
HAL Id: tel-00469438
https://theses.hal.science/tel-00469438

Submitted on 1 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependable composition of Web services
Ferda Tartanoglu

To cite this version:
Ferda Tartanoglu. Dependable composition of Web services. Computer Science [cs]. Université Pierre
et Marie Curie - Paris VI, 2005. English. �NNT : �. �tel-00469438�

https://theses.hal.science/tel-00469438
https://hal.archives-ouvertes.fr

No Ordre
de la thèse

:

THÈSE

présentée

DEVANT L’UNIVERSITÉ DE PARIS 6

pour obtenir

le grade de : DOCTEUR DE L’UNIVERSITÉ DE PARIS 6

Mention : Informatique

PAR

Galip Ferda TARTANO ĞLU

Équipe d’accueil : INRIA, Projet ARLES

École Doctorale : Informatique, T élécommunications et Electronique de Paris

TITRE DE LA THÈSE :

Composition Sûre de Fonctionnement de Services Web

SOUTENUE LE 9 / 12 / 2005 devant la commission d’Examen

COMPOSITION DU JURY

Nicole LÉVY (Université de Versailles Saint-Quentin-en-Yvelines) Rapporteur

Alexander ROMANOVSKY (Université de Newcastle upon Tyne) Rapporteur

Pierre SENS (Univerité Paris 6) Examinateur

Apostolos ZARRAS (Université de Ioannina) Examinateur

Valérie ISSARNY (INRIA) Directeur de Thèse

Résumé

Les services Web offrent un certain nombre de propriétés intéressantes pour le
développement des systèmes distribués ouverts, construits par la composition de
services autonomes. Cependant, les systèmes résultants doivent offrir des pro-
priétés non-fonctionnelles et en particulier des propriétés de sûreté de fonction-
nement pour être adopté par les utilisateurs, et notamment pour leur utilisation
effective dans le domaine de l’e-business. Cette thèse propose une méthode et des
intergiciels associés pour la composition sûre de fonctionnement de services au-
tonomes. Notre contribution porte sur une extension des interfaces des systèmes
composés par leur propriétés de sûreté de fonctionnement, une définition d’un
langage de composition spécifique pour assurer la sûreté de fonctionnement du
service composite et sur un support d’exécution pour la mise en œuvre des
mécanismes de tolérance aux fautes. L’extension proposée aux interfaces des ser-
vices Web est spécifié par un langage de conversation qui permet de définir les
règles pour appeler les opérations offertes par les services Web individuelles. Les
propriétés relatives au recouvrement sont associées à ces conversations, permet-
tant de raisonner sur la stratégie de recouvrement qui peut être mise en œuvre
dans la composition de service. En effet, les comportement de recouvrement des
services composites dépendent des propriétés de recouvrement des services com-
posés, ces derniers devant effectuer les actions de recouvrement en présence de
fautes. Cette thèse propose ensuite un langage de composition déclaratif qui per-
met de développer des services composites en termes d’actions atomiques. Nous
permettons la spécification du traitement d’exceptions impliquant plusieurs ser-
vices Web au niveau de la composition, permettant en particulier d’intégrer des
services non-sûres dans la composition tout en garantissant la sûreté de fonc-
tionnement du service composite. Nous montrons que la tolérance aux fautes
peut être obtenue comme une propriété émergente de l’agrégation de plusieurs
services, potentiellement non-sûres.

ii Résumé

Abstract

Web services offer a number of valuable features towards supporting the de-
velopment of open distributed systems, built out of the composition of au-
tonomous services. Nonetheless, the resulting systems must offer a number of
non-functional properties and in particular dependability-related ones, for ac-
ceptance by users, including effective exploitation in the e-business domain. This
thesis proposes a method and associated middleware services for the dependable
composition of autonomous systems. Our contribution subdivides into the exten-
sion of the interfaces of systems with their dependability capabilities, a definition
of a specific composition language oriented towards providing dependability for
the composite system and a runtime support that implements fault tolerance
mechanisms. The proposed extension of Web service interfaces is specified us-
ing a conversation language that sets the rules for calling the operations offered
by individual Web services. Recovery-related properties are associated to these
conversations, enabling to reason about the recovery strategy that can be imple-
mented in the service composition. Indeed, the recovery behaviour of composite
services depend upon the recovery properties of the composed Web services,
since the latter must ultimately perform some recovery actions in the presence
of faults. This thesis further proposes a declarative composition language, which
allows developing composite Web services in terms of dependable actions. We
allow exception handling involving several Web services to be specified at the
composition level, enabling in particular to integrate non-dependable Web ser-
vices in the composition while still supporting dependability of the composite
service. We show that fault tolerance can be obtained as an emergent property
of the aggregation of different, potentially non-dependable, services.

iv Abstract

Remerciements

Je tiens à exprimer toute ma reconnaissance à Madame Valérie Issarny pour son
encadrement, ses nombreux conseils et son soutien constant tout au long de ma
thèse.

Je tiens à exprimer ma profonde gratitude à Monsieur Pierre Sens, qui m’a fait
l’honneur de présider le jury de thèse de doctorat, pour l’intérêt et le soutien
chaleureux dont il a toujours fait preuve.

Je suis reconnaissant à Madame Nicole Levy et à Monsieur Alexander Roma-
novsky d’avoir acceptés d’être rapporteurs de ma thèse. Leurs commentaires et
leurs questions m’ont permis de clarifier ma rédaction et m’ont donné de nou-
velles pistes de réflexion.

Je remercie Monsieur Apostolos Zarras pour avoir accepté de faire partie de mon
jury de thèse. Pour cela, ainsi que pour ses conseils avisés, notamment concernant
la rédaction scientifique, je lui exprime ma profonde gratitude.

Je remercie tous les chercheurs, ingénieurs, thésards, stagiaires et membres du
projet Arles de l’INRIA Rocquencourt pour leur amitié et leur aide pendant ces
années de thèse.

Je tiens à témoigner tout particulièrement ma sympathie et ma reconnaissance
à Françoise avec qui j’ai partagé le bureau pendant ces années, et avec qui j’ai
eu tant de discussions fructueuses.

Enfin, pour leur soutien sans faille et permanent, je tiens à remercier de tout
coeur mes parents et Bahar auxquels je dédie mon mémoire de thèse.

vi Table des matières

Table des matières

Résumé i

Abstract iii

Table des matières vii

partie I : Dependable Composition of Web Services 1

I Introduction 3

I.1 Service-Oriented Architectures 3

I.1.1 Services . 4

I.1.2 Service composition . 7

I.2 Dependable service composition 8

I.2.1 Dependability properties of individual services 8

I.2.2 Dependability of composite services 8

I.2.3 Fault tolerance mechanisms 10

I.3 Contributions . 10

I.4 Document structure . 12

viii Table des matières

II Background 15

II.1 The Web services architecture 15

II.1.1 Messaging . 16

II.1.2 Description . 18

II.1.3 Discovery . 20

II.2 Web service composition . 21

II.2.1 A use case . 22

II.2.2 Conversations . 23

II.2.3 Choreography . 26

II.2.4 Orchestration . 29

II.3 Fault tolerance in the Web services architecture 31

II.3.1 Fault tolerance mechanisms 31

II.3.2 Backward error recovery for the Web 32

II.3.3 Forward error recovery for the Web 38

III Specifying Recovery Support of Web Services 41

III.1 The WS-RESC language . 41

III.1.1 Conversation modeling 42

III.1.2 WS-RESC language constructs 43

III.1.2.1 Sequencing . 45

III.1.2.2 Activities . 46

III.1.2.3 Choice . 48

III.1.2.4 Concurrency 49

III.1.2.5 Identifying sessions 50

Table des matières ix

III.1.2.6 Synchronization 52

III.1.2.7 Timing constraints 53

III.1.3 Exceptional behaviour 54

III.2 Recovery-related properties of conversations 58

III.2.1 Equivalence relation for expressing recovery-related prop-
erties . 59

III.2.2 An equivalence relation over conversations 60

III.3 Expressing recovery-related properties 62

III.3.1 Expressing recovery properties using meta-data 62

III.3.2 Expressing equivalence relations in WS-RESC 63

III.3.2.1 Expressing alternative conversations 63

III.3.2.2 Expressing retry-ability 64

III.3.2.3 Expressing rollback 64

III.3.2.4 Expressing commutativity 65

III.4 Case study . 66

III.4.1 Retry-ability . 66

III.4.2 Atomicity . 67

III.4.3 Compensation and commutativity 69

III.4.4 Alternative conversations 72

III.5 Concluding remarks . 73

IV Dependable Composition of Web Services 77

IV.1 Web Service Composition Actions (WSCA) 77

IV.1.1 Specifying WSCA . 79

x Table des matières

IV.1.2 Shared variables of a WSCA instance 80

IV.1.3 Abstract service definition 80

IV.1.4 Concurrency . 83

IV.2 Coordinating access to composed Web services 86

IV.2.1 Coordinated Atomic Actions 87

IV.2.2 WSCA operations . 89

IV.2.3 WSCA nesting . 92

IV.2.4 Coordinated exception handling 96

IV.2.5 Concurrently raised exceptions 98

IV.3 WSCAL orchestration language 102

IV.3.1 Sequential execution . 103

IV.3.2 Parallel execution . 103

IV.3.3 Conditional execution 104

IV.3.4 Iteration . 104

IV.3.5 Interactions with composed Web services 105

IV.3.6 Assign . 107

IV.3.7 Empty . 107

IV.3.8 Waiting . 108

IV.3.9 Synchronizing participants 108

IV.3.10 Throwing exceptions . 109

IV.3.11 Exception handling scopes 109

IV.3.12 Starting a nested WSCA 110

IV.4 Concluding remarks . 111

Table des matières xi

V Performance and Experiments 113

V.1 WSCA development . 113

V.2 Service discovery . 114

V.2.1 Matching abstract WSDL descriptions 115

V.2.2 Conversation compatibility checking 117

V.3 On the fly verification of invocation correctness 121

V.4 WSCA runtime . 124

V.4.1 Comparing WSCA design and execution 124

V.4.2 Concurrency control . 127

V.4.3 Dependability assessment 131

V.5 Concluding remarks . 133

VI Conclusion 135

VI.1 Contribution . 135

VI.2 Perspectives . 137

Bibliographie 139

Annexes 147

A WS-RESC XML Schema definition 149

B WSCAL XML Schema definition 153

C Travel agency WSCAL listing 165

xii Table des matières

Table des figures

I.1 Interactions . 5

II.1 SOAP document structure . 16

II.2 WSDL v1.1 document structure 19

II.3 A composite Web service example: the travel agent service . . 22

II.4 WSCL-based conversation of the flight Web service 25

II.5 Choreography for the travel agency service composition 28

II.6 BPEL example for the the travel agent 30

II.7 BTP atomic business transaction 35

II.8 BTP cohesive business transaction 36

II.9 WS-Transaction business activity 37

III.1 WS-RESC-based conversation of the flight Web service 43

III.2 Ordering of operations . 47

III.3 Activities and composition . 48

III.4 Choice . 49

III.5 Concurrency . 50

III.6 Concurrent sessions . 52

xiv Table des figures

III.7 Synchronization of concurrent activities 53

III.8 An activity with timers . 55

III.9 Exception handling . 57

III.10 Rollback activity . 65

III.11 Retry-able conversation . 66

III.12 Atomicity . 68

III.13 Complex payment . 70

III.14 Alternatives . 72

IV.1 Web service composition actions 78

IV.2 WSCAL document structure 79

IV.3 Concurrent accesses to composed Web services 84

IV.4 Coordinated atomic actions . 88

IV.5 Execution of a WSCA operation 90

IV.6 WSCA operation construct . 91

IV.7 Nested WSCA execution . 94

IV.8 Transactional accesses to shared and local variables 95

IV.9 Coordinated exception handling in a WSCA operation 98

IV.10 Concurrent exception resolution into a single exception 99

IV.11 Concurrent exceptions in the travel agency WSCA 102

V.1 WSDL matching . 116

V.2 Simulation relation . 118

V.3 WS-RESC matching . 120

Table des figures xv

V.4 Conversation verifier . 122

V.5 Verification cost . 123

V.6 Travel agency WSCA execution 125

V.7 WSCA vs BPEL . 126

V.8 WSCA vs BPEL in highly stressed environment 127

V.9 Detecting conflicts . 129

V.10 Concurrent calls . 130

V.11 Measuring parallel access efficiency 130

V.12 Dependability assessments . 132

V.13 Dependability assessments (2) 132

V.14 Dependability assessment with on the fly verification 133

A.1 WS-RESC . 152

B.1 WSCAL . 161

B.2 Nested WSCA . 162

B.3 WSCAL Statements . 163

xvi Table des figures

Première partie

Dependable Composition of Web
Services

2

I Introduction

Service-oriented computing aims at the development of highly-autonomous,
loosely-coupled systems that are able to communicate, compose and evolve in a
dynamic and heterogeneous environment. Autonomous systems that are devel-
oped and administered by distinct entities hide their implementation details with
well-defined interfaces that are made publicly available. Interfaces are written in
a standardized form enforcing interoperability across diversely implemented sys-
tems. Applications that are deployed over the Internet by an increasing number
of organizations are typical examples of such autonomous and loosely coupled
systems. These applications should be able to inter-operate without loose of their
autonomy and should be able to adapt to the changing environment where de-
vices and resources move, components appear, disappear and evolve. They should
also deal with the increasing requirements of service consumers on quality of ser-
vice guarantees. All these requirements raise a number of challenges, motivating
the definition of new architectural principles. One such challenge is to provide de-
pendability of the composition of autonomous and potentially non-dependable
systems. We propose in this thesis, a method and associated middleware ser-
vices for the dependable composition of autonomous systems. Our contribution
subdivides into the extension of the interfaces of systems with their dependabil-
ity capabilities, a definition of a specific composition language oriented towards
providing dependability for the composite system and a runtime support that
implements fault tolerance mechanisms.

I.1 Service-Oriented Architectures

Various software architectures and technologies have been proposed over the
last 30 years for easing the development and deployment of distributed systems
(e.g., middleware for distributed objects [Emmerich, 2000]). However, the gener-
alization of the Internet and the diversification of networked devices have led to

4 I Introduction

the definition of a new computing paradigm: the Service-Oriented Architecture
(SOA), which allows developing software as a service delivered and consumed on
demand [Elfatatry and Layzell, 2004, Papazoglou and Georgakopoulos, 2003].
The benefit of this approach lies in the looser coupling of the software compo-
nents making up an application, hence the increased ability to making evolve sys-
tems as application-level requirements and the networked environment change.

I.1.1 Services

A service is defined as a unit of work performed by a self-contained software sys-
tem and delivered to another software system. The software system that provides
the service is called the service provider, and the consumer of the service is called
the service requester. In general, service providers, are deployed independently
of service requesters, and make available the services they want to provide over
a public or private network.

To achieve interoperability among systems, service providers expose a platform-
independent service contract that describes what is the service, how a service
requester should interact with the provider to get the service and the Service
Level Agreement (SLA) that comprises, in particular, quality-of-service (QoS)
attributes (performance, security, transactional behaviour, etc.). Using service
contracts, service requesters discover and select service providers that can deliver
a service satisfying their functional and non-functional requirements. Commu-
nication between service requesters and providers is mostly done by message
exchange, which enforces loose coupling as it enables asynchronous communica-
tion among parties. We distinguish request messages sent by service requesters
and response messages sent by service providers. Other message types include
protocol messages such as acknowledgments for realizing reliable messaging, and
fault messages such as exceptions sent as responses to malformed request mes-
sages. An interaction is then defined by the sum of all messages sent and received
between the requester of the service and its provider for delivering the service.
The most basic interaction is the one-way message sent or received by a service.
RPC-like messaging can be realized by combining a request message with a re-
sponse message and more complex interactions can be defined by grouping and
ordering several one-way messages. Like the service contract that is described in
a platform-independent language, messages are also encoded in a platform- and
language-neutral structure for interoperability.

In the service-oriented architecture, system components evolve continuously and
independently of each other. New services appear, existing services disappear

I.1 Service-Oriented Architectures 5

permanently or get unavailable temporarily, services change their interfaces, etc.
Moreover, service requesters’ functional and non-functional requirements may
change over time depending on the context. Adaptation to these changes is thus
a key feature of a service-oriented architecture, which is supported thanks to
service discovery and dynamic binding. Service providers make available their
offered services by publishing them using a service discovery protocol, e.g., by
registering services in a service registry. Service requesters use the service discov-
ery protocol for locating services that match their requirements. Adaptation of
service requesters to the changing environment is enforced if the selection and lo-
calization of services are made during execution, through dynamic binding with
matching services, which allows requesters to choose a service provider at run-
time. Note that the discovery service may be centralized as well as distributed
(e.g., supported by all the service hosts), and may further adhere to either a
passive (led by service provider) or active (led by service requester) discovery
model [Bromberg and Issarny, 2005].

Summarizing, a service-oriented architecture is defined as a collection of service
requesters and providers, interacting with each other according to agreed con-
tracts. Service requesters usually locate service providers at execution time using
some service discovery protocol. A typical interaction in a service-oriented archi-
tecture involving a service requester, service providers, and a centralized service
registry is depicted in Figure I.1 where boxes represent system components, uni-
directional arrows represent one-way messages and bidirectional arrows represent
interactions formed by multiple messages:

Service
Requester

PublicationRegistry
Service

Service requests &
responses

(1)(2)

(3)

Discovery

Service

Provider

Figure I.1: Interactions

(1) Service providers register the description of the services they offer. The
description of the service includes the provided service contract and bind-
ing information such as the network endpoint address and the interaction

6 I Introduction

protocol, which describes the messaging behaviour of the service, to be
taken into account for correctly interacting with the service.

(2) A service requester queries at runtime the service registry for locating a
provider that can deliver the service it needs. The service registry then
returns to the requester descriptions of available services –if any– whose
provided contracts match the requirements of the service requester.

(3) The service requester selects a service provider among those discovered
and initiates interactions by sending it a request message. The interaction
between the requester and the provider then continues according the terms
of the agreed service contract.

It is important to note that the interactions between the service requester and
provider may follow an interaction protocol involving enhanced middleware-
related services such as replication, security, and transaction management. The
service interfaces should include the interaction protocols and associated non-
functional properties, which need to be understood and adhered by all the inter-
acting parties. In particular, for reasoning about dependability, error recovery
capabilities of services such as their transactional behaviour, should make part
of the service interface.

The Web service architecture1 has become a convenient enabling technology for
building service-oriented architectures due to huge efforts on the standardiza-
tion of its elements and developments of supporting platforms. According to the
definition of the W3C Consortium, a Web service is a software system identified
by a URI[IETF, 1998], whose public interfaces are described using XML-based
languages and which interacts with other systems in a manner prescribed by
the service interface, using XML-based messages conveyed by standard Internet
transport protocols like HTTP. More precisely, the W3C has defined the Web
Service Description Language (WSDL) for describing interfaces[W3C, 2005], the
Simple Object Access Protocol (SOAP) for defining the format and the pro-
cessing rules of messages[W3C, 2003b] and the Oasis Consortium’s Universal
Description Discovery and Integration (UDDI) specification defines an API for
publishing and discovering Web services in centralized registries [OASIS, 2004c].

1World Wide Web Consortium. Web Services Architecture Working Group. http://www.
w3.org/TR/ws-arch/

I.1 Service-Oriented Architectures 7

I.1.2 Service composition

Services that are described through well-defined interfaces can be used to build
new composite services, irrespective of technical details regarding the underly-
ing platform and the implementation of component services, which are called
composed services throughout this document. A service built using service com-
position is called a composite service, and can in its turn, be part of a larger
composition. The composite service can deliver new functionalities with new
properties thanks to the composition.

As an illustration for the composition of autonomous services, we take the travel
agency case study, which is often used in illustrating integration of autonomous
systems. The travel agency is a composite service that assists the user in booking
complete trips by accessing existing travel services. There are several challenges
that a designer of such a composite application faces. Interactions with concur-
rently running autonomous services should be correctly coordinated to get the
expected result from each service and provide the advertised integrated service.
The resulting composite service should guarantee a high level of dependability
despite the use of autonomous and potentially undependable composed services.
In particular, the travel agent composite service has to deal with problems occur-
ring during execution such as partially completed trip reservations, transparently
to the service requester.

Several properties of the Web services architecture must be taken into account
while addressing the above issues. Web services are decentralized in architec-
ture and in administration. Therefore, individual Web services can have dif-
ferent characteristics (e.g., transactional behaviour, concurrency policies, access
rights), which may not be compliant with each other. Moreover, Web services
communicate using Internet transport protocols (e.g. HTTP, SMTP) and inter-
acting with them requires dealing with limitations of the Internet such as access
latency, timeouts and lost requests as well as with security issues.

Although the modularity and interoperability of the Web services architecture
enable complex distributed services to be easily built by assembling several com-
ponent services into one composite service, there clearly is a number of research
challenges in supporting the thorough development of dependable composite
Web services. This calls for developing new architectural principles of building
dependable composite services, in general, and for studying specialized connec-
tors ”gluing” Web services, in particular, so that the resulting composition can
deal with failures occurring at the level of the individual component services.

8 I Introduction

I.2 Dependable service composition

Building dependable composite services requires first to understand the depend-
ability properties of individual services. A dependable composite service can
then be built according to the properties of the composed services and of the
dependability requirements of the composite service. Finally, there is a need for
a runtime support that can implement the adequate dependability mechanisms.

I.2.1 Dependability properties of individual services

With service composition, offered dependability mechanisms of individual Web
services can be combined to meet the dependability requirements of composite
applications. Indeed, the recovery behaviour of composite services depends upon
the recovery properties of the composed services, since the latter must ultimately
perform some recovery actions (e.g., compensation) in the presence of faults,
which require adequate specification of the individual Web services. Expressing
the behaviour of Web services in the presence of faults is partly addressed in
the definition of service interfaces through fault messages. However, this does
not specify complex recovery properties such as compensating operations, as
exploited by advanced transaction models for Web services. Other attempts de-
scribe the recovery behaviour of Web service operations by annotating service
operations with pre-defined meta-data. However, these approaches are not suf-
ficient for comprehensively expressing the recovery behaviour of a service. The
error recovery mechanism that is implemented by the service requester-side (i.e.,
the composite service) often involves calling multiple operations on the service
provider-side. Moreover, for delivering the target recovery property, the service
provider may require that the operations be invoked in a specific order and under
some conditions. This then suggests specifying the recovery properties of Web
services at the level of the external visible behaviour of Web services using an
adequate description language.

I.2.2 Dependability of composite services

The developer of composite Web services has as input the interfaces of differ-
ent Web services. The functional interface of a Web service gives the names
of offered operations and related messages. Additionally, non-functional proper-
ties (performance, security, transactional capabilities, access policy etc.) related

I.2 Dependable service composition 9

to the provided service can be expressed in complementary standardized doc-
uments. The developer has then in charge to build a composite service based
on the information that is provided at the interfaces. However, the interfaces of
composed Web services may be incomplete or non-compatible with each other,
making it difficult to reason about the global properties of a composite applica-
tion. Some properties, e.g., non-functional properties, exposed at the interface
of each Web service can further loose their meaning when composed. Moreover,
Web services can return responses at runtime that do not exactly conform with
what is advertised at the interfaces, transgressing the service contract. The de-
velopment of dependable composite Web services is further complicated by the
fact that composed Web services expose different error recovery behaviours or
not at all, which raises challenging issues in specifying composition processes
and in particular behaviour of composite services in the presence of faults.

The choice of the fault tolerance mechanisms that should be used in the devel-
opment of composite services depends on applications, and very often there is a
need to combine different error recovery mechanisms that should be expressed
at the composition level. Although there exist several Web services composition
languages that include constructs for specifying fault tolerance requirements of
the composite Web service, they mainly target backward error recovery by the
exploitation of advanced transactions or the introduction of specific transaction
protocols [Tartanoglu et al., 2003a]. These solutions assume that composed Web
services that are integrated are compliant with dependability requirements of the
composite Web services. On the other hand, forward error recovery is exploited
for internal exception handling or for specifying compensating actions. However,
applying backward error recovery is not always possible in the context of Web
services. Furthermore, applying forward error recovery in a composition often
needs involving several Web services in the recovery process, which needs to be
coordinated.

A Web service composition language, which is used to describe the execution
workflow of a composite service, should allow designing dependable composite
services by allowing to declare the dependability behaviour of the composite
Web service and the dependability requirements expected from composed Web
services. Dependability requirements can then be reached by composing several
Web services, with different dependability properties, using the most adequate
fault tolerance mechanism. A service composition language is needed to declare
the behaviour of the composite service when error occurs, by composing different
error recovery behaviours of composed Web services. Backward and forward error
recovery should both be exploitable for an efficient usage of all Web services
capabilities.

10 I Introduction

I.2.3 Fault tolerance mechanisms

In general, the choice of fault tolerance techniques to be exploited for the de-
velopment of dependable systems depends very much on the fault assumptions
and on the system’s characteristics and requirements. Several types of faults can
occur during the interaction with Web services, influencing the reliability of the
whole system. These faults include but are not limited to: (i) faults occurring
at the level of the Web services, which may be notified by error messages, (ii)
faults occurring at the underlying platform (e.g., hardware faults, communica-
tion errors, timeouts), and (iii) faults due to on-line upgrades of component
services and/or of their interfaces. In addition, unavailability is a major issue in
addressing dependability in Web service applications. Web services may be un-
available for an unknown reason and for an unknown amount of time. Moreover,
the overall network status and server loads may cause extensively long delays on
responses from Web service servers.

The runtime support on top of which executes the composite service is responsi-
ble to detect faults and notify the fault at the application level. Fault messages
received from Web services can be directly reported to the application, while
transport-level faults can be mapped to internal exceptions for the composite
service. Another role of the runtime support is to implement the fault toler-
ance mechanisms according to the recovery behaviour of the composite service
and considering the recovery support of individual Web services. In particu-
lar, adapting the fault tolerance mechanisms transparently to the composite
service is crucial since composed Web services instances available in a given en-
vironment and their recovery properties are not always known at design-time.
Adaptation would in addition increase the number of Web services that can be
integrated in the composition. To achieve this, we need a runtime support able
to dynamically discover Web services and their recovery properties and execute
the adequate mechanisms to implement the expected recovery behaviour of the
composite application.

I.3 Contributions

The objective of this work is to build dependable composite Web services out of
potentially non-dependable, component Web services that may fail or behave not
as expected for certain reasons inherent to the unpredictable nature of the Inter-
net. To achieve this goal, three issues were identified, as surveyed in the previous
section. First, building dependable composite services requires reasoning about

I.3 Contributions 11

the dependability properties of individual composed Web services. Second, the
standard and exceptional behaviour of the composite Web service should be de-
fined at the composition level, using an adequate composition language. Finally,
different fault tolerance mechanisms should be combined at the implementation
level to benefit from the recovery supports of the composed Web services. The
contributions of this work to the dependability in the Web services architecture
lie in addressing the above issue:

• A new service description language for specifying the recovery behaviour
of individual Web services [Tartanoglu and Issarny, 2005].

• A Web service composition language and an associated dedicated recovery
model [Tartanoglu et al., 2003c].

• A runtime support that executes composite Web services developed us-
ing our language and that implements fault tolerance mechanisms for the
recovery model.

A first contribution of this thesis is the definition of a declarative language that
enables the specification of the individual behaviour and capabilities of Web ser-
vices that are relevant to providing dependability. We introduce the WS-RESC
language in order to support reasoning about which recovery strategies can be
implemented at the composition level. Using WS-RESC, the interface of each
Web service can be complemented with additional recovery-related informations
such as the the correct ordering of interactions that is assumed by the service,
the transactional behaviour, the support for concurrency, etc. This specification
is then used by the composite Web service during the service discovery phase
to select Web services that can implement a specific fault tolerance mechanisms
and to verify during the execution phase the correct usage of the service by
the composite Web service. Furthermore, the fault tolerance mechanism that is
implemented can be customized according to the capabilities of the composed
Web services. In particular, concurrency control used for controlling accesses to
composed Web services by the composite Web service is adapted according to
the WS-RESC description to increase concurrency.

This thesis further proposes the composition language WSCAL for the specifi-
cation of dependable composite Web services. The language offers constructs for
specifying the recovery behaviour of the composite Web service for both back-
ward and forward error recovery. The approach is inspired by the Coordinated
Atomic Action model [Xu et al., 1995], which is adapted to the context of Web

12 I Introduction

services for providing a base structuring mechanism for developing fault toler-
ant composite Web services. The composition language is used to describe the
composition process, which is used to generate an executable code implement-
ing a composite Web service out of composed Web services that are dynami-
cally discovered. The language enables specifying the concurrency support and
the exceptional behaviour of the composite Web service. Error recovery is real-
ized according to a coordinated exception handling model where several of the
composed Web services can be involved in the recovery of a single exception.
Concurrently raised exceptions are taken into account by choosing appropriate
exception handlers following a concurrent exception resolution scheme. The lan-
guage and its associated execution model, enables building dependable composite
Web services by providing dependability at the composite application level while
allowing benefiting from recovery capabilities of individual services.

Finally, a runtime support is implemented. The runtime support implements
recovery mechanisms for realizing the recovery behaviour expressed in the spec-
ification of the composite Web service according to the capabilities of composed
Web services. Coordinated exception handling is used to implement the specific
recovery strategies including both backward and forward error recovery mech-
anisms, intended to deliver the expected guarantees specified by the composite
Web service developer. The runtime support further includes middleware ser-
vices for: (i) controlling concurrent accesses to Web services according to the
isolation requirements of the composite service expressed in WSCAL and to the
properties of the composed Web services expressed in WS-RESC, and (ii) con-
trolling the correct invocation sequences assumed by Web services with on the
fly verification.

I.4 Document structure

This dissertation is organized as follows. Chapter II presents the background
work underlying our solution to the dependable Web services composition. More
specifically, it presents the different types of service-oriented languages for spec-
ifying composite services and related work in providing dependability. Chap-
ter III introduces a service-oriented language for specifying recovery capabilities
of individual Web services. The introduced language is intended to be used for
dynamically selecting matching Web services, verifying correctness of the compo-
sition at runtime and for customizing recovery behaviour at the middleware layer.
In chapter IV, a composition language for building dependable composite Web
services is proposed. The chapter details how dependability of composite Web

I.4 Document structure 13

services is achieved by controlling concurrency and encapsulation of erroneous
states within nested actions and by a forward error recovery mechanism based
on coordinated exception handling. Chapter V presents the execution platform
and associated middleware services. Finally, Chapter VI concludes this thesis
with the summary of our contribution and the perspectives for our work.

14 I Introduction

II Background

The Service-Oriented Architecture (SOA) approach appears to be a conve-
nient architectural style towards developing complex systems by composing au-
tonomous applications deployed on the Internet. In this context, the Web ser-
vice architecture has become the major enabling technology for building service-
oriented computing systems. This chapter presents the main elements of the Web
services architecture and the related work on the composition of Web services
and on providing dependability.

II.1 The Web services architecture

Standardization organizations such as the W3C1 and OASIS2 have defined var-
ious specifications for describing the elements of the Web service architecture.
The XML text format [W3C, 2004a] is adopted for describing the specifications
and for encoding information exchanged between systems. The main reason for
choosing XML is its simplicity and ease of adaptation to any platform and to
the main application protocols of the Internet. In conformity with the SOA ar-
chitectural style [Papazoglou and Georgakopoulos, 2003], Web service providers
and service requesters communicate by exchanging messages over an Internet
application protocol. Interfaces of Web services are described using a language-
neutral document. Web services are further localized by service requesters using
some discovery protocol. By providing standardized, platform neutral, message-
oriented communications using standard Internet protocol, interface definition
languages, and service discovery support, Web services enable building service-
oriented systems on the Internet, allowing the inter-operation and the compo-
sition of autonomous systems across heterogeneous platforms. In the following,

1World Wide Web Consortium, http://www.w3.org
2Organization for the Advancement of Structured Information Standards, http://www.

oasis-open.org

16 II Background

SOAP Envelope

Header block

Header block

SOAP Header

SOAP Body

Body element

Body element

<env:Envelope xmlns:env="http://
www.w3.org/2003/05/soap-envelope">

<env:Header>
<n:alertcontrol xmlns:n="http://

example.org/alertcontrol">
<n:priority>1</n:priority>
<n:expires>2001-06-22</n:expires>

</n:alertcontrol>
</env:Header>
<env:Body>
<m:alert xmlns:m="http://

example.org/alert">
<m:msg>Alert message</m:msg>

</m:alert>
</env:Body>

</env:Envelope>

Figure II.1: SOAP document structure

the specifications proposed by the aforementioned standardization organisms re-
lated to messaging, description and discovery are presented with an emphasis on
the issues for expressing composability and dependability of provided services.

II.1.1 Messaging

Messaging between Web services and service requesters is realized by encoding
data using the SOAP messaging protocol [W3C, 2003b]. The SOAP specification
defines a protocol for information exchange that sets the rules of how to encode
service requests, responses and data in XML. In addition, various bindings of
SOAP messages to Internet application-level transport protocols are provided.
The structure of a SOAP message is simple with little syntactic requirements on
message contents, but can be extended with additional specifications for adding
new features such as headers for security, reliability, or correlation information
for tracking multiple messages. The structure of an XML-encoded SOAP message
is represented in Figure II.1, together with an example of SOAP message. A SOAP

message consists of an outermost Envelope XML element with two sub-elements:
the Header element, which comprises zero or more header blocks, and the Body
element comprising zero or more element information items.

II.1 The Web services architecture 17

SOAP further enables expressing the capabilities of service requesters and service
providers (called SOAP nodes) using SOAP features. A capability is identified by
an URI and can be used by another SOAP node, which understands this capa-
bility, to realize the interaction. One such a capability is the Message Exchange
Pattern (MEP), which specifies the messaging behaviour supported by a SOAP

node. Two MEPs are defined in the SOAP v1.2 specification: request-response
and response. The request-response MEP defines an RPC-like communication
pattern by defining a request SOAP message and a subsequent response SOAP

message. The response MEP defines a SOAP message sent as a response to a
received non-SOAP request message. The underlying protocol used for commu-
nicating SOAP messages should be able to realize asynchronous communications,
as defined in the related MEPs, and transfer XML-based messages. Any Internet
application protocol may be used for exchanging SOAP messages as long as it
provides these features. HTTP [IETF, 1999] is the most common protocol that
is widely used, due mostly to its widespread availability on various platforms
and its simplicity. However, other underlying protocols such as SMTP [IETF,
1982] can also be used.

A first requirement for dependability in Web services is to guarantee reliable in-
teractions between service requesters and providers. Underlying Internet transfer
protocols used for communicating SOAP messages guarantee reliable delivery of
message contents. However, they are not sufficient for addressing reliability at the
application-level. Indeed, interactions between service providers and requesters
are done by exchanging a sequence of different messages, in a specific order.
Asynchronous communications can lead to message losts that can not always
be notified to the sender of the message. Moreover, duplicate messages can be
sent by one party if it considers that the initial message have not been received,
which might not be the case. Based on established solutions for addressing re-
liable application communication in distributed systems, several protocols have
been introduced as a complement of the messaging protocol of Web services.
Reliable messaging protocols for Web services address the guaranteed delivery
of messages and the elimination of duplicated messages. WS-Reliability [OA-
SIS, 2004b] and WS-ReliableMessaging [BEA Systems et al., 2004] protocols
define special headers for SOAP messages for identifying messages and propose
acknowledgment-based protocols. These specifications are independent of the
underlying protocol although concrete bindings for using them over HTTP are
provided. Alternatively, the HTTPR specification defines a reliable messaging
protocol and extends HTTP headers with reliability attributes [IBM, 2002]. It
is worth noting that two SOAP nodes should support the same reliable mes-
saging protocol in order to use it. SOAP features are used for identifying the
supported protocol and for defining the information on how to implement it.

18 II Background

Ensuring reliable messaging using acknowledgment protocols and message ori-
ented middlewares have been widely used in distributed systems. The specific
protocols introduced for Web services take advantages of these solutions and
are already integrated in current products3. We believe that these protocols and
their implementation address the issue of reliable messaging in Web services.
In the remainder, we assume the reliability of single interactions with a Web
service, using one of the above protocols.

II.1.2 Description

WSDL is the language recommended by the W3C for describing Web services
[W3C, 2005]. WSDL provides means for specifying the functional interface of
Web services, similarly to existing interface definition languages like CORBA

IDL [OMG, 2002]. However, WSDL further enables the specification of concrete
details needed for accessing the service such as the network end-point address
and the supported message encoding format and communication protocols (e.g.,
SOAP over HTTP). A service requester should be able to interact with the Web
service, based only on this interface definition. The WSDL language provides
base constructs for describing Web services, but is also extensible to allow ex-
pressing a variety of additional information.

A Web service is described by a set of operations, which can be, in general,
called independently of each other. Operations are further associated to a set of
messages that can be of three types: input messages for specifying the reception
of a message, output messages for specifying messages sent by the Web service
(in general as a response to an input message), and fault messages for specifying
error messages sent to service requesters. Messages can be constituted of several
typed parameters. The WSDL specification allows using any type system for
defining the types of the parameters. The type system that is used is identified
in the WSDL description using an URI. Data types of XML Schema, which is
the W3C specification for describing a class of XML documents [W3C, 2004c],
is the common choice.

The general structure of a WSDL (v1.1) document is depicted on the left-hand
side of Figure II.2, with an excerpt of a WSDL document related to a calculator

3At the time of this writing, Apache Axis2 (http:
//ws.apache.org/axis2/), Oracle BPEL Process Manager
(http://www.oracle.com/technology/products/ias/bpel/index.html) and Microsoft WSE
3.0 (http://msdn.microsoft.com/webservices/webservices/building/wse/)
support the WS-ReliableMessaging protocol. RM4GS (http://businessgrid.ipa.go.
jp/rm4gs/) implements the WS-Reliability protocol.

II.1 The Web services architecture 19

Descriptions

Types

Message

Port
Type

Operation

Operation

Binding

Service Port

<message name="addRequest">
<part name="i" type="xsd:int"/>
<part name="j" type="xsd:int"/>

</message>
<message name="addResponse">
<part name="return" type="xsd:int"/>

</message>
<portType name="Add">
<operation name="add">

<input message="addRequest"/>
<output message="addResponse"/>

</operation>
</portType>
<binding name="CSoapBinding style="rpc" transport=
"http://schemas.xmlsoap.org/soap/http"/>
<operation name="add">
<operation soapAction=""/>

<input><body use="encoded" ... /></input>
<output><body use="encoded" .../></output>

</operation>
</binding>
<service name="AddService">
<port name="Add" binding="CSoapBinding">

<address location="http://localhost:81/C"/>
</port>

</service>

Figure II.2: WSDL v1.1 document structure

Web service definig the add operation. Specifically, a WSDL document consists
of a set of elements composing the abstract part, and a set of elements composing
the concrete part, all of them contained in a top-level definitions element. The
abstract part consists of the XML elements types for declaring internal data
types, message for declaring sent and received messages and portType, which
comprises a set of operation elements defining the operations. To each operation
defined in a WSDL document, a set of properties may be associated by giving
the URIs of the desired properties. In particular, in WSDL v2.0, the message
exchange pattern supported by a Web service operation is described by setting
the pattern property of the operation to the unique identifier of the MEP4. For
instance, for describing that an operation implements the request-response MEP,
the pattern property of the operation should be set to http://www.w3.org/

4In WSDL v1.1, the MEP is derived from the declaration order of input and output mes-
sages

20 II Background

2005/05/wsdl/in-out. The concrete part consists of XML elements binding
for defining the communication protocols and the message formats used by the
Web service, and service that specifies the Web service name and a set of ports,
which define endpoints by associating a binding to a network address.

The exceptional behaviour of a Web service is in part given by its WSDL docu-
ment. WSDL declares fault messages that are sent or received when the normal
flow of messages is disrupted during the execution of a message exchange. Prop-
agation of fault messages are also defined using MEPs. WSDL v2.0 defines three
MEPs for specifying fault propagation: the fault replaces message pattern, the
message triggers fault pattern and the no faults pattern. The first pattern speci-
fies that any message can be substituted by a fault message. For example, when
an error occurs, which prevents the emission of a message, a message indicating
the failure can be sent instead. The second one specifies that a message that has
already been sent may trigger a fault message. The fault message must be sent
to the originator or the message that triggered it. The last pattern specifies that
no fault message should be sent during the interaction.

Summarizing, WSDL is used to describe the operations provided by a Web ser-
vice and the messaging behaviour of each operation individually. However, inter-
actions with Web services often implies calling several operations on the same
Web service. Moreover, operations of a single Web service may need to be called
in a specific sequence for realizing a specific task. For some Web services, fol-
lowing a specific order can also be mandatory for getting the expected result
from the Web service. For example, a Web service may require from a service
requester to call first a specific operation for authentication before calling any
other subsequent operations. We believe that for composability, the description
of the ordering requirements of the operations of a Web service (called conversa-
tions) must be part of the service interface. Specification of the supported inter-
action protocol of a Web service is actually not addressed with WSDL. Several
languages complementing WSDL for addressing this issue have been proposed;
they are surveyed in Section II.2.2.

II.1.3 Discovery

Complementary to the above core Web services architecture elements, is the
UDDI (Universal Description, Discovery and Integration) standard, which spec-
ifies a registry for dynamically locating and advertising Web services [OASIS,
2004c]. UDDI servers were designed initially as centralized registries, but the
specifications allow registries to organize themselves into more complex networks

II.2 Web service composition 21

for increasing availability, reducing system load or for providing specialized di-
rectories. Service requesters make queries to UDDI registries, using a standard
service discovery interface.

Web service registries and associated service discovery protocols play an impor-
tant role in service composition and in providing dependability. Indeed, com-
posite services can be designed by integrating composed Web services that are
only described abstractly. By abstract, we mean that composed Web services are
identified in a composite Web service with their abstract interfaces, but with no
concrete details about the localization and name of the service. Web service in-
stances that provides the same (or compatible) interfaces can then be discovered
prior or during execution by querying a service registry. In particular, if a Web
service becomes unavailable during the execution of an interaction, the service
requester can query a UDDI registry to find an alternative Web service. Then,
depending on the application semantics, the interaction can be continued from
where it was interrupted, or be retried from the beginning.

II.2 Web service composition

When designing a composite Web service, developers should answer several ques-
tions: Which Web service can be integrated ? What is the interaction protocol that
should be implemented ? How to express the control flow of the composite Web
service ? Three complementary aspects of composability in the Web services
architecture have been identified for giving answers to these questions: conver-
sations, choreography and orchestration.

(1) Conversations address the first issue by giving the interactions that an in-
dividual Web service supports. Conversations are described, in particular,
in terms of ordering requirements over the operations that a Web service
provides.

(2) Choreography gives an answer to the second question by specifying the
interaction protocol for a specific business process involving several Web
services.

(3) Orchestration address the third issue by providing means for specifying the
composition process.

Several languages for specifying the above aspects have been proposed. Although
a clear categorization of proposed languages into these aspects is not always pos-

22 II Background

SOAP messages

References

Geographical
Database

Web Service

Alpha
Airlines

Web Service

Beta
Airlines

Web Service

Composite

Web Service

locate

SOAP

Hotel

Web Service

U

D

D

I

Travel Agent

Web Service

Web Service

Car Rental

Flight

messages

references

messages
SOAP

Figure II.3: A composite Web service example: the travel agent service

sible as they offer overlapping features, we survey in this section proposed lan-
guages and their support for expressing dependability. Indeed, building depend-
able composite services needs specifying dependability properties in all the above
aspects. In particular, conversation languages should allow expressing the excep-
tional behaviour of individual Web services. The choreography should enable ex-
pressing different recovery protocols and an orchestration languages should offer
constructs for expressing dependability mechanisms. First, we present a use case
to illustrate a composite Web service with dependability requirements. Then,
the above aspects are considered separately and exemplified.

II.2.1 A use case

Figure II.3 depicts the travel agency case study application introduced in Sec-
tion I, which we use throughout this thesis to exemplify various aspects of Web
service composition. A trip is composed of a transportation option to get to and
from the destination and an accommodation reservation for the duration of the
journey. Additional services may complement the trip offer such as travel insur-
ances or car rental services. Furthermore, third party services can be used to
help the system to find appropriate choices such as geographical database sys-
tems for locating cities and computing distances or services for converting units

II.2 Web service composition 23

and finding correct airport codes for the destination. The travel agency interacts
with several existing independent Web services located through a public Web
services registry. Note that each of the composed Web service may be itself a
composite service, as shown in the example below with the Flight Web service
which composes Web services of different airline companies. Typical challenges
that the designer of such a composite application faces are related to: (i) the
coordination of autonomous and concurrently running components for provid-
ing an integrated service, and (ii), ensuring a high level of dependency at the
composite application level despite the use of potentially undependable and au-
tonomous composed services. In particular, the travel agent may have to deal
with failures occurring during the composition such as partially completed trip
reservations, transparently to the requester of the composite Web service.

II.2.2 Conversations

As raised earlier in Section II.1.2, operations of a Web service are described in
the associated WSDL document, which gives the messaging pattern of each op-
eration. However, to correctly use a Web service and get the expected result, a
service requester needs to know, in addition, the order in which it should call
the operations offered by the Web service. Since an agreed terminology does not
exist yet in the Web services community for defining ordering requirements over
the operations of a Web service, we use the term conversation as it is introduced
in the Web Services Conversation Language (WSCL): a conversation specifies
the XML documents being exchanged, and the allowed sequencing of these docu-
ment exchanges [W3C, 2002b]. Conversation languages define the conversations
that are supported by a Web service. Conversations enable thus defining a higher
level of interaction protocol by expressing ordering dependencies between opera-
tions, in a way similar to path expressions introduced for the synchronization of
concurrent processes [Campbell and Habermann, 1974]. A conversation is con-
sidered as an extension of the abstract interface of a Web service, complementing
the WSDL definition.

Various conversation languages for Web services have been introduced in the
literature, which may be coupled or not with the specification of Web services
composition. Solutions may be distinguished according to whether the conver-
sation is expressed from the point of view of an external observer, or if it is
given from the point of view of an individual service. The first approach en-
ables in particular to link conversations supported by different Web services for
expressing multi-party conversations, as in the language introduced in CS-WS
[Hanson et al., 2002]. However, this approach limits the expressiveness of a ser-

24 II Background

vice interface by introducing a tight coupling between conversations of different
Web services. The second approach, which is adopted by most of the proposed
conversation languages, enables defining conversation support independently of
any specific interaction protocol, complementing directly the WSDL definition.
Languages proposed for describing conversations of Web services from an indi-
vidual Web service perspective include DML [Tolksdorf, 2003], WSCL [W3C,
2002b, Frolund and Govindarajan, 2003], the framework introduced in [Benatal-
lah et al., 2004], the service model description of OWL-S [W3C, 2003a], the con-
versation specification presented in [Yi and Kochut, 2004], WSCI [W3C, 2002a]
and the service specification language introduced in [Jimenez-Peris et al., 2003].

Conversations of Web services that are expressed in the above languages are
generally represented using state transition diagrams. In particular, WSCL uses
the UML activity diagram for modeling conversations where activities represent
the operations that may be called, and transitions the execution of operations.
Labels on transitions representing an output message are used to set conditions
on the transition. Figure II.4 illustrates the conversation of a flight Web service
expressed in WSCL together with an associated UML activity diagram. The
conversation states that the interaction with the Web service starts when a
requester calls the Search operation, which may be called indefinitely. If the
operation returns a valid response (the SearchRS output message), then the
requester is allowed to call the confirm operation, by selecting the flight that
it wants to book. Then, the requester can cancel the reservation or login to
proceed to the payment. If it can not login, because it never registered before,
the requester can call the register operation to create an account. If the login
fails, the requester can retry or register. Once the login has been made, either by
registering a new account or by calling the login operation, the payment can be
done by calling the payment operation. Again, if the payment fails, the requester
can retry or cancel the flight reservation. An XML excerpt of the conversation is
also given on the right-hand side of the figure, where the ReceiveSend interaction
type represents a request-response MEP.

Providing machine-readable specifications of conversations in the service inter-
face is beneficial for at least three reasons:

(1) Conversations are used in the discovery process where conversations sup-
ported by Web services are matched to conversations implemented by ser-
vice requesters.

(2) Specification of conversations of a Web service are used to check correctness
of interactions engaged by a service requester, prior or during execution.

II.2 Web service composition 25

<<ReceiveSend>>
Search

in: SearchRQ
out: SearchRS
out: noFlight

<<ReceiveSend>>
Confirm

in: FlightRQ
out: FlightRS

<<ReceiveSend>>
Cancel

in: CancelRQ
out: CancelRS

[SearchRS]

<<ReceiveSend>>
Register

in: RegisterRQ
out: RegisterRS

<<ReceiveSend>>
Login

in: LoginRQ
out: LoginRS
out: Failed

[Failed]

<<ReceiveSend>>
Payment

in: PaymentRQ
out: PaymentRS
out: PFailed

[PFailed]

[PFailed]

[LoginRS]

<Interaction interactionType="ReceiveSend"
id="Login">

<InboundXMLDocument id="LoginRQ"
hrefSchema="http://foo.org/LoginRQ.xsd">

</InboundXMLDocument>
<OutboundXMLDocument id="LoginRS"
hrefSchema="http://foo.org/LoginRS.xsd">

</OutboundXMLDocument>
<OutboundXMLDocument id="Failed"
hrefSchema="http://foo.org/Failed.xsd">

</OutboundXMLDocument>
</Interaction>

<Transition>
<SourceInteraction href="Login"/>
<DestinationInteraction href="Register"/>
<SourceInteractionCondition href="Failed"/>

</Transition>

Figure II.4: WSCL-based conversation of the flight Web service

(3) Conversations are used to automate the implementation of service com-
positions, e.g., by providing tools for the automated generation of correct
code skeletons [Meredith and Bjorg, 2003, Benatallah et al., 2004].

The first and second issues above require ways for verifying the compatibility of
different conversations. Given the process algebra specification of a conversation
language, behavioral compatibility of Web service clients (e.g., a composite Web
service when accessing composed Web services) with Web services can be verified
using observational equivalence relations. Furthermore, if a Web service defines
all the conversations that it supports, and a service requester searches for a Web
service, which supports one specific conversation, then compatibility of the Web
service can be verified if there is a simulation pre-order relation between the two
conversations. A conversation simulates another conversation if it can match all
of its moves. Specifically, the conversation of the Web service must simulate the
required conversation of the service requester.

Using conversations for specifying the error recovery behaviour of a Web service
is important for implementing an efficient dependability mechanism. For exam-

26 II Background

ple, using conversations, a Web service can specify which sequence of operations
should be called for compensating the effects of a previously called operation,
or sequence of operations. Existing languages mentioned previously provide no
or limited support for describing recovery behavior of Web services. These lan-
guages mainly allow exceptional behavior to be described using transitions on
fault messages. Hence, except the framework introduced in [Benatallah et al.,
2004], specification of recovery properties such as transactional behavior of con-
versations is not addressed. The language introduced in [Benatallah et al., 2004]
allows specifying transactional behavior of conversations. However, it uses a list
of pre-defined transactional properties hence reducing the language’s expressive-
ness. Furthermore, existing conversation languages do not address timing issues,
except for CS-WS [Hanson et al., 2002] that introduces an additional timeout at-
tribute associated to operations. Also, it should be possible to specify concurrent
activities within conversations, as concurrency allows specifying complex dis-
tributed systems involving several competing and/or collaborating participants.
However, only the workflow-based WSCI language address the specification of
concurrent abstract processes [W3C, 2002a].

II.2.3 Choreography

A choreography describes the message exchange rules among multiple interact-
ing parties. Concretely, it is achieved by linking sent and received messages of
different parties and specifying a control flow among related message exchanges.
If conversation supports for all services already exist, a choreography can also be
specified by associating received messages of one service with a sent message of
another. It is worth noting that the same conversations can be linked in different
ways to specify different choreographies. Conversations are thus used to describe
all supported interactions of a Web service, while a choreography gives the in-
teraction protocol for a specific composite task involving several Web services
and service requesters.

A choreography can be instantiated by assigning concrete Web services to the
different roles defined in the protocol. Therefore, if a Web service describes its
supported conversation, the conversation should be compatible with the part
of the choreography defining the interactions with it. Moreover, different roles
defined in a choreography can be bound to a single Web service. Defining a service
composition through a choreography suggests a top-down development approach
where the composition will initially be described abstractly without identifying
any Web service. Then, composed Web services will be built according to the
definition of choreography role, or matching existing Web services will be found

II.2 Web service composition 27

and integrated in the composition.

For easing the development of dependable composite Web services, choreogra-
phies can be used for:

(1) Specifying transaction protocols and/or transactional behaviour.

(2) Specifying exceptional behaviour that must be executed when an excep-
tional condition occurs, in which several roles can be involved.

(3) Verifying at design-time or at run-time, conformity of the conversations
supported by Web services and of their implementations with the behaviour
of the associated roles [Foster et al., 2004, Fu et al., 2004, Martens, 2005].

Existing languages for specifying choreographies include WS-CDL from the W3C
choreography working group [W3C, 2004b], which specifies interaction protocols
by defining a global control flow among interacting parties using explicit control
structures. The model presented in [Bultan et al., 2003] defines choreographies
(referred to as conversations by the authors) using Mealy machines [Mealy, 1955].
In addition, the conversation languages CS-WS [Hanson et al., 2002] and WSCI
[W3C, 2002a] introduced in the previous section, enable defining choreographies
by linking conversations of different Web services.

The sequence diagram in Figure II.5 illustrates a choreography for the travel
agent service. The choreography involves five roles, a customer, a travel agent,
an airline, an hotel and a bank. The customer interacts with the travel agent
for booking a trip and with the bank for making the payment. The travel agent
interacts with the hotel and airline services for reserving flights and rooms, with
the bank to make the payments of reserved flights and rooms on behalf of the
customer, and with the customer, to which it sends the confirmation for the
trip. The bank service further interacts with the airline and hotel services for
confirming payments. The roles represent abstract services for which correspond-
ing concrete Web service instances should be assigned in order to execute the
travel organization task defined by the choreography. Does the flight reservation
Web service introduced in Section II.2.2, and which supports the conversation
depicted in Figure II.4, can be integrated in the above choreography ? At a first
glance, it seems that it is not possible, because the conversation of the flight
reservation Web service requires that the payment should be made by calling an
operation of the Web service. However, in a choreography, a single Web service
may also be assigned to more than one role, at different parts of the interaction
protocol. For example, an airline Web service that supports both booking and

28 II Background

: SearchFlight

: SearchHotel

: Trip

: Confirmation

: BookFlight

: BookHotel

: Payment

: Payment

 : Customer : Travel Agent : Airline : Accomodation : Bank

: Login

: Login

receipt

Confirmation

receipt

: Login

Confirmation

receipt

Confirmation

: Payment

Figure II.5: Choreography for the travel agency service composition

on-line payments can play the roles of the airline and of the bank for making
the payment of the booked flight. Furthermore, different Web services can also
be assigned for a single role. For example, different bank Web services can be
used for making the three different payments. Indeed, if we consider an abstract
Web service assigned to the airline and bank roles of the choreography, the re-
quired conversation would be: an operation for searching flight, followed by a
confirmation, and then the login and the payment. This conversation can easily
be simulated by the conversation of the flight Web service.

II.2 Web service composition 29

II.2.4 Orchestration

The term orchestration refers to an executable workflow process, which inter-
acts with external Web services. Orchestration can thus be used to specify a
composite Web service. It specifies the control flow of the composition, from the
point of view of the composite service. In particular, it can be used to implement
different roles of a choreography, which contrary to orchestration, describes the
interactions of all parties involved in the composition. Orchestration is distin-
guished from conversation and choreography by the fact that it specifies the
internal mechanisms of a Web service, and need thus not to be publicly available
nor shared between interacting parties. However, the specification can be used to
derive the conversations supported by the composite Web service and to verify
its compatibility with a choreography.

The composition process can be specified as a graph (or process schema) over the
set of composed Web services, defining the invocation order of composed Web
service operations. Several models for specifying orchestrations, based on exist-
ing solutions for the coordination of distributed activities, have been proposed.
State-charts are used to specify composite Web services in the Self-Serv envi-
ronment, where composed services are coordinated by peer-to-peer interactions
[Benatallah et al., 2005]. Another approach is to model the composition based on
Petri nets [Reisig and Rozenberg, 1998], as addressed in [Narayanan and McIl-
raith, 2002] and [Hamadi and Benatallah, 2003]. BPML [A. Arkin, 2002] and
BPEL [BEA Systems et al., 2005] are workflow specification languages, which
are based on process algebra. Formalization of BPEL processes has indeed been
the subject of many publications [Farahbod et al., 2004, Schmidt and Stahl,
2004, Foster et al., 2004, Fu et al., 2004, Ferrara, 2004]. Automated composition
of Web services is also considered [Narayanan and McIlraith, 2002, Medjahed
et al., 2003]. Automatic composition is attractive but restricts the composition
patterns that may be applied, and cannot thus be used in general. Approaches
that introduce XML-based declarative languages for specifying workflow pro-
cesses directly support reuse, openness, and evolution of Web services by clearly
distinguishing the specification of component Web services (comprising primitive
components that are considered as black-box components and/or inner compos-
ite components) from the specification of composition. Hence, although there
is not yet a consensus about the best approach for specifying composite Web
services, it may be anticipated that this will most likely rely on the XML-based
specification of a graph over Web services that is decoupled from the specifica-
tion of the composed Web services. The main reasons that lead to this conclusion
include compliance and complementarity with established W3C standards, pro-
viding reusability, openness and extensibility, but also the fact that it is the

30 II Background

approach undertaken by most industrial consortia.

Start

Receive

Trip (customer)

Flow

JointSearch

Invoke Invoke

SearchFlight
(flightBooking)

SearchHotel
(hotelBooking)

Reply

Trip (customer)

Receive

Confirmation
(customer)

End

Figure II.6: BPEL example for the the travel agent

BPEL in particular is the most popular orchestration language. It is developed
by merging two prior proposals: XLANG [Thatte, 2001], which is based on the
π-calculus process algebra [Milner, 1999] and WSFL [F. Leymann, 2001], which
is based on a Petri net model [Reisig and Rozenberg, 1998], and is submitted
for standardization to the OASIS consortium. As such, several workflow engines
executing BPEL processes have been developed. For illustrating an orchestration,
the BPEL specification of a composite Web service, implementing the role Travel
Agent in the choreography illustrated in Figure II.5 is given in Figure II.6.

II.3 Fault tolerance in the Web services architecture 31

II.3 Fault tolerance in the Web services architecture

The specifics of Web services and of their composition require special care in
the design of supporting fault tolerance mechanisms, which is the focus of this
section. Both backward and forward error recovery mechanisms for the Web
services architecture are considered.

II.3.1 Fault tolerance mechanisms

In general, the choice of fault tolerance mechanisms to be exploited for the devel-
opment of dependable systems depends very much on the fault assumptions and
on the system’s characteristics and requirements. There are two main classes of
error recovery [Lee and Anderson, 1990]: backward error recovery, which is based
on rolling system components back to some previous correct state, and forward
error recovery, which consists of transforming the state of the system components
into any correct state. It is a widely-accepted fact that the most beneficial way
of applying fault tolerance is by associating its measures with system structuring
units as this decreases system complexity and makes it easier for developers to
apply fault tolerance [Randell, 1983]. Structuring units applied for both build-
ing distributed systems and providing their fault tolerance are well-known: they
are distributed transactions and atomic actions 5. Distributed transactions [Gray
and Reuter, 1993] use backward error recovery as the main fault tolerance mea-
sure in order to satisfy completely or partially the ACID (atomicity, consistency,
isolation, durability) properties. Atomic actions [Campbell and Randell, 1986]
allow applying both backward and forward error recovery. The latter relies on
coordinated handling of exceptions that involves all action participants. Back-
ward error recovery has a limited applicability, and in spite of all its advantages,
modern systems are increasingly relying on forward error recovery, which uses
appropriate exception handling techniques as a means [Cristian, 1989]. Exam-
ples of such applications are complex systems involving human beings, COTS

components, external devices, several organizations, movement of goods, opera-
tions on the environment, real-time systems that do not have time to go back.
Composite Web services clearly fall into this category.

As an example composite Web service that shows the need for a specialized
fault tolerance mechanism, consider the following scenario with the previously
introduced travel agency composite Web service. For a given trip request, the

5also referred to as conversations, but we will not use this term to avoid confusion with
Web services conversations.

32 II Background

travel agent finds, by querying composed Web services providing hotel and flight
reservation systems, a list of available hotel rooms and flight schedules. The
service requester makes its choice by selecting the cheapest trip and confirms
booking. The travel agent then attempts for the bookings accessing respective
composed Web services. Interactions with the hotel reservation system termi-
nates normally, and the hotel room is booked. However, the flight reservation
fails for some reason (e.g., flight no more available at the requested price), and
the complete trip reservation cannot be completed. Typical solutions that can
be applied for dealing with this uncompleted transaction are:

(1) Backward error recovery by restoring the state back: the hotel reserva-
tion is cancelled –if possible. The service requester can then retry a new
reservation from the beginning as no reservation has been kept.

(2) Forward error recovery: the reservation can be retried by the travel agent
on an alternative flight reservation system. If the second booking attempt
succeeds, then the reservation process continues normally by confirming it
to the service requester. Alternatively, if no flight can be scheduled and the
hotel reservation can not be cancelled, the travel agent can propose other
transportation means to the service requester.

It is worth noting that backward and forward error recovery are complementary,
and complex applications often use both means for achieving dependability. De-
veloping fault tolerant mechanisms for composite Web services has been an ac-
tive area of research. Existing proposals mainly exploit backward error recovery,
and more specifically flexible transactional models introduced in the context of
multi-database systems [Elmagarmid, 1992]. However, the lack of transactional
support of autonomous Web services has led to exploit complementary forward
error recovery techniques.

II.3.2 Backward error recovery for the Web

Transactions [Gray and Reuter, 1993] are widely used in database management
systems for providing reliability and consistency in the presence of concurrency
(concurrent updates on the same data item) and of failures during database
operations. A transaction is defined as a unit of computation that must guaran-
tee four properties: atomicity, consistency, integrity, and durability (also referred
to as ACID properties). The atomicity property ensures that the unit of com-
putation is executed up to completion or not at all. Consistency ensures that

II.3 Fault tolerance in the Web services architecture 33

a transaction, once completed, changes the system from one consistent state to
another consistent state. The isolation property ensures that intermediate values
of a transaction are not seen from the outside and in particular from concur-
rently running transactions. Finally, durability is the property that guarantees
that once a transaction has committed, its results are permanently recorded and
persist to subsequent system failures. Transactions have been proven success-
ful in enforcing dependability in closed distributed systems and are extensively
exploited for the implementation of primitive (non-composite) Web services. En-
forcing ACID properties typically requires introducing protocols for: (i) locking
resources (e.g., two-phase locking protocols) that are accessed for the duration of
the embedding transaction, and (ii) committing transactions (e.g., two- or three-
phase commit protocols). However, transactions are not suited for making the
composition of Web services fault tolerant in general, for at least two reasons:

• The management of transactions that are distributed over Web services
requires cooperation among the transactional supports of individual Web
services, which may not be compliant with each other and may not be
willing to do so, given their intrinsic autonomy and the fact that they span
different administrative domains.

• Locking resources (i.e., the Web service itself in the most general case) until
the termination of the embedding transaction is in general not appropriate
for Web services, still due to their autonomy, and also to the fact that they
potentially interact with a large number of concurrent service requesters
that will not stand extensive delays.

Enhanced transactional models have been considered to alleviate the latter short-
coming. In particular, open-nested transactions [Pu et al., 1988, Garcia-Molina
and Salem, 1987], where transactions may be composed of a number of con-
current nested transactions that can commit independently relax the isolation
property allowing partial results to be seen outside of nested and top-level trans-
actions. Open nested transactions are more suited for long running transactions,
reducing in particular latency due to locking. Typically, open-nested transactions
are matched to the transactions already supported by Web services. Aborting
the whole transaction requires using compensation over committed nested trans-
actions, which consists of running nested transactions in order to undo effects of
committed nested transactions. Because effects of previously committed nested
transactions can be read by external transactions, the atomicity is said semantic
[Garcia-Molina, 1983]. It does not guarantee that the state will be rolled back,
but that a semantically equivalent state can be reached. Semantic atomicity

34 II Background

is ensured if all nested transactions either commit or compensate. For execut-
ing Web service operations in an open-nested transaction, Web services should
provide compensating operations for all the operations they offer. This is in par-
ticular addressed by the BPEL [BEA Systems et al., 2005] and WSCI [W3C,
2002a] composition languages, which allow defining compensating operations as-
sociated with the Web services operations. It is worth noting that when several
Web services are involved in an open-nested transaction, effects of the compen-
sated nested transactions on all Web services must be compensated as well (i.e.,
cascading compensation by analogy with cascading abort), which requires in ad-
dition the coordination of compensating operations on each Web service. Several
solutions following two different approaches are being proposed in the context
of Web services for coordinating open-distributed transactions.

The first approach enforces participant Web services to describe their supported
transactional behaviors. Then, a service requester, or a middleware service act-
ing on behalf of the service requester, exploits those descriptions for specifying
and executing a (open-nested) transaction over a set of Web services. The ter-
mination of the transaction is dictated by the outcomes of the transactional
operations invoked on the individual services. Such a concern is addressed in the
WSTx framework [Mikalsen et al., 2002, Tai et al., 2004] and in the WebTrans-
act framework [Pires et al., 2003b,a]. However, the transactional behaviour is
described at the operation-basis, which is not sufficient for comprehensively ex-
pressing the recovery behaviour of a service. Indeed, the recovery strategy to be
implemented by the client may involve calling more than one operation for a sin-
gle transactional behaviour (e.g., calling a sequence of operations in a specific or-
der for cancelling a transaction). Such a feature is addressed in [Benatallah et al.,
2004], which introduces an XML-based language that allows annotating conver-
sations with non-functional properties. Nevertheless, the transactional protocols
that can be applied is inevitably limited and require knowledge of the precise
semantics of the transactional behaviours, which are expressed using meta-data.

In addition to the above client-side solutions to the coordination of distributed
open-nested transactions, work is undertaken in the area of distributed trans-
action protocols supporting the deployment of transactions over the Web, while
not imposing long-lived locks over Web resources.

The Business Transaction Protocol (BTP) introduces two different transaction
models for the Web: (i) the atomic business transactions (or atoms), and (ii)
the cohesive business transactions (or cohesions) [OASIS, 2004a]. A composite
application can be built from both atoms and cohesions that can be nested.
In the atomic business transaction model, several processes are executed within
a transaction and either all complete or all fail. This is similar to distributed

II.3 Fault tolerance in the Web services architecture 35

ACID transactions on tightly coupled systems. However, the isolation property
is relaxed and intermediate committed values can be seen by external systems
(i.e., systems not enrolled in the transaction). Figure II.7 illustrates the atomic
business transaction model using the travel agent service involving a flight book-
ing Web service (Flight) and an accommodation booking Web service (Hotel).
In this scenario, the hotel room booking fails while the flight booking succeeds,
which leads to cancellation of the booked flight before the end of the transac-
tion. The cohesive business transaction model allows non-ACID transactions to
be defined by not requiring successful termination of all the transaction’s par-
ticipants for committing. A travel agent service scenario example for illustrating
cohesive business transactions is given in Figure II.8, where the flight booking is
performed on two distinct Web services. In this example, the transaction, which
was originally initiated with three participants, ends with two commits and one
abortion.

1

2

3

4

6

5

Request

Confirm

Confirm

Prepare

Prepare

Prepared

Fail

Cancelled

Cancel

Travel Agent Flight Hotel

Request

(1) Travel Agent sends the request mes-
sages to Flight and to Hotel Web ser-
vices.

(2) Flight and Hotel respond (Confirm
messages) with listings of available
flights and hotel rooms.

(3) Travel Agent orders the bookings
by initiating commitments (Prepare
messages).

(4) Flight Web service returns Prepared
and is ready to commit, while the
Hotel Web service returns a Fail er-
ror message. Commit is no longer
possible on the Hotel Web service
for this transaction.

(5) Travel Agent cancels the transaction
on the Flight Web service by send-
ing the Cancel order.

(6) Flight Web service confirms cancel-
lation with the Cancelled message.

Figure II.7: BTP atomic business transaction

WS-Transaction [Microsoft, BEA and IBM, 2004a] defines a specialization of
WS-Coordination, which is an extensible framework for specifying distributed
protocols that coordinate the execution of Web services, and that can be used in
conjunction with BPEL [Microsoft, BEA and IBM, 2004b]. Like BTP, it offers

36 II Background

3

1

2

4

5

6

Travel Agent British Airways HotelAir France

Request

Request

Request

Response

Response

Response

Prepare

Cancel

Prepare

Prepared

Cancelled

Prepared

Confirm

Confirm

Confirmed

Confirmed

(1) Travel Agent sends the request mes-
sages to the two flight booking Web
services, Air France and British Air-
ways and to the Hotel Web service.

(2) Web services return response mes-
sages to the Travel Agent.

(3) Travel Agent selects Air France for
the flight booking, and therefore
sends a Cancel message to British
Airways Web service and a Prepare
message to the two other Web ser-
vices.

(4) Air France and Hotel Web ser-
vices acknowledge with the Pre-
pared message and British Airways
confirms the cancellation with the
Cancelled message.

(5) Travel Agent confirms commits
(Confirm messages).

(6) Web services acknowledge (Con-
firmed messages).

Figure II.8: BTP cohesive business transaction

two different transaction models: (i) atomic transactions (AT) and (ii) business
activity (BA). An atomic transaction adheres to the traditional ACID properties
with a two-phase commit protocol. Note that as opposed to the BTP atomic
business transactions, the isolation property is not relaxed in WS-Transactions,
which as we mentioned before, is not suitable for the majority of Web service
applications. The business activity protocol specifically serves coordinating the
execution of open-nested transactions over a set of activities, through a coordi-
nator activity. If there is a need for a coordinated activity to be compensated,
the coordinator sends compensate messages to all the participants involved in the
activity. Then, each participant replies by sending back either a compensated or a
faulted message, depending on whether the required compensation operation was
successfully completed or not. However, there is no requirement for an agreement
on the outcome, and any participant can leave the coordinated activity in which
it is engaged, prior to the termination of peer participants. A WS-Transaction
business activity example is shown in Figure II.9, with an Airline Web service
and an Hotel Web service.

II.3 Fault tolerance in the Web services architecture 37

1

2

3

4

5

6

7

8

Travel Agent Flight Hotel

Request

Request

Register

Register

Complete

Completed

Faulted

Compensate

Forget

Forget

Compensated

Faulted

(1) The Travel Agent (TA) initiates the Business Activity
with the Flight (F) and Hotel (H) participants (Re-
quest messages).

(2) F and H enroll in the transaction (Register mes-
sages).

(3) TA initiate booking on F (Complete message).

(4) F returns Completed to confirm commitment, while
H returns a Faulted error message.

(5) For aborting the whole transaction TA sends a Com-
pensate message to F which has already completed
the (sub)-transaction and a Forget message to H.

(6) F cancels the booking order and confirms with the
Compensated message sent back to TA.

(7) F cannot compensate the booked operation and re-
turns a Faulted error message to TA.

(8) TA sends a Forget message to F. The flight has been
booked and cannot be cancelled.

Figure II.9: WS-Transaction business activity

Although there is not yet a consensus on a standard protocol for managing trans-
actions on the Web, various implementations of these aforementioned protocols
are already available6. However, these solutions have a restricted applicability
when composing autonomous Web services because they require that the com-
posed Web services enrolled in the transaction support one of these protocols.
Indeed, Web services should understand the protocol messages they receive and
should sent back well-defined protocol messages. Furthermore, using primarily
transactions for tolerating faults do not cope with all the specifics of Web ser-
vices. A major source of penalty lies in the use of backward error recovery in
an open system such as the Internet. Backward error recovery is mainly ori-
ented towards tolerating hardware faults but poorly suited to the deployment of
cooperation-based mechanisms over autonomous component systems that often
require cooperative application-level error recovery among component systems.
Moreover, cancellation or compensation does not always work in many real-life
situations, which involve documents, goods, money as well as humans (clients,

6JOTM transaction manager (http://www.objectweb.org/jotm/) and Cohesions
(http://www.choreology.com/) implement the BTP protocol and Oracle BPEL Process
Manager (http://www.oracle.com/appserver/bpel home.html) and Arjuna XML Transac-
tion Service (http://www.arjuna.com/products/arjunaxts/) support the WS-Transaction
protocols.

38 II Background

operators, managers, etc.) and which require application-specific error handling.
Forward error recovery mechanisms should thus be provided as a complementary
mean for achieving dependability.

II.3.3 Forward error recovery for the Web

Exception handling is the main mechanism used to achieve forward error recovery
[Goodenough, 1975, Cristian, 1989]. It consists of specifying the behaviour of a
software system when faults are detected during its execution. When an error
occurs an exception is raised causing the normal execution flow of the program
to be interrupted and an exception handler is executed for recovery. Then, either
the process terminates (termination model), or it resumes at the point where
the exception had been raised (resumption model). Exceptions and associated
handlers are generally specified during the development phase using adequate
programming language constructs. Applying exception handling in distributed
systems that involve concurrent processes raises several challenges that have led
to the design of specialized fault tolerance mechanisms. In particular, there is
a need for adequate structuring mechanisms for dealing with exceptions raised
in some components of a system while other components execute normally and
with concurrently raised exceptions [Campbell and Randell, 1986, Issarny, 1993].

Exception handling mechanisms for realizing forward error recovery are exten-
sively exploited in the specifications of composite Web services in order to han-
dle error occurrences (e.g., BPEL [BEA Systems et al., 2005], BPML [A. Arkin,
2002], WSCI [W3C, 2002a], WS-CDL [W3C, 2004b]). The choreography spec-
ification language WS-CDL includes constructs for specifying exceptional be-
haviour of a choreography: when an error occurs, an exception is propagated
to roles defined in the choreography using explicit language constructs and the
choreography enters an exceptional state. For each exception, an alternative
choreography can be defined, which is then executed for handling the excep-
tion. In the orchestration language BPEL, exception handlers (referred to as
fault handlers) can be associated to a (possibly nested) process, so that when
an error occurs inside a process, its execution terminates, and the corresponding
exception handler is executed. However, when a process is defined as a concur-
rent process and at least one embedded process signals an exception, all the
embedded processes are terminated as soon as one signaled exception is caught,
and only the handler for this specific exception is executed. Hence, error recov-
ery actually accounts for a single exception and thus cannot ensure recovery of
a correct state. The only case where correct state recovery may be ensured is
when the effect of all the aborted processes are rolled back to a previous state,

II.3 Fault tolerance in the Web services architecture 39

which may not be supported in general, in the context of Web services, as dis-
cussed previously. This shortcoming of BPEL actually applies to all XML-based
languages for Web services composition that integrate support for specifying
concurrent processes and exception handling.

Exception handling not only allows defining application-specific recovery meth-
ods for dealing with faults, but can also be used to implement and adapt the
backward error recovery method that is used according to the actual context of
the exception. In addition, the exception handling mechanisms should take into
account the concurrent, distributed and open characteristics of the composition
processes by providing strong mechanisms for dealing with concurrently raised
exceptions as well as language supports for specifying cooperative handling of
exceptions among interacting partners.

40 II Background

III Specifying Recovery Support
of Web Services

This chapter introduces a conversation language, called WS-RESC, for the spec-
ification of both the standard and exceptional, externally visible, behaviour of
Web services, further assisting the development of dependable composite ser-
vices. In a way similar to existing conversation languages, WS-RESC includes
constructs for defining ordering constraints over the operations that a Web ser-
vice provides. However, WS-RESC further includes constructs for specifying
support for concurrency, exceptional behaviour, timing constraints and recovery
properties of conversation since these are key behavioral properties in the context
of dependability. The language in particular enables the definition of equivalence
relationships over conversations with respect to their recovery behaviour, which
may be exploited for the design of fault-tolerant composite services. In addition,
we provide a formal specification of the language through translation into the π-
calculus [Milner, 1999] that makes available a large number of tools for reasoning
about Web service properties. In particular, it allows the automated analysis of
the correct composition of Web services with respect to the services’ behaviour.

III.1 The WS-RESC language

The WS-RESC language (Web Service REcovery Support Conversation) is in-
troduced to specify the conversations supported by a Web service for defining
the standard and exceptional observable behaviour of the Web service. Conver-
sations are specified in terms of the Web service’s offered operations, which are
defined in the related WSDL document of the Web service. Conversations and
properties holding over them specified in WS-RESC are to be provided as part of
the Web service’s provided interface, extending the WSDL description. Indeed,
it gives to service requesters and to developers of composite Web services, the

42 III Specifying Recovery Support of Web Services

information on how to use the service and the properties related to a particular
invocation sequence of operations. However, unlike the WSDL document that
includes all provided operations, the WS-RESC description may only expose
conversations and related properties that are considered important by the Web
service designer. Then, other conversations and properties that are relevant to
the actual use of the Web service’s operations in a specific interaction with a ser-
vice requester may be obtained by applying composition rules over conversations
specified by the Web service.

III.1.1 Conversation modeling

We use state transition systems similarly to UML activity diagram of WSCL (see
Figure II.4, page 25) for modeling conversations supported by a Web service:
states represent the Web service operation that is called and transitions give
the next available operations. Messages can be put as conditions on transitions,
which means that the message must be emitted by the operation that has been
invoked for the transition to be enabled. The absence of a condition means that
no matter the response of the invoked operation, the transition is enabled. The
starting state of a conversation is given with a node named Start, and final states
are represented by nodes named End. In addition, we introduce the Empty node,
which is not associated to any operation. The Start, End and Empty nodes are the
only nodes that are not associated to an operation of the Web service. Therefore,
transitions originating from Start and Empty states can not have conditions, and
End is final.

Throughout this chapter, we use the flight Web service of the travel agent com-
posite Web service case study to illustrate the language constructs. The con-
versation expressed in WSCL and illustrated previously in Figure II.4 are quite
similar as they express the same conversation. Additional notations will be in-
troduced later for describing extra features of the WS-RESC language. Note
that, contrary to the WSCL model, we do not model the input and output mes-
sages associated to the operations of the Web service at each node as well as the
message exchange pattern, as they are already defined in the associated WSDL
document.

The definition of WS-RESC comes along with its formal specification through
translation in the π-calculus [Milner, 1999], thus allowing for automated reason-
ing about behavioral matching of Web services (Section II.2.2). As part of our
work, we used simulation tests between processes in the discovery process and
for the on the fly verification of invocations (see Chapter V). Such a support

III.1 The WS-RESC language 43

Search

Start

[SearchRS]

Confirm

[Failed]Cancel Register Login

Payment[PFailed]
[LoginRS]

End
[PFailed]

[PConfirmed]

Figure III.1: WS-RESC-based conversation of the flight Web service

is crucial in assisting the development of dependable composite Web services,
since it enables enforcing the correct usage of Web services in the composition
process.

III.1.2 WS-RESC language constructs

A WS-RESC XML document describes a conversation modeled as a state tran-
sition system. We describe each construct of the language using a non-formal
XML notation, together with the transition system that it represents and its π-
calculus formal definition. The complete XML Schema [W3C, 2004c] definition
of the language is further given in Appendix A.

44 III Specifying Recovery Support of Web Services

XML notations

The XML notation used here gives XML elements and their attributes as they
should appear in a WS-RESC document, and XML Schema data types are used
instead of the values of the attributes. The symbol “?” is used after an attribute
or an element to denote that it is optional, the symbol “*” to denote that it can
appear 0 or more times, and the symbol “+” denotes that it must appear at least
one time and can be repeated indefinitely. Default values of attributes are given
with the “:” symbol. Namespaces used are “this” that refers to the document
being specified and “ws” that refers to the associated WSDL document of the
Web service for which the conversation support is specified.

π-calculus notations

We use the following notation to denote π-processes, with Exp denoting Boolean
expressions:

P,Q ::= Processes
P |Q Parallel
P + Q Choice
!P Replication
if Exp then P else Q Conditional
v(x) Input message
v̄(x) Output message
∅ Null process

The input process v(x).P is ready to input from channel v, then to run P with
the formal parameter x replaced by the actual message, while the output process
v̄(y).P is ready to output message y on channel v, then to run P . The reduction
relation, noted →, is further defined over processes, with P → P1 expressing
that P can evolve to process P1 as a result of an action within P . For instance,
we have: ((v̄(x).P + P ′)|(v(y).Q+ Q′)) → P |Q{x/y}, with Q{x/y} meaning that
x replaces y in Q. In the following, we also use a shorthand notation for input
and output messages, denoting the channel and parameter with message names
as in P ::= in.(out.Q).

III.1 The WS-RESC language 45

III.1.2.1 Sequencing

The main elements of a conversation are the states and transitions, which give
the ordering requirements over invocations of the operations of the Web service.

States are associated to an operation of the Web service and are declared using
the state element with three attributes.

<state name=NCName
operation=QName
correlate=QName ? />

• name of type NCName (an XML name, without the namespace part), gives
a name to the state. It is used to reference the state, allowing thus to reuse
the state definition in different transition rules.

• operation of type QName (an XML name prefixed with a namespace) ref-
erences an operation of the Web service.

• correlate of type QName is optional and is used for identifying different
sessions.

Transition from a source state to a destination state occurs when the opera-
tion associated to the source state is executed and the execution terminated.
Destination states then denote the operations that can be subsequently called.
Additionally, we may have conditions on transitions, represented as labels on
the transitions. The condition can be set on output or fault messages of the
operation that is executed (the operation referenced in the source state of the
transition). When set, it states that the transition is valid only if the operation
being executed returns the given message, specified by its name.

A transition is specified using the transition XML element, which embeds: the
source element that gives the source state, and the destination element that gives
the target state:

<transition

name=NCName >
<source

state=QName
condition=X−Path−expre s s i on ? />

<destination

46 III Specifying Recovery Support of Web Services

state=QName
minOccurs=nonNegat iveInteger : 1
maxOccurs=(nonNegat iveInteger | unbounded) : 1

/>
</ transition>

The optional condition attribute of the source element is defined for transitions
that depend on some output or fault messages. The condition is expressed as an
XPath[W3C, 1999] expression and may thus be a Boolean expression composed
of several messages. In addition, we use the attributes minOccurs and maxOccurs
for the destination element to specify how many times the transition should be
repeated, used in general for transitions on the same state.

A state named A and its related transition into a state B directly translates
into a π process Aπ ::= in.((out.Bπ)), with in being the input message for the
operation associated with A and , out.Bπ modeling the transition labeled with
message abstracted by out, and Bπ denoting the process associated with the
destination state.

As an illustration, Figure III.2 defines the transitions from the Search operation
of the flight reservation Web service. The operation Search can be called as
many times as necessary, followed by a confirmation by invoking the operation
Confirm, under the condition that the last search returns the SearchRS message.

III.1.2.2 Activities

A conversation supported by a Web service is defined as an activity. A Web
service may support more than one conversation, which should be defined using
distinct activities in a single WS-RESC document. The top-most XML element
in a WS-RESC document is an activity, which defines a set of transitions, defining
a connected graph. Furthermore, activities may be composed in order to define
broader activities.

<RESC>
<activity name=NCName ref=QName ?> ∗

<transition . . .> ∗
Except iona l statements (de f ined l a t e r)
P rope r t i e s (de f ined l a t e r)

</activity>
</RESC>

III.1 The WS-RESC language 47

Search

Confirm

[SearchRS]

<state name=‘‘Search’’
operation=‘‘ws:Search’’/>

<state name=‘‘Confirm’’
operation=‘‘ws:Confirm’’/>

<transition name=‘‘t1’’>
<source state=‘‘this:Search’’/>
<destination state=‘‘this:Search’’

minOccurs=0 maxOccurs=unbounded
/>

</transition>

<transition name=‘‘t2’’ >
<source state=‘‘this:Search’’

condition=‘‘ws:SearchRS’’/>
<destination state=‘‘this:Confirm’’/>

</transition>

Figure III.2: Ordering of operations

Activities are named and contain at least a transition from a Start state and zero
or more transitions to End states. Furthermore, we allow reuse of pre-defined
activities with the ref attribute by referencing its name. All other transitions
defined in the activity may reference a Web service operation or another activity.
The contained activity is referred as a nested activity and the containing one as
the main activity, which has its own Start and End states. A nested activity has to
terminate on an End state to allow the continuation of the main activity. A nested
activity is viewed as an isolated execution, considered as a single state in the
diagram. Isolation is further enforced by disallowing states to be shared between
activities. Activities directly translate into π-calculus processes, according to
rules associated with embedded constructs.

As an illustration, Figure III.3 depicts an activity with a nested activity
Payment, which defines the sub-conversation for the authentication of the ser-
vice requester and the payment. Activities are declared using the activity element
and nesting is specified through transition with a destination element of type
activity, leading to an implicit transition on the Start state of the nested activ-
ity. The nested activity may then continue until an End state is reached. Only
then, the containing activity may resume, from a transition that has the nested
activity as a source destination. Conditions on this transition may be set on
the output or fault messages of the state preceding the End state in the nested
activity.

48 III Specifying Recovery Support of Web Services

Search

Payment

End

Start

[SearchRS]

<activity name=‘‘Flight’’>
<transition name=‘‘t’’>

<source state=‘‘this:Search’’
condition=‘‘ws:SearchRS’’/>

<destination state=‘‘this:Payment’’/>
</transition>
...

</activity>

<activity name=‘‘Payment’’>
...

</activity>

Figure III.3: Activities and composition

III.1.2.3 Choice

The choice operator allows defining non-deterministic exclusive choices among
a set of operations that can be called based on the service requester selection.
Once an operation is executed, other options are no longer valid.

Using XML, choices are specified by declaring transitions with multiple destina-
tions:

<transition name=NCName>
<source state=QName

condition=XPath−expre s s i on ? />
<destination state=QName /> +

</ transition>

The choice construct directly translates into π processes combined with the
choice (+) operator, as in Aπ ::= in.((out1.B

1

π) + ... + (outn.B
n
π).

For example, in the conversation described in Figure III.4, it is specified that
after one execution of the Register operation, the service requester is allowed to
call either the Cancel operation or the Payment operation.

III.1 The WS-RESC language 49

Cancel Register

Payment

<transition name=‘‘t’’>
<source state=‘‘this:Register’’/>
<destination state=‘‘this:Cancel’’/>
<destination state=‘‘this:Payment’’/>

</transition>

Figure III.4: Choice

III.1.2.4 Concurrency

The concurrency construct serves specifying operations or activities that are
allowed to be executed concurrently by a service requester. The corresponding
XML declaration is given using the concurrent element, as a replacement of the
destination element in the transition element. All destination states referring
concurrent operations and concurrent activities are declared as a child element
of the concurrent element. Concurrency can also be defined for a single state,
i.e., for an operation or activity that may be called several times in parallel. The
maxOccurs attribute on a destination element gives the maximum number of
concurrent calls that is allowed for the referenced operation or activity.

<transition name=NCName >
<source state=NCName

condition=XPath−expre s s i on ? />
<concurrent>

<destination state=QName
maxOccurs=(nonNegat iveInteger | unbounded) : 1>+

</concurrent>
</ transition>

The concurrency construct directly translates in the π-calculus using the parallel
(|) operator.

Figure III.5 depicts a conversation where the transition from the Start state leads
to two concurrent sub-activities: SearchOneWay and SearchReturn. Concurrency
is specified using the ∧ symbol on the diagram. Furthermore, the optional num-
ber n on the transition states the maximum number of parallel executions of the
activity that is allowed (or * for specifying unlimited concurrent calls). In par-
ticular, the service requester can call concurrently the SearchOneWay operation

50 III Specifying Recovery Support of Web Services

Start

2

Λ

Λ
Search

Oneway

Search

Return

<transition name=‘‘concurrency’’>
<source state=‘‘this:Start’’/>
<concurrent>

<destination state=‘‘this:SearchOneWay’’/>
<destination state=‘‘this:SearchFlight’’/>

</concurrent>
</transition>

<transition>
<source state=‘‘this:SearchOneWay’’/>
<concurrent>

<destination state=‘‘this:SearchOneWay’’
maxOccurs=2/>

</concurrent>
</transition>

Figure III.5: Concurrency

twice.

III.1.2.5 Identifying sessions

The concurrency construct introduced above set the rules for concurrent inter-
actions between a Web service and a service requester. When several service
requesters access concurrently a Web service, concurrency control is internal to
the service provider side. For example, concurrency control can be managed ei-
ther by the Web service application or by the application server, which can create
as many Web service instances as requests or as service requester and redirect
incoming messages to the related instance. Each interaction with a different Web
service requester can thus be considered as a separate conversation. Nonetheless,
a single service requester can also interact with a Web service in different ses-
sions. Different conversations should then apply for each of these sessions, as
if they were undertaken with different service requesters. The service requester
must however know if the Web service can identify different sessions with respect
to conversations. In this case the sessions can be executed concurrently as each
of them will be matched to a different conversation instance. Otherwise, concur-
rency control should be made at the service requester side, e.g., by serializing
concurrent conversation execution instances.

Since there is not a standard way to manage sessions in Web services, keeping

III.1 The WS-RESC language 51

track of different Web service interaction instances is usually managed by ap-
plications. For example, a Web service implementation may use cookies stored
at the client side for handling sessions, or may require a session identifier to be
associated with interactions. Such information may be used to identify the client,
in the case where some operations should be invoked within the same session by
the same service requester, as well as to identify a specific Web service instance
on the service provider-side.

Web services should thus make visible their support for concurrent sessions at
their interface. This is done in WS-RESC by associating states and activities
of a conversation with abstract correlation values, which can be tracked by the
service requester to identify different sessions. The absence of correlation infor-
mation means that the Web service does not support concurrent conversations
(for activities not defined as being concurrent explicitly). When a state or activ-
ity has the same correlation value as another, this means that both states are
part of the same session. We define correlations with the element correlation. We
get the following definition:

<correlation name=NCName />

Then, states sharing the same correlation values are identified through the at-
tribute correlate referencing this correlation element. For activities, the correla-
tion applies automatically to all embedded states and activities:

<correlation name=NCName />
<state name=NCName

operation=QName
correlate=QName />

<activity name=NCName
correlate=QName />

Correlations are defined in corresponding π processes using parameters. Specifi-
cally, (νi)Aπ(i) is the process Aπ with the newly defined correlation value i. The
correlation value can then be shared with processes within the same session by
passing the value in a way similar to input messages.

In Figure III.6, the service-requester SR initiates two concurrent interactions,
each mapped to the conversation (Search.Login.Payment). The conversation is
not a concurrent conversation as it would be defined with a concurrent construct
because each interaction belongs to two distinct sessions. However, the service
requester can initiate two concurrent conversations with the Web service because
a correlation identifier has been defined for each state of the conversation for
identifying which operation call belongs to which conversation instance. Note

52 III Specifying Recovery Support of Web Services

SR

Search Login Payment

Search Login Payment

<correlation name=‘‘SessionID’’/>
<state name=‘‘Search’’
operation=‘‘ws:Search’’
correlate=‘‘SessionID’’/>

<state name=‘‘Login’’
operation=‘‘ws:Login’’
correlate=‘‘SessionID’’/>

<state name=‘‘Pay’’
operation=‘‘ws:Pay’’
correlate=‘‘SessionID’’/>

Figure III.6: Concurrent sessions

that in this specific example, the correlation information could also have been
set once, at the level of the main activity.

III.1.2.6 Synchronization

Synchronization of concurrent activities is specified using join conditions. A join
condition is expressed as a Boolean expression on output messages of operations
that specifies the condition under which the execution of the conversation is
allowed to continue.

Various join conditions can be specified, ranging from the synchronization of all
the parallel activities, termination of a subset of the concurrent activities, and
no condition at all, meaning that these activities are not required to terminate
before the execution of activities after the join. In general, the join condition is
specified as a Boolean expression on the output messages of the last operation
of each activity that is joined. We get the following definition:

<transition name=NCName>
<source state=QName

condition=XPath−expre s s i on ? />+
<destination state=QName

condition=XPath−expre s s i on ? />
</ transition>

Formally, this translates into a conditional π process that is sequentially com-
posed with the concurrent activity, and whose condition, if any, is expressed as
a Boolean expression over related output events.

III.1 The WS-RESC language 53

Start

2

Search Search

ReturnOneway

Confirm

[SearchOWRS] [SearchRRS]

Λ

Λ <transition name=‘‘confirmation’’>
<source state=‘‘this:SearchOneWay’’

condition=‘‘ws:SearchOWRS’’/>
<source state=‘‘SearchReturn’’

condition=‘‘ws:SearchRRS’’/>
<destination state=‘‘this:Confirm’’

condition=
‘‘ws:SearchOWRS AND ws:SearchRRS’’/>

</transition>

Figure III.7: Synchronization of concurrent activities

Execution paths of two concurrent activities that have been split are merged into
a single state, as shown in the activity depicted in Figure III.7. In this example,
the concurrent activities are both required to terminate before invoking the
Confirm operation. The corresponding transition specifies the states of all the
concurrent activities that are to be joined as source states, and the join condition
as an Xpath[W3C, 1999] expression on the destination state.

III.1.2.7 Timing constraints

In Web service interactions, both the service requester and the service provider
can have timing requirements over their interactions. A service requester can
assume that a Web service has failed if an operation call does not returns an
output or a fault message within a pre-determined amount of time. On the other
hand, service providers may also set timeouts on input messages received from
a single service requester. WS-RESC enables specifying such timing constraints
for Web services over transitions.

Since there is not a standard way to model timers in the π-calculus, we can
abstract from time by using a specific process that is run when the timer timeouts
and that can be prefixed by an output event relating to a timeout fault message,
if any. A timer set on an operation Login that returns a TimeOut fault message
may then be specified as:

Loginπ.(OK.Searchπ + T imeOut.Loginπ)

54 III Specifying Recovery Support of Web Services

An alternative would be to model the time directly in the calculus, as presented
in [Berger and Honda, 2003], where the authors extend the π-calculus with a
timer denoted by:

timert(x̄(v).P, Q)

where t is a positive integer representing time steps, Q the process that is run
when the timer timeouts and x̄(v).P is the continuation process. The latter
modeling has the advantage of making time explicit and thus allows reasoning
about timing properties of processes. However, we undertake the former approach
for modeling timeout since it is directly supported in the π-calculus.

In WS-RESC, a timeout is associated with a transition using the timeout element,
defined as follow:

<timeout timer = Duration
onInput = Boolean : f a l s e
state = QName ?
exception = QName ?

/>

The embedded onInput attribute is set to true if the timeout is computed from
upon receipt of an input message for the operation referenced in the source state,
or set to false (default) if the timeout is computed from upon emission of the
output message by the Web service. The state attribute further specifies the
destination state of the process upon timeout occurrence. If no state is specified,
the exception attribute is used to reference an exception that will be raised on
timeout.

For example, the flight Web service can require a delay of 15 minutes between
the confirmation and the login, and between the registration and the payment.
On timeout, the service requester should re-search or re-login, as illustrated in
Figure III.8.

III.1.3 Exceptional behaviour

The exceptional behavior of a Web service is described by giving an alternative
conversation that should be followed by the service requester when it detects an

III.1 The WS-RESC language 55

ε
ε

[t=300][t=300]

Confirm PaymentLogin

<transition>
<source state=‘‘this:Confirm’’/>
<timeout duration=‘‘300’’

onInput=‘‘false’’
state=‘‘this:Confirm’’

<destination state=‘‘this:Login’’/>
</transition>

<transition>
<source state=‘‘this:Login’’/>
<timeout duration=‘‘300’’

onInput=‘‘false’’
state=‘‘this:Login’’

<destination state=‘‘this:Payment’’/>
</transition>

Figure III.8: An activity with timers

exceptional behaviour. The occurrence of an exception is identified by the service
requester, according to the exception triggering conditions. These conditions are
specified by the service provider for each activity supported by the Web service,
which might raise an exception. An exception is considered to be raised if all
triggering conditions defined for this exception are met. Then, the activity is
considered as terminated, and interactions with the service requester and the
Web service should follow the corresponding exceptional conversation (the ex-
ception handler activity). An exception handler activity always terminates with
a transition on the End state of the activity for which it is defined, causing it to
terminate also. If the activity is a sub-activity, then the conversation continues
as if the activity had terminated normally.

If a corresponding exception handler cannot be found for an exception, the activ-
ity, which has raised the exception, terminates and the exception is propagated
to the containing activity –if any. The propagation is repeated until a corre-
sponding handler is found. If no handler can be found, the whole conversation
is considered to be terminated exceptionally.

Exception handler activities are specified in the same way as other activities,
and can thus raise exceptions for which other handler activities may be defined.
However, exceptions are never propagated as is across different handlers. But,
if a handler terminates exceptionally, it may trigger an exception in a parent
activity, e.g., a parent exception handler, where it should be defined. This is
called exception signaling.

56 III Specifying Recovery Support of Web Services

Exception triggering conditions comprise:

(1) Error messages, sent by the Web service as either a WSDL fault message
or as an output message.

(2) Service failures, detected by the underlying communication protocol of the
service requester (e.g., HTTP errors or SOAP fault messages).

(3) Timeouts, occurred when a service requester does not meet timing condi-
tions on operations invocations.

In WS-RESC exceptions are declared by embedding exception elements within
activity elements:

<exception name=NCName
condition=(XPath−expre s s i on | any)/>

The exception element has two attributes:

(1) name for naming the exception. The name must be uniquely defined in its
context. It is used by the handler activity to reference the exception. The
handler activity is specified separately, in the same WS-RESC document.

(2) condition for setting the condition that must be satisfied for raising the
exception.

Conditions are expressed as an XPath expressions over other exceptions or mes-
sages. Service failures are specified using XML QNames referencing the specific
failure. In particular, having an exception name in a condition expression enables
defining propagation of exceptions across activities and handlers. In addition,
the keyword failure is used to reference any unhandled exception that might be
propagated or signalled in the context. Exception handler activities are further
defined using the handler elements, refering the name of the associated exception
and a reference to an activity defining the handler, which can further define other
exceptions. When the handler activity terminates normally, i.e., by reaching the
End state without throwing any other exception, the parent activity or handler
that was interrupted by the exception being handled terminates by reaching the
End state.

An example conversation is for illustrating exception handling and exception
propagation is presented in Figure III.9. The main activity named A is com-
posed of two sub-activities A1 and A2 that should be executed in sequence. An

III.1 The WS-RESC language 57

e1 e2

e2

e11 e12

e111

end

e1.handler

e11.handler

default.handler

A

A1 A2

exception

exception propagation

Figure III.9: Exception handling

exception named e1 is defined for the activity A2 and leads the handler activ-
ity e1.handler to be invoked, interrupting the normal execution of activity A1.
Similarly, the e1.handler activity throws the e11 exception, leading the service
requester to invoke operations of the e11.handler activity. A third exception e111
is thrown in e11.handler, but it has no associated exception handler. The excep-
tion e111 is then propagated recursively up to the main activity A. For propa-
gating the exception across exception handlers, a new exception must be raised
(exception signalling). e111 becomes thus e12 when signalled to e1.handler and
e12 becomes e2 in A1. e2 is propagated as is to its parent activity A. A default
exception handler default.handler matches this exception, and can be executed.
When the service requester completes all the conversation described by the de-
fault.handler activity, the main activity terminates with a transition to its End
state. Note that the A2 activity have never been executed because of the ex-
ception e2 in the main activity, which terminated it. If the first exception was
handled normally and the e1.handler activity had terminated, then the execution
would have been continued at the Start state of the A2 activity.

58 III Specifying Recovery Support of Web Services

The WS-RESC description of activities described in Figure III.9 is given as
follows:

<activity name= ‘ ‘A ’ ’>
<exception name= ‘ ‘default ’ ’ condition= ‘ ‘ f a i l u r e ’ ’ />
<transition>

<source state= ‘ ‘ t:A1 ’ ’ . . . />

<destination state= ‘ ‘ t:A2 ’ ’ . . . />

</ transition>

. . .
<handler exception= ‘ ‘ t : d e f a u l t ’ ’ activity = ‘ ‘ t : d e f a u l tHand l e r ’ ’ />

</activity>

<activity name= ‘ ‘A1 ’ ’>
<exception name= ‘ ‘ e1 ’ ’ condition = ‘ ‘ . . . ’ ’ />
<exception name= ‘ ‘ e2 ’ ’ condition= ‘ ‘ t : e 1 2 ’ ’ />
. . .

<handler exception= ‘ ‘ t : e 1 ’ ’ activity = ‘ ‘ t : e1Handler ’ ’ />
</activity>

<activity name= ‘ ‘ e1Handler ’ ’>
<exception name= ‘ ‘ e11 ’ ’ condition = ‘ ‘ . . . ’ ’ />
<exception name= ‘ ‘ e12 ’ ’ condition= ‘ ‘ t : e 1 1 1 ’ ’ />
. . .

<handler exception= ‘ ‘ t : e 1 1 ’ ’ activity = ‘ ‘ e11Handler ’ ’ />
</activity>

<activity name= ‘ ‘ e11Handler ’ ’>
<exception name= ‘ ‘ e111 ’ ’ condition = ‘ ‘ . . . ’ ’ />

. . .
</activity>

III.2 Recovery-related properties of conversations

In this section, we present how conversations, in addition to specify how to use
the service in terms of dependencies between operations and time constraints,
may be used to specify recovery properties of Web services. In a first step, we
detail how base recovery properties may be expressed using the notion of state
equivalence. However, the internal states of Web services are hidden to requesters
and do not make part of the conversation definitions, which exhibit only the
potential behaviour of Web services. Then, we discuss how state equivalence that
is based on the knowledge of the systems’ internal states may be introduced in
the modeling of systems that exhibit only their observable behavior, leading us
to define a specific equivalence relation over conversations.

III.2 Recovery-related properties of conversations 59

III.2.1 Equivalence relation for expressing recovery-related

properties

Most of the recovery mechanisms implemented in composite Web services such
as open-nested transactions, or retry-based recovery actions, require calling op-
erations or sequence of operations on composed Web services that have recovery-
related properties such as atomicity, compensability, retry-ability and commuta-
tivity. These properties can be characterized in terms of state equivalence (also
referred to as final state equivalence) relationships over values of the individual
services’ states.

A retry-able activity can be repeated several times until it succeeds. Retry-ability
often involves using idempotent activities, i.e., activities that, when executed
several times, give the same result. In other words, an activity is retry-able if
the internal states reached after one or more sequential executions of the activity
are equivalent.

Atomicity is a base recovery property for running transactions stating that an
activity either successfully executes until completion, or aborts by exceptionally
terminating in the same state as the one that held before its execution. Simi-
larly, open-nested transactions for long running activities are realized by calling
operations that compensates previous ones. Compensation-based activities can
be defined using the notion of state equivalence, specifying that the successful
compensation of an operation, or of a set of operations, brings the system to a
state that is equivalent to its initial state.

The above definition assumes that the compensation action is performed im-
mediately after the action that is to be compensated: the initial state of the
system before the execution of the compensation activity is equivalent to the
system state after the execution of the compensated activity. If other actions
are performed in between, as it is possible with long-running transactions, the
internal state of the system may change, and the compensation action can no
longer ensure the state back recovery based on this definition. In [Korth et al.,
1990], the authors formally define compensating transactions based on the equal-
ity of histories. The definition uses the notion of the commutativity of sequence
of operations. Then, different types of compensations are defined based on this
notion. In particular, if it is stated that two actions P and Q commute, and
R is the compensation operation of P, , then executing the sequence (P.Q.R)
has the same effect than executing the sequence (Q.P.R), where Q is executed
and P is compensated. Commutativity of operations can be expressed using the
state equivalence relation stating that two operations commute if whatever is

60 III Specifying Recovery Support of Web Services

the execution sequence of the operations, the internal state of the system would
be the same after the execution of the two operations.

III.2.2 An equivalence relation over conversations

According to [Gaudel et al., 2003], there are two different approaches for defining
the internal state of a system:

(1) Forward-looking style with which the internal state of a system at a given
instant is a notional attribute of the system that is sufficient to determine
the system’s potential behavior;

(2) Backward-looking style with which the internal state of a system is the
total information explicitly stored (in state variables) by the system up to
the given instant.

The state equivalence relation that is used in the previous section for specifying
recovery-related properties relies on the equivalence of internal states of systems,
as given in the second definition. However, conversation languages define the ob-
servable behaviour of Web services where the internal state remains hidden.
Indeed, what is typically described in conversation languages follows the for-
mer definition, i.e., the potential behavior of systems. The system is specifically
viewed as a process and represented, in general, with labeled transition systems.
Using these modeling approaches, the notion of equivalence (referred to as ob-
servational equivalence) is expressed in terms of the system’s external behavior
and verified using bisimulations of processes (e.g., see [Sangiorgi and Walker,
2001] for an exhaustive list of different bisimulations for the π-calculus[Milner,
1999]).

To be able to express the properties defined in the previous section, we need a
new equivalence relationship over conversations, to specify the equivalence of the
system’s internal states after the execution of operations of a given conversation,
without making explicit their values, in a way similar to the work of [Black et al.,
2003].

We further use the term conversation execution to denote such an execution
process, i.e., the execution of a conversation is defined by a process execution
path that matches the given conversation and reaches any final state.

III.2 Recovery-related properties of conversations 61

Let P a conversation, σ the internal state of the system as perceived by the
service requester and α a conversation supported by P, which when executed
reduces P to the null process. The post execution internal state of the system
evolves to σ′:

(P, σ)
α
−→ (∅, σ′)

We introduce the equivalence relation as a binary relation, noted ∼̄, between
two conversations:

Definition III.1 For two alternative conversations P and Q defined for a Web
service, if P ∼̄Q holds, then the internal state of the Web service after an exe-
cution of P would be equivalent to that reached after an execution of Q, if the
initial internal states for both alternative executions are equivalent.

Formally,

P ∼̄Q ≡ ∀α, (P, σP)
α
−→ (∅, σ′

P),

∀β, (Q, σQ)
β
−→ (∅, σ′

Q),

σP = σQ =⇒ σ′

P = σ′

Q (III.1)

Note that the equivalence relation defined above specifies only equivalence over
internal states, not over their observable behaviours. Thus, conversations over
which the equivalence relationship holds are not necessarily structurally congru-
ent nor observationally equivalent. Our equivalence relation satisfies the following
properties:

(1) Reflexivity: P ∼̄P

(2) Symmetry: (P ∼̄Q) ⇒ (Q∼̄P)

(3) Transitivity: ((P ∼̄Q) ∧ (Q∼̄R)) ⇒ (P ∼̄R)

Proofs are trivial given the properties of the equality relation over states:

62 III Specifying Recovery Support of Web Services

(1) ∀α, (P, σ)
α
−→ (∅, σ′), σ′ = σ′ =⇒ P ∼̄P

(2) ∀α, (P, σp)
α
−→ (∅, σ′

p) and ∀β, (Q, σq)
β
−→ (∅, σ′

q).
P ∼̄Q =⇒ σ′

p = σ′

q. =⇒ σ′

q = σ′

p =⇒ P ∼̄Q.

(3) ∀α, (P, σp)
α
−→ (∅, σ′

p) and ∀β, (Q, σq)
β
−→ (∅, σ′

q) and ∀γ(R, σr)
γ
−→ (∅, σ′

r),
P ∼̄Q =⇒ σ′

p = σ′

q and Q∼̄R =⇒ σ′

q = σ′

r =⇒ P ∼̄R

These properties can then be used to establish equivalence relations over larger
conversations of a single Web service by composing smaller ones defined by the
developer of the Web service.

III.3 Expressing recovery-related properties

We provide two different methods for specifying the recovery properties of a
conversation. The first method is to declare the recovery property similarly to
existing solutions on the area, by annotating conversations with pre-defined prop-
erties ([Benatallah et al., 2004, Jimenez-Peris et al., 2003]). The second method
does not specify the recovery property directly, but uses the equivalence rela-
tionship introduced previously for specifying equivalence relationships between
different conversations supported by the Web service. The recovery property is
then derived from the specification by the service requester, which can also com-
pose different conversations of a single Web service to establish new equivalence
relations that were not explicitly declared by the service provider.

III.3.1 Expressing recovery properties using meta-data

A property is associated to an activity using the property child element. Proper-
ties are referenced by their QNames. A service requester can then select a Web
service based on the property that it exhibits over its conversations.

<activity>
<property value=QName/>∗
. . .

</activity>

For example, if the properties defining a transaction are defined in an XML doc-
ument referenced using the trans XML namespace, for a conversation satisfying
the all the ACID properties we get:

III.3 Expressing recovery-related properties 63

<activity>
<property value=‘ ‘ t r an s : a t om i c i t y ’ ’ />∗
<property value=‘ ‘ t r a n s : c o n s i s t e n c y ’ ’ />∗
<property value=‘ ‘ t r a n s : i s o l a t i o n ’ ’ />∗
<property value=‘ ‘ t r a n s : d u r a b i l i t y ’ ’ />∗
. . .

</activity>

This method is introduced as a complementary approach to define properties and
in particular, for those that can not be specified using the equivalence relation.
However, as the semantics of the properties are not explicitly specified, we can
not derive properties of conversations obtained by composing existing ones.

III.3.2 Expressing equivalence relations in WS-RESC

In WS-RESC, we introduce the equivalence element to specify equivalence be-
tween activities (normal and exception handler activities). We get the following
XML notation for declaring that an execution matching a conversation given by
the activity A is equivalent to an execution matching a conversation given by an
activity B:

<equivalence>
<activity ref =‘ ‘ th i s :A ’ ’ />
<activity ref =‘ ‘ t h i s :B ’ ’ />

</equivalence>

We recall that the equivalence relation serves specifying equivalence of internal
states and not of behavior. Thus, our definition does not map to any of the
equivalence relationships defined over π processes.

In the following section, the equivalence relation is used to express recovery
properties of conversations.

III.3.2.1 Expressing alternative conversations

A first usage pattern of equivalence relations is to declare alternative execution
paths, which can have express different behaviours in term of the sequence of
operations, but give the same results in terms of the internal state change of
the Web service. Given two activities A and B, if the equivalence relationship

64 III Specifying Recovery Support of Web Services

A∼̄B holds, then the service requester can substitute an activity by the other
one. Note that the input and output messages of different operations included
in each activity may be different, and it is up to the service requester to decide
which activity should be effectively executed and to set correct values to message
parameters.

<equivalence>
<activity ref =‘ ‘ th i s :A ’ ’ />
<activity ref =‘ ‘ t h i s :B ’ ’ />

</equivalence>

Alternative activities can indeed be used for achieving dependability by choosing
an alternative execution if the execution of an activity fails or if it can not be
executed by the service requester, for example if some messages can not be
constructed to call an operation in one of the activities.

III.3.2.2 Expressing retry-ability

As mentioned in Section III.2.1, a retry-able activity often involves using idem-
potent activities. An idempotent activity A can be expressed by declaring an
equivalence relationship between A and an activity defined using the activity A
with a transition on itself:

<equivalence>
<activity ref =‘ ‘ th i s :A ’ ’ />
<activity>

<transition>
<source state =‘ ‘ th i s :A ’ ’ />
<destination state =‘ ‘ th i s :A ’ ’ />

</ transition>
</activity>

</equivalence>

III.3.2.3 Expressing rollback

Specifying abort semantics of atomic conversations or compensation activities is
done by expressing the restoration of the internal state to the initial state. In
WS-RESC we set an equivalence relation between the rollback activity, which
is executed after the activity to cancel, and the activity executed before or the
initial Start state.

III.3 Expressing recovery-related properties 65

ABefore Rollback

Figure III.10: Rollback activity

Given the conversation illustrated in Figure III.10 defined with transitions over
activities A, Rollback and Before:

<transition>
<source state =‘ ‘ t h i s : B e f o r e ’ ’ />
<destination state =‘ ‘ th i s :A ’ ’>

</ transition>

<transition>
<source state =‘ ‘ th i s :A ’ ’ />
<destination state =‘ ‘ t h i s :R o l l b a c k ’ ’>

</ transition>

Cancellation of the effects of activity A on the internal state of the Web service
is given by the relation:

<equivalence>
<activity ref =‘ ‘ t h i s :R o l l b a c k ’ ’ />
<activity ref =‘ ‘ t h i s : B e f o r e ’ ’ />

</equivalence>

The equivalence can be established also with only the Start state, indicating that
all actions have been cancelled:

<equivalence>
<activity ref =‘ ‘ t h i s :R o l l b a c k ’ ’ />
<state ref =‘ ‘ t h i s : S t a r t ’ ’ />

</equivalence>

III.3.2.4 Expressing commutativity

Commutativity of two activities A and B can be expressed with an equivalence
relation between an activity embedding A and B, with a transition from A to B
and an activity embedding A and B, with a transition from B to A:

66 III Specifying Recovery Support of Web Services

<equivalence>
<activity>

<transition>
<source state =‘ ‘ th i s :A ’ ’ />
<destination state =‘ ‘ t h i s :B ’ ’ />

</ transition>
</activity>
<activity>

<transition>
<source state =‘ ‘ t h i s :B ’ ’ />
<destination state =‘ ‘ th i s :A ’ ’ />

</ transition>
</activity>

</equivalence>

III.4 Case study

This section illustrates the usage of the WS-RESC language for specifying equiv-
alence relations over conversations, from which the recovery behaviour of the
Web service can be derived. We extend for this the Flight Web Service intro-
duced in Section III.1.1.

III.4.1 Retry-ability

Payment End

Figure III.11: Retry-able conversation

Consider the part of the conversation depicted in Figure III.11 representing the
payment of the booked flight. It may be useful for the service requester to know
that the internal state of the Web service (which is hidden) is exactly the same
if the payment operation is to be invoked multiple times sequentially, i.e., that
the operation is retry-able. The service requester may use this information either
to verify if the flight Web service supports retry-ability in case of failure (e.g.,

III.4 Case study 67

timeout when performing an operation), or to implement an application-specific
forward error recovery based on the retry technique.

The equivalence relation for specifying the retry-ability property of the Payment
activity is given by:

<equivalence>
<activity ref =‘ ‘ this:Payment ’ ’ />
<activity>

<transition>
<source state =‘ ‘ this:Payment ’ ’ />
<destination state =‘ ‘ this:Payment ’ ’ />

</ transition>
</activity>

</equivalence>

III.4.2 Atomicity

An activity is said to be atomic if it terminates either successfully by committing
performed operations, or without completing its task by aborting and restoring
its state back, as illustrated in the example in Figure III.12. The conversation
starts with the invocation of the Login activity, which comprises all the Search,
Register and Login operations. The conversation then continues by multiple in-
vocations of the Payment operation. If any of these Payment operation calls
returns a fault message, the whole activity is aborted on the server side. The
service requester can no longer proceed for a Payment and can only call the
Cancel operation to confirm the abortion. Otherwise, the client can terminate
anytime or call the Cancel operation to cancel the effects of previous operations.
Note that in the former situation, the service requester calls the Cancel opera-
tion to confirm (i.e., acknowledge) the abortion that is automatically done by
the Web service, and that in the latter, the choice of either aborting or validating
is left to the the requester.

Atomicity of the sequence Login, Payment and Cancel, which is an activity sup-
ported by the flight Web service as it can be simulated (in the π-calculus sense)
by the conversation modeled in Figure III.12, is expressed with an equivalence
relation with the conversation Login. The Cancel operation has thus undone the
effects on the server side of the Payment operation, as the state as it is perceived
by the service requester (in particular, its bank account) is equivalent to the
state that would be reached if it only executed the Login operation.

68 III Specifying Recovery Support of Web Services

[PConfirmed]

End

Payment

Cancel Login

Figure III.12: Atomicity

The specification in WS-RESC is as follows:

<equivalence>
<activity ref =‘ ‘ Login ’ ’ />
<activity>

<transition>
<source activity=‘ ‘ t h i s : L o g i n ’ ’ />
<destination state =‘ ‘ this:Payment ’ ’ />

</ transition>
<transition>

<source state =‘ ‘ this:Payment ’ ’ />
<destination state =‘ ‘ Cancel ’ ’ />

</ transition>
<transition>

<source state =‘ ‘ t h i s :Cance l ’ ’ />
<destination state =‘ ‘End ’ ’ />

</ transition>
</activity>

</equivalence>

Consider now the conversation that a service requester engages, specified as a
successive invocations of the Payment operation, followed with the call of the
Cancel operation. This is a valid execution, since it can be simulated by the
conversation supported by the flight reservation Web service and modeled in
Figure III.12. However, there is no equivalence relationship that gives directly

III.4 Case study 69

the abort semantics of this particular execution. But, by composing the two
previously introduced conversations (Figure III.11 and Figure III.12) and their
respective equivalence relationships, we can get the desired property. Indeed, two
equivalent conversations may be substituted. The equivalence relationships are
still valid because of the equality on the internal states. Thus, using the first
equivalence relation stating the retry-ability, we can substitute one of the activ-
ity in the equivalence relation given for the atomicity property by the activity
which executes the Payment operation several times. We can thus deduce an
equivalence relationship between this activity and the activity Login, and hence
that the activity would be rolled back.

III.4.3 Compensation and commutativity

Compensation is commonly used to undo the effect of an activity for long running
activities. The main difference with an atomic conversation is that other conver-
sations can be executed between the conversation that is to be rolled back and
the compensation conversation, which can possibly change the internal state of
the Web service. In the case of atomic execution, the abort operation or activity
was to be executed right after the activity that should be cancelled.

Consider the activity depicted in Figure III.13 for the flight reservation Web ser-
vice. The Payment operation is substituted with an equivalent ComplexPayment
activity, which enables the service requester to pay part of the flight ticket price
with its previously earned miles. For efficiency, the conversation is composed
of two concurrent activities, one for paying by credit card and the other for
paying with miles. The join condition on the final state ensures that the whole
transaction terminates successfully only when both payment operations commit.
Otherwise, if one of the payment fails, the other payment should be cancelled by
invoking the corresponding cancellation operation. Furthermore, both payments
may also be cancelled after a valid payment.

The following equivalence relations specify that a CancelCreditCard operation
will cancel the credit card payment done with the operation PayCreditCard, and
that the CancelMiles operation will cancel the payment with miles using the
PayMiles operation:

<equivalence>
<activity ref =‘ ‘ t h i s :Log i nCr ed i t ’ ’ />
<activity>

<transition>
<source activity=‘ ‘ th i s :Log inCred i tCard ’ ’ />

70 III Specifying Recovery Support of Web Services

End

LoginMiles

PayMiles Empty

CancelMiles Empty

Login
CreditCard

Cancel
CreditCard

CreditCard
Pay

Confirm

[Confirmed] [Confirmed]

[Confirmed] [Confirmed]

[MilesFailed]

[CreditCardFailed]

Figure III.13: Complex payment

<destination state =‘ ‘ th i s :PayCred i tCard ’ ’ />
</ transition>
<transition>

<source activity=‘ ‘ th i s :PayCred i tCard ’ ’ />
<destination state =‘ ‘ th i s :Cance lCred i tCard ’ ’ />

</ transition>
</activity>

</equivalence>

<equivalence>
<activity ref =‘ ‘ t h i s :Log i nMi l e s ’ ’ />
<activity>

<transition>
<source activity=‘ ‘ t h i s :Log i nMi l e s ’ ’ />
<destination state =‘ ‘ th i s :PayMi l e s ’ ’ />

III.4 Case study 71

</ transition>
<transition>

<source activity=‘ ‘ th i s :PayMi l e s ’ ’ />
<destination state =‘ ‘ t h i s :Cance lM i l e s ’ ’ />

</ transition>
</activity>

</equivalence>

However, this specification is not enough to fully describe compensation capa-
bilities of the Web service. The service requester can, as it is permitted by the
concurrent construct, call PayCreditCard and PayMiles operations sequentially.
Thus, we can have the execution given by the sequence Begin, PayCreditCard,
PayMiles and CancelCreditCard. For stating the compensation of the payment
using the equivalence relationships given above, we need an additional property
that states that the two payment operations are commutative. Based on this
definition, we can substitute the two conversations to have the equivalent con-
versation, given by the execution path Begin, PayMiles, PayCreditCard, Cancel-
CreditCard. Then, the equivalence relation stating the cancellation of the credit
card payment can be used to derive that the payment is cancelled, despite the
fact that the operation PayMiles is executed between the operations PayCredit-
Card and CancelCreditCard.

Commutativity of the above two activities of the flight Web service is given
by the following equivalence relationship. Note that the two activities are both
supported by the Web service because they can be simulated by the initial con-
versation.

<equivalence>
<activity>

<transition>
<source state =‘ ‘ PayCreditCard ’ ’ />
<destination state =‘ ‘ PayMiles ’ ’ />

</ transition>
</activity>

<activity>
<transition>

<source state =‘ ‘ PayMiles ’ ’ />
<destination state =‘ ‘ PayCreditCard ’ ’ />

</activity>
</equivalence>

72 III Specifying Recovery Support of Web Services

III.4.4 Alternative conversations

End

Pay

Visa

Pay

MasterCard

Login

CreditCard

[Confirmed] [Confirmed]

Figure III.14: Alternatives

Consider now the conversation depicted in Figure III.14, which specifies that
there are two execution paths for making the payment, corresponding each to
a different payment method. The difference between the previously introduced
conversation is that we now have a choice construct instead of a concurrency con-
struct. We can state that the two possible executions will lead to the same result
by giving an equivalence relation between activities related to each execution:

<equivalence>
<activity>

<transition>
<source state =‘ ‘ ws:LoginCreditCard ’ ’ />
<destination state =‘ ‘PayVisa ’ ’ />

</ transition>
</activity>
<activity>

<transition>
<source state =‘ ‘ ws:LoginCreditCard ’ ’ />
<destination state =‘ ‘PayMasterCard ’ ’ />

</ transition>
</activity>

</equivalence>

This equivalence relation may then be exploited for implementing a specific
recovery mechanism in case of failure of one operation: if one activity fails,
the transaction can be retried with the alternative activity. A failure of one

III.5 Concluding remarks 73

activity may lead to apply compensation activities for restoring the state back
before executing the alternative activity. Such a behaviour can easily be specified
by expressing the recovery behaviour of each activity separately with several
equivalence relationships similarly to those expressed in this section. The service
requester can then compose different activities of the Web service to get the
properties satisfying the requirements of the recovery mechanism it wants to
apply.

III.5 Concluding remarks

As discussed in Section II.2.2, many conversation languages exist for specifying
the externally observable behaviour of Web services. However, none of them
provides all the necessary constructs for declaring the recovery support of Web
services and their exceptional behaviour.

A service requester may need to invoke in parallel operations or conversations of
a Web service for increasing performance. However, it should know exactly the
concurrency behaviour of the Web service, in particular if it allows its operations
or conversations to be invoked in parallel and under which conditions. Further-
more, the service requester can efficiently control concurrent accesses to the Web
service if it knows how the operations of the Web service interfere. For controlling
concurrent accesses from a service requester to a Web service, the concurrency
behaviour should be defined at the service interface at the conversation level.
This is specified in WS-RESC using the concurrency construct, coupled with
the possibility to put join conditions on concurrent executions to synchronize
concurrent activities. In addition, the correlation information specified on op-
erations and on activities with WS-RESC enables identifying the support for
concurrent sessions of a Web service.

There are many applications where meeting timing constraints is important for
dependability. Given the timing constraints of a Web service and the timing
requirements of the service requester, the service requester can select the Web
service instance that best suits to it needs. The service requester can further
invoke the Web service operations accordingly. In WS-RESC, it is possible to
set timeouts individually on operations and to whole activities, and to specify
what action should be performed if the activity timeouts.

The conversation language should allow defining exceptional behaviour by asso-
ciating alternative conversations that should be executed when an exceptional
event occurs, and should provide means to define exceptional events. In WS-

74 III Specifying Recovery Support of Web Services

RESC, an exception is considered to be raised when a set of conditions are met,
specified by the Web service developer and can include specific messages sent
or received by the Web service, timeouts as well as non-WSDL messages such
as HTTP or SOAP faults. Alternative activities are then specified for each of
the exceptions, which are to be executed invoked by the service requester for
handling the exception. WS-RESC further includes mechanisms for propagating
exceptions across activities if an exception is not handled within an activity.

Finally, recovery properties should be expressed over conversations. The recovery
properties must not be tight to a specific error recovery protocol. In addition,
properties must be expressed in a formal way to allow reasoning about com-
position of conversations. Indeed, the WS-RESC description of a Web service
can include several activities supported by the same Web service. However, a
service requester may require interacting with the Web service following an ac-
tivity that is not defined individually in the WS-RESC document, but that
can be obtained as a composition of existing ones. The service requester can
then identify the properties of composed conversations and verify if these prop-
erties match the requirements of a given error recovery protocol. Similarly to
conversations languages that enable annotating conversations with pre-defined
properties, conversations in WS-RESC can reference any property defined in an
external document. However, the main feature of WS-RESC is to allow defining
equivalence relationship between activities. The equivalence relation can then
be used by the service requester to derive the properties of the activities. The
formal definition of conversations and the equivalence relation further enables to
service requester to compose the conversations and their properties.

Among the conversation languages examined in the context of this thesis none
has the expressiveness of WS-RESC that can specify both the standard and ex-
ceptional conversations and includes constructs for specifying concurrency and
timing constraints. The WS-RESC language enables expressing the recovery
properties of the Web service, in a simple manner and not dependent to any
specific recovery mechanism. Moreover, the compositionality feature of the con-
versations described in WS-RESC allows to derive properties of specific conver-
sations not mentioned in the advertised interface but that are obtained by the
composition of existing ones.

While the exceptional behaviour specification allows defining how to handle er-
rors and the equivalence relation enables defining several properties that can be
used for performing recovery actions, these are not sufficient to describe all the
properties relevant to recovery because of the broad class of application-specific
fault tolerance mechanisms. One restriction of our language is the abstraction
from data, which reduces the expressiveness of the conversations. Indeed we can

III.5 Concluding remarks 75

specify the WSDL message names that should be received or emitted by the Web
service but we cannot specify the values of the messages. Another issue shared
with all conversation languages is to verify whether the Web service conforms to
its conversation and to the related properties it declares or not. Verification at
runtime can help to detect some incompatibilities but is not sufficient because
the internal state of the Web service remains hidden. Complementary solutions
related to trust management can then be integrated.

76 III Specifying Recovery Support of Web Services

IV Dependable Composition of
Web Services

This chapter proposes a new Web service composition language for building
dependable composite Web services. The language supports concurrency with
built-in mechanisms for controlling concurrent accesses to composed Web ser-
vices at different isolation levels and enables specifying dependability mecha-
nisms to be implemented both for forward and backward error recovery based
on a coordinated exception handling model.

IV.1 Web Service Composition Actions (WSCA)

We define a composite Web service as a Web Service Composition Action
(WSCA), which is specified by giving:

(1) The interface of the WSCA as a WSDL document.

(2) The specification of the WSCA including the behaviour of all the composite
Web service’s operations, using the WSCAL (Web Service Composition
Action Language) declarative language.

The WSDL document is intended for service requesters of the composite Web
service, while the WSCAL document is used for implementing the service. The
internal structure of a WSCA is thus totally hidden to the outside world, and
the WSCA composite Web service behaves as a standard Web service from that
perspective.

Usage of WSDL and WSCAL documents for developing and deploying a compos-
ite Web service is illustrated in Figure IV.1. The WSCA, which is built according
the WSCAL specification, is deployed on a centralized server and interacts with
both service requesters and composed Web services. The application logic of

78 IV Dependable Composition of Web Services

implementationWSCA

WSCAL

Service
Requester

Service Discovery
 Protocol

WSDL

SOAP messages

provides

SOAP messages

Web Service Web Service Web Service

composite Web service

deployment & execution development

code

abstract
 WS

abstract
 WS

abstract
 WS

*
*
*

*
*
*

*
*
*

interface

discoverybinding

Figure IV.1: Web service composition actions

each operation offered by the composite Web service, which are declared in the
WSDL document, should be specified in WSCAL. In the remainder of this doc-
ument the term WSCA operation is used for referring to one operation of the
composite Web service. Calls to composed Web services are specified as part of
the application logic of the Web service operations in WSCAL. However, WS-
CAL allows referencing composed Web services abstractly, without giving the
binding details of concrete services, which are discovered, thanks to a service
discovery protocol, during the execution of a WSCA operation or prior to the
execution, at deploy time. An executable composite Web service (the WSCA)
may then be either implemented by the developer or generated from the spec-
ification, depending on the specific environment in which the service is to be
deployed and the complexity of the service. Service requesters interact with the
composite Web service directly, based on its interface definition given by the
WSDL document.

IV.1 Web Service Composition Actions (WSCA) 79

IV.1.1 Specifying WSCA

The specification of a WSCA composite Web service is given using the WSCAL
(Web Service Composition Action Language) XML-based language. A WSCAL
document comprises three parts: i) an abstract declaration of composed Web
services, ii) declaration of state variables shared among WSCA operations of
the same WSCA instance, and iii), the behaviour of each WSCA operation (see
Figure IV.2).

WSCA operation

WSCAL

State

Services

abstract service

definition

<WSCAL name=NCName ...>
<services>

(Detailed below)
</services>
<state>

(Detailed below)
</state>
<WSCA operation=QName ...>*

(Detailed below)
</WSCA>

</WSCAL>

Figure IV.2: WSCAL document structure

A WSCA is defined using the < WSCAL > XML element where the name at-
tribute gives the name of the composite Web service. This top-level element com-
prises three parts: < services > for declaring abstract definitions of composed
Web services accessed during the execution of a WSCA operation, < state >
for declaring state variables of the WSCA instance and as many < WSCA >
elements as there are WSCA operations to be defined. The operation attribute
references the Web service operation defined in the related WSDL document.

80 IV Dependable Composition of Web Services

IV.1.2 Shared variables of a WSCA instance

Shared variables are accessible only by running WSCA operations belonging to
the same WSCA instance. They are declared through the < state > element
with the following structure:

<state>

<types>

<xsd:schema . . . />∗
</types>

<var name=NCName type=QName />∗
</ state>

The XML Schema data type system is used to specify new types within the
< types > construct. Then, variables are declared using the < var > construct
with an attribute name that defines a unique variable name visible within the
WSCA and a type attribute for declaring its type.

IV.1.3 Abstract service definition

Composite Web services depend on autonomously deployed and administrated
Web services, and therefore are very sensitive to the dynamics and evolution of
the environment. One concern is the availability and reliability of composed Web
services, which are crucial for guaranteeing the dependability of the provided
composite service. If a single composed Web service becomes unavailable or starts
to behave not as expected, the whole composite Web service can be affected.
Furthermore, new Web services with new features (offering better performances,
more reliable, trusty, secure etc.) can appear after the development phase of
the composite Web service, and it would be beneficial to integrate them in the
composition for a greater service quality. The specification of the composite Web
service should thus take into account that composed Web services may change,
more or less frequently.

As said earlier, we allow defining the composed Web services that are accessed
in the composition process of a WSCA operation as abstract services. The devel-
oper specifies only the required interfaces of the composed Web service in terms
of the provided operations, their messages and optionally, their conversation
support. Then, actual Web services that are accessed are integrated using a ser-
vice discovery protocol at deploy-time or at run-time, according to the WSCAL
specification.

IV.1 Web Service Composition Actions (WSCA) 81

Concretely, the abstract definition of composed Web services is given through
the < services > element. Then, the concrete binding with actual Web services
may either be defined statically, by giving the endpoint addresses of services
or, set dynamically at run-time, relying on a dynamic binding mechanism. The
declaration of the < services > element is as follows:

<services name=NCName>
<service name=NCName

hrefSchema=anyURI
conversation=anyURI ?
s tr i ct=boo l e a n : f a l s e
i so lat ion=QName?

>∗
<staticService hrefSchema=anyURI /> ∗
<dynamicService

onCall=boo l e a n : f a l s e
multiple=boo l e a n : f a l s e /> ?

</ service>

</ services>

The abstract description of composed Web services is given in the hrefSchema
attribute referring to the associated document. There is no strict requirement
on how this document should be written, however it should be process-able by
an underlying service discovery protocol. A typical description would be the
abstract part of a WSDL definition including type information, operation names
and message structures.

The optional conversation is used to reference a conversation description for
declaring the interaction protocol required to be supported by the service, such
as a document specified using the WS-RESC conversation language introduced
in Chapter III. This document is then used by the service discovery protocol
for finding Web services matching also the conversation support. The required
conversation is also declared with the purpose of verifying correctness of interac-
tions statically during implementation or dynamically at run-time. The attribute
strict should be set to true if strict conformity to this conversation is required
when interacting with the Web service, which can be in most cases detected and
notified to the WSCA at run-time, or to false otherwise. The default value for
this attribute is set false for performance issues. In that case, the conversation
description is used only for discovering concrete services.

In our prototype implementation we use a service discovery protocol based on
a partial matching of WSDL documents and on a simulation test for matching
conversations expressed using WS-RESC (see Chapter V). In our protocol, the
WSDL document of the discovered Web services should at least contain all the

82 IV Dependable Composition of Web Services

elements defined in the document referenced with hrefSchema. In addition, if
the conversation attribute is set, a simulation test is performed between the
conversations supported by the Web services and the referenced document. A
Web service then matches the abstract definition if it can simulate the required
conversation support of the WSCA.

Each service may be statically bound to a specific Web service (defined by the
< staticService > element) instance and/or dynamically bound to a Web ser-
vice matching the abstract definition of the service interface that is given by
the corresponding definition attribute (defined by the < dynamicService > ele-
ment). In the former case, concrete binding information is provided through the
WSDL document associated with the Web service. In the latter case, a matching
Web service is located at runtime using a service discovery protocol as discussed
above. Dynamic binding of composed Web services matching abstract Web ser-
vice definitions may take place either upon first invocation of the composed
service or upon instantiation of the composite Web service, according to the
value of the onCall Boolean attribute of the given service. The default value for
this attribute is set to false. Composed Web services bound to a specific WSCA
instance are kept during the life-time of the WSCA instance. In a different in-
stance, the service discovery protocol can select, in general, different instances
for the composed Web services.

For the sake of availability, we allow each composed service to be bound to
a set of Web services all matching the specification of the associated abstract
service instances; this is specified using the multiple Boolean attribute in the
< dynamicService > element for which the default value is false, and by stating
as many Web services as required with the < staticService > element. Then, a
unique Web service instance that is available among all bound instances is chosen
for the whole WSCA instance at the first invocation of the corresponding service.
If the Web service instance becomes unavailable later during the execution, an
alternate instance can be used if the call to the Web service operation is specified
as retry-able on an alternate Web service by the developer, in the WSCAL
specification. Otherwise, an exception is raised and another Web service instance
can only be chosen if it is explicitly specified in the corresponding handler (see
definition of the call statement at page 105).

As an illustration, a sample of the < services > element for the travel agency
composite service is given below. The service offers the JointBooking WSCA
operation that coordinates booking over hotel and flight booking Web services,
for which concrete Web services are dynamically retrieved upon invocation of
the WSCA operation. The composed Web services are required to have abstract
service interfaces described respectively in the Flight.wsdl and Hotel.wsdl WSDL

IV.1 Web Service Composition Actions (WSCA) 83

documents where only messages and operations are defined without concrete
binding information, and should be able to implement the conversations defined
respectively in the Flight.resc and Hotel.resc documents.

We get:

<services>

<service name= ‘ ‘ F l i g h tS e r v i c e ’ ’
hrefSchema= ‘ ‘ ta . com/ Fl i ght . wsdl ’ ’
conversation= ‘ ‘ ta . com/ Fl i ght . r e s c ’ ’>

<dynamicService

multiple=true
s tr i ct=true />

</ service>

<service name= ‘ ‘ Hote lSe rv i c e ’ ’
hrefSchema= ‘ ‘ ta . com/Hotel . wsdl ’ ’
conversation= ‘ ‘ ta . com/Hotel . r e s c ’ ’>

<dynamicService

multiple=true
s tr i ct=true />

</ service>

</ services>

Interactions with composed Web services are defined in the specification of
WSCA operations. In particular, the same Web service instance can be accessed
within different WSCA operations of the same composite Web service. This may
lead to concurrent accesses to composed Web services when service requesters
call concurrently the WSCA operations. These concurrent accesses then might
need to be controlled for the consistency of the WSCA composite Web service.

IV.1.4 Concurrency

Composed Web services are autonomously administrated open systems that can
be accessed concurrently by several autonomous service requesters. A service
requester is in general not aware of the existence of other concurrent calls to
the Web service from other service requesters and the Web service is the only
responsible for controlling concurrent accesses to it for maintaining consistency.
However, concurrent accesses to composed Web services originating from the
same WSCA can be problematic as it is dependent on the concurrency control
of the composed Web services, which can be unknown or non-compatible with
each other. Concurrent accesses should thus be controlled at the WSCA-side
with built-in mechanisms without tight coupling with the concurrency control
of composed Web services.

84 IV Dependable Composition of Web Services

Service
Requester

SOAP messages
WSCA

Web Service Web Service

SOAP messages

(a) Intra WSCA concurrency. Composed
Web services are accessed concurrently
from a single WSCA instance.

Service
Requester

SOAP messages

Web Service Web Service

SOAP messages

WSCA

Service
Requester

Service
Requester

(b) Inter WSCA concurrency. Composed
Web services are accessed concurrently
from several WSCA instances.

Figure IV.3: Concurrent accesses to composed Web services

Two types of concurrency issues arise in the execution of a WSCA operation.
The first issue is internal to a single WSCA operation. It concerns the control
of concurrent accesses to composed Web services during the execution of the
WSCA operation (referred to as intra-WSCA concurrency, see Figure IV.3(a)).
The second issue concerns concurrent accesses to composed Web services as a
result of concurrent invocations of WSCA operations accessing the same Web
services (referred to as inter-WSCA concurrency, see Figure IV.3(b)). While for
controlling inter-WSCA concurrency we rely on traditional solutions based on
session management, the intra-WSCA concurrency is controlled using nested ac-
tions that executes in isolation from each other. We first define the concurrency
support for concurrent WSCA executions for controlling inter-WSCA concur-
rency. Intra-WSCA concurrency is further addressed in the next section.

In the WSCAL specification, the behaviour of the concurrent WSCA executions
are set by two parameters. First, the developer specifies how a WSCA is instan-
tiated when a service requester access one WSCA operation and the life-time
of the service instance. Similarly to existing solution in the area, three types of
service instantiation is possible:

(1) Request: a new service instance is created for each service request and
terminates when the interactions of the WSCA operation terminate.

(2) Application: a service instance is created at the first invocation of the
service, and all subsequent invocations from the same or different service
requesters interact with this instance.

(3) Session: a different service instance is created for each service requester,
and all subsequent operation requests of service requesters go to the asso-
ciated service instance.

IV.1 Web Service Composition Actions (WSCA) 85

When two service requesters interact with a single instance, the state variables
of the WSCA are shared between the two executions and all bindings with com-
posed Web services are preserved.

The service instantiation parameter applies to the whole WSCA, no matter the
different concurrency features of composed Web services. It is specified using the
scope attribute of the top-level WSCAL element defining a WSCA:

<WSCAL name=NCName
scope=reque s t | app l i c a t i o n | s e s s i o n : r e q u e s t>

. . .
</WSCAL>

The second parameter specifies how concurrent accesses to composed Web ser-
vices resulting of concurrent calls of WSCA operations by service requesters are
controlled.

In database systems the behaviour of transactions when accessing shared data
is controlled by a particular locking strategy according to isolation levels. The
higher is the isolation level, the more longer locks are maintained. The American
National Standards Institute (ANSI) defines four isolation levels [ANSI, 1992].
The highest isolation level serializable (level 3) locks all shared data for both
reading and writing until the end of the transaction, and the lowest isolation
level read uncommitted (level 0) locks only shared data that are modified and
keeps the lock until the end of the transaction. Lower level isolation levels are
used in particular for improving performance by increasing concurrent accesses
at the cost of consistency. In the context of Web services we can not use the
ANSI isolation levels as is because they assume that operations are read or write
operations, while semantics of operations on composed Web services can not been
determined in general. Similarly to the ANSI isolation levels, we set isolation
levels for controlling access to Web services, which are seen as shared resources.
However, contrary to database systems, we do not lock the resources but restrict
accesses at the client-side. Three types of isolation levels are identified:

(1) none: this is the default isolation level, which means that accesses are
not controlled, and any execution of a WSCA operation can access the
composed Web service.

(2) WSCA-visible: composed Web services that are WSCA-visible can be ac-
cessed only by a unique WSCA instance. Accesses from other WSCA in-
stances (for the same or different WSCA operation) have to be delayed
until the termination of the ongoing interaction.

86 IV Dependable Composition of Web Services

(3) strict: Concurrent accesses to composed Web services are only allowed
within a single execution of a WSCA operation.

Contrary to the first parameter, which is specified once and applies to all WSCA
operations, a different isolation level can be specified for each of the composed
services. The isolation level is specified using the isolation attribute of the
< service > element defining an abstract composed Web service. Note that dif-
ferent concurrency control techniques, according to the composed Web services
concurrency supports, can be implemented for guaranteeing the above rules and
increasing the overall performance. Different solutions based on the exploitation
of the concurrency support of individual Web service expressed in WS-RESC
are presented in Chapter V. In particular, for increasing performance by not
delaying concurrent calls from different composed Web services when a strict
isolation level is set, we allow concurrent calls if the composed Web services
accessed within the WSCA operations support session-based interactions.

The above isolation levels control the concurrent accesses to composed Web
services from different composite Web service instances. At any isolation level,
concurrent accesses are not controlled during the execution of a single WSCA
operation, which is the focus of the next section.

IV.2 Coordinating access to composed Web ser-
vices

This section deals with the coordination of accesses to composed Web services
within an execution of a single WSCA operation. The main objective is to estab-
lish a coordination model suited for expressing the composition of Web services
using different fault tolerance mechanisms. The approach is based on the co-
ordinated atomic actions model, which provides a base structuring model for
developing fault tolerant systems by combining both backward and forward er-
ror recovery mechanisms. The base CA actions model is adapted to the specifics
of Web services, in particular by relaxing isolation and atomicity requirements
over interactions with composed Web services and introducing a new coordinated
exception handling model. We first present Coordinated Atomic Actions, which
inspired our work. Then, we detail our approach in the subsequent sections.

IV.2 Coordinating access to composed Web services 87

IV.2.1 Coordinated Atomic Actions

Coordinated Atomic Actions (CA Actions) [Xu et al., 1995] are a structuring
mechanism for developing dependable concurrent systems through the gener-
alization of the concepts of atomic actions [Campbell and Randell, 1986] and
transactions [Gray and Reuter, 1993]. Atomic actions are used for controlling
cooperative concurrency among a set of participating processes and for realiz-
ing coordinated forward error recovery using exception handling. Transactions
are used for maintaining the consistency of shared external resources that are
competitively accessed by concurrent actions. Each CA Action is designed as
a multi-entry unit with roles activated by action participants, which cooperate
within the action. A transaction is started on external objects and it terminates
at the end of the CA Action.

A CA Action terminates with a normal outcome if no exception has been raised
or if an exception has been raised and handled successfully; all transactions on
external objects are then committed. If a participant raises an exception inside
an action and if the exception cannot be handled locally by the participant,
the exception is propagated to all the other participants of the CA Action for
coordinated error recovery. If several exceptions have been raised concurrently
they are resolved using a resolution tree imposing a partial order on all action
exceptions, and the participants handle the resolved exception [Campbell and
Randell, 1986]. If coordinated recovery fails, the Coordinated Atomic Action
terminates with an exceptional outcome. An exception is then signaled by the
CA Action and transactions on external objects are aborted.

Coordinated Atomic Actions can be designed in a recursive way using action
nesting. Several participants of a CA Action can co-enter into a nested CA
Action, which defines an atomic operation inside the embedding CA Action.
Accesses to external objects within a nested action are performed as nested
transactions so that if the embedding CA Action terminates exceptionally, all
sub-transactions that were committed by nested actions are aborted as well. A
CA Action participant can only enter one concurrent nested action at a time.
Furthermore, a CA Action terminates only when all its nested actions have com-
pleted. Note that if the nested action terminates exceptionally, an exception is
signaled to the containing CA Action.

As an illustration, Figure IV.4 depicts the execution of a CA Action that is
composed of three participants P1, P2, and P3. A nested action is created with
participants P1 and P2; nested transactions are further executed on external
objects. An exception raised by participant P3 is propagated to participants P1

88 IV Dependable Composition of Web Services

and P2, which causes the CA Action to enter an exceptional state, as shown by
the greyed box, where the participants cooperate for handling the exception.

coordinated exception
handling

exception

P2

P3

P1

CAA Start CAA End

nested CAA
start

nested CAA
end

messages

transactional accesses

time

C
A

A
 P

ar
ti

ci
pa

nt
s

begin
transaction transaction

end

Nested transactions on external objects

Figure IV.4: Coordinated atomic actions

CA Actions mainly focus on structuring concurrent systems and on providing
their fault tolerance by exception handling. One of the main intentions behind
CA Actions is to employ them as a core mechanism for structuring complex
distributed applications: they promote recursive view on system execution by
abstracting away both normal and abnormal behaviour of the low level software.
A formal specification of CA actions can be found in [Tartanoglu et al., 2003b,
2004].

To deal with backward error recovery, CA actions are based on a nested transac-
tional model that coordinates transactional accesses to external resources. How-
ever, as raised previously, ACID properties over external resources are not suited
in the case of Web services. Strict requirements over external resources can be
relaxed for Web services. Indeed, atomicity is not always required or can be
obtained using advanced transactions based on open-nested transactions with
compensation operations, which relax isolation. Concurrent accesses to Web ser-
vices can be coordinated by relying on the support for concurrency of individual
Web services or by controlling concurrent accesses at the client side.

IV.2 Coordinating access to composed Web services 89

The forward error recovery mechanism of CA actions is based on the coordi-
nated handling of exceptions by all the participants of the CA action. Occur-
rence of concurrent exceptions then implies resolving the concurrent exceptions
into a single exception for coordinated error recovery. However, due to the au-
tonomy and to the lack of transactional support of Web services, actions done
on composed Web services can not always be undone and specific actions may
be required to perform on accessed Web services when failures occur. Concur-
rent exceptions may thus imply executing several exception handlers for safely
terminating interactions with different Web services. We therefore extend the co-
ordinated exception handling model by allowing several exception handlers to be
executed when concurrent exceptions occur to deal with the diverse exceptional
behaviours of composed Web services.

IV.2.2 WSCA operations

Based on the CA Action model, a WSCA operation is defined as a process that
comprises several threads of execution called participants, which execute con-
currently. During execution, participants can co-operate by sharing information
using local variables and synchronizing their execution. Each participant interact
further with one or more composed Web services. Contrary to CA actions we do
not impose transactional accesses to composed Web services. Action nesting is
used for controlling concurrent accesses to composed Web services and for defin-
ing coordinated exception handling scopes. A broad range of autonomous Web
services can thus be integrated in the composition, despite their lack of support
of transactional properties. Furthermore, the design of a composite Web service
with several participants allows to easily implement a choreography (see Chap-
ter II) by assigning a different participant for each of the roles defined in the
choreography.

Input messages received by the WSCA for a particular WSCA operation (action
for short) lead to the synchronized execution of the action participants. The
input message can be read by all the participants, which can further access to
a set of variables shared among all the action’s participants (complementary to
shared variables of the WSCA instance). The action terminates synchronously
when all the participants terminate their computation. According to the mes-
sage exchange pattern defined in the WSDL document of the WSCA, messages
defined as output or fault messages are computed (explained later) and sent to
the service requester at the end of the action. If the action terminates normally,
WSDL output messages will be returned. If the action terminates exceptionally,
i.e., if an unhandled exception occurs or if the handling of an exception causes

90 IV Dependable Composition of Web Services

the action to abort, a fault message is returned.

The call of a WSCA operation from a service requester does not lead systemat-
ically to the creation of a new WSCA instance. As said in the previous section,
a new instance is created for each operation call when the scope attribute of
the WSCA is set to request or for each different sessions (in general for each
service requester) when the scope is set to session. Shared variables of a WSCA
are initialized at the first invocation of a WSCA operation and their values are
maintained for subsequent calls of other WSCA operations. Similarly, binding
with Web services are maintained during the life-time of a WSCA instance. State
variables for local computations within a WSCA operation can also be declared.
These local variables are however re-initialized at each invocation of the WSCA
operation.

SearchTrip

Flight reservation Web service

Accomodation reservation Web service

Messages
Input

Hotel

Flight Messages
Output|Fault

SOAP messages

Figure IV.5: Execution of a WSCA operation

Figure IV.5 illustrates the execution of the SearchTrip WSCA operation for the
travel agency composite Web service. The SearchTrip operation is called with
an input message comprising the details of the requested trip. The WSCA then
contacts composed Web services and returns either an output message compris-
ing the list of trips or a fault message if no trip for this request can be found.
The WSCA operation comprises two participants. The participant named Flight
interacts with a flight reservation Web service and the other one, named Hotel,
interacts with an accommodation reservation Web service. The two participants
execute independently and synchronize for terminating. A unique response is
then computed and returned to the service requester. If both reservations have
succeeded, their results are combined for generating a list of trips, which is re-

IV.2 Coordinating access to composed Web services 91

turned as an output message to the service requester. Otherwise, a fault message
is returned informing the service requester that no trip is found.

The behaviour of a WSCA operation is defined in WSCAL using the < WSCA >
element (see Figure IV.6). The operation attribute gives the name of the compos-
ite Web service operation that is specified. It references the operation declared in
the associated WSDL document of the WSCA. The exceptionRules attribute is
used for referencing a document used to select the exception handlers to execute
when several exceptions are raised concurrently (see Section IV.2.4).

The declaration of a WSCA operation comprises three parts. The first part,
which comprises the input, output, fault and state elements, is for general dec-
larations that concern the whole action participants such as the declaration of
local variables. The second part comprises the before, after and abort elements
and specifies respectively actions performed before and after the execution of
participants and the actions performed in case of exceptional termination.

WSCA operation

abort

state

after

participant

messages

before

<WSCA operation=QName
exceptionRules=anyURI

<input message=QName name=NCName>*
<output message=QName name=NCName>*
<fault message=QName name=NCName>*
<state>? ... </state>
<before> ... </before>
<after> ... </after>
<abort> ... </abort>
...
<participant name=NCName>*
...

</participant>
</WSCA>

Figure IV.6: WSCA operation construct

Input, output and fault messages used for interacting with the service requester
are assigned to variables defined respectively in the < input >, < output > and
< fault > elements. The message attribute references the associated message
defined in the WSDL document and the name attribute defines the local variable
name to which the content of the message will be assigned and which is to be
used in local computations.

92 IV Dependable Composition of Web Services

Additional local variables, seen only from the action participants of a single
WSCA operation call are declared through the < state > defined as follows,
similarly to the declaration of shared variables of a WSCA composite Web service
(see Section IV.1.2).

<state>

<types>

<xsd:schema . . . />∗
</types>

<var name=NCName type=QName />∗
</ state>

Local variables of the WSCA operations can be accessed by all the action partic-
ipants. However, accesses from participants that entered a nested action follow
nested transaction rules (see Section IV.2.3 for details).

The < before >, < after >, < abort > blocks are used to specify, which actions
are performed when initiating, terminating and aborting a WSCA operation.
The before construct is executed at the first invocation of the WSCA operation,
before starting the execution of participants. It can be used for example to assign
initial values to local variables according to the input parameters of the WSCA
operation. The after pattern is executed when all participants have terminated
their respective executions. It is commonly used to specify the computation of
WSDL output messages to be returned to the service requester over the results
of each individual participant. The abort pattern is executed when the WSCA
terminates exceptionally and specifies the exception to be signaled to the outside,
by assigning appropriate values to the WSDL fault messages.

Calls to composed Web service operations are declared in the control flow of each
participant. Any participant can access freely all composed Web services declared
in the < services > section of the WSCAL document. However, depending on
the needs of the composite Web service application, the developer can enforce
isolated accesses to some composed Web services using action nesting.

IV.2.3 WSCA nesting

Control of concurrent accesses to composed Web services within a WSCA op-
eration call is governed according to the isolation level specified at the level of
the WSCA, with the isolation attribute of a < service > element. Different
isolation levels, which apply for all the operations of the WSCA, can thus be
set for different composed Web services. However, these rules do not specify the
control for concurrent accesses within a single WSCA operation execution but

IV.2 Coordinating access to composed Web services 93

for concurrent accesses within different WSCA instances. The default concur-
rency behaviour, whatever is the isolation level, is that all accesses to composed
Web services are permitted from participants of a WSCA operation. The general
assumption behind this decision is that Web services are autonomous systems
responsible for maintaining their own internal consistencies. Isolation of differ-
ent interactions with a single or multiple service requester is guaranteed by the
Web service. However, the service requester often maintains information used
by the Web service to track different sessions, such as HTTP session cookies or
specific values exchanged in each sent and received messages. Participants shar-
ing this kind of information can thus lead to inconsistencies when accessing the
same composed Web service, by interfering their own independent interactions.
We allow thus to define a finer grain control over concurrent accesses to com-
posed Web services using action nesting, by isolating accesses to composed Web
services within nested actions.

WSCA operation nesting (action nesting for short) is similar to that of CA Ac-
tions [Xu et al., 1995] and is used as a structuring technique for controlling
concurrent accesses to composed Web services within an execution of a WSCA
operation. Indeed, during the execution of a WSCA operation, a subset of the ac-
tion’s participants can join together to form a nested WSCA, which is viewed as
an isolated operation from the standpoint of the containing action: participants
involved in a nested action can neither communicate with other participants
outside the nested action, nor they can join sibling nested actions.

Nested actions are pre-defined with a static list of the involved participants.
Each participant then specifies in its control flow when it wants to enter a specific
nested action, which executes when all its participants have joined. Similarly, the
nested action terminates when all the participant involved in the nested action
terminate their respective executions.

Accesses to composed Web services from top-level and nested actions are isolated
from each other. In our implementation, this is ensured through a concurrency
manager located on the WSCA platform (see Chapter V). Note that controlling
concurrency do not rely on any transactional protocol support of the composed
Web service, which are autonomous entities. Therefore only accesses within a
single WSCA instance are controlled. In general, when a nested action is cre-
ated, the accesses to composed Web services from the participants of the parent
action are delayed until the termination of the nested action. However, more
flexible mechanisms allowing concurrent accesses could be implemented for in-
creasing performance, which requires knowledge of the support for concurrency
of composed Web services.

94 IV Dependable Composition of Web Services

Messages
Input

Messages
Output|Fault

Bank BookFlight

BookHotel

Flight

Hotel

BookTrip

SOAP messages

Accomodation reservation WS

Flight reservation WS

Banking WS

Figure IV.7: Nested WSCA execution

Figure IV.7 depicts a WSCA operation execution for the BookTrip operation of
the travel agency composite Web service. The BookTrip action is defined with
three participants, Flight, Hotel and Bank. Operations done on the banking Web
service should be isolated since they access to a unique bank account. Therefore
two nested actions are defined, one for the booking of the hotel room (BookHotel)
and another for the booking of the flight seat (BookFlight). The figure represent
one possible execution, where the two nested actions are executed sequentially
with the execution order BookFlight and then BookHotel. However, if the nested
actions are called concurrently, the order BookHotel, BookFlight could also be
possible. Furthermore, if the Banking Web service can distinguish different ses-
sions from a single service requester, accesses can be done concurrently to im-
prove performance by not delaying the execution of one nested action. Such an
optimization based on the online analysis of the concurrency support expressed
in WS-RESC of discovered Web services is presented in Chapter V.

Local variables of a parent action can be accessed concurrently by the partici-
pants of the parent action and by the participants of all nested actions. Shared
variables of the WSCA can be accessed within different WSCA operation execu-
tions on the same WSCA instance. Therefore, accesses to those shared resources
should be isolated to guarantee consistency. Participants of a nested action make
thus transactional accesses to the shared variables of the WSCA and to the local
variables of their parent action, following nested transaction rules. If the nested
action terminates exceptionally, all operations done on the transactional vari-

IV.2 Coordinating access to composed Web services 95

Hotel

Bank

Car

Flight

BookHotelAndCar

BookTrip

Shared variable

Local variable

begin (nested) transaction end (nested) transaction

transactional accesses

Figure IV.8: Transactional accesses to shared and local variables

ables are aborted. The updates of the values of the variables can be seen by
participants outside the nested action only when the latter terminates normally
and commits its operations. Figure IV.8 illustrates the nested transactions per-
formed on local and shared variables, where brackets are used to delimit nested
transactions.

In WSCAL, we introduce the < nestedWSCA > element for describing a nested
action. For each WSCA operation, all the nested actions are first declared with
the list of composed Web services that will be accessed, the actions executed
before, after and when aborting the nested action, the names of the participants
that are involved in the nested action and the recursive definition of the nested
actions in the nested action. The behaviour of participants of a nested action
are further specified within the control flow statements of each participant. The
structure of the < nestedWSCA > element is as follows:

<nestedWSCA name=NCName
except ionRules=anyURI>

<state>

Local v a r i a b l e s
</ state>

<before> ?
Statements

</before>

<after> ?
Statements

</after>

<abort> ?

96 IV Dependable Composition of Web Services

Statements
</abort>

<participant name=QName />∗
<nestedWSCA name=NCName>

Recurs ive d e f i n i t i o n
</nestedWSCA>

</nestedWSCA>

Even though isolation of accesses to composed Web services are enforced us-
ing nested actions, the lack of transactional support of composed Web services
makes difficult the proper reasoning about the behaviour of composed Web ser-
vices when faulty interactions occur. We rely on a forward error recovery model
for specifying application-specific recovery strategies. The model defines how ex-
ceptions are propagated across WSCA participants and nested WSCAs and the
coordinated handling of exceptions among action participants.

IV.2.4 Coordinated exception handling

The error recovery model of WSCA is based on coordinated exception handling,
which can be used to specify both backward and forward error recovery mecha-
nisms. Coordinated handling of exceptions within WSCAs follows the exception
handling model of atomic actions [Campbell and Randell, 1986]. However, we
adopt a different resolution algorithm for the handling of concurrently raised
exceptions, more suited in the context of Web services. Indeed, a composition
process involves multiple interactions with third party Web services and inter-
rupting an established connection or terminating prematurely a complex inter-
action sequence is not always desired. Furthermore, the exceptional behaviour
will vary according to different Web services that fail and can require specific
interactions with the service requester.

During the execution of a WSCA operation, exceptions can be raised explicitly
using a language construct, or they can be raised automatically by the underlying
runtime system. The exceptional behaviour of a WSCA operation follows a multi-
level scheme: (i) local handling of the exception at the participant level, (ii)
propagation of unhandled exceptions to all participants of WSCA operations
or of nested WSCAs for coordinated handling, and (iii) exception signaling to
service requesters or containing actions when coordinated exception handling
fails.

Each participant defines its exception handling contexts and when an excep-
tion is thrown within an exception handling context the participant suspends its

IV.2 Coordinating access to composed Web services 97

execution. An appropriate exception handler is executed, which terminates the
execution of the exception handling context. Exception handling contexts can be
nested. In this case, if an exception is raised and a handler is not defined within
the context, the exception is propagated to the containing context until a match-
ing exception handler is found. A default exception handler can also be defined,
which catch all exceptions. Similarly, exception handlers can define recursively
exception handling contexts for exceptions occurring during the execution of the
handler.

If no matching handler for an exception can be found, and if a default exception
handler is not defined the exception is propagated to all the participants of the
WSCA operation for coordinated recovery. If the participant, which raised the
exception, is involved in a nested action, the exception will be propagated to all
the participants of the nested action only. All participants that are informed of
the propagated exception then suspend their execution and each of them execute
synchronously a coordinated exception handler. Note that the participant, which
is notified of a propagated exception, interrupts its execution safely, by raising
an internal exception. In a prototype WSCA implementation (see Chapter V),
participants check the presence of a propagated exception by accessing a con-
troller object before entering a nested action, calling a composed Web service,
synchronizing with another participant and terminating actions. If an exception
is propagated, then the participant raise explicitly a local exception. The excep-
tion handling context for the propagated exception is the whole WSCA operation
or the nested WSCA if the exception occurs in a nested action. Therefore, when
all coordinated handlers terminate, the WSCA operation or the nested WSCA
will terminate its execution.

If some participants are involved in a nested action and an exception is propa-
gated from a participant not involved in the nested action, then a special abort
exception is raised within the nested action so that the nested action termi-
nates safely (e.g., by terminating interactions with composed Web services).
After that, the propagated exception will be raised on all participants that have
finished their nested action.

When all participants of the WSCA operation or of the nested WSCA have
caught the propagated exception, they execute their respective exception han-
dlers. Participants can define exception contexts within exception handlers to
catch new exceptions occurring within the handler. However, if there is an un-
handled exception that is raised, it is not propagated to other participants but
a special failure exception is thrown, and the participant suspends its execution.
Other participants continue their execution uninterrupted.

98 IV Dependable Composition of Web Services

When all participants have terminated their exception handlers, the WSCA op-
eration or nested action terminates with several outcomes. If no failure exception
has been raised by any participant, the action terminates normally and the after
block of the action is executed. The after block can in particular be used to com-
pute an output message to be sent to the service requester in case of a top-level
WSCA operation. If at least one participant raised a failure exception, the abort
block is executed. If the action is a top-level WSCA operation, the abort block
should compute the WSDL fault messages to be sent to service requesters. If it
is a nested action, a unique exception should be raised to signal the exception
to the containing action. The signaled exception is thrown locally on each of the
participants that were involved in the nested action.

s

s

e e

e

s

s

s

s

coordinated exception handling

propagated exception

local exception

p2

p3

p4

p1

e

s

exception raised by p2

exception signaled by the nested action

Figure IV.9: Coordinated exception handling in a WSCA operation

Figure IV.9 illustrates the exception handling model of WSCAs. Participant p2
raises the exception e inside a nested action involving besides itself, the partici-
pant p3. The exception is not handled by p2 and is immediately propagated to
the participants of the nested action. p2 and p3 then synchronously execute their
respective coordinated exception handler for the exception e. Coordinated han-
dling fails, and the nested action terminates exceptionally, leading an exception
s be signaled at the level of each participant involved in the nested action. Sim-
ilarly, the signaled exception is first tried to be handled locally to participant,
and on failure, it is propagated to all the participants of the WSCA operation
for coordinated recovery.

IV.2.5 Concurrently raised exceptions

During the execution of a WSCA operation, different participants can raise ex-
ceptions concurrently. If more than one exception are propagated for coordinated
recovery before the participants synchronize for starting their exception handlers,
there is a concurrent exception issue. Indeed, exceptions will be propagated to

IV.2 Coordinating access to composed Web services 99

participants potentially in different orders, and there must be a consensus among
participants about the exceptions to handle. Different approaches exist for deal-
ing with concurrently raised exceptions. One of the exception can be chosen
among all propagated exceptions and the other ones be discarded. Or, a unique
exception, and possibly different from all that were raised, can be raised for
handling all the errors. Another solution is to consider all the exceptions in a
specific order and handle all of them separately.

The major difficulty in adopting one concurrent exception resolution strategy is
that most of the exceptions would be a result of a failure in the interaction with a
composed Web service. Given that interactions are not transactional, there might
be specific actions to do for recovering the error on that particular Web service.
Discarding exceptions as in the case of the first approach would thus be a cause
of inconsistency as it would leave faulty Web services. The second approach,
which is the approach that is adopted in the coordinated exception handling of
atomic actions [Campbell and Randell, 1986], is based on the assumption that
a unique handler, which can also be a union of different handlers, would be
sufficient for handling all the exceptions. The exception resolution algorithm is
based on a rooted exception tree containing all expected exceptions and a failure
exception at the root [Xu et al., 2000]. Figure IV.10 illustrates the resolution of
two concurrently raised exceptions NoFlightAvailable and NoHotelAvailable into
a single exception NoTripAvailable that is jointly handled by all participants
of the WSCA operation. The corresponding exception tree used to resolve the
concurrent exceptions is given in Figure IV.10(b).

Exception Handling

Coordinated

NoTripAvailable

NoFlightAvailable

NoHotelAvailable

(a) Concurrent occurrences of NoHotelAvailable
and NoFlightAvailable exceptions

NoHotelAvailable NoFlightAvailable

NoTripAvailable

Failure

(b) The exception tree

Figure IV.10: Concurrent exception resolution into a single exception

The approach to use an exception resolution algorithm based on an exception
tree to compute a single exception enables an efficient exception handling model
since only one exception is to be cared of. However, in the context of Web ser-
vice composition, all the composed Web services have different exceptional be-
haviours, resulting in a large number of different exceptions. Therefore, building

100 IV Dependable Composition of Web Services

an efficient exception tree for all the exceptions is not straightforward. Further-
more, some Web services may require specific conversations to be executed when
failure occurs and writing an exception handler addressing the needs of failures
of multiple Web services is not feasible.

This is why we consider the third approach, which allows to execute several
exception handlers. The Guardian model [Miller and Tripathi, 2002] for excep-
tion handling is based on this approach. The resolution algorithm of this model
computes a sequence of exception handlers to be executed in a given order when
concurrent exceptions are raised. Different rules can be applied for selecting the
execution sequence of handlers, such as random choice, first come first served or
priorities.

In WSCA, we define a resolution function that, based on a set of exception resolu-
tion rules associated with each WSCA operation and each nested WSCA, decides
which exceptions should be handled. Furthermore, only participants, which have
defined a handler for these exceptions execute the exception handlers, while oth-
ers wait suspended until the end of the coordinated exception handling process.
In the absence of resolution rules, or if the rules does not contain a rule for a
particular set of exceptions, then all the associated handlers of concurrent ex-
ceptions are to be executed. If there are exception handlers involving distinct
set of participants, these handlers can be executed concurrently. Otherwise, for
coordinated exception handlers with at least one common participant, handlers
should be executed sequentially. The sequence can be determined with the excep-
tion resolution rules. If no sequence has been defined, a random order is chosen.
However, the order is always the same for all the participants, which start and
terminate the execution of handlers for the same exception synchronously.

The exception resolution document defines the rules for the resolution of con-
currently raised exceptions. A < rule > element contains a < concurrent >
element for declaring the set of exceptions and a < resolution > element that
gives the list of exceptions to be handled. Exceptions that must be handled in a
particular sequence are specified within a < sequence > construct. Exceptions
are referenced using the ref attribute of the < exception > element. The refer-
ence any can be used within a < concurrent > block to reference all exceptions.
We get:

<rule>

<concurrent>

<exception ref=QName/>∗
</concurrent>

<resolution>

<sequence>∗
<exception ref=QName/>∗

IV.2 Coordinating access to composed Web services 101

</sequence>

<exception ref=QName/>∗
</ resolution>

</rule>

If there is a < concurrent > block matching all concurrently raised exceptions
then the associated < resolution > is chosen. Otherwise, all partially matching
blocks are considered and their < resolution > blocks are concatenated. Fur-
thermore, if no rule matches a particular exception, it is also added to the list of
exceptions to be handled. For example, if there is a rule for the concurrent oc-
currences of exceptions e1 and e2 and if three exceptions e1, e2 and e3 are raised
concurrently, then the rule for e1 and e2 would be applied and the exception e3
will be added to the list of the exceptions to handle.

The example exception resolution document below defines two rules for the Book-
Trip WSCA operation of the travel agency composite Web service. The first
rule specifies that if HotelBookingFailed and FlightBookingFailed exceptions are
raised, then, both exceptions should be handled with the flight exception first.
The second rule specifies that if there is a PaymentError exception among all
concurrently raised exceptions, then the new Abort exception should be raised
in all participants and handled. If all three exceptions are raised concurrently,
according to the definition given above, only the second rule would be applied
as it is a perfect match.

<rule>

<concurrent>

<exception ref=th i s :Ho te lBook ingFa i l ed />
<exception ref=th i s :F l i g h tBook i ngFa i l e d/>

</concurrent>

<resolution>

<sequence>

<exception ref=th i s :F l i g h tBook i ngFa i l e d/>
<exception ref=th i s :Ho te lBook ingFa i l ed />

</sequence>

</ resolution>

</rule>

<rule>

<concurrent>

<exception ref=this :PaymentError />
<exception ref=any/>

</concurrent>

<resolution>

<exception ref=th i s :Abo r t />
</ resolution>

</rule>

102 IV Dependable Composition of Web Services

coordinated exception handling

propagated exception

local exception

h

f

f

r

r

h

h

Flight

Bank

Hotel

f

r
f: FlightBookingFailed exception

h: HotelBookingFailed exception

r: restaurantFull exception
Food

Figure IV.11: Concurrent exceptions in the travel agency WSCA

The figure IV.11 illustrates the execution of coordinated exception handlers when
three exceptions occur concurrently. We have the FlightBookingFailed and Hotel-
BookingFailed exceptions, for which rules are given in the previous document,
and a third exception restaurantFull, which does not appear in the document,
raised by a participant in charge to reserve a table in a restaurant close to the
chosen hotel. As shown on the figure, the handling of the flight booking exception
is performed before the one for hotel booking. The handler for the restaurant
reservation failure can however be performed at the same time as the flight
booking exception handler as it only involves the Hotel and Food participants.

IV.3 WSCAL orchestration language

This section details the language used to describe the standard and exceptional
behaviour of WSCA operation participants and of before, after, abort and failure
blocks of WSCA operations and of nested actions.

The behaviour of each participant is specified separately within the <
participant > element (see Section IV.2.2). All participants start their execution
synchronously, after the execution of the < before > block. The structure of the
< participant > element is as follows:

<participant name=NCName>∗
<state>?

<xsd:schema . . . />∗
</ state>

<behaviour>

<try>∗
Statements . . .
<coordinatedHandler exception=QName>∗

Statements . . .
</coordinatedHandler>

IV.3 WSCAL orchestration language 103

</try>

</behaviour>

</participant>

The < state > element contains declaration of local state variables used for local
computations during the execution of the participant. These variables are only
seen by the participant that declares them. The execution flow of the participant
is further declared within the < behaviour > element. The behaviour of the par-
ticipant subdivides into the participant’s standard and exceptional behaviours.
They are defined by the < try > and < coordinatedHandler > elements, which
contain language statements for calling Web services, accessing local and shared
variables, starting nested actions, synchronizing with other participants and con-
ditional statements.

Each XML element has an optional name attribute, which can be used to identify
the statement.

IV.3.1 Sequential execution

The < sequence > construct enables specifying a set of statements that are to
be executed in lexical order.

The syntax of < sequence > is given by:

<sequence name=NCName ?>
Statements . . .

</sequence>

The < sequence > block terminates when the last statement terminates or if a
non handled exception occurs within the current block.

IV.3.2 Parallel execution

The < all > statement specifies a set of statements that can be executed in any
order or in parallel. The syntax of the < all > construct is given by:

<a l l name=NCName ?>
Statements . . .

</ a l l>

104 IV Dependable Composition of Web Services

The < all > block terminates when all embedded constructs terminate their
execution, or if an exception is raised in a top-level context within the < all >
element.

IV.3.3 Conditional execution

The < switch > statement executes one of the embedded < case > blocks,
based on their condition expressions. Conditions are set as an XPath boolean
expression for each < case > element with the condition attribute. < case > con-
ditions are evaluated in the lexical order and the first one that evaluates to true
is executed. Then, remaining < case > conditions are evaluated sequentially and
executed if they evaluate to true. If no branch is selected, then the < default >
block is executed, if any. Otherwise, the < switch > action terminates.

The syntax of the < switch > construct is as follows:

<switch>

<case condition=Boolean−expr e s s i on> +
Statements . . .

</case>

<default> ?
Statements . . .

</default>

</switch>

IV.3.4 Iteration

The < while > element specifies a looping block that executes repeatedly as
long as its condition evaluates to true. The condition is set as an XPath boolean
expression, with the condition attribute. The condition is re-evaluated at each
iteration at the beginning of the block. The < while > construct terminates,
without executing the block, when the condition is evaluated to false.

The syntax of the < while > construct is as follows:

<while condition=Boolean−expr e s s i on>

Statements . . .
</while>

IV.3 WSCAL orchestration language 105

IV.3.5 Interactions with composed Web services

The < call > statement allows specifying interactions with composed Web ser-
vices. An interaction is realized by calling an operation offered by the Web
service. The messaging behaviour of the interaction, i.e., the order of input and
output messages, is defined by the Web service’s WSDL interface that specifies
the message exchange pattern that is required to be implemented. The < call >
construct then includes declaration of message types such as input, output and
fault messages, and interactions are performed by the run-time support system
according to the messaging behaviour of the Web service operation. The same
construct can thus be used for synchronous RPC-like request-response operations
as well as for asynchronous one-way operations.

Additional properties related to each operation can be declared by a number of
attributes: It can be specified if the invocation is retry-able or if an alternate
composed Web service can be selected in case of unavailability of the service
or in case of a failure of the initial interaction. A timeout can also be set for
the termination of the call. Note that these attributes, when defined explicitly,
override any default behaviour assumed by the underlying run-time system. If
they are not set explicitly, a default value is set but this default value can be
overrided by the run-time.

The call construct further includes statements for specifying the behaviour in
case of abortion of the interaction that may be caused for example by a propa-
gated exception and an action that should be executed if a timeout occurs.

The syntax of the < call > construct is as follows:

<cal l name=NCName ?
service=QName
operation=QName
abortable=boo l e an : t r ue
retry=nonNega t iv e In teg er : 0
tryAlternate=boo l e a n : f a l s e
timeout=Duration ?>

<input message=NCName/>∗
<output message=NCName/>∗
<fault message=NCName/>∗
<onAbort> ?

Statements . . .
</onAbort>

<onTimeout> ?
Statements . . .

</onTimeout>

</ cal l>

106 IV Dependable Composition of Web Services

The composed Web service to be invoked is specified using the service attribute
and the associated operation with the operation attribute. Note that the service
name must refer to one of the abstract services as defined in the < services >
element associated with the WSCA. Input, output and fault messages associated
with the called operation are given with respective sub-elements that must refer
to variables seen by the given participant.

The abortable attribute is used to declare if the invocation can be interrupted
with an external signal, such as an external exception propagated to the partic-
ipant leading the participant to terminate its execution. If set to true, the invo-
cation is interrupted by immediately closing the connection, and the < call >
construct terminates after performing actions declared in the embedded optional
< onAbort > construct. Any messages that might be received from the composed
Web service are discarded upon the abortion of the call.

The retry attribute specifies how many times the call can be repeated if the
interaction fails. It does not specify any compensation action to be performed by
the participant before the retry; the composed Web service operation is assumed
to be retry-able. If an application-specific retry strategy is to be implemented,
the retry attribute should not be set and the Web service call must be invoked
within a loop construct, with appropriate exception handlers for performing
compensation operations.

The tryAlternate attribute specifies whether an equivalent alternate Web service
could be invoked or not in case of failure or unavailability of the initial Web
service. Recall that multiple Web services can be bound for a single abstract
Web service in the < services > elements within the declaration of the WSCA
composite service, either by giving a static list of alternative Web services or
relying on a dynamic binding support. However, multiple binding only applies
to the selection of the Web service at the first invocation and subsequent inter-
actions with the same abstract Web service are always performed with the same
Web service. Setting the tryAlternate attribute to true allows invoking the oper-
ation on a different Web service even if the current Web service has already been
invoked by the current participant or by another. When such an alternate Web
service is bound, the WSCA keeps the new binding and discards the previous
one. Other participants are also affected by the new binding, except for ongoing
interactions that are allowed to terminate with the same Web service.

A timeout can be set with the timeout attribute for each operation. The timeout
specifies that a timeout event will be triggered if the Web service operation does
not return a response (either an output or a fault message) until expiration of the
specified duration. The timeout applies to all call attempts, including alternate

IV.3 WSCAL orchestration language 107

Web services and retries, i.e., the timer is not re-initialized at each call. When
the timeout occurs, the interaction is interrupted by terminating the connection
to the Web service and the < onT imeout > block is executed. Any incoming
message after that the timeout event is triggered from the composed Web service
is discarded.

IV.3.6 Assign

The < assign > statement is used to change the value of a variable to a new
value. Any variable that is visible in the current context of the participant can be
assigned a new value, such as a participant’s local variable or a WSCA’s shared
variable. The new value can be given using an existent variable, by an element
defined in the current context, or it can be computed using XPath expressions.

The general form of an assignment is as follows:

<assign name=NCName ?>
<to var=NCName />
<from

var=NCName ?
expr=XPath−expr e s s i on ?>
va lue

</from>

</assign>

The < to > element specifies the destination variable and the < from > element
defines the source value. The new value may be given by assigning the value of
an element referenced using the var attribute, by an XPath expression using the
expr attribute, or by directly specifying the value in the form of XML elements.

IV.3.7 Empty

The < empty > constructs is an operation that does nothing. It can be used
when an operation is needed but no action is to be performed, for example for
setting a synchronizing point for a participant.

The syntax of the < empty > construct is given by:

<empty name=NCName ?>
</empty>

108 IV Dependable Composition of Web Services

IV.3.8 Waiting

The < wait > construct allows waiting for a period of time or until a deadline
is reached. Waiting is immediately aborted when an exception occurs.

We get:

<wait name=NCName ?
type=durat ion | abso luteTime:durat ion
timer=Duration >

</wait>

The type attribute specifies whether if the timer defines a time period (duration)
or for an absolute time (absoluteTime).

IV.3.9 Synchronizing participants

The < join > statement is used to synchronize two or more participants be-
longing to the same WSCA operation, or to the same nested WSCA. When a
participant executes a < join >, the execution of the participant is suspended
until the statement referenced by the < join > statement is executed by another
participant, or in a parallel process of the same participant. Note that partici-
pants involved in a nested WSCA cannot synchronize with participants outside
the nested WSCA, nor with participants of sibling nested WSCAs. In addition a
timeout can be set on the waiting time to allow continuation of the participant
when the action is not terminated until the timeout.

We get the following syntax:

<join name=NCName ?>
<condition action=QName >+
<timeout type=durat ion | abso luteTime:durat ion

timer=Duration > ?
<onTimeout> ?

Statements . . .
</onTimeout>

</ join>

The < condition > element provides the name of the statement whose termi-
nation is waited for. Multiple conditions may be specified by stating as many
< condition > elements as necessary. The join condition is satisfied when all
actions terminate, regardless of the lexical order, and the < join > action ter-
minates resuming the execution of the participant. The < join > can be inter-

IV.3 WSCAL orchestration language 109

rupted prematurely by an exception or if a timeout occurs. The < timeout >
element enables setting a timeout for the waiting time and has a similar syn-
tax to the < wait > statement. In addition, a timeout occurs if the statement
waited for can no longer be executed, for example if the block construct or the
participant containing the specified statement terminated without executing the
statement. When a timeout occurs, the < onT imeout > block is executed, if
any. The < onT imeout > block can in particular be used to raise an exception.

IV.3.10 Throwing exceptions

The < throw > statement raises an exception whose handling is specified using
< try > ... < catch > constructs for defining exception handling scopes.

The syntax of the < throw > construct is as follows:

<throw name=NCName ?
exception=QName
exceptionData=NCName ?>

Value . . .
</throw>

The name of the exception being raised is specified using the exception attribute.
The exception must be globally unique and is referenced using a QName. The
exceptionData refers to a variable that might be used to define additional in-
formations that can be passed to the exception handler context, or to enclosing
scopes by propagation if a immediate handler context is not present. The excep-
tional data value can also be defined statically in the content of the < throw >
element.

IV.3.11 Exception handling scopes

Exception contexts and associated exception handlers are declared using the
< try > ... < catche > and < try > ... < coordinatedHandler > statements for
respectively local and coordinated exception handling:

<try name=NCName ?>
<try name=NCName ?>

Statements . . .
<catch exception=QName ?

exceptionData=NCName ?> ∗
Statements . . .

110 IV Dependable Composition of Web Services

</catch>

</try>

Statements . . .
<coordinatedHandler exception=QName ?

exceptionData=NCName ?> ∗
Statements . . .

</coordinatedHandler>

</try>

The < try > ... < catch > blocks define local exception handling scopes, which
can also be nested. Any exception that is raised within a < try > block causes
the execution of the block to be terminated. Then, if a corresponding exception
handler is defined, it is selected and executed. The < catch > element is used
to specify the exception handler. The exception that is handled is referenced
by the optional exception attribute. If no exception attribute is defined, the
< catch > block acts as a default exception handler for all exceptions. After
that, the execution of the participant continues at the end of the < try > block.
Otherwise, if an unhandled exception occurs, the exception is propagated to the
enclosing scope. If the propagated exception reaches the top-level < try > block,
the exception is to be propagated to all the action’s participants for coordinated
handling. Handlers for coordinated exception handling are further defined with
the < coordinatedHandler > elements. Note that more than one coordinated
exception handler for different exceptions can be executed in case of concurrently
raised exceptions, according to the concurrent exception resolution based on the
rules defined for the WSCA operation or nested WSCA (see Section IV.2.5).

IV.3.12 Starting a nested WSCA

The < startNested > statement causes the participant to enter a previously
defined nested WSCA with a < nestedWSCA > element (see Section IV.2.3).
A < startNested > element contains declarations for specifying the actions to
perform by the participant within the nested action. Its structure is thus similar
to the one of a WSCA operation participant. We get:

<startNested action=QName>
<state>?

<xsd:schema . . . />∗
</ state>

<behaviour>

<try>∗
Statements . . .
<coordinatedHandler exception=QName>∗

Statements . . .

IV.4 Concluding remarks 111

</coordinatedHandler>

</try>

</behaviour>

</startNested>

IV.4 Concluding remarks

This chapter has described the Web service composition action language for the
dependable composition of Web services.

We proposed in this chapter a model for building dependable composite Web ser-
vices and presented the Web Service Composition Action declarative language.
A WSCAL document describes a WSCA composite Web service by specifying
all the operations provided by the composite Web service and the concurrency
support of a WSCA instance. A WSCA operation is further specified as a concur-
rent program executing several participants, each of them interacting with one
or more composed Web services. Coordination of participants is ensured through
nested actions, which provides isolated accesses to composed Web services and
nested transactional accesses to shared variables. The recovery strategies that
can be specified are based on a coordinated exception handling model, where
several participants co-operatively execute exception handlers.

The Web service composition action language has a number of features that
are novel in Web service orchestration languages and coordination protocols.
Compared to existing coordination and transaction protocols for Web services,
which require from Web services to support the given protocol to be part of
the composition, the key advantage of WSCA is its ability to define recovery
actions involving several Web services, which are not necessarily dependable.
Another particular interest is the abstraction of bindings with composed Web
services, which allow to discover and bind composed Web services at deploy-
time or dynamically at runtime. The benefit for the composite Web service is an
enhanced availability and reliability in accessing composed Web services.

Moreover, declaration of required conversations from composed Web services
is very useful. The conversation can in particular be used for the discovery of
matching Web services and for verifying the correctness of interactions at run-
time. The next chapter proposes such tools based on the exploitation of the
specification of conversation supports of Web services with the WS-RESC lan-
guage (see Chapter III). A runtime support for executing WSCAs is further
presented and assessed.

112 IV Dependable Composition of Web Services

V Performance and Experiments

This chapter presents some experimental results which both motivate and vali-
date building composite Web services using WSCAL and WS-RESC. Composite
services are developed using the WSCAL language and the WS-RESC conversa-
tion language is used to declare required conversations of composed Web services.
First, the development process of WSCA composite Web services is presented.
Integration with WS-RESC is presented in the following section with perfor-
mance measurements for the service discovery protocol and for the on the fly
verification of invocation correctness. Then, the WSCA runtime is presented and
assessed for performance and reliability, by comparison with related solutions in
the area.

V.1 WSCA development

A general view of the WSCA composite Web service development, deployment
and execution was introduced in the previous chapter (see Figure IV.1, page 78).
Programming a WSCA composite Web service comes down to three steps:

(1) Providing the required interface and configuration information for the
WSCA composite service. The programmer describes abstract services cor-
responding to composed Web services and the concurrency behaviour of
the composite service application. This is done in the services part of the
WSCA document. The necessary stubs for calling the discovered composed
Web services are generated at deploy time.

(2) Programming the application logic of each operation of the composite Web
service. Application logic of the WSCA service is written in the WSCAL
orchestration language. Developing with WSCAL abstracts many program-
ming details such transactional accesses to local resources, SOAP calls to

114 V Performance and Experiments

composed Web services and dynamic binding mechanisms. The resulting
composite Web service is intended to be executed on a Web service appli-
cation server. This is similar to developing Web services in BPEL [BEA
Systems et al., 2005] but it is more efficient because of the structuration
that imposes WSCAL for building dependable applications and the built-in
dynamic binding mechanism based on service discovery protocol.

(3) Deploying the WSCA service on a Web service application server. The
application server can be a dedicated WSCA server, which can interpret the
WSCAL language. Alternatively, the WSCAL declaration can be compiled
into an executable Web service application to be deployed on a Web service
application server. In our prototype implementation we chose the second
option for efficiency. We implemented generic Java classes for the WSCA
runtime support and the WSCAL description is transformed to Java code
using these classes. The resulting application is then compiled and deployed
on an Apache Tomcat application server and makes use of the AXIS SOAP
engine for interacting with service requesters and composed Web services.
Additionally, the WSDL document of the WSCA composite Web service is
to be provided for describing the composite service. Clients that download
the WSDL document can invoke WSCA operations of the composite Web
service.

A complete example for the travel agency composite Web service can be found
in Appendix C. This example is used in Section V.4 for assessing performance
and reliability of the composite service.

Composed Web services are selected through a service discovery protocol based
on the matching of abstract Web service descriptions and on the matching of
conversations specified using WS-RESC. The next section presents an imple-
mentation of such a discovery protocol using a UDDI registry. The performance
of matching algorithms are measured because efficiency is a key parameter for
considering service discovery at runtime with dynamic binding.

V.2 Service discovery

Composed Web services are described abstractly in the < services > element
of the WSCAL description (see Section IV.1.3). For each composed Web service
two documents are given. The first document is the abstract part of the WSDL
document and the second document defines the conversations in WS-RESC that
are required to be supported by the composed Web service.

V.2 Service discovery 115

V.2.1 Matching abstract WSDL descriptions

The abstract declaration of composed Web services comprises type information,
exchanged messages and operations. In WSDL, these correspond respectively
to the < type >, < message > and < portType > elements. For the WSDL
matching, a required abstract Web service matches a service description if all
the operations defined in the abstract declarations are offered by the Web service.
Corresponding operations should define the same set of messages, with the same
typed parameters. Note that the Web service can include more operations than
the required service. This does not affect the matching as these operations will
not be used in the composition.

We considered using a UDDI registry because it provides a standardized API
for both searching and registering Web services. The first step is to retrieve
WSDL interface descriptions of Web services that are to be potentially inte-
grated. Composed Web services are registered in a UDDI registry by their re-
spective providers. The service’s abstract interface, which is constructed using
the information from the WSDL service interface description is published by the
service provider in a UDDI registry as as a tModel, which is technical specifi-
cation. Typically, for Web services, the technical specification contains a URI
pointing to the actual WSDL specification (using the overviewURL field). At
client side (the WSCA), we use the UDDI find tModel message to find tModels
of WSDL service descriptions. This message will return a list of tModel keys.
Interface descriptions are then retrieved using the UDDI get tModelDetail mes-
sage. Each interface description has a URI referencing the exact location of the
WSDL document, which is also retrieved. At the end of this process we have a
list of WSDL interface descriptions. The next step is then to search among these
WSDL interface definitions those that include all the operations and associated
typed messages defined in the required WSDL document. A more efficient ap-
proach would be to retrieve only partially or fully matching description from a
UDDI server by querying the registry with the required WSDL document, but
the UDDI API does not define such a retrieve method.

The implementation is straightforward. First we check if all operations defined in
the required WSDL are present in the provided WSDL by syntactic matching, in
the same portType element, which defines a set of operations. If at least one op-
eration is missing, the check fails. If all operations are present, then we associate
input messages of the required operation with input messages of the provided
operations, and the same for output and fault messages. If one association fails,
i.e., if an operation does not define a required message or if it defines a message
not defined in the required WSDL, the check fails. If all associations are correct,

116 V Performance and Experiments

we check the type compatibility of message parts. If all tests succeeds, the check
succeeds and the provided WSDL is marked as matched.

We run the WSDL matching algorithm implemented as a Java application, on a
set of 1016 Web service descriptions retrieved from main public UDDI registries1

using the UDDI4J Java class library2, which provides an API for interacting with
UDDI registries. The sizes of the WSDL documents that are retrieved vary from
1.4 KB to 190 KB, and they each define from 1 to 58 operations. It is worth
noting that the number of operations of Web services are generally low. For the
retrieved Web services, the average number of operations was 5 and the median
number of operations is only 3. The average WSDL document size is about
15.4 KB. The experiment has been performed on a 2.6 GHz Pentium IV, Linux
machine with 512 MB of RAM and IDE hard disks. Queries to UDDI servers
are sent over a broadband Internet connection.

Figure V.1: WSDL matching

Figure V.1 gives the average time for retrieving one WSDL document and for
querying a UDDI registry and the total time for matching 100 WSDL docu-
ments. The average execution time of the WSDL syntactic check over these files
are about 1.375 ms per WSDL document, which is negligible compared to the av-
erage WSDL retrieval time from different service providers, which was measured

1The UDDI Business Registry, which operates as a distributed service is used. The nodes
provide replicated data and can be accessed at the following addresses: SAP UDDI Busi-
ness Registry at http://uddi.sap.com/, IBM UDDI Business Registry at http://uddi.
ibm.com, Microsoft UDDI Business Registry at http://uddi.microsoft.com

2UDDI4J is available with a free software license at http://uddi4j.sourceforge.net/

V.2 Service discovery 117

to be 600 ms in average per WSDL document if the service is available. Note that
retrieving WSDL documents can be parallelized. Furthermore, retrieving tMod-
els containing the references to WSDL documents from a UDDI registry using a
single UDDI query took in average 850 ms using different registries at different
hours. The average total time is relatively short but it can be problematic for
dynamic binding with service discovery performed at run time. However, this can
be drastically shortened using local caches of retrieved WSDL documents, and
even more by caching matching results. In the former case, only the syntactic
matching of required service definition with the list of WSDL documents would
be performed, with an average time of 1.375 ms per WSDL document, which
is short enough to be considered for runtime service discovery. Furthermore,
the number of WSDL documents to retrieve is restricted by a pre-selection. For
example, in the case of a flight reservation Web service, only Web services of
transport companies and travel agencies may be retrieved.

The process described above returns a list of service interfaces, whose WSDL
specifications match the required service interface. If there is no more require-
ments on the services, such as specific conversation supports, Web service in-
stances implementing these WSDL documents can then be retrieved by re-
querying the UDDI registry, using the matching WSDL documents’ references
(tModelKeys). The binding templates returned from the UDDI registry will then
include access points to particular implementations of the WSDL documents.
However, if the WSCA composite service defines in addition to the abstract
WSDL definition, a list of conversations that are required to be implemented
by the composed Web services, we should also match required and provided
conversations.

V.2.2 Conversation compatibility checking

A Web service conversation matches a required conversation if for all possible
execution of the required conversation there exists at least one corresponding
execution path among the conversations supported by the Web service. In other
words, if we represent the required conversation with a process graph P, the
service conversation process should be able to simulate P. We implemented a
simulation relation verification algorithm over conversations of the required and
provided services specified in WS-RESC.

A simulation pre-order is a relation between state transition systems associating
systems which behave in the same way in the sense that one system simulates
the other. Formally,

118 V Performance and Experiments

Given a labelled transition system (S,A,→), where S is a set of states, A is a
set of labels and →⊆ S × S is a binary relation over S of transitions, a binary
relation R ⊆ S × S is a simulation if whenever (p,q) ∈ R then for each a ∈ A,

if p
a
−→ p’ , then q

a
−→ q’ such that (p’,q’) ∈ R.

A process p is simulated by a process q if there is a simulation R such that
(p,q) ∈ R.

Start

Search

Book

End

Start

Search Search

Book
Book
&
Pay

End

s s

v v

s

v

Figure V.2: Simulation relation

Figure V.2 illustrates two conversations, where the simulation on the right-side
simulates the conversation on the left-side. The simulation relation is verified by
associating each move of the conversation on the left, to one or more moves of
the conversation on the right.

The WS-RESC descriptions of both required and provided conversations are
parsed and stored in an internal data type for computations. The Xerces 2 Java
XML parser 3 and the JGraphT Java graph library 4 have been used respectively
for parsing XML files and representing graphs.

3Apache Xerces2 Java XML parser is freely available at http://xml.apache.org/
xerces2-j/

4JGraphT is freely available at http://jgrapht.sourceforge.net/

V.2 Service discovery 119

The simulation relation verification algorithm follows the following steps. If the
check fails at any of these steps, the verification stops, and the provided con-
versation is considered as not matching. The first three steps are introduced for
increasing performance of the verification process by only verifying the presence
of some required states.

(1) The initial Start states of conversations and their output transitions are
verified. For each start transition of the required conversation, there must
exist a start transition in the provided conversation. If one start transition
is not present, the algorithm stops and matching fails.

(2) The final end states of conversations and their input transitions are verified.
Similarly to the above step, all final End states of the required conversation
and their related input transitions are verified.

(3) If all the previous checks succeed, presence of all intermediate states of the
required conversation in the provided conversation is verified.

(4) Starting from the start state, and for each state of the required conver-
sation, the output transitions are checked and a relation is established
between states of the required conversation and the provided conversation.
The check is performed recursively for each state of the required conversa-
tion with the related states of the provided service. If output transitions of
all states defined in the required conversation match, we can deduce that
to all moves of the required conversation there is a matching move at the
provided service.

Transitions are checked by comparing the Web service operations that are ref-
erenced in the corresponding destination states and by verifying the equality of
labels, which correspond to messages. Recall that the absence of a label means
that there is no condition on the transition, and any message can be emitted by
the operation (see Section III.1.1). Thus, if no label is present at the required
conversation’s transition, then no label must be present at the provided conver-
sation’s transition. However, the absence of a label at the provided side causes
the transition to match any label defined in the required conversation. Further-
more, time constrained transitions match if the time constraint on the transition
of the required conversation is equal to or shorter than the related one of the
provided conversation.

We tested the efficiency of the simulation relation verification with randomly
generated required and provided service definitions, using the WS-RESC con-
versation description language. We assume that the WSDL descriptions already

120 V Performance and Experiments

match, i.e., that all required operations are present in the provided services and
their message types match. However, the provided services can include addi-
tional operations leading to more complex conversations. For each operation, we
defined two different messages representing a normal output message and a fault
message.

Figure V.3: WS-RESC matching

Figure V.3 presents tests results with varying numbers of states of the required
conversation. Since our algorithm terminates the verification as soon as a re-
quired state can not be related to a provided state, we only take into account
in the measurements the worst case where the two conversations match, and all
steps should then be performed up to completion. For this, first is constructed
the required conversation, and then a set of provided services are constructed
by adding states and transitions to the required conversation without break-
ing compatibility. As a result, the provided conversation always matches the
required conversation, but is more complex with more states, transitions and
different labels.

The average execution time of the verification algorithm was measured as 690 ms
per WS-RESC document. This is similar to the WSDL document fetching time,
but much higher than the syntactic match on WSDL files. The total time will
vary according to the number of documents to verify. Note that these results
are for matching services. For services that do not match, which can be the

V.3 On the fly verification of invocation correctness 121

case for the majority of services, the execution time is much lower. The lower
bound is the system call execution time for opening the WS-RESC file, parsing
XML and building the conversation graph, which is measured as 340 ms. WS-
RESC matching increase the time for selecting a Web service, but it should be
considered in the trade off analysis for increasing reliability.

If a WSCA defines required conversations for all or some of the composed Web
services, it is the WSCA developer’s responsibility to realize a composition flow
that respects the conversations for all Web services involved in the composition.
The next section deals with the verification of invocation at run-time.

V.3 On the fly verification of invocation correctness

Different analysis can be performed on the composition process to verify if it
matches the required conversations (and hence, the provided conversations) of
composed Web services. Programmers may be assisted with formal verification
tools for either statically checking specifications or generating correct codes from
specifications, given a formal encoding of both the behavioral specification and
those of existing conversation descriptions. However, even in the case of a cor-
rectly verified behavior specification, errors may occur at run-time, such as time-
outs due to deadlocks or unavailability errors due to network problems. Moreover,
the composed Web service may not behave as it is advertised on its interface.
In all cases, errors as well as behavioral mismatches should be detected and
reported as an exception by the underlying run-time system to the participant
that calls the composed Web service’s operation. For run-time analysis, the ac-
tual conversation of the Web service instance being bound should be retrieved
and used for verification as it might contain additional constraints not explicitly
specified by the WSCA developer in the required conversation.

A client-side generic runtime verifier is implemented for checking conformity of
Web service invocations issued by a service requester with individual conversa-
tion descriptions of Web services given in the WS-RESC language. Verification
is made online at each interaction by a specialized component that intercepts
incoming and outgoing messages (see Figure V.4).

Checks are performed at two stage, before and after each invocation for check-
ing input and output conditions. Service request calls are intercepted first and
checked if they match operations in a list of expected operations that is consti-
tuted at run-time and continuously updated, according to the states defined in
the WS-RESC specification and the executed operations. If the outgoing mes-

122 V Performance and Experiments

Client

Verifier

Service

invalidRequest stateAlignmentError
request

request response

response request

check check

Figure V.4: Conversation verifier

sage contains an expected operation, the message is forwarded as is to the Web
service. Otherwise, a pre-defined system invalidRequest is signaled to the service
requester with additional information on the exception such as the reason of the
fault. The Web service is never invoked and the message is discarded. In the
second stage, the response message sent by the Web service is intercepted and
analyzed. Depending on the output message name and the transitions defined
in the WS-RESC description, the list of expected operation names for this Web
service is updated and the message is forwarded as is to the requester. If the
return message does not correspond to any of the expected transition conditions
as defined in the WS-RESC definition, the return message is not discarded and
sent to the service requester. However, the state of the conversation for this Web
service is marked as unknown by the verifier, causing the rejection by the verifier
of all subsequent requests to this Web services and the signaling of stateAligne-
mentError exception to the service requester.

Figure V.5 gives the results of experiments done using automatically generated
clients and services. The clients’ invocations are constructed so that the con-
versations are respected, to measure the worst cases. For each interaction, first
is measured the total execution time without the on the fly verification and
then, with the verification. The average execution time of a Web service invoca-
tion without on the fly verification is measured as 240 ms, with the service and
the client deployed on different networks, connected over a broadband Internet
connection. The overhead of the on the fly verification varies according to the
complexity of the conversation description. Without considering the initial setup
time for reading the conversation and parsing it, the average overhead of the ver-
ification by operation is measured about 90 ms for a set of conversations of 2 to
45 states. Compared to the average Web service invocation time for one opera-

V.3 On the fly verification of invocation correctness 123

Figure V.5: Verification cost

tion (240 ms), the extra time needed for verifying correctness is short enough,
and can be considered to include it in most Web service interactions.

We integrated an on the fly verification component in the WSCA runtime. But,
verification of conversation matching is performed only if strict conformity with
a given conversation definition is required at the WSCA design time by setting
the value of the strict attribute to true in the < services > element of the
WSCAL definition. Additionally, the conversation document that is used to do
verifications is the one that is specified by the WSCA designer and referenced
with the conversation attribute in the same declaration. A further improvement
would be to retrieve dynamically the provided conversation definition of Web
services, which can be included as an extension in the WSDL definition or ref-
erenced in the UDDI registry. However, a standardized specification does not
exist yet neither for describing conversations, nor for attaching it to the service
definition.

124 V Performance and Experiments

V.4 WSCA runtime

A WSCA composite service is built by transforming the WSCAL specification
of the WSCA into Java code, using a set of Java classes implementing the base
WSCA principles. Participants are implemented with threads in a main class,
and a controller component is used to synchronize them in nested actions and to
propagate exceptions. A concurrency control manager further controls accesses
to composed Web services by allowing or delaying accesses. A dynamic binding
mechanism allows localizing services on the fly and integrating them in the com-
position in case of unavailability of an already bound service, detected by the oc-
currence of time-outs. The exception handling mechanism includes the detection
of faults, mechanisms for propagating exceptions among participants, resolving
concurrent exceptions and synchronizing participants for realizing coordinated
exception handling. The internal exception mechanism of the Java program-
ming language is used for local exception handling. Propagation of exceptions
among participants is coordinated using a controller object. Participants invoke
a synchronized call on the controller to check the occurrence of a propagated
exception and for signalling an exception to propagate. Checks are performed
before entering a nested action, before calling a composed Web service and before
terminating.

The next section presents the WSCA runtime using an example application
and compares the execution performance of a composite Web service built using
WSCAL and an equivalent BPEL based composite service. Then, the implemen-
tation of the concurrency control is presented by analyzing performance increase
by relaxing isolation based on the WS-RESC description. We finally assess the
reliability of a WSCA composite Web service by comparing with implementa-
tions of existent specifications for dependable Web service compositions.

V.4.1 Comparing WSCA design and execution

We use build the composition workflow of the travel agency composite Web
service using WSCAL and BPEL, which is the most mature composition lan-
guage available for which several execution engines have been developed. The
objective is to compare the overall execution performance. Dependability related
measurements are further given in the next section.

The travel agency composite Web service consists of a flight reservation sub-
system and of a hotel reservation subsystem. The flight reservation subsystem

V.4 WSCA runtime 125

make requests to a set of flight booking Web services for finding a flight to a
given destination. The hotel subsystem similarly accesses a set of accommoda-
tion reservation Web services to book an hotel room for the duration of the trip.
If a flight or hotel room became unavailable during the search phase, then alter-
native Web services should be contacted to complete the reservation. If no other
options can be found, the trip is aborted by notifying the requester that no trip
can be found. The booking phase should be initiated only when all searches are
completed. If during the booking, one of the booking fails, the other booking
should be stopped. If it is already performed, it should be cancelled. Further-
more, Figure V.6 represents the standard execution of a WSCA composite Web
service operation, composed of two participants Flight and Hotel, entering two
nested actions Search and Book, and accessing to composed Web services Flight
reservation Web service and Accommodation reservation Web service.

Hotel

Flight

Accomodation reservation Web service

Flight reservation Web service

Search Book

Messages
Output|Fault

Messages
Input

Figure V.6: Travel agency WSCA execution

The WSCA version is specified without considering dynamic binding, abstract
service declaration and WS-RESC verification, as these features are not sup-
ported in BPEL. The WSCAL specification is used to generate a Java code,
which is compiled with associated WSCA runtime classes and deployed on top
of the Apache Tomcat application server version 5 5 and using the Apache AXIS
SOAP engine version 1.2.1 6. The BPEL version is written according to the
BPEL4WS specification v1.1 and executed on top of the open source BPEL
engine ActiveBPEL, which is implemented in Java and executes on top of the
Apache Tomcat application server version 5. Contrary to our implementation,
ActiveBPEL does not compile the BPEL specification into an internal format

5http://jakarta.apache.org/tomcat/
6http://ws.apache.org/axis/

126 V Performance and Experiments

but interprets a process definition created from the BPEL specification at de-
ploy time. Furthermore, the implementation uses also the AXIS SOAP engine
to interact with composed Web services. There exists other implementations of
BPEL engines, such as the Oracle BPEL Process Manager 7, Microsoft’s BizTalk
server 8 and Parasoft’s BPEL Maestro 9. We used the ActiveBPEL engine be-
cause it presents similar characteristics as the WSCA runtime (they are both
written in Java and use Apache Tomcat and Apache Axis) and because it was
freely available.

Figure V.7: WSCA vs BPEL

Figure V.7 gives total execution time for the two composite Web services, invoked
with the same requests. Different cases are considered for both normal execution
without any error and exceptional executions where flights and hotels are not
available and payments fail. Tests are realized using the same service requester
client, written in Java and using the AXIS SOAP container. Each test is executed
1000 times to compute the average execution time. The overall execution times
are quite similar, which is mostly due to the fact that the major cause of delays
are the access time needed to interact with Web services using XML based
messages. When the composed Web services are deployed on a LAN for reducing
the access time, we measure a better performance for WSCA, which does not
interpret XML codes.

Another test is realized in a highly stressed environment by invoking the compos-
ite Web service simultaneously by multiple service requesters (see Figure V.8).

7http://www.oracle.com/technology/products/ias/bpel/
8http://www.microsoft.com/biztalk/
9http://www.parasoft.com/jsp/products/home.jsp?product=BPEL

V.4 WSCA runtime 127

Figure V.8: WSCA vs BPEL in highly stressed environment

The average waiting time for WSCA clients is slightly longer, mostly due to lo-
cal locking. However, all requests complete with no deadlocks or timeouts. The
next section details the implementation of the concurrency control in the WSCA
runtime and shows how and under which conditions isolation can be relaxed to
increase performance.

V.4.2 Concurrency control

The main role of the WSCA concurrency management is to guarantee the ex-
pected isolation level of WSCAs when interacting with Web services by control-
ling concurrent accesses to them. The implemented concurrency control manager
uses a lock based protocol for controlling accesses to composed Web services
within a WSCA instance. The concurrency control includes a customizable con-
flict table, constructed by analyzing the WS-RESC description of composed Web
services for relaxing isolation and increasing performance.

When a top-level WSCA starts, locks are acquired automatically on local objects
associated to each Web service that is accessed during the WSCA execution. The
locks give the access right to the participants that are involved in the WSCA
to invoke any operation on the associated Web services. When a nested WSCA
is started, the lock passes to the nested WSCA, and only the nested WSCA
participants can access the composed Web services. All other accesses from par-
ticipants outside the nested WSCA are delayed. Furthermore, all sibling nested
action creations willing to acquire a lock for the same composed Web services
are delayed as well. Lock are released at the and of nested actions and at the

128 V Performance and Experiments

end of the top-level WSCA.

The local lock based solution for ensuring isolation of concurrently running
WSCA respect to composed Web services, raises several issues. First, is to de-
cide when to acquire and release locks. A lock may be acquired at the initiation
phase of the WSCA, or at the first access to a composed Web service. The second
approach is chosen because it offers better performances with increased concur-
rency by shortening the lock holding time. This means that we allow nested
WSCA creations even if the nested WSCA will access to an already locked Web
service by another sibling nested action. Release of the lock should be done at
the end of the WSCA holding the lock, once the WSCA terminates its execu-
tion. If a nested WSCA ends exceptionally, the lock is released, but the priority
for acquiring a new lock is given to potential exception handlers for exceptions
raised in parent actions.

For reducing the delay imposed by the design decision based on locks, the bet-
ter approach is to assign the accesses to a particular Web service to a single
participant. Furthermore, there are many Web services that support concurrent
accesses by providing means for not interfering their results. For example, a Web
service can used HTTP session cookies for identifying different, not interfering
sessions. This capability is advertised by the Web service in the WS-RESC de-
scription. Based on this information, we can relax isolation to allow concurrency,
and hence improve the overall performance by shortening the total execution
time. The implementation of the concurrency control manager takes into ac-
count the WS-RESC description supported by Web services, which is analyzed
at deploy time. Conversations that support sessions are identified, based on the
correlation attribute. Then, a new local object is created at run-time whenever a
new session is created by the participant that access the composed Web service.
When a new nested WSCA accessing the same composed Web service is created,
or when a new instance of a WSCA operation is invoked, the concurrency con-
trol manager checks the correlation value of messages to identify new sessions,
which are executed without delay. Accesses using the same correlation value are
not permitted and delayed until the lock on the local object associated to this
session is released.

Another concurrency issue is related to concurrent accesses to composed Web
services within a WSCA, from participants that all have the access right to call
the Web service. By default, for increased performance, we allow concurrent calls
from participants without restriction. Which means that if a Web service oper-
ation is invoked by a participant, another participant can invoke the same Web
service even if the first operation has not terminated. This default behaviour
can be customized to restrict concurrent accesses in case of potential conflicts

V.4 WSCA runtime 129

between operations. The concurrency control manager maintains a conflict table
that is used to check if two Web service operations are conflicting or not. Gen-
erally, two operations conflict if the result depends on their execution order. We
therefore implemented the conflict table in the concurrency control component
that is customized according to the WS-RESC description of the Web service,
if any. The conflict table gives for pairs of operations if they are conflicting by
analyzing dependencies between operations and equivalence relationships. Two
operations conflict if they are associated to two states of the same activity with
a transition (specifying the ordering) between them. Furthermore, operations do
not conflict if there is an equivalence relationship between activities where the
two operations appears in different sequences. Construction of the conflict table
is pretty fast, measured to be from 2 to 300 ms, depending on the complexity
of the conversation, which is fast enough to include its construction at run-time
for Web services discovered at run-time. However, the WS-RESC document re-
trieval time should be added though it can already be present if it was needed
for the on the fly verification, conversation matching or if it is cached previously.

Leave Return Confirm

C 1

Return Leave Confirm

C 2

Start

Start End

End

Figure V.9: Detecting conflicts

Figure V.9 represents two conversations C1 and C2 for a flight reservation Web
service offering different operations for searching separately a flight to a des-
tination and its return. We can derive from the first conversation C1 that the
operation pair (Leave,Return) is conflicting, i.e., Return must be called after
Leave. The conflict is removed if we have in addition an equivalence relationship
C1 ∼ C2. If the WS-RESC document associated to a Web service defines only the
C1 conversation, then the concurrency control manager will delay any attempt
to call the operation Return until that the operation Leave terminates. If C2 is
defined and the equivalence relationship, then invocations can be called in any
order. However, calls are executed in mutual exclusion, meaning that whatever is
the invocation order, the first interaction should terminate before initiating the
second one. Calls can be called concurrently, without being mutually exclusive
only if the conversation defines the parallel construct as in Figure V.10 for the
above conversations.

Tests are performed for measuring the efficiency gain obtained by by increasing
concurrency by allowing concurrent calls to a single Web service from partici-

130 V Performance and Experiments

C1

C2

Start End

Figure V.10: Concurrent calls

pants of a WSCA operation. A set of automatically generated WSCA executions
and Web services have been used.

Figure V.11: Measuring parallel access efficiency

Figure V.11 gives the overall performance gain by measuring the total execution
time of each WSCA operation. The overall performance gain is however limited
by the capabilities of the composed Web services in supporting concurrent ac-
cesses. The gain is indeed not perceivable when the composed Web service is over
charged due to many concurrent accesses from multiple clients. Further analysis
on real Web services is however required to test whether if allowing concurrency
induces inconsistencies and hence faults at the client side, i.e., in the compos-
ite Web service. This should be considered as a trade-off for a WSCA designer
who wants better performances, but should be aware that additional exception
handlers can be needed for potential errors that can occur.

V.4 WSCA runtime 131

V.4.3 Dependability assessment

We assess the dependability of WSCA based composite Web services using mea-
surement techniques. We compare the implementation of the WSCA composite
Web service, which uses coordinated exception handling as a means for realiz-
ing compensation actions, with an implementation of the WS-BusinessActivity
protocol [IBM, Microsoft, BEA, 2004], which is an existent Web service trans-
action protocol (see Chapter II). Furthermore, a composite Web service written
in Java, with no support for reliability is also tested for reference. We use the
travel agency composite Web service, but Web services are changed to support
the WS-BusinessActivity transaction protocol. The service is implemented in
Java, using the Arjuna Transaction Service Suite 10 deployed on top of a JBoss
J2EE application server 11.

Several tests have been performed using fault injection techniques to assess the
dependability of both systems:

(1) Composed Web services that are accessed have been programmed so that at
random intervals WSDL fault messages are sent instead of normal output
messages.

(2) Output messages emitted from composed Web services have been altered
so that the WSCA operation participant receives unexpected messages.

(3) Random delays are introduced in the emission and reception of SOAP
messages.

(4) Composed Web services have been made unavailable either by un-deploying
the service or by shutting down the application server.

We measured dependability of systems by analyzing the state of the system
after 1000 invocations of a composite Web service operation for each test. The
number of successful trip reservations, the number of successful cancellation and
the number of failures are recorded. The failure is the worst case because the
Web services are left in an unknown state (e.g., partially reserved trips). Results
are given in the following charts.

In all tests except the third, the WSCA composite Web service results are better
than the WS-BusinessActivity implementation. This is mainly due to the fact

10http://www.arjuna.com/products/arjunats/index.html
11http://www.jboss.com/

132 V Performance and Experiments

(a) Test 1. Web services send fault messages (b) Test 2. Web services send unexpected mes-
sages

Figure V.12: Dependability assessments

(a) Test 3. Messages are delayed (b) Test 4. Web services disappear

Figure V.13: Dependability assessments (2)

that the latter one imposes a tightly coupled interaction with composed Web
services, which must follow exactly the transaction protocol. On the other hand,
the WSCA composite Web service can deal with unexpected messages by calling
an appropriate exception handler. Thanks to the nested structure, exceptions
are propagated and never lost. However, it is worth noting that the transaction
protocol should be used as a complementary mean for achieving dependability.
A composite Web service developed using an orchestration language such as
BPEL with error handling can implement the transactional protocol and define
other recovery mechanisms for not handled errors. However, mixing recovery
protocols in one implementation would add complexity in design. Such a system
is then more prone to protocol incompatibilities. The WSCA approach provides
an integrated framework to define different recovery strategies, into a well defined
structure, easing development of dependable services. Multiple binding is one

V.5 Concluding remarks 133

Figure V.14: Dependability assessment with on the fly verification

of the features that can be easily added to the WSCAL specification without
increasing complexity, and which increase the overall dependability significantly
(Test 4). Furthermore, using the on the fly verification improves dependability
by not allowing non-cancellable bookings to be performed (Test 5, realized with
randomly selected faults).

V.5 Concluding remarks

In this chapter we have shown that using our proposed languages WSCAL and
WS-RESC we can build composite Web services that meet the requirements
that we have set. For this purpose, prototype tools have been implemented and
tested.

The service discovery protocol that is based on the matching of abstract Web
service definitions and on the matching of conversations has been tested. The
overall result is that it works relatively well for searching Web services during ex-
ecution and using dynamic binding of composed Web services. Furthermore, the
on the fly verification of invocation correctness increase reliability by preventing
faults and the short verification time enables to include the verification on most
composite applications. By comparison with existent composition languages, we
show that WSCA composite Web services execute more efficiently or with no
additional significant overhead. Moreover, increasing performance is possible ex-
ploiting the concurrency support of WSCA by relaxing controlled accesses to
composed Web services. Compared to existent solutions addressing dependabil-
ity for Web services, we show that our method is more efficient with a higher

134 V Performance and Experiments

rate for tolerating faults, without losing performance.

VI Conclusion

VI.1 Contribution

Web services are expected to become a major class of systems of systems in
the near future. The main objective of this thesis was to enable the integration
of autonomous existent Web services into a dependable composite Web service.
Our approach primarily lies into: (i) extending the interface of individual Web
services in order to reason about their recovery and concurrency capabilities,
and (ii) proposing a composition language for specifying a composition process
in terms of dependable actions based on forward error recovery.

The specification of recovery support of individual Web services is based on
a conversation language (WS-RESC) that allows the specification of both the
standard and exceptional behavior of autonomous, composable Web services,
further assisting the development of dependable composite services. The main
purpose of a conversation language is to define the allowed sequence of interac-
tions that a Web service supports, by specifying dependencies between opera-
tions. WS-RESC further includes constructs for specifying concurrency since it
is an inherent feature of distributed systems, and for specifying exceptional be-
haviours, timing constraints and recovery properties of conversation since these
are key behavioral properties in the context of dependability. The language in
particular enables the definition of equivalence relationships over conversations
with respect to their recovery behavior, which is exploited for the design of
fault-tolerant composite actions.

The proposed solution for the composition of Web services is based on forward
error recovery, oriented towards providing dependability of composite Web ser-
vices. While exploiting their possible support for fault tolerance (e.g., transac-
tional support at the level of each service), the proposed solution has no impact
on the autonomy of the individual Web services. Our solution lies in system
structuring in terms of co-operative atomic actions that have a well-defined be-

136 VI Conclusion

haviour, both in the absence and in the presence of service failures. More specifi-
cally, we defined the notion of Web Service Composition Action (WSCA), based
on the Coordinated Atomic Action concept, which allows structuring composite
Web services in terms of dependable actions. Fault tolerance is then obtained as
an emergent property of the aggregation of several potentially non-dependable
services.

The specification of a WSCA is composed of two parts. First, the required inter-
faces of composed Web services are declared abstractly. Required operations are
given using WSDL and required conversations are specified in WS-RESC. These
required interfaces are used for service discovery with a dynamic binding mech-
anism that enables, in particular, to bind Web service instances dynamically at
run-time. Furthermore, conversations of composed Web services are used to ver-
ify correctness of interactions, thus prevening potential faults. The second part
of the WSCA specification comprises the behaviour of each operation offered by
the composite Web service. A WSCA operation is defined as a process that com-
prises several participants, which execute concurrently. Each participant interact
with one or more composed Web services. Participants can further join together
to form nested WSCA, executing in isolation with each other, with a controlled
accesses to composed Web services. Exceptions raised during the execution of
a WSCA operation are co-operatively handled by all the participants of the
WSCA operation or of a nested WSCA, which terminate with several outcomes.
If the coordinated exception handling succeeds, then the WSCA operation or
the nested WSCA terminates normally, otherwise, the exception is signalled to
a higher-level WSCA or to the service requester as a fault message. We further
introduced a framework enabling the development of composite Web services
based on WSCAs. The XML-based language for the specification of WSCAs is
compiled to Java code, and the WSCA composite Web service is deployed on
top of a Web service application server. Intermediary components used by the
composite Web service for service discovery and an on the fly verification of the
compatiblity of interactions with conversations of Web services are implemented
and tested.

As discussed in Section II, there is extensive research work that is ongoing to-
wards supporting the development of fault tolerant composite Web services, re-
lying on the transactional supports for composite Web services. Our contribution
primarily comes from relying on forward error recovery instead of backward error
recovery for specifying the behavior of composite Web services in the presence
of failures and integrating conversation languages in the composition process.
Forward error recovery is further specified in terms of co-operative actions. Our
analysis shows that this approach is more effective in dealing with faults at the
level of composite Web services.

VI.2 Perspectives 137

VI.2 Perspectives

The composite Web service development using the WSCAL and WS-RESC lan-
guages gives a central role to the developer, which states the requirements of the
composite application and specifies the composition process. The requirements
are essentially used in the processes of service discovery, verification and concur-
rency control. Automated analyses are done, for example when constructing the
conflict table for customizing the concurrency control. However, the integration
of composed Web services can be automated more, for reducing the development
time and effort and also for reducing the verification overhead. In particular, in
a first stage, the exceptional behaviour expressed in the WS-RESC language
can be used to generate correct code skeletons for exception handling. Another
improvement for building correct compositions would be the static verification
(contrary to the on the fly verification that is implemented) based on a formal
model of the composite Web service. Given the formal model of conversations
of individual Web services and the one of the composition process, one can for-
mally verify that the implementation of service calls at the service requester-side
matches the provided conversation at the service provider-side, in a way similar
to architectural connector matching [Allen and Garlan, 1997].

We implemented the local runtime system and associated tools and done exper-
timentation with use cases. Results shows that the service compositions execute
correctly, increasing service dependability. However, as far as dependability is
our main concern, a formally specified and implemented runtime system should
be considered. In [Tartanoglu et al., 2003b], we have presented an approach for
specifying fault tolerance mechanisms using the B formal method. We have con-
sidered the use of Coordinated Atomic Actions that have been proved useful
for building dependable systems. We have defined a generic formal specifica-
tion using the B method, defining systems composed of several Coordinated
Atomic Actions that make concurrent accesses to external objects. B was chosen
because of its powerful theorem proving ability and because of availability of a
number of mature tools. We have shown how to specify the following dependabil-
ity mechanisms of CA Actions: (i) constraints related to the atomic accesses to
external transactional objects, (ii) encapsulation of computations inside atomic
action units ensured through action nesting and (iii), properties related to the
behaviour of the system in case of exception occurrences. This initial specifi-
cation can be used to define Web Service Composition Actions formally. The
main difference would be relaxing atomic accesses to external objects while still
preserving isolation, that should be managed locally. In order to have an im-
plementation of the Web Service Composition Action’s run-time support, the
abstract machines should be refined. At the end of the refinement process, we

138 VI Conclusion

will have an executable code that correspond to the implementation of the op-
erations defining the B machines, offered as a programming library. Note that
when implementing the WSCA runtime, some existing libraries such as SOAP
engines and UDDI API implementations are used. For all these libraries, what
is usually known is the interfaces of the offered methods. In order to be able to
prove the correctness of the implementation it would be necessary: (i) to have in
addition the formal specification of the behaviour of these methods and (ii), to
prove that the refinements of the machines that use these methods are correct
(in the B sense). During the refinement, the non-determinism will be reduced.
The preconditions have to be relaxed in order to take into account all the possi-
ble cases. The formal specification together with the refinement process give an
executable code that is correct with respect to the specification.

Bibliographie

A. Arkin. Business Process Modeling Language, 2002. http://www.bpmi.
org.

R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3) :213–249, 1997.

ANSI. American national standard for information systems. database language
sql, November 1992. ANSI X3.135-1992.

BEA Systems, IBM, Microsoft, SAP AG, and Siebel Systems. Busi-
ness Process Execution Language for Web Services, Version 1.1, Fe-
bruary 2005. http://www.ibm.com/developerworks/library/
specification/ws-bpel/.

BEA Systems, IBM, Microsoft, and TIBCO Software. Web services reliable
messaging protocol (ws-reliablemessaging), March 2004. http://www-106.
ibm.com/developerworks/library/ws-rm/.

B. Benatallah, F. Casati, and F. Toumani. Web service conversation modeling.
IEEE Internet Computing, pages 46–54, January-February 2004.

B. Benatallah, M. Dumas, and Q. Z. Sheng. Facilitating the rapid develop-
ment and scalable orchestration of composite web services. Distrib. Parallel
Databases, 17(1) :5–37, 2005. ISSN 0926-8782.

M. Berger and K. Honda. The two-phase commitment protocol in an extended
pi-calculus. In L. Aceto and B. Victor, editors, Electronic Notes in Theoretical
Computer Science, EXPRRESS’00, 7th International Workshop on Expressi-
veness in Concurrency, volume 39. Elsevier, 2003.

A. P. Black, V. Cremet, R. Guerraoui, and M. Odersky. An equational theory
for transactions. In Proceedings of the 23rd Conference on Foundations of
Software Technology and Theoretical Computer Science, Mumbai (Bombay),
India, December 2003.

140 BIBLIOGRAPHIE

Y-D. Bromberg and V. Issarny. Indiss : Interoperable discovery system for net-
workded services. In Proceedings of Middleware’2005, November 2005.

T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification : A New
Approach to Design and Analysis of E-Service Composition. In Proceedings
of the 12th International World Wide Web Conference, May 2003.

R. H. Campbell and A. N. Habermann. The specification of process synchroni-
zation by path expressions. In Operating Systems, Proceedings of an Interna-
tional Symposium, pages 89–102, London, UK, 1974. Springer-Verlag. ISBN
3-540-06849-X.

R. H. Campbell and B. Randell. Error recovery in asynchronous systems. Tran-
sactions on Software Engineering, SE-12(8) :811–826, 1986.

F. Cristian. Dependability of Resilient Computers, chapter Exception Handling,
pages 68–97. Blackwell Scientific Publications, 1989.

A. Elfatatry and P. Layzell. Negotiating in service-oriented environments.
CACM, 47(8) :103–108, August 2004.

A. K. Elmagarmid, editor. Database Transaction Models for Advanced Applica-
tions. Morgan Kaufmann, 1992.

W. Emmerich. Engineering Distributed Objects. J. Wiley & Sons, 2000.

F. Leymann, 2001. Web Services Flow Language (WSFL 1.0), may 2001. IBM,
http://www-3.ibm.com/software/solutions/webservices/
pdf/WSFL.pdf.

R. Farahbod, U. Glasser, and M. Vajihollahi. ASM 2004, W. Zimmermann
and B. Thalheim editors, LNCS 3052, chapter Specification and Validation
of the Business Process Execution Language for Web Services, pages 78–94.
Springer-Verlag, 2004.

A. Ferrara. Web services : a process algebra approach. In ICSOC ’04 : Pro-
ceedings of the 2nd international conference on Service oriented computing,
pages 242–251, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-871-7.

H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility verification for web
service choreography. In ICWS ’04 : Proceedings of the IEEE International
Conference on Web Services (ICWS’04), page 738, Washington, DC, USA,
2004. IEEE Computer Society. ISBN 0-7695-2167-3.

BIBLIOGRAPHIE 141

S. Frolund and K. Govindarajan. cl : A language for formally defining web
services interactions. Technical report, HP Laboratories Palo Alto, October
2003.

X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web services. In WWW
’04 : Proceedings of the 13th international conference on World Wide Web,
pages 621–630, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-844-X.

H. Garcia-Molina. Using semantic knowledge for transaction processing in a
distributed database. ACM Transactions on Database Systems, 8 :186–213,
1983.

H. Garcia-Molina and K. Salem. Sagas. In Proceedings of ACM-SIGMOD 1987
International Conference on Management of Data, 1987.

M.C. Gaudel, V. Issarny, C. Jones, H. Kopetz, E. Marsden, N. Moffat, M. Pau-
litsch, D. Powell, B. Randell, A. Romanovsky, R. Stroud, and F. Taiani. DSoS
Conceptual Model. Technical report, IST Project Dependable Systems of Sys-
tems, IST-1999-11585, 2003.

J B. Goodenough. Exception handling : issues and a proposed notation. Com-
mun. ACM, 18(12) :683–696, 1975. ISSN 0001-0782.

J. Gray and A. Reuter. Transaction Processing : Concepts and Techniques.
Morgan Kaufmann, 1993.

R. Hamadi and B. Benatallah. A petri net-based model for web service compo-
sition. In CRPITS’17 : Proceedings of the Fourteenth Australasian database
conference on Database technologies 2003, pages 191–200, Darlinghurst, Aus-
tralia, Australia, 2003. Australian Computer Society, Inc. ISBN 0-909-92595-
X.

J. E. Hanson, P. Nandi, and D. Levine. Conversation-enabled web services for
agents and e-business. In Proceedings of the International Conference on In-
ternet Computing (IC-02), pages 791–796. CSREA Press, 2002.

IBM. Httpr specification version 1.1, April 2002. http://www.ibm.com/
developerworks/library/ws-httprspec/.

IBM, Microsoft, BEA. Web services businessactivity framework, 2004.
http://www-106.ibm.com/developerworks/webservices/
library/ws-busact/.

IETF. Rfc 821, simple mail transfer protocol, 1982. http://www.ietf.org/
rfc/rfc0821.txt.

142 BIBLIOGRAPHIE

IETF. Rfc 2396, unifotm resource identifiers (uri) : Generic syntax, 1998. http:
//www.ietf.org/rfc/rfc2396.txt.

IETF, 1999. Rfc 2616, hypertext transfer protocol – http/1.1, ietf, 1999. http:
//www.ietf.org/rfc/rfc2616.txt.

V. Issarny. An exception handling mechanism for parallel object-oriented pro-
gramming : Towards reusable, robust distributed software. Journal of Object-
Oriented Programming, 6(6) :29–39, 1993.

R. Jimenez-Peris, M. Patino-Martinez, S. Woodman, S. Shrivastava, D. Palmer,
S. Wheater, B. Kemme, and G. Alonso. Service specification language,. Tech-
nical report, Deliverable of ADAPT IST project IST-2001-37126, 2003.

H. F. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by
compensating transactions. In The VLDB Journal, pages 95–106, 1990.

P. A. Lee and T. Anderson. Fault Tolerance Principles and Practice, volume 3
of Dependable Computing and Fault-Tolerant Systems. Springer - Verlag, 2nd
edition, 1990.

A. Martens. Lecture Notes in Computer Science, volume 3442, chapter Analyzing
Web Service Based Business Processes, pages 19–33. Springer-Verlag, 2005.

G. H. Mealy. A method for synthesizing sequential circuits. Bell System Tech.
J., 34 :1045–1079, September 1955.

B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing web services
on the semantic web. The VLDB Journal, 12(4) :333–351, 2003. ISSN 1066-
8888.

L.G. Meredith and S. Bjorg. Contracts and types. Communications of the ACM,
46(10) :41–47, October 2003.

Microsoft, BEA and IBM. Web Services Business Activity Frame-
work (WS-BusinessActivity), November 2004a. http://www.ibm.com/
developerworks/library/ws-transpec/.

Microsoft, BEA and IBM. Web Services Coordination (WS-Coordination),
November 2004b. http://www.ibm.com/developerworks/library/
ws-coor/.

T. Mikalsen, S. Tai, and I. Rouvellou. Transactional attitudes : Reliable compo-
sition of autonomous Web services. In DSN 2002, Workshop on Dependable
Middleware-based Systems (WDMS 2002), 2002.

BIBLIOGRAPHIE 143

R. Miller and A. Tripathi. P. Ezhilchelvan, A. Romanovsky, editors, Concurrency
in Dependable Computing, chapter Exception Handling in Timed Asynchro-
nous Systems, pages 209–227. Kluwer, 2002.

R. Milner. Communicating and Mobile Systems : The π-Calculus. Cambridge
University Press, 1999.

S. Narayanan and S. McIlraith. Simulation, verification and automated compo-
sition of Web services. In Proceedings of the WWW’02 Conference, 2002.

OASIS. Business Transaction Protocol (BTP), Version 1.1, 2004a. http://
www.oasis-open.org/committees/business-transactions/.

OASIS. OASIS Wes Services Reliability (WS-Reliability), 2004b. OASIS Wor-
king Draft, http://www.oasis-open.org.

OASIS. UDDI, Version 3, API Specification, 2004c. http ://www.uddi.org.

OMG. The common object request broker 3.0 - omg idl syntax and
semantics chapter. Technical Report 02-06-39, OMG Document, 2002.
http ://http.omg.org.

M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing. Com-
mun. ACM, 46(10), 2003.

P. F. Pires, M. R. F. Benevides, and M. Mattoso. Mediating heterogeneous web
services. In SAINT ’03 : Proceedings of the 2003 Symposium on Applications
and the Internet, page 344, Washington, DC, USA, 2003a. IEEE Computer
Society. ISBN 0-7695-1872-9.

P.F. Pires, M. Benevides, and M. Mattoso. Web, Web-Services, and Database
Systems 2002, chapter Building Reliable Web Services Compositions, pages
59–72. Springer LNCS 2593, 2003b.

C. Pu, G. Kaiser, and N. Hutchinson. Split-transaction for open-ended activities.
In Proceedings of the Fourteenth International Conference on Very Large Data
Bases, pages 26–37, 1988.

B. Randell. Recursive structured distributed computing systems. In Proceedings
of the 3rd Symposium on Reliability in Distributed Software and Database
Systems, 1983.

W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I : Basic Models,
volume 1491. Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1998.

144 BIBLIOGRAPHIE

D. Sangiorgi and D. Walker. The pi-calculus : A Theory of Mobile Processes.
Cambridge Universtity Press, 2001.

K. Schmidt and C. Stahl. A petri net semantic for bpel. In Proceedings of the
11th Workshop AWPN, October 2004.

S. Tai, T. Mikalsen, E. Wohlstadter, N. Desai, and I. Rouvellou. Transaction
policies for service-oriented computing. Data Knowl. Eng., 51(1) :59–79, 2004.
ISSN 0169-023X.

F. Tartanoglu and V. Issarny. Specifying web services recovery support with
conversations. In Proceedings of the 38th Hawaii International Conference on
System Sciences (HICSS’2005), January 2005.

F. Tartanoglu, V. Issarny, N. Levy, and A. Romanovsky. Dependability in the
Web Service Architecture. In Architecting Dependable Systems, LNCS 2677,
pages 89–108. Springer-Verlag, 2003a.

F. Tartanoglu, V. Issarny, N. Levy, and A. Romanovsky. Formalizing Depen-
dability Mechanisms in B : From Specification to Development Support. In
Proceedings of the ICSE Workshop on Architecting Dependable Systems, Port-
land, USA, May 2003b.

F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy. Coordinated Forward
Error Recovery for Composite Web Services. In Proceedings of the 22nd IEEE
Symposium on Reliable Distributed Systems, pages 167–176, Florence, Italy,
October 2003c.

F. Tartanoglu, N. Levy, V. Issarny, and A. Romanovsky. Using the B Method
for the Formalization of Coordinated Atomic Actions, October 2004. CS-TR
865, Department of Computing Science, University of Newcastle upon Tyne.

S. Thatte. Xlang : Web services for business process design, 2001. Micro-
soft Corporation, http://www.gotdotnet.com/team/xml wsspecs/
xlang-c/.

R. Tolksdorf. A dependency markup language for web services. In Web Databases
and Web Services 2002, pages 129–140, 2003. LNCS 2593.

W3C. XML Path Language (XPath), Version 1.0, 1999. W3C Recommendation,
http://www.w3.org/TR/xpath.

W3C. Web Service Choreography Interface (WSCI) 1.0, W3C Note, 2002a.
http://www.w3.org/TR/wsci/.

BIBLIOGRAPHIE 145

W3C. Web services conversation language (WSCL), version 1.0, 2002b. W3C
Note, http://www.w3.org/TR/wscl10/.

W3C. Owl-s : Semantic markup for web service, 2003a. http://www.daml.
org/services/owl-s/.

W3C. Soap version 1.2, 2003b. W3C Recommendation, http://www.w3.
org/2000/xp/Group/.

W3C. Extensible markup language (xml) 1.1, 2004a. W3C Recommendation,
http://www.w3.org/TR/xml11.

W3C. Web services choreography description language version 1.0, 2004b. W3C
Working Draft, http://www.w3.org/TR/ws-cdl-10/.

W3C. Xml schema, 2004c. W3C Recommandation, http://www.w3.org/
XML/Schema.

W3C. Web services description language (WSDL), version 2.0, 2005. W3C
Working Draft, http://www.w3.org/TR/wsdl20/.

J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, R. J. Stroud, and Z. Wu.
Fault tolerance in concurrent object-oriented software through coordinated
error recovery. In Proceedings of the Twenty-Fifth IEEE International Sym-
posium on Fault-Tolerant Computing, pages 499–508, 1995.

J. Xu, A. Romanovsky, and B. Randell. Concurrent exception handling and
resolution in distributed object systems. IEEE Transactions on Parallel and
Distributed Systems, 11(10) :1019–1032, 2000.

X. Yi and K.J. Kochut. Process composition of Web services with complex
conversation protocols : a colored Petri nets based approach. In Proceedings of
Advanced Simulation Technology Conference DASD2004, Arlington, Virginia,
USA, April 2004.

146 BIBLIOGRAPHIE

Annexes

148 BIBLIOGRAPHIE

A WS-RESC XML Schema
definition

This appendix presents the definition of the WS-RESC language introduced in
Chapter III using the XML Schema language [W3C, 2004c]. XML Schema is
a definition language used for describing and constraining the content of XML
documents. An equivalent graphical representation is also given for illustration.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="wsresc">
<xs:complexType>

<xs:sequence maxOccurs="unbounded">
<xs:choice>

<xs:element name="state">
<xs:complexType>
<xs:attribute name="name" type="xs:NCName"

use="required"/>
<xs:attribute name="operation" type="xs:QName"

use="required"/>
<xs:attribute name="correlate" type="xs:QName"

use="optional"/>
</xs:complexType>

</xs:element>
<xs:element name="activity">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">

<xs:choice>
<xs:element name="transition">
<xs:complexType>

<xs:sequence>
<xs:element name="source"

maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="state" type="xs:QName"

150 A WS-RESC XML Schema definition

use="required"/>
<xs:attribute name="condition"

type="xs:anySimpleType" use="optional"/>
</xs:complexType>

</xs:element>
<xs:choice>

<xs:element name="concurrent">
<xs:complexType>
<xs:sequence>

<xs:element ref="destination"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element ref="destination"

maxOccurs="unbounded"/>
</xs:choice>
<xs:element name="timeout">

<xs:complexType>
<xs:attribute name="timer"

type="xs:duration" use="required"/>
<xs:attribute name="onInput"

type="xs:boolean" use="optional"
default="false"/>

<xs:attribute name="state" type="xs:QName"
use="required"/>

<xs:attribute name="exception" type="xs:QName"
use="optional"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:NCName"

use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="exception">
<xs:complexType>

<xs:attribute name="name" type="xs:NCName"
use="required"/>

<xs:attribute name="condition"
type="xs:anySimpleType" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="handler">
<xs:complexType>

<xs:attribute name="exception" type="xs:QName"
use="required"/>

<xs:attribute name="activity"
type="xs:QName" use="required"/>

</xs:complexType>

151

</xs:element>
<xs:element name="property">
<xs:complexType>

<xs:attribute name="value" type="xs:QName"
use="required"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:sequence>
<xs:attribute name="name" type="xs:NCName"

use="required"/>
<xs:attribute name="ref" type="xs:QName"

use="optional"/>
</xs:complexType>

</xs:element>
<xs:element name="equivalence">

<xs:complexType>
<xs:sequence minOccurs="2" maxOccurs="unbounded">

<xs:element name="equiv">
<xs:complexType>
<xs:attribute name="activity" type="xs:QName"

use="required"/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="destination">
<xs:complexType>

<xs:attribute name="state" type="xs:QName" use="required"/>
<xs:attribute name="minOccurs" type="xs:nonNegativeInteger"

use="optional" default="1"/>
<xs:attribute name="maxOccurs" type="xs:nonNegativeInteger"

use="optional" default="1"/>
<xs:attribute name="condition" type="xs:anySimpleType"

use="optional"/>
</xs:complexType>

</xs:element>
</xs:schema>

152 A WS-RESC XML Schema definition

Figure A.1 – WS-RESC

B WSCAL XML Schema definition

This appendix presents the definition of the WSCAL language introduced in
Chapter IV using the XML Schema language [W3C, 2004c] together with an
equivalent graphical representation for illustration.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="WSCAL">
<xs:complexType>

<xs:sequence>
<xs:element name="state" type="stateType" minOccurs="0"/>
<xs:element name="services">

<xs:complexType>
<xs:sequence>
<xs:element name="service" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>
<xs:element name="staticService" minOccurs="0"

maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="hrefSchema"

type="xs:anyURI" use="required"/>
<xs:attribute name="onCall" type="xs:boolean"

use="optional" default="false"/>
<xs:attribute name="multiple" type="xs:boolean"

use="optional" default="false"/>
</xs:complexType>

</xs:element>
<xs:element name="dynamicService" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="hrefSchema"
type="xs:anyURI" use="required"/>

<xs:attribute name="conversation"
type="xs:anyURI" use="optional"/>

154 B WSCAL XML Schema definition

<xs:attribute name="strict"
type="xs:boolean" use="optional"
default="false"/>

<xs:attribute name="isolation"
type="xs:QName" use="optional"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="WSCA" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>
<xs:element name="input" type="messageType"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="output" type="messageType"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="fault" type="messageType"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="state" type="stateType"

minOccurs="0"/>
<xs:element name="before" type="behaviourType"/>
<xs:element name="after" type="behaviourType"/>
<xs:element name="abort" type="behaviourType"/>
<xs:element name="nested" type="nestedType"/>
<xs:element name="participant" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>
<xs:element name="state" type="stateType"/>
<xs:element name="behaviour" type="behaviourType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="operation" type="xs:QName"

use="required"/>
<xs:attribute name="exceptionTree" type="xs:anyURI"

use="optional"/>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="required"/>
<xs:attribute name="scope" type="scopeType" use="optional"/>

</xs:complexType>
</xs:element>
<xs:simpleType name="scopeType">
<xs:restriction base="xs:string">

<xs:enumeration value="request"/>
<xs:enumeration value="application"/>
<xs:enumeration value="session"/>

155

</xs:restriction>
</xs:simpleType>
<xs:complexType name="messageType">
<xs:attribute name="message" type="xs:NCName" use="required"/>

</xs:complexType>
<xs:complexType name="stateType">
<xs:sequence>

<xs:element name="types">
<xs:complexType>

<xs:sequence>
<xs:any namespace="##other" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="var" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="name" type="xs:NCName" use="required"/>
<xs:attribute name="type" type="xs:QName" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name="behaviourType">
<xs:sequence>

<xs:element name="try" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:group ref="Statements" maxOccurs="unbounded"/>
<xs:element name="coordinatedHandler"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
<xs:group name="Statements">
<xs:choice>

<xs:element name="sequence">
<xs:complexType>

<xs:sequence>
<xs:group ref="Statements" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="all">
<xs:complexType>

<xs:sequence>
<xs:group ref="Statements" minOccurs="0"

maxOccurs="unbounded"/>

156 B WSCAL XML Schema definition

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="switch">
<xs:complexType>

<xs:sequence>
<xs:element name="case" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:group ref="Statements" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="condition" type="xs:boolean"

use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="default">
<xs:complexType>

<xs:sequence>
<xs:group ref="Statements" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="while">
<xs:complexType>

<xs:sequence>
<xs:group ref="Statements" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="condition" type="xs:boolean"

use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="try">
<xs:complexType>

<xs:sequence>
<xs:group ref="Statements" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element name="catch" minOccurs="0"

maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:group ref="Statements" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="exception" type="xs:QName"

157

use="optional"/>
<xs:attribute name="exceptionData" type="xs:NCName"

use="optional"/>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="call" type="callType"/>
<xs:element name="assign" type="assignType"/>
<xs:element name="empty" type="emptyType"/>
<xs:element name="wait" type="waitType"/>
<xs:element name="join" type="joinType"/>
<xs:element name="syncPoint" type="syncPointType"/>
<xs:element name="return" type="returnType"/>
<xs:element name="throw" type="throwType"/>

</xs:choice>
</xs:group>
<xs:complexType name="callType">
<xs:sequence>

<xs:element name="input" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="message" type="xs:NCName"
use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="output" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="message" type="xs:NCName"
use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="fault" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="message" type="xs:NCName"
use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="onAbort" minOccurs="0">
<xs:complexType>

<xs:sequence>
<xs:group ref="Statements" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="onTimeout" minOccurs="0">
<xs:complexType>

<xs:sequence>

158 B WSCAL XML Schema definition

<xs:group ref="Statements" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="optional"/>
<xs:attribute name="service" type="xs:QName" use="required"/>
<xs:attribute name="operation" type="xs:QName" use="required"/>
<xs:attribute name="abortable" type="xs:boolean" use="optional"

default="true"/>
<xs:attribute name="retry" type="xs:boolean" use="optional"

default="false"/>
<xs:attribute name="tryAlternate" type="xs:boolean"

use="optional" default="false"/>
<xs:attribute name="timeout" type="xs:duration" use="optional"/>

</xs:complexType>
<xs:complexType name="assignType">
<xs:sequence>

<xs:element name="to">
<xs:complexType>

<xs:attribute name="var" type="xs:QName" use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="from">
<xs:complexType>

<xs:attribute name="var" type="xs:QName" use="required"/>
<xs:attribute name="expr" type="xs:anySimpleType"

use="optional"/>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="optional"/>

</xs:complexType>
<xs:complexType name="emptyType">
<xs:attribute name="name" type="xs:NCName" use="optional"/>

</xs:complexType>
<xs:complexType name="waitType">
<xs:attribute name="name" type="xs:NCName" use="optional"/>
<xs:attribute name="type" type="waitTypeType" use="optional"

default="duration"/>
<xs:attribute name="timer" type="xs:duration" use="optional"/>

</xs:complexType>
<xs:simpleType name="waitTypeType">
<xs:restriction base="xs:string">

<xs:enumeration value="duration"/>
<xs:enumeration value="absoluteTime"/>

</xs:restriction>
</xs:simpleType>
<xs:complexType name="joinType">

159

<xs:sequence>
<xs:element name="condition" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="action" type="xs:QName"
use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="timeout" minOccurs="0">
<xs:complexType>

<xs:sequence>
<xs:group ref="Statements" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="type" type="waitTypeType"

use="optional" default="duration"/>
<xs:attribute name="timer" type="xs:duration"

use="required"/>
</xs:complexType>

</xs:element>
<xs:element name="onTimeout" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="optional"/>

</xs:complexType>
<xs:complexType name="syncPointType">
<xs:sequence>

<xs:element name="timeout" minOccurs="0">
<xs:complexType>

<xs:attribute name="type" type="waitTypeType"
use="optional" default="duration"/>

<xs:attribute name="timer" type="xs:duration"
use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="onTimeout" minOccurs="0">
<xs:complexType>

<xs:sequence>
<xs:group ref="Statements" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="optional"/>
<xs:attribute name="count" type="xs:nonNegativeInteger"

use="required"/>
</xs:complexType>
<xs:complexType name="returnType">
<xs:attribute name="name" type="xs:NCName" use="optional"/>
<xs:attribute name="value" type="xs:QName" use="optional"/>
<xs:attribute name="expr" type="xs:anySimpleType"

160 B WSCAL XML Schema definition

use="optional"/>
</xs:complexType>
<xs:complexType name="throwType">
<xs:attribute name="name" type="xs:NCName" use="optional"/>
<xs:attribute name="exception" type="xs:QName" use="required"/>
<xs:attribute name="exceptionData" type="xs:NCName"

use="optional"/>
</xs:complexType>
<xs:complexType name="nestedType">
<xs:sequence>

<xs:element name="before" type="behaviourType"/>
<xs:element name="after" type="behaviourType"/>
<xs:element name="abort" type="behaviourType"/>
<xs:element name="participant" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="pname" type="xs:QName"
use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="nested" type="nestedType"/>

</xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>
</xs:schema>

161

Figure B.1 – WSCAL

162 B WSCAL XML Schema definition

Figure B.2 – Nested WSCA

163

Figure B.3 – WSCAL Statements

164 B WSCAL XML Schema definition

C Travel agency WSCAL listing

In this appendix we give the full listing of the travel agent composite Web service
in WSCAL, used in the experiments in Chapter V.

<WSCAL
targetNamespace="http://travelagency.com"
xmlns:ta="http://travelagency.com"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
xmlns:wsdl_f="http://travelagency.com/flight.wsdl"
xmlns:wsdl_h="http://travelagency.com/hotel.wsdl"

name="TravelAgent" scope="request">

<services>
<service name="HotelService"

hrefSchema="http://travelagency.com/hotel.wsdl"
conversation="http://travelagency.com/hotel.resc"
strict=false
isolation=none >

<staticService hrefSchema="http://hotels.com/webservices/service.wsdl"/>
<staticService hrefSchema="http://accomodation.com/ws.wsdl"/>

</service>

<service name="FlightService"
hrefSchema="http://travelagency.com/flight.wsdl"
conversation="http://travelagency.com/flight.resc"
strict=false
isolation=none >

<dynamicService onCall=false multiple=true />
</service>

<WSCA operation="bookTrip" exceptionRules="http://travelagency.com/rules.xml">

<input message="wsdl:tripRequest" name="tripRequest" />
<output message="wsdl:tripResponse" name="tripResponse" />

166 C Travel agency WSCAL listing

<fault message="wsdl:noTripAvailable" name="noTrip" />
<fault message=wsdl:Failure name="failed"/>
<state>

<type>
<xsd:complexType name="bookTripResponseType">

<xsd:sequence>
<xsd:element name="hotelDetail" type="xsd:string"/>
<xsd:element name="flightDetail" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</type>

<var name="bookTripResponse" type="ta:bookTripResponseType/>
</state>

<after>
<assign>
<to var="ta:bookTripResponse/hotelDetail"/>
<from var="ta:hotelConfirmationResponse"/>

</assign>
<assign>
<to var="ta:bookTripResponse/flightDetail"/>
<from var="ta:flightConfirmationResponse"/>

</assign>
<assign>
<to var="ta:tripRequest"/>
<from var="ta:bookTripResponse"/>

</assign>
</after>

<abort>
<switch>
<case condition="ta:noTripAvailable">

<assign>
<to var="ta:noTrip"/>
<from var="ta:noTripAvailable/@exceptionData"/>

</assign>
</case>
<case condition="ta:failure">

<assign>
<to var="ta:failed"/>
<from var="ta:"abort/@exceptionData"/>

</assign>
</case>

</switch>
</abort>

<nestedWSCA name="search"
exceptionRules="http://travelagency.com/search.xml">

167

<participant name="ta:Hotel" />
<participant name="ta:Flight" />

</nested>

<nestedWSCA name="book"
exceptionRules="http://travelagency.com/bookHotel.xml">

<participant name="ta:Hotel" />
<participant name="ta:Flight" />

</nested>

<participant name="Hotel">

<state>
<var name="hotelDestination" type="xsd:string"/>

<var name="hotelArrival" type="xsd:date"/>
<var name="hotelDeparture" type="xsd:date"/>
<var name="hotelRooms" type="xsd:string"/>

<var name="RoomNotAvailable" type="xsd:string"/>
<var name="hotelConfirmationResponse" type="xsd:string"/>
<var name="hotelCancelConfirmationResponse" type="xsd:string"/>

</state>

<behaviour>
<try>

<sequence>
<assign>

<to var="ta:hotelDestination"/>
<from var="ta:tripRequest"

expr="//destination">
</assign>
<assign>
<to var="ta:hotelDeparture"/>
<from var="ta:tripRequest"

expr="//departure">
</assign>
<assign>
<to var="ta:hotelArrival"/>
<from var="ta:tripRequest"

expr="//arrival">
</assign>
<startNested="ta:search">
<sequence>

<try>
<sequence>

<call name="invokeHotel" service="ta:HotelService"
operation="searchAvailability"
retry=1
tryAlternate=true >

<input message="wsdl:hotelInput">

168 C Travel agency WSCAL listing

<ta:hotelDestination/>
<ta:hotelDeparture/>
<ta:hotelArrival/>

</input>
<output message="wsdl:hotelOutput">
<ta:hotelRooms/>

</output>
<fault message="wsdl:hotelFault">
<ta:RoomNotAvailable/>

</fault>
</call>
<switch>

<case condition="ta:RoomNotAvailable">
<throw exception="ta:RoomNotFound" />

</case>
</switch>
<catch exception="ta:RoomNotFound">

<try>
<sequence>

<call ref="invokeHotel" service="ta:HotelService[2]"/>
<switch>

<case condition="ta:RoomNotAvailable">
<throw exception="ta:HotelSearchFailed" />

</case>
</switch>

</sequence>
</try>

</catch>
</sequence>

</try>
<coordinatedHandler exception="ta:Failed">
<thow exception="ta:noTripAvailable"

exceptionData="noTripAvailable"/>
</coordinatedHandler>

</startNested>

<startNested="ta:bookHotel">
<try>

<sequence>
<call name="bookHotel" service="ta:HotelService"

operation="Book"
retry=1
tryAlternate=false >

<input message="wsdl:hotelInput">
<ta:hotelDestination/>
<ta:hotelDeparture/>
<ta:hotelArrival/>

</input>
<output message="wsdl:hotelConfirmation">
<ta:hotelConfirmationResponse/>

169

</output>
<fault message="wsdl:hotelFault">
<ta:HotelBookFailed/>

</fault>
</call>
<switch>

<case condition="ta:HotelBookFailed">
<throw exception="ta:HotelBookFailed" />

</case>
</switch>

</sequence>
</try>
<coordinatedHandler exception="ta:flightBookFailed">

<sequence>
<call name="cancelHotel" service="ta:HotelService"

operation="Cancel"
retry=1
tryAlternate=false >

<input message="wsdl:hotelCancelInput">
<ta:hotelConfirmationResponse/>

</input>
<output message="wsdl:hotelCancelConfirmation">
<ta:hotelCancelConfirmationResponse/>

</output>
<fault message="wsdl:hotelFault">
<ta:HotelCancelFailed/>

</fault>
</call>
<switch>

<case condition="ta:HotelCancelFailed">
<throw exception="ta:HotelCancelFailed" />

</case>
</switch>

</sequence>
</coordinatedHandler>

</startNested>
</sequence>

</try>
<coordinatedHandler exception="failure">

<throw exception="abort" exceptionData="Aborted" />
</coordinatedHandler>

</behaviour>
</participant>

<participant name="Flight">
<state>
<var name="flightDestination" type="xsd:string"/>
<var name="flightFrom" type="xsd:string"/>

<var name="flightArrival" type="xsd:date"/>
<var name="flightDeparture" type="xsd:date"/>

170 C Travel agency WSCAL listing

<var name="flightSeats" type="xsd:string"/>
<var name="flightConfirmationResponse" type="xsd:string"/>
<var name="flightCancelResponse" type="xsd:string"/>

</state>

<behaviour>
<try>

<sequence>
<assign>
<to var="ta:flightDestination"/>
<from var="ta:tripRequest"

expr="//destination">
</assign>
<assign>
<to var="ta:flightFrom"/>
<from var="ta:tripRequest"

expr="//from">
</assign>
<assign>
<to var="ta:flightDeparture"/>
<from var="ta:tripRequest"

expr="//departure">
</assign>
<assign>
<to var="ta:flightArrival"/>
<from var="ta:tripRequest"

expr="//arrival">
</assign>
<startNested="ta:search">

<sequence>
<try>
<sequence>

<call name="invokeFlight" service="ta:FlightService"
operation="wsdl_f:searchFlight"
retry=1
tryAlternate=true >

<input message="wsdl_f:flightInput">
<ta:flightDestination/>
<ta:flightFrom/>
<ta:flightDeparture/>
<ta:flightArrival/>

</input>
<output message="wsdl_f:flightOutput">
<ta:flightSeats/>

</output>
<fault message="wsdl_f:flightFault">
<ta:FlightNotAvailable/>

</fault>
</call>
<switch>

171

<case condition="ta:FlightNotAvailable">
<throw exception="ta:FlightNotFound" />

</case>
</switch>
<catch exception="ta:FlightNotFound">

<try>
<sequence>

<call ref="invokeFlight"
service="ta:FlightService[2]"/>

<switch>
<case condition="ta:FlightNotAvailable">
<throw exception="ta:FlightSearchFailed" />

</case>
</switch>

</sequence>
</try>

</catch>
</try>
<coordinatedHandler exception="ta:Failed">
<thow exception="ta:noTripAvailable"

exceptionData="noTripAvailable"/>
</coordinatedHandler>

</startNested>

<startNested="ta:bookFlight">
<try>

<sequence>
<call name="bookFlight" service="ta:flightService"

operation="Book"
retry=1
tryAlternate=false >

<input message="wsdl:FlightInput">
<ta:flightDestination/>
<ta:flightFrom/>
<ta:flightDeparture/>
<ta:flightArrival/>

</input>
<output message="wsdl:flightConfirmation">
<ta:flightConfirmationResponse/>

</output>
<fault message="wsdl:FlightFault">
<ta:flightBookFailed/>

</fault>
</call>
<switch>

<case condition="ta:flightBookFailed">
<throw exception="ta:flightBookFailed" />

</case>
</switch>

</sequence>

172 C Travel agency WSCAL listing

</try>
<coordinatedHandler exception="ta:hotelBookFailed">

<sequence>
<call name="cancelFlight" service="ta:FlightService"

operation="Cancel"
retry=1
tryAlternate=false >

<input message="wsdl:flightCancelInput">
<ta:flightConfirmationResponse/>

</input>
<output message="wsdl:flightCancelConfirmation">
<ta:flightCancelConfirmationResponse/>

</output>
<fault message="wsdl:flightFault">
<ta:FlightCancelFailed/>

</fault>
</call>
<switch>

<case condition="ta:FlightCancelFailed">
<throw exception="ta:FlightCancelFailed" />

</case>
</switch>

</sequence>
</coordinatedHandler>

</startNested>
</sequence>

</try>
<coordinatedHandler exception="failure">

<throw exception="abort"/>
</coordinatedHandler>

</behaviour>
</participant>

</WSCA>
</WSCAL>

173

