that are produced from these states.

IV.2.1.1 Composition in Two Stages

This is exactly why ΦLtl is not easy to work with. If we ask Spin to produce all
counterexamples for it, then for each composition, i.e., a set of port-rôle bind-
ings, Spin will produce counterexamples for all possible computations paths
for this particular composition, i.e., for all possible interactions of the archi-
tectural elements. For the particular Message-Source process that we have
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(described in Section IV.1.1), which produces an infinite set of message se-
quences of the form “white∗ red white∗ blue white∗”, Spin will identify an infinite
number of counterexamples and, thus, of traces. Therefore, we have to identify
the configurations providing P differently. One such way is to break up prop-
erty ΦLtl into two parts. That is, first, use property Φ′

Ltl, see Formula (IV.11),
to ask Spin to identify all possible compositions and then, for each one of them
ask it to verify that each of these compositions provides P , i.e., that property
Φ′′

Ltl, shown in Formula (IV.12), holds.

Φ′
Ltl = ¬ �Binder@bound (IV.11)

Φ′′
Ltl = P (IV.12)

This means, that instead of running Spin once and asking it to construct and
verify at the same time the compositions providing P , we run Spin in two
stages. In the first stage, we use Spin with Formula (IV.11) to simply construct
all possible compositions, be they correct or not. Then, in the second stage
we use Spin with Formula (IV.12) to verify which compositions, among those
constructed in the first stage, indeed provide P .

IV.2.1.2 The Binder

Having seen how we can use property Φ with the Spin model checker to
identify compositions of the architectures which provide the given property P ,
we now examine the Binder in further detail. We have seen in Section II.3.3
that we can model the binding of a particular component’s port to a connec-
tor’s rôle in Promela by using a communication channel, which is shared by
both the component and the connector. This communication channel will be
subsequently used by both the component and the connector for communicat-
ing through their respective port and rôle. Channels are automatically created
for each different port of a component, when creating a new instance of that
component (see Section II.3.3). Then, a special Promela process, i.e., init ,
collects these channels and passes them as arguments to the instances of the
connectors, according to the bindings of ports and rôles that are described by
the architectural configuration, see lines 193–229 of Listing II.2. The Binder
process is used instead of the init one, to non-deterministically assign chan-
nels to port and rôle pairs, ignoring the initial configurations. Thus, it can be
seen as constructing all bĳective mappings from the set of ports to the set of
rôles. Like init , the Binder instantiates the instances of the components (and
their copies) and stores the different channels, used by them at their ports for
communicating, in an array, which we call channels . Then, it starts instan-
tiating the instances of the connectors. However, unlike the aforementioned
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init process, which uses the architectural configuration for determining the
channels to pass as arguments to these instances, i.e., as the channels that
they should use for their respective rôles, the Binder chooses the channels
non-deterministically from the set of all available channels. Finally, after hav-
ing bound all ports and rôles, i.e., assigned the channels used by the various
ports to particular rôles, it finishes by arriving at a position labelled bound ,
where it stops. Property Φ and Φ′

Ltl, in Formula (IV.9) and Formula (IV.11)
respectively, make explicit use of this position, i.e., Binder@bound . They use it
for describing the state in an execution of the model, where all bindings have
been performed and, from then on, the different processes can execute the
protocols defined by the respective architectural elements they describe.

The non-deterministic assignment of channels to pairs of ports and rôles
can be obtained by storing channels in the channels array in a non-deterministic
manner. That is, when we are storing the channel that is to be used for com-
munication with the ith port in the system, we do not place it in a predefined
position of the channels array, according to the initial configurations, but
store it in some arbitrary position instead. Given Promela’s non-deterministic
choice operator, choosing an arbitrary array position can be done as shown
in Listing IV.3. A simple bookkeeping, for knowing which positions of the
channels array we have already used, suffices for completing the modelling of
all the different port/rôle configurations. Listing IV.4 gives the major parts of
the Binder mechanism/process, i.e., how it stores the channels used by ports
at positions in the channels array, which are chosen non-deterministically,
thus constructing all possible configurations.

Listing IV.3: Choosing a number non-deterministically

1 /* Choose a number from 1 upto No_of_Choices (inclusive), where

2 No_of_Choices is received from the channel ND_choice.

3 Send the choice made to ND_choice. */

4 proctype ND_chooser()
5 {
6 byte No_of_Choices, choice ;
7

8 do
9 :: ND_choice ? No_of_Choices →

10 if
11 :: (No_of_Choices > 0) → choice = 1
12 :: (No_of_Choices > 1) → choice = 2
13 :: (No_of_Choices > 2) → choice = 3
14 ...
15 :: (No_of_Choices > 252) → choice = 253
16 :: (No_of_Choices > 253) → choice = 254
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17 :: (No_of_Choices > 254) → choice = 255
18 fi ;
19

20 /* choice ∈ [1, No_of_Choices] */

21 ND_choice ! choice
22 od
23 }

Traces, corresponding to counterexamples for the property Φ, will contain
the messages printed at line 37 of Listing IV.4, thus allowing us to identify the
particular port-rôle bindings which lead to a composed architecture providing
the required property P . Spin is particularly helpful in this respect, because
its verifier (pan ) can be instructed to report all errors, instead of just the
first one4. Thus, we can find the configurations that were used for arriving
at composed architectures which always provide the property P we need, by
simply analysing the error trails we obtain when verifying property Φ.

We finish the discussion of the Binder with an observation we made during
our experimentation with it. When we ask Spin to produce traces for all errors,
we may cause it to produce an infinite sequence of traces. So the models we
construct should be written with this observation in mind. One example of
problematic code is the code provided in Spin’s on-line manual itself [197],
shown in Listing IV.5. This code is used to produce a “random” value, i.e., it
chooses non-deterministically a number from 0 to 255. Unlike the code we
provided in Listing IV.3, this code will produce an infinite number of traces,
even though the possible values it can produce are only 256. This is because
there are infinite ways it can reach each one of these values, e.g., for the
value 0, it can produce 0 right away, or choose to increase and decrease
the nr variable once, twice, etc., ad infinitum. Therefore, architects should
be particularly careful when describing behaviours to avoid cases like this
one. That is, they must ensure that each different case they allow in a choice
operator can be made in only one way.

IV.3 Assessment

In this chapter, we have shown how it is possible to transform the com-
position of middleware architectures into a model checking problem. We have

4This is achieved by changing the default command line option, -c1 , which instructs pan
to stop at the first error encountered, with the command line options -c0 -e . These options
instruct pan to find all errors (-c0 ) and to produce an execution trace for each error found
(-e ).
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Listing IV.4: Randomly binding input and output ports

1 /* To communicate with ND_chooser, a rendez-vous channel */

2 chan ND_choice = [0] of { byte } ;
3

4 active proctype Binder()
5 {
6 chan channels[CHANNELS], current_channel;
7 bit position_used[CHANNELS]; /* Is channels[i] used or not? */

8 int i, target, UnCh, r ;
9 i = 1 ; UnCh = CHANNELS ; /* UnCh: remaining unbound channels */

10 do
11 :: (CHANNELS > i) → break
12 :: else →
13 /* current_channel contains the channel used by the i th port */

14 current_channel = ... ;
15

16 /* Choose a random number between 1 and UnCh (inclusive) */

17 ND_choice ! UnCh ; /* Non-deterministic choice’s upper limit */

18 ND_choice ? r ; /* Choose a number r ∈ [1, UnCh] */

19 target = 1 ; /* Now, find the r th unused channel */

20 do
21 :: (CHANNELS > target) → break
22 :: else →
23 if
24 :: (position_used[target]) → break
25 :: else →
26 if
27 :: (1 == r) → break /* Found it. */

28 :: else → r--
29 fi
30 fi ;
31 target++
32 od ;
33

34 /* Channel of i th port assigned to role target; mark it as used */

35 channels[target] = current_channel ;
36 position_used[target] = true ;
37 printf ("channels[%d] = %d\n", target, i) ;
38

39 UnCh-- ; /* We now have one less unbound channel */

40 i++
41 od ;
42 bound: ... /* At this point all ports are bound */

43 }
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Listing IV.5: Choosing a number non-deterministically - (II)

1 proctype randnr()
2 {
3 byte nr ; /* force a value modulo 256 */

4 do
5 :: nr ++ /* randomly increment */

6 :: nr -- /* or decrement */

7 :: break /* or stop */

8 do ;
9 printf ("nr: %d\n") /* nr: 0..255 */

10 }

shown the additional modelling elements, i.e., the Binder, needed to automate
the construction of compositions using a model checker. Additionally, we have
shown how architects can easily find a property, which effectively makes pos-
sible the discovery, among all possible compositions, of (a superset of) the
compositions of the initial middleware architectures providing the properties
required by the system they are building. This reformulation of the problem
allows us to describe it more formally and obtain a description of it, which is
easily amenable to automated methods for solving it.

However, as we explained in Section IV.1, the number of possible compo-
sitions is too big. Therefore, the aforementioned approach is applicable only
for architectures of an extremely small size. In the following chapter, we iden-
tify ways to introduce constraints in the search performed, which allow us to
investigate the composition of larger architectures.
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V Constraining the Search Space

As we have seen in the previous chapter, the number of possible compositions
we can construct from two middleware architectures is too big to explore them
all. Indeed, the Binder process will try to construct compositions by finding
all possible mapping among the N ports and N rôles, which means that it
will investigate N ! (i.e., N factorial) different cases. Among these, very few will
eventually provide the required properties. For architectures of even medium
size, the first stage described previously, where we try to construct all pos-
sible compositions, will most surely fail, due to the state explosion problem.
Therefore, we will not even have the chance to arrive at the second stage (see
Section IV.2.1.1), where we verify which of the constructed compositions pro-
vide the property P .

It becomes obvious that if we want to apply composition of middleware
architectures in a realistic setting, we have to constrain the first stage, as
much as possible. In this way, we will be able to construct only a small subset
of all possible compositions and avoid the state space explosion problem. In
this chapter, we propose a set of constraints, which exactly allow such a
reduction.

V.1 Constraining Through Structure

To discover the constraints that we can use when constructing possible
compositions, it suffices to examine the information at our disposal that we
have not used so far. From the initial architectural descriptions of the middle-
ware we are composing, we already use the behaviour descriptions of the com-
ponents and connectors at the second stage, where we search for compositions
providing P . However, we have not at all been using the initial configurations
of the middleware architectures we are composing, i.e., the structural infor-
mation which describes how middleware components should be connected
together for the middleware to implement the desired mechanisms. This is
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exactly the information we can use for constraining the possible compositions
we construct during the first stage.

Our argument is the following. If the initial middleware architectures man-
age to implement mechanisms providing the properties we desire, they do
so, not only thanks to the behaviour of their components, but thanks to the
collaboration of these components as well. That is, the data-flows, i.e., the
overall configuration, implemented inside them are crucial for allowing them
to accomplish their task. Therefore, we can assume with a high degree of con-
fidence, that most of the compositions which will eventually provide property
P , will preserve these data-flows as well. This assumption is, of course, sim-
ply a heuristic. Indeed, we cannot prove that there will never be a composition
providing P , in which the initial data-flows are not preserved. However, we
conjecture that the chances of this happening are too small to justify the re-
sources needed for searching these additional cases. Thus, the engineering
trade-off behind this heuristic tries to balance the size of the state space we
have to explore for finding possible compositions, versus the computational
resources we use for performing this search. By confining ourselves to just
those compositions, which preserve the initial data-flows, we obtain a state
space that we can search within practical limitations and within which we
have a great probability to find many, if not all, of the compositions providing
P .

Before describing how we use the preservation of data-flows for constrain-
ing the search space, we first give formal definitions of the constraints, so that
we can have a clear understanding of what compositions we will be construct-
ing.

V.1.1 Formal Definition of Structural Constraints

We start the formalisation of the structural constraints by examining them
in the simpler setting of linear architectures. Once we have given the defini-
tions for this simpler sub-case, we provide the respective ones for the general
case of non-linear architectures.

V.1.1.1 Constraints for Linear Architectures

The preservation of data-flows constraint means that if two architectural
elements ci and cj were directly bound in one of the initial architectures, then
there should be a data-flow between them in the composed architectures as
well. If ci and cj are middleware components, then we can allow middleware
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components from the other architecture to be introduced between them. This
is a direct consequence of the fact that middleware components are highly
reusable by design and should have very good implementations as far as treat-
ment of erroneous cases is concerned. As such, they can usually handle input
from a very broad category of components. For example, a middleware compo-
nent that compresses messages before they are sent over the network should
be able to receive input from any other middleware component. Therefore,
we do not constrain their use but allow all possible compositions of middle-
ware components. Cases where this assumption is not valid are removed at
the second stage, when we verify that the composition provides the property
P . Indeed, this unconstrained use of middleware components has two ad-
vantages. First, it allows architects to identify new, unexpected uses of the
components. Second, it can reveal cases where the middleware components
cannot cooperate, even though they were expected to do so. In other words,
this assumption can also help us debug the available middleware components
with respect to their degree of reusability and inter-operability. We do not,
however, allow middleware components from the same initial middleware ar-
chitecture to be introduced between ci and cj, because then we no longer
respect the data-flows of that architecture.

Let us assume that for an architecture, s, we have a predicate directly
connected, →s, which is true for two components ci and cj, only when these
are directly bound together. Then, we can define for a composed architecture,
s′, a new predicate indirectly connected, ;s′, which is true for two compo-
nents ci and cj of the same initial architecture, only when there is a path
connecting them, i.e., the initial data-flow between them is preserved, and all
other components appearing between them in the path are from a different
initial architecture. The indirectly connected predicate can be defined with the
following recursive (on ci) definition:

ci ;1⊕2 cj =
ci →1⊕2 cj

∨
∃ck 6∈ Architecture(cj).ci →1⊕2 ck ∧ ck ;1⊕2 cj

(V.1)

In the definition shown in Formula (V.1), the index 1⊕ 2 to the indirectly con-
nected and the directly connected predicates refers to an architecture com-
posed from the first and second architectures. The definition demands, that
for ci and cj to be indirectly connected in a composition of their architecture
with another one, either they have to be directly connected in the composed
architecture itself or they have to be connected through a series of components
ck, which do not belong to the same initial architecture as cj (and, of course,
ci, since ci and cj are from the same initial architecture).

One should note that the indirectly connected function ;s′ would be equal
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to the transitive closure of the directly connected function, i.e.,
∗→s′, if not for

the constraint we place on the second clause of the definition in Formula (V.1)
upon the intermediate elements, ck. With this constraint we are asking that
intermediate components should not belong to the same architecture as the
target cj. If that is not the case, that is, if for all paths leading from element ci

to element cj there is an element ck of their initial architecture placed among
them, then the data-flow between ci and cj from their initial architecture will
no longer be preserved. So, the constraint we are imposing on the compositions
we create is that, if two components were initially directly connected, then they
should be indirectly connected in the composed architecture. Or, more formally:

∀n ∈ {1, 2}. ∀ci, cj ∈ Architecturen. ci →n cj ⇒ ci ;1⊕2 cj (V.2)

Having seen how middleware components should be composed together,
we now turn our attention to the application components, i.e., the rôles of
the middleware architecture that will be assumed by some specific application
components of the final system. We have seen that middleware components
are highly reusable by design and, therefore, can be assumed to work in many
different settings and composed freely. However, since we aim at producing
composed middleware architectures which should be as reusable as possible,
so as to maximise their utility, we should pay special attention to the kinds
of messages we force application components to accept in these compositions.
These messages should place as few assumptions as possible on the capa-
bilities of the application components, so as to insure that most, if not all,
application components will be able to use the composed middleware archi-
tectures we construct. Therefore, it becomes apparent that when we do allow
a middleware component to send messages to an application one, these mes-
sages should be “application friendly”. That is, the messages should be using
formats and carrying data that can be understood by most application com-
ponents. To take the example of the two middleware architectures presented
in Figure II.4 in Section II.4, we should not be sending to application compo-
nents messages which are compressed, or broken into packets. To solve this
problem, we impose a new constraint which, unlike the one for middleware
components, is quite conservative. To allow a middleware component to send
messages to some application component in a composed architecture, the for-
mer must have been already doing so in its initial architecture. This is because
such a use implies that messages emitted by the particular middleware com-
ponent were already considered acceptable by application components from
the architect of that initial middleware architecture. If, on the other hand,
the middleware component was connected to some other middleware com-
ponent in its initial architecture, then we do not allow compositions where
its messages are received by an application component. This is because in
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most cases, the application component would not know how to interpret such
intra-middleware messages. If we define the unary predicate application() to
be true when applied to an application component and false otherwise, we can
describe the aforementioned constraint as:

∀ci, cj ∈ Architecture2.(ci →2 cj ∧ ¬application(ci) ∧ ¬application(cj))
⇒

∀ck ∈ Architecture1.

 (ci ;1⊕2 ck ∧ ck ;1⊕2 cj)
⇒
¬application(ck)

 (V.3)

In the constraint described with Formula (V.3), the index 2 of the directly
connected predicate in the first line, refers to the second architecture, i.e.,
Architecture2. We should note here that Formula (V.3) demands that not only
middleware components should not be directly connected to application ones
in a composed architecture, if they were not already connected to application
components in their initial architecture, but that they should not be indirectly
connected to application components either.

V.1.1.2 Constraints for Non-Linear Architectures

In non-linear architectures, the basic ideas remain the same but we must
adjust the constraints described with Formula (V.2) and Formula (V.3), to
take into account the copies of components introduced, as well as the fact
that we can have multiple data-flows entering and leaving a component. The
multiple data-flows complicate the constraints, because now we have to take
into account all possible paths when we construct a composition. To show
why “non-linear” architectures pose additional difficulties when composed, let
us look at an example of composing two architectures, shown in Figure V.1,
where the first, i.e., Figure V.1(a), has multiple heterogeneous links. As is
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(a) (b)

Figure V.1: Two architectures with multiple heterogeneous links
(Application components are drawn with ellipses and middleware ones with boxes.)

shown in Figure V.2, we composed each path after component A separately.
On the first path we placed component X before B and Ψ after it. On the
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Figure V.2: Inability to compose architectures with multiple heterogeneous
links

second path we added (a copy of) component X after Γ. However, if we try
now to merge the two paths together, we see that it is no longer possible
to continue the composition with the second architecture after ∆. Indeed, the
first path demands Ω as the next component from the second architecture, i.e.,
Figure V.1(b), while the second path demands Ψ to come afterwards. Therefore,
when some of the paths meet at a component like ∆, which we shall call the
fan-in component, we must ensure that if we have used a particular set of
components from the second architecture at one path, then we have used the
same set for the other paths as well. This is to make sure that we can continue
applying the second architecture after that component, which is not the case
in Figure V.2. However, when the fan-in component has multiple output ports
itself, e.g., as shown in Figure V.3, then it may well support paths reaching
it with different components from the other architecture. This is due to the
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Figure V.3: A different architecture with multiple heterogeneous links

fact that we can always choose different “next” components from the other
architecture, for each of the outgoing paths. Thus, we ask that the number
of different sets of components we use to compose each incoming at a fan-in
component path, should be less or equal to the number of output ports of the
fan-in component. In this way, we can continue adding different components
in the different paths that leave the fan-in. Figure V.4 shows how this could be
done when composing the architecture of Figure V.3 with that of Figure V.1(b).
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As we can see, even though we placed components X and Ψ on the top path
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Figure V.4: Composing architectures with multiple heterogeneous links

and (a copy of) component X on the lower path connecting A with ∆, we can
still continue the composition. Indeed, we can subsequently place Ω on the
top path and (copies of) Ψ and Ω on the lower path connecting ∆ with S.

To formally define the constraints in the general case of non-linear archi-
tectures, we start with the generalisation of the indirectly connected predicate,
which takes into account copies of components as well. So, if we define Cs(ci)
to be the set containing all copies of component ci in a composed architecture
s, or simply the singleton {ci} if there are no additional copies, we can define
the indirectly connected predicate for sets of copies, as:

Cs(ci) ; Cs(cj) ⇔

 (∀ck ∈ Cs(ci).∃cm ∈ Cs(cj).ck ; cm)
∧
(∀cn ∈ Cs(cj).∃ch ∈ Cs(ci).ch ; cn)

 (V.4)

In other words, we say that in a composition s a set of copies of a component
Cs(ci) is indirectly connected with a set of copies of another component Cs(cj),
if each copy in the former is indirectly connected with some copy in the latter
and for each copy in the latter there is a copy in the former which is indirectly
connected to it.

So now, Formula (V.2) will become as shown in Formula (V.5).

∀n ∈ {1, 2}. ∀ci, cj ∈ Architecturen. ci →n cj ⇒ Cs(ci) ;1⊕2 Cs(cj) (V.5)

Formula (V.5) states that if two components were directly connected in their
initial middleware architecture, then their sets of copies should be indirectly
composed in the composed architectures. In the example we have shown in
Figure V.4, this constraint is respected, since C(X) ; C(Ψ) and C(Ψ) ; C(Ω).
Indeed, we have C(X) = {X, X′}, C(Ψ) = {Ψ, Ψ′} and C(Ω) = {Ω, Ω′}. In
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the given composition, we have X ; Ψ ∧ X′ ; Ψ′ ∧ Ψ ; Ω ∧ Ψ′ ; Ω′,
which, according to Formula (V.4), means that the sets of copies are indirectly
connected.

Respectively, Formula (V.3), becomes Formula (V.6):

∀ci, cj ∈ Architecture2. (ci →2 cj ∧ ¬application(ci) ∧ ¬application(cj)) ⇒
∀cn ∈ Cs(ci), cm ∈ Cs(cj), ck ∈ Architecture1.

((∃cl ∈ Cs(ck).cn ;1⊕2 cl ∧ cl ;1⊕2 cm) ⇒ ¬application(ck))
(V.6)

The constraint described with Formula (V.6) states that in the paths connect-
ing copies of two middleware components (ci, cj) which were directly connected
in the second architecture, only (copies of) middleware components (ck) can be
placed from the first middleware architecture.

Thus, we now no longer talk about components of the composite architec-
ture, but we focus instead on sets of copies of the components.

V.2 Constraints and Model Checking

Now that we have formally described the constraints that we wish the com-
posed architectures to abide to, we can embed them in the method presented
in Chapter IV for constructing the compositions through model-checking. Un-
fortunately, it is not at all easy to express the aforementioned constraints
using Promela, because we effectively have to describe particular graphs, i.e.,
configurations, that we consider correct. Instead, we can use these constraints
to construct a set of constraints, which is weaker but, at the same time, eas-
ier to express in Promela. This weaker set of constraints effectively forms a
port-rôle compatibility relation, like the one used by Tripakis in [204].

V.2.1 Transforming Structural Constraints to a Compatibil-
ity Relation

The compatibility relation is obtained from the aforementioned constraints,
i.e., Formula (V.5) and Formula (V.6), by restricting ourselves to the cases
where we try to connect architectural elements that come from the same initial
architecture. In such a case, instead of indirect connections in Formula (V.5)
and Formula (V.6) we can use direct connections and thus check locally that
the constraints are respected. For example, Formula (V.5) says that two com-
ponents from the same initial configuration should be connected through a
series (possibly empty) of components from the other architecture (this is
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a consequence of the indirect connection we are using, see Formula (V.1)).
Therefore, when we try to connect directly two components from the same
initial architecture, Formula (V.5) demands that these should be directly con-
nected in their initial architecture as well. Thus, according to Formula (V.5),
two components from the same initial architecture are compatible, when they
were initially connected together, or:

∀n ∈ {1, 2}.∀ci, cj ∈ Archn.ci →Archn cj ⇒ compatible(ci, cj) (V.7)

With this compatibility relation we ensure that we are not connecting such
elements “backwards”. Similarly, we can use the constraint presented in For-
mula (V.6) to find those components of the second architecture, which can
be directly connected to application components of the first one. So, we have
that a middleware component of the second architecture is compatible with
an application component in a composed architecture, only if it was directly
connected with an application component in its initial architecture, or:

∀ci ∈ {x ∈ Arch2 : ¬application(x)}.
∀cj ∈ {x ∈ Arch1 : application(x)}.
∃ck ∈ {x ∈ Arch2 : application(x)}.ci → ck ⇒ compatible(ci, cj)

(V.8)

In order to use the constraints presented in Formula (V.7) and Formula (V.8)
with our method, we have to change the Binder. Now, when the Binder exam-
ines whether channel, i.e., port, target can be bound to rôle i, it not only
has to verify that it has not already bound this channel to some other rôle,
but it also has to verify that the target channel is compatible with the ith

rôle. Sometimes, the Binder will reach a state where it can no longer find a
compatible channel to bind to a rôle, because all remaining channels/ports
and rôles are incompatible with each other. These are exactly the cases we
wish to remove from the state-space. In these cases, the Binder blocks and
never reaches the position labelled bound in its code. Listing V.1 shows the
code of the Binder along with the code using these constraints.

Listing V.1: Binder with constraints on the possible bindings

1 active proctype Binder()
2 {
3 int i, target, candidates, r, tmp ;
4 bit channel_bound[CHANNELS] ;
5 bit channel_compatible[CHANNELS][CHANNELS] ;
6

7 run ND_chooser() ;
8 channel_compatible[1][1] = false ; /* Pair-wise role-port compatibility. */

9 channel_compatible[1][2] = true ;
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10 ...
11 channel_compatible[CHANNELS][CHANNELS] = false ;
12

13 i = 1 ;
14 do
15 :: (CHANNELS > i) → break
16 :: else →
17 /* Find the number of unbound ports that are compatible with this role. */

18 candidates = 0 ;
19 target = 1 ;
20 do
21 :: (CHANNELS > target) → break
22 :: else →
23 if
24 :: (channel_bound[target]
25 ∨ !channel_compatible[i][target]) → skip
26 :: else → candidates++
27 fi ;
28 target++
29 od ;
30 /*

31 If the following fails, it means we’ve bound the roles the wrong way

32 so far and we’ve got no acceptable way to continue for the rest.

33 */

34 if
35 :: (0 == candidates) → goto block_no_candidates /* No compatible ports */

36 :: else → skip
37 fi ;
38 /* Choose a number between 1 and candidates (inclusive). */

39 ND_choice ! candidates ;
40 ND_choice ? r ;
41 /* Find the rth unbound and compatible with the ith role channel/port */

42 target = 1 ;
43 do
44 :: (CHANNELS > target ) → break
45 :: else →
46 if
47 :: (channel_bound[target]
48 ∨ !channel_compatible[i][target]) → skip
49 :: else →
50 if
51 :: (1 == r) → /* Found a compatible channel/port. */

52 tmp = target ;
53 break
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54 :: else → r--
55 fi
56 fi ;
57 target++
58 od ;
59 Inputs[i] = tmp ; channel_bound[tmp] = true ;
60 printf ("MSC: Binder: Inputs[%d] = %d\n", i, m) ;
61 i++
62 od ;
63

64 bound:
65 printf ("\n Binder: Channels bound.\n \n") ;
66 goto the_end ;
67

68 block_no_candidates:
69 do
70 :: true → skip
71 od ;
72

73 the_end :
74 skip ;
75 ...
76 }

In lines 8–11 of Listing V.1 we see how the compatibility relation of ports-
rôles is declared using the channel_compatible array. Line 9, for exam-
ple, declares that rôle number 1 is compatible with port number 2. Then, in
lines 17–29 we count the candidate ports that can be bound with the rôle
under consideration. If there is none, we force the Binder process to block
in lines 34–37 by making it jump to label block_no_candidates at line 68
where we enter an endless loop. Else, we non-deterministically choose one of
the candidates in lines 39–58 and bind it with the current rôle. If all rôles get
bound, then the Binder process reaches eventually the code labelled bound

at line 64, so the property shown in Formula (IV.11) will become false and
an error trace will be produced. Then we can extract the configuration of the
composition constructed by the Binder, by examining this error trace and,
more specifically, the messages printed at line 60.

One more optimisation that we apply, is to substitute line 61, which it-
erates over rôles in increasing order, by a succession order that is sorted
relatively to the number of constraints of each rôle, in descending order. If,
for example, rôle k has the most constraints, it is in our advantage to bind it
first. This way, we avoid examining all possible cases where we have bound
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the rôles up to k − 1, just to find that no ports compatible with k exist. As an
example, assume that we have 3 ports and their respective rôles, for which
channel_compatible[2][1] = false , channel_compatible[2][2] = false ,
channel_compatible[3][3] = false , and all other pairs are compatible.
Then line 13 becomes:

i = 2 ; /* Start with role 2. */

since rôle 2 has the most incompatible ports (2). Line 61 is now substituted
by the following code, which processes rôle 3 after 2 and rôle 1 after 3.

if
:: (2 == i) → i = 3 /* Bind role 3 after 2. */

:: (3 == i) → i = 1 /* Bind role 1 after 3. */

:: (1 == i) → i = CHANNELS /* To exit the loop. */

fi

In this particular example, the verifier has to check only 2 different cases,
instead of the initial 6. That is, it checks the cases where the bindings are
the pairs {(2,3), (3,1), (1,2)} and {(2,3), (3,2), (1,1)}. Without it, it would have
to check the following cases: {(1,1), (2,2), -}, {(1,1), (2,3), (3,2)}, {(1,2), (2,1), -},
{(1,2), (2,3), (3,1)}, {(1,3), (2,1), -}, {(1,3), (2,2), -}, where cases containing the
element “-” are those for which no candidate port existed for the third rôle
after having bound the first two and thus the Binder would block.

It is evident that the port-rôle compatibility relation, defined by the con-
straints defined with Formula (V.7) and Formula (V.8), is not as expressive as
the constraints defined with Formula (V.5) and Formula (V.6). For example,
if we directly connect a middleware component from the second architecture,
which is not compatible with application components, with a middleware com-
ponent from the first architecture, then we can no longer be assured that an
application component will not be receiving input from such an incompatible
component. When we try to verify the property P given by the architect at the
second stage of composition (see Section IV.2.1), these additional cases will
have to be proved wrong by the model-checker. To speed up the verification
for these cases, we added signatures to messages exchanged. Thus, archi-
tectural elements must sign messages before passing them over to the next
recipient. Additionally, each time an element receives a message, it checks
that the message has been signed by all those which would have signed it in
its initial architecture. When the signatures are not correct, the architectural
element which has received the incorrectly signed message causes a deadlock,
thus signalling right away that this is an incorrect composition. In this way,
compositions that do not adhere to the “conservation of existing data-flows”
rule are quickly identified as incorrect solutions and the verification process
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with respect to the property shown in Formula (IV.12) is sped up.

V.2.2 An Example of Composing Architectures - I

In this sub-section we present an example of composing two middleware
architectures with the aid of a model checker. We show how one can in-
troduce constraints to reduce the state-space and what kind of structurally
invalid compositions are obtained, where invalidity is defined according to the
constraints described with Formula (V.7) and Formula (V.8).

The middleware architectures to be composed are shown in Figure V.5.

E D

R

R

ED

M
id

dl
ew

ar
e 

L
ev

el
A

pp
li

ca
ti

on
 L

ev
el

Encode−Decode Architecture

C_E−D S_E−D

1 1 1

2 2 2

L

M
id

dl
ew

ar
e 

L
ev

el
A

pp
li

ca
ti

on
 L

ev
el

F M

Fork−Merge Architecture

C_F−M
S_F−M

S_F−M

L1

2

1

2

(a) Encode-Decode: An architec-
ture providing secure communica-
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(b) Fork-Merge: An architecture
providing reliability for a commu-
nication medium

Figure V.5: Two middleware architectures
(C=Client, S=Server, E=Encode, D=Decode, F=Fork, M=Merge, R=Reliable FIFO

connector, L=Lossy FIFO connector. As always, boxes denote middleware
components, circles denote connectors, ellipses denote application components, i.e.,

rôles, and arrows denote bindings & data-flows.)

The Encode-Decode architecture, shown in Figure V.5(a), is a general ex-
ample of an encoded communication between a client and a server. The encod-
ing may be used for security reasons, i.e., encryption, for increased through-
put, i.e., compression, for error-detection, i.e., error-correction codes, etc.. The
Fork-Merge architecture, shown in Figure V.5(b), provides reliable communi-
cation, by replicating the application server, broadcasting through different
unreliable communication links the client requests to the server replicas us-
ing the Fork component and then merging the replies of the replicas using the
Merge component. The Fork-Merge architecture also contains an element (the
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Fork component) with multiple output ports, i.e., ports whose interface is a re-
quired one. Both architectures implement a reliable, FIFO connector between
the client and the server. Therefore, when composing them, we use as property
P in Formula (IV.12), the property of lossless, FIFO delivery of messages. This
property was introduced in Section IV.1.1 in two parts, as Formula (IV.7) and
Formula (IV.8). That is, we have:

P =
�

(
sent_red) ⇒ �received_red)

)
∧

¬ (¬received_red)U received_blue))
(V.9)

This means that we wish every composition of Fork-Merge and Encode-Decode
to provide a lossless, FIFO connector to the application components which will
be using it.

In order to find the results of Fork-Merge ⊕ Encode-Decode and Encode-
Decode ⊕ Fork-Merge, we first have to calculate the maximum number of
copies needed. Since M(Fork-Merge) = 2 and M(Encode-Decode) = 1, we need
at most 2 copies of each architectural element. Unlike other elements, copies
are assumed to be compatible with themselves. This allows the Binder to re-
move them from the compositions it constructs, by short-circuiting them, i.e.,
connecting them to themselves. For the case of Fork-Merge ⊕ Encode-Decode,
the compatibilities used are shown in Table V.1. In it, each line shows which
elements (in the columns) are compatible with the element at the start of the
line, that is, if the latter can be connected to them and send them input. For
example, the client C (in the first line) can send messages to E, E2, E3, E4,
D, D2, D3, D4, F & F2. The compatibilities of their copies are similar, with
the only difference that we allow them to be compatible with themselves. For
example, C2, the copy of C, is compatible with the same architectural elements
as C, as well as, with itself. As we can see in Table V.1, all elements of the first
middleware architecture, i.e., Fork-Merge, are compatible with the elements
of the second. That is, we have that compatible(x, y) = 1, for all x ∈ { C, C2, F,
F2, L, L2, L3, L4, S, S2, S3, S4, M, M2 } and y ∈ { E, E2, E3, E4, D, D2, D3, D4 }.

When we used Spin to search for possible compositions, the Binder could
not construct the possible configurations, since they were too numerous. In-
deed, since we have 24 channels in total, which we must use to bind the output
ports of the elements to their input ports, we have to examine 24! ≈ 6.2 ∗ 1023

cases 1. Even though the compatibility relation diminishes this number, there
are still too many cases left, to explore them exhaustively. So, instead of com-
posing the architectures we presented in Figure V.5, we composed parts of
them. For the Encode-Decode middleware architecture we used the path from

124! = 620, 448, 401, 733, 239, 439, 360, 000.
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Table V.1: Compatibility relation for Fork-Merge ⊕ Encode-Decode
(Incompatible bindings are marked with 0, i.e., false, while compatible ones are left
empty. C2, E2, D2, F2, M2, L2 & S2 are the copies of C, E, D, F, M, L & S respectively,

while E4, D4, L4 & S4 are the copies of E3, D3, L3 & S3.)

C C2 E E2 E3 E4 D D2 D3 D4 F F2 M M2 L L2 L3 L4 S S2 S3 S4

C 0 0 0 0 0 0 0 0 0 0 0 0
C2 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0
E2 0 0 0 0 0 0 0 0 0 0 0
E3 0 0 0 0 0 0 0 0 0 0 0 0
E4 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0
D2 0 0 0 0 0 0 0
D3 0 0 0 0 0 0 0 0
D4 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
F2 0 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0
L3 0 0 0 0 0 0 0 0 0 0
L4 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0
S2 0 0 0 0 0 0 0 0 0 0 0
S3 0 0 0 0 0 0 0 0 0 0 0 0
S4 0 0 0 0 0 0 0 0 0 0 0

the Client to the Server, since the path from the Server to the Client is exactly
the same. For the Fork-Merge architecture, however, we had to use all the
path from the Client to the Merge component. These are shown in Figure V.6.
The Client application component was effectively the Message-Source process,
presented in Listing IV.1, on page 62. The Message-Sink (see Listing IV.2) was
placed at the end of the paths shown in Figure V.6. The Promela models used
to compose these two middleware architectures are given in Appendix B. For
them, the Binder found 28 different cases for Encode-Decode ⊕ Fork-Merge
and 90 different cases for Fork-Merge⊕ Encode-Decode. On a Sun workstation
with 256MB RAM, these were obtained in less than 10 seconds in total.

When we tried to verify which ones of these 118 compositions did indeed
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Client_E-D Encode Message_SinkReliable FIFO Decode

(a) Encode-Decode, as used with Spin

Client_F-M Fork Message_Sink

Lossy FIFO_1

Merge

Lossy FIFO_2

(b) Fork-Merge, as used with Spin

Figure V.6: Encode-Decode & Fork-Merge as used with Spin

provide property P , Spin could find counter-examples for the structurally in-
valid compositions almost instantly. Unfortunately, for the structurally valid
ones, it would take Spin almost 3 hours to prove them correct. However, we
observed that when we verified two, or more, structurally valid compositions
together, Spin would take again 3 hours to prove them correct. Apparently, in
this case the model checker was taking advantage of similarities among the
different configurations that allowed it to verify parts of the different config-
urations once, for all of them. Therefore, when trying to verify the candidate
configurations we run Spin on each of them with a timeout of 1 minute, stop-
ping it if it had not finished by that time. We then collected the configurations
which were not verified in 1 minute and verified them all together, in the
aforementioned manner. Using this method, we collected 4 candidate con-
figurations for Encode-Decode ⊕ Fork-Merge and 5 cases for Fork-Merge ⊕
Encode-Decode in 8.5 minutes and 21 minutes, respectively. Then we verified
them in 2 hours, 48 minutes and 3 hours, 10 minutes, respectively. So, we
obtained in total 9 different candidate solutions in less than half an hour and
fully verified them in under 6 hours.

Two obtained solutions for Fork-Merge ⊕ Encode-Decode are shown in
Figures V.7(a) and V.7(b). In Figures V.8(a) and V.8(b) we can see two solu-
tions for Encode-Decode ⊕ Fork-Merge. In both figures we have added the
missing elements, so as to make the results easier to understand. Application
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components are drawn with ellipses, middleware components are drawn with
boxes, and connectors with circles. Elements belonging to the first middleware
architecture are drawn with a bold frame.
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Figure V.7: Two solutions for Fork-Merge ⊕ Encode-Decode

One example of an invalid candidate configuration that we obtained during
the first phase of Fork-Merge ⊕ Encode-Decode can be seen in Figure V.9.
We can easily see that even though the compatibility relation is honoured by
this configuration, i.e., the output of E1 is connected to the input of R1, F to
that of L1 and L2, L1 to that of S_FM1 and S_FM2 to that of M, the original data-
flows no longer exist. As we have already seen, this alone is a very strong hint
against the suitability of this composition. Indeed, the model checker verified
that this composed architecture did not provide the required property.

V.3 Using Constraints to Construct the Composi-
tions

We have seen that in order to use the constraints with the Binder we had to
simplify them and then had to simplify the architectures as well. This makes
it clear that it is not easy to find possible compositions and, most importantly,
that the solution based on the Binder mechanism does not scale. So, even
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Figure V.8: Two solutions for Encode-Decode ⊕ Fork-Merge
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Figure V.9: A (wrong) candidate configuration for Fork-Merge ⊕ Encode-
Decode

though this approach may be interesting from a theoretical point of view, we
need something different if we want to compose middleware architectures in
practise. The reasons for these problems, as we have aforementioned, is that
the constraints (i.e., the compatibility relation of input/output ports), which we
can express in a model, are not expressive enough to describe the initial data-
flows. In addition, it is also difficult to describe the cases where a middleware
component eventually sends messages/requests to an application component,
even though in its initial architecture it was supposed to send messages only
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to another middleware component. Finally, the Binder has to create all copies
of the different elements and try to bind them, even though they are not always
needed.

For all these reasons we have decided to bypass the first stage of the method
(see Section IV.2.1.1), where we let the Binder construct possible compositions.
Instead, we construct the possible compositions ourselves using an algorithm
which processes the two graphs, i.e., configurations, of the initial middleware
architectures. Then we can use the results as input to the second stage of the
method, to verify which ones of them provide the property P .

In the following sub-sections, we show how this is done for the simpler
case of linear architectures and then for non-linear architectures.

V.3.1 Constructing Linear Architectures

As we showed in [106], it is fairly easy to construct compositions of lin-
ear architectures that respect the constraints shown in Formula (V.2) (see
page 74), and in Formula (V.3) (see page 75). It suffices to create a binary tree
where at each node we choose the next component either from the first archi-
tecture or from the second, pruning at the same time those branches which
do not abide by the aforementioned constraints. By keeping the last element
chosen from each architecture, last i where i denotes the ith architecture, our
choice of the next component at each point is done as follows:

(1) If choosing an element cj from architecture i, then the last i element must
have been directly connected to cj in Architecturei.

This ensures that the constraint of Formula (V.2) is preserved at each
step.

(2) Whenever the last2 component chosen from the 2nd architecture was a
middleware one and it is incompatible with application ones, then we
prohibit choosing from the 1st architecture, if its next component is an
application one. When at subsequent steps we have chosen a component
from the 2nd architecture, which is compatible with application ones, we
allow again choosing the next component from the 1st architecture.

This ensures that we always abide by the constraint of Formula (V.3).

(3) To be able to choose an application component from the 2nd architec-
ture, the last element already chosen should be an element from the 1st

architecture.
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This is done, so as to be able to assign the rôles of the application com-
ponents of the 2nd architecture to elements of the 1st architecture.

(4) Finally, we remove all cases where we have chosen all the elements from
the 1st architecture and we still have elements from the 2nd one.

This is because we would have no way to place these elements in the
composed architecture. However, it is not the same case when we have
been left only with elements from the 1st architecture, because if we
are not in case No. (2), then we can continue selecting from the 1st

architecture, until we have no elements left.

Assuming that the Fork-Merge architecture has only a single server replica,
then we can transform it to a linear architecture, Fork-MergeL. This allows us
to use the above algorithm for constructing all structurally valid compositions
of Fork-MergeL ⊕ Encode-Decode and Encode-Decode ⊕ Fork-MergeL. When
doing so, we obtain 11 compositions for Fork-MergeL ⊕ Encode-Decode and
15 compositions for Encode-Decode ⊕ Fork-MergeL. However, in Section IV.1
we had calculated the maximum number of different compositions to be

(
n+m

m

)
,

where n is the number of components of the first architecture and m is the
number of middleware components of the second. Therefore, for the above
cases, where Fork-MergeL has 4 components (C_F-M, F, S_F-M, M) of which
2 are application ones (C_F-M, S_F-M) and Encode-Decode has 6 components
(C_E-D, E1, D1, S_E-D, E2, D2), again with 2 application ones (C_E-D, S_E-D),
we would expect something like

(
4+(6−2)
(6−2)

)
= 70 and

(
6+(4−2)
(4−2)

)
= 28, respectively.

The difference, from just 26 results in total against 98 we were expecting, is
due to the additional constraints we have imposed on the compositions. For
example, when composing Fork-MergeL with Encode-Decode, we remove 2 all
compositions where we have something like “C_F-M → E1 → F → S_F-M →
· · · → D1 → · · ·”, since in these we have placed the application component
S_F-M between the middleware component E1 and the middleware component
D1. The results for Fork-MergeL ⊕ Encode-Decode and the results for Encode-
Decode ⊕ Fork-MergeL are shown in Figure V.10 and Figure V.11 respectively.
In these, the connectors of the Fork-Merge and Encode-Decode architectures
have been removed, so that the reader can more easily follow the configuration
of the components and the functionality these compositions finally provide.

2To be exact, we never construct them in the first place.
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Figure V.10: Results for Fork-MergeL ⊕ Encode-Decode
(Boxes denote middleware components and ellipses denote application components.)

V.3.2 Constructing Non-Linear Architectures

It is evident that we cannot always transform non-linear architectures into
linear ones. We now present a way to compose non-linear architectures to-
gether, which abides to the constraints given for non-linear architectures in
Section V.1.1.2, i.e., the constraint shown in Formula (V.5) on page 77 and
the constraint shown in Formula (V.6) on page 78.
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The first problem with non-linear architectures is that we can no longer
speak of a “next” element. Indeed, during a composition we may arrive at an
element from which multiple paths follow. As we stated in Section V.1.1.2,
when discussing about Formula (V.5), it is possible then that we use different
sets of elements from the other architecture, for each of these paths. The above
discussion assumes that we have a way to identify elements where different
paths meet. We call such components fan-in components, e.g., Merge, and
the components that split a path into many, e.g., Fork, fan-out components,
making an allusion to the fact that they have a fan-in, respectively fan-out,
degree greater than 1. The reason for which we want to be able to identify fan-
in nodes is that we want to ensure that we can continue the composition, once
we have reached them. This, as aforementioned in Section V.1.1.2, effectively
means that there exist enough paths leaving the fan-in node, to accommodate
all the different sets of elements we have used when composing the paths
leading to the fan-in.

V.3.2.1 Finding Fan-Out and Fan-In Nodes in the Configuration Graph

From the previous discussion it follows that when composing non-linear
architectures, the first thing we must do is identify the fan-out and fan-in
nodes of them. Identifying fan-out nodes is easy; it suffices to examine the
number of connections an element makes to other elements, when we choose
it in one of the cases presented in the list on page 89. Given now a fan-out
component, c, we say that the components where all paths leaving c meet,
belong to the set Fan-In(c), while the components where only some of these
paths meet, belong to the set Partial-Fan-In(c). These sets can be computed in
the following manner. First we identify all elements with a fan-in degree greater
than 1. Then, we do a breadth-first search for each one of them, starting each
time from a different “next” element of the fan-out node. That is, for the Fork-
Merge architecture, we identify first Merge as a potential fan-in node for Fork.
Then we find the shortest path leading from the first lossy connector, L1, to
Merge and from the second lossy connector, L2, to Merge, since L1 and L2 are
the next elements of Fork. Subsequently we place into the set Partial-Fan-In(c),
the first common node in any two paths that start from a different next element,
which is exactly the definition of the partial fan-in node we gave above. To
calculate the set Fan-In(c), we traverse the set Partial-Fan-In(c) and for each
element of it, we check whether all next components of c can lead to that partial
fan-in component. If this is the case, then we place this fan-in component into
the set Fan-In(c) as well.

Having obtained these two sets of fan-in nodes, we can identify when we
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reach such a node. Then, depending on its fan-out degree, we check the fol-
lowing. First, if the fan-out degree of the fan-in is 1, i.e., the fan-in has a single
connection to another element, then the elements of the other architecture,
which we have placed in the paths leading to it, must be exactly the same. If
they are not, then we are in a case similar to the one depicted in Figure V.2, on
page 76, where we are unable to continue with the composition. If, however,
the fan-out degree of the fan-in node is greater than 1, e.g., see the fan-in
node ∆ in Figure V.3, then we might be able to continue with the composi-
tion, even if we have used different elements from the other architecture in
the paths meeting at the fan-in. This, was exactly the case in Figure V.4, on
page 77. As we saw in the discussion at the Section V.1.1.2, what we must
check is that the number of different sets of components we use to compose
each incoming at a fan-in node path, should be less or equal to the number
of output ports of the fan-in component. If this is indeed true, then we can
continue the composition, as before.

V.3.3 An Example of Composing Architectures - II

Applying the above to the case of Fork-Merge ⊕ Encode-Decode, we obtain
15 results, shown in Figure V.12, on page 97. In that figure, S_FM_1 and
S_FM_2 are the first and second, respectively, replicas of the Server component
of the Fork-Merge architecture, see Figure V.5 on page 83. E_1 (D_1) is the first
Encoder (Decoder) used in the path connecting the Client with the Server in the
Encode-Decode architecture and E_2 (D_2) is the second Encoder (Decoder)
used in the path connecting the Server with the Client in the Encode-Decode
architecture, see Figure V.5(a) on page 83. Finally, the primed components,
e.g., E_1’, E_2’, denote additional copies used.

V.4 Assessment

In this chapter we have presented a set of constraints that can be de-
rived from the data-flows present in the initial middleware architectures we
want to compose. We then showed how to use them for obtaining a weaker
set of constraints, which form a compatibility relation among architectural ele-
ments. We incorporated this compatibility relation into the Binder mechanism,
for decreasing the search-space when searching for candidate compositions.
However, the compatibility relation did not prove itself useful in practice, since
it could not substantially decrease the number of possible compositions.

For this reason, we provided ways to construct the valid compositions, with
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respect to these constraints, without using a model checker. In this way, we
managed to construct the structurally correct compositions, which usually
are a lot fewer than the maximum number of compositions we can expect.
Additionally, we can expect them to contain most of the valid compositions,
with respect to the required properties, we are searching for. Thus, we no
longer need to use a model checker for identifying the candidate composi-
tions. Instead, we use the model checker only for verifying which ones of these
candidate compositions are indeed valid with respect to the required proper-
ties. Therefore, we have shown how it is possible to diminish even further the
problem of state-space explosion, when searching for the compositions of two
middleware architectures.

Additionally, we showed that it is possible to speed up the verification of
the required property itself. This was done by running first the model-checker
Spin with a small timeout on the candidate compositions and then collecting
those which could not be verified in that time and verifying them all together.

Finally, we should mention here something we hinted at in Chapter I. That
is, we had stated there that composition of architectures can be used for
debugging middleware components and discovering unexpected ways to use
them. This exactly happened when we composed Fork-Merge with Encode-
Decode. Some of the compositions obtained, shown separately in Figure V.13,
have Encoders sending messages directly to the Merge component.

C_FM

F S_FM_1 E_2

S_FM_2 E_2’E_1’

E_1

D_1’

D_1 M

D_2

C_FM

E_1 S_FM_1 E_2

S_FM_2 E_2’

F

D_1’

D_1 M

D_2

C_FM

E_1

S_FM_1 E_2

S_FM_2 E_2’F M

D_2

D_1

Figure V.13: Unexpected compositions for Fork-Merge & Encode-Decode

These compositions impose on the Merge component the task to merge two
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encoded replies. This will only work if message encryption is a function that
always gives the same output for the same input and all Server_F-M replicas
output exactly the same reply for a certain request, irrespective of previous
inputs and the exact time they received the request. Apparently, this will not
always be the case. In addition, the fact that Merge is receiving the data it
needs in an encrypted form may seem unnatural to many software architects.
Some may have even preferred to remove such compositions early on, through
additional constraints. However, Abadi et al. in [1] show that there are cases
where we do indeed need to process encrypted data. Therefore, we see a case
where architects’ intuition can be wrong and would have led architects to
disregard some compositions, even though these could have been useful for
certain systems. By providing an automated method for the composition of ar-
chitectures, such unexpected compositions will be constructed and presented
to the architects as well. As a matter of fact, architects should investigate
in particular those of the structurally correct compositions, which are shown
later to be invalid with respect to the required property. Sometimes, this may
be just a consequence of a small error in one of the models of the architectural
elements used. However, it can also be an indication of a more serious prob-
lem, that is, of models which were developed with only some of the possible
uses of the element in mind and therefore restrict the possibility of reuse for
these elements.
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Figure V.11: Results for Encode-Decode ⊕ Fork-MergeL

(Boxes denote middleware components and ellipses denote application components.)
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Figure V.12: Results for Fork-Merge ⊕ Encode-Decode
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VI A Uml Tool for Software
Architectures

This chapter presents a Uml-based environment for the construction and anal-
ysis of software architectures which has been developed in the Aster project 1,
see [95, 217]. It starts by offering the reasons for which we have decided to
use Uml as a modelling framework and then shows how one can use it to de-
scribe software architectures. Then we show how it can be used for composing
middleware architectures.

VI.1 Why Uml ?

We have already seen in the introductory chapters that software architec-
tures allow complex systems to be easily described at an abstract level. This
helps both in comprehending the basic structure and functionality of such
systems and to perform a number of quality analysis of these systems at an
early stage. Thus, one can easily experiment with different architectural de-
scriptions for a particular system, and obtain an early idea of its properties
with respect to such qualities as the overall throughput, the reliability of the
system, the degree of security, etc..

Even though the industry has started to see the benefits from using such
abstract descriptions in the development cycle (see for example [10, 89, 157,
194]), the architecture description languages proposed by academia have not
been popular with industry. Rather, industry has been pushing towards the
use of object-oriented modelling methodologies and, more specifically, towards
the use of Uml [205, 206]. A proliferation of tools and related experience has
placed a big initial obstacle, which hinders a transfer to a different modelling
language and set of tools, when these exist indeed. This is why the software

1http://www-rocq.inria.fr/solidor/doc/doc.html

http://www-rocq.inria.fr/solidor/doc/doc.html


100 VI A Uml Tool for Software Architectures

architecture community has been examining the possibility to use Uml as a
basis for describing software architectures.

VI.2 Software Architectures and Uml

Some examples of using Uml for describing software architectures can be
found in [66, 81, 100, 134, 135, 143, 170, 178, 210]. As mentioned in these
references, Uml concepts do not always make a perfect match with the ar-
chitectural ones. One such example is the concept of a component. In Uml,
a component corresponds to an executable software module, which is too re-
strictive for our purposes. For this reason, some researchers have considered
Uml to be inappropriate for describing software architectures.

Nevertheless, we have chosen a different approach. First of all, we have
proceeded in an identification of Uml modelling elements that bare enough
similarities with the software architectural elements we wish to describe. De-
pending on the kind of analysis one wants to perform with an architecture,
different options exist. For example, in the literature one can find an ADL com-
ponent modelled by using one of the Class, Component, Package or Subsys-
tem Uml elements. Then, we have decided to not restrict ourselves to “vanilla”
Uml elements but make instead use of the Uml extension mechanism where
needed, to construct Uml elements that provide a better match to ADL ones.
This extension mechanism is none other than the stereotypes, through which
we can define a new element by using an existing one as the basis and by
adding to it additional constraints and semantics. Thus, it allows us to trans-
form basic Uml elements so that they closer match the modelling elements one
needs when describing software architectures. Finally, we have striven to keep
the extended Uml elements we have constructed as general as possible. This
goal was driven by our wish to be able to model the architectural elements as
these are used in a multitude of different ADLs, instead of concentrating in
just one of them. Therefore, it is possible to translate architectures described
in different ADLs into Uml and obtain architectural elements which are more
specialised for particular application domains and frameworks. For example,
one can specialise the elements we have defined to make them similar to those
used by the C2 ADL [28, 202]. In this way the architectural style would become
message-oriented, which is particularly useful for describing user-interfaces,
among other things.

Before continuing, we first describe some of the Uml modelling elements
which can be used for describing software architectural elements. The most
basic ones are the Class, Component, Package, Subsystem and Association
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Uml elements. The Class element is defined as “a description of a set of ob-
jects that share the same attributes, operations, methods, relationships, and
semantics. A class may use a set of interfaces to specify collections of opera-
tions it provides to its environment.” The Component element is “a reusable
part that provides the physical packaging of model elements.” The purpose of
the Package construct is “to provide a general grouping mechanism. A pack-
age cannot be instantiated, thus it has no runtime semantics; in fact, its only
semantics is to define a namespace for its contents. The package construct can
be used for element organisation of any purpose; the criteria to use for grouping
elements together into one package are not defined within Uml.” The Subsys-
tem construct provides “a grouping mechanism with the possibility to specify
the behaviour of the contents. A subsystem may or may not be instantiable. A
non-instantiable subsystem merely defines a namespace for its contents.” Fi-
nally, an Association defines “a semantic relationship between classifiers; the
instances of an association are a set of tuples relating instances of the clas-
sifiers. Each tuple value may appear at most once.” In the above definitions,
we have also used the Classifier element. A Classifier is a mechanism that
describes “behavioural and structural features, such as an interface, a class, a
datatype and a component.”

In the rest of this section we will present the particular Uml definitions we
are using for each software architecture element.

VI.2.1 Component in Uml

As we have aforementioned, in the attempts to describe a software architec-
ture with Uml, components have been mapped to different modelling elements,
such as Class, Component, Package, and Subsystem. We have already seen
why the Uml Component element is too restrictive compared to an ADL com-
ponent. The Class element, which is another usual choice, does not offer all
the modelling power we would like to provide either. This is because it does
not fully support hierarchical definition of components. Even though a Class
can be composite, consisting of a number of constituent classes, its specifica-
tion does not allow it to contain the interrelationships among its constituents.
Consequently, if we use a Uml Class to map a composite ADL component, then
we will be able to use the Class to describe the different constituents but not
how these are connected together. To achieve the latter in Uml, we would have
to additionally define a Uml Package containing the above Class and a static
structure diagram showing how the constituents of the Class are connected
together. However, packages cannot be instantiated or associated with other
packages, hindering us from using them to describe even more complex com-
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ponents. For all these reasons, we have decided to use the Uml Subsystem
element for modelling an ADL component. In the Uml meta-model, a Subsys-
tem is defined as a subtype of both the Uml Package and the Uml Classifier
[206]. Therefore, Uml subsystems can be instantiated multiple times and asso-
ciated with other subsystems. This makes them a natural choice for building
upon them a modelling element which can be used as an ADL component.

Indeed, all we have to do to obtain such a modelling element is to augment
the definition of the Uml Subsystem with the additional property that it will
provide and require a number of Uml interfaces, to be used at the ports of
an ADL component. The behaviour of the ports of the component is given us-
ing the variable portsProtocol of the ADLComponent and the behaviour of
the component itself is given using the variable bodyProtocol . We have also
added to the definition of the ADLComponent, a Boolean variable called com-

posite . This variable, as its name suggests, will be true when a component
is built from other components and connectors. In this case, the description
of the interactions of these subcomponents is done with a Uml collaboration
diagram, as is usual with Uml Subsystems [205, page 136]. A collaboration
diagram in Uml describes the interaction among instances of modelling ele-
ments. That is, it contains: (i) the instances of the components and connectors
comprising the Subsystem, and, (ii) for each connector (which we describe
with a Uml association) a set of messages, which show the message sequence
used for this connector to allow the connected elements to interact. Figure VI.1
shows the collaboration diagrams for the Encode-Decode and Fork-Merge ar-
chitectures. ADLComponents are drawn with boxes and ADLConnectors (see
next section) with lines, while messages exchanged through the ADLConnec-
tors are drawn as directed arrows. The direction of the arrows defines which
of the connector rôles is the sender and which is the recipient of the message.
These additional properties can be expressed with the Object Constraint Lan-
guage (Ocl) of Uml, a first-order logic notation for specifying constraints on
Uml models. Listing VI.1 presents the Ocl definition of the ADLComponent
stereotype and Figure VI.2 shows a component definition in Uml. In that, we
can see the ports (i.e., In,Out) defined for the Fork component, whether their
interfaces are required or provided (provided and required respectively), as
well as, the behaviour of the In port, expressed using Promela.

Listing VI.1: ADL Component definition in Ocl/Uml

1 ADLComponent:
2 -- Additional Operations --
3 provides : Set(Interface)
4 provides = self.provision.client → select(i | i.oclIsKindOf(Interface))
5
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Figure VI.1: Uml collaboration diagrams for Encode-Decode and Fork-Merge

6 requires : Set(Interface)
7 requires = self.requirement.supplier → select(i | i.oclIsKindOf(Interface))
8

9 portsProtocol : Set(String)
10 portsProtocol = self.extendedElement.taggedValue → select(tv |
11 tv.name = "PortsProtocol").value
12

13 bodyProtocol : String
14 bodyProtocol self.extendedElement.taggedValue → select(tv |
15 tv.name = "BodyProtocol").value
16

17 composite : Boolean
18
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19 -- Well-formedness Rules --
20 self.baseClass = Subsystem and self.extendedElement.Instantiable = true

Figure VI.2: A component definition using Uml

Building upon the definition presented in Listing VI.1 we can define the be-
haviour of a component as an additional property Behaviour. In the same
manner, we can assign to it other non-functional properties, such as its mean
response time, the probability that the component correctly provides a service
for a given duration, etc.. These will allow us to perform a number of differ-
ent analyses on the architecture, such as using the behaviour descriptions to
specify the requirements for the functional properties, verify that the archi-
tecture is deadlock-free, study its reliability/performance qualities at a higher
level, etc..
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VI.2.2 Connector in Uml

Since an ADL connector is an association among a number of ADL com-
ponents which represents the interaction protocol used by them, a natural
choice for specifying it in Uml is by extending the Uml Association element.
We can then map a rôle of the connector to an association end of the Asso-
ciation. Each of these rôles are assigned an interface, which is none other
but the interface of the specific port of the component which will assume the
particular rôle. These interfaces will be either provided or required and it must
always be the case that there exists a required interface matching a particular
provided one and vice versa, for a given connector. The above can be described
in Ocl as shown in Listing VI.2.

So far, our discussion on connectors has concentrated on abstract connec-
tors representing interaction protocols. However, these connectors will even-
tually have to be implemented as an assembly of components implementing
the needed protocol. For example, an abstract CORBA connector can be seen
as a combination of ORB functionality and basic CORBA services interact-
ing through more primitive Rpc connectors. Therefore, it is also necessary to
support hierarchical definition of connectors as well. Unfortunately, a Uml
Association cannot be composed of other model elements. So, in order to de-
fine hierarchically composed connectors we must use another Uml element
called Refinement. A Uml Refinement is defined as “a dependency where the
clients are derived by the suppliers”. The Refinement element is characterised
by a property called mapping. The value of this property describes how the
clients are derived by the supplier. Hence, to support hierarchically defined
connectors, we define a stereotype base class of the standard Uml Refinement
element and then use it to define the mapping among the abstract connector
and the composite component which gives a more concrete description of the
connector. Listing VI.3 shows how to do this using Ocl. Finally, Figure VI.3
shows how the Lossy FIFO connector is defined using Uml. The figure shows
the connector’s two rôles (shown as +sender , +receiver ), as well as, the
behaviour of the Receiver rôle (shown as Role Protocol) and of the connector
itself (shown as Body Protocol), expressed using Promela.

Listing VI.2: ADL Connector definition in Ocl/Uml

1 ADLConnector:
2 -- Additional Operations --
3 interfaces : Set(Interface)
4 interfaces = self.extendedElement.taggedValue → select(tv |
5 tv.name = "Interfaces").value
6
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7 rolesProtocol : Set(String)
8 rolesProtocol = self.extendedElement.taggedValue → select(tv |
9 tv.name = "RolesProtocol").value

10

11 bodyProtocol : String
12 bodyProtocol self.extendedElement.taggedValue → select(tv |
13 tv.name = "BodyProtocol").value
14

15 -- Well-formedness Rules --
16 self.baseClass = Association and
17 self → interfaces() → isNotEmpty() and
18 self.extendedElement.allConnection → forAll(ae |
19 ae.type → requires() → exists(i | self.interfaces() → includes(i) implies
20 self.extendedElement.allConnection → exists(ae’ |
21 ae’.type → provides() → includes(i)))) and
22 self.extendedElement.allConnection → forAll(ae |
23 ae.type → provides() → exists(i | self.interfaces() → includes(i) implies
24 self.extendedElement.allConnection → exists(ae’ |
25 ae’.type → requires() → includes(i))))

Listing VI.3: ADL Connector Refinement in Ocl/Uml

1 ADLConnectorRefinement:
2 -- Well-formedness Rules --
3 self.baseClass = Refinement and
4 self.extendedElement.client.oclIsKindOf(Association) and
5 self.extendedElement.supplier.oclIsKindOf(Subsystem) and
6 self.extendedElement.supplier.stereotype.oclIsKindOf(ADLComponent) and
7 self.extendedElement.supplier.stereotype.composite = true

VI.2.3 Configuration in Uml

Given the aforementioned Uml definitions for components and connectors,
a configuration, i.e., the specification of an assembly of components and con-
nectors, is simply described using a Uml Model. A Uml Model element is defined
as a “an abstraction of a modeled system specifying the system from a certain
point of view and at a certain level of abstraction. . . the Uml Model consists of a
containment hierarchy where the topmost package represents the boundary of
the modeled system”. Therefore, we are describing a configuration with a Uml
Model. The containment hierarchy of this Model has as a top-most package a
composite ADL component representing the overall architecture.

This definition of a configuration has been left under-specified on purpose,
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Figure VI.3: A connector definition using Uml

so that it enables the description of any architectural configuration, as long
as this complies with the well-formedness rules associated with the compo-
nent and connector elements. This results from out concern of supporting the
description of various architectural styles, as they are used in the different
ADLs. Thus, one can introduce additional constraints specific to a particular
style, through the definition of a corresponding extension of the ADL configu-
ration element, possibly combined with extensions of the ADLComponent and
ADLConnector elements.



108 VI A Uml Tool for Software Architectures

VI.3 A Uml-Based Environment for Composition
of Middleware Architectures

Based on the above definitions of the basic architectural elements in Uml,
we have constructed a prototype add-in for a currently available Uml mod-
elling tool. This add-in provides the aforementioned software architecture re-
lated elements to the user of the tool, making it easier for people knowing
object-oriented modelling techniques to describe architectures. Having incor-
porated the architectural descriptions in a Uml environment has a number of
additional advantages, beyond the fact that it is easier for people to describe
architectures. For example, we can use the different possibilities offered by
such a tool to easily implement tools for performing additional quantitative
analyses, see [95, 217]. The current version of the add-in supports the ideas
presented in the work on Attribute-Based Architectural Styles (ABAS) [105]
and offers the possibility to perform performance and reliability analysis of a
system using its architectural description.

We start this section by describing how we obtain the connection graphs
from the initial middleware architectural descriptions in Uml. These graphs
are composed as described in Chapter V to obtain structurally correct compo-
sitions. Then, we use the Promela definitions of the architectural elements to
construct models for each one of these compositions and verify with Spin which
ones indeed provide the required property P , as described in Section V.2.2.

VI.3.1 Constructing Structurally Valid Compositions in a
Uml Environment

To obtain the connection graphs of the initial middleware architectures, we
have to verify first that the connectors used in the Uml description are uni-
directional. If a connector was bidirectional, then we would have a problem
with constructing all the possible compositions. Assume as an example that
we have a bidirectional connector between two components and we wish to
secure their interaction. Then we would need to break up this interaction into
two unidirectional ones, effectively obtaining the Encode-Decode architecture.
Indeed, the Encode-Decode architecture shows how to secure a bidirectional
connection between the Client and the Server components. However, we can-
not automatically transform bidirectional connectors into two unidirectional
ones, because then the Promela models describing the bidirectional connec-
tors would be invalid. Thus, we constrain the collaboration diagrams used by
the architect, to only allow unidirectional connectors. This is done with the
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Ocl constraint shown in Listing VI.4. This constraint ensures that messages
exchanged between two rôles are all in the same direction.

Listing VI.4: Ocl constraint for collaboration diagrams

1 self.interaction → forAll(i |
2 i.message → forAll(m1 |
3 not i.message → exists(m2 |
4 (m1.sender = m2.receiver) and (m1.receiver = m2.sender))))

After having verified that the collaboration diagrams contain only unidi-
rectional connectors, we construct the structurally valid compositions of the
initial middleware architectures by doing the following steps:

(1) We construct the connection graphs for each architecture, i.e., we parse
their collaboration diagrams and do as follows:

(A) For each ADLComponent and ADLConnector instance, we create a
node in the graph.

Taking the example shown in Figure VI.1, the graph for the Fork-
Merge middleware architecture will contain the nodes Client, Fork,
Server1, Server2, Server3 and Merge for the ADLComponents and
the nodes Client-Fork, Fork-Server1, Fork-Server2, Fork-Server3,
Server1-Merge, Server2-Merge, Server3-Merge and Merge-Client for
the ADLConnectors. These are shown in Figure VI.4.

Client Client-Fork

Server_1 Server_1-Merge

Server_2 Server_2-Merge

Server_3 Server_3-Merge

Fork

Fork-Server_1

Fork-Server_2

Fork-Server_3

Merge Merge-Client

Figure VI.4: Nodes in the connection graph of the Fork-Merge architecture
(As always, application components are drawn with ellipses, middleware ones with

boxes and connectors with circles.)
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(B) We use the messages in the collaboration diagrams to infer the di-
rection of the interaction taking place through the ADLConnectors.
For example, in Figure VI.1, the connector Client-Fork between the
Client and the Fork components is assigned a message with a direc-
tion from the Client component to the Fork one. Therefore, we can
construct the directed edges (Client, Client-Fork) and (Client-Fork,
Fork). Figure VI.5 shows the complete graph for the Fork-Merge
middleware architecture.

Client Client-Fork

Server_1 Server_1-Merge

Server_2 Server_2-Merge

Server_3 Server_3-Merge

Fork

Fork-Server_1

Fork-Server_2

Fork-Server_3

Merge Merge-Client

Figure VI.5: The connection graph of the Fork-Merge architecture

(2) We use the connection graphs of the middleware architectures, which we
constructed in step (1), to construct the structurally valid compositions
of them, as explained in Section V.3.

(3) Having constructed the possible compositions, we then perform stage 2
(see Section IV.2.1.1), where we verify which ones of these indeed provide
property P . To do so, we first construct the Promela models for the
architectural elements.

(A) For each different ADLComponent type in a composition, we define:
(i) a Promela process type corresponding to this ADLComponent
type, using the behaviour given by the architect in the respective
bodyProtocol variable, and (ii) Promela procedures for its ports,
using the behaviours given by the architect in the respective port-

sProtocol variable of the ADLComponent.

For each different ADLComponent instance in a composition, we
instantiate a new Promela process instance of the process type to
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which we have mapped the respective ADLComponent type.

(B) For each different ADLConnector type in a composition, we de-
fine a new Promela process type, using the behaviour given in the
bodyProtocol variable of the respective ADLConnector.

Then, for each ADLConnector instance in a composition, we in-
stance a new Promela process instance of the respective process
type.

(C) For each different composition, we construct a different init pro-
cess, just as we did for the ACME architectural description in Sec-
tion II.3.3. That is, the init process will initiate the different pro-
cesses we have created for the instances of the ADLComponents
and the ADLConnectors and pass to the processes of the connec-
tors the appropriate Promela channels, used by the components
they connect to communicate.

(4) Finally, we use the Promela models of the compositions we have con-
structed in step (3), to verify which of the composed middleware ar-
chitectures indeed provide the linear-time temporal property, P , which
must be provided by the architect. This is done in the way described in
Section V.2.2: We first run Spin on each one of the models representing
a composed architecture, with a timeout of a few minutes. Composed
architectures which do not provide P , will be shown to be wrong very
quickly. The ones, however, which do indeed provide P , will usually
need a long time to be proved correct. Thus, those models which could
not be verified in this limited time will very probably be correct. To certify
this, we collect them and verify them all together without any time con-
straints. This, as we saw in Section V.2.2, can sometimes bring a very
big speed-up for the verification.

VI.4 Conclusions

The Uml-based environment for software architectures we have described
in this chapter bridges software architectures with the object-oriented mod-
elling methods currently used. It thus allows the vast majority of people who
are already familiar with the latter to be introduced to software architectures
and provides them with the possibility to use them with an industry accepted
tool. Thus, we hope that we can help software architectures to be more widely
used at industrial settings. We believe that such a wider use of software archi-
tectures will greatly help research as well, since problems identified through
this use may pinpoint cases which have gone unnoticed so far by the academia.
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Introducing middleware architecture composition in this environment has
exactly the same benefits. First, it allows a majority of architects to use the
methods presented in this thesis, using an environment with which they are
already familiar. Thus it allows architects to more easily compose middleware
architectures in practise and investigate the different ways which exist for
obtaining a multitude of non-functional properties for the systems they are
designing. Then, it allows us to further test and refine our ideas, by having
them applied on real-world examples.

We must, however, mention that Uml is not a formal modelling language
as it stands. Most parts of it are only informally or semi-formally defined
and sometimes the relationships among various parts of it are not very clear.
Some criticisms of Uml can be found in [62, 75, 190, 191]. Nevertheless,
there is an ongoing effort to formalise it. As an example, we can mention
[99, 160, 161, 162] and the work of the pUml 2 group [55]. Producing a formal
definition for Uml can have a substantial effect on the quality of Uml models,
since it will allow a rigorous verification of the models and help in clarifying
some of the cases where the current Uml definition is not clear.

2http://www.cs.york.ac.uk/puml

http://www.cs.york.ac.uk/puml


VII Conclusions

In this thesis we have studied the problem of composing software architec-
tures. That is, how it is possible to obtain a new, complex architecture by
composing a number of already existing, simpler ones. Our work was partic-
ularly targeted towards middleware architectures, i.e., software architectures
which describe complex connectors. Complex connectors described by middle-
ware architectures are used to provide to systems a number of non-functional
properties, such as security, reliability, etc. or to allow systems built with dif-
ferent technologies to inter-operate. As computerised systems are becoming
more and more a crucial part of our daily life and their complexity increases
every day, such middleware architectures, in their turn, are becoming more
and more important for their success or failure. However, such architectures
are particularly difficult to construct.

The reasons for which middleware architectures are difficult to construct,
is that a middleware architecture is expected to be highly reusable, so that
we can use it to provide the same non-functional property to many different
systems. At the same time, middleware has to be extremely robust, since all
these systems are relying on its correct functioning. Designing highly reusable
sub-systems, such as middleware architectures, is a particularly difficult task
since architects must think of all possible uses such a sub-system might be
put in and ensure that the sub-system will function properly in all of them.
However, it is impossible to know beforehand how the sub-system will be
used. The only thing that architects can do to ensure a high quality product
is to design and implement it with rigorous methods, i.e., having clear for-
mal descriptions of what the sub-system will provide and what assumptions
they have made during its design and implementation. In this way, the final
users will be able to verify that the assumptions made match indeed the use
they wish to make of the middleware and that the properties it provides are
those needed by the system they are designing. Additionally, existing middle-
ware architectures support only a limited number of different non-functional
properties. This means that currently software architects have to design new
middleware architectures, for the new systems, which they wish to construct.
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Currently, architects have no aid, automated or not, which could help them
in the design of new middleware architectures.

When they have to design a new middleware architecture for providing
multiple non-functional properties, architects have a big incentive in reusing
already existing middleware in order to construct the new, more complex ones.
However, this is not an easy task either. Architects have first to decide, for
each one of the non-functional properties they need, which of the different
existing middleware architectures they are going to use, since different mid-
dleware architectures exist for each non-functional property. Then, each one
of these middleware architectures must be composed with each one of the
middleware architectures providing the other non-functional properties. This
is needed in order to search among the simpler architectures, for those which,
once composed, provide the required properties in the best way for the par-
ticular system architects wish to design. So, architects have to investigate the
many different compositions of all possible combinations among the different
middleware architectures providing each non-functional property. Therefore,
they are quickly faced with a very large set of possible cases, which they must
explore.

For these reasons, we have concentrated upon middleware architectures,
since the benefits from aiding their composition will greatly help decrease
the time and cost needed for designing new systems. By being able to eas-
ily compose middleware architectures, we can also investigate how different
middleware interact and find uses of them which were not considered during
their design and thus are not supported. In this way, we can increase their
degree of reuse and their robustness and decrease the high costs relating to
maintaining and fixing such design oversights.

VII.1 Composing Middleware Architectures

In this thesis we have first of all shown how the problem of composing
middleware architectures can be transformed into a model-checking one. Our
first benefit of this is that it allows us to give a formal description to the prob-
lem. Therefore, we can now more easily understand composition itself, as well
as, its complexity. We have seen in Chapter IV how one can create a model
in Spin’s modeling language, Promela, using the behaviour models of the ar-
chitectural elements of the middleware architectures we want to compose. We
have also seen in the same chapter how architects can then use the property
provided by the most basic middleware architecture, or an even weaker prop-
erty, to express the fact that they are searching for compositions of the initial
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architectures, providing this property.

The complexity of the composition problem being prohibitive for performing
an exhaustive search among the different compositions, we have presented in
Chapter V methods for constraining the search space. We have based these
methods, upon the following heuristic: if we wish the architectural elements
of the initial middleware architectures to provide the properties we require,
then we will have to preserve the data-flows which existed among them in
their initial architectures. To take again the Encode-Decode example used
in Chapter V, in every composition of this middleware architecture with an-
other one, Decoders should receive messages which were initiated from some
Encoder, and not the other way round. The purpose of this heuristic is to
essentially decrease as much as possible the possible compositions we can
construct, so that their construction can be performed using realistic compu-
tational resources. As with any heuristic, we cannot prove that there will be
no valid composition outside the search-space we are constructing with these
constraints. The use of these constraints is simply an attempt to offer a prac-
tical method for obtaining some, if not all, of the solutions to the composition
problem, which is impossible to solve exhaustively.

As explained in Chapter V, the constraints can be divided into two parts.
In the first part, we demand that any composition constructed respects the
data-flows present in the original middleware architectures. These data-flows
are then used as a guide for automatically constructing just the compositions
which are structurally correct, i.e., which contain all the initial data-flows.
In the second part, we take advantage of the different nature of the com-
ponents comprising a middleware architecture. As we have seen, these can
be either middleware components, i.e., those implementing the mechanisms
which eventually provide the required property, or application components,
i.e., those representing the parts of the system which will eventually use the
middleware. The constraints we have introduced for this second part ensure
that we will never send to the application components messages which initially
were exchanged only among middleware components. In this way, we ensure
that we construct compositions of middleware architectures which do not im-
pose any additional constraints on the application, apart from those imposed
by the initial architectures themselves. Therefore, we can expect to construct
compositions which will be highly reusable themselves, just as the initial ones
we started with. Using these constraints, we can quickly construct just the
few compositions which are both structurally valid and offer a high enough
degree of reusability to warrant further investments for their implementation.

Now that architects have an automated method for quickly composing mid-
dleware architectures, they can explore all possible compositions of different
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middleware architectures when searching for one providing a set of particu-
lar non-functional properties. They can easily identify them and analyse them
with respect to a number of different properties, such as performance, reli-
ability, cost, etc.. Therefore, we provide architects an automated method of
constructing and subsequently evaluating all possible compositions of middle-
ware architectures, to find the ones that best match the requirements of the
particular system they wish to support with the composed middleware. So,
now architects no longer have to rely upon their intuition for selecting the
middleware architectures to compose and then for finding the composition it-
self. Apparently, the proposed method will help ease the construction of new,
complex middleware architectures and increase their quality, since now all dif-
ferent possibilities will be identified and carefully scrutinised before selecting
that one, which will be eventually selected.

VII.1.1 Assessing the Degree of Reusability of Middleware
Architectures

The automated composition method we have presented can also be used by
the creators of new middleware for assessing the degree of reusability of their
middleware at the early stage of its architectural conception. They can do so by
trying to compose it with other, already existing, middleware architectures and
studying the possible compositions obtained. In this way, they can identify
cases that should, but are not, working correctly when composed, or cases
which they did not expect to work but work, nevertheless. They can even
discover new possible uses of the middleware components, as was done for
the Merge middleware component in Chapter V.

Therefore, they now have the possibility to identify design oversights and
change the middleware architecture and the specifications of its various archi-
tectural elements before having started to implementing them, in order to pro-
vide a more reusable and robust solution. In this way, they can target a larger
market and offer at the same time a higher quality product, since a lot of com-
patibility problems will have been found and removed early on in the product’s
life cycle. Such problems of unexpected incompatibilities can severely hinder
a middleware solution, since middleware are supposed to be highly reusable
by definition. If a compatibility problem is discovered after the middleware
has been implemented, then changing it to remove the incompatibility may
demand vast changes at a high cost. Thus, removing incompatibilities early
on can significantly decrease the costs for the maintenance of the middleware.
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VII.2 Open Issues and Future Directions

In this section we look upon some of the remaining open issues and fu-
ture directions of this work. First of all, we should mention one point, which
relates to the architectural styles that may be required by the architects. In
some styles, components can only be connected to connectors and connectors
cannot be connected to each other. However, our composition method will
almost always produce such “malformed” compositions. This is because we
have been treating connectors like components when constructing composi-
tions, for the simple reason that they, as well, will be eventually constructed
from some component(s). Thus, for the composition method presented herein,
it is as if we only have components to connect. The connections among them
are in turn assumed to represent simple message passing exchanges, which
is the most basic connector to be used with distributed systems. However,
connecting connectors directly can sometimes produce compositions which
can obviously be optimised. For example, if we have constructed a compo-
sition where a lossy, FIFO connector is connected to a reliable, FIFO one,
then we can obviously replace them by just the lossy connector. Certainly,
what is obvious to a human, is not always easy to automate. Nevertheless, we
could envisage a classification of simple connectors, which would allow us to
construct rules stating how to substitute a number of connectors directly con-
nected together by a single one. Apparently, this cannot be done for all kinds
of connectors, since there will always be new connectors and we cannot know
how to deal with them beforehand. In fact, our work shows exactly how to
construct such new complex connectors. Nevertheless, we believe that being
able to automatically treat most simple cases would help architects in most
cases, especially when we are constructing many compositions.

VII.2.1 Multiple Instances of a Component

Another issue, which merits further investigation, is the case where the
initial middleware architectures contain the same component, e.g., a CORBA
COS Trader, or a Data Base. Then, we cannot know a priori whether we must
have a single copy of it in the compositions we construct, or keep all the
different instances.

If they should be considered as the same instance, then we can use the
architectural unification method proposed by Melton and Garlan in [137],
which we presented in Section III.2.4. With it, we can automatically unify
these instances to a single one. Nevertheless, there will be situations where
we need to keep the multiple instances in the compositions.
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Currently, when constructing the compositions, we assume that all dif-
ferent instances are needed. We then rely on architects to merge/unify the
different instances into a single one, if only one must be present. If architects
would provide us with this information beforehand, however, then we would
have been able to reduce even further the number of possible compositions
constructed. This is because we would have fewer components to compose, as
well as additional structural constraints stemming from the unification of the
different instances.

VII.2.2 Composition at Different Abstraction Levels

Another issue which merits further investigation is the level of abstraction
of an architecture at which we will try to compose it. We have already seen that
architectures are defined hierarchically, by giving at each layer a more detailed
definition of the various components comprising it, possibly by breaking them
up into more concrete (sub-)components and defining the interconnections of
these finer detailed components. This means that we must choose an appro-
priate level of abstraction at which to perform the composition. Up to now, we
have assumed that it is the architects who are responsible for choosing the ab-
straction level of the architectures they wish to compose. However, it does not
make sense to compose at all abstraction levels. That is, at too finely defined
architectures, our method will construct a lot of compositions, which are not
valid in reality. This will happen because in such cases, there are architectural
elements which must be considered as a whole and do no longer work, if we
interpose other elements among them. Thus, it would be beneficial if the cre-
ators of each architecture marked the lowest levels at which composition can
be performed. This, of course, can only be used as an aid, because it may well
be the case that an architect wishes to consider an architectural description
when composing, where some parts of it are described in more detail than
others. Therefore, the tools we use for describing architectures should be able
to produce architectural descriptions which cover multiple abstraction layers,
hiding (or showing) the hierarchical definition of some parts of the system.

VII.2.3 Selecting a Composed Middleware Architecture for
a System

Another issue which needs further investigation is how to help architects
select among the many compositions of middleware architectures constructed.
Even though the results obtained from the composition of two architectures
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are far fewer than theoretically expected, they are still numerous. They be-
come even more so, if we consider the fact that architects have to investigate
multiple solutions for each of the required properties. For example, they have
to compose a number of different security middleware with a number of differ-
ent fault-tolerant middleware, to ensure that they have indeed found the best
solution for the particular system under design.

Therefore, in addition to the composition method, one needs aid in selecting
among the possible results, the most promising ones for the requirements of
a particular system. Here we will present some directions on how such a
selection could be performed.

VII.2.3.1 Selection through Model-Checking

As we have already seen in chapter IV, model checking [31] is a very efficient
and automatic method for removing compositions, which are not offering the
required property. In sub-section IV.1.1, for example, we showed how one
can perform a coarse selection by verifying a weak property, which every
composition providing the required properties should at least provide as well.
In this way, the number of candidate solutions can be diminished at a first
stage. For the examples shown in chapter V, model checking helped us reduce
the 118 initial candidate compositions down to 9 and it only took half an hour
to do so.

Therefore, model checking should be seriously investigated by software ar-
chitects and considered as a part of their day-to-day toolbox. Model checking
has already been used in a number of different industrial projects and it has
already shown its merits. However, practitioners often complain that it is dif-
ficult to construct useful abstractions for a system. This is indeed a problem,
since to find good abstractions one needs a certain experience and knowledge
of the underlying formal basis, as well as, of the implementation techniques
themselves of the various model checking tools. To solve this problem, i.e.,
the verification of more complicated (even infinite state) models, the model
checking community has already produced work on automatic construction of
abstracted models, see for example [14, 15, 34, 38, 63, 71, 78, 121, 181, 208].
These techniques allow a modeller to define a more concrete model of a system
and then to automatically abstract it with respect to the particular property
that should be verified, so as to obtain a smaller and easier to verify model. The
Spin model-checker implements a similar, albeit, weaker mechanism, called
model slicing, which given a model and a property to be verified, identifies
those parts of the model that cannot ever cause the property to change value.
These parts are then removed automatically from the model before verifying
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the property, thus obtaining smaller models and speeding up the verification.

Another complaint of the practitioners is that modelling languages are not
always easy to use. In this direction there has been some work on using real
programming languages for describing models of systems, since these already
provide easy mechanisms for things like data type inheritance and structuring,
user-defined functions, etc.. Additionally, practitioners are already familiar
with them, so they should not have to learn yet another language to use
model checking methods and tools. Some pointers on this work can be found
in [77] for using Java as a modelling language, or in [122] where the modelling
language was Lisp. The hardware community has also looked into this matter,
to see if they could replace high level design languages such as VHDL and
Verilog with either C, C++ or Java, see [144, 172].

Since Spin’s modelling language, Promela, is looking like C and the afore-
mentioned experiments on using real programming languages for describing
models used Spin and Promela as their base, Spin was once again a natural
choice. Compared to other modelling formalisms/languages, Promela is sim-
ple and C-like and there is experience at translating programming constructs
into it. Compared to model-checkers using real programming languages for de-
scribing models, such as the Java PathFinder (see [13, 77]), Spin is a mature
tool and freely available.

VII.2.3.2 Selection through Graph Characteristics

Graph grammars [20, 48, 49, 180] is another possibility for quickly select-
ing among the different compositions constructed. If the architect is particu-
larly interested in particular (sub)-structures, it is possible to describe these
as rules using a graph grammar and then quickly search among the compo-
sitions for those containing the required structures.

However, we should warn here that such a selection can sometimes hide
compositions which are unusual but, nevertheless, provide interesting prop-
erties. One such example is the composition of the Fork-Merge and Encode-
Decode architectures shown in Figure VII.1. This composition imposes on the
Merge component the task to merge two encoded replies. As we have already
seen in chapter IV, this will only work if message encryption is a function that
always gives the same output for the same input and all Server_F-M replicas
output exactly the same reply for a certain request, irrespective of previous
inputs and/or the exact time they received the request. Apparently, this will
not always be the case. In addition, the fact that Merge is receiving the data it
needs in an encrypted form may seem unnatural to many software architects,
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Figure VII.1: An unexpected solution of Fork-Merge ⊕ Encode-Decode,

which may wish to remove such compositions early on by defining relevant
rules in some graph grammar. However, as Abadi et al. show in [1], there are
cases where we may indeed need to process encrypted data. Therefore, we see
one more case where our intuition is wrong and leads us to disregard some
compositions even though these could have been useful for some system. One
way to guard against such logical fallacies is to document the arguments which
lead us to use particular rules for selecting among the different compositions
and to try to provide reasons for which these arguments are indeed valid.
For example, if we have used rules to disregard compositions where the Merge
component is receiving encoded messages, then we should also document why
we believe that such compositions would not work for the particular system
we are trying to construct. If we cannot find such arguments, then we should
be suspicious of the graph rules we are using for selection, since they could
be disregarding perfectly valid compositions.

VII.2.3.3 Selection through Quantitative Analysis

As we have briefly mentioned in Chapter VI while discussing the Uml-
based environment for describing and analysing software architectures, there
are other kinds of analyses we can perform on architectures. Two of these that
are already supported in the aforementioned environment are performance
analysis and reliability analysis. So, if we are provided with data concerning
the performance or the reliability aspects of the middleware components we
have composed and of the application that will be using them, then we can
perform such an analysis to see which of the different compositions provide
the performance and/or reliability quality requirements of the overall system.
Sometimes we can perform such an analysis a lot faster than e.g., model-
checking some property on each composition. This, of course, depends on the
particular components and system we have. For example, if all components
are independent as far as faults are concerned, then we can calculate their
overall reliability by evaluating a simple formula. If this is not the case, then we
will have to use more complicated models and methods, e.g., Markov-chains,
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which may demand substantial computational resources.

As before with the use of graph grammars, an architect should be cau-
tious when using performance and/or reliability analysis. First of all, the per-
formance/reliability data used for the various components should either be
obtained through measurement/testing or be clearly documented as assump-
tions. In the latter case, reasons for the validity of these assumptions should
be clearly documented as well. If one cannot find such reasons, then once
again it may be the case that the assumptions are not valid and, therefore, the
analyses we perform with them are not valid either.

VII.2.4 Composing Software Architectures in General

A final point which we must discuss is how the methods presented herein
for composing middleware architectures relate to the composition of software
architectures in general. We must note that, if we were able to freely com-
pose middleware components together, it was because of their high degree of
reusability. For example, the Fork component or the Encode one, can func-
tion correctly, in almost all cases, no matter which component uses them and
what kind of messages it sends them. However, this is rather an exceptional
case in software architectures. Indeed, we believe that, in the general case,
components will impose strong requirements on the other components that
wish to use them and on the messages they can receive. This greatly hinders
our task, because now we must take into account the particular interfaces of
the components before connecting them, to ensure their compatibility.

The solution presented initially by Moriconi et al. in [146, 147] and then
partially automated by Melton and Garlan in [137], of unifying the same in-
stances from the architectures we wish to compose, may prove more useful for
the composition of software architectures in general. Of course, as we men-
tioned in Section III.2.1 and Section III.2.4 respectively, this solution has the
problem that it is the architects who have to identify which are the same in-
stances. If composition of software architectures is performed at a high enough
abstraction level, as was done by Melton and Garlan in [137] where they were
unifying whole sub-systems such as “User Interface”, then it is rather easy to
identify which instances are the same, since there are not many of them. At
lower levels of abstraction, however, this can sometimes be quite difficult, due
to the greater number of components one has to examine.



A Operators of Temporal Logic

Table A.1 shows the operators of temporal logic used in this document, and
Table A.2 shows some properties of these.Of the future operators, the basic
ones are the next operator (©p), which states that p will hold at the next state
and the until operator (pU q), which states that p holds until the first time that
q holds and that q must indeed hold eventually.

Respectively, the basic past operators are the previously operator (©−p),
which states that p held at the previous state and the since operator (pS q),
which states that there was some state in the past where q held and p has
been holding continually in all states after that one, the current one included.

Table A.2 shows exactly how to obtain the other future and past operators,
based on the basic future and past operators.

Table A.1: The temporal logic operators
Future Operators Past Operators

©p Next p (also Xp) ©−p Previously p
pU q p Until q pS q p Since q
�p Henceforth p (also Gp) �−p So-far p

�p Eventually p (also Fp) �−p Once p
pW q p Waiting-for/Unless/Weak Until q pB q p Back-to/Weak Since q
qR p q Releases p

Branch operators

Ep Exists a branch . p
Ap Forall branches . p

The henceforth operator specifies that a property holds at every state on the
path from that moment on. The eventually operator states that a property will
hold at some future state on the path. Finally, the waiting-for/unless/weak
until operator requires that the second property holds up to and including the
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Table A.2: Some properties of the temporal logic operators

�p = TrueU p
�p = ¬ �¬p
pW q = �q ∨ (pU q)
pW q = ©qR p
pR q = ¬(¬pU ¬q)

�−p = TrueS p

�− = ¬ �−¬p
pB q = �−q ∨ (pS q)
Ap = ¬E¬p

first state where the first property holds, but does not require that the first
property should hold eventually.

Respectively, the so-far operator states that a property held at every state
in the past, the current one included. The once operator states that a property
has held at some state in the past. Finally, the back-to/weak since operator
states that either the first property held at all states in the past, or that there
exists some state in the past for which the second property held and after that
one the first property has been holding continually.

In addition to the operators of temporal logic shown in Table A.1, we also
use the standard operators presented in Table A.3.

Table A.3: Standard logic operators
¬p Not p p ∧ q p And q
p ∨ q p Or q p Y q p Exclusive Or q
p ⇒ q p Implies q p ⇔ q p Equivalent-to q

∀p ∈ P Universal quantifier: Forall p in P
∃p ∈ P Existential quantifier: Exists at least one p in P
∃! p ∈ P Unique existential quantifier: Exists a unique p in P

Finally, for a formula p and a state s, we write s |= p (s satisfies p) to denote
that p holds on s and s 6|= p in the opposite case.

More information on the temporal operators can be found in [31, 129].



B Promela Models: The Code

This appendix contains the full Promela code used for the models of Sec-
tion V.2.2. We start with Listing B.1 and Listing B.2 (starting on page 128)
which show the modelling elements of the Encode-Decode and of the Fork-
Merge architecture respectively. Then, in Listing B.3 (starting on page 133) we
present the Client and Message_Sink processes. Finally, Listing B.4 (starting
on page 137) and Listing B.5 (starting on page 151) give the Binder process for
Encode-Decode ⊕ Fork-Merge and Fork-Merge ⊕ Encode-Decode respectively.

Listing B.1: Definition of architectural elements of the Encode-Decode archi-
tecture

1 /* Reliable / FIFO / No duplicates / No spurious messages connector. */
2 proctype ConnectorR( byte id)
3 {
4 Msg cR_current_message ;
5 byte MyInChannel ;
6 byte MyOutChannel ;
7

8 d_step {
9 MyInChannel = Inputs[inputs[id]] ;

10 MyOutChannel = outputs[id] ;
11 printf ("MSC: ConnectorR(%d): input channel = %d\n", id, MyInChannel) ;
12 printf ("MSC: ConnectorR(%d): output channel = %d\n", id, MyOutChannel)
13 } ;
14

15 do
16 :: true →
17 d_step {
18 channels[MyInChannel] ? cR_current_message ;
19

20 #ifdef WITH_SIGNATURES
21 /* Check whether the architecture’s structure was respected so far. */
22 if
23 :: ( cR_current_message.ed_encoded_p[0] ∧ !cR_current_message.ed_CR_p[0]
24 ∧ !cR_current_message.ed_decoded_p[0]) → cR_current_message.ed_CR_p[0] = 1
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25 :: else →
26 printf ("MSC: ConnectorR[%d]: I’m blocking\n", id) ;
27 block_p = 1 /* Block here forever. */
28 fi ;
29 #endif
30 } ;
31 #ifdef WITH_SIGNATURES
32 if
33 :: block_p → assert (0) /* Block here forever. */
34 :: else → skip
35 fi ;
36 #endif
37

38 channels[MyOutChannel] ! cR_current_message
39 od
40 }
41

42 inline E_In (EE_In, m)
43 {
44 EE_In ? m
45 }
46

47 inline E_Out (EE_Out, m)
48 {
49 EE_Out ! m
50 }
51

52 proctype Encode( byte id ; Protocol e_protocol)
53 {
54 Msg e_current_message ;
55 byte MyInChannel ;
56 byte MyOutChannel ;
57

58 d_step {
59 MyInChannel = Inputs[inputs[id]] ;
60 MyOutChannel = outputs[id] ;
61 printf ("MSC: Encode(%d): input channel = %d\n", id, MyInChannel) ;
62 printf ("MSC: Encode(%d): output channel = %d\n", id, MyOutChannel)
63 } ;
64

65 do
66 :: true →
67 d_step {
68 E_In(channels[MyInChannel], e_current_message) ;
69

70 #ifdef WITH_SIGNATURES
71 /* Check whether the architecture’s structure was respected so far. */
72 if
73 :: ( !e_current_message.ed_encoded_p[0] ∧ !e_current_message.ed_CR_p[0]
74 ∧ !e_current_message.ed_decoded_p[0]) → e_current_message.ed_encoded_p[0] = 1
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75 :: else →
76 printf ("MSC: Encode: I’m blocking\n") ;
77 block_p = 1
78 fi ;
79 #endif
80

81 if
82 :: white == e_current_message.p → e_current_message.p = red /* red is my protocol */
83 :: else → e_current_message.p = blue ; /* Used to catch errors. */
84 correct_protocol_p = 0
85 fi
86 } ;
87 #ifdef WITH_SIGNATURES
88 if
89 :: block_p → assert (0) /* Block here forever. */
90 :: else → skip
91 fi ;
92 #endif
93

94 E_Out(channels[MyOutChannel], e_current_message)
95 od
96 }
97 /*

98 */
99 inline D_In (DD_In, m)

100 {
101 DD_In ? m
102 }
103

104 inline D_Out (DD_Out, m)
105 {
106 DD_Out ! m
107 }
108

109 proctype Decode( byte id ; Protocol d_protocol)
110 {
111 Msg d_current_message ;
112 byte MyInChannel ;
113 byte MyOutChannel ;
114

115 d_step {
116 MyInChannel = Inputs[inputs[id]] ;
117 MyOutChannel = outputs[id] ;
118 printf ("MSC: Decode(%d): input channel = %d\n", id, MyInChannel) ;
119 printf ("MSC: Decode(%d): output channel = %d\n", id, MyOutChannel)
120 } ;
121

122 do
123 :: true →
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124 d_step {
125 D_In(channels[MyInChannel], d_current_message) ;
126

127 #ifdef WITH_SIGNATURES
128 /* Check whether the architecture’s structure was respected so far. */
129 if
130 :: ( d_current_message.ed_encoded_p[0] ∧ d_current_message.ed_CR_p[0]
131 ∧ !d_current_message.ed_decoded_p[0]) → d_current_message.ed_decoded_p[0] = 1
132 :: else →
133 printf ("MSC: Decode: I’m blocking\n") ;
134 block_p = 1
135 fi ;
136 #endif
137

138 if
139 /* red is the good protocol. */
140 :: (red == d_current_message.p) → d_current_message.p = white
141 :: else → d_current_message.p = blue ; /* Used to catch errors. */
142 correct_protocol_p = 0
143 fi
144 } ;
145 #ifdef WITH_SIGNATURES
146 if
147 :: block_p → assert (0) /* Block here forever. */
148 :: else → skip
149 fi ;
150 #endif
151

152 D_Out(channels[MyOutChannel], d_current_message)
153 od
154 }

Listing B.2: Definition of architectural elements of the Fork-Merge architec-
ture

1 /* Lossy / FIFO / No duplicates / No spurious messages connector. */
2 proctype ConnectorL ( byte id ; int number)
3 {
4 bit skip_p ;
5 Msg cL_current_message ;
6 byte MyInChannel ;
7 byte MyOutChannel ;
8 #ifdef WITH_SIGNATURES
9 int i ;

10 #endif
11

12 d_step {
13 printf ("MSC: ConnectorL(%d): number = %d\n", id, number) ;
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14

15 MyInChannel = Inputs[inputs[id]] ;
16 MyOutChannel = outputs[id] ;
17

18 printf ("MSC: ConnectorL(%d): input channel = %d\n", id, MyInChannel) ;
19 printf ("MSC: ConnectorL(%d): output channel = %d\n", id, MyOutChannel) ;
20

21 skip_p = number % 2
22 } ;
23 do
24 :: true →
25 d_step {
26 channels[MyInChannel] ? cL_current_message ;
27

28 #ifdef WITH_SIGNATURES
29 /* Check whether the architecture’s structure was respected so far. */
30 if
31 :: (cL_current_message.fm_forked_p[0] ∧ !cL_current_message.fm_merged_p[0]) →
32 i = 0 ;
33 do
34 :: (NO_OF_CONNECTORLS≤ i) → break
35 :: else → block_p = block_p ∨ cL_current_message.fm_CL_p[i] ;
36 i++
37 od ;
38 i = 0 ;
39 cL_current_message.fm_CL_p[number] = 1
40 :: else →
41 printf ("MSC: ConnectorL[%d]: I’m blocking(2)\n", number) ;
42 block_p = 1 /* Block here forever. */
43 fi ;
44 #endif
45

46 /* Should I skip the message? Non-deterministic choice. */
47 #ifdef NON_DETERMINISTIC_LOSS
48 if
49 :: true → skip_p = false
50 :: true → skip_p = true
51 fi
52 #else
53 skip_p = !skip_p /* Toggle it each time. */
54 #endif
55 } ;
56 #ifdef WITH_SIGNATURES
57 if
58 :: block_p →
59 printf ("MSC: ConnectorL[%d]: I’m blocking(1)\n", number) ;
60 assert (0) /* Block here forever. */
61 :: else → skip
62 fi ;
63 #endif
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64

65 if
66 :: skip_p →
67 loss :
68 skip
69 :: else →
70 no_loss : /* Send a message from time to time. */
71 channels[MyOutChannel] ! cL_current_message
72 fi
73

74 od
75 }
76 /*

77 */
78 inline F_In (FF_In, m)
79 {
80 FF_In ? m
81 }
82

83 inline F_Out (FF_Out, m)
84 {
85 FF_Out ! m
86 }
87

88 proctype Fork( byte id ; int number)
89 {
90 Msg f_message ;
91 byte MyInChannel = Inputs[inputs[id]] ;
92 byte MyOutChannel[FORKS] ;
93 int i ;
94

95 d_step {
96 printf ("MSC: Fork(%d): number = %d\n", id, number) ;
97 printf ("MSC: Fork(%d): input channel = %d\n", id, MyInChannel) ;
98 i = 0 ;
99 do

100 :: (FORKS ≤ i) → break
101 :: else →
102 MyOutChannel[i] = outputs[id] - i ;
103 printf ("MSC: Fork(%d): output channel = %d\n", id, MyOutChannel[i]) ;
104 i++
105 od ;
106 i = 0
107 } ;
108

109 do
110 :: true →
111 d_step {
112 (F_In(channels[MyInChannel], f_message) ;
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113

114 #ifdef WITH_SIGNATURES
115 /* Check whether the architecture’s structure was respected so far. */
116 if
117 :: (! f_message.fm_forked_p[number] ∧ ! f_message.fm_merged_p[0]) →
118 i = 0 ;
119 do
120 :: (NO_OF_CONNECTORLS≤ i) → break
121 :: else → block_p = block_p ∨ f_message.fm_CL_p[i] ;
122 i++
123 od ;
124 i = 0 ;
125 f_message.fm_forked_p[number] = 1
126 :: else →
127 printf ("MSC: Fork[%d]: I’m blocking(2)\n", number) ;
128 block_p = 1 /* Block here forever. */
129 fi
130 #endif
131 } ;
132 #ifdef WITH_SIGNATURES
133 if
134 :: block_p →
135 printf ("MSC: Fork[%d]: I’m blocking(1)\n", number) ;
136 assert (0) /* Block here forever. */
137 :: else → skip
138 fi ;
139 #endif
140

141 /* Send a message from time to time. */
142 atomic {
143 i = 0 ;
144 do
145 :: ( i < FORKS ) → F_Out(channels[MyOutChannel[i]], f_message) ;
146 i++
147 :: else → break
148 od ;
149 i = 0
150 }
151 od
152 }
153 /*

154 */
155 inline M_In(MM_In, m)
156 {
157 MM_In ? m
158 }
159

160 inline M_Out (MM_Out, m)
161 {
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162 MM_Out ! m
163 }
164

165 proctype Merge( byte id ; int number)
166 {
167 Msg m_message ;
168 byte MyInChannel[FORKS] ;
169 byte MyOutChannel = outputs[id] ;
170 bit mrg_sent_red_p = 0, mrg_rcvd_red_p = 0, mrg_sent_blue_p = 0, mrg_rcvd_blue_p = 0 ;
171 int i ;
172 #ifdef WITH_SIGNATURES
173 int j, s ;
174 #endif
175

176 d_step {
177 printf ("MSC: Merge(%d): number = %d\n", id, number) ;
178

179 i = 0 ;
180 do
181 :: (FORKS ≤ i) → break
182 :: else → MyInChannel[i] = Inputs[inputs[id] - i] ;
183 printf ("MSC: Merge(%d): input channel = %d\n", id, MyInChannel[i]) ;
184 i++
185 od ;
186 i = 0
187 } ;
188 printf ("MSC: Merge(%d): output channel = %d\n", id, MyOutChannel) ;
189

190 /* First check for the red message. */
191 do
192 :: true → i = 0 ;
193 do
194 /* Check each channel for a red/blue message. */
195 :: (i < FORKS) →
196 d_step {
197 M_In(channels[MyInChannel[i]], m_message) ;
198

199 #ifdef WITH_SIGNATURES
200 /* Check whether the architecture’s structure was respected so far. */
201 if
202 :: (m_message.fm_forked_p[0] ∧ ! m_message.fm_merged_p[number]) →
203 j = 0 ; s = 0 ;
204 do
205 :: (NO_OF_CONNECTORLS≤ j) → break
206 :: else → s= s+m_message.fm_CL_p[j] ; block_p = (s > 1) ∨ (0 == s) ;
207 j++
208 od ; j = 0 ; s = 0 ;
209 m_message.fm_merged_p[number] = 1
210 :: else →
211 printf ("MSC: Merge[%d]: I’m blocking(2)\n", number) ;
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212 block_p = 1 /* Block here forever. */
213 fi ;
214 #endif
215

216 if
217 :: (m_message.m == red) → mrg_rcvd_red_p = 1
218 :: (m_message.m == blue) → mrg_rcvd_blue_p = 1
219 :: else → skip
220 fi ;
221 i++
222 } ;
223 #ifdef WITH_SIGNATURES
224 if
225 :: block_p →
226 printf ("MSC: Merge[%d]: I’m blocking, i = %d(1)\n", number, i) ;
227 assert (0) /* Block here forever. */
228 :: else → skip
229 fi ;
230 #endif
231 d_step {
232 m_message.m = white ;
233 if
234 :: (mrg_rcvd_red_p ∧ ! mrg_sent_red_p)
235 → mrg_sent_red_p = 1 ; m_message.m = red
236 :: (mrg_rcvd_blue_p ∧ ! mrg_sent_blue_p ∧ mrg_sent_red_p)
237 → mrg_sent_blue_p= 1 ; m_message.m = blue
238 :: else → skip
239 fi
240 } ;
241 /* Send the message. */
242 M_Out(channels[MyOutChannel], m_message)
243

244 :: else → break
245 od
246 od
247 }

Listing B.3: Definition of the Client and Message-Sink

1 /* Environment - input. */
2 inline Source(C_Out, m)
3 {
4 C_Out ! m
5 }
6

7 proctype Client( byte id)
8 {
9 byte MyOutChannel = outputs[id] ;
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10 Msg msg ;
11 int i ;
12

13 d_step {
14 printf ("MSC: Env_source: pid = %d\n", id) ;
15

16 #ifdef WITH_SIGNATURES
17 i = 0 ;
18 do
19 :: (NO_OF_FORKERS ≤ i) → break
20 :: else →
21 msg.fm_forked_p[i] = 0 ;
22 i++
23 od ;
24

25 i = 0 ;
26 do
27 :: (NO_OF_CONNECTORLS≤ i) → break
28 :: else →
29 msg.fm_CL_p[i] = 0 ;
30 i++
31 od ;
32

33 i = 0 ;
34 do
35 :: (NO_OF_MERGERS ≤ i) → break
36 :: else →
37 msg.fm_merged_p[i] = 0 ;
38 i++
39 od ;
40

41 i = 0 ;
42 do
43 :: (NO_OF_ENCODERS ≤ i) → break
44 :: else →
45 msg.ed_encoded_p[i] = 0 ;
46 i++
47 od ;
48

49 i = 0 ;
50 do
51 :: (NO_OF_CONNECTORRS≤ i) → break
52 :: else →
53 msg.ed_CR_p[i] = 0 ;
54 i++
55 od ;
56

57 i = 0 ;
58 do
59 :: (NO_OF_DECODERS ≤ i) → break
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60 :: else →
61 msg.ed_decoded_p[i] = 0 ;
62 i++
63 od ;
64 i = 0 ;
65 #endif
66

67 msg.p = white
68 } ;
69

70 do
71 :: 1 →
72 /* progress_of_source: */
73 if
74 :: skip
75 → msg.m = white
76 :: (!sent_red_p)
77 → msg.m = red ; sent_red_p = 1 /* Send a red message eventually. */
78 :: (!sent_blue_p ∧ sent_red_p)
79 → msg.m = blue ; sent_blue_p = 1 /* Send a blue message eventually. */
80 fi ;
81 Source(channels[MyOutChannel], msg)
82 od
83 }
84 /*

85 */
86 /* Environment - output. */
87 proctype Message_sink( byte id)
88 {
89 Msg E_data_read ;
90 byte MyInChannel ;
91 #ifdef WITH_SIGNATURES
92 int i, passed_from ;
93 #endif
94

95 printf ("MSC: Env_sink: pid = %d\n", id) ;
96

97 MyInChannel = Inputs[inputs[id]] ;
98 do
99 :: channels[MyInChannel] ? E_data_read ;

100 good_place:
101 atomic {
102

103 #ifdef WITH_SIGNATURES
104 /* Check whether the architecture’s structure was respected so far. */
105 if
106 :: ( E_data_read.fm_forked_p[0] ∧ E_data_read.fm_merged_p[0]) →
107 i = 0 ; passed_from = 0 ;
108 do
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109 :: (NO_OF_CONNECTORLS≤ i) → break
110 :: else →
111 passed_from = passed_from + E_data_read.fm_CL_p[i] ;
112 i++
113 od ;
114 /* Block if it didn’t pass from exactly one lossy connector. */
115 block_p = block_p ∨ (1 6= passed_from) ;
116 printf ("MSC: Env_sink: Passed from %d CLs, block_p = %d\n", passed_from, block_p) ;
117

118 i = 0 ; passed_from = 0 ;
119 do
120 :: (2 ≤ i) → break
121 :: else →
122 passed_from = passed_from + E_data_read.ed_encoded_p[i] ;
123 i++
124 od ;
125 /* Block if it didn’t pass from at least one encoder. */
126 block_p = block_p ∨ (0 == passed_from) ;
127 printf ("MSC: Env_sink: Passed from %d Encoders, block_p = %d\n", passed_from, block_p) ;
128

129 i = 0 ; passed_from = 0 ;
130 do
131 :: (2 ≤ i) → break
132 :: else →
133 passed_from = passed_from + E_data_read.ed_decoded_p[i] ;
134 i++
135 od ;
136 /* Block if it didn’t pass from at least one decoder. */
137 block_p = block_p ∨ (0 == passed_from) ;
138 printf ("MSC: Env_sink: Passed from %d Decoders, block_p = %d\n", passed_from, block_p) ;
139

140 i = 0 ; passed_from = 0 ;
141 do
142 :: (2 ≤ i) → break
143 :: else →
144 passed_from = passed_from + E_data_read.ed_CR_p[i] ;
145 i++
146 od ;
147 /* Block if it didn’t pass from at least one reliable connector. */
148 block_p = block_p ∨ (0 == passed_from) ;
149 printf ("MSC: Env_sink: Passed from %d CRs, block_p = %d\n", passed_from, block_p) ;
150 i = 0 ; passed_from = 0
151 :: else →
152 printf ("MSC: Env_sink: I’m blocking(2)\n") ;
153 block_p = 1 /* Block here forever. */
154 fi ;
155 #endif
156 /*

157 */
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158 /* Must receive all messages. */
159 if /* Check the message. */
160 :: (red == E_data_read.m) → rcvd_red_p = 1
161 :: (blue == E_data_read.m) → rcvd_blue_p = 1
162 :: (white == E_data_read.m) → skip
163 fi ;
164 if /* Check the protocol. */
165 :: (white 6= E_data_read.p) → correct_protocol_p = 0 ; block_p = 1
166 :: else → skip
167 fi
168 #ifdef WITH_SIGNATURES
169 ; if
170 :: block_p →
171 printf ("MSC: Env_sink: I’m blocking(1)\n") ;
172 bad_place:
173 #ifdef GOOD_BINDINGS
174 goto fall_off
175 #else
176 assert (0) /* Block here forever. */
177 #endif
178 :: else → skip
179 fi
180 #endif
181 } ;
182 progress_of_sink:
183 received_new_message:
184 skip
185 od ;
186 fall_off:
187 #ifdef GOOD_BINDINGS
188 assert (0)
189 #else
190 skip
191 #endif
192 }

Listing B.4: Model for the composition of Encode-Decode and Fork-Merge

1 #undef USE_CONSTRAINTS
2 #define USE_CONSTRAINTS 1
3

4 #define GOOD_BINDINGS 1
5 #undef GOOD_BINDINGS
6

7 #undef WITH_SIGNATURES
8 #define WITH_SIGNATURES 1
9

10 #undef STOP_AFTER_WIRING
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11 #define STOP_AFTER_WIRING 1
12

13 #ifndef GB0
14 /* Default good bindings. May be changed by defining their values at compile time. */
15 #define GB0 9 /* Decode[2] → Message_sink */
16 #define GB1 7 /* Encode[2] → Fork */
17 #define GB2 4 /* ConnectorL[1] → Merge */
18 #define GB3 5 /* ConnectorL[2] → Merge */
19 #define GB4 2 /* Fork(1) → ConnectorL[1] */
20 #define GB5 1 /* Fork(2) → ConnectorL[2] */
21 #define GB6 0 /* Client → Encode[1] */
22 #define GB7 8 /* Decode[1] → Encode[2] */
23 #define GB8 10 /* ConnectorR[1] → Decode[1] */
24 #define GB9 11 /* ConnectorR[2] → Decode[2] */
25 #define GB10 6 /* Encode[1] → ConnectorR[1] */
26 #define GB11 3 /* Merge → ConnectorR[2] */
27 #endif /* ifndef GB0 */
28

29 /*
30 End of defines used for code selection.
31 */
32 #define NO_OF_FORKERS 1
33 #define NO_OF_MERGERS 1
34 #define NO_OF_CONNECTORLS 2/* FORKS * 1 */
35 #define NO_OF_ENCODERS 1
36 #define NO_OF_DECODERS 1
37 #define NO_OF_CONNECTORRS 1
38

39 #define NO_OF_PROCESSES 10/* Bind + Client + Message_sink +
40 NO_OF_FORKERS + NO_OF_MERGERS + NO_OF_CONNECTORLS +
41 NO_OF_ENCODERS + NO_OF_DECODERS + NO_OF_CONNECTORRS */
42

43 #define MAX_BUF 1
44

45 #define FORKS 2 /* Number of forks. */
46 #define CHANNELS 9/* NO_OF_FORKERS * FORKS + NO_OF_MERGERS +
47 NO_OF_CONNECTORLS + NO_OF_ENCODERS + NO_OF_DECODERS +
48 NO_OF_CONNECTORRS + Client */
49

50 #define STD_PROTOCOL 666 /* Used by both Encoder and Decoder. */
51 /*

52 */
53 /** Type declarations. **/
54 #ifndef STOP_AFTER_WIRING
55 mtype { red, white, blue } ; /* enumeration types */
56 typedef Protocol {
57 mtype p
58 } ;
59 typedef Msg {
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60 mtype m ;
61 mtype p
62 #ifdef WITH_SIGNATURES
63 ;
64 /* The following codify encdec-II’s structure */
65 bit ed_encoded_p[NO_OF_ENCODERS] ;
66 bit ed_CR_p [NO_OF_CONNECTORRS] ;
67 bit ed_decoded_p[NO_OF_DECODERS] ;
68 /* The following codify frkmrg-II’s structure */
69 bit fm_forked_p[NO_OF_FORKERS] ;
70 bit fm_CL_p [NO_OF_CONNECTORLS] ;
71 bit fm_merged_p[NO_OF_MERGERS]
72 #endif
73 } ;
74 /** Variable declarations. **/
75 bit rcvd_red_p = 0 ; /* Global monitor variables. */
76 bit sent_red_p = 0 ;
77 bit rcvd_blue_p = 0 ;
78 bit sent_blue_p = 0 ;
79

80 bit correct_protocol_p = 1 ;
81 /* The PIDs of the processes. */
82 local int env_source_pid ;
83 local int env_sink_pid ;
84 local int fork_pid[NO_OF_FORKERS] ;
85 local int merge_pid[NO_OF_MERGERS] ;
86 local int connectorL_pids[NO_OF_CONNECTORLS] ;
87 local int encode_pid[NO_OF_ENCODERS] ;
88 local int decode_pid[NO_OF_DECODERS] ;
89 local int connectorR_pid[NO_OF_CONNECTORRS] ;
90 /* All the available channels, initially empty. */
91 chan channels[CHANNELS] = [MAX_BUF] of {Msg} ;
92 #endif /* STOP_AFTER_WIRING */
93

94 local int bind_pid ;
95 #ifdef WITH_SIGNATURES
96 bit block_p = 0 ;
97 #endif
98 #ifndef GOOD_BINDINGS
99 chan random_gen = [0] of { byte } ; /* Used to communicate with the random number generator */

100 #endif
101 /* These indexes to the channels[i] variables is what we are looking for. */
102 local byte Inputs [CHANNELS] ;
103 local byte inputs [NO_OF_PROCESSES] ;
104 local byte outputs [NO_OF_PROCESSES] ;
105 /* Correct bindings:
106 Pid Name fi inputs fo outputs (inputs & outputs start indexing from 0...)
107 ----------------------------------------------
108 1 Client 0 0 1 0
109 2 Message_sink 1 0 0 0
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110 3 Fork 1 1 2 2
111 4 Merge 2 3 1 3
112 5 ConnectorL 1 4 1 4
113 6 ConnectorL 1 5 1 5
114 7 Encode 1 6 1 6
115 8 Decode 1 7 1 7
116 9 ConnectorR 1 8 1 8
117 ----------------------------------------------
118 */
119 inline block_with_do ()
120 {
121 assert (0) ;
122 do
123 :: 1 → skip
124 od
125 }
126 /* #define block_with_do() do :: 1 → skip od */
127 /*

128 */
129 #ifndef STOP_AFTER_WIRING
130 # include "/home/kloukina/src/spin/F-M.spin"
131

132 # include "/home/kloukina/src/spin/E-D.spin"
133

134 # include "/home/kloukina/src/spin/environment.spin"
135 #endif /* STOP_AFTER_WIRING */
136 /* The Binder... */
137 active proctype Bind()
138 {
139 int i, j, m, K, constraints[CHANNELS] ;
140 int id, r, lasti, lasto, Case ;
141 byte Z ;
142 byte fo[NO_OF_PROCESSES] ;
143 byte fi [NO_OF_PROCESSES] ;
144 bit channel_bounded[CHANNELS] ;
145 bit channel_constrained[CHANNELS] ;
146

147 d_step {
148 id = 1 ; bind_pid = 255 ;
149 #ifndef STOP_AFTER_WIRING
150 env_source_pid = 255 ;
151 env_sink_pid = 255 ;
152 fork_pid[0] = 255 ;
153 merge_pid[0] = 255 ;
154 connectorL_pids[0] = 255 ;
155 connectorL_pids[1] = 255 ;
156 encode_pid[0] = 255 ;
157 decode_pid[0] = 255 ;
158 connectorR_pid[0] = 255 ;
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159 #endif
160

161 bind_pid = _pid ;
162 #ifndef STOP_AFTER_WIRING
163 printf ("MSC: Bind: My pid is %d\n", _pid ) ;
164 #endif
165

166 K = 1 + 1 + NO_OF_FORKERS + NO_OF_MERGERS + NO_OF_CONNECTORLS +
167 NO_OF_ENCODERS + NO_OF_DECODERS + NO_OF_CONNECTORRS ;
168

169 i = 0 ; do
170 :: (i < NO_OF_PROCESSES) →
171 fi [i] = 255 ; fo[i] = 255 ; inputs[i] = 255 ; outputs[i] = 255 ; /* For debugging. */
172 i++
173 :: else → break
174 od ;
175

176 fi [1] = 0 ; fo[1] = 1 ; fi [2] = 1 ; fo[2] = 0 ;
177 i = 3 ; do
178 :: (i < NO_OF_FORKERS + 3) →
179 fi [i] = 1 ; fo[i] = FORKS ;
180 i++
181 :: else → break
182 od ;
183

184 j = i ; do
185 :: (i < NO_OF_MERGERS + j) →
186 fi [i] = FORKS ; fo[i] = 1 ;
187 i++
188 :: else → break
189 od ;
190

191 j = i ; do
192 :: (i < NO_OF_CONNECTORLS + j) →
193 fi [i] = 1 ; fo[i] = 1 ;
194 i++
195 :: else → break
196 od ;
197

198 j = i ; do
199 :: (i < NO_OF_ENCODERS + j) →
200 fi [i] = 1 ; fo[i] = 1 ;
201 i++
202 :: else → break
203 od ;
204

205 j = i ; do
206 :: (i < NO_OF_DECODERS + j) →
207 fi [i] = 1 ; fo[i] = 1 ;
208 i++
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209 :: else → break
210 od ;
211

212 j = i ; do
213 :: (i < NO_OF_CONNECTORRS + j) →
214 fi [i] = 1 ; fo[i] = 1 ;
215 i++
216 :: else → break
217 od ;
218 /*

219 */
220 #ifndef STOP_AFTER_WIRING
221 printf ("\n Bind: Will bind channels.\n \n") ;
222 #endif
223 i = 1 ; j = -1 ; m = -1 ; lasti = 0 ; lasto = 0 ;
224 do
225 :: (i ≤ K) →
226 j = j + fi [i] ;
227 if
228 :: (j < 0) → lasti = 0
229 :: else → lasti = j
230 fi ;
231 inputs[i] = lasti ;
232

233 m = m + fo[i] ;
234 if
235 :: (m < 0) → lasto = 0
236 :: else → lasto = m ;
237 fi ;
238 outputs[i] = lasto ;
239 #ifndef STOP_AFTER_WIRING
240 printf ("MSC: Bind: inputs[%d] = %d\n", i, inputs[i]) ;
241 #endif
242 i++
243 :: else → break
244 od ;
245 #ifndef STOP_AFTER_WIRING
246 printf ("\n \n") ;
247 #endif
248 i = 1 ;
249 do
250 :: (i ≤ K) →
251 #ifndef STOP_AFTER_WIRING
252 printf ("MSC: Bind: outputs[%d] = %d\n", i, outputs[i]) ;
253 #endif
254 i++
255 :: else → break
256 od ;
257 lasti++ ; lasto++ ;
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258 #ifndef STOP_AFTER_WIRING
259 printf ("\n \n") ;
260 printf ("MSC: Bind: lasti = %d\n", lasti) ;
261 printf ("MSC: Bind: lasto = %d\n \n", lasto) ;
262 #endif
263

264 i = 0 ; do
265 :: (i < CHANNELS) → Inputs[i] = 255 ; channel_bounded[i] = 0 ; i++ /* For debugging */
266 :: else → break
267 od ; i = 0 ; j = 0 ;
268 } ;
269 #ifdef GOOD_BINDINGS
270 d_step {
271 /* Ignoring constraints, etc. */
272 Inputs[ 0] = GB0 ; Inputs[ 3] = GB3 ; Inputs[ 6] = GB6 ;
273 Inputs[ 1] = GB1 ; Inputs[ 4] = GB4 ; Inputs[ 7] = GB7 ;
274 Inputs[ 2] = GB2 ; Inputs[ 5] = GB5 ; Inputs[ 8] = GB8
275 } ;
276

277 #include "./test-bok.spin"
278 /* We can use this to verify multiple cases that seem to be correct together. */
279 /*

280 */
281 #else /* not defined GOOD_BINDINGS */
282 run random_generator() ; /* Start the random number generator. */
283 i = 3 ; K = lasti ;
284 do
285 :: (i < lasti) →
286 #ifdef USE_CONSTRAINTS
287 j = 0 ;
288 do
289 :: (j < CHANNELS) →
290 channel_constrained[j] = 1 ; j++
291 :: else → break
292 od ;
293

294 if
295 :: (0 == i) → /* Message_sink */
296 constraints[i] = CHANNELS -2 ;
297 /* Can get input from: Merge, Decode[1] */
298 channel_constrained[ 3] = 0 ; /* Merge */
299 channel_constrained[ 7] = 0 /* Decode[1] */
300 :: (1 == i) → /* Fork */
301 constraints[i] = CHANNELS -4 ;
302 /* Can get input from: Client, Encode[1], Decode[1], ConnectorR[1] */
303 channel_constrained[ 0] = 0 ; /* Client */
304 channel_constrained[ 6] = 0 ; /* Encode[1] */
305 channel_constrained[ 7] = 0 ; /* Decode[1] */
306 channel_constrained[ 8] = 0 /* ConnectorR[1] */
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307 :: (2 == i) → /* Merge (1) */
308 constraints[i] = CHANNELS -4 ;
309 /* Can get input from: ConnectorL[1], Encode[1], Decode[1], ConnectorR[1] */
310 channel_constrained[ 4] = 0 ; /* ConnectorL[1] */
311 channel_constrained[ 6] = 0 ; /* Encode[1] */
312 channel_constrained[ 7] = 0 ; /* Decode[1] */
313 channel_constrained[ 8] = 0 /* ConnectorR[1] */
314 :: (3 == i) → /* Merge (2) */
315 constraints[i] = CHANNELS -1 ;
316 /* Can get input from: ConnectorL[2] */
317 channel_constrained[ 5] = 0 /* ConnectorL[2] */
318 :: (4 == i) → /* ConnectorL[1] */
319 constraints[i] = CHANNELS -4 ;
320 /* Can get input from: Fork(1), Encode[1], Decode[1], ConnectorR[1] */
321 channel_constrained[ 2] = 0 ; /* Fork(1) */
322 channel_constrained[ 6] = 0 ; /* Encode[1] */
323 channel_constrained[ 7] = 0 ; /* Decode[1] */
324 channel_constrained[ 8] = 0 /* ConnectorR[1] */
325 :: (5 == i) → /* ConnectorL[2] */
326 constraints[i] = CHANNELS -1 ;
327 /* Can get input from: Fork(2) */
328 channel_constrained[ 1] = 0 /* Fork(2) */
329 :: (6 == i) → /* Encode[1] */
330 constraints[i] = CHANNELS -4 ;
331 /* Can get input from: Client, Fork(1), Merge, ConnectorL[1] */
332 channel_constrained[ 0] = 0 ; /* Client */
333 channel_constrained[ 2] = 0 ; /* Fork(1) */
334 channel_constrained[ 3] = 0 ; /* Merge */
335 channel_constrained[ 4] = 0 /* ConnectorL[1] */
336 :: (7 == i) → /* Decode[1] */
337 constraints[i] = CHANNELS -4 ;
338 /* Can get input from: Fork(1), Merge, ConnectorL[1], ConnectorR[1] */
339 channel_constrained[ 2] = 0 ; /* Fork(1) */
340 channel_constrained[ 3] = 0 ; /* Merge */
341 channel_constrained[ 4] = 0 ; /* ConnectorL[1] */
342 channel_constrained[ 8] = 0 /* ConnectorR[1] */
343 :: (8 == i) → /* ConnectorR[1] */
344 constraints[i] = CHANNELS -4 ;
345 /* Can get input from: Fork(1), Merge, ConnectorL[1], Encode[1] */
346 channel_constrained[ 2] = 0 ; /* Fork(1) */
347 channel_constrained[ 3] = 0 ; /* Merge */
348 channel_constrained[ 4] = 0 ; /* ConnectorL[1] */
349 channel_constrained[ 6] = 0 /* Encode[1] */
350 :: else → skip
351 fi ;
352 /*

353 */
354 j = 0 ; constraints[i] = 0 ;
355 do
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356 :: (j < lasti) →
357 if
358 :: (channel_constrained[j] ∧ !channel_bounded[j]) →
359 constraints[i]++
360 :: else → skip
361 fi ;
362 j++
363 :: else → break
364 od ;
365 Z = K ;
366 j = Z - constraints[i] ;
367 #ifndef STOP_AFTER_WIRING
368 printf ("MSC: Bind: K = %d constraints[%d] = %d Z = %d\n", K, i, constraints[i], Z) ;
369 #endif
370 #else
371 j = K ;
372 #endif /* USE_CONSTRAINTS */
373 /* If it fails, it means we’ve bound the inputs the wrong way so far and we’ve got no
374 acceptable way to continue for the rest. It helps prune the search space.
375 assert (Z > 0) ; */
376 if
377 :: (j > 0) → Z = j
378 :: else → goto block_nonpositive_Z
379 fi ;
380 /*

381 */
382 /* Choose a random number between 1 and Z (inclusive). */
383 random_gen ! Z ;
384 random_gen ? r ;
385

386 j = 0 ;
387 do
388 :: (j < lasti) →
389 if
390 :: (! channel_bounded[j] ∧ ! channel_constrained[j]) →
391 if
392 :: (r > 1) → r--
393 :: else →
394 m = j ;
395 break
396 fi
397 :: else → skip
398 fi ;
399 j++
400 :: else → break
401 od ;
402 #ifndef STOP_AFTER_WIRING
403 printf ("MSC: Bind: before assert: i = %d, Z = %d, r = %d, j = %d, m = %d\n",
404 i, Z, r, j, m) ;
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405 #endif
406 /* assert ( 1 == r ) ; */
407 if
408 :: ( 1 == r) → skip
409 :: else → goto block_nonpositive_r
410 fi ;
411

412 Inputs[i] = m ; channel_bounded[m] = 1 ;
413 #ifndef STOP_AFTER_WIRING
414 printf ("MSC: Bind: Inputs[%d] = %d\n", i, m) ;
415 #endif
416 K-- ;
417

418 /* i++ ; */ /* Next step */
419 /*
420 Use the following order for the next element. In this way, the components having lots of
421 constraints get to bind their inputs first and, hopefully, diminish the possible bindings.
422

423 constraints[ 0] = -2 ; constraints[ 3] = -1 ; constraints[ 6] = -4 ;
424 constraints[ 1] = -4 ; constraints[ 4] = -4 ; constraints[ 7] = -4 ;
425 constraints[ 2] = -4 ; constraints[ 5] = -1 ; constraints[ 8] = -4 ;
426

427 constraints[ 3] = -1 ; constraints[ 1] = -4 ; constraints[ 6] = -4 ;
428 constraints[ 5] = -1 ; constraints[ 2] = -4 ; constraints[ 7] = -4 ;
429 constraints[ 0] = -2 ; constraints[ 4] = -4 ; constraints[ 8] = -4 ;
430 */
431 if
432 :: ( 3 == i) → i = 5
433 :: ( 5 == i) → i = 0
434 :: ( 0 == i) → i = 1
435 :: ( 1 == i) → i = 2
436 :: ( 2 == i) → i = 4
437 :: ( 4 == i) → i = 6
438 :: ( 6 == i) → i = 7
439 :: ( 7 == i) → i = 8
440 :: ( 8 == i) → break
441 fi
442 :: else → break
443 od ;
444 printf ("\n \n") ;
445 d_step {
446 i = 0 ; do
447 :: (i < CHANNELS) →
448 printf (" -DGB%d=%d ", i, Inputs[i]) ;
449 i++
450 :: else → break
451 od ;
452 printf ("\n \n")
453 } ;
454 #endif /* GOOD_BINDINGS */
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455 #ifndef STOP_AFTER_WIRING
456 printf ("\n Bind: Channels bound.\n \n") ;
457 #endif
458 /*

459 */
460 /* Now start the rest of the processes. */
461 #ifndef STOP_AFTER_WIRING
462 printf ("\n Bind: Now waking up the rest of the world.\n \n") ;
463 #endif
464

465 #ifdef STOP_AFTER_WIRING
466 goto the_end ; /* When trying to find possible configurations we don’t run
467 the rest of the processes. */
468 #else
469 atomic {
470 env_source_pid = run Client(id) ; id++ ;
471 printf ("\n Client has process id %d(%d)\n \n", env_source_pid, id-1) ;
472 env_sink_pid = run Message_sink(id) ; id++ ;
473 printf ("\n Message_sink has process id %d(%d)\n \n", env_sink_pid, id-1) ;
474

475 i = 0 ; do
476 :: (NO_OF_FORKERS ≤ i) → break
477 :: else →
478 fork_pid[i] = run Fork(id, i) ; id++ ;
479 printf ("\n Fork[%d] has process id %d(%d)\n \n", i, fork_pid[i], id-1) ;
480 i++
481 od ;
482

483 i = 0 ; do
484 :: (NO_OF_MERGERS ≤ i) → break
485 :: else →
486 merge_pid[i] = run Merge(id, i) ; id++ ;
487 printf ("\n Merge[%d] has process id %d(%d)\n \n", i, merge_pid[i], id-1) ;
488 i++
489 od ;
490

491 i = 0 ; do
492 :: (NO_OF_CONNECTORLS≤ i) → break
493 :: else →
494 connectorL_pids[i] = run ConnectorL(id, i) ; id++ ;
495 printf ("\n ConnectorL[%d] has process id %d(%d)\n \n", i, connectorL_pids[i], id-1) ;
496 i++
497 od ;
498

499 i = 0 ; do
500 :: (i < NO_OF_ENCODERS) →
501 encode_pid[i] = run Encode(id, STD_PROTOCOL) ; id++ ;
502 printf ("\n Encode[%d] has process id %d(%d)\n \n", i, encode_pid[i], id-1) ;
503 i++
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504 :: else → break
505 od ;
506

507 i = 0 ; do
508 :: (i < NO_OF_DECODERS) →
509 decode_pid[i] = run Decode(id, STD_PROTOCOL) ; id++ ;
510 printf ("\n Decode[%d] has process id %d(%d)\n \n", i, decode_pid[i], id-1) ;
511 i++
512 :: else → break
513 od ;
514

515 i = 0 ; do
516 :: (i < NO_OF_CONNECTORRS) →
517 connectorR_pid[i] = run ConnectorR(id) ; id++ ;
518 printf ("\n ConnectorR[%d] has process id %d(%d)\n \n", i, connectorR_pid[i], id-1) ;
519 i++
520 :: else → break
521 od ;
522

523 id = 0 ; i = 0
524 } ;
525 goto the_end ;
526 #endif
527

528 block_nonpositive_Z:
529 printf ("MSC: Bind: blocking at nonpositive Z: Z = %d, r = %d\n", Z, r) ;
530 block_with_do() ;
531 block_nonpositive_r:
532 printf ("MSC: Bind: blocking at nonpositive r: Z = %d, r = %d\n", Z, r) ;
533 block_with_do() ;
534 the_end:
535 skip
536 }
537 /*

538 */
539 #ifndef GOOD_BINDINGS
540 proctype random_generator()
541 {
542 byte Z, r ;
543

544 do
545 :: true →
546 random_gen ? Z ;
547 if
548 :: (Z > 0) → r = 1
549 :: (Z > 1) → r = 2
550 :: (Z > 2) → r = 3
551 :: (Z > 3) → r = 4
552 :: (Z > 4) → r = 5
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553 :: (Z > 5) → r = 6
554 :: (Z > 6) → r = 7
555 :: (Z > 7) → r = 8
556 :: (Z > 8) → r = 9
557 :: (Z > 9) → r = 10
558 :: (Z > 10) → r = 11
559 :: (Z > 11) → r = 12
560 :: (Z > 12) → r = 13
561 :: (Z > 13) → r = 14
562 :: (Z > 14) → r = 15
563 :: (Z > 15) → r = 16
564 :: (Z > 16) → r = 17
565 :: (Z > 17) → r = 18
566 fi ;
567 if
568 :: (Z > 18) → r = 255
569 :: (Z < 1) → r = 254
570 :: else → skip
571 fi ;
572

573 /* r = randomnr(1..Z) , where Z starts from lasti and goes down to 1 (- constraints) */
574 random_gen ! r
575 od
576 }
577 #endif
578 /*
579

580 We want:
581

582 1) p = [] (sent_red_p → <> rcvd_red_p)
583 to hold. The case with blue is symmetrical. This stands for not accepting losses of
584 messages.
585

586 2) q = !(!rcvd_red_p U rcvd_blue_p)
587 to hold. This stands for arrival of messages in order. The property inside parentheses
588 describes the case where we have received a blue message, but not a red one.
589

590 3) w = [] correct_protocol_p
591 to hold. This states that encoding-decoding has been succesfull.
592

593 4) progress = ([]<>!np_) ∧ ([]!block_p)
594

595 STAGE 1: find_compositions = <>bb
596 = <>Bind[0]@the_end
597

598 STAGE 2: verify_compositions = progress ∧ p ∧ q
599 = ([]<>!np_) ∧ ([]!block_p) ∧ ([] (sr → <> rr)) ∧ (!(!rr U rb))
600 */
601 #define sr sent_red_p
602 #define sb sent_blue_p
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603 #define rr rcvd_red_p
604 #define rb rcvd_blue_p
605 #define bb Bind[bind_pid]@the_end
606

607 #if STAGE==1
608 never { /* ( <> bb ) */
609 T0_init:
610 if
611 :: ((bb)) → goto accept_all
612 :: (1) → goto T0_init
613 fi ;
614 accept_all:
615 skip
616 }
617 #endif
618

619 #if STAGE==2
620 /*
621 * Formula As Typed:
622 * ([]<>!np_) ∧ ([]!block_p) ∧ ([] (sr → <> rr)) ∧ (!(!rr U rb))
623 * The Never Claim Below Corresponds
624 * To The Negated Formula:
625 * !(([]<>!np_) ∧ ([]!block_p) ∧ ([] (sr → <> rr)) ∧ (!(!rr U rb)))
626 * (formalizing violations of the original)
627 */
628

629 never { /* !(([]<>!np_) ∧ ([]!block_p) ∧ ([] (sr → <> rr)) ∧ (!(!rr U rb))) */
630 T0_init:
631 if
632 :: ((((block_p)) ∨ ((rb)))) → goto accept_all
633 :: (( np_ )) → goto accept_S5
634 :: (! ((rr)) ∧ (sr)) → goto accept_S10
635 :: (1) → goto T0_S2
636 :: (! ((rr))) → goto T0_S19
637 fi ;
638 accept_S5:
639 if
640 :: (( np_ )) → goto accept_S5
641 fi ;
642 accept_S10:
643 if
644 :: (! ((rr))) → goto accept_S10
645 fi ;
646 T0_S2:
647 if
648 :: ((block_p)) → goto accept_all
649 :: (( np_ )) → goto accept_S5
650 :: (! ((rr)) ∧ (sr)) → goto accept_S10
651 :: (1) → goto T0_S2
652 fi ;
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653 T0_S19:
654 if
655 :: ((rb)) → goto accept_all
656 :: (! ((rr))) → goto T0_S19
657 fi ;
658 accept_all:
659 skip
660 }
661 #endif

Listing B.5: Model for the composition of Fork-Merge and Encode-Decode

1 #undef USE_CONSTRAINTS
2 #define USE_CONSTRAINTS 1
3

4 #define GOOD_BINDINGS 1
5 #undef GOOD_BINDINGS
6

7 #undef WITH_SIGNATURES
8 #define WITH_SIGNATURES 1
9

10 #undef STOP_AFTER_WIRING
11 #define STOP_AFTER_WIRING 1
12

13 #ifndef GB0
14 /* Default good bindings. May be changed by defining their values at compile time. */
15 #define GB0 3 /* Merge → Message_sink */
16 #define GB1 0 /* Client → Fork */
17 #define GB2 11 /* Decoder[2] → Merge */
18 #define GB3 13 /* Decoder[4] → Merge */
19 #define GB4 10 /* Decoder[1] → ConnectorL[1] */
20 #define GB5 12 /* Decoder[3] → ConnectorL[2] */
21 #define GB6 2 /* Fork(1) → Encoder[1] */
22 #define GB7 4 /* ConnectorL[1] → Encoder[2] */
23 #define GB8 1 /* Fork(2) → Encoder[3] */
24 #define GB9 5 /* ConnectorL[2] → Encoder[4] */
25 #define GB10 14 /* ConnectorR[1] → Decoder[1] */
26 #define GB11 15 /* ConnectorR[2] → Decoder[2] */
27 #define GB12 16 /* ConnectorR[3] → Decoder[3] */
28 #define GB13 17 /* ConnectorR[4] → Decoder[4] */
29 #define GB14 6 /* Encoder[1] → ConnectorR[1] */
30 #define GB15 7 /* Encoder[2] → ConnectorR[2] */
31 #define GB16 8 /* Encoder[3] → ConnectorR[3] */
32 #define GB17 9 /* Encoder[4] → ConnectorR[4] */
33 #endif /* ifndef GB0 */
34

35 #define i0 (3==Inputs[0])
36 #define i1 (0==Inputs[1])
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37 #define i2 (11==Inputs[2])
38 #define i3 (13==Inputs[3])
39 #define i4 (10==Inputs[4])
40 #define i5 (12==Inputs[5])
41 #define i6 (2==Inputs[6])
42 #define i7 (4==Inputs[7])
43 #define i8 (1==Inputs[8])
44 #define i9 (5==Inputs[9])
45 #define i10 (14==Inputs[10])
46 #define i11 (15==Inputs[11])
47 #define i12 (16==Inputs[12])
48 #define i13 (17==Inputs[13])
49 #define i14 (6==Inputs[14])
50 #define i15 (7==Inputs[15])
51 #define i16 (8==Inputs[16])
52 #define i17 (9==Inputs[17])
53 /*
54 End of defines used for code selection.
55 */
56 #define NO_OF_FORKERS 1
57 #define NO_OF_MERGERS 1
58 #define NO_OF_CONNECTORLS 2/* FORKS * 1 */
59 #define NO_OF_ENCODERS 2/* FORKS * old_NO_OF_ENCODERS */
60 #define NO_OF_DECODERS 2/* FORKS * old_NO_OF_DECODERS */
61 #define NO_OF_CONNECTORRS 2/* FORKS * old_NO_OF_CONNECTORRS */
62

63 #define NO_OF_PROCESSES 13/* Bind + Client + Message_sink +
64 NO_OF_FORKERS + NO_OF_MERGERS + NO_OF_CONNECTORLS +
65 NO_OF_ENCODERS + NO_OF_DECODERS + NO_OF_CONNECTORRS */
66

67 #define MAX_BUF 1
68

69 #define FORKS 2 /* Number of forks. */
70 #define CHANNELS 12/* NO_OF_FORKERS * FORKS + NO_OF_MERGERS
71 + NO_OF_CONNECTORLS + NO_OF_ENCODERS + NO_OF_DECODERS +
72 NO_OF_CONNECTORRS + Client */
73

74 #define STD_PROTOCOL 666 /* Used by both Encoder and Decoder. */
75 /*

76 */
77 /** Type declarations. **/
78 #ifndef STOP_AFTER_WIRING
79 mtype { red, white, blue } ; /* enumeration types */
80 typedef Protocol {
81 mtype p
82 } ;
83 typedef Msg {
84 mtype m ;
85 mtype p



153

86 #ifdef WITH_SIGNATURES
87 ;
88 /* The following codify encdec-II’s structure */
89 bit ed_encoded_p[NO_OF_ENCODERS] ;
90 bit ed_CR_p [NO_OF_CONNECTORRS] ;
91 bit ed_decoded_p[NO_OF_DECODERS] ;
92 /* The following codify frkmrg-II’s structure */
93 bit fm_forked_p[NO_OF_FORKERS] ;
94 bit fm_CL_p [NO_OF_CONNECTORLS] ;
95 bit fm_merged_p[NO_OF_MERGERS]
96 #endif
97 } ;
98 /** Variable declarations. **/
99 bit rcvd_red_p = 0 ; /* Global monitor variables. */

100 bit sent_red_p = 0 ;
101 bit rcvd_blue_p = 0 ;
102 bit sent_blue_p = 0 ;
103

104 bit correct_protocol_p = 1 ;
105 /* The PIDs of the processes. */
106 local int env_source_pid ;
107 local int env_sink_pid ;
108 local int fork_pid[NO_OF_FORKERS] ;
109 local int merge_pid[NO_OF_MERGERS] ;
110 local int connectorL_pids[NO_OF_CONNECTORLS] ;
111 local int encode_pid[NO_OF_ENCODERS] ;
112 local int decode_pid[NO_OF_DECODERS] ;
113 local int connectorR_pid[NO_OF_CONNECTORRS] ;
114 /* All the available channels, initially empty. */
115 chan channels[CHANNELS] = [MAX_BUF] of {Msg} ;
116 #endif /* STOP_AFTER_WIRING */
117

118 local int bind_pid ;
119 #ifdef WITH_SIGNATURES
120 bit block_p = 0 ;
121 #endif
122 #ifndef GOOD_BINDINGS
123 chan random_gen = [0] of { byte } ; /* Used to communicate with the random number generator */
124 #endif
125 /* These indexes to the channels[i] variables is what we are looking for. */
126 local byte Inputs [CHANNELS] ;
127 local byte inputs [NO_OF_PROCESSES] ;
128 local byte outputs [NO_OF_PROCESSES] ;
129 /* Correct bindings:
130 Pid Name fi inputs fo outputs (inputs & outputs start indexing from 0...)
131 ----------------------------------------------
132 1 Client 0 0 1 0
133 2 Message_sink 1 0 0 0
134 3 Fork 1 1 2 2
135 4 Merge 2 3 1 3
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136 5 ConnectorL 1 4 1 4
137 6 ConnectorL 1 5 1 5
138 7 Encode 1 6 1 6
139 8 Encode 1 7 1 7
140 9 Decode 1 8 1 8
141 10 Decode 1 9 1 9
142 11 ConnectorR 1 10 1 10
143 12 ConnectorR 1 11 1 11
144 ----------------------------------------------
145 */
146 inline block_with_do ()
147 {
148 do
149 :: 1 → skip
150 od
151 }
152 /*

153 */
154 #ifndef STOP_AFTER_WIRING
155 # include "/home/kloukina/src/spin/F-M.spin"
156

157 # include "/home/kloukina/src/spin/E-D.spin"
158

159 # include "/home/kloukina/src/spin/environment.spin"
160 #endif /* STOP_AFTER_WIRING */
161 /* The Binder... */
162 active proctype Bind()
163 {
164 int i, j, m, K, constraints[CHANNELS] ;
165 int id, r, lasti, lasto, Case ;
166 byte Z ;
167 byte fo[NO_OF_PROCESSES] ;
168 byte fi [NO_OF_PROCESSES] ;
169 bit channel_bounded[CHANNELS] ;
170 bit channel_constrained[CHANNELS] ;
171

172 d_step {
173 id = 1 ; bind_pid = 255 ;
174 #ifndef STOP_AFTER_WIRING
175 env_source_pid = 255 ;
176 env_sink_pid = 255 ;
177 fork_pid[0] = 255 ;
178 merge_pid[0] = 255 ;
179 connectorL_pids[0] = 255 ;
180 connectorL_pids[1] = 255 ;
181 encode_pid[0] = 255 ;
182 encode_pid[1] = 255 ;
183 decode_pid[0] = 255 ;
184 decode_pid[1] = 255 ;
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185 connectorR_pid[0] = 255 ;
186 connectorR_pid[1] = 255 ;
187 #endif
188

189 bind_pid = _pid ;
190 #ifndef STOP_AFTER_WIRING
191 printf ("MSC: Bind: My pid is %d\n", _pid ) ;
192 #endif
193

194 K = 1 + 1 + NO_OF_FORKERS + NO_OF_MERGERS + NO_OF_CONNECTORLS +
195 NO_OF_ENCODERS + NO_OF_DECODERS + NO_OF_CONNECTORRS ;
196

197 i = 0 ; do
198 :: (i < NO_OF_PROCESSES) →
199 fi [i] = 255 ; fo[i] = 255 ; inputs[i] = 255 ; outputs[i] = 255 ; /* For debugging. */
200 i++
201 :: else → break
202 od ;
203

204 fi [1] = 0 ; fo[1] = 1 ; fi [2] = 1 ; fo[2] = 0 ;
205 i = 3 ; do
206 :: (i < NO_OF_FORKERS + 3) →
207 fi [i] = 1 ; fo[i] = FORKS ;
208 i++
209 :: else → break
210 od ;
211

212 j = i ; do
213 :: (i < NO_OF_MERGERS + j) →
214 fi [i] = FORKS ; fo[i] = 1 ;
215 i++
216 :: else → break
217 od ;
218

219 j = i ; do
220 :: (i < NO_OF_CONNECTORLS + j) →
221 fi [i] = 1 ; fo[i] = 1 ;
222 i++
223 :: else → break
224 od ;
225

226 j = i ; do
227 :: (i < NO_OF_ENCODERS + j) →
228 fi [i] = 1 ; fo[i] = 1 ;
229 i++
230 :: else → break
231 od ;
232

233 j = i ; do
234 :: (i < NO_OF_DECODERS + j) →
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235 fi [i] = 1 ; fo[i] = 1 ;
236 i++
237 :: else → break
238 od ;
239

240 j = i ; do
241 :: (i < NO_OF_CONNECTORRS + j) →
242 fi [i] = 1 ; fo[i] = 1 ;
243 i++
244 :: else → break
245 od ;
246 /*

247 */
248 #ifndef STOP_AFTER_WIRING
249 printf ("\n Bind: Will bind channels.\n \n") ;
250 #endif
251 i = 1 ; j = -1 ; m = -1 ; lasti = 0 ; lasto = 0 ;
252 do
253 :: (i ≤ K) →
254 j = j + fi [i] ;
255 if
256 :: (j < 0) → lasti = 0
257 :: else → lasti = j
258 fi ;
259 inputs[i] = lasti ;
260

261 m = m + fo[i] ;
262 if
263 :: (m < 0) → lasto = 0
264 :: else → lasto = m ;
265 fi ;
266 outputs[i] = lasto ;
267 #ifndef STOP_AFTER_WIRING
268 printf ("MSC: Bind: inputs[%d] = %d\n", i, inputs[i]) ;
269 #endif
270 i++
271 :: else → break
272 od ;
273 #ifndef STOP_AFTER_WIRING
274 printf ("\n \n") ;
275 #endif
276 i = 1 ;
277 do
278 :: (i ≤ K) →
279 #ifndef STOP_AFTER_WIRING
280 printf ("MSC: Bind: outputs[%d] = %d\n", i, outputs[i]) ;
281 #endif
282 i++
283 :: else → break
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284 od ;
285 lasti++ ; lasto++ ;
286 #ifndef STOP_AFTER_WIRING
287 printf ("\n \n") ;
288 printf ("MSC: Bind: lasti = %d\n", lasti) ;
289 printf ("MSC: Bind: lasto = %d\n \n", lasto) ;
290 #endif
291

292 i = 0 ; do
293 :: (i < CHANNELS) → Inputs[i] = 255 ; channel_bounded[i] = 0 ; i++ /* For debugging */
294 :: else → break
295 od ; i = 0 ; j = 0 ;
296 } ;
297 #ifdef GOOD_BINDINGS
298 d_step {
299 /* Ignoring constraints, etc. */
300 Inputs[ 0] = GB0 ; Inputs[ 4] = GB4 ; Inputs[ 8] = GB8 ;
301 Inputs[ 1] = GB1 ; Inputs[ 5] = GB5 ; Inputs[ 9] = GB9 ;
302 Inputs[ 2] = GB2 ; Inputs[ 6] = GB6 ; Inputs[10] = GB10 ;
303 Inputs[ 3] = GB3 ; Inputs[ 7] = GB7 ; Inputs[11] = GB11
304 } ;
305

306 /* We can use this to verify multiple cases that seem to be correct together. */
307 #include "./test-bok.spin"
308 /*

309 */
310 #else /* not defined GOOD_BINDINGS */
311 run random_generator() ; /* Start the random number generator. */
312 i = 0 ; K = lasti ;
313 do
314 :: (i < lasti) →
315 #ifdef USE_CONSTRAINTS
316 d_step {
317 j = 0 ;
318 do
319 :: (j < CHANNELS) →
320 channel_constrained[j] = 1 ; j++
321 :: else → break
322 od ; j = 0
323 } ;
324

325 if
326 :: (0 == i) → /* Message_sink */
327 constraints[i] = CHANNELS -2 ;
328 /* Can get input from: Merge, Decode[1] */
329 channel_constrained[ 3] = 0 ; /* Merge */
330 channel_constrained[8] = 0 /* Decode[1] */
331 :: (1 == i) → /* Fork */
332 constraints[i] = CHANNELS -4 ;



158 B Promela Models:The Code

333 /* Can get input from: Client, Encode[1], Decode[1], ConnectorR[1] */
334 channel_constrained[ 0] = 0 ; /* Client */
335 channel_constrained[ 6] = 0 ; /* Encode[1] */
336 channel_constrained[ 8] = 0 ; /* Decode[1] */
337 channel_constrained[10] = 0 /* ConnectorR[1] */
338 :: (2 == i) → /* Merge (1) */
339 constraints[i] = CHANNELS -4 ;
340 /* Can get input from: ConnectorL[1], Encode[1], Decode[1], ConnectorR[1] */
341 channel_constrained[ 4] = 0 ; /* ConnectorL[1] */
342 channel_constrained[ 6] = 0 ; /* Encode[1] */
343 channel_constrained[ 8] = 0 ; /* Decode[1] */
344 channel_constrained[10] = 0 /* ConnectorR[1] */
345 :: (3 == i) → /* Merge (2) */
346 constraints[i] = CHANNELS -4 ;
347 /* Can get input from: ConnectorL[2], Encode[2], Decode[2], ConnectorR[2] */
348 channel_constrained[ 5] = 0 ; /* ConnectorL[2] */
349 channel_constrained[ 7] = 0 ; /* Encode[2] */
350 channel_constrained[ 9] = 0 ; /* Decode[2] */
351 channel_constrained[11] = 0 /* ConnectorR[2] */
352 :: (4 == i) → /* ConnectorL[1] */
353 constraints[i] = CHANNELS -4 ;
354 /* Can get input from: Fork(1), Encode[1], Decode[1], ConnectorR[1] */
355 channel_constrained[ 2] = 0 ; /* Fork(1) */
356 channel_constrained[ 6] = 0 ; /* Encode[1] */
357 channel_constrained[ 8] = 0 ; /* Decode[1] */
358 channel_constrained[10] = 0 /* ConnectorR[1] */
359 :: (5 == i) → /* ConnectorL[2] */
360 constraints[i] = CHANNELS -4 ;
361 /* Can get input from: Fork(2), Encode[2], Decode[2], ConnectorR[2] */
362 channel_constrained[ 1] = 0 ; /* Fork(2) */
363 channel_constrained[ 7] = 0 ; /* Encode[2] */
364 channel_constrained[ 9] = 0 ; /* Decode[2] */
365 channel_constrained[11] = 0 /* ConnectorR[2] */
366 :: (6 == i) → /* Encode[1] */
367 constraints[i] = CHANNELS -4 ;
368 /* Can get input from: Client, Fork(1), Merge, ConnectorL[1] */
369 channel_constrained[ 0] = 0 ; /* Client */
370 channel_constrained[ 2] = 0 ; /* Fork(1) */
371 channel_constrained[ 3] = 0 ; /* Merge */
372 channel_constrained[ 4] = 0 /* ConnectorL[1] */
373 /*

374 */
375 :: (7 == i) → /* Encode[2] */
376 constraints[i] = CHANNELS -3 ;
377 /* Can get input from: Fork(2), ConnectorL[2], Encode[2] */
378 channel_constrained[ 1] = 0 ; /* Fork(2) */
379 channel_constrained[ 5] = 0 ; /* ConnectorL[2] */
380 channel_constrained[ 7] = 0 /* Encode[2] */
381 :: (8 == i) → /* Decode[1] */
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382 constraints[i] = CHANNELS -4 ;
383 /* Can get input from: Fork(1), Merge, ConnectorL[1], ConnectorR[1] */
384 channel_constrained[ 2] = 0 ; /* Fork(1) */
385 channel_constrained[ 3] = 0 ; /* Merge */
386 channel_constrained[ 4] = 0 ; /* ConnectorL[1] */
387 channel_constrained[11] = 0 /* ConnectorR[1] */
388 :: (9 == i) → /* Decode[2] */
389 constraints[i] = CHANNELS -3 ;
390 /* Can get input from: ConnectorL[2], Decode[2], ConnectorR[2] */
391 channel_constrained[ 5] = 0 ; /* ConnectorL[2] */
392 channel_constrained[ 9] = 0 ; /* Decode[2] */
393 channel_constrained[11] = 0 /* ConnectorR[2] */
394 :: (10 == i) → /* ConnectorR[1] */
395 constraints[i] = CHANNELS -4 ;
396 /* Can get input from: Fork(1), Merge, ConnectorL[1], Encode[1] */
397 channel_constrained[ 2] = 0 ; /* Fork(1) */
398 channel_constrained[ 3] = 0 ; /* Merge */
399 channel_constrained[ 4] = 0 ; /* ConnectorL[1] */
400 channel_constrained[ 6] = 0 /* Encode[1] */
401 :: (11 == i) → /* ConnectorR[2] */
402 constraints[i] = CHANNELS -3 ;
403 /* Can get input from: ConnectorL[2], Encode[2], ConnectorR[2] */
404 channel_constrained[ 5] = 0 ; /* ConnectorL[2] */
405 channel_constrained[ 7] = 0 ; /* Encode[2] */
406 channel_constrained[11] = 0 /* ConnectorR[2] */
407 :: else → skip
408 fi ;
409

410 d_step {
411 j = 0 ; constraints[i] = 0 ;
412 do
413 :: (j < lasti) →
414 if
415 :: (channel_constrained[j] ∧ !channel_bounded[j]) →
416 constraints[i]++
417 :: else → skip
418 fi ;
419 j++
420 :: else → break
421 od ; j = 0
422 } ;
423 Z = K ;
424 j = Z - constraints[i] ;
425 #ifndef STOP_AFTER_WIRING
426 printf ("MSC: Bind: K = %d constraints[%d] = %d Z = %d\n", K, i, constraints[i], Z) ;
427 #endif
428 #else
429 j = K ;
430 #endif /* USE_CONSTRAINTS */
431 /* If it fails, it means we’ve bound the inputs the wrong way so far and we’ve got no



160 B Promela Models:The Code

432 acceptable way to continue for the rest. It helps prune the search space.
433 assert (Z > 0) ; */
434 if
435 :: (j > 0) → Z = j
436 :: else → goto block_nonpositive_Z
437 fi ;
438 /*

439 */
440 /* Choose a random number between 1 and Z (inclusive). */
441 random_gen ! Z ;
442 random_gen ? r ;
443

444 j = 0 ;
445 do
446 :: (j < lasti) →
447 if
448 :: (! channel_bounded[j] ∧ ! channel_constrained[j]) →
449 if
450 :: (r > 1) → r--
451 :: else →
452 m = j ;
453 break
454 fi
455 :: else → skip
456 fi ;
457 j++
458 :: else → break
459 od ;
460 #ifndef STOP_AFTER_WIRING
461 printf ("MSC: Bind: before assert: i = %d, Z = %d, r = %d, j = %d, m = %d\n",
462 i, Z, r, j, m) ;
463 #endif
464 j = 0 ;
465 /* assert ( 1 == r ) ; */
466 if
467 :: ( 1 == r) → skip
468 :: else → goto block_nonpositive_r
469 fi ;
470

471 Inputs[i] = m ; channel_bounded[m] = 1 ;
472 #ifndef STOP_AFTER_WIRING
473 printf ("MSC: Bind: Inputs[%d] = %d\n", i, m) ;
474 #endif
475 K-- ;
476

477 /* i++ ; */ /* Next step */
478 /*
479 Use the following order for the next element. In this way, the components having lots of
480 constraints (initially) get to bind their inputs first and, hopefully, diminish the possible
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481 bindings.
482

483 constraints[ 0] = -2 ; constraints[ 4] = -4 ; constraints[ 8] = -4 ;
484 constraints[ 1] = -4 ; constraints[ 5] = -4 ; constraints[ 9] = -3 ;
485 constraints[ 2] = -4 ; constraints[ 6] = -4 ; constraints[10] = -4 ;
486 constraints[ 3] = -4 ; constraints[ 7] = -3 ; constraints[11] = -3 ;
487

488 constraints[ 0] = -2 ; constraints[ 1] = -3 ; constraints[ 5] = -4 ;
489 constraints[ 7] = -3 ; constraints[ 2] = -3 ; constraints[ 6] = -4 ;
490 constraints[ 9] = -3 ; constraints[ 3] = -3 ; constraints[ 8] = -4 ;
491 constraints[11] = -3 ; constraints[ 4] = -3 ; constraints[10] = -4 ;
492 */
493 if
494 :: ( 0 == i) → i = 7
495 :: ( 7 == i) → i = 9
496 :: ( 9 == i) → i = 11
497 :: (11 == i) → i = 1
498 :: ( 1 == i) → i = 2
499 :: ( 2 == i) → i = 3
500 :: ( 3 == i) → i = 4
501 :: ( 4 == i) → i = 5
502 :: ( 5 == i) → i = 6
503 :: ( 6 == i) → i = 8
504 :: ( 8 == i) → i = 10
505 :: (10 == i) → break
506 fi
507 :: else → break
508 od ;
509 printf ("\n \n") ;
510 d_step {
511 i = 0 ; do
512 :: (i < CHANNELS) →
513 printf (" -DGB%d=%d ", i, Inputs[i]) ;
514 i++
515 :: else → break
516 od ;
517 printf ("\n \n")
518 } ;
519 #endif /* GOOD_BINDINGS */
520 #ifndef STOP_AFTER_WIRING
521 printf ("\n Bind: Channels bound.\n \n") ;
522 #endif
523 /*

524 */
525 /* Now start the rest of the processes. */
526 #ifndef STOP_AFTER_WIRING
527 printf ("\n Bind: Now waking up the rest of the world.\n \n") ;
528 #endif
529
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530 #ifdef STOP_AFTER_WIRING
531 goto the_end ; /* When trying to find possible configurations we don’t run
532 the rest of the processes. */
533 #else
534 atomic {
535 env_source_pid = run Client(id) ; id++ ;
536 printf ("\n Client has process id %d(%d)\n \n", env_source_pid, id-1) ;
537 env_sink_pid = run Message_sink(id) ; id++ ;
538 printf ("\n Message_sink has process id %d(%d)\n \n", env_sink_pid, id-1) ;
539

540 i = 0 ; do
541 :: (NO_OF_FORKERS ≤ i) → break
542 :: else →
543 fork_pid[i] = run Fork(id, i) ; id++ ;
544 printf ("\n Fork[%d] has process id %d(%d)\n \n", i, fork_pid[i], id-1) ;
545 i++
546 od ;
547

548 i = 0 ; do
549 :: (NO_OF_MERGERS ≤ i) → break
550 :: else →
551 merge_pid[i] = run Merge(id, i) ; id++ ;
552 printf ("\n Merge[%d] has process id %d(%d)\n \n", i, merge_pid[i], id-1) ;
553 i++
554 od ;
555

556 i = 0 ; do
557 :: (NO_OF_CONNECTORLS≤ i) → break
558 :: else →
559 connectorL_pids[i] = run ConnectorL(id, i) ; id++ ;
560 printf ("\n ConnectorL[%d] has process id %d(%d)\n \n", i, connectorL_pids[i], id-1) ;
561 i++
562 od ;
563

564 i = 0 ; do
565 :: (i < NO_OF_ENCODERS) →
566 encode_pid[i] = run Encode(id, STD_PROTOCOL) ; id++ ;
567 printf ("\n Encode[%d] has process id %d(%d)\n \n", i, encode_pid[i], id-1) ;
568 i++
569 :: else → break
570 od ;
571

572 i = 0 ; do
573 :: (i < NO_OF_DECODERS) →
574 decode_pid[i] = run Decode(id, STD_PROTOCOL) ; id++ ;
575 printf ("\n Decode[%d] has process id %d(%d)\n \n", i, decode_pid[i], id-1) ;
576 i++
577 :: else → break
578 od ;
579
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580 i = 0 ; do
581 :: (i < NO_OF_CONNECTORRS) →
582 connectorR_pid[i] = run ConnectorR(id) ; id++ ;
583 printf ("\n ConnectorR[%d] has process id %d(%d)\n \n", i, connectorR_pid[i], id-1) ;
584 i++
585 :: else → break
586 od ;
587

588 id = 0 ; i = 0
589 } ;
590 goto the_end ;
591 #endif
592

593 block_nonpositive_Z:
594 printf ("MSC: Bind: blocking at nonpositive Z: Z = %d, r = %d\n", Z, r) ;
595 block_with_do() ;
596 block_nonpositive_r:
597 printf ("MSC: Bind: blocking at nonpositive r: Z = %d, r = %d\n", Z, r) ;
598 assert (0) ;
599 good_bind:
600 printf ("MSC: IT FOUND IT!!!\n") ;
601 the_end:
602 skip
603 }
604 /*

605 */
606 #ifndef GOOD_BINDINGS
607 proctype random_generator()
608 {
609 byte Z, r ;
610

611 do
612 :: true →
613 random_gen ? Z ;
614 if
615 :: (Z > 0) → r = 1
616 :: (Z > 1) → r = 2
617 :: (Z > 2) → r = 3
618 :: (Z > 3) → r = 4
619 :: (Z > 4) → r = 5
620 :: (Z > 5) → r = 6
621 :: (Z > 6) → r = 7
622 :: (Z > 7) → r = 8
623 :: (Z > 8) → r = 9
624 :: (Z > 9) → r = 10
625 :: (Z > 10) → r = 11
626 :: (Z > 11) → r = 12
627 :: (Z > 12) → r = 13
628 :: (Z > 13) → r = 14
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629 :: (Z > 14) → r = 15
630 :: (Z > 15) → r = 16
631 :: (Z > 16) → r = 17
632 :: (Z > 17) → r = 18
633 fi ;
634 if
635 :: (Z > 18) → r = 255
636 :: (Z < 1) → r = 254
637 :: else → skip
638 fi ;
639

640 /* r = randomnr(1..Z) , where Z starts from lasti and goes down to 1 (- constraints) */
641 random_gen ! r
642 od
643 }
644 #endif
645 /*
646

647 We want:
648

649 1) p = [] (sent_red_p → <> rcvd_red_p)
650 to hold. The case with blue is symmetrical. This stands for not accepting losses of
651 messages.
652

653 2) q = !(!rcvd_red_p U rcvd_blue_p)
654 to hold. This stands for arrival of messages in order. The property inside parentheses
655 describes the case where we have received a blue message, but not a red one.
656

657 3) w = [] correct_protocol_p
658 to hold. This states that encoding-decoding has been succesfull.
659

660 4) progress = ([]<>!np_) ∧ ([]!block_p)
661

662 STAGE 1: find_compositions = <>bb
663 = <>Bind[0]@the_end
664

665 STAGE 2: verify_compositions = progress ∧ p ∧ q
666 = ([]<>!np_) ∧ ([]!block_p) ∧ ([] (sr → <> rr)) ∧ (!(!rr U rb))
667 */
668 #define sr sent_red_p
669 #define sb sent_blue_p
670 #define rr rcvd_red_p
671 #define rb rcvd_blue_p
672 #define bb Bind[bind_pid]@the_end
673

674 #if STAGE==1
675 never { /* ( <> bb ) */
676 T0_init:
677 if
678 :: ((bb)) → goto accept_all
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679 :: (1) → goto T0_init
680 fi ;
681 accept_all:
682 skip
683 }
684 #endif
685

686 #if STAGE==2
687 /*
688 * Formula As Typed:
689 * ([]<>!np_) ∧ ([]!block_p) ∧ ([] (sr → <> rr)) ∧ (!(!rr U rb))
690 * The Never Claim Below Corresponds
691 * To The Negated Formula:
692 * !(([]<>!np_) ∧ ([]!block_p) ∧ ([] (sr → <> rr)) ∧ (!(!rr U rb)))
693 * (formalizing violations of the original)
694 */
695

696 never { /* !(([]<>!np_) ∧ ([]!block_p) ∧ ([] (sr → <> rr)) ∧ (!(!rr U rb))) */
697 T0_init:
698 if
699 :: ((((block_p)) ∨ ((rb)))) → goto accept_all
700 :: (( np_ )) → goto accept_S5
701 :: (! ((rr)) ∧ (sr)) → goto accept_S10
702 :: (1) → goto T0_S2
703 :: (! ((rr))) → goto T0_S19
704 fi ;
705 accept_S5:
706 if
707 :: (( np_ )) → goto accept_S5
708 fi ;
709 accept_S10:
710 if
711 :: (! ((rr))) → goto accept_S10
712 fi ;
713 T0_S2:
714 if
715 :: ((block_p)) → goto accept_all
716 :: (( np_ )) → goto accept_S5
717 :: (! ((rr)) ∧ (sr)) → goto accept_S10
718 :: (1) → goto T0_S2
719 fi ;
720 T0_S19:
721 if
722 :: ((rb)) → goto accept_all
723 :: (! ((rr))) → goto T0_S19
724 fi ;
725 accept_all:
726 skip
727 }
728 #endif
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Résumé

Les systèmes informatiques deviennent de plus en plus complexes et doivent
offrir un nombre croissant de propriétés non fonctionnelles, comme la fiabil-
ité, la disponibilité, la sécurité, etc.. De telles propriétés sont habituellement
fournies au moyen d’un intergiciel qui se situe entre le matériel (et le sys-
tème d’exploitation) et le niveau applicatif, masquant ainsi les spécificités du
système sous-jacent et permettant à des applications d’être utilisées avec dif-
férentes infrastructures. Cependant, à mesure que les exigences de propriétés
non fonctionnelles augmentent, les architectes système se trouvent confron-
tés au cas où aucun intergiciel disponible ne fournit toutes les propriétés non
fonctionnelles visées. Ils doivent alors développer l’infrastructure intergicielle
nécessaire à partir de rien, voire essayer de réutiliser les multiples infrastruc-
tures intergicielles existantes, où chacune fournit certaines des propriétés
exigées.

Dans cette thèse, nous présentons une méthode pour composer automatique-
ment des architectures d’intergiciels, afin d’obtenir une architecture qui four-
nit les propriétés non fonctionnelles visées. Pour arriver à l’automatisation
de la composition, nous montrons d’abord comment on peut reformuler ce
problème sous la forme d’un problème de model-checking. Cette reformula-
tion donne une définition formelle au problème de la composition et nous
permet de réutiliser les méthodes et outils qui ont été développés pour le
model-checking. Nous présentons ensuite des améliorations à notre méthode
de base, utilisées pour éviter le problème d’explosion d’états dans le cas de
la composition d’architectures de grande taille. Nous montrons comment il
est possible d’exploiter l’information structurelle, présente dans les architec-
tures d’intergiciels que nous souhaitons composer, afin de réduire l’espace
de recherche analysé. Ceci nous permet d’obtenir une méthode pour com-
poser les architectures d’intergiciels qui peut être automatisée et donc utilisée
en pratique. Nous proposons ainsi une solution à l’analyse systématique de
différentes compositions et offrons un outil pour aider la construction de sys-
tèmes de qualité.


	Résumé
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	I  Introduction  
	Component-Based Software Engineering
	Composing Software Architectures
	Document Structure

	II  Basic Concepts of Software Architectures  
	General Notions 
	Notions Specific to Software Architectures 
	Middleware Architectures

	Representation of Software Architectures 
	Overview of Existing ADLs
	Connectors as First Class Architectural Elements 
	Underlying Formalism for an ADL

	Model Checkers 
	An ADL for Composing Middleware Architectures 
	A Graphical ADL for Middleware Architectures 


	Composition of Middleware Architectures 

	III  Related Work  
	Specifications 
	Composition and Software Architectures 
	Vertical/Horizontal Composition 
	Feature Composition in Telephone Systems 
	Architectural Views 
	Inconsistent Views 

	Architectural Unification 
	Connector Transformations 
	Aspect-Oriented Programming 


	Composition of Modules 
	Composition of Linear Architectures 


	IV  Composition as Model Checking  
	Composing Middleware Architectures 
	Searching for Valid Compositions 

	Composition of Architectures as a Model Checking Problem 
	Composing with the Spin Model Checker 
	Composition in Two Stages 
	The Binder


	Assessment 

	V  Constraining the Search Space  
	Constraining Through Structure
	Formal Definition of Structural Constraints
	Constraints for Linear Architectures
	Constraints for Non-Linear Architectures 


	Constraints and Model Checking
	Transforming Structural Constraints to a Compatibility Relation
	An Example of Composing Architectures - I 

	Using Constraints to Construct the Compositions 
	Constructing Linear Architectures
	Constructing Non-Linear Architectures
	Finding Fan-Out and Fan-In Nodes in the Configuration Graph 

	An Example of Composing Architectures - II 

	Assessment

	VI  A Uml Tool for Software Architectures  
	Why Uml? 
	Software Architectures and Uml
	Component in Uml
	Connector in Uml
	Configuration in Uml

	A Uml-Based Environment for Composition of Middleware Architectures 
	Constructing Structurally Valid Compositions in a Uml Environment 

	Conclusions

	VII  Conclusions  
	Composing Middleware Architectures
	Assessing the Degree of Reusability of Middleware Architectures

	Open Issues and Future Directions
	Multiple Instances of a Component
	Composition at Different Abstraction Levels
	Selecting a Composed Middleware Architecture for a System
	Selection through Model-Checking
	Selection through Graph Characteristics
	Selection through Quantitative Analysis

	Composing Software Architectures in General 


	A  Operators of Temporal Logic  
	B  Promela Models: The Code  
	Bibliography

