
HAL Id: tel-00469433
https://theses.hal.science/tel-00469433v1

Submitted on 1 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting QoS-aware Service Discovery in Ubiquitous
Computing Environments.

Jinshan Liu

To cite this version:
Jinshan Liu. Supporting QoS-aware Service Discovery in Ubiquitous Computing Environments.. Com-
puter Science [cs]. Université de Versailles-Saint Quentin en Yvelines, 2006. English. �NNT : �. �tel-
00469433�

https://theses.hal.science/tel-00469433v1
https://hal.archives-ouvertes.fr

No Ordre
de la thèse

:

THÈSE
présentée

DEVANT L’UNIVERSITÉ DE VERSAILLES
Saint-Quentin-en-Yvelines

pour obtenir

le grade de : DOCTEUR DE L’UNIVERSITÉ DE VERSAILLES

Mention : Informatique

PAR
JINSHAN LIU

Équipe d’accueil : INRIA, Projet ARLES

TITRE DE LA THÈSE :

Découverte de services sensible à la qualité de service dans les
environnements de l’informatique diffuse

SOUTENU LE 11 / 07 / 2006 devant la commission d’Examen

COMPOSITION DU JURY

Cecilia MASCOLO (University College London) Rapporteur

Karl ABERER (École Polytechnique Fédérale de Lausanne) Rapporteur

Serge FDIDA (Laboratoire d’Informatique de Paris 6) Examinateur

Nicole LÉVY (Université de Versailles Saint-Quentin-en-Yvelines) Examinateur

Valérie ISSARNY (INRIA) Directrice de Thèse

Abstract

With the advent of portable devices (e.g., smartphones) and the advances
in wireless networking technologies (e.g., WLAN, GPRS, UMTS), the vision
of ubiquitous computing is becoming a reality. It aims to facilitate user tasks
through the seamless utilization of heterogeneous computing and commu-
nication capabilities (represented as services) available in the environment.
Service discovery, which is necessary for achieving the above goal, must be
aware of the service’s non-functional properties due to the challenges posed
by ubiquitous computing, such as device portability and mobility. This the-
sis proposes an overall solution that supports QoS-aware service discovery
in ubiquitous computing environments. Our contribution lies in substantiat-
ing QoS awareness in the following three aspects. Firstly, during the process
of discovering services, the expiring wireless links resulting from device mo-
bility are identified and avoided since they cause service failures and thus
hamper service reliability. Secondly, as multiple services can be discovered,
a comprehensive utility function is proposed to evaluate services in terms of
their various non-functional properties, meanwhile taking into account the
service user’s preferences among them, for the purpose of selecting the best
one. Thirdly, to avoid untrustworthy services, a distributed reputation mech-
anism is proposed to facilitate the evaluation of the service host’s trustwor-
thiness. The above three proposed solutions are extensively evaluated respec-
tively, based on analysis and simulation. They are further incorporated into
a middleware that supports QoS aware Web service discovery in ubiquitous
computing environments. A prototype implementing the middleware is de-
ployed and evaluated. The results show that the overhead introduced by QoS
awareness seems reasonable.

ii Abstract

Dedicated to my parents

Acknowledgments

This thesis represents the end of my journey of obtaining my Ph.D. degree.
I wish to express my gratitude to a number of people who have made this
journey pleasant and memorable.

First and foremost, I would like to thank my supervisor, Valérie Issarny,
who has being continuously offering her advice and encouragement during
the course of this thesis. What I have accomplished so far would not be pos-
sible without her invaluable guidance and support.

I would like to thank Dr. Cecilia Masocolo and Prof. Karl Aberer for being
my rapporteurs in spite of their busy schedules. Their insightful comments
have helped me improve my thesis. Thanks are also due to Prof. Nicole Lévy,
for being the president of my jury and Prof. Serge Fdida for being present in
my jury.

I feel fortunate to have met the people in the INRIA-ARLES team that have
been so friendly and supportive. I want to especially thank Nikolaos for his
friendship and encouragement and for being company in the INRIA shuttle.
I also want to thank Sonia, Pierre-Guillaume, Roberto, Ferda, Daniele, David,
Damien(s), Manel, Françoise, Oriana, Malika, Khoi and Rafik for the great
time and unforgettable memories. Thanks are also extended to Ahmad Ab-
dulwakeel for his help in implementation of the prototype. And I am greatly
indebted to Emmanuelle for her generous help.

Last but certainly not least, I thank my parents, my brother Jingshu and
my sister Bingmei. Their love and care have made it possible for me to make
it this far.

Contents

Abstract i

Contents x

List of Figures xi

List of Tables xiii

I Introduction 1

I.1 Motivation . 2

I.2 Contribution . 3

II System Architecture for Ubiquitous Computing 5

II.1 Ubiquitous Computing Vision 5

II.1.1 Enabling Elements . 6

II.1.2 Characteristics and Challenges 7

II.2 Ubiquitous Computing Middleware 10

II.3 Service Discovery in Ubiquitous Computing Environments . 12

II.3.1 Service Location . 13

II.3.2 Service Selection . 15

II.3.3 Reputation Mechanism 16

II.4 Concluding Remarks . 18

III Service Discovery in Ubiquitous Computing Environments: State of
the Art 21

III.1 Service Discovery Protocols 21

III.2 QoS-aware Service Location 23

III.2.1 QoS Description Awareness 23

III.2.2 Mobility awareness . 24

III.2.2.1 Ad Hoc Routing 25

III.2.2.2 Mobility Aware Service Location 28

III.3 Service Selection . 28

III.3.1 Service Evaluation . 29

III.3.1.1 Evaluation based on QoS Description 29

III.3.1.2 Evaluation based on Service Path 31

III.3.1.3 Evaluation based on Service Provider 31

III.3.2 Pricing Model . 33

III.3.2.1 Service Price 33

III.3.2.2 Auction-based Pricing Model 34

III.4 Reputation Mechanism . 37

III.5 Concluding Remarks . 41

IV Signal Strength based Service Location 43

IV.1 Background on Signal Propagation 43

IV.2 Signal Strength based Service Location (S3L) 48

IV.2.1 Service Location Process 49

IV.2.1.1 Beacon . 50

IV.2.1.2 Service Location 53

IV.2.2 S3L Analysis . 55

IV.3 Performance Evaluation . 56

IV.3.1 Simulation Environment 57

IV.3.2 Evaluation Results . 59

IV.4 Concluding Remarks . 62

V QoS-aware Service Selection Using Vickrey auction 65

V.1 A QoS Model . 66

V.2 QoS-aware Service Selection 73

V.2.1 User Benefit . 74

V.2.2 Utility Function . 76

V.2.3 Vickrey Auction based Pricing Model 77

V.2.4 QoS-aware Service Location and Selection 79

V.3 Service Selection Analysis . 80

V.4 Concluding Remarks . 82

VI A Robust and Incentive Compatible Reputation Mechanism 83

VI.1 Reputation Representation . 84

VI.1.1 Beta Distribution . 84

VI.1.2 Beta Reputation . 85

VI.2 Reputation Formation . 87

VI.3 Reputation Evolution . 89

VI.3.1 Time Fading . 89

VI.3.2 Evolution of Service Reputation (SRep) 90

VI.3.3 Evolution of Recommendation Reputation (RRep) . . 91

VI.4 Reputation Propagation . 93

VI.5 Reputation Mechanism Evaluation 96

VI.5.1 Experiment Setting . 96

VI.5.2 Evaluation Results . 98

VI.6 Concluding Remarks . 102

VII QoS-aware Web Service Discovery Middleware 105

VII.1 Background on Web Services 106

VII.2 QoS-aware Web Service Discovery (QoWSD) 107

VII.3 QoWSD Prototype . 120

VII.3.1 Prototype Overview 120

VII.3.2 Performance Evaluation 121

VII.4 Concluding Remarks . 128

VIII Conclusion 129

VIII.1 Contribution . 129

VIII.2 Perspective . 131

Bibliography 133

List of Figures

II.1 Problem definition of service selection 15

III.1 Link stability with two ends moving 25

III.2 Triangulation with three fixed base stations 27

IV.1 Signal Strength with different T-R distances 45

IV.2 Signal and noise power when one node is moving 47

IV.3 Signal and noise power when both nodes are moving 47

IV.4 Beacon sending in S3L . 50

IV.5 An example of service location with S3L 55

IV.6 Link stability between two nodes 56

IV.7 Number of successful and failed service deliveries 60

IV.8 Service delivery success ratio 61

IV.9 Number of successful and failed service deliveries with dif-
ferent speeds . 62

IV.10 Number of successful and failed service deliveries with dif-
ferent service latency . 63

V.1 Impact of a service’s latency on others’ service utilities 81

VI.1 Beta Distribution values . 85

VI.2 Calculation of ∆e . 91

VI.3 The states of a recommender 93

VI.4 Number of elicited honest recommendations 98

VI.5 Number of blind decisions . 99

VI.6 Number of made mistakes . 100

VI.7 Percentage of wrong trust decisions 100

VI.8 Percentage of wrong trust decisions with larger population . 101

VI.9 Percentage of wrong trust decisions with different popula-
tion composition . 101

VII.1 Structure of WSDL document 106

VII.2 QoWSD Architecture . 107

VII.3 The internal structure of the QoWSD middleware 108

VII.4 A serv_beacon packet in QoWSD 110

VII.5 An example of extended WSDL document 111

VII.6 A serv_disc packet in QoWSD 113

VII.7 A serv_resp packet in QoWSD 114

VII.8 A rec_requ packet in QoWSD 115

VII.9 A rec_resp packet in QoWSD 116

VII.10 A serv_invo packet in QoWSD 118

VII.11 A serv_ack packet in QoWSD 119

VII.12 QoWSD Prototype Architecture 120

VII.13 The network topology for QoWSD prototype evaluation . . 121

VII.14 Service location latency with and without QoS description . 124

VII.15 Impact of beacons on service location latency 124

VII.16 Impact of beacons and QoS description on service location
latency . 125

VII.17 Recommendation elicitation time 126

VII.18 Actual service latency for different runs 127

VII.19 Service latency prediction errors 127

List of Tables

II.1 Faced challenges in ubiquitous computing environments . . 10

III.1 Various Auction Settings . 37

IV.1 A serv_beacon packet in S3L 51

IV.2 An entry of the neighbor table in S3L 51

IV.3 A serv_disc packet in S3L . 53

IV.4 A serv_resp packet in S3L . 54

IV.5 NS-2 simulation parameters for evaluating S3L 58

IV.6 Difference between DIST and S3L 59

IV.7 Service location latency of DIST and S3L 60

V.1 QoS model for services in ubiquitous computing environ-
ments . 71

V.2 QoS values before and after decimal scaling 75

V.3 QoS values before and after standard normalization 76

V.4 A serv_disc packet for QoS-aware location and selection . . 79

V.5 A serv_resp packet for QoS-aware service location and se-
lection . 80

V.6 QoS values and utilities of three example services 81

VI.1 Notations in the reputation mechanism 87

VI.2 An entry of the acquaintance table 87

VI.3 NS-2 simulation parameters for reputation mechanism eval-
uation . 96

xiv List of Tables

VI.4 The types of nodes with different behavior 97

VII.1 An entry of the neighbor table in QoWSD 110

VII.2 The routine provided by QoWSD for service providers . . . 111

VII.3 An entry of the service depository in QoWSD 112

VII.4 The routines provided by QoWSD for service clients 112

VII.5 An entry of the acquaintance table in QoWSD 115

VII.6 Service location latency and its breakdown 123

VII.7 Service selection time in QoWSD 127

I

Introduction

In 1996, Mark Weiser summarized the last fifty years of computing history
and stated that it had been witnessed two major eras and we were entering
the era of ubiquitous computing [Weiser and Brown, 1996]. In the first era of
“mainframe era”, many people were tied to a single (mainframe) computer
which was mostly run by experts behind closed doors. The second era con-
nected individuals to desktops and laptops and computers became personal.
In the third era of ubiquitous computing, one user has access to many comput-
ers (devices), which assume various forms (e.g., mobile phones, sensors) and
are interconnected.

These devices along with their software components (e.g., a dictionary ser-
vice) and contents (e.g., a personal blog) pose as abundant and even explosive
resources accessible to a user. These heterogeneous resources are often gen-
eralized and abstracted as services (e.g, [Czerwinski et al., 1999, Papazoglou
and Georgakopoulos, 2003]). Such plentiful services should benefit instead of
overwhelm users. It thus requires support of dynamic and efficient service
discovery to facilitate the realization of user-centric tasks. As these services
can exhibit great diversity in their non-functional properties due to factors
such as service providers’ computing power, it calls for incorporating QoS
awareness in the process of service discovery, which is the focus of this thesis.

The rest of this chapter is organized as follows. We first elaborate the moti-
vation of our work on supporting QoS-aware service discovery in Section I.1.
Then we present the structure of this document in Section I.2.

2 I Introduction

I.1 Motivation

In order to facilitate the utilization of the (digital) services available in the
environment, we address in this thesis the support of QoS-aware service dis-
covery in ubiquitous computing environments, which is illustrated with the
following scenario.

On a sunny afternoon, Bob is browsing his schedule on his smart-
phone while waiting for his friends in a campus cafe. He plans to
watch a new movie with his friends and would like to know more
information about the movie. With a single click, he gets some re-
views on the movie and finds a movie trailer. He browses the re-
views, watches the movie trailer and happily finds that the movie
seems to be even more exciting than he has expected.

The above scenario can be supported by an intelligent system running on
Bob’s handheld. At first, although the cafe has installed a base station for
Internet access, it is quite slow as many people are using it for surfing the
Internet. Therefore, the system chooses to send Bob’s request for “more in-
formation about a movie” through the ad hoc network of handhelds in the
cafe. Within a short time (e.g., 0.5 second), the system has collected several
movie reviews and also chosen a movie trailer. The reviews come from per-
sonal blogs on other people’s handhelds and they are provided for free or 0.01
cybeuro as courtesy (cybeuro is a cyber currency used for buying and selling
services). There are actually 4 identical trailers available (e.g., copies down-
loaded from the film website) in Bob’s surrounding environment. The first
one comes from Alice, who is just passing by. The system detects that her
smartphone is very likely to get out of reach soon and thus does not even
send her the query. The second comes from Conan, who is identified by the
system as a “dishonest entity”, since Conan sent a virus during the last en-
counter with Bob. The other two trailers come from Dennis and Elton. Den-
nis’ smartphone, however, has not much battery power left and therefore its
system accordingly raises the price (in cybeuro) of the service providing the
trailer. In addition, Elton’s smartphone is equipped with a new wireless card
and can send the trailer really fast. Considering the price and performance,
Bob’s system selects Elton’s trailer and presents it to Bob. Note that all of the
above actions of finding and selecting services are automatically carried out
by the system behind the scene and do not need any user intervention (either
from Bob or others).

The above scenario presents an example of QoS-aware service discovery
in ubiquitous computing environments (e.g., a campus cafe). Bob’s hand-

I.2 Contribution 3

held can carry out the following functions: locating a service based on both
functional (e.g., movie review) and QoS properties (e.g., reliability); selecting
among service instances based on their QoS and prices (e.g., determined by
the service’s battery consumption); storing the interaction histories for future
reference. Although all the above seems achievable using current technolo-
gies, there remain open issues. In particular, how to handle mobility issues
when users move around (i.e., how does Bob’s system detect that Alice is just
passing by)? How to select the best among several services, all of them satis-
fying the user’s requirements (i.e., how to select between Dennis and Elton’s
services)? And how can two entities interact if they do not know each other
(i.e., what can Bob do if he never met Elton before)?

I.2 Contribution

This thesis addresses the above issues by supporting QoS-aware service dis-
covery in ubiquitous computing environments. The support is substantiated
in three sub-steps of service discovery: service location (i.e., how to find re-
quired services), service selection (i.e., how to choose among the qualified
services) and trustworthiness evaluation of services (i.e., how to judge the
honesty of a service provider).

In chapter II, we study ubiquitous computing system architectures and
state the motivation for QoS support during service discovery in the following
three aspects: mobility awareness to improve service reliability; QoS-aware
service selection to choose the best service instance depending on users’ pref-
erences among service’s QoS properties and price; a robust and incentive
compatible reputation mechanism to evaluate trustworthiness of a service
provider.

Chapter III surveys the state of the art of service discovery in ubiquitous
computing environments, in particular, the handling of the aspects as stated
above, i.e., service location, selection and reputation-based trust management.
The existing work does not handle these aspects sufficiently, which leads us
to devise supporting solutions in the following chapters.

Chapter IV presents Signal Strength based Service Location (S3L) that im-
proves robustness of the discovered services against device mobility for higher
service reliability. Using signal strength, S3L identifies the expiring links that
are likely to break soon because of device mobility. By avoiding those unsta-
ble links, S3L shows considerable improvement in the reliability of discovered
services.

4 I Introduction

As the service location process may find multiple qualified service in-
stances, we describe how to select the one among them that best matches
the user’s requirements and preferences in terms of service QoS and price
in Chapter V. We first present a comprehensive utility function to evaluate a
service with respect to various QoS properties, price and user’s preferences
among them. To tackle the selfishness of autonomous devices belonging to
different persons or organizations, we use Vickrey auction as a pricing model
to motivate entities to reveal the truthful price to ensure the selection of the
most suitable service provider.

As devices can be selfish due to resource limitation and misbehavior is
possible given the openness of the network, a mechanism for evaluating trust-
worthiness needs to be in place to avoid dishonest service providers. Chap-
ter VI presents a fully distributed reputation mechanism that combines direct
and indirect experiences (i.e., recommendations from others) for evaluating
an entity’s trustworthiness. It not only shows robustness against rumors (i.e.,
untruthful recommendation), but also motivates entities to help each other by
providing truthful recommendations.

The three above proposals are integrated into a middleware that supports
QoS-aware Web service discovery in ubiquitous computing environments,
presented in Chapter VII. A prototype implementing the middleware is de-
ployed and evaluated, especially, in terms of the overhead of introducing
QoS-awareness.

Chapter VIII summarizes this thesis and our contributions. It later explores
some future research directions, continuing and beyond this thesis.

II

System Architecture for Ubiquitous
Computing

II.1 Ubiquitous Computing Vision

The vision of ubiquitous computing [Weiser, 1991] refers to the creation of en-
vironments saturated with a spectrum of heterogeneous computing and com-
munication capabilities, which seamlessly integrate with the physical world
[Satyanarayanan, 2001]. It aims to facilitate daily tasks and enhance user pro-
ductivity through the utilization of those capabilities in an unobtrusive fash-
ion, such that they completely blend in the physical environment and become
“invisible”. Such capabilities cover the spectrum ranging from traditional de-
vices (e.g., speakers), wireless mobile devices (e.g., cellphones) to smart de-
vices (e.g., badges, sensors, intelligent appliances). For example, an intelligent
alarm clock can wake a user up fifteen minutes earlier than it is normally set,
if it detects via network connection that there is a traffic jam on the user’s way
to office. Through any device whether mobile or not, users can interact with
the environments anytime, anywhere [Miller and Pascoe, 2000]. Meanwhile, the
environment can detect the presence of users and devices and integrate them
as a part of it [Lyytinen and Yoo, 2002].

One closely related field of ubiquitous computing is mobile computing,
which essentially enables a user equipped with her mobile device to access
computing capabilities anytime, anywhere. The differences between the two
computing paradigms lie in (1) mobile computing assumes a reactive approach
to access computing capacities while ubiquitous computing assumes a proac-
tive “all the time anywhere” approach [Saha and Mukherjee, 2003]. The dif-
ference results from different goals: in mobile computing, users require con-

6 II System Architecture for Ubiquitous Computing

tinuous access to computing capabilities with their mobile device; while in
ubiquitous computing, the (intelligent) environments intend to proactively
satisfy users’ needs with available capacities; (2) mobile devices in mobile
computing are mainly used to access capacities and mostly assume the role of
client, while in ubiquitous computing, these devices can also act as thin servers
[Weiser and Brown, 1996] that offer resources/services for others; (3) besides
mobility support, ubiquitous computing also needs to support other prop-
erties such as smartness and invisibility to ensure that users have seamless
access to computing capabilities.

II.1.1 Enabling Elements

The vision of ubiquitous computing is becoming a reality, thanks to the fol-
lowing twofold facts [Saha and Mukherjee, 2003]: computing devices are be-
coming increasingly powerful, smaller and affordable [Want and Pering, 2005],
leading to populous deployment of them in living and working spaces; the
wireless networking technology is rapidly progressing, making it possible to
connect various devices with multiple networking paradigms.

The first paradigm is through network infrastructure, which is assumed
to be always accessible for nomadic mobile devices. Interactions with the (in-
telligent) environment are carried out through the infrastructure. An example
is a home wireless LAN that interconnects all home devices and provides ac-
cess to capabilities in the “smart” home environments. Such an infrastructure
manages and offers rich facilities that are ready for use, but requires deploy-
ment and maintenance and cannot assume to be always available.

Therefore, in order to achieve “all the time everywhere” access to resources
in ubiquitous computing environments [Saha and Mukherjee, 2003], it neces-
sitates a more flexible alternative for networking. Mobile Ad hoc NETworks
(MANET) pose as a good choice: mobile devices establish connections on the
fly with peer devices when needed [MANET, 2005]. The devices (nodes) are
free to move around and the network can be reorganized arbitrarily. Nodes
communicate with each other using ad hoc routing protocols [Perkins, 2001],
which dynamically find routes in spite of changing network topology.

Compared to infrastructured networks, MANETs have the advantage of
better availability: they are always accessible, in contrast with the former
which can become unavailable when the access point is overloaded. Also,
MANETs are deployment-free, while networking infrastructures require ef-
forts of setup and maintenance. Moreover, MANETs can be used to extend
the coverage area of the network infrastructures by having the nodes with

II.1 Ubiquitous Computing Vision 7

access to infrastructure relay traffic for those that are out of coverage. Finally,
MANETs realize spontaneous networking of devices and support impromptu
interaction between entities, which is a desirable feature for ubiquitous com-
puting [Kindberg and Fox, 2002].

In addition to the above advantages, MANETs can help alleviating the
problem of “uneven conditioning”, as mentioned in [Satyanarayanan, 2001].
Uneven conditioning of ubiquitous computing environments arises from the
different degree of penetration of ubiquitous computing technology into var-
ious physical environments. For example, a well-equipped conference room
generally offers more facilities than a street. Using mobile ad hoc networks
empowers users with awareness of not only the resources that are embed-
ded in the environment, but also those from other mobile devices. Therefore,
a user equipped with her device can dynamically establish a “smart space”
around her, even when she is moving, to exploit the resources available in the
surrounding environments which are not necessarily “smart”. For example,
instead of referring to base stations which are overloaded or unavailable or
costly, a tourist can refer to the dictionary service provided by a nearby PDA
to translate the sign she has just seen.

In summary, MANET poses as a flexible and suitable networking paradigm
for interconnecting devices in ubiquitous computing environments. Hence,
our work on service discovery in ubiquitous computing environments as-
sumes ad hoc networking of devices. The terms of device, node and entity are
used interchangeably in the rest of this thesis. However, MANETs comple-
ment rather than completely replacing infrastructured networks 1. Although
interactions among entities in ubiquitous computing environments are prefer-
ably carried out on MANETs due to the above reasons, it is reasonable to as-
sume that a user has access to network infrastructure from time to time, as
home/office environments are accessed on a daily base.

II.1.2 Characteristics and Challenges

As ubiquitous computing supports mobility, it inherits the characteristics and
challenges of mobile computing [Forman and Zahorjan, 1994, Satyanarayanan,
1996] (such as device mobility and portability). Together with the introduc-
tion of new elements of ubiquitous computing (such as “thin servers”), the
devices who provide and utilize resources in ubiquitous computing environ-
ments have the following characteristics: the devices need to be portable and
thus are resource constrained; the devices exhibit great mobility; the devices

1unless in certain special geographical environments such as deserts.

8 II System Architecture for Ubiquitous Computing

exhibit great heterogeneity in capability and resource availability; the device
mobility also increases the network’s openness and makes it very likely for an
entity to encounter others which it has no or very little knowledge of.

Device Portability. Although handheld devices (e.g., PDA, smartphones)
are getting more and more powerful, they always need to be compact and
portable. The size limit and portability requirement put constraint on the
number of functionalities that can be integrated into a portable device.

First, mobile devices have limited computing capability. Although fueled
by Moore’s law, processors will continue to shrink while increasing in capa-
bility and capacity, new applications will demand ever-greater processing ca-
pabilities [Want et al., 2002]. For example, it is still costly to implement public
key encryption on current PDAs. Second, devices are normally powered by
battery, which is not only limited in capacity, but also progressing very slowly.
From year 1990 to 2003, the battery’s energy density has improved by a factor
of only three [Paradiso and Starner, 2005].

Issues resulting from resource limitation of portable devices include the
devices’ short running time and their incapability of carrying out expensive
computation. It also increases the system’s dynamics: nodes can turn off when
the battery runs out or just for saving energy.

Device Mobility. Mobile devices require wireless network access [Forman
and Zahorjan, 1994]. Although technical advances in wireless networking tech-
nology empower higher throughput, wireless communication is much more
difficult than wired counterpart since the former is more susceptible to inter-
ference, which leads to varied bandwidth and higher error rate [Rappaport,
2002]. This is complicated by the fact that, due to the movement of nodes,
the network bandwidth fluctuates with time and wireless connection can be
degraded or even lost.

Mobility has been divided into three categories [Roman et al., 2000]: (i) de-
vice mobility; (ii) personal mobility, which refers to the mobility of users that
do not necessarily have a device; (iii) computational mobility that relates to
migration of code over physical nodes. The first two are inherent in ubiqui-
tous computing environments, while the third is essentially a software tech-
nology related to mobile agent. In ubiquitous computing environments, as it
is commonplace for a user to bear one or multiple computing devices (e.g.,
cellphone, active badge), personal mobility and device mobility converge – a
user’s device moves along with her, performs her tasks and interacts with the
environment on her behalf.

II.1 Ubiquitous Computing Vision 9

Device Heterogeneity. Devices exhibit high heterogeneity in inherent capa-
bilities (e.g., computing power) and changing characteristics such as resource
richness (e.g., battery level) and mobility (e.g., different moving speed). Such
diversity has a great impact on service provisioning, e.g., a PDA generally
takes longer latency than a laptop to provide the same service; while for the
same PDA, the service latency can vary depending on its load.

Openness. Device mobility makes nodes’ joining and leaving of a network
much more frequent than in traditional wired networks. It makes it very com-
monplace for a node to encounter entities that it never met before.

An arising issue from the network’s openness is trustworthiness. Entities
belonging to different organizations or persons need to trust each other to
make interactions possible. Lacking of security infrastructure requires an en-
tity to make fully autonomous security decisions [Cahill et al., 2003]. This
is aggravated by the fact that a device tends to be selfish because provid-
ing services consumes limited resources. It therefore requires the enforcement
of cooperation among autonomous devices, especially for MANETs [Obreiter
et al., 2003, Buttyan and Hubaux, 2003, Zhong et al., 2003, Marti et al., 2000],
where the networking operations require the nodes to forward packets for
each other. In order to save battery and thus extend lifetime, a node can refuse
to forward packets for others while seeking such favors from others. One so-
lution to enforce cooperation is to introduce service charge (e.g., [Buttyan and
Hubaux, 2003] and [Zhong et al., 2003]). Every node owns an amount of cur-
rency kept with a counter. Sending a packet requires a node to reward the
intermediate nodes that forward it. With such a mechanism, the nodes are
forced to earn currency by forwarding packets for others. The counter can
be kept on a trusted and tamper resistant hardware module [Buttyan and
Hubaux, 2003] or a bank node running credit clearance service (CCS) [Zhong
et al., 2003]. Both are viable in ubiquitous computing environments: tamper
resistant hardware can be built within small devices (e.g., smartcards [Kom-
merling and Kuhn, 1999]), while the banker node does not have to be acces-
sible during the interaction. Therefore, we assume the use of virtual currency
and existence of charging/rewarding mechanisms for service usage/provi-
sion. In contrast with packet forwarding, different services can have different
prices.

Summary. Table II.1 summarizes the device characteristics and the result-
ing challenges as elaborated above. These challenges make it very difficult
and error-prone to build applications in ubiquitous computing environments,
soliciting the needs of middleware to facilitate such process.

10 II System Architecture for Ubiquitous Computing

Device Characteristics Challenges

Device portability Limited battery power
Limited processing power

Device mobility Disconnection
Bandwidth variability

Device heterogeneity Different capacity and resource
Network openness Encounter without knowledge

Table II.1: Faced challenges in ubiquitous computing environments

II.2 Ubiquitous Computing Middleware

Ubiquitous computing subsumes mobile computing, which essentially em-
powers the user with the capability of physically moving computing services
with her. This has been realized by reducing the size of the computing de-
vices and providing lightweight devices with access to computing capacity
over wireless networks [Satyanarayanan, 1996]. Mobile devices are resource-
constrained compared to static ones, in particular, they have limited battery
lifetime; wireless connectivity available to mobile devices is highly variable.
Therefore, middleware systems have been proposed to handle such constraints.
Their main objective is to assist the development of services on resource-
constrained devices in presence of mobility [Issarny et al., 2004]. The exam-
ples include content management on mobile nodes, such as data sharing over
mobile ad hoc networks [Boulkenafed and Issarny, 2003, Mascolo et al., 2001]
and handling disconnected operations [Ekenstam et al., 2001]; adaptation to
varying available resources [Noble and Satyanarayanan, 1999].

Middleware architectures have also been proposed for ubiquitous com-
puting environments (e.g., Gaia [Roman et al., 2002] and Centaurus [Kagal
et al., 2002]). They focus on creating and maintaining a middleware infras-
tructure, which is responsible for managing the devices and resources in the
environment, such that a user (her device) can integrate on-the-fly into the
intelligent environment when entering it. The infrastructure offers various fa-
cilities (e.g., resource discovery) for the devices, which, meanwhile, become
part of the infrastructure (e.g., by registering their offered services).

Besides the middleware infrastructure, other middleware have also been
proposed to facilitate carrying out user tasks proactively, i.e., with very lit-
tle or no intervention of the user. Since user-carried devices often have lim-
ited resources, they need the help of remote resources in order to realize user

II.2 Ubiquitous Computing Middleware 11

tasks. Therefore, middleware has been proposed to implement resource dis-
covery (e.g, [Chakraborty et al., 2006, Liu and Issarny, 2005]) to benefit from
the available resources in ubiquitous computing environments. Resource dis-
covery middleware dynamically configures and updates the resource avail-
ability in spite of the evolution of environments (e.g., resources appear and
disappear).

Proactivity requires context-awareness, which is considered as a prereq-
uisite of having a minimally intrusive ubiquitous computing system [Satya-
narayanan, 2001, Saha and Mukherjee, 2003]. Thus middleware has also been
proposed to manage context and incorporate context awareness to help de-
livering tailored services to users (e.g., [Hightower et al., 2002, Ranganathan
and Campbell, 2003]). Context is defined as any information that can be used
to characterize the situation of an entity (e.g., a person) that is relevant to the
interaction between the user and the application [Dey, 2001]. Context can be
very rich. For example, a user’s context can include attributes such as physi-
cal location, physiological state (e.g., body temperature), personal schedules,
etc. It is thus necessary for the middleware to collect and aggregate context in-
formation from potentially heterogeneous technologies and present it to the
applications in a generic manner, regardless of how it is obtained [Hightower
et al., 2002]. The middleware also provides abstracting and reasoning of the
context information (e.g., [Ranganathan and Campbell, 2003]), which can be
based on predefined rules or dynamically learned if the contexts are difficult
to capture (e.g., user mood).

Usage of various resources available in the environment needs to be su-
pervised by a security mechanism, e.g., regarding what entities are entitled
to access a certain resource. Traditional security measures such as authenti-
cation and access control fall short of supporting ubiquitous computing en-
vironments featuring openness due to the large number of devices/resources
that need be configured. In addition, portable devices have limited comput-
ing power and thus cannot afford expensive computations (e.g., asymmetric
encryptions) [Creese et al., 2004]. Moreover, in delivering user-tailored ser-
vices, ubiquitous computing systems have access to the various information
regarding users’ preferences, movement, habits, etc. This poses as a severe
privacy threat for users [Campbell et al., 2002] as uncontrolled usage of such
information can lead to consequences from targeted spam to blackmail. There-
fore, middleware has also been devised to handle security and privacy (e.g.,
[Campbell et al., 2002]).

The ubiquitous computing middleware such as those presented above are
not orthogonal. They are often interleaved and combined towards more pow-
erful functionalities and more advanced features. For example, resource dis-

12 II System Architecture for Ubiquitous Computing

covery is often integrated with context information to find more precise and
personalized resources that meet user needs (e.g., [Raverdy et al., 2006, Capra
et al., 2005]). Some cellphone services (e.g., AT&T M-mode service) provide a
feature to allow the users to make location-aware queries such as finding the
nearest cinema, based on the location data on the current cell tower in use.
In the meantime, context information such as location information should be
protected from being leaked as it is generally considered private. Secure re-
source discovery adds protection mechanism (e.g., access control) for resource
information [Zhu et al., 2004] and the communication during the discovery
process can be encrypted and authenticated [Hodes et al., 2002].

II.3 Service Discovery in Ubiquitous Computing
Environments

The heterogeneous resources available in the ubiquitous computing environ-
ment can be generalized as services, leading to Service oriented Computing
(SoC), which is a computing paradigm that utilizes services as fundamen-
tal elements for developing applications [Papazoglou and Georgakopoulos,
2003]. SoC evolves from distributed object-oriented and component-based
computing [Baker and Dobson, 2005]. The latter (e.g., with CORBA) real-
izes great level of flexibility through transparent service localization (e.g., by
defining service interface with interface definition language (IDL)) and dy-
namic binding (e.g., through Dynamic Invocation Interface (DII)). However,
object-oriented and component-based computing do not handle well hetero-
geneity (e.g., CORBA and non-CORBA middleware) and autonomy (e.g., ob-
jects belonging to different organization) [Baker and Dobson, 2005, Huhns
and Singh, 2005]. SoC raises the level of abstraction while preserving the
advantages of object orientation such as modularity and encapsulation [Sen
et al., 2005]. It seeks to establish a standard way of making resources and ca-
pabilities available for use by others in the form of services over wide range
of computing devices (such as PDAs) and software platforms (e.g., UNIX or
Windows) [Papazoglou, 2003]. SoC thus reduces the complexity and increases
efficiency of software development by allowing reuse of functionality pro-
vided by aggregated objects [Dokovski et al., 2004].

A service is a set of functionalities provided by one entity for the use of
others [OASIS, 2005]. It is characterized by its functional and non-functional
attributes and is accessible by other services. Generally, SoC involves the fol-
lowing three entities [Huhns and Singh, 2005]: service client is an entity in need
of services; service provider is an entity that offers services; service directory is

II.3 Service Discovery in Ubiquitous Computing Environments 13

an entity that stores service information and handles service lookup requests.

Applying SoC in ubiquitous computing environments leads to Ubiquitous
Service-Oriented COmputing (USoCo). An entity in ubiquitous computing envi-
ronments, whether mobile or not, can assume the role of service client, service
provider or both. Besides the advantages in terms of its handling of hetero-
geneity and abstraction, SoC fits ubiquitous computing thanks to its minimal-
ist philosophy [Sen et al., 2005], i.e., an entity only needs to carry a small amount
of codes locally and discover and exploit other services to realize its tasks. In
the following, USoCo environments refer to the ubiquitous computing environ-
ments where all resources are presented as services.

According to the definition of Wikipedia2, service discovery refers to the
functionality of automatic detection of services offered by the devices on a
computer network. Service discovery empowers devices to properly discover
services and exploit them. It is considered the keystone for a service oriented
computing framework [Sen et al., 2005] and an essential enabler for ubiqui-
tous computing vision [Zhu et al., 2005] to realize service access anytime, any-
where [Miller and Pascoe, 2000].

A service is characterized by not only its inherent functionalities, but also
the manner in which the functionalities are provided, i.e., the Quality of Ser-
vice (QoS). Based on the definition of quality given by International Organiza-
tion for Standardization (ISO)3, it is straightforward to derive the definition of
QoS as “the totality of features and characteristics of a service that bear on its
ability to satisfy stated or implied needs” [ISO, 2002]. In another word, QoS
essentially relates to a service’s characteristics that affect the service’s capa-
bility to deliver its functionality and satisfy the client’s needs. QoS-aware ser-
vice discovery thus refers to the consideration of these service characteristics
during the process of service discovery. As the devices, which host and con-
sume the services, pose various challenges for service provision/consuming
in ubiquitous computing environments as presented in Section II.1.2, it calls
for QoS-awareness during service discovery in USoCo environments, which
is substantiated in the following.

II.3.1 Service Location

The main functionality of a service discovery protocol is to find the services
in the network that satisfy the client’s requirements, namely service location.

2http://en.wikipedia.org/wiki/Service_discovery
3Quality is defined as “the totality of features and characteristics of a product or service

that bear on its ability to satisfy stated or implied needs” [ISO, 2002]

http://en.wikipedia.org/wiki/Service_discovery

14 II System Architecture for Ubiquitous Computing

It deals with publishing or acquisition of service information, including the
information necessary for service matching (of functional and non-functional
properties) and usage (e.g., access information), while remaining independent
of how the service is described or used. It can be push-based, where service
providers announce their service information in the network. When a service
client needs a service, it has all the service information at disposal already.
Push-based service location deals with the propagation means of service in-
formation (e.g, the propagation range, the destined receivers). Service location
can also be pull-based, when a client actively disseminates its requests in the
network. It concentrates on how to acquire service information (e.g., where to
propagate service requests).

Due to the featured distribution of the targeting environments, service lo-
cation needs to be decentralized and independent of any fixed entity. Besides,
service location needs to be QoS-aware not only in that the located services
should meet the client’s QoS requirements, but also in its awareness of de-
vice mobility, because inherent mobility of nodes can break the network path
between the client and the server. Such breakage can fail the services when be-
ing delivered and thus degrade service reliability, i.e., the probability of a service
performing its purpose adequately for a period of time intended under the conditions
encountered [Reibman and Veeraraghavan, 1991].

It is therefore necessary to incorporate “mobility awareness” into service
location. In infrastructured networks where nodes roam around but remain
connected to the infrastructure, Mobile IP [Perkins et al., 1998] can be utilized
to manage device mobility and enforce service continuation [Bhagwat et al.,
1994]. Such a mechanism relies on the infrastructure and thus can not be as-
sumed to be available in USoCo environments. In ad hoc networks, one alter-
native approach to handle mobility is to rely on routing protocols, which are
in charge of maintaining and updating routing tables in face of dynamically
changing network topology. However, most routing protocols, whether table-
driven or on-demand, handle mobility in a reactive manner: only a link break-
age can trigger the effort to find another route and update the routing table.
Although there exist some efforts on finding reliable links that are unlikely
to break soon (e.g., observing whether the signal strength is strong), they are
either based on an oversimplified propagation model or relying on some util-
ities (e.g., GPS). Therefore, service location can not rely on the routing pro-
tocols to shield mobility. It needs a mobility detection mechanism, which is
largely missing or weakly supported (e.g., using service advertisement expi-
ration time) in current service discovery protocols.

We propose a mobility-aware method of locating services using signal
strength and its tendency (Chapter IV). Our solution steers the service in-

II.3 Service Discovery in Ubiquitous Computing Environments 15

formation only along paths that are not going to break soon. By doing this, it
improves service reliability and decreases significantly the number of service
delivery failures.

II.3.2 Service Selection

As service location possibly finds multiple service instances that satisfy the
user’s requirements, it calls for selecting the best one among them. For ex-
ample, in Figure II.1, a service client requests a service that costs less than 20
cybeuros (abbreviated as cb) and takes less than 5 seconds. It finds 3 instances,
all meeting its requirements and thus needs to select the best one.

(3s,8cb)

(1s,19cb)

(2s,10cb)

Figure II.1: Problem definition of service selection

Service selection is largely missing in current service discovery protocols
[Zhu et al., 2005], which forces the client to make a choice for every selection.
The selection process can be tedious and error-prone as the clients have to go
through and compare all different QoS properties. Such burden on users con-
flicts with the unobtrusiveness of the ubiquitous computing vision [Weiser,
1991]. It thus calls for the functionality of automatic service selection on the
client’s behalf.

For a service client, its ultimate goal is to select the service that best sat-
isfies its needs, which are reflected in two aspects [Hung and Li, 2003]: (1)
the QoS offered by the service; (2) the price the client has to pay. While for
a service provider, its goal is to maximize its revenue (i.e., the price paid by
the client) at minimal overhead. Given the same level of QoS, it is desirable

16 II System Architecture for Ubiquitous Computing

to choose the one that requires the lowest overhead, i.e., consuming the least
resources. This is because it achieves the system-wide goal of realizing a cer-
tain level of QoS with the least resources, which are limited and precious for
portable devices. However, the client’s selection is determined by QoS and
service price, the latter of which is given by service providers and are subject
to their strategies. Therefore, there exists a gap between system wide goal and
individual interests.

We address the above issues in two steps (Chapter V): (1) proposing a util-
ity function that evaluates services from the point of view of the client, which
comprehensively integrates the factors including user’s preferences, service
QoS and price; (2) using Vickrey auction [Vickrey, 1961] to resolve payment
to motivate truthful price revealing and thus realize pairing a service request
with the most suitable service provider (i.e., the one consuming the least re-
sources).

II.3.3 Reputation Mechanism

During service selection, trustworthiness of service providers cannot be taken
for granted given the openness of the ubiquitous computing environments
[Kindberg and Fox, 2002]. Therefore, a client needs to evaluate the trustwor-
thiness of service providers, because a dishonest service provider can cheat
(e.g., by exaggerating its offered QoS) for more revenues. Different from the
other two factors (i.e., QoS and price) that affect service selection, trustwor-
thiness is concerned with a service provider instead of a single service, i.e.,
whether a service provider delivers the QoS as it claims. Moreover, trustwor-
thy evaluation needs to be carried out even when service selection is not nec-
essary, i.e., there is only one located service. Because of the difference, we
address service provider’s trustworthiness as an individual issue, although it
can be a factor, along with other QoS properties and price, affecting service
selection.

Traditionally, security mechanisms such as authentication and access con-
trol (e.g., Pretty Good Privacy [Zimmermann, 1995] and X.509 [Adams and
Farrell, 1999]) are used to fight against malicious parties. However, they rely
on security infrastructure such as Certificate Authority, which is not suitable
for ubiquitous computing environments [Cahill et al., 2003]. More impor-
tantly, since it is commonplace to interact with strangers in USoCo environ-
ments, even with authentication and authorization services at disposal, au-
thenticating an unknown entity does not provide any access control informa-
tion. Trust and reputation, on the other hand, can provide protection against

II.3 Service Discovery in Ubiquitous Computing Environments 17

such threats.

Trust deals with the estimation of a node’s future behavior. For example,
a client trusts a service provider in that the latter will actually offer the QoS
as claimed. Therefore, Gambetta defines trust as “a particular level of the subjec-
tive probability with which a node assesses that another node or group of nodes will
perform a particular action, both before he can monitor such action (or independently
of his capacity ever to be able to monitor it) and in a context in which it affects his
own action” [Gambetta, 1990]. Trust is generally difficult to establish between
strangers [Resnick et al., 2000], because they do not have any previous experi-
ences and are not subject to a network of informed entities about their behav-
iors. Reputation, which is “perception that a node creates through past actions
about its intentions and norms” [Mui et al., 2002], is important for fostering
trust [Resnick et al., 2000], because it dissuades entities to misbehave result-
ing from no fear for future revenge. It has been proved to be a useful model
and widely deployed in various scenarios [Miller et al., 2002, Grandison and
Sloman, 2000, Zacharia and Maes, 2000] such as electronic market places (e.g.,
eBay4) and online communities (e.g., Slashdot5). The reputation assessment
of a trusted node, named trustee, by a trusting node, named trustor are de-
pendent on [Yu and Singh, 2002]: (i) the trustor’s own direct experiences with
the trustee; (ii) the trustor’s indirect experiences, i.e., recommendations (also
named ratings) from other entities. The entities who give recommendations
are called recommenders. To prevent loops, recommendations are based solely
on recommenders’ own direct experiences.

Given the openness of USoCo environments, it is very likely that before in-
teracting with an entity, the accumulated direct experiences are too few or too
old to derive a trust decision. Therefore, recommendations are indispensable
for alleviating the problem of insufficient direct experiences. Besides, recom-
mendation facilitate interactions because they make it possible that an en-
tity’s conducts, whether good or bad, are remembered by not only the di-
rectly involved entities, but also others. Therefore, recommendations create
expectation of reciprocity or retaliation due to the current behavior (so-called
shadow of the future in [Resnick et al., 2000]). In addition, recommendations
help speeding up the recognition of the trustworthiness of another entity, in
contrast to having to accumulate enough direct experiences.

However, recommendations can be difficult to elicit, i.e., entities are reluc-
tant to recommend. This is because [Miller et al., 2002]: entities may withhold
positive evaluations if a seller’s capacity is limited, e.g., wise parents are re-
luctant to reveal the names of their favorite baby-sitters; entities may be reluc-

4http://www.ebay.com
5http://www.slashdot.com

18 II System Architecture for Ubiquitous Computing

tant to give positive recommendations because they lift the reputation of the
trustees, which are potential competitors; entities may be afraid of retaliation
for negative feedbacks; last but not least, the (truthful) recommendations only
benefit others. Moreover, recommendations are also subject to manipulation
and can be false, e.g., colluders give high recommendations for each other.
A false recommendation is called a rumor. Since truthful recommendations
are critical for a reputation mechanism to operate effectively [Resnick et al.,
2000], the above two issues pose obstacles for designing a reputation mecha-
nism that is capable of recognizing the real trustworthiness of an entity.

Existing reputation mechanisms (e.g., [Buchegger and Boudec, 2002, Michiardi
and Molva, 2002, Miller et al., 2002, Jurca and Faltings, 2003]) do not solve the
two aforementioned problems altogether. Therefore, we propose a distributed
reputation mechanism that incentivizes entities to recommend truthfully and
actively (Chapter VI). Our mechanism is robust against rumors, and distin-
guishes (1) between trustworthy and untrustworthy service providers and (2)
between honest and dishonest recommenders.

II.4 Concluding Remarks

In summary, while service discovery is essential for the realization of ubiq-
uitous computing vision, it is also faced by the related challenges. It is thus
necessary to consider QoS properties during service discovery, especially in
the following three aspects: (1) during service location, it needs to have en-
hanced awareness of device mobility to improve service reliability; (2) during
service selection, service instances need to be evaluated taking into account
their QoS properties and the client’s preferences; (3) reputation-based trust-
worthiness evaluation of an entity requires enforcement of honest and active
recommending. Our work focuses on the above three aspects, as current work
on service discovery does not provide adequate support regarding them.

QoS-aware service discovery lays a basis for other middleware function-
alities in USoCo environments. For example, QoS-aware service composition
(e.g., [Mokhtar et al., 2005]) assembles elementary services towards imple-
menting more powerful and complex services that meet certain QoS require-
ments. It needs to discover appropriate service instances with certain QoS
properties such that they meet the overall QoS requirements after composi-
tion.

Before we present our work of supporting QoS-aware service discovery,
we survey the existing work on service discovery in the next chapter. Espe-
cially, we study the related work addressing the three aspects as discussed

II.4 Concluding Remarks 19

above.

20 II System Architecture for Ubiquitous Computing

III

Service Discovery in Ubiquitous
Computing Environments: State of
the Art

In the previous chapter, we have identified three aspects of QoS-aware service
discovery in ubiquitous computing environments that need to be addressed:
(i) mobility awareness during service location, (ii) QoS awareness during ser-
vice selection and (iii) reputation of a service provider. In this chapter, we first
survey the existing service discovery protocols in Section III.1. Then we in-
vestigate the existing efforts addressing the above issues and analyze their
suitability for USoCo environments. They include related work on QoS-aware
service location (Section III.2), service selection (Section III.3) and reputation
mechanism (Section III.4).

III.1 Service Discovery Protocols

Over the past few years, many organizations have designed and developed
service discovery protocols. They include proposals from software vendors or
industry standard communities, such as Service Location Protocol [Guttman
et al., 1999], UPnP Simple Service Discovery Protocol (SSDP) [Goland et al.,
1999] and Bluetooth SDP [Bluetooth SDP, 2004]. Proposals from academic re-
search include Intentional Naming System (INS) [Adjie-Winoto et al., 1999],
Ninja Service Discovery Service (SDS) [Hodes et al., 2002], DEAPspace [Nidd,
2001], Konark [Helal, 2002] and Group based Service Discovery (GSD) [Chakraborty
et al., 2006]. Each of the above addresses a different mix of issues, but most of
them do not address (well) the three issues we have identified.

22
III Service Discovery in Ubiquitous Computing Environments: State of

the Art

Among the existing SDPs, service location protocol (SLP) [Guttman et al.,
1999] is an Internet Engineering Task Force (IETF) standard for decentralized,
lightweight and extensible service discovery. In SLP, there exist three kinds
of entities: User Agents (UA) perform service discovery on behalf of the ser-
vice client; Service Agents (SA) advertise the location and properties of ser-
vices on behalf of the service provider; Directory Agents (DA) collect adver-
tisements from SAs and respond to service requests from UAs. SLP can work
with and without DAs. With DAs, services are registered at DA and discov-
ery requests are answered by DAs. Otherwise, UAs send their service requests
to the SLP multicast address. All SAs listening to that multicast address can
unicast responses to the UA. Furthermore, SAs periodically multicast their
services such that UAs can learn about their existence. Although SAs can ad-
vertise the QoS attributes of their services using a service template, SLP does
not support mobility awareness and does not handle service selection or trust-
worthiness.

Universal Plug and Play (UPnP) is an architecture to facilitate network
connectivity of intelligent appliances, wireless devices and PCs of all form fac-
tors. In UPnP, a device can dynamically join a network, obtain an IP address,
respond to service discovery requests and learn about the capabilities of other
devices in the surrounding environments. UPnP uses Simple Service Discov-
ery Protocol (SSDP) for service discovery. A joining device (service provider)
sends out an advertisement multicast message to advertise its services to po-
tential clients (called control points). Similarly, a newly joined control point can
search for devices of interest on the network. The service descriptions in UPnP
can be retrieved given the URL embedded in the discovery message. Before a
device and its services are removed from the network, the device multicasts
a “goodbye” message to indicate so. Therefore, the mobility issue does not
exist. However, neither service selection or trustworthiness is addressed.

Service discovery protocols have also been proposed for MANETs (e.g.,
Konark [Helal et al., 2003], GSD [Chakraborty et al., 2006], Allia [Ratsimor
et al., 2002]). Helal et al. propose a service discovery protocol targeting ad hoc
networks of mobile light-weight devices [Helal et al., 2003]. Their protocol
assumes a completely distributed setting, i.e., every device acts as a service
directory and stores the information about their local services and the ser-
vice discovered or cached via advertisements. Service discovery in Konark
can assume a push or pull-based model. A service advertisement or a service
response (to service discovery request) only contains URL of the service de-
scription, where non-functional properties are stored. A client thus has to fur-
ther retrieve the service description before knowing whether a service satis-
fies its QoS requirements. Konark does not consider service selection among

III.2 QoS-aware Service Location 23

multiple qualified instances or trustworthiness issue.

Group based Service Discovery (GSD) proposed in [Chakraborty et al.,
2006] also targets MANETs, where services are advertised in the vicinity (bounded
by the propagation range) and cached by the recipients. GSD uses semantic
service description based on Web Ontology Language (OWL) [W3C, 2004a],
where every service, depending on its functionality, belongs to a service group
as defined in the service ontology (e.g., DReggie Ontology [Chakraborty et al.,
2001]). Thus the service advertisement of a node not only includes its services,
but also the groups of the services it has “heard” (i.e., cached advertisements
from its neighbors). Therefore, when a client needs a service that is not pro-
vided by its one-hop neighbors or itself, it selectively sends the request to
the neighbors who have “heard” the services from the same group as the re-
quested service, in order to improve the probability of discovering the re-
quested service. GSD focuses on service functionality, on which the grouping
and service request forwarding are. Service QoS is not considered, neither is
service selection or trustworthiness.

III.2 QoS-aware Service Location

QoS-aware service location supports various QoS properties of a service when
service information is being acquired (for pull based models) or published (for
push based models). These properties are described in the QoS description of
a service. Moreover, other factors affecting QoS need to be taken into account,
particularly device mobility, which can lead to low service reliability.

III.2.1 QoS Description Awareness

Current efforts on QoS-aware service location mostly focus on Web service
(e.g., [Ran, 2003, Al-Ali et al., 2003, Cardoso et al., 2004, Maximilien and Singh,
2004, Chen et al., 2003]), addressing the lack of support of non-functional
properties in Universal Description, Discovery and Integration (UDDI). In
general, the above solutions provide facilities (e.g., an additional broker or
an enhanced UDDI registry) for registering services along with its QoS prop-
erties. Meanwhile, clients are empowered with the capability of specifying
their QoS requirements in the service discovery requests. For example, in
[Ran, 2003], Ran suggests extending an UDDI registration record with a data
type of qualityInformation, used to store a service’s QoS description. By en-
hancing UDDI registry with capability of service lookup satisfying both func-
tional and QoS requirements, a client can carry out QoS-aware discovery of

24
III Service Discovery in Ubiquitous Computing Environments: State of

the Art

Web services. In order to provide QoS description of a service, QoS attributes
that need to be taken into account are defined (e.g., [Ran, 2003]), which cover
properties ranging from runtime related ones (e.g., performance) to transac-
tion support. The QoS attributes, however, do not consider the characteristics
of thin devices regarding their limited capacity.

Besides Web service, Xu et al. propose a service/resource discovery in the
context of global computational grids [Xu et al., 2001]. The service location
is carried out along a hierarchy of discovery servers. By caching the clients’
feedbacks on experienced QoS on the intermediate discovery servers, the QoS
requirements from a client are taken into account during the process of service
location. The feedbacks are only propagated in the QoS-similar domains, where
a majority of clients in the domains tend to observe similar QoS from the same
service provider. The hierarchical directories, however, are not available in
USoCo environments.

In [Liu et al., 2003], Liu et al. propose a distributed resource discovery in
MANETs using dynamically generated directories. Each directory stores re-
source information (e.g., QoS properties) offered by the nodes under its cov-
erage. Directories are assumed to be synchronized such that they can estimate
the path delay between each other. This delay is also used to estimate the de-
lay between two non-directory nodes. A client c starts by sending a resource
request to its home directory H, which in turn calculates the resource’s hash
index that maps to a list of peer directories who store the location information
of the requested resource (i.e., its home directory). H first asks the peer direc-
tory with the lowest delay for the home directories of the requested resource.
It then requests for QoS information from the home directories of all resource
candidates. Thus QoS awareness is not substantiated until after H collects all
QoS information about the resources, which can actually be carried out when
H is asking for QoS information from the resource candidates.

III.2.2 Mobility awareness

Besides the service QoS, the service path also needs to be taken into account
during service location. In particular, due to device mobility, the service path
between service client and provider can be prone to break, leading to low
service reliability. In general, routing protocols for ad hoc networks handle
broken links and are supposed to shield mobility from upper layers (e.g., mid-
dleware).

III.2 QoS-aware Service Location 25

III.2.2.1 Ad Hoc Routing

Many routing protocols in ad hoc networks handle mobility in a reactive man-
ner: the rediscovering and updating of routes are triggered only after a link
breaks, which is reported by the MAC protocol (e.g., the IEEE 802.11 MAC
protocol [IEEE, 1999]). If a SDP simply follows the routes provided by the
routing protocols, it can suffer low service reliability because of the existence
of routes that tend to break soon. For more clear explanation, we give an esti-
mation of the probability of service delivery failure. As shown in Figure III.1,
assume node A has a communication range of R and node B falls in that range.
Thus A can locate a service at B using the path A→ B given by the routing ta-
ble. Assume B is moving away from A at a speed of 1.5 m/s (human walking
speed) and the time between when B sends back a service discovery response
and the service finishes is T (including message’s round trip time and service
latency), the probability of service delivery failure thus equals the probability
of B getting out of A’s communication range after T . Assume that B falls into
any position in the communication range of A with equal probability, the ser-
vice delivery failure probability is equal to the probability of B falling into the
shaded area as shown in the figure, i.e., (π × R2 − π × (R − T × 1.5)2)/πR2.
Given T of 15 seconds and communication range of 100 meters, the proba-
bility of service failure amounts to 40%. Note that this is just the probability
for the cases when there is only one hop between service client and provider.
The probability is even higher for multihop paths. Although routing proto-
cols can try to find another path to the service provider after the current path
breaks, it is possible that there is no alternative path, i.e., the service provider
gets disconnected from the client. In addition, rediscovering a path requires
additional time and the rediscovered path can break again before the service
finishes.

A

B

v = 1.5 m/s

d = T x 1.5R

Figure III.1: Link stability with two ends moving

To address the above issue, efforts have been put on finding reliable routes,

26
III Service Discovery in Ubiquitous Computing Environments: State of

the Art

i.e., routes that are unlikely to break soon. As a route is composed of one
or multiple links, reliable routes require every composing link to be stable,
i.e., with high possibility of continuing to be valid for an intended period
of time. A stable link is different from a link with long lifetime in that the
former has long residual link lifetime, which is the length of the time that a link
will continue to be valid. As follows, we survey the existing work on finding
stable links.

One way to estimate the residual time of a link is by measuring the dis-
tance between two ends of a link and the speeds of two nodes (e.g., [Jiang
et al., 2001] and [Su et al., 2001]). Assuming that both nodes continue with
their speeds and directions, it can easily estimate the residual link time, i.e.,
the time before the distance between two ends becomes larger than the trans-
mission range. Both the distance and speed can be obtained via GPS, which
provides geographical positions at continuing points of time and therefore
can estimate a node’s speed. GPS, however, suffers from poor performance in
indoor environments. An approach to obtain indoor geographical positions
is by radiolocation [Caffery and Stuber, 1998], with the coordination of mul-
tiple (normally three) fixed position known nodes, namely triangulation. The
basic idea is that a node’s position can be calculated with the distances to
three given positions, named landmarks, (e.g., RADAR [Bahl and Padmanab-
han, 2000] and APS [Niculeascu and Nath, 2001]) or with the three angles to
three given positions (e.g., Angle of Arrival [Niculeascu and Nath, 2003]). For
example, in Figure III.2, node x’s position can be fixed given its distances of
d1, d2 and d3 from three fixed base stations (B1, B2 and B3). The shortcoming
of these solutions is their dependence on the coordination of multiple land-
marks, which are assumed to be fixed and pre-deployed.

Alternatively, Associativity Based Routing [Toh, 1997] considers a link stable
if its life time exceeds Athresh = 2 × rtx/v, where rtx is the transmission range
and v represents the relative speed between two ends of the link. It is based on
the assumption that when a link reaches a certain age, an implicit grouping of
nodes can be deduced, i.e., nodes are likely to move with similar speeds and
directions and will possibly stay together for a relatively long period of time.
The weakness of ABR results from the difficulty of setting relative speed v.

Besides distance and speed, signal strength (SS) has also been used as a
means for deriving link stability [Chin et al., 2002, Dube et al., 1997, Agarwal
et al., 2000, Qin and Kunz, 2002, Goff et al., 2001, Klemm et al., 2005]. The
received signal strength (SS) of a packet is generally stronger with shorter
distance between the sender and the receiver, but it fluctuates greatly over
a short moving distance [Rappaport, 2002]. In [Dube et al., 1997] and [Chin
et al., 2002], links are considered “good” if they have strong signal strength.

III.2 QoS-aware Service Location 27

B1

B2

B3

d1

d2

d3

X

Figure III.2: Triangulation with three fixed base stations

However, such links can be unstable since it is possible that the two ends just
start moving away from each other. In [Agarwal et al., 2000], Route-Lifetime
based Routing Protocol (RABR) identifies stable links by estimating the resid-
ual lifetime of a link with (SSthresh − SScurrent)/∆SSave, where SSthresh and
SScurrent are the threshold and current signal strength respectively and ∆SSave

is the average changing rate of SS. Its shortcoming lies in the difficulty of mea-
suring ∆SSave, since SS fluctuates greatly over a short distance. In addition,
RABR assumes linear decreasing of signal strength with time, which hardly
reflects the reality. This is because even if the signal transmission assumes the
free space propagation model (the simplest one), the signal strength is propor-
tional to the square of distance. If the speed is fixed, the signal strength is
proportional to 1/(d− v∆t)2, the variation of which is non-linear to time t.

Preemptive routing as proposed in [Goff et al., 2001] finds other paths be-
fore a path fails, triggered by low signal strength of received packets. The
threshold value is set according to a pessimistic estimation, which enables a
communication task to be completed even if two nodes move away with the
maximum speed. The weakness of their approach lies in the assumption that
SS behaves strictly according to the Two-Ray Ground Model, similar to [Qin
and Kunz, 2002]. This model is also used by [Klemm et al., 2005] for predicting
distances in order to determine whether packet loss is due to node mobility
or congestion for the purpose of improving TCP performance over wireless
networks. However, Two-Ray Ground model works well only for predicting
distances of several kilometers for cellular telephony systems and is not suit-

28
III Service Discovery in Ubiquitous Computing Environments: State of

the Art

able for MANETs [Kotz et al., 2003].

III.2.2.2 Mobility Aware Service Location

Current service discovery protocols put very few efforts on dealing with mo-
bility. One possible way to handle the mobility issue is to voluntarily an-
nounce a device’s departure when it leaves the network (e.g., UPnP SSDP
[Goland et al., 1999]). Such an approach is suitable for the scenarios where a
user intends to remove a device from a network. For a mobile device that un-
consciously disconnects from the network, it is complicated to arrange such
an announcement because it is difficult to estimate when a device actually
gets disconnected from the network.

Some SDPs maintain the status of service availability as a soft state [Raman
and McCanne, 1999], such as UPnP SSDP [Goland et al., 1999], Konark [Helal
et al., 2003], Ninja [Hodes et al., 2002], DEAPspace [Nidd, 2001]. The idea
is that a service provider periodically transmits to potential clients “refresh
messages”, which include time to live (TTL), the time a service is expected to
remain available. The recipient clients keep a service advertisement until its
TTL expires. Lack of refresh message after expiration of TTL implies unavail-
ability of the service. However, being available cannot guarantee successful
service delivery since services can fail when being delivered. Therefore, us-
age of TTL remains a coarse-grained approach to handle dynamics of service
availability. It is more suitable for relatively stable environments where mo-
bility of service providers is less considerable during service delivery.

III.3 Service Selection

Service selection evaluates the located service instances on behalf of a client,
according to the latter’s preferences among different properties. For example,
a client can prefer services with the smallest latency or the lowest price. Al-
though both service location and selection are QoS-aware, they are very much
different in that the former finds services that satisfy the QoS requirements
posed by a client, while the latter selects among those instances returned by
the former, taking into account the service’s QoS properties. For example, be-
sides the requirements in terms of latency and price, client A prefers to have a
service latency as small as possible while client B may go for low prices. Thus
a service with small latency and high price is of greater value to A than B,
even if it meets the requirements of both A and B. Note that it can be argued

III.3 Service Selection 29

that a client can simply choose the first arrived service reply and invoke it im-
mediately. It is simple and does not require any waiting time for other replies
to arrive. However, this approach does not necessarily save time for the client
since the first reply can have long service latency (at the service provider).
More importantly, it excludes the possibility of finding instances that better
suit the client’s needs and match its preferences than the first reply.

III.3.1 Service Evaluation

As all the located service instances provide the functionality required by the
client, we focus on QoS-based service evaluation. Existing work generally
evaluates a service from three different aspects: (1) evaluation based on QoS
description of services; (2) evaluation based on QoS properties of service paths;
(3) evaluation based on resource availability of service providers. They are de-
tailed respectively as follows.

III.3.1.1 Evaluation based on QoS Description

Similar to a client’s QoS-based service evaluation to select the best one, a re-
source management system evaluates services in order to make decisions on
shared resource allocation. A service can have different QoS and thus differ-
ent utility (e.g., degree of user’s satisfaction) depending on the amount of
available resources (e.g., bandwidth). The resource management system then
takes into account each service’s utility and cost (in terms of resource con-
sumption) for the purpose of, for example, achieving maximum overall util-
ity [Liao and Campbell, 2001, Geihs, 2002]. Similarly, adaptation decisions on
behalf of applications can be automatically made (e.g., Odyssey [Noble and
Satyanarayanan, 1999]), depending on the utilities of different QoS levels.

In [Venkatasubramanian and Nahrstedt, 1997], the authors propose a met-
ric to measure the efficiency of video transmission (Equation III.1), which is
essentially the ratio of user satisfaction (US) and resource consumption (RC).
User satisfaction is determined by various QoS parameters such as end to
end delay, synchronization skew; resource consumption refers to the maxi-
mum consumption (in terms of ratio) of various resources. This metric evalu-
ates the cost-efficiency of a video transmission and can be useful for resource
management in multimedia systems.

M ∝ US

RC
(III.1)

30
III Service Discovery in Ubiquitous Computing Environments: State of

the Art

The above evaluation bears great similarities to a client’s service evalua-
tion in that they both take into account the overall QoS brought to the user
(i.e., user satisfaction) and the introduced overhead. However, the above so-
lution is more suitable for cooperative environments where a service selec-
tion decision is made to the interests of both the service client (the overall
QoS) and the provider (the resource consumption). In USoCo environments,
a client is concerned with the service price to be paid, instead of the resource
consumption on the service provider. The difference in concerns leads to dif-
ferent evaluation results and thus different selection decisions.

In [Lee et al., 2004], the authors propose an approach to select among In-
ternet service providers in ubiquitous computing environments with perva-
sive network connectivity. They present a “personal router” that dynamically
chooses among available network connectivity alternatives and reevaluates
with the user moving and network services dynamically appearing, disap-
pearing and changing. Each service instance is evaluated with its QoS pro-
file (e.g., bucket profile for describing the network service in short and long
term characteristics) and service cost containing two price attributes, price per
minute and per kilobyte. Factors of QoS, price and user preference between
quality and cost are integrated in a utility function to assess a service. A user
interface is further provided to collect user feedback regarding the current
service. For example, if a user is dissatisfied with the current service’s cost
and requesting a lower cost service, the weight of price is raised in the utility
function. Their approach to select services is specific for network service and
mainly aims to facilitate handoff between wireless networks, reflected in their
simple attributes in the QoS profile and lack of concrete means for measuring
the overall QoS.

Liu et al. present a QoS-aware Web service framework where a centralized
registry evaluates service instances in terms of their QoS, price and reputation
[Liu et al., 2004]. The evaluation incorporates different dimensions and covers
user preference, such as being price-sensitive or QoS-sensitive. Normalization
skills are employed to compute the overall service QoS for the purpose of
comparison.

Besides QoS description, services can also be evaluated based on service
path, which has impact on the experienced QoS of a client, as explained as
follows.

III.3 Service Selection 31

III.3.1.2 Evaluation based on Service Path

A common attribute of a service path is number of hops, which is widely used
by routing protocols as a criteria for finding the best route. Service path plays
an important role during server selection in Internet cache architecture, where
a client needs to select among multiple replication servers to achieve best per-
formance or for the purpose of load balancing. For example, in [Dykes et al.,
2000], different strategies such as bandwidth-based, latency-based, hybrid of
both, are explored and compared. The metrics such as bandwidth or latency
can be obtained based on either historical data (e.g., the previous experienced
latency) or probing. The authors further conclude that probing generally out-
performs statistical estimation based on historical data.

In [Varshavsky et al., 2005], service provider is chosen based on lowest hop
count in order to localize communication. The selection is done by allocating
services to nearby providers such that the traffic of service provision is not
spread all over the network. However, the hop count alone is not a reliable
indicator for the best path. As pointed out in [Couto et al., 2002], many routes
with minimum hop count have poor throughput because of the existence of
low-quality links with high retransmission rate. A more appropriate approach
is through dynamic probing (e.g., [Gao and Steenkiste, 2002]), i.e., given a
set of candidate service providers, a client sends a probe message to all of
them and the one with the shortest response time is selected. However, such
probing-based selection incurs more traffic overhead and waiting time.

III.3.1.3 Evaluation based on Service Provider

Services can also be evaluated based on the resource availability of their hosts.
For example, in [Fei et al., 1998], in order to achieve load balancing, the least
loaded server is selected among replicated services, which are services pro-
viding identical content or functionality using multiple servers in the net-
work. Similarly, HTTP-redirect [Fielding et al., 1999] forwards a client’s HTTP
request from a more loaded server to a less loaded one to realize load balanc-
ing. In Intentional Naming System (INS) [Adjie-Winoto et al., 1999], when a
set of services meet a client’s requirements, the service is selected according
to service providers’ properties such as current load. In [Lee and Helal, 2003],
the authors propose a service selection logic which considers attributes such
as (network) distance to the service provider and load of the service provider.
A noticeable feature is that such selection is hidden from clients.

The above selection implicitly improves QoS for the client, since less loaded
servers generally offer better QoS. Especially, in USoCo environments where

32
III Service Discovery in Ubiquitous Computing Environments: State of

the Art

services can be hosted on devices with limited resources, it is necessary to in-
corporate such factors into service evaluation. However, the above surveyed
work largely implements service selection for the purpose of load balancing.
They thus mainly consider the workload of a service provider and ignore
other factors such as battery, memory, bandwidth, which are also limited and
affect the QoS offered by the service provider. More importantly, the above
work lacks a means to capture a client’s preference among various different
QoS properties in a comprehensive manner.

From a different angle, Day and Deters address the problem of how to
select among syntactically identical Web services in [Day and Deters, 2004].
The selection is carried out within two steps: (1) adding semantics to QoS
parameters; (2) adding rule-based reasoner based on historical QoS informa-
tion acquired from a centralized QoS information storage (so-called QoS fo-
rum). For example, the reasoner evaluates a service instance based on all other
clients’ previous experiences with it and carries out evaluation based on ag-
gregate QoS values (e.g., average latency). Such an approach assumes that
a service instance’s (advertisement) QoS values remain unchanged such that
previous QoS experiences correspond to the same promised QoS from the ser-
vice provider. It may be suitable for relatively static and stable environments,
but falls short in USoCo environments, where thin service providers tend to
adjust their QoS depending on the varying availability of resources.

Vu et al. propose a Web service selection method based on services’ QoS
feedbacks [Vu et al., 2005]. The truthfulness of the feedbacks is determined
by their similarity with those of some pre-existing trusted QoS monitoring
agents. Accordingly, the honesty of a reporter, who provides QoS feedbacks,
is determined by that of its QoS reports. The services are then evaluated with
respect to not only the predicted QoS based on honest QoS feedbacks, but also
the semantic similarity between the offered functionality and the requested
one. Their work targets Web services on the Internet, which can thus rely
on pretrusted monitoring entities that offer honest QoS reports. A reporter
is evaluated regarding its honesty in giving feedbacks regarding each QoS
dimension, which does not seem necessary given that it is unlikely to have
different strategies of giving feedbacks on different QoS dimensions. More-
over, the motivation of providing honest QoS feedbacks is not addressed. The
work is highly related with the issue of incorporating recommendations in
the reputation mechanism, to be discussed in Section III.4.

Besides service QoS, another factor affecting service selection is service
price, which is determined by the pricing model.

III.3 Service Selection 33

III.3.2 Pricing Model

The pricing model can be static and simple. For example, telephone price
is flat (static) and does not adapt to variation in demand and user require-
ment. Its main advantage is its simplicity such that service providers and
clients have high predictability regarding the cost and revenue [Hille et al.,
2000]. This approach, however, does not distinguish between services of dif-
ferent QoS and service providers of different capacity and resource availabil-
ity. Therefore, it is inappropriate and insufficient for the client’s service selec-
tion. The pricing model can be dynamic and service prices are adjusted with
different conditions (e.g., load and capacity) of service providers. It is useful
for reflecting capacity heterogeneity and changing resources of devices in our
target environments.

III.3.2.1 Service Price

Service pricing mechanism has been under intensive discussion in the 1990s,
when Internet became popular and charging mechanisms were proposed mainly
to offer different QoS classes of Internet services and realize differentiated
traffic control. One example is Paris Metro pricing mechanism in [Odlyzko,
1999]. The basic idea comes from the old Paris Metro System, where first
and second class cars are identical, except that first class tickets cost twice
as much as the second class ones. Because of the price difference, first class
cars are generally less congested. But if they become too crowded, some peo-
ple decide they are not worth the extra cost and change for the second class,
reducing congestion in the first class and thus restoring the QoS difference be-
tween the two classes. Therefore, channels of different prices handle packets
differently. A user selects a channel based on its budget, its QoS requirements
and QoS feedback from other users. A distinguished feature of this pricing
mechanism is that it is self-regulating: by setting two different prices, the QoS
difference between the two classes are automatically maintained. The smart
market mechanism [MacKie-Mason and Varian, 1994] charges users based on
the congestion they create. Each packet is marked with a bid, stating its pri-
ority. Users are charged with the bid of the highest priority packet that is not
routed. Both of the above mechanisms use price to regulate traffic, which can
be utilized in the service selection to direct service demands.

Given the same level of QoS provided by service providers, service selec-
tion should favor the service with the lowest overhead, i.e., consuming the
least resources. This is because it achieves realization of the best QoS at the
lowest cost. If a client simply selects the cheapest service and pays the low-

34
III Service Discovery in Ubiquitous Computing Environments: State of

the Art

est price, it does not necessarily select the one with the lowest overhead. This
is because service providers can ask for prices higher than the real overhead
of providing the service. Driven for more revenue, a service provider tends
to increase its asking price, which can lead to a suboptimal service selection
result. For example, assume both service providers A and B offer a service s
with the same QoS, with overhead of Oa and Ob respectively (Oa < Ob). Ideally,
A should be selected, as it is the most effective choice. However, it is possible
that, due to different strategies of increasing revenues (e.g., A is more aggres-
sive than B), A asks for a price higher than B, which leads to the selection
of B. Therefore, it requires a pricing mechanism to incentivize the providers
to reveal truthful prices, which can be realized using mechanism design, as
explored as follows.

III.3.2.2 Auction-based Pricing Model

The field of mechanism design studies how to design systems so that entities’
selfish behavior results in desired system-wide goals. The designed mech-
anism is called an incentive scheme. However, the game-theory literature on
mechanism design neglects computational and communication complexity,
which makes mechanism-design approach unpractical in many settings. This
is addressed by distributed algorithmic mechanism design (DAMD).

In essence, Distributed Algorithmic Mechanism Design (DAMD) [Feigenbaum
and Shenker, 2002] addresses the design of incentive compatible mechanisms
(i.e., mechanisms that result in desired system-wide outcome from selfish be-
havior of individuals) at tractable computational and communication expense. It
is an extension of algorithmic mechanism design [Nisan and Ronen, 2001],
which designs incentive compatible mechanisms with tractable computation.
DAMD lies in the intersection of economics science and computer science.
More formally, consider a distributed system in which there is a set of pos-
sible outcomes O (e.g., result of service selection)1. For convenience, “agent”
is used to refer to a software entity representing and working for the inter-
est of a node. A strategy for an agent is a complete contingency plan, i.e., a
plan describing what decision the agent should make under each possible
situation that might occur. Each of the n autonomous strategic agents2 has a
utility function ui: O → R, where ui ∈ U (U defines the set of utility func-
tions of agents) and expresses an agent’s preferences over these outcomes.
The desired system-wide goals are specified by a Social Choice Function (SCF)

1 We rely mostly on [Feigenbaum and Shenker, 2002] for definitions and notations.
2Since even random behavior can be considered as one kind of strategy, every agent is a

strategic agent, strictly speaking.

III.3 Service Selection 35

F : Un → O that maps the (actual) utility functions of agents to a particu-
lar outcome. However, each agent is usually reluctant to publicize its actual
utility function, making it difficult to achieve any global goal.

For a given mechanism M, let S denote the strategy space of one agent, i.e.,
a set of strategies that can be taken by the agent, and CM(u) ⊆ Sn denotes all
possible strategy vectors that could reasonably result from selfish behavior.
The goal of mechanism design is to define a mechanism M that implements
the SCF, i.e., M(CM(U)) = F (U), for all U ∈ Un. With such an incentive com-
patible mechanism, selfish behavior by agents results in desired system-wide
outcomes.

In game theory, the strategy that is always to the best interest of one agent,
no matter how other agents act, is named dominant strategy. A mechanism
with dominant strategy is very desirable for scenarios featuring interactions
among autonomous, automated agents, compared to those without dominant
strategy: (1) the behavior of an agent is much simpler: it only needs to fol-
low the dominant strategy regardless of other agents’ behavior; (2) it saves
the complex knowledge representation and logic evaluation for counterspec-
ulating how other agents will behave. Thus, it is very desirable to have an
incentive compatible mechanism with dominant strategy.

DAMD relates to designing a mechanism such that the dominant strategy
for each agent is to reveal its true valuation, which is leveraged to achieve
SCF. DAMD is suited for USoCo environments because (1) it is distributed;
(2) the thin devices can only afford tractable computational and communica-
tion complexity. Additionally, the computation and communication overhead
of a mechanism for service selection should be even lighter than “being al-
gorithmic”; the overhead should be as small as possible. As the emphasis of
mechanism design is put on the implementation of various types of auctions
[Nisan and Ronen, 2001], which has been an efficient means for resource allo-
cation [McMillan, 1994], service assignment [Vulkan and Jennings, 2000] and
conflict resolution [Capra et al., 2003].

According to the definition of McAfee and McMillan [McAfee and McMil-
lan, 1987], an auction is a market institution with an explicit set of rules de-
termining resource allocation and prices on the basis of bids from the market
participants. An auction can be used to determine the value of a commod-
ity that has undetermined or variable price. Sometimes, there is a minimum
or reserve price. If the bidding does not reach the minimum, the item is not
sold. In an auction, there exist a seller, an auctioneer and bidders (i.e., poten-
tial buyers). A seller hires and entrusts an auctioneer to host the auction and
sell a commodity. The bidders offer their bids for the commodity and the auc-

36
III Service Discovery in Ubiquitous Computing Environments: State of

the Art

tioneer then determines the winner (the highest bidder) and the commodity
is sold.

The commonly seen auctions in the real world include English auction,
first-price sealed-bid auction, Dutch auction and Vickrey auction.

• In English auction, the auctioneer starts with the reserve price and pro-
ceeds to solicit successively higher bids from the bidders until no one
raises the bid. The highest bidder is the winner and pays the price she
bids. The dominant strategy for one agent in English auction is to con-
tinuously raise its bid until it wins or the bid reaches the maximum price
it is willing to pay for that item. A noticeable feature of English auction
is that it is usually multi-round and the time and communication over-
head is proportional to the difference between the starting price and the
price at which the item is sold. However, it does allocate the item to the
bidder who has the highest valuation of the item and is the only bidder
willing to outbid all other bidders.

• In first-price sealed auction, each bidder submits one bid in ignorance of
all other bids to the auctioneer, who determines the highest bid and sells
the item to that bidder for its bidding price. This kind of auction can
be executed in one-round and thus is communication-saving. However,
since each agent’s bid is based on her private valuation and prior beliefs
of others’ valuations, the item is not always awarded to the party who
values it most.

• In Dutch auction, bidding starts at an extremely high price and is pro-
gressively lowered until a buyer claims an item by calling “mine”. The
winner pays the price at the current price. Dutch auction preserves max-
imal privacy: only the highest bid is revealed. However, like English
Auction, it is multi-round, and like first-price, sealed-bid auction, one
agent’s bid is strategically based on its private valuations and its beliefs
of others’ valuation.

• Similar to the first-price sealed auction, Vickrey auction is sealed and ex-
ecuted in one-round. The highest bidder is the winner, but pays the price
that is equal to the second-highest bid [Vickrey, 1961]. A distinguished
feature of Vickrey auction is that the dominant strategy for every bidder
is to bid her true valuation. Thus Vickrey auction always rewards the
item to the bidder who values it most, i.e., realizes SCF.

Table III.1 lists the features of the above four auctions. It can be seen that
only Vickrey and English auctions have dominant strategy and realize SCF.

III.4 Reputation Mechanism 37

Auction Type Communication
Complexity

Existence of
Dominant Strat-
egy

Optimal
Item Alloca-
tion

English Auction Multi-Round Yes Yes
First-price, Sealed
Auction

One-Round No No

Dutch Auction Multi-Round No No
Vickrey Auction One-Round Yes Yes

Table III.1: Various Auction Settings

Furthermore, Vickrey auction only requires single-round execution. Thus, from
the perspective of both existence of dominant strategy and communication
overhead, Vickrey auction distinguishes itself as the best choice. It is therefore
exploited to select the best service instance in our work.

III.4 Reputation Mechanism

Reputation mechanism has been widely used and deployed in online ser-
vice provision (e.g., ebay3), wide-area wireless services [Chakravorty et al.,
2005], peer-to-peer systems (e.g., [Aberer and Despotovic, 2001, Kamvar et al.,
2003, Xiong and Liu, 2004]) and mobile ad hoc networking (e.g., [Michiardi
and Molva, 2002]). During online service provision, especially e-commerce,
it is commonplace for parties that are unknown to each other to encounter
[Resnick et al., 2000, Josang et al., 2005]. This opens up an issue of lack of
trust between two parties before an interaction takes place. P2P file sharing
networks (e.g., Gnutella4) have many advantages (such as improved scalabil-
ity) over traditional client-server approaches to data distribution. They are,
however, subject to attacks from anonymous malicious peers, such as virus
spreading and fake file attack [Kamvar et al., 2003]. In [Aberer and Despo-
tovic, 2001], the authors address the issue of the recommendations’ trustwor-
thiness and storage in P2P systems at the same time. An entity files complaints
against another if it detects cheating or it attempts to cheat. Such complaints
are stored according to the key corresponding to the concerned entities. An
entity is considered dishonest if the total of its filed complaints and the com-
plaints against it exceeds considerably the general average. In mobile ad hoc
networks, nodes rely on the service of “packet forwarding” provided by their

3http://www.ebay.com
4http://www.gnutella.com

http://www.ebay.com
http://www.gnutella.com

38
III Service Discovery in Ubiquitous Computing Environments: State of

the Art

neighbors in order to communicate with others that are out of their communi-
cation range. Reputation is thus used to evaluate a node’s degree of being co-
operative. It makes it possible to identify and exclude the misbehaving nodes
from the routes and punish them by refusing to forward packets for them. In
order to detect misbehavior, each node is assumed to operate in a promiscu-
ous mode (e.g.,[Buchegger and Boudec, 2002, Marti et al., 2000]), such that it
can listen to every packet transmitted by its neighbors even if the packet is
not intended for it. When a node asks one neighbor to forward a packet, it can
monitor whether the packet is actually forwarded as expected. Neighbors that
are observed to be often dropping packets are singled out and excluded from
any route. Some reputation mechanisms for packet forwarding on MANETs
also incorporate reputation propagation (e.g., [He et al., 2004]). However, the
acting of recommending is assumed to be voluntary and thus no incentive is
provided. It is quite self-contradictory since the act of recommending requires
packet sending. In the following texts, we survey existing reputation mecha-
nisms, especially focusing on the handling of recommendations (or ratings).

Some reputation mechanisms do not distinguish between reputation of
providing a service and providing a recommendation (e.g., [Zacharia and
Maes, 2000, Kamvar et al., 2003, He et al., 2004]). They assume that trust on an
entity’s capability to provide services can be transferred to its opinions. For
example, in [Kamvar et al., 2003], a peer that provides authentic files in a P2P
file sharing system is trusted to give honest opinions. But such assumption
can make the reputation mechanism vulnerable to reputation manipulation.
For example, a good service provider can exploit it to demote the reputation
of its competitors, as its opinions are considered as truthful as its services.
Therefore, it necessitates the differentiation of reputation for providing ser-
vices and recommendations, namely service reputation (SRep) and recommen-
dation reputation (RRep) respectively. A trustor can evaluate the trustee’s over-
all reputation (ORep) based on SRep and others’ recommendations. The latter
is taken into account depending on the recommenders’ RReps. For example,
in [Abdul-Rahman and Hailes, 2000], recommendation trust is introduced to
evaluate the credit of a rating.

In [Buchegger and Boudec, 2002], only negative recommendations are prop-
agated since it is assumed that maliciousness is the exception rather than the
norm, such that an entity without any negative experience is considered hon-
est. This is an optimistic hypothesis because it assumes that any negative ex-
perience is well published and known. In [Michiardi and Molva, 2002], only
positive recommendations are allowed to prevent the attack of Denial of Ser-
vice (DoS), i.e., malicious nodes spread negative ratings such that the victim
is considered dishonest and deprived of any service (e.g., packet forwarding).

III.4 Reputation Mechanism 39

The DoS attack can be handled by improving robustness to false accusations,
such that the latter is identified and ignored. In addition, similar to [Bucheg-
ger and Boudec, 2002], it assumes that positive recommendations are well
propagated. Hence, neither of the above two solutions preferring only posi-
tive or negative ratings is well-grounded. Recommendations can be positive
or negative and should be equally taken into account for reputation evalua-
tion.

It is possible that a recommendation does not correspond to the fact, i.e.,
it can be either false praise or accusation. Such recommendation is named a
rumor (or a lie). Due to the existence of rumors, recommendations need to be
carefully incorporated towards the trust decision of whether to interact with a
service provider. In another word, the reputation mechanism needs to be able
to handle rumors such that it is robust against them.

Yu and Singh [Yu and Singh, 2002, Yu and Singh, 2003] present a reputa-
tion model that aims to detect rumors in multiple agent systems. The recom-
mendations are compared against the new direct experience to evaluate the
recommenders’ RReps, which determine the credibility of their recommenda-
tions. Only recommendations from helpful nodes (i.e., with high RRep) are
accepted and weighed according to their RReps. Similarly, in [Huynh et al.,
2005], a new direct experience is compared against the recommendations for
evaluating the recommenders’ credibility. Although both of the above solu-
tions are capable of identifying and ignoring rumors, they give no penalty to
either liars or free-riders, which can always benefit from others’ recommen-
dations.

In [Buchegger and Boudec, 2003, Buchegger and Boudec, 2004, Bucheg-
ger and Boudec, 2005], recommendations are utilized only as an additional
source of information for deriving reputation. A trustor already has its own
opinion (SRep) regarding the trustee before asking for any recommendation.
Only recommendations that are similar enough to its own opinion are con-
sidered truthful and integrated and each accepted recommendation is given
a small constant weight. An entity does not keep others’ reputation in recom-
mending. Moreover, the authors argue that liars should not be punished as it
would discourage honest reporting of misbehavior. But, no incentive is given
to encourage recommendation provisioning.

In [Whitby et al., 2004], all recommendations are aggregated to derive the
public opinion. Each individual recommendation is then compared against the
public opinion; too much deviation leads the recommendation to be consid-
ered false and thus excluded. The public opinion is then recalculated and com-
pared against each remaining recommendation until no recommendation is

40
III Service Discovery in Ubiquitous Computing Environments: State of

the Art

filtered out. This kind of approaches to identify rumors and assign weights to
different recommendations is endogenous since the truthfulness of recommen-
dations is judged depending on the recommendations themselves. In contrast,
exogenous approaches use external factors, such as RRep, for doing so. The
implicit assumption underlying endogenous approaches is that the majority
of recommendations are honest such that they dominate the rumors. There-
fore, a recommendation that deviates from the majority is considered a rumor.
This assumption is not solid in open environments where recommendations
can be very few in number, most of which can be rumors. A variant of en-
dogenous approach is used in [Patel et al., 2005], where each entity records all
the ratings and subsequent interaction experiences. Assume node a receives a
recommendation from recommender r, a first picks out all the entities whom r
has recommended with a similar value (e.g., within the range [a..b]). The accu-
mulated experiences with those entities are calculated and compared against
the rating range to obtain r’s RRep. Their approach is exogenous, because it is
the accumulated direct experiences that are used to determine the trustwor-
thiness of a recommendation. Meanwhile, it is also endogenous because such
comparison is done only within the range of recommendation values that are
considered relevant.

Jurca and Faltings [Jurca and Faltings, 2003] propose an incentive-compatible
reputation mechanism to deal with inactivity and rumors. A client buys a rec-
ommendation about a service provider from special brokers named R-nodes.
After interacting with the provider, the client can sell its feedback to the same
R-node, but gets paid only if its report coincides with the next client’s report
about the same service provider. One issue is that if the recommendation from
an R-node is negative such that a client decides to avoid the service provider,
the client will not have any feedback to sell. Or in the existence of opportunis-
tic service providers that, for example, behave and misbehave alternatively,
an honest feedback does not ensure payback. This opens up the possibility
of an honest entity to have negative revenue and thus is unable to buy any
recommendation. Besides, the effectiveness of their work depends largely on
the integrity of R-nodes, which are assumed to be trusted a priori.

In summary, although current reputation systems are capable of identify-
ing rumors, they lack measures to enforce voluntary and honest recommen-
dations. Therefore, they are not incentive-compatible, i.e., there does not ex-
ist any incentive for entities to actively provide honest recommendations. As
there is no deterrent for liars, rumors can be rampant and honest recommen-
dations can become difficult to acquire due to lack of motivation. Therefore,
a reputation mechanism for ubiquitous computing environments not only
needs to be robust against rumors, but also needs to enforce both active and

III.5 Concluding Remarks 41

honest recommendations.

III.5 Concluding Remarks

Above has been surveyed the existing work on service discovery, especially
service location, service selection and reputation mechanism. Generally, cur-
rent work on service location does not provide enough awareness of device
mobility, leading to low service reliability; current SDPs lack service selection
that chooses the best service on behalf of the client, taking into account var-
ious QoS properties and price; current reputation mechanism that evaluates
the trustworthiness of entities does not address the incentive issues of recom-
menders, who are not motivated to recommend honestly and actively. This
leads us to devise three solutions addressing the above three issues respec-
tively, which start with service location enhanced with mobility awareness,
presented in the next chapter.

42
III Service Discovery in Ubiquitous Computing Environments: State of

the Art

IV

Signal Strength based Service
Location

Service location in ubiquitous computing environments is a challenging task:
device mobility can lead to low service reliability if not taken good care of.
Routing protocols which are in charge of updating and maintaining routing
tables do not provide enough support for handling mobility. It thus opens up
an issue that the services located by most service discovery protocols tend to
fail, given the mobility exhibited in USoCo environments.

In this chapter, we propose a simple, yet efficient way to locate services us-
ing signal strength (SS) tendency. Our main contribution lies in the enhance-
ment of mobility awareness during service location, which improves service
reliability. In the rest of this chapter, we first study the background on sig-
nal propagation in Section IV.1, where received signal strength between mov-
ing nodes is explored and observed. Section IV.2 presents our signal strength
based service location, which is followed by Section IV.3 that presents the per-
formance evaluation of our proposal for service location, especially in terms
of service reliability. Finally, this chapter finishes with concluding remarks.

IV.1 Background on Signal Propagation

Wireless communication takes place in the form of electromagnetic wave. It is
different from guided media such as copper wire in that it is more susceptible
to interference. In order to grasp the stability of a wireless link, we take a look
at the principal mechanism of signal propagation.

When a signal is being received, the antenna senses the radio electromag-

44 IV Signal Strength based Service Location

netic waves, which cause electrons to flow in the conductor and thus create a
current. To make that happen, radio waves have to carry along enough power.
After the signals are received, they are further demodulated into digital bits
by the receiver. Generally, the more information the signals carry, the more
sensitive they are to noise. Following are some key concepts in the signal
propagation.

Transmitted power is the strength of the signal emissions measured in Watts
(or dBm1). Higher transmitted power helps to emit signals stronger than the
interference, but at the cost of draining the battery faster. Too strong transmit-
ted power also increases the interference between adjacent networks and thus
decreases the possibility of frequency reuse. In order to make the unlicensed
bands to be practically useful, regulation authorities in many countries pose
a limitation on the maximum transmission power. For example, in Europe,
ETSI regulates the maximal transmission power as 30 dBm. A Lucent Silver
WaveLAN card has a transmitted power of 15 dBm (i.e., 31 milliwatts).

Receiver sensitivity is the power of the weakest signal that can be reliably
detected and demodulated by a receiver. It is a benchmark of the performance
of a receiver. Generally, receivers have weaker sensitivity at higher transmis-
sion rates. For example, a Lucent Silver WaveLAN Card has a sensitivity of
-82 dBm at 11Mbps, and -87 dBm at 5.5Mbps.

The receiver sensitivity is not the only performance indicator for the re-
ceiver, because the received signal also includes noises from all other par-
ties that share the same band, e.g., Bluetooth devices, microwave ovens, and
other IEEE 802.11b wireless networks. Thus, Signal to Noise Ratio (SNR) is in-
troduced and defined as the difference of received power between signal and
noise. SNR is in the unit of decibel (dB) and is calculated as follows (with unit
included in square brackets):

SNR[dB] = 10 ∗ log10 [(Signal Power [W])/(Noise Power [W])]
= Signal Power [dBm]−Noise Power [dBm]

Intuitively, to be able to receive and demodulate the received signal success-
fully, the receiver requires a minimum SNR such that the signal is not overly
“polluted” by the noise. Like receiver sensitivity, the threshold SNR varies
with different transmission rates. For example, a Lucent Silver WaveLAN card
has a SNR threshold of 16 dB at 11 Mbps, and 11 dB at 5.5 Mbps. Therefore,
wireless communication succeeds only if the received signals satisfy both the

1dBm = log(Watt) ∗ 10 + 30

IV.1 Background on Signal Propagation 45

receiver sensitivity and the SNR threshold. If the noise level is low, the com-
munication is limited by the receiver sensitivity; while if the noise level is
high, SNR becomes the bottleneck. Both SS and SNR of a received packet can
be obtained from the wireless card driver2. In addition, a wireless link is pos-
sibly asymmetric, with signal quality from two ends of a link probably very
much different due to difference in transmission power, interference extent
and other factors. It leads to the possibility that one node can successfully
send packets to the other but cannot receive any.

The radio wave (signal) propagation from the transmitter to the receiver is
generally modeled by the combination of large scale and small scale propaga-
tion models [Rappaport, 2002]. Node movement over short distances (e.g., a
few wavelengths) may cause the received signal strength, which is the sum of
contributions of multiple components, to fluctuate rapidly, giving rise to small
scale fading. As a node moves over longer distance, the local signal strength
average (i.e., average of signal strength measured over a distance from 5λ to
40λ – about from 0.6m to 5m for 802.11b) gradually decreases. We call the dis-
tance locality distance and large scale propagation model essentially estimates
the average signal strength over the locality distance. As shown in Figure IV.1
[Rappaport, 2002], the signal strength fluctuates in a large range with the in-
creasing of the distance between transmitter and receiver, but the average sig-
nal strength over locality distance exhibits the tendency of decreasing.

Figure IV.1: Signal Strength with different T-R distances

2e.g., http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Orinoco.
html

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Orinoco.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Orinoco.html

46 IV Signal Strength based Service Location

It is desirable to observe large scale propagation because we aim to capture
the changing distance and thus the mobility between nodes. The most basic
large-scale model of radio wave propagation is called free space radio wave
propagation. In this model, radio waves emanate from a source point of radio
energy, traveling in all directions in a straight line, filling the entire spheri-
cal volume of space with radio energy that varies in strength with 1/d2 rule
(d is the distance from the source point). However, in the real world, signal
propagation is often subject to reflection, diffraction and scattering [Rappa-
port, 2002]. The fading over a small range, or small scale fading, makes the SS
collected at one point of time vary in a large range, giving no clear indication
of link quality. This makes it difficult to recognize a node’s moving tendency.
To capture the effect of large scale propagation in spite of interference from
small scale one, studying the tendency of the average signal strength over a
locality distance poses as a good way to detect node mobility.

To verify the phenomenon shown in Figure IV.1, we measure the SS be-
tween two laptops equipped with Lucent WaveLAN IEEE Silver cards, both
of which implement IEEE 802.11b standard and have omni-directional an-
tennas. The two laptops are running on Linux (RedHat) with 2.4.26 kernel and
connecting with each other via a wireless link. The experiments are all carried
out indoors in the day. The measurement of signal strength was performed
every 1 second by consecutively sending “HELLO” messages and measuring
the signal strength from the returned replies.

In one experiment setting, one laptop moves away from the other at hu-
man walking speed for a period of 50 seconds (Figure IV.2), during which
the link is connected. It can be observed that the average signal strength over
locality distance (as shown with dotted lines) clearly drops with longer dis-
tance, in spite of large variation in a short distance.

In order to see whether the above can also be observed in scenarios when
both nodes are moving, we also conduct experiments with both nodes mov-
ing in the same direction, but with different speeds. The experiments last 40
seconds, during which the link is connected. The signal strength and the av-
erage SS of “HELLO” messages are shown in Figure IV.3. It can also be seen
that, with the distance between two nodes getting larger, the average SS (as
shown with dotted lines) is also decreasing. The above two experiments have
also been carried out with the presence of interference from another ad hoc
network, which leads to similar results.

The above experiments observe and verify that node movement can be
detected by studying the variation tendency of average received SS over the
locality distance. This fact can be exploited to identify stable links and thus

IV.1 Background on Signal Propagation 47

-100

-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

 0 10 20 30 40 50

Po
we

r l
ev

el
 (i

n
dB

m
)

Time

Variation of signal and noise power

signal power
noise power

average signal power over locality distance

Figure IV.2: Signal and noise power when one node is moving

-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

 0 5 10 15 20 25 30 35 40

Po
we

r l
ev

el
 (i

n
dB

m
)

Time

Variation of signal and noise power

signal power
average signal power over locality distance

Figure IV.3: Signal and noise power when both nodes are moving

to locate reliable services. Note that different from other approaches that use

48 IV Signal Strength based Service Location

signal strength as the criteria of a good link, we use SS tendency to detect
mobility.

The utilization of signal strength in service location falls into cross-layer
design, where the physical and MAC layer knowledge of wireless medium
is shared with higher layers, in order to improve efficiency [Shakkottai et al.,
2003]. It is motivated by the fact that layer triggers [Conti et al., 2004], i.e.,
predefined signals to notify events (e.g., route breakage) between protocols
of adjacent layers, fall short of providing enough mobility-awareness for ser-
vice discovery in mobile environments. For example, a link breakage causes
the MAC protocol to report the link failure to routing layer, which updates
the routing table subsequently. However, relying solely on such a mechanism
results in a considerable probability of service failure in presence of device
mobility. Therefore, to improve robustness against device mobility, service lo-
cation needs to obtain more information regarding the underlying wireless
links. As received signal strength, which is available in physical layer, indi-
cates node mobility, it can be exploited to locate services that are less likely to
fail because of device mobility.

IV.2 Signal Strength based Service Location (S3L)

In brief, given every neighbor in the network sending beacons periodically,
when a neighbor is moving further (resp. closer), the average of SS over local-
ity distance (e.g., 40λ) is decreasing (resp. increasing) [Rappaport, 2002]. Here,
neighbors refer to the nodes reachable in one hop. Therefore, by keeping the SS
of recent consecutive beacons from a neighbor, the link’s tendency to break can
be recognized by studying whether the average SS over consecutive locality
distances is increasing or decreasing. In addition, a neighbor’s departure or
failure can be detected by the absence of its beacons for some threshold length
of time (e.g, three times the beacon interval in OLSR [Clausen and Jacquet,
2003]).

Motivated by the above observations, we consider a wireless link stable
only when: (1) the signal qualities (i.e., SS and SNR) from both ends are above
receiver-specific threshold values, (2) the average SS over consecutive local-
ity distances is not decreasing, and (3) both ends of the link are active (i.e.,
exchange of beacon messages occurs recently enough). The neighbor on the
other end of a reliable link is named a Strongly Connected Neighbor (SCN).

Subsequently, we propose a Signal Strength based Service Location (S3L)
method that performs service discovery only along stable links, so that the
path between service requester and provider is reliable. A path being reliable

IV.2 Signal Strength based Service Location (S3L) 49

refers to the fact that it is unlikely to break soon. The underlying method is
that by regularly broadcasting beacon packets to neighbors, each node derives
the stability of links from the signal strength and its variation tendency and
recognize its SCNs.

S3L does not impose any requirement on how service information should
be retrieved, whether push or pull based. It leaves open how services are
described, matched or accessed, while focusing on how the service informa-
tion is forwarded during service discovery. Using S3L, the service informa-
tion is always sent (either pushed or pulled) along the links that are consid-
ered stable by S3L. For pull-based SDPs, each node sends service queries only
to SCNs, which may further forward the service queries to their SCNs. For
push-based SDPs, each node sends its service advertisements only to SCNs,
which may publish the advertisements further to theirs SCNs. In other words,
the service discovery and delivery are only carried out along stable links by
avoiding those weak, obsolete and diminishing links.

IV.2.1 Service Location Process

With S3L, each node regularly broadcasts beacons to its (one-hop) neighbors
and in the meantime receives beacons from them. The stable links are rec-
ognized based on the average signal strength of received beacons. We illus-
trate the process using a pull-based SDP, but it works similarly for push-based
SDPs.

With a pull-based (reactive) model, a client sends its service discovery re-
quest along stable links. Providers of services that satisfy the user request re-
spond by sending back their service information, including QoS values, access
method, etc. Then, the service client invokes one service (if there are multiple
responses, one is selected that best matches the client, to be presented in the
next chapter), which is carried out along the path returned by S3L.

To implement the above process, the following five types of packets are
defined and used:

• serv_beacon is for exchanging signal information among neighbors.

• serv_disc is a service discovery request from a service client.

• serv_resp is a service response message from a service provider.

• serv_invo is the invocation message from the client to access the ser-
vice.

50 IV Signal Strength based Service Location

• serv_ack is the service result from the service provider to the client.

We illustrate how S3L locates services by at first explaining the periodic
beacons sent by every node.

IV.2.1.1 Beacon

BA

A

A B

B (ss1,snr1)

(ss2, snr2)

beacon()

beacon(ss1, snr1, dt1)

beacon(ss2, snr2, dt2)

Figure IV.4: Beacon sending in S3L

A wireless link is asymmetric if

• one end has good link quality, i.e., with strong SS and high SNR, while
the other end does not. We call it different strength between two ends: if
one end receives beacons with strong signal strength and high SNR, it is
considered strong; otherwise it is considered weak.

• one end can successfully receive beacons, while the other end cannot
(e.g., due to different traffic conditions). We call it different activeness be-
tween two ends: if one end receives a beacon recently, it is considered
active; otherwise it is considered inactive.

In order to observe whether a link is symmetric or not, a node a needs
to inform the other end b of (1) the link quality from its end and (2) when
a received a beacon from b last time. Note that care has to be taken regard-
ing exchanging the timestamps of last received beacons because it can require
synchronization of all nodes (e.g., with GPS), which is quite unpractical given
the heterogeneity of devices (e.g., not every device is equipped with a GPS).
To circumvent this problem, nodes exchange the last beacon’s age instead of
its arrival time. For example, in Figure IV.4, there is a wireless link between
node A and B, which they might receive different link quality (e.g., differ-
ent SNR). Assume A is a newcomer to this network and thus broadcasts its
first beacon to signal its existence. Node B receives a beacon from A with a
SS of ss1 and SNR of snr1 . Next time when B sends its beacon, it informs

IV.2 Signal Strength based Service Location (S3L) 51

A of the SS, SNR and the age of the last beacon from A (dt1), i.e., the length
of time since it received A’s beacon last time. Similarly, A will include the in-
formation about the SS, SNR, and age of B’s last beacon (ss2 , snr2 , dt2).
With accumulation of more beacons, nodes send average (SS, SNR) instead
of the (SS, SNR) of last beacon to counter fluctuation. Note that when B is a
new neighbor of A, i.e., A never receives B’s beacon before, A’s beacon does
not have any signal information about the link (e.g., the first beacon in Figure
IV.4). With the above handshake of beacons, two ends of a link can get to know
the link quality from both ends and the ages of the last beacons from them.
It can be easily extended to multiple neighbors, with a beacon including the
information of all links to its neighbors. Therefore, for every beacon interval,
a node broadcasts to its (one-hop) neighbors a UDP packet serv_beacon ,
in which it informs the neighbors about the average link qualities over the
most recent locality distance from its end (Table IV.1). Note that the beacon
includes the link information of all of its (one-hop) neighbors, whether they
are SCNs or not, in order to dynamically evaluate link stability. Despite the
amount of information carried in the beacon, the incurred packet size of a
beacon is moderate because of the limited number of one-hop neighbors even
in dense wireless networks. For example, in a network of 210 nodes with a
communication range of 100 meters in an area of 350m × 350m, the average
number of neighbor is about 21.2 [Williams and Camp, 2002]. On receiving a
serv_beacon , a node extracts SS and SNR of its end (e.g., from the wireless
card driver), notes down the reception timestamp of the beacon and extracts
the signal quality (i.e., SS and SNR) and timestamp of the other end embed-
ded in the serv_beacon . Subsequently, both nodes recognize the link quality
from both ends.

(nid1, ss1, snr1, dt1) (nid2, ss2, snr2, dt2) ...

Table IV.1: A serv_beacon packet in S3L

A node only sends the average SS and SNR of its end (e.g., the average of
most recent 5 samples) instead of multiple samples because it is not necessary:
if a link is considered expiring at one end, it is also detected as being so at
the other end, given the phenomenon of “average SS weakens with two ends
moving away” as discussed in Section IV.1.

nid SS[1..2∗k] SNR[1..k] TS nSS nSNR nAge isSCN

Table IV.2: An entry of the neighbor table in S3L

Based on the above beacon mechanism, each node tracks the signal infor-
mation of every wireless connection (to its neighbors), by keeping a neighbor

52 IV Signal Strength based Service Location

table (NT), which contains a list of its (one-hop) neighbors. As shown in Table
IV.2, each entry contains:

• a neighbor’s ID (nid).

• the SS of the most recent (2∗k) received beacons from the neighbor. They
are continuously updated with reception of new beacons. For example,
the most 10 recent beacons have SS of (ordered by recency) (ss1, ss2,
...ss10), The average of most recent 5 samples are compared against the 5
samples before that, i.e.,

∑5
i=1(ssi)/5 against

∑10
i=5(ssi)/5. If the average

is decreasing, this neighbor is considered to be leaving.

• the SNRs of the most recent (k) received beacons from the neighbor.
They are used to calculate the average SNR of recent beacons. As there
is no comparison to make, only half of the SNR samples need to be kept
compared to the number of SS samples.

• the arrival time of the last beacon from the neighbor. This is for judging
the activeness of this end.

• average SS and SNR from the neighbor’s end (nSS and nSNR), for judg-
ing the signal quality from the other end of the link.

• the age of the last beacon received by the neighbor (nAge), for telling
the activeness of the other end.

• an indicator showing whether the neighbor is a SCN or not, for facilitat-
ing lookup of SCNs among neighbors.

The neighbor table does not impose large storage overhead because of the
limited number of (one-hop) neighbors. A node’s departure or failure is iden-
tified by lack of beacons for some threshold time, noted δb. Moreover, for every
δb, a node reevaluates its SCNs by going through all entries of the neighbor
table and deciding whether a neighbor is an SCN according to the three cri-
teria as stated at the start of this section. An SCN can be unmarked if it is
considered no longer strongly connected, e.g., it starts moving away; simi-
larly, a previous non-SCN can become an SCN, e.g., it stops moving away. A
node whose beacons are older than δb is no longer considered as a (one-hop)
neighbor and thus deleted from the neighbor table.

The beacon interval is an important parameter in S3L, not only because
of its effect on message overhead on the network introduced by beacons, but
also because of its impact on the number of beacons that need to be “grouped”

IV.2 Signal Strength based Service Location (S3L) 53

together for averaging. Given the relative speed between two nodes of v and
locality distance of 40λ, the time to cover the locality distance is 40λ/v. During
this period of time, assuming that beacons are sent every b seconds, about n =
40λ/(b × v) beacons are collected. Since averaging requires multiple samples
in order to counter fluctuation, the larger n is, the more effective the mobility
detection is. However, given an average speed of v, larger n infers smaller b,
i.e., more frequent beacon sending. For example, in an IEEE 802.11b network,
the average speed is 1.5 m/s (human walking speed). In order to collect n = 4
beacons for averaging, it requires that b = (40×0.125)/(4×1.5) = 0.9, meaning
that beacons should be sent at least as frequently as every 0.9 second.

IV.2.1.2 Service Location

A node looking for a service broadcasts a serv_disc (as shown in Table
IV.3) in one hop to its SCNs, which includes: (i) a unique sequence number
composed by the node’s address and an increasing counter; (ii) a service path
with the first address filled with its own address; (iii) the propagation range
(in number of hops) of the request; (iv) the service’s functionality requirement
(we ignore the QoS attributes for the moment now, which will be addressed
in the next chapter); (v) the addresses of SCNs, with the optional signal infor-
mation of the links to its SCNs (similar to beacons).

seq # functionality path(n1, , ,) range (scn1, scn2, ... scnk)

Table IV.3: A serv_disc packet in S3L

One-hop broadcasting is preferred over multicasting here because the for-
mer is simple and does not need to maintain a tree or mesh-like structure as
in multicast routing protocols on MANET (e.g., Ad Hoc On Demand Distance
Vector (AODV) multicast [Royer and Perkins, 1999]). In a serv_disc packet,
the list of destinations (i.e., SCNs) is specified such that non-SCNs ignore it.
The only disadvantage of doing this is that, for non-destination nodes, the
packets are dropped at the application layer instead of network layer. Note
that if there is only one destined SCN, the packet is sent by unicasting. To
avoid unnecessary rebroadcasting, each node keeps a cache of sequence num-
bers of the serv_disc s it has already handled. To prevent looping, the ser-
vice path in serv_disc contains the intermediate nodes which the service
query has traversed.

On receiving a serv_disc packet,

(1) a node verifies whether it has already handled the query by looking up

54 IV Signal Strength based Service Location

the sequence number in the cache. If it has, it simply discards the packet.

(2) Otherwise, it checks whether it provides the requested service. If that is
the case, it appends its address and sends back by unicasting a serv_resp
(as in Table IV.4) along the reverse path that is filled in serv_disc . The
unicasting can be done with “source routing” by specifying in the IP
header a complete, ordered list of nodes through which the packet will
pass, if it is supported by the underlying routing protocol (e.g., Dynamic
Source Routing (DSR) [Johnson et al., 2004]). As this support cannot al-
ways be assumed to exist, we put the service path in the payload of the
packet, as shown in Table IV.4. The serv_resp packet also includes a
sequence number to identify the service request (in case a client sends
multiple requests for different services).

(3) Otherwise, it checks whether the serv_disc has already traversed the
furthest distance required by the service client: the field of range is sub-
tracted by 1 every time the packet is forwarded. When range reaches
0, the message is no longer forwarded. If the range is greater than 0, it
calculates the destined SCNs, i.e., its SCNs that are not already in the
service path of serv_disc .

• If the destined SCNs include more than one node, it appends its ad-
dress to the end of the service path and rebroadcasts the serv_disc
to its SCNs.

• If the destined SCN only includes one node, the serv_disc is uni-
cast to that SCN. For both of the above cases, the query sequence
number is added into the cache of handled service queries.

• Otherwise, nothing needs to be done.

seq # path(n1,n2,...,nk)

Table IV.4: A serv_resp packet in S3L

On receiving a serv_resp , a node first reads the service path embedded
in the message to check whether the packet is destined to itself, i.e., whether it
is the client requesting for the service. If it is the client, it either waits for more
service replies or invokes the service by sending serv_invo to the service
provider along the reverse of the service path in the serv_resp . Otherwise,
it forwards the packet to the next node in the service path.

For example, a network of 5 nodes is shown in Figure IV.5 with solid lines
denoting stable links and dotted lines representing unstable links. Assume

IV.2 Signal Strength based Service Location (S3L) 55

A

B

C

D

E

(B, C)

(A, E)

(A, E)

(E)

(B, C, D)

SCNNode4

5

6

1

1 2

2
3

A

B

C

E

serv_resp(D,E,C,A,s1)

D

serv_resp(D,E,C,A,s1)

serv_resp(D,E,C,A,s1)

serv_disc(1001,A,s1,{B,C})

serv_disc(1001,A,s1,{B,C}) serv_disc(1001,A,B,s1,{E})

serv_disc(1001,A,C,s1,{E})

sev_disc(1001,A,C,E,s1,{D})

Figure IV.5: An example of service location with S3L

that node A is looking for a service named s1 and broadcasts the request to
its SCNs of nodes B and C at step ❶. The serv_disc packet includes the se-
quence number 1001 , service path (A,...,) , functionality requirement s1
and the destined SCNs ({B, C}). Nodes B and C do not host any service of
s1, thus they unicast a serv_disc to E since there is one destined SCN (A
is already in the path). E receives serv_disc packets from both B and C.
Assuming C’s packet arrives earlier than B, E handles C’s request and broad-
casts a serv_disc to its SCNs of B and D (C is also its SCN, but C is already
in the service path). C will ignore the request from B, so will B ignore the re-
quest from C, by checking the sequence number against the cache. Note that
the caching of the sequence numbers of the handled serv_disc s is only an
optimization means: a cache miss will not affect the correct operation of S3L,
because the embedded service path is guaranteed to be loop-free thanks to
the selective forwarding of serv_disc (i.e., to the SCNs that are not already
in the service path). After D receives the serv_disc from E, it unicasts to A
a reply of serv_resp , including its service information, along the path em-
bedded in serv_disc . At step ❻, A receives the response from D and gets to
know the service path of A → C → E → D.

IV.2.2 S3L Analysis

In essence, S3L avoids the unstable links that, by its estimation, will break
before the service finishes. The time span between when the service provider
sends back a reply and when the service finishes can be estimated as the sum
of service latency (l) and the message round trip time (rtt). During that period
of time, the distance between the two nodes is increased by d = (l + rtt) × v
(Figure IV.6), where v denotes the relative speed between the two. The smaller

56 IV Signal Strength based Service Location

AR

B v

d = (l + rtt) * v

Figure IV.6: Link stability between two nodes

the service latency is, the shorter d is, the less possible that the link gets broken
(as the link breaks only if B rests in the shaded area).

Therefore, the accuracy of S3L is greatly affected by the service latency l.
If the service lasts a very short time (e.g., 1 second), S3L becomes unneces-
sary because even if it detects that the link is moving towards getting bro-
ken, it is very probable that the service already finishes when that happens.
Meanwhile, if a service takes a long time (saying, 5 minutes), the estimation
becomes less accurate because of two reasons. First, it is probable that the link
becomes unstable (e.g., two ends start moving away from each other) after the
service starts. Although this is also possible for services of smaller latency, the
probability gets higher with longer period of time. Second, if the two nodes
are approaching each other at the beginning, the link between them is consid-
ered stable by S3L. However, after passing each other, they start leaving each
other and the link becomes expiring. Therefore, it necessitates stricter defini-
tion of stable links (e.g., neither approaching nor leaving) when services take
a long time. Using long-latency remote services is thus more difficult to real-
ize in mobile and dynamic environments such as USoCo environments. The
other factor affecting d is speed. Very large speed leads to the emission of very
few beacons when a node covers a long distance or before a link breaks. As
insufficient number of beacons make it difficult to detect mobility tendency,
S3L can fail to identify such unstable links. The performance of S3L under
various mobility speeds and service latency is evaluated in the next section.

IV.3 Performance Evaluation

In this section, we evaluate the performance of S3L. Our main objective is to
investigate whether our proposal of signal strength based service location im-
proves robustness against device mobility and whether it exhibits satisfactory
performance in terms of service location latency.

IV.3 Performance Evaluation 57

From a service client’s perspective, its ultimate concern is whether its ser-
vice request is served successfully. A failure can result from two possibili-
ties. The first is the service location does not find a service which satisfies
the client’s request. This can be due to either there is no provider offering
such a service in the vicinity or the service providers are intentionally omit-
ted (e.g., if they are on unstable links in S3L). The second possibility is that
the located services fail during delivery because of link disconnection. We
thus measure the number of successful and failed service deliveries, the sum
of which equals to the number of successful service discoveries (i.e., find-
ing a service instance that satisfies the user’s request). From these two pa-
rameters, we further derive delivery success ratio, which is the number of suc-
cessful service deliveries divided by the total number of service invocations.
In terms of overhead, we measure service location latency, which equals the
length of the interval between when a client issues a service discovery re-
quest (i.e., a serv_disc) and when it receives a service discovery reply (i.e.,
a serv_resp). Therefore, overall, we investigate the following metrics: (1)
service success and failure numbers; (2) delivery success ratio; and (3) service
discovery latency.

IV.3.1 Simulation Environment

We evaluate our solution using ns-2 with CMU wireless extensions [LBNL,
2001] because of its availability as open source and active community discus-
sion3. Our simulated network consists of 40 mobile nodes in an area of from
350m× 350m to 700m× 700m (increasing by 50m for each simulation setting),
with each node having a transmission range of 100m using Ricean propaga-
tion model [Punnoose et al., 2000]. Ricean fading is one way to model small
scale fading, along with Rayleigh fading. The difference between the two lies
in that the former is for small scale fading with line of sight while the latter is
for no line of sight [Rappaport, 2002]. We assume the Random Waypoint mobil-
ity model with each node moving at walking speed, i.e., between 0.5m/s and
2m/s, with pause time of 0, i.e., nodes are always in motion. The speed will be
also adjusted when we investigate the impact of speed on the performance.
The Distributed Coordination Function (DCF) of the IEEE 802.11 protocol is
used as the MAC layer protocol. Each wireless channel has bandwidth of 2
Mbps.

We assume that each node can host up to nServ services, out of 50 ser-
vices (thus nServ ≤ 50). Each node randomly requests a service that it does

3http://www.isi.edu/nsnam/ns/ns-lists.html

http://www.isi.edu/nsnam/ns/ns-lists.html

58 IV Signal Strength based Service Location

Parameter Value
Mobility Model Random Way Point
Moving Speed 0.5 - 1.5 m/s

Pause Time 0
Propagation Model Ricean Fading
Transmission Range 100 m

Bandwidth 2 Mbps
Area from 350m x 350m to 700m x 700m

Number of Nodes 40
of serv per Node (out of 50) 25

service latency from 1 to 33 seconds

Table IV.5: NS-2 simulation parameters for evaluating S3L

not provide. Every service is served as a Constant Bit Rate (CBR) streaming
application of 56 Kbps. The larger the nServ is, the more likely that a node
is able to locate the requested service at nearby nodes. This is already taken
into account with different simulation areas, since the smaller the area is, the
more dense the nodes are and with higher possibility that a nearby node pro-
vides the requested service. Therefore, we set nServ with a fixed value, e.g.,
25, while measuring the metrics with different areas.

As the focus is to evaluate the robustness against mobility of the service lo-
cation, the client always selects the first service reply and invokes the service.
Beacons are sent every 2 seconds, and locality distance is set to 5 meters, i.e.,
about 40 λ for IEEE 802.11b. The whole simulation lasts 500 seconds. Because
it takes time for the random waypoint model to reach a stable distribution
of mobile nodes [Camp et al., 2002], the initial part of the simulation is not
representative of the reality and is therefore discarded. At the end of the sim-
ulation, because the service lasts some time and the service client needs some
time to wait for the arrival of service results, no queries are sent at the end of
the simulation. Therefore, we choose to skip the first 200 seconds of the sim-
ulation result. From 200s to 450s, for every second, there is a node sending
a service discovery request in a round-robin way. Each simulation setting is
executed 30 times. Thus there are a total of 250× 30 = 7500 service discovery
attempts for each setting and the average is presented.

For the sake of comparison, we implement two simple reactive service dis-
covery protocols: one base on S3L (for the simplicity of presentation, we still
name it S3L) and the other, named DIST, which is almost identical with S3L

4It refers to beacons sent during the service discovery.

IV.3 Performance Evaluation 59

Setting S3L DIST
Routing Protocol none OLSR

Service Request Propagation Selective Broadcast MPR’s Broadcast
Beacon4 every 2 seconds none

Table IV.6: Difference between DIST and S3L

except that it does not distinguish between stable and unstable links and it
uses a routing protocol. We choose Optimized Link State Routing Protocol
(OLSR) [Clausen and Jacquet, 2003] because of its wide usage and the avail-
ability of simulation codes for ns-25. OLSR is a proactive routing protocol for
MANET, i.e., each node exchanges topology information with others regu-
larly. Every node selects a set of its neighbor nodes as multipoint relays (MPR),
which are the only nodes responsible for forwarding control traffic. MPRs
provide an efficient mechanism for flooding control traffic by reducing the
number of transmissions. This makes OLSR a good choice as the underlying
routing protocol for DIST as it propagates the service requests using broad-
cast. In contrast, S3L does not use any routing protocol, as it finds a service
path by itself, which is used for later service delivery. The difference between
S3L and DIST is shown in Table IV.6. In DIST, a client broadcasts its service
request in the vicinity network while in S3L, it only sends the request along
stable links. As only SCNs respond to the broadcast packets, we name it “se-
lective broadcast”. The ranges of service request propagation in both S3L and
DIST are set to 4 hops. The purpose of this comparison is two-fold: (1) to eval-
uate whether service location based on signal strength tendency does improve
service reliability; (2) to justify our choice of cross-layer design, i.e., instead of
relying on routing protocols for handling mobility, S3L extracts signal infor-
mation directly from the physical layer to detect node mobility and improve
service reliability.

IV.3.2 Evaluation Results

Delivery Success Ratio. At first, by setting the service latency to 25 seconds,
we explore the number of success and failed services with different simulation
areas. The performance of S3L and DIST with respect to the number of service
success and failure (out of 250 queries) are compared in Figure IV.7. It can
be observed that S3L outperforms DIST by having more successful service
deliveries. Particularly, it cuts down the number of service failures by 50%
to 70%. From the numbers of service success and failure, we derive delivery

5http://hipercom.inria.fr/olsr/

http://hipercom.inria.fr/olsr/

60 IV Signal Strength based Service Location

 20

 40

 60

 80

 100

 120

 140

 160

 350 400 450 500 550 600 650 700

Nu
m

be
r

Area

Service success/failure with S3L and DIST (out of 250 requests)

S3L success
DIST success

S3L failure
DIST failure

Figure IV.7: Number of successful and failed service deliveries

success ratio (Figure IV.8), which confirms S3L’s better performance than DIST.

area latency (in ms)
S3L DIST

350m x 350m 16.873 16.130
400m x 400m 18.231 16.512
450m x 450m 16.401 17.964
500m x 500m 15.873 15.560
550m x 550m 16.269 15.810
600m x 600m 14.753 15.734
650m x 650m 13.786 16.142
700m x 700m 13.771 16.278

Table IV.7: Service location latency of DIST and S3L

Service Discovery Latency. Service discovery latency for S3L and DIST are
presented in Table IV.7. It can be seen that there is no much difference (less
than 3 ms in between), although S3L outperforms DIST to a small extent.

IV.3 Performance Evaluation 61

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 350 400 450 500 550 600 650 700

Pe
rc

en
ta

ge

Simulation area

Service Delivery Success Ratio

S3D delivery success ratio
DIST delivery success ratio

Figure IV.8: Service delivery success ratio

This is because both S3L and DIST have similar overhead in sent messages: in
S3L, only SCNs rebroadcast service discovery messages; while for DIST, only
MPRs rebroadcast them.

Impact of Mobility. The impact of mobility on the performance of S3L and
DIST is investigated (Figure IV.9). In ns-2, the speed of a node is randomly se-
lected from the range between minspeed and maxspeed. By fixing minspeed at
0.5 m/s, we evaluate the performance with maxspeed changing from 2 m/s
to 21 m/s. It can be seen that with maxspeed less than 11 m/s, S3L outper-
forms DIST, although the advantage is getting less and less with larger speed;
with speed higher than 11 m/s, DIST has almost as good performance as S3L.
This is due to the fact that, with nodes moving at high speeds, the nodes can-
not collect enough number of beacons for deriving mobility and thus cannot
identify unstable links.

Impact of Service Latency. The impact of service latency on the performance
of S3L and DIST is also studied (Figure IV.10) by adjusting the latency from 1
to 33 seconds (increasing by 4 seconds for each setting). It can be observed that
with longer latency, both S3L and DIST suffer worse performance, because
there is higher probability to fail with longer latency. When service latency is

62 IV Signal Strength based Service Location

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

Nu
m

be
r

Speed (m/s)

Service success/failure with S3L and DIST (out of 250 requests)

S3L success
DIST success

S3L failure
DIST failure

Figure IV.9: Number of successful and failed service deliveries with different
speeds

small (e.g., 1 second), S3L outperforms DIST with smaller number of service
failure while the latter has larger number of service success. This is because
with the latency of as short as 1 second, services can succeed even over un-
stable links. But starting from latency of 8 seconds, S3L outperforms DIST in
both number of successful and failed service deliveries thanks to its enhanced
robustness to mobility.

Summary. It can be concluded from the above experiments that S3L im-
proves service reliability, compared to an alternative service location approach
that is indifferent about link stability (i.e., DIST), as long as service latency is
not too small (larger than 1 second) and speed is not too high (less than about
11 m/s). Such loose conditions show the wide range of S3L’s applicability.

IV.4 Concluding Remarks

In this chapter, we have presented signal strength based service location (S3L)
for improving service reliability in presence of device mobility. Our contribu-
tion lies in (1) the elicitation of needs for mobility awareness during service

IV.4 Concluding Remarks 63

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35

Nu
m

be
r

Service Latency

Service success/failure with S3L and DIST (with different service latency)

S3L success
DIST success

S3L failure
DIST failure

Figure IV.10: Number of successful and failed service deliveries with different
service latency

location and (2) a service location method based on signal strength tendency
(i.e., S3L) that proves to improve service reliability.

S3L focuses on improving robustness to node mobility and thus service
reliability. Such an enhancement is generally at the cost of impairing other
QoS properties. Aggressive measures to improve reliability can lead to longer
service latency, weaker service availability, etc, and should be justified only
when the reliability gain outweighs the loss regarding other QoS properties.
S3L forwards service information only along stable links and improves ser-
vice reliability at the cost of weaker service availability – the services situated
on the unstable links are excluded during service location and thus are un-
available to the client. However, in most cases, service discovery is followed
by service delivery. An aborted service delivery after successfully finding a
service instance is essentially equivalent to failure to find a requested service,
which justifies our sacrifice of availability for reliability.

The extension beyond the work in this chapter can be carried out along in-
corporation of other QoS dimensions, besides reliability, into service location.
However, it has to be noted that not every QoS dimension can be considered
during service location. It only applies to the QoS properties whose values
experienced by the client are affected by the service path. For example, the

64 IV Signal Strength based Service Location

experienced service latency, which is the sum of service processing latency at
the service provider and the network transmission time, is applicable. There-
fore, a service location request can be aborted if the discovery latency so far
has already surpassed the maximum latency acceptable for the client. How-
ever, it is a non-trivial task because it requires synchronization of all nodes to
be able to calculate the passing time since the sending of the request. In con-
trast to service latency, the cost-related dimensions are inappropriate, as they
are only affected by service providers and independent of service path.

V

QoS-aware Service Selection Using
Vickrey auction

Service location potentially finds multiple instances that satisfy the client’s
requirements. It is then the responsibility of service selection to choose the
best one on behalf of the client. Most current SDPs lack such a feature, which
forces the client to manually make choices. Service selection can be a very
tedious and error-prone process as it involves with various QoS dimensions
of different units, which can be further complicated by the client’s different
preferences among different aspects (e.g., price-driven or QoS-oriented). This
calls for service selection that evaluates the service instances based on their
QoS properties, prices and the client’s preference.

Moreover, given the same level of service QoS offered by service providers,
it is desirable to choose the service incurring the lowest overhead, i.e., con-
suming the least resources – because it realizes the system-wide goal of re-
alizing the best QoS at the lowest cost. However, the client’s selection is de-
termined by service QoS and price, the latter of which is up to the service
providers’ strategies and thus does not always reflect the real overhead. There-
fore, there exists a gap between the global goal and individual interests.

In this chapter, we propose a solution to address the above two issues dur-
ing service selection. Our contribution is three-fold: (1) giving an extensible
QoS model that includes a service’s generic QoS properties; (2) proposing a
comprehensive utility function that evaluates a service instance in satisfying
the client’s needs; (3) applying Vickrey auction [Vickrey, 1961] as the pricing
model to enforce the revelation of truthful service price to achieve the global
goal.

The rest of the chapter is organized as follows. The next section presents

66 V QoS-aware Service Selection Using Vickrey auction

a QoS model that includes generic QoS properties. Section V.2 details the se-
lection process, including service evaluation by measuring the overall QoS of
a service and the pricing model for determining service price. The service se-
lection is analyzed in Section V.3, focusing on the overall QoS evaluation. This
chapter finishes with concluding remarks in Section V.4.

V.1 A QoS Model

In this section, we present a QoS model that includes generic QoS properties
of a service. The QoS properties are carefully selected by considering their
genericness and suitability for services in USoCo environments. Meanwhile,
the QoS model is extensible in that new QoS criteria (e.g., domain-specific QoS
properties) can be easily added without altering the underlying service eval-
uation shown in Section V.3. It is used by service clients to specify their QoS
requirements and service providers to specify their QoS offers. It is closely
related to QoS guarantees and commitments defined in Service Level Agree-
ments (SLA) (e.g., [Beckman et al., 2002]), although the latter also needs to
define penalty clauses and QoS monitoring which are related to the enforce-
ment of SLAs.

Based on current work such as [Ran, 2003, Zeng et al., 2003, Sabata et al.,
1997, Avizienis et al., 2001], QoS properties of a service can be divided by rel-
evance into categories of performance, dependability, transaction, trustworthiness,
cost and service behavior. A category represents a group of related QoS prop-
erties, named dimensions. A quantitative dimension is named a metric, while
a qualitative one is called a policy. Of the above six categories, performance
is considered basic and incorporated into many QoS models (e.g., [Frolund
and Koistinen, 1998, Ran, 2003]). Dependability is regarded as a one of the four
fundamental properties (along with functionality, performance and cost) of com-
puting systems [Avizienis et al., 2001]. Service cost is also included since it is
widely regarded as a vital property of a service (e.g., in [Chalmers and Slo-
man, 1999] and [Cardoso et al., 2004]). Transaction is integrated into the QoS
model as well in order to facilitate mobile commerce applications. Service be-
havior, which describes a service’s policies in terms of adaptation and service
guarantees, is necessary to capture a service’s dynamics. These categories are
further developed and explained as follows.

Performance measures the speed in completing a service request [Sabata
et al., 1997, Chalmers and Sloman, 1999]. Common performance dimensions
include latency, throughput and jitter [Ran, 2003]. Latency refers to the total
time taken to complete a service request; throughput represents the number

V.1 A QoS Model 67

of completed service requests over a time period; jitter means the variation in
latency.

Dependability of a system refers to the ability to deliver services that can
justifiably be trusted [Avizienis et al., 2001]. Dependability encompasses the
following dimensions:

• availability: the probability that a service is available when clients at-
tempt to use it [Koistinen, 1997];

• reliability: the probability of a service performing its purpose adequately
for a period of time intended under the operation conditions encoun-
tered [Reibman and Veeraraghavan, 1991];

• safety: absence of catastrophic consequences on the user(s) and the envi-
ronment [Avizienis et al., 2001];

• confidentiality: absence of unauthorized disclosure of information;

• integrity: absence of improper system state alterations;

• maintainability: ability to undergo repairs and modifications [Avizienis
et al., 2001].

Among the above dimensions, both availability and reliability are metrics
and assume values between 0 and 1, while the others are policies and assume
boolean values. Security has not been included since it is a concurrent category
with dependability and it includes (a) availability for authorized users only; (b)
confidentiality and (c) integrity with the “improper” in the above definitions
meaning “unauthorized” [Avizienis et al., 2001, Pfleeger, 1997]. Thus all of the
three dimensions are covered in the umbrella of dependability.

Since many real-world services are transactions (e.g., ticket booking) and
transaction support is essential to allow for wide adoption of mobile com-
merce, we list it as an individual category for its significance. Moreover, ser-
vices are paid using virtual currency in USoCo environments (Section II.1.2)
and thus service provisioning and consumption involve transactions. The trans-
action category embodies ACID (Atomicity, Consistency, Isolation and Dura-
bility) properties [Gray and Reuter, 1993], leading to the definition of the cor-
responding policies, which are all boolean. In addition, to facilitate transac-
tions between service client and provider, we also include three main trans-
action processing styles: direct transaction processing (DTP), queued transaction
processing (QTP) and compensation-based transaction processing (CTP) [Gray and
Reuter, 1993]. Service provider and consumer can agree on the transaction

68 V QoS-aware Service Selection Using Vickrey auction

style(s) to be supported. Consequently, we include these three policies in the
QoS model to indicate whether a service supports that style. Note that the
above three policies are not orthogonal in that a service can support one or
multiple processing styles. QTP style seems to fit better transactions between
mobile entities because they are normally short-lived and the involved service
provider and client are loosely-coupled.

Trustworthiness evaluates the degree to which an entity will provide a ser-
vice as expected. Different from dependability that focuses on the ability to de-
liver services, trustworthiness evaluates the willingness of an entity to do so.
In another word, when a service provider does not fulfill the client’s require-
ments as expected, it is undependable if it is incapable of doing so, while it
is considered untrustworthy if it is able to but unwilling to do so. Trust to-
wards a node can be considered as a prediction of that node’s future action.
One way to measure a node’s trustworthiness is to evaluate its reputation.
Subsequently, we include the dimension of reputation in the trustworthiness
category. It assumes the value of beta reputation of (α, β), where α and β rep-
resent the accumulated positive and negative experiences respectively (to be
detailed in Chapter VI).

Cost is a fundamental property of a service [Chalmers and Sloman, 1999,
Cardoso et al., 2004, Avizienis et al., 2001], because if there is no notion of
cost involved in QoS description, there is no reason for the user to select any-
thing other than the highest level of quality of service [Roscoe and Bowen,
2000]. However, a concrete means to evaluate service cost is rarely specified.
For example, in [Cardoso et al., 2004], cost is considered to include enactment
cost and realization cost, which are associated with non-technical factors such
as labor cost. Since the resource consumption introduced by a service on the
resource-constrained handheld devices is the main overhead of service provi-
sioning, we put the metric resource consumption in the cost category. By doing
so, it expresses device heterogeneity in terms of resource richness: given a
service, it costs less for a powerful provider than a less powerful one. Note
that resource consumption refers to that of an elementary service, while for
composite services, it is calculated according to the composition logic (e.g.,
[Cardoso et al., 2004]). We further consider the following 4 resources: CPU
load, memory, bandwidth and battery. Each resource consumption is evalu-
ated by dividing the consumed resource by available resource and the value
range is between 0 and 1, as explained below.

CPU load describes the work load on the CPU(s) of a host. Available CPU
load of a host is defined as the utilizable percentage of the CPU (i.e., 1 - utiliza-
tion percentage). The CPU load introduced by a service is further defined as

V.1 A QoS Model 69

the CPU time of the service1 divided by the total service time. Memory refers
to the size of the primary memory of a host. The available memory of a host
is thus defined as the host’s available primary memory, and the memory con-
sumption of a service is defined as the amount of physical memory it utilizes.
The available bandwidth for a host represents the actual capacity of its wire-
less link and the bandwidth consumption of a service refers to the volume of
data the service sends and receives per some time units. The available battery
for a host represents the power level a host has (an AC plugged-in host is con-
sidered to have infinite battery) and the battery consumption of a service refers
to the power a host consumes for executing the service.

As various resources may bear different importance to the service host, rel-
ative importance is used to characterize the criticality of the various resources.
For example, battery can be very important to an AC-unplugged host if it has
some important tasks to execute in the near future. Service cost thus can be
derived from the consumption of each resource and its relative importance.
Assume that for some resource r, a service s consumes acs,r units of the to-
tal available resource tarr. We evaluate the resource consumption of r for the
given service s by:

rcs,r =
acs,r

tarr

The reason that rcs,r is defined as a relative instead of absolute value is that the
same amount of resources are of different importance to different hosts (e.g.,
running a service that consumes 5 MBmemory has a different impact on a
host with 250 MB memory available than on a host with 10 MBavailable).
Consequently, service cost is formulated by:

cost =
∑
r∈R

rcr × wr where
∑
r∈R

wr = 1

where R represents all the resources and wr refers to the relative importance of
resource r. The value of cost falls into [0..1]. Note that as service cost measures
the overhead for a service provider to host a service, it is not necessarily pub-
lished by the service provider, depending on environments (cooperative or
not) and the service provider’s strategy.

In face of resource variation, QoS guarantees can be violated and actions
need to be taken. Therefore, service behavior is used to describe a service’s level

1The CPU time of a service can be measured with tools like Java Virtual Machine Tool
Interface.

70 V QoS-aware Service Selection Using Vickrey auction

of QoS guarantees and actions to be taken in case of resource variation, result-
ing in the following two dimensions: level of service and service adaptation.

Level of service specifies the degree of certainty that QoS levels requested at
the time of demand will be honored [Aurrecoechea et al., 1998]. It gives the
probability that the QoS values will be honored, regardless of how they are
enforced (e.g., guaranteed or best-effort).

Fluctuation of resource availability requires a service to adapt to such change,
which either happens locally (e.g., battery is running out) or in the surround-
ing environments (e.g., received signal is getting weaker). It has been widely
considered necessary (e.g., [Noble et al., 1997, Bowers et al., 2000]) to have
multiple feasible implementation alternatives of a software component, which
can be dynamically selected based on current conditions of the application
environment and the client’s preferences. Each implementation alternative,
named fidelity in [Narayanan et al., 2000], meets the basic goals but differs in
the quality of service that it provides. In general, lower fidelity consumes less
resources, but offers worse service to the client. Therefore, we use the service
adaptation policy to capture the degree of QoS adaptation that a service can
tolerate and scaling actions to be taken in the event of violation of the current
QoS. During runtime, when the availability of resources varies significantly,
a service provider can allow dynamic adjusting (so called renegotiation) de-
pending on the resource availability - e.g., whether or not service is upgrad-
ed/downgraded when resources improve/deteriorate. Note that such adjust-
ing needs to obey the level of service promised by the service provider. For
example, for guaranteed level of service, the QoS cannot be degraded to be
lower than the promised QoS. In addition, such dynamic adaptation is taken
into account in evaluating service cost (e.g., using the average cost over mul-
tiple runs during which adaptations are made).

The above QoS dimensions along with their values are summarized in Ta-
ble V.1. These dimensions are measured during service invocation. Note that
the resource consumption is evaluated by dividing the service’s consumed
resources by the available resource on the node, both of which need to be
measured. Along with other QoS dimensions, the measurement of them is
explained below.

For CPU load, the system utilities uptime and vmstat on UNIX/Linux plat-
forms2 provide measurement of CPU availability on time-shared systems.
Typically, the uptime utility reports CPU load average as the average num-
ber of processes in the run queue over the past one, five and fifteen min-

2Similar utilities are also available for other platforms, e.g., Performance Data Helper
(PDH) library provided by MS Windows.

V.1 A QoS Model 71

Category Dimension Value
Throughput number of requests per time

Performance Latency Service Time (in ms)
Jitter Time (in ms)

Availability [0..1]
Reliability [0..1]

Safety BooleanDependability
Confidentiality Boolean

Integrity Boolean
Maintainability Boolean

Trustworthiness Reputation (α, β)

Atomicity Boolean
Consistency Boolean

Isolation Boolean
Transaction Durability Boolean

DTP Support Boolean
QTP Support Boolean
CTP Support Boolean

Cost Resource Consumption [0..1]
Level of Service Percentage=[0..1]Service Behavior

Service Adaptation adaptation policy

Table V.1: QoS model for services in ubiquitous computing environments

utes. Meanwhile, the vmstat utility reports percentages of user time, system
time, idle time and Input/Output time. The fraction of CPU occupancy time
for a full-priority standard user process can be evaluated as [Wolski et al.,
1997, Wolski et al., 1999]:

availableCPU = Tidle + (Tuser/rp) + (Tuser × Tsystem/rp)

where Tidle, Tuser and Tsystem represent CPU idle time, user time and system
time respectively, all in terms of percentage of total CPU time; and rp repre-
sents number of running processes. The rationale of this formula is that a new
process would be entitled to all of the idle time, a fair share of the user time,
and a part of system time proportional to the user time. The CPU time of a
process with process id pid can be e.g., gathered from the /proc/ pid /stat

of Linux proc file system, which actually provides the system time, the user
time, the children processes’ system time and user time.

72 V QoS-aware Service Selection Using Vickrey auction

For memory, there are three kinds of virtual memory pages available to a
service process: (1) pages already owned by the process – its resident set; (2)
the unused free pool; (3) the pages owned by some other process, but not in
the working set: inactive pages. All of them, along with the memory utilization
of a process, can be obtained from the operating system, e.g., Linux proc file
system. The bandwidth of an wireless ad hoc network can be measured by
probing (e.g., [Chen et al., 2005]); the bandwidth consumption of a service
can be obtained by monitoring the number of network bytes transmitted and
received during the execution.

The current energy capacity of a node can be obtained via Advanced Con-
figuration and Power Interface (ACPI) [ACPI, 2004], which gives the current
capacity of the batteries. To measure the battery consumption of a service, in-
tuitively we can measure the battery capacity difference between before and
after the service is executed. It, however, needs to exclude the energy con-
sumption of other concurrent tasks executing at the same time. An alternative
approach to measure a service’s battery consumption is to obtain the correla-
tion between power consumption and other metrics such as CPU load, net-
work traffic, etc (e.g., in [Nash et al., 2005, Feeney and Nilsson, 2001]). The
latter parameters can be acquired from utilities provided by operating sys-
tems (e.g., Performance Data Helper library on MS Windows).

As for other QoS dimensions, for example, availability can be calculated by
As = Ts/θ, where Ts is the total amount of time when service s is available
during the last θ amount of time. And the more frequently the service is ac-
cessed, the shorter θ should be [Zeng et al., 2004]. Latency can be measured
as the length of the interval between when the service provider receives the
service request and when it returns the result. Note that the latency given by
the service provider (Ls) can be different from the experienced latency at the
service client (Lc), because the latter also includes the network transmission
time (Transs), i.e., Lc = Ls + Transs. Note that service providers advertise
Ls (i.e., processing time of the service) instead of Lc because different service
clients can experience different transmission time. Other dimensions can also
be measured during the process of service invocation. Policies are valued ac-
cording to the existence of mechanisms to enforce that policy. For example,
confidentiality can be evaluated as being true only when a service does ap-
ply some encryption schemes during communication. The measured metric
values can be further used by the service provider to forecast future values,
using techniques such as mix-of-experts [Wolski, 1998, Gurun et al., 2004].

V.2 QoS-aware Service Selection 73

V.2 QoS-aware Service Selection

Besides QoS properties of a service, the overall service QoS is also determined
by the client’s preferences. We use an integrated metric called user benefit to
evaluate the overall QoS of a service instance, indicating the expected benefit
brought by a service to the client.

It needs to be noted that the QoS values claimed by the service provider
can be different from the experienced QoS by the client (abbreviated as expe-
rienced QoS) due to two reasons. First, a service provider can be lying about
service QoS, i.e., its truly offered QoS. This can be handled by trustworthiness
evaluation of the service provider, which will be detailed in the next chapter.
Second, experienced QoS is also affected by other factors, besides the service
QoS. For instance, reliability and latency are two such QoS dimensions. As
explained in the previous chapter, node mobility can degrade considerably
service reliability if not taken good care of. One possibility is to remove the
impact of mobility on service reliability, i.e., by guaranteeing that the service
path does not break during service delivery. But it is difficult to achieve given
the device mobility in the environment. S3L takes a step forward to allevi-
ate, although not completely remove, the impact of node mobility on service
reliability, by locating services along stable links. Similarly, a client’s experi-
enced latency is the sum of service latency and other factors, mainly the round
trip time of sent messages (the message to invoke the service from the service
client to the provider and the result sent back in the other direction). We mea-
sure the round trip time with a simple probing-based way without incurring
any traffic overhead. The round trip time is estimated with service location la-
tency, which is the interval between when the client sends a discovery request
and when it receives the reply. It serves a decent estimation because it is a
probing-based value – the path with small delay is probably short and un-
congested and implies a similarly small delay during service delivery to be
happening soon [Dykes et al., 2000]. Service location latency is thus added to
service latency to estimate experienced latency of the client.

Different clients may have different preferences of QoS, which should be
considered during the evaluation of user benefit. We reuse relative importance,
which was used to describe how critical a resource is to a host, to represent
the priority of a QoS dimension to a service client. For example, a less patient
client can give a higher relative importance to service latency than other QoS
dimensions to express its preference for fast services. The values of relative
importance can be elicited using schemes such as reinforcement learning (e.g.,
[Lee et al., 2004]). The users give feedbacks after each service execution, e.g.,
increasing the relative importance of latency if the last execution took too long

74 V QoS-aware Service Selection Using Vickrey auction

a time. The preferences are thus continuously updated and remembered until
the users are satisfied.

V.2.1 User Benefit

Based on QoS values and relative importance of each QoS dimension, user
benefit computes the overall QoS brought to the client [Liu and Issarny, 2004b]:

User Benefit =
n∑

i=1

(di × wi) where

n∑
i=1

wi = 1 (V.1)

Where di is the value of a QoS dimension and wi denotes the client’s assigned
relative importance to the dimension. Note that if di is of a dimension whose
value is boolean, di equals 1 if it is true , 0 otherwise. As dimensions can be
of different units (e.g., latency is millisecond and availability in percentage),
in order to allow for a uniform measurement of service QoS independent of
units, data normalization is applied, which essentially transforms values of
different units into comparable ones. Assume that two service instances have
values of orig1 and orig2 for a QoS dimension, they are normalized to norm1
and norm2 respectively. In general, the normalization needs to

• keep the order of values, e.g., if orig1 is stronger than orig2, norm1 should
be greater than norm2;

• maintain the range of values. Although a larger original value leads to
a larger normalized value, the latter cannot be indefinitely large and
should fall into a range;

• avoid the situation when an exceptionally large value completely over-
shadows other values by making them negligible, because it leads to
complete discount of those values when evaluating the overall QoS.

Currently, there exist two common normalization techniques: (i) decimal
scaling, (ii) standard deviation normalization. Assuming that d(i) is the value
of dimension d for a service instance i, decimal scaling normalizes every data
by moving the decimal point:

d′(i) =
d(i)

10k
for the smallest k such that max(|d′(i)|) < 1

V.2 QoS-aware Service Selection 75

d1 d2 d′1 d′2 d′′1 d′′2
a 10 50 0.01 0.5 0.03 1.66
b 30 40 0.03 0.4 0.09 1.33
c 1000 1 1 0.01 3.00 0.03

Table V.2: QoS values before and after decimal scaling

Decimal scaling preserves most of the original character of the value and a
typical scale maintains the values in the range of from −1 to +1. For example,
consider 3 service instances in Table V.2: a, b and c. For simplicity, assume that
only two dimensions need to be considered, e.g., d1 and d2, and that d1 and d2

are both stronger with larger values and have the same relative importance.
After decimal scaling (d1 becomes d′1 and d2 becomes d′2, as shown in Table
V.2), c is the best instance considering the sum of the two dimension values.
But c does not have balanced properties (i.e., it is strong in d1, but too weak in
d2). In general, when data values exhibit a wide range of magnitudes, it can
be difficult to properly compare them without the aid of transformation. This
is because the large values dominate the small ones, which makes it difficult
to see other details in the rest of data [Seigel, 1988]. Given the heterogeneity of
service providers in capability (e.g., computing power), the range of QoS val-
ues can be quite large, making decimal scaling a bad choice for normalizing
data. A variant of decimal scaling is to divide every value by the average (e.g.,
in [Liu et al., 2004]). This approach has the same problem as decimal scaling,
as shown in Table V.2 (d′′1 and d′′2).

Standard deviation normalization transforms data in a more radical way
using means and standard deviation:

d′(i) =
d(i)−m(d)

δ(d)

where d(i) is the value of dimension d for the service instance i, and m(d) and
δ(d) are the mean and standard deviation values for dimension d respectively.
In addition, we need to set the maximum normalized value to deal with those
exceptional values, using Chebyshev’s theorem:

Theorem V.1. (Chebyshev’s theorem) The portion of data that lies within k stan-
dard deviations to either side of the mean is at least 1− 1

k2 for any data set, where k is
a number greater than 1.

By considering a 75% confidence interval, we let k = 2, leading to division of
the space into (−∞..m− 2× δ], (m− 2× δ..m + 2× δ] and (m + 2× δ.. +∞).

76 V QoS-aware Service Selection Using Vickrey auction

d1 d2 d′1 d′2
a 10 50 0.35 0.70
b 30 40 0.36 0.59
c 1000 1 0.79 0.22

Table V.3: QoS values before and after standard normalization

Hence, the dimensions that are stronger with larger values (e.g., availability)
are normalized according to the following equation:

d′(i) =

1 if(d(i)−m(d) > 2× δ(d))
0 if(d(i)−m(d) < −2× δ(d))

d(i)−m(d)
4×δ(d)

+ 0.5 otherwise

While for QoS dimensions that are stronger with smaller values (e.g., latency),
they are normalized according to the following equation so that smaller val-
ues contribute more to the user benefit:

d′(i) =

0 if(d(i)−m(d) > 2× δ(d))
1 if(d(i)−m(d) < −2× δ(d))

0.5− d(i)−m(d)
4×δ(d)

otherwise

Table V.3 lists the normalized values for the example in Table V.2. Obvi-
ously, a is the best instance using the above normalization. Standard deviation
normalization works better in picking up the most balanced instance instead
of those that are very strong in one aspect while too weak in another.

We thus apply the above normalization to every dimension in the User
Benefit function (Equation V.1). It leads to 0 < di < 1 and thus user benefit of a
service falls into the range of (0 .. 1].

V.2.2 Utility Function

User benefit, together with service price, contribute altogether to the evaluation
of a service, through a utility function:

Service Utility = User Benefit× w1 − Service Price× w2

where w1 + w2 = 1. Since both user benefit and service price fall into [0..1], ser-
vice utility falls into [−1..1]. By adjusting the value of w1, the utility function

V.2 QoS-aware Service Selection 77

covers three variants of cost effective analysis (CEA) [Sassone, 1988]. The first
variant is minimizing cost for a given level of effectiveness (i.e., user benefit).
By setting w2 = 1 and specifying QoS requirements in its service discovery re-
quest, a client can find the cheapest service for a given user benefit determined
by its QoS requirements. The second variant is maximizing effectiveness for
a given level of cost. By setting w1 = 1 and specifying the reserve price in its
service discovery request, a client finds the service with highest user benefit at
an expected cost. The third variant is finding optimal tradeoff between effec-
tiveness and cost. It can be realized by giving w1 and w2 various values other
than 0. The flexibility in expressing different preferences makes the above util-
ity function a better choice than benefit-cost ratio (e.g., [Venkatasubramanian
and Nahrstedt, 1997]), since the latter allows for only one possibility (i.e., the
ratio).

V.2.3 Vickrey Auction based Pricing Model

Using the above utility function, the service instance with the highest utility
is chosen. If there is a tie, the winner is randomly chosen among the services
with the highest utility. The paid price is then determined by a pricing model
(Section III.3.2). We use reverse Vickrey auction to determine service price, be-
cause it is the service client that is “buying” a service, i.e., selecting among ser-
vices. The winner gets paid with the price that would make its utility equal to
the highest utility of all other instances. For example, the highest service util-
ity is su1 = ub1×w1−sp1×w2, where ub1 and sp1 are user benefit and service price
respectively. Given the highest utility of the other instances of su2 (su1 ≥ su2),
the paid price equals (ub1×w1−su2)/w2. Note that if the service utility is only
determined by user benefit (e.g., w1 equals 0) and thus independent of price,
the paid price is equal to the asking price of the winner service.

Vickrey auction is applied here because it is executed in one round, differ-
ent from other auction forms such as English auction, and thus does not incur
further communication overhead. Every node has a dominant strategy (to be
proved in the next paragraph) and thus the bidders (i.e. service providers) do
not need to speculate about their competitors’ strategies. Moreover, thanks
to the incentive compatibility of Vickrey auction, service providers are moti-
vated to reveal the truthful service cost, which ensures that a client’s service
selection is based on real service price. The service providers are motivated
by the possible gain, since the winner is paid with a price higher than the
overhead (i.e., cost). For the client, it may seem that it overpays as it pays
according to the second lowest utility (thus higher than the winner’s asking
price) rather than the lowest utility. However, if the client pays according to

78 V QoS-aware Service Selection Using Vickrey auction

the lowest utility (e.g., using first-price sealed auction), the service providers
are not motivated to bid the truthful price and ask for higher prices than in
Vickrey auction. Moreover, such a selection achieves load balancing – because
heavy load leads to high service cost and high bid, and thus low probability
of winning the auction and being selected.

The above utility-based pricing model is not exactly the same as Vickrey
auction, since the selection result is determined by service utility instead of
service price. Despite of the difference, the dominant strategy for each service
provider is still to bid the truthful overhead of the service, i.e., the service cost.
It is proved in the following:

Lemma V.1. The dominant strategy for a service provider in the above service selec-
tion based on Vickrey auction is to bid its truthful service cost.

Proof. Assume a service provider A offers a service that has service cost of c
and brings user benefit of b to the client. Let su be the highest service utility
of any other service provider. If A wins the bid, it gets paid with p = (b ∗w1 −
su)/w2 and thus has a net gain of p− c (could be negative); if it does not win,
it has a net gain of 0. We now analyze the bidding under three scenarios:

• b × w1 − c × w2 > su. If A asks for more than p, it does not win and
gains 0. If it asks for less than p (including c), it wins the auction and has
a positive gain of p − c. Thus, bidding c is strictly better than bidding
more than p and at least as good as any bid less than p.

• b × w1 − c × w2 < su. If A asks for more than p (including c), it does
not win and gains 0. If it bids less than p, it wins the auction and has a
negative gain of p− c. Thus, bidding c is strictly better than any bidding
less than p and as good as any bidding greater than p.

• b×w1−c×w2 = su. If A asks for more than p, it does not win and gains 0.
If it asks for less than p, it wins the auction and has a gain of p− c, which
is also 0. Bidding exactly p leads to a tie. The winner will be randomly
selected from those bidders. But either it is randomly selected or not, its
payoff is always 0. Thus, bidding c is as good as any other bidding.

In summary, under all scenarios, bidding c brings the maximum possible gain
for A.

Therefore, utility based Vickrey auction motivates each service provider
to reveal its truthful price, which is the resource consumption introduced by
providing a service.

V.2 QoS-aware Service Selection 79

V.2.4 QoS-aware Service Location and Selection

QoS awareness can be integrated into not only service selection, but also ser-
vice location process. Given a pull-based service discovery model, a client
specifies its QoS requirements in the service request, as shown in Table V.4:

seq # path(n1, , ,) range destined SCNs functionality QoS requirements price

Table V.4: A serv_disc packet for QoS-aware location and selection

Different from the serv_disc in S3L as introduced in the previous chap-
ter, two fields are added into the packet:

• QoS requirements, which are in the form of
∏

1≤i≤n(di, vi), meaning that
the value of QoS dimension di (1 ≤ i ≤ n) of the required service has to
be no weaker than vi. We use � to denote the relationship of “being no
weaker than”. The interpretation of being stronger (or weaker) depends
on the specific dimension. A metric (i.e., quantitative dimension) can be
stronger with larger value (e.g., availability), or with smaller value (e.g.,
latency). For a policy (i.e., qualitative dimension), supporting a policy
is considered to be stronger than lack of such support. For example, a
service supporting confidentiality is stronger than a service that does not
support it, i.e., (confidentiality = Y ES) � (confidentiality = NO).

• Price, which is the highest acceptable price (i.e., reserve price) for the
service client.

Before the client propagates the service request to its SCNs, it records the
timestamp when the request is sent along with the sequence number, for
the purpose of calculating service location latency. Then, the serv_disc is
sent through stable links to the vicinity network defined by the propagation
range. On receiving such a request, a node checks whether it provides any
service that satisfies the QoS requirements posed by the client and at the cost
lower than the reserve price. For example, a client has a QoS requirement of
(x1, x2, x3, ..., xn, p), with x1...xn being the minimum values of QoS dimensions
and p referring to the reserve price. A service provider has a service with QoS
properties of (v1, v2, v3, ..., vn, c) with v1...vn representing the offered QoS val-
ues for the dimensions and c representing the service cost. The conformance
checking is passed only if:

(x1 � v1) ∧ (x2 � v2) ∧ ...(xn � vn) ∧ (p ≤ c)

80 V QoS-aware Service Selection Using Vickrey auction

If the checking passes, the service provider sends back a reply along the
embedded path, incorporating the QoS values of its service and its asking
price, as shown in Table V.5. The field of QoS values is in the form of

∏
1≤i≤n(di, xi),

meaning that the service offers the value of xi for QoS dimension di (1 ≤ i ≤
n).

seq # path(n1,n2,...,nk) functionality QoS values price

Table V.5: A serv_resp packet for QoS-aware service location and selection

Whenever receiving a reply, the client extracts the sequence number and
retrieves the timestamp it has noted down when it sent the service discovery
request. The timestamp is then compared against the current time to obtain
service location latency. The latter is then added to service latency advertised
by the service provider to estimate the experienced latency for the client. Af-
ter the timeout of waiting for service replies, the client selects the best one
among the received replies. The timeout can be set with a length of time since
the discovery request is sent or the number of received replies. For example,
service selection is triggered after receiving 5 replies. These replies are eval-
uated using the utility function and the winner gets paid according to the
Vickrey auction based pricing model.

Push based service discovery carries out service selection in a similar way.
The only difference lies in the fact that the client already has all the service
information at hand. It thus only needs to filter those that do not satisfy its
requirements in terms of QoS and price and the remaining instances are se-
lected based on the utility function as presented above. A possible issue is that
it can be argued that, when publishing services to the SCNs, nodes tend to be
reluctant to reveal true prices to potential competitors. However, it is safe to
publish the price information because of the following two reasons: firstly,
since the client’s utility function is kept private, a service provider cannot de-
termine its service utility, although it can change the utility of its service by
manipulating its asking price; secondly, even after knowing price information
of other services, it is always to the best interest of a service provider (i.e., its
dominant strategy) to reveal its truthful price.

V.3 Service Selection Analysis

Our service selection is essentially carried out in two steps: (1) services are
evaluated using the utility function; (2) the paid price is determined by a
pricing model based on Vickrey auction. As the validity of the second step

V.3 Service Selection Analysis 81

is proved in Lemma V.1, we focus on the first step, i.e., the evaluation of ser-
vice utility. Therefore, in the following, we analyze our approach to evaluate
the overall service QoS.

name Latency(0.8) Availability(0.2) QoS Price Service Utilityorig.(in ms) norm. orig. norm. weight = 0.2
s1 3.00 0.76 0.70 0.25 0.66 0.90 0.36
s2 4.50 0.47 0.90 0.75 0.52 0.60 0.26
s3 5.50 0.27 0.80 0.50 0.31 0.70 0.14

Table V.6: QoS values and utilities of three example services

Table V.6 shows three service instances s1, s2 and s3 with their QoS values
(orig. and norm. denoting original and normalized values respectively). The
relative importance of latency and availability are set to 0.8 and 0.2 respectively.
Service utility evaluation is price-driven by giving a weight of 0.8 to price. s3
has the highest service utility and is thus selected.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14

ut
ilit

y

s1 latency

Effect of s1 latency on service utilities

s1 utility
s2 utility
s3 utility

Figure V.1: Impact of a service’s latency on others’ service utilities

Recall that normalization of QoS values should not allow an exceptional
value to overshadow others. Therefore, we investigate the relationship be-
tween one QoS dimension and the overall service utility. To do this, we study
the impact of one QoS dimension on the service utility by adjusting service
s1’s latency. In Table V.6, s1’s latency is 3.00, leading to a service utility of 0.36.
By adjusting its latency from 0.1 to 15.00, the utilities of the three services are
shown in Figure V.1. It shows that with latency varying over a large range

82 V QoS-aware Service Selection Using Vickrey auction

(between 0.1 and 15.00), s1’s utility does not fluctuate much (between about
0 to 0.36). Neither do the utilities of s2 and s3. s1 has the highest utility when
its latency is less than about 3.5 ms. When s1’s latency exceeds 9 seconds,
the service utilities become steady. It shows that with normalization based on
standard deviation, a single dimension’s value cannot dominate other values
in affecting the evaluation outcomes.

V.4 Concluding Remarks

In this chapter, we have proposed a solution for service selection which in-
cludes: (1) evaluating each service with a utility function, taking into account
service QoS, service price and client’s preferences in a comprehensive man-
ner; (2) using utility-based Vickrey auction to determine service price. Service
selection chooses the best instance among the returned replies from service
providers, on behalf of the client.

Despite Vickrey auction’s impressive theoretical properties, Vickrey auc-
tion has the following two major shortcomings [Rothkopf et al., 1990, Sand-
holm, 1996]: the fear of dishonest auctioneer and the reluctance of bidders to reveal
their true valuation. Since it is sealed, the winner can doubt whether the price
the auctioneer tells it to pay is actually the second highest price. Therefore,
fair execution of auctions needs to be guaranteed. Moreover, the valuation of
goods or tasks are sensitive and private information that bidders are unwill-
ing to reveal [Brandt and Weiβ, 2001, Rothkopf et al., 1990]. An approach for
solving the above problems is to transform a single trustworthy entity into a
jury of trust (e.g., in [Liu and Issarny, 2004c]) such that not every jury member
needs to be trustworthy. Currently, there are two variations of this approach.
The first is to include multiple auctioneers in the jury, most of which are as-
sumed to be trustworthy. After each bidder sends shares of their bid to each
auctioneer, only a majority of the auctioneers can open the bid with thresh-
old computation (e.g., Verifiable Secret Sharing (VSS) [Pedersen, 1991]). The
second approach is to include a semi-trusted third-party and an auctioneer as
jury members. Fair execution of auctions and privacy of loser bids are guaran-
teed if the third-party does not collude with the auctioneer [Naor et al., 1999]
or with any bidder [Baudron and Stern, 2001]. These approaches, however,
incur numerous encryption operations.

An alternative to address the limitation of Vickrey auction is to use repu-
tation, which is a much lighter-weight solution. Reputation is detailed in the
next chapter.

VI

A Robust and Incentive
Compatible Reputation Mechanism

In the previous chapter, we have presented a service selection method de-
pending on the overall service QoS and price and the client’s preference. Be-
sides, service provider’s reputation also needs to be taken into account during
service selection. Reputation evaluation needs honest recommendations from
others due to the probable lack of direct experiences.

Current reputation mechanisms (e.g., [Buchegger and Boudec, 2003, Huynh
et al., 2005]) only focus on improving robustness against dishonest recom-
mendations (i.e., rumors). They do not enforce incentive compatibility, i.e.,
entities are not motivated to recommend actively and honestly. In this chap-
ter, we address this limitation by presenting a reputation mechanism that not
only shows robustness against rumors, but also stimulates active and truth-
ful recommendations. It achieves this by guaranteeing different treatment for
different recommenders [Liu and Issarny, 2006]: the entities contributing more
to the community by actively providing honest recommendations can benefit
more from others, while rumor spreaders are identified and isolated.

In the rest of this chapter, Section VI.1 shows our representation of reputa-
tion based on Beta distribution. Then we explain how the reputation is formed
based on direct and indirect experiences (i.e., recommendations) in Section
VI.2. It is followed by the evolution of Service Reputation (SRep) and Recom-
mendation Reputation (RRep) in Section VI.3. Then we proceed to present the
propagation of reputation and the incentives for active and honest recommen-
dation provision in Section VI.4. In Section VI.5, the reputation mechanism is
evaluated with respect to its different treatment for recommenders of differ-
ent honesty and activeness. This chapter finishes with concluding remarks in

84 VI A Robust and Incentive Compatible Reputation Mechanism

Section VI.6.

VI.1 Reputation Representation

Since reputation essentially aggregates past experiences and dynamically evolves,
it bears great similarity with Bayesian analysis, which is a statistical proce-
dure that estimates parameters of an underlying distribution based on obser-
vations. Starting with prior distribution, which is the initial state before any
observation is made, Bayesian analysis continuously takes into account new
experiences and derives posterior probability [Casella and Berger, 2002]. An
extensively used distribution in Bayesian analysis is Beta distribution.

VI.1.1 Beta Distribution

According to probability theory, posterior probability for binary events can be
estimated by beta distribution. For example, given a process with two possible
outcomes (T ,¬T), let r, s be the observed number of T and¬T respectively, the
Probability Density Function (PDF) of the probability p of having the outcome
T for the next time can be given by beta distribution (with α = r + 1 and
β = s + 1):

f(p|α, β) =
1

B(α, β)
pα−1(1− p)β−1, where 0 ≤ p ≤ 1, α, β ≥ 0

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt

where α and β are two parameters used to index the continuous family of Beta
distribution and B(α, β) is the beta function. f(p|α, β) represents a probability
distribution of p in terms of integrals. Formally, the probability of p falling into
[a, b] is

∫ b

a
f(p|α, β)dp. As p can only fall into [0, 1],

∫ 1

0
f(p|α, β)dp = 1, referring

to the trivial fact that p falls into [0, 1] with probability of 1. The prior distribu-
tion (the initial state) is f(p|1, 1), leading to uniform distribution (Figure VI.1).
It reflects the fact that without any knowledge, the probability of having T for
the next time can be any value between 0 and 1 with equal possibility. New
observations are used to update the PDF of p. For example, having observed
8 times T and 2 times ¬T , the PDF can be expressed as f(p|9, 3), as plotted in
Figure VI.1.

VI.1 Reputation Representation 85

The expected (mean) value of the beta distribution f(p|α, β) assumes a
simple form:

E(p) =
α

α + β

It gives the mean value of p, based on (α + β − 2) observations accumu-
lated so far. For example, in Figure VI.1, the expected values of both f(p|9, 3)
and f(p|21, 7) equal to 0.75. It can be interpreted as that the probability of
observing outcome T in the future is uncertain, but the expected value is
0.75. In addition, f(p|21, 7) has more confidence saying so (i.e., f(0.75|21, 7) >
f(0.75|9, 3)), thanks to more accumulated observations.

f(p)

p0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

f(p|9,3)

f(p|21,7)

f(p|1,1)

Figure VI.1: Beta Distribution values

VI.1.2 Beta Reputation

As reputation is essentially an a posteriori estimation based on historic ex-
periences (either direct or indirect), beta distribution has been recognized
as a useful model to model reputation [Mui et al., 2001, Jøsang and Ismail,
2002, Buchegger and Boudec, 2004]. Therefore, we represent reputation based
on beta distribution (abbreviated as beta reputation). A reputation value as-
sumes a tuple of (α, β) (α, β ≥ 1), with α and β representing positive and
negative experiences respectively.

86 VI A Robust and Incentive Compatible Reputation Mechanism

As beta distribution only considers binary events, it is not enough to de-
scribe the experience of service consumption, which can fall into the range
between being completely satisfactory and completely unsatisfactory. Specif-
ically, an experience is evaluated with a Quality of Experience (QoE), saying,
between 0 (completely unsatisfactory) and 1 (completely satisfactory). This
experience is thus split into two parts: QoE contributing to the positive ex-
perience and (1 − QoE) contributing to the negative experience. Therefore,
beta reputation f(p|α, β) gives the PDF of the probability of having a complete
satisfactory experience, i.e., the expected QoE.

Thanks to sound statistical properties of beta distribution, beta reputation
has the following advantages:

(1) It is easy to assess the trustworthiness of an entity with reputation of
(α, β), i.e., by calculating α

α+β
.

(2) It is easy to evaluate how many experiences (i.e., α + β − 2) have con-
tributed to the current reputation. The larger this value is, the more
probably the reputation assumes the expected value. Only newcomers’
reputation is based on 0 experience.

(3) It facilitates the combination of experiences from multiple sources, in-
cluding the trustor itself and different recommenders. For example, given
two recommendations of f(p|α1, β1) and f(p|α2, β2), the combination of
the two is f(p|α1 + α2, β1 + β2) if they are considered to be of the same
impact. In another word, the add operation of beta reputation is straight-
forward: f(p|α1, β1) + f(p|α2, β2) = f(p|α1 + α2, β1 + β2).

(4) It reflects the nature of reputation, which is the aggregation of observa-
tions. An entity dynamically adjusts the reputation with more experi-
ences being accumulated, which is similar to deriving posterior distri-
bution after observations are made.

(5) It captures the uncertainty of reputation. Beta distribution only gives the
PDF of the probability of having an outcome, which matches the fact
that reputation only gives probabilistic estimation of an entity’s future
behavior.

Alternatively, reputation can be also represented with a single value from
discrete (e.g.,very trustworthy, trustworthy .. in [Abdul-Rahman and Hailes,
2000]) or continuous value space (e.g., [−1.. + 1] [Marsh, 1994]). Compared
to beta reputation, single-value based reputation representation does not re-
flect the amount of experiences that contribute to the reputation. In addition,

VI.2 Reputation Formation 87

with single value based reputation, ignorance, which refers to the reputation
without any knowledge, generally bears the value of 0. It can not be distin-
guished from the 0 reputation values that result from a mixture of positive
and negative experiences (e.g, [Marsh, 1994, Mui et al., 2002]). While with
beta reputation, only newcomers have a reputation of (1, 1).

Beta distribution’s feature of easy experience aggregation facilitates the
derivation of a node’s reputation, which is formed based on the trustor’s di-
rect experiences and others’ recommendations, explained as follows.

VI.2 Reputation Formation

Before we proceed to show how reputation is formed, we first explain the no-
tations to be used in the reputation mechanism. As reputation is always about
a node o (i.e., trustee) held by some node a (i.e., trustor), we denote o’s repu-
tation from the point of view of a as Repa(o). Table VI.1 lists the notations we
use, including service reputation (SRep), recommendation (Rec), recommen-
dation reputation (RRep) and overall reputation (ORep). They are expressed
using beta reputation, with two parameters representing positive and nega-
tive experiences respectively.

Label Value Range Meaning
SRepa(o) (sp, sn) a’s direct experiences with o
Reca(o) (cp, cn) Recommendation made by node a regarding

node o. Helpful recommenders give recommen-
dations based on their own direct experiences,
i.e., Reca(o) = SRepa(o)

RRepa(o) (rp, rn) Recommendation reputation of node o held by
node a

ORepa(o) (op, on) Overall reputation of node o held by node a

Table VI.1: Notations in the reputation mechanism

aID SRep RRep
sp sn ts rp rn tr

Table VI.2: An entry of the acquaintance table

Each node keeps both SRep and RRep of its acquaintances, the entities with
which it has interacted before (either as a service client or a recommendation
requester), as shown in Table VI.2. This table of acquaintance records is named

88 VI A Robust and Incentive Compatible Reputation Mechanism

acquaintance table. In the table, aID denotes the identity of the acquaintance
and ts and tr represent respectively the timestamps when the SRep(sp, sn) and
RRep(rp, rn) were updated last time. If the table is too small to accommodate
all entities the node has encountered, some replacement policy is applied, e.g.,
records are purged depending on their ages.

ORep can rely solely on the trustor’s direct experiences (i.e., SRep) if they
are significant enough, i.e., the accumulated direct experiences are plentiful
enough to derive a trust decision. This can be judged by checking whether
the total accumulated (sp + sn− 2) experiences reach a certain threshold. Oth-
erwise, it asks for recommendations from others. The recommendations and
the node’s own direct experiences are then combined to evaluate the overall
reputation (ORep) of the trustee.

Therefore, assume that a trustor a is evaluating the reputation of a trustee o.
It has at hand service reputation SRepa(o) based on direct experiences, which
are too few and thus trigger the elicitation of recommendations (i.e., Recr(o),
where r is a recommender) from others. Assuming a recommender r gives a
recommendation regarding o (i.e., Recr(o)) to client c and RRepr(c) = (rp, rn),
the recommendation is accepted (i.e., considered trustworthy) if (1) r is honest
enough, by checking whether rp

rp+rn
is high enough and (2) the RRep is eval-

uated based on enough evidence by checking whether (rp + rn − 2) is large
enough. If the recommendation is taken into account, it is given a weight wr

of E(Beta(rp, rn)), i.e.,

wr =
rp

rp + rn

The weights of different recommendations are further normalized by di-
viding with the sum of all weights. Therefore, ORep can be evaluated using
SRep and the recommendations from helpful recommenders:

ORep = δ × SRep + (1− δ)×
∑

r∈R(Recr(o)× wr)∑
r∈R(wr)

(VI.1)

where δ is the weight given to its direct experience (SRep) and is generally
greater than 0.5. The favor of direct experiences over recommendations is due
to the fact that entities tend to rely on their own experiences more than on
others’ recommendations, as suggested by experimental studies of Kollock
[Kollock, 1994]. Therefore, an entity can make a trust decision based on the
overall reputation (ORep) of the trustee.

ORep is not kept as a field of the acquaintance record, instead it is dynami-
cally evaluated when needed, since it evolves with time and new experiences.

VI.3 Reputation Evolution 89

VI.3 Reputation Evolution

An entity can change its behavior over time, making old experiences become
irrelevant for the actual reputation evaluation [Jøsang and Ismail, 2002, Liu
and Issarny, 2004a]. This calls for discount of past, which gives more weight
to recent experiences than old ones. Such discounting also prevents an entity
from capitalizing on its previous good behavior forever. Hence, reputation
fades with time, as shown as follows.

VI.3.1 Time Fading

Since both recent behaviors and past histories contribute to the reputation,
their assigned weights decide how fast the reputation builds up. For exam-
ple, if recent behavior is assigned a very high weight, an entity’s reputation
tears down very fast after a few misbehaviors. We assign more weight to re-
cent behavior, as suggested by the results of psychological studies in [Karlins
and Abelson, 1970] and empirical studies of ebay feedback mechanism [Del-
larocas, 2003].

Given the time interval of ∆t, the reputation (α, β) evolves after every ∆t:

α′ = 1 + (α− 1)× ρ∆T

β′ = 1 + (β − 1)× ρ∆T

where ρ is time fading factor, whose value falls into the range of [0..1]. The
lower value ρ has, the more quickly histories are forgotten. When ρ equals
0, histories are immediately forgotten; while when ρ equals 1, the history is
forever kept and considered equivalent regardless of age.

Note that a reputation starts with (1, 1) and only the experiences (i.e., α−1
and β − 1) fade with time, making α + β > 2 for any reputation value that
takes into account an experience. But as shown in the above equations, when
∆T → +∞, ρ∆T → 0, which expresses the fact that inactivity between two
entities for a long time leads to complete discount of experience, making their
reputations the same as that of newcomer. This is because when the expe-
riences are too old to be indicative of the trustee’s trustworthiness, they are
useless. Both SRep and RRep fade according to the above equations. For sim-
plicity, the reputation value in the rest of this chapter does not bear a times-
tamp and always refers to the current reputation unless indicated otherwise.

90 VI A Robust and Incentive Compatible Reputation Mechanism

Reputation also evolves with new experiences, as reputation aggregates
the overall experiences with an entity. This is reflected in both SRep and RRep,
which aggregate the experiences of consuming services and utilizing recom-
mendations respectively.

VI.3.2 Evolution of Service Reputation (SRep)

Since SRep(sp, sn) combines all direct experiences, it is updated whenever a
new experience occurs. An experience is described with a metric called Qual-
ity of Experience (QoE). As the goal of the reputation mechanism is to identify
dishonest service providers that do not comply with their advertised QoS,
QoE is accordingly measured based on the QoS conformance of the service
provider. More specifically, given n QoS dimensions of di (i = 1..n) (e.g., avail-
ability, latency) which client a cares about, service provider o states in its service
advertisement (p1, p2, .., pn) in which pi is the promised value for dimension
di. After the service completes, the QoS that a receives is represented by (a1,
a2, .., an), in which ai is the actual value for dimension di. The QoEa(o) can be
assessed by:

QoE =
∑

1≤i≤n

comp(ai, pi)/n (VI.2)

where comp(ai, pi) is a function to calculate one-dimension degree of confor-
mance between the actual and promised QoS. Depending on the dimension,
it assumes the following forms:

(1) comp(ai, pi) = MIN(1, ai/pi) when dimension i is quantitative and stronger
with larger values, for example, availability.

(2) comp(ai, pi) = MIN(1, pi/ai), when dimension i is quantitative and stronger
with smaller values, for example, latency.

(3) comp(ai, pi) = 1 − (ai ⊗ pi) when dimension i is qualitative and bears
Boolean values, for example, confidentiality.⊗ represents XOR function,
i.e., x⊗ y = 0 if x equals y, and 1 otherwise.

(4) For dimensions whose value space is literals (e.g., service adaptation),
comp(ai, pi) equals 1 when the policy is satisfied, 0 otherwise.

For example, given a service provider’s advertisement of (latency = 0.8 ms,
availability = 99%), a service client’s actual experienced QoS is (latency = 1.0 ms,

VI.3 Reputation Evolution 91

availability = 100%), then QoE = (MIN(1, 0.8/1.0) + MIN(1, 100%/99%))/2 =
0.9.

With a new QoE, the SRep(sp, sn) is updated as in the following:

s′p = sp + QoE

s′n = sn + (1−QoE)

VI.3.3 Evolution of Recommendation Reputation (RRep)

Similarly, RRep dynamically evolves with new recommendations being elicited
and new service consumption experiences. A recommendation bears the form
of (cp, cn), which is equal to SRep for an honest recommender. Given a new
QoE of e ∈ [0..1], the honesty of recommender is adjusted according to the
helpfulness of its recommendation.

∆e =

∫ MIN(e+0.4,1)

MAX(0,e−0.4)

f(p|cp, cn)dp

At first, ∆e evaluates the probability of having a QoE in the range of [MAX(0, e−
0.4), MIN(e + 0.4, 1)], according to the recommendation of (cp, cn). As shown
in Figure VI.2, if new experience e equals 0.8 and the recommendation is (4, 2),
∆e is equal to the size of the shaded area. It is compared against the probabil-
ity if the trustor has no knowledge about the trustee, i.e.,

Figure VI.2: Calculation of ∆e

∆min =

∫ MIN(e+0.4,1)

MAX(0,e−0.4)

f(p|1, 1)dp (VI.3)

92 VI A Robust and Incentive Compatible Reputation Mechanism

Therefore, a recommendation with ∆e larger than ∆min is considered helpful;
otherwise it is regarded as unhelpful. RRep(rp, rn) is updated accordingly:

e′ = MAX(MIN(∆e−∆min + 0.5, 1.0), 0.0)

r′p = rp + e′

r′n = rn + (1− e′)

where e’ represents the helpfulness of using the recommendation (cp, cn) (the
MAX and MIN operators are used to ensure that e’ falls into [0..1]). The recom-
mender who provides helpful recommendations are considered honest, and
dishonest otherwise.

Assume that before a client c has a new QoE (e) of 0.8 with service provider
o, it has received recommendations of (2, 4) and (4, 2) from two recommenders
a and b respectively. As ∆min = 0.6 (using Equation VI.3), the helpfulness
of a’s recommendation is e′ = 0.24 and b’s recommendation leads to e′ =
0.81. Thus helpful and unhelpful recommendations are distinguished. So are
recommendations of different helpfulness. For example, a recommendation
of (4, 13) makes e′ = 0, leading to the degrading of the recommender’s RRep
to a larger degree.

Based on the features of beta reputation, the value of (rp + rn − 2) is high
if an entity is active in providing recommendations; the expected value of
f(p|rp, rn) is high if an entity is honest in providing recommendation. This
can be used to recognize whether an entity is active and honest in providing
recommendations. With two values δh and δa defined as threshold trustwor-
thiness and activeness in providing recommendations, a recommender with
RRep(rp, rn) is considered active if rp + rn − 2 ≥ δa, and inactive otherwise;
it is considered honest if rp

rp+rn
≥ δh, and dishonest otherwise. It leads to 5

possible states of a recommender: active truth-teller (AT), inactive truth-teller
(IT), active liar (AL), inactive liar (IL) and newcomer (Figure VI.3).

A recommender can convert from one state to another, depending on its
behavior. An active truth teller enforces its state by continuing recommending
honestly and weakens its state by lying. If it keeps lying, with the fading of
previous good behavior, the accumulated experiences eventually will work
against it and degrade it to an active liar. Meanwhile, if a recommender has
not provided any recommendation for so long a time that its RRep decays,
it is considered as an inactive recommender (either inactive truth-teller or in-
active liar). Long time of inactivity makes the reputation decay to 0 and the
recommenders become newcomers.

VI.4 Reputation Propagation 93

Active TruthTeller

In
ac

tiv
iti

tyLying
Truth−telling

Inactive Liar

Truth−telling

Lying

Ly
in

g

Active Liar

Truth−telling

Inactivitity

Inactivity Inactivity

Lying
Truth−telling Truth−telling

Lying

Inactive Truthteller

Newcomer

Truth−telling Lying

InactivityInactivity

Figure VI.3: The states of a recommender

Note that an active and honest recommender (i.e., a recommender is very
much willing to help) can be considered inactive due to the fact that it does
not have any direct experience with the trustee being evaluated by the rec-
ommendation requester. Therefore, being inactive is only a state of a recom-
mender. Although inactivity can result from an entity withholding recom-
mendations on purpose, it does not necessarily infer free riding. But from the
point of view of contribution to others, the order of helpfulness of different
recommenders is AT > IT > IL > AL. In order to motivate an entity to become
an active truth-teller, the entities who are more helpful should also benefit
more from others. More specifically, active and honest recommenders should
be able to have more success in identifying dishonest entities using the repu-
tation mechanism. This is realized during reputation propagation, where dif-
ferent recommenders are treated differently in terms of accessibility to helpful
recommendations.

VI.4 Reputation Propagation

Lack of enough direct experiences triggers a trustor’s elicitation of recommen-
dation from nearby nodes. It does so by broadcasting the request for recom-
mendation to its neighbors, potentially including all types of recommenders.
Of all the collected recommendations, only those from truth-tellers are taken
into account. This corresponds to exogenous discounting of rumors, because
the trustor’s own experiences of using the recommender’s recommendation
(i.e., RRep) constitute external evidences other than recommendations. Recall
that it is generally preferred over endogenous approaches to identify rumors,

94 VI A Robust and Incentive Compatible Reputation Mechanism

because the latter assumes that honest recommendations dominate dishonest
ones, which is unpractical in open environments.

If there is no such recommendation, the trustor takes into consideration
those from inactive and first-time encountered recommenders by calculating
the average. With the recommendations from others, the trustor evaluates the
trustee’s ORep using Equation VI.1. Otherwise, the trustor has to rely on its
direct experiences which are too few to make a sound trust decision. The de-
cision then has to be made depending on other factors, e.g., the trustor’s at-
titude towards strangers. If the trust decision leads to a service consumption
and thus a new Quality of Experience (QoE), the QoE is compared against all
recommendations to update the recommenders’ RReps.

A trustor elicits recommendations indiscriminately but accepts only those
from honest recommenders. This is for the purpose of ensuring robustness
against rumors, while empowering them with the capability of recognizing
new recommenders and continuously updating dishonest recommenders’ RReps.
More specifically, even though the recommendations from dishonest recom-
menders are not taken into account, they are used to update the RReps of the
(dishonest) recommenders, which can be improving if they become honest or
deteriorating if they continue lying.

When an honest recommender a receives a request for recommendations
regarding an entity o, it first checks whether its direct experiences with o are
significant enough for recommending. If that is not the case, a does nothing
as it cannot be of any help. Some work (e.g., [Yu and Singh, 2002] and [Mui
et al., 2002]) allows a chain of recommendations, i.e., an entity can recommend
a recommender, who can send back recommendations or further recommend
another recommender, until the depth limitation of the chain is reached. This
practice is not incorporated in our reputation mechanism, because it requires
introducing reputation of recommending a recommender in order to evaluate
whether a recommendation about a recommender is truthful or not. It is dif-
ferent from o’s reputation of recommending a service provider (i.e., RRep),
because one entity can be honest in recommending a recommender by giving
its RRep in the recommendation, but can be dishonest in recommending a ser-
vice provider by not giving truthfully its SRep. It thus requires the modeling
of more reputations, which increases considerably the complexity of the repu-
tation mechanism. Therefore, an entity in our reputation mechanism does not
recommend recommenders.

Otherwise, if a has enough direct experiences for recommending, it han-
dles the request for recommendations depending on the state of the recom-
mendation requester:

VI.4 Reputation Propagation 95

• If the requester is considered as an active truth-teller, a sends back its
SRepo(a) immediately.

• If the requester is considered as an active liar, a simply ignores the re-
quest.

• If the requester is considered inactive, a gives back its recommendation
with a probability depending on diff= δa − (rp + rn − 2). Basically the
smaller diff is, the higher probability (saying, 1−diff) a sends its recom-
mendation. The better treatment for inactive recommenders than liars is
due to the fact that inactive recommenders do not necessarily withhold
their recommendations. To distinguish inactive truth-tellers (IT), new-
comers and inactive liars (IL), the IT and IL’s probabilities are increased
and decreased with an small value of ε respectively. Therefore, the less
active an entity is, the less possible that it receives recommendations
from others. Note that newcomers also suffer from low probability of
eliciting honest recommendations.

Note that only honest recommenders go through the above process, which
treats different type of recommendation requesters differently. The reason of
doing this is that if honest recommenders are over-generous by treating every-
body alike, other entities are not motivated to return the favor because doing
that does not give them any advantage. Eventually, rational entities choose to
withhold their recommendations while liars remain unpunished. Honest rec-
ommenders will suffer by having less and less useful recommendations from
others and will eventually draw no favor back. It is similar to an ecological ex-
ample given in [Dawkins, 1989], which explains the survival chances of birds
who have to groom parasites for each other as they cannot clean by them-
selves. Dawkins introduces two types of birds into the system, “suckers” who
always help and “cheaters” that have other birds groom parasites off their
heads but never return any favor. They are both driven to extinction over time.
But with the introduction of a third type of birds, named “grudgers” that start
out being helpful, but hold grudges against the “cheaters”. Dawkins shows by
simulation that the grudgers survive and drive the other two species to extinc-
tion. Therefore, honest recommenders have to assume the defensive strategy
of holding ‘grudges’ against liars by keeping others’ RReps, in order to guard
their own interests. In contrast, dishonest recommenders, i.e., rumor spread-
ers, treat all types of recommendation requesters alike as their utmost goal is
to spread rumors as widely as possible to take advantages, such as promoting
their colluders’ reputations.

The deterrent for nodes to spread rumors lies in the consequence of shut-
down of supply of helpful recommendations from honest recommenders, who

96 VI A Robust and Incentive Compatible Reputation Mechanism

hold grudges. At the same time, refusing to provide recommendations leads
to less accessibility to helpful recommendations. Lack of recommendations
forces a trustor’s trust decision to be solely dependent on its direct experi-
ences, which often can be too few or old to be helpful in open environments
such as USoCo environments. This causes wrong trust decisions, making the
client either interact with dishonest service providers or avoid honest ones. It
is more clearly demonstrated in the next section, which evaluates the perfor-
mance of our reputation mechanism.

VI.5 Reputation Mechanism Evaluation

In this section, we evaluate the performance of our reputation mechanism
in helping nodes distinguish honest and dishonest service providers and to
identify honest and active recommenders, based on simulations.

VI.5.1 Experiment Setting

The simulation is carried out with Network Simulator (ns-2) with CMU wire-
less extensions [LBNL, 2001]. The simulation parameters are shown in Table
VI.3.

Parameter Value
Mobility Model Random Way Point
Moving Speed 0.5 - 1.5 m/s

Pause Time 0
Propagation Model Ricean Fading
Transmission Range 100 m

Area 400m x 400m
Number of Nodes 40
Routing Protocol OLSR

Table VI.3: NS-2 simulation parameters for reputation mechanism evaluation

Our experiment is set up with 40 nodes includes 8 types of entities with
different behavior in service providing (honest or not), recommendation pro-
viding (honesty or activeness), as shown in Table VI.4. Each type of entity has
the same population, i.e., 5 each (different settings with different population
sizes will also be investigated).

VI.5 Reputation Mechanism Evaluation 97

Type Service Providing Honesty Recommendation
Honest Active

1 + + +
2 + + -
3 + - +
4 + - -
5 - + +
6 - + -
7 - - +
8 - - -

Table VI.4: The types of nodes with different behavior

For simplicity without losing generality, we assume that every node can
be the service provider for the other. Starting from time 501, every 1 second,
a node (i.e., a service client) makes a trust decision regarding whether to in-
teract with a random node (i.e., a service provider) in its routing table, in a
round robin way. The trust decision is made as follows: (1) the service client
first checks whether the SRep of the service provider has enough experiences
to make a decision (threshold δa = 1.0); (2) if yes, it calculates whether the
expected value of SRep reaches a threshold value (δh = 0.6); (3) if not, it elic-
its recommendations from its neighbors (we set the request broadcast range
to 2 hops). If the aggregation of SRep and others’ recommendations are still
not enough for making a trust decision, the node decides to whether to inter-
act with a service provider with a certain probability. In our experiments, the
probability is set to 1.0, assuming an optimistic attitude facing uncertainties.

A total of 60 rounds have been executed. An honest service provider offers
a QoE of 0.9, while a dishonest service provider offers a QoE of 0.1. Honest
recommenders recommend with its SRep(sp, sn) regarding the trustee; while
dishonest recommenders send back rumors which are complementary to the
SReps, i.e., a recommendation assumes the value of (rp = sn, rn = sp). Active
recommenders offer recommendations with 90% probability, while inactive
ones offer with 10% probability.

We investigate and compare the performance of the 4 different types of rec-
ommenders: active truth-teller (type 1 + type 5 in Table VI.4), inactive truth-
teller (type 2 + type 6), active liar (type 4 + type 8) and inactive liar (type 3 +
type 7). The advantage of being an active truth-teller is reflected in the fact that
they can elicit more honest recommendations, which help them make right

1This aims to give OLSR enough time to build routing table, as OLSR is a proactive proto-
col.

98 VI A Robust and Incentive Compatible Reputation Mechanism

trust decisions regarding whether to interact with an entity or not. Therefore,
we show (1) the number of honest recommendations obtained by the four
types of recommenders respectively. When a client fails to acquire any help-
ful recommendation, it has to base its trust decision solely on its direct expe-
riences, which are not significant enough for a sound decision. Namely, the
client has to make a blind decision. Generally, the more likely an entity elicits
honest recommendations, the less blind decisions it needs to make. We thus
measure (2) the number of blind decisions made by the four types of nodes re-
spectively. A blind decision can lead to a mistake, which refers to either a false
positive (when an honest service provider is identified as an untrustworthy
one) or false negative (when a dishonest service provider is not identified as
being so). Thus, (3) the number of mistakes made by different recommenders
are also displayed. These metrics are recorded every 200 seconds to show the
evolution of reputation. They are detailed below.

VI.5.2 Evaluation Results

 0

 50

 100

 150

 200

 500 1000 1500 2000 2500

Nu
m

be
r

Transaction Time

Elicited number of recommendations for different type of recommenders

AT recommendations
IT recommendations

AL recommendations
IL recommendations

Figure VI.4: Number of elicited honest recommendations

Elicited Honest Recommendations. Figure VI.4 shows the number of elicited
honest recommendations for different type of recommenders. It can be ob-
served that at the beginning (before time 500s), very few recommendations
are propagated and the four types of recommenders do not have much differ-

VI.5 Reputation Mechanism Evaluation 99

ence in the number of obtained honest recommendations. With the accumu-
lation of experiences, the honest entities have enough experiences to recom-
mend. Recommendation reputation is gradually recognized and the order of
benefit (AT > IT > IL > AL) starts to be established, from time 1500s in Figure
VI.4.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 500 1000 1500 2000 2500

Nu
m

be
r

Time

Number of blind decisions made by different type of recommenders

AT blind decisions
IT blind decision

AL blind decision
IL blind decision

Figure VI.5: Number of blind decisions

Blind Decision. Lack of recommendation leads to blind decisions. Figure
VI.5 presents the number of blind decisions for the four types of nodes. Note
that during the span of 200 seconds (which is the interval between snapshots),
200 trust decisions are made, including 50 for each type of recommenders.

It can be seen that at the beginning, almost every trust decision for a node
is blind due to lack of direct experiences and recommendations. With more
accumulated experiences, the nodes make less and less blind decisions. Espe-
cially, AT nodes are exposed to the least number of blind decisions (less than 5
after time 1500s), while AL nodes suffer by making the most number of them.

Mistakes. Blind decisions can lead to mistakes. Figure VI.6 presents the
number of mistakes made by the four types of recommenders. It can be seen
that, at the beginning, every type of nodes make mistakes as many as half of
the total transaction number. It is because most decisions are blind and honest
service providers occupy half of the population.

100 VI A Robust and Incentive Compatible Reputation Mechanism

 0

 5

 10

 15

 20

 25

 500 1000 1500 2000 2500

Nu
m

be
r

Time

Number of mistakes made by different type of recommenders

AT mistakess
IT mistakes

AL mistakes
IL mistakes

Figure VI.6: Number of made mistakes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 500 1000 1500 2000 2500

Pe
rc

en
ta

ge

Time

Percentage of mistaken decision for different type of recommenders

Percentage of wrong decisions for AT
Percentage of wrong decision for IT

Percentage of wrong decision for AL
Percentage of wrong decision for IL

Figure VI.7: Percentage of wrong trust decisions

With more accumulated experiences, every type of recommender makes
less and less mistakes. Especially, with the help of honest recommendations,
AT nodes make the least number of mistakes and AL nodes make the most
(the order of AT > IT > IL > AL is enforced). Note that dishonest or inactive

VI.5 Reputation Mechanism Evaluation 101

recommenders can also tell the honesty and activeness of a recommender us-
ing the reputation mechanism. However, they have access to less number of
truthful recommendations for making right decisions.

In order to demonstrate more clearly the advantages brought by helpful
recommendation, the percentages of mistakes out of all transactions for dif-
ferent recommenders are shown in Figure VI.7. It can be seen that, starting
from time 1500s, ATs make less than 5% of mistakes while ALs suffer more
than 20% of mistakes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Pe
rc

en
ta

ge

Time

Percentage of mistaken decision for different recommenders (population = 80)

Percentage of wrong decisions for AT
Percentage of wrong decision for IT

Percentage of wrong decision for AL
Percentage of wrong decision for IL

Figure VI.8: Percentage of wrong trust
decisions with larger population

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 500 1000 1500 2000 2500

Pe
rc

en
ta

ge

Time

Percentage of mistaken decision for different type of recommenders

Percentage of wrong decisions for AT
Percentage of wrong decision for IT

Percentage of wrong decision for AL
Percentage of wrong decision for IL

Figure VI.9: Percentage of wrong trust
decisions with different population com-
position

Other Results. In the above simulation, we have set the population size to
be relatively small (40) to lessen the time for bootstrapping (about 1500 sec-
onds for 40 nodes), because nodes need to acquire experiences to be able to
give useful recommendation. Basically, a larger population takes longer time
to bootstrap, but the reputation mechanism shows similar effects. We did sim-
ilar simulations with larger population (80) and the percentage of mistakes
is shown in Figure VI.8. It can be observed that the order of benefit is es-
tablished eventually, although it takes more time than in a community of 40
nodes (about 3500 seconds into simulation).

The reputation mechanism also exhibits similar performance with differ-
ent population percentage of different recommenders. We have carried out
the simulations by decreasing the population of active truth-teller (AT) to 10%
and increasing active liar (AL) to 40%. The percentages of mistakes for differ-
ent recommenders are presented in Figure VI.9, which shows that the order
of the treatment (i.e., AT > IT > IL >AL) is also established.

102 VI A Robust and Incentive Compatible Reputation Mechanism

VI.6 Concluding Remarks

In this chapter, we have presented a distributed reputation mechanism for rec-
ognizing the trustworthiness of a service provider in USoCo environments, in-
cluding reputation representation, formation, evolution and propagation. Our
contribution includes: (1) proposing a simple yet effective reputation mech-
anism that not only is rumor-proof, but also motivates active and truthful
recommendation sharing; (2) modeling a reputation that continuous evolves,
with time and with new experiences; (3) evaluating the effectiveness and per-
formance of the proposed reputation mechanism via simulation tests.

As an entity has to handle the reputation independently and autonomously,
in our reputation mechanism, it stores the reputation values of all acquain-
tances. This might raise an issue if the population of the acquaintances is so
large that it brings considerable overhead in reputation storage and manipu-
lation. A possible solution is to manage nodes by groups, each of which shares
a common reputation [Sabater and Sierra, 2001, Mui et al., 2002]. The reputa-
tion of an entity depends on the group it belongs to; the behavior of a member
affects the reputation of its group. This requires strong group support [Liu
et al., 2005], as the group members need to trust each other and have common
interests such that they are motivated to protect the group’s reputation.

An important issue in reputation mechanism is identity changing. Most
online reputation systems protect privacy and each agent’s identity is nor-
mally a pseudonym. It causes problems because pseudonym can be changed
easily [Zacharia and Maes, 2000, Mui et al., 2002]. When a user ends up having
a reputation lower than that of a new comer, she can capitalize on the repu-
tation system by discarding her initial identity and start from the beginning.
This calls for the necessity of special treatments of newcomers. We partly ad-
dress this issue by putting newcomers in a unfavorable position, such that
they have difficulties obtaining helpful recommendations, until they accumu-
late enough good behavior. But active rumor spreaders can still benefit by
restarting as newcomers, as the former suffers the total shutdown of helpful
recommendation supply once they are identified as active liars. This prob-
lem can not be solved by simply lowering the newcomer’s treatment to be
even worse than all liars, such that the latter are not motivated to change for
the worse. This is because in order to incorporate newcomers into the com-
munity, newcomers have to be given access to honest recommendations to
be able to bootstrap. If active liars can have better accessibility to honest rec-
ommendations than newcomers, the deterrent for dishonest behavior hardly
exists. Therefore, to solve this issue, it would have to rely on other mecha-
nisms, such as introducing an “entry fee” for each pseudonym [Friendman

VI.6 Concluding Remarks 103

and Resnick, 2001] or use of once in a lifetime pseudonym that is bound to a
real-world entity [Friendman and Resnick, 2001] or cryptographically gener-
ated unique identifiers [Buchegger and Boudec, 2002]. A very related issue is
called Sybil attack [Douceur, 2002]: if there is no control over creation of new
entities, a real-world entity can create as many identities as it wishes to chal-
lenge the use of majority in reputation systems. The only challenge this attack
can bring to our reputation system is when there is no recommendation from
an active truth-teller, the trustor relies on the average of all recommendations
from unknown (or barely known) recommenders.

The trustworthiness evaluation via reputation mechanism enables identi-
fying dishonest service providers. Along with signal strength based service
location and QoS-aware service selection, they empower service discovery in
USoCo environments with awareness and utilization of a service’s QoS prop-
erties. They are integrated towards an overall solution for QoS-aware service
discovery, as presented in the next chapter.

104 VI A Robust and Incentive Compatible Reputation Mechanism

VII

QoS-aware Web Service Discovery
Middleware

In this chapter, we present a QoS-aware Web service discovery (QoWSD)
middleware, which gives an overall solution for discovering Web services
in ubiquitous computing environments in a QoS-aware manner. QoWSD in-
tegrates our proposals described in the three previous chapters, i.e., service
location based on signal strength (Chapter IV), QoS-aware service selection
using Vickrey auction (Chapter V) and a robust and incentive-compatible
reputation mechanism (Chapter VI). As interactions in ubiquitous comput-
ing environments are preferably carried out over Mobile Ad hoc NETworks
(MANET) thanks to their flexibility and spontaneity, QoWSD middleware mainly
targets MANETs. Web service is chosen as the underlying technology because
it has been widely utilized and deployed thanks to the pervasiveness of Web
Services Architecture in various environments [Issarny et al., 2005], including
ubiquitous computing environments.

The rest of this chapter is organized as follows. Section VII.1 gives back-
ground information about the Web Services Architecture and related tech-
nologies. Then we detail the QoWSD middleware in Section VII.2. Section
VII.3 evaluates the performance of a prototype implementing QoWSD. In par-
ticular, the overhead introduced by QoS awareness is measured and analyzed.
This chapter finishes with concluding remarks in Section VII.4.

106 VII QoS-aware Web Service Discovery Middleware

VII.1 Background on Web Services

A Web service, as defined by the W3C Web Services Architecture Working
Group1, is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages, typ-
ically conveyed using HTTP with an XML serialization in conjunction with
other Web-related standards [W3C, 2004b]. The main components of the Web
Services Architecture [W3C, 2002] include WSDL (Web Services Description
Language) and SOAP (Simple Object Access Protocol).

WSDL (Web Services Description Language) [W3C, 2001] is a declarative
language for describing the interfaces of Web services. It separates the de-
scription of the abstract functionality offered by a service from concrete details
of a service such as “how” and “where” that functionality is offered, as shown
with two parts in Figure VII.1 (with WSDL terms marked with bold fonts). A
service includes a set of ports, which associate network addresses with bind-
ings. A binding is a concrete protocol and data format type that implements a
port type, which includes a set of abstract operations supported by one or more
endpoints. Each operation is an abstract description of an action supported
by the service, which involves a named set of messages. Messages are abstract
descriptions of the data being communicated. WSDL 1.1 defines syntactic sig-
nature for a service, but does not specify any non-functional aspects.

Port Operation

Operation

Message
Message

Port

Service Binding

Network address

Port type
implements

types(defined by)

WSDL

Concrete Abstract

Figure VII.1: Structure of WSDL document

SOAP (Simple Object Access Protocol) [W3C, 2003] defines a lightweight
protocol for information exchange. It uses XML technologies to define an ex-
tensible messaging framework, which provides a message construct that can

1http://www.w3.org/TR/ws-arch/

http://www.w3.org/TR/ws-arch/

VII.2 QoS-aware Web Service Discovery (QoWSD) 107

be exchanged over a variety of underlying protocols (e.g., HTTP, SMTP). A
SOAP message includes an optional SOAP header and a SOAP body.

The Web services architecture is further complemented by UDDI (Univer-
sal Description, Discovery and Integration)2, which is a specification of a reg-
istry for dynamically locating and advertising Web services. UDDI acts as a
centralized directory, which is generally unavailable in environments featur-
ing impromptu interactions, such as ubiquitous computing environments. In
the next chapter, we present the QoWSD middleware supporting QoS-aware
Web service discovery in a fully distributed manner.

VII.2 QoS-aware Web Service Discovery (QoWSD)

SOAP EngineWeb Server

QoS−aware Web Service Discovery

SOAP Engine

QoS−aware Web Service Discovery

Web Server

Provider routine Client routines Provider routine Client routines

Service Provider Service ClientService ClientService Provider

Figure VII.2: QoWSD Architecture

QoWSD is a standalone middleware instance running on every node, as
shown in Figure VII.2. Note that the software entities in a dotted square in the
figure are sitting on the same node. They are considered local to each other.
Otherwise, if they reside on different hosts, they are considered remote. The
QoWSDs communicate with each other using UDP packets.

QoWSD provides a routine that allows local service providers to register
their services. A routine is an operation supported by QoWSD that can be
invoked by applications. Meanwhile, clients can discover services, whether
local or remote, using a routine provided by QoWSD. To distinguish between
the above two, the routines used by service providers are named provider rou-
tine, in contrast to client routine used by service clients. Through the service
discovery routine, a service client can invoke the services along the returned

2http://www.uddi.org

http://www.uddi.org

108 VII QoS-aware Web Service Discovery Middleware

service paths. Since the support of specifying service path during service ex-
ecution (i.e., source routing) can not be assumed to exist for all routing pro-
tocols, for the reason of completeness, QoWSD also allows a client to invoke
services, which can be local or remote. Therefore, QoWSD provides routines
for the client to discover and invoke services and a routine for the service
providers to register services. For the purpose of illustration, QoWSD carries
out pull-based service location, and the push-based alternative can be han-
dled similarly. The supported routines are detailed and explained later in the
section.

Service
Locator

Reputation
Manager

Service
Selector

Manager
Beacon

Service
Invoker

Neighbor TableService Depository

ServiceQoS
RegistryPredictor

QoWSD

Acquaintance Table

Figure VII.3: The internal structure of the QoWSD middleware

In order to support the above routines for service providers and clients,
QoWSD includes components implementing beacon manager, service registry,
service locator, service selector, reputation manager, service invoker and QoS predic-
tor, as shown in Figure VII.3. QoWSD also manages three tables of service de-
pository (for keeping registered services), neighbor table (for keeping the signal
information of one-hop neighbors) and acquaintance table (for keeping repu-
tation information of acquaintances). The arrows in the figure represent the
data flow directions. More specifically, an arrow from a table to a component
means that the component modifies the table while an arrow in the other di-
rection means that the component only looks up the table (without any mod-

VII.2 QoS-aware Web Service Discovery (QoWSD) 109

ification); an arrow from a component to another means that the former is
executed before the latter.

In brief, as shown in the following pseudocodes, to discover services re-
quired by clients, at first the service locator elicits and collects service replies
from providers, which are then forwarded to the reputation manager. The
latter identifies the service replies from honest service providers. Finally, the
service selector chooses the best instance on behalf of the client.

servReplies = servLocator.locateServices();
honestServReplies = repManager.identifyHonestServices(servReplies);
bestService = servSelector.select(honestServReplies);

As for other components,

• the beacon manager sends beacons and maintains the neighbor table;

• the service registry is responsible for registering the services from ser-
vice providers;

• the service invoker invokes the services and records the direct experi-
ences with the service provider, which is given to the reputation man-
ager for updating the reputations;

• the QoS predictor is in charge of predicting the QoS values of the ser-
vices based on histories.

The latter two maintain services’ functional and QoS properties in the ser-
vice depository respectively. These components and tables are detailed as fol-
lows.

Beacon Manager. The beacon manager periodically broadcasts and receives
beacons to and from its one-hop neighbors. It builds and maintains a neighbor
table (as explained in Chapter IV), which keeps the signal information of the
links to its one-hop neighbors. Recall that an entry of the neighbor table (as
shown in Table VII.1) includes the neighbor’s IP address, the signal strength
samples of the most recent 2 × k beacons (for detecting signal strength ten-
dency), the SNR samples of the most recent k beacons, the timestamp of the
last received beacon, the average signal strength and SNR from the neighbor’s
end, the age of the last beacon received by the neighbor and an indicator stat-
ing whether this neighbor is a Strongly Connected Neighbor (SCN).

110 VII QoS-aware Web Service Discovery Middleware

IP Address SS[1..2×k] SNR[1..k] TS nSS nSNR nAge isSCN

Table VII.1: An entry of the neighbor table in QoWSD

A beacon packet from a node gives the signal information of the links to its
one hop neighbors. For each neighbor in the neighbor table, its IP, the average
SS and SNR of the most recent k samples and the age of the last received bea-
con are extracted and calculated according to its entry in the neighbor table.
They are embedded in the beacon messages, as shown in Figure VII.4.

IP Avg. SS AgeAvg. SNR IP Avg. SS AgeAvg. SNR

Neighbor 1Neighbor 2

Figure VII.4: A serv_beacon packet in QoWSD

Meanwhile, the beacon manager monitors the signal strength of every link
(e.g., using iwspy utility available on Linux), which gets updated whenever
a packet is received. Signal information provided by the wireless driver (i.e.,
from the local end) and embedded in the received beacons (i.e., from the
neighbor’s end) are extracted and used to update the neighbor entry corre-
sponding to the beacon sender, i.e., the fields of SS[1..2×k], SNR[1..k] and TS are
updated. If a beacon includes signal information of the link from the sender’s
end (i.e., the receiver is in the beacon sender’s neighbor table), the fields of
nSS, nSNR and nAge are also updated. Every some time (e.g., three beacon
intervals), the beacon manager browses through the table and determines
whether a neighbor is a SCN or not, depending on the strength and active-
ness of both link ends. The field of isSCN is then marked accordingly. It also
deletes the entries of those expired links (e.g., the last beacon is older than
three beacon intervals).

Service Registry. The service registry is responsible for registering Web ser-
vices and maintaining a table of local Web services, i.e., service depository. A
service provider can register its Web service(s) via servRegister of the
provider routine shown in Table VII.2, giving the WSDL document describing
its Web service(s). Since WSDL 1.1 does not support QoS properties, we ex-
tend the current WSDL document with a part for QoS description. It is called
the QoS part of the WSDL document, to be distinguishable from functional
part (i.e., the rest) of the WSDL document. The functional part can be fur-
ther divided into the abstract part and the concrete part, as presented in Section

VII.2 QoS-aware Web Service Discovery (QoWSD) 111

VII.1. An example of an extended WSDL document is shown in Figure VII.5.
The tags of <wsdl:definitions> surround the functional part, with the
abstract part referring to the definition of <wsdl:porttype> , while the con-
crete part includes definitions of <wsdl:binding> and <wsdl:service> .
With the QoS extension, a service client can specify its service request in a
WSDL document that includes an abstract and QoS part that state its func-
tional and QoS requirements respectively. Meanwhile, a provider can specify
its offered service in a WSDL document that includes a functional and QoS
part, which give the concrete details such as data format binding and service
deployment address as well as offered QoS values.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="urn:FormatConvertService"...>

<wsdl:portType name="FormatConvertorInfo">
<wsdl:operation name="getOtherFormat" parameterOrder="in0">

...
</wsdl:operation>

</wsdl:portType>
<wsdl:binding name="IFormatConvertServiceSoapBinding"...>

...
</wsdl:binding>
<wsdl:service name="FormatConvertorInfoService">

...
</wsdl:service>

</wsdl:definitions>
<QoS>

<Performance>
<Latency>50</Latency>

</Performance>
<Dependability>

<Confidentiality>true</Confidentiality>
</Dependability>
<Cost>

<ResourceConsumption>0.55</ResourceConsumption>
</Cost>

</QoS>

Figure VII.5: An example of extended WSDL document

public static void servRegister(FILE WSDLDocument);

Table VII.2: The routine provided by QoWSD for service providers

Whenever receiving a request of service registration from a service provider,
the service registry parses the WSDL document and creates an entry of the
service depository, as shown in Table VII.3, including:

112 VII QoS-aware Web Service Discovery Middleware

• WSDL document, which is provided by the service provider as the pa-
rameter for the routine ServRegister .

• Definition of the service, which is the object resulting from the parsing of
the functional part of the WSDL document (e.g., using WSDL4j utility3).
It is utilized for matching functional properties of Web services.

• QoS, which stores the service’s QoS values after parsing the QoS part of
the WSDL document.

WSDL Document Definition QoS

Table VII.3: An entry of the service depository in QoWSD

Service Locator. A client uses the routine servDiscover (as shown in Ta-
ble VII.4) to discover Web services. The parameter seekServ is set with the
WSDL document (including the abstract part and QoS part) that specifies the
client’s requirements. The routine sends the parameter to the local QoWSD,
which is then handled by the service locator.

public static Vector servDiscover(String seekServ);

public static Vector servInvoke(String servPath,String servName,String

opName,Vector opParams);

Table VII.4: The routines provided by QoWSD for service clients

On receiving a service discovery request from a local client, the service
locator does the following two things simultaneously:

• It parses the WSDL document from the client, with respect to both func-
tional and QoS properties. The service locator then matches the request
with every service instance in the service depository, in terms of both
functional and QoS properties:

– It is checked whether a service instance satisfies the client’s request
with respect to functional properties. More specifically, it is verified
whether they match in terms of service name and port types’ op-
erations, including operation names and parameters (i.e., number
and type of parameters).

3http://sourceforge.net/projects/wsdl4j

VII.2 QoS-aware Web Service Discovery (QoWSD) 113

– It is checked whether a service instance satisfies the client’s request
with respect to QoS properties. It is considered a matching only if,
for every QoS dimension, the QoS value of the service instance is
stronger than that required by the client.

If a service instance satisfies the request in terms of both functional and
QoS properties, it is appended to the list of service replies, each of which
includes the service’s WSDL document and the service path (i.e., the
path from the client to the provider).

• It constructs a serv_disc message (Figure VII.6), which is sent to its
SCNs (according to the neighbor table). The message includes the fol-
lowing fields:

– sequence number, which is composed by the host’s IP address and
an increasing counter;

– extended WSDL document, which is set to seekServ of servDiscover
routine;

– (propagation) range (in number of hops), which defines the range
for propagating the serv_disc ;

– service path, which is initialized with the current host’s IP address;

– a list of destined SCNs, which is extracted from the neighbor table.

IP address 1 IP address 2 IP address 1 IP address 2

RangeSequence # Extended WSDL Service Path Destined SCNs

QoS partAbstract part

Figure VII.6: A serv_disc packet in QoWSD

On receiving a serv_disc packet from one of its SCNs, the service lo-
cator first checks whether the packet has been handled before by checking
the sequence number against the cache of the sequence numbers of recently
handled serv_disc packets. The packet is discarded if it has been handled
before. Otherwise, it puts the sequence number into the cache and does the
following two things in parallel:

• It matches the service request with every service instance in the ser-
vice depository as described above. If there is a match, it unicasts a
serv_resp packet (Figure VII.7) to the source node (i.e., where the
client resides), which includes:

114 VII QoS-aware Web Service Discovery Middleware

– sequence number, which is set with that of the serv_disc packet;

– WSDL document of its provided services that match the client’s
requirements, including both functional and QoS parts;

– service path, which is set with the inverse of the complete service
path (i.e., the service path of the received serv_disc packet ap-
pended with the current host’s IP address).

• It extracts the propagation range and service path from the received
serv_disc packet. If the range does not reach 0 yet, it forwards the
packet with the following fields modified:

– the range is subtracted by 1.

– the service path is appended with the host’s IP address.

– the list of destined SCNs is replaced with the current host’s SCNs
that are not already in the service path.

The forwarding is done by unicasting if there is only one destined SCN
and by broadcasting otherwise.

Sequence #

IP address 1 IP address 2 ...QoS part

Extended WSDL Service Path

Functional part

Figure VII.7: A serv_resp packet in QoWSD

When the service locator of the destined host receives the service reply
(i.e., serv_resp), it extracts the extended WSDL and service path, which
make a service reply.

Reputation Manager. After collecting the replies from service providers, the
service locator hands the list of service replies to the reputation manager for
identifying honest service providers. The latter also maintains an acquaintance
table, which keeps the SReps and RReps of acquaintances. An entry of the ac-
quaintance table is recalled in Table VII.5, where ID denotes the identity of
an entity (e.g., MAC address), ts and tr represent respectively the timestamps
when the SRep(sp, sn) and RRep(rp, rn) were updated last time.

Given the list of service providers for trustworthiness evaluation, the repu-
tation manager handles it as follows. It first checks the SReps of the evaluated
entities. Recall that for a service provider with SRep of (α, β):

VII.2 QoS-aware Web Service Discovery (QoWSD) 115

ID SRep RRep
sp sn ts rp rn tr

Table VII.5: An entry of the acquaintance table in QoWSD

• It is considered honest if and only if (α + β − 2) ≥ δa and α/(α + β) ≥ δh,
where δh is the threshold honesty value and δa is the threshold confi-
dence value in making the judgment.

• It is consider as a newcomer if (α + β − 2) < δa.

If there exist one or multiple honest service providers, their expected rep-
utation values (i.e., α/(α+β)) along with their IDs are returned. The returned
reputation values allow for quantitative evaluation of the services. Otherwise,
the reputation manager checks whether there is any newcomer. If that is not
the case, it means that all the replies are from dishonest service providers and
an empty list is returned. Otherwise, the reputation manager broadcasts a
rec_requ packet to request for recommendations regarding the newcomers.
As shown in Figure VII.8, a rec_requ is composed of:

• sequence number, similar to that of serv_disc , which is used to iden-
tify the request;

• (propagation) range of the request;

• the list of trustees to evaluate.

Sequence #Range ID of Trustee 1 ID of Trustee 2 ID of Trustee 3

Figure VII.8: A rec_requ packet in QoWSD

After receiving a rec_requ packet, the reputation manager first checks
whether the packet has been handled before according to the sequence num-
ber. It then looks up the RRep(rp, rn) of the requester in the acquaintance table
to determine how to handle the request. Recall that the requester is considered
an active recommender if (rp + rn − 2) > δa and an inactive one otherwise; it
is considered an honest recommender if rp/(rp + rn) > δh and a dishonest one
otherwise.

116 VII QoS-aware Web Service Discovery Middleware

(1) If the requester is an active and honest recommender, the reputation
manager looks up the SReps of the trustees, which the requester is evalu-
ating and returns them to the requester within a rec_resp packet (Fig-
ure VII.9), which includes

• Sequence number, which is set to that of the received rec_requ ;

• SReps of the trustees.

(2) Otherwise, if the requester is an inactive recommender, the reputation
manager sends back its recommendations with the probability of δa −
(rp + rn − 2) + ε, where ε is set to 0.05 for inactive honest recommenders
and −0.05 for inactive dishonest ones, for the purpose of distinguishing
their treatment. The recommendations are embedded in a rec_resp , as
shown above.

(3) Otherwise, i.e., the requester is an active and dishonest recommender,
its request is ignored.

(ID3, sp3, sn3)Sequence # (ID1, sp1, sn1) (ID2, sp2, sn2)

Figure VII.9: A rec_resp packet in QoWSD

After the timeout of recommendation elicitation, the reputation manager
takes into account the received recommendations (i.e., rec_resp s) depend-
ing on the RReps of the recommenders:

(1) If there exist recommendations from active and honest recommenders,
they are used to evaluate the overall reputation of the service providers.
A recommender’s recommendation is weighed with the expected value
of its RRep.

(2) Otherwise, if there exist recommendations from inactive recommenders,
the average of those recommendations is used to evaluate the overall
reputation of the service provider.

(3) Otherwise, it means that all the recommendations are from dishonest
recommenders and the client fails to elicit any honest recommendation.
Thus its trust decision has to be based on other factors (e.g., whether it
is optimistic with strangers).

VII.2 QoS-aware Web Service Discovery (QoWSD) 117

The reputation manager is also responsible for updating and maintain-
ing SReps and RReps. A new interaction experience with a service provider is
evaluated by the service invoker (to be described soon) and sent to the rep-
utation manager. The latter then updates the SRep of the concerned service
provider. Meanwhile, the RReps of the recommenders (if any) who have rec-
ommended the service provider are updated accordingly, depending on the
difference between the recommendation and the actual experience (as pre-
sented in Chapter VI).

Service Selector. Given a list of service replies, the reputation manager as
presented above returns a list of trustworthy service providers along with
their reputation values. If the list is empty, meaning that the providers of all
located service instances are dishonest, the client is thus informed and ad-
vised to search with other requirements (e.g., with less strict requirements). If
the list includes only one service provider, its service reply is returned directly
to the client and no further selection is necessary.

Otherwise, the service selector parses the QoS part of the WSDL docu-
ments embedded in the service replies to extract the QoS properties and ser-
vice price. For the reason of simplicity, we assume that the utility function
of the client, i.e., the client’s preferences among service QoS properties (e.g.,
preferences between latency and availability) and between QoS and price (e.g.,
QoS-driven or price-driven) is fixed and known a priori by the service selector.
It can be easily extended by requiring the client to specify its utility function as
a parameter of the servDiscover routine. Then all quantitative dimensions
in the utility function are normalized based on standard deviation as pre-
sented in Chapter V. Each service instance is then evaluated using the utility
function. The instance with the best utility is chosen and its WSDL document
is returned, along with its service path, as the result for the servDiscover
routine.

Service Invoker. A client invokes services using the routine servInvoke
provided by QoWSD (Table VII.4). The parameters of the routine include the
service path, the service name, the operation name and the parameters, which
are received by the service invoker of the local QoWSD.

The service invoker handles the request in the following way:

(1) It checks whether the service path only includes the local IP address,
i.e., whether the client is invoking a local service. If yes, it invokes the
service with the parameters and returns the result to the client.

118 VII QoS-aware Web Service Discovery Middleware

(2) Otherwise, it prepares a serv_invo packet (Figure VII.10), including
the fields of

• sequence number, which is used to identify this invocation;

• service name of the target service to invoke;

• operation name of the target service to invoke;

• parameters for invoking the operation;

• service path that leads to the destined service provider.

The packet is then sent to the next hop in the service path.

......IP address 2

Sequence # Service PathOperation Names

IP address 1

ParametersService Name

Figure VII.10: A serv_invo packet in QoWSD

On receiving a serv_invo packet, the service invoker handles it as follows:

(1) It extracts the service path in the packet and checks whether it is the
destination of the packet. If not, it forwards the packet to the next hop
in the service path.

(2) Otherwise, it invokes the service and send back the service result. It does
this by preparing a serv_ack packet (Figure VII.11), which includes

• sequence number, which is set to that of the received serv_invo
packet;

• service result, i.e., the result after executing the service;

• service path, which is the reverse of that of the received serv_invo
packet. It is used to forward the result back to the service client.

The serv_ack packet is then sent to the next hop in the service path
and forwarded by intermediate nodes until it reaches the destination QoWSD,
where the the service client sits. The result is then returned to the client.

After invocation, the client also records its experienced QoS and compares
it against the claimed QoS by the service provider. It then calculates QoE
(Quality of Experience) according to Equation VI.2 presented in Chapter VI. It

VII.2 QoS-aware Web Service Discovery (QoWSD) 119

......

Sequence # Service Result Service Path

IP Address 1 IP Address 2

Figure VII.11: A serv_ack packet in QoWSD

is sent along with the service provider’s ID to the reputation manager, which
in turn updates the SRep of the service provider and the RReps of the recom-
menders who have recommended the service provider, as described previ-
ously.

QoS Predictor. After a service invocation, the service provider records the
QoS values, such as CPU load. Meanwhile, the service invoker also records
the service latency, the time between when the invoker invokes the service
and when it receives the result. These QoS values are sent to the QoS predictor,
which is responsible for predicting future QoS values. It does this by applying
a mix-of-experts approach [Wolski et al., 1997, Gurun et al., 2004] using the
following three forecasters4:

• last value, which predicts the future value with the last measurement;

• sliding window average of window size 10, which predicts with the aver-
age of the most recent 10 measurements;

• exponential smoothing forecaster, which predicts a QoS value at time t (pt)
with pt = α × mt−1 + (1 − α) × pt−1, where mt−1 and pt−1 represent
measurement and prediction values at time t-1 respectively, and α is
gaining factor and assumes the value of between 0 and 1.

Whenever a prediction is requested, these forecasters are ranked accord-
ing to their prediction deviation, i.e., the difference between the measurement
and the predicted values, during the most recent 10 runs. The most accurate
forecaster is then chosen to predict the next QoS value. This process is exe-
cuted whenever a prediction value is needed.

4Other forecasters can be added for more accuracy, but at the cost of more time taken for
predicting.

120 VII QoS-aware Web Service Discovery Middleware

VII.3 QoWSD Prototype

We have developed and deployed a prototype implementing QoWSD. In the
following, we first give an overview of the prototype in Section VII.3.1. Then
in Section VII.3.2, we evaluate the performance of the prototype.

VII.3.1 Prototype Overview

JVM

JVMTI

Tomcat Server Apache Axis

JVM

JVMTI

Tomcat Server Apache Axis

JVM

QoS−aware Web Service Discovery

JVM

QoS−aware Web Service Discovery

Service Provider
Provider Routines

Client Program
Client Routines

Figure VII.12: QoWSD Prototype Architecture

The prototype is developed using JAVA (J2SE 1.5) and deployed on 6 lap-
tops with 500 MHz Pentium III CPU, 256KB of cache and 192 MB of memory,
running Linux 2.6.8 (Mandrake 10.1). These machines are believed to be well-
suited to estimate the performance of our middleware, as they are almost as
powerful as currently portable devices (e.g., the SHARP Zaurus SL-6000 is
equipped with Intel 400MHz processor and 64 MB RAM; the HP iPAQ hx2495
Pocket PC is equipped with Intel 520MHz processor and 64 MB RAM)5.

As shown in Figure VII.12, the local Web services are deployed on Tomcat
Server version 4.1.316 using Apache AXIS SOAP engine version 1.2.17. They
are based on J2SE 1.5 and JVM Tool Interface (JVMTI)8, which gives an inter-
face for performance profiling (e.g., measuring CPU load). Note that QoWSD
middleware is independent of the Web application server and SOAP engine
where the local Web services are deployed, because QoWSD interacts with
the local Web application server only for invoking Web services through the
interfaces which are given by service providers.

5The prototype is currently being ported to PDAs.
6http://tomcat.apache.org/
7http://ws.apache.org/axis/
8http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/

http://tomcat.apache.org/
http://ws.apache.org/axis/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/

VII.3 QoWSD Prototype 121

The wireless interface is 2.4 GHz DS Lucent IEEE 802.11 Wavelan PC “Sil-
ver” of 11 Mbps. The network topology assumes a line as shown in Figure
VII.13, for the purpose of setting up the scenarios with different network dis-
tances (in hop number) between the service client and provider (from 1 to 5).
Each node is connected only to its two neighbors (except the two ends have
only one neighbor). Others are disconnected using IP filtering (e.g., iptables9),
although they are in the communication range of each other. Therefore, at any
point of time, only one node can send any packet, whether a beacon or any
other packet as described above. The network is thus more congested than
other multihop networks, where packets can be sent simultaneously as long
as they are far enough from each other (e.g., 3 hops away). No routing pro-
tocol is deployed to avoid the effect of different routing protocols. Therefore,
the unicast packets are forwarded by the intermediate QoWSD instances.

Figure VII.13: The network topology for QoWSD prototype evaluation

VII.3.2 Performance Evaluation

In the following, we evaluate the performance of the prototype in terms of
overhead of QoS awareness on service discovery latency, the time between
when the client invokes the routine of servDiscover and when it receives
the reply. With QoWSD, service discovery latency can be decomposed into
three parts:

• the time spent by the service locator, i.e., service location latency, which
starts from when the local service locator of the client sends a serv_disc
until the timeout of waiting for service replies. The length of the time-
out is generally set according to the waiting time for a service reply to
arrive. For example, a short waiting time for service replies leads to a
short timeout. Therefore, we investigate the service location latency with
timeout set as the waiting time for only one service reply.

• the time spent by the reputation manager, which checks the reputation
of service providers. It includes the lookup of reputation values in the
acquaintance table and possibly involves recommendation elicitation
time, if recommendations are needed.

9http://www.netfilter.org/

http://www.netfilter.org/

122 VII QoS-aware Web Service Discovery Middleware

• the time spent by the service selector, which chooses the best among
service replies (from honest service providers).

In contrast, for service discovery that is “QoS-unaware”, the service dis-
covery latency only involves the first part and the services are randomly se-
lected and reputation is not checked. In addition, its service location latency
is smaller than that of QoWSD, since no QoS description or beacon is used.
Therefore, the overhead of introducing QoS-awareness is reflected in (1) the
increase of service location latency; (2) reputation checking time and (3) ser-
vice selection time.

The efficiency of using signal strength to detect node mobility and the im-
provement of service reliability using S3L have been presented in Chapter IV.
Therefore, we only evaluate the performance of the prototype when the de-
vices are stationary. In the following measurements, a client sends a request
for service only after it has received the reply for the previous request. The
experiments are carried out 500 times and the average is presented.

Service Location Latency. We first measure the service location latency. The
experiments have been carried out with service providers at different network
distances (i.e., from 1 hop to 5 hops) and with beacons sent at every 2 seconds
(beacon’s effect on the service location latency will be discussed later). For the
purpose of illustration, the functional part of the WSDL document includes 1
operation which has an input parameter; the QoS part of the WSDL document
specifies 11 QoS dimensions, including both quantitative (e.g., latency) and
qualitative ones (e.g., confidentiality). The service depository for each QoWSD
instance has only one service, such that the client only needs to match the ser-
vice request against one service instance. This is for the purpose of avoiding
the variation of latency due to the position of a qualified instance in the ser-
vice depository (e.g., if a qualified instance is at the first position, it takes less
matching time than if it is at the 10th position).

In order to investigate the overhead, we also present the breakdown of the
latency, including (1) WSDL parsing time spent by the service locator pars-
ing the WSDL document embedded in the client request, including the time
for parsing both functional and QoS parts; (2) WSDL comparison time for
matching the client’s request with service instances in the service depository,
in terms of both functional and QoS properties; (3) time for message sending
and receiving between a client and its local QoWSD and between QoWSDs;
and (4) other time (e.g., OS overhead, etc). Table VII.6 shows the service lo-
cation latency and its breakdown with service providers at different network
distances in hops. Basically, WSDL parsing time and comparison time do not

VII.3 QoWSD Prototype 123

increase with larger network distance because the service locator propagates
the discovery request and compares a client’s request against its local services
at the same time. Therefore, the waiting time for a service reply only includes
the WSDL parsing and comparison of the matched service (i.e., in the ser-
vice reply). In addition, the WSDL comparison time is generally negligible
(less than 1 millisecond) because it only involves the comparison of the op-
erations and QoS dimensions, which are fields of objects (i.e., definition and
QoS fields in the service depository) stored in the service depository. It can
also be observed that the time for sending and receiving messages is the main
contributor of service location latency, which obviously increases with larger
network distance between the service client and provider. And as it involves
with more nodes with larger network distance, the overhead such as those
related to OS (e.g., message waiting time in the buffer) also increases. The re-
sult shown in Table VII.6 is used as the basis for evaluating the overhead of
introducing QoS awareness on service location latency.

Hop Number 1 2 3 4 5
WSDL Parsing time 22 22 21 23 24

WSDL Comparison Time < 1 < 1 <1 <1 <1
Message sending/receiving time 44 57 71 87 102

Others 1 13 19 34 44
Total Time (ms) 67 92 111 144 170

Table VII.6: Service location latency and its breakdown

Overhead of QoS Description. QoWSD takes into account QoS description
of Web services, leading to the overhead in terms of larger message size (such
as serv_disc messages) and the additional time required for QoS parsing
and matching. We study its overhead in terms of service location latency.

Figure VII.14 compares the service location latency with and without intro-
ducing QoS description, for service providers at different network distances.
It is measured when beacon is sent every 2 seconds. It can be seen that the in-
troduction of QoS description increases the latency by from 4 to 10 ms, which
is less than 6% increase over the service location latency without QoS descrip-
tion.

Overhead of Beacon. As beacons are introduced in order to evaluate link
stability, we also study the overhead of beacons by comparing the service lo-
cation latency with and without using beacons. The comparison is done both

124 VII QoS-aware Web Service Discovery Middleware

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5

m
s

Hop Number

Comparison of avg. service discovery latency

Avg. Service Discovery Latency with QoS
Avg. Service Discovery Latency without QoS

Figure VII.14: Service location latency with and without QoS description

 0

 50

 100

 150

 200

 1 2 3 4 5

m
s

Hop

Effect of beacon on service discovery latency

every 2 seconds
every 4 seconds
every 6 seconds

no beacon

Figure VII.15: Impact of beacons on service location latency

with and without introducing QoS description, which show similar results.
We thus present the service location latency without QoS description, with
different beacon frequencies. The beacon frequency is set to every 2, 4, 6 sec-
onds and no beacon. Beacons’ impact is reflected in the created congestion,
since at any point of time, only one packet can be sent in the network. Their

VII.3 QoWSD Prototype 125

impact on service location latency is shown in Figure VII.15. It can be ob-
served that the beacons increase the service location latency by from 3% to
8%.

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5

m
s

Hop Number

Comparison of avg. service discovery latency

Avg. Service Discovery Latency with QoS and beacon
Avg. Service Discovery Latency without QoS or beacon

Figure VII.16: Impact of beacons and QoS description on service location la-
tency

The total overhead brought by QoS description and beacons is shown in
Figure VII.16. It shows that the beacons and QoS description increase the ser-
vice location latency by about from 8% to 15%.

Reputation Checking Time. The reputation manager looks up the reputa-
tion of service providers to evaluate. If there exist enough direct experiences
with a service provider in the acquaintance table, the reputation checking time
is short because it only involves lookup of the table. Otherwise, the reputation
manager asks for recommendations from others in the network vicinity. Sim-
ilar to service location, the recommendations are aggregated after a timeout,
which is defined in terms of the length of time (e.g., after 0.5 second). The
length of timeout is set according to the waiting time for a recommendation,
named Recommendation Elicitation Time (RET). It is defined as the time between
when the reputation manager sends a request for recommendations and when
it receives one. RET poses as the main overhead of reputation checking time
since it involves message transmission between nodes. Figure VII.17 shows
the RET with recommenders at increasing network distances. The service lo-
cation latency is also presented for the purpose of comparison. It can be seen

126 VII QoS-aware Web Service Discovery Middleware

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6

m
s

Hop

Recommendation Elicitation Time for Recommenders at different distances

24.07

43.21

59.56

92.76

135.40

67.38

92.73

111.47

144.45

170.28

Recommendation elicitation time
Service location latency

Figure VII.17: Recommendation elicitation time

that if a service is located within 1 hop, the recommendation within one hop
increases the latency by 36%, 46% for 2 hops and 88% for 3 hops. It suggests
that recommendation elicitation poses a considerable overhead and should be
carried out within a small range (e.g., within 1 or 2 hops) to avoid too large
overhead. Meanwhile, if a service is located within larger range (e.g., more
than 1 hop), the range for recommendation elicitation can be accordingly ex-
panded.

Service Selection Time. With the service replies from honest service providers
(i.e., after reputation checking by the reputation manager), the service selector
needs to choose the best one among them. Recall that a service reply includes
a WSDL document and service path. Therefore, the service selector needs to
(1) carry out QoS parsing to extract QoS values and (2) evaluate all the service
instances using the utility function. Thus, the service selection time, the time
taken by the service selector to choose the best instance, includes the time
spent for QoS parsing and QoS computing (i.e., normalization and utility cal-
culation). Table VII.7 shows the service selection time (in ms) with different
number of service instances and QoS dimensions. It can be seen that the se-
lection time is generally very small compared to service location latency, since
both QoS parsing and computing do not incur any message transmission or
computing expensive operations.

VII.3 QoWSD Prototype 127

Number of dimensions 3 6 9 12 15
5 instances 0.16 0.34 0.6 0.93 1.33

10 instances 0.19 0.44 0.78 1.24 1.81
15 instances 0.22 0.53 0.97 2.01 2.28

Table VII.7: Service selection time in QoWSD

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 50 100 150 200 250 300

m
s

Run number

The actual latency

Actual latency

Figure VII.18: Actual service latency for
different runs

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 50 100 150 200 250 300

%

Run number

Comparison of predicted and actual latency

Difference between actual and predicted latency

Figure VII.19: Service latency prediction
errors

QoS Prediction. After each service invocation, the QoS values are recorded
by the the service invoker in order to predict new values for QoS description.
We implement a FormatConvert service, which converts a zipped postscript
file to a zipped PDF file. Figure VII.18 shows the actual service latency for 300
runs for converting a file with size of about 50 KB. Figure VII.19 shows the pre-
diction error, which is defined as (actual latency - predicted latency)/actual latency.
It can be observed that with latency fluctuating in a large range, it is possible
to estimate the service latency with certain degree of accuracy (less than 20%).
It presents an example of estimating QoS values by the QoS predictor.

Summary. In the above, a prototype implementing QoWSD middleware is
evaluated with respect to the overhead introduced by QoS-awareness on the
service discovery latency. The results suggest that the introduction of QoS
description and beacons brings a reasonable overhead (increase by less than
15%); the QoS-aware service selection incurs very small overhead; the recom-
mendations are better elicited from nearby nodes (e.g., less than 3 hops) to
avoid large increase of service discovery latency.

128 VII QoS-aware Web Service Discovery Middleware

VII.4 Concluding Remarks

We have presented in this chapter a QoS-aware Web Service Discovery (QoWSD)
middleware targeting ubiquitous computing environments, integrating the
solutions of the previous three chapters, including signal strength based ser-
vice location, QoS-aware service selection using Vickrey auction and a robust
and incentive compatible reputation mechanism. It allows service providers
to register their services and clients to discover and invoke services. Using
QoWSD, a client is able to find a service that (1) has more robustness against
device mobility; (2) is best in matching its needs among the service instances
that satisfy its requirements; (3) is hosted by honest service providers. A pro-
totype implementing QoWSD has been deployed on wireless multi-hop ad
hoc networks. We have measured the impact of QoS awareness in terms of in-
creased service discovery latency due to QoS description and beacon, service
selection and recommendation elicitation. In general, the overhead appears
reasonable for enhancing service discovery with QoS awareness in the ubiq-
uitous computing environments. In summary, QoWSD demonstrates as an ef-
fective overall solution to QoS-aware service discovery in ubiquitous comput-
ing environments. It thus validates our solutions addressing three different
aspects of service discovery as presented previously.

VIII

Conclusion

The vision of ubiquitous computing [Weiser, 1991] is becoming a reality thanks
to the advent of portable devices (e.g., smartphones) and the advances in
wireless networking technologies (e.g., WLAN, Bluetooth). It aims to facilitate
user tasks through seamless utilization of various services in the surrounding
environments. To realize the above goal, the handheld wireless device (e.g., a
cellphone) carried by a user needs to dynamically discover services, whether
embedded in the environment or hosted by other handheld devices belong-
ing to other users. The services can be very much diverse in their QoS prop-
erties due to factors such as service provider’s computing power. Besides,
services also bear prices, which are charged by service providers on clients,
in order to motivate service provisioning among autonomous entities. More-
over, to allow for flexible interaction, devices are preferably interconnected
using MANETs instead of through network infrastructure. This is because the
former is deployment free and realizes spontaneous networking, which sup-
ports impromptu interactions between entities, considered as a desirable fea-
ture for ubiquitous computing [Kindberg and Fox, 2002]. The characteristics
of ubiquitous computing as described above necessitates the incorporation of
QoS awareness during service discovery.

VIII.1 Contribution

This thesis focuses on supporting QoS-awareness during service discovery
in ubiquitous computing environments. Our contribution lies in identifying
and addressing the following three aspects related to service’s QoS properties,
which are not well handled by the current service discovery protocols.

130 VIII Conclusion

Firstly, device mobility, which is inherent in ubiquitous computing, can
disconnect wireless links and cause service failures, thus degrading service
reliability. Routing protocols for ad hoc networks do not provide enough mo-
bility support because their provided routes can tend to break. In light of
this, we propose a signal strength based service location (S3L) that identi-
fies the links that are likely to break due to mobility. By following service
paths without these expiring links, S3L improves service reliability. Based on
simulation-based evaluation, S3L improves considerably service reliability in
most scenarios (i.e., when services last longer than 1 second and devices move
at speeds less than 11m/s).

Secondly, the abundance of services in the environments makes it likely to
locate multiple service instances satisfying the client’s requirements. Service
selection, which chooses the best one on behalf of the client, needs to com-
prehensively take into account service’s non-functional properties, including
service price and QoS properties, as well as the client’s preferences among
them. We present a utility function for doing so, which is complemented by
a Vickrey auction based pricing model to motivate service providers’ truthful
revelation of service prices. Such a pricing model ensures that a client’s ser-
vice selection is based on the truthful service cost information from providers.

Thirdly, in order to avoid dishonest service providers, we also devise a
distributed reputation mechanism that evaluates an entity’s trustworthiness
based on direct experiences and others’ (honest) recommendations. Due to
the featured openness of the ubiquitous computing environments, it is very
commonplace for an entity to interact with others that it has little knowledge
of, increasing the importance of recommendations. However, recommenda-
tions can be deviated from the truth (e.g., due to collusion) or withheld due to
lack of incentives. Therefore, in our proposed reputation mechanism, recom-
menders are evaluated depending on their honesty and activeness in provid-
ing recommendations. Only recommendations from honest recommenders
are considered helpful and taken into account. Moreover, by treating recom-
menders differently depending on their honesty and activeness, it is ensured
that an entity benefits from others’ (helpful) recommendations in proportion
to its contribution. More specifically, an honest and active recommender can
elicit honest (i.e., helpful) recommendations more easily than others, for the
purpose of stimulating truthful recommendations.

Finally, the above solutions addressing different aspects are incorporated
into a middleware that supports QoS-aware Web service discovery in ubiq-
uitous computing environments. The middleware enables a client to discover
Web services that (1) have improved reliability, (2) are best in matching the
client’s preferences among non-functional properties and (3) are trustworthy

VIII.2 Perspective 131

(i.e., hosted by honest service providers). A prototype implementing the mid-
dleware is further deployed on a multihop ad hoc network and evaluated,
especially, regarding the overhead of introducing QoS-awareness on service
discovery latency. The overhead seems reasonable according to the results of
performance evaluation.

VIII.2 Perspective

Besides the contribution as stated above, this thesis can be further extended
to incorporate other related functionalities. For example, the selective multi-
cast in S3L can also be based on service functionality (e.g., GSD [Chakraborty
et al., 2006]), besides link stability. Specifically, a node announces not only
its services, but also its “seen” services (e.g., services advertised by others).
Although the latter is generally described with less details, it makes it possi-
ble to identify those one-hop neighbors that have more probability of know-
ing where the requested service is located. Thus, service requests can be sent
along links that not only are considered stable by S3L, but also lead to higher
possibility of finding the requested services. Moreover, service discovery in
ubiquitous computing environments can be extended with group support
that organizes related nodes as groups (e.g., participants of a conference).
Such support can facilitate QoS awareness during service discovery. For ex-
ample, if group members move with similar speeds and directions, service
location can derive the mobility of an individual from that of its group. Signal
strength tendency of beacons (e.g., from border nodes of a group which are
connected to nodes from other groups) can then be used to detect the mov-
ing tendency of a group. Moreover, since nodes can join and leave groups
freely, it necessitates detection of group member departure, which can also
be based on beacons’ SS tendency. Similarly, group members can share their
reputation. This can ease trustworthiness recognition since it is more likely to
have direct experiences with group members than with an individual group
member. Meanwhile, group reputation requires strong degree of mutual trust
between group members, which can also be dynamic and evolving and be
enforced by group membership management.

132 VIII Conclusion

Bibliography

[Abdul-Rahman and Hailes, 2000] Abdul-Rahman, A. and Hailes, S. (2000).
Supporting trust in virtual communities. In Proc. Hawaii Int’l Conf. System
Science HICSS-33. Cited in page(s): 38 , 86

[Aberer and Despotovic, 2001] Aberer, K. and Despotovic, Z. (2001). Manag-
ing trust in a peer-2-peer information system. In Paques, H., Liu, L., and
Grossman, D., editors, Proceedings of the Tenth International Conference on In-
formation and Knowledge Management (CIKM01), pages 310–317. ACM Press.
Cited in page(s): 37

[ACPI, 2004] ACPI (2004). Advanced configuration and power interface
specification. http://www.acpi.info/ . revision 3.0. Cited in page(s):
72

[Adams and Farrell, 1999] Adams, C. and Farrell, S. (1999). RFC2510 - Inter-
net X.509 Public Key Infrastructure Certificate Management Protocols. Cited in
page(s): 16

[Adjie-Winoto et al., 1999] Adjie-Winoto, W., Schwartz, E., Balakrishnan, H.,
and Lilley, J. (1999). The design and implementation of an intentional nam-
ing system. In SOSP ’99: Proceedings of the seventeenth ACM symposium
on Operating systems principles, pages 186–201, New York, NY, USA. ACM
Press. Cited in page(s): 21 , 31

[Agarwal et al., 2000] Agarwal, S., Ahuja, A., Singh, J. P., and Shorey, R.
(2000). Route-lifetime assessment based routing (RABR) protocol for mo-
bile ad-hoc networks. In Proc. of IEEE International Conference on Communi-
cations (ICC). Cited in page(s): 26 , 27

[Al-Ali et al., 2003] Al-Ali, R. J., ShaikhAli, A., Rana, O. F., and Walker, D. W.
(2003). Supporting QoS-Based discovery in Service-Oriented Grids. In
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS). Cited in page(s): 23

http://www.acpi.info/

134 Bibliography

[Aurrecoechea et al., 1998] Aurrecoechea, C., Campell, A. T., and Hauw, L.
(1998). A survey of QoS architectures. ACM/Springer Verlag Multimedia
Systems Journal, Special Issue on QoS Architecture, 3(6). Cited in page(s): 70

[Avizienis et al., 2001] Avizienis, A., Laprie, J. C., and Randell, B. (2001).
Fundamental concepts of computer system dependability. In Proc. of
IARP/IEEE Workshop on Robot Dependability: Technological Challenges of De-
pendable Robots in Human Environments. Cited in page(s): 66 , 67 , 68

[Bahl and Padmanabhan, 2000] Bahl, P. and Padmanabhan, V. N. (2000).
RADAR: An in-building rf-based user location and tracking system. In
Proc. of IEEE INFOCOM. Cited in page(s): 26

[Baker and Dobson, 2005] Baker, S. and Dobson, S. (2005). Comparing
service-oriented and distributed object architectures. In Proceedings of the
International Symposium on Distributed Objects and Applications. Cited in
page(s): 12

[Baudron and Stern, 2001] Baudron, O. and Stern, J. (2001). Non-interactive
private auctions. In Proc. of Fifth Int’l Conf. on Financial Cryptography(FC).
Cited in page(s): 82

[Beckman et al., 2002] Beckman, W., Crowcroft, J., Gevros, P., and Oleneva,
M. (2002). TAPAS Deliverable D1. http://tapas.sourceforge.net/
deliverables/index.html . Cited in page(s): 66

[Bhagwat et al., 1994] Bhagwat, P., Perkins, C. E., and Tripathi, S. K. (1994).
Transparent resources discovery for mobile computers. In IEEE Workshop
on Mobile Computing Systems and Applications, Santa Cruz, CA, US. Cited in
page(s): 14

[Bluetooth SDP, 2004] Bluetooth SDP (2004). Service discovery protocol,
bluetooth specification 2.0 part b. https://www.bluetooth.org/
spec/ . Cited in page(s): 21

[Boulkenafed and Issarny, 2003] Boulkenafed, M. and Issarny, V. (2003). A
middleware service for mobile ad hoc data sharing, enhancing data avail-
ability. In Proceedings of the 4th ACM/IFIP/USENIX International Middleware
Conference. Cited in page(s): 10

[Bowers et al., 2000] Bowers, S., Delcambre, L., Maier, D., Cowan, C., Wagle,
P., McNamee, D., Meur, A. F. L., and Hinton, H. (2000). Applying adap-
tation spaces to support quality of service and survivability. In DARPA
Information Survivability Conference and Exposition. Cited in page(s): 70

http://tapas.sourceforge.net/deliverables/index.html
http://tapas.sourceforge.net/deliverables/index.html
https://www.bluetooth.org/spec/
https://www.bluetooth.org/spec/

Bibliography 135

[Brandt and Weiβ, 2001] Brandt, F. and Weiβ, G. (2001). Vicious strategies for
Vickrey auctions. In Proc. of the Fifth Int’l Conf. on Autonomous Agents. ACM
Press. Cited in page(s): 82

[Buchegger and Boudec, 2002] Buchegger, S. and Boudec, J. Y. L. (2002). Per-
formance analysis of the CONFIDANT protocol. In Proc. of MobiHOC.
Cited in page(s): 18 , 38 , 39 , 103

[Buchegger and Boudec, 2003] Buchegger, S. and Boudec, J.-Y. L. (2003). The
effect of rumor spreading in reputation systems for mobile ad-hoc net-
works. In Proc. workshop on Modeling and Optimization in Mobile, Ad Hoc
and Wireless Networks (WiOpt03). Cited in page(s): 39 , 83

[Buchegger and Boudec, 2004] Buchegger, S. and Boudec, J.-Y. L. (2004). A
robust reputation system for P2P and mobile ad-hoc networks. In Proceed-
ings of the Second Workshop on the Economics of Peer-to-Peer Systems. Cited in
page(s): 39 , 85

[Buchegger and Boudec, 2005] Buchegger, S. and Boudec, J.-Y. L. (2005). Self-
policing mobile ad hoc networks by reputation systems. IEEE Communica-
tions Magazine, 43(7):101– 107. Cited in page(s): 39

[Buttyan and Hubaux, 2003] Buttyan, L. and Hubaux, J. P. (2003). Stimulat-
ing cooperation in self-organizing mobile ad hoc networks. ACM/Kluwer
Mobile Networks and Applications, 8(5). Cited in page(s): 9

[Caffery and Stuber, 1998] Caffery, J. J. and Stuber, G. L. (1998). Overview of
radiolocation in CDMA cellular systems. IEEE Communications Magazine.
Cited in page(s): 26

[Cahill et al., 2003] Cahill, V., Gray, E., Seigneur, J.-M., et al. (2003). Using
trust for secure collaboration in uncertain environments. IEEE Pervasive
Computing, 2(3). Cited in page(s): 9 , 16

[Camp et al., 2002] Camp, T., Boleng, J., and Davies, V. (2002). A survey of
mobility models for ad hoc network research. Wireless Communication and
Mobile Computing (WCMC), 2(5). Cited in page(s): 58

[Campbell et al., 2002] Campbell, R. H., Al-Muhtadi, J., Naldurg, P., Sampe-
mane, G., and Mickunas, M. D. (2002). Towards security and privacy for
pervasive computing. In Proc. of international Symposium of Software Security
– Theories and Systems, Mext-NSF-JSPS, pages 1–15. Cited in page(s): 11

136 Bibliography

[Capra et al., 2003] Capra, L., Emmerich, W., and Mascolo, C. (2003).
CARISMA: Context-Aware REflective mIddleware System for Mobile Ap-
plications. IEEE Transactions of Software Engineering, 29(10). Cited in page(s):
35

[Capra et al., 2005] Capra, L., Zachariadis, S., and Mascolo, C. (2005). Q-
CAD: QoS and Context Aware Discovery Framework for Mobile Systems.
In Proc. of International Conference on Pervasive Services (ICPS’05). Cited in
page(s): 12

[Cardoso et al., 2004] Cardoso, J., Sheth, A., Millerb, J., Arnoldc, J., and
Kochutb, K. (2004). Quality of Service for workflows and Web service pro-
cesses. journal of Web Semantics, 1(3). Cited in page(s): 23 , 66 , 68

[Casella and Berger, 2002] Casella, G. and Berger, R. L. (2002). Statistical In-
ference. Duxbury Press. Cited in page(s): 84

[Chakraborty et al., 2006] Chakraborty, D., Joshi, A., Yesha, Y., and Finin, T.
(2006). Toward distributed service discovery in pervasive computing en-
vironments. IEEE Transactions on Mobile Computing, 5(2):97–112. Cited in
page(s): 11 , 21 , 22 , 23 , 131

[Chakraborty et al., 2001] Chakraborty, D., Perich, F., Avancha, S., and Joshi,
A. (2001). Dreggie: Semantic service discovery for m-commerce applica-
tions. In Proc. of Workshop on Reliable and Secure Applications in Mobile Envi-
ronment. Cited in page(s): 23

[Chakravorty et al., 2005] Chakravorty, R., Agarwal, S., Banerjee, S., and
Pratt, I. (2005). Mob: a mobile bazaar for wide-area wireless services. In
Proceedings of the 11th annual international conference on Mobile computing and
networking (MobiCom), pages 228–242. Cited in page(s): 37

[Chalmers and Sloman, 1999] Chalmers, D. and Sloman, M. (1999). A survey
of quality of service in mobile computing environments. IEEE communica-
tions surveys. Cited in page(s): 66 , 68

[Chen et al., 2005] Chen, L.-J., Sun, T., Yang, G., Sanadidi, M. Y., and Gerla, M.
(2005). Adhoc probe: Path capacity probing in wireless ad hoc networks. In
Proc. of the First International Conference on Wireless Internet (WICON). Cited
in page(s): 72

[Chen et al., 2003] Chen, Z., Liang-Tien, C., Silverajan, B., and Bu-Sung, L.
(2003). UX - An Architecture Providing QoS-Aware and Federated Sup-
port for UDDI. In proceeding of the first International Conference on Web Ser-
vices(ICWS). Cited in page(s): 23

Bibliography 137

[Chin et al., 2002] Chin, K. W., Judge, J., Williams, A., and Kermode, R. (2002).
Implementation experience with manet routing protocols. ACM SIG-
COMM Comp. Comm. Review, 32(5). Cited in page(s): 26

[Clausen and Jacquet, 2003] Clausen, T. and Jacquet, P. (2003). Optimized
link state routing protocol. IETF RFC 3626. Cited in page(s): 48 , 59

[Conti et al., 2004] Conti, M., Maselli, G., Turi, G., and Giordano, S. (2004).
Cross layering in mobile ad hoc network design. IEEE Computer, pages
48–51. Cited in page(s): 48

[Couto et al., 2002] Couto, D. D., Aguayo, D., Cambers, B. A., and Morris, R.
(2002). Performance of multihop wireless networks: Shortest path is not
enough. In Proc. of 1st workshop on Hot Topics in Networking. Cited in page(s):
31

[Creese et al., 2004] Creese, S., Goldsmith, M., Roscoe, B., and Zakiuddin, I.
(2004). Research directions for trust and security in human-centric com-
puting. In Proc. of the First Workshop on Security and Privacy at the Conference
on Pervasive Computing. Cited in page(s): 11

[Czerwinski et al., 1999] Czerwinski, S. E., Zhao, B. Y., Hodes, T. D., Joseph,
A. D., and Katz, R. H. (1999). An architecture for a secure service discovery
service. In Proc. of ACM MobiCom. Cited in page(s): 1

[Dawkins, 1989] Dawkins, R. (1989). The Selfish Gene. Oxford University
Press. Cited in page(s): 95

[Day and Deters, 2004] Day, J. and Deters, R. (2004). Selecting the best web
service. In Proc. of Conf. of the center for advanced studies on collaborative re-
search. Cited in page(s): 32

[Dellarocas, 2003] Dellarocas, C. (2003). The digitization of word-of-mouth:
promise and challenges of online feedback mechanisms. MIT Working Pa-
per. Cited in page(s): 89

[Dey, 2001] Dey, A. K. (2001). Understanding and using context. Personal and
Ubiquitous Computing, 5(1):4–7. Cited in page(s): 11

[Dokovski et al., 2004] Dokovski, N., Widya, I., and van Halteren, A.
(2004). Paradigm: Service oriented computing. AWARENESS whitepa-
per, https://doc.freeband.nl/dscgi/ds.py/Get/File-49216/
D2.7b_-_Paradigm_-_Service_Oriented_Computing.pdf . Cited
in page(s): 12

https://doc.freeband.nl/dscgi/ds.py/Get/File-49216/D2.7b_-_Paradigm_-_Service_Oriented_Computing.pdf
https://doc.freeband.nl/dscgi/ds.py/Get/File-49216/D2.7b_-_Paradigm_-_Service_Oriented_Computing.pdf

138 Bibliography

[Douceur, 2002] Douceur, J. (2002). The sybil attack. In Proc. of the IPTPS02
Workshop. Cited in page(s): 103

[Dube et al., 1997] Dube, R., Rais, C. D., Wang, K. Y., and Tripathi, S. K. (1997).
Signal stability based adaptive routing (SSA) for ad-hoc mobile networks.
IEEE Personal Communications, 4(2). Cited in page(s): 26

[Dykes et al., 2000] Dykes, S. G., Robbins, K. A., and Jeffrey, C. L. (2000). An
empirical evaluation of client-side server selection algorithms. In Proc. of
IEEE Infocom. Cited in page(s): 31 , 73

[Ekenstam et al., 2001] Ekenstam, T., Matheny, C., Reiher, P., and Popek, G.
(2001). The bengal database replication system. Distributed and Parallel
Databases, 9(3). Cited in page(s): 10

[Feeney and Nilsson, 2001] Feeney, L. M. and Nilsson, M. (2001). Investigat-
ing the energy consumption of a wireless network interface in an ad hoc
networking environment. In Proc. of IEEE INFOCOM. Cited in page(s): 72

[Fei et al., 1998] Fei, Z., Bhattacharjee, S., Zegura, E. W., and Ammar, M. H.
(1998). A novel server selection technique for improving the response time
of a replicated service. In Proc. of IEEE Infocom. Cited in page(s): 31

[Feigenbaum and Shenker, 2002] Feigenbaum, J. and Shenker, S. (2002). Dis-
tributed algorithmic mechanism design: Recent results and future direc-
tions. In Proc. 6th Int. Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications. Cited in page(s): 34

[Fielding et al., 1999] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., and Berners-Lee, T. (1999). HTTP/1.1. IETF, RFC 2616. Cited
in page(s): 31

[Forman and Zahorjan, 1994] Forman, G. H. and Zahorjan, J. (1994). The
challenges of mobile computing. IEEE Computer, 27(4). Cited in page(s):
7 , 8

[Friendman and Resnick, 2001] Friendman, E. and Resnick, P. (2001). The so-
cial cost of cheap pseudonyms. Journal of Economics and Management Strat-
egy, 10(2). Cited in page(s): 103

[Frolund and Koistinen, 1998] Frolund, S. and Koistinen, J. (1998). QML: A
language for quality of service specification. Technical Report HPL-98–10,
Hewlette Packard. Cited in page(s): 66

Bibliography 139

[Gambetta, 1990] Gambetta, D. (1990). Can we trust trust? In Trust, Making
and Breaking Cooperative Relations, chapter 13, pages 213–237. basil black-
well. Cited in page(s): 17

[Gao and Steenkiste, 2002] Gao, J. and Steenkiste, P. (2002). Rendezvous
points-based scalable content discovery with load balancing. In Proc. of
the Fourth International Workshop on Networked Group Communication. Cited
in page(s): 31

[Geihs, 2002] Geihs, K. (2002). Analysis of adaptation strategies for mobile
QoS-Aware applications. In Proc. of ACM MSWiM. Cited in page(s): 29

[Goff et al., 2001] Goff, T., Abu-Ghuzaleh, N. B., Phatak, D. S., and Kahve-
cioglu, R. (2001). Preemptive routing in ad hoc networks. In Proc. ACM
MobiCom. Cited in page(s): 26 , 27

[Goland et al., 1999] Goland, Y., Cai, T., Leach, P., Gu, Y., and Albright, S.
(1999). Simple service discovery protocol. IETF Draft, http://www.
upnp.org/download/draft_cai_ssdp_v1_03.txt . Cited in page(s):
21 , 28

[Grandison and Sloman, 2000] Grandison, T. and Sloman, M. (2000). A sur-
vey of trust in Internet applications. IEEE Communication Surveys, 3(4).
Cited in page(s): 17

[Gray and Reuter, 1993] Gray, J. and Reuter, A. (1993). Transaction Processing:
Concepts and Techniques. Morgan Kaufmann Publishers. Cited in page(s): 67

[Gurun et al., 2004] Gurun, S., Krintz, C., and Wolski, R. (2004). NWSLite:
a light-weight prediction utility for mobile devices. In Proc. of 4th ACM
MobiSys. Cited in page(s): 72 , 119

[Guttman et al., 1999] Guttman, E., Perkins, C., Veizades, J., and day, M.
(1999). Service location protocol, version 2. RFC 2608. Cited in page(s):
21 , 22

[He et al., 2004] He, Q., Wu, O. D., and Khosla, P. (2004). SORI: A secure and
objective reputation-based incentive scheme for ad-hoc networks. In Proc.
of IEEE Wireless Communications and Networking Conference. Cited in page(s):
38

[Helal, 2002] Helal, S. (2002). Standards for service discovery and delivery.
IEEE Pervasive computing, 1(3). Cited in page(s): 21

http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt
http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt

140 Bibliography

[Helal et al., 2003] Helal, S., Desai, N., Verma, V., and Lee, C. (2003). Konark
- a service discovery and delivery protocol for ad hoc networks. In Proc. of
3rd IEEE Conf. on WCNC. Cited in page(s): 22 , 28

[Hightower et al., 2002] Hightower, J., Brumitt, B., and Borriello, G. (2002).
The location stack: A layered model for location in ubiquitous computing.
In Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA). Cited in page(s): 11

[Hille et al., 2000] Hille, S., Jonkers, H., Tokmakoff, A., and Wibbels, M.
(2000). State-of-the-art in electronic accounting, billing and payment.
Telematica Institut GigaABP D1.1. Cited in page(s): 33

[Hodes et al., 2002] Hodes, T. D., Czerwinski, S. E., Zhao, B. Y., Joseph, A. D.,
and Katz, R. H. (2002). An architecture for secure wide-area service discov-
ery. Wireless Networks, 8(2-3):213–230. Cited in page(s): 12 , 21 , 28

[Huhns and Singh, 2005] Huhns, M. N. and Singh, M. P. (2005). Service-
oriented computing: key concepts and principles. IEEE Internet Computing,
9(1):75–81. Cited in page(s): 12

[Hung and Li, 2003] Hung, P. and Li, H. (2003). Web services discovery based
on the trade-off between quality and cost of service : a token-based ap-
proach. ACM SIGecom Exchanges, 4(2):21–31. Cited in page(s): 15

[Huynh et al., 2005] Huynh, T. D., Jennings, N. R., and Shadbolt, N. (2005).
On handling inaccurate witness reports. In Proc. 8th International Workshop
on Trust in Agent Societies, pages 63–77, Utrecht, The Netherlands. Cited in
page(s): 39 , 83

[IEEE, 1999] IEEE (1999). Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specification. IEEE Standard 802.11. Cited in page(s):
25

[ISO, 2002] ISO (2002). Quality management systems – fundamentals and
vocabulary(iso 9000:2000). Cited in page(s): 13

[Issarny et al., 2005] Issarny, V., Sacchetti, D., Tartanoglu, F., Sailhan, F., Chi-
bout, R., Levy, N., and Talamona, A. (2005). Developing Ambient Intel-
ligence Systems: A Solution based on Web Services. Journal of Automated
Software Engineering. Cited in page(s): 105

[Issarny et al., 2004] Issarny, V., Tartanoglu, F., Liu, J., and Sailhan, F. (2004).
Software architecture for mobile distributed computing. In Proceedings of

Bibliography 141

4th Working IEEE/IFIP Conference on Software Architecture (WICSA 2004),
pages 201–210. Cited in page(s): 10

[Jiang et al., 2001] Jiang, S., He, D., and Rao, J. (2001). A prediction-based
link availability estimation for mobile ad hoc networks. In Proc. of IEEE
INFOCOM. Cited in page(s): 26

[Johnson et al., 2004] Johnson, D. B., Maltz, D. A., and Hu, Y.-C. (2004).
The dynamic source routing protocol for mobile ad hoc networks
(DSR). IETF Draft, http://www.ietf.org/internet-drafts/
draft-ietf-manet-dsr-10.txt . Cited in page(s): 54

[Josang et al., 2005] Josang, A., Ismail, R., and Boyd, C. (2005). A survey of
trust and reputation systems for online service provision. Decision Support
Systems (to appear). Cited in page(s): 37

[Jurca and Faltings, 2003] Jurca, R. and Faltings, B. (2003). An incentive com-
patible reputation mechanism. In Proceedings of IEEE International Confer-
ence on E-Commerce, CA, USA. Cited in page(s): 18 , 40

[Jøsang and Ismail, 2002] Jøsang, A. and Ismail, R. (2002). The beta reputa-
tion system. In Proc. of 15th Bled Conf. on Electronic Commerce. Cited in
page(s): 85 , 89

[Kagal et al., 2002] Kagal, L., Korolev, V., Avancha, S., Joshi, A., Finin, T., and
Yesha, Y. (2002). Centaurus: an infrastructure for service management
in ubiquitous computing environments. Wireless Networks, 8(6):619–635.
Cited in page(s): 10

[Kamvar et al., 2003] Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H.
(2003). The EigenTrust algorithm for reputation management in P2P net-
works. In Proceedings of the 12th International World Wide Web Conference.
Cited in page(s): 37 , 38

[Karlins and Abelson, 1970] Karlins, M. and Abelson, H. I. (1970). Persuasion,
how opinion and attitudes are changed. Crosby Lockwood & Son. Cited in
page(s): 89

[Kindberg and Fox, 2002] Kindberg, T. and Fox, A. (2002). System software
for ubiquitous computing. IEEE Pervasive Computing, 1(1):70–81. Cited in
page(s): 7 , 16 , 129

[Klemm et al., 2005] Klemm, F., Krishnamurthy, S. V., and Tripathi, S. K.
(2005). Improving TCP performance in ad hoc networks using signal

http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt

142 Bibliography

strength based link management. Ad Hoc Networks, 3(2). Cited in page(s):
26 , 27

[Koistinen, 1997] Koistinen, J. (1997). Dimensions for reliability contracts
in distributed objects systems. Technical Report HPL-97-119, Hewlette
Packard. Cited in page(s): 67

[Kollock, 1994] Kollock, P. (1994). The emergence of exchange structures: an
experimented study of uncertainty, commitment, and trust. American Jour-
nal of sociology, 100(2). Cited in page(s): 88

[Kommerling and Kuhn, 1999] Kommerling, O. and Kuhn, M. G. (1999). De-
sign principles for tamper-resistant smartcard processors. In Proceedings of
the USENIX Workshop on Smartcard Technology. Cited in page(s): 9

[Kotz et al., 2003] Kotz, D., Newport, C., and Elliott, C. (2003). The mistaken
axioms of wireless-network research. Technical Report TR2003-467, Dart-
mouth College, Computer Science, Hanover, NH. Cited in page(s): 28

[LBNL, 2001] LBNL (2001). Network simulator ns-2. http://www.isi.
edu/nsnam/ns . Cited in page(s): 57 , 96

[Lee and Helal, 2003] Lee, C. and Helal, S. (2003). A multi-tier ubiquitous
service discovery protocol for mobile clients. In Proc. of International Sym-
posium on Performance Evaluation of Computer and Telecommunication Systems
(SPECT). Cited in page(s): 31

[Lee et al., 2004] Lee, G., Faratin, P., Bauer, S., and Wroclawski, J. (2004). A
user-guided cognitive agent for network service selection in pervasive
computing environments. In Proc. of 2nd IEEE Annual Conference on Per-
vasive Computing and Communications. Cited in page(s): 30 , 73

[Liao and Campbell, 2001] Liao, R. R.-F. and Campbell, A. T. (2001). A utility-
based approach for quantitative adaptation in wireless packet networks.
Wireless Networks, 7(5):541–557. Cited in page(s): 29

[Liu and Issarny, 2004a] Liu, J. and Issarny, V. (2004a). Enhanced reputation
mechanism for mobile ad hoc networks. In Proc. of Int’l Conf. on Trust Man-
agement (iTrust 2004). LNCS 2995. Cited in page(s): 89

[Liu and Issarny, 2004b] Liu, J. and Issarny, V. (2004b). QoS-aware service lo-
cation in mobile ad hoc networks. In Proc. of the 5th IEEE Int’l Conf. on
Mobile Data Management (MDM). Cited in page(s): 74

http://www.isi.edu/nsnam/ns
http://www.isi.edu/nsnam/ns

Bibliography 143

[Liu and Issarny, 2004c] Liu, J. and Issarny, V. (2004c). Service allocation in
selfish mobile ad hoc networks using Vickrey auction. In Current Trends
in Database Technology - EDBT 2004 Workshops, EDBT 2004 Workshops PhD,
DataX, PIM, P2P&DB, and ClustWeb, Heraklion, Crete, Greece, March 14-18,
2004, Revised Selected Papers, pages 385–394. Cited in page(s): 82

[Liu and Issarny, 2005] Liu, J. and Issarny, V. (2005). Signal Strength based
Service Discovery (S3D) in Mobile Ad Hoc Networks. In Proc. of the 16th
Annual IEEE International Symposium on Personal Indoor and Mobile Radio
Communications (PIMRC). Cited in page(s): 11

[Liu and Issarny, 2006] Liu, J. and Issarny, V. (2006). An incentive compatible
reputation mechanism for ubiquitous computing environments. In Proc. of
4th Int’l Conf. on Privacy, Security and Trust (to appear). Cited in page(s): 83

[Liu et al., 2005] Liu, J., Sailhan, F., Sacchetti, D., and Issarny, V. (2005). Group
management for mobile ad hoc networks: Design, implementation and ex-
periment. In Proc. of the 6th International Conference on Mobile Data Manage-
ment (MDM05). Cited in page(s): 102

[Liu et al., 2003] Liu, J., Sohraby, K., Zhang, Q., Li, B., and Zhu, W. (2003). Re-
source discovery in mobile ad hoc networks. The handbook of ad hoc wireless
networks. Cited in page(s): 24

[Liu et al., 2004] Liu, Y., Ngu, A. H. H., and Zeng, L. (2004). QoS computation
and policing in dynamic Web service selection. In Proc. of WWW conference.
Cited in page(s): 30 , 75

[Lyytinen and Yoo, 2002] Lyytinen, K. and Yoo, Y. (2002). Issues and chal-
lenges in ubiquitous computing, introduction. Communication of ACM,
45(12):62–65. Cited in page(s): 5

[MacKie-Mason and Varian, 1994] MacKie-Mason, J. K. and Varian, H. R.
(1994). Pricing the internet. Technical report, Economics Working Paper.
Cited in page(s): 33

[MANET, 2005] MANET (2005). IETF working group: Mobile ad
hoc networks (manet). http://www.ietf.org/html.charters/
manet-charter.html . Cited in page(s): 6

[Marsh, 1994] Marsh, S. P. (1994). Formalising Trust as a Computational Concept.
PhD thesis, University of Stirling. Cited in page(s): 86 , 87

http://www.ietf.org/html.charters/manet-charter.html
http://www.ietf.org/html.charters/manet-charter.html

144 Bibliography

[Marti et al., 2000] Marti, S., Giuli, T. J., Lai, K., and Baker, M. (2000). Mitigat-
ing routing misbehavior in mobile ad hoc networks. In Proc. of the 6th ACM
International Conf. on Mobile Computing and Networking. Cited in page(s): 9 ,
38

[Mascolo et al., 2001] Mascolo, C., Capra, L., Zachariadis, S., and Emmerich,
W. (2001). XMIDDLE: A data-sharing middleware for mobile computing.
Wireless Personal Communications, 21(1). Cited in page(s): 10

[Maximilien and Singh, 2004] Maximilien, E. M. and Singh, M. P. (2004). A
framework and ontology for dynamic Web services selection. IEEE Internet
Computing. Cited in page(s): 23

[McAfee and McMillan, 1987] McAfee, R. P. and McMillan, J. (1987). Auc-
tions and bidding. Journal of Economic Literature, 25. Cited in page(s): 35

[McMillan, 1994] McMillan, M. (1994). Selling spectrum rights. Journal of Eco-
nomic Perspectives. Cited in page(s): 35

[Michiardi and Molva, 2002] Michiardi, P. and Molva, R. (2002). CORE: a col-
laborative reputation mechanism to enforce node cooperation in mobile ad
hoc networks. In CMS’2002. Cited in page(s): 18 , 37 , 38

[Miller and Pascoe, 2000] Miller, B. A. and Pascoe, R. A. (2000). Salutation
service discovery in pervasive computing environments. IBM White Paper.
Cited in page(s): 5 , 13

[Miller et al., 2002] Miller, N., Resnick, P., and Zeckhauser, R. (2002). Eliciting
honest feedback in electronic markets. Working Paper. Cited in page(s): 17 ,
18

[Mokhtar et al., 2005] Mokhtar, S. B., Liu, J., Georgantas, N., and Issarny, V.
(2005). QoS-aware dynamic service composition in ambient intelligence
environments. In Proc. of ACM/IEEE International Conference on Automatic
Software Engineering. Cited in page(s): 18

[Mui et al., 2001] Mui, L., Mohtashemi, M., Ang, C., Szolovits, P., and Halber-
stadt, A. (2001). Ratings in distributed systems: A bayesian approach. In
Proc. of 11th Workshop on Information Technologies and Systems (WITS). Cited
in page(s): 85

[Mui et al., 2002] Mui, L., Mohtashemi, M., and Halberstadt, A. (2002). A
computational model of trust and reputation. In Proceedings of the 35th
HICSS. Cited in page(s): 17 , 87 , 94 , 102

Bibliography 145

[Naor et al., 1999] Naor, M., Pinkas, B., and Sumner, R. (1999). Privacy pre-
serving auctions and mechanism design. In Proc. of ACM Conference on
Electronic Commerce. Cited in page(s): 82

[Narayanan et al., 2000] Narayanan, D., Flinn, J., and Satyanarayanan, M.
(2000). Using history to improve mobile application adaptation. In Proc.
of 3rd IEEE Workshop on Mobile Computing Systems and Applications. Cited in
page(s): 70

[Nash et al., 2005] Nash, D. C., Martin, T. L., Ha, D. S., and Hsiao, M. S. (2005).
Towards an intrusion detection for battery exhaustion attacks on mobile
computing devices. In Proc. of 3rd Int’l Conf. on Pervasive Computing and
Communications Workshops. Cited in page(s): 72

[Niculeascu and Nath, 2001] Niculeascu, D. and Nath, B. (2001). Ad hoc po-
sitioning system (APS). In Proc. of IEEE GlobeCOM. Cited in page(s): 26

[Niculeascu and Nath, 2003] Niculeascu, D. and Nath, B. (2003). Ad hoc po-
sitioning system (APS) using AOA. In Proc. of IEEE INFOCOM. Cited in
page(s): 26

[Nidd, 2001] Nidd, M. (2001). Service discovery in DEAPspace. IEEE Per-
sonal Communications, 8(4). Cited in page(s): 21 , 28

[Nisan and Ronen, 2001] Nisan, N. and Ronen, A. (2001). Algorithmic mech-
anism design. In 31st ACM Symp. on Theory of Computing, pages 129–140.
Cited in page(s): 34 , 35

[Noble and Satyanarayanan, 1999] Noble, B. D. and Satyanarayanan, M.
(1999). Experience with adaptive mobile applications in odyssey. Mob.
Netw. Appl., 4(4):245–254. Cited in page(s): 10 , 29

[Noble et al., 1997] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton,
J. E., Flinn, J., and Walker, K. R. (1997). Agile application-aware adaptation
for mobility. In SOSP ’97: Proceedings of the sixteenth ACM symposium on Op-
erating systems principles, pages 276–287, New York, NY, USA. ACM Press.
Cited in page(s): 70

[OASIS, 2005] OASIS (2005). Service oriented architecture reference model.
Working Draft 05, http://xml.coverpages.org/SOA-RM-WD05.
pdf . Cited in page(s): 12

[Obreiter et al., 2003] Obreiter, P., König-Ries, B., and Klein, M. (2003). Stimu-
lating cooperative behavior of autonomous devices: an analysis of require-
ments and existing approaches. In Proc. of the 2nd Int’l Workshop on Wireless
Information Systems. Cited in page(s): 9

http://xml.coverpages.org/SOA-RM-WD05.pdf
http://xml.coverpages.org/SOA-RM-WD05.pdf

146 Bibliography

[Odlyzko, 1999] Odlyzko, A. (1999). Paris metro pricing for the internet. In
Proc. of ACM conference on Electronic Commerce. Cited in page(s): 33

[Papazoglou, 2003] Papazoglou, M. P. (2003). Service-oriented computing:
Concepts, characteristics and directions. In Proc. of Fourth International Con-
ference on Web Information Systems Engineering (WISE’03). Cited in page(s): 12

[Papazoglou and Georgakopoulos, 2003] Papazoglou, M. P. and Geor-
gakopoulos, D. (2003). Service-oriented computing. Communications of the
ACM, 46(10). Cited in page(s): 1 , 12

[Paradiso and Starner, 2005] Paradiso, J. A. and Starner, T. (2005). Energy
scavenging for mobile and wireless electronics. IEEE Pervasivce Comput-
ing. Cited in page(s): 8

[Patel et al., 2005] Patel, J., Teacy, W. L., Jennings, N. R., and Luck, M. (2005).
A probabilistic trust model for handling inaccurate reputation sources. In
Proc. of third international conference on Trust Management (iTrust 2005) LNCS
Volume 3477, pages 193 – 209. Cited in page(s): 40

[Pedersen, 1991] Pedersen, T. (1991). Non-interactive and information-
theoretic secure verifiable secret sharing. Advances in Cryptology - CRYPTO
1991, 576:129–140. Cited in page(s): 82

[Perkins, 2001] Perkins, C. E. (2001). Ad hoc networking. Addison Wesley.
Cited in page(s): 6

[Perkins et al., 1998] Perkins, C. E., Alpert, S. R., and Woolf, B. (1998). Mobile
IP: Design Principles and Practices. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA. Cited in page(s): 14

[Pfleeger, 1997] Pfleeger, C. (1997). Security in Computing. Prentice Hall PTR.
Cited in page(s): 67

[Punnoose et al., 2000] Punnoose, R. J., Nikitin, P. V., and Stancil, D. D. (2000).
Efficient simulation of Ricean fading with a packet simulator. In Proc. of
IEEE VTC. Cited in page(s): 57

[Qin and Kunz, 2002] Qin, L. and Kunz, T. (2002). Proactive routing main-
tenance in DSR. ACM SIGMOBILE Mobile Computing and Communications
Review, 6(3). Cited in page(s): 26 , 27

[Raman and McCanne, 1999] Raman, S. and McCanne, S. (1999). A model,
analysis, and protocol framework for soft state-based communication. In

Bibliography 147

SIGCOMM ’99: Proceedings of the conference on Applications, technologies, ar-
chitectures, and protocols for computer communication, pages 15–25, New York,
NY, USA. ACM Press. Cited in page(s): 28

[Ran, 2003] Ran, S. (2003). A model for Web services discovery with QoS.
ACM SIGecom Exchanges, 4(1). Cited in page(s): 23 , 24 , 66

[Ranganathan and Campbell, 2003] Ranganathan, A. and Campbell, R. H.
(2003). A middleware for context-aware agents in ubiquitous computing
environments. In Proc. of Middleware, Lecture Notes in Computer Science, Vol-
ume 2672. Cited in page(s): 11

[Rappaport, 2002] Rappaport, T. S. (2002). Wireless Communications: Principles
and Practice. Prentice Hall. Cited in page(s): 8 , 26 , 45 , 46 , 48 , 57

[Ratsimor et al., 2002] Ratsimor, O., Chakraborty, D., Joshi, A., and Finin, F.
(2002). Allia: Alliance-based service discovery for ad-hoc environments.
In Proc. of ACM mobile Commerce Workshop. Cited in page(s): 22

[Raverdy et al., 2006] Raverdy, P.-G., Riva, O., de La Chapelle, A., Chibout, R.,
and Issarny, V. (2006). Efficient context-aware service discovery in multi-
protocol pervasive environments. In Proc. of Int’l Conf. on Mobile Data Man-
agement (MDM). Cited in page(s): 12

[Reibman and Veeraraghavan, 1991] Reibman, A. L. and Veeraraghavan, M.
(1991). Reliability modeling: An overview for system designers. IEEE com-
puter. Cited in page(s): 14 , 67

[Resnick et al., 2000] Resnick, P., Zeckhauser, R., Friedman, E., and
Kuwabara, K. (2000). Reputation systems. Communications of the
ACM, 43(12):45–48. Cited in page(s): 17 , 18 , 37

[Roman et al., 2000] Roman, G.-C., Picco, G. P., and Murphy, A. L. (2000).
Software engineering for mobility: A roadmap. In Proc. of 22nd ICSE. Cited
in page(s): 8

[Roman et al., 2002] Roman, M., Hess, C., Cerqueira, R., Ranganathan, A.,
Campbell, R. H., and Nahrstedt, K. (2002). A middleware infrastructure
for active spaces. IEEE Pervasive Computing, 01(4):74–83. Cited in page(s): 10

[Roscoe and Bowen, 2000] Roscoe, T. and Bowen, G. (2000). Script-driven
packet marking for quality of service support in legacy applications. In
Proc. of SPIE Conf. on Multimedia Computing and Networking. Cited in page(s):
68

148 Bibliography

[Rothkopf et al., 1990] Rothkopf, M. H., Teisberg, T. J., and Kahn, E. P. (1990).
Why are Vickrey auctions rare? Journal of Political Economy, 98(1):94–109.
Cited in page(s): 82

[Royer and Perkins, 1999] Royer, E. M. and Perkins, C. E. (1999). Multicast
operation of the ad hoc on-demand distance vector routing protocol. In
Proceedings of MobiCom, pages 207–218. Cited in page(s): 53

[Sabata et al., 1997] Sabata, B., Chatterjee, S., Davis, M., Sydir, J. J., and
Lawrence, T. F. (1997). Taxonomy for QoS specification. In Proc. of Workshop
on Object-oriented Real-time Dependable Systems (WORDS). Cited in page(s):
66

[Sabater and Sierra, 2001] Sabater, J. and Sierra, C. (2001). Regret: A reputa-
tion model for gregarious societies. In Proc. 4th Workshop Deception, Fraud,
and Trust in Agent Societies. Cited in page(s): 102

[Saha and Mukherjee, 2003] Saha, D. and Mukherjee, A. (2003). Pervasive
computing: A paradigm for the 21st century. IEEE Computer, 36(3):25–31.
Cited in page(s): 5 , 6 , 11

[Sandholm, 1996] Sandholm, T. W. (1996). Limitations of the Vickrey auction
in computational multiagent systems. In Proc. of the 2nd Int’l Conf. on Multi-
Agent Systems. Cited in page(s): 82

[Sassone, 1988] Sassone, P. G. (1988). Cost benefit analysis of information sys-
tems: a survey of methodologies. In Proc. of Conference on Supporting Group
Work, pages 126–133. Cited in page(s): 77

[Satyanarayanan, 1996] Satyanarayanan, M. (1996). Fundamental challenges
in mobile computing. In Proc. of Symposium on Principle of Distributed Com-
puting (PODC). Cited in page(s): 7 , 10

[Satyanarayanan, 2001] Satyanarayanan, M. (2001). Pervasive computing: vi-
sion and challenges. IEEE Personal Communications. Cited in page(s): 5 , 7 ,
11

[Seigel, 1988] Seigel, A. F. (1988). Statistics and Data Analysis: An introduction.
John Wesley & Sons. Cited in page(s): 75

[Sen et al., 2005] Sen, R., Handorean, R., Roman, G.-C., and Gill, C. (2005).
Service Oriented Computing Imperatives in Ad Hoc Wireless Settings (Book
Chapter), pages 247–269. Idea Group Publishing. Cited in page(s): 12 , 13

Bibliography 149

[Shakkottai et al., 2003] Shakkottai, S., Rappaport, T. S., and Karlsson, P. C.
(2003). Cross-layer design for wireless networks. IEEE Commun. Mag.,
41(10). Cited in page(s): 48

[Su et al., 2001] Su, W., Lee, S.-J., and Gerla, M. (2001). Mobility prediction
and routing in ad hoc wireless networks. International Journal of Network
Management, 10. Cited in page(s): 26

[Toh, 1997] Toh, C. K. (1997). Associativity based routing for ad hoc mobile
networks. Wireless Personal Communications Journal, Special Issue on Mobile
Networking and Computing Systems, 4(2). Cited in page(s): 26

[Varshavsky et al., 2005] Varshavsky, A., Reid, B., and Lara, E. D. (2005). A
cross-layer approach to service discovery and selection in MANETs. In
Proc. of 2nd IEEE International Conference on Mobile Ad-hoc and Sensor Systems
(MASS). Cited in page(s): 31

[Venkatasubramanian and Nahrstedt, 1997] Venkatasubramanian, N. and
Nahrstedt, K. (1997). An integrated metric for video QoS. In ACM
International Multimedia Conference. Cited in page(s): 29 , 77

[Vickrey, 1961] Vickrey, W. (1961). Counter speculation, auctions, and com-
petitive sealed tenders. Journal of Finance, 16:8–37. Cited in page(s): 16 , 36 ,
65

[Vu et al., 2005] Vu, L.-H., Hauswirth, M., and Aberer, K. (2005). QoS-based
service selection and ranking with trust and reputation management. In
Proc. of OTM conferences CoopIS/DOA/ODBASE. Cited in page(s): 32

[Vulkan and Jennings, 2000] Vulkan, N. and Jennings, N. R. (2000). Efficient
mechanisms for the supply of services in multi-agent environments. Inter-
national Journal of Decision Support Systems. Cited in page(s): 35

[W3C, 2001] W3C (2001). Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl . Cited in page(s): 106

[W3C, 2002] W3C (2002). Web services activity. http://www.w3.org/
2002/ws/ . Cited in page(s): 106

[W3C, 2003] W3C (2003). SOAP version 1.2. http://www.w3.org/TR/
soap12-part1/ . Cited in page(s): 106

[W3C, 2004a] W3C (2004a). OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features/ . Cited in page(s): 23

http://www.w3.org/TR/wsdl
http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/owl-features/

150 Bibliography

[W3C, 2004b] W3C (2004b). Web Services Architecture. http://www.w3.
org/TR/2004/NOTE-ws-arch-20040211/ . Cited in page(s): 106

[Want and Pering, 2005] Want, R. and Pering, T. (2005). System challenges
for ubiquitous & pervasive computing. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages 9–14, New York, NY,
USA. ACM Press. Cited in page(s): 6

[Want et al., 2002] Want, R., Pering, T., Borriello, G., and Farkas, K. I. (2002).
Disappearing hardware. IEEE Pervasive Computing. Cited in page(s): 8

[Weiser, 1991] Weiser, M. (1991). The computer for the 21st century. Scientific
American. Cited in page(s): 5 , 15 , 129

[Weiser and Brown, 1996] Weiser, M. and Brown, J. S. (1996). The coming
age of calm technolgy. http://www.ubiq.com/hypertext/weiser/
acmfuture2endnote.htm . Cited in page(s): 1 , 6

[Whitby et al., 2004] Whitby, A., Josang, A., and Indulska, J. (2004). Filtering
out unfair ratings in bayesian reputation systems. In Proceedings of the 7th
Int’l Workshop on Trust in Agent Societies. Cited in page(s): 39

[Williams and Camp, 2002] Williams, B. and Camp, T. (2002). Comparision
of broadcasting techniques for mobile ad hoc networks. In Proc. of ACM
MobiHoC. Cited in page(s): 51

[Wolski, 1998] Wolski, R. (1998). Dynamically forecasting network perfor-
mance using the network weather service. Journal of Cluster Computing,
1(1). Cited in page(s): 72

[Wolski et al., 1997] Wolski, R., Spring, N., and Peterson, C. (1997). Imple-
menting a performance forecasting system for metacomputing: the net-
work weather service. In Proc. of SuperComputing. Cited in page(s): 71 ,
119

[Wolski et al., 1999] Wolski, R., Spring, N. T., and Hayes, T. (1999). The net-
work weather service: A distributed resource performance forecasting ser-
vice for metacomputing. Journal of future generation Computing Systems,
15(5-6). Cited in page(s): 71

[Xiong and Liu, 2004] Xiong, L. and Liu, L. (2004). PeerTrust: supporting
reputation-based trust for peer-to-peer electronic communities. IEEE
Transactions on Knowledge and Data Engineering, 16(7):843–857. Cited in
page(s): 37

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm
http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm

Bibliography 151

[Xu et al., 2001] Xu, D., Nahrstedt, K., and Wichadakul, D. (2001). QoS-aware
discovery of wide-area distributed services. In Proc. of first IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid (CCGrid). Cited in
page(s): 24

[Yu and Singh, 2002] Yu, B. and Singh, M. P. (2002). An evidential model of
distributed reputation management. In Proceedings of ACM AAMAS. Cited
in page(s): 17 , 39 , 94

[Yu and Singh, 2003] Yu, B. and Singh, M. P. (2003). Detecting deception in
reputation management. In Proceedings of the Second International Joint Con-
ference on Autonomous Agents & Multiagent Systems (AAMAS), pages 73–80.
Cited in page(s): 39

[Zacharia and Maes, 2000] Zacharia, G. and Maes, P. (2000). Trust manage-
ment through reputation mechanisms. Applied Artificial Intelligence, 14:881–
907. Cited in page(s): 17 , 38 , 102

[Zeng et al., 2003] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., and
Sheng, Q. Z. (2003). Quality driven web services composition. In Proc. of
WWW conference. Cited in page(s): 66

[Zeng et al., 2004] Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M.,
Kalagnanam, J., and Chang, H. (2004). QoS-aware middleware for Web ser-
vices composition. IEEE Transactions on Software Engineering, 30(5). Cited in
page(s): 72

[Zhong et al., 2003] Zhong, S., Chen, J., and Yang, Y. R. (2003). Sprite: A sim-
ple, cheat-proof, credit-based system for mobile ad-hoc networks. In Pro-
ceedings of IEEE Infocom. Cited in page(s): 9

[Zhu et al., 2004] Zhu, F., Mutka, M., and Ni, L. (2004). PrudentExposure: a
private and user-centric service discovery protocol. In PERCOM ’04: Pro-
ceedings of the Second IEEE International Conference on Pervasive Computing
and Communications (PerCom’04). Cited in page(s): 12

[Zhu et al., 2005] Zhu, F., Mutka, M. W., and Ni, L. M. (2005). Service dis-
covery in pervasive computing environments. IEEE Pervasive Computing,
4(4):81–90. Cited in page(s): 13 , 15

[Zimmermann, 1995] Zimmermann, P. R. (1995). The Official PGP User’s
Guide. MIT press. Cited in page(s): 16

	Abstract
	Contents
	List of Figures
	List of Tables
	I Introduction
	Motivation
	Contribution

	II System Architecture for Ubiquitous Computing
	Ubiquitous Computing Vision
	Enabling Elements
	Characteristics and Challenges

	Ubiquitous Computing Middleware
	Service Discovery in Ubiquitous Computing Environments
	Service Location
	Service Selection
	Reputation Mechanism

	Concluding Remarks

	III Service Discovery in Ubiquitous Computing Environments: State of the Art
	Service Discovery Protocols
	QoS-aware Service Location
	QoS Description Awareness
	Mobility awareness
	Ad Hoc Routing
	Mobility Aware Service Location

	Service Selection
	Service Evaluation
	Evaluation based on QoS Description
	Evaluation based on Service Path
	Evaluation based on Service Provider

	Pricing Model
	Service Price
	Auction-based Pricing Model

	Reputation Mechanism
	Concluding Remarks

	IV Signal Strength based Service Location
	Background on Signal Propagation
	Signal Strength based Service Location (S3L)
	Service Location Process
	Beacon
	Service Location

	S3L Analysis

	Performance Evaluation
	Simulation Environment
	Evaluation Results

	Concluding Remarks

	V QoS-aware Service Selection Using Vickrey auction
	A QoS Model
	QoS-aware Service Selection
	User Benefit
	Utility Function
	Vickrey Auction based Pricing Model
	QoS-aware Service Location and Selection

	Service Selection Analysis
	Concluding Remarks

	VI A Robust and Incentive Compatible Reputation Mechanism
	Reputation Representation
	Beta Distribution
	Beta Reputation

	Reputation Formation
	Reputation Evolution
	Time Fading
	Evolution of Service Reputation (SRep)
	Evolution of Recommendation Reputation (RRep)

	Reputation Propagation
	Reputation Mechanism Evaluation
	Experiment Setting
	Evaluation Results

	Concluding Remarks

	VII QoS-aware Web Service Discovery Middleware
	Background on Web Services
	QoS-aware Web Service Discovery (QoWSD)
	QoWSD Prototype
	Prototype Overview
	Performance Evaluation

	Concluding Remarks

	VIII Conclusion
	Contribution
	Perspective

	Bibliography

